
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.dummies.com/cheatsheat/patternorientedsoftwarearchitecture
http://www.dummies.com
http://www.dummies.com
http://www.dummies.com
http://www.dummies.com
http://www.allitebooks.org

Pattern-Oriented
Software

Architecture
FOR

DUMmIES
‰

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

by Robert Hanmer

A John Wiley and Sons, Ltd, Publication

Pattern-Oriented
Software

Architecture
FOR

DUMmIES
‰

www.allitebooks.com

http://www.allitebooks.org

Pattern-Oriented Software Architecture For Dummies®

Published by
John Wiley & Sons, Ltd.
The Atrium
Southern Gate
Chichester
West Sussex
PO19 8SQ
England

Email (for orders and customer service enquires): cs-books@wiley.co.uk

Visit our home page on www.wiley.com

Copyright © 2013 by Alcatel-Lucent. All rights reserved.

Published by John Wiley & Sons Ltd, Chichester, West Sussex

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise,
except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence
issued by the Copyright Licensing Agency Ltd., Saffron House, 6-10 Kirby Street, London EC1N 8TS, UK,
without the permission in writing of the Publisher. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester,
West Sussex, PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (44) 1243 770620.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER, THE AUTHOR, AND ANYONE ELSE
IN PREPARING THIS WORK MAKE NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM
ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR
PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL
MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR
EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS
NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF
PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON
SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES
ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS
WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN
THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR
WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE
AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content
that appears in standard print versions of this book may not be available in other formats. For more
information about Wiley products, visit us at www.wiley.com.

British Library Cataloguing in Publication Data: A catalogue record for this book is available from the
British Library.

ISBN 978-1-119-96399-8 (pbk); ISBN 978-1-119-96631-9 (ebk); ISBN 978-1-119-96632-6 (ebk); ISBN 978-1-119-
96630-2 (ebk)

Printed and bound in the United States by Bind-Rite

10 9 8 7 6 5 4 3 2 1

www.allitebooks.com

mailto:cs-books@wiley.co.uk
http://www.wiley.com
mailto:permreq@wiley.co.uk
http://www.wiley.com/techsupport
http://www.wiley.com
http://www.allitebooks.org

About the Author
Robert Hanmer is a director of The Hillside Group, an organization whose
mission is to improve quality of life for everyone who uses, builds, and
encounters software systems. The Hillside Group also sponsors Pattern
Languages of Programming (PLoP) software pattern conferences. Bob is
active in the software pattern community and has been program chair at
pattern conferences in the United States and overseas.

He is a consulting member of technical staff with Alcatel-Lucent near Chicago.
Within Alcatel-Lucent, Lucent Technologies, and Bell Laboratories (same
office, new company names), he is involved in development and architecture
of embedded systems, focusing especially on the areas of reliability and
performance. Previously, he designed interactive graphics systems used by
medical researchers.

Bob is the author of Patterns for Fault Tolerant Software (Wiley) and has
written or co-written 14 journal articles and several book chapters. He is a
senior member of the Association for Computing Machinery, a member of
the Alcatel-Lucent Technical Academy, and a member of the IEEE Computer
Society. He received his BS and MS degrees in Computer Science from
Northwestern University in Evanston, Illinois.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Dedication
For Karen

Author’s Acknowledgments
First, and most important, I want to acknowledge the authors of Pattern-
Oriented Software Architecture: A System of Patterns (Wiley): Frank
Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael
Stal. Peter also has been helpful with questions about modern C++ and the
software architecture classroom.

Many other people answered questions, reviewed sections, or generally
consulted with me while I was writing this book. Thanks to Ademar Aguiar,
Omar Aldawud, Dan Bergen, Filipe Correia, Chuck Corwin, Jerry Dzeidzic,
Christoph Fehling, Becky Fletcher, Brian Foote, Karen Hanmer, Kenji
Hiranabe, Lise Hvatum, Satomi Joba, Dr. Ralph Johnson, Capt. U.S. Navy
(Ret.) Will H. Jordan, Steven P. Karas, Allan Kelley, Christian Kohls, Christian
Koppe, John Krallman, John Letourneau, Steffen Macke, Dennis Mancl,
Jyothish Maniyath, Veena Mendiratta, Pedro Monteiro, Karl Rehmer, Linda
Rising, Hans Rudin, Eugene Wallingford, Michael Weiss, and Joe Yoder.

Thanks to the members of my writers’ workshop group at PLoP 2011 who held
a workshop on parts of this book: Dr. Tanya L. Crenshaw, Andre Hauge, Jiwon
Kim, Alexander Nowak, Rick Rodin, YoungSu Son, and Hironori Washizaki.

The Real-World Example sidebars in the pattern chapters are based on a
workshop at the 1998 OOPSLA conference. It was organized by Michael Duell,
Linda Rising, Peter Sommerlad, and Michael Stal. Russ Frame, Kandi Frasier,
Rik Smoody, and Jun’ichi Suzuki participated in the workshop and contrib-
uted to the examples that I’ve adapted here.

Thanks also to the many people at John Wiley & Sons, including Birgit
Gruber, Chris Katsaropoulos, Elizabeth Kuball, Ellie Scott, Jim Siddle,
Kathy Simpson, Chris Webb, and the others whose names you see on the
Publisher’s Acknowledgments page.

www.allitebooks.com

http://www.allitebooks.org

Publisher’s Acknowledgments
We’re proud of this book; please send us your comments at http://dummies.custhelp.com.
For other comments, please contact our Customer Care Department within the U.S. at 877-762-2974,
outside the U.S. at 317-572-3993, or fax 317-572-4002.

Some of the people who helped bring this book to market include the following:

Acquisitions and Editorial
Project Editor: Elizabeth Kuball

Executive Commissioning Editor: Birgit Gruber

Assistant Editor: Ellie Scott

Copy Editor: Elizabeth Kuball

Technical Editor: James Siddle

Editorial Manager: Jodi Jensen

Sr. Project Editor: Sara Shlaer

Editorial Assistant: Leslie Saxman

Cover Photo: © teekid / iStock

Cartoons: Rich Tennant (www.the5thwave.com)

Composition Services
Senior Project Coordinator: Kristie Rees

Layout and Graphics: Joyce Haughey

Proofreaders: John Greenough, Tricia Liebig

Indexer: Sharon Shock

Marketing
Associate Marketing Director: Louise Breinholt

Marketing Manager: Lorna Mein

Senior Marketing Executive: Kate Parrett

Marketing Assistant: Tash Lee

UK Tech Publishing
Michelle Leete, Vice President Consumer and Technology Publishing Director

Martin Tribe, Associate Director–Book Content Management

Chris Webb, Associate Publisher

Publishing and Editorial for Technology Dummies
Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies
Kathleen Nebenhaus, Vice President and Executive Publisher

Composition Services
Debbie Stailey, Director of Composition Services

www.allitebooks.com

http://dummies.custhelp.com
http://www.the5thwave.com
http://www.allitebooks.org

Contents at a Glance
Introduction... 1

Part I: Introducing Software Architecture and Patterns.... 7
Chapter 1: Software Architecture Basics... 9
Chapter 2: Where Do Architectures Come From?.. 25
Chapter 3: What Do Software Architectures Look Like?... 37
Chapter 4: Software Pattern Basics.. 55
Chapter 5: Seeing How Patterns Are Made and Used.. 73

Part II: Putting Patterns to Work................................. 83
Chapter 6: Making Sense of Patterns... 85
Chapter 7: Building Your Own Pattern Catalog.. 95
Chapter 8: Choosing a Pattern.. 103

Part III: Creating Your Application Architecture......... 115
Chapter 9: Building Functionality in Layers.. 117
Chapter 10: Piping Your Data through Filters... 137
Chapter 11: Sharing Knowledge and Results on a Blackboard................................. 151
Chapter 12: Coordinating Communication through a Broker................................... 171
Chapter 13: Structuring Your Interactive Application with

Model-View-Controller... 189
Chapter 14: Layering Interactive Agents with Presentation-

Abstraction-Control... 209
Chapter 15: Putting Key Functions in a Microkernel... 229
Chapter 16: Reflecting and Adapting.. 245

Part IV: Designing with Other POSA Patterns............. 263
Chapter 17: Decomposing the System’s Structure... 265
Chapter 18: Making a Component the Master... 271
Chapter 19: Controlling Access... 277
Chapter 20: Managing the System.. 285
Chapter 21: Enhancing Interprocess Communication... 295
Chapter 22: Counting the Number of References... 309

Part V: The Part of Tens.. 319
Chapter 23: Ten Patterns You Should Know... 321
Chapter 24: Ten Places to Look for Patterns... 327
Chapter 25: Ten Ways to Get Involved with the Pattern Community...................... 333

Index... 339

Table of Contents
Introduction.. 1

About This Book... 1
Conventions Used in This Book.. 2
What You’re Not to Read... 3
Foolish Assumptions.. 3
How This Book Is Organized... 3

Part I: Introducing Software Architecture and Patterns.................... 4
Part II: Putting Patterns to Work... 4
Part III: Creating Your Application Architecture................................ 4
Part IV: Designing with Other POSA Patterns..................................... 5
Part V: The Part of Tens... 5

Icons Used in This Book.. 5
Where to Go from Here.. 6

Part I: Introducing Software Architecture and Patterns.... 7

Chapter 1: Software Architecture Basics . . 9
Understanding Software Architecture... 9

Components of software architecture... 10
Architecture document.. 11
Architecture models (views)... 11
Software development methods and processes............................... 12

Identifying the Problem to Be Solved.. 13
Breaking the problem into the four attributes.................................. 13
Developing a problem statement.. 14
Defining the important use cases... 15

Identifying the Requirements.. 18
Defining functional requirements... 19
Defining nonfunctional requirements.. 19
Reviewing the requirements... 22

Choosing a Software System Style.. 24
Architectural styles.. 24
Programming style.. 24

Pattern-Oriented Software Architecture For Dummies xii
Chapter 2: Where Do Architectures Come From? 25

Understanding Architectural Styles... 25
Elements of styles... 26
Patterns and architectural styles... 26

Creating Software Architecture.. 27
Deciding when to create an architecture.. 27
Identifying problem categories... 28
Defining layers and abstractions.. 28
Employing enabling techniques.. 30
Designing your architecture.. 33
Documenting your work.. 35

Chapter 3: What Do Software Architectures Look Like? 37
Examining UML Architectural Models... 37

Choosing a diagram style... 37
Showing different views... 38

Working with UML Diagrams.. 40
Creating class diagrams... 40
Showing the interactions... 44
Deploying your system.. 46
Packaging up the software... 47
Using use-case diagrams.. 48

Choosing Your Design Tools... 49
Commercial software-development tools.. 50
Free UML tools.. 50
General drawing tools.. 51

Explaining Your Software in an Architecture Document........................... 52
Organizing the architecture document.. 52
Filling in the sections... 53

Chapter 4: Software Pattern Basics . 55
What Patterns Are.. 55

Reusable designs.. 56
Proven solutions... 58
Educational tools.. 58
System guides.. 59
Architectural vocabularies.. 59
Repositories of expertise... 60

What Patterns Are Not... 60
Looking Inside Patterns... 61

Title... 62
Problem statement... 62
Context... 63

xiii Table of Contents

Forces... 64
Solution.. 66
Other common sections... 67

Understanding the Patterns Used in This Book... 69
The Design Patterns pattern style.. 70
The Pattern-Oriented Software Architecture pattern style............. 71

Chapter 5: Seeing How Patterns Are Made and Used 73
Creating Patterns.. 73

Coming up with the idea.. 74
Confirming the Rule of Three.. 75
Extracting the general solution... 75
Writing the pattern document.. 76
Naming the pattern... 77
Getting expert reviews... 77
Keeping patterns current... 80

Documenting System Architecture with Patterns...................................... 81

Part II: Putting Patterns to Work.................................. 83

Chapter 6: Making Sense of Patterns . 85
Understanding Pattern Classifications.. 85

Styles.. 86
Depth.. 87
Other classifications... 91

Grouping Patterns.. 92
Pattern collections.. 92
Pattern languages... 93

Chapter 7: Building Your Own Pattern Catalog 95
Assembling Your Catalog.. 96

Choosing a medium.. 96
Identifying the problems you face.. 97
Finding patterns that solve your problems....................................... 97
Organizing the catalog in sections... 98
Connecting the patterns.. 100

Keeping Your Catalog Current.. 100

Chapter 8: Choosing a Pattern .103
Examining Patterns Critically.. 103

Asking the right questions about patterns...................................... 104
Knowing what to look for in a pattern... 104

Pattern-Oriented Software Architecture For Dummies xiv
Selecting a Particular Pattern... 105

Step 1: Specify the problem... 106
Step 2: Select the pattern category... 107
Step 3: Select the problem category... 108
Step 4: Compare the problem descriptions..................................... 109
Step 5: Compare benefits and liabilities... 110
Step 6: Select the best variant... 112
Step 7: Select an alternative problem category.............................. 112

Designing Solution Architecture with Patterns.. 113

Part III: Creating Your Application Architecture.......... 115

Chapter 9: Building Functionality in Layers . 117
Using Layered Architecture.. 117

Keeping communications open... 117
Creating web applications... 118
Adapting to new hardware.. 119

Problem: Designing at Differing Levels.. 120
Building a monolith.. 120
Breaking up your monolith.. 121
Making this problem harder.. 122

Solution: Layering Your System.. 123
Exploring the effects of layers... 123
Layering your architecture.. 127
Implementing a layered architecture... 130

Chapter 10: Piping Your Data through Filters . 137
Problem: Analyzing an Image Stream... 137
Solution: Piping through Filters.. 144

Exploring the effects of Pipes and Filters.. 144
Implementing Pipes and Filters... 146

Chapter 11: Sharing Knowledge and Results on a Blackboard 151
Problem: Building an Attack Computer... 151

Meet the components.. 153
Ponder your approach... 154
Enter the blackboard.. 155
Put your blackboard into software... 158

Solution: Building the Blackboard Architecture....................................... 159
Exploring the effects of the blackboard... 159
Knowing the parts of a blackboard system..................................... 160
Implementing a blackboard architecture.. 165

xv Table of Contents

Chapter 12: Coordinating Communication through a Broker 171
Problem: Making Servers Cooperate.. 171

Thinking about the problem.. 172
Adding a middleman... 173
Connecting clients and servers... 175

Solution: Use a Broker.. 177
Looking inside a broker system.. 177
Exploring the effects of broker architecture................................... 181
Following the flow of broker messages.. 183
Implementing a broker architecture.. 184

Chapter 13: Structuring Your Interactive Application with
Model-View-Controller . 189

Problem: Looking at Data in Many Ways... 189
Pondering what you need.. 190
Viewing the system flexibly... 191
Keeping the views current... 192
Changing the user interface.. 192

Solution: Building a Model-View-Controller System................................ 193
Exploring the effects of MVC... 194
Inspecting MVC’s moving parts.. 196
Implementing MVC... 198

Seeing Other Ways to Manage Displays.. 206
Combining controller and view... 207
Comparing Presentation-Abstraction-Control................................ 207

Chapter 14: Layering Interactive Agents with Presentation-
Abstraction-Control . 209

Understanding PAC.. 210
Problem: Coordinating Interactive Agents.. 213

Combining the programs... 214
Ruling out MVC... 215
Comparing PAC and MVC.. 216
Using separate agents.. 216

Solution: Creating a Hierarchy of PAC Agents.. 217
Exploring the effects of PAC.. 218
Knowing when — and when not — to use PAC.............................. 219
Looking inside PAC architecture.. 220
Implementing PAC.. 222

Pattern-Oriented Software Architecture For Dummies xvi
Chapter 15: Putting Key Functions in a Microkernel 229

Problem: Hosting Multiple Applications.. 229
Considering an existing OS.. 230
Designing a custom OS... 230
Separating policy from mechanisms.. 231
Building the system.. 232

Solution: Building Essential Functionality in a Microkernel................... 234
Examining Microkernel Architecture... 235

Viewing the architecture’s parts.. 235
Exploring the effects of the Microkernel pattern........................... 238
Implementing a microkernel architecture....................................... 240

Chapter 16: Reflecting and Adapting . 245
Understanding Reflection.. 245
Looking for Reflection.. 248

Externalization.. 248
Code analysis tools... 249
Aspect-oriented programming.. 250
System configuration files.. 251

Designing Architectural Reflection... 251
Making applications adaptable... 251
Structuring the classes... 252
Understanding the consequences of Reflection............................. 254
Implementing Reflection.. 255

Programming Reflection Today.. 259
Reflection in C++... 259
Reflection in Java.. 260
Reflection in C#... 260
Reflection in Ruby... 260

Part IV: Designing with Other POSA Patterns.............. 263

Chapter 17: Decomposing the System’s Structure 265
Understanding Whole-Part Systems... 265

Seeing how the pieces fit... 267
Recognizing the benefits and liabilities... 267

Implementing the Whole-Part Pattern... 268
Step 1: Define the whole’s public interface..................................... 268
Step 2: Divide the whole into parts.. 268
Step 3: Define the services of the whole and the services

offered by the parts.. 269
Step 4: Build the parts.. 270
Step 5: Implement the whole... 270

xvii Table of Contents

Chapter 18: Making a Component the Master 271
Introducing the Master-Slave Pattern.. 271

Benefits of Master-Slave... 273
Liabilities of Master-Slave.. 273

Implementing Master-Slave... 273
Step 1: Divide the work.. 274
Step 2: Combine the subtasks... 274
Step 3: Define how master and slaves will cooperate.................... 274
Step 4: Implement the slave components.. 275
Step 5: Build the master component.. 275

Chapter 19: Controlling Access . 277
Understanding Proxies.. 277

The Proxy pattern versus the Broker pattern................................. 278
Parts of a proxy... 278

Getting Acquainted with Proxy Variants... 280
Remote... 280
Protection.. 280
Cache.. 280
Synchronization.. 280
Counting... 281
Virtual... 281
Firewall... 281
Reverse... 282

Implementing a Proxy.. 282
Step 1: Identify access control responsibilities.............................. 282
Step 2: Introduce an abstract base class... 282
Step 3: Implement the proxy’s functions... 283
Step 4: Remove responsibilities from the server............................ 283
Step 5: Give the proxy theaddress of the server............................ 283
Step 6: Remove the relationships between the clients

and servers.. 283

Chapter 20: Managing the System . 285
Separating Requests from Execution with Command Processor........... 286

Looking inside the pattern structure... 286
Implementing Command Processor... 289

Managing Your Views with View Handler... 291
Looking inside View Handler... 291
Implementing View Handler.. 293

Pattern-Oriented Software Architecture For Dummies xviii
Chapter 21: Enhancing Interprocess Communication 295

Forwarding Messages to a Receiver... 296
Using specialized components.. 296
Implementing Forwarder-Receiver... 298

Connecting Client and Server through a Dispatcher............................... 301
Issuing directions from a dispatcher... 302
Implementing Client-Dispatcher-Server... 303

Publishing State Changes to Subscribers.. 305
Step 1: Define the publication policies... 307
Step 2: Define the publisher’s interface... 307
Step 3: Design the subscriber interface... 307

Chapter 22: Counting the Number of References 309
Problem: Using the Last of Something... 309

First try: Passing objects with pointers... 310
Second try: Passing objects by copying.. 311
Third try: Using the Counted Pointer idiom.................................... 311

Solution: Releasing Resources with the Counted Pointer Idiom............ 312
Implementing Counted Pointer... 313
Seeing some Counted Pointer variations... 316

Part V: The Part of Tens... 319

Chapter 23: Ten Patterns You Should Know . . 321
Special Case... 321
Do Food.. 322
Leaky Bucket Counter.. 322
Release Line... 323
Light on Two Sides of Every Room... 324
Streamline Repetition... 324
Observer.. 324
Sign-In Continuity... 325
Architect Also Implement.. 325
The CHECKS Pattern Language of Information Integrity......................... 326

Chapter 24: Ten Places to Look for Patterns . 327
A Pattern Language.. 327
Pattern-Oriented Software Architecture.. 328
Design Patterns... 328
Domain-Driven Design.. 329
Pattern Languages of Program Design... 329
Patterns for Time-Triggered Embedded Systems.................................... 330
Software Configuration Management Patterns... 330
Patterns of Enterprise Application Architecture...................................... 331

www.allitebooks.com

http://www.allitebooks.org

xix Table of Contents

Welie.com.. 331
Apprenticeship Patterns.. 331

Chapter 25: Ten Ways to Get Involved with the
Pattern Community . 333

Advocate Using Patterns... 333
Write About Your Experiences Using Patterns... 334
Compile a Catalog of Your Work.. 334
Mentor Someone... 334
Help Index Patterns.. 335
Join a Mailing List... 335
Join a Reading Group... 336
Write Your Own Patterns.. 336
Attend a Pattern Conference... 337
Start a Writers’ Workshop... 338

Index.. 339

Pattern-Oriented Software Architecture For Dummies xx

Introduction

W
ouldn’t it be great to never rewrite code? To always face new challenges
rather than solve the same problems over and over? To always solve

new and interesting problems instead of rehashing old ones? If you remember
how you solved a problem before, reuse that solution. Don’t reinvent the
wheel!

Software patterns help you avoid reinventing the wheel, in that they help you
avoid reinventing the solution to a software problem that someone else has
already solved.

Patterns have been around in the software community since at least the early
1990s. Software pattern authors have been writing patterns that document
their proven solutions in the hope that you — the reader — will benefit from
their experience.

In particular, many people are collecting and publishing patterns that structure
software architecture — the underlying structure of the software. The goal
of architectural patterns is to speed your development; allow you to move
forward, knowing that a particular architecture will help rather than hinder
you; and ultimately give you the time you need to solve new and interesting
problems.

Pattern-Oriented Software Architecture For Dummies is written to help you
understand the basics of software architecture. It also helps you understand
software patterns. The book brings these two concepts together and presents
eight software architectures that you can use in your next software design
project. It also gives you some design patterns, tips, and resources where
you can find out more about software patterns.

About This Book
This book provides proven architectures and designs expressed as patterns.
These patterns aren’t the only ways you can structure your software archi-
tecture, though, and this book doesn’t replace the other references you use
for software design patterns.

2 Pattern-Oriented Software Architecture For Dummies

As you read this book, keep in mind that you can’t just plug-and-play these
patterns. Your intelligence and taste are required to adapt these patterns to
your design problem. This is the norm with software patterns: No respect-
able pattern author will tell you that you can use his or her patterns without
adapting them to your situation.

In the early days, software patterns provided valuable assistance to people
who were trying to get a handle on object-oriented design. The discussions
of these patterns seemed to me, however, to focus on getting the structure of
the object-oriented program’s header files and class definitions correct at the
expense of the real application. In this book, I give you an understanding
of the solutions to the problems, not the detailed header files. I want you to
understand the principles involved rather than get caught up in the implemen-
tation details. As a result, this book isn’t language-specific or programming
paradigm-specific; instead, it explains the underlying principles involved in the
solutions that you will apply using your prior experience and expertise.

Finally, you don’t have to read the whole book from front cover to back.
Instead, use the table of contents and index to locate the information you
need when you need it.

Conventions Used in This Book
Here are the conventions I use throughout this book:

	 ✓	I capitalize the names of patterns. In some chapters, the name of the pat-
tern is the same as the name of a key component of the architecture. In
general, the pattern name is capitalized, and the name of the component
is not capitalized.

	 ✓	I abbreviate the names of many of the patterns discussed in Parts III
and IV because they’re quite long. Model-View-Controller, for example,
becomes MVC. On the first use in a chapter, the whole name is spelled
out, and the abbreviation is used thereafter.

	 ✓	When I introduce a new term, I put it in italics and define it shortly there-
after (often in parentheses).

	 ✓	I put web addresses in monofont so they stand out from the surrounding
text. Note: When this book was printed, some web addresses may have
needed to break across two lines of text. If that happened, rest assured
that we haven’t added extra characters (such as hyphens) to indicate the
break. So, when using one of these web addresses, just type in exactly what
you see in this book, pretending as though the line break doesn’t exist.

3 Introduction

What You’re Not to Read
I’ve sprinkled a few sidebars around in the text. They show up as gray boxes.
You can safely skip them. They contain information that I think you may find
useful but that isn’t required to understand the patterns or software archi-
tecture. You also can skip anything marked with a Technical Stuff icon (see
“Icons Used in This Book,” later in this Introduction, for more information).

Foolish Assumptions
I make some assumptions about who would read and benefit from this book.
I don’t expect that you’re an expert in software architecture; in fact, I assume
that you’re pretty new to it. I do assume that you know something about
writing software, however, and that you’ve already written some software. In
particular, I assume that you’ve written software in some sort of team setting
on a project bigger than a school project. From this experience, you’ll have
learned about designing with modules and components.

Because more software is changed, evolved, and maintained than written
from scratch, I assume that you’ve experienced some software maintenance.
Maintenance of someone else’s (or even your own) code will have given you
an understanding of the importance of modularity and good structure.

I don’t assume that you’re an expert in object-oriented design or any other
particular design methods. The architectures in this book can be adapted to
any paradigm you work in and are familiar with. Some familiarity with at least
the basic terminology of objects, classes, and methods is assumed.

How This Book Is Organized
This book has five parts. Parts I and II introduce software architecture and
software patterns. The next two parts present real live patterns that you can
use in your software. Finally, Part V shows you where to turn next to explore
the exciting world of software patterns.

4 Pattern-Oriented Software Architecture For Dummies

Part I: Introducing Software
Architecture and Patterns
To build a foundation for the rest of the book and to explain the basic concepts,
Part I focuses on software architecture: what it is, how to create it, and how
to document it. Architecture builds on the needs of the customer or client, so
Part I also talks about the requirements that shape your architecture.

Architecture needs to be explained to those who will build the application.
Even if you’re the sole builder, an explanation will help you remember later
what you did today. Part I introduces various ways of documenting your
architecture, including simple Class-Responsibility-Collaboration cards, the
basics of the Unified Modeling Language, and an outline of an architecture
description document.

Part I ends with a chapter that describes the basics of software patterns.
This chapter provides a foundation for the discussions in Part II of making
the most of software patterns.

Part II: Putting Patterns to Work
You need to find patterns that address the problems you need to solve. Part II
describes how patterns are organized and catalogued. It also presents a
process you can use to find the patterns that can help you.

As you start using patterns, you’ll find that you use the same patterns over
and over. Part II has instructions for collecting the patterns you use most
often in a private quick-reference catalog.

Part III: Creating Your Application
Architecture
Part III contains eight architectural patterns that you can use in several kinds
of software, ranging from distributed systems to user interfaces. Each chapter
discusses a single topic. The patterns cover several different architectural
problem spaces like structuring the solution, disturbed systems, and interac-
tive systems. Chapters 13 and 14 show two different ways to solve similar
problems related to user interfaces. The chapters in this part all contain
implementation sections to give you an outline of the steps needed to imple-
ment the pattern’s solution.

5 Introduction

Part IV: Designing with Other
POSA Patterns
Architectural patterns solve the really big problem of how to structure
the entire software system. In Part IV, the focus is on smaller patterns that
address smaller programming problems. These design patterns address spe-
cific elements of the software, not the whole structure. The design patterns
are organized by the kind of problems that they help with, and each kind of
problem is presented in its own chapter.

Solving lower-level problems that you encounter only in a single program-
ming language is the work of an idiom pattern. Part IV contains an example
idiom pattern that’s useful in the C++ language (although the general princi-
ple is useful elsewhere as well). The patterns in Part IV also outline the steps
needed to implement the solution. You’ll build on your own experience to
adapt these steps to your program.

Part V: The Part of Tens
Every For Dummies book has a Part of Tens. This book has three chapters in
Part V, each containing ten tips to help you continue your study of patterns.
Chapter 23 contains ten individual patterns that you should know. Chapter 24
lists ten places to look for specific patterns, including books and websites.
Finally, Chapter 25 lists ten ways that you can get involved with the software
patterns community, ranging from using patterns in your own development
to telling people about patterns to writing your own.

Icons Used in This Book
I’ve used several icons throughout this book:

	 The Remember icon is a friendly notice of information that you should keep in
mind as you’re reading the text.

	 The Technical Stuff icon marks text that digs deeper into a concept. You can
skip this material if you want.

	 When something is especially helpful for using a pattern or idea, I mark it with
a Tip icon.

6 Pattern-Oriented Software Architecture For Dummies

	 I’ve thrown in a few warnings, which are things that you need to be con-
sciously aware of; otherwise, you could run into problems.

	 Throughout the book I provide examples of how you can use patterns in the
real world. I mark that material with the Real-World Example icon.

Where to Go from Here
The book is structured so that you can jump in anywhere. If you aren’t famil-
iar with software architecture, I suggest that you start with the first part. If
you already know about software architecture but aren’t sure what patterns
are, start with Chapter 4 and progress through Part II.

Each chapter in Parts III and IV discusses a different pattern. None of these
chapters depends on your having read any other chapter. You’ll see some
cross-references between chapters, but they’re provided to help you dig
deeper and understand your options; they aren’t there to point out that you
should have read something else beforehand.

Part I
Introducing Software

Architecture
and Patterns

In this part . . .

T
he first part of this book introduces the underlying
concepts to get you ready to use the patterns

described later. I begin by giving you some background on
software architecture and then discuss the basics of soft-
ware patterns.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1

Software Architecture Basics
In This Chapter
▶	Understanding the basics of software architecture

▶	Finding the problem

▶	Identifying requirements

▶	Considering your software development style

T
he term software architecture means different things to different people.
To the developer, it means the structure of the system being built. To

the framework developer, it’s the shape of the system that is created with
the framework. To the tester, it’s the shape of what needs to be tested. For all
concerned, it’s the high-level structure of the solution to a problem that the
customer or client wants solved.

In this chapter, I explain the basics of software architecture — what it is and
how you get started. Knowing the problem that you’re solving and the impor-
tant requirements of the system are also very important, and I help you get
going with these tasks in this chapter. In Chapter 4, I explain how software
patterns fit into the picture.

Understanding Software Architecture
Every system has an architecture — some high-level structure that underlies
the whole system. Software architecture is how the pieces fit together to build
the solution to some business or technical need that your customer or client
wants solved. The architecture has a purpose.

The decisions made during the creation of the architecture are truly funda-
mental to the system because they set the stage for all the other decisions
that will come later.

10 Part I: Introducing Software Architecture and Patterns

Some systems’ architectures are best described as a Big Ball of Mud (see
Chapter 2). These systems are hard to build and hard to maintain, and they
may not meet the customer’s needs. Tackling the development of a software
system with good software architecture will lead to a more successful result.

	 To an unsophisticated customer or client, software architecture is a meaning-
less term, so don’t get hung up trying to explain how wonderful your architec-
ture is. The customer wants the finished product that solves the problem at
hand, not a description of the software that you’ll build to solve it. (For more
information on explaining software architecture to others, see Chapter 3.)

Components of software architecture
The software architecture provides the high-level view of the system you’re
building and must cover the following aspects:

	 ✓	Goals and philosophy of the system: The architecture explains the
goals and describes the purpose of the system, as well as who uses it
and what problem it solves.

	 ✓	Architectural assumptions and dependencies: The architecture explains
the assumption made about the environment and about the system
itself. The architecture also explains any dependencies on other systems
or on the builders of the system.

	 ✓	Architecturally significant requirements: The architecture points to the
most significant requirements that shaped it.

	 ✓	Packaging instructions for subsystems and components: The architec-
ture explains how the parts of the system are deployed on computing
platforms and how the parts must be combined for proper functioning. The
subsystems and components are the building blocks of the architecture.

	 ✓	Critical subsystems and layers: The architecture explains the different
views and parts of the system and how they relate. It also explains the
most critical subsystems in detail.

	 ✓	References to architecturally significant design elements: The architec-
ture describes the most prominent and significant parts of the design.

	 ✓	Critical system interfaces: The architecture describes the interfaces of
the system, with special attention to the interfaces that are critical to
meet the system’s requirements.

	 ✓	Key scenarios that describe critical behavior of the system: The archi-
tecture explains the most important scenarios that illustrate and explain
how the system will be used.

11 Chapter 1: Software Architecture Basics

Architecture document
All the components in the preceding section go into an architecture document,
which contains the information needed to interpret the architecture. The
document includes assumptions, key decisions that shaped the architecture,
how the parts of the architecture work together, and how the system will be
packaged. I tell you more about the architecture document in Chapter 3.

Architecture models (views)
The software architecture has several audiences, including fellow architects,
programmers, configuration managers, testers, and customers. All are inter-
ested in different information, and all look for different things within the
architecture. To make your architecture useful to all these audiences, divide
the architectural description into four different models or views:

	 ✓	Logical: Maps the system onto classes and components. The logical
view is directly related to the functional requirements, which I discuss
later in this chapter. The logical view focuses on the parts of the system
that provide the functionality and that the users of the system will see
when they interact with it.

	 ✓	Process: Explains how the parts of the architecture work together
and how the parts stay synchronized. It also explains how the system
is mapped onto the units of computing, like processes and threads.
Processes are groups of tasks that together make something that can
execute and perform the desired functions. The process view brings in
some nonfunctional requirements (see “Defining nonfunctional require-
ments,” later in this chapter), which aren’t directly related to visible
functions.

	 ✓	Physical: Explains how the software that implements the system is
mapped onto the computing platforms. The various components of the
system, networks, processes, tasks, and objects are mapped onto the
tangible parts of the system in the physical view. This view contains
information related to the system’s nonfunctional requirements (dis-
cussed later in this chapter), such as availability, performance, and
scalability.

	 ✓	Development: Explains how the software will be managed during devel-
opment. The software will be written in small pieces that individuals
or small teams can work on together. The development view highlights
these pieces and shows how they are intertwined and interdependent.
The development view reflects any limitations on the organization of the
software based on limitations in the programming language, development
environment, or development organization.

12 Part I: Introducing Software Architecture and Patterns

	 I tell you about diagram styles to use for each of these models in Chapter 3.

These four models of the system are usually supplemented by one additional
view that describes common scenarios, tying the other views together by
showing how elements within all of them work together. (Use cases, discussed
later in this chapter, describe the scenarios.) This additional view is frequently
called the 4 + 1 model. Figure 1-1 shows how the parts relate. A good architec-
ture balances all these views so that no view contains much more detail than
any other.

	

Figure 1-1:
The 4 + 1

model of an
architecture.

	

Software development methods
and processes
Software development can be done in many ways. These different ways are
called methods or processes. Here are a few examples:

	 ✓	Waterfall method: In the waterfall method, the different phases of system
development activities follow each other sequentially. The artifacts pro-
duced during development are considered to be flowing downstream
and going over a waterfall between the analysis, requirements-gathering,
development, and testing phases of development. Artifacts always move
forward, or downstream, without repeating a phase more than once.

	 ✓	Unified Process: The Unified Process is a popular process in which the
various activities — such as requirements generation, development,
and testing — overlap. Instead of being associated with particular work
products and the tasks that create them, the phases in the Unified
Process follow the life of the product, from inception to elaboration to
construction and finally to transition. Within each of these phases, the
activities are iterated, always focusing on the most critical aspects.

13 Chapter 1: Software Architecture Basics

	 ✓	Agile methods: Agile development methods are very popular today. Agile
methods are an outgrowth of the Agile Manifesto (www.agilemanifesto.
org), which declares (among other things) that there’s more value in
working software than in the documentation created by the waterfall
method and Unified Process.

		 Within the category of agile methods are a variety of methods, such as
XP, Scrum, and Lean. Agile methods are also iterative, but even more
than in the Unified Process, a little bit of each activity is done during
each iteration.

All these methods are useful, and everything I tell you in this book about
developing software architecture applies to any process you use. The only
differences involve when the architecture descriptions are handed off to
people working on the other parts of the process.

Identifying the Problem to Be Solved
As you define your software architecture, the most important question you
need to ask is: “What problem am I solving?” A major reason why software
systems don’t succeed is that they don’t meet the needs of the customer or
client who requested the software. In other words, they didn’t solve the
customer’s or client’s problem.

In this section, I show you how to identify the problem so that you can
develop a solution that both solves the problem and meets your customer’s
or client’s needs.

Breaking the problem into
the four attributes
The problems that you solve with software architectures have four main
attributes:

	 ✓	Function: Describes the problem to be solved

	 ✓	Form: Describes the shape of the solution and how it fits into the envi-
ronment of other systems and technologies

	 ✓	Economy: Describes how much it costs to build, operate, and maintain
the solution

	 ✓	Time: Describes how the problem is expected to change in the future

Understanding these four attributes is critical to identifying the problem to
be solved.

http://www.agilemanifesto.org
http://www.agilemanifesto.org

14 Part I: Introducing Software Architecture and Patterns

	 Ask the customer what he wants in a system and why he wants it. As he explains,
take notes, and map them to these problem attributes.

	 Ultimately, the system described by your architecture must do what the cus-
tomer wants, at a cost the customer is willing to pay, and on a schedule that
satisfies the customer’s needs.

Developing a problem statement
A problem statement is needed to understand what to build.

To show you how to develop a problem statement, I start by walking you
through the process of creating an example payroll system. Follow these steps:

	 1.	 Establish the goals of the problem-definition process.

		 Decide how long you can spend developing the problem statement and
how much detail the problem statement needs to have.

		 For a payroll system, you want to identify the constraints on the solution
(issues that will affect its form, economy, and time) and be sure that you
understand the high-level function: to get employees paid.

	 2.	 Gather facts.

		 In the fact-gathering steps, you work with the customer or client to
understand her needs, how she’s satisfying that need now, and what
computing platform she expects to be used in the solution. You also
identify the people and other systems, known as actors, that will interact
with the system. Your objective is to find out as much as you can about
the problem, the need, and the expectations on the system.

		 For the example payroll system, you would gather facts about the number
of employees, how frequently they get paid, how their pay is calculated,
and what potential deductions are taken from their pay.

	 3.	 Uncover the concepts that are essential to the solution and that will
shape your architecture.

		 In this step, you look for the underlying concepts in play. You uncover
assumptions, equations, regulations, process models, usage constraints,
and other fundamental concepts.

		 For the payroll system, you discover the equations used to compute an
employee’s pay and determine how irregularities from normal payment
are communicated with the system.

	 4.	 Determine what the customer or client must have to be satisfied with
the solution.

		 This step involves understanding the needs and expectations of the cus-
tomer or client based on the underlying concepts that you found in Step 3.

15 Chapter 1: Software Architecture Basics

What is the minimum that the customer must have to be happy with the
solution you design?

		 The example payroll system needs to take in each employee’s hours
worked, to know the base rate of pay and related deductions, and to
compute payment amounts. The system also needs to print checks or in
some other way make payments to the employees.

	 5.	 Write the problem statement.

		 Based on your understanding of the problem from completing the pre-
ceding four steps, you can write a problem statement that brings in the
four attributes of function, form, economy, and time (see the preceding
section) in a way that explains it to the customer or client.

		 For the example payroll system, the problem statement is “Compute and
pay employees for work done [Function] using an interactive system for
entering hours worked and for making payment through direct deposit
[Form]. The solution should be available in three months [Time] for the
price negotiated [Economy].”

Defining the important use cases
When you have a clear idea of what the problem is, you want to refine that
definition and really zoom in on what you need to do to solve the problem.
An effective way to do this is to write use cases. A use case describes what a
person should expect to accomplish when he or she uses the system. Actors —
the people or other systems that interact with the system being designed —
are the main ingredients in use cases, and I discuss them separately later in
this section.

The scenarios shown in use cases connect the different views of the architec-
ture, showing how the parts of the architecture work together to solve the
problems that you’ve identified by describing example usage scenarios.

Choosing the functionality to capture
You write a use case to explain how some of the system’s functions work
and how the system interacts with actors. Use cases can be used to explain
external functionality or what goes on inside the system. The external func-
tionality is what you want to understand at this stage of your architecture
development, so concentrate on the interactions of external actors with the
system. As you develop your architecture, using the method I explain in
Chapter 2, the internal functions of the system become clear.

Use cases can capture large functionality, such as computing weekly payroll
for all employees, or small functionality, such as validating the hours worked
by a single employee. Regardless of size, however, all use cases have discrete
goals — specific outcomes that they describe.

16 Part I: Introducing Software Architecture and Patterns

To see how use cases work, consider the simple payroll system from the
previous section that computes payments due and directs those payments.
Figure 1-2 shows a use-case diagram for this system and the text describing
the use case. Both parts are important. This use case has one actor — the
employee — who is interacting with the system to update the hours that he
worked.

	

Figure 1-2:
An example

use-case
diagram.

	

Use-case diagrams like the one shown in Figure 1-2 are useful for providing an
overview of how the actors interact with the system and with one another.

	 Don’t try to capture all the details in a single use case. If you do, the use case
will become unwieldy.

Develop the use cases a little at a time. Start by writing a high-level use case
and then add more use cases that go into greater detail.

Identifying the actors
Use cases revolve around actors. Who are these actors? Here are a few
definitions:

	 ✓	Actors perform the functions described in the use case.

	 ✓	Actors play various roles: customer, user, employee, manager, payroll
clerk, and so on.

17 Chapter 1: Software Architecture Basics

	 ✓	Actors can be involved in many use cases. Particular actors, like the
payroll clerk, can perform different functions in different use cases.

	 ✓	Actors don’t need to be human; they can be other systems.

		 When an actor is a system, use a different symbol in the use-case diagram
from the one you use for humans (see the next section).

	 ✓	Nonhuman actors shouldn’t be internal components of the system.
Actors are people or things that interact with the system from its exte-
rior. For the purposes of use cases, the system is a black box, and you
shouldn’t include its internal functioning.

Diagramming the system
Systems have multiple use cases, so a special use-case diagram provides a
high-level view of how all the actors interact with the system and serves as a
table of contents for the individual use cases.

Figure 1-3 shows the use-case diagram for an entire payroll system. The pay-
roll system is in the center, surrounded by the actors. The bubbles represent
the named use cases.

	

Figure 1-3:
A use-case
diagram for

an entire
architecture.

	

18 Part I: Introducing Software Architecture and Patterns

Documenting the use cases
When you begin defining your use cases, start at the overview level by identi-
fying the most important use cases; then turn your attention to refining these
use cases. Document them by using the process that follows.

These nine steps, which describe the tasks needed to develop a use case, are
from UML 2 For Dummies, by Michael Jesse Chonoles and James A. Schardt
(Wiley):

	 1.	 Decide which use case you’re going to document, and give it a name.

	 2.	 Sketch a diagram that shows how your actors will interact with the
system.

		 For an example, refer to Figure 1-2, earlier in this chapter.

	 3.	 Write a short summary of the use case.

		 Usually, a sentence or two is enough.

	 4.	 Write the story of the use case.

		 The story usually begins with “The actor does something.”

	 5.	 Describe the main sequence of events that will happen after the actor
begins the use case.

	 6.	 Write down anything that must be done before the use case starts or
that must be done after it ends.

	 7.	 Identify the other scenarios, such as error cases or alternatives.

	 8.	 Write the sequences of events for the alternative scenarios identified
in Step 7.

	 9.	 Add any rules that the use case must enforce.

		 You may want to add a rule that the use case is required to validate the
data input by an actor, for example.

Identifying the Requirements
When you thoroughly understand the problem to be solved, as discussed in
the preceding section, you need to translate it into detailed requirements (the
list of things that you need to include in the solution). Sometimes, you need
to be formal and write down the requirements, even numbering them and
tracking them through to the code. At other times, you don’t need to be so
formal, but you should still document the requirements. The level of detail
needed in the requirements is related to the complexity of the problem and
the solution; complex problems and solutions call for detailed requirements.

www.allitebooks.com

http://www.allitebooks.org

19 Chapter 1: Software Architecture Basics

	 Architectures are created to implement and meet requirements.

You identify requirements in much the same way that you define the problem
statement (refer to “Developing a problem statement,” earlier in this chapter).
You need to talk to the customer or client and find out what he really wants
you to design and build.

Defining functional requirements
Some requirements are obvious from the customer’s needs. Perhaps the cus-
tomer wants the main user interface to be through a web browser, for example.
Or perhaps the system needs to compute a table of values following the
customer’s formula, such as “compute the amount to be paid to an employee
using hours worked and per-employee deductions as inputs.”

Requirements like these, which define something that the system must do, are
functional requirements. Functional requirements are represented and illus-
trated in use cases. When an actor interacts with the system, that interaction
is made to achieve some purpose — and that purpose is the requirement.

The functional requirements show up most often in the logical view of the
system (refer to “Architecture models [views],” earlier in this chapter),
which shows the behavior of the individual classes.

Defining nonfunctional requirements
A system has other requirements that you won’t be able to demonstrate by
clicking a widget and seeing what happens. These requirements, called non-
functional requirements, include things like the performance of the system,
how much memory it uses, and how fast it can start.

Many lists of types of nonfunctional requirements are available, but here’s
the list that I like to use:

	 ✓	Changeability: The changeability requirements all relate to how well the
system can be adapted over time. The changeability-requirement family
contains several subcategories:

	 •	Maintainability: How easy it is to maintain the system.

	 •	Extensibility: How easy it is to extend the system and add new
functionality to it.

	 •	Restructuring: How easy it is to restructure the system to take
advantage of new technology.

	 •	Portability: How easy it is to move the system to a new computing
environment.

20 Part I: Introducing Software Architecture and Patterns

		 Don’t allow the requirements to change too frequently — that can be a
recipe for disaster. Frequent changes mean that no one will know for
sure what the system is supposed to do, and they signal that the client
or customer isn’t sure what he or she really wants.

	 ✓	Interoperability: The interoperability requirements describe how well
the system must work with other parts of the customer’s or client’s
computing environment.

	 ✓	Performance: The performance requirements cover things like how fast
the system must be or limits on the resources it may use.

	 ✓	Dependability: These requirements specify how long the system must
work, how secure it is, and how accurate it is. Dependability includes a
large number of subcategories:

	 •	Reliability: How accurate the results must be and how long the
system must work before it has an error.

	 •	Availability: The percentage of the time the system must be
available for service. Availability includes fault tolerance, which
specifies whether the system must tolerate faults and continue
operation.

	 •	Maintainability: What must be designed into the system to allow it
to be cared for and maintained.

	 •	Security: What security requirements exist for the system, what
security mechanisms must be in place, what the expectations for
confidentiality are, and the integrity of the system and its data.

	 •	Safety: Whether the public will be at risk of bodily harm from this
software.

		 Where safety is concerned, you must look for established best practices
for architecture, design, and coding within the type of system you’re
building. I don’t talk about them in this book; you need to seek the
appropriate resources.

	 ✓	Testability: The testability requirements state what the system must do
to ensure that all the requirements, both functional and nonfunctional,
can be tested.

	 ✓	Reusability: The reusability requirements specify what you need to do
when designing and building the system to ensure that it can be used
again. A different kind of reusability requirements specify that a certain
amount of reuse be achieved within the design of the system or even
that certain already-built components be used in the system.

21 Chapter 1: Software Architecture Basics

Here are some ways that you can identify the nonfunctional requirements:

	 ✓	Find out as much as you can about the problem and how others have
solved the problem.

	 ✓	Extract common requirements from your reading.

	 ✓	Watch how the customer uses the system that he already has, or watch
him step through the process that the system will be part of.

	 ✓	Listen carefully to your customer as she explains what the system will
do and why it’s needed.

	 ✓	Ask questions!

	 ✓	If you’ve built similar systems in the past, draw on that experience, and
include the requirements that you’ve seen before.

	 ✓	Review the problem statement with the customer so that he has the
opportunity to tell you which things are important and which things are
unnecessary. This review also helps refine your understanding of the
problem.

	 You should understand the requirements that have the biggest influence on
the solution architecture first, because requirements will change. Looking at
the big requirements first helps get their changes out of the way early.

The nonfunctional requirements make their appearance in both the physical
and process views of the system (refer to “Architecture models [views],” ear-
lier in this chapter). The process view addresses how the execution is distrib-
uted around the system, which may be a requirement in itself or which may
be related to the performance or dependability requirements of the system.
The physical view of the system also shows the nonfunctional requirements

Get SMART with your requirements
With all requirements, but especially the non-
functional requirements, you should make the
requirements SMART. This acronym reminds
you that the requirements must be

	✓	 Specific: They describe a specific charac-
teristic of the system.

	✓	 Measurable: They are testable and observ-
able in some way.

	✓	 Achievable: They are realistic and can
actually be achieved.

	✓	 Relevant: They relate to the problem that
the system is supposed to solve.

	✓	 Trackable: They produce specific things
within the architecture that you’ll be able to
point to later.

22 Part I: Introducing Software Architecture and Patterns

because much of a system’s dependability is tied to redundancy (how the
processing is distributed to reduce the effects of single points of failure).
The physical view captures the performance and scalability nonfunctional
requirements through information about which processing elements can be
replicated to grow the system.

Reviewing the requirements
When you’re developing requirements, a variety of pitfalls can make the
requirements unusable or unhelpful. The requirements may describe the
problem that you want to solve or require the architecture that you want
to build, rather than what the customer or client really wants and needs.
Also, your requirements can omit things that the customer or client thinks
is essential to the solution. Review your requirements with the customer or
client to avoid these pitfalls.

	 Here are some things you can do to make your requirements more useful:

	 ✓	Try to identify and describe the implied or hidden requirements. In
the payroll-system example, an overtime multiplier needs to be used
when the hours that any employee worked in a week exceed a given
threshold.

	 ✓	Validate all your assumptions. Perhaps you assumed that no one would
receive a paycheck or a related transaction for a negative payment. This
assumption may not be true, however, if wages are garnished or if many
fixed deductions occur.

		 Never add your own assumptions without validating them with the
customer. Also make sure that you identify your assumptions — and
remember that they aren’t facts about the system.

	 ✓	Don’t overextend assumptions. To continue the payroll-system exam-
ple, you may have assumed that everyone working more than 40 hours
per week would earn base pay times some multiplier. You shouldn’t
keep extending this assumption by assuming, say, that the multiplier is 2.
One assumption is bad enough; don’t make assumptions about your
assumptions.

	 ✓	Avoid indecisive specifications. Make sure that you know whether a tax
rate, for example, is x percent or y percent and that you know when it
applies.

	 ✓	Avoid inconsistent or conflicting requirements. You may have a
requirement to print paychecks and another requirement to provide
data for a direct deposit. Which requirement is the real requirement?

23 Chapter 1: Software Architecture Basics

	 ✓	Fit the solution to the problem. As you find out more about what the
customer or client wants, you may see that the scope of the problem
statement keeps expanding, to the point that the range of possible solu-
tions is much larger than what the customer originally asked for (see
Figure 1-4). The requirements help you see what’s important and what
you should really build within this range of solutions.

	

Figure 1-4:
What the
customer
asked for

may be
smaller than
the solution

space.
	

Requirement do’s and don’ts
Here are some good ways to ensure that your
system fails:

	✓	 Don’t write any requirements.

	✓	 Don’t understand the usage scenarios.

	✓	 Don’t understand what your customer or
user really wants.

	✓	 Don’t define the acceptance criteria.

By contrast, here are a few things to do (to
make your requirements good and useful):

	✓	 Describe what the system is supposed to
do, and why. Provide enough information to
allow intelligent tradeoffs to be made.

	✓	 Refrain from defining how something is to
be implemented. That definition comes into
play when you are creating the architec-
ture and design.

	✓	 Specify technology choices only when the
technology is an important aspect of the
customer’s problem statement.

	✓	 Make sure that you have all the require-
ments you need. Major gaps in require-
ments can be critical, causing a project
and/or system architecture to fail.

24 Part I: Introducing Software Architecture and Patterns

Choosing a Software System Style
In Chapter 2, you get down to the business of creating the actual software
architecture. Before you do that, in the final step before diving in and design-
ing the system architecture, you need to start thinking about what kind
of style and shape the system should have. In this section, I highlight two
aspects of system style: architectural and programming.

Architectural styles
Architectural styles define the general shape of the system. In residential
housing, Cape Cod and ranch are examples of architectural styles. In soft-
ware architecture, styles include Model-View-Controller and Pipes and
Filters. I introduce software architecture styles in Part III.

In the different models of the architecture (such as the 4 + 1 model shown
in Figure 1-1, earlier in this chapter), the views are related but also indepen-
dent. You may find that you want to use a different architectural style within
each view.

Programming style
You must also consider your programming style — object-based style, pro-
cedural style, or functional style, for example. Not every problem fits into
every style of programming, so being familiar with multiple styles is essential
to understanding the style of program you should use and choosing the right
one for the problem and solution.

	 I won’t try to explain the differences or influence your decision. Ample
resources about programming in any of these styles are available, including
many For Dummies books, and I’m sure that you have your own favorite styles.
Even though this book is about patterns, however, it isn’t exclusively about
object-oriented programming. Patterns aren’t always for objects. As you see in
later chapters (specifically, Chapters 8, 23, and 24), patterns are available for a
wide range of problems, not all of which relate to objects.

Chapter 2

Where Do Architectures
Come From?

In This Chapter
▶	Getting familiar with architectural styles

▶	Building your own software architecture

T
he two major things that you’ll be defining and using in your software
architecture are components and services:

	 ✓	Components are the building blocks of the system — the parts of software
or the providers of functionality that you combine into your architecture.

	 ✓	Services are the things that your components provide to the actors and
to one another — the visible functionality of the system. As you divide
the functionality of the system into components, you’re also defining
what services each component provides. The services can be internal or
external to the system.

In this chapter, I tell you how to use components and services to create an
architecture.

Understanding Architectural Styles
As I mention in Chapter 1, architectural style is like the style of a house. It
may define a ranch house, which sprawls horizontally in one story, or a Cape
Cod house, which is a two-story structure with a distinctive arrangement of
doors and windows on its facade.

In software development, architectural style refers to the general shape of
the system. Choosing the appropriate style is important because all the later
design decisions are made in the context of this style and in concert with the

26 Part I: Introducing Software Architecture and Patterns

style. A system may have a streaming style, like Pipes and Filters (see Chapter
10), or it may have an interactive style that’s shaped by Model-View-Controller
(MVC; see Chapter 13). The choice of appropriate style is important to your
system’s success.

Elements of styles
The style defines features and rules that shape the architecture, such as the
following:

	 ✓	The basic building blocks of an architecture style: What the key ele-
ments are and how the components and services are typically named.

	 ✓	The connections between the basic building blocks: How components
communicate with other components.

	 ✓	The rules that specify how the services may be combined and used
together.

	 ✓	The family of solutions: All streaming solutions, for example, will resem-
ble Pipes and Filters (see Chapter 10), even if they’re quite complex and
diverse.

	 ✓	The contexts and problem situations in which the style is most useful.

Patterns and architectural styles
The architectural patterns that you see in Part III of this book describe a vari-
ety of styles.

Table 2-1 lists some basic architectural styles and the patterns in Part III that
help you design them. There may be more than one pattern for each style.
Both MVC and Presentation-Abstraction-Control, for example, are in the
Interactive Systems style. The individual pattern text contains information to
help you decide which of these styles to use.

Table 2-1	 Architectural Styles
Architectural Style Patterns

From Mud to Structure Layers (Chapter 9), Pipes and Filters (Chapter 10),
Blackboard (Chapter 11)

Distributed Systems Broker (Chapter 12)

Interactive Systems Model-View-Controller (Chapter 13), Presentation-
Abstraction-Control (Chapter 14)

Adaptable Systems Microkernel (Chapter 15), Reflection (Chapter 16)

27 Chapter 2: Where Do Architectures Come From?

Creating Software Architecture
In this section, I take you through the creation of your software architecture.
The heart of the section is a process you can use to do the actual design.
First, however, I discuss some basics that cut across your architecture and
the process that defines it:

	 ✓	Timing: In the following section, I discuss when you should create your
software architecture.

	 ✓	Problem categories: The various domains of computing that influence
your solution. Chapter 8 provides more information about using these
categories to identify patterns that can help you solve your problem,
but the topic is worth a mention here, because designing an architecture
cuts across domains.

	 ✓	Layers and abstractions: Abstraction is a very important part of com-
puting that plays an important role in software architecture. In this
section, I tell you a little bit about abstraction and the very effective
technique of stacking abstractions into layers.

Finally, I give you a process you can use to shape and refine your architecture.
This process is iterative: You start at a high level and work your way lower,
refining the architecture as you go deeper. Some of this deep dive into the
architecture layers functionality into the design. Some of the refinement comes
from bringing in components and services from different problem areas.

Deciding when to create an architecture
Historically, architectures are created in the design phase or early in the
development of a system. If you’re using a waterfall development process, for
example, creating the architecture is one of the very first things you do: You
define the problem and then solve it with an architecture. If, instead, you’re
using an iterative software development process, such as Unified Process or
agile, the architecture is typically evolved and elaborated in the early itera-
tions in parallel with some low-level design and coding. As iterations of the
architectural development become stable and complete, the other steps,
such as design and coding, can begin. Each iteration may include more refine-
ment to the architecture in conjunction with further design and coding.

Many methods of agile software development call for having potentially ship-
pable products at the end of each iteration. In the early iterations, some of
the shippable products are products that you’ll use internally, such as the
architecture description, tools, and frameworks.

28 Part I: Introducing Software Architecture and Patterns

	 Defining the architecture is a very important step that shouldn’t be skipped.
Skipping it can result in sets of components being used in incompatible ways,
which means that you have to back up and redo work.

	 Skipping the architectural-development stage can result in a Big Ball of Mud
(a.k.a., Shantytown or Spaghetti Code). This well-known software pattern
(www.laputan.org/mud), by Brian Foote and Joseph Yoder, describes the
alternative to a system that has a well thought-out architecture that guided
development.

Identifying problem categories
As you see in Chapter 8, patterns are available for many problem categories,
which are subject areas or domains. When you’re developing your architecture,
you need to solve problems from many domains.

In a payroll system, for example, you need some help from the database
domain to record employee payment history. You also need help from the
interactive system domain to input current working hours so that you know
how much to pay the employees.

	 The solutions to real problems cut across different domains of computing.

In Chapter 8, I tell you about a way to identify the patterns that will apply in
solving a problem partially by zooming in on different problem categories.

Defining layers and abstractions
Chapter 1 discusses the 4 + 1 model of software architecture: the logical,
process, physical, and development views, plus scenarios or use cases. When
you create a software architecture, however, you aren’t really going to build
five things or even four things. The objective is to build one system with a
single software architecture. Those different views are just different ways of
looking at the same architecture. Each of these views shows an abstraction of
the architecture that focuses on a particular element of the design.

Layers
Sometimes, your system or its environment has explicit layers of functionality.
If you’re building a communications system, for example, you need to be
familiar with the Open Systems Interconnection (OSI) seven-layer communi-
cations model, shown in Figure 2-1, because your system will be most successful
if it fits into these layers. In the OSI model, the layers show up in the logical

www.allitebooks.com

http://www.laputan.org/mud
http://www.allitebooks.org

29 Chapter 2: Where Do Architectures Come From?

view of your architecture. I tell you more about this kind of layering in
Chapter 9, the first chapter of this book’s collection of architectural patterns.

	

Figure 2-1:
The OSI

model.
	

In other cases, the layering may involve layers governed by the physical
system — typically referred to as tiers, not layers. An example in the web world
is the three-tier model, where the presentation server, the application server,
and the database servers are implemented as different physical devices. These
three tiers communicate by passing information to the adjacent tiers. Three-
tier architectures frequently are distributed as shown in Figure 2-2 because the
components in the different tiers have different processing needs.

	 Because layering is such a fundamental architectural principle, it is also cov-
ered in Chapter 9.

	

Figure 2-2:
A three-

tier model
based on
physical

separation
of

functionality.
	

30 Part I: Introducing Software Architecture and Patterns

Abstractions
What these different ways of layering the system have in common is that they’re
abstractions. An abstraction is a way of describing something in general terms
that leaves out the details of any specific implementation. In the examples in
the preceding section, the abstraction is a general layer that doesn’t describe
how the functionality is implemented or even precisely what it does; those
details are abstracted away.

In the next section, you see that abstraction is one of the important techniques
that help you build better architecture. Abstractions are important to software
architecture because they allow you to talk about what the system does in
general terms before you’ve worked out all the low-level details.

In the same way, the three-tier architecture separates the functionality by
abstractly grouping the presentation server and keeping its functionality
separate from the functionality of the database servers. This is done because
they have different processing or storage needs, and the boundary of an
abstraction can be drawn around the layers.

	 Being able to abstract the essence of a functionality and project it onto the
solution are important skills that you must have as a software architect.

Employing enabling techniques
There are a number of fundamental principles for constructing software that
I call enabling techniques. These techniques are independent of the particular
methods that you use to create software, such as waterfall, agile, or Unified
Process, all of which I discuss in Chapter 1.

Balancing the trade-offs involved in using the enabling techniques helps
you create an architecture that balances the functional and nonfunctional
requirements of the system, which I also discuss in Chapter 1.

The enabling techniques are

	 ✓	Abstraction: Abstraction is the ability to extract the common, general
parts from a particular entity. You use abstraction to define a common
component that will be adapted to several specific situations in your
system. This technique is exactly what I discuss in the preceding section.

	 ✓	Encapsulation: Encapsulation is grouping related elements to preserve
the boundaries of the abstraction. You use encapsulation to keep
related functionality together instead of mixing unrelated functionalities.

31 Chapter 2: Where Do Architectures Come From?

	 ✓	Information hiding: Information hiding keeps information that clients
don’t need to know hidden from them so that it’s protected and the
clients don’t misuse it. Encapsulation is frequently used to implement
information hiding.

	 ✓	Modularization: Modularization handles system complexity by breaking
the system into parts with well-defined boundaries. This technique is
especially useful as you design software architectures because they
frequently are too big to be implemented efficiently as single entities.
Modules can contain one or more components, as I talk about elsewhere.

	 ✓	Separation of concerns: Within the system, unrelated responsibilities
should be separated. You use separation of concerns to define elements
that perform specific functions rather than elements that perform a vari-
ety of functions.

	 ✓	Coupling and cohesion: Coupling is how different modules in the system
relate to one another. Cohesion is a measure of how related the objects
and functions within a module are to each other. High cohesion and low
coupling lead to systems that are easy to modularize and build.

	 ✓	Sufficiency and completeness: Every component should be sufficient
to include all the characteristics that are needed for useful and efficient
interaction with other components. Every component should also capture
all the important characteristics making it complete.

	 ✓	Separation of policy and implementation: Keeping the implementation
of algorithms free of system-context-related information simplifies reuse.
You use this technique to design parts of the system to deal with context-
related, or policy, information and other parts to implement abstract
algorithms.

	 ✓	Separation of interface and implementation: This technique separates
the interface that clients use from the implementation of the functional-
ity that the clients expect. It makes reusing the implementation easier
and promotes information hiding (discussed earlier in this list).

	 ✓	Single point of reference: Avoid inconsistency by defining the items
within the software architecture only once. Achieving a single point of
reference depends on your programming environment, because some
languages, like C++, make achieving this principle difficult. Although C++
also requires a single point of definition, it needs declarations to appear
in several places.

	 ✓	Divide and conquer: Divide a problem or solution into smaller parts
that are easier to solve or implement. You use this technique often as
you work with large problems.

32 Part I: Introducing Software Architecture and Patterns

Keep these enabling techniques in mind as you define your software architec-
ture (see the next section). They’ll help guide you as you divide your problem
into smaller pieces that you can solve and then combine back into your
overall software architecture.

Patterns for enabling techniques
Many of the patterns in Part III and IV help with applying the techniques described in this chapter.
I tell you about patterns starting in Chapter 4. You can wait to see the actual patterns until later, but
if you want to read ahead, the following table points you to patterns later in this book that help you
achieve the benefits of the specific enabling techniques. Of course, these aren’t the only patterns
that address these enabling techniques.

Enabling Technique Pattern

Abstraction Layers (Chapter 9)

Encapsulation Forwarder-Receiver (Chapter 21)

Information hiding Reflection (Chapter 16), Whole-Part (Chapter 17)

Modularization Layers (Chapter 9), Pipes and Filters (Chapter 10), Whole-Part
(Chapter 17)

Separation of concerns Model-View-Controller (Chapter 13)

Coupling and cohesion Client-Dispatcher-Server (Chapter 21), Publisher-Subscriber
(Chapter 21)

Sufficiency and
completeness

All the patterns (Chapters 9–22)

Separation of policy and
implementation

Strategy*

Separation of interface
and implementation

Bridge*

Single point of reference No specific pattern

Divide and conquer Microkernel (Chapter 15), Whole-Part (Chapter 17)
* This pattern is available in Design Patterns: Elements of Reusable Object-Oriented Software, by Erich
Gamma, Richard Helm, Ralph Johnson, and John Vlissides (Addison-Wesley Professional)

33 Chapter 2: Where Do Architectures Come From?

Designing your architecture
Developers design their architectures in many ways. In this section, I present
a process that I find useful.

To design your own software architecture, follow these steps:

	 1.	 Select a component to be refined.

		 When you’re just getting started, the first component that you select is
the whole system. You zoom in to details in future iterations.

		 For the component that you’re refining, you first define the goals of the
component. Use the requirements and the problem statement (both
described in Chapter 1) as input to understand what the component is
supposed to do.

	 2.	 Identify the requirements of that component and the requirements for
its interactions.

		 What other parts of the system or external world does it interact with?
Use cases (refer to Chapter 1) help you understand the interconnections
and the service it needs from other parts of the system.

		 Lay out the high-level information flow between these components.
Think about what parts of the component are responsible for different
parts of the architecture. Think about the different processing steps
that are required and what component of the system will perform them.
If you’re designing with objects, in this step you will brainstorm the
“classes” of the system.

		 What you identify in this step is the general shape of the architecture.

		

Class-Responsibility-Collaboration (CRC) cards are very handy tools to
use during architectural refinement to record the components, what
they do, and what other components they work with. I discuss another
use of CRC cards in Chapter 3.

	 a.	For each class or component, write a CRC card. The card indicates
the name of the item at the top, as shown in Figure 2-3. Below the
name, on the left side, list the responsibilities of this class or com-
ponent, such as “Remember hours worked for the period.” On the
right side, write the names of the other objects or components that
this one interacts with, such as “Payment calculator” or “Hour
register.”

34 Part I: Introducing Software Architecture and Patterns

	

Figure 2-3:
CRC card.

	

	 b.	Use the scenarios in your use cases to guide you through the
CRC cards. Step from card to card. Each card invokes the respon-
sibilities listed on the next card. Pay attention to what’s missing.
Check the scenarios that are documented in your use cases to see
whether you’ve defined all the classes or components you need to
execute the scenario. If you find others, write cards for them.

	 3.	 Search for an existing architectural style or pattern that fits the
requirements and interactions that you identified in Step 2.

		 In Chapter 8, I give you a set of steps to use to find particular patterns.
Also, check the patterns in Part III of this book to see whether any of the
patterns listed there match the structure and interactions that you’ve
identified.

		 If you can’t find a category that matches your problem perfectly, look in
a category that’s similar.

	 4.	 Use the pattern that you’ve matched to your problem to guide the
arrangement of your classes and components.

		 All the patterns contain an explanation of a proven structure for the
interactions between classes or components. The patterns also may
contain the kinds of dynamic interaction (messages or calls) that need
to be exchanged.

		 One reason to use patterns as inputs to your software architecture
design process is that patterns describe the trade-offs in the solution.
They tell you more than just how to do something; they also tell you
about the other options and why their trade-offs aren’t as good.

		 In this step, you use the extra information of the proven software solu-
tion you found in Step 3 to shape the classes and components you found
in Step 2.

	 5.	 Iterate through the components, repeating Steps 2–4 for each one.

35 Chapter 2: Where Do Architectures Come From?

		 As you pick the next component to design, you may be greatly tempted
to pick the one you’re most interested in. That reaction is only natural.
You should pick the next-most-important component instead, however.
Make your selection based on critical functionality needed by other
components or based on the hardest component to design.

It may take more than one iteration of this process to come up with an archi-
tecture that truly satisfies all your requirements. Creating software architecture
isn’t always easy, but the more architectures you design, the easier the process
gets and the better the results are.

Documenting your work
Take some notes while you’re defining the architecture. Keep a record of the
key decisions. Sketch out how the parts fit together. These notes will help
you down the line as you document your architecture (see Chapter 3).

If you make any assumptions while you’re developing your architecture, keep
track of them so that you can validate them with your customer or client.
When you make decisions after trading off one alternative with another, make
notes to help you remember why you selected one alternative over another.

	 If you reject some ideas because they won’t work for this problem, write
down the ones you rejected and the reasons why you rejected them. You’ll be
surprised how often someone will second-guess the decision. If you have the
reasons why you rejected a different approach at your fingertips, you can save
everyone a lot of time.

36 Part I: Introducing Software Architecture and Patterns

Chapter 3

What Do Software Architectures
Look Like?

In This Chapter
▶	Exploring basic UML diagrams

▶	Using tools to draw your architecture

▶	Describing your architecture to other people

I
t’s not enough just to create a software architecture; you also have to be
able to explain it to other people. Diagrams help you convey the shape of

the system and present the different viewpoints that different people may be
interested in.

In Chapter 1, I introduce the 4 + 1 model: logical, process, physical, and devel-
opment views, plus scenarios or use cases. In this chapter, I tell you how to
use the Unified Modeling Language (UML) to diagram these views.

Examining UML Architectural Models
You can visualize and explain an architecture in many ways. The most
common approach in use today is the Unified Modeling Language, or UML for
short. In this section, I provide an overview of how UML is used to illustrate
software architectures.

Choosing a diagram style
UML has many specific symbols and conventions. I won’t tell you about all
of them, because you can find books related to the topic, such as UML 2 For
Dummies, by Michael Jesse Chonoles and James A. Schardt (Wiley).

38 Part I: Introducing Software Architecture and Patterns

Here are a few of the diagram styles that I find most useful for describing
architectures:

	 ✓	Class

	 ✓	Interaction

	 ✓	Deployment

	 ✓	Packaging

	 ✓	Use case

In the next section, I tell you when I use each of these diagram styles. Later
in this chapter, in the section “Explaining Your Software in an Architecture
Document,” I provide detailed information about using diagrams in your
documentation.

Showing different views
You create diagrams to explain the software architecture to your team members,
colleagues, and management and to help you remember what you’ve designed
with the types of UML diagrams just mentioned. These diagrams fit into the
4 + 1 model that I describe in Chapter 1 and that you see in Figure 3-1, which
shows the types of UML diagrams that are best suited to the different views.

The following sections discuss the correlations between the views and the
diagram types.

	

Figure 3-1:
The 4 + 1

model with
UML styles.

	

www.allitebooks.com

http://www.allitebooks.org

39 Chapter 3: What Do Software Architectures Look Like?

Logical view
When you want to show how individual classes and objects are related and
connected, you use a class diagram. Class diagrams show how the individual
classes and objects fit together statically — when they aren’t actually execut-
ing. The diagrams show the logical relationships — usage, composition,
inheritance, and association — between the classes.

Most people involved with system development use the logical view, because
it explains what the system is supposed to do, and how. The logical view
is useful for explaining to your customer or client that the functionality he
or she desires is reflected in the architecture. It describes the functional
requirements that I describe in Chapter 1. You can point to parts of the class
diagram that show the logical view to explain where the system implements
specific functionality.

Process view
When you want to show how components of the system exchange information
during execution, you use an interaction diagram. This diagram shows the
dynamics of the system — that is, how messages flow between the tasks and
processes. The process view shows many nonfunctional requirements as well.

Testers and integrators use this view because it explains how the parts of the
system exchange information and react.

Physical view
To show where the packages fit on the various physical parts of the system,
such as networked computers, you use a deployment diagram. You may have
multiple deployment diagrams showing different configurations, such as the
development and test configuration and the production configurations.

The people who are building the networks of computers that will become
the system use the physical view. Anyone who’s working on communication
between the parts of the system or the parts of the system and the external
world also will be interested in the physical view.

Development view
When you want to show how parts of software are related and dependent on
one another in the development view, create a packaging diagram. The devel-
opment view shows module and subsystem boundaries. The packages show
the groupings of classes or other components that will be developed and
distributed together.

Programmers and managers are interested in the development view. Also,
anyone who is involved with creating the development environment will be
looking for the development view.

40 Part I: Introducing Software Architecture and Patterns

Scenarios and use cases
When you want to explain what your system does or how someone would
interact with and use it, you create a use case, as described in Chapter 1. A
use-case diagram shows how the various actors and use cases relate to your
architecture in different usage scenarios.

The scenarios and use cases are the most important things you’ll share with
your customer or client. The scenarios explain how the system is going to
behave and how it performs the required actions. The scenarios also explain
the user interface, describing the ways that the users interact with the
system and how the system interacts with other external systems.

Scenarios and use cases are the glue that binds the other four views together.
The scenarios explain how the user interacts with the classes, components,
processes, and subsystems that are shown in the other views.

Working with UML Diagrams
The preceding section tells you which UML diagram is most appropriate to
capture each view in your 4 + 1 architectural model. In this section, I show
you the basics of these diagram styles.

	 The goal is to build a system that solves the customer’s or client’s problem —
not to produce pretty UML diagrams.

Creating class diagrams
Class diagrams show you the static relationships between parts of your
system in the logical view. They also may show a conceptual model of your
system. I call these parts classes to match the name of the type of diagram,
but they can be any parts or components of your system — they don’t need
to be the classes of an object-oriented design.

I use class diagrams to model the conceptual view of the system because
they’re most appropriate for an architectural view, but you also can use class
diagrams to show the specification of the system or the implementation. You
use these other views in later phases of system development.

	 When drawing a class diagram of your architecture, concentrate on the most
important things. Although you may want to draw the diagram all the way
down to the implementation in the parts you know best, you need to provide
an overview of the key areas, instead of focusing on one particular area.

41 Chapter 3: What Do Software Architectures Look Like?

	 Sometimes you need to go into additional detail about what happens inside a
class. For this task, you use state charts or state transition diagrams, which I
don’t cover in this book. To understand and describe the general shape of the
system’s architecture, you don’t need to go to this level of detail. You can find
more information in UML 2 For Dummies, by Michael Jesse Chonoles and
James A. Schardt (Wiley).

Associations
The static relationships include how the different classes are associated.
Class diagrams are static because they show the relationships that exist
between parts of the system even when the system isn’t executing. Drawings
of the system’s dynamics show how messages or information flow between
the static components of the system. These are discussed in the “Showing
the interactions” section, later in this chapter. These associations can be any
of several types:

	 ✓	One class may inherit from another class or refine another class.

	 ✓	Classes interact and communicate with one another.

	 ✓	Classes work together to provide functionality more complex than any
class can provide by itself.

Associations are shown as lines connecting the classes (see Figure 3-2).
Each association has two roles — one at each end of the line. Associations
can be named, which you should do if naming them makes the relationships
between the classes more understandable.

	

Figure 3-2:
An example

class
diagram
showing

basic
classes and

associations.
	

42 Part I: Introducing Software Architecture and Patterns

Working with CRC cards
UML isn’t your only choice for documenting the
information that you put into UML class dia-
grams. An older method that’s really simple and
well suited to group or object-oriented devel-
opment involves using Class-Responsibility-
Collaboration (CRC) cards. These cards are a
different, simpler form of class diagrams. (Here,
I use class to mean a group of software compo-
nents that may or may not make up an object-
oriented class.)

To create a CRC card, draw a horizontal line near
the top of an index card; then draw a vertical

line from that line to the bottom of the card. Fill
in the card as follows:

	✓	 At the top, write the title of the class.

	✓	 In the bottom-left corner, write the respon-
sibilities of the class.

	✓	 In the bottom-right corner, write the names
of the classes — the other cards — that
this class collaborates with.

The following figure shows example CRC cards
for a payroll system.

CRC cards, as noted in Chapter 2, are an excel-
lent way of brainstorming architecture with your
colleagues. The cards are very flexible and let
you create new classes easily. The cards can
be spread out and rearranged on a table, and
if you find that the class on a card is no longer

needed, you can throw away the card. You can
put your CRC cards into the architecture docu-
ment along with your UML class diagram, if you
want. I discuss the architecture document in
the last section of this chapter.

43 Chapter 3: What Do Software Architectures Look Like?

Class multiplicity
A class diagram also can show that one class is really several of the same
class, or class multiplicity. A class in the architectural diagram could show the
relationship of one e-commerce website to multiple customers or a personnel
database to many employees, as shown in Figure 3-3.

	

Figure 3-3:
A class dia-
gram shows

class
multiplicity.

	

Attributes and operations
Class diagrams commonly show attributes (things that the class is respon-
sible for remembering or storing). At the architectural level, however, attri-
butes aren’t used often. Some examples of attributes that you may see in a
class diagram at an architectural level are

	 ✓	Data elements to be stored

	 ✓	Roles that this class satisfies

	 ✓	Important requirements that this class satisfies, especially nonfunctional
requirements and references to supported use cases

Class diagrams also traditionally show operations, which are the kinds of
things shown in the responsibilities part of a CRC card (see the nearby side-
bar “Working with CRC cards”). The responsibilities may be things like

	 ✓	Tasks and operations completed in conjunction with a use case

	 ✓	Important functionality provided by the class

Attributes and operations are shown as separate sections in the box for a class.
These sections are separated by horizontal lines, as shown in Figure 3-4.

44 Part I: Introducing Software Architecture and Patterns

	

Figure 3-4:
A complete

class
symbol.

	

Showing the interactions
Interaction diagrams show how parts of the system communicate with one
another during execution. This type of diagram is part of the process view,
which also shows how the parts of the system are synchronized. Interaction
diagrams show that the parts talk — a fact that’s captured in the class dia-
gram (refer to “Creating class diagrams,” earlier in this chapter) — but they
also show the sequencing and ordering of those communications. Individual
interaction diagrams usually show the interactions of only one use case.

	 Interaction diagrams were called collaboration diagrams in UML 1.

At their most basic, the different components are shown as boxes at the top
of vertical lines. Arrows between the lines represent messages sent from one
component to another, as shown in Figure 3-5. Time is represented as vertical
timelines, so a message near the top is sent before a message drawn near the
bottom of the diagram.

Interaction diagrams can be quite complex, however, with multiple communi-
cating components and many messages flowing every which way.

	 You won’t need an interaction diagram for every component pairing. Pick only
the scenarios that have the highest risk or the most valuable interactions.

The arrows showing messages between components can be angled down
slightly, or they can be horizontal. You can use this type of diagram to show
special things such as iteration, in which a message loops back to the sender.
Figure 3-6 shows some of the special things you can display in an interaction
diagram.

45 Chapter 3: What Do Software Architectures Look Like?

	

Figure 3-5:
A simple

interaction
diagram.

	

	

Figure 3-6:
The parts

of an
interaction

diagram.
	

46 Part I: Introducing Software Architecture and Patterns

Deploying your system
To show how you plan to get your software on the hardware that will run it,
you use a deployment diagram as part of the physical view. This type of
diagram shows the physical relationships between your computational
devices — in other words, your pieces of hardware. The architecture that
you’re creating may be deployed on PCs that talk to centralized servers to
perform the query functions, as shown in Figure 3-7.

	

Figure 3-7: A
deployment

diagram.
	

Deployment diagrams are similar to class diagrams, which I cover earlier in
this chapter, because they show connections between different physical parts
of the systems that are required to achieve the overall system functionality.

The components that are shown in the deployment diagrams are the physical
modules of code — the packages in the package diagram, which I tell you
about in the next section. The relationships between the deployment diagram
packages show that the deployed packages are connected, either via a network
or internally.

	 You can have more than one package, or module of code, per deployment
component.

To develop your deployment diagram, start at the system level, and divide
the functionality into parts.

47 Chapter 3: What Do Software Architectures Look Like?

Packaging up the software
Your architecture is composed of parts that contain components that are
closely related — or highly cohesive and that work together as a unit. They’re
only loosely coupled with other parts of the system. (Coupling and cohe-
sion are discussed as enabling techniques in Chapter 2.) These components
should be developed together, packaged together, and deployed as a single
part. The UML packaging diagram shows how the parts relate in the develop-
ment view.

The packaging diagram shows classes and the dependencies between them.
It’s very similar to the class diagram described earlier in this chapter but is
interpreted differently. Packages are shown as rectangles with tabs on the
top, like tabbed file folders. The names of the packages are shown within the
tabs. Figure 3-8 shows a simple example of a packaging diagram.

	

Figure 3-8:
A simple

packaging
diagram.

	

48 Part I: Introducing Software Architecture and Patterns

Keep the following rules in mind when you create packaging diagrams:

	 ✓	Packages own their content. Individual components or classes can’t be
included in more than one package.

	 ✓	Packages are dependent on other packages if there are dependencies
between two components within the packages. Packaging diagrams
don’t reduce the dependencies between components, but they show
them so that they won’t be forgotten.

	 ✓	Unlike the dependencies introduced by a compiler, the package
dependencies aren’t transitive (in other words, Package A doesn’t
need Package C unless Package B is included). In Figure 3-9, which
shows a packaging dependency package, Hour Management depends
on Hour Store, but the bigger Payroll System depends only on Hour
Management; it doesn’t also depend directly on Hour Store.

Using use-case diagrams
Use-case diagrams, which I introduce in Chapter 1, are simple and straightfor-
ward. Figure 3-10 shows the key elements of these diagrams.

	

Figure 3-9:
Package

dependen-
cies aren’t
transitive.

	

www.allitebooks.com

http://www.allitebooks.org

49 Chapter 3: What Do Software Architectures Look Like?

	

Figure 3-10:
The key

elements of
use-case
diagrams.

	

Use-case diagrams are important because they show how actors interact with
the system and how the use cases embody the functional requirements.

	 You can use use-case diagrams to show how the user and other key actors,
such as maintainers, interact with the system. They help you remember who
the system is being built for and how the actors plan to interact with the
system.

Choosing Your Design Tools
While you develop software architecture, you have many discussions with
customers, other architects, and designers about the problem, the expecta-
tions for the system, and the requirements. During these discussions, you
come up with some initial ideas and start taking notes for your architectural
document, as I discuss in Chapter 2. Eventually you’ll show your architec-
tural designs to these people, however, so you need to be sure that they can
understand your diagrams — a task that’s made much easier when you use a
standardized notation language like UML. After all, the old saying “A picture
is worth a thousand words” applies in architecture, too.

Many software tools enable you to draw your designs. Having a good elec-
tronic repository of architectural views — such as class diagrams, interaction
diagrams, and packaging diagrams — will help you keep your documentation
in good shape. The tools help you connect the pieces and keep the big picture
straight in your mind.

The tools dedicated to UML diagramming actually give you the capability
to build your model of the whole system. The diagrams that are essential to
explain your architecture are just views into the model.

50 Part I: Introducing Software Architecture and Patterns

Commercial software-development tools
Several commercial tools are available to create the diagrams described
earlier in this chapter, like IBM’s Rational Software Architect. Some free
products, such as Astah (see “Free UML tools,” later in this chapter), are also
available in commercial versions that offer more features. You may not have
access to the commercial tools because they’re quite expensive, but that’s
okay, because you can easily get by with general drawing tools or free UML
drawing tools.

Free UML tools
In addition to the commercial software development and UML tools there are
noncommercial tools you can use.

One free software tool that you may find useful is Astah Community (www.
astah.net/editions/community), the free community version of a com-
mercial product. This tool is easy to use and comes with diagram styles for
all the UML diagrams that I discuss earlier in this chapter. It enforces some of
the UML rules and provides excellent capabilities for keeping your diagrams
tidy. Figure 3-11 shows an example screenshot of the tool.

	

Figure 3-11:
Astah

Community.
	

	 Reproduced by permission of Change Vision, Inc.

http://www.astah.net/editions/community
http://www.astah.net/editions/community

51 Chapter 3: What Do Software Architectures Look Like?

Another free tool is Dia (www.live.gnome.org/dia), which is available
under the General Public License (GPL). Dia also is easy to use. It comes
with a smaller toolkit than either Visio or Astah Community, but it has all the
basic building blocks that you need to create the diagrams I describe in this
chapter. Dia doesn’t enforce the rules as rigidly as Astah Community does —
which (as I note for Visio in the next section) can be a good thing or a bad
thing. Figure 3-12 shows an example screenshot.

	

Figure 3-12:
Dia.

	
	 Reproduced by permission of Steffen Macke

General drawing tools
You can also use general-purpose drawing tools to create your UML diagrams.
Microsoft Visio, for example, includes a UML model drawing type and a com-
plete set of shapes to help you create the diagrams mentioned in this chapter.
Visio provides a blank canvas, so you can draw whatever you want, even
if you deviate from the UML standards. The freedom to draw exactly what
you want has a downside, however: some people may not understand what
you’re showing through your nonstandard UML.

An even more free-form approach is to use a tool like Adobe Illustrator. With
this general-purpose drawing tool, you have complete freedom to draw the
diagrams. Illustrator doesn’t include the template libraries offered by the UML
commercial tools or the free tools, so you’ll really be starting your drawings
from scratch.

Finally, you can use a variety of noncomputer tools, which can be anything
you can draw with, down to a pencil and paper or a whiteboard and marker.

http://www.live.gnome.org/dia

52 Part I: Introducing Software Architecture and Patterns

Explaining Your Software in
an Architecture Document

There’s more to software architecture than the pretty pictures you create
to make your 4 + 1 model. You need to incorporate your UML diagrams in an
architecture document that explains why the architecture is being proposed
and how it meets the customer’s needs. This document should explain the key
abstractions that you used, as well as the patterns that helped you design the
architecture. (I begin telling you about patterns in the next chapter.)

Organizing the architecture document
A very complete architecture document contains quite a few sections. The
actual organization of your document may vary, but a typical table of contents
looks like this:

	 1.	 Architectural Goals

	 2.	 Architectural Significant Requirements

	 2.1	Functional

	 2.2	Nonfunctional

	 3.	 Decisions and Justification

	 4.	 Key Abstractions/Domain Model

	 5.	 Software Partitioning

	 5.1	Logical Component Model

	 5.2	Process Model

	 5.3	Physical Component and Layers

	 5.4	Development Model

	 6.	 Deployment Model

	 Not all your architectures will need this much documentation. You should be
guided by two factors: what your audience wants to see and what your team
needs to move forward.

53 Chapter 3: What Do Software Architectures Look Like?

Filling in the sections
What goes into all these sections? The description of your architecture that
I’ve been telling you about in these first three chapters. I give you specific
contents of each section in a moment.

	 You don’t need to complete all the sections before you get started building the
system. The contents can be supplied during each iteration of your develop-
ment rather than all at the beginning. By incrementally adding content, you
build a living document that always accurately reflects the architecture.

Section 1
In Section 1, you describe the functionality for which you’re building the
system — in other words, the problem statement (refer to Chapter 1).

	 This section also is a good place to add a glossary so that everyone knows
how the project uses terminology.

Section 2
In the next section, you talk about any requirements that are particularly sig-
nificant. The requirements that tell you what functionality you need to create
go in Section 2.1, and the most important nonfunctional requirements, such
as overall performance or dependability, belong in Section 2.2.

	 Your use cases and scenarios will be split between Section 1 and Section 2.1
because the use cases describe what the system does and how it should do it.

Section 3
At the end of Chapter 2, I tell you to write down your decisions to help you
remember why you made the choices that you did. If you have a hunch that
someone is going to question a decision, beat him or her to the punch by
using Section 3 of your architecture document to explain the rationale behind
your decisions.

Section 4
Section 4 of the document is where you explain the big building blocks that
you came up with and the major abstractions. You also use this section to
describe the development view because it shows the big pieces and how
they’ll be built by the developers. If you want to remember any important
trade-offs, you should put them in this section too. Any critical subsystems
that are instrumental to meeting the goals and requirements should be intro-
duced in Section 4 as well.

54 Part I: Introducing Software Architecture and Patterns

Section 5
You describe the 4 + 1 model of the system in Section 5 of the architecture
document, which is the heart of your architecture document technically.
The technical audience will be relying on the information here about the
static shape of the system (Section 5.1), the dynamics and interactions of the
system (Section 5.2), the processing architecture (Section 5.3), and how all
these components come together in the development environment (Section
5.4). In all these sections, you should highlight the interfaces among the
system you’re building, its internal components, and the outside world.

Section 6
In Section 6, in addition to your deployment diagrams showing the physical
view, you put instructions and notes about how to roll out the system and
put it into production.

Chapter 4

Software Pattern Basics
In This Chapter
▶	Knowing what patterns are — and what they aren’t

▶	Seeing what goes into a pattern

▶	Recognizing the major pattern styles

A
s I’m sure you noticed, the title of this book includes the word pattern.
So, you probably figured that I’d get around to telling you what patterns

are and aren’t. I do just that in this chapter. Patterns appear in many forms,
but every pattern contains a proven solution to a problem you may encounter.

What Patterns Are
A pattern is a recurring design element in the world or in software. An old
saying applies: “Twice is a coincidence; three times is a pattern.” A software
pattern is a solution to a software design or coding problem that has been
useful at least three times — a requirement known as the Rule of Three (see
Chapter 5). The recurrence shows that the pattern is a common solution that
works over and over again.

Patterns result when multiple people look at multiple bits of designs or code
and notice similarities in the way the design or code is structured. Someone
then takes the next step of taking the time to write down the pattern in a way
that makes it usable for the many others who haven’t had a chance to look at
those initial designs.

You start to note similarities in how something is implemented and used
when you’ve seen something happen at least three times. The same basic
structure is seen in all the instances, but there are variations. The Composite
pattern from Design Patterns: Elements of Reusable Object-Oriented Software,
by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides (Addison-
Wesley Professional), for example, is used repeatedly to combine different

56 Part I: Introducing Software Architecture and Patterns

kinds of objects, yet the structure is still that of a Composite. This is okay. A
pattern can be seen and used in hundreds of places but never be precisely
the same in all the places.

	 You may ask, “Are the bad things that I see in the world over and over again
patterns?” Well, they are, but the pattern community focuses on the construc-
tive good things rather than the bad ones. Software patterns solve software
problems. Some people talk about anti-patterns, which document the failing
bad things, but I won’t talk about them here. They usually tell the reader not to
do something, which frequently isn’t a helpful suggestion.

In the following sections, I focus on various attributes that define patterns.
Later in this chapter, I take the opposite tack, describing what patterns are not.

Reusable designs
It’s great to reuse software that you’ve written sometime in the past, reuse
the class or function that you created for another project or another class, or
use some open-source software that has a whole community behind it, fixing
bugs and adding new features. If the interfaces work out, you can use the
software without changes. But even if you have to adapt it with a few minor
changes, you still realize the benefit of not having to re-create it from scratch.

Patterns allow reuse in the same way because they provide reusable solu-
tions to problems. Sometimes you can reuse a pattern as it is; other times
you need to make a few minor changes. In most patterns, the reuse is at the
design level. Patterns usually don’t contain code that you can cut and paste;
instead, they contain design information that you build into your design.
Even though you can’t reuse code, you can reuse the design that you turn
into code, which still streamlines your work.

Reusable design elements are modular, flexible, and usable more than once.
Open-source archives contain software that’s reusable — a fact that many
people take advantage of. Most open-source licenses allow you to reuse small
parts of software rather than the whole, and you can even customize it to
meet your specific situation.

Another attribute of reusable design is that it can be communicated. When
you create a reusable design, you want others to use it, too; good communi-
cation is essential to that. You need to tell everyone else how to use it, how
to configure it, and how it works. Patterns help you describe your designs.

57 Chapter 4: Software Pattern Basics

A pattern contains enough information to help you re-create the design and
understand why the solution is the best one for the situation.

Patterns do two things at the same time: They describe something and
describe how to make that thing. Figure 4-1 shows two patterns that describe
the appearance of a solution and give you insight into how to build that solu-
tion: Window Place, from building architecture, and Leaky Bucket Counter,
from fault-tolerant design.

	 A software pattern is a description of a modular proven solution to a design
problem with enough information that the reader can adapt it to unique situ-
ations. A key element of this definition is that the pattern contains enough
information for you to read and understand the problem and solution, and see
when and how you can adapt it to your own unique situation.

	

Figure 4-1:
A pattern

shows both
a thing and

the rules for
making that

thing.
	

58 Part I: Introducing Software Architecture and Patterns

Proven solutions
Patterns describe proven solutions — those that have already stood the test
of time. They help you see what has worked in the past, and they help you
avoid reinventing the wheel. Why invent a new solution when you can reuse
a proven solution? You should concentrate your time and effort on the new
problems that haven’t been solved yet. If you reuse a proven solution, you
have a good chance of achieving success more quickly than if you try to
invent a solution from scratch.

Just as patterns help you avoid having to solve the same problem repeatedly,
patterns help you avoid making the same mistakes over and over. A pattern
explains why it’s the correct solution by explaining obvious, less-effective
solutions and why those solutions won’t work. A pattern also tells you when
the solution is appropriate and when you should look for a different pattern
elsewhere.

Educational tools
Each new area of programming that you start working in has some basic
information that you need to acquire quickly in order to become effective.
Patterns can help you explore a new computing domain and decrease your
learning time. Reading the patterns of the new domain gives you a head start
on understanding what issues and trade-offs are most interesting and useful.

A few favorite real-world patterns
A Pattern Language (Cambridge University
Press), by architect/urban planner Christopher
Alexander and his colleagues at the Center for
Environmental Structure in Berkeley, California,
contains 253 patterns related to the design of
the real, physical world, such as buildings.
The patterns range from Independent Regions
to Things from Your Life and everything in
between.

Following are some of my favorite patterns from
this book. I encourage you to pick up a copy and
browse through it. You’ll find good ideas that

you’ve observed around you, as well as good
ideas you can employ in the future.

	✓	 Alcoves

	✓	 Garden Growing Wild

	✓	 Light on Two Sides of Every Room

	✓	 Pools of Light

	✓	 Site Repair

	✓	 Window Place

	✓	 Zen View

www.allitebooks.com

http://www.allitebooks.org

59 Chapter 4: Software Pattern Basics

The patterns help you see the effective solutions and understand the vocabu-
lary (see “Architectural vocabularies,” later in this chapter).

Domains as different as banking, e-commerce, telecommunications, high-
performance computing, and enterprise computing have their own sets of
patterns, but they all use the same common architectural patterns, which I
discuss in Part III. Some of the patterns are usable in more than one of these
domains. (The Risk Determination and Defense in Depth security patterns,
for example, are useful in the security, reliability, and safety domains.)

System guides
Patterns provide guidance at the architecture level (see Chapter 2), show-
ing you how to structure your system. The patterns that appear later in this
book map into different architectural styles.

Architectural vocabularies
Patterns define a shared vocabulary, which is one of their most important
benefits. When someone says “Singleton” or “MVC,” for example, you’ll know
what those terms mean. A common architectural vocabulary helps everyone
on the design team speak the same language.

Explaining your design to someone is easier when you both know the
common building blocks of software design. When you’ve been drawing the
design repeatedly, but the other person still doesn’t understand it, try again
using common principles and patterns that both you and your listener know.
Patterns make the explanation easier.

Patterns also give you a richer vocabulary, so that you don’t have to design
based on the primitive constructs of a language or methodology such as
pointers or classes. Seeing the patterns in a situation allows you to say things
like, “We’ll have a composite of the equipment classes that handles the way
that the hardware is combined and is presented as the model that we’ll
use MVC to present to the user.” This type of language is especially useful
in structuring object-oriented (OO) code, in which the relationships of the
classes and objects require careful design.

	 Patterns first entered the software realm through the OO community, when
some of the early OO experts noticed the same structures and behaviors
occurring again and again. They found the pattern format to be useful for
explaining recurring structures so that other people could reuse the designs,

60 Part I: Introducing Software Architecture and Patterns

rather than reinvent them. Today, of course, patterns aren’t exclusively about
objects or OO design; they cover a wide range of topics and situations.

Repositories of expertise
Patterns are good for capturing expertise because they describe why some-
thing should be done in certain ways. Experts acquired their knowledge through
years of experience, and they call upon this knowledge when they’re asked to
solve problems. When this knowledge is captured in a pattern, reading that
pattern lets you see a problem through an expert’s eyes.

To attain the benefits of expertise contained in patterns, you need to be
familiar with lots of patterns — especially the ones that address the kinds of
problems you usually face. There are lots of ways to do this, including reading
the pattern literature and making your own handbook or catalog to note the
interesting new patterns that you find. (You find out how to create your own
catalog in Chapter 7.)

What Patterns Are Not
Sometimes, knowing what something isn’t helps you see it more clearly, and
that’s certainly true of patterns. Here are some of the things that people
frequently confuse with patterns:

	 ✓	Patterns aren’t frameworks (and vice versa). Frameworks are bits of
reusable code, and patterns are textual explanations of frameworks,
showing how they were built and how they can be customized.

	 ✓	Patterns aren’t algorithms. An algorithm describes a repeatable, ter-
minating process of well-defined steps that produce some result, but
it doesn’t explain when those steps should be used or why they’re the
appropriate solution. A pattern includes this rationale. Likewise, an algo-
rithm won’t describe the trade-offs and analysis that go into deciding
that the steps are the correct steps, but a pattern tells the reader why
it’s the right ordering of steps.

	 ✓	Patterns aren’t patents. These two terms sometimes confuse non-native
English speakers because they sound similar. A patent grants the exclu-
sive right to produce a useful product, whereas a pattern is a description
of how to solve a problem in a way that has proven to be effective.
Patents must be novel, but patterns describe proven practice. The goal
of a patent author is to allow the patent holder to be the only one to
build the patented invention. The goal of a pattern writer, on the other

61 Chapter 4: Software Pattern Basics

hand, is to share the knowledge of how to reuse and achieve the benefits
of the pattern’s solution.

	 ✓	Patterns aren’t exclusively for OO design. Software patterns first
gained prominence through the OO community (see “Architectural
vocabularies,” earlier in this chapter), but many non-OO patterns are
available.

	 ✓	Patterns aren’t universal problem solvers. Patterns give you insight
into the minds of experts and help you understand the things that those
experts know, but they won’t make you an instant expert yourself. You
still need to apply your own creativity, intelligence, and taste to deter-
mine how patterns fit together and fit into the big picture.

		 Also, patterns offer solutions to recurring problems, but the problems
that you face won’t be identical to the problems described in each pat-
tern, so you’ll have to know when a pattern is applicable to your situa-
tion and when it has to be adapted for your situation. (Chapter 8 gives
you the details on choosing the best pattern for specific situations.)

	 If the only tool in your toolbox is a hammer, the whole world looks like a nail.
For that reason, patterns shouldn’t be the only tools in your toolbox. You also
should know relevant algorithms, have access to appropriate frameworks, and
have other resources that you can call upon to solve your software problems.

Looking Inside Patterns
Now that you know what patterns are and what they’re not, you’re ready to
take a look at what’s inside a pattern. Every pattern contains, in one form or
another, the following information:

	 ✓	The title of the pattern

	 ✓	A statement of the problem

	 ✓	The context in which the problem exists

	 ✓	The forces or trade-offs involved

	 ✓	The proven solution

	 The solution balances the forces to solve the problem in the context.

In the following section, I look at these parts of a pattern in detail, as well as
some other common pattern sections. (See Chapter 8 for a discussion of the
how to evaluate a pattern’s usefulness.)

62 Part I: Introducing Software Architecture and Patterns

Title
The first thing you see when you look up a pattern is the title. A good pattern
title gives you a sense of what the pattern does and how it does it, and it may
even enter the architectural vocabulary (see “Architectural vocabularies,”
earlier in this chapter).

Sometimes, a pattern has a few alternative titles — other names for that pat-
tern that you may already know or (for an unpublished pattern) various titles
that the author is still considering.

Problem statement
Each pattern should contain a clear statement of the problem you’re solving.
The problem should be specific to the context, and it should be succinct.
Good patterns solve small problems instead of attempting to solve big prob-
lems like world hunger. These smaller patterns, examples of which are shown
in Figure 4-2, can be combined to solve the big problems. You likely won’t
have all the required ingredients to solve the big problems.

	

Figure 4-2:
Big and

small
problems.

	

The problem statement should be relevant to the context (described in the
following section), specific, and easy to understand. When reviewing patterns,
you’ll frequently skim the problem statements to see whether they fit the
problem that you’re trying to solve.

63 Chapter 4: Software Pattern Basics

Generic problem statements like “Solve world hunger” or “Do the right thing”
aren’t very helpful. If you see patterns that have generic problem statements,
they probably won’t be detailed enough to help you solve your own problem.

	 The problem statement explains what the problem is and what needs to be
solved.

In Part III, I explain the problems that the patterns address in the description
of the example problems. In Part IV, the problem statements are in the general
descriptions of the patterns.

Context
Context is one of the most important sections in a pattern because design
problems don’t exist in isolation; they exist in some context. Patterns don’t
exist in isolation, either; they build on the environment of the problem and
upon one another. Sometimes it won’t make sense to apply the solution of
one pattern until another pattern has been applied. The context of a pattern
describes any of these precondition patterns, as well as any other applicable
preconditions.

In Part III, I explain the pattern contexts in the description of the example
problem. In Part IV, the contexts are in the general descriptions of the patterns.

	 Sometimes when you’re reading a pattern, you’ll see that the context is actu-
ally presented ahead of the problem. This order shows that the context is
setting the stage for the problem. At other times, the pattern author thought
that the problem should appear first, so he or she put the context after the
problem. Either order is okay.

The pattern’s context includes the following:

	 ✓	Environment: The context explains the environment in which the prob-
lem exists. If the context doesn’t describe your environment, you may
not be able to use the pattern even though the problem it solves is the
same as yours.

		 The context is very important for defining where a problem exists.
Consider these scenarios, in which the solutions to the problems are
very different if the contexts are different:

	 •	Ensure data consistency when updating a database: The solution
will be quite different depending on whether the context is a single
CPU system or a loosely coupled distributed system.

64 Part I: Introducing Software Architecture and Patterns

	 •	Maintaining a minimal memory footprint as objects in memory
are created and then no longer used: This isn’t a problem in Java
because of the built-in garbage collection. If the context is that
you’re using C++, for example, a pattern like Counted Body (see
Chapter 22) can solve this problem.

	 ✓	Preconditions: Perhaps some relevant preconditions or solution con-
straints limit the applicability of a pattern. Here are some examples of
preconditions:

	 •	Streaming data rather than being all available simultaneously

	 •	Reusable core that will be built up and extended later

	 •	Distributed environment

	 •	Heterogeneous environment

	 •	Java (or C++, C#, Haskell, Lisp, Ruby, . . .) language

	 •	Tight memory constraints or small memory footprint

	 ✓	Assumptions: Sometimes the same problem has different solutions in
the same system. The developers may have access to internal tools or
the innards of a system, while the integration testers or field support
engineers don’t have that same access. In other words, their context of
available tools is different. Assumptions about the environment and the
target audience should appear in the pattern’s context.

	 ✓	Constraints: The constraints on the system that you can’t change or
control also appear in the pattern’s context. A problem may exist only in
a particular programming language.

Forces
The forces section is the heart of the pattern. This section usually isn’t pres-
ent in design documents and isn’t specified in an algorithm, which sets pat-
terns apart from those descriptions.

	 Forces got their name because pattern authors took the language of architec-
ture and building design for the initial definitions of patterns and their parts.
Figure 4-3 shows that they’re called forces to reflect the real-life forces of wind
and gravity acting on a building.

65 Chapter 4: Software Pattern Basics

	

Figure 4-3:
Christopher

Alexander
was an

architect, so
he used the
language of
architecture

and engi-
neering.

	

Solving programming problems requires making trade-offs. A solution may
increase reliability but reduce performance, it may be faster but take more
memory, or it may be easy to use or easy to build. These trade-offs must
be addressed to arrive at the best solution. The forces section of a pattern
explains the trade-offs and discusses how to balance them to achieve the
best solution.

	 Of course, “best” depends on your context. Even though something is writ-
ten as a pattern, with the best solution, you still need to make sure it fits your
problem’s context and solves your problem, which may mean adapting the
pattern.

A good forces section in a pattern should lead you to understand that “this
problem is hard to solve,” because the section explains the pros and cons
and the trade-offs, and shows why the less-good choice really is less good.

	 The context section contains the things that can’t be changed in applying a
solution. The forces section contains those things that you can change and
must be balanced (traded off against each other) to arrive at a solution.

Sometimes, there is an obvious solution to the problem. But if the obvious
solution isn’t the best solution, the forces section explains why. The obvi-
ous solution when you have components that communicate, for example, is
to hard-code the physical addresses, but this solution isn’t good because it
limits future flexibility.

In Part III, I describe the forces through the example problem’s introduction.
In Part IV, the forces are in the pattern’s description.

66 Part I: Introducing Software Architecture and Patterns

In Parts III and IV, I list the pattern solutions in between the example scenar-
ios or pattern description and the guides to implementation. In most of the
patterns, there is a heading containing the word solution.

Solution
The solution section of a pattern explains how to solve the problem that
exists in the context with the forces mentioned earlier in this chapter. The
section starts by clearly stating the action you should take to resolve the
problem. Then the discussion proceeds to give you enough information so
that you can build something.

The solution explains how to solve the problem in the stated context.
The solution statement should be specific in how it solves the problem. It
shouldn’t be general, offering unclear guidance like “Do the right thing.”

Table 4-1 shows two examples of mismatched problems and solutions. In one
example, the solution clearly matches the problem and will be helpful and
useful. The other example shows that sometimes the problem and solution
don’t work together — the sign of a poorly written pattern.

Resolving not solving
Sometimes, the solution of a pattern is referred
to as a resolution instead of as a solution. The
reason stems from the start of patterns in the
world of architecture. When physical struc-
tures are being built with patterns, they’re sub-
jected to real forces — specifically, the forces
of the wind and gravity, among others. When
they look at a system of bodies and the forces

that apply to them, mechanical engineers talk
about resolving the forces. What this means
is balancing and equalizing all the forces to
achieve stability. This is the same as when
software architects and designers balance
the forces that are their trade-offs to achieve a
good and stable design.

67 Chapter 4: Software Pattern Basics

Table 4-1	 Mismatched Problems and Solutions
Problem Solution

Good Resources for correcting errors
are limited.

Correct only errors that reoccur.

Bad Each part of the software has
an unknown number of errors.

Count errors in each part of the
system.

	 Also, the solution may not fit exactly what you want to build, but patterns sup-
port reuse at the design level. You may need to customize the solution to fit
your situation.

Other common sections
Patterns also may contain other sections. Different pattern authors have
found that different sections work best for their writing styles. They’ve also
found that patterns that target different audiences may require some varia-
tion in the type of information that they provide.

Here are some of the most common “other” sections used in patterns:

	 ✓	Consequences: The consequences of applying the solution to the prob-
lem may be spelled out in the solution section, or they may appear in
a separate section. Every solution has some consequences. The good
consequence is that the problem is now solved. The solution may also
provide some other benefits to the system, such as making it easier
to expand in the future or maybe easier to maintain. But solutions can
introduce liabilities as well. Maybe the software will be harder to main-
tain, or extra classes will need to be created, or new problems will be
introduced.

		 There’s generally a one-to-one correspondence between the forces and
the consequences.

		 In Parts III and IV, the consequences are listed in the “Exploring the
Impacts” sections.

	 ✓	Sketch: Many patterns contain a sketch or two. It’s really useful if the
pattern contains a sketch. The sketch may be of the solution, or it may
be a sketch of the problem. The sketch may be UML diagrams or simple
block diagrams of the solution. Figure 4-4 shows some typical sketches.

68 Part I: Introducing Software Architecture and Patterns

	

Figure 4-4:
Some

example
sketches

from
Pattern-
Oriented

Software
Architecture:
A System of

Patterns.
	

Reproduced with permission of John Wiley & Sons, Ltd.: Pattern-Oriented Software Architecture: A System of Patterns, 1996, Buschmann et al.

www.allitebooks.com

http://www.allitebooks.org

69 Chapter 4: Software Pattern Basics

		 The idea of a sketch is to get you thinking visually about how the solu-
tion can be structured. The sketch also provides another view of the
solution, which helps make it clearer.

		 The patterns in Parts III and IV of this book contain many sketches scat-
tered throughout.

	 ✓	Resulting context: Just as the problem existed within a context, the
solution creates a new context, the resulting context, in which new prob-
lems exist. The resulting context also describes what the system looks
like after the pattern has been applied and the problem has been solved.
This section is closely related to the consequences section, and some-
times the consequences are included in the resulting context instead of
in a separate section.

		 The resulting context section includes a description of new problems
that may have been introduced through the application of the solution,
as well as pointers to the patterns to address these problems.

		 In Parts III and IV, the resulting context is summarized in the “Exploring
the Impacts” sections.

	 ✓	Rationale: Some patterns include a rationale section that helps explain
in plain language why the pattern’s solution is the best solution for the
problem.

	 ✓	Implementation: Many patterns include an implementation section,
which gives you instructions on implementing the pattern, sometimes as
step-by-step instructions that you can follow.

		 In Parts III and IV, the implementation details are in the “Implementing”
sections.

	 ✓	Sample code: Many patterns include some sample code. This section
may show code related to any part of the pattern.

	 ✓	Known uses: Known uses (at least three) also may be present in the pat-
tern. Known uses help you to see that the pattern really has been used
in a situation like yours.

Understanding the Patterns
Used in This Book

Patterns come in many styles. The pattern styles that many people know
are derived from Pattern-Oriented Software Architecture: A System of Patterns,
by Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad,
and Michael Stal (Wiley), and Design Patterns: Elements of Reusable Object-
Oriented Software, so I look at those styles in this section. For a discussion of
other pattern styles, see Chapter 5.

70 Part I: Introducing Software Architecture and Patterns

The Design Patterns pattern style
Design Patterns: Elements of Reusable Object-Oriented Software contains 23
patterns that improve the quality of OO design. The patterns are widely
applicable, but the examples they contain use only the C++ or Smalltalk pro-
gramming language. These patterns are widely taught in college courses; as a
result, they’re the first and only patterns that many people ever see.

	 Many books translate the Design Patterns patterns into different languages or
different contexts, such as Design Patterns For Dummies, by Steve Holzner,
PhD (Wiley); The Design Patterns Java Workbook, by Steven John Metsker
(Addison-Wesley); and The Design Patterns Smalltalk Companion, by Bobby
Woolf (Addison-Wesley).

The sections used within Design Patterns: Elements of Reusable Object-
Oriented Software are shown in Table 4-2.

Table 4-2	 Design Patterns Pattern Sections
Section Used For

Pattern name and
classification

The title of the pattern and the category to which it belongs

Intent A brief explanation of what the pattern does

Also known as A list of other names that you may associate with this pattern

Motivation A scenario to illustrate the problem that the pattern solves

Applicability An explanation of when the pattern can be applied

Structure A graphical representation of the relationships of the
classes that solve the problem

Participants An explanation of all the components seen in the structure

Collaborations How the participants work together to solve the problem

Consequences The good and bad effects that this solution has on the
problem and design

Implementation Tips, techniques, and steps for implementing the pattern

Sample code Actual code snippets to help you implement the pattern in
C++ or Smalltalk

Known uses Real systems that are known to implement this pattern

Related patterns Closely related patterns that may complement and enhance
the solution or be alternative ways to solve the problem

71 Chapter 4: Software Pattern Basics

The Pattern-Oriented Software
Architecture pattern style
The Design Patterns style isn’t the most popular one used by today’s pattern
authors. Today, the style introduced in Pattern-Oriented Software Architecture:
A System of Patterns, is used more widely. That book, where the patterns in
the book you’re reading were first published, uses the pattern style shown
in Table 4-3. The sections differ slightly from the Design Patterns style, gener-
ally by being more explicit about where certain kinds of information can be
found.

Table 4-3	Pattern-Oriented Software Architecture Pattern Sections
Section Used For

Name The title of the pattern and a short summary

Also known as A list of other names that you may associate with this
pattern

Example A real-world example that shows that the problem is real; a
running example through the rest of the pattern sections

Context Where the pattern applies

Problem The problem that the pattern solves

Solution The fundamental solution of the pattern

Structure A detailed explanation of the structural aspects of the pattern

Dynamics Typical runtime scenarios

Implementation Guidelines for implementing the pattern

Example resolved How the original problem was solved and key points that
were not raised in the other pattern sections

Variants Similar related variants or specializations of the pattern

Known uses Real systems that are known to implement this pattern

Consequences The good and bad effects that this solution has on the
problem and design

See also Patterns that are closely related or that solve similar
problems

72 Part I: Introducing Software Architecture and Patterns

Patterns past, present, and future
Patterns started gaining recognition and wide-
spread acceptance in the mid-1990s with the
publication of Design Patterns: Elements of
Reusable Object-Oriented Software, followed
by Pattern-Oriented Software Architecture:
A System of Patterns. People started writing
other patterns and publishing them in articles,
books, and conference proceedings. In the
’90s, patterns were primarily for doing OO
design, but they evolved to cover everything
from aspects to windowing and everything in
between, helping all kinds of software get built
in all kinds of ways.

In 2000, Linda Rising catalogued more than
1,000 widely available published patterns. The
following figure illustrates the growth curve in
just a decade. I’m sure that her 1,000 is only a
fraction of what Rising would find today if she
repeated her efforts.

Patterns will continue to be written because
practitioners will always need tips, tools, and
proven solutions. Also, acceptance of patterns
in the academic world will continue to increase.
Already, degrees have been conferred based
on study of patterns, and many professors have
received tenure for publications including pat-
terns. These trends will continue because pat-
terns fill a niche that is not otherwise filled.

Chapter 5

Seeing How Patterns
Are Made and Used

In This Chapter
▶	Finding out how patterns are created

▶	Writing patterns of your own

▶	Understanding how patterns document designs

A
 pattern is more than just a good idea that someone had in the shower
one morning; it’s a proven solution. It’s also a way to explain how

system architecture is designed.

Likewise, developing a pattern for other people to use is about more than just
writing it down. In this chapter, I show you what goes into creating a pattern,
from idea to expert review. I also explain how you can use the patterns that
you’ve written to document your design.

Creating Patterns
Writing your very own patterns isn’t as hard as you might think, but it’s not
trivial either. You need a good idea — which is some solution that you’ve
seen somewhere — and you need to dig deep to identify the trade-offs and
forces that make it a hard problem (see Chapter 4) in order to understand why
this is the best solution to the problem. After you get your pattern written,
you should have it reviewed and share it with your colleagues so they can
learn from what you’ve done.

	 For an in-depth look at all the sections that a pattern can contain, see Chapter 4.

74 Part I: Introducing Software Architecture and Patterns

Coming up with the idea
Anyone can be a pattern author, including you. In fact, many patterns are
written by people just like you — people who see a solution more than once
and think that someone else can learn from a written explanation of that
solution.

Consider the pattern Model-View-Controller (MVC), which I discuss in
Chapter 13. Most people know this pattern, which is used countless times
each day in building and using systems. Writing a pattern like this one
requires skill in the domain and skill to say to yourself, “I’ve seen this before.
What problem does this pattern solve, and how can I explain the trade-offs
that make it the best solution?”

Sometimes, a pattern isn’t created from thin air but mined from software in
the same way that gold is mined from the earth. The software pattern already
exists. It just needs to be extracted from the surrounding system and com-
bined with the instructions for building it (see Figure 5-1), as I describe in
“Writing the pattern document,” later in this chapter.

	

Figure 5-1:
Extracting

and
explaining
a pattern.

	

The pattern community wants to give authors credit for writing patterns so
that they feel good about their contributions and write more patterns. Often,
a pattern is associated with the name of the person who took the time to
write it (“Pattern by Frank Buschmann, 2011,” for example). That person may
not be the actual author or inventor of the original construct that was imple-
mented and proved to be a useful solution — just the person who wrote the
pattern document.

If you know who invented a key software concept that figures into a pattern
you’re writing, you should record that person’s name and keep it within the
pattern description.

Most software, however, is anonymous. Only a few people know the names
of the developers who wrote important software such as Skype or Microsoft
Windows. Patterns acknowledge those people by mentioning inside the pat-
terns the known uses and where you can see the pattern at work.

75 Chapter 5: Seeing How Patterns Are Made and Used

Confirming the Rule of Three
The pattern community believes in the Rule of Three, which means that
something must be used at least three times successfully before it can be
called a pattern. These uses are described in the “Known Uses” section of
the pattern document (see Chapter 4).

As I discuss in Chapter 4, however, patterns (or parts of patterns) don’t
always look alike, even though they always contain the same information. In
Figure 5-2, for example, the pattern shape is the same in all three systems,
but it can be stretched, which shows that it isn’t always identical whenever
it’s implemented or found.

	

Figure 5-2:
The Rule of
Three: 1, 2,
3, pattern!

	

Extracting the general solution
After you determine that the solution has been used three or more times, the
next step is extracting the general solution from the specific instances that
you’ve observed. The solution should be as general as it can be but still spe-
cific enough to fit the observed instances.

After you write down the solution, you work backward to find the problem
that was solved. This is sometimes hard because the problem may be subtle
and not immediately obvious. It isn’t useful to have a problem that asks,
“How do I do X?” and a solution that says, “Do X.” This pairing doesn’t help
the reader understand the pattern.

	 If you find that you’ve described the problem, but you don’t have the solution
that you can make more general yet, stop now. There’s a good chance that
you’ll be making the mistake of writing a pattern for some new idea. If you
don’t know the solution to a problem, you don’t have something you can write
as a pattern.

76 Part I: Introducing Software Architecture and Patterns

Writing the pattern document
After identifying the problem, think about what is required for the problem
to exist in the observed form. This step is where things like programming
languages and previously required patterns get written down.

Table 5-1 shows a template that you can use for writing your patterns, with
the sections clearly labeled. Even experienced pattern writers find this tem-
plate to be useful because it helps them to remember all the different kinds of
information that is required.

Table 5-1	 A Pattern Template
Pattern
Section

Section Contents

Title The title of the pattern. The title enters the design vocabulary
element for the pattern.

Alias (or Also
Known As)

This section lists alternative titles by which the pattern is known.

Context The “Context” section describes where the problem exists. It
lists the things that you can’t change or that are assumed to be
constraints on your system.

Problem The “Problem” section has one or two sentences explaining the
problem that’s being solved. It should build on the “Context”
section and should be concise.

Forces The “Forces” section, which is the longest section, talks about
the trade-offs involved with solving the problems. Unlike the
“Context” section, the “Forces” section discusses things you can
control and choose when applying the pattern to your design.

Solution This section states the solution to the problem. It builds on the
“Forces” section to explain why the solution is the right one and
tells the reader what to do to solve the problem.

Sketch This section of the pattern contains sketches or drawings to help
the reader understand the solution.

Resulting
Context

This section explains the state of the system space after the
problem has been solved, including how the forces have been
balanced. It discusses the context for any new problems that
may have been introduced by this solution.

77 Chapter 5: Seeing How Patterns Are Made and Used

Pattern
Section

Section Contents

Rationale The “Rationale” section explains why this solution is the right
one for the problem. It lists stories of successes with the solution
or failures without the solution.

Related
Patterns

This section contains patterns that are related to the current one.
These patterns may be referenced in the “Context” or “Resulting
Context” section, or they may be patterns that solve similar problems.

Author This section lists the author’s name and date. Patterns are fre-
quently revised; the date tells the reader whether he or she has
the latest version.

	 See Chapter 6 to see the similarities and differences between this list of sections
and those in other pattern definitions.

Naming the pattern
The next step in pattern creation is coming up with a name for the pattern.
Naming a pattern can be hard. Some names are fun and have inside meaning,
but these are rarely the best names. You want a short, descriptive name that
will easily fit into the lexicon of the pattern users.

During your search for a name, you may come up with several candidates,
which are listed in the “Alias” or “Also Known As” section (refer to Table 5-1) of
the pattern document. At this time, however, you want to label your pattern
a candidate pattern so that your readers know that the pattern is still new and
hasn’t been reviewed yet (see the next section).

	 Although I encourage you to write patterns, I discourage you from labeling
something a pattern if you aren’t really sure that it is a proven technique.
Doing otherwise may confuse someone else into using the unproven tech-
nique. After it has been reviewed, you can remove candidate from the name.

Getting expert reviews
The patterns that you find on websites or in books have been critically
reviewed and revised three, four, or more times. The following sections
describe some of the types of expert reviews that patterns typically receive.
Reviews and workshops (discussed in the “Writers’ workshops” section, later

78 Part I: Introducing Software Architecture and Patterns

in this chapter) have helped the pattern become succinct and understandable.
Although not required of a pattern, I recommend getting feedback and having
your patterns reviewed.

Figure 5-3 shows a typical progression of reviews, from review by peers to
review by an editorial board before publication.

	

Figure 5-3:
A pattern’s
journey of

reviews.
	

PLoP conferences
Many published patterns have been though one of the many Pattern
Languages of Programming (PLoP) conferences, which focus on new patterns
that people are writing. For these conferences, the papers are shepherded —
guided by experienced pattern writers — to make them as good as possible
before review by a writers’ workshop (described in the next section).

The North American pattern conference, PLoP, began at a University of Illinois
conference center; lately, it has been moving around the country, usually
co-located with another fun conference such as SPLASH or AGILE. Euro PLoP
is the European pattern conference, which always happens in early July at
Kloster Irsee near Munich, Germany. See www.hillside.net/conferences
for descriptions of and information on other PLoP conferences.

	 In addition to these geographically based PLoPs, some special-purpose PLoPs
are held occasionally, sometimes by invitation only. Some recent special-
purpose PLoPs include Scrum PLoP for collecting the patterns of the Scrum
agile method, Meta PLoP for metaprogramming patterns, and Para PLoP for
parallel programming patterns.

http://www.hillside.net/conferences

79 Chapter 5: Seeing How Patterns Are Made and Used

Writers’ workshops
Cultures are based on shared rituals, and the pattern community is built
around the culture of a writers’ workshop. In the same way that pattern
authors are giving away their secrets and expertise when they write patterns,
community members give their suggestions for improvements to the authors.
One of the rules of a writers’ workshop is that all comments must be sugges-
tions for improvement. After the workshop, pattern authors are expected
to take the feedback that they have received and to revise their patterns to
make them even better.

All the participants in a writers’ workshop are fellow pattern authors. This
fact and the structured nature of the workshop contribute to it being a safe
and respectful place to have your pattern reviewed.

	 Richard Gabriel is a Lisp programming-language pioneer and poet who
brought writers’ workshops to the pattern community. His book Writers’
Workshops and the Work of Making Things (Pearson Education) explores the
similarities and differences of these workshops in the worlds of software and
poetry.

	 You can find a good guide to writers’ workshops at www.hillside.net/
component/content/article/65-how-to-run-plop/235-how-to-
hold-a-writers-workshop.

You don’t need a conference to organize a writers’ workshop — you can hold
one with your team or within your company.

Reading groups
In writers’ workshops (see the preceding section), pattern authors get feed-
back to improve their patterns. If you want to understand a pattern in a
group setting by discussing the merits and implementations, you can find a
reading group. Reading groups exist in a number of cities to discuss pattern
books or articles, or perhaps other computer topics, such as agile methods.

If you can’t find a reading group, you can start one of your own.

	 You can find a good guide to reading groups at www.industriallogic.
com/papers/khdraft.pdf.

Editorial reviews
If authors publish their patterns in a book or article, the patterns will be
reviewed a few more times to ultimately make them the best, most under-
standable things that they can be.

http://www.hillside.net/component/content/article/65-how-to-run-plop/235-how-to-hold-a-writers-workshop
http://www.hillside.net/component/content/article/65-how-to-run-plop/235-how-to-hold-a-writers-workshop
http://www.hillside.net/component/content/article/65-how-to-run-plop/235-how-to-hold-a-writers-workshop
http://www.industriallogic.com/papers/khdraft.pdf
http://www.industriallogic.com/papers/khdraft.pdf

80 Part I: Introducing Software Architecture and Patterns

Keeping patterns current
Individual patterns evolve and change over time, as do pattern collections
and handbooks. New functionality is added, something is removed from the
pattern because the tools now take care of it automatically, and so on. When
you write your pattern and have it reviewed, you must be willing to remove,
add, or change parts that the readers find necessary to understand the pattern.
Revise your pattern continually!

	 Because the software world is changing so rapidly, you should try to write the
fundamental patterns that have stood the test of time.

Pattern-community principles
Throughout this book, I frequently mention the
pattern community, which is based on the cul-
ture of reading, writing, and using patterns, as
well as giving away practical experience in the
form of patterns. Community members share
several ethical principles:

	✓	 Buschmann’s Rule: Never capture your
own ideas in a pattern. To be sure that your
good idea really is a pattern, let someone
else write it. If you’re writing patterns, write
about the recurring solutions that someone
else put into software.

	✓	 Focus on broad, long-lasting, positive pat-
terns: Strive to make your patterns useful to
many people.

	✓	 Intellectual-currency paradox: Ideas are
worth more if they’re given away. Pattern
authors need to feel comfortable sharing
the proven solutions that they’ve encoun-
tered and taken the time to write about. One
way to achieve this is to give people credit
for the patterns that they write and to keep
the pattern-to-author association.

	✓	 Encouragement and reward: The commu-
nity encourages its members to be secure
about telling their secrets.

	✓	 Reward: People who created these tech-
niques or who first took the trouble to
commit them to writing are rewarded with
ongoing credit for their pattern.

	✓	 Aggressive disregard for originality (as put
forth by Brian Foote): The academic commu-
nity strives for novelty, wanting new ideas
and new results. The pattern community, on
the other hand, seeks out the proven solu-
tions. These were written about in nonpat-
tern forms in many places in the past.

	✓	 Proven solutions: Patterns are solu-
tions that have withstood the test of time.
This leads to the Rule of Three (refer to
“Confirming the Rule of Three,” earlier in
this chapter).

	✓	 No hype: Patterns are good for solving prob-
lems, but they won’t solve all the world’s
problems or all your design problems.

81 Chapter 5: Seeing How Patterns Are Made and Used

Pattern-Oriented Software Architecture: A System of Patterns, by Frank Buschmann,
Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal (Wiley),
provides an example of the editing process. The Proxy pattern (see Chapter 19)
was first published in Design Patterns: Elements of Reusable Object-Oriented
Software, by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides
(Addison-Wesley Professional), with three variants. As the Pattern-Oriented
Software Architecture authors revised that pattern, they realized that it had an
additional four variants. After further review, including review at a PLoP con-
ference, the pattern was published in Pattern-Oriented Software Architecture: A
System of Patterns, with seven total variants. Technology continues to evolve;
I’ve added an eighth variant in Chapter 19.

Documenting System Architecture
with Patterns

Patterns explain a design. A professor of mine said, “Every problem in com-
puter science boils down to trade-offs,” which I’ve found to be true. Patterns
capture those trade-offs so that you understand why the design is the way
that it is.

Patterns work together to build a larger solution, as you see in Chapter 6.
When patterns are used to design and build a system, the patterns are part
of the system’s documentation. This documentation explains the design
choices, as well as how the parts of the solution fit together.

The project that you’re working on may be the source of the patterns that
you’ll write about, as described in the previous section. If the design wasn’t
created with patterns, or if the project has some unique characteristics, you
can use the pattern form to describe the architecture and convey to the read-
ers of the patterns just where the “unmovable walls” exist. This refers to the
aspects of the system that may look ordinary but that are actually important
structural elements that are tying the whole architecture together. If you’ve
seen the concepts implemented elsewhere, you can write a pattern.

Patterns make a natural complement to a software framework. Patterns
can explain the components in the framework and explain where the frame-
work user may need to add extra classes or configuration to make a working
application.

	 A good example of using patterns to document the architecture of a system
can be found in Pattern-Oriented Software Architecture, Volume 2: Patterns for
Concurrent and Networked Objects, by Douglas C. Schmidt, Michael Stal, Hans
Rohnert, and Frank Buschmann (Wiley). One case study describes a web

82 Part I: Introducing Software Architecture and Patterns

server that is intended to provide efficient caching and content delivery to
Internet and intranet users. The authors identify seven common challenges
that arise in developing concurrent servers such as this:

	 ✓	Encapsulating low-level, operating-system APIs

	 ✓	Decoupling event demultiplexing and connection management from
protocol processing

	 ✓	Using multithreading to scale up server performance

	 ✓	Implementing a synchronized request queue

	 ✓	Minimizing server threading overhead

	 ✓	Effectively using asynchronous I/O

	 ✓	Enhancing server configurability

Each of these problems is then examined in a short patternlike format that
contains the following sections:

	 ✓	Problem: States the problem and design choices that must be considered
in this circumstance.

	 ✓	Context: Explains where the problem exists within the overall design of
the system.

	 ✓	Solution: Cites the patterns that should be used to resolve the problem
and balance the choices that the problem stated.

	 ✓	Use: Explains how the patterns were used within the overall system
design. This section usually includes a class diagram showing how the
patterns fit into the overall system design.

Part II
Putting Patterns

to Work

In this part . . .

T
o begin this part, I add to the definition of patterns by
discussing how they’re created, structured and

categorized.

As you get more familiar with patterns, you’ll want to
remember where you found the most useful ones, so I also
show you how to build a catalog of patterns — a personal
reference handbook.

Finally, because just knowing where to find patterns isn’t
enough, I show you how to locate and then implement
specific patterns to solve specific problems.

Chapter 6

Making Sense of Patterns
In This Chapter
▶	Classifying patterns

▶	Finding out about pattern collections and languages

J
ust as no two problems are exactly alike, no two patterns are identical.
So, you’ll find a wide range of patterns to solve a wide variety of problems.

In this chapter, I tell you about some of the kinds of patterns that you’ll find.
These patterns have different scopes and scales, ranging from huge patterns
that cover the big architectural styles described in Chapter 2 to small ones
that help you get the most from your programming language.

You solve individual problems through the application of individual patterns.
Most of the software design and architecture challenges that you confront
are bigger and require several patterns to fully resolve them. To tackle this
need for groupings of patterns, I talk about grouping patterns into collections
and into a network of related patterns, which is called a pattern language.

Understanding Pattern Classifications
Patterns contain several required sections — including Problem, Context,
Forces, and Solution — but there are many ways to combine these sections.
If you’ve looked at any patterns, you probably noticed that they all appear
slightly different, and you may have even thought that some of them weren’t
patterns at all!

	 I explain the parts of a pattern and the contents of its parts in Chapter 4.

There are many ways to slice up the universe of patterns. So, in this section,
I describe the most common classification schemes, starting with the pattern
styles you’re most likely to encounter.

86 Part II: Putting Patterns to Work

Styles
If you open a poetry anthology, you’ll see that the poems are written in many
different styles. Patterns are similar. Pattern authors don’t always choose to
write their patterns in the same styles, so they vary the way that the mate-
rial is presented. Pattern styles are the different ways of combining the same
essential sections into a pattern.

Table 6-1 compares styles from several sources:

	 ✓	This book

	 ✓	Pattern-Oriented Software Architecture: A System of Patterns, by Frank
Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and
Michael Stal (Wiley)

	 ✓	Design Patterns: Elements of Reusable Object-Oriented Software, by Erich
Gamma, Richard Helm, Ralph Johnson, and John Vlissides (Addison-
Wesley Professional)

	 ✓	A Pattern Language, by Christopher Alexander, Sara Ishikawa, Murray
Silverstein, Max Jacobson, Ingrid Fiksdahl-King, and Shlomo Angel
(Cambridge University Press)

As you can see in Table 6-1, all the pattern styles contain the same informa-
tion, even though they display it in different sections with different headings.
Focus your attention on the left two columns, which describe the sections of
a pattern and how patterns appear in this book.

Table 6-1	 Pattern Style Comparison
Section This Book Pattern-

Oriented
Software
Architecture

Design
Patterns

A Pattern
Language

Context Example prob-
lem or pattern
introduction

Context Motivation Normal text at
the beginning

Problem Example prob-
lem or pattern
introduction

Problem Motivation,
intent

First bold text

Forces Example prob-
lem or pattern
introduction

Problem Motivation Between
bold text

87 Chapter 6: Making Sense of Patterns

Section This Book Pattern-
Oriented
Software
Architecture

Design
Patterns

A Pattern
Language

Solution Solution sec-
tion or before
the implemen-
tation section

Solution,
structure,
dynamics,
implementation

Applicability,
structure,
participants,
collaborations,
implementation

After therefore

Resulting con-
text

Exploring the
impacts

Solution, con-
sequences

Consequences After the
second row of
three stars

Consequences Exploring the
impacts

Consequences Consequences After the
second row of
three stars

Rationale Various places,
including
example prob-
lem, pattern
introduction,
or solution
description

Example
resolved

Motivation Between bold
text, after the
second row of
three stars

Known uses Not called out
in a separate
section

Known uses Known uses Between bold
text, after the
second row of
three stars

There are several reasons why pattern authors use these different styles. In
some cases, they think that one style will be more understandable to their
target audience; in other cases, they think that one section or another pro-
vides the most important information. The differences add to your confusion
as a pattern reader, but when you dissect patterns, you can see that all the
different styles contain the same information.

	 As you’re building something with the aid of a pattern, it’s important to know
where to look to find the information that you need. It’ll be in there somewhere!

Depth
Not all patterns have the same depth — meaning that they don’t address the
same scopes or scales of problems (see Figure 6-1). Some patterns are written
at a very low level, such as:

Use a left or right bit shift operation to multiply or divide by a power of 2.

88 Part II: Putting Patterns to Work

This pattern describes a particular way of solving a math problem if the com-
puter doesn’t have built-in multiplication or division functions (which is still
sometimes the case!).

	

Figure 6-1:
Patterns

at various
levels.

	

Other patterns are high-level, describing the structure of an entire system.

Model-View-Controller (MVC; see Chapter 13) is one of these patterns. It
describes the overall solution instead of solving the problem of implementing
a tiny detail.

As your design progresses from a blank piece of paper or blank window in
your development environment to a fully fleshed-out project, you’ll be able
to apply patterns for each of these scopes. You’ll start with a pattern to intro-
duce the structural architecture into the system. Then you’ll move to solving
the problems related to just a few classes or components. Finally, you’ll need
the low-level patterns to help you actually get the most out of the language or
software/hardware infrastructure. If you’re just looking for the solution to a
problem that you encounter when working with just a few components, you
may be able to jump directly to the design patterns and ignore the architec-
tural patterns.

The different classifications that I describe in the next few sections help you
find a pattern of the correct scope to solve your problem.

Architectural
Architectural patterns define the structure of the solution at the highest level.
These patterns influence the entire system. The patterns in Part III of this
book, for example, are all architectural patterns because they set the direc-
tion and overall structure of the system.

Architectural patterns require all the parts of the system that are touched by
the pattern to participate in its design. An example is my Minimize Human
Intervention pattern, which helps make computing systems more reliable by
automatically performing as much action as possible and only rarely engaging
humans to help. All parts of the system must participate to receive the pattern’s
benefits. If one part of the system doesn’t participate in implementing the

89 Chapter 6: Making Sense of Patterns

architectural pattern and asks a human to “Click OK to continue,” that part
will make system reliability lower and prevent the computing system from
achieving its availability goal.

	 Because architectural patterns affect the entire system, they need to be
included in the design first. You’ll run into problems later if you get deep into
your design and then decide to structure it by using one of the architectural
patterns, because you’ll already have built parts of the system that don’t
conform to the architectural pattern.

Architectural patterns can solve problems related to the functional requirements
discussed in Chapter 1. Sometimes, an architectural pattern structures the
system or adds an element to the system that resolves a functional require-
ment. For example, the Layers pattern (see Chapter 9) divides the system
into stacking blocks of functionality. This pattern implements the require-
ment that the solution be modular and that the parts of the solution be easily
interchangeable.

Architectural patterns also add nonfunctional capabilities to the system. The
Minimize Human Intervention architectural pattern, which I mention earlier
in this section, supports increased availability, which is a nonfunctional
requirement.

Architectural patterns don’t specify the whole structure down to the lowest
level; they describe high-level problems and solutions. They’re written at a
high level so that they can be applied in a variety of circumstances.

When you select and use a specific architectural pattern, you’re choosing to
apply that pattern’s architectural style to the system. (See Chapter 2 for an
introduction to architectural styles.) Following are patterns covered in this
book that you can use to design four different architectural styles:

	 ✓	From mud to structure: Layers (Chapter 9), Pipes and Filters (Chapter 10),
Blackboard (Chapter 11)

	 ✓	Distributed systems: Broker (Chapter 12)

	 ✓	Interactive systems: MVC (Chapter 13), Presentation-Abstraction-
Control (Chapter 14)

	 ✓	Adaptable systems: Microkernel (Chapter 15), Reflection (Chapter 16)

Architectural patterns usually point you toward the design problems you need
to solve through their Resulting Context section (described in Chapter 4). This
section of the pattern gets you started by pointing out the next problems that
you need to solve to fully implement the system. With these problems, you
use design patterns and idioms, which I discuss in the next two sections.

90 Part II: Putting Patterns to Work

Design
Design patterns solve individual design problems within a particular context.
In the pattern scope hierarchy, design patterns are the medium-scale pat-
terns. They address problems across a system, but instead of involving the
entire system, as architectural patterns do (see the preceding section), they
affect only a few components. They help you solve individual design prob-
lems in building components or small groups of components.

You use a design pattern to fill in gaps in the architectural style that you chose
with your architectural pattern. When you select an architectural pattern,
you’ll frequently find that there are some loose ends. MVC (Chapter 13), for
example, introduces a tight coupling between the models and the views and
controllers. This coupling can become a problem if there are many views and
controllers, so you have a design problem that needs to be solved. The design
pattern Command Processor, discussed in Chapter 20, addresses this problem.

The best-known source of design patterns is Design Patterns: Elements of
Reusable Object-Oriented Software. Its 23 patterns address common problems
in object-oriented design and help you build robust sets of components easily.
These may be the only patterns you’ve run into before this book, so I want to
show you that you can use many other patterns for all kinds of problems —
not just design problems related to classes and objects.

Within the general scope of design patterns, patterns can be classified fur-
ther. The Design Patterns authors use three sub-classifications: Creational,
Behavioral, and Structural (see “Other classifications,” later in this chapter).
In this book, however, I use the following sub-classifications:

	 ✓	Structural Decomposition

	 ✓	Organization of Work

	 ✓	Access Control

	 ✓	Management

	 ✓	Communications

You can find patterns in all these sub-classifications in Part IV of this book.

Idiom
The lowest-level patterns are idioms. Idioms have the narrowest scope and
are specific to a programming language or platform, but they help you get
past their limitations. The example in the “Depth” section, earlier in this
chapter, about bit-shifting left to multiply by powers of 2 if the computer
doesn’t have a multiplication function, is one example of an idiom. Other
examples of idioms are patterns that help you overcome the limitations of
different memory-management methods employed in different programming
languages.

91 Chapter 6: Making Sense of Patterns

Chapter 22 contains one idiom, Counted Pointer, that’s widely used in many
languages even though it was designed for C++. This shows that multiple ver-
sions of the same idiom may address the unique requirements of different
programming languages.

	 Idioms contain language-specific guidance. When you start looking for an idiom,
you may find one for a different language from the one you’re working in. Don’t
immediately discard it. You may be able to extrapolate its solution into your
design or code, or it may give you a new way to look at your problem that will
lead you to the right idiom for your language.

	 You can learn something from every idiom that’s related to your problem,
even if it doesn’t solve that problem.

Other classifications
Just as there are multiple pattern styles, or ways that patterns are written,
there are multiple ways to classify and group patterns. The classification
system of architectural and design patterns and idioms described in the pre-
vious sections has been widely used for many years. Other pattern authors
focus on particular aspects of the system. Design Patterns: Elements of
Reusable Object-Oriented Software, for example, divides design patterns into
three classifications:

	 ✓	Creational: Creational patterns such as Factory Method and Abstract
Factory describe ways to create new objects.

	 ✓	Structural: Structural patterns such as Composite talk about how to
structure the system by combining objects in beneficial ways.

	 ✓	Behavioral: Behavioral patterns such as State and Memento cover the
patterns that address the runtime dynamics of the system.

A system by Doug Schmidt is close to my method of Architectural, Design,
and Idiom but groups them into only two categories: Strategic and Tactical.
Strategic patterns are similar to the architectural patterns introduced here.
They define the overall structure of the system and how the major components
should interact; they describe the strategic decisions that affect the entire
system’s design.

The design patterns are like Schmidt’s Tactical patterns. They address specific
design problems. They don’t address the grand scale of the system; instead,
they help with the individual problems encountered in design. You can see
how my system interacts with the Schmidt system in Figure 6-2.

92 Part II: Putting Patterns to Work

	

Figure 6-2:
Different

categories
of patterns.

	

All the classifications are useful in their own ways. You’ll want to collect a set
of patterns across the different classifications and put them in your toolbox.
Chapter 7 tells you how to create a catalog of patterns that you can refer to
frequently.

Grouping Patterns
The pattern classifications define categories of patterns that are useful to you
at different times while building your system. In this section, I introduce two
different ways of grouping patterns based on the domain of technology the
patterns cover rather than the scope of problems they solve.

As I mention in the discussion of design patterns earlier in this chapter, pat-
terns address and resolve the problems that are left unanswered by other
patterns. Sometimes, several patterns can be used together to solve a prob-
lem that is much bigger than any of the patterns being used. Patterns work
together in these ways, as I tell you in the upcoming section about pattern
languages.

	 Not all the patterns within a collection or a language are meant to be used to
solve any given problem. Both groupings contain more patterns than you’ll
actually use to solve any practical design problem.

Pattern collections
Put any group of items together, and you can call the group a collection.
Many of the published sets of patterns out in the world are just that — col-
lections of patterns. They’re grouped for convenience. Maybe they fill out a
book or were written by the same author.

93 Chapter 6: Making Sense of Patterns

Patterns in a collection can work together to solve bigger problems, such as
when you use both Command and Memento (from Design Patterns: Elements
of Reusable Object-Oriented Software) to implement an undo function. More
often than not, though, pattern collections are just catalogs of patterns that
address similar problems.

Collections of patterns are good, but a collection may not contain patterns
that address every aspect of your software problem, which can leave you
hunting elsewhere for other patterns. Collections usually don’t give you guid-
ance on how to use the patterns together in a system either. Your search
may take you to pattern languages, which I discuss in the next section.

Pattern languages
A pattern language is another grouping of patterns that work together to solve
a bigger problem. Unlike mere collections, however, languages provide com-
plete coverage of a problem space.

	 The term pattern language has a specific meaning and is used carefully within
the community of pattern authors. You won’t need to spend any effort figuring
out whether something is a pattern collection or language; the writers of
pattern languages are proud that they’ve put together a language, and they’ll
point out that fact to you.

Languages need to be complete enough to address all the problems found
within them, leaving no loose ends. So a language that explains how to log
status messages using a framework like log4j can’t leave a gap. If it doesn’t,
it isn’t complete. It must address the problem of log files reaching their maxi-
mum size, for example.

Pattern languages also need to be complete in that they solve enough prob-
lems to build something. A collection may be complete, but it may not design
a useful, whole solution. A pattern collection for logging that addresses the
need for timestamps and keeps messages in order is useful, but if it doesn’t
include the basics to help you with when, where, and what to log, it doesn’t
design a complete solution and it won’t be considered a language.

	 Pattern languages exhibit one of the enabling techniques that I described in
Chapter 2 — languages are sufficient and complete.

The patterns within a pattern language can be combined in many ways. The
pattern-language writers will probably offer some guidance on how the pat-
terns relate (see the nearby “Reading pattern languages” sidebar). Their
ordering is just a suggestion, however, and you can apply the patterns in any
order or sequence your problem needs.

94 Part II: Putting Patterns to Work

Reading pattern languages
There isn’t complete agreement in the pattern
community today about how pattern languages
should be documented, so you’ll see some vari-
ety. This variety just indicates that the commu-
nity has many minds all trying to write the best
patterns that they can, as you see in different
pattern styles and in different pattern-language
styles. Here’s what I think are the most impor-
tant elements in a pattern language:

	✓	 Title: Pattern languages need titles, just as
individual patterns do.

	✓	 Context: This section explains when and
why a pattern language should be applied.
It is similar to the context within an indi-
vidual pattern. The language context also
explains, in words, the relationships
between the patterns; it links the resulting

context of one pattern with the context of
the next pattern. (See Chapter 4 for more
information on these sections.)

	✓	 Map: A pattern language has a map or lan-
guage diagram to show one way that the
patterns connect and can be related to one
another. This map graphically shows the
relationship of one pattern resolving the
problems introduced by another pattern.
The following figure shows an example
map for a language that addresses soft-
ware error recovery.

	✓	 The actual patterns: A pattern language is
ultimately made up of individual patterns.
Either the actual patterns or references
to those patterns should be part of the
language.

Reproduced with permission of Alcatel-Lucent: Patterns for Fault Tolerant Software, 2007, Hanmer. A John
Wiley & Sons publication.

Chapter 7

Building Your Own
Pattern Catalog

In This Chapter
▶	Creating a personal catalog of patterns

▶	Updating your pattern catalog

W
hen you start using patterns to solve your design problems, you’ll
find that you have a few favorites — the ones that you know inside

and out and refer to frequently to solve the kinds of problems that you usu-
ally confront in your software development.

To make your work easier, you should record these favorite patterns in your
own pattern catalog for future reference. You can turn to this pattern catalog
when you start a new design problem to get an idea of how to structure your
solution. You also can turn back to it to follow the implementation steps that
tell you how to incorporate the pattern’s solution in your design. That way,
you don’t have to memorize all the details of all the forces or all the imple-
mentation steps, because the catalog holds all that information.

The patterns in your personal catalog constitute a collection and include pat-
tern languages or parts of languages that are useful to you. It’s your own per-
sonal “software handbook.” You may include patterns from different pattern
languages — one for interactive system design, one for logging, and another
for user interface design, for example — as well as patterns that aren’t
included in complete languages, like the ones in Design Patterns: Elements
of Reusable Object-Oriented Software, by Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides (Addison-Wesley Professional).

Your catalog also should include well-known patterns like the ones I list in
Chapter 23. And, of course, I hope that the patterns in this book will become
your favorites and will be part of your catalog.

96 Part II: Putting Patterns to Work

Assembling Your Catalog
In this section, I give you some pointers on putting your pattern catalog
together.

	 This is your catalog, not the one and only pattern catalog for everyone in the
world, so customize it to make it truly your own. Record information in your
own words in a place where you’ll remember it. Add to it as your needs and
interests change. Refer other people to the patterns in your catalog when they
ask how you solved that really difficult problem so effortlessly.

Choosing a medium
Your pattern catalog can be in whatever medium works best for you, as
shown in Figure 7-1.

	 Make your choice of medium based on how you use patterns:

	 ✓	If you take your patterns to meetings to discuss them with your col-
leagues, index cards work well.

	 ✓	If you refer to your catalog only when you’re near your computer or
the web, a personal website or wiki works great because you can add
hyperlinks.

	 ✓	If most of your references are already on paper, a loose-leaf notebook
may be the best medium for you.

	

Figure 7-1:
A software

pattern
catalog can

take many
forms.

	

97 Chapter 7: Building Your Own Pattern Catalog

The most important point is to make your catalog convenient for you so that
you don’t forget to refer to it.

Identifying the problems you face
Whether you’re writing software at a company, in a class, or for fun, you’re
probably focusing your efforts within a certain area. Within that area, you’re
going to find many repeated problems and many of the same situations.

For example, you may always have to deal with a user interface, or with
JavaScript, or a program in a small memory system. These situations may
not be problems for you in the sense that they’re difficult for you to solve;
they’re just the types of software projects that you find yourself working on
repeatedly.

	 As you develop your software, take notes about the general areas of problems
that you encounter, paying special attention to the following:

	 ✓	The topics on which you continually ask experts for guidance

	 ✓	The topics that you’ve bookmarked in your favorite reference books or
on your favorite websites

	 ✓	The topics that you and your friends discuss repeatedly without agree-
ing on a resolution

	 ✓	The topics that your colleagues or friends come to you for help with

Finding patterns that solve your problems
After writing down the problem areas, look for patterns within these areas.
You can find them in tons of books and on hundreds of websites about pat-
terns, so your search for patterns to include in your catalog isn’t going to be
done in one sitting.

Here are a few sources for patterns of various types:

	 ✓	For basic object-oriented design, look to the Design Patterns patterns.

	 ✓	For architecture-level patterns, refer to Part III of this book.

	 ✓	For user-interface patterns, turn to the Interaction Design Pattern
Library at www.welie.com/patterns.

As you go about your regular software work, make notes about where you
find patterns. While you look through these collections, record a few facts
about each pattern that interests you, such as the problem, context, and

http://www.welie.com/patterns

98 Part II: Putting Patterns to Work

solution, as shown in Figure 7-2. The most important thing to note is where to
find the pattern again.

To get you started with your catalog, Chapter 23 lists ten patterns that every-
one should know, and Chapter 24 contains the top ten places (other than this
book) where you should look for patterns.

	 Finding patterns to solve your problems will be a lifelong (or at least a career-
long) pursuit — it isn’t a one-time effort.

Organizing the catalog in sections
When you’ve found a bunch of patterns within your problem areas, you
should label them to identify where they should be if your catalog were
sorted different ways.

You’ll find it most useful to organize your catalog into two main sections:

	 ✓	Pattern categories, such as architectural, design, and idiom

	 ✓	Problem categories, such as enterprise, database, and user-interface
patterns

Table 7-1 contains some example pattern labels for your catalog. As you
can see, you’ll have more problem categories than pattern categories. The
reason? Problem categories span the universe of problems in computing,
which is naturally larger than the universe of solutions.

	

Figure 7-2:
Pattern

notes.
	

Patterns
for Fault-
Tolerant
Software

Interactive Systems
Flexible HCI Model-View-Controller POSA
Agents Presentation Abstraction Control POSA

ARCHITECTURE

Classes
Decoupling Abstraction Bridge GOF
Adding Responsibility Decorator GOF

Checkpointing

•
•
•

DESIGN

99 Chapter 7: Building Your Own Pattern Catalog

Table 7-1	 Example Catalog Sections
Pattern Categories Problem Categories

Architectural Patterns Business Computation

Design Patterns Business Process

Language-Specific Idioms Client-Server

Computer-Specific Idioms Communications

Organizational Patterns Concurrent Systems

Process Patterns Database

Analysis Patterns Distributed Systems

Event-Driven Systems

Fault-Tolerant Systems

GUI Development

Interactive Systems

Memory Management

Multimedia

Networking

Parallel Programming

Pattern Writing and Reviewing

Real-Time Systems

Refactoring

Security

System Modeling

Testing

Training

Transaction Processing

Website Development

These categories will help you choose patterns from your catalog to solve
your design problems (see Chapter 8).

100 Part II: Putting Patterns to Work

Connecting the patterns
As you add patterns to your catalog, think about how they relate to the other
patterns already in the catalog. Patterns are rarely used by themselves. Much
more often, they work together to solve bigger problems.

	 As you find patterns, write down the connections among them. Add this infor-
mation to an electronic catalog as a link or to a paper catalog as a note in the
margin. These connections can help you remember things that make sense
to you about groups of patterns. You may enter something like “When I use
Riding Over Transients, I also use Leaky Bucket Counter.”

Here are a few attributes that may lead you to connect two patterns:

	 ✓	The patterns are usually used together.

	 ✓	The patterns are complementary, so you may use one or the other but
not both.

	 ✓	The patterns are similar but used in different contexts (one in Java and
the other in C#, for example).

	 ✓	The patterns come from a hard-to-remember source, and noting this
relationship can help jog your memory about the source.

Keeping Your Catalog Current
Despite your best efforts, you’ll always have gaps or outdated material in
your pattern catalog for a variety of reasons, such as these:

	 ✓	Well-known solutions aren’t always written as patterns.

	 ✓	A recurring problem may not have a solution, because whenever it
appears, the forces are always quite a bit different.

	 ✓	New patterns are being published all the time, and you don’t have time
to read them all.

	 ✓	Published patterns are being revised continually, slowly in books or
quickly on the web, but perhaps faster than you’re able to keep up with
the changes.

All these factors contribute to the risk that your catalog will grow stale over
time. Don’t worry — just keep the best catalog you can, and maintain it as
often as you can.

101 Chapter 7: Building Your Own Pattern Catalog

	 Review your catalog periodically, adding helpful new patterns and removing
the patterns that are no longer useful. You may need to remove patterns from
your collection for a variety of reasons, including the following:

	 ✓	The problem has disappeared.

	 ✓	Better alternatives (pattern or nonpattern) are available.

	 ✓	Technology has evolved.

You may want to keep some outdated patterns in your catalog, however.
Even if you won’t use them in new designs, you may want to refer to them as
you maintain older systems that used those patterns. As you use patterns
from your catalog, make notes to remind yourself where and when you used
them.

Chapter 8 tells you how to choose a pattern from your catalog, or from all the
available patterns, to solve your design problem.

102 Part II: Putting Patterns to Work

Chapter 8

Choosing a Pattern
In This Chapter
▶	Evaluating patterns like a critic

▶	Selecting the pattern you need

▶	Using patterns to solve architectural problems

Y
ou can find lots and lots of patterns, because many people have found
patterns to be useful ways to document proven solutions to problems.

Because so many patterns are out there, you have to read a pattern carefully
to decide whether it’s relevant to your problem. In this chapter, I tell you
how to make that decision.

This chapter starts with features you can use to evaluate patterns. Then I
outline seven steps for choosing a pattern that solves your particular problem.
When you’re comfortable selecting patterns, you can create your system’s
architecture with patterns, as I explain at the end of this chapter.

Examining Patterns Critically
Using a published pattern is like getting advice. If the advice is from a total
stranger, you’ll want to check to see that the advice is good. If the advice is
from your best friend or someone whose expertise you trust, you’re more
likely to follow the advice, but you’ll still consider whether the advice is
appropriate for your situation.

Similarly, not every pattern will be right for you. You need to determine
whether a pattern will help you solve your problem. And, in order to do this,
you need to read the pattern with a critical eye. In this section, I show you
how to do exactly that.

104 Part II: Putting Patterns to Work

Asking the right questions about patterns
The first step in evaluating a pattern is to ask yourself a few key questions
about the pattern. Armed with the answers to the following questions, you
can begin to get a sense of whether the pattern is right for you:

	 ✓	Is the pattern useful? In other words, does the pattern solve a real
problem and, in particular, does it solve the problem that you currently
have? The pattern may be useful for another problem, but if it doesn’t
solve your problem, it won’t be much help.

	 ✓	Does the pattern contain enough information to implement the solution?
Sometimes you’re looking for a pattern that will help you with the over-
all structure of the system, but you won’t be implementing anything yet.
Other times, you’ll want detailed implementation instructions because
you need to write some code now. The pattern should provide the kind
of implementation assistance that you’re looking for.

	 ✓	Does the author know something about the field and topic? This ques-
tion is sometimes hard to answer, but if you know that the author is an
expert in the field in general and the topic in particular, then the pattern
will probably be more useful than a similar pattern written by someone
who isn’t an expert in the field and topic.

Knowing what to look for in a pattern
Looking for the right pattern for your particular situation is a lot like looking
for a mate. All kinds of great patterns are out there, but you don’t want to
settle down with the first one you find. Instead, you want to find a pattern
that has certain traits. Here are some key traits to look for in a pattern:

	 ✓	The problem statement is clear. If you don’t understand what problem
the pattern is solving, it probably isn’t applicable to your situation.

	 ✓	The pattern has an appropriate scope for the problem. The scope tells
you when in the design process you’ll apply the pattern.

		 There are three categories of patterns (see Chapter 5):

	 •	Architectural patterns: You need an architectural pattern if you’re
just putting the big building blocks together.

	 •	Design patterns: You need a design pattern if you have specific
design problems to solve.

	 •	Idioms: You need an idiom if you’re trying to work through a lan-
guage or some problematic nitty-gritty detail.

105 Chapter 8: Choosing a Pattern

		 Not all patterns tell you their scope, so you’ll have to determine the
scope yourself. To know what scope is most useful, check in the solution
and structure sections to determine if it involves widespread parts of
the system or if it’s all related to a single, small part of the system.
Widespread interaction places it toward the architectural patterns and
small interaction or small problems give it the scope of an idiom or
design pattern.

	 ✓	The pattern actually solves the stated problem. Sometimes the solution
doesn’t really address the problem it says it addresses. This is a sign of
an immature pattern, which you sometimes come across in searching
for patterns.

	 ✓	The pattern’s context matches the problem’s context. You’re solving
a problem, and that problem exists in the context of the rest of the
system. Make sure that the pattern’s context matches yours, with the
right language and the right kind of system. Ideally, the pattern mentions
that it solves the problem you have.

		 If the pattern you’re looking at is an idiom, pay special attention to
whether its context matches yours. If the context doesn’t match, see
whether the pattern offers some advice about your situation anyway.

		 Don’t disregard a pattern just because it doesn’t say it’s for your specific
context. If you’re looking for a design pattern to solve a particular prob-
lem, but instead you find an architectural pattern, think about what the
pattern tells you about how the design should be built. It may contain
enough information to solve your problem. If you’re writing in Java and
you find a C++ idiom, think about how that C++ idiom still applies to
your problem and then adapt it, or pull some keywords from the idiom
to help refine your search.

	 ✓	The pattern contains enough information for you to implement it.
You want to build something with a pattern. Does the pattern give you
enough information that you could easily include the pattern’s solution
in your design or architecture?

	 ✓	The pattern fits with what you’ve already designed. Patterns can work
together very well to build a solution. Make sure that the patterns you
apply build toward the solution. If the pattern seems to have you backing
up in your design, resolving problems you’ve already addressed, it may
not be the right pattern for you. On the other hand, a pattern may point
out a flaw in what you’ve already designed.

Selecting a Particular Pattern
Now that you know how to evaluate patterns (see the previous section),
you’re ready to start searching for and selecting patterns. You can find
patterns in many places, such as in this book, in other books of collected

106 Part II: Putting Patterns to Work

patterns, in magazines such as IEEE Software and Dr. Dobbs, in technical
conference papers, and on the Internet. As you develop your personal pat-
tern catalog (see Chapter 7), you’ll discover sources for the patterns that are
most relevant to your work.

Figure 8-1 shows a seven-step method for selecting a pattern for use in a
design. I explain this method in detail in the following sections.

	

Figure 8-1:
Seven steps
to selecting

a pattern.
	

Step 1: Specify the problem
The first step in finding a pattern is identifying the problem that you want to
solve. The problem needs to be concrete like “securing a three-tier architec-
ture,” rather than something general like “making a website.”

Splitting your problem into sub-problems
If the problem seems to have several parts, split the problem into smaller
sub-problems, such as “managing the user interface” and “setting up the
back-end database.” Sometimes, the sub-problems aren’t related to the struc-
ture but are related to the nonfunctional requirements — for example, if you
need to design a web service that behaves in a certain way and the solution
needs to be highly available. Divide this problem into two sub-problems.

107 Chapter 8: Choosing a Pattern

	 Finding a pattern to address the small problems is easier than finding a single
pattern that solves the larger, more-complex compound problem. Sometimes
you get lucky and find the pattern for the larger problem — so before splitting
your problem up, make a quick check for that larger problem’s pattern.

Finding a context
For each sub-problem that you’ve identified, think about the constraints on
the problem. These constraints make up the context.

For example, consider laying out the basic structure of an interactive text
editor. A requirement of the system is that it should be able to adapt to dif-
ferent user-interface libraries and different style guides from your customers.
These requirements define the context of the problem.

Considering trade-offs
After considering the context, think about the things that you have to balance
to achieve a good solution. These are the trade-offs, the things that you
have some flexibility about and can make choices about. What are some of
the trade-offs in each sub-problem? For example, adding fault tolerance to a
system increases its reliability and availability trading off against higher code
complexity, longer development time, and more code to execute — which
lowers performance.

The trade-offs may not be immediately obvious to you, but as you start
reading patterns, you’ll start seeing the trade-offs.

Consulting your pattern catalog
Reflect on the patterns in your catalog (see Chapter 7), and consider whether
any of them is a good match for the problem and trade-offs that you’ve iden-
tified. Your pattern catalog comes into play here because it contains your
most useful and most often-used patterns.

Step 2: Select the pattern category
After you’ve identified the problem for each sub-problem, you need to decide
which pattern category will address the one you’re solving. The pattern cat-
egory is related to how patterns are indexed and grouped:

	 ✓	If you’re still defining the basic structure of the system, you should
look for an architectural pattern (see Part III).

	 ✓	If you’re structuring a few components of an architecture, look for a
design pattern (see Part IV).

	 ✓	If you’re implementing something in a specific programming language,
look for a language-specific idiom (Chapter 22 has an example).

108 Part II: Putting Patterns to Work

Table 8-1 lists the patterns discussed in Parts III and IV.

Table 8-1	 Pattern Categories
Architectural Patterns Design Patterns Idioms

Layers Whole-Part Counted Pointer

Pipes and Filters Master-Slave

Blackboard Proxy

Broker Command Processor

Model-View-Controller View Handler

Presentation-Abstraction-
Control

Forwarder-Receiver

MicroKernel Client-Dispatcher-
Server

Reflection Publisher-Subscriber

The goal of this step is to begin narrowing the number of patterns you need
to review to find the best pattern to solve your problem.

For the example I’m using in this chapter (see “Finding a context,” earlier in
this chapter), because you’re defining the basic structure of the interactive
text editor, you need an architectural pattern.

Step 3: Select the problem category
After you identify the pattern category that will provide your solution, you
need to identify the category of the problem that you want to solve. Within a
collection of architectural patterns, for example, you see patterns in several
problem categories, sometimes called domains.

The problem category helps you narrow your search for patterns that solve
your problem. For example, you wouldn’t look for a solution to a problem of
interactive systems in a collection of patterns that focuses on inter-process
messaging.

Table 8-2 shows some example problem categories.

109 Chapter 8: Choosing a Pattern

Table 8-2	 Problem Categories
Architectural Pattern
Problem Categories

Design Pattern Problem
Categories

Idiom Problem
Categories

Structure Structural Java

Distributed system Creational C++

Interactive system Behavioral Small memory systems

Adaptable system Ruby

Real-time system Smalltalk

Fault-tolerant system Performance tuning

Using the example of a search for an interactive text editor, you may look for
patterns in one of the architecture styles introduced in Part III of this book —
in particular, the two patterns in the interactive system problem category:
Model-View-Controller (MVC; see Chapter 13) and Presentation-Abstraction-
Control (PAC; see Chapter 14).

	 If you can’t find a pattern that matches your problem perfectly, select a differ-
ent problem category.

Step 4: Compare the problem descriptions
Now it’s time to browse the collection for patterns that can address your spe-
cific problem. In this step, you’ll use the detailed knowledge of the problem
from Step 1 to narrow your search to just a couple patterns.

Use your detailed problem knowledge to look at the problems from the
candidate patterns, as follows:

	 1.	 Determine whether the candidate pattern’s problem matches the
problem that you’re trying to solve, either completely or partly.

	 2.	 Determine what other patterns the candidate pattern requires you to
have applied.

		 If you haven’t already built in the patterns that the candidate pattern
expects, consider whether you can — and whether doing so would make
your software better or worse.

	 3.	 Check the structure of the candidate pattern against the structure of
your problem.

110 Part II: Putting Patterns to Work

		 Ask yourself whether the author broke the overarching problem into dif-
ferent sub-problems from the ones you created and, if so, whether you
went too far in creating sub-problems. The answers to these questions
may lead you to redefine your problem in a way that matches the pat-
tern better.

		 If a promising candidate pattern solves a problem that’s bigger than the
narrow problem you’re seeking help with, keep it on the candidate list
because you may need it later.

	 4.	 Check the candidate pattern against your context.

		 A pattern that doesn’t match should be removed from the candidate list.
But as you cross it off, think about whether it mentions something that
you’ve forgotten.

The architectural pattern category and interactive systems problem category
(see Part III) contains two patterns — MVC and PAC — that may be useful in
the interactive text editor example. Both patterns support the requirement
to change the user-interface style (refer to “Finding a context,” earlier in this
chapter). Because the final solution is expected to be tightly coupled rather
than implemented through distributed agents, MVC will be more appropriate.

	 If you find that none of the patterns you’re considering matches the problem
you want to solve, maybe you’re trying to solve the wrong problem. Start over
with Step 1 using what you’ve learned the problem isn’t.

Step 5: Compare benefits and liabilities
In this step, you look at the patterns you think should be considered further,
paying particular attention to the trade-offs and consequences of applying them.

Trade-offs are the things that you can control in your design. Maybe you can
trade flexibility for better performance or structural complexity for easier
access to the back-end database. See whether making the trade-offs needed
by the pattern solves your problem and meets the needs of your application. If
the trade-offs result in missing your requirements — or if the trade-offs defeat
the point of your application — remove the pattern from consideration.

If you’re designing a system that you expect to be used for a long time, with
many updates, but the trade-offs in the pattern you’re considering value one-
time efforts over maintainability, stop considering the pattern.

Patterns also contain a discussion of the consequences associated with
applying the solution. These consequences are the benefits that happen
when you apply the solution. The ease of adding new views to an interactive
text editor is a benefit you’d receive after applying the MVC pattern, for example.

111 Chapter 8: Choosing a Pattern

Sometimes, patterns have negative consequences, or liabilities, associated
with the solution. In many cases, the liabilities associated with a solution are
new problems that another pattern can solve.

Read through the consequences of the patterns you’re considering. Do they
give you the benefits that you were hoping for? Are the liabilities manageable,
in other words can you resolve them easily either through applying another
pattern or by a little design work on your part? Does application of the pat-
tern provide a clear path toward a design or does it introduce more new
problems than it solves? Does it have negative consequences for the overall
design (for example, duplicating components already present in the design)?

After you consider the benefits and liabilities, choose a pattern that provides
the benefits you need and that doesn’t introduce liabilities you can’t manage.

Figure 8-2 shows the process of narrowing down the large universe of pat-
terns to one specific pattern.

	 If Steps 2 through 5 don’t work and you haven’t found a pattern that’s appro-
priate for solving your problem, you’ll have to develop a new solution to the
problem.

	

Figure 8-2:
Narrowing
the search
to find the

right
pattern.

	

112 Part II: Putting Patterns to Work

Step 6: Select the best variant
Patterns sometimes contain variants that offer alternative ways to implement
the solution. MVC, for example, contains a Document-View variant that provides
a different way of implementing the solution by relaxing the boundary between
the view and the controller. In some cases, Document-View is a better solution
than the main MVC solution. This is the case with the example interactive text
editor I’ve been walking you through, for which you’d pick the Document-View
variant, because the view and the controller are tightly interwoven.

If the pattern that you’ve identified has variants, in this step you decide
which variant to apply.

Read the pattern’s variants to determine how they differ from the main solu-
tion and whether any of them matches your circumstances better than the
main solution does.

	 The variant’s discussion sometimes explains how to implement the variant.
More likely, though, you’ll have to map the changes between the variant and
the main solution to the implementation steps yourself.

If you’ve found a pattern and identified a variant that solves your problem or
sub-problem, you can continue your design. If not, continue to the final step.

Step 7: Select an alternative
problem category
If you couldn’t find a pattern that met all your needs and solved your problems,
try your search again, but this time, broaden your problem category. Instead of
looking for a solution for a problem with your three-tier architecture, for exam-
ple, look for a solution for the bigger enterprise system problem that you have.

Something else you can try is to look for closely related patterns that can
guide you by giving you a little insight into what may work or won’t work
(refer to “Knowing what to look for in a pattern,” earlier in this chapter).

	 Many patterns are specializations of patterns in other categories. The Composite
pattern from Design Patterns: Elements of Reusable Object-Oriented Software,
by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides (Addison-
Wesley Professional), for example, is a general design pattern. Many people
have found it useful to publish problem-category-specific variations on the
Composite pattern that fit the unique situations of their own problem domains.

	 If you find one of these specialized patterns that’s similar to what you need,
check out the general pattern on which it’s modeled; that pattern may provide
the design solution you need.

113 Chapter 8: Choosing a Pattern

Designing Solution Architecture
with Patterns

This section moves from selecting individual patterns to designing and imple-
menting your system with the guidance of patterns. Patterns complement
existing design methods by identifying solutions to individual problems.
They don’t replace other design methods.

Individual patterns provide the building blocks, like self-contained objects or
subroutines. Some of these building blocks are so big that they structure the
entire solution. Within many patterns, you’ll see a section of implementation
guidance, which lays out the steps you should follow to implement that pattern.
The software design methods in Chapter 3 provide only general guidance for
designing your system.

Sometimes, the implementation steps in a pattern mention another pattern
that you should use to help build up the solution. In this case, pause the
implementation of the first pattern, and proceed to implement the referenced
pattern (as shown in Figure 8-3). Sometimes the first pattern will give you
guidance for when you should implement the referenced pattern.

	 Here’s a pragmatic approach to creating software architecture and design
with patterns:

	 1.	 Pick a software development method.

		 This is an important choice, which guides your approach to the overall
design process. Any method can work, such as the Unified method or
some agile method. The goal is to have some rigor to ensure that you
don’t forget things or make obvious errors.

		 Patterns are supplements for a well-designed software development
method, not replacements.

	

Figure 8-3:
Implement-

ing a smaller
pattern

while
working on

a larger one.
	

114 Part II: Putting Patterns to Work

	 2.	 Use your pattern catalog (refer to Chapter 7) to support your design.

		 As you’re applying your software development method, you’ll run into
design problems that you need to solve. You can solve them from first
principles and possibly reinvent the wheel repeatedly. An alternative —
the approach I advocate in this book — is to use the proven solutions in
patterns to solve problems. This method saves you effort and gives you
time to solve interesting new problems.

		 This pattern-based technique uses your pattern catalog from Chapter 7
and the steps earlier in this chapter, to point you to proven solutions for
the problems you run into.

		 Add any new patterns you find useful to your pattern handbook to keep
it current.

	 3.	 If the pattern system doesn’t include a pattern for your design prob-
lem, try to find a different pattern.

		 Patterns don’t yet cover all the problems you may face in software
development, so in some cases you’ll have to move on to Step 4.

	 4.	 If you can’t find a pattern, design a solution from scratch.

		 If no pattern exists that will resolve your problem, use the analysis and
design guidelines of your software development method to create the
solution that you need from scratch.

Passing through the gate
When experts talk about patterns, they talk
about the notion of passing through the gate.
As you work with patterns and become more
familiar with them, you won’t need to look up
patterns to remember their implementation;
the solutions they contain will become second
nature. Eventually, you’ll reach the point where
you can’t explain exactly why you employed
a particular pattern, because you, too, have
passed through the gate.

The gate reflects a long time of working with
patterns and a thorough understanding of the

domain. It isn’t something that you can force
your way through. You may not even realize
that you’ve passed through the gate. What
you’ll find is that your peers are turning to you
for guidance and instruction on those esoteric
concepts that you read about in patterns once
upon a time.

If you realize that you’ve passed through the
gate, smile gently to yourself and then forget it
and get about your business.

Part III
Creating Your
Application
Architecture

In this part . . .

T
his part presents specific architecture patterns that
you can use to shape the high-level capabilities of

your software system. These patterns, from Pattern-
Oriented Software Architecture: A System of Patterns, by
Frank Buschmann, Regine Meunier, Hans Rohnert, Peter
Sommerlad, and Michael Stal (Wiley), give you useful
starting places into architectural patterns and help you
solve real problems. I start by introducing patterns for
structuring your architecture, followed by patterns for
creating distributed and interactive systems. Finally, I
present a pattern for making your systems adaptable.

Chapter 9

Building Functionality in Layers
In This Chapter
▶	Dividing the solution into layers

▶	Implementing a layered architecture

O
ne of the most basic software architectural choices you can make is
to build an architecture of layered responsibilities. Systems built with

layers are all around you, from the web and Internet-enabled applications to
embedded applications on custom hardware. They use layers to divide the
problem into groupings that have similar responsibilities.

In this chapter, I show you how to solve a design problem by using the power
of layers. To help set the stage and get you thinking about layered architec-
tures, I start with a brief overview of three common layered architectures.

Using Layered Architecture
Layered architectures have been around since the beginning of digital com-
puters — or at least since the early 1960s. Modern hardware technology and
languages accentuate the usefulness of layered architectures, as you see in
the three examples in this section. All three of these examples are in use all
around you right now, in the systems you use every day.

Keeping communications open
The International Standards Organization (ISO) Open Systems Interconnection
(OSI) seven-layer model (see Figure 9-1) facilitates communication between
computers. The model consists of two separate but parallel stacks of layers;
each layer provides a higher level of functionality than the layer below it.
Within the two stacks, the layer N in one stack is a peer of the layer N in the
other stack. Logically, communication is between the peer layers in the two
stacks; actually, only the bottommost layer directly communicates between
the two stacks.

118 Part III: Creating Your Application Architecture

	

Figure 9-1:
The OSI

seven-layer
model.

	

Layers can be different sizes, hosting different numbers of protocols. Over time,
in fact, the communications-stack diagram has evolved into many variations.
Some layers have many alternatives — such as SIP, FTP, Telnet, and HTTP in
layer 7 (the Application layer) — and other layers have few alternatives.

	 Something that’s true of layered architectures in general is true of the OSI
model as well: Changes to a layer affect only that one layer. In other words,
the communication protocol chosen at a lower layer doesn’t affect the higher-
level functionality provided at its higher level. You’re free to pick and choose
the protocols to use in each layer — just keep in mind that for peers to talk to
each other, the peer layers in the two stacks must use the same protocol.

Creating web applications
Web applications commonly use a three-tier architecture, in which the tiers
are the layers. Figure 9-2 shows a typical architecture with a presentation
layer on the top, a business logic layer in the middle, and a database layer on
the bottom. Each of these layers has distinct responsibilities:

	 ✓	Presentation: The presentation layer is the web server that delivers con-
tent to the user’s browser.

	 ✓	Business logic: The business logic layer is built on something like the
JBoss application server platform. It receives requests from the presen-
tation layer, processes the requests, and supplies the results to the pre-
sentation layer. The business logic layer requests the data that it needs
from the database layer.

	 ✓	Database: The database layer manages the persistent data, such as the
customer data or the online store’s catalog. It supplies this data to the
business logic upon request.

119 Chapter 9: Building Functionality in Layers

	

Figure 9-2:
A typical

three-tier
architecture.

	

	 You can make changes in any of the layers without affecting the other layers
as long as you preserve the interfaces among them.

Adapting to new hardware
Operating systems are examples of layered architectures (see Figure 9-3). They
start with the central kernel of operating-system functionality. Surrounding the
kernel are various layers of functionality, such as device drivers and middle-
ware. The topmost layer contains the applications that the user executes.

	

Figure 9-3:
Operating-

system
layers.

	

120 Part III: Creating Your Application Architecture

The layered architecture makes adapting to new hardware easier, because
only the device drivers need to change when a new device is added. The
higher layers, like the file system, don’t care about the new hardware.

	 Many systems replace the device-driver layer with a hardware-abstraction
layer. This layer provides a common, stable interface for the kernel layer by
hiding the details of the hardware and the details of hardware changes.

Problem: Designing at Differing Levels
You have a simple design problem: You’re supposed to build a system that
displays the state of a user’s primary disk on his computer screen. This system
must create a graph for the entire disk, displaying blocks on that disk in different
colors to show their status: free, being used for a file, marked as bad, and so on.

This system shouldn’t be hard to create, because you already know how to
do the display function. You quickly identify which system calls to use, so
getting the information to the display isn’t hard either.

Building a monolith
You build the system as one big application, a monolith. The main program calls
the display components to set up the display; then it iterates through the blocks
of the disk, displaying each block’s status. Pretty simple. In the end, you have a
well-structured program that is best described as a monolith (see Figure 9-4).

	

Figure 9-4:
A monolithic

solution.
	

Just when you’re about to schedule the demo for the customer, new require-
ments arrive. Now the customer wants to display the disk mapping for a dif-
ferent operating system, which means that all the system calls in the main
program need to be changed and need to become conditional on the operat-
ing system. The customer also wants the option to display the data as a pie
chart instead of as the bar graph you provided. The changes won’t be hard to
make, but you didn’t anticipate it.

121 Chapter 9: Building Functionality in Layers

You consider just adding the new functionality — essentially adding warts
to the monolith that you’ve already made. These warts probably will be con-
tagious, however, and over time, you’ll have to add more and more of them
as different display options arise or different operating systems need to be
accommodated. The result won’t be pretty (see Figure 9-5).

	

Figure 9-5:
Your archi-
tecture —

warts
and all.

	

	 Monolithic solutions are hard to maintain, because changes aren’t confined to
local regions in a monolith.

Breaking up your monolith
You decide to break the monolith into parts:

	 ✓	The high-level display functions sit at the top.

	 ✓	The next part is the data generation part of the program, which is less
abstract in that it interfaces with the operating-system functions and
the display.

	 ✓	The services provided by the specific operating system complete
your system.

The resulting system looks like Figure 9-6.

	

Figure 9-6:
Your

system,
now in three

parts.
	

122 Part III: Creating Your Application Architecture

You’ve refactored your program from a monolith into a layered architec-
ture that will accommodate change easily. (I discuss refactoring in the
“Refactoring your code” sidebar.) When new operating systems are required,
you can change the middle layer to adapt to new, lower-level operating-
system layers while keeping the interface to the top layer constant. When
new display options are required, you can add them to the top layer as new
components or just revise the existing top-level component. In any case,
the changes are isolated to the layer of interest. Late changes won’t ripple
through the entire system anymore.

	 Changes are confined to layers of similar responsibility.

Making this problem harder
Most, if not all, problems solved in software systems involve concepts rang-
ing from high level to low level. The high-level operations rely on the low-level
operations: The business logic accesses a database, for example, or the operat-
ing system calls a device driver. These different levels represent the groupings
of the abstract concepts into the solution space. The highest level of abstrac-
tion in the solution doesn’t have all the answers and can’t operate in isolation;
it needs to rely on capabilities provided by lower levels of abstraction.

You may think that the solution is really obvious: Just divide the software
into layers. You’ve seen it done everywhere. A few considerations make this
problem harder than it looks, however:

Refactoring your code
Refactoring is a process in which you take the
existing functionality and design of a system (or
part of a system) and rearrange its internals into
a new shape while retaining the same external
behavior. Refactoring is done to improve some
nonfunctional aspect of the code, such as making
it easier to maintain or extend, usually by making
a series of small changes to the code. In the disk-
display example in this section, you refactor the
program from a monolith — which works well in
the short term — into a layered architecture that
will be more flexible going forward.

Many techniques for refactoring are docu-
mented in books. Here are several common
techniques:

	✓	 Extract class: Pull methods and data from
one (or more) classes and put those meth-
ods and data in another class to refine a
class’s responsibilities.

	✓	 Encapsulate field: Make data more abstract
by eliminating all direct accesses and
instead requiring all access to be through
getter and setter methods.

	✓	 Pull up and pull down: Rearrange methods
and data by moving them up to a superclass
or pulling them down to a subclass. This
change reflects whether the rearranged
methods and data are common to all the
subclasses or specific to only some of them.

123 Chapter 9: Building Functionality in Layers

	 ✓	Almost all the forces that lead you toward a layered architecture are
related to nonfunctional requirements (see Chapter 1).

	 ✓	Changes late in the development process are inevitable. You or your
customer may find a better way to solve a problem, or your customer
may need to add something at the last minute.

	 ✓	The internal interfaces to different parts of the system should be stable,
which makes it easier to maintain and extend the system. In many cases,
the interfaces are going to be specified by standards, either formal stan-
dards or practices that everyone follows.

	 ✓	Components aren’t standard sizes; they’re many sizes and shapes.
Components also are complex, and not all of them are at the same level
of abstraction. If you build a monolithic system, it’s hard to give the
complex components the attention they need without wasting effort on
the simpler ones.

	 ✓	Another characteristic of good design is the grouping of similar respon-
sibilities. The most efficient way to communicate is to communicate
directly between components or within a component. If you break com-
munications into layers, you have to cross the layer boundary, which
introduces communication inefficiencies. A design that has a good sepa-
ration of concerns will help avoid these communication inefficiencies.

Solution: Layering Your System
Use layers to structure applications made up of groups of subtasks that are
all at the same level of abstraction or that represent common groupings of
responsibilities.

Exploring the effects of layers
The primary benefit of a layered architecture is enhanced maintainability.
Each layer interacts only with an adjacent layer — primarily the layer below
it. This arrangement means that layers may be modified, extended, and
changed without creating problems for the other layers.

In the next two sections, I tell you about some other benefits and liabilities of
layered-style architectures.

Benefits
Maintainability is the main benefit of layered architectures. There are other
benefits, however, including the following:

124 Part III: Creating Your Application Architecture

Layering your shipments
Suppose you want to ship your bike some-
where — maybe home after a long, one-way
charity bike ride. You can find people to disas-
semble it, pack the pieces, prepare the boxes
for shipment, and move the boxes to your home.
At the other end, there are people you can hire
to reverse these tasks. Each of these people
corresponds to a layer in your overall plan for
shipping your bike.

The layers are all specialized at their task — the
packer may not know how to reassemble the
bike. In fact, the different layers can do what
they do for things other than just bikes. Each of
the people needs to know who they’ll receive
their work from and who they hand their output
to, but otherwise they’re independent and they
don’t know anything about your shipment.

125 Chapter 9: Building Functionality in Layers

	 ✓	Layers make reuse easier. All the aspects that make layered architec-
tures easy to build, understand, and maintain contribute to making
them reusable:

	 •	Each layer has a well-defined abstraction, making it understand-
able and allowing you to reuse layers with confidence that they’re
a good fit for the situation.

	 •	The functionality provided by the layers is discrete and well defined.

	 •	The clear interfaces between the different layers make it easy for
you to adapt a new problem to reuse an existing layer.

		 Developers sometimes resist reusing layers because they want to write
the precise components that they need. They argue that the existing
layer doesn’t match their needs, or they point out the performance
penalties associated with communicating between layers. Reuse can be
good, however, because it shortens the development cycle and allows
effort to be spent on other components and problems.

	 ✓	Layers provide standardized groupings of abstraction and interfaces
to a layered architecture. Industry standards are readily adaptable to
layered architectures. Standards help different groups or companies
produce systems that will work together. Standards-compliant layers
can be used and reused interchangeably (see the preceding item).

		 A layered architecture, with its clearly defined abstractions on each
layer and explicit interfaces, also can drive the definition of standards.
Real-life layered systems give the standards bodies examples that they
can use to show how the standard should be structured.

	 ✓	Dependencies between layers are minimized. This structure makes it
easier to isolate code changes when requirements change. In the example
earlier in this chapter, after you redesign your system with layers, all the
display changes are confined to one layer. This feature supports portabil-
ity, because if the example system is moved to a new operating system,
only the layer that interfaces with the operating system changes.

	 ✓	A layer can easily be swapped with other implementations of that
layer. Individual layer implementations that satisfy the same abstraction
and the same interfaces are interchangeable without too much effort.

		 If the interfaces are hard coded, you can replace the old names with the
new names quite easily. If that can’t be done, you can still reuse them
by using an Adapter (from Design Patterns: Elements of Reusable Object-
Oriented Software, by Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides [Addison-Wesley Professional]) to connect the existing
layer with the new layer. If you use the Bridge pattern (also from Design
Patterns), you can even exchange layers at runtime.

	 ✓	Layers facilitate complex development projects. Using layers allows
you to spread the work among several developers or development
teams to work on the parts in parallel.

126 Part III: Creating Your Application Architecture

Liabilities
As with any other pattern, some liabilities are associated with using a lay-
ered architecture. You need to weigh these liabilities against the benefits to
decide whether a layered architecture is right for your solution:

	 ✓	Layers aren’t as efficient as hard-coded connections inside a mono-
lithic solution. In a monolithic solution, a component at the highest
level of abstraction can call a function directly at the lowest level. This
function isn’t possible in a layered architecture, because all the interme-
diate layers are involved in the invocation. Each call handoff from layer
to layer imparts a slight performance penalty to the processing. This
reduction in efficiency (and overall performance) often is cited as the
most significant liability of a layered architecture.

	 ✓	Protocol stack layers increase message size and add processing time.
In a communications protocol that uses the OSI seven-layer model (refer
to “Keeping communications open,” earlier in this chapter), each layer
that handles a message adds or subtracts a new header with informa-
tion for its peer layer. This activity increases message size and slows the
transfer of information.

	 ✓	Changes in a layer sometimes cascade into other layers. This situation
sometimes occurs, even though layers normally prevent changes from
being required in other components. An example of change cascading
between layers occurs when the physical layer in a communication
stack is replaced by a new physical connection that provides signifi-
cantly higher performance. Moving from a 10 Mbps Ethernet layer to a
155 Mbps Asynchronous Transfer Mode (ATM) link, for example, causes
changes in higher layers. The increased traffic ripples upward through
the stack, with many or all of the higher layers needing changes to adapt
to the increased speed at which they receive incoming packets. Some
higher layers benefit from the increase in speed, which allows better-
quality imaging; other higher layers have to be restructured or repli-
cated to handle the increase in communications traffic.

	 ✓	Layers sometimes introduce unnecessary work. This situation may occur
when several higher layers request the unpacking and examination of a
message. The lower layers may receive the same request several times.
Another example is when several layers provide redundancy to support
reliability at the next-higher levels. These multiple layers may add check-
sums to their messages, when one checksum would be sufficient. Because
their peers must check these checksums, message sizes may explode.

	 ✓	Layered architectures have no mandatory structure for layers.
Consequently, some layered systems may have too much functionality
in too few layers, which makes it harder to reuse the layers and harder
to understand the key abstractions of each layer. Another drawback is
that a designer can create too many layers, thereby increasing the over-
head associated with the layered architecture.

127 Chapter 9: Building Functionality in Layers

		 Dividing a system into the most appropriate layers is a hard problem.
Step 5 in the upcoming implementation section shows you how to iter-
ate over the definitions of layers to find the most appropriate layered
model for your problem.

Layering your architecture
The only component at the architecture level is a layer. Each layer communi-
cates with the adjacent layers and is responsible for some processing of its
own, passing requests to the layer below it and answering requests from the
layer above it — or perhaps passing requests upward and giving answers to
the layers below instead.

You can actually use layers to build five different communication scenarios
or styles — three main styles and two variants. I discuss them all in the
following sections.

Scenario 1a: Enable top-down communication
This scenario (shown in Figure 9-7) is the most common style of layered
architecture and also the simplest. A client outside the layered system issues
a request to an application on layer N. When layer N can’t satisfy the request,
it issues a request for a lower-level service, but it can pass the request only
to layer N–1 below it. If layer N–1 can process the request, it does so; then it
returns the response to the requester in layer N. If layer N–1 can’t process
the request, it passes the request to the next-lower layer, layer N–2, which
also tries to reply. Eventually, some layer processes the request and starts a
chain of replies upward. When a layer receives a reply from a lower layer that
is destined for an upper layer, the reply is passed upward.

	

Figure 9-7:
Basic

layered
architec-

ture.
	

As a request is passed down through the layers to a point at which it can be
processed, it may be split into multiple requests, each of which generates a
reply. Then the replies to the divided requests are combined before being
passed up to the higher layers, so as to provide a single response to the origi-
nal requester.

128 Part III: Creating Your Application Architecture

Scenario 1b: Cache top-down communication
In all these scenarios, requests pass only from layer N to an adjacent layer.
Sometimes, layer N–1 has access to all or part of the response from a lower
layer and can cache that response. Later, when layer N–1 sees a request for
something that it has the answer for in its cache, it can reply without pass-
ing the request downward (see Figure 9-8). This scenario provides a stateful
response, the state being the cached response value. Providing this stateful-
ness isn’t easy, however, because the individual layers are harder to program.

	

Figure 9-8:
Caching

results in
upper

layers.
	

Scenario 2: Use communication protocols
Another common example of layered architecture is the OSI seven-layer
model (refer to “Keeping communications open,” earlier in this chapter).
The general structure is shown in Figure 9-9. In this scenario, two stacks of N
layers communicate. Requests from each layer move only up or down in their
own stacks, except in the bottom layer, which can communicate with the
other stack. The layers in each stack behave as though they have direct con-
nections to the layers in the other stack, even though in actuality, each layer
passes messages down to the bottommost layer, which then conveys the
message to the other stack, from where it goes up to the destination layer.

Scenario 3a: Enable bottom-up communication
In the preceding scenarios, all communications among layers move down
from higher layers to lower layers. Communications also can flow upward. A
device driver at layer 1, for example, may detect input that it needs to pass
upward for processing (see Figure 9-10). The driver converts the input to an
internal format and reports it to layer 2, which starts the process of interpret-
ing the input. If layer 2 can’t process the input, it passes the input upward to
layer 3, and so on.

129 Chapter 9: Building Functionality in Layers

	

Figure 9-9:
Commun-

icating
stacks of

layers.
	

	

Figure 9-10:
Layered

notifications
flowing up

through the
layers.

	

	 Messages passed upward are notifications, whereas messages passed down-
ward are requests.

As in Scenario 1a, in which a request can be split into several requests as it
flows downward, several notifications flowing upward can get joined as they
flow upward. The lower layers always have at least the same number of noti-
fications as the upper layers, and sometimes, they have more.

Scenario 3b: Enable stateful upward communication
In Scenario 3b, an upward-flowing notification is stopped and processed at an
intermediate layer instead of traveling all the way up to layer N (see Figure 9-11).
This scenario is similar to Scenario 1b, in which responses to downward-flowing
requests are cached by middle layers. An example of Scenario 3b is a communi-
cations-protocol stack in which an intermediate layer determines that a duplicate

130 Part III: Creating Your Application Architecture

packet flowing upward should be destroyed rather than passed on, because it
may confuse the higher layers. That the intermediate layer knows this informa-
tion is another kind of statefulness.

	

Figure 9-11:
Stateful
upward

commun-
ication.

	

Implementing a layered architecture
You can take one of three approaches to designing a layered architecture:

	 ✓	You can start at the top and work down.

	 ✓	You can start at the bottom and work up.

	 ✓	You can go up and down alternately (the yo-yo method).

In this section, I take you through a process of stepwise refinement by devel-
oping in parallel and iterating. It works in any of the three approaches I just
mentioned.

	 You may find that you can create your layered architecture without following
all these steps, and that’s okay. If the software you’re building depends on an
external standards definition, some steps will be driven by the need to comply
with those standards.

Step 1: Define the grouping criterion for your layers
In the first step, you decide how the layers generally will be organized. You
have lots of ways to group functionality and components into layers, includ-
ing these three:

	 ✓	Abstractions: Abstractions of your problem can guide you in grouping
the layers. Layers often are described by their distance from the hard-
ware platform, for example. In this scenario, you have layers close to the
hardware and layers at the opposite end, close to the user/client; the
distance between these layers can be divided into other layers.

131 Chapter 9: Building Functionality in Layers

	 ✓	Common responsibilities: Sometimes, layers are grouped based on
common responsibilities. They contain components that are used
together or used in similar ways, or that were developed by the same
team or company.

	 ✓	Domain-specific functionality: Layers sometimes encapsulate domain-
specific functionalities. An example is a layer that manages interaction
with a database and another layer that manages interactions with the
database users.

These methods aren’t independent. The domain-specific-functionality solu-
tion, for example, represents similar responsibilities and also is a way of
abstracting the problem and solution into manageable pieces.

The best way to abstract a system into layers is sometimes related to the
problem domain. Consider a chess-game application. In this application, the
layers (from top to bottom) might be

	 ✓	Strategies for the overall game

	 ✓	Medium-scale tactics, such as the Saragossa Opening

	 ✓	Basic moves, such as castling

	 ✓	Elementary moves of the game, such as the way that the rook or
knight moves

In many computing systems, the layers closest to the hardware are well
defined and small because they deal with specific devices. As the layers
get higher, there is more and more grouping into interfaces, services, and
(finally) user-visible elements. A typical computing system can look like this
(from top to bottom):

	 ✓	User-visible elements and interfaces

	 ✓	Application modules

	 ✓	A layer of services common to many applications

	 ✓	Operating-system interface layer

	 ✓	The actual operating system

	 ✓	Device drivers and hardware interface packages

	 ✓	The actual hardware

	 Your system may not decompose in any of these ways. These are just
common examples to get you started thinking about how to divide your
system into layers.

132 Part III: Creating Your Application Architecture

Step 2: Decide how many layers your system will have
Each division that you find in Step 1 turns into one layer in your software
architecture. As you work to decide what the software layers are, you may
find that your layers of abstraction or responsibility don’t precisely match
your needs. Adjust!

	 You can repeat all the steps in this chapter until you’re comfortable with
the result.

Maybe the intermediate layer that provides common services should be two
levels, because some of the recognizable functions rely on other functions that
are closely coupled to something in another layer. Split the intermediate layer
into two. Or maybe two layers interact only with each other, and you decide
that you can merge them. You may even find that some nonfunctional require-
ments aren’t met by the layering you’re designing, in which case you may add
a new layer to contain responsibilities related to these requirements.

	 Layers add complexity and delay any messaging that spans several layers, so
don’t add more layers than absolutely necessary.

Step 3: Name the layers, and assign tasks to them
The task assigned to the highest layer is what the user recognizes as the
system: the overall system task. All the other layers help the top layer achieve
the goal. As you’re assigning tasks and functionalities to the layers, make sure
that you include the components needed to satisfy the system’s requirements.
Pay attention to both the functional and nonfunctional requirements, because
the system must meet all the requirements to be acceptable to the customer.

	 One way to determine the split of tasks in the architecture is to start at the
bottom with the lowest or most basic functions. This is easier than going from the
top down when you’re not experienced in the best way to split the tasks. Then
add infrastructure functionality to the base until you reach the highest layer.

Step 4: Specify the services
Remember that no service is split over multiple layers. Layers are strictly
separated; they shouldn’t access local or private attributes or functions/
methods from other layers. Arguments, return codes, and error types of
functions offered by a layer N should be

	 ✓	Built-in types of the operating system

	 ✓	Defined in layer N (or other higher layers)

	 ✓	Driven by a common data definition component that is shared across
the application

133 Chapter 9: Building Functionality in Layers

	 It’s better to put more services in the higher layers than in the lower layers.
This structure best consolidates the functionality and produces fewer inter-
faces for the developers to learn. This structure is an inverted pyramid of reuse
(see Figure 9-12), which has a thin base layer, with each layer above the base
getting slightly larger, providing more services and more functionality. If you
put the same services in several multiple lower layers, the developers will
have many slightly different interfaces to choose among — and then their
problem becomes choosing one over the others.

	

Figure 9-12:
An inverted
pyramid of

reuse.
	

Step 5: Refine the layering
By now, you have a first draft of your system’s layers. The layers probably
can be better, however. It doesn’t always work to envision the abstractions
and force the layering on your vision; likewise, it doesn’t always work to start
designing your components and then force them into layers.

At this point, you should reflect on what you’ve developed so far and then
revisit steps 1–4 to refine your layering.

	 Sometimes, alternating works well. On one pass, work through the steps from
the top level down toward the bottom. On the next iteration, work in the other
direction — from the bottom level up to the top.

As you refine the layering, keep in mind that layers have direct communica-
tion only with adjacent layers.

Step 6: Define each layer’s interfaces
Each layer creates an interface that exposes its functionality to adjacent
layers. Everything that a layer is going to be asked to do by its adjacent
layers must be represented in the interface.

134 Part III: Creating Your Application Architecture

Black boxes
Ideally, each layer is a black box (hidden) to the layer above it and to the layer
below it. Additionally, the layers that aren’t adjacent don’t know anything at
all about the black box; they communicate only with the layers adjacent to
themselves. The internals of the black box are hidden. For this arrangement to
work, the interfaces between the layers must be clearly defined.

If a layer is already built and is being reused, it may already have a designed
interface that isn’t quite aligned with the needs of the new layers that you’ll add
to the system. In that case, you can use the Facade pattern (from Design Patterns:
Elements of Reusable Object-Oriented Software) to encapsulate the functionality
and provide the interface needed by the current system’s layering.

A black-box layer provides the best reuse possibilities. Because you were
forced to define the clearest, most complete interface for that layer, you can
be assured that it doesn’t access inappropriate services in other layers.

From a good-design perspective, it’s desirable to have layers that are black
boxes, but what is desirable isn’t always possible. Sometimes, the adjacent
layers must know something about a layer’s internals — knowing that it
really has multiple components that are working together to provide the
layer’s service, for example, or that the layer has alternative communication
protocols that can provide roughly the same services.

Gray and white boxes
In addition to black boxes, you can use gray and white boxes. If a layer is
a white box, the adjacent layer can look deeply into it, see how it provides
its services, and then access those services. A gray box reveals some of the
layer’s internals but also keeps some secrets (that is, the walls of this box are
gray). You can use either of these approaches as well.

Gray-box and white-box approaches are sometimes useful for improving
efficiency. Instead of going through a black-box interface, the adjacent layers
can access some functionality directly. The benefits of encapsulation usu-
ally are greater than any benefit from improved efficiency, but your result
depends on your problem’s requirements.

Step 7: Structure individual layers
The overall focus of this pattern (and of the steps so far) is to build an archi-
tecture with good, effective layering. In this step, you should examine the
individual layers and design their internals. Apply all your good design prac-
tices within a layer. If the layer is complex, don’t be shy about breaking it into
smaller components. Nothing says that individual layers have to be mono-
liths (refer to “Building a monolith,” earlier in this chapter). There are at least
three components for each layer in the Presentation-Abstraction-Control pat-
tern, which I introduce in Chapter 14.

135 Chapter 9: Building Functionality in Layers

Step 8: Define the communication between the layers
In this step, you look at how the layers communicate with one another. There
are two basic models:

	 ✓	Push: In the push model, a layer N pushes a request down to a lower
layer N–1 for processing.

	 ✓	Pull: The pull model works the other way: A layer N–1 asks layer N
above it for the information it needs to complete its work. An example is
a communications component in layer N–1 requesting from layer N the
next packet of data to send.

Pulling sometimes is useful, but it can introduce dependencies between a
layer and the layer above it. To prevent these dependencies, you can use call-
backs, which I introduce in the next step.

	 Two patterns later in this book — Pipes and Filters in Chapter 10 and Publish-
Subscribe in Chapter 21 — involve push and pull models.

	 If nonadjacent layers will communicate, document that fact so that it doesn’t
become a maintenance headache. Communication that bypasses intermediate
layers should be limited to unusual situations.

Step 9: Decouple adjacent layers
A layer must know something about the layer below it to build functionality
on top of the services in the next-lower layer. A lower layer usually doesn’t
know anything about the higher layers, so top-down, one-way coupling exists
among the layers. That is, layer N can change without concern for its users in
layer N+1 above it as long as layer N keeps its interfaces unchanged. Changes
in layer N+1 don’t affect layer N.

That’s fine when requests flow downward (refer to Figure 9-7 earlier in this
chapter). When requests flow upward from lower layers, however, bottom-
up coupling can be introduced, which is harder to maintain. The system can
simulate top-down, one-way coupling by using callbacks. Callbacks are espe-
cially effective when the lower layer is calling only a small set of functionality
from a higher layer.

Callbacks work like this (see Figure 9-13):

	 1.	 During initialization, layer N+1 sends layer N a request that includes
information about what interface in layer N+1 should be accessed when
layer N needs to pull data from the higher layer.

	 2.	 Layer N stores the layer N+1 information in a registry that links the
capabilities it needs to call in the higher layer with the callback address
given to it during startup.

136 Part III: Creating Your Application Architecture

	 3.	 When layer N wants to pull information from above it, it sends the
request to the callback address it has in its registry.

	 The Command pattern (from Design Patterns: Elements of Reusable Object-
Oriented Software) explains how to turn these callbacks into first-class objects.

	

Figure 9-13:
A callback

between
layers.

	

Step 10: Design the error-handling strategy
Errors need to be handled in the layer in which they occur or passed upward
to some other layer that can handle them. This requirement complicates the
interfaces among the layers, because in addition to performing their main
functions, they need to pass around information related to errors. Another
complication is that a layer N+3 may not know anything about the functional-
ity that generated the error in layer N–3.

	 Here are a few rules you can follow to reduce the complexity of error handling:

	 ✓	Transform errors into something meaningful to the higher layer. Instead
of reporting error code 53, report that a “division by zero” occurred.

	 ✓	Handle errors at the lowest possible layer to reduce the possibility that
upper layers will be overwhelmed with errors.

	 ✓	Sometimes internal errors shouldn’t be handled at all by your software
and should instead flow past the top of your layers to the runtime envi-
ronment, resulting in application failure.

	 ✓	Group specific errors into more-general error categories as they’re being
passed upward, because the higher layers will be able to handle a few
more-general error conditions.

Chapter 10

Piping Your Data through Filters
In This Chapter
▶	Streaming your data through a series of filters

▶	Weighing the benefits and liabilities of a Pipes and Filters architecture

▶	Creating and using Pipes and Filters

I
n this chapter, I tell you about the pattern Pipes and Filters, which defines
an architectural style for applications that stream data. The style also is

useful when there are small transformations that can be done to the data in
sequence, such as processing data through a series of discrete processing
steps for which filters already exist.

Problem: Analyzing an Image Stream
Your boss has asked you to lead the development of a new image-analysis
system. The system will take input from the new image-capture system that
your company is creating and produce a stream of analyzed data. As you
start looking into what’s needed, you realize that the image processing will
take a series of stages to transform the data from the raw input into the
desired output form, as shown in Figure 10-1. These transformations are fil-
tering the data as it streams by.

	

Figure 10-1:
Image-

analysis
stages.

	

138 Part III: Creating Your Application Architecture

Your first thought is to build one big system to process all the input, as you
see in Figure 10-2. The resulting system will be bigger than your workgroup
can build in the required time frame. You realize that this project is an oppor-
tunity to get to know those guys in the other group down the hall better and
get them to help. It also will give you more experience coordinating big proj-
ects across the organization.

	

Figure 10-2:
One big

system that
does every-

thing.
	

But after thinking about it more, and after initial discussions with the other
guys, you realize that the solution of one big system won’t work and that
you’re better off working separately on each of the needed transformation
stages than producing a big combined system. This realization comes after you
remember that it’s easier to build and test small components than huge ones.

So, instead of considering one big system that combines all the steps, you
think about a set of separate transformation filters that analyze the stream
one after another. This arrangement maps nicely onto the requirements view
that shows the different transformations. The steps will be created as filters
on the input stream. These steps filter the input by performing its required
transformation and then produce output that will be used as input for the
next stage, as shown in Figure 10-3.

	

Figure 10-3:
A series of

filters.
	

This separation into filters makes development easier, too. You can focus on
Filter A and Filter C, and the other guys can work on Filter B, which is their
expertise. Another benefit is that you don’t need to meet with them as much
because your filters are independent. You know that this plan can lead to fil-
ters that don’t work together, though, so you coordinate your efforts with the
other team.

	 The filters are cohesive within themselves and have low coupling between them.

139 Chapter 10: Piping Your Data through Filters

Both of your teams know how to design software to clear interfaces, like the
input or message formats you agree to, so you both get started. Each team
works on its own filters: Filter A and Filter C for your team and Filter B for the
other team. The three parts will be able to communicate via their interface,
which has been clearly specified. Carrying the data between your filters, the
system uses software piping (or possibly a message queue) to create a pipe-
line for the data. The filters will take in what comes over the input pipe from
the input source, filter it, and put the output into the output pipe, headed
toward an output sink like the one shown in Figure 10-4.

	

Figure 10-4:
Data comes

from a
source,
passes

through
filters, and

is delivered
to a sink.

	

After you’ve made some progress on filters, your boss points out that a new
analysis step is needed. You need to perform a different transformation
from the one that was originally planned, and everything needs to change.
You think about the problem for a while and then realize that the solution
is simple: You just replace Filter C with a new filter, Filter D. This solution
proves to be an easy way to change the overall functionality.

When you initially thought about combining the parts of the system into one
big system, you realized that one argument against it was the difficulty of reus-
ing parts of that system in new contexts. The new requirements that arrived
after you started development would have made for a large amount of rework.

When your boss told you that you needed to be able to solve a new and differ-
ent problem, you didn’t cringe, because you realized that you had the basic
building blocks in the filters you’d already built. When you take the filters that
have already been built and add another filter or two, you can easily solve a
new set of problems. This is one of the benefits of this pipeline of components.

Even if you’d made the filters really big, you could still reuse them in different
compositions. But if you’d built a single system that would combine the func-
tionality of Filter A, Filter B, and Filter C in one big component — Component
Z — and then needed only Filter A and Filter B, you’d have to start over and
rebuild a system with only the two filters or build a whole new system to
solve this new problem.

140 Part III: Creating Your Application Architecture

	 Small filtering steps are easier to reuse in different contexts than large steps are.

Using the pipeline of filters makes it easy to rearrange the filters. If you have
Filter A that pipes into Filter B that pipes into Filter C, you can easily elimi-
nate the Filter C step and have your solution. If you’d created one big system
to do everything, the solution would be much harder and riskier. Rearranging
the filters would have meant rearranging code and rebuilding the big system.

Figure 10-5 shows the overall packages of the big solution with all the trans-
formations built into it and the packages of separate filters.

	

Figure 10-5:
Filters

can be
recombined

without
rewriting.

	

	 After creating Filter D and adding it to your pipeline, you see that you’ve cre-
ated a general collection of parts that can be combined in many ways.

During the process of building the system, your teams identified some ben-
efits of your technique:

	 ✓	The amount of information that you needed to share between devel-
opers was small and well defined. Each filter needs only a little bit of
information to perform the processing it was built for, and that informa-
tion is well defined and can be expressed in the interface specification.

	 ✓	There isn’t much need for passing control information between the
filters, because the stream of data contains all the necessary informa-
tion, as shown in Figure 10-6. I tell you more about how to handle extra
control information in the “Liabilities” section, later in this chapter.

141 Chapter 10: Piping Your Data through Filters

	

Figure 10-6:
Little or

no control
information

is embed-
ded with the

data.
	

Pipes and Filters work best when the input and output are clear and well
defined.

Another issue was easily solved when you realized that the system can do
different things to the stream of data by changing the filters in the sequence.
This is what happened when your boss introduced the new D transformation.
This other filter needs to know only what its input should be. It doesn’t need
to know what happened at previous steps in the chain as long as it gets the
kind of input it expects in the format that it expects. The set of filters that
you can build is quite large, as Figure 10-7 shows.

Steps in the processing chain that aren’t sequential don’t share information.
All information flows directly from one filter to another in the pipeline, as
shown in Figure 10-8. No information skips the intermediate filter elements by
going out of band from one filter to another.

Filtering components as software tools
The filtering components in your image-stream-
ing application allow you to do things similar
to what you can do in some command shells.
These components are software tools that you
can combine to perform the desired functions,
and you can pull these tools out of your toolbox
again whenever you have a problem like the
ones you’ve solved before.

The filters of a pipeline are perfect examples
of tools. The Unix and Linux operating systems’
shell programs are built on the principle of small
commands that you can string together in many
combinations to do new and interesting things.

Here’s a little example:

> cat MyFile | grep MyText |
wc –l

This example opens the file MyFile and
pipes its contents to the grep program, which
looks for the text MyText. Then grep pipes
all the lines that contain MyText to the wc
filter, which counts the number of lines that it
receives as input and displays that number on
the standard output, which in this case is the
console.

142 Part III: Creating Your Application Architecture

	

Figure 10-7:
You can
develop

many filters
for your

data.
	

	

Figure 10-8:
Data passes

through all
the filters.

	

	 Information flows only between directly connected pieces of the pipeline.

The other team’s filter was designed to process input of a certain kind. It took
input that was formatted in the way of the original specifications, as shown in
Figure 10-9.

	

Figure 10-9:
New filters

work as
long as they

accept the
same input

format.
	

If the input should ever change — if the components were to be used for pro-
cessing the telemetry from a new image data source, for example — the input
format may be a little different. Figure 10-10 shows the change.

	

Figure 10-10:
Changing

the format
of the pipes

can break
the filters.

	

143 Chapter 10: Piping Your Data through Filters

If you add a new filter to the pipeline, however, the input can be translated
from the new way into the way that will work with the existing components,
as shown in Figure 10-11.

	

Figure 10-11:
You can add

a transla-
tion filter
to adapt
different

pipelines.
	

The pipeline makes it easy to add new steps to acknowledge that not all data
looks alike and that, even though you may want to do the same thing, such
as run the same analysis, you may not be able to do so unless you allow for
new building blocks. It’s easy to add new filters to translate new data sources
into something that your existing filters can process or to present the output
differently.

You also realize that you may not want the same output all the time. You can add
processing steps to the other end of the pipeline to produce different output.

During testing, your development teams needed to test your part of the
system. To do this, you put sample data in a file that mimicked the output
from the data source, which was easy to do. The writers of Filter B put their
test input in a file to simplify their testing too. They didn’t have to wait for
all this new software to be done before the components were testable, which
allowed all of you to develop in parallel.

About this time, your boss comes in and asks whether you’re done yet. You
aren’t sure how to answer him. He asks why you don’t deliver the filters that
read from and write to files. You explain that although you could have done
this, the system wouldn’t have met its performance requirements. Writing a
file involves the file system. Processing steps that communicate directly with
one another is much more efficient because it doesn’t involve disk space,
disk caching, or delays. Building a pipeline to pass data from source to sink
through a series of filters is a better solution. Although you didn’t use mes-
sage passing as the means of communications, it also would’ve met your
performance requirements.

	 Explicit storage of intermediate results consumes resources.

144 Part III: Creating Your Application Architecture

As you’re thinking about the problem space, you realize that this solution
won’t fit in all situations. Systems that are highly interactive (at something
other than the command-line level) or that are event driven aren’t good can-
didates because they can’t easily be broken down and structured into differ-
ent pipeline stages.

Solution: Piping through Filters
The Pipes and Filters pattern structures the processing of a stream of data.
Each processing step is implemented as a filter, with information flowing
between the filters through a pipe. Filters can be combined in many ways to
provide a family of solutions.

Exploring the effects of Pipes and Filters
In any design activity, the choices that you make have consequences. This sec-
tion looks at the consequences of defining a Pipes and Filters architecture.

Benefits
The Pipes and Filters architecture has the following benefits:

	 ✓	The system’s behavior is very flexible. By exchanging filters for new
and different filters or rearranging the filters in a different order, you can
change the system’s behavior.

	 ✓	The filters can be reused in other situations. Because the inputs and
outputs are well defined and standard, you can use the filters created
for one application for different applications and combine them with dif-
ferent filters.

Piping water to your house
The pipes that bring water to your house are a
real-world example of Pipes and Filters. The water
comes from its source to the first filter through a
pipe. That filter chlorinates the water and directs
the output through another pipe. Other filters do
further purification. Some of the filters are junc-
tions in the pipes that divert the flow or allow it to

be shut off. Eventually, the network of pipes deliv-
ers the water to your kitchen sink.

The modularity of this approach allows you to
easily add or change filters, maybe adding a
water softener or a new sink faucet, without
changing the overall system.

145 Chapter 10: Piping Your Data through Filters

	 ✓	Filters and pipes help you prototype solutions rapidly because of the
flexibility noted earlier. You can easily build a prototype by combining
existing filters to see whether the resulting system can be used.

	 ✓	You can use files as the pipeline, which is very convenient when
you’re debugging the system. You can use files when they make sense,
but you can pipe your filters directly together to achieve higher perfor-
mance or greater convenience.

	 ✓	Allowing the different filter stages to talk directly through the defined
interface means that you can avoid using intermediate files, which
improves overall performance. Writing information into a file and then
reading it out in another stage of processing is inefficient. It takes disk
storage and time to create the file, write the results, and close the file.
Then the filter that’s going to use the information must open the file,
read it, and close it again.

	 ✓	Pipes and filters are conducive to parallel processing. If the filters take
their inputs in small portions, they can be started in parallel and run inde-
pendently, allowing the work to be done in parallel. Be sure to read the
next section to understand the liabilities related to parallel processing.

Liabilities
The Pipes and Filters architecture has the following liabilities:

	 ✓	It’s hard to share state information in an environment of Pipes and
Filters. If state information needs to be exchanged between the different
filters, it must be done out of band (outside the normal flow of data from
one filter to another) but be kept synchronized with the flow of data
in the pipe. It’s awkward to use a Pipes and Filters architecture if extra
information about the data being passed is needed. The alternative isn’t
pretty: designing an interface that combines state information and data
in one stream. The state information and the data need to be combined
on one side and then separated on the other side. If global data should
be shared, you probably shouldn’t use a Pipes and Filters architecture.

	 ✓	The gains from parallel processing of pipelines (see the “Benefits” sec-
tion) can’t always be realized, for several reasons:

	 •	The cost of transferring the information from one filter to another
may be greater than the perceived processing gain. In many sys-
tems, the actual processing still requires context switching and the
management of multiple threads or processes.

	 •	Some filters need to consume their entire input before doing any
processing, which prevents multiple filters from stepping through
the data in parallel.

	 •	Filter synchronization may require the exchange of state or other con-
trol information, which further reduces the gains from parallelism.

146 Part III: Creating Your Application Architecture

	 ✓	An ideal pipeline passes data to its filters in a form that the filters
can immediately process and where neither the pipeline mechanisms
nor the filters need to transform the data. This isn’t always possible.
Sometimes the filter mechanism, such as the command-line pipelining
provided in Unix, requires that the information between the stages be
translated into characters to be managed by the pipeline, which isn’t
always desirable or possible. Such transformations are overhead in the
system that reduce its performance. To move data between filters effi-
ciently, you can use other mechanisms such as shared memory or even
direct calls handing the data off directly.

	 ✓	Error handling is difficult with Pipes and Filters because the informa-
tion flow isn’t conducive to reporting the error information. If you
can’t find a good error-handling strategy for your application, a pattern
such as Layers (see Chapter 9) may be more appropriate.

Implementing Pipes and Filters
Four different classes are present when you implement Pipes and Filters.
Figure 10-12 shows these classes, along with their responsibilities.

	

Figure 10-12:
The classes
of Pipes and

Filters.
	

Reproduced with permission of John Wiley & Sons, Ltd.: Pattern-Oriented Software Architecture: A System of Patterns, 1996,
Buschmann et al.

Implementing a Pipes and Filters architecture involves six steps. To illustrate
these steps, I use the example introduced in “Problem: Analyzing an Image
Stream,” earlier in this chapter.

147 Chapter 10: Piping Your Data through Filters

Step 1: Divide the task into a sequence of filters
These filters are the filter classes shown in Figure 10-12. Look at your prob-
lem, and identify the different tasks to be performed. The tasks should be
central to solving your problem. The tasks can’t have any overlap, and they
must provide complete output from one filter that is complete input to
another. In other words, each filter input is exactly the output of the previous
filter in the pipeline. This step is where you think about other combinations
or other filters that you may want to work together. Use good design prin-
ciples and enabling techniques to create filters that have high internal cohe-
sion and low coupling with other filters.

In the example, you found that the Filter A, Filter B, and Filter C components
should be implemented separately.

The overall requirements of the system define the nature of the Data Source and
Data Sink classes where the stream is begun and the final output is produced.

Step 2: Define the format for information that
the pipe objects will pass between filters
You want the format for this information to be as uniform as possible because
it allows the greatest reuse. Most filters in Unix and Linux pass streams of
character that you can think of as being organized into lines. This format isn’t
required, though. Depending on how you connect the filters, you can use other
formats, which you may want to do for efficiency reasons. It’s inefficient to
convert data to and from characters for the purposes of the pipe if the same
internal representation is going to be used by the different filters.

	 Whatever format you choose, be sure to identify how the end of input will be
marked so that the filters know when to stop processing.

For the information to pass between the stages of your image-stream pipe-
line, use a binary representation. You worked with the other team to define
the data format during the development of the application programming
interface (API) for each filter.

Step 3: Decide how to implement each pipe connection
The simplest way to exchange the information along the pipeline is to have
each filter call the next one, pushing the data that the next filter will process
toward it. If you’re building on a Unix or Linux operating system, you can use
the built-in pipeline semantics (|) to build up the pipeline and connect your
filters. Another method is to build a framework around your pipeline that will
manage the elements. This method is best if you’re building a set of inter-
changeable filters and efficiency is a primary consideration.

148 Part III: Creating Your Application Architecture

There are four connection variants of Pipes and Filters, as shown in Table 10-1:

	 ✓	Push: In the Push variant, each stage of the pipeline pushes its output to
the next filter, which waits passively for its input to arrive.

	 ✓	Pull: In the Pull variant, the final recipient pulls the data through the
pipeline by requesting the information from the previous filters that
keep pulling the data from the source.

	 ✓	Hybrid: In the Hybrid variant, filters sometimes push output to the next
filter and sometimes pull data from a previous filter.

	 ✓	Message-passing: In the Message-passing variant, messages are pushed
into the messaging system by one filter and pulled from the messaging
system by the next filter.

Select the variant that best supports the application you’re building.

Table 10-1	 The Three Variants of Pipes and Filters
Variant Best For

Push Initiated by the Source having some data to be processed. Use
when the amount of data is low enough that the filters can process
whatever arrives.

Pull Initiated by the Sink calling for some data. Use when the amount of
data needs to be managed so that the filter asks for more data only
when it’s ready.

Hybrid Filter components have varying needs within the same system.
Some pull data from their source, and others push data out to the
next filter. Pipelines that combine some filters that push and others
that pull data are common.

Message-
passing

Useful with widely distributed systems, including cloud-based
systems. It’s also useful for systems without Unix or Linux pipeline
semantics.

In the design of your image-streaming system, use a Push variant, because
the Data Source is constantly generating the data that will stream through
the system. You define an interface between filter and pipe classes that pack-
ages the data from the source or previous filters and that includes necessary
framing and reference information. Data will be transported in a binary repre-
sentation. Any new filters must accept and produce this same data format.

Step 4: Design and implement the filters
The next step is designing and implementing the filters, which can be either
active or passive.

149 Chapter 10: Piping Your Data through Filters

A passive filter element is one that waits for its input to arrive or waits for
its output to be requested. By contrast, an active filter fetches its own input
and pushes its output out to the next stage of the pipeline. To implement an
active pipeline filter, you can use either threads or processes.

When designing the filters, you should think about efficiency. The overall
pipeline of information is thought of as a processing whole, but each part
may be a separate process. This means that as your data passes through
the pipeline, context switches will occur. The effort required to copy data
between address spaces is another performance effect to consider. Creating
small filters will be flexible but will increase overhead.

Also, think about how you can control and customize the filters. You may want
to reuse them in slightly different ways, so consider ways to change their behav-
ior later. Unix and Linux filters, for example, take command-line arguments.
Creating a global environment that contains the control information is another
method. You may create a procedural or programmatic framework to manage
the Pipes and Filters, invoking them or customizing their actions. You should
choose a method that is compatible with the operating system and operating
environment that you’re using. Because filters are built to perform only one
transformation, their implementation can be streamlined and efficient.

In the example, the filters are started at the startup of the image-stream pro-
cessing and given pointers to one another so that they know where they’ll
receive data from and where they’ll provide it to. The source of the data and
the sink of data will be told only where to send or receive data.

Step 5: Design a way to handle errors
Errors from within a pipeline are hard to handle in general. The individual filters
have different error criteria and different rules for handling bad input or internal
errors. Because there’s no shared state, there’s no easy way for one filter stage
to report to its adjacent filters that it has an error; it should have a way to toler-
ate the errors and continue processing the input stream. Another thing that
makes error handling hard to design and implement is the fact that the filter may
have no control over the input that keeps coming in a Push variant.

	 Unix and Linux have stderr, which is a standard output stream for error
information. Your filter can report its error into stderr. Be aware, however,
that all the other filters are doing the same thing, so the record may get
jumbled and hard to follow. Design the filters you’re building so that when
they encounter an error, they send errors to stderr and skip forward to the
next grouping of input. To help the downstream filters realize that an error
occurred, the flag indicating the error will be injected into the output stream
in place of the output that would have appeared for the erroneous input. The
filter elements will recognize this flag and ignore the input.

150 Part III: Creating Your Application Architecture

Regarding what to do with the input from an error, a good approach in a filter
environment like this one is to absorb the erroneous input: Read through to
the end of the line, but don’t do any processing on it, and then resume with
the next line of input. In some circumstances, you want an error in a filter to
abort the whole processing, but that situation is rare.

	 The CHECKS pattern language that I mention in Chapter 23 also describes
ways to handle errors in filters.

Step 6: Set up the processing pipeline
Now that the filters are built and the overall mechanism is defined, create
a way to invoke your pipeline. This method can be as simple as a script to
invoke a shell command line. If the system handles only a single task, you can
write a program to coordinate the filters and move the data through the pipe.
Using a script in your environment’s scripting language is another way to
define the flow of the pipeline.

For the image-processing system, you choose to create a script in which
you’ll specify the ordering of the filters for the image stream. This script cre-
ates the necessary references between filter and pipe objects to process its
input stream from source to sink.

Chapter 11

Sharing Knowledge and Results
on a Blackboard

In This Chapter
▶	Solving nondeterministic problems

▶	Letting expert knowledge sources work independently on the same problem

▶	Implementing a blackboard system

T
he Blackboard pattern has been used in the artificial intelligence (AI)
community since the 1970s. This pattern is useful to give structure to

the analysis of problems that don’t have a deterministic solution — in other
words, for solving a problem when you can’t define a straight-line approach
to the solution. The blackboard architecture provides a way to receive the
input from multiple knowledge sources (KSes) and combine the inputs, build
upon them, and synthesize all the information to achieve a goal.

In recent years, this pattern has found renewed life in game design, so this chap-
ter discusses the Blackboard pattern as you might use it in a strategy game.

Problem: Building an Attack Computer
Your task is to create the part of a game that controls and shoots a torpedo at
a target from a submarine. One goal of the game is to sink targets, and you’re
responsible for the attack computer (AC) portion of the overall game, which
achieves that goal. (The game has other goals and other components that
achieve them.) Your component directs the actions of the submarine after at
least one target has been identified. Your part is not responsible for avoiding
becoming a target or for controlling general cruising when no target is in sight.

The game reenacts a World War II–era U.S. submarine and torpedoes of that
era. The torpedoes follow preset bearings until they hit their targets or run
out of fuel, at which point they sink harmlessly to the bottom of the sea.
When you preset a bearing in a torpedo’s gyroscope, that torpedo can take a
course different from the course of the submarine that shot it.

152 Part III: Creating Your Application Architecture

During your research on the problem, you find that the AC must ask and
answer four questions to sink a target:

	 ✓	Is there a ship that can become a target?

	 ✓	How does the submarine need to maneuver to get into shooting position?

	 ✓	Is the shooting position within the tactical limitations of the torpedo?

	 ✓	Is the solution — the geometry of the target’s position, the submarine’s
position, and the capabilities of the torpedo — sufficient to shoot a tor-
pedo and sink the target?

The answers to these four questions are the requirements that your part of
the system — the AC — needs to meet. Figure 11-1 shows the terminology
and geometry that I use later in this section.

	

Figure 11-1:
Battlefield

layout.
	

To meet these requirements, you envision the five separate components listed
in Table 11-1. There’s a one-to-one mapping of questions to components, as
shown in the table, except that answering the maneuvering question requires
input from two components: target prediction and maneuvering control.

Table 11-1	 Component-to-Question Mapping
Question Component of Solution

Is there a possible target? Target identification and selection (TI)

How does the sub get into
shooting position?

Target prediction (TP)

Maneuvering control (MC)

Can the torpedo hit the target? Trajectory calculation (TC)

Is the solution sufficient? Fire control (FC)

153 Chapter 11: Sharing Knowledge and Results on a Blackboard

Meet the components
Each of the five components listed in Table 11-1 works part of the overall tor-
pedo problem. I describe them in detail in the following sections.

Target identification and selection
Your AC will be activated when at least one target has been identified. There
may be more than one target at any given time, so the TI needs to determine
which target to attack first. After your torpedo has destroyed the target,
the TI determines which of the remaining targets to attack next. If no target
remains, the AC exits, and the main part of the game resumes.

The TI has only two responsibilities:

	 ✓	It chooses the most appropriate target from all the potential targets.

	 ✓	It performs repeated checks to make sure that the target still is a
possible target.

The TI doesn’t factor in the potential movements of the target, however. That
job is done by the target predictor (see the next section).

Target prediction
The TP component looks at the target’s movement over time and predicts
where that target will be in the future. The future for the target should be
short, because your torpedo will sink it, but the AC needs to know the tar-
get’s short remaining life so it can plot a torpedo’s trajectory to it.

Trajectory calculation
The TC component determines a course bearing for the torpedo relative to
the submarine’s bearing so that the torpedo will hit its target. You have to
consider the following main considerations for this component:

	 ✓	The TC calculates the bearing that the torpedo should take. This bearing
is relative to the direction in which the submarine is pointed when the
torpedo is shot and will be loaded into the torpedo before it’s shot.

	 ✓	Your torpedoes are effective only within a certain range, and the TC must
ensure that the torpedo will be able to go far enough to hit the target.

	 To simplify the discussion here, I’m not going to discuss placing the sub at the
right depth in the ocean to shoot torpedoes. Assume that each torpedo will
be shot at the correct depth to hit the target and that the torpedo won’t pass
harmlessly underneath the target.

154 Part III: Creating Your Application Architecture

The trajectory calculation may indicate that there isn’t a trajectory that the
torpedo can follow to hit the target. In that case, your submarine must be
moved to a different position to achieve a good straight-line path for your
torpedo. The TC gives the maneuvering control (see the next section) infor-
mation about where to go to get into shooting position.

Maneuvering control
The MC moves the submarine into the torpedo-shooting position required by
the TC. The MC determines how the submarine must move to get into firing
position and then directs that movement. Some period of cruising in a certain
direction may be necessary to put the submarine into torpedo range.

	 Moving into position to shoot also may mean avoiding obstacles or threats.
Again, to simplify the discussion, I won’t talk about this avoidance behavior.

Fire control
Fire control determines the correct instant to shoot a torpedo. When the
TC reports that no more movements are needed for your torpedo to hit the
target at its predicted location, your system shoots a torpedo.

Ponder your approach
When you begin to structure the AC, the first thing you should think about is
putting everything together in a sequential program, maybe with some loops
(see Figure 11-2). Sequential processing starts with the target identification, pre-
dicts where the target will be at a certain time in the future, and then computes
a trajectory to the target at that time. This trajectory may require moving the
submarine into position. The AC iterates checking the target prediction with the
trajectory component to see whether the endpoint of the motion has changed.
Eventually, the AC shoots a torpedo at the target when your sub is in position.

Soon, however, you realize that all sorts of unexpected things can happen
during this sequential approach, such as the following:

	 ✓	Another, more desirable target may present itself en route to the firing
position on the first target, which can result in the TI’s changing the
target to be attacked.

	 ✓	The movement into firing position may take much longer than expected
because of obstacle avoidance, which requires more maneuvering and
more TP and TC calculations.

	 ✓	The target may change its course, requiring that the TP phase start over.

	 ✓	Another submarine or surface ship may have sunk the target, removing
it from the list of possible targets.

155 Chapter 11: Sharing Knowledge and Results on a Blackboard

	

Figure 11-2:
A sequential

solution to
the AC prob-

lem.
	

You realize that you’d really like all five parts of the solution — TI, TP, TC, MC,
and FC — to work independently and simultaneously, and also to collaborate
on the solution. You want each component to look over the shoulders of the
others, as it were, and reevaluate its responsibilities based on the new informa-
tion provided by the other components. The FC, for example, watches until all
the other pieces fall into place. Then, when the torpedo trajectory to the target
is computed for the submarine’s current position and the target’s predicted
course, and when the target is in range, it shoots the torpedo.

Enter the blackboard
To help you think about the problem, you enlist your friends for some role
playing. You ask each person to play the role of one of the five components
(refer to Table 11-1, earlier in this chapter) and work on an attack scenario.

First, you try the sequential approach shown in Figure 11-2, earlier in this
chapter. As you expect, the sequential approach doesn’t work very well.

156 Part III: Creating Your Application Architecture

Next, you ask everyone to work on his or her own part of the problem, con-
tinually updating the results and making them available to everyone else by
shouting. This approach degrades into chaos, of course, as everyone tries to
be heard at the same time.

The room has a blackboard on the wall, so you try using it to coordinate the
information. You start by putting everything you know about the problem on
the blackboard (see Figure 11-3).

	

Figure 11-3:
The black-

board at the
start of the

problem-
solving

exercise.
	

Next, you give everyone a different-colored piece of chalk and an eraser.
Each person has permission to write his or her new results, predictions, or
hypotheses on the blackboard, and to erase previous results and hypotheses
that he or she knows aren’t correct. (Because all five role players are work-
ing together and will be rewarded when the target is sunk, no one sabotages
anyone else’s work by making incorrect erasures.)

What the role players write on the blackboard, then, is a combination of
results from algorithms that they know to be true and hypotheses that
they’re less certain about. Hypotheses written on the board by one role
player may later be found to be incorrect as a result of some later analysis.
The hypotheses are intermediate results, such as notes from the TC that the
target was out of range. Even if a final result is written on the blackboard, it
may be erased when some new information invalidates it.

This strategy works really well. Figure 11-4 shows the blackboard in an inter-
mediate state.

From this example, you realize that some of the forces involved make for a
hard problem: building an AC that performs its five assigned tasks. Everyone
has a different way to perform his or her work and solve the problem. The
MC role player, for example, never modifies or erases what the TP role player
does, and the FC doesn’t do much until the right time to shoot a torpedo
arrives. You make these observations:

157 Chapter 11: Sharing Knowledge and Results on a Blackboard

	

Figure 11-4:
An inter-
mediate

snapshot
of the

blackboard.
	

	 ✓	Each role player uses his or her own algorithms to do his work.

	 ✓	Each role player is interested in different details of the situation — that
is, different details of the data model. One player may not understand
what other players are writing on the blackboard because their algo-
rithms have different vocabularies from his.

	 ✓	The players are working on results provided by the others. None of
them has enough information or understanding of the problem to
achieve the goal alone.

	 ✓	A lot of uncertainty occurs throughout the simulation. Will the target
move as predicted? Can the sub be moved into position quickly enough
to achieve a desired trajectory? Would a better, more valuable, or easier
target present itself while the sub is en route to the first target? All these
possibilities make the situation very fluid, so you understand why the
sequential approach doesn’t work.

	 ✓	Everyone usually is able to work on something all the time; no one is
blocked waiting for another player to finish something. Constant work
enables the players to reach the goal faster (although working while
waiting for the movement into firing position seems to take forever).

	 ✓	While the five role players are analyzing the situation and running
through the scenario, you give some thought to simulating all the possi-
ble combinations of positions — both the target’s and your sub’s — and
all the possible trajectories. You realize, however, that this approach
would make the problem so big that solving it wouldn’t be feasible.

158 Part III: Creating Your Application Architecture

Put your blackboard into software
The next step is putting this solution to solving a submarine-attack problem
into software, using what you now know about the blackboard. You know
that the solution has two parts:

	 ✓	Blackboard: The blackboard is a common shared component.

	 ✓	Knowledge sources: The KSes will implement the decision-making pro-
cesses for each of the roles.

In the simulation that you carried out with your friends, everyone was con-
stantly thinking about his or her part and updating the blackboard. The com-
puter doesn’t work in parallel the way your friends do, however, so you add
a control element — something that will keep the decision-making processes
working cooperatively.

A couple of times during their simulation, your friends fought about who
could write on the blackboard at any given time. The same will be true of
your AC system. Even on parallel or multicore computing platforms, you
have only one blackboard, and only one KS can write to it at a time. The com-
puter system behaves as though it has only one piece of chalk, which must
be passed around when KSes want to access the blackboard.

The single-shared-blackboard component has to be protected, because in a truly
parallel environment, the KSes may compete for the chalk. One source may try
erasing what another is just writing, thereby losing information. You must design
a way for the control component to give each KS a way to say, “I want to write on
the blackboard,” after which each KS is given the ability to access it.

TV sleuths
A staple of TV police dramas is the blackboard
(or whiteboard). The blackboard is used to post
all the evidence, in addition to serving as a cen-
tral place where the whole team sees and ana-
lyzes the clues and leads. The lead detective
controls what gets placed on the blackboard.
Each person on the team is a subject matter
expert responsible for analyzing some of the
data. The lead detective picks the appropriate
experts for each investigation depending on the

situation (for example, a ballistics expert isn’t
needed if the murder weapon was a knife).

This approach is very flexible. The experts can
add and change the leads posted on the black-
board as their personal investigation proceeds.
The chosen expertise matches the situation.
The experts apply their own expertise yet col-
laborate on solving the larger problem.

159 Chapter 11: Sharing Knowledge and Results on a Blackboard

	 The FC KS is the ultimate authority — the only one that declares the goal
(sinking the target) achievable or achieved. The FC is always watching the
information on the blackboard, and it shoots a torpedo only when the MC says
that the sub is at the position specified by the TC and the target is where the
TP said it would be. After the torpedo is shot, the FC KS watches the torpedo’s
progress to see that it hits the target.

Solution: Building the Blackboard
Architecture

Solve problems that have no predetermined sequential solution by using a
blackboard to coordinate the intermediate results of several knowledgeable
subsystems to achieve the goal through refinement of partial solutions.

Exploring the effects of the blackboard
The independence of the parts of the system and their lack of direct com-
munication enhances the capability of blackboard architectures to satisfy
nonfunctional requirements such as changeability, maintainability, and
dependability. Blackboard architectures are very useful when you don’t know
in advance how to reach the overall solution.

Benefits
Here are the benefits of using a blackboard system:

	 ✓	The blackboard makes it easy to experiment with different ways to
solve the problem. Because there are no direct interactions among the
KSes, you can change and revise them easily without affecting other
parts of the system.

		 There isn’t any perfect number of KSes, so you can add and remove
them at will.

	 ✓	A KS can be reused between solutions. A KS doesn’t have ties to any
one particular blackboard system, any more than it has ties to the other
KSes within the blackboard, so it can easily be reused elsewhere.

		 In order to reuse KSes, they must be designed to be general — avoid
tying them too closely to the blackboard.

	 ✓	Because the parts of the system are independent, a failure in one KS
doesn’t affect the others. Individual failures may prevent the overall
goal from being achieved, but they won’t prevent ongoing work. This
structure makes the solution much more robust and dependable.

160 Part III: Creating Your Application Architecture

Liabilities
As with all other patterns, some liabilities go along with the solution. You
need to weigh the following drawbacks against the benefits to build the
best solution:

	 ✓	Blackboard systems are difficult to test. Because the system isn’t fol-
lowing a predetermined sequence or overall algorithm, you won’t always
be able to determine that it’s doing the right stuff to reach its goal.
The information on the blackboard at any given instant may be incor-
rect, perhaps because one of the KSes drew an unproven hypothesis or
because the KS code contains a bug.

	 ✓	Blackboards work best for problems that have no predetermined way
to achieve the goal. This benefit of the architecture is also a liability,
because there’s no way to guarantee that the blackboard system will
generate a good solution that satisfies the goal.

	 ✓	Creating a good strategy to control the chaos of all the KSes writing to
the blackboard is difficult. In Step 6 of the implementation section later
in this chapter, I present some control heuristics that you can use. As in
most use of heuristics in AI, the suggestions and strategies are helpful,
but they aren’t guarantees.

	 ✓	Historically, real blackboard systems employed in AI have taken years
to refine. This fact should reinforce the difficulty of developing a work-
ing blackboard system that achieves the goal reliably, consistently,
and quickly.

	 ✓	You still need to manage parallelism in the system, even though the
KSes are independent. The blackboard is a shared resource. Even when
your computing platform can support parallel execution through mul-
tiple cores or threading, the independent elements still need to review
and update the contents of a single blackboard. As a result, some part of
the system — probably the control — must moderate access (or at least
write access) to the blackboard. If access for reading isn’t moderated,
then writes must be atomic to ensure that consistency is maintained.

Knowing the parts of a blackboard system
A blackboard system has three kinds of components: the blackboard itself,
the KSes, and the control. I describe them all in the following sections.

The blackboard as a knowledge repository
The blackboard is the actual repository of knowledge. It’s the source of
data that the KSes operate on, and it’s the place where the KSes write their
answers and hypotheses.

161 Chapter 11: Sharing Knowledge and Results on a Blackboard

Two kinds of data can exist in a KS:

	 ✓	Static data: Static data is information that doesn’t change, such as the
shoreline geography in this chapter’s AC example.

	 ✓	Dynamic data: Dynamic data, which can change, includes information
such as target locations, current submarine positions, and valid torpedo
trajectories.

The responsibilities of the blackboard are straightforward, keeping track of
the central data for the KS on a Class-Responsibility-Collaborator (CRC) card
(see Chapter 2), as shown in Figure 11-5. During the implementation steps in
the next section, you see that this task is actually a complicated one.

	

Figure 11-5:
Blackboard

CRC card.
	

The information written on the blackboard — the information stored in the
blackboard data store — is of various types. Some of the data is positions of
targets and your submarine; some is the parameters of the torpedo trajec-
tories; some of it is control information that’s used to guide one or more of
the KSes. The KSes also may use the blackboard as a scratch pad for internal
information.

Not all the KSes need to be able to read all the data, but some of the informa-
tion on the blackboard needs to be shared among KSes. A standard vocabu-
lary is needed to permit this sharing. A KS must know the shared vocabulary
to access information on the blackboard. Not all the information stored with
the vocabulary will be relevant to all the KSes, but all the KSes must be pro-
grammed to get what they need and ignore the rest.

I mention earlier in this chapter that the blackboard may store both solu-
tions and hypotheses. Hypotheses are abstractions from the current situ-
ation. Eventually, one hypothesis will be the solution or answer that the
system supplies. Frequently, it’s useful for the blackboard to store the level
of abstraction of the information, along with the information itself. In the
AC example, the raw position data is at a very low level of abstraction, and
target-position predictions and submarine-movement plans are a little more
detailed (see Figure 11-6). Trajectory computations are at a higher level yet,
and at the highest level is the information that a torpedo is on its way to the
target — in other words, that the FC has shot a torpedo.

162 Part III: Creating Your Application Architecture

	

Figure 11-6:
Levels of

abstraction
in the AC

system.
	

	 It’s useful to think about hypotheses as being part of or in support of other
hypotheses. These terms help remind all the KSes of the relationships among
the hypotheses. A given position data entry, for example, may be identified
as being in support of a certain trajectory computation, or a target prediction
may be part of a particular target selection.

	 Another attribute that’s useful to retain with the information and hypotheses
on the blackboard is its degree of truth — a measure of the certainty of the
information. This measure helps the KSes judge the results that they can
supply and comes into play in the condition part of the KSes, which I tell you
about in the next section.

Knowledge sources as experts
The KSes are experts on solving certain parts of the problem. They access
and use the information stored in the blackboard, generating hypotheses and
conclusions based on their own algorithms. No KS can solve the problem by
itself, yet each KS contributes to the system’s overall ability to achieve the
goal or find a solution.

KSes don’t depend on any other KSes in the system to make their analyses.
They communicate with one another only through the blackboard — not
directly. KSes usually don’t communicate with the control component, either.
When a KS does communicate with the control element, the communication
usually is about whether the KS can contribute to the solution or is about to
be invoked by the control (see the next section).

Figure 11-7 shows the CRC for a KS.

163 Chapter 11: Sharing Knowledge and Results on a Blackboard

	

Figure 11-7:
The

knowledge-
source CRC

card.
	

Knowledge sources have two kinds of functionality:

	 ✓	Condition part: The condition part of a KS is responsible for examining
the information on the blackboard and determining whether the KS can
contribute to the overall level of knowledge. The condition functionality
must execute quickly. It doesn’t actually use its algorithms to create new
blackboard entries; it just does a quick assessment. Depending on the
implementation, this information may be placed back on the blackboard
or communicated directly to the control. The control uses the condition
to decide which KS should “get the chalk” and work on the blackboard.
Some designs of the control perform a quick poll of all the KSes to find
their condition information before assigning one to start working; the
control expects that KS to respond quickly to the condition request.

	 ✓	Action part: When a KS gets write access to the blackboard, the KS control
goes to the action part of the KS. The action part uses the information that’s
currently on the blackboard to create new hypotheses. Any actions, such as
executing a maneuvering command or shooting a torpedo, are initiated by a
KS writing on the blackboard, which serves as a record of initiation.

KSes look both ways
Knowledge sources can operate in either of
two ways:

	✓	 Forward reasoning: In forward reasoning,
a KS uses information on the blackboard to
try to make a higher-level hypothesis that is
closer to the ultimate goal.

	✓	 Backward reasoning: In backward reason-
ing, a KS looks at a higher-level hypothesis
and works backward through the informa-
tion on the blackboard. It uses the lower-
level information to reinforce the higher-level
solution — that is, to increase the degree of
truth of the higher-level hypothesis.

164 Part III: Creating Your Application Architecture

		 The action part is allowed to execute for as long as it needs to, but it
still should try to do its work quickly. Depending on the computing plat-
form and the characteristics of the information acquisition and control
strategies, the action part may pause mid-execution to allow the control
to invoke some other KS that has a condition with much higher priority
than that of the pausing KS.

Blackboard system control
The control component of the blackboard system runs in a loop, continu-
ally evaluating the current state of the blackboard and invoking the KS that
brings the most benefit to the overall solution. The control is such an impor-
tant part of a blackboard system that getting it right is a difficult task — one
reason why blackboard systems are hard to implement. In implementation
Step 6, later in this chapter, I explain strategies that the control can use to
decide which KS should get the chalk.

The control uses information stored on the blackboard. The control some-
times receives direct input from a KS — typically, from the condition part.
The control hands the chalk to a KS and gives it the ability to change
the blackboard.

Figure 11-8 shows the CRC card for the control, and Figure 11-9 shows the
overall UML class diagram for the blackboard architecture.

	

Figure 11-8:
The control-
component

CRC card.
	

Sometimes you want to include a special control KS in the system in addi-
tion to the control component that isn’t in a KS. This KS performs an overall
evaluation of the current state of the system to guide the control in making
its choice of which KS to run. The non-KS control component can use the
condition-part information from the KS, or it can look strictly at the state of
the blackboard, without special input from the KS.

165 Chapter 11: Sharing Knowledge and Results on a Blackboard

	

Figure 11-9:
The black-

board
structure

class
diagram.

	

At any given instant in the execution of the system, at least one KS should have
something to contribute — adding a new hypothesis, changing another, or
reporting a solution. If the system reaches a state in which no KS has anything
to change, the control should signal that the system can’t produce a result that
satisfies the goal. More commonly, the number of possible hypotheses and
KSes wanting to add to the solution grows larger — a situation that requires
the control to pick the KS that’s best able to contribute to the solution.

The control usually relies on a special KS to indicate that the goal has been
achieved. In the AC example, this KS is the TI KS (refer to Table 11-1, earlier
in this chapter), which decides that there are no longer any targets.

Implementing a blackboard architecture
In this section, I show you how to implement a blackboard architecture,
using the AC system as an example. Getting this architecture to work well is
a complex process. Both your engineering judgment and your intuition are
required to balance the forces and create a working system. I highlight some
traps and pitfalls as I go along.

166 Part III: Creating Your Application Architecture

Step 1: Understand the problem
	 Blackboard systems are most useful when information is ambiguous, the path

to the solution is not known in advance, and the solution is not deterministic.

To overcome the difficulties inherent in these kinds of problems, you need to
thoroughly understand the problem space, perhaps by following these steps:

	 1.	 Determine the general fields of knowledge needed to find a solution
to the problem.

		 You want to have KSes for all these general fields. In the submarine
example, you have these general fields:

	 •	The geometry of the objects relative to one another, their direc-
tions of motion, and their speeds

	 •	Motion prediction to understand how the target, torpedo, and sub-
marine will move

	 •	Target identification

	 •	Route planning to get from one point to another

	 2.	 Understand the inputs to the system.

		 Your decisions while implementing the KSes and control will be guided
by an understanding of how the inputs vary. Do they come together
quickly, as when the target is fast moving, or are they slow? Are there
any external inputs, or is the problem totally one of understanding the
initial state of the blackboard (as may be the case in a speech-recogni-
tion system)?

	 3.	 Define the outputs of the system.

		 Decide what indicates a successful result and how you’ll know whether a
result is incorrect.

	 4.	 Determine how the users will interact with the system.

		 Sometimes, a human user can guide the system by providing inputs.
Essentially, you use the human as a KS.

Step 2: Define the solution space for the problem
In this step, you define the levels of abstraction in the solution space. You
must decide what a top-level, ultimate solution or goal would look like.
Torpedoes shot and targets disappearing (destroyed) are the top-level
abstractions for your AC.

Use the information you have about the raw input information from Step 1 as
the lowest level of abstraction of your problem. What intermediate solution
levels are there? In the AC problem, you have intermediate levels of courses
plotted and predicted, as well as torpedo trajectories computed. Refer to
Figure 11-6 to see the levels of abstraction for the AC problem.

167 Chapter 11: Sharing Knowledge and Results on a Blackboard

	 Within the solution space of your problem domain, you may have both com-
plete and partial solutions — that is, you may not have a one-to-one mapping
between solutions and levels of abstraction.

Step 3: Divide the solution process into steps
In this step, you need to understand how the information coming into the
system is transformed into a solution to the high-level problem. Each of your
KSes creates hypotheses based on the information that’s available on the
blackboard. These hypotheses are partial solutions at the problem’s different
levels of abstraction. Each KS stores its hypotheses on the blackboard for the
other KSes to see.

Each KS verifies that the hypotheses that it has made are correct, based on
other updated data on the blackboard. It also looks for useful information
and hypotheses placed on the blackboard by the other KSes. Each KS uses its
own knowledge and world view to synthesize the information on the black-
board and then propose, refute, or support hypotheses.

	 The system succeeds when one of the KSes finds the overall problem hypoth-
esis is true, which identifies that the solution has been reached.

During this step, try to identify any kinds of knowledge that would stop differ-
ent lines of reasoning and indicate that no solution exists. These heuristics
can speed the process by eliminating dead ends.

	 Heuristics are tricks that have been acquired over time and through applica-
tions of similar systems. It’s common-sense wisdom that blackboard system
designers have programmed into controls.

Step 4: Sketch the knowledge sources
In this step, decide what the subtasks and knowledge sources must do.
Determine each KS’s basic algorithms and how those algorithms will work — in
other words, outline the responsibilities of the KS. You need to do this before
you can define the vocabulary that the KS will use to exchange information (see
the next section). You actually design the KSes in Step 7, later in this chapter.

Step 5: Define the vocabulary of the blackboard
This step defines a way of expressing the solution and the data that goes into
the solution in such a way that all the KSes can access, review, and process
all the information available on the blackboard.

Individual KSes don’t need to understand all the information on the black-
board, but they have to have enough knowledge to recognize valid data —
and to understand what data doesn’t apply to them. In some cases, you can
create translators between blackboard vocabulary and internal representa-
tions used within a KS.

168 Part III: Creating Your Application Architecture

The control component must be able to understand everything that gets writ-
ten on the blackboard so that it can make effective decisions about where to
“pass the chalk” and know whether a solution has been achieved. In addition,
the problem-related vocabulary must include information related to control
flow and degree of truth for each hypothesis (refer to “The blackboard as a
knowledge repository,” earlier in this chapter).

	 Development of the vocabulary may iterate in parallel with the steps for defin-
ing the control and KS components. Vocabulary definition must stabilize, how-
ever, before you can complete the design of those other components.

Step 6: Design the control
The control component keeps the whole blackboard system on track. In this
step, you design that component. In general, the control follows a model of
opportunistic problem solving, giving the parts of the system that have the
highest probability of reaching the solution at any moment the ability to work.

The control reacts to changes made by the KSes on the blackboard. Using the
information on the blackboard, it decides how to pick the next KS to execute.

The control uses heuristics in its decision making to shortcut dead ends, give
hints as to which KSes are most likely to have a solution soonest, and identify
the hypotheses that are most likely to be useful in solving the problem.

Following are some example heuristics that you can use (but keep in mind
that not all of them are useful in all situations):

	 ✓	KS priority conditions: The KS condition-part responses to the state of the
blackboard are used to decide which KS to execute next. If a KS indicates
that it’s on the verge of the final solution, it should go first. If you imple-
ment your KS ready system as a queue, the priority should be stored in the
queue. As KSes return their condition-part responses, those responses are
put in the queue based on priority, rather than order of receipt. To apply
this heuristic, if the MC reports that it’s in position, the FC should be exe-
cuted next — enforcing a priority that the MC is done before the FC.

	 ✓	Hypothesis preference: Sometimes it’s effective to focus on hypotheses
that are more likely to change by giving the KS that monitor them a
higher priority. The MC’s hypotheses about the sub’s position some-
times would be given preference over the TP’s prediction of the target
position, for example. As you get more experience with the game, you
realize that one or the other is appropriate — and you put it into the
control as a heuristic.

	 ✓	Hypothesis scope: In some situations, it’s useful to focus on hypotheses
that address large parts of the problem. This heuristic focuses on the
TC’s role because it builds on the hypotheses from both the TP and MC.

169 Chapter 11: Sharing Knowledge and Results on a Blackboard

	 ✓	Island driving: In this heuristic, some hypotheses are thought to be cor-
rect. Preference in execution is given to the KS that will build on these
hypotheses. This heuristic is called island driving because processing
travels from one island of certainty to another. Because the course of the
target is unpredictable, and because the TP is such an important part of
the AC problem, an island-driving heuristic that favors the submarine’s
motion isn’t a good choice because it may miss crucial target changes,
and one that favors the TP may miss actions on the part of the MC.

Step 7: Implement the knowledge sources
In this step, you build the KSes. Each KS has the two parts that I mention in
“Knowledge sources as experts,” earlier in this chapter: condition and action.
The condition part evaluates the information on the blackboard, looking for
information that can help it solve its part of the problem. The action part is
the forward-moving part that offers new hypotheses or changes hypotheses
that are already on the blackboard.

The KSes in a system don’t all need to use the same technology. A particular
blackboard system can have KSes that are implemented the same way with
objects, neural nets, procedural techniques, and so on. Every KS can be
unique in the way that it’s made with respect to its peers. You can use the
other architecture patterns, such as Layers (see Chapter 9) or Reflection (see
Chapter 16), for this purpose.

Consider the attack computer’s TP KS as an example. It bases its decisions
about the target’s predicted location on the observed positions of the target.
It saves one previous position (bearing and range) of the target on the black-
board, as well as the target’s computed course and speed. The condition
part performs a quick check of the target current position to see if it’s con-
sistent with the predicted location based on the blackboard’s information. If
it doesn’t match, then the TP signals that it should execute soon. The action
part predicts the current course and speed of the target given the data on the
blackboard and stores the information on the blackboard.

	 If your overall system is object-oriented, you can wrap non-OO KSes by using
the Facade pattern (from Design Patterns: Elements of Reusable Object-Oriented
Software, by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides
[Addison-Wesley Professional]).

170 Part III: Creating Your Application Architecture

Using variants of Blackboard
A repository is a variation on the Blackboard
pattern. By repository, I mean a system that’s
like a blackboard and that can be implemented
as a database. What’s different about the
repository architecture is that it has no inter-
nal control component. All decisions about
which KS to execute and which hypothesis to
select come from outside — either user input or
another program. In the AC example, the black-
board could be a repository of the information;

the player of the game could evaluate all the
data and then decide what use to make of the
information and which KS to invoke.

Other examples of repository systems include
programming environments that combine many
tools but let the user decide the course of action.
Modern compilers also are repository systems
because they collect shared information such
as symbol tables and abstract syntax trees.

Chapter 12

Coordinating Communication
through a Broker

In This Chapter
▶	Adding a middleman to remove dependencies

▶	Seeing how a broker system operates

▶	Implementing a broker system

I
n this chapter, I tell you about the Broker pattern. The concept is easy to
understand: It’s a component that locates the right service for a request.

Problem: Making Servers Cooperate
For this problem, you’ve been asked to build a system — actually, a collec-
tion of component subsystems that work together — that provides your com-
pany’s services to its customers. It won’t be a unified system in which all the
components know about one another and know which ones to call for their
services. In this case, the components that provide service are supported on
multiple operating systems and hardware platforms. All the components are
independent, yet they cooperate to provide the overall service. The compo-
nents can act as clients within the architecture because they need services
performed by other components, too.

The system has been in service for a while and now is in version 2, but pro-
viding the necessary interservice communication among the components has
become overwhelming. Adding and replacing components is hard because
those components need to be registered with all the other components
with which they communicate, either to request services or to provide ser-
vices. Consequently, the number of communication paths in the system has
exploded (see Figure 12-1).

172 Part III: Creating Your Application Architecture

	

Figure 12-1:
An explo-

sion of
direct-

connection
complexity.

	

In version 1 of the system, all the components were collocated in one large
program — a program that had all the problems that go along with a large
monolithic solution (see Chapter 9). The program was inflexible and hard
to maintain. Although the version 2 distributed solution solved some of the
most difficult problems in the original centralized system, it introduced new
problems of its own.

Now you’re going to redesign the overall system, creating version 3. The goal
of this new version is to facilitate maintenance, evolution, and change — even
at runtime. You plan to divide the system into parts that can be spread around
your development teams efficiently so that the teams can concentrate on the
parts they know best. The developers won’t know what other components will
use the components that they’re creating. The style of application program-
ming interfaces (APIs) and the actual interfaces will change from version 2, but
the overall internal structure of their components will remain the same.

Thinking about the problem
You know that you don’t want the component developers to have to worry
about the overall solution architecture. After making that decision, you start
thinking about the other requirements:

	 ✓	The components need to be able to find and access the services provided
by other components quickly and easily. The components shouldn’t have
to worry about where these other components are located — locally or
remotely. Locations should be transparent to all components.

173 Chapter 12: Coordinating Communication through a Broker

	 ✓	The system should allow runtime changes in the components being
used. This feature allows you to upgrade the components while the
system is running, either to provide new functionality or to fix faults in
the components.

	 ✓	Users of components — either your company’s customers or internal com-
ponents — should be shielded from the details of the other components.

One of the first things you think about is using the Mediator pattern (from
Design Patterns: Elements of Reusable Object-Oriented Software, by Erich
Gamma, Richard Helm, Ralph Johnson, and John Vlissides [Addison-Wesley
Professional]), shown in Figure 12-2. A pattern like this one may be useful,
but Mediator was designed for use in small systems and for mediation
between classes. You realize that the problem you’re solving is a system of
systems, rather than a system of classes.

	

Figure 12-2:
Classes

involved in
building the

Mediator
pattern.

	

Adding a middleman
Although the Mediator pattern isn’t right for this solution, you see the ben-
efits of a centralized middleman component (see Figure 12-3). The middle-
man receives requests from clients, finds the component that can provide
the requested services, and then passes messages and responses back to the
client. When you sketch out the message flow (see Figure 12-4), you see that
this setup is similar to the Mediator pattern, but as I note in the preceding
section, the parts are components rather than classes.

174 Part III: Creating Your Application Architecture

	

Figure 12-3:
Streamlined

commu-
nications

without the
complexity.

	

	

Figure 12-4:
A UML

interaction
diagram of a
middleman.

	

You start sketching the structure of the solution. In the center is the middle-
man, or broker. The broker is responsible for

	 ✓	Locating servers to provide services in response to requests from clients

	 ✓	Registering and unregistering servers, and keeping track of which ones
are available for service

	 ✓	Conducting messages from client to server and back

	 ✓	Managing error recovery

	 ✓	Connecting different systems by communicating with other brokers

175 Chapter 12: Coordinating Communication through a Broker

Connecting clients and servers
The different clients and servers don’t know where the other servers are
located, but they do know that some server in the system can provide the
services that they need. They don’t have the necessary information to com-
municate directly with the other servers; instead, they pass messages to the
broker, which forwards the message to the destination.

Knowing where the services exist is one of the big problems that the broker
must deal with — a problem that’s solved by registering the servers with the
broker. Figure 12-5 shows a typical message exchange for registering a server
with the broker.

	

Figure 12-5:
A server-

registration
scenario.

	

After the initial registration, communication between the clients and servers goes
through the broker, which is now the central communication hub. The broker
knows what servers can help each client, and it keeps track of all requests in the
system to route them correctly to the requesting clients (see Figure 12-6).

	

Figure 12-6:
A request-

and-
response
message
scenario.

	

176 Part III: Creating Your Application Architecture

Going for broker variations
You can choose among several variations on
the standard broker system:

	✓	 Direct communication: The direct-commu-
nication broker system supports a direct
communication path between client and
server. The broker still plays a role in con-
necting client and server, telling them how

to reach each other. After making the con-
nection, the broker steps out of the picture
and lets the client and server talk directly.
This kind of messaging sequence has effi-
ciency advantages, because the broker
isn’t involved in every exchange. The fol-
lowing figure shows a typical request flow
for this variation.

	✓	 Trader: In the trader broker system, the
client’s request isn’t sent to a particular
server; it’s sent to a specific service. The
broker keeps track of what servers can
provide the desired service. In this variant,
the client doesn’t keep track of a server
identifier; it keeps a service identifier.

	✓	 Adapter: In the adapter broker system,
the broker’s interface toward the server is
hidden by an additional layer. This adapter
layer is controlled by the broker. (You can use
more than one adapter, if you like; using mul-
tiple adapters increases the flexibility of the
system.) If some of the clients and servers are
collocated on the same system as the broker,
the adapter arranges for direct code linkage
between the server and clients, which allows
very fast communication. If other servers are
on other hosts, the adapter layer provides the
needed interprocessor messages that the
communication will need. If there were no

adapter, the same communications mecha-
nism would be used in both of these cases,
which may result in much slower perfor-
mance than is theoretically possible.

	✓	 Callback: A reactive system can use a
callback broker system — a variation that
works well when the system is event driven
and reacts to events. The broker makes no
distinction between clients and servers
in this model. When an event arrives, the
broker invokes the callback method of any
component that has registered to be noti-
fied of the event.

	✓	 Message passing: If the information flow-
ing from client to server is primarily data
rather than service requests, you can use
a message-passing broker system. In this
system, each message includes an identi-
fier, which the server uses to determine
what action it should take with the data.

177 Chapter 12: Coordinating Communication through a Broker

Solution: Use a Broker
Structure distributed systems so that the components communicate via
remote service invocation. A broker component coordinates communication
of requests from client to server and also coordinates returning the results
from server to client.

Looking inside a broker system
Three main components are involved in a broker system: the broker, the
server, and the client. Figure 12-7 shows a simple class diagram.

	

Figure 12-7:
A broker

system at its
simplest.

	

In addition to these components, a broker system features proxies and
bridges. I describe all these elements in the following sections.

The broker
The broker is the message-routing component of your system. It passes
messages from client to server and from server to client. These messages
are requests for services and replies to those requests, as well as messages
about exceptions that have occurred. The requests are coded as calls to the
broker’s API. The broker is responsible for error handling in response to
these exception reports.

The message contains both a sequence
of raw data and additional information
describing the message type, message
structure, and other relevant attributes that
help the server understand the request.

You can combine these variants — use the
direct-communication variant in conjunction
with a trader system, for example. Instead of
linking the client and server directly, this com-
bination links the client and service directly.

178 Part III: Creating Your Application Architecture

Figure 12-8 shows the Class-Responsibility-Collaborator (CRC) card for the
broker. (I introduce CRC cards in Chapter 2.)

	

Figure 12-8:
The broker
CRC card.

	

The broker must be able to locate the servers to which it sends requests, so
it maintains a registry of the servers and their locations. The operations for
registering and deregistering server locations are provided in the broker’s
API. If the server is local to the broker, the broker usually is also responsible
for starting the service when its first request arrives. If the server is primar-
ily connected to a different broker, the broker uses the bridge component to
pass the request to the second broker for processing. (I discuss bridges in
“Proxies and bridges,” later in this chapter.)

The server
The server provides services to the clients. There are two kinds of servers:

	 ✓	Servers that offer the same commonly used services to multiple envi-
ronments: Instead of implementing a specific service many times, the
system implements that service once and then shares it.

	 ✓	Servers that offer a single specific functionality to a single environ-
ment: These servers are designed, built, and refined to perform one par-
ticular function very well, so the time and effort you invest in creating a
useful reusable server are time and effort well spent.

The interfaces to these services are defined with an API or an application
binary interface (ABI). In the implementation section (“Step 2: Decide the
level of interoperability”), later in this chapter, I give you the details you need
to decide which type to use.

Figure 12-9 shows the server and client CRC cards.

179 Chapter 12: Coordinating Communication through a Broker

	

Figure 12-9:
The server
and client

CRC cards.
	

The client
The client is an application component that needs the service of at least one
server. When it needs a service, the client puts its request into a message
and sends it to the broker, which routes it to the appropriate server. Then
the client can do either of two things: suspend processing and wait for the
reply from the server, or continue processing and process the reply from the
server when it arrives.

Clients need to know what server or service they want; they don’t need to
know where it’s located. The broker handles locating the server.

	 The roles of server and client are dynamic, and components can play either
role at any time. Servers can be clients and request action from other servers.

Proxies and bridges
Two other components make the broker architecture more flexible and more
maintainable: proxies and bridges. To see how these components fit into a
broker system, compare Figure 12-10 (which shows the class diagram for a
broker system with proxy and bridge classes) with Figure 12-7, earlier in this
chapter (which shows a simple broker configuration).

Proxies
Proxies hide implementation details from the clients (or the server).
Sometimes proxy components are needed between the client and the broker
or between the broker and the server. Proxies hide the following:

	 ✓	The interprocess communication mechanism in use

	 ✓	Memory-related information

	 ✓	Details on marshaling parameters and results (which I explain later in
this section)

180 Part III: Creating Your Application Architecture

	

Figure 12-10:
A class

diagram of
a full broker

system.
	

Proxies have three main functions:

	 ✓	Handling communication between clients or servers and the broker

	 ✓	Translating the object model of the client (or server) into the object
model expected by the broker architecture

	 ✓	Marshaling parameters to go into requests and unmarshaling data
from replies

Today’s programming languages give you great flexibility in defining inter-
nal data structures. Communication channels and storage devices generally
require streams of serial data — one bit after another. The process of going
from internal representation to a serialized representation is called marshal-
ing. At the other end of the process, the serial stream is unmarshaled into
the shape of the original data structures. Marshaling and unmarshaling are
responsibilities of the proxy, which serializes the messages to prepare them
for the communication channel and sends them to their destinations.

Proxies can be on either side of the broker: client or server. The server-side
proxy has an additional responsibility to call services, as you see by compar-
ing the client- and server-side proxy CRC cards shown in Figure 12-11.

181 Chapter 12: Coordinating Communication through a Broker

	

Figure 12-11:
Proxy CRC

cards.
	

Bridges
Sometimes when you implement a broker system, you find that a server you
need for some part of the execution is in a different broker system. To con-
nect different broker systems, you use bridge elements. Figure 12-12 shows a
bridge CRC card.

	

Figure 12-12:
A bridge

CRC card.
	

The bridge encapsulates the network-specific functionality and mediates
between the local broker and the remote broker, which may have different
system-specific characteristics. Bridges are optional components of a broker
system; you may choose to include them or not, depending on your overall
solution architecture.

Exploring the effects of broker architecture
The Broker pattern can be very useful for structuring your solution. Like
most patterns, though, it also has some liabilities.

182 Part III: Creating Your Application Architecture

Benefits
Here are the benefits of using a broker architecture:

	 ✓	Servers are invisible to clients. The broker locates servers by using a
unique identifier and makes sure that messages flow between server and
client. An individual client doesn’t know where the server is.

	 ✓	Client/server separation is easy to maintain as long as the interfaces
remain the same. As long as the interfaces remain unchanged, you can
change and replace clients or servers (or both) independent of what
happens with the other component. Changing communication paths or
APIs can require you to recompile programs or reestablish registered
connections.

	 ✓	Portability is enhanced. The broker system hides underlying operating-
system and network details from both clients and servers by abstracting
them into the API or ABI. Using a layered architecture (see Chapter 9)
helps make the servers easier to port because of the encapsulation of
responsibilities within the layers.

	 ✓	Different broker systems can interoperate easily as long as they use a
common protocol to exchange their messages. Bridges (see the imple-
mentation section [“Step 5: Design the broker”] later in this chapter)
make it possible for broker systems to talk to one another and to pass
requests from one network to another.

	 ✓	Components are reusable because they have a clean, clear interface.
This interface makes them independent of underlying changes, as noted
in the portability item earlier in this list.

Liabilities
You need to consider the following drawbacks as well as the benefits when
you design a broker system:

	 ✓	Overall system performance will not be as high as that of a system
with direct client/server connections. This reduction in efficiency must
be balanced by the ease of creating new services and by the portability,
flexibility, and changeability of the broker architecture. In some envi-
ronments, such as financial services, the broker architecture may not
meet the performance requirements. The direct-communications broker
variant (refer to the sidebar “Going for broker variations,” earlier in
this chapter) improves performance by allowing direct communication
between client and server.

	 ✓	The broker introduces a single point of failure into the architecture.
All messages must flow through the broker, so if the broker is unavail-
able, the entire service is unavailable.

183 Chapter 12: Coordinating Communication through a Broker

		 You can mitigate this problem, however, in three ways:

	 •	By using the direct-communication variant of the broker.

	 •	By using a process watchdog to restart the broke broker.

		 You can use open source watchdogs like upstart (http://
upstart.ubuntu.com).

	 •	By replicating the broker and providing a way for one broker to
hand its workload over to another broker. If mitigated through rep-
lication and workload hand-over, you’ll also need to build detec-
tion mechanisms to know when to hand over the workload.

		 For more information about increasing the reliability of a broker system,
see my book Patterns for Fault Tolerant Software (Wiley).

	 ✓	Testing and debugging are both easier and harder in a broker archi-
tecture. They’re easier because you can test the building blocks of
client, server, and broker individually, using their application specifica-
tions. Testing and debugging are also more difficult because more com-
ponents are involved in providing the service, which makes isolating
problems harder.

Following the flow of broker messages
In this section, I want to remind you of the message sequences of common
actions, because the Broker pattern is so much about the flow of information
between elements. Three scenarios are most important:

	 ✓	Registration message flow: In this scenario (refer to Figure 12-5, earlier
in this chapter), the server sends a registration request to the broker.
The broker records the server in its registry of service registrations and
acknowledges the request.

	 ✓	Request-for-service message flow: In this scenario (refer to Figure 12-6,
earlier in this chapter), the client sends a request to the broker. The
broker uses its repository to locate the server that can process the
request and then forwards the request to the server. When the server
replies after running its service, the broker passes the reply message
back to the requesting client.

	 ✓	Bridging message flow: When a request arrives at Broker A, the broker
determines that no local servers can process the request, but Broker
B has the required service. Broker A forwards the message to Bridge
A, which determines that the message is destined for Bridge B and for-
wards the message there. Bridge B receives the request and forwards it
to Broker B, which processes the message as though it were from a local
client. When the server replies, the reply message follows the reverse
path through the two bridges and both brokers back to the client.
Figure 12-13 illustrates this scenario.

http://upstart.ubuntu.com
http://upstart.ubuntu.com

184 Part III: Creating Your Application Architecture

	

Figure 12-13:
Following
a bridging
message

flow.
	

Implementing a broker architecture
This section describes the process for implementing a broker system.

	 While you’re working on steps 3 and 4, you also can work on designing the
actual broker component in Step 5. By working on these steps together, you
can integrate your solution by tailoring the brokers to the APIs.

Step 1: Define the object model
The broker encapsulates the interaction between the client and the server.
It makes sense to refer to it as an object model, even if you’re not going to
develop actual object-oriented software. So, in this step, you need to define
the rules of the system’s object model, which includes providing definitions
of the state of server objects and definitions of methods, as well as defining
how methods are selected for execution and how server objects are gener-
ated and destroyed.

The object model must specify object names, objects, requests, values,
exceptions, supported types, type extensions, interfaces, and operations.
Prepare for future extensions by making the object model general enough to
support these extensions.

The server state should not be directly accessible to the client. A benefit
of the broker architecture is the decoupling between client and server that
allows them to be changed and upgraded independently. Sharing the state
eliminates this benefit.

185 Chapter 12: Coordinating Communication through a Broker

	 Separating interfaces and server implementation is called remoting. For more
information about remoting, see Remoting Patterns: Foundations of Enterprise,
Internet and Realtime Distributed Object Middleware, by Markus Völter, Michael
Kircher, and Uwe Zdun (Wiley).

Step 2: Decide the level of interoperability
Will your broker system use an API at the source-code level or an ABI at the
binary level? The API provides greater flexibility, but the ABI may provide
higher performance (albeit at the cost of requiring the same ABI to be used
for all services).

An ABI needs support from a programming language to create the needed
interface call methods. An example of this capability is in Microsoft’s COM
Automation software. The ABI approach gives clients direct pointers to the
methods and services being invoked. The infrastructure that supports an ABI
needs tables that link the pointers to the methods, both to provide the regis-
tration functionality and to provide for indirection between client and server.
Every concept (what types are supported, how servers are created, and so
on) in your object model from Step 1 must be represented in the ABI.

	 Using API implies that you have an interface definition language (IDL) to define
the interface. If you use an IDL to support an API, you can map the concepts
from Step 1 to programming-language-specific concepts. You can create an
IDL for multiple programming languages, making the API and IDL more flexible
than in the ABI approach. The IDL is compiled by a special compiler that you
build in Step 6, later in this chapter. The output from the IDL compiler is either
code that you include before compiling your program or a binary that you link
into your program. The compiler produces two pieces of source (or binary)
code — one for the client and another for the server. Both pieces are required
to make the communications work.

	 The broker may use some of the information from the IDL to maintain information
about the servers, so the broker needs to include the generated code as well.

Step 3: Specify the APIs
Define the API (or ABI) that the broker is going to provide to the clients and
servers. The client must be able to build requests, pass them to the broker,
and receive responses from the broker.

In this step, you must decide whether the linkages between the clients and
the servers are static or dynamic. Static linkages are made between the client
and server at compile time and are simpler to implement than the dynamic
option. To support dynamic invocations, the broker needs to maintain the
registry of servers; as a result, the API must be larger than it needs to be for
static linkages. The scenario shown in Figure 12-5, earlier in this chapter,
assumes dynamic linkage.

186 Part III: Creating Your Application Architecture

When dynamic linkages are supported, the broker must maintain the registry
that can be accessed during runtime so that lookups can find servers and
register new servers. The registry can be an external file that the server can
access independently and examine when it needs to look up a service, or it
can be internal to the broker. If you choose the internal route, the broker
needs an API for the servers to register. In either case, the broker must be
able to generate unique identifiers for the servers. These identifiers are the
method the broker uses to send client requests to the server.

Step 4: Hide implementation details from
clients and servers with proxies
In this step, you add any proxy components to the system. To the client,
the proxy plays the role of a server. To a server, a proxy plays the role of a
client. The proxies hide implementation details by translating requests from
the client vocabulary and object model into the vocabulary and object model
used by the servers.

	 Not every system needs proxies. Although proxies make it easier to integrate
different clients and servers into the system, they also become other parts of
the system that you need to maintain.

If you use the API approach with an IDL (refer to “Step 2: Decide the level of
interoperability,” earlier in this chapter), the proxy can be easy to implement
because the IDL compiler can generate it automatically. If you choose the ABI
approach, the proxies can be created and deleted by the ABI code.

Step 5: Design the broker
This step defines the broker that passes every message from client to server
and back.

	 You can design and build different kinds of brokers in this step. See the side-
bar “Going for broker variations,” earlier in this chapter, for a few examples of
broker styles.

To design the broker, follow these steps:

	 1.	 Define the detailed protocol for interactions with client- and
server-side proxies.

		 You must map the details of the requests, the responses, and any pos-
sible exceptions to the messaging protocol being used. These details
include parameter values, method names, and return values.

187 Chapter 12: Coordinating Communication through a Broker

	 2.	 Define the bridge components needed to route messages to other
brokers.

		 Local brokers must be available to all clients and servers within a local
network. When requests need to move to other networks, you need
bridge components. The bridges hide details about the distant broker
from the local broker and allow the two broker systems to exchange
requests and replies.

		 Brokers also must maintain a registry to locate remote brokers or bridges.
The requests themselves can include routing information encoded as part
of server or client identifiers to simplify locating distant brokers.

	 3.	 Define the mechanisms for exchanging requests and replies.

		 The broker must remember which client sent a request so that it can
send the response from the server to the correct client. In the direct-
communications broker variant, the broker isn’t involved directly, so
messages flow directly between client and server (or between client
proxy and server proxy).

	 4.	 Design marshaling and unmarshaling into the broker if the proxies
don’t contain these capabilities.

	 5.	 Design message buffers into the broker if communication between cli-
ents and servers is going to be done asynchronously.

	 6.	 If necessary, design a directory service to map local server identifiers
with the physical locations of corresponding servers in the broker.

		 A simple, easy option is to use an IP port number as the directory index.

	 7.	 Design a name server if the architecture requires unique identifiers to
be generated dynamically.

		 The broker or name server will generate new names dynamically.

	 8.	 If you choose dynamic method invocation (refer to “Step 3: Specify
the APIs,” earlier in this chapter), create a type registry.

		 The broker needs to maintain information about the data types that
servers expect. The client may ask for this type information to help the
client construct its request dynamically.

	 9.	 Design provisions for error handling in the broker.

		 If you don’t handle errors in a systematic way, debugging the system is
difficult: You won’t know whether the error is in your code or in your
client/server interactions. In distributed systems, errors can occur at
two levels, both of which must be handled by the broker:

188 Part III: Creating Your Application Architecture

	 •	The servers may encounter errors (the same scenario as in a non-
distributed system).

	 •	Communication failures may occur (an error type unique to dis-
tributed systems).

		 You need to define what the broker should do when communication
fails. Sometimes, you want the broker to resend messages until they
succeed (the at-least-once semantic). In other cases, such as financial
transactions, the risk of duplicate actions by the server is too high, so
the message shouldn’t be resent, or the server should recognize that the
action is a duplicate and not execute it (the at-most-once semantic).

		 Another error scenario that the broker must handle is when a client
requests service from a server that isn’t present or that the client isn’t
allowed to access.

Step 6: Develop IDL compilers
If you’re going to use an IDL to define the server interfaces, you should build
a compiler for each language you may use. This compiler translates server-
interface definitions into programming-language code.

	 If your system uses many programming languages, make the IDL compiler a
framework that lets developers add their own code generators.

Another alternative is to use one of the open source IDL generators.

Travel agents brokering travel-related services
Travel agents are brokers for travel-related
services. They take requests for clients to make
reservations or obtain information from airlines,
railways, cruise lines, hotels, and rental cars.
The broker has the contacts and is able to navi-
gate through a world of providers unknown to
the client.

The travel providers are the servers. The
broker hides the real location from the cus-
tomer, which makes it easy to substitute differ-
ent providers; the interfaces to the clients don’t
change. The systems and languages used by
the broker to talk to the providers are hidden
from the client, who doesn’t need to know any-
thing about those details.

Chapter 13

Structuring Your
Interactive Application with

Model-View-Controller
In This Chapter
▶	Decoupling a user interface from its data

▶	Designing a flexible interactive system

▶	Implementing a Model-View-Controller architecture

T
his chapter presents a really cool way of structuring your architecture
when you have some data and want to look at it in multiple ways. The

Model-View-Controller pattern (usually abbreviated MVC, as I do in this
book) is the foundation of many systems in the real world that need exactly
this functionality.

Many people associate MVC with the Smalltalk programming language, which
is the best-known example. As you see in this chapter, though, MVC isn’t
specific to Smalltalk.

Problem: Looking at Data in Many Ways
To help you understand MVC more deeply, I walk you through an example
problem in this section. You’ve been asked to implement a system to help
some wildlife researchers understand their subjects: coyotes living in urban
and suburban environments. These researchers have collected a great deal
of data over many years of studying their animal subjects, including all the
following information (and more):

190 Part III: Creating Your Application Architecture

	 ✓	Birth and death records

	 •	Dates of birth and death

	 •	Identification and cross-references to siblings and parents

	 •	Cross-references to places of birth and death

	 ✓	Location information

	 •	Overall territory

	 •	Den location

	 •	Birthplace and death location

	 •	General range and travel patterns

	 ✓	Family grouping information

	 •	Parents, children, siblings

	 •	Mate

	 ✓	Encounters with people

	 •	Nuisance reports

	 •	Sightings

	 •	Missing-pet reports within coyote territories

	 ✓	Population data

	 •	General census information

	 •	Population trends (fertility rate, infant mortality rate, and so on)

Your researcher clients have asked you to prepare a display system that
they can use to examine their data. They want to use some general views that
they already have but imagine that they haven’t thought of all possible useful
views, so the system you build must be extendable. The clients want a new
graphical user interface (GUI) that allows them to select what they view and
to control the system.

Pondering what you need
As you sort out the data, you think about the main parts of the system you
need to build:

	 ✓	Data: The data is a primary component. You’re familiar with the way
that the clients stored the data (in a simple open-source database
program), so I won’t spend any time talking about the low-level details
of data storage. Some of the data that the clients want to visualize,

191 Chapter 13: Structuring Your Interactive Application with Model-View-Controller

however, isn’t stored directly in the database; it’s computed from other
data in the database. This computational capability is built into compo-
nents that sit right on top of the database.

	 ✓	UI control component: Another part of the system is the user interface
(UI) control component. This part interacts with the user, taking infor-
mation about the data and the data format that the user wants to see.

	 ✓	Views: You know about a few of the displays that the scientists will want
to see, and you design them to be separate components of the system.
All the displays are very similar, so you collect them in a third part of
the system: the views.

Viewing the system flexibly
During development, the scientists ask you about getting a new view. The
system already has a view that overlays coyote ranges on a map of the
region; now the clients want to add data points to the view to show where
the coyote dens are located and where coyotes have been interacting with
pets. Figure 13-1 shows the current view that you need to extend.

The data already exists in the data store. You need to change the display
controller to access this new view, which is an easy change. All you have to
add is an item in a menu.

	

Figure 13-1:
Multiple

views being
combined in
the system.

	

192 Part III: Creating Your Application Architecture

The changes occur in the view components. You can extend the previous
view by adding new lookups and plotting data.

Had the clients asked for a more-extensive change, such as adding a new kind
of display, you might have added a new view component. Even this change
would be straightforward, however. The views aren’t integrated with the
data; instead, they sit separate from it, accessing the data through an internal
interface. Any interaction that the new view needs with the UI component
also is simplified because of the UI’s internal application programming inter-
face (API). To start using the new view, you must make two things happen:

	 ✓	The UI needs to know that the new view exists to make it available to
the user.

	 ✓	The new view module must register with the data store to receive
notification of data updates (see the next section).

Keeping the views current
While you’re working on the UI and views for the system, new data continues
to arrive. New coyote puppies are born; an elderly coyote that the research-
ers have been following for years has died; and the scientists have been
tracking several new coyotes through their radio collars. As new data arrives,
the scientists enter it into the urban-coyote data model, and that data needs
to appear in the views.

To keep the views updated with new data in an MVC architecture, you use
the Observer pattern (from Design Patterns: Elements of Reusable Object-
Oriented Software, by Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides [Addison-Wesley Professional]) or the Publisher-Subscriber pattern.
(For a complete description of Publisher-Subscriber, turn to Chapter 21.)
Using Publisher-Subscriber the data model assumes the role of publisher.
The data model publishes changes to its data to all the other components
that have registered as subscribers to that particular data, and the views
become subscribers.

Changing the user interface
Although many changes are going on out in the studied population, closer
to your desk, the scientists want to change the interface. First, they want to
add a new way of interacting with the whole system, which is easy. Also, they
want to move the whole system from the early implementation, which was
driven by a main view with a menu list. Selections from this menu caused the
resulting data to be displayed. Now the clients want a new icon-based system
that allows them to drag data sets to display views and drop-down menus to
add refinements. Figure 13-2 shows these two UI styles.

193 Chapter 13: Structuring Your Interactive Application with Model-View-Controller

	

Figure 13-2:
The old and
new views

of the
system.

	

To make this change, you need to change the topmost structure of the UI,
which results in changes in the top views and UI. All the other views, includ-
ing the data display views, don’t need to change. How they fit into the hierar-
chy of views changes slightly to reflect the change in the top-level view.

Solution: Building a Model-View-
Controller System

To build the solution to the problem in the previous section, divide your
interactive application into three components:

	 ✓	A model that contains the data and core functionality

	 ✓	Views that display information to the user

	 ✓	Controllers that handle user input and tell the views what the user
wants to display

Crediting MVC’s inventor
A funny thing about most pattern authors and
other members of the pattern community is that
they don’t want to take credit for something that
they didn’t invent. The Model-View-Controller
pattern is a perfect example of this phenom-
enon. The concepts behind this pattern were
developed by Trygve Reenskaug, but many
people first saw them in the Smalltalk language,
and others saw them in Pattern-Oriented
Software Architecture: A System of Patterns,

by Frank Buschmann, Regine Meunier, Hans
Rohnert, Peter Sommerlad, and Michael Stal
(Wiley) or in Patterns of Enterprise Application
Architecture, by Martin Fowler (Addison-
Wesley Professional). If you’re curious, the
original report about MVC that Reenskaug
wrote for Xerox Palo Alto Research Center
(PARC) is on his website at http://heim.
ifi.uio.no/~trygver/1979/mvc-
1/1979-05-MVC.pdf.

http://heim.ifi.uio.no/~trygver/1979/mvc-1/1979-05-MVC.pdf
http://heim.ifi.uio.no/~trygver/1979/mvc-1/1979-05-MVC.pdf
http://heim.ifi.uio.no/~trygver/1979/mvc-1/1979-05-MVC.pdf

194 Part III: Creating Your Application Architecture

Exploring the effects of MVC
The MVC pattern has been used many times to structure interactive systems.
The architects who have used it have seen the benefits and liabilities listed in
the following sections.

Benefits
The flexibility of decoupling the data (model) from the output (view) and
input (controller) is the primary benefit of the MVC architecture. You’ll see
this over and over again in the following list of benefits:

	 ✓	The model is strictly separated from the UI components in this archi-
tecture. You can use the same data to supply multiple views.

	 ✓	Changes to the data in the underlying model are reflected in all the
views automatically. This is possible because there is a single source of
the data being displayed.

	 ✓	You can change the view and controller elements of the system with-
out changing the data model. This capability increases the flexibility of
the system. You can keep the underlying model element consistent and
intact, and exchange the view and controller components of the system.

	 ✓	Because the UI code is independent of the model, when you need to
make major changes in the UI section, the underlying data doesn’t need
to change. This kind of major change can result from moving the system
to new hardware or to hardware that has a different look and feel.

	 ✓	The views don’t interact. As a result, you can change an individual view
without having to make changes in the other views.

	 ✓	MVC architectures can be used as frameworks to be used and
extended in other situations. The three components are related yet
independent, which simplifies maintenance and evolution.

Liabilities
In addition to the benefits, liabilities come along with using MVC. You must
balance these liabilities with the benefits when you design your system:

	 ✓	Complexity is increased by separating the three components of MVC.
You have more components to build and maintain than you would if
you’d designed the system as a monolith. Unless you need flexibility in
the UI or the views, MVC may add more overhead than your application
really needs.

	 ✓	Changes to the model are published to all the views that subscribed
for them. The number of recipients of change-notification messages
increases as the system gets bigger. To overcome this liability, consider
the big picture when you design the scope of changes that result in

195 Chapter 13: Structuring Your Interactive Application with Model-View-Controller

update publications. I talk more about this drawback in the implementa-
tion section (“Step 2: Build the change-propagation mechanism”) later in
this chapter.

	 ✓	The controller and the views grow closer with time. Even though the
components are individuals, they have strong relationships that limit
your ability to reuse one component without the others. As the system
grows and evolves, views will be added to the system, along with result-
ing enhancements to the controller that allow the views to be selected
and controlled. Because the components are so intertwined, reusing
only the controller or only the views is more difficult than reusing the
controller and views together. The relationship also limits your ability to
insert new versions of either component, because the new version must
be adapted to support the component that isn’t being replaced.

	 ✓	The controller and view components know quite a lot about the
model. Changes in the model may require changes in both of the other
two components. Adding indirection helps mitigate this liability, how-
ever, as I discuss in the implementation section (“Step 4: Design and
build the controllers”) later in this chapter.

	 ✓	Inefficient data access can result because of the separation of views
and model data and the need to go through the model’s API. This
problem is especially apparent if the view must request unchanged data
from the model frequently. You can improve responsiveness, however,
by designing the view to cache data.

	 ✓	Both controller and view components require changes when they’re
ported to a new system. These components contain some platform-
dependent code, so when the components are ported to a new system,
the platform-dependent code requires changes.

	 ✓	MVC arose before modern UI tools were created. MVC is useful for
increasing portability. If portability isn’t a critical requirement, the use
of a UI toolkit can be a more appropriate overall solution. These two
solutions are incompatible because toolkits that specialize in creating
UIs include their own flow of control and their own mechanisms for
accessing the model, whereas the MVC controllers want to control the
way that user interaction occurs.

		 Suppose that one or another controller component wants to use pop-up
windows or manage window scrolling. You can use wrappers to connect
the MVC components with the UI toolkit components, but this solution
is complicated and hard to maintain over time. Another problem is
that the toolkit may expect to interact with the model in ways that are
incompatible with the MVC’s controller component. Yet another closely
related problem is the contention between the MVC’s controller and
the toolkit’s control components over the processing of events and call-
backs to the user.

		 When you face any of these problems, consider eliminating the MVC’s
controller and using the controller provided as part of the toolkit.

196 Part III: Creating Your Application Architecture

Inspecting MVC’s moving parts
So far, I’ve talked about the parts of MVC only in general terms. In this sec-
tion, I explain the roles and responsibilities of the three parts of MVC: the
model, the views, and the controllers.

The model component
The model component contains the core of the application — both the
application’s data and the important data-related functionality. The model
provides procedures and methods to access the data. These procedures and
methods are called by the controller in response to user control. The model
also provides functions to access the data stored in the model that the views
need to construct their displays.

Figure 13-3 shows the Class-Responsibility-Collaborator (CRC) card for the
model component. (For a reminder on CRC cards, check out Chapter 2.)

	

Figure 13-3:
The model
CRC card.

	

The model must keep the data that it stores up to date, so it must have
mechanisms to update the data internally and to report the updates to all the
views that are interested in that data. Frequently, this change-propagation
mechanism is implemented via the Publisher-Subscriber pattern, which I
introduce in Chapter 21.

A variation of the model is for it to remain passive and not publish updates.
In this variant, the views and controllers ask the model for updates rather
than subscribing and waiting for updates.

The view component(s)
Information in the model is displayed for the user through the view compo-
nent. A system can (and usually does) have more than one view component.

197 Chapter 13: Structuring Your Interactive Application with Model-View-Controller

Each view provides the user different ways to visualize the data. The views
receive updated data from the model by subscribing to the model’s publica-
tion of changes. When updated data is received, all the views update what
they’re showing the user.

Figure 13-4 shows the responsibilities of a view component.

	

Figure 13-4:
The view

CRC card.
	

During initialization, all the views register with the model’s publication pro-
cess, ensuring that the views have up-to-date data.

A one-to-one relationship exists between views and controllers — that is, each
view has a controller. Each view also may have subviews. In a typical applica-
tion, buttons, scrollbars, and menus all are subviews. A hierarchy of views and
controllers provides the displays and behaviors that you expect to see.

	 In general, the best design is to put the view component in charge of the cre-
ation of the controller component. The view component frequently offers the
controller some functionality for manipulating the display. This functionality
is used for display changes that affect only the view data and not the model
data, such as scrolling.

The controller component
The controller interacts with the user and processes user inputs as events.
When events arrive, the controller checks to see whether the event applies
to it; if it does, the controller processes the event. If the event isn’t relevant
to the controller, the controller takes no action. The scrollbar controller does
nothing when the mouse clicks a button, for example.

Figure 13-5 shows the CRC card for a controller.

198 Part III: Creating Your Application Architecture

	

Figure 13-5:
The con-

troller CRC
card.

	

Sometimes, the controller’s behavior depends on the model’s state. In such
a case, the controller must register with the model’s change-propagation
method, just as the views do. This registration is required when the presence
of certain data in the model may allow the creation of new menu items, for
example.

Views can have more than one controller. Some elements of the screen can
be edited and others can’t, for example. In such a case, you can put the con-
trols for these elements in separate controllers.

Implementing MVC
To implement MVC, execute the following steps. The first six steps are fun-
damental when you’re designing your application to use MVC; the remaining
steps help you refine your use of MVC to make it more flexible.

Step 1: Separate the core functionality from the UI behavior
Analyze the application domain of the problem you’re solving, and answer
the following questions:

	 ✓	What are the core data parts?

	 ✓	What computational functions are performed on the data?

	 ✓	What is the system’s desired input?

	 ✓	What is the system’s desired output?

The input and output go into the view and controller components designed
in steps 3 and 4. In Step 1, you design the model component to store the data

199 Chapter 13: Structuring Your Interactive Application with Model-View-Controller

and perform the core computational functions. Design functions to access
the data that the views will use. Also, decide what data and functionality the
controllers and views should be able to access directly, and define the access
interface.

In the coyote-study example, you decide to reuse the existing data schema and
to build the model with a few helper classes to perform the computations.

Step 2: Build the change-propagation mechanism
The model component is the publisher from the Publisher-Subscriber pattern
(see Chapter 21). Design the registry that the model will use to remember
which views and controllers have subscribed to the data. Figure 13-6 shows
an example of a registry. You also need to design the procedures that the
views and controllers must use to become subscribed in the registry or to
unsubscribe themselves.

	

Figure 13-6:
The model’s

registry of
subscribers.

	

The model’s publication of updated data should call the update procedure
of all the subscribed views and controllers. Everything that happens in the
model that changes any of the data must call the publication mechanism to
push the change out to the subscribers.

For times when the data in the model isn’t changing and the views or con-
trollers need access, you should build a separate access mechanism. This
mechanism allows the view and controller to request the current state of the
data when they start.

Step 3: Design and implement the views
Each view presents the data from the model to the user in a different way.
In this step, you design and build the procedures that get the data from the
model and then display it.

200 Part III: Creating Your Application Architecture

For each view, you must decide on its appearance and then create the
required drawing software to display it. The drawing software accesses the
data it needs from the model through the access routines defined in Step 2.
The actual drawing is done in conjunction with the graphical interfaces avail-
able in the platform being used.

When data in the model is updated, the changes are propagated to the views
that subscribed for notification. The views need to register with the model
for the data they need.

	 Different views may need different data from the model. You need to include
in the view the necessary update functionality so that when an update is
received from the model, the view reflects it in the display.

The easiest way to handle this requirement is to retrigger the drawing pro-
cedure with the new data. If the display is complex, however, this solution
becomes inefficient. You have several ways to compensate for this inefficiency:

	 ✓	Extra information from the model gives the view information about
the scope of the change. If the change is minor, the view can call some
other display-update method that doesn’t require a complete redraw of
the data.

	 ✓	Wait until a flurry of updates has been received and the view deter-
mines that no more updates are anticipated. Two methods are avail-
able to the view:

	 •	The view can use timers between updates to see when a minimum
stable threshold is exceeded, after which it’s safe to redraw
the view.

	 •	The view can set a timer, and when the timer fires the view, the
display is redrawn. The duration of the timer is set to be slightly
longer than the duration of a typical flurry of update requests.

I only hint earlier that views must be initialized whenever they’re created.
The view must subscribe to the model for whatever data it needs for its dis-
play. The view also must instantiate its relationship with the controller. (For
more about this relationship, see “Step 5: Build the relationship between the
view and controller,” later in this chapter.)

In your coyote-data display system, consider the view that shows the geo-
graphic ranges of the coyotes under study and the view that shows the
pedigrees of individual animals. Each type of view requires different informa-
tion from the model (see Figure 13-7). During initialization, subscriptions are
made with the model for the data that each view needs.

201 Chapter 13: Structuring Your Interactive Application with Model-View-Controller

	

Figure 13-7:
Two views

mapping
to different
data in the

model.
	

Step 4: Design and build the controllers
Every view has a controller, and the complete system has multiple control-
lers. Each view controller receives the events that contain UI instructions,
interprets those instructions, and passes control information off to the view
with which it interacts. (The event-processing mechanisms are assumed to
be available in your operating system and aren’t part of the MVC pattern.) In
Step 6, you set up overall event processing and kick things off.

The behavior of the controller can depend on the state of the model.
Depending on the model, only certain control capabilities may be present.
Because the scientists using the coyote data want the population-by-zone
data to be accurate at all times, there may be a time when the controller
won’t allow the user to request an update — perhaps the mapping to zones
hasn’t been recomputed after a scientist updated the model. Figure 13-8
shows an example.

The controller component is linked to a model and to a view during the con-
troller’s initialization. As part of the initialization, the controller registers as a
subscriber for any data that it needs to control its actions.

A close relationship exists between the controller and the computational
core of the model. This relationship is a problem when you want the con-
troller to be reusable with other models. You should use the Command
Processor design pattern (see Chapter 20) to add some indirection and iso-
late the controller from the model. In that pattern, the model takes the role
of supplier, and the command and command processor components are
between the MVC’s model and controller.

202 Part III: Creating Your Application Architecture

	

Figure 13-8:
View

behavior
changing

with model
state.

	

Step 5: Build the relationship between the view and controller
Each view has a special relationship with its controller that needs to be cre-
ated during their initialization. Within the view class, you should define a
makeController() method to create the controller if it isn’t included in
your program’s initialization code.

Step 6: Get the MVC started
With multiple views and controllers, you need to tie all the elements
together and get them started — preferably in an external place such as a
main program.

	 The controllers in MVC rely on events being passed their way. They respond
to these events to cause the views or the model to be changed. An important
detail in starting the MVC is starting the event processing, because the event-
handling mechanisms aren’t explicit parts of the MVC pattern.

	 Steps 1 through 6 build the basics of MVC. If you want your MVC implementa-
tion to be more flexible and extendable, proceed to the remaining steps.

Step 7: Create dynamic views
If your application may open and close views during execution, it’s helpful
to have a component to manage the active views. Use the View-Handler pat-
tern (see Chapter 20) to structure this component. One capability that this
component can provide is to terminate the application when the last view
is closed.

203 Chapter 13: Structuring Your Interactive Application with Model-View-Controller

Figure 13-9 shows the CRC card for the View Manager component.

	

Figure 13-9:
The View

Manager for
an MVC

CRC card.
	

Step 8: Create changeable controllers
In any application, the design of the model is static. You can add and remove
views to show different aspects of the model or to accommodate different
display devices, but the views are still relatively stable.

Because the controller in an MVC architecture is separated from the views
and the model, you can make your controllers changeable or pluggable. The
controllers must adapt to the interfaces that you designed in steps 2, 3, and 5,
of course, to work correctly with the views and models in your application.

Pluggable controllers allow your application to adapt to new input devices
without changing the views or underlying model. You could use different
controllers to reflect the unique needs of novice or expert users, for example.
Yet another use is to create controllers that accept only limited input, thus
providing what is essentially a read-only view.

Make your MVC into a framework
The primary benefit of MVC is the separation of
the parts, which allows you to change the parts.
In Step 8, I provide some ideas about how you
can interchange controllers to provide a different
kind of interface for your application. Earlier steps
describe the ease of supplying different views.

Because the parts of your MVC are portable
and adaptable, they’re useful packaged as a
framework, which makes it easy to reuse the
components in other applications.

204 Part III: Creating Your Application Architecture

Step 9: Design the infrastructure for hierarchical views and controllers
Screen elements such as buttons, scrollbars, and menus are basic building
blocks that are common to many views. You build a UI by composing these
predefined parts, each of which is implemented as a view.

Figure 13-10 shows a class hierarchy of these composed views, using the
Composite pattern (from Design Patterns: Elements of Reusable Object-
Oriented Software).

	

Figure 13-10:
Composing

views into a
hierarchy.

	

Event handling with this composed display can become a problem, how-
ever, because knowing which controller should handle the event may
not be obvious. When a button is clicked the event handler, not knowing
which controller to send the event to, will send it to all the controllers.
The ScrollControl should ignore it, as should the MenuControl; the
ButtonControl should process the event.

One way to solve this problem is to use the Chain of Responsibility pattern
(from Design Patterns). When you apply this pattern, each controller that
receives the event either processes the event (if appropriate) or passes it to
another controller. The other controller is associated with either its parent
view (from ScrollControl to MenuControl to ButtonControl, for exam-
ple) or a sibling view.

Step 10: Remove system dependencies
It’s easy to accidentally let your controller and views become dependent on
the specifics of the host system. When you’re building only one instance of

205 Chapter 13: Structuring Your Interactive Application with Model-View-Controller

a solution, this dependency isn’t always a problem, but dependencies make
things more difficult if you want to reuse the controllers and views.

To achieve a clean separation of your controllers and views, you can intro-
duce other classes for them that encapsulate the hardware specifics, allow-
ing the view and controller classes to access them indirectly. To provide
this indirection, use the Bridge pattern (from Design Patterns: Elements of
Reusable Object-Oriented Software) to separate hardware abstractions from
hardware specifics.

A pair of display classes is created to support the views. An abstract class
provides the methods for common tasks such as drawing lines, displaying
text, creating windows, and changing the appearance of the mouse. A con-
crete class (or classes) is created to implement these tasks in a host-depen-
dent manner, calling the appropriate host-specific libraries and functions to
achieve the desired results.

Abstract and concrete sensor classes do the same for user input. The
abstract sensor class provides generic, host-independent methods, and the
concrete class invokes the host-specific capabilities.

	 Designing the display and sensor classes (see Figure 13-11) can be hard. One
decision that you need to make when designing them is how abstract they
should be:

	 ✓	At one end of the spectrum, the display and sensors are built with mini-
mal common functionality. Only methods that appear on all host plat-
forms are created.

	 ✓	At the other end of the spectrum, the abstract display and sensor
classes offer high-level abstractions of the capabilities. These classes
thereby offer capabilities that build on the basic, common functionality
of all hosts.

	

Figure 13-11:
Insert

display
and sensor
classes to

hide system
dependen-

cies.
	

206 Part III: Creating Your Application Architecture

The first approach leads to applications that look the most similar across
platforms. The second approach helps the application match platform-spe-
cific characteristics and guidelines better.

Figure 13-12 shows CRC cards for the display and sensor classes.

	

Figure 13-12:
Display-

and sensor-
class CRC

cards.
	

Seeing Other Ways to Manage Displays
Several other patterns are similar to MVC. In this section, I tell you about one
variant of MVC and also give you insight into how MVC, as discussed in this
chapter, differs from the Presentation-Abstraction-Control (PAC) pattern,
which is the topic of Chapter 14.

Controlling the view of a football game
When televising a football game, the television
network has multiple cameras all focused on
the action. The director chooses which camera
angle to broadcast to the TV viewers based
upon the play on the field. There’s only one
game being captured by a group of cameras —
the game corresponds to one model in the

Model-View-Controller pattern in this chap-
ter. The cameras provide the views and are
given instructions about what to zoom in on by
the director, who is the controller. The camera
crews all have different views of the play and are
following the play all the time.

207 Chapter 13: Structuring Your Interactive Application with Model-View-Controller

Combining controller and view
Document-View is a variant of MVC that doesn’t enforce the strict separation
between controller and view that exists in the MVC pattern. In some imple-
mentations, the controller and view are tightly interwoven. In the X Windows
System, for example, events are dispatched to a window — which means
that they’re sent to a view rather than to a controller. You lose flexibility and
the ability to change controllers relative to views when they’re combined in
Document-View.

The Document component corresponds to MVC’s model component. Because
Document and View are loosely coupled, the benefits associated with their
separation are achieved in either the Document-View or MVC pattern.

Document-View is useful when you don’t need the flexibility of separate views
and controllers, or when you want an architectural model that corresponds
to a particular toolkit, like the X Windows System.

Comparing Presentation-
Abstraction-Control
In the next chapter, I introduce the PAC pattern — another architectural pat-
tern for structuring interactive applications, but one that’s quite a bit differ-
ent from MVC.

MVC is all about creating independent components that are responsible for
realizing the model, view, and controller functions discussed in this chapter.
These components work together but are discrete parts of the system. There
may be multiple views and controllers, but they’re all roughly equivalent.

In PAC, by contrast, the architecture is created with a hierarchy of agents,
each containing all three parts of the name: a presentation part, an abstrac-
tion part, and a control part. Figure 13-13 compares the two architectural
patterns.

208 Part III: Creating Your Application Architecture

	

Figure 13-13:
A compari-

son of the
MVC and

PAC archi-
tectures.

	

	 The most important difference between these two patterns that should lead
you to choose one or the other is that PAC is built around the notion of inde-
pendent components cooperating to perform the application, whereas MVC is
more about the flexibility of the human–computer interaction.

Chapter 14

Layering Interactive Agents with
Presentation-Abstraction-Control

In This Chapter
▶	Building a system of agents for an interactive application

▶	Assembling legacy display components

▶	Implementing the Presentation-Abstraction-Control architecture

I
n this chapter, I tell you about Presentation-Abstraction-Control (PAC),
a pattern for structuring your interactive application when the parts are

autonomous components with their own independent capabilities.

I refer to these autonomous components as agents, and I define an agent as a
component that has these capabilities:

	 ✓	It can receive events and forward them to other agents.

	 ✓	It contains data structures that store the agent’s information as well as
the agent’s state.

	 ✓	It can perform at least the following computations:

	 •	Processing incoming events

	 •	Updating its own state

	 •	Generating new events that are sent to other agents

Agents may range in size from a single object to something as complex as a
complete software system.

Note: This definition of agent is specific to this chapter. If you’ve read about
agents elsewhere, you’ll see that the definitions are related, but in this chap-
ter, I don’t talk about anything more advanced than what I outline above.

210 Part III: Creating Your Application Architecture

Understanding PAC
At its most abstract, a PAC architecture consists of six kinds of classes:
three at the agent scale and three within each agent. Figure 14-1 shows this
overall view.

	

Figure 14-1:
The overall

hierarchy of
agents and
PAC within

agents.
	

At the agent scale, the three classes are top-level, bottom-level, and interme-
diate-level. Figure 14-2 shows Class-Responsibility-Collaboration (CRC; refer
to Chapter 2) cards for these three agent classes.

The agents in a PAC hierarchy behave like layers in the Layers pattern (see
Chapter 9), in that they communicate only with agents in adjacent layers. If
information needs to flow from an agent of one level to another agent of the
same level, it must flow upward through an intermediate-level agent before
returning to its destination.

211 Chapter 14: Layering Interactive Agents with Presentation-Abstraction-Control

	

Figure 14-2:
Agent

CRC cards.
	

Inside all the agents of a PAC architecture are three classes: presentation,
abstraction, and control. Figure 14-3 shows CRC cards for these internal
classes.

212 Part III: Creating Your Application Architecture

	

Figure 14-3:
Internal PAC

CRC cards.
	

Each of these classes inside an agent has the same responsibility relative to
the others. Depending on a class’s location in the overall agent hierarchy,
however, the functionality of one or more of these internal classes is mini-
mized or emphasized (see Figure 14-4). In the top-level agent, the abstraction
is emphasized because it stores the model data. In the bottom-level agents,
the presentation class is emphasized because it provides the lowest-level dis-
play functionality. The intermediate-level agents can fulfill several roles; as a
result, the responsibilities of all three internal classes may be more balanced.

213 Chapter 14: Layering Interactive Agents with Presentation-Abstraction-Control

	

Figure 14-4:
Relative

importance
of PAC

classes in
different
layers of

agents.
	

Problem: Coordinating Interactive Agents
Continuing the example introduced in Chapter 13, your problem in this
chapter is to combine several applications being used in an urban-coyote

Political polling by city, state, and nation
Political parties use polls to interview the public
to understand how the public feels toward their
candidates before an election. Some elections
are at the local city level, some elections are
at the state level, and some elections are at
the national level. The parties want poll results
at each of these different levels. Each level’s
results are a combination of results at lower
levels — the statewide prediction is the sum of
the local predictions across the state, and the
national prediction is the sum of the state pre-
dictions. The information gathered at the lowest
level cascades upward to the larger bodies.

Comparing this hierarchy of polls to the
Presentation-Abstraction-Control pattern, the
national poll corresponds to the top-level agent;
it takes the results from the intermediate-level
agents, which are the states results. The bot-
tom-level agents are the citywide polling data.

Each agent is responsible for its own results,
which can be accessed and used by the levels
above it. It’s easy to add new intermediate
levels — for example, counties that combine
several cities but are still part of a state. The
agents can all work independently and in par-
allel. Voter opinion can be collected in multiple
cities simultaneously.

214 Part III: Creating Your Application Architecture

study. The scientists have been using individual programs to access differ-
ent data sets and data displays; now they’d like to transition this collection
of programs to a unified system. When you get this assignment, your goal is
to reuse as much as possible of the existing programs. You and the scientists
expect that it will be easier and faster to create new views of the data if all
the existing views and data are combined into a single program.

Currently, all the individual data programs use their own private data sets.
The scientists have two goals for the new application:

	 ✓	They want to view all their data in one program with a simplified, unified
user interface (UI).

	 ✓	They want to combine all their data into one large data set. Currently,
each of the different programs stores its own data, and some overlap
has led to data-integrity issues in the past. The scientists think that if all
the data is together and in the same place, they may see new relation-
ships between the data sets that have been invisible to them in the past.

You also have a goal: You want the new system to be easier to maintain.
Keeping all the little programs consistent and synchronized is hard.

Combining the programs
After some research and software archaeology, you find that the scientists’
separate programs have similar structures. This similarity allows you to
encapsulate the separate programs as objects that fit within a new hierarchy.

In addition to reusing the existing programs, you need to add some other
objects to the unified application, including error handling and a new data-
entry method. Your class diagram looks like Figure 14-5, in which the old dis-
play programs are labeled Program1, Program2, and Program3.

	

Figure 14-5:
Different
data dis-

played as
objects in

the solution.
	

215 Chapter 14: Layering Interactive Agents with Presentation-Abstraction-Control

The data from all the different data sets is being combined into one data
repository. You pick a popular open-source database because it seems
appropriate and you want to find out more about it. Regardless of the type
of database or file you store the data in, you create a repository object to
access the data and to provide it to the views.

Because you have this new centralized data repository, you also need to
create a new way to enter the data and to access it directly. You discuss this
issue with the scientists and decide that data entry should be done through a
simple spreadsheetlike interface.

Each of the formerly independent programs needs some modifications that
allow it to access data from the shared repository instead of from its inter-
nal data store. These modifications aren’t hard, because, for the most part,
the individual programs were written with maintainability in mind, and they
isolated the mechanics of their local data stores from the display functions.
By changing some application programming interfaces (APIs) and writing
some Adapter software, you’re able to redirect data access to the centralized
repository. (The Adapter pattern is available in Design Patterns: Elements of
Reusable Object-Oriented Software, by Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides [Addison-Wesley Professional].)

Ruling out MVC
You may have read about Model-View-Controller (MVC) in Chapter 13, so you
investigate using it for this application. Pretty quickly, however, you realize
that MVC isn’t appropriate, for the following reasons:

	 ✓	The model component in the MVC architecture pushes changes out
to the views. In the new program, you want the formerly separate pro-
grams to act more autonomously and to retrieve data from the reposi-
tory when they need it.

	 ✓	The views and controllers in MVC are closely related. Many times,
these components are implemented as subviews. When you combine
existing systems into a new unified system, each of the views in the
new system was an independent program before, so it stands alone and
doesn’t have interfaces to other programs, like the views in a typical
MVC system. Conversion of the separate programs to objects within an
MVC architecture would be hard, and you wouldn’t be able to reuse as
much of the existing programs as you’d hoped to.

The following section provides a more general comparison of the MVC and
PAC patterns.

216 Part III: Creating Your Application Architecture

Comparing PAC and MVC
In Chapter 13, I introduce MVC, another architectural pattern for structuring
your interactive applications. MVC and PAC are quite a bit different.

MVC helps create one hierarchy of control, abstraction, and presentation
components. By contrast, the PAC architecture is useful for assembling a
hierarchy of separate hierarchies.

In PAC, the architecture is created with a hierarchy of agents, each contain-
ing all three parts of the name: a presentation part, an abstraction part, and a
control part.

	 The most important difference between these two patterns that should lead
you to choose one or the other is that PAC is built around the notion of inde-
pendent components cooperating to perform the application, whereas MVC is
more about the flexibility of the human-computer interaction within a single
overall component.

Using separate agents
In the scenario I’ve been describing, each of the formerly separate programs
is to remain autonomous. Each one behaves like a separate agent, all of
which share the overall system hierarchy and a repository of data with the
other agents. (For a reminder, see Figure 14-1, earlier in this chapter.)

Each of the agents in your new program once was a separate, independent
program. As a result, it had its own data abstraction component, in which it
structured the data for which it was responsible; its own view component,
which it used to present the display to the UI; and its own control part for
receiving input from the user. Figure 14-6 shows several display components
with their subcomponents.

Each agent continues to have these three subcomponents: data abstraction,
presentation, and control. In “Combining the programs,” earlier in this chap-
ter, I point out that the abstraction subcomponent needs to change from
accessing data local to the agent to centralized data. Similarly, the presenta-
tion and control subcomponents need to be modified slightly to reflect the
fact that they aren’t in a stand-alone environment.

You have to add a high-level agent to control and coordinate all the separate
views that once were separate programs. This agent will provide the main UI
that lets the scientists pick the display they want to see.

217 Chapter 14: Layering Interactive Agents with Presentation-Abstraction-Control

	

Figure 14-6:
A hierarchy

of compo-
nents and

subcompo-
nents.

	

By building the system this way, you achieve your goals:

	 ✓	You reuse the stand-alone programs.

	 ✓	You merge the data and data handling, which is going to reduce mainte-
nance problems for you and the scientists in the future.

	 ✓	You achieve a single system to which you can easily add new displays in
the future.

Solution: Creating a Hierarchy
of PAC Agents

The PAC architecture defines a hierarchy of cooperating agents, each of
which has responsibility for part of the application’s functionality. Each agent
contains three components: one for presentation, another for abstraction,
and yet another for control. These three components isolate user interaction
from core functionality and define cooperation among agents.

218 Part III: Creating Your Application Architecture

Exploring the effects of PAC
As with all patterns, certain benefits and liabilities are associated with the
PAC pattern. I tell you about them in this section.

	 Although the benefits of PAC can be significant, the liabilities also can be sig-
nificant — to the point that you shouldn’t use PAC for some problems (see
“Knowing when — and when not — to use PAC,” later in this chapter).

Benefits
Here are the benefits of a PAC architecture:

	 ✓	PAC excels at separating concerns. Each agent is exclusively respon-
sible for a part of the application. It maintains its own state and data,
coordinating with other agents when necessary. The boundaries
between the agents are well defined and discrete. You can define and
build each agent’s internal characteristics as most appropriate. Among
other benefits, this feature allows the agents to be developed indepen-
dently, maybe by separate teams.

	 ✓	PAC supports evolution and extension. Because each PAC agent is sep-
arate, with a well-defined interface and discrete boundaries, the changes
within an agent don’t affect the other agents. You can modify the inter-
nals of the agent without causing a major upheaval in the system.

	 ✓	Adding new agents to the system is easy. You just squeeze them in
between the existing agents in the system. You don’t need to worry
about effects on other parts of the system, because the agents are
discrete and self-contained. You could add a new kind of view to the
coyote-data system, for example, by adding its new agent and then modi-
fying the small number of other agents that start and trigger the display
of the new agent.

		 The well-defined interface between agents means that new agents don’t
require interface changes. You can handle new agents appearing in the
system by creating a registration interface so that new agents can reg-
ister their presence; the agents that need to know about the new agents
can pick up this information from the registration.

	 ✓	PAC agents are easy to distribute, which provides better performance
and multitasking. The agents can be spread out as different threads
or different processes (see the sidebar “Implementing agents as pro-
cesses,” later in this chapter), or even on separate computers. Changing
the system from one distribution model to another is simple; although
you have to change the agents, the changes are confined to the agent’s
control component.

219 Chapter 14: Layering Interactive Agents with Presentation-Abstraction-Control

Liabilities
Like all patterns, PAC has some liabilities:

	 ✓	The overall complexity of the system increases if you use PAC and its
agents indiscriminately. An easy trap to fall into is using an agent for
every low-level item, such as drawing a square or a border. If you do
this, you’ll soon be buried by all the agents! Complexity also increases in
the higher-level agents because other agents must be created to coordi-
nate the explosion of low-level agents.

		 You need to think about your design carefully, consider its level of gran-
ularity, and at some point stop refining things into ever-simpler bottom-
level agents.

	 ✓	Overall control of all your agents gets complex and makes the over-
all solution complex. The control components mediate between the
abstraction and presentation components, as well as between different
agents. This mediation capability is crucial for achieving good internal
collaboration; poor choices here negatively affect overall architectural
quality. The external interfaces and APIs to the control component
shouldn’t refer to internal characteristics or naming conventions that
the other agents won’t know. The control component should do any
translation and mapping required on information coming into or passing
out from an agent’s other components.

	 ✓	The complexity of PAC architectures can make them inefficient. The
communication flow within a hierarchy of agents is similar to the flow
in the Layers architecture (see Chapter 9): Messages from the top of the
agent hierarchy must pass through all the intermediate agents to reach
the lower-level agent recipient. If the agents are distributed across a net-
work, the networking protocols and data-transfer mechanisms further
reduce efficiency.

Knowing when — and when
not — to use PAC

	 The PAC architecture isn’t ideal for every situation, and its drawbacks limit
its applicability. As the scale of the concepts in the architecture shrinks, PAC
becomes less and less applicable. If the modeling of each object in a graphical
editor must be represented by its own PAC agent, for example, the number
of agents explodes, and the overall architecture becomes much more com-
plex. This complexity negatively affects your ability to build and maintain the
system; it also negatively affects the efficiency of the resulting application.

220 Part III: Creating Your Application Architecture

If the abstraction of the concepts is larger, especially as the concepts start
to require their own UIs, PAC becomes an appropriate pattern. In these situ-
ations, PAC provides a maintainable architecture with clear interfaces and
separations of concerns among the various tasks. Figure 14-7 shows the con-
tinuum of PAC applicability.

	

Figure 14-7:
The contin-
uum of PAC

applicability.
	

Looking inside PAC architecture
In this section, I dig into more details on the parts of PAC. Refer to the over-
view of the solution and the figures in the “Understanding PAC” section as
you’re reading.

Top-level agent
The top-level agent provides the global data model for the system. Internally,
it’s the abstraction component that provides this capability. The abstrac-
tion component contains methods that allow the data to be manipulated and
accessed; the data is independent of how the system displays it. In a mapping
system, for example, the model is stored in terms of real units such as miles
and kilometers. This independence makes the agent portable to other appli-
cations and new views.

The presentation class of the top-level agent doesn’t have much to do. It may
have some systemwide display functionality, or it may not do anything. The
top-level presentation class is a good place to store the fundamental display
elements that most of the other agents will use, such as scrollbars and borders.

The control class at the top level has three responsibilities:

	 ✓	It coordinates the PAC agent hierarchy. As the topmost layer in the
logically layered architecture, it makes sure that lower-level agents get
the information and guidance they need.

	 ✓	It allows lower-level agents to use services provided by the top-level
agents. These services are mostly related to the global data model
stored by the top-level agent.

221 Chapter 14: Layering Interactive Agents with Presentation-Abstraction-Control

	 ✓	It maintains the status of user interaction inside the system. It may check
to see whether certain operations by the user are possible in a given data
model, or it may store history or permit undo/redo capabilities.

Bottom-level agents
The bottom-level agents store the key display concepts found within the
semantics of the application. These concepts can be small or large, such as
simple rectangles or complex maps. They can have semantic importance to
the application, such as mailboxes in a network traffic management system,
or they may be generic display widgets, such as scrollbars.

	 The concepts that the bottom-level agents are responsible for are the smallest
things that the user can manipulate.

The abstraction component stores any agent-specific data. Unlike the top-
level agent, though, it doesn’t store data for any of the other agents in the
system.

The presentation class of a bottom-level agent provides a specific view of the
concept, and it provides access to all the functions that the user may apply
to that concept. In the example of a map, it provides access to the panning
and zooming controls. It also maintains information about the view internally,
such as the current state of what the user is examining.

The control component maintains consistency between the abstraction and
presentation components, acting as an interface and preventing the agents
from having dependencies between the classes. Also, events and data are
exchanged with higher-level agents. Incoming events are forwarded to the
bottom-level agent’s control class, whereas incoming data is forwarded to
the bottom-level agent’s presentation class. Outgoing events and data are for-
warded to the higher-level agents.

In the coyote display system from Chapter 13, the old programs become the
bottom-level agents.

Intermediate-level agents
The intermediate-level PAC agents coordinate the activities of other agents in
the system, or they combine or compose the results from other agents. The
combination and composition are done mostly by the control class.

In the coordination role, an intermediate-level agent maintains consistency
among other, lower-level agents in the system. It makes sure, for example,
that multiple views of the same data managed by lower-level agents are
consistent.

222 Part III: Creating Your Application Architecture

In the composition role, an intermediate-level agent defines a new abstrac-
tion for the system. Then it pulls in the needed lower-level agent’s results
(or presentations) to create the instance of that abstraction that the user can
see and manipulate.

The abstraction class of the intermediate-level agent manages the data
needed internally. The presentation class provides any UI capability that
goes along with the intermediate-level agent’s role.

Implementing PAC
Implementing a PAC architecture involves the ten steps described in the
following sections. You can repeat any step or group of steps as necessary
throughout your implementation.

	 As you work through these steps, you may get confused about top and bottom
roots and leaves, so Figure 14-8 shows a reference to this terminology.

	

Figure 14-8:
PAC tree

terminology
reference.

	

Step 1: Define the application’s model
In this step, you study the problem’s domain and map it to the overall soft-
ware architecture, which means deciding on the best decomposition and
abstraction of the problem.

	 Don’t think about PAC agents or distribution of the components while you’re
working on this step. You work on those aspects in later steps.

223 Chapter 14: Layering Interactive Agents with Presentation-Abstraction-Control

To understand the application’s model, you need to know the answers to the
following questions about the system and its components:

	 ✓	What are the services that the system provides?

	 ✓	What components does the system need to deliver those services?

	 ✓	How do the components of the system relate to one another?

	 ✓	What is the collaboration between the components?

	 ✓	What is the data on which each component acts?

	 ✓	How does the user interact with the system?

Step 2: Develop a general PAC hierarchy
Form a general hierarchy of PAC agents. You still haven’t identified all the
agents — you start doing that in the next step — so don’t get lost in the
details yet.

	 A strategy that you can use to develop the hierarchy is lowest common ances-
tor. When several components rely on the services of other components, put
them in a hierarchy with the source component as the root. This strategy
identifies those agents that provide common services and elevates them to
the top of the hierarchy.

In the coyote research project, all the different displays will be driven from
one view coordinator component — which, therefore, is the root of the dis-
play hierarchy. Figure 14-9 shows both this subhierarchy root and the next
one. All the views require access from the data repository. As a result, the
repository has been elevated to the root of the tree, which is the topmost
level in this example, as I explain in the next step.

Implementing agents as processes
Each PAC agent can be implemented as a sepa-
rate process or thread. Patterns in the second
volume of the POSA series (Pattern-Oriented
Software Architecture, Volume 2: Patterns for
Concurrent and Networked Objects, by Douglas
Schmidt, Michael Stal, Hans Rohnert, and Frank
Buschmann [Wiley]) are useful for solving the
communication issues inherent in separation
into different threads or processes.

If the agents are separate processes, you can
use patterns such as Proxies (see Chapter 19)
to represent the agents and prevent dependen-
cies. Or you can use the Forwarder-Receiver or
Client-Dispatcher-Server pattern (see Chapter
21) to implement communication among pro-
cesses. Interprocess control is inherently
inefficient; you can mitigate this inefficiency
somewhat by grouping subhierarchies of your
application within process boundaries.

224 Part III: Creating Your Application Architecture

	

Figure 14-9:
The coyote

data sys-
tem’s rough

hierarchy.
	

Step 3: Identify the top-level agent
In this step, you identify the functional core of the system. In the coyote
research system, that core is the data repository, where all the data that
the different displays need to use is stored. In other systems, the core may
not be the data repository, which may be needed by only a subset of the
subhierarchies.

The top-level agent contains two presentation-related capabilities: It’s
responsible for the top-level display selection and invocation, and it contains
the UI elements that will be used across the whole system, such as common
menu bars and dialog boxes.

Step 4: Find the bottom-level PAC agents
In this step, you need to go to the opposite extreme and identify the smallest
self-contained components that the user can control or display. These agents
are at the lowest level in the PAC agent hierarchy. In the coyote example,
these components provide the different displays and provide the data entry
spreadsheet.

Next, for each of these agents, identify the actual UI components to be used,
such as menus, bar charts, and dialog boxes. These components will become
bottom-level PAC agents.

225 Chapter 14: Layering Interactive Agents with Presentation-Abstraction-Control

Step 5: Find any bottom-level agents that aren’t displays
Many systems have bottom-level agents that don’t involve the UI directly.
Instead, these lowest-level agents provide system services. The services
aren’t ones that all the other elements access regularly, such as the data
repository; they’re services that aren’t directly related to the central focus of
the system. In the coyote application, the error handler is the lone example
of an extra system service agent.

Step 6: Compose lower-level agents with intermediate-level agents
In many systems (although not in the coyote research application), the con-
cepts in the lowest-level displays are combined into larger sets that the user
can operate on together in the UI. In this step, you create the intermediate-
level agents that compose lower-level displays into these composite struc-
tures. These composition-focused intermediate agents allow the user to
interact with the system in larger ways.

The coyote research example doesn’t have any intermediate-level agents,
because you’re combining independent programs into a system. An example
that does use an intermediate-level agent to combine bottom-level agents is an
architectural drafting system. This type of system has bottom-level agents to
display basic rooms. A house or other structure includes several rooms, and
an intermediate agent allows the user to manipulate a group of rooms as a unit.

Step 7: Coordinate the lower-level agents
with intermediate-level agents
Some system concepts have interrelated displays. Many text-editing pro-
grams, for example, have views such as page layout, outline, and web. If the
user changes the underlying data while working in one view, the changes
should be reflected in the other views as well. An intermediate-level PAC
agent coordinates the information flow among the views.

Each of these intermediate agents may have its own UI, such as menu items.
In the coyote research system, the view coordinator agent is one of these
coordination intermediate-level agents. It uses the View-Handler pattern
(see Chapter 20).

Agents also coordinate things other than displays. A system may start mul-
tiple concurrent jobs that an intermediate agent will coordinate.

Step 8: Separate the human computer interaction
from the core functionality
Within each PAC component in this step, you separate subcomponents to
provide the presentation and abstract capabilities. The presentation subcom-
ponent is responsible for all parts of the agent’s UI, including all the menus,

226 Part III: Creating Your Application Architecture

windows, and dialog boxes. The abstraction subcomponent stores all the
data that is local to the agent and performs any calculations that are done on
the data locally.

In some systems, the lower-level abstraction subcomponents use data pro-
vided by other PAC agents. In these cases, you can choose not to create an
abstraction subcomponent or to create one with only basic functionality
that accesses the data from the other agent. In the first case, you avoid rep-
licating data across the system, and you avoid the effort of implementing
the subcomponent. The second method incurs communication penalties,
though: The PAC agents must share data, especially when actions like screen
refreshes are performed.

After creating the presentation and abstraction components, you add the
control subcomponent to mediate between them. The control is in place to
prevent dependencies between presentation and abstraction subcomponents
by providing an interface between them and adapting the data between them.
The control component is best implemented as an Adapter.

In this step, your focus on the control component should be to manage the
internal interactions within the PAC agent. In the next step, you add function-
ality to the control subcomponent to allow the agent to talk to other agents.

Step 9: Create the agent’s external interfaces
Every PAC agent needs to communicate and coordinate with other PAC
agents in the system, so in this step, you add this externally facing capability
to the control subcomponent.

Inside the PAC agent, the control subcomponent must have some way to pass
information to the other subcomponents. It also may have to pass informa-
tion to higher- or lower-level agents.

	 A great way to implement this functionality is to use the Mediator pattern
(from Design Patterns: Elements of Reusable Object-Oriented Software), because
the role of the control subcomponent is to act as a mediator between the
other agents and subcomponents.

	 In this case, you want a Mediator (from Design Patterns) rather than a Broker
(see Chapter 12), because the Mediator will be connecting objects, not whole
systems.

You can program the agents to exchange information in two ways. Weigh the
complexity of each of the following methods against its benefits:

227 Chapter 14: Layering Interactive Agents with Presentation-Abstraction-Control

	 ✓	Create public interfaces to every service that an agent provides. This
method greatly simplifies the mediation role, because the external
agents know directly what function to invoke and how to send or receive
information.

		 This method has a drawback, though: The interface of an agent can
explode! An intermediate-level agent needs interfaces for everything it
controls directly, as well as interfaces for everything that the higher-
and lower-level agents provide, so although the direct interfaces makes
things easier, the explosion of pass-through capabilities makes them
more difficult.

		 Another drawback of this method is that it introduces dependencies
between agents. Each agent knows about the interfaces of the other
agents. Therefore, changes to an agent can ripple through the other
agents, making the system harder to maintain.

	 ✓	Implement a message-passing system. This solution also becomes
complex quickly. The control subcomponent needs to examine each
message and decide how to process it: send it to the presentation or
abstraction subcomponents within the same agent, send it to another
agent higher or lower in the hierarchy of PAC agents, or process it
within the control subcomponent. Deciding how to handle each message
is complex.

		 This method keeps the agent interfaces small — just the message-passing
interface — so it reduces overall system complexity at the cost of increas-
ing it within an agent. This solution prevents potential dependencies
between agents, making the agents more reusable and easier to maintain.

	 The PAC agents act independently. Creating a registration process is an effec-
tive way to let the agents know about one another. For implementation details,
see the Publisher-Subscriber pattern in Chapter 21.

Another aspect of cooperation between the agents is the responsibility of
the control subcomponent: the notification of other agents when data has
changed within an agent. This change-propagation mechanism also can use
the Publisher-Subscriber pattern (see Chapter 21). Agents register with the
agents containing data. When the data changes, the registration list is used
for the agent to push — or publish — the data to the other interested agents
that have registered to be notified.

There are other ways to share the changes besides the Publisher-Subscriber
mechanism. The messaging and interface of the system can include informa-
tion to propagate the changed information to the other agents in the system,
for example.

228 Part III: Creating Your Application Architecture

Step 10: Tie the hierarchy together
By this point, you’ve structured your agents and built several subhierarchies.
In this step, you tie everything together into the complete system by imple-
menting the linkages among agents.

You must connect each PAC agent to all those lower-level agents that it
cooperates with directly. If agents can be created or deleted dynamically, the
intermediate-level agents that coordinate that creation and deletion must be
given the functionality they need to do that work.

Chapter 15

Putting Key Functions
in a Microkernel

In This Chapter
▶	Designing a simple, compact system core

▶	Implementing a microkernel

I
n this chapter, I tell you about a sophisticated way of building your
system around a small core of functionality. This core, or microkernel, lets

you build the outside layers from efficient, small, easily changeable parts.

Although operating systems (OSes) are the most common examples of
microkernels, the technique is used in many virtual-machine infrastructure
packages and is useful for solving a wide variety of other problems. Security
appliances that screen messages with pluggable external servers to provide
new security policies are another example. A database engine example has a
microkernel providing core functionality to interact with the hardware and
storage. Different conceptual views of the database are provided through
policies implemented in external servers.

Problem: Hosting Multiple Applications
You’ve been assigned the task of designing an OS for a custom hardware
device that your company is making. The OS won’t be running general-pur-
pose applications like web browsers or spreadsheet programs, so there’s no
need to port a commercial OS to the hardware. Also, because your compa-
ny’s hardware is custom, OS vendors aren’t likely to provide a version for it.

The new system must be designed to integrate your company’s applications
into faster custom hardware. The applications already run in a Linux environ-
ment. (For this example, the current OS really doesn’t matter; the problem
is about the new system.) Linux provides the standard capabilities of OSes,
such as scheduling, a file system, memory management, networking, paging,

230 Part III: Creating Your Application Architecture

and device drivers. The applications expect the existence of a file system,
a process infrastructure, and management of the underlying hardware, but
not much else. What you build must provide those capabilities to the new
system.

Considering an existing OS
Your assignment is general enough that you can provide an environment for
the applications on top of a commercial OS, or it can be something that you
create in-house. It must provide the operating environment that your applica-
tions need.

The first thing you think about doing is porting a free OS to the new hard-
ware. You could strip down a Linux distribution to get to the minimal func-
tionality, because the applications put only minimal demands on the system.
After you spend some time studying the problem, however, you think that
the resulting system will still be bigger and more fully functioned than nec-
essary. The central core, or kernel, of any widely available OS continually
receives new features and capabilities. These updates increase the size of the
OS and mean that you’ll be removing unneeded features and fixes to unused
parts of the OS all the time.

The other OSes that would be candidates for your system are commercial
products. These candidates, however, have their own problems:

	 ✓	You can’t get source code for them, and without source code, you won’t
be able to port those OSes to your hardware.

	 ✓	The hardware department’s road map shows continual cost reductions
to the hardware. This first release will use some components for basic
functions that will be replaced by the third or fourth revision. Rapid evo-
lution is another reason why the commercial OS solution doesn’t seem
ideal for your situation.

	 ✓	As when you considered a Linux port, you find that a commercial OS
doesn’t have enough device drivers for your custom hardware, which
would require you to continually adapt commercial (or third-party open
source) device drivers to fit your environment.

These considerations lead you to decide to design your own OS.

Designing a custom OS
The first task in designing your own OS is thinking about what it needs to
do to fulfill the applications’ needs. What you build has to be portable,

231 Chapter 15: Putting Key Functions in a Microkernel

extensible, adaptable, and small to allow easy evolution to future hardware
(and software) technologies.

Because your hardware is a custom project built in-house, the hardware
designers build only what’s needed, not putting in any extra frills. You know
that this simplicity means that the applications and your OS should have
small memory footprints and be efficient in terms of processing.

Separating policy from mechanisms
Currently, all the applications that you want to support in the new OS are
built on top of a full-function OS. You can imagine that in the future, the
system will support several other applications that your company currently
runs on different OSes. So, over time, your custom OS needs to run standard
applications that may expect different operating environments, so it needs to
emulate several existing standards.

Another criterion for the system you’re building is that you make it easy to
add applications. You like the ease of plug-and-play hardware and software
plug-ins, for example, and you want it to be that easy for an application to
move over to your new OS.

You’re going to build the mechanisms to provide services to your OS. These
services will be atomic — that is, contained and bounded. To make your OS
usable by applications, you must ensure that the core of the OS provides the
basic mechanisms that the applications used in their previous, full-function
OSes, because the applications expect an OS to implement basic functions in
a certain way.

On top of these basic mechanisms, other parts of your design need to pro-
vide higher-level capabilities that build on the mechanisms to implement a
policy.

To support the applications that currently run on several OSes, you build a
system like the one shown in Figure 15-1. You implement the mechanisms
that are common to all the OS policy levels. You also build the policy level
for the needed OSes. The policy level interfaces between what your current
applications expect of an OS and the actual mechanisms that your small OS
provides. Because you have applications coming from several commercial
host OSes, you decide to build the underlying OS as a modular core of mech-
anisms and also build the policy layers for two widely used OSes: Windows
and Linux.

The policy layer encapsulates the functions that your applications expect the
OS to provide. It translates requests from the applications into calls to the
mechanisms that your OS supplies.

232 Part III: Creating Your Application Architecture

	

Figure 15-1:
OS and pol-

icy layers.
	

	 The policy layer and the OS layer provide application programming interfaces
(APIs) to their policies and mechanisms, respectively. At the policy level,
these APIs mimic a subset of the commercial OS; at the OS level, they provide
the basic functions required by all the policy layers.

Building the system
Because you want to keep the core of the OS simple and small, it should pro-
vide only the most necessary mechanisms that are common to all users of
the system. Other functionality will be supported through servers.

Core
Basic hardware interfaces are provided in your core OS. Some hardware
associated with the system still isn’t common to all the operating environ-
ments, however, so you build interfaces to this hardware separately from
the OS. Only one of the applications being ported to the new hardware needs
Bluetooth technology, for example, so it doesn’t make sense to put Bluetooth
support in the core of the OS.

Servers
Instead of adding more functions to the core, you keep the OS to a minimum
size and introduce servers — either internal or external. These servers add
other functionality without increasing the size of the core OS (see Figure 15-2).
The policy layer is a specific example of a server that you build.

	

Figure 15-2:
The core OS
with internal
and external

servers.
	

233 Chapter 15: Putting Key Functions in a Microkernel

External servers are separate processes. These servers look to the outside
world like part of the OS because they provide functionality that the appli-
cations expect to be part of the OS, at least with respect to the policies for
which that particular server is responsible. The policy layer is an example of
an external server.

The external servers provide interfaces that the client applications want
to execute, such as APIs for the file system. The actual file system is imple-
mented as an internal server. It’s internal because the clients don’t talk to it
directly — they talk to the core, which then talks to the internal server. The
file system is a server because it provides common functionality that isn’t
present in the core of the OS.

Internal servers are like external servers in that they interface between the
OS and some other functionality rather than between the client and some
functionality in the core OS.

Clients
The clients of the system are the applications that use the system. The cli-
ents communicate with your OS by using communication facilities provided
by the core of the OS, and your OS communicates with the servers that pro-
vide functionality not available in its core. Figure 15-3 illustrates this commu-
nication hierarchy.

	

Figure 15-3:
A client

talks to the
OS core,

which talks
to servers.

	

Adapters
You also add adapters to the system. These adapters slide between the cli-
ents and the core of the OS, as shown in Figure 15-4. The goal of adapters

234 Part III: Creating Your Application Architecture

(sometimes called emulators) is to shield the user of the system from the
internal details and, hence, from depending on certain implementations.
Adapters run in client address space and adapt the application to the pro-
gramming interface of the external server.

	

Figure 15-4:
An adapter

between OS
and client.

	

Extensions
With this arrangement of clients, servers, and the core OS, adding extensions
is easy. The places to add new functionality are well defined:

	 ✓	Core or microkernel of the OS, if the extensions are indeed core mecha-
nisms that all the servers need

	 ✓	Internal servers, if the functions aren’t going to be externally visible to
the clients

	 ✓	External servers, if the functions are internal to the system but visible
to the clients

	 ✓	Adapters, if the extension adds something new between the application
and external servers

	 ✓	Clients, if the functionality is related strictly to a single application

Solution: Building Essential
Functionality in a Microkernel

Microkernel architectures adapt to changing system requirements easily. A
microkernel core with a small set of functions is enhanced by extensions that
give the system more and customer-specific functionality.

The microkernel is the core OS that I’ve been telling you about in this chapter.

235 Chapter 15: Putting Key Functions in a Microkernel

Examining Microkernel Architecture
The section of this chapter that describes the problems associated with cre-
ating a custom OS introduces the parts of the microkernel. In this section,
you dig deeper into the parts of a microkernel-based system.

Viewing the architecture’s parts
To implement microkernel architecture, you need to design five kinds of
participating components:

	 ✓	Microkernel

	 ✓	Internal servers

	 ✓	External servers

	 ✓	Clients

	 ✓	Adapters

I describe these components in detail in the following sections.

Microkernel
The microkernel is the main component of this architecture, providing the
core of basic, essential services. The microkernel encapsulates hardware-
specific parts, shielding the applications, clients, and servers from these
parts. It manages essential resources such as processes or files, providing
access to those resources through atomic services, or mechanisms. These
mechanisms form the basis for building higher-level policies, which provide
more complex functionality.

Figure 15-5 shows the Class-Responsibility-Collaboration (CRC; see Chapter 2)
card for a microkernel component.

	

Figure 15-5:
Microkernel

CRC card.
	

236 Part III: Creating Your Application Architecture

Internal servers
Internal servers are components that extend the functions provided by the
microkernel. These servers are closely related to the microkernel and may
be tied to hardware and underlying platform capabilities. The microkernel
invokes the functionality provided by the internal servers through service
requests. The internal servers encapsulate the capabilities of the underlying
system and help keep the microkernel small. Device drivers are examples of
internal servers.

	 Keeping the microkernel small in terms of memory and fast in terms of pro-
cessing time is one of the goals of this architectural style. This goal is the
reason why the internal servers are created: to isolate additional, complex,
and possibly optional services from the small, fast core.

Internal servers are extensions of the microkernel and are accessible only
through the microkernel; they aren’t accessible to clients directly.

External servers
Unlike the internal servers, which must be accessed through the microkernel,
the external servers export interfaces, which allows clients to invoke them
directly. These servers implement the policies that are built on the basic
mechanisms provided by the microkernel itself. External servers usually run
as separate processes; they access the microkernel API to accomplish tasks
for the client.

	 Collections of external servers that work together to implement their own
view of the underlying application domain are sometimes called a personality.
They provide a layer of abstraction on top of the microkernel, offering differ-
ent policies through different implementations.

Figure 15-6 shows CRC cards for both internal and external servers.

	

Figure 15-6:
Internal and

external
server

CRC cards.
	

237 Chapter 15: Putting Key Functions in a Microkernel

Clients
Clients are the applications using the system. They communicate with the
microkernel-based system only through the external servers.

	 There’s a chance that clients will become too closely tied to the external serv-
ers. One way to prevent this from happening is to introduce adapters into the
system (see the next section).

Adapters
Adapters provide an interface between clients and external servers, reducing
the risk of tight coupling. Too-close coupling makes it harder to change the
system without also changing the client application’s functionality.

The adapters run in client address space, rather than in server or microkernel
address space, so you should think of them as being part of the client. They
allow the client to integrate with the given external server without any modi-
fications — that is, they shield the client from changes. The adapter receives
requests from a client and passes them to the appropriate external server.

Plug in a game
Games can be purchased on cartridges or spe-
cial cards for a number of gaming consoles, like
Nintendo’s Game Boy, DS, and 3DS consoles or
the PlayStation Vita. The core functionality is
built into the actual gaming console that provides
the computing capabilities, the displays, speak-
ers, microphones, cameras, and other input/
output capabilities. The cartridges or cards pro-
vide the specific games and sometimes the abil-
ity to store game status and high scores.

The parts of the game console and game card
system map onto the Microkernel pattern like this:

	✓	 Player: The player who uses the com-
bined game and card is the client of the
Microkernel system.

	✓	 Gaming console: The console itself (with-
out the game card) corresponds to the
microkernel.

	✓	 Game cartridges or cards: The cartridges
or cards are internal servers that provide
extra functionality to the microkernel (the
gaming console).

	✓	 Pin connectors between console and car-
tridge: The actual pins that make the elec-
trical connection between the console and
game cartridge are adapters in the micro-
kernel system.

	✓	 Game console buttons and input devices:
Because the buttons and touchpads of the
game console provide an interface for the
client (player), they correspond to external
servers.

This architecture of games (and microker-
nels) allows the functionality to be changed
easily through the changing of servers, without
changing the heart of the system.

238 Part III: Creating Your Application Architecture

Figure 15-7 shows CRC cards for clients and adapters.

	

Figure 15-7:
Client and

adapter
CRC cards.

	

Exploring the effects of the
Microkernel pattern
Microkernel architectures are very good at what they do: providing a small,
modular framework for an OS or a similar environment. In this section, you
see the benefits of microkernels as well as the liabilities that go along with
using the microkernel approach in your architecture.

Benefits
These benefits are visible if you use a microkernel:

	 ✓	Microkernel architectures are portable. To move the microkernel to
a new hardware or software platform, you need to change only a small
part of the microkernel, because the small functional core has few
hardware dependencies and selected servers where most hardware
dependencies are confined. Also, a clear boundary exists between the
microkernel and any servers and applications. All the platform depen-
dencies are in the servers, not in the clients and applications.

		 You may need to rewrite the actual microkernel code and some internal
servers extensively as part of a port — but they’re only a small part
of the overall application. The external servers, adapters, and clients
shouldn’t require much revision for porting.

	 ✓	Microkernels are extremely flexible. You can extend them easily by
adding new servers to provide new functionality. All OSes are designed
to make running applications easy, but with microkernels, the OS is so
small that it’s easy to extend.

239 Chapter 15: Putting Key Functions in a Microkernel

	 ✓	Separating policy from the mechanisms needed to implement policy
is easy with a microkernel. The microkernel contains only a small set
of core functions, which provide services to the servers and clients to
achieve the real results. The small set of core functions is enough to
satisfy the needs of the clients, which then can implement whatever
they want, without the limitations that would apply if the microkernel
enforced its own policy. (For more information, see “Separating policy
from mechanisms,” earlier in this chapter.)

	 ✓	Security and reliability are enhanced. Normally, the microkernel is run
in protected address space, and everything else — all the servers, adapt-
ers, clients, and applications — runs in separate process spaces. This
arrangement keeps the parts isolated from one another and prevents
inappropriate interactions.

The distributed-microkernel variant (see the sidebar “Considering microker-
nel variants,” later in this chapter) provides even more benefits:

	 ✓	The same capabilities that make microkernel-based systems easy to
extend in terms of functionality make adding new instances of the
microkernel itself easy as well. As a result, scaling the system is easy.

	 ✓	Reliability is enhanced. The distributed-microkernel architecture
makes it easy to replicate the system. Having more microkernels sup-
porting more instances of an application also enhances the availability
of the application.

	 ✓	Transparency is enhanced. In a distributed system, the microkernel and
the adapters don’t have a lot of extra, unnecessary functionality.

Liabilities
No pattern is without some liabilities that must be balanced with the ben-
efits. Here are the liabilities of using a microkernel:

	 ✓	A monolithic system generally has higher performance than a micro-
kernel system does. You pay a price in performance for the flexibility
and extensibility of a microkernel. Microkernels that are adapted to spe-
cific hardware, however, make high performance possible.

	 ✓	A microkernel is complex. Designing a microkernel isn’t a trivial pro-
cess; both analysis and building the set of core functions can be difficult.
You need in-depth knowledge of the system and applications during
analysis and design.

240 Part III: Creating Your Application Architecture

Implementing a microkernel architecture
In this section, I explain the 12 steps required to implement a microkernel
architecture.

Step 1: Analyze the domain
The first thing you need to do as you implement a microkernel architecture is
understand the domain. Perform domain analysis (see the nearby sidebar) to
understand the core services that clients in the domain expect, such as sup-
port for specific devices or specific standard suites of APIs.

	 Here are some questions to ask and answer:

	 ✓	What common OS-level functions do all applications expect? (The
answers may include file systems, memory management, virtual memory
management, and paging.)

	 ✓	What are the features that you expect to be required as common func-
tionality — but that you realize don’t need to be common?

Step 2: Categorize the services
In this step, you look at all the services that the microkernel must supply and
create separate categories for groups of those services.

Considering microkernel variants
Two variants of the microkernel architecture
are commonly used:

	✓	 Message backbone: In the message-back-
bone variant, the connections between
client and server are indirect. All requests
between a client and a server pass through
the microkernel, which acts as a communi-
cation pathway.

		 This variant is especially useful if your
environment requires all messages to go
through a central hub. This may be the
case for security (so that communications

can be screened) or regulatory compliance
(so that all the messages can be logged).

	✓	 Distributed microkernel: In the distrib-
uted-microkernel variant, an entire large
system appears to the user to be a single
microkernel system, although in fact, it’s
an assembly of components, each of which
has its own microkernel implementations.
Messages are exchanged among the
microkernels via the message backbone
(see the preceding item). To build this kind
of system, you must give the microkernels
communication-related services that they
may not have otherwise.

241 Chapter 15: Putting Key Functions in a Microkernel

	 Some categories are those needed by the applications, which are candidates
for migration to external servers. Another category is those needed for the
microkernel infrastructure, which are candidates for migration out of the core
to internal servers. Yet other categories are the fundamental items, which you
should include in the microkernel.

Step 3: Partition the categories
In this step, you refine your category list by sorting the categories into those
that will be implemented by the microkernel and those that will be imple-
mented by internal servers.

	 Don’t divide the categories arbitrarily; decide on specific criteria.

Here are some example criteria that you can use:

	 ✓	Small, fast microkernel

	 ✓	Time-critical components in the microkernel

	 ✓	Frequently used functionality in the microkernel

	 ✓	Hardware-dependent functionality categories to internal servers

Step 4: Identify the microkernel’s mechanisms
Review the domain analysis from Step 1. Every function that the application
expects must become a policy of an external server. Continuing into the core
of the system, every mechanism that the external servers need to implement
the policies must be provided by the microkernel or as a policy of some
other server.

Domain analysis
Domain analysis is the analysis of a related
set of solutions or systems in a product line
to identify the commonalities and variabilities.
The commonalities are those things that are
the same across all the examples in the set of
systems. The variabilities are those things that
change between the examples.

Domain analysis is useful because the com-
monalities point to functionalities and capa-
bilities that can be developed in common and
shared across a family of products. The com-
ponents that implement the common capa-
bilities are ideal candidates to be reused by all
the products in the family. The variabilities are
emphasized or deemphasized in products to dif-
ferentiate the products from one another.

242 Part III: Creating Your Application Architecture

In this step, identify the mechanisms that the external servers need from the
microkernel to implement their policies. What you’re doing in this step is
defining the interface to the microkernel.

Step 5: Define communication strategies
Now you must decide how the microkernel will provide communication
among the parts of the system. Communications can be asynchronous or
synchronous, one-to-one, many-to-one, or many-to-many, depending on the
applications’ needs.

	 In many cases, the building blocks that you use to create your microkernel
supply a certain messaging paradigm, such as message-passing or shared
memory communications, that you can build on. See the Forwarder-Receiver
and Client-Dispatcher-Server patterns in Chapter 21 for information about how
to implement two styles of communications infrastructures.

Step 6: Structure the actual microkernel component
Use the Layers pattern (see Chapter 9) to separate the system-specific parts
from the system-independent parts of the microkernel. Put the services
that the other components of the system use in the topmost layer, and hide
system details in the lower layers, as shown in Figure 15-8. The details that
you put in lower layers are those that are more likely to depend on the par-
ticular system or hardware.

	

Figure 15-8:
A layered

microkernel.
	

Step 7: Define the microkernel’s programming interfaces
How and what should be accessible to external servers? This step is the time
to decide.

	 Base your decision on the technology that you’re using to implement the
microkernel: a separate process or a shared process. If you’re using a shared
module, you can use ordinary method calls for communication. If the micro-
kernel is a separate process, you must create the interprocess communication
facilities needed for the microkernel to talk to the servers.

243 Chapter 15: Putting Key Functions in a Microkernel

	 The microkernel can become a bottleneck in the system because it’s an exclu-
sive resource. There’s only one microkernel, after all. You can mitigate this
problem by providing multiple threads that wait for requests and other
threads that execute services. You must make sure that your implementation
is thread-safe and that resource integrity is preserved.

Step 8: Manage system resources
All system resources are handled with unique identifiers from the adapters,
clients, and/or servers by the microkernel. The microkernel maps from the
identifiers to the resources.

Step 9: Design and implement the internal servers
To design the internal servers, you can use either separate processes or shared
libraries. Create the internal servers in parallel with steps 7 and 8 because of
the close relationship between the microkernel and the internal servers.

	 Only the microkernel can communicate with internal servers.

Your internal servers can be either of two kinds:

	 ✓	Active: Active servers are implemented as processes, so design them as
event loops. If the server receives a request, it interprets that request,
executes it, and then resumes looping.

	 ✓	Passive: Passive servers are implemented as libraries, so call them by
invoking their interface.

Step 10: Design and implement the external servers
External servers receive requests, analyze them, execute the requested ser-
vices, and send results back to the client. They may call mechanisms in the
microkernel. Typically, an external server is implemented as a separate pro-
cess with its own service interface.

	 You need to define how requests are dispatched to internal procedures. One
way is to integrate a dispatcher with the main loop that unpacks events and
then calls appropriate procedures via a callback. See the Reactor pattern in
Pattern-Oriented Software Architecture, Volume 2: Patterns for Concurrent and
Networked Objects, by Douglas Schmidt, Michael Stal, Hans Rohnert, and Frank
Buschmann (Wiley), for more information about implementing this event-
driven approach.

Step 11: Implement the adapters
Adapters provide functionality to the clients by forwarding that functionality
to an external server. The clients are calling the servers. Behind the scenes,

244 Part III: Creating Your Application Architecture

an adapter packages any extra information that a server needs and sends it
to the appropriate server.

Adapters can be statically or dynamically linked libraries. The adapters inter-
face with exactly one external server (see the Proxy pattern in Chapter 19).

	 One way to optimize the system is to allow adapters to communicate with
the microkernel on their own for some operations instead of forwarding
all requests to the external server. Another way to optimize is to cache the
responses to common requests.

Another trade-off that you need to consider in this step is whether one
adapter should represent all clients or only one client. One adapter for all
clients is better in terms of memory but requires extra processing to for-
ward messages to the correct client. If every client has its own adapter,
more memory will be used, and the system will have more components, but
response time will be better because the dedicated relationship simplifies the
communication.

Step 12: Develop client applications
The last step is designing the applications that will use the microkernel archi-
tecture. Sometimes, you can reuse existing applications. The applications
invoke clients that interact with the system through the policies offered by
the external servers.

Chapter 16

Reflecting and Adapting
In This Chapter
▶	Getting acquainted with reflection

▶	Finding reflection in the real world

▶	Designing and implementing the Reflection pattern

▶	Using the Reflection pattern in modern programming languages

I
n this chapter, I tell you about reflection and the Reflection architectural
pattern. Reflection is the ability of a program to inspect its own internal

structure and to modify its internal structure and behavior. It’s a useful
concept when a program needs to be very adaptable and easy to evolve to
changing requirements. It’s also useful when a program must analyze its own
behavior for other reasons.

Many people are confused about the general technique of reflection. They
don’t understand what it is, how it’s used, or how powerful it is. The first
section explains the basics of reflection so that when I start talking about the
architectural uses of reflection, you’ll have the same understanding of the
concept that I do.

Reflection, the architectural pattern that I discuss later in this chapter, is
useful when you want your application to be able to change itself at runtime.
This pattern opens the door to applications that adapt when you change
your mind about what you want them to do.

	 When I want you to focus on the architectural pattern, I capitalize the word
Reflection; when I’m discussing reflection in general, I leave the word lowercase.

Understanding Reflection
Reflection draws a distinction between the base level of the program that
doesn’t change and a meta level that does change. The base level implements
the application logic and makes use of information from the meta level. The

246 Part III: Creating Your Application Architecture

meta level encapsulates the internal parts of the application that can change
in meta objects. The meta level’s data (the metadata) describes an applica-
tion’s attributes and behavior that can change.

The base level of the application interprets the metadata at runtime to adapt
the application and include its new structural behavior. To get a complete
view of the application, you must look at both the base-level objects and the
current configuration of the meta objects.

Figure 16-1 shows two display instances created with identical base-level
objects and different metadata. In this figure, the metadata is expressed with
Extensible Markup Language (XML), but XML isn’t the only way to represent
metadata. The metadata describes the shape of objects by using only points
and connections between points. The base level understands, and uses, two
structural aspects of the application to create the desired objects. There
are no specific predefined classes that take precisely three or four points;
the base-level objects create new classes with as many points and lines as
defined in the metadata. Arguably, this simplistic example could be done
without reflection; what makes it reflection is that the internal representa-
tions of the objects are new classes that haven’t been preprogrammed.

Reflection has another level in addition to the base and meta levels: the
meta-object protocol (MOP), which defines how changes to the meta level are
made. In Figure 16-1, the MOP is handled in an XML editor that isn’t shown.

Reflecting on the Constitution
The Constitution defines the rules that govern
the behavior of the Congress. To change the
rules for Congress, the Constitution must
change. Changing the behavior of a system from
within the structure of the system is reflection.
The Constitution also defines how to change
the Constitution by adding amendments, which
makes it possible to change the rules of behav-
ior of Congress. This change doesn’t change
the people who make up the Congress or the
location where Congress meets.

The Constitution corresponds to the meta object.
The actual people and the place that Congress

meets correspond to the base level. Changing
the base level’s behavior involves changing the
meta object and doesn’t involve changing the
base level. The meta-object protocol is the rules
for changing the Constitution (the meta object).

Changes to the system are easy to make
through the meta-object protocol. Many kinds of
changes are possible without explicitly chang-
ing the actual base level. Changing the meta
object can be dangerous, though, because the
changes can damage the system — just as
changes to the Constitution can cause unde-
sired consequences.

247 Chapter 16: Reflecting and Adapting

	

Figure 16-1:
Two

different
applications

created
through

metadata.
	

248 Part III: Creating Your Application Architecture

	 In this chapter, Reflection is something that you use to design your overall
application. Many programming languages implement capabilities that they
call reflection. The idea is the same — these capabilities examine a program
and change its structure and behavior — but not every use of a programming
language’s reflection capability is an architectural design choice. The ways to
use nonarchitectural reflection effectively within a language are features of a
language, or idioms.

Looking for Reflection
To help you understand reflection, this section provides several examples.
Table 16-1 breaks these example applications into the three parts of reflec-
tion: base level, meta level, and MOP.

Table 16-1	 Reflection Examples
Example Base Level Meta Level MOP

Externalization Rich-typed
application; raw
typeless input
and output

Type conversion
code

Runtime type
information;
object system
itself

Code analysis
tools

Code being ana-
lyzed

Classes that count
and check code
being analyzed

User interface
(UI) for analysis
tool; UI for infor-
mation retrieval

Aspect-
oriented
programming
(AOP)

Code being
developed

Handlers and AOP
infrastructure

Protocol for
adding handlers
and AOP choice
points

System con-
figuration files

Static parts of
system

Variable settings
and parameters

Configuration file
and editor

	 For details on the use of the base level, meta level, and MOP as classes in the
Reflection pattern, see “Designing Architectural Reflection,” later in this chapter.

Externalization
Most computer programming languages allow you to create groupings of
related data in the form of types, structures, or classes. Within a program,

249 Chapter 16: Reflecting and Adapting

these structures are great — they implement several of the enabling tech-
niques that I discuss in Chapter 2, such as encapsulation, information hiding,
and modularization.

The problem comes when you need to store that structure in a file or send
the data structure over a serial communication link. In these cases, the
nice internal structure that your program uses must be externalized —
converted to a serial stream of bits (or converted from a stream of bits to
the structure again).

	 I discuss this problem in conjunction with several other architectural patterns
in Part III of this book. Look for terms like serialize and marshal.

Today, many libraries, modules, and open-source software applications are
available to do the serializing and deserializing of the data, such as marshal
and yaml in Ruby, and hibernate or the JSON libraries for many other lan-
guages. These serialization and deserialization components don’t need any
previous knowledge of the structures; the programs use reflection to explore
the structure by looking at the structure rather than preprogramming. You
can use the built-in reflection capabilities of many programming languages to
build your own serialization and deserialization capabilities.

	 Some languages, such as C++, don’t support reflection natively, but it’s still
possible to use reflection for externalization in those languages. For an
example of using reflection in C++ to provide flexible externalization, see the
chapter on the Reflection pattern in Pattern-Oriented Software Architecture: A
System of Patterns, by Frank Buschmann, Regine Meunier, Hans Rohnert, Peter
Sommerlad, and Michael Stal (Wiley).

Code analysis tools
Code analysis tools use reflection to improve their understanding of the pro-
gram being analyzed. When an analysis tool is built into the application that’s
being analyzed, reflection improves the tool’s ability to analyze the software.

A simple example of reflective capability in an analysis tool is the capability
to dump the contents of an unknown object. (This example is similar to the
earlier example in which an unknown object must be externalized.) Reflection
also allows the code analysis tools to look at code without predefining all the
types. Finally, through reflection, the tools can add hooks or code to watch
certain events.

An example application that uses reflection is a student programming assign-
ment analyzer (see the nearby sidebar).

250 Part III: Creating Your Application Architecture

Aspect-oriented programming
Aspect-oriented programming (AOP) is a way of handling characteristics
of a program that are separate from the main purposes of the program.
Capabilities such as debugging, fault tolerance, and logging require little bits
of functionality to be placed in many places across the main application, and
AOP can perform that task.

To use AOP, you write a specification that includes locations in the existing
program where these separate handlers and checks should be inserted. The
idea behind AOP is that some aspects of an application are hard to write
into a well-structured program because they cut across the main structure.
Reflection can help the AOP language automatically add hooks and code in
the right places in the application to achieve functionality that cuts across
the main application.

Analyzing student programming assignments
An interesting application of reflection in the
Java language is a Java student program ana-
lyzer. The goal of the analyzer isn’t to grade the
programs automatically; instead, the goal is to
lead the students to make consistent formula-
tions of the problem, which ultimately makes
manual grading easier. It encourages and sup-
ports the students to use the same names for
required elements of the programming assign-
ment. A side benefit is that it gives the students
reinforcement along the way, assuring them
that their work is progressing down the cor-
rect path. The analyzer enforces similarities
among the individual student programs so that
the instructor doesn’t have to spend a large
amount of time understanding each program’s
basic structure. Instead, she can spend her
time grading the assignment, not learning each
student’s naming conventions.

After giving an assignment with specific require-
ments for naming or structuring some parts
of the solution’s implementation, the instruc-
tor creates a reference implementation. This
reference implementation complies with the
assignment requirements and includes some
attributes that the analyzer uses to extract and
create JUnit test case classes — an example
of reflection in the program. Then the instruc-
tor gives the test classes to the students. When
the students run the JUnit test suite, the tests
use reflection again to determine whether each
student assignment program matches the spec-
ified attributes — assignment requirements —
of the reference implementation.

For more information about the analyzer, visit
www.twodee.org/speccheck. To find
out more about the open-source JUnit project,
see www.junit.org.

http://www.twodee.org/speccheck
http://www.junit.org

251 Chapter 16: Reflecting and Adapting

System configuration files
Reflection can be useful for dynamically adding or creating program elements
based on configuration files. When you’re building an application or frame-
work that must work seamlessly with code that’s not yet written, the applica-
tion can use reflection to examine the new code it must work with and modify
itself to interact correctly with the new code.

On a more basic level, your system can have configuration files that define
how the system should behave. This behavior exists in some versions of the
Windows Registry. The Registry is part of the system that other parts exam-
ine to configure their environments, and the Registry is updated to change
future behavior as well.

Many development tools, such as Eclipse, use reflection to build up the con-
figuration that you need.

Designing Architectural Reflection
An application built of software is static and does the same thing every time
it executes. Sometimes, however, you want to be able to reconfigure the
application easily and to make it adaptable. Here’s what I mean by an adapt-
able application:

	 ✓	An application to which you can add new capabilities without rewriting
or extensively changing the whole application

	 ✓	An application that can evolve to meet new technologies and new cus-
tomer needs so that you can incorporate the latest ideas and customer
requirements into the application easily, without throwing out the whole
application and starting over

Making applications adaptable
Changing and evolving software is a tedious, error-prone endeavor. It’s also
expensive, because the developers who are handling the evolution must
spend lots of time understanding the software’s current behavior before they
can change it.

The internal structure of applications that adapt easily to change is very
complex. Maintaining these applications is difficult because of the many com-
ponents used to encapsulate changes. Providing additional ways to perform

252 Part III: Creating Your Application Architecture

adaptations and growth also increases complexity. Modern programming
languages provide many built-in ways to adapt and grow software, such as
mix-ins, subclasses, templates, and parameterization. You also resort to good
old-fashioned cut-and-paste reuse and adaptation — in other words, copy
parts of code from one place and alter it for its new functionality.

Adapting an application can require making anything from small changes to
massive revisions. The modifications can involve changing one object, or they
may require touching everything in the entire application to make the change.
Modification and adaptation can even touch the core of an application, such
as the communications infrastructure. This makes adaptation more difficult,
especially if the program needs to adapt at runtime instead of at compile time.
Changing out the base infrastructure is not for the faint of heart.

	 The way to solve this problem of adaptation, which is making the problem
easier to solve and with a better structure, is to make the software self-aware.
As you design the software, identify and target certain aspects to be change-
able. Consider the changeable parts to be part of the meta level. The base
level is the core application that isn’t changed; it uses structures and data
defined by the meta level.

	 Self-awareness can be either introspection or reflection:

	 ✓	Introspection is a program’s capability to examine itself dynamically.

	 ✓	Reflection is a program’s capability to examine itself and its own data
and to make changes, including changing and adding to class definitions
dynamically, as well as modifying its own behavior.

Structuring the classes
Three different types of classes are involved with Reflection:

	 ✓	Base level: The base level is comprised of the parts of the application
that perform the basic algorithms of the application — the parts that
implement the application logic. The base level can be changed by the
meta level but doesn’t actively change itself. The base-level classes are
independent of the changes that may occur at the meta level. Base-level
classes access changeable information by interacting with meta objects.
The base-level objects don’t store the changeable information themselves.

	 ✓	Meta level: The meta level encapsulates the parts of the application
that may change to create new applications from the existing base-level
classes. Classes at the meta level may cause changes to be made to

253 Chapter 16: Reflecting and Adapting

other meta-level classes, to base-level classes, or even to the way that
base-level classes interact with meta-level classes. The state of all the
meta-level classes together with the base-level classes describes an
application.

	 ✓	Meta-object protocol (MOP): The MOP abstracts the meta-level classes
to make the changeable meta-level classes accessible externally. The
existence of a MOP makes changing the meta objects possible. The MOP
has access to the internal workings of the meta objects, which allows
you to change meta objects and the way that base-level objects behave.
The MOP also can change the connections between base-level and meta-
level objects, but to do this, it must be able to modify the base-level
objects, too.

		 Table 16-1, earlier in this chapter, shows that in some cases, the MOP is
an ordinary editor that changes configuration variables. In other cases,
you must create a specialized interface to allow the MOP to adapt
applications.

Class-Responsibility-Collaboration (CRC) cards for these three classes are
shown in Figure 16-2. (CRC cards were introduced in Chapter 2.)

	

Figure 16-2:
CRC cards

for the three
types of

components
in a reflexive
application.

	

254 Part III: Creating Your Application Architecture

Understanding the consequences
of Reflection
Reflection is useful in many circumstances. In “Looking for Reflection,” earlier
in this chapter, I list some examples. Reflection benefits these applications
but also has some drawbacks, as you see in the following sections.

	 Reflection should be used in moderation. If you don’t use it correctly, the
application may become unstable and hard to maintain, because the people
responsible for the application may not understand how it has changed itself.

Benefits of Reflection
Here are the general benefits that you’ll find when you use architectural
reflection:

	 ✓	You don’t need to modify the software explicitly after you’ve cre-
ated an adaptable application that uses Reflection. You don’t need
to modify the existing code when you adapt the application, because
you can make changes by calling a function in the MOP. The MOP is in
charge of getting your changes into the meta objects and the revised
meta objects into your application.

	 ✓	The MOP makes changing the application safe by providing a con-
sistent interface to perform the adaptation. It hides the complicated
details of the adaptable application. A well-designed MOP helps prevent
unsupported changes to the application.

		 If you use a general-purpose MOP like an XML editor, you won’t realize
this benefit unless you also build a validity-checking tool.

	 ✓	Changes at almost every scale are possible in an application that
is constructed around the Reflection pattern. Reflection helps adapt
the software to a changing environment and to changing customer
requirements.

Drawbacks of Reflection
Like all patterns, the Reflection pattern has negative consequences. The fol-
lowing list explains things that you need to watch out for as you design and
build a reflective application:

	 ✓	You can make damaging changes to the application through incorrect
changes at the meta level. This danger emphasizes the need to con-
struct a good MOP. An example of an unsafe change is changing a data-
base schema without first stopping the parts of the application that are
accessing the database.

255 Chapter 16: Reflecting and Adapting

	 ✓	Applications built around reflection have more components. In some
cases (especially the applications I talk about in the sidebar “Working
with adaptive object models,” later in this chapter) the number of meta
objects is greater than the number of objects in the base level. This situ-
ation isn’t always bad, but maintenance becomes more difficult when
you have more objects to maintain.

	 ✓	Reflection requires extra processing. This extra processing is required
for tasks such as retrieving configuration information, changing the
meta objects, and ensuring the consistency of the application and inter-
nal base level with meta-level communications. Applications with reflec-
tion can have lower efficiency because the base-level objects must check
with the meta objects regularly to retrieve configuration information
that will adapt their behavior.

	 ✓	Reflection capabilities must be programmed into the application in
the beginning. Ongoing adaptation involves changing meta objects.
Some capabilities that you might like to change today may not have
been designed to change when the software was created; as a result,
the application may not support your desired changes.

	 ✓	Reflection capabilities aren’t supported in every programming
language. I discuss this drawback and what it means in “Programming
Reflection Today,” later in this chapter.

Implementing Reflection
I don’t provide detailed implementation information in the following seven
steps because so much of building an application with the Reflection pattern
is language-specific. Instead, in this section, I provide a checklist of things to
consider as you design your reflective architecture in any language. In the
last section of this chapter, “Programming Reflection Today,” I give you some
examples and pointers on using reflection that will help you with the imple-
mentation steps in this section.

To illustrate these steps, I use the example of creating the part of a web-
based sales application that displays varying product information. The types
of items to be sold are described with XML-based metadata. The application
looks at this metadata to determine the product information that should be
displayed on the website. The metadata includes both product attributes and
instructions for displaying those attributes on the web, using low-level char-
acteristics known to the base-level classes.

	 You could provide this functionality without reflection, but if you did, you’d
have to preprogram the application for every possible kind of product data
in advance. By using the Reflection pattern, you can add new attributes later,
during runtime, including descriptions, product features, and feature types
and totally new fields that you never imagined when you built the application.

256 Part III: Creating Your Application Architecture

	 Iterate through Steps 5, 6, and 7. Especially when you’re just starting to use
Reflection, this iteration will help you design your application with effective
structuring of your base level, meta level, and MOP.

Step 1: Define the application’s model
Using an appropriate analysis method, start by understanding the problem
fully. You should understand the following aspects of the application:

	 ✓	Services: The services that the application is supposed to provide

	 ✓	Components: The components that you need to design to support these
services and the relationships among the components

	 ✓	Component cooperation: How the components collaborate and cooper-
ate with one another

	 ✓	Data: The format of the data used by the components

	 ✓	User interaction: The means by which the user will interact with the
application — both at base level and meta level

The primary service of interest in the web-sales example is the display of
the product description. (The actual web server is beyond the scope of this
example, as are the communication methods.) You have a set of components
that together interpret the product metadata and prepare the display. The
data aspect of interest is the metadata design (see Step 5). Buyer interaction
with the application occurs via the web interface. Management interaction —
defining new products — is done through the MOP that you design in Step 6.

Step 2: Identify what behavior will adapt
In this step, you decide what aspects of the application can change. Examine
the application model that you created in Step 1 to understand which appli-
cation services may change and which must remain constant. For this analy-
sis, you can use domain analysis (see Chapter 15).

There aren’t any hard-and-fast rules about what can vary and what must
remain constant; something that changes in one application may be the most
stable part of a different application. The aspects that change are based on
the application and the application’s environment.

Here are some examples of the kinds of things that can change in applica-
tions (although not necessarily in your application):

	 ✓	Real-time constraints such as deadlines, protocols, and real-time
algorithms

	 ✓	Protocols that define the behavior of transactions

	 ✓	Interprocess communication mechanisms

257 Chapter 16: Reflecting and Adapting

	 ✓	Exceptions, error handling, and fault-tolerance mechanisms

	 ✓	Algorithms that change between instances of the application, such as to
account for regional or national characteristics (maybe tax rates)

In the web-sales example, the display of the product data will change based
on the product definitions stored in the metadata. (This example doesn’t
have as large a behavioral change as you’ll design into some applications.)

Step 3: Identify the application’s structural aspects
Identify the structural aspects that need to be defined and changed at the
meta level without affecting the base level of the application. You design the
base level to depend on meta objects to define theses aspects but for the
base-level objects to function correctly no matter how the aspects change.

The basic framework of the web-sales product display is a structural aspect
that shouldn’t change. It provides a framework around all products that is
guaranteed to be present.

Step 4: Find the varying system services
Find the system services that support the variations of the system you identi-
fied in Step 2 and the structural details from Step 3. Some examples of basic
system services are

	 ✓	Resource allocation

	 ✓	Garbage collection

	 ✓	Page swapping

	 ✓	Object creation

	 ✓	Exception handling

Changing product characteristics in the web-sales example requires the
object-creation service to support variation. The meta-level classes for
the product are instantiated with new and different attributes for each
product object.

Step 5: Define the meta-level objects
In the preceding three steps, you studied the application’s internals — what
adapts and what remains constant. In this step, you design meta-level classes
for every aspect identified in steps 2 through 4. The meta objects encapsulate
the changeable attributes of the application.

The meta objects for the web-sales example are the objects that store the
metadata for each product. When the product metadata is read, the meta
objects that contain the product descriptions are created. When new product

258 Part III: Creating Your Application Architecture

attributes are added to the metadata, the meta-object creation service auto-
matically add new attributes to the product meta objects. In this way, you
can create a new type of product with an attribute combination that’s never
been used before.

Step 6: Define the MOP
In this step, you create the MOP, which defines how the people who adapt
the application access and change it. You want the MOP to be well defined
and controlled to prevent unsafe modifications of the application. The MOP
must be able to change the meta objects; it also must be able to change the
relationships among base-level and meta objects.

You can create MOPs in either of two ways:

	 ✓	You can integrate the protocol with the meta objects. Each meta-level
object contains the functions that are needed to change it. In many of
the examples in “Looking for Reflection,” earlier in this chapter, the MOP
is implemented by using an editor to change the meta objects directly.
In these cases, the variability of the meta objects is achieved by direct
editing rather than by a system service.

	 ✓	You can implement the protocol as a separate component. This
method has the advantage of centralizing all the modifications to the
application. You can reuse functions that change several meta-objects
more easily, and you’ll find it easier to include access controls that pre-
vent unauthorized modification of the application.

	 The MOP changes only the behavior of the base-level object through the meta-
data that the base-level object accesses. The structure of the base-level object
is not changed.

Because the product information metadata in the web-sales example is in an
XML-like format, you can use an XML editor to define it. Alternatively, you
can build a wizardlike application that lets the product designer create the
product description and meta objects directly.

Step 7: Define the base-level objects
In this step, you design and build the core functionality at the base level.
Where base-level objects need to adapt to changes in the application, the
base-level objects query the meta objects for the correct parameters to use.

	 When you change a meta-level object, that change affects the subsequent
behavior of all the base-level objects that access the meta object’s variable
attributes.

259 Chapter 16: Reflecting and Adapting

The base level of the web-sales example is responsible for many functions,
including the following:

	 ✓	Reading the metadata on behalf of the meta-object creation objects.

	 ✓	Using the attributes defined in the metadata to create objects. The meta-
object creation class is base-level functionality that isn’t varied by the
actual metadata.

	 ✓	Implementing all the web-display functionality in base-level objects.

	 Even in an application that’s very adaptable through a Reflection architecture,
the bulk of the application likely won’t vary and won’t use reflection.

Programming Reflection Today
Reflection is all around us in modern programming languages. Using reflec-
tion used to be hard, requiring mind-twisting designs; today’s programming
languages, however, have built-in reflective capabilities. In the introductory
paragraphs of this chapter, I say that much of the reflection that’s discussed
is in the form of an idiom, used to solve an individual design problem in a
specific programming language. In “Designing Architectural Reflection” —
and especially in “Implementing Reflection” — I describe how to use reflec-
tion as the underlying architectural backbone of an application.

In this section, I point you to a few specific examples of reflection as it’s pro-
vided in programming languages today. This section is just an introduction to
language-specific reflection; it starts with a popular language that has limited
reflection capabilities and progresses to the more powerful functionality pro-
vided in recent languages. The capabilities discussed here are language tools
that you can use to build an architecture that adapts through Reflection.

Reflection in C++
The 1998 C++ standards included several capabilities for runtime reflection,
grouped under the title Run-Time Type Information (RTTI). The typeid
operator is a useful capability that accesses the type of an object. This opera-
tor is limited to returning an object’s name, which allows you to compare two
objects for equality. It doesn’t report whether an object is a subtype of some-
thing. Another useful capability is dynamic_cast. This operator has limita-
tions much like those of static_cast but provides a way to do safe casting
down to subclasses, which isn’t possible with ordinary casting.

260 Part III: Creating Your Application Architecture

At compile time, the template capabilities of C++ allow the creation of classes
and types that are based on the needs of the application and can adapt the
application, thereby supporting reflection through recompilation.

For more information about RTTI and templates, see www.open-std.org/
jtc1/sc22/wg21/docs/papers/2005/n1751.html. You can also look for
libraries that extend the C++ standard to provide advanced reflection capa-
bilities, such as the Boost Reflect library at http://bytemaster.github.
com/boost_reflect/index.html.

Reflection in Java
The Java language reflection capabilities are supported in the java.lang.
reflect library. Reflection is easier in Java than in C++, but it’s still not full
reflection because it’s read-only; the Java library doesn’t support modifica-
tions to the inspected code.

For more information about java.lang.reflect, see http://docs.
oracle.com/javase/6/docs/api/java/lang/reflect/package-
summary.html#package_description.

Reflection in C#
Microsoft provides the Reflection library in C# to provide reflection capabili-
ties. C# reflection is more powerful than Java’s reflection because it allows
instantiating new types at both compile time and runtime. C#’s Reflection
library is described at http://msdn.microsoft.com/en-us/library/
ms173183%28v=vs.80%29.aspx.

Reflection in Ruby
Modern, dynamically typed languages such as Ruby come with a complete
suite of libraries and methods to support reflection. In Ruby, everything is
an object, which causes everything in Ruby to be fair game for the available
introspection and reflection methods. For more information, start at www.
ruby-doc.org/docs/ProgrammingRuby/html/ospace.html.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1751.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1751.html
http://bytemaster.github.com/boost_reflect/index.html
http://bytemaster.github.com/boost_reflect/index.html
http://docs.oracle.com/javase/6/docs/api/java/lang/reflect/package-summary.html#package_description
http://docs.oracle.com/javase/6/docs/api/java/lang/reflect/package-summary.html#package_description
http://docs.oracle.com/javase/6/docs/api/java/lang/reflect/package-summary.html#package_description
http://msdn.microsoft.com/en-us/library/ms173183%28v=vs.80%29.aspx
http://msdn.microsoft.com/en-us/library/ms173183%28v=vs.80%29.aspx
http://www.ruby-doc.org/docs/ProgrammingRuby/html/ospace.html
http://www.ruby-doc.org/docs/ProgrammingRuby/html/ospace.html

261 Chapter 16: Reflecting and Adapting

Working with adaptive object models
Now that you’ve read about reflection in gen-
eral and understand how useful architectures
based on the Reflection pattern can be in a
wide range of applications, I’ll tell you a little
about adaptive object models (AOMs). You can
build whole applications with AOMs by making
extensive use of the reflective characteristics
of the application, which allows you to change
the application’s structure and behavior greatly
through the use of the meta objects and MOPs.

AOMs differ from classical object-oriented (OO)
systems in the following way:

	✓	 In an OO application, you have to imple-
ment classes for all the different things that
you need, so you have to create classes
that are similar to other classes — and
create many, many subclasses. This com-
plexity slows development and increases
maintenance effort.

	✓	 In an AOM, on the other hand, you have
a (relatively) simple structure of classes
that remains unchanged. After these base-
level classes are built, they stay the same.
What changes in AOM is the data at the
meta level. The data, when read in, causes
instances of the static classes to be cre-
ated to represent the data. When new data
types are needed, they’re just new and dif-
ferent instances of the type classes that
were built into the static base-level applica-
tion. Therefore, you can change the overall

behavior of the application by creating new
data types and classes with new methods
and new types of data.

AOMs are like the Reflection pattern on ste-
roids. They take the concept presented in this
chapter to an extreme level, allowing massive
reconfiguration of an application. The reflec-
tion capabilities of a programming language
are used to implement AOMs.

In a typical application of reflection for idiomatic
use or even as the architectural framework of
a language, the percentage of code involved in
reflection is low. In an AOM, however, a much
greater percentage of the code is involved
with reflection — usually, base-level classes
checking with meta-level classes to determine
parameters and configuration information.

Joe Yoder and Ralph Johnson (one of the
authors of Design Patterns: Elements of
Reusable Object-Oriented Software) present
an example on their website, www.adaptive
objectmodel.com. The example is an
application written for the Illinois Public Health
Department to track medical data. The web-
site’s articles describe how easily the applica-
tion can adapt to new requirements, such as
recording new types of medical test reports and
accessing different databases. The application,
written in the Smalltalk language, shows how
thoroughly adaptive an application structured
as an AOM can be.

http://www.adaptiveobjectmodel.com
http://www.adaptiveobjectmodel.com

262 Part III: Creating Your Application Architecture

Part IV
Designing with

Other POSA
Patterns

In this part . . .

P
art IV tells you about some patterns that help you
solve problems you encounter in designing code.

These patterns aren’t designed to structure your whole
system, like the patterns discussed in Part III; instead,
they address design problems you may run into while
implementing an architecture based on a pattern from
Part III.

Chapter 17

Decomposing the
System’s Structure

In This Chapter
▶	Seeing how to create more than the sum of the parts

▶	Structuring your application

I
n this chapter, I tell you about the Whole-Part pattern, which describes
how to build your system from parts so that the whole is greater than the

sum of its parts. The assembled whole entity has its own properties, which
are distinct from the sum of the properties of the parts. When the aggrega-
tion can do new things that aren’t possible with just the parts, the resulting
behavior is called emergent behavior. The Whole-Part pattern creates an effi-
cient structure to unleash this emergent behavior.

	 The properties associated with the parts may be different from one applica-
tion to another because the properties of the parts are constrained by the
whole in which the parts are included.

Understanding Whole-Part Systems
A Whole-Part system has two types of participants:

	 ✓	Whole: The whole is the aggregation of the smaller objects that are the
parts. This grouping of parts provides a way to access part-specific
functionality and provide some functionality that is available only to
the whole.

266 Part IV: Designing with Other POSA Patterns

		 A whole may provide ways to access parts’ functions. Also, a whole can
have its own functionality, perhaps combining functionality from the
parts into something new.

	 ✓	Parts: Parts are contained in only — and exactly — one whole at a time.
Multiple wholes can’t share the same part simultaneously. Parts live
only within the lifespan of a whole. In other words, parts can’t exist
unless the whole exists.

		 Usually, parts are independent, but sometimes, they need to call one
another.

For an example Whole-Part system, consider an e-mail application. This type
of application is built from many parts, including the mail-receiving part; the
mail-sending part; a basic display part; and parts that support many other
functions, such as encryption, virus scanning, rich-text and HTML display,
and message management. Some of the parts can be used individually, but
some make sense only within the context of the whole application. Parts can
be added, deleted, and updated with new versions.

To hold the whole together, some glue functionality is provided that pro-
vides for interaction and communication among the different parts. When
combined, the parts together create a robust, secure e-mail application. An
alternative solution would be a monolithic application, but maintaining such
an application would be hard — and substituting new algorithms into the
application would be even harder.

A car is made from parts
A real-world example of the Whole-Part pattern
is a car. The car has many parts invisible to the
driver. While the car is running, fuel is being
supplied to the cylinders by the fuel injector,
electricity to generate a spark in the spark plug
is being provided by the distributor, and they’re
being combined in the piston. When the spark
arrives and there’s fuel present, the piston will
be moved to generate mechanical power. Each

of these parts — fuel injector, spark plug, dis-
tributor, and piston — is a separate part within
the whole of the car. The driver is the client of
the system.

This whole-part design of the system simplifies
changing individual parts and allows the parts
to be reusable in different wholes (different
cars). Each of the parts can be engineered to
be very good at its responsibilities.

267 Chapter 17: Decomposing the System’s Structure

Seeing how the pieces fit
The parts in a Whole-Part system can fit together in one of three different ways:

	 ✓	Assembly-parts: The relationship is between a combination of parts in
some predefined way. The parts are tightly integrated. The number and
type of the subassemblies are also sometimes predefined and don’t vary
from one assembly to another.

		 Examples include a chemical molecule that has different properties from
those of its components and the e-mail system described in the preced-
ing section. A good way to implement the Forwarder-Receiver pattern
that I discuss in Chapter 21 is as an assembly of parts.

	 ✓	Container-contents: The whole is a container that holds the other parts.
The contents vary in type and quantity and are loosely coupled with one
another.

		 An example is a package in the mail that groups its content. The package
doesn’t change the properties of the contents, but it may hide them.

	 ✓	Collection-members: The aggregate is a collection of similar members,
which are related in some way that the collection defines. The members
are individuals but can be treated equally because there’s no distinction
among them.

		 An example is a membership organization.

Recognizing the benefits and liabilities
Separation into whole and parts has some benefits:

	 ✓	Encapsulation of parts: Encapsulation of parts conceals them from cli-
ents, which allows you to change the internal structure without impact-
ing the clients.

	 ✓	Reusability: The parts can be reused in other Whole-Part combinations.

Like all patterns, however, the Whole-Part pattern has drawbacks:

	 ✓	Slow interaction: Interaction between the component parts and the
whole entity slows things down. Unlike a monolith design, in which
everything is built together, a Whole-Part design creates separate com-
ponents that may be distributed.

		 Communication between distributed parts will be slower than communi-
cation within a single monolith.

	 ✓	Increased complexity: A Whole-Part system has a set of rules for
how the whole and the parts relate to each other. Overall complexity
increases because of these rules.

268 Part IV: Designing with Other POSA Patterns

Implementing the Whole-Part Pattern
Five steps are involved in implementing the Whole-Part pattern, as you see in
the following sections.

	 As you design the whole, you’ll revisit earlier decisions and make refinements,
so you should iterate and jump around during these steps rather than march
through them in strict order.

Step 1: Define the whole’s public interface
In this step, you define what the whole does — what the client is going to
expect from the whole. In this step, you focus on the interface from the client
to the whole regardless of where the functionality is provided — from the
whole or from a part — and ignore functionality from the parts that are used
only internally.

Step 2: Divide the whole into parts
The parts inside a whole can be derived and isolated in several ways:

	 ✓	Top-down: In the top-down approach, you start with the whole and work
downward, uncovering the parts that you need to implement the whole’s
functionality. The partitioning is driven by the services that the whole
offers to the client.

		 Finding all the whole’s functionality can be hard if you’re reusing exist-
ing components as the parts.

		 The parts and the whole can become tightly coupled due to the nature
of the system. The parts may not be reusable because they’re designed
to fit exactly what the whole needs.

	 ✓	Bottom-up: In the bottom-up approach, you look for existing parts that you
can reuse and couple into the whole. The parts will be loosely coupled.

		 The whole may have to include glue code to bridge gaps between the
existing parts.

	 ✓	Alternating: Alternating between top-down and bottom-up is another
effective technique. Start at one extreme and then switch to the other to
ensure that the decisions you just made make sense from that direction.
As the design progresses, you solve problems by alternating between
the two approaches.

How you proceed in this step depends on the approach you just chose: top-
down, bottom-up, or alternating. If you’re alternating between bottom-up and
top-down, you’ll use both of those methods.

269 Chapter 17: Decomposing the System’s Structure

Top-down approach: Partition the whole’s services
This step applies when you’re working down from the top. You partition the
functionality that the whole provides into the parts that can best provide
that functionality. If the functionality matches an existing component or
class, great! With the top-down approach, you may have to design and build
new components to fill in gaps to make the whole.

You can decompose a whole into parts in several ways. A triangle, for exam-
ple, can be defined by three points that aren’t in a line, by three lines, or by a
point and a line segment. You should select the way that makes it easiest to
implement the services that the whole will provide.

Bottom-up approach: Pull parts from libraries of components
This step applies when you’re working up from the bottom. Look into the
class and component libraries at your disposal to identify the software parts
that you’ll use to make the whole. If you can’t identify existing components
that satisfy the entire whole’s functionality, specify the additional compo-
nents that you need to design, and describe how they’ll interact with the
other parts. You may need to use a top-down approach to implement the
missing components.

Step 3: Define the services of the whole
and the services offered by the parts
You can define the services offered by the whole to the client in two ways:

	 ✓	The whole forwards a request for service to the part that can satisfy
the request.

	 ✓	The whole satisfies the request directly, but in the process, it asks the
parts to supply services that the whole needs to answer the client’s
request.

You also can define the services in combinations of these two ways.

Further, you have two ways for the whole to send requests to the parts:

	 ✓	The whole can make a request to a part, using the part’s interface.
In this case, the part doesn’t know anything about the context of the
whole; it responds to the request using only its own environment. This
design leads to loose coupling of the components because they don’t
rely on one another’s environments.

	 ✓	The whole can ask the part to respond to the entire request, which
increases coupling between the part and the whole. The whole must
send enough information about its context to the part for the part to be
able to respond to the request on behalf of the whole.

270 Part IV: Designing with Other POSA Patterns

Step 4: Build the parts
You may need to design the parts recursively if they’re also Whole-Part com-
binations. This arrangement is actually quite common. Consider an example:
A bicycle (whole) is made of wheels (parts), which are themselves wholes
made up of other parts (hubs, spokes, rims, tires, and so on). Start at Step 1
to divide these new wholes.

Step 5: Implement the whole
The whole manages the life cycle of the parts, so in this step, you need to
implement the mechanisms to create and delete parts.

Implement the whole’s services, building the services that depend on ser-
vices from the parts. You also need to implement services that don’t invoke
any of the parts and that are self-contained within the whole.

There may be constraints on the whole, such as behavior of the whole that
differs from the possible behaviors of the parts. Also, the constraints may
relate to the parts themselves. The sizes of the parts, for example, can’t
exceed the size of the shipping-container whole.

	 You may find that you alternate between designing the wholes and designing
the parts as you create the total solution.

Using the Composite pattern
The Composite pattern from Design Patterns:
Elements of Reusable Object-Oriented
Software, by Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides (Addison-Wesley
Professional), is a variation of the Whole-Part
pattern that is applicable when you have these
two requirements:

	✓	 You want to represent the Whole-Part
object hierarchies.

	✓	 Clients shouldn’t care about whether some-
thing is a composite of objects or an indi-
vidual object; they should treat composites
and individual objects the same way.

Chapter 18

Making a Component the Master
In This Chapter
▶	Making runtime more efficient with divisible tasks

▶	Putting the Master-Slave pattern to work

I
n this chapter, I tell you about the Master-Slave pattern, which is useful
for dividing work among processing elements to improve performance or

reliability. The responsibilities of the master and the slave are well-defined
and not interchangeable; all the slaves are doing identical or comparable
work. The slave’s roles are firmly defined before execution and need to be
coordinated — a requirement that differentiates this pattern from the general
problem of dividing work and scheduling it, which the operating system nor-
mally solves.

Introducing the Master-Slave Pattern
All the subtasks in a Master-Slave pattern are identical, so this pattern helps
you coordinate the work at runtime efficiently. This pattern differs from the
Whole-Part pattern (see Chapter 17), which helps you create an efficient
structure of the parts of your system during development. Figure 18-1 shows
the structure of the Master-Slave pattern.

A good division between master and slaves is transparent to the clients that
request the master to perform the task. The clients shouldn’t be aware that a
divide-and-conquer approach is being used.

	 The slaves that are doing the work shouldn’t have any dependencies that affect
that the way the work is divided. Dependencies make the solution inflexible and
make it harder to achieve good separation between master and slaves.

272 Part IV: Designing with Other POSA Patterns

	

Figure 18-1:
The Master-

Slave
structure.

	

Sometimes, the master must provide a coordination function for the slaves,
so in addition to distributing the work, the master may have to pass data
between the slaves or collect and process the results from the slaves.

The Master-Slave pattern is useful in a couple application areas:

	 ✓	Fault tolerance is enhanced through multiple computations that are
compared and factored into the “correct” response. You can use the
results of the slaves to check one another for correctness by using dif-
ferent but semantically equivalent approaches as the individual parts.
The master contains the voting algorithm that triggers the computation,
compares the results, and selects one.

		 NASA used this approach, which is very useful in fault-tolerant systems,
to coordinate the space shuttle’s main computers.

	 ✓	In parallel computing, the Master-Slave pattern spreads the workload
across multiple processors. This is how Google’s Map-Reduce works, by
spreading the work across multiple slaves.

Taking the census
Every ten years, there’s a census in the United
States. The primary client that uses the data is
Congress. They commission the Census Bureau
to take the census. The Census Bureau hires
many individuals to go out across the country to
count the people. The census takers all do the
same things — they’re interchangeable, and if

one finishes in his territory, he can be moved to
help out in another territory.

The Census Bureau is the master of the Master-
Slave architecture. The slave role of Master-
Slave is played by the census takers. The role of
client is played by Congress, which authorizes
the infrastructure to conduct the census.

273 Chapter 18: Making a Component the Master

Benefits of Master-Slave
The Master-Slave pattern provides some specific benefits:

	 ✓	Exchangeability and extensibility: If you have an abstract slave class,
you can change the slave implementations to substitute different imple-
mentations or to extend the capabilities without making major changes
in the master. This benefit is related to the Strategy pattern from Design
Patterns: Elements of Reusable Object-Oriented Software, by Erich Gamma,
Richard Helm, Ralph Johnson, and John Vlissides (Addison-Wesley
Professional).

	 ✓	Separation of concerns: Master-Slave helps separate concerns by separat-
ing the work done by the slaves from the management done by the master.

	 ✓	Distribution of workload: Master-Slave spreads the workload and
allows highly parallel processors to function efficiently, increasing the
power of parallel processing.

Liabilities of Master-Slave
Like all patterns, Master-Slave has some liabilities:

	 ✓	Difficulty of division: Dividing an application into the slave parts that
can be executed in parallel isn’t always feasible.

	 ✓	Hardware dependency: Implementations of Master-Slave for parallel-
processing efficiency can become dependent on the structure of the
hardware that is used.

	 ✓	Difficulty of implementation: Master-Slave is hard to implement well.
Implementing this pattern involves many considerations, such as how
the task is divided up, how the master and slaves collaborate, and how
the final result is computed. (See the following section for more informa-
tion on this liability.)

Implementing Master-Slave
Implementing Master-Slave is straightforward. Before starting, however,
decide how you’ll divide the work among the master and slaves. You also
need to answer a few questions that will guide your implementation:

274 Part IV: Designing with Other POSA Patterns

	 ✓	Will the master and slaves be in separate processes or separate
threads, or will you let the operating system decide for you? The latter
method is called black-box execution; you don’t know what’s being used.
The answer to this question influences the mechanisms that the master
uses to communicate with the slaves.

	 ✓	If your application requires coordination of the slaves, will that coor-
dination be done by the slaves themselves or by the master?

Step 1: Divide the work
Define how the computation can be split into equal subtasks. You could base
the split on the memory size of the task, for example, or the expected execu-
tion time. Sometimes, the work is divided based on the number of elements
to be analyzed by the subtasks.

	 When defining subtasks, consider the environment that will process them.
It’s possible to define tasks that are too fine-grained for some processor archi-
tectures and that require extra overhead at the master level to manage the
subtasks.

Step 2: Combine the subtasks
In Step 1, you decide how the work is going to be defined. In this step, you
decide how the results from the subtasks will be combined.

Step 3: Define how master
and slaves will cooperate
This step defines an interface for the task division you identified in Step
1. Subtasks can be passed to slaves as calls or parameters, or they can
be placed in a repository that contains task assignments for the slaves to
access. Similarly, the responses from the slaves can be in the form of param-
eters or function calls, or the results can be placed in a repository.

In this step, you decide how to handle the data needed by the slaves. Slaves
can use shared data structures, or each slave can have its own data structures.

275 Chapter 18: Making a Component the Master

	 Factors to consider in deciding on an approach are the costs of passing sub-
tasks to slaves, duplicating data structures, and creating shared data struc-
tures. Another thing to consider is whether slaves modify the original data. If
they do modify the data that other slaves are sharing, they need their own
copy of the data.

Step 4: Implement the slave components
Build the actual slaves to perform the subtasks from Step 1 with the inter-
faces you defined in Step 3.

Step 5: Build the master component
In general, tasks can be divided into a fixed number of subtasks. Master-Slave
is most applicable when a complete task is handed off to the slaves for pro-
cessing. This helps increase the fault tolerance of an application. An applica-
tion gets difficult to build, test, and maintain when the master performs part
of a task and the slaves perform the remainder.

Another option is to divide the overall application into as many tasks as pos-
sible. This is especially useful when dividing work over a large number of
processors.

The master must have the code it needs to start the slaves, manage their pro-
cessing, collect the results, kill the slaves, and combine the results from the
many slaves into the final product. The master also must handle errors —
such as failures of slaves or failures of threads — and provide for graceful
handling of the errors.

	 Some new programming languages, such as Erlang, are ideally suited for
Master-Slave parallel processing.

276 Part IV: Designing with Other POSA Patterns

Chapter 19

Controlling Access
In This Chapter
▶	Seeing why proxies are useful

▶	Recognizing different kinds of proxies

▶	Adding a proxy to your system

I
n this chapter, I tell you how to isolate a component with a proxy — spe-
cifically, the Proxy pattern. You use this pattern when a client needs the

services of another component and direct communication — even though
possible — isn’t the best solution. The proxy component provides an indirect
way to access a component to coordinate, filter, and control direct access.
This may be done to increase security, enforce protocols, or speed up opera-
tions, among other things that I cover in the “Getting Acquainted with Proxy
Variants” section.

Many people, including Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides, authors of Design Patterns: Elements of Reusable Object-
Oriented Software (Addison-Wesley Professional) have written versions of the
Proxy pattern. In this chapter, I discuss a general version of Proxy. You may
encounter many variants that refine and adapt this general version.

Understanding Proxies
Proxies are needed when it’s inappropriate for two components to com-
municate directly. This can happen when the components shouldn’t know
where the others exist in a distributed system or when address information
shouldn’t be hard-coded into the components — even if the components are
local to the same processor.

278 Part IV: Designing with Other POSA Patterns

The proxy should be efficient in terms of execution time; it should be able
to determine quickly which component should be accessed and identify its
location. Notwithstanding the reasons not to connect the client and server
directly, the connection through the proxy should be transparent to the
client; the client shouldn’t realize that it isn’t talking directly with the server.

Proxies benefit their applications by decoupling clients from the locations of
the servers that they use. Proxies also help you structure the components to
separate the required client-server interaction from the housekeeping associ-
ated with the client’s finding and referencing the location of a server.

Because the proxy solution is transparent to the client, however, it can be
inefficient. The client must know the differences in costs between local and
remote services, and use the proxied remote service only when appropriate.

	 Don’t make the strategies for caching or loading on demand discussed in some
of the variants too complex. Doing so will increase development and mainte-
nance costs, as well as introduce more places for bugs to hide.

The Proxy pattern versus
the Broker pattern
At first glance, the Proxy pattern is similar to the Broker pattern (see Chapter
12) because both serve as intermediaries between clients and servers. The
difference is that in a Broker architecture, a client requests that the Broker
component find some server that can provide a specific service to the client;
the choice of server is left to the broker. A proxy serves as a representative
for the server after the server’s address has already been found. The client
either makes the server selection itself or asks a broker to make a selection.

Parts of a proxy
A proxy has four parts:

	 ✓	Server: The server component is the original server component that will
respond to the client’s request. Servers can perform everything from
simple functions such as simple data responses to complex functionality
that involves other components.

279 Chapter 19: Controlling Access

	 ✓	Proxy: The proxy component stands in for the server and is the server
interface for the client because it has the same interface as the server.
There’s usually a one-to-one relationship between the proxy and the
server — although not always, as you see in “Getting Acquainted with
Proxy Variants,” later in this chapter.

	 ✓	AbstractServer: If the proxy is to provide exactly the same interface as
the server, you should define the interface in the AbstractServer class
and then inherit the interface in both the server and proxy classes.

	 ✓	Client: The client is the component that wants the server to provide
some service. It can communicate with the server directly, but for the
reasons explained in this pattern, it interfaces with the proxy instead.

Figure 19-1 shows the relationships among these parts.

	

Figure 19-1:
Proxy class

diagram.
	

E-mail forwarding
An e-mail proxy is one of the common real-world
examples of the Proxy pattern that you run into
without realizing it. An e-mail proxy will receive
an e-mail for a recipient, look up his real e-mail
address, and forward the mail to the real e-mail

address. These proxies are available from ser-
vices like Pobox (www.pobox.com) and many
professional organizations like the IEEE (www.
ieee.org) and the Association for Computing
Machinery (ACM; www.acm.org).

http://www.pobox.com
http://www.ieee.org
http://www.ieee.org
http://www.acm.org

280 Part IV: Designing with Other POSA Patterns

Getting Acquainted with Proxy Variants
Proxies are all around us; they’re involved in most communication exchanges
with web pages and throughout other non-Internet applications. Proxies
come in many flavors, as I discuss in this section.

Remote
A remote proxy hides the physical location of the server. It implements the
needed interprocess communication (IPC) to allow the client to interact with
the server. You can further encapsulate the IPC by providing Forwarder-
Receiver elements to the client and server, as I explain in Chapter 21.

Protection
You use a protection proxy to protect the server from the client. The proxy
checks the access rights of every client that attempts to talk to the server. A
common implementation of this kind of proxy is an access-control list.

Cache
In a cache proxy, the proxy is given a data area where it can hold results to
speed repetitive accesses to the server. The cache proxy requires a strategy
for various aspects of its work, such as what results from the server to cache,
how often to refresh the cache, and what to do when the cache is full. The
strategy must also account for cache invalidation when the server results
have changed from what is stored in the cache. Web browsers are almost
always cache proxies.

Synchronization
When it’s important for only one client (or some finite number of clients) to
access the server simultaneously, you should use a synchronization proxy.
A synchronization proxy provides mutually exclusive access to the server.
Sometimes, you want the proxy to distinguish between read and write
accesses to the server and to coordinate those accesses differently.

281 Chapter 19: Controlling Access

Counting
You use a counting proxy to collect use statistics or to tell the system how
many clients are interacting with the servers. You can also use this type of
proxy to determine when the server is no longer needed (the number of cli-
ents becomes zero) and can be deleted.

	 The Counted Pointer idiom, discussed in Chapter 22, describes a way to imple-
ment a counting proxy in C++.

Virtual
A virtual proxy (also known as a lazy constructor) is used to hide the fact that
the server, or the server’s storage, isn’t fully instantiated. The instantiation
and loading of the missing parts of the server are done on demand.

When a request for service arrives, the virtual proxy decides how to proceed.
If the server is fully available, the proxy merely forwards the request to the
server. If the server isn’t fully instantiated, the proxy triggers the server’s
start-up process or directs the server to become more fully instantiated,
maybe by loading more of its data into memory.

Firewall
A firewall proxy provides secure client and server communication when the
environment contains threats. Firewall proxies are usually implemented as
daemon processes on separate computers, which can be called proxy serv-
ers. All client requests directed to the outside world pass through the firewall
proxy. The proxy checks requests and incoming replies for compliance with
security and access policies. If a request or reply doesn’t conform to the
policy, that request or reply is blocked.

	 In a well-designed firewall proxy, the clients and servers shouldn’t be aware
that the proxy is filtering their messages.

	 Because all communications flow through the firewall proxy, it has the poten-
tial to become a bottleneck.

282 Part IV: Designing with Other POSA Patterns

Reverse
A reverse proxy operates on behalf of a server and provides capabilities such
as load balancing, caching, and authentication. The reverse proxy appears
to the clients as a single server but, in fact, is serving as a proxy for multiple
servers. Reverse proxies can provide the same kinds of functionality as the
other proxy variants, only they primarily control a server’s access to the rest
of the system or Internet.

Implementing a Proxy
Implementing a proxy is straightforward. Depending on which proxy variant
you’re implementing (see the preceding section), you’ll customize the steps
to the variant.

Step 1: Identify access
control responsibilities
Start by identifying all the access responsibilities of the server and assigning
them to the proxy component.

Step 2: Introduce an abstract base class
When your language supports inheritance, it’s useful to introduce a base
class, AbstractServer, described earlier in this chapter and shown in Figure
19-1. Both the server and the proxy inherit the access responsibilities from
the abstract base class.

	 You can use the Adapter pattern (from Design Patterns: Elements of Reusable
Object-Oriented Software) to adapt among the interfaces if the server and the
proxy can’t have identical interfaces that they inherit from the abstract
base class.

	 If your language doesn’t support inheritance, consider defining the interface
in a library or module that can be shared to help keep the interfaces all
the same.

283 Chapter 19: Controlling Access

Step 3: Implement the proxy’s functions
In this step, you implement the responsibilities that you identified for the
proxy in Step 1. You implement both the access functionality that you’re
removing from the server to place into the proxy and also the mechanisms
for the proxy and server to communicate. You can implement the proxy
to server communication using the existing server interfaces, or define
a new mechanism that may improve performance or include server
control functions.

Step 4: Remove responsibilities
from the server
The proxy assumes the access responsibilities of the client and the server. In
this step, you reallocate these responsibilities from the client or server and
give them to the proxy.

Step 5: Give the proxy the
address of the server
This step associates the proxy and server so that the proxy can pass
requests to the server. The handle can be whatever is convenient: a pointer,
a memory address, a socket, a service ID, or whatever makes the most sense
for the system.

Step 6: Remove the relationships
between the clients and servers
All communications among the clients and the servers should go through the
proxy. Remove any direct relationships and linkages, and replace them with
linkages to the proxy. The proxy is connected to the server in Step 5.

284 Part IV: Designing with Other POSA Patterns

Chapter 20

Managing the System
In This Chapter
▶	Processing commands

▶	Managing multiple views

W
hen I was working on my first object-oriented project as part of a team,
our consultant told us that if we identified an object with the name

“something manager,” we should beware. The problem is that manager objects
can start to take on more and more responsibility, making the objects that are
managed very lightweight — and preventing a clean object-oriented design.

But creating objects that will “manage” other objects helps when the other
objects to be managed are similar and perform the application’s real work.
In the two design patterns in this chapter, the collections of objects are com-
mands and views.

	 Keep your manager objects simple and their responsibilities truly managerial.
Let the objects that they manage do the actual work.

This chapter describes two patterns that you can use to manage different
situations. Command Processor, the first pattern, helps when you’re imple-
menting an application that has user commands. The second pattern, View
Handler, aids your application when it has different displays to handle — like
the Model-View-Controller (MVC) and Presentation-Abstraction-Controller
(PAC) architectures (see Chapters 13 and 14, respectively).

286 Part IV: Designing with Other POSA Patterns

Separating Requests from Execution
with Command Processor

When you’re building a system that has multiple commands, the system can
become unwieldy if each command is handled separately. When a command
is triggered by an external (or internal) event, some large switchlike function-
ality usually routes the event to the correct command. When new commands
are added to the system, both the new command code and the event-routing
functionality must change. It’s even worse when the arguments or param-
eters of a command change, because then you must find every place in the
code that refers to the command and change it — a maintenance headache.

The Command Processor design pattern offers a better, easier way to add or
delete commands. A ComProcessor is the manager of the actual commands
and oversees their functions; it also provides the framework for including
undo mechanisms.

Looking inside the pattern structure
Five classes are involved in the Command Processor design pattern:

	 ✓	The AbstractCommand superclass and the ComObj classes implement
the interfaces of the command.

	 ✓	The Controller and ComProcessor classes manage command execution.

	 ✓	Individual objects of the fifth class type, Supplier, do the actual work
required for the commands to succeed.

Figure 20-1 shows how all these classes fit together into the system.

	

Figure 20-1:
Class dia-

gram for the
Command
Processor

pattern.
	

287 Chapter 20: Managing the System

Making a family of command classes
The AbstractCommand class is in the system to give every command a uni-
form interface. At its simplest, it defines a method for executing a command
and another for undoing that command. Depending on your application, it
also may define the interfaces for other functions, such as logging.

The ComObj class inherits the basic invocation methods from the
AbstractCommand class. A ComObj exists for each command the user may
want to invoke. When the ComObj is started and initialized, the parameters
that define the user’s specific needs — such as the starting and ending loca-
tions of text to be deleted — are given to the ComObj through its initializa-
tion code.

The Supplier classes are helpers for the ComObjs. They perform the appli-
cation-specific functionality needed for a ComObj to perform its function.
Suppliers can be shared by several ComObjs.

Structuring the manager classes
The Controller class is the interface between the command-management part
of the system and the event-processing part of the system. The controller is
responsible for accepting user requests from the event-processing system
and instantiating new ComObj objects to perform the request. Any param-
eters provided by the event are used when the ComObj is created. The con-
troller doesn’t start the ComObj executing the request; instead, it passes the
new ComObj object to the ComProcessor.

An instance of the ComProcessor class receives a ComObj object from the
controller and starts ComObj execution by invoking the do method that
the ComObj inherited from the AbstractCommand. The ComProcessor
doesn’t become involved in the particulars of the ComObj or its execu-
tion; it only uses methods that are defined for all the commands by the
AbstractCommand class. The ComProcessor can optionally be given other
intelligence about the problem so that it effectively schedules ComObjs
based on threads; processes; time of day; or criteria other than first-come,
first-served.

Watching it work
Figure 20-2 shows how everything works together. The process involves six
steps, indicated by circled numbers in the figure:

288 Part IV: Designing with Other POSA Patterns

	

Figure 20-2:
A Command

Processor
pattern

scenario.
	

	 1.	 The user invokes a command.

		 The event specifying this command is sent to the controller.

	 2.	 The controller determines which subclass of AbstractCommand
satisfies the requested user command and creates the ComObj object,
giving it the parameters that came as part of the event.

	 3.	 After the ComObj is created, the ComObj is passed to the
ComProcessor through the ComProcessor’s do_it method.

	 4.	 The ComProcessor invokes the ComObj’s do method.

	 5.	 The ComObj takes whatever action is necessary to satisfy the user’s
request.

		 The ComObj may involve Supplier classes to satisfy the request.

	 6.	 The ComProcessor reports back to the controller that the ComObj
is complete.

		 In some situations (shown as message 6a in Figure 20-2), the
ComProcessor also triggers the deletion of the ComObj object; at other
times, it keeps the ComObj alive so that it can be undone. The choice
depends on the application.

289 Chapter 20: Managing the System

Orders as commands
When you order something from a catalog, you
talk to a person or system that receives and
processes your order. The customer interface
(person or web page) corresponds to the con-
troller. Orders are fulfilled by a department that
corresponds to the CommandProc. The inven-

tory of items to be sold that are sitting on a shelf
correspond to the supplier. The actual order
corresponds to the command (the ComObj).
The actual order started as a duplicate of the
AbstractOrder.

Creating undo mechanisms
Frequently, a user will want to be able to undo commands. This pattern pro-
vides an undo mechanism through the ComProcessor, AbstractCommand,
and ComObj classes. Each ComObj that can undo its work is created with an
undo method that performs the task. The AbstractCommand provides the
method definition. The ComProcessor saves the ComObjs in a stack after
they’re executed. When an undo request is received, the ComProcessor
invokes the undo method of the ComObj to be undone.

	 Creating an undo mechanism can be hard. Sometimes, functions can’t be
undone (such as when converting files from one type to another); at other
times, the state needs to be saved to have an undo make sense (such as
during a multiple-screen web transaction).

Implementing Command Processor
Creating a basic Command Processor structure involves four steps, which I
describe in the following sections.

290 Part IV: Designing with Other POSA Patterns

Step 1: Define the AbstractCommand interface
The first step is defining the interface of the AbstractCommand class. At a
minimum, this class contains a do method that executes a ComObj. The inter-
face also may include an undo method and other methods that invoke func-
tionality specific to the application, such as specialized methods to retrieve
relevant filenames.

Step 2: Design the ComObj components
After you create the interface of the AbstractCommand class, your next task
is creating the individual ComObj components. The ComObjs substitute con-
crete methods for the abstract ones defined in the AbstractCommand. The
ComObj classes perform — or ask Supplier classes to perform — the desired
user functionality. The choice of Supplier classes to engage can be done stati-
cally during development or dynamically, based on the initialization of the
ComObj object.

	 The number of commands (and ComObjs) can explode in a command-rich
application. To reduce the number of commands, have ComObj objects inter-
face to groups of actual commands. You can organize the groups by abstrac-
tion or by the Suppliers used by a task, or you can preprogram combinations
of commands together into a higher-level command.

Step 3: Build the Controller component
The Controller creates the ComObj objects based on the events received. It
can be helped by creational patterns such as Abstract Factory and Prototype
from Design Patterns: Elements of Reusable Object-Oriented Software, by Erich
Gamma, Richard Helm, Ralph Johnson, and John Vlissides (Addison-Wesley
Professional).

Step 4: Build the ComProcessor
The ComProcessor receives a ComObj from the Controller and takes respon-
sibility for it, invoking the ComObj’s do method. The ComProcessor also may
be responsible for deleting the ComObj after it has completed or for saving it
to invoke its undo method later.

	 The Command pattern from Design Patterns: Elements of Reusable Object-
Oriented Software is similar, but here, I give you more details about how you
can build a system with the concept.

291 Chapter 20: Managing the System

Managing Your Views with View Handler
Sometimes, the objects that your application needs to manage are multiple
views. The views might be views in the MVC architecture (see Chapter 13)
or intermediate-level agents in a PAC architecture (see Chapter 14). This pat-
tern can help with views in either of those architectures, but it isn’t limited to
those two patterns. Here’s how the View Handler pattern helps them:

	 ✓	Model-View-Controller (MVC): The View Handler pattern refines and
explains the relationship between the model and related views.

	 ✓	Presentation-Abstraction-Control (PAC): View Handler is important in
PAC for coordinating multiple views. Intermediate-level PAC agents corre-
spond to View Handler because they manage view elements. The bottom-
level PAC components — components that are primarily involved with
views — represent the view components of the View Handler pattern.

There are several reasons to add a manager for the views:

	 ✓	The interactions with the views should be handled consistently so that
the system is easy for both users and software clients to use.

	 ✓	You don’t want to merge the code for each view, because it’s indepen-
dent of the other views’ code.

	 ✓	Tying the code for the views to the management code isn’t good. In sys-
tems with multiple views, the system should make adding new views in
the future easy.

Looking inside View Handler
The View Handler structure involves four types of classes:

	 ✓	ViewHandler is the most important class discussed here.

	 ✓	Views are implemented through the AbstractView superclass and the
SpecificView classes.

	 ✓	Finally, Supplier components provide the views of the data that they
display.

The ViewHandler class is responsible for opening, manipulating, and closing
the views of the system. When a user wants to create a view, the ViewHandler
creates the SpecificView responsible for the view; similarly, when the user
deletes a view, the ViewHandler does the deletion. The ViewHandler also

292 Part IV: Designing with Other POSA Patterns

directs the SpecificViews when the user makes requests such as changing the
visibility of the views or resizing them. The SpecificViews are coordinated by
the ViewHandler when they must exchange information or be updated after
some data changes.

The ViewHandler interacts with SpecificViews through the interface defined
by the AbstractView class, which defines the interface for everything a
SpecificView can possibly do.

The SpecificView classes inherit the interface from their AbstractView super-
class. Each SpecificView has its own display function that gets data from
its Suppliers and presents the display to the user. Instructions for manipu-
lating the SpecificView’s display come from the ViewHandler through the
AbstractView interface.

You can see the structure of the View Handler pattern in Figure 20-3.

	

Figure 20-3:
View

Handler
class dia-

gram.
	

293 Chapter 20: Managing the System

Implementing View Handler
Assuming that the Suppliers of the data to be displayed in the views already
exist, four steps are involved in implementing a View Handler structure, and I
discuss them all in the following sections.

Step 1: Identify the views
In this step, you define what views the system will display, as well as the
ways in which a user can interact with and control each display.

Step 2: Define the view’s common interface
In this step, you examine the views that you identified in Step 1 and define
a common interface for all the views by defining the interface of the
AbstractView class. At minimum, the interface must include methods to
create, open, and close a display, as well as methods to update a display.

Step 3: Implement the views
Each view has a SpecificView, which is a derived class from AbstractView
and which implements the interface defined in AbstractView. In this step, you
design the parts of a SpecificView that make it unique. The SpecificViews take
data provided by their Suppliers and create the display.

When a SpecificView makes a change that affects the other views, the
SpecificView must notify the ViewHandler, which notifies the other
SpecificViews. This situation may arise when a view is moved or resized,
thereby changing the visibility of other views. The Publisher-Subscriber
pattern (see Chapter 21) can help with this notification.

Managing your desktop windows
The real-life example of the View Handler pat-
tern is the windowing system on your computer.
It manages the windows, which are the views
of your programs that you want to see. The

underlying programs and files correspond to
the suppliers. The windowing system provides
a consistent and uniform handling of the views
and seamless creation of new views.

294 Part IV: Designing with Other POSA Patterns

Step 4: Define ViewHandler
In the last step, you implement the code that creates and initializes
SpecificViews. You can use the Factory Methods pattern from Design Patterns:
Elements of Reusable Object-Oriented Software for this purpose.

The ViewHandler keeps track of all the open SpecificViews and may also keep
track of other information, such as current size and position. Sometimes,
the ViewHandler contains application-specific coordination functionality.
Examples of this functionality include paired views in which displaying one
view should also display another view or when one view presents informa-
tion about another view.

Chapter 21

Enhancing Interprocess
Communication

In This Chapter
▶	Acknowledging problems with distribution

▶	Separating the components for communication

▶	Using a dispatcher

▶	Publishing change notifications and updates

Y
ou need to solve many problems when you build distributed systems —
portability, modularity, location transparency, and consistency of com-

munication among components. This chapter presents three design patterns
that help you overcome these challenges.

In the first two sections, I tell you about two patterns that address the prob-
lem of location transparency. Forwarder-Receiver tackles the issues of trans-
parency and portability by encapsulating the details of communication into
specific components. Client-Dispatcher-Server adds an intermediate layer to
connect the client and server components transparently.

In the last section, I discuss the Publisher-Subscriber pattern, which helps
you address the component-consistency problem. It’s closely related
to (some people think indistinguishable from) the Observer pattern in
Design Patterns: Elements of Reusable Object-Oriented Software, by Erich
Gamma, Richard Helm, Ralph Johnson, and John Vlissides (Addison-Wesley
Professional).

	 I don’t focus on the details of the communications, such as what protocols are
actually in use, because these patterns apply to any kind of interprocess com-
munication (IPC) method that you choose.

296 Part IV: Designing with Other POSA Patterns

Forwarding Messages to a Receiver
It’s very common nowadays to build systems that have client components
communicate with server components to get something done. Even if the sys-
tems don’t have explicit clients and servers, multiple peer components work
together to provide the same functionality.

The quick, easy way to implement client and server communication is to
have the client component send requests directly to the server. This method
is also the most efficient in terms of execution overhead because no other
steps or parties to the communication are in the way to slow it down.

	 If you connect clients and servers directly, one temptation is to intermix the
communication code with the client and server functionality. This mixing,
however, becomes a headache when the time comes to update either the
client or the server code, because you need to find each and every place
where you put direct communications.

Using specialized components
The Forwarder-Receiver pattern offers a way to avert maintenance head-
aches and improve overall encapsulation in your code with only a very minor
effect on efficiency. Figure 21-1 shows the basic structure of this pattern. As
you see in the figure, each client and server component (these components
are called peers because they work together) has two subcomponents: a for-
warder and a receiver.

Forwarding messages
When you were a schoolchild, you probably
passed messages from one of your classmates
to another. You were serving as a peer, handing
messages between your classmates. The one
who sent the note acted as a forwarder send-
ing the message to the receiver. You served as

the communications medium. The forwarder
didn’t control how the message was routed
toward the intended recipient. This mechanism
is efficient and easily handles changes in the
message format — for example, if the message
were written in Chinese or Italian.

297 Chapter 21: Enhancing Interprocess Communication

	

Figure 21-1:
Forwarder-

Receiver
design

structure.
	

The peers provide the general application functionality required to communi-
cate with other peers, as follows:

	 ✓	Forwarder: The forwarder sends messages from the peer to another
peer. It packages the message, which might require serializing an inter-
nal data representation. The forwarder locates the peer that should
receive the message by mapping a name to a physical address and then
sends the message to that address. The forwarder has other responsi-
bilities, too — encapsulating the details of the IPC mechanism used.

	 ✓	Receiver: The receiver watches a physical address for a message to
arrive. When a message arrives, the receiver unpackages the message —
deserializes it, if necessary — and delivers it to the receiving peer.

Figure 21-2 shows a message-sequence diagram for this pattern. As you can
see in the figure, the forwarders only send messages outward from a peer,
and the receiver only receives messages sent to a peer. These two separate
components have specialized responsibilities.

298 Part IV: Designing with Other POSA Patterns

	

Figure 21-2:
Forwarder-

Receiver
message-
sequence

diagram.
	

When maintenance is required — when peers change or a different kind of
message is required, for example — it’s simple because all the communica-
tion functions are contained in the forwarder and receiver components. You
won’t have to search high and low through the code for places to change.

Implementing Forwarder-Receiver
Implementing this pattern involves six steps, which you should iterate
through.

Step 1: Define the name-to-address mapping
This pattern allows peers to reference other peers by name. The first
thing you must do is decide the names of the peers. To do so, you define a
namespace, which prescribes the rules for naming and any constraints on the
names. Here are some example naming rules, with examples:

	 ✓	Names are URLs (ipc://server/service).

	 ✓	Names are IP addresses and port numbers (192.168.1.112:4110).

	 ✓	Names start with a capital letter and are exactly nine characters long
(MyPeerSvc).

299 Chapter 21: Enhancing Interprocess Communication

	 ✓	Names start with a capital letter to encode a five-character loca-
tion abbreviation, followed by a number identifying the specific peer
(ChiIl43).

	 ✓	Names have Unix- or Windows-like addresses (/Server/Videoserver/
AVIServer or \\Server\AVIServer).

	 Forwarders send messages to a particular address. More than one receiver
can be listening to an address, which allows you to broadcast the message to
several recipients.

Step 2: Define the message protocols
Forwarders and receivers must communicate with the peers that they rep-
resent. You need to define the detailed protocol to be used. This protocol is
internal to a side of the communication, such as Peer 1 or Peer 2 in Figure
21-1 or Figure 21-2. You should use the same protocol from peer to forwarder
and from receiver to peer.

The messages between the forwarder and receiver in different peers need to
be in a format that the forwarder and receiver both recognize. In this step,
you define the detailed structure of the messages that will flow between for-
warder and receiver.

Your protocols must define appropriate behavior when communications
time out — that is, when replies aren’t received within the required period.
You also must consider the behavior of the protocol when communication
fails. Possible actions to take include retransmitting messages and reporting
exceptions.

Step 3: Choose a communication mechanism
This step focuses on the forwarder-to-receiver communication path and
specifies how communications will occur. Your choices will be guided by
what’s available in your operating system.

	 If efficiency is important, you can use a low-level mechanism like TCP/IP. It’s
efficient and flexible, but programming it can be difficult. If your application
needs to be portable because you’ll move it to different operating systems,
consider a mechanism like sockets. Sockets are available for most operating
systems now, are sufficiently efficient for most applications, and aren’t quite
as closely tied to operating-system functions as TCP/IP would be.

Step 4: Build the forwarder
In this step, you build the forwarder that receives messages from the peer,
packages the message, determines the recipient, and sends the message via
the mechanism you chose in Step 3.

300 Part IV: Designing with Other POSA Patterns

The forwarder uses an internal mapping of name to physical address. The
name is what the peer knows the other peer by, and the physical address is
the destination in the communications path to the receiver. The mapping can
be defined statically before execution, or it can be adjusted dynamically at
runtime.

Another option you must consider is whether each forwarder will have its
own mapping repository or whether several forwarders will share a single
repository. Maintaining the repository is simpler if it’s shared across the
application, but flexibility is enhanced if each forwarder each has its own
repository, because different forwarders can map the same peer address to
different distant components, which can help with distribution for perfor-
mance or fault tolerance.

	 You can use the Whole-Part pattern from Chapter 17 to divide the structure of
your program to provide the repository, receive the message from the peer,
and send the message over the communications channel to the receiver. This
pattern increases forwarder encapsulation and maintainability.

Step 5: Build the receiver
The receiver component receives a message from the communications chan-
nel, deserializes it for the peer, and then passes the message to the peer. The
Whole-Part pattern (discussed in Chapter 17) makes the receiver’s structure
more maintainable, just as it does for the forwarder’s structure.

During this step, you must make an important decision about the blocking
behavior of your receiver. Because the peers aren’t synchronized, you must
decide whether the receivers should block while waiting for a message to
arrive, as follows:

	 ✓	Blocking: If the receiver waits for a message to arrive, the peer is
blocked from doing any other work until the receiver hands control back
to the peer. This behavior is appropriate if the peer depends on the
arriving messages to proceed.

	 ✓	Nonblocking: If the peer has other work that it can do between pro-
cessing of messages, it should be nonblocking. The receiver is given
a time-out value when the peer asks for messages. The receiver waits
for a message to arrive or the time-out to be exceeded; after the wait, it
returns processing to the peer.

	 If nonblocking communications isn’t supported, you can place the receiver
in a separate thread to provide that behavior. Only the receiver thread will
block.

301 Chapter 21: Enhancing Interprocess Communication

Another aspect of the receiver to consider is whether more than one commu-
nications channel is supported. You can multiplex communications by allow-
ing the receiver to monitor several channels. When a message is received on
any of the channels, it’s passed to the peer. When more than one message is
received simultaneously, the receiver must implement an internal buffer or
message queue to collect one message while another is being deserialized and
passed to the peer. You can use multiple threads to simulate the behavior of
multiplexing by giving each thread responsibility for a particular channel.

	 Check out the Reactor pattern in Pattern-Oriented Software Architecture,
Volume 2: Patterns for Concurrent and Networked Objects, by Douglas Schmidt,
Michael Stal, Hans Rohnert, and Frank Buschmann (Wiley), for more informa-
tion about demultiplexing events.

Step 6: Create the application peers
You may have your application software built before adding forwarders and
receivers. In this step, you must separate the peer software into two parts:
the client and the server. Some parts of your application can be both clients
and servers — in other words, both requesting services from other servers
and providing services to other peers that are playing the client role.

A client sends a message to the remote peer and waits for a reply or periodi-
cally checks for a reply. After it receives the reply, it continues. Servers wait
for a request, process the request, and reply to the requestor.

	 Nothing in this pattern prevents one-way communication, in which a peer
sends a request to a client but doesn’t wait for a reply.

Connecting Client and Server
through a Dispatcher

If the peers in your application system know one another’s locations, the
Forwarder-Receiver pattern, described in the preceding section, is useful.
Sometimes, though, it’s best not to have direct connections between cli-
ents and servers. In such a case, you can add a layer of indirection between
clients and servers to hide the locations and make the locations easier to
change. This intermediary is a dispatcher.

302 Part IV: Designing with Other POSA Patterns

Issuing directions from a dispatcher
The dispatcher provides a name service, allowing servers to be given a name
that the server can use instead of a physical location. It provides location
transparency and simplifies maintenance if the server locations are variable.
The name service can be a static repository, or the dispatcher can allow ser-
vices to register and unregister during execution.

	 The dispatcher’s name service makes it easy for you to add new servers to the
system, too. You can also add duplicate servers to provide redundancy and
higher availability of services.

The communication channel between the client and server is also created by
the dispatcher. Figure 21-3 shows a message-sequence diagram for a system
with a dispatcher. Unlike in the Forwarder-Receiver pattern, in which the
client and server know where to find their peer, the dispatcher provides the
initial address and then identifies the communication channel they’ll use.
After that channel is created by the dispatcher or the client (depending on
the type of channel used), the client and server talk directly, without involv-
ing the dispatcher in the communications.

By now, you may be thinking that this pattern is similar to the Broker pattern
in Chapter 12 — and you’d be right. Client-Dispatcher-Server is like a light-
weight implementation of a direct communications broker system from the
sidebar “Going for broker variations.”

Answering telephone calls
When you call a company to buy something, you
may get a receptionist. After you tell the recep-
tionist who you want to speak to, he puts you on
hold and connects you to the right salesperson.
You don’t need the direct contact information
for the person you’re calling because there is
a receptionist to connect your call. You don’t
know how the receptionist lets the person know
that she has a call, and you don’t need to know.

You’re the client in this example, and the server
is the person that you want to reach. The recep-
tionist is the dispatcher, who serves an interme-
diary role and hides the details of your server’s
location. If you’re trying to buy something from a
salesperson (the server) and a new salesperson
has been assigned for your region, the reception-
ist can connect you to the correct, new salesper-
son without your having to know anything about
the selling company’s internal structure.

303 Chapter 21: Enhancing Interprocess Communication

	

Figure 21-3:
A Client-

Dispatcher-
Server
pattern

communica-
tion flow.

	

Implementing Client-Dispatcher-Server
Six steps are involved in designing a Client-Dispatcher-Server system. Some
of these steps are related, so you don’t need to do them strictly in the order
presented here.

Step 1: Separate your application into clients and servers
In this step, you identify what parts of the system will function as servers and
which will function as clients.

	 The same component can serve as both a client (requesting services) and a
server (serving requests from clients). Also, the role that a component fulfills
may change during execution.

Step 2: Determine how your components talk
This step focuses on the forwarder-to-receiver communication path and
specifies how communications will occur. Your choices will be guided by
what’s available in your operating system. Different client-server pairs can
use different communication methods.

304 Part IV: Designing with Other POSA Patterns

If efficiency is important, you can use a low-level mechanism like TCP/IP.
It’s efficient and flexible, but programming it can be difficult. If your applica-
tion needs to be portable, consider a mechanism like sockets. Sockets are
available for most operating systems now, are sufficiently efficient for most
applications, and aren’t quite as closely tied to operating-system functions as
they’d be if you programmed TCP/IP directly.

	 Shared memory is a fast alternative way for clients and servers to communi-
cate if the clients and servers are on the same machine. If the client and server
are located within the same address space, you can even use direct procedure
calls between them.

Step 3: Define the component interaction protocols
In this step, you decide on the protocol that will be used to allow communi-
cations among the different pairs of entities: client-dispatcher, dispatcher-
server, and client-server.

The messages between the client and server need to be in a format that both
client and server recognize. In this step, you define the detailed structure of
the messages that will flow between them.

Your protocols must define appropriate behavior when communications time
out — that is, when replies aren’t received within the required period. You
also must consider the behavior of the protocol when communication fails.
Alternative actions include retransmitting messages and reporting exceptions.

Step 4: Decide on server naming
The server name hides the server’s physical location from the client. Only
the dispatcher knows the name to location mapping. Server naming can be
flexible, in the same way that Forwarder-Receiver naming is flexible. The
names that you use shouldn’t encode any location information. You can
choose fixed constants or service descriptions for names. For more tips
on naming, refer to Step 1 of “Implementing Forwarder-Receiver,” earlier in
this chapter.

	 Don’t use an Internet IP address as your naming scheme. The IP address iden-
tifies a physical location, and the whole point of adding the dispatcher to your
application is to provide location independence.

	 IP addresses were okay as names in Forwarder-Receiver earlier in this chapter
because, in that pattern, the communications path is directly between the
peers, whereas a dispatcher is intended to hide the physical locations.

305 Chapter 21: Enhancing Interprocess Communication

Step 5: Build the dispatcher
In this step, you build the dispatcher component that will respond to the
protocol you defined in Steps 3 and 4. You also establish communication
between the client and the server, considering how the protocol and message
sequence map to the communication mechanisms available to the system.

Some of the communication mechanisms may be limited resources. The
number of sockets that a system can support simultaneously may be limited,
for example. The dispatcher has to manage the connections and may have to
place the request in an internal queue for the resource or even refuse a client
request if it can’t set up the required communications.

You must define and flesh out the protocol associated with dispatcher com-
munications. Also make sure that you cover the error cases, such as when
the server is unknown or unavailable or when a communication resource is
unavailable.

One of the dispatcher’s primary roles is to provide a name-mapping service
that takes the server name known to the client and turns it into a physical
address. The mapping can be statically defined before execution, or it can be
dynamic. If the mapping is dynamic, it can change during execution, and the
dispatcher must be able to process registration messages from servers by
adding an entry in the name service directory (or by updating the record, if
the server is already defined).

The performance of a single dispatcher in a system can become a perfor-
mance bottleneck because it’s a single component that processes all channel
setup requests. You can use multithreading by providing a pool of threads
in the dispatcher to improve response and execution times. One thread will
complete a whole exchange on behalf of one client and server. If you have
multiple threads, however, multiple clients can set up connections at the
same time.

Step 6: Build the client and server components
Using what you designed and decided in the preceding steps, in this step you
design and build your client and server components.

Publishing State Changes to Subscribers
One problem that arises in distributed systems is keeping the different
elements consistent. When a change occurs in one element, the informa-
tion must be conveyed to other elements in the system. This capability is

306 Part IV: Designing with Other POSA Patterns

required by several architectures that I discuss in this book: Layers (see
Chapter 9), Model-View-Controller (see Chapter 13), and Presentation-
Abstraction-Control (see Chapter 14).

The Publisher-Subscriber pattern is very similar to the Observer pattern.
Figure 21-4 shows the class diagram for Publisher-Subscriber. The interface
between the publisher and subscriber can be any IPC mechanisms of your
choice, including through the use of messaging-oriented middleware.

	

Figure 21-4:
Publisher-

Subscriber
class

diagram.
	

	 What I’m going to tell you about in this section is a variant on the Observer
pattern. Besides changing the class names from ConcreteSubject to Publisher
and ConcreteObserver to Subscriber, the biggest difference is that I won’t tell
you to use an abstract class. This pattern doesn’t include the abstract classes,
because although abstract classes help decouple the actual publisher and
subscriber, they make the resulting code more complex.

This pattern has only two classes: Publisher, which sends notifications, and
Subscriber, which receives the notifications. Subscribers register their inter-
est in receiving these notifications, and publishers maintain a registry of its
subscribers.

Implementing a Publisher-Subscriber mechanism involves the following three
steps. You’ll spend most of your effort designing the publisher component.

Posting a notice
You can post a notice on a bulletin board to
publish information to others. The readers of the
bulletin board are subscribers to the informa-
tion. You, the publisher, don’t need to know who

all the readers are, and they don’t have to hunt
you down to find out what you have to say —
they know to check the bulletin board.

307 Chapter 21: Enhancing Interprocess Communication

Step 1: Define the publication policies
A publisher can publish in many ways. It can publish every notification event
to every subscriber, or it can send some notifications to some subscribers
and others to other subscribers.

In this step, you need to decide what internal events the publisher will pub-
lish to the subscribers. The publisher can push all event changes to the sub-
scribers, or it can notify them about only the changes that they expressed
interest in through the subscription process. If you make this choice, you
need to include detailed subscription information in the subscriber registry.

In addition to providing selective notification (pushing notifications for only
some events), the publisher can send complete updates — all the information
about the notification — or a simple notice that some update has occurred.
In this latter case, it becomes the subscriber’s responsibility to request addi-
tional information from the publisher if the subscriber is interested.

Besides deciding what and how much to publish, you must decide how your
publisher knows that something is available to be published. It can publish
every update, or it can collect updates until a threshold is met and then
publish.

Step 2: Define the publisher’s interface
The next step defines the publisher’s interface, which needs to include at
least the following methods:

	 ✓	Subscribe: The Subscribe method allows a potential subscriber to
subscribe for update notifications.

	 ✓	Unsubscribe: The Unsubscribe method allows a subscriber to stop
receiving updates.

Step 3: Design the subscriber interface
The subscriber subscribes with the publisher for the information that it
wants to receive. In Step 1, you designed the policies that define what the
subscribers can ask for.

308 Part IV: Designing with Other POSA Patterns

The primary part of the subscriber that needs to be designed is the Update
method, which the publisher accesses when it sends its publication notifica-
tions. The Update method must receive the information from the publisher
and ensure that it gets the information to the correct element within the
subscriber component.

Chapter 22

Counting the Number
of References

In This Chapter
▶	Using idioms as coding standards

▶	Counting references to dynamically allocated objects

T
his chapter contains something different from all the other chapters in
this book: an idiom. In Chapter 6, I describe three categories of patterns

based on the scope of the problems they tackle:

	 ✓	Architectural patterns help you structure your whole solution architec-
ture. I introduce some architectural patterns in Chapters 9 through 16.

	 ✓	Design patterns help you solve individual design problems at the level
of an object, component, or module. Chapters 17 through 22 contain
design patterns.

	 ✓	Idioms are language-specific patterns that help you overcome shortcom-
ings in programming languages.

An idiom gives you insight into how to overcome limitations in a particular
programming language, essentially telling you “tricks” for making the most of
a language. It also can help you understand how to use the language and read
programs written in it.

This chapter describes one idiom that I’ve found to be useful in many situa-
tions: Counted Pointer. This idiom helps you program in the C++ language,
but the concept is applicable in other situations, too.

Problem: Using the Last of Something
Sometimes, your C++ program has data objects that are too big to copy effi-
ciently. You can use multiple pointers to refer to one copy of the big data
structure to provide some flexibility when this is the case. In a similar

310 Part IV: Designing with Other POSA Patterns

situation, your program has multiple pointers to a specific resource or bit of
information that you can’t copy because it absolutely must be the only copy
in the system. This may be the case when there’s a central constant or cen-
tral object that every other part of the system should refer to.

The system can delete the item and release the resources only when the last
pointer is done using it. How do you know, however, when there are no more
active pointers to the resource or structure? Following are three ways to try
to find out.

First try: Passing objects with pointers
Passing objects as parameters to functions is common in object-oriented C++
programs. Pointers usually accomplish this task. Without care, however, the
situations shown in Figure 22-1 can occur:

	

Figure 22-1:
What

can go
wrong with

pointers
to shared

objects.
	

311 Chapter 22: Counting the Number of References

	 ✓	One client of an object deletes the shared object out from under another
reference.

	 ✓	All the clients stop using the shared object, but none of them bothers to
delete it — thereby leaving it to waste memory.

Second try: Passing objects by copying
You can solve this problem by avoiding pointers and passing the objects by
value — where the actual value is copied and passed. The C++ compiler will
delete the copied value automatically when it goes out of scope.

This solution doesn’t work in all situations, however. If the object being
passed is large, both the execution time required to copy the object and the
amount of duplicated memory are large — representing two strikes against
the copying. If your application is creating dynamic structures of objects
such as trees or directed graphs, passing objects around by value will be
impossible.

Another situation in which copying is a poor choice is when you deliberately
want to pass around references to the same item instead of copying it —
such as when you want to point to a shared item so that it can be updated
in one place and make the updates available elsewhere immediately and
transparently.

Third try: Using the Counted Pointer idiom
The following forces make this problem hard to solve and explain why the
preceding answers don’t work:

	 ✓	Sometimes, it’s inappropriate for a class to pass objects by value.

	 ✓	The same object may need to be shared by several clients.

	 ✓	You don’t want to have dangling references (references to objects that
have been deleted).

	 ✓	Shared objects should be deleted when they’re no longer needed.

	 ✓	The solution shouldn’t require too much extra code.

In this case, consider a third solution: using a counted pointer to release
resources. I show you how in the following section.

312 Part IV: Designing with Other POSA Patterns

Solution: Releasing Resources with
the Counted Pointer Idiom

The Counted Pointer idiom addresses the forces that I mention in the preced-
ing section and helps you solve the problem of memory management with
dynamically allocated objects. The solution involves making only a small
addition to the object being shared and adding another class.

Two classes are involved in the solution:

	 ✓	Body: The body is the object that will be referenced and shared; it prob-
ably exists already. A reference counter in the body keeps track of the
number of pointers to it by other objects.

	 ✓	Handle: The handle is introduced as the only class in the system that’s
allowed to have a reference directly to the body.

All references to the body are made through the handle. Accesses to the
body through the handle manipulate the reference counter, incrementing it
when a new class points to the handle and decrementing it when a reference
to the handle is eliminated. Figure 22-2 shows the structure of the solution.

	

Figure 22-2:
A class

diagram of
Counted
Pointer.

	

The handle objects are passed by value throughout the system, which causes
them to be allocated and destroyed automatically. If the reference count
was stored in the handle, it would be copied, which would result in handles
racing to delete or preserve the body. The actual reference count is stored in
the body to prevent this problem with the counter being duplicated.

Figure 22-3 shows a snapshot of the system with several handles all pointing
to the same body.

313 Chapter 22: Counting the Number of References

	

Figure 22-3:
Handles and

a body in
midexecu-

tion.
	

Implementing Counted Pointer
Implementing Counted Pointer takes just a few steps:

	 1.	 To keep the body safe from direct accesses, make its constructors and
destructors private.

	 2.	 Make the Handle class a friend of the Body class.

		 This step gives the Handle class access to the internals of the Body
class and improves efficiency.

		 This exception for efficiency is noted in the Necessary Friends coding
standard (see the nearby sidebar “Styling your code with idioms”).

	 3.	 Add a reference counter to the Body class.

		 Because the handle is a friend of the body (refer to Step 2), you don’t
need to create setters and getters for the reference count.

	 4.	 To the Handle class, add a data member that points to the Body class.

	 5.	 In the Handle class, implement a copy constructor and an assignment
operator that copy the pointer to the body object and increment the
body object’s reference count.

	 6.	 Implement the Handle-class destructor that decrements the body’s ref-
erence count.

314 Part IV: Designing with Other POSA Patterns

		 If the count reaches 0, the Handle’s destructor also deletes the body
object.

	 7.	 Implement the arrow operator as follows, making it a public member
function:

Body* operator->(){ return body; }

	 8.	 Extend the Handle class with constructors that create the body for the
first time.

		 These constructors should set the reference counter to 1.

The C++ code shown in Listing 22-1, which comes from Pattern-Oriented
Software Architecture: A System of Patterns, by Frank Buschmann, Regine
Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal (Wiley), shows a
sample implementation of the steps.

	 Although the following Counted Pointer solution is a C++ solution, it’s appli-
cable to much more than just C++.

Listing 22-1:   Counted Pointer in C++
class Body {
public:
// methods providing the body’s functionality
// to the world
 void service();
 // further functionality ...
private:
 friend class Handle;
 // parameters of constructor as required
 Body(/*...*/) { /* ... */ }
 ~Body() { /* ... */ }
 int refCounter;
 char BigData(/* ... */);
};

class Handle {
public:
 // use Body’s constructor parameters
 Handle(/* ... */) {
 body = new Body(/* ... */);
 body->refCounter = 1;
 }
 Handle(const Handle &h) {
 body = h.body;
 body->refCounter++;
 }
 Handle & operator=(const Handle &h) {
 h.body->refCounter++;
 if (--body->refCounter) <= 0)

315 Chapter 22: Counting the Number of References

 delete body;
 body = h.body;
 return *this;
 }
 ~Handle() {
 if (--body->refCounter <= 0)
 delete body;
 }
 Body* operator->() { return body; }
private:
 Body *body;
};

// example use of handles ...
Handle h(/* some parameter */);
//create a handle and also a new body instance
{
 Handle g(h); // create just a new handle
 h->service(); g->service();
} // g goes out of scope and is automatically deleted

h->service(); // still possible
// after h goes out of scope the body instance is
// automatically deleted.

Styling your code with idioms
Idioms are useful for explaining to other mem-
bers of your team, project, and company how to
write software. For one thing, the idiom’s name
enters people’s vocabularies easily, so when
someone says “Counted Pointer,” for example,
everyone knows what she means.

You’ve probably seen how easy it is to read and
understand a program written in a consistent
style. Coding standards help everyone on a
project know the normal way of writing code.
The standards range from guidelines about the
number of spaces to the correct format for vari-
able names to the directory where source files
are stored — and everything in between.

Here’s an example idiom, Necessary Friends,
that’s used as a coding standard:

	✓	 Context: C++ provides the capability for
one class to friend another, which allows
the class to look into and access private
methods and data in the friended class.

	✓	 Problem: Friending violates encapsula-
tion and information hiding, so you gener-
ally should avoid it. To achieve needed
efficiency, however, one class sometimes
must access the internals of another.

	✓	 Solution (the coding standard): Avoid
establishing friends between classes. Use
this capability only in extreme situations,
when efficiency requires it.

316 Part IV: Designing with Other POSA Patterns

	 Version 11 of C++, first approved in 2011, provides an even easier way to
implement the basic Counted Pointer idiom. This version of the C++ language
standard introduces the shared_ptr class, with all the parts that I just
described:

template< class T > class shared_ptr;

For more information, visit this website: http://en.cppreference.
com/w/cpp/memory/shared_ptr.

Seeing some Counted Pointer variations
The preceding section explains how to create a Counted Pointer structure
that separates the handle, which is passed around, and a body with a refer-
ence count. Several variants may work better for you in some situations,
however. This section provides short descriptions and pointers to more
information.

Coplien’s Counted Body idiom
The Counted Body (or Reference Counting Idiom) variant helps improve per-
formance when the body objects are large. Each client thinks that it’s using
its own body object, but that object is shared with other clients, as described
in the preceding discussions of the Counted Pointer idiom. When an action
that will change the body object is about to happen, a copy of the body is
made, and the reference count of the original body is decremented. This vari-
ant idiom keeps the bodies the same for as long as possible but creates a new
copy that can be changed when necessary.

This variant is introduced by James Coplien in Pattern Languages of Program
Design 4, by Brian Foote, Neil Harrison, and Hans Rohnert (Addison-Wesley).

Coplien’s Detached Counted Body idiom
Another variant, also by Coplien, wraps existing classes with a class that
contains the reference counter. This variant adds another class between
the handle and the body that contains the reference count. It continues the
pass-through that you implemented in the handle of body-specific methods
and requests. The extra class adds to the execution-time expense of this
variant. The benefit is that the Body class needs no modification at all to
add the counter.

http://en.cppreference.com/w/cpp/memory/shared_ptr
http://en.cppreference.com/w/cpp/memory/shared_ptr

317 Chapter 22: Counting the Number of References

This variant, shown in Figure 22-4, is described in Pattern Languages of
Program Design 4 (see the preceding section).

	

Figure 22-4:
Wrapping

the body
with a coun-

ter class.
	

Koenig’s Detached Counted Body idiom
Andrew Koenig suggests another variant in “Another Handle Variation,”
which appeared in the Journal of Object-Oriented Programming, Vol. 8, No. 7
(1995). In this variant, the counter is the Count class (see Figure 22-5). This
class isn’t between the Handle and Body classes; it’s parallel to the Body
class. The Count class is pointed to and used by the Handle to maintain the

318 Part IV: Designing with Other POSA Patterns

reference counts. The Count class can maintain reference counts for several
Body classes by adding more refCount attributes. The Handle class grows
because it needs extra space to manipulate two classes: Count and Body.

	

Figure 22-5:
Koenig’s

variant with
a Count

class.
	

Part V
The Part of Tens

In this part . . .

T
he Part of Tens is where I share some helpful tips on
using patterns in your own work. I list ten patterns that

every developer should know, as well as ten resources that
you can seek out to continue your research on patterns.
Finally, I provide ten ways to get more deeply involved in
using, writing, and promoting software patterns.

Chapter 23

Ten Patterns You Should Know
In This Chapter
▶	Introducing new behavior and ideas

▶	Checking and patching your software

▶	Keeping track of events

▶	Staying signed in

I
n this book, I’ve told you about 17 specific software patterns that you’ll
find useful as you design and build software systems. They represent just

the tip of the iceberg, however, because not all patterns are about software.
Many other patterns are available, covering a wide range of problem catego-
ries, including people, organizations, and buildings. This chapter lists ten
more patterns that you should know.

My goal in giving you this list is to fuel your interest in patterns by showing
you that patterns cover a wide range of subject areas. Even if you don’t use
any of the architectural patterns in Part III again, you’ll still find some pat-
terns useful.

	 Patterns exist in a context, and the most useful patterns are part of a pattern
language (see Chapter 6). The patterns in this chapter serve as an introduc-
tion to the pattern languages or collections that they’re part of.

Special Case
The Special Case pattern describes how to have your system seamlessly
provide alternative, special-case behavior. It’s a variant and refinement of
the pattern Null Object, for which many authors have written many variants;
it’s also a refinement of the Strategy pattern from Design Patterns: Elements
of Reusable Object-Oriented Software, by Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides (Addison-Wesley Professional).

322 Part V: The Part of Tens

When you’re designing with objects, you define the classes and objects to
handle some responsibility or data. Sometimes, though, you need to remember
that there isn’t anything to save or to do, which is a special case of the data
and responsibilities. Figure 23-1 shows a simple class diagram of Special Case.

The Special Case pattern is from Patterns of Enterprise Application
Architecture, by Martin Fowler (Addison-Wesley).

	

Figure 23-1:
The classes

of Special
Case.

	

Do Food
The Do Food pattern is part of a collection of patterns for introducing new
ideas into an organization. You’ve probably seen the pattern in your own life:
When you want to get a group of people together for some purpose, you “do
food.” You can have people bring their own, or you can provide the food, but
the basic point is the same: The way to recruit a group of people is to make
food available at the meeting.

Do Food is from Fearless Change: Patterns for Introducing New Ideas, by Mary
Lynn Manns and Linda Rising (Addison-Wesley).

Leaky Bucket Counter
This design pattern is a cornerstone of fault-tolerant programming and is also
useful for resource-allocation issues. It tells you how to keep track of events
and to take action only when the frequency of the events is larger than you’re
willing to allow.

Figure 23-2 shows the general principles of Leaky Bucket Counter. Error
reports fill the bucket, while an allowable number of errors is deducted from
the bucket constantly as it leaks. If the rate at which the bucket fills is larger
than the leaking rate, an error is triggered.

323 Chapter 23: Ten Patterns You Should Know

	

Figure 23-2:
Principles

of Leaky
Bucket

Counter.
	

Leaky Bucket Counter is from my book Patterns for Fault Tolerant Software
(Wiley).

Release Line
After you release a version of your software to your users, you’ll probably
have to fix some problems. You can expect that your users will update to the
latest version to get the fixes and other enhancements, but frequently, they
won’t want to update or can’t take the upgrade when you want them to. The
Release Line pattern describes a way to create a release line when you ship
your software. This line will be maintained and patched in parallel to the
main software development. Patches are applied to the release line and given
to customers. Periodically, the patches are brought back into the main devel-
opment product, as shown in Figure 23-3.

	

Figure 23-3:
The Release
Line pattern.

	

Release Line is from Software Configuration Management Patterns: Effective
Teamwork, Practical Integration, by Stephen P. Berczuk and Brad Appleton
(Addison-Wesley).

324 Part V: The Part of Tens

Light on Two Sides of Every Room
Think about the place in your home where you most like to sit. Where is the
light coming from? Odds are, it’s coming from two sides of the room. You can
reproduce that effect in your own architecture, thanks to the Light on Two
Sides of Every Room pattern.

The easiest way to think about this pattern is to imagine a corner room with
windows on two sides, but the light can come from a variety of sources, such
as windows, skylights, and open doors.

This pattern is from the collection of building patterns in A Pattern Language:
Towns, Buildings, Construction, by Christopher Alexander, Sara Ishikawa, and
Murray Silverstein, with Max Jacobson, Ingrid Fiksdahl-King, and Shlomo
Angel (Oxford University Press).

Streamline Repetition
Streamline Repetition gives the user an easy way to repeat things that need
to be repeated. Examples include the find and replace box in many editors,
the ability to record sequences of events as macros that can be repeated
with a single command, shell scripting, and user-defined shortcuts.

The Streamline Repetition pattern is from Designing Interfaces, 2nd Edition,
by Jenifer Tidwell (O’Reilly). The book talks about all aspects of design for
user interfaces, but this pattern applies to most any user interface problem.

Observer
Many developers view the Observer pattern from Design Patterns: Elements
of Reusable Object-Oriented Software, by Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides (Addison-Wesley Professional) as the most impor-
tant pattern in that book. Others think that you need to know all 23 patterns.

The Observer pattern sets up a one-to-many relationship between a sub-
ject and an observer. When the singular object changes state, all the other
“observers” are notified. This pattern is good for supporting broadcast com-
munications from one-to-many, and it’s particularly useful in these situations:

325 Chapter 23: Ten Patterns You Should Know

	 ✓	When an abstraction has two different aspects, and one of those aspects
depends on the other one

	 ✓	When the number of objects that are observing the state change is
unknown

	 ✓	When the object being observed shouldn’t know anything about the
objects that are observing it

The class’s arrangement is shown in Figure 23-4.

	

Figure 23-4:
The

Observer
pattern.

	

Sign-In Continuity
One aspect of social-networking websites that I hate is links that don’t take
me where I want to go. This happens when I haven’t logged in yet, so I get
taken to the login page, and then the website decides that I should go to my
home page. That page isn’t where I wanted to go, however, and by now, I
can’t remember what I wanted to look at anymore. The Sign-In Continuity pat-
tern addresses this situation and recommends that the software return the
user to the context he or she was in before being asked to sign in.

Sign-In Continuity is from Designing Social Interfaces: Principles, Patterns, and
Practices for Improving the User Experience, by Christian Crumlish and Erin
Malone (O’Reilly).

Architect Also Implement
This pattern deals with organizational issues. System architects can become
isolated from real system construction. When this happens, they begin to
make architectural decisions that don’t fit with the existing structure of the
system or even with what is technically feasible. Another problem is that the
people who actually build the system may not understand the architect’s
vision of it.

326 Part V: The Part of Tens

One way to prevent this problem is to use the Architect Also Implement pat-
tern, which is part of a language related to the organizational aspects of soft-
ware development. You can find it in Organizational Patterns of Agile Software
Development, by James O. Coplien and Neil B. Harrison (Prentice Hall).

The CHECKS Pattern Language
of Information Integrity

In 1994, Ward Cunningham brought his CHECKS Pattern Language of
Information Integrity to the first software-patterns conference — Pattern
Languages of Programming, or PLoP (see Chapter 5). This language contains
ten patterns for telling good input from bad. It also describes recording the
fact that the input was bad and continuing processing even with the bad
input. The methods are designed to make the checks without overly compli-
cating your program or making them inflexible for future changes.

The ten patterns included in the language are

	 ✓	Whole Value

	 ✓	Exceptional Value

	 ✓	Meaningless Behavior

	 ✓	Echo Back

	 ✓	Visible Implication

	 ✓	Deferred Validation

	 ✓	Instant Projection

	 ✓	Hypothetical Publication

	 ✓	Forecast Confirmation

	 ✓	Diagnostic Query

CHECKS appears in Pattern Languages of Program Design, by James O. Coplien
and Douglas C. Schmidt (Addison-Wesley). A version of CHECKS is available
on the web at www.c2.com/ppr/checks.html.

	 I include a language of ten patterns here because CHECKS is an early example
of a small number of patterns that work together to solve a problem power-
fully. Better yet, it’s still useful!

http://www.c2.com/ppr/checks.html

Chapter 24

Ten Places to Look for Patterns
In This Chapter
▶	Checking out language collections

▶	Looking at user interfaces

▶	Investigating apprenticeships

C
hapter 23 presents ten patterns that you should know. In this chapter, I
tell you about ten sources of those collections. The books and websites

listed here are ones that I turn to frequently or that many other people in
the pattern community use regularly. These pattern collections cover a wide
range of problem categories, so no matter what your interest, you should find
something interesting. You can find pointers to even more patterns at www.
hillside.net.

Because patterns can be about more than just software, the first pattern
source that I mention here is about buildings.

A Pattern Language
A Pattern Language: Towns, Buildings, Construction, by Christopher Alexander,
Sara Ishikawa, and Murray Silverstein, with Max Jacobson, Ingrid Fiksdahl-
King, and Shlomo Angel (Oxford University Press), is one of the works that
got software people interested in patterns in the first place. This very read-
able book contains 253 patterns, ranging from designing a nation-state to
decorating your home with the things you like and the things that tell the
visitor who you are (or that tell the visitor your story). If you’re interested
in reading very well-written patterns — or are in the process of redesigning
your home — you should check it out.

http://www.hillside.net
http://www.hillside.net

328 Part V: The Part of Tens

Pattern-Oriented Software Architecture
In this book, I focus on the patterns in the first volume of the series, Pattern-
Oriented Software Architecture: A System of Patterns, by Frank Buschmann,
Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal (Wiley).
The series, however, has four more volumes:

	 ✓	Pattern-Oriented Software Architecture, Volume 2: Patterns for
Concurrent and Networked Objects, by Douglas Schmidt, Michael
Stal, Hans Rohnert, and Frank Buschmann (Wiley): This book contains
patterns related to service access and configuration, event handling,
synchronization, and concurrency.

	 ✓	Pattern-Oriented Software Architecture, Volume 3: Patterns for
Resource Management, by Michael Kircher and Prashant Jain
(Wiley): Resource acquisition, life cycle, and release patterns are pre-
sented in this book.

	 ✓	Pattern-Oriented Software Architecture, Volume 4: A Pattern
Language for Distributed Computing, by Frank Buschmann, Kevlin
Henney, and Douglas Schmidt (Wiley): This book adds to the patterns
that I discuss in Parts III and IV of this book, providing patterns related
to the technical aspects of distributed systems. The patterns in this
volume create a pattern language.

	 ✓	Pattern-Oriented Software Architecture, Volume 5: On Patterns
and Pattern Languages, by Frank Buschmann, Kevlin Henney, and
Douglas Schmidt (Wiley): This volume, which wraps up the series, is an
excellent source of detailed information about patterns, expanding on
what you find in Part II of this book.

Design Patterns
Design Patterns: Elements of Reusable Object-Oriented Software, by Erich
Gamma, Richard Helm, Ralph Johnson, and John Vlissides (Addison-Wesley
Professional), contains 23 patterns that explain how to solve many problems
associated with object-oriented programming. The patterns are divided into
three categories:

	 ✓	Structural: Patterns that help you put together the right arrangement of
patterns to solve the problems

	 ✓	Behavioral: Patterns that help you spread responsibility among
your objects

	 ✓	Creational: Patterns that help your system create new objects

329 Chapter 24: Ten Places to Look for Patterns

This book is the first exposure many people get to patterns and a book that
anyone doing object-oriented design should know. You’ve seen it referenced
throughout this book.

Domain-Driven Design
Domain-Driven Design: Tackling Complexity in the Heart of Software, by Eric
Evans (Addison-Wesley), is considered one of the most influential software-
pattern books. When you start reading it, however, you’ll notice that the pat-
terns aren’t thrust in your face. The book contains patterns, but they serve
the purpose of explaining Evans’s design technique rather than being pre-
sented as patterns by themselves.

Pattern Languages of Program Design
The five volumes of the Pattern Language of Program Design series con-
tain the best of the patterns presented at the early Pattern Languages of
Programming (PLoP) conferences. (See Chapter 5 for more information on
these conferences.) The books contain an eclectic mix of patterns covering a
wide range of topics, from the practice of patterns to organizational patterns
to specific problem categories.

	 ✓	Pattern Language of Program Design, Volume 1, edited by James O. Coplien
and Douglas C. Schmidt (Addison-Wesley), contains the patterns from the
first PLoP conference, held in 1994. The patterns range from very com-
plete languages like CHECKS (see Chapter 23) to chapters that contain the
author’s thoughts about patterns rather than actual patterns.

	 ✓	Pattern Language of Program Design, Volume 2, edited by John M.
Vlissides, James O. Coplien, and Norman L. Kerth (Addison-Wesley),
contains patterns that were reviewed and discussed at the 1995 PLoP
conference. It presents no discussions of patterns. Early versions of
Leaky Bucket Counters and Architect Also Implements (see Chapter 23)
are in this volume.

	 ✓	Starting with Pattern Language of Program Design, Volume 3, edited by
Robert Martin, Dirk Riehle, and Frank Buschmann (Addison-Wesley),
the books contain patterns from several PLoP conferences, including
EuroPLoP. The patterns also span several years. In other words, the
books got more selective, so only the best patterns appear.

330 Part V: The Part of Tens

	 ✓	Pattern Language of Program Design, Volume 4, edited by Neil Harrison,
Brian Foote, and Hans Rohnert (Addison-Wesley), continues the docu-
menting of patterns from both PLoP and EuroPLoP. Some patterns that
I wrote for managing input and output in embedded systems appear in
this volume.

	 ✓	The series stops today with Pattern Language of Program Design, Volume
5, edited by Dragos Manolescu, Markus Voelter, and James Noble
(Addison-Wesley), which continues to bring together patterns for a
variety of computing domains in one place.

Patterns for Time-Triggered
Embedded Systems

Throughout this book, I’ve been telling you that patterns aren’t exclusively
about objects, and this selection of patterns takes you a long way from objects.

Patterns for Time-Triggered Embedded Systems: Building Reliable Applications with
the 8051 Family of Microcontrollers, by Michael Pont (Addison-Wesley), contains
patterns to help software engineers with experience in desktop systems expand
their knowledge into the world of embedded systems. It also helps hardware
engineers understand the software that goes into embedded systems and
enables students to combine hardware and software to make something.

This massive, comprehensive book is full of tips and techniques for getting the
most out of almost any microcontroller, including code and circuit diagrams.

	 It’s also available on the author’s website: www.tte-systems.com/
books/pttes.

Software Configuration
Management Patterns

Stephen P. Berczuk and Brad Appleton created Software Configuration
Management Patterns: Effective Teamwork, Practical Integration (Addison-
Wesley) to describe effective ways of managing projects from the software-
configuration-management perspective. The pattern Release Line, mentioned
in Chapter 23, comes from this book.

http://www.tte-systems.com/books/pttes
http://www.tte-systems.com/books/pttes

331 Chapter 24: Ten Places to Look for Patterns

Patterns of Enterprise Application
Architecture

In the first part of Patterns of Enterprise Application Architecture (Addison-
Wesley), Martin Fowler introduces several issues and concerns that surface
during the design of enterprise architectures. Fowler defines enterprise applica-
tions as those that deal with storing and processing large amounts of data and
applications that use that data to support business processes. In the second
part of the book, Fowler introduces patterns that solve those problems.

Welie.com
The patterns in Parts III and IV of this book deal with software, but a wealth
of patterns for user interfaces is available too. Both Sign-In Continuity and
Streamlined Repetition, mentioned in Chapter 23, manage user interaction
with systems.

The user-interface community has an excellent resource in a website main-
tained by Martijn van Welie, www.welie.com. This site hosts a large collec-
tion of user-interface patterns and has links to many other collections. It’s an
excellent entry point into the world of user-interface patterns.

Apprenticeship Patterns
Apprenticeship Patterns, by Dave Hoover and Adewale Oshineye (O’Reilly),
is one of my favorite recent books of patterns, capturing patterns related
to being a good apprentice. The book targets readers who are interested in
becoming better, more-refined software practitioners. It provides tools and
tips (including patterns) for mastering the wealth of information available to
software professionals and growing your career.

http://www.welie.com

332 Part V: The Part of Tens

Chapter 25

Ten Ways to Get Involved with
the Pattern Community

In This Chapter
▶	Writing — and writing about — patterns

▶	Mentoring newcomers

▶	Taking advantage of pattern-community resources

▶	Starting your own pattern-related groups

I
f you’ve arrived at this chapter after reading the rest of the book, you
may be wondering where to go from here. This chapter gives you ten tips

to help you get more out of patterns and contribute to the worldwide pat-
tern community. Each tip is a step toward passing through the gate (refer to
Chapter 8).

I used these techniques when I was just getting started with patterns. I hope
that they’ll help you as much as they helped me.

Advocate Using Patterns
Tell others about how wonderful patterns are. If you’re reading this book, you
probably think (as I do) that patterns can benefit anyone doing software. Start
telling your colleagues and friends about how useful patterns have been for you.

	 Please don’t hype patterns, though. I remember too well the days when we
were told that “[pick your innovation] would save the world,” only to later find
that, although it was a useful tool, it wasn’t the last word in software.

334 Part V: The Part of Tens

Write About Your Experiences
Using Patterns

After successfully using patterns in a few projects, write down your expe-
riences. The unique insights that you have about how to find patterns or
include them in your software can help others.

	 Even though you may feel like you’re still a rookie with patterns, there are
many things you can tell others about, such as:

	 ✓	How you got started with patterns

	 ✓	How you found the patterns that you find useful

	 ✓	What patterns you keep in your pattern catalog and why

	 ✓	What “translations” you had to make to the patterns to fit your environment

	 ✓	What difficulties you encountered using the patterns and how you over-
came them

	 ✓	What unique problem patterns helped you surmount in your projects

Compile a Catalog of Your Work
Chapter 7 gives you the details on writing a personal pattern catalog, which
also can be a portfolio of your work. Write a pattern catalog for your work-
place or software project. Make it something that you and your teammates
can use over and over again.

	 Because patterns are useful for defining vocabulary, your catalog can be an
introduction to the project, helping newcomers get a handle on the terminol-
ogy and trade-offs in your domain.

Mentor Someone
If someone new starts looking into patterns, mentor him. Help him to build
his own pattern catalogs. Teach him about the most important patterns that
you know. Work with him to bring him to the same level of understanding
about patterns that you have.

	 You don’t need to know everything; you just have to stay a step ahead of your
protégé. Mentoring is an opportunity for you to grow, too, because learning by
teaching is a well-known pattern.

335 Chapter 25: Ten Ways to Get Involved with the Pattern Community

Help Index Patterns
No comprehensive catalog or index of all the available patterns exists, so you
can pitch in to help the pattern community catalog patterns. Some people
have created indices, but the efforts usually fade away after a while, so the
pattern community always needs indexers. Within the user interface commu-
nity Martijn van Welie’s website (www.welie.com) has patterns and links to
other patterns, letting it serve as an index. Either by yourself or with a group,
look at the existing pattern literature, create references and cross-references
(much as you do in your own pattern catalog; see Chapter 7), and make the
information available to the rest of the pattern community. The Hillside
Group (www.hillside.net) is the ideal center for any indexing effort.

Join a Mailing List
If you want to help other people review their patterns, discuss patterns in
general, or get answers to questions about how to use them, mailing lists
about patterns may be helpful.

The pattern mailing lists at the University of Illinois — where Ralph Johnson,
one of the authors of Design Patterns: Elements of Reusable Object-Oriented
Software, works — have been around the longest. Information about how to
subscribe is available at www.hillside.net/patterns/mailing-lists.
Here are some of the lists available at the U of I:

	 ✓	patterns@cs.uiuc.edu is for presenting and describing software patterns.

	 ✓	business-patterns@cs.uiuc.edu is for presenting and describing business
patterns.

	 ✓	patterns-discussion@cs.uiuc.edu is for discussion of patterns in general.

	 ✓	gang-of-4-patterns@cs.uiuc.edu is about the design patterns in Design
Patterns: Elements of Reusable Object-Oriented Software, by Erich
Gamma, Richard Helm, Ralph Johnson, and John Vlissides (Addison-
Wesley Professional).

	 ✓	siemens-patterns@cs.uiuc.edu is about the patterns described by the
Siemens guys. (Hey, wait a minute — this is a mailing list about the
patterns in this book!) People use the list to talk about the finer points
of, or ask questions about, the patterns in Pattern-Oriented Software
Architecture: A System of Patterns, by Frank Buschmann, Regine
Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal (Wiley).

	 ✓	organization-patterns@cs.uiuc.edu is for discussing patterns involving
organizations.

http://www.welie.com
http://www.hillside.net
http://www.hillside.net/patterns/mailing-lists

336 Part V: The Part of Tens

	 ✓	corba-patterns@cs.uiuc.edu is about patterns described in CORBA
Design Patterns, by Thomas Mowbray and Raphael Malveau (Wiley), and
related patterns.

	 ✓	antipatterns@cs.uiuc.edu concerns antipattern refactoring and the book
AntiPatterns, by William Brown, Raphael Malveau, Hays McCormick, and
Thomas Mowbray (Wiley).

	 ✓	scm-patterns@cs.uiuc.edu is about patterns for software configuration
management.

	 ✓	telecom-patterns@cs.uiuc.edu is about patterns for telecommunications.

Join a Reading Group
Reading groups look through patterns or other literature to learn as a group.
There may be a reading group near where you live or work. Join it and start
learning with others. You’ll meet like-minded people who can also learn from
you and your experiences.

You can find the patterns to study in such a group in many places. Patterns
have appeared in many, many books and magazines over the past decades.
The Hillside Group (www.hillside.net) can help with its listing of books.

Journals such as IEEE Computer, IEEE Software, and The Communications
of the ACM all have had special issues devoted to patterns. There is also
the peer-reviewed journal LNCS Transactions on Pattern Languages of
Programming; more information is available at www.springer.com/
computer/lncs?SGWID=0-164-2-470309-0. Any of these can provide
your reading group articles to study.

	 If you can’t find an existing group, you can start your own by using the sugges-
tions at www.industriallogic.com/papers/khdraft.pdf.

Write Your Own Patterns
When you start writing your own patterns, think about what you’re an expert
in. To narrow down the area(s) in which you’re an expert, keep some notes
about the specific questions that people ask you over and over, such as
the following:

	 ✓	How do I get the compiler to work?

	 ✓	How do I set up the IDE?

	 ✓	How do I use the XYZ protocol?

http://www.hillside.net
http://www.springer.com/computer/lncs?SGWID=0-164-2-470309-0
http://www.springer.com/computer/lncs?SGWID=0-164-2-470309-0
http://www.industriallogic.com/papers/khdraft.pdf

337 Chapter 25: Ten Ways to Get Involved with the Pattern Community

If there isn’t already a pattern that explains how you answer the questions —
write your first pattern as a solution to one of those questions.

	 Patterns are proven solutions. If you don’t know the solution to the problem,
you don’t have a pattern.

	 Think about your intended audience. Who do you want to read your pattern
and benefit from it? If you’re writing about the things that people ask you
about, your audience is probably your co-workers or friends. Write the pat-
tern to answer their questions.

When the pattern is completed, label it a candidate pattern, and have your
colleagues read and review it (refer to Chapter 5). After a review or two,
the pattern will be able to stand on its own, and people can use it instead of
asking you the same questions over and over.

Your pattern may be immediately useful to your workgroup or circle of
friends. If you want it to be more widely useful, you need to make it widely
available. If you’re confident in your pattern and your skills, you can just post
it on your website and hope that people find it and use it. A better approach,
however, is to have some of your fellow pattern users read it and offer sug-
gestions for improving it and making it more widely known.

	 Chapter 4 contains a thorough discussion of the components of a pattern.
Chapter 5 gives you an introduction to writing your own patterns and pro-
vides a template that you can fill in.

Attend a Pattern Conference
Several conferences exist to review or discuss patterns, including the
Pattern Languages of Programming (PLoP) series (see Chapter 5), which is
held in the United States every year. After a couple years of PLoP, a group
from Europe created the EuroPLoP conference, which is held each year in
Germany. Many other conferences have followed. These conferences are usu-
ally geared toward reviewing patterns to help make them better.

Reading a variety of patterns and participating in a discussion of how to
make them better is a great way to become exposed to and to learn many
different concepts. Information about these patterns and when they are next
going to be held is available at www.hillside.net/conferences.

http://www.hillside.net/conferences

338 Part V: The Part of Tens

Start a Writers’ Workshop
If your mentoring and advocating activities have been going well, you may
be surrounded by others who also want to start writing patterns. Encourage
them, share your experiences, and mentor them. Writers’ workshops (see
Chapter 5) are good venues for reviewing and improving patterns. If there’s
no group near you, start a writers’ workshop of your own.

	 Many resources can help you get one going. A good starting point is http://
members.cox.net/risingl1/Articles/WritersWorkshop.doc.
(Note: This URL automatically downloads a Microsoft Word document to
your computer.)

http://members.cox.net/risingl1/Articles/WritersWorkshop.doc
http://members.cox.net/risingl1/Articles/WritersWorkshop.doc

Index
Numerics
4 + 1 model

describing in architecture document,
54

with UML styles, 38
views, 12

• A •
ABI (application binary interface),

178, 185
abstract base class, 282
Abstract Factory pattern, 91, 290
AbstractCommand class, 286–288, 290
abstraction

bottom-level agent, 221
describing in architecture document,

53
employing enabling techniques, 30
functionality, 30
importance of, 30
intermediate-level agent, 222
layer grouping criterion, 130
pattern for, 32

AbstractOrder class, 289
AbstractServer component, 279
AbstractView class, 291–292
ACM (Association for Computing

Machinery), 279
action part (knowledge), 163–164
active filter, 149
active server, 243
actor

definition, 15
identifying the, 16–17

nonhuman, 17
problem statement development, 14
roles of, 16
as system, 17

adaptable application, 251–252,
254–256

Adaptable Systems style, 26
adapter

CRC card, 238
hosting multiple applications,

233–234
microkernel, 237, 243–244

adapter broker system, 176
Adapter pattern, 125, 215, 282
adaptive object model (AOM), 261
Adobe Illustrator drawing tool, 51
agent

adding new, 218
bottom-level, 221, 224–225
capabilities, 209
definition, 209
distribution, 218
external interface, 226–227
hierarchy, 228
implementing as process, 223
intermediate-level, 221–222, 225
public interface, 227
top-level, 220–221, 224

AGILE conference, 78
Agile Manifesto, 13
agile method, 13, 27
Alexander, Christopher

A Pattern Language, 58, 86, 324, 327
algorithm, 60
alias section, pattern template, 76
analysis pattern, 99

340 Pattern-Oriented Software Architecture For Dummies

Angel, Shlomo
A Pattern Language, 58, 86, 324, 327

Another Handle Variation variant,
317–318

answering telephone call, 302
AOM (adaptive object model), 261
AOP (aspect-oriented programming),

248, 250
Appleton, Brad

Software Configuration Management
Patterns: Effective Teamwork,
Practical Integration, 324, 330

application binary interface (ABI), 178,
185

Apprenticeship Patterns (Hoover and
Oshineye), 331

Architect Also Implement pattern,
325–326

architectural pattern
basic description, 309
pattern catalog example, 99
pattern categories, 108
pattern classification, 88–89
pattern evaluation, 104
problem categories, 109

architectural style
basic description, 24
elements, 26
patterns, 26
selecting for architecture design, 34
selection importance, 25–26

architectural vocabulary, 59–60
architecture, 9. See also software

architecture
architecture document

content/sections, 53–54
organization, 52
table of contents, 52
uses, 11

architecture view. See view

aspect-oriented programming (AOP),
248, 250

assembly-parts, 267
Association for Computing Machinery

(ACM), 279
associations, class diagram, 41
assumption

in pattern context section, 64
as software architecture component, 10

Astah Community tool, 50
at-least-once semantic, 188
at-most-once semantic, 188
attribute, class diagram, 43–44
author section, pattern template, 77
availability, dependability

requirement, 20

• B •
backward reasoning, 163
base level

application logic, 245–246
classes, 252
CRC card, 253
defining the, 258
functionality, 259
reflection examples, 248

Behavioral pattern, 91
benefit and liability comparison, 110–111
Berczuk, Stephen

Software Configuration Management
Patterns: Effective Teamwork,
Practical Integration, 324, 330

Big Ball of Mud software pattern, 28
black box execution, 274
black box layer, 134
blackboard

architecture implementation, 165–169
benefits, 159–160
class diagram, 164–165

341341 Index

control component, 164, 168–169
CRC card, 161
data store, 161
degree of truth, 162
hypothesis, 161–162, 168
island driving heuristic, 169
as knowledge repository, 160–162
liability, 160
moderated access, 160
problem solving and identifying, 166
repository variant, 170
solution process, 167
testing difficulty, 160
TV sleuths, 158
vocabulary development, 167–168

Blackboard pattern
basic description, 151
component-to-question mapping, 151
strategy game example, 151–158

blocking/nonblocking behavior, 300
Body class, 316–318
body objects, 312
bottom-level agent

abstraction component, 221
concepts, 221
control component, 221
presentation layer, 221
system services, 225
UI involvement, 224

bottom-up communication
layered architecture, 128–129
Whole-Part system, 268–269

bridge elements, 179, 181
Bridge pattern, 125, 205
bridging message flow, 183–184
broker system

adapter, 176
architecture implementation, 184–188
at-least-once semantic, 188

at-most-once semantic, 188
benefits, 182
bridge elements, 179–181
bridging message flow, 183–184
broker component, 177–178
callback, 176
class diagram, 177
client and server connection, 175
client component, 179–180
client/server separation, 182
CRC card, 178
design, 186–187
direct communication, 176
error handling, 187–188
IDL information, 185, 188
liability, 182–183
marshaling process, 179–180
message passing, 176
object model, 184
proxy, 179–180, 186
registration message flow, 183
request-for-service message flow, 183
responsibilities, 174
server component, 178
server cooperation example, 171–177
single point of failure, 182–183
testing and debugging, 183
trader, 176
travel-related service, 188
variations, 176–177

Buschmann, Frank
Buschmann’s rule, 80
Pattern-Oriented Software Architecture: A

System of Patterns, 68–69, 81, 86, 193,
249, 314, 328

Pattern-Oriented Software Architecture,
Volume 2: Patterns for Concurrent and
Networked Objects, 81, 223, 243, 301

business logic layer, 118–119

342 Pattern-Oriented Software Architecture For Dummies

• C •
C++ language

Counted Pointer idiom, 314–316
reflection in, 259–260

cache proxy, 280
cache, top-down communication, 128
callback, 135–136
callback broker system, 176
candidate pattern, 77
cartridge, game, 237
census, 272
changeability requirement, 19–20
change-propagation mechanism, 199
CHECKS Pattern Language of Information

Integrity (Cunningham), 326
Chonoles, Michael Jesse

UML 2 For Dummies, 18, 37, 41
class

in Mediator pattern, 173
PAC, 210, 213
Pipes and Filters pattern, 146
reflection, 252–253

class diagram
associations, 41
attributes, 43–44
blackboard, 164–165
broker system, 177
class multiplicity, 43
Command Processor pattern, 286
Counter Pointer idiom, 312
CRC cards, 42
details within, 40–41
operations, 43–44
proxy, 279
Publisher-Subscriber pattern, 306
static relationships, 41
uses for, 40
View Handler pattern, 292

class multiplicity, 43

Class-Responsibility-Collaboration. See
CRC card

client
CRC card, 238
hosting multiple applications, 233
microkernel, 237

client application development, 244
client component

broker system, 179–180
proxy, 279

Client-Dispatcher-Server pattern
answering calls, 302
basic description, 295
client and server components, building,

305
communication path, 303–304
connecting client and server,

301–302
implementation, 303–305
interaction protocols, 304
interprocess control, 223
server naming, 304

code analysis tools, 248–249
cohesion

employing enabling techniques, 31
pattern for, 32

collection-members, 267
Command pattern, 93, 136, 290
Command Processor pattern

AbstractCommand class, 286–288, 290
basic description, 285
class diagram, 286
ComObj class, 286–288, 290
ComProcessor class, 286
Controller class, 286–288, 290
controller design, 201
example, 288
implementation, 289–290
manager classes, 287
orders as commands, 289

343343 Index

Supplier class, 286–287
undo commands, 289

command-line processing, 146
commercial software-development

tools, 50
commonality, domain analysis, 241
communication strategy, microkernel,

242
The Communications of the ACM journal,

336
ComObj class, 286–288, 290
completeness

employing enabling techniques, 31
pattern for, 32

component
application analysis, 256
as building block of system, 25
cooperation, 256
selecting for architecture design, 33

component-to-question mapping, 151
Composite pattern, 91, 112, 204, 270
ComProcessor class, 286
concept, problem statement

development, 14
condition part (knowledge source),

163, 168
conference, 337
consequences section

pattern, 67
pattern style comparison, 87

Constitution, 246
constraint, in pattern context section, 64
container-contents, 267
context

pattern, 63–64
pattern selection methods, 107

context section
pattern language, 94
pattern style comparison, 86
pattern template, 76

control component
blackboard, 164, 168–169
bottom-level agent, 221

Controller class, 286–288, 290
controller component (MVC), 197–198
controller design, 201
Coplien, James

Counted Body idiom, 316
Detached Counted Body idiom, 316
Organizational Patterns of Agile Software

Development, 326
Pattern Languages of Program

Design, 326
copying, passing objects by, 311
core operating system, 232
Count class, 317–318
Counted Pointer idiom

basic description, 309
body objects, 312
in C++ language, 314–316
class diagram, 312
Counted Body variant, 316
Detached Counted Body idiom,

316–317
handle object, 312
implementation, 313–314
passing objects by copying, 311
passing objects with pointers,

310–311
releasing resources with, 312

counting proxy, 281
coupling

employing enabling techniques, 31
pattern for, 32

CRC (Class-Responsibility-Collaboration)
card

adapter, 238
architectural refinement, 33–34
blackboard, 161
blackboard control component, 164

344 Pattern-Oriented Software Architecture For Dummies

CRC (Class-Responsibility-Collaboration)
card (continued)

bridge, 181
broker system, 178
client, 238
drawing the, 42
how to use, 42
internal and external server, 236
knowledge source, 163
microkernel, 235
MVC controller component, 198
MVC model component, 196
MVC view component, 197
PAC agent, 210–212
proxy, 181
reflexive application, 253
server and client, 179
View Manager component, 203

Creational pattern, 91
critical subsystem, 10
critical system interface, 10
Crumlish, Christian

Designing Social Interfaces: Principles,
Patterns, and Practices for Improving
the User Experience, 325

Cunningham, Ward
CHECKS Pattern Language of

Information Integrity, 326
customer, problem statement

development, 14–15

• D •
data collection, 189–193
data component, 190–191
data plot, 192
data points, 191–192
data set, 214
Data Sink class, 147
Data Source class, 147
data tier, 29

database layer, 118–119
debugging, 183
Deferred Validation pattern, 326
degree of truth, 162
dependability requirement, 20
dependency, 10
deployment diagram

describing in architecture document,
54

packages, 46
relationship between computational

devices, 46
design

broker system, 186–187
reusable, 56–57
software architecture, 33–35

design pattern
basic description, 309
pattern catalog example, 99
pattern categories, 108
pattern classification, 90
pattern evaluation, 104
problem categories, 109

Design Patterns: Elements to Reusable
Object-Oriented Software

Abstract Factory pattern, 290
Adapter pattern, 125, 215, 282
Bridge pattern, 205
Composite pattern, 55, 112, 204, 270
Facade pattern, 134
Mediator pattern, 173, 226
Observer pattern, 192, 295, 324
pattern catalog, 95
pattern categories, 328
pattern collections, 93
pattern recognition, 72
pattern sections, 70
pattern style comparison, 86, 90–91
Prototype pattern, 290
Proxy pattern, 81, 277
Strategy pattern, 273, 321

345345 Index

Design Patterns For Dummies (Holzner),
70

The Design Patterns Java Workbook
(Metsker), 70

The Design Patterns Smalltalk Companion
(Woolf), 70

Designing Interfaces, 2nd Edition
(Tidwell), 324

Designing Social Interfaces: Principles,
Patterns, and Practices for Improving
the User Experience, 325

desktop window, 293
Detached Counted Body idiom, 316–317
development view

4 + 1 model, 12, 38
correlation between views and diagram

types, 39
describing in architecture document,

53
packaging diagram relationship, 47
software architectural description, 11

device driver layers, 119–120
Dia tool, 51
Diagnostic Query pattern, 326
diagram. See also UML diagram

class, 40–44
deployment, 46
interaction, 44–45
packaging, 47–48
use-case, 16–17, 48–49

direct communication broker system,
176

dispatcher
answering calls, 302
connecting client and server through,

301–305
issuing directions from, 302

display class, 205
Distributed Systems style, 26
distributed-microkernel variant, 240
divide and conquer

employing enabling techniques, 31
pattern for, 32

Do Food pattern, 322
document

architecture, 11, 52–54
architecture design, 35
pattern, 76–77
use case, 18

Document-View variant, 207
domain analysis, 240–241
Domain-Driven Design: Tackling

Complexity in the Heart of Software
(Evans), 329

domains
layer grouping criterion, 131
problem categories, 108

drawing tools, 51
dynamic data, 161
dynamic views, 202

• E •
Echo Back pattern, 326
economy, 13
editorial review, 79
education tool, 58–59
e-mail

Proxy pattern example, 266
Whole-Part system example, 266

emergent behavior, 265
emulator, 234
enabling techniques, 30–31
encapsulate field, 122
encapsulation

employing enabling techniques, 30
of parts, 267
pattern for, 32

encouragement, 80
enterprise applications, 331
environment, pattern context section,

63–64

346 Pattern-Oriented Software Architecture For Dummies

Erlang programming language, 275
error handling

broker system, 187–188
filter, 149–150
layers, 136
Pipes and Filters pattern, 146

Euro PLoP pattern conference, 78
Evans, Eric

Domain-Driven Design: Tackling
Complexity in the Heart of Software,
329

exception handling, 257
Exceptional Value pattern, 326
extensibility

changeability requirement, 19
Master-Slave pattern benefits, 273

Extensible Markup Language (XML), 246
extensions, OS, 234
external server, 236, 243
externalization, 248–249
extract class, 122

• F •
Facade pattern, 134, 169
fact-gathering, 14
Factory Method pattern, 91
fault tolerance, 272
Fearless Change: Patterns for Introducing

New Ideas (Manns and Rising), 322
Fiksdahl-King, Ingrid

A Pattern Language, 58, 86, 324, 327
filter. See also Pipes and Filters pattern

active, 149
command-line processing, 146
components as software tools, 141
design and implementation, 148–149
dividing task into sequence of, 147
error handling, 149–150
formatting information passing

between, 147

image stream analysis, 137–144
passive, 149
pipe connection implementation, 147
processing pipeline, 150
reuse, 144

firewall proxy, 281
Foote, Brian

aggressive disregard for originality, 80
Big Ball of Mud software pattern, 28
Pattern Languages of Program Design

4, 316
forces section

pattern, 64–66, 76
pattern style comparison, 86

Forecast Confirmation pattern, 326
form, problem solving attribute, 13
forward reasoning, 163
Forwarder-Receiver pattern

basic description, 295
blocking/nonblocking behavior, 300
communication mechanism, 299
forwarder, 297, 299–300
forwarding messages, 296
implementation, 298–301
message protocols, 299
message-sequence diagram, 297–298
name-to-address mapping, 298–299
peers, 296
receiver, 297, 300–301
specialized components, 296–298

4 + 1 model
describing in architecture document,

54
with UML styles, 38
views, 12

Fowler, Martin
Patterns of Enterprise Application

Architecture, 193, 322, 331
framework, 60
free tools, 50–51
From Mud to Structure style, 26

347347 Index

function, problem solving attribute, 13
functional requirement, 19

• G •
Gabriel, Richard

Writers’ Workshops and the Work of
Making Things, 79

game console, 237
Gamma, Erich

Design Patterns: Elements to Reusable
Object-Oriented Software, 55, 81,
86, 95, 112, 125, 169, 173, 192,
215, 270, 273, 277, 290, 295, 321,
324–325, 328

garbage allocation, 257
glossary, 53
goal

problem statement development, 14
software architecture, 10

gray box layer, 134
GUI (graphical user interface), 190

• H •
Handle class, 317–318
handle objects, 312
hardware-abstraction layer, 120
Harrison, Neil

Organizational Patterns of Agile Software
Development, 326

Pattern Languages of Program Design 4,
316

Helm, Richard
Design Patterns: Elements to Reusable

Object-Oriented Software, 55, 81, 86,
95, 112, 125, 169, 173, 192, 215, 270,
273, 277, 290, 295, 321, 324–325, 328

heuristics, 167–169
hidden requirement, 22
hierarchical views, 204

Holzner, Steve
Design Patterns for Dummies, 70

Hoover, Dave
Apprenticeship Patterns, 331

Hybrid variant, 148
hypothesis, 161–162, 168
Hypothetical pattern, 326

• I •
IBM Rational Software Architect

tool, 50
idea, coming up with, 74
idiom, 315
idiom pattern

basic description, 309
how this book is organized, 5
nonarchitectural reflection, 248
pattern catalog example, 99
pattern categories, 108
pattern classification, 90–91
pattern evaluation, 104
problem categories, 109

IDL (interface definition language), 185,
188

IEEE Computer journal, 336
IEEE organization, 279
IEEE Software journal, 336
Illustrator drawing tool (Adobe), 51
image stream analysis, 137–144
implementation section, pattern, 69
index of pattern, 335
information hiding

employing enabling techniques, 31
pattern for, 32

Instant Projection pattern, 326
intellectual currency paradox, 80
interaction diagram

functionality, 44
iteration example, 44–45

interaction protocols, 304
Interactive System style, 26

348 Pattern-Oriented Software Architecture For Dummies

interface definition language (IDL),
185, 188

intermediate-level agent
abstraction class, 222
composition role, 222
coordination role, 221
lower-level agents with, 225

internal server, 236, 243
interoperability requirement, 20
introspection, 252
inverted pyramid of reuse, 133
IPC (interprocess communication)

connecting client and server,
301–305

forwarding message to receiver,
296–301

publishing state changes to
subscribers, 305–308

remote proxy, 280
Ishikawa, Sara

A Pattern Language, 86, 324, 327
island driving, 168–169

• J •
Jacobson, Max

A Pattern Language, 58, 86, 324, 327
Java language, 250, 260
Johnson, Ralph

Design Patterns: Elements to Reusable
Object-Oriented Software, 55, 81,
86, 95, 112, 125, 169, 173, 192,
215, 270, 273, 277, 290, 295, 321,
324–325, 328

• K •
Kircher, Michael

Remoting Patterns: Foundations of
Enterprise, Internet and Realtime
Distributed Object Middleware, 185

knowledge source. See KS
known uses section

pattern, 69
pattern style comparison, 87

Koenig, Andrew
Another Handle Variation variant,

317–318
KS (knowledge source)

action part, 163–164
backward reasoning, 163
basic description, 151, 158
blackboard as knowledge repository,

160–162
blackboard benefits, 159
condition part, 163, 168
CRC card, 163
dynamic data, 161
as expert, 162
forward reasoning, 163
implementation, 169
reuse, 159
static data, 161

• L •
layer

abstraction, 30
assigning task to, 132
black box, 134
callback between, 135–136
cascading, 126
defining communication between, 135
dependencies between, 125
design problems, 120–123
error handling, 136
facilitation of development projects,

125
gray box, 134
grouping criterion, 130–131
interface, defining, 133–134
inverted pyramid of reuse, 133

349349 Index

monolith, 120–122
naming, 132
OSI model, 28–29
protocol stack, 126
pull model, 135
push model, 135
refinement, 133
reuse, 125
service specification, 132–133
splitting, 132
standard-compliant, 125
structure, 134
swapping with other implementation,

125
three-tier model, 29
white box, 134

layered architecture
benefits, 123, 125
bottom-up communication, 128–129
communication between layers,

117–118
communication protocols, 128
implementation, 130–136
liability, 126–127
operating systems, 119–120
OSI seven-layer model, 117–118
stateful upward communication,

129–130
three-tier architecture, 118–119
top-down communication, 127–128

layered microkernel, 242
lazy constructor proxy, 281
Leaky Bucket Counter pattern, 322–323
liability

blackboard, 160
broker system, 182–183
layered architecture, 126–127
Master-Slave pattern, 273
microkernel, 239
MVC, 194–195

PAC, 219
Pipes and Filters pattern, 145–146

Light on Two Sides of Every Room
pattern, 324

LNCS Transactions on Pattern Languages
of Programming journal, 336

logic tier, 29
logical view

4 + 1 model, 12, 38
correlation between views and diagram

types, 39
software architectural description, 11

• M •
mailing list, 335–336
maintainability

changeability requirement, 19
dependability requirement, 20
layered architecture benefits, 123

Malone, Erin
Designing Social Interfaces: Principles,

Patterns, and Practices for Improving
the User Experience, 325

Manns, Lynn
Fearless Change: Patterns for Introducing

New Ideas, 322
map, pattern language, 94
marshaling process, 179–180
Master-Slave pattern

basic description, 271
benefits, 273
black-box execution, 274
difficulty of division, 273
distribution of workload, 273
division of work, 274
exchangeability, 273
extensibility, 273
fault tolerance, 272
hardware dependency, 273

350 Pattern-Oriented Software Architecture For Dummies

Master-Slave pattern (continued)
implementation, 273–275
liability, 273
master and slave cooperation, 274–275
master component, building, 275
parallel computing, 272
separation of concerns, 273
slave component implementation, 275
structure, 271–272
subtasks, combining, 274

Meaningless Behavior pattern, 326
mechanism

high-level policies, 235
microkernel, 241–242
separating policy from, 239

Mediator pattern, 173, 226
Memento pattern, 91, 93
mentor, 334
message backbone variant, 240
message passing broker system, 176
Message-passing variant, 148
message-sequence diagram, 297–298
meta level, 246, 248, 252–254, 257–258
meta object, 246, 255
metadata, 246–247
meta-object protocol. See MOP
method

agile, 13
waterfall, 12

Metsker, Steven John
The Design Patterns Java Workbook, 70

Meunier, Regine
Pattern-Oriented Software Architecture:

A System of Patterns, 68–69, 86, 193,
249, 314, 328

microkernel. See also OS
adapter, 237, 243–244
architecture components, 235–237
architecture implementation, 240–244
benefits, 238–239
building essential functionality in, 234

category, partitioning, 241
client, 237
client application development, 244
communication strategy, 242
CRC card, 235
distributed-microkernel variant,

239–240
domain analysis, 240–241
enhanced security and reliability, 239
external server, 236, 243
game console parts and game card

system map, 237
internal server, 236, 243
layered, 242
liability, 239
mechanism, 235, 241–242
message backbone variant, 240
programming interface, 242–243
separating policy from mechanism,

239
service, categorizing, 240–241
system resource management, 243
transparency, 239

Microsoft Visio drawing tool, 51
middleware layers, 119
Minimize Human Invention pattern,

88–89
model. See view
model component (MVC), 196
Model-View-Controller. See MVC
modularization

employing enabling techniques, 31
pattern for, 32

monolith
breaking up, 120–121
design problem and solution,

120–121
layered architecture liability, 126

MOP (meta-object protocol)
CRC card, 253
defining the, 258

351351 Index

meta level, 246
reflection benefits, 254
reflection examples, 248

MVC (Model-View-Controller)
benefits, 194
change-propagation mechanism, 199
components, 193
controller and view combination, 207
controller component, 197–198
controller design, 201
data collection example, 189–193
data component, 190–191
display class, 205
Document-View variant, 207
dynamic views, 202
hierarchical views, 204
implementation, 198–206
invention, 193
liability, 194–195
model component, 196
PAC comparison, 207–208, 216
pattern classification, 88
sensor class, 205
separation of parts, 203
system dependency removal, 204–205
televised football game example, 206
UI control component, 191–193
view and controller relationship, 202
view component, 196–197
view design and implementation,

199–200
View Handler pattern support, 291
View Manager component, 203
views, 191

• N •
name

layer, 132
name-to-address mapping, 298–299
pattern, 77

namespace, 298–299
name-to-address mapping, 298–299
nonfunctional requirement

identifying the, 21–22
list of, 19–20

Null Object pattern, 321

• O •
object model, 184
Observer pattern, 192, 295, 324–325
OO (object-oriented) code/design,

59–61, 261
Open Systems Interconnection (OSI)

model, 28–29, 117–118, 128
open-source archive, 56
operating system. See OS
operating system layers, 119–120
operations, class diagram, 43–44
organizational pattern

pattern catalog example, 99
Organizational Patterns of Agile

Software Development (Coplien
and Harrison), 326

originality, 80
OS (operating system). See also

microkernel
adapter, 233–234
client, 233
commercial products, 230
core, 232
custom design, 230–231
extensions, 234
multiple application example,

229–234
policy layer, 231–232
security, 229
separating policy from mechanisms,

231–232
server, 232–233
supporting applications run on, 231

352 Pattern-Oriented Software Architecture For Dummies

Oshineye, Adewale
Apprenticeship Patterns, 331

OSI (Open Systems Interconnection)
model, 28–29, 117–118, 128

• P •
PAC (Presentation-Abstraction-Control)

agent, adding new, 218
agent capabilities, 209
agent CRC card, 210–211
agent definition, 209
agent distribution, 218
agent, external interface, 226–227
agent hierarchy, 228
agent, implementing as process, 223
application model, defining, 222–223
benefits, 218
bottom-level agent, 221, 224–225
classes, 210, 213
complexity, 219
components and subcomponents,

216–217
continuum of applicability, 220
CRC card, 210, 212
data set, 214
evolution and extension support, 218
general hierarchy, 223
implementation, 222–228
interactive agent coordination

example, 213–217
intermediate-level agent, 221–222,

225
liability, 219
message-passing system, 227
MVC comparison, 207–208, 216
political polling example, 213
programs, combining, 214–215
public interfaces, 227
subcomponents, 225–226

terminology reference, 222
top-level agent, 220–221, 224
View Handler pattern support, 291
when to use, 215, 219–220

packaging diagram
deployment diagram, 46
development view relationship, 47
rules for creating, 48

packaging system, 10
page swapping, 257
parallel computing, 272
parallel processing of pipelines, 145
parts. See Whole-Part system
passive filter, 149
passive server, 243
patent, 60–61
pattern

architectural style, 26
architectural vocabulary, 59–60
author section, 77
candidate, 77
consequences section, 67
context section, 63–64
definition, 55
describing appearance of solution, 57
documenting system architecture with,

81–82
as educational tools, 58–59
for enabling techniques, 32
forces section, 64–66, 76
goal of using, 1
growth of, 72
how this book is organized, 4–5
implementation section, 69
keeping current, 80–81
known uses section, 69
object-oriented design assistance, 2
parts of, 61
problem statement, 62–63
as proven solution, 57–58

353353 Index

rationale section, 69, 77
related patterns section, 77
as repositories of expertise, 60
resulting context section, 69, 76
reusable design, 56–57
sample code section, 69
sketch section, 67–69, 76
solution section, 66–67, 76
as system guide, 59
title, 62
what they are not, 60–61

pattern catalog
basic description, 95
connecting patterns, 100
finding patterns that solve problems,

97–98
forms, 96
keeping current, 100–101
medium, 96
organization, 98
pattern categories, 98–99
pattern selection methods, 107, 114
problem categories, 98–99
problems, identifying, 97

pattern classification
architectural pattern, 88–89
basic description, 85
depth, 87–88
design pattern, 90
idiom pattern, 90–91
MVC, 88
styles, 86–87

pattern collections, 92–93
pattern community involvement

advocating, 333
conferences, 337
index of patterns, 335
mailing list, 335–336
mentor, 334
pattern catalog, 334

principles, 79–80
reading group, 336
self-written patterns, 336–337
writers’ workshop, 338
writing about experiences, 334

pattern creation
basic description, 73
expert reviews, 77–79
general solution, extracting, 75
idea, coming up with, 74
pattern document, writing, 76–77
pattern name, 77
Rule of Three, 75

pattern evaluation
asking right questions about, 104
seeking expert advice, 103
what to look for in patterns, 104–105

pattern language
defined, 85
elements, 94
grouping patterns, 93–94

A Pattern Language, 58, 86, 324, 327
Pattern Language of Program Design

series, 329
Pattern Languages of Program Design

(Coplien and Schmidt), 326
Pattern Languages of Program Design 4

(Foote, Harrison, and Rohnert), 316
Pattern Languages of Programming

(PLoP), 78, 337
pattern selection methods

alternative problem category, 112
benefit and liability comparison,

110–111
best variance, 112
passing through the gate notion, 114
pattern catalog, 114
pattern category selection, 107–108
problem category selection, 108–109
problem description comparison,

109–110

354 Pattern-Oriented Software Architecture For Dummies

pattern selection methods (continued)
problem solving and identifying,

106–107
resources, 105–106
software development, 113

pattern style, 86–87
Pattern-Oriented Software Architecture: A

System of Patterns
Counter Point in C++, 249
editing process, 81
example sketches, 68
MVC pattern, 193
pattern recognition, 72
pattern sections, 71
pattern style comparison, 86
pattern styles, 69
Reflection pattern, 249
series, 328

Pattern-Oriented Software Architecture
series, 328

Pattern-Oriented Software Architecture,
Volume 2: Patterns for Concurrent
and Networked Objects, 81, 223,
243, 301

Patterns for Fault Tolerant Software,
183, 323

Patterns for Time-Triggered Embedded
Systems: Building Reliable
Applications with the 8051 Family of
Microcontrollers, 330

Patterns of Enterprise Application
Architecture (Fowler), 193, 322, 331

peers, 296
performance requirement, 20
physical view

4 + 1 model, 12, 38
correlation between views and diagram

types, 39
describing in architecture document,

54

nonfunctional requirement
identification, 21–22

software architectural description, 11
pin connector, 237
Pipes and Filters pattern. See also filter

benefits, 144–145
classes, 146
Data Sink class, 147
Data Source class, 147
error handling, 146
Hybrid variant, 148
implementation, 146–150
liabilities, 145–146
Message-passing variant, 148
piping water through house example of,

144–145
Pull variant, 148
Push variant, 148

PLoP (Pattern Languages of
Programming), 78, 337

plotting data, 192
Pobox service, 279
pointer, passing objects with, 310–311
policy layer, 231–232
political polling, 213
Pont, Michael

Patterns for the Time-Triggered
Embedded Systems: Building Reliable
Applications with the 8051 Family of
Microcontrollers, 330

portability
broker system, 182
changeability requirement, 19

posting a notice, 306
preconditions, pattern context section,

64
presentation layer

bottom-level agent, 221
functionality, 118–119

355355 Index

presentation tier, 29
Presentation-Abstraction-Control.

See PAC
problem section

pattern style comparison, 86
pattern template, 76

problem solving and identifying
blackboard system, 166
pattern catalog, 97
pattern evaluation, 105
pattern selection methods, 106–109
problem attributes, 13–14
problem description comparison,

109–110
software architecture development, 28
use case scenarios, 15–18

problem statement
development, 14–15
generic, 63
relevance, 62

process pattern, 99
process view

4 + 1 model, 12, 38
correlation between views and diagram

types, 39
nonfunctional requirement

identification, 21
software architectural description, 11

programming interface, microkernel,
242–243

programming style, 24
protection proxy, 280
Prototype pattern, 290
proven solution, 58
proxy

abstract base class, 282
AbstractServer component, 279
access control responsibilities, 282
basic description, 277–278
cache, 280

class diagram, 279
client and server, removing

relationship between, 283
client component, 279
counting, 281
CRC card, 181
e-mail, 279
firewall, 281
functionality, 179–180
functions, implementing, 283
implementation, 282–284
lazy constructor, 281
protection, 280
proxy component, 279
remote, 280
reverse, 282
server component, 278
server, removing responsibility

from, 283
synchronization, 280
virtual, 281

Proxy pattern, 81, 223, 266, 277–278. See
also proxy

Publisher-Subscriber pattern
class diagram, 306
defining publisher interface, 307
functionality, 305–306
keeping views current, 192
posting a notice, 306
publication policy, 307
Publisher class, 306
Subscriber class, 306
subscriber interface design,

307–308
subscribing/unsubscribing, 307

pull model, 135
Pull variant, 148
push model, 135
Push variant, 148

356 Pattern-Oriented Software Architecture For Dummies

• R •
rationale section

pattern, 69, 77
pattern style comparison, 87

Reactor pattern, 301
reading group, 79, 336
receiver. See Forwarder-Receiver pattern
Reenskaug, Trygve

MVC pattern invention, 193
refactoring process, 122
reflection

adaptable application, 251–252, 256
adaptive object model (AOM), 261
application analysis, 256
application structural aspects,

identifying, 257
architectural design, 251–259
aspect-oriented programming (AOP),

248, 250
base level, 245–246, 248, 252–253,

258–259
basic description, 244
benefits, 254
C#, 260
C++, 259–260
classes, 252–253
code analysis tools, 248–249
on Constitution, 246
CRC card, 253
drawbacks, 254–255
externalization, 248–249
implementation, 255–259
introspection, 252
Java language, 260
meta level, 246, 248, 252–253,

257–258
metadata, 246–247
meta-object protocol (MOP), 246, 248,

253, 258
Ruby, 260

student programming assignment
analysis, 250

system configuration files, 248, 251
system services, 257

Reflection pattern. See reflection
registration message flow, 183
related patterns section, pattern

template, 77
Release Line pattern, 323–324
reliability

dependability requirement, 20
microkernel, 239

remote proxy, 280
Remoting Patterns: Foundations of

Enterprise, Internet and Realtime
Distributed Object Middleware, 185

repository variant, 170
request and response message scenario,

175
request-for-service message flow, 183
requirement

assumptions, 22
definition, 18
describing in architecture document,

53
do’s and don’ts, 23
functional, 19
hidden, 22
identifying, 18–22
inconsistent/conflicting, 22
indecisive specification, 22
nonfunctional, 19–22
reviewing, 22–23
Rule of Three, 55
selecting for architecture design, 33
SMART acronym, 21
solution, fitting to problem, 23

resolution versus solution, 65
resource allocation, 257
restructuring, 19

357357 Index

resulting context section
pattern style comparison, 87
pattern template, 76

reusability requirement, 20
reusable design, 56–57
reverse proxy, 282
reviews

editorial, 79
patterns journey of, 77–78
PLoP conference, 78
reading group, 79
writers’ workshops, 78–79

reward, 80
Rising, Linda

cataloguing of patterns, 72
Fearless Change: Patterns for Introducing

New Ideas, 322
Rohnert, Hans

Pattern Languages of Program Design 4,
316

Pattern-Oriented Software Architecture:
A System of Patterns, 68–69, 81, 86,
193, 249, 314, 328

Pattern-Oriented Software Architecture,
Volume 2: Patterns for Concurrent
and Networked Objects, 81, 223,
243, 301

RTTI (Run-Time Type Information),
259–260

Ruby reflection, 260
Rule of Three, 55

• S •
safety, 20
sample code section, pattern, 69
Schardt, James A.

UML 2 For Dummies, 18, 37, 41
Schmidt, Douglas

pattern classification system, 90–91

Pattern Languages of Program Design,
326

Pattern-Oriented Software Architecture,
Volume 2: Patterns for Concurrent
and Networked Objects, 81, 223,
243, 301

security
dependability requirement, 20
microkernel, 239

sensor class, 205
separation of concerns, 31–32
separation of interface and

implementation, 31–32
separation of policy and implementation,

31–32
server. See also Client-Dispatcher-Server

pattern
active, 243
external, 236, 243
hosting multiple applications,

232–233
internal, 236, 243
passive, 243
registration, 175

server component
broker system, 178–179
proxy, 278

server cooperation example,
171–177

service
application analysis, 256
as visible functionality of system, 25

shell command line, 150
Sign-In Continuity pattern, 325
Silverstein, Murray

A Pattern Language, 86, 324, 327
single point of reference, 31–32
sketch section, pattern, 67–69, 76
slave. See Master-Slave pattern
Smalltalk language, 193, 261

358 Pattern-Oriented Software Architecture For Dummies

SMART acronym, 21
software architecture

abstractions, 30
architecture document, 11
components, 10
definition, 9–10
design, 33–35
enabling techniques, 30–32
how this book is organized, 4–6
layers and abstractions, 28–30
methods and processes, 12–13
models/views, 11–12
problem categories, 28
when to create, 27–28

Software Configuration Management
Patterns: Effective Teamwork,
Practical Integration, 324, 330

solution
extracting the general solution, 75
mismatched problems, 67
pattern community principles, 80
versus resolution, 65

solution section
pattern, 66–67, 76
pattern style comparison, 87

Sommerlad, Peter
Pattern-Oriented Software Architecture:

A System of Patterns, 68–69, 81, 86,
193, 249, 314, 328

Special Case pattern, 321–322
SpecificView class, 291–292, 294
SPLASH conference, 78
splitting layers, 132
Stal, Michael

Pattern-Oriented Software Architecture:
A System of Patterns, 68–69, 81, 86,
193, 249, 314, 328

Pattern-Oriented Software Architecture,
Volume 2: Patterns for Concurrent
and Networked Objects, 81,
223, 243

standard-compliant layer, 125
state information, 145
State pattern, 91
stateful upward communication,

129–130
static data, 161
Strategic pattern, 91
streaming data, 137–144
Streamline Repetition pattern, 324
Structural pattern, 91
student programming assignment

analysis, 250
Subscriber class, 306
subscribing/unsubscribing, 307
subsystem, 10
sufficiency, 31–32
Supplier class, 286–287
synchronization proxy, 280
system configuration files, 248, 251
system dependency removal,

204–205
system flexibility, 191–192
system performance, 182
system resource management, 243

• T •
table of contents, 52
Tactical pattern, 91
task, assigning to layer, 132
telephone call, 302
testability requirement

basic description, 20
Tidwell, Jenifer

Designing Interfaces, 2nd Edition, 324
tier, 29
time, problem solving attribute, 13
title, pattern, 62
title section

pattern language, 94
pattern template, 76

359359 Index

tool
Astah Community, 50–51
commercial software-development, 50
Dia, 51
drawing, 51
free, 50–51
as help with architecture, 49

top-down communication
layered architecture, 127–128
Whole-Part system, 268–269

top-level agent
identifying, 224
presentation-related capabilities, 224
responsibilities, 220–221

trade-off, 65, 107, 110
trader communication broker system,

176
travel agent, 188
TV sleuths, 158

• U •
UI (user interface) control component,

191–193
UML 2 For Dummies (Chonoles and

Schardt), 18, 37, 41
UML (Unified Modeling Language)

diagram
4 + 1 model with, 38
architectural models, 37–40
class diagrams, 40–44
deployment diagrams, 46
diagram styles, 37–38
interaction diagrams, 44–45
packaging diagrams, 47–48
scenarios and use cases, 40
use-case diagrams, 48–49

undo commands, 289
Unified Modeling Language. See UML

diagram

Unified Process, 12, 27
use case

choosing functionality to capture,
15–16

correlation between views and diagram
types, 40

definition, 15
diagram, 16–17, 48–49
documenting, 18
identifying the actors, 16–17

user interaction, 256
user interface (UI) control component,

191–193

• V •
van Welie, Martin

user interface pattern support, 331
website, 335

variability, domain analysis, 241
view component (MVC), 196–197
View Handler pattern

AbstractView class, 291–292
basic description, 285
class diagram, 292
desktop window example, 293
identifying views, 293
implementation, 293–294
MVC support, 291
PAC support, 291
SpecificView class, 291–292, 294
view implementation, 293
ViewHandler class, 291–292
view’s common interface, 293

View Manager component, 203
view (model)

4 + 1 model, 12, 38
development, 11–12, 38–39
logical, 11–12, 38–39
MVC, 191

360 Pattern-Oriented Software Architecture For Dummies

view (model) (continued)
physical, 11–12, 38–39
process, 11–12, 38–39

virtual proxy, 281
Visible Implication pattern, 326
Visio drawing tool (Microsoft), 51
Vlissides, John

Design Patterns: Elements to Reusable
Object-Oriented Software, 55, 81,
86, 95, 112, 125, 169, 173, 192, 215,
270, 273, 277, 290, 295, 321,
324–325, 328

vocabulary, architectural, 59–60
Völter, Markus

Remoting Patterns: Foundations of
Enterprise, Internet and Realtime
Distributed Object Middleware, 185

• W •
waterfall method, 12, 27
white box layer, 134
Whole Value pattern, 326
Whole-Part system

alternating between top-down and
bottom-up approach, 268

assembly-parts, 267
benefits, 267
bottom-up approach, 268–269
building the parts, 270
census example, 272
collection-members, 267
container-contents, 267
drawbacks, 267
e-mail application example, 266

emergent behavior, 265
encapsulation of parts, 267
implementation, 268–270
parts, 266
public interface, defining, 268
real-world example, 266
reusability, 267
services of the whole, 269
services offered by parts, 269
top-down approach, 268–269
whole, 265
whole services implementation, 270

Woolf, Bobby
The Design Patterns Smalltalk

Companion, 70
writers’ workshops, 78–79, 338
Writers’ Workshops and the Work of

Making Things (Gabriel), 79

• X •
XML (Extensible Markup Language), 246

• Y •
Yoder, Joseph

Big Ball of Mud software pattern, 28

• Z •
Zdum, Uwe

Remoting Patterns: Foundations of
Enterprise, Internet and Realtime
Distributed Object Middleware, 185

Barry Burd, PhD
Author of Java For Dummies

Learn to:
• Use basic development concepts and

techniques with Java

• Debug Java programs and make
them work

• Overcome standard programming
challenges

• Work with all the latest features of
Java 7

Beginning Programming

with Java®

3rd Edition
Making Everything Easier!™

Bill Sempf
Chuck Sphar
Stephen Randy Davis

8 IN 1
BOOKSBOOKS

C# 2012
A L L - I N - O N E

Making Everything Easier!™

Dan Gookin
Bestselling author of Samsung
Galaxy Tab 10.1 For Dummies

• Use the Galaxy Note to make calls,
text, e-mail, and video-chat

• Draw, sketch, take notes, and more
with the S Pen

• Have some fun with photos, videos,
eBooks, movies, music, and apps

IN FULL COLOR!

Learn to:

Samsung
Galaxy Note™

Making Everything Easier!™

Bob “Dr. Mac” LeVitus
Coauthor of iPad For Dummies

• Work with Messages, Reminders,
and iCloud

• Go online, set up y our e-mail, and surf
the web with Safari®

• Enjoy music, movies, DVDs, and digital
photos on your Mac

IN FULL COLOR!

Learn to:

OS X
®

Mountain Lion

Making Everything Easier!™

Available wherever books are sold. For more information or to order direct go to
www.wiley.com or call +44 (0) 1243 843291

GADGETS

MAC OS X MOUNTAIN LION

978-1-118-49823-1 978-1-118-35201-4 978-1-118-38846-4

978-1-118-39418-2 978-1-118-39416-8 978-1-118-40829-2

978-0-470-37174-9 978-1-118-38536-4 978-1-118-21398-8

PROGRAMMING LANGUAGES

Canon EOS Rebel T4i/650D
For Dummies
978-1-118-33597-0
Digital SLR Cameras and Photography
For Dummies, 4th Edition
978-1-118-16169-2
Digital SLR Photography For Dummies
978-1-118-45738-2
iMac For Dummies, 7th Edition
978-1-118-20271-5
iPad For Seniors For Dummies,
5th Edition
978-1-118-49708-1
iPhone 5 For Seniors For Dummies,
2nd Edition
978-1-118-37542-6
Kindle Fire HD For Dummies
978-1-118-42223-6
Nexus 7 For Dummies (Google Tablet)
978-1-118-50873-2
Nikon® D3100TM For Dummies
978-1-118-00472-2
Nikon D3200 For Dummies
978-1-118-44683-6
Nikon D5100 For Dummies
978-1-118-11819-1
NOOK eReaders For Dummies,
Portable Edition
978-1-118-44044-5
Photoshop Elements 11 All-in-One
For Dummies
978-1-118-40822-3
Photoshop Elements 11 For Dummies
978-1-118-40821-6
R For Dummies
978-1-119-96284-7
Sony Alpha SLT-A35 / A55 For
Dummies
978-1-118-17684-9
Surface For Dummies
978-1-118-49634-3

http://www.wiley.com

Carolyn Abram

Learn to:
• Create your Profile and update your

Facebook timeline

• Set your security so only certain
people see your Profile and posts

• Upload high-definition photos
and tag your friends

• Stay connected on the go with
Facebook Mobile

Facebook®

4th Edition
Making Everything Easier!™

Shiv Singh
Stephanie Diamond

Learn to:
• Build and launch a campaign for a

small or large business

• Develop a social media voice that
appeals to customers

• Get your message out to large social
networks and niche sites

• Make the most of your company
website and blog

Social Media
Marketing

2nd Edition
Making Everything Easier!™

Kelby Carr
Founder and CEO of Type-A Parent and author of
Pinterest For Dummies

Learn to:
• Seek an invitation and set up your account

• Name and organize your boards, pin,
comment, and like

• Run contests, launch or test products,
and humanize your brand

• Showcase your personality through
pins and build a community

Pinterest™
Marketing

Making Everything Easier!™

Ed Tittel
Jeff Noble
Foreword by Eric Meyer

• Develop and build Web pages using
HTML, XHTML, and CSS

• Work with content management
systems like Drupal®, WordPress®,
and Joomla!®

• Plan and design Web pages with
mobile devices in mind

Learn to:

HTML, XHTML & CSS

7th Edition
Introduces HTML5 and CSS3!

IN FULL COLOR!

Bill Hughes
Indrajit Chakrabarty

• Choose a development environment and
use Windows Phone 7 developer tools

• Create your own cool and interactive
Windows Phone 7 apps

• Submit and sell your app in the
Windows Phone Marketplace

Learn to:

IN FULL COLOR!

Windows® Phone 7
Application Development

Making Everything Easier!™

Neal Goldstein
Dave Wilson

Learn to:
Download and work with the iOS SDK

Create a universal app for the iPhone
and iPad

Optimize app performance and
functionality for each device

Provide an excellent user experience

iOS 6
Application Development

Making Everything Easier!™

Available wherever books are sold. For more information or to order direct go to
www.wiley.com or call +44 (0) 1243 843291

WEB DEVELOPMENT

MOBILE DEVELOPMENT

978-1-118-38318-6 978-1-1181-7335-0 978-0-470-91659-9

978-1-1185-0880-0 978-1-1183-8710-8 978-1-1180-2175-0

978-1-1180-9562-1 978-1-118-06514-3 978-1-118-38315-5

SOCIAL MEDIA

Android Application Development
For Dummies, 2nd Edition
978-1-118-38710-8
Android Game Programming
For Dummies
978-1-118-02774-5
Android Tablet Application Development
For Dummies
978-1-118-09623-9
Creating Web Pages All-in-One
For Dummies
978-0-470-64032-6
Facebook All-in-One For Dummies
978-1-118-17108-0
Facebook Marketing All-in-One For
Dummies, 2nd Edition
978-1-118-46678-0
HTML5 For Dummies eLearning Course
Access Code Card
978-1-118-45737-5
iPhone Application Development
For Dummies
978-1-118-09134-0
Online Reputation Management
For Dummies
978-1-118-33859-9
QuickBooks 2013 All-in-One
For Dummies
978-1-118-35639-5
Scrivener For Dummies
978-1-118-31247-6
Search Engine Optimization For Dummies,
5th Edition
978-1-118-33685-4
SharePoint 2010 For Dummies,
2nd Edition
978-1-118-27381-4
Social Media Marketing eLearning Kit For
Dummies
978-1-118-03470-5
Social Media Marketing For Dummies,
2nd Edition
978-1-118-06514-3
Social Media Metrics For Dummies
978-1-118-02775-2
Twitter For Dummies, 2nd Edition
978-0-470-76879-2
Web Marketing All-in-One For Dummies,
2nd Edition
978-1-118-24377-0

http://www.wiley.com

http://www.dummies.com/go/mobile
http://www.dummies.com/go/iphone/apps

	Pattern-Oriented Software Architecture For Dummies
	About the Author
	Contents at a Glance
	Table of Contents
	Introduction
	About This Book
	Conventions Used in This Book
	What You’re Not to Read
	Foolish Assumptions
	How This Book Is Organized
	Icons Used in This Book
	Where to Go from Here

	Part I: Introducing Software Architecture and Patterns
	Chapter 1: Software Architecture Basics
	Understanding Software Architecture
	Identifying the Problem to Be Solved
	Identifying the Requirements
	Choosing a Software System Style

	Chapter 2: Where Do Architectures Come From?
	Understanding Architectural Styles
	Creating Software Architecture

	Chapter 3: What Do Software Architectures Look Like?
	Examining UML Architectural Models
	Working with UML Diagrams
	Choosing Your Design Tools
	Explaining Your Software in an Architecture Document

	Chapter 4: Software Pattern Basics
	What Patterns Are
	What Patterns Are Not
	Looking Inside Patterns
	Understanding the Patterns Used in This Book

	Chapter 5: Seeing How Patterns Are Made and Used
	Creating Patterns
	Documenting System Architecture with Patterns

	Part II: Putting Patterns to Work
	Chapter 6: Making Sense of Patterns
	Understanding Pattern Classifications
	Grouping Patterns

	Chapter 7: Building Your Own Pattern Catalog
	Assembling Your Catalog
	Keeping Your Catalog Current

	Chapter 8: Choosing a Pattern
	Examining Patterns Critically
	Selecting a Particular Pattern
	Designing Solution Architecture with Patterns

	Part III: Creating Your Application Architecture
	Chapter 9: Building Functionality in Layers
	Using Layered Architecture
	Problem: Designing at Differing Levels
	Solution: Layering Your System

	Chapter 10: Piping Your Data through Filters
	Problem: Analyzing an Image Stream
	Solution: Piping through Filters

	Chapter 11: Sharing Knowledge and Results on a Blackboard
	Problem: Building an Attack Computer
	Solution: Building the Blackboard Architecture

	Chapter 12: Coordinating Communication through a Broker
	Problem: Making Servers Cooperate
	Solution: Use a Broker

	Chapter 13: Structuring Your Interactive Application with Model-View-Controller
	Problem: Looking at Data in Many Ways
	Solution: Building a Model-View-Controller System
	Seeing Other Ways to Manage Displays

	Chapter 14: Layering Interactive Agents with Presentation-Abstraction-Control
	Understanding PAC
	Problem: Coordinating Interactive Agents
	Solution: Creating a Hierarchy of PAC Agents

	Chapter 15: Putting Key Functions in a Microkernel
	Problem: Hosting Multiple Applications
	Solution: Building Essential Functionality in a Microkernel
	Examining Microkernel Architecture

	Chapter 16: Reflecting and Adapting
	Understanding Reflection
	Looking for Reflection
	Designing Architectural Reflection
	Programming Reflection Today

	Part IV: Designing with Other POSA Patterns
	Chapter 17: Decomposing the System’s Structure
	Understanding Whole-Part Systems
	Implementing the Whole-Part Pattern

	Chapter 18: Making a Component the Master
	Introducing the Master-Slave Pattern
	Implementing Master-Slave

	Chapter 19: Controlling Access
	Understanding Proxies
	Getting Acquainted with Proxy Variants
	Implementing a Proxy

	Chapter 20: Managing the System
	Separating Requests from Execution with Command Processor
	Managing Your Views with View Handler

	Chapter 21: Enhancing Interprocess Communication
	Forwarding Messages to a Receiver
	Connecting Client and Server through a Dispatcher
	Publishing State Changes to Subscribers

	Chapter 22: Counting the Number of References
	Problem: Using the Last of Something
	Solution: Releasing Resources with the Counted Pointer Idiom

	Part V: The Part of Tens
	Chapter 23: Ten Patterns You Should Know
	Special Case
	Do Food
	Leaky Bucket Counter
	Release Line
	Light on Two Sides of Every Room
	Streamline Repetition
	Observer
	Sign-In Continuity
	Architect Also Implement
	The CHECKS Pattern Language of Information Integrity

	Chapter 24: Ten Places to Look for Patterns
	A Pattern Language
	Pattern-Oriented Software Architecture
	Design Patterns
	Domain-Driven Design
	Pattern Languages of Program Design
	Patterns for Time-Triggered Embedded Systems
	Software Configuration Management Patterns
	Patterns of Enterprise Application Architecture
	Welie.com
	Apprenticeship Patterns

	Chapter 25: Ten Ways to Get Involved with the Pattern Community
	Advocate Using Patterns
	Write About Your Experiences Using Patterns
	Compile a Catalog of Your Work
	Mentor Someone
	Help Index Patterns
	Join a Mailing List
	Join a Reading Group
	Write Your Own Patterns
	Attend a Pattern Conference
	Start a Writers’ Workshop

	Index

