
www.apress.com

Cosm
ina

Pivotal Certi� ed Spring W
eb Application Developer Exam

Pivotal Certified
Spring Web
Application
Developer Exam

A Study Guide
—
Iuliana Cosmina

Pivotal Certi� ed Spring Web Application Developer Exam

F O R P R O F E S S I O N A L S B Y P R O F E S S I O N A L S® THE E XPER T ’S VOICE® IN SPRING

The Pivotal Certified Spring Web Application Developer Exam: A Study Guide is the ideal
preparation for the Pivotal Certi� ed Spring Web Application Developer Exam. It covers the
following: Spring MVC DispatcherServlet configuration, Spring MVC programming model
essentials, Spring MVC views and form processing, Spring Web Flow essentials, and Spring
Web Flow actions and configuration.

When you become a Pivotal Certified Spring Web Application Developer, you’ll receive one
of the most valuable credentials available in enterprise Java. Achieving this certification
demonstrates your ability to apply Spring’s web projects to develop real-world Java web
applications and validates your familiarity with Spring Web.

After reading and using this study guide, you‘ll be able to pass the certification exam and
become a certified Spring Web Developer.

• How to use the Spring Framework to develop Web applications
• How to use Spring Web Flow to implement stateful interactions
• How to secure Web applications with Spring Security
• How to test Web applications for correctness and performance
• How to create rich Web user interfaces with Ajax and JQuery
• How to use Spring Roo to create a Spring Web application in minutes

9 781484 208090

54999
ISBN 978-1-4842-0809-0 Shelve in:

Programming Languages/Java

User level:
Intermediate–Advanced

Related Titles

SOURCE CODE ONLINE

www.allitebooks.com

http://www.allitebooks.org

Pivotal Certified Spring
Web Application
Developer Exam

A Study Guide

Iuliana Cosmina

www.allitebooks.com

http://www.allitebooks.org

Pivotal Certified Spring Web Application Developer Exam

Copyright © 2015 by Iuliana Cosmina

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0809-0

ISBN-13 (electronic): 978-1-4842-0808-3

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Technical Reviewer: Manuel Jordan Elera
Editorial Board: Steve Anglin, Louise Corrigan, James T. DeWolf, Jonathan Gennick,

Robert Hutchinson, Michelle Lowman, James Markham, Susan McDermott, Matthew Moodie,
Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Mark Powers
Copy Editor: Kimberly Burton
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM
Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers
at www.apress.com/9781484208090. For detailed information about how to locate your book’s source
code, go to www.apress.com/source-code/. Readers can also access source code at SpringerLink in the
Supplementary Material section for each chapter.

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781484211830
www.apress.com
http://www.allitebooks.org

To all passionate Java developers, never stop learning and never stop improving your skills.

To all my friends for supporting me to make this book happen;
you have no idea how dear you are to me.

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author ��� xiii

About the Technical Reviewer ���xv

Acknowledgments ���xvii

Introduction ��xix

 ■Chapter 1: Introduction ��� 1

 ■Chapter 2: Spring Fundamentals ��� 17

 ■Chapter 3: Spring MVC �� 53

 ■Chapter 4: Spring Portlets ��� 151

 ■Chapter 5: Spring RESTful Services ��� 189

 ■Chapter 6: Spring Web with AJAX ��� 229

 ■Chapter 7: Spring Web Flow �� 257

 ■Chapter 8: Spring Boot and WebSocket ��� 367

 ■Appendix: Resources and Quiz Answers ��� 401

Index ��� 417

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Author ��� xiii

About the Technical Reviewer ���xv

Acknowledgments ���xvii

Introduction ��xix

 ■Chapter 1: Introduction ��� 1

Spring and What It Does ��� 1

The Focus of this Study Guide �� 4

Who Should Use this Study Guide �� 5

About the Spring Web Certification Exam��� 5

How to Use this Study Guide �� 6

How this Book Is Structured ��� 7

How Each Chapter Is Structured ��� 7

Conventions �� 8

Downloading the Code �� 8

Contacting the Author ��� 8

Recommended Development Environment �� 8

Recommended Build Tools ��� 9

Recommended IDE ��� 10

The Project Sample �� 11

www.allitebooks.com

http://www.allitebooks.org

viii

■ Contents

 ■Chapter 2: Spring Fundamentals ��� 17

The Basics �� 17

The Spring Core Container ��� 19

Spring Configuration �� 21

XML ��� 21

Annotations ��� 25

Mixed Approach �� 26

The Beans �� 27

Lifecycle and Instantiation �� 27

Bean Scopes ��� 35

Accessing Beans �� 38

Spring AOP ��� 41

Testing Spring Applications �� 44

Summary �� 45

Quick Quiz �� 46

Practical Exercise ��� 46

 ■Chapter 3: Spring MVC �� 53

MVC Basics ��� 53

Configuring MVC ��� 55

XML Configuration �� 56

Configuration Using Annotations �� 61

Configuration Without Using web�xml ��� 64

MVC Components ��� 67

Infrastructure Beans ��� 68

User-Provided Components �� 94

View Technologies �� 109

Tiles Layouts ��� 110

Thymeleaf ��� 115

www.allitebooks.com

http://www.allitebooks.org

ix

■ Contents

Forms ��� 119

Data Formatting �� 125

Data Binding ��� 129

Data Validation �� 132

Managing the Form Object ��� 137

Summary �� 138

Quick Quiz �� 139

Practical Exercise ��� 144

 ■Chapter 4: Spring Portlets ��� 151

Portlet Basics ��� 154

Configuration �� 156

The XML Part of the Configuration ��� 157

The Annotation Part of the Configuration ��� 164

Configuration Details and Recommendations �� 168

The Development and Deployment of a Portlet Application ��� 169

Download, Install, Start, and Configure Liferay ��� 170

Summary �� 188

 ■Chapter 5: Spring RESTful Services ��� 189

Core REST Concepts ��� 189

HATEOAS �� 195

Advantages of REST ��� 197

RESTful Applications Using Spring MVC ��� 199

RESTful Clients with Spring �� 199

Asynchronous REST Calls ��� 203

Implementing REST with Spring MVC ��� 204

Asynchronous REST Services Using @Async Annotated Methods ��� 213

Using Spring HATEOAS ��� 216

www.allitebooks.com

http://www.allitebooks.org

x

■ Contents

Summary �� 220

Quick Quiz �� 221

Practical Exercise ��� 222

 ■Chapter 6: Spring Web with AJAX ��� 229

What Is AJAX? �� 229

Making AJAX Requests��� 233

Introducing jQuery �� 236

jQuery HTML DOM Manipulation ��� 240

jQuery AJAX Calls ��� 243

Spring MVC, AJAX, and jQuery �� 245

Using REST-Style Remoting with JSON �� 246

Custom Tags ��� 250

Summary �� 253

Quick Quiz �� 253

Practical Exercise ��� 254

 ■Chapter 7: Spring Web Flow �� 257

What Is a Flow? �� 257

Web Flow Architecture ��� 259

Web Flow Internal Logic ��� 261

Configuration and Infrastructure Beans ��� 262

Configuration Using XML �� 263

Configuration Using Annotations �� 267

Create a Flow ��� 272

Flow Definition �� 273

Action States �� 304

Decision States �� 311

Exception Handling ��� 312

www.allitebooks.com

http://www.allitebooks.org

xi

■ Contents

Subflows �� 322

Flow Definition Inheritance �� 326

Securing Web Flows ��� 327

Introduction to Spring Security ��� 327

Why Spring Security Is Awesome ��� 328

Spring Security XML Configuration ��� 330

Spring Security Java Configuration �� 343

Securing Flow Definitions ��� 350

Summary �� 357

Quick Quiz �� 358

Practical Exercise ��� 364

 ■Chapter 8: Spring Boot and WebSocket ��� 367

What Is Spring Boot? �� 367

Usage and Configuration �� 368

Customizing Spring Boot �� 373

Importing Additional Configuration Elements ��� 380

Running Spring Boot Applications �� 381

Testing Spring Boot Applications �� 383

WebSocket Introduction ��� 385

Spring WebSocket Implementation �� 386

Spring WebSocket Configuration �� 390

WebSocket Client Application ��� 392

Configure the Server Application to Send Scheduled Messages �� 397

Monitoring and Debugging ��� 398

www.allitebooks.com

http://www.allitebooks.org

xii

■ Contents

 ■Appendix: Resources and Quiz Answers ��� 403

Study Guide Projects �� 401

Gradle Configuration Explained �� 403

Building and Troubleshooting ��� 403

Deploy on Apache Tomcat ��� 407

Quiz Answers �� 412

Quiz Solution for Chapter 2 ��� 412

Quiz Solution for Chapter 3 ��� 412

Quiz Solution for Chapter 5 ��� 413

Quiz Solution for Chapter 6 ��� 414

Quiz Solution for Chapter 7 ��� 414

Index ��� 417

xiii

About the Author

Iuliana Cosmina is a software engineer and professional developer.
She has been programming in Java for more than 10 years. She also
taught Java at the Gheorge Asachi Technical University in Iasi, Romania.
She has a Bachelor’s degree in computer science and a Master’s degree
in distributed systems from the same university.

She discovered Spring in June 2012 and loved it so much she trained
for and passed the exam to become a Certified Spring Professional
in November 2012. She trained for and passed the exam to become a
Certified Web Application Developer in May 2014.

Her plan is to become a Spring Enterprise Integration Specialist in the
near future.

She has contributed to the development of different types of
enterprise applications such as search engines, ERPs, track and trace, and banking. During her career in
outsourcing she has been a team leader, acting software architect and a DevOps professional. She likes
to share her knowledge and expertise via tutoring, teaching, and mentoring, but in the summer of 2014
everything changed because of Steve Anglin, who approached her and gave her a chance to do it by writing
this guide. She lives in Sibiu, Romania and works as a software engineer for BearingPoint, a multinational
management and technology consulting company.

When she is not programming, she spends her time reading, travelling, hiking, or biking.

• You can find some of her personal work on her GitHub account:
https://github.com/iuliana.

• You can find her complete CV on her LinkedIn account:
https://ro.linkedin.com/in/iulianacosmina.

• You can contact her at: Iuliana.Cosmina@gmail.com.

https://github.com/iuliana
https://ro.linkedin.com/in/iulianacosmina
Iuliana.Cosmina@gmail.com

xv

About the Technical Reviewer

Manuel Jordan Elera is an autodidactic developer and researcher who enjoys learning new technologies
for his own experiments and creating new integrations.

Manuel won the 2010 Springy Award – Community Champion and Spring Champion 2013. In his little
free time, he reads the Bible and composes music on his guitar. Manuel is known as dr_pompeii. He has tech
reviewed numerous books for Apress, including Pro Spring, 4th Edition (2014), Practical Spring LDAP (2013),
Pro JPA 2, Second Edition (2013), and Pro Spring Security (2013).

Read his thirteen detailed tutorials about many Spring technologies and contact him through his blog at
http://www.manueljordanelera.blogspot.com and follow him on his Twitter account, @dr_pompeii.

https://ro.linkedin.com/in/iulianacosmina

xvii

Acknowledgments

Creating this guide involved a lot of teamwork. It is the first time I’ve written a technical book and I
wouldn’t have made it without all the help and advice I received from Mark Powers, Matthew Moodie,
and Manuel Jordan. Mark has been very supportive and shared with me his experience on book writing in
order to help me and kept encouraging me when I was ready to give up on writing because I thought my
work was not good enough.

Matthew and Manuel have been great collaborators; I loved our exchanges of technical ideas and I am
very thankful because working with them has helped me grow professionally. Many thanks to Kimberly
Burton for her help turning my technical literature into human readable literature.

Most of all I want to thank Steve Anglin for finding me and for trusting me to get this done.
Apress has published many of the books I read and used to improve myself professionally during my

studies and even after that. It is a great honor for me to write a book and publish it with Apress. It is great to
contribute to the education of the next generation of developers.

I am grateful to all my friends that had the patience to listen to me complain about sleep loss, having too
much work to do, and writer’s block. Thank you all for being supportive and making sure I still had some fun
while writing this book.

And I would also like to add a very special thank you to Levi9 Romania, the company that introduced
me to Spring and its country manager Nicu Lazar that supported me to become a Spring Professional.

xix

Introduction

Three years have passed since I wrote my first Spring project and I regret that this framework grew for ten
years without me knowing about it. Four major versions of Spring have been released so far and except for
the official study guide required to pass the certification exam, until the conception of this book there was no
additional resource such as this.

This study guide provides a complete overview of all the technologies involved in creating a Spring web
application from scratch. It guides you step by step into the Spring web world covering Spring 3 and Spring 4.
It also covers topics not required for the certification exam, such as Portlets and Thymeleaf, which most
developers encounter while in the field.

There are two multi-module projects associated with this book, covering every example presented
in the book. As the book was written, new versions of Spring were released, a new version of Intellij IDEA
was released, and new versions of Gradle were released. I upgraded to the new versions in order to
provide the most recent information and keep this book synchronized with the official documentation.
A group of reviewers has gone over the book, but if you notice any inconsistency, please send an email to
editorial@apress.com and errata will be created.

The example source code for this book can be found on GitHub and will be maintained, synchronized
with new versions of the technologies, and enriched based on the recommendation of the developers using
it to learn Spring.

http://github.com/iuliana/personal-records
https://github.com/iuliana/book-code

I truly hope you will enjoy using this book to learn Spring as much as I enjoyed writing it.

http://github.com/iuliana/personal-records
https://github.com/iuliana/book-code

1

Chapter 1

Introduction

So here you are: you want to learn how to develop web applications using Spring, and you chose this study
guide to help you. This might be one of the best decisions that you could make, as this book was written not
only to help you to understand Spring Web, but to love it as well. This study guide may even help you pass
the certification exam—if you follow all the instructions properly and do all the exercises. This study guide
explores more Spring Web topics than those required by the exam; for example, it gives you a short overview
of what Spring Web is all about, which you can skip reading, of course; but if you really want to learn Spring
to develop web applications like a professional, then it would be wise not to skip this.

Spring and What It Does
When building a project using Java, a lot of functionality needs to be built from scratch. But a lot of
useful functionalities are already built and are free to use because of the open source world we live in.
A long time ago, when the Java world was still quite small, you would say that you were using a library
when you used open source code developed by somebody else, shipped as a *.jar file. But as time
passed, the software development world evolved and the libraries grew too. They became frameworks.
Because they were no longer one *.jar file that you could import, they became a collection of
more-or-less decoupled libraries with different responsibilities, and you had the option to import only
what you needed.

Released in October 2002 as an open source framework and an inversion of control container
developed using Java, Spring was built for the Java platform. It was conceived with the dependency injection
software design pattern in mind, and its main purpose is to make dependency handling easier. A Java
application is basically a group of objects exchanging data and influencing each other’s behavior. The Spring
Framework simplified the way in which objects talk to each other and the way they depend on each other.
This is why Spring evangelists claim that the reason Java was invented was so that Spring would come into
existence one day. The development of Java applications became easier when Spring emerged, providing
comprehensive infrastructure support. Spring makes it easier to compose disparate components into a fully
working application.

Spring comes with a lot of default behaviors already implemented (components called infrastructure
beans are a default configuration; they can be used to create functional basic applications without extra
customization), because the Spring Framework was also built with the convention over configuration
paradigm as a principle, which seeks to decrease the number of decisions a developer has to make when
writing code, but also makes it easier for the developer to customize the behavior of objects, offering
increased flexibility.

Chapter 1 ■ IntroduCtIon

2

Spring is currently the VIP of Java frameworks and it has been growing exponentially, especially since
2009, when VMware acquired SpringSource, the company behind Spring. The merger of VMware and the
EMC Corporation in April 2013, now known as Pivotal, was also advantageous for Spring, as it became one
of Pivotal’s central elements in its strategy to provide innovative and modern software-driven experiences to
its customers. Spring is now a full-blown technology that can be used to build enterprise-ready applications
in a very short time, and it comes in 25 flavors.1 Figure 1-1 shows a diagram of all Spring-released projects.
The following list describes these projects.

• Spring Framework provides core support for dependency injection, transaction
management, web applications, data access, messaging, and more.

• Spring IO provides a cohesive, versioned platform for building modern applications.
It is a modular, enterprise-grade distribution that delivers a curated set of dependencies.

• Spring Boot provides compact setups for different types of applications, helping you
to focus on your code instead of infrastructure configuration.

• Spring XD simplifies the development of Big Data applications.

Figure 1-1. Official Spring projects. The projects drawn with dotted lines are only partially covered in this
book or are featured in the source code

1You can read about these projects, as well as other projects that have not been released officially (Spring Session, for
example) in detail at http://spring.io/projects.

http://spring.io/projects

Chapter 1 ■ IntroduCtIon

3

• Spring Cloud provides a set of tools for distributed applications.

• Spring Data provides a consistent approach to data access. (This study guide uses a
subproject called Spring Data JPA to help us manage data easily.)

• Spring Integration supports the well-known Enterprise Integration Patterns via
lightweight messaging and declarative adapters.

• Spring Batch simplifies and optimizes the work of processing high-volume batch
operations.

• Spring Security provides tools for authentication and authorization. (Because web
security is one of the subjects of the certification exam, there is a section about web
security in this study guide that you will have to pay close attention to.)

• Spring HATEOAS provides some APIs to help the development of REST
representations that follow the HATEOAS principle (Hypermedia as the Engine of
Application State, which means that a client interacts with a network application
entirely through hypermedia provided dynamically by application servers).

• Spring Social provides an API to connect Spring applications to the third-party APIs
of social networks like Facebook and Twitter, as well as others.

• Spring AMQP provides an API for AMQP-based messaging solutions.

• Spring Mobile simplifies the development of mobile applications.

• Spring for Android provides key spring components to use in the development of
Android applications.

• Spring Web Flow supports the building of web application with controlled
navigation (Spring Web Flow is another subject in the certification exam.)

• Spring Web Services facilitates the development of SOAP-based applications.

• Spring LDAP provides tools to develop LDAP applications.

• Grails2 is a powerful open source web framework based on Groovy and inspired
by Ruby on Rails. It is used to create web applications that run on the Java Virtual
Machine(JVM).

• Groovy3 started as a dynamic language for the Java platform. It brings high-productivity
development features to the JVM, and resembles Python, Ruby, Perl, and Smalltalk
in regards to syntax and features. SpringSource has taken over its development
and maintenance.

• Spring Scala mixed up Spring with Scala language features.

• Spring Roo helps define application templates that can be built into a full Java
application within minutes.

• Spring BlazeDS Integration tools integrate Spring with Adobe BlazeDS.

• Spring Loaded reloads classes as files change, boosting productivity
(similar project to JRebel).

2Pivotal decided to stop funding this project in March 2015.
3Funding for this project also ended in March 2015.

Chapter 1 ■ IntroduCtIon

4

• Spring Shell provides the capability to build command-line apps.

• REST Shell makes the writing and testing of RESTful application easier
with CLI-based resource discovery and interaction.

The Focus of this Study Guide
As this study guide is being written, the Spring Framework consists of features organized into about 20
modules grouped into the following: Core Container, Data Access/Integration, Web, AOP (aspect-oriented
programming), Instrumentation, Messaging, and Test.

The topics covered in this study guide are Spring Framework’s support components for the presentation
tier (and specifically web-based presentation tiers). A bonus in this book is the Spring WebSocket chapter,
which was added to the Spring Framework in version 4 and is also an optional part of the official Spring Web
course not featured in the certification exam. In the Figure 1-2 you can see the Spring MVC stack, a tiered
representation of the modules commonly used to create Spring web applications.

Figure 1-2. The Spring Web Stack (those with dotted lines will not be covered in this study guide)

This study guide focuses on helping developers understand how Spring’s web infrastructure is
designed, and how to write Spring web applications in a few easy steps by maximizing Spring’s potential.
The study guide’s objectives are as follows:

• Use Spring to develop web applications

• Use Spring Web Flow to implement stateful interactions

• Use Spring Security to secure web applications

• Use Spring Test and other test frameworks (JUnit, JMock) to test web applications

• Create Spring web applications using Gradle4

4Gradle is an automated build tool that is easy to configure and use on any type of application. Its build files are written
using JSON and Groovy. Gradle combines the power and flexibility of Ant with the dependency management and
conventions of Maven into a more effective way to build. Read more about it at https://www.gradle.org.

https://www.gradle.org/

Chapter 1 ■ IntroduCtIon

5

Who Should Use this Study Guide
This study guide is designed to help any Spring developer become familiar and comfortable with
Spring-associated technologies for web development. It can also be a big help to a developer who wants
to become a Certified Spring Web Application Developer.5 That is why every topic in the official VMware
Spring Web study guide is given the attention that it deserves.

You do not have to be a Certified Spring Professional to use this study guide; you just need
minimal knowledge of Spring. Because this study guide has a full chapter dedicated to the Spring core
components, it might be possible for a non-Spring developer to use this study guide too, but the
Spring Framework Reference6 official documentation should be consulted to retrieve any missing pieces
of information.

In a nutshell, this study guide was written to be used by the following audiences:

• Spring Core developers who want a taste of Spring Web

• Spring developers (Certified Spring Professionals or not) who are looking forward
to becoming Certified Spring Web Application Developers

• Java developers who are curious about working with Spring technologies and
want to start fast

About the Spring Web Certification Exam
If you are interested in becoming a Certified Spring Web Application Developer, the first step is to go to
the VMware official learning site (http://pivotal.io/training) and search for the Spring Certification
section. There you will find all the details you need regarding the official trainings, including where and
when they take place. The training is four days long. There is online training available as well. After creating
an account on the VMware site, you can select your desired training. After you make the payment, if you
choose an online training, after about a month you will receive (through the mail) an official training kit that
consists of the following:

• A pair of conference headphones (usually Logitech) to be used during training to
hear your trainer talk and to ask questions.7

• A professional webcam (usually Logitech) to be used during training so that your
trainer and colleagues can see you, thus simulating a classroom experience.8

• A Spring study guide book containing the printed version of the slides your tutor
will use during training.

• A Spring study lab book containing explanations and instructions for the
practical exercises you will do during training.

• A SpringSource official flash drive containing the following:

• A JDK installer.

5Keep in mind that attending a Spring Web training course by Pivotal or at a VMware Authorized Training Center
is a prerequisite to becoming a Certified Spring Web Application Developer, as stated on the official site at
http://mylearn.vmware.com/mgrReg/plan.cfm?plan=31111 ui=www_cert.
6The Spring Framework Reference is at http://docs.spring.io/spring/docs/current/
spring-framework-reference/htmlsingle/.
7Depending on the area and the training center, this item is optional.
8Depending on the area and the training center, this item is also optional.

www.allitebooks.com

http://pivotal.io/training
http://mylearn.vmware.com/mgrReg/plan.cfm?plan=31111
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/
http://www.allitebooks.org

Chapter 1 ■ IntroduCtIon

6

• Sources necessary for your training. Each study lab has a small Spring web
application with missing configuration and code; the student’s task is to
complete it to become a working application. The same model is used in the
code associated with this book.

• An installer for the most recent stable version of the Spring Tool Suite (STS). The
version on the flash drive is mandatory for the course because the installer sets
up a local Maven repository with all the needed dependencies, and a full eclipse
project configuration with the lab sources. The STS also has an internal tc Server
to run the lab applications.

• An HTML or PDF version of the Spring Study Lab.

If you do not choose to do online training, you will not receive the headphones nor the webcam. The
training kit and the rest of the materials are given to you when you arrive at the location where the training
is taking place. After your training, you receive a free voucher that is required to schedule the certification
exam at an approved exam center near you. Basically, this voucher or voucher code is proof that you have
attended official Spring Web training.

! The exam duration is 90 minutes and consists of 50 questions. There are both single-answer and
multiple-choice questions. The questions cover (roughly) the following topics:

• Spring overview (Spring core notions)

• MVC essentials (configurations, beans to use, conventions)

• MVC forms and views

• Webflow

• Web security

• REST

The passing score for the exam is 76%. This means that 38 correct answers are needed to pass. Most
of the questions present you with a piece of Java code or configuration and then ask you what it does, so
make sure that you understand the code attached to this book and write your own beans and configurations
in order to understand the framework better. The good news is that all the code in the exam can be found
in the sources that you are given while attending the official training. Other questions present you with
affirmations about Spring Web and require you to select the correct or the invalid ones.

If you read this book, understand all the examples, solve the practice exercises, and then attend the
official training, the recommendation is to take the certification exam as soon as possible afterward. Do not
allow too much time to pass between finishing the training and taking the exam, because we are all human
after all, and information can be forgotten. Also, the certification voucher is only valid for a year. You can
retake the exam if you fail the first time, but it will cost you ~$150.

How to Use this Study Guide
This study guide follows the same path as the official Spring Web training, and focuses on the topics that are
found in the certification exam; but there are a few differences, which are mentioned from now on.

This Spring study guide covers the Spring MVC Portlets. This topic is not in the exam, but you never
know when you may need them in your development career, so it is better to have an overview.

The other differences are related to the tools used for the practical examples, which are mentioned in
the next section.

Chapter 1 ■ IntroduCtIon

7

How this Book Is Structured
This study guide has eight chapters. You might think: How is this possible—the official Spring study guide
has sixteen chapters, right? It is better to wrap related things together, so in this study guide you have two big
chapters that cover 60% of the exam topics: Chapter 3 covers Spring MVC and Chapter 7 covers Spring Web
Flow. Also, some topics that have their own dedicated chapter in the official study guide have been included
in other chapters, as relevant, in this book. (For example, how to test a web application. There’s no need of a
separate chapter just for this, as testing is a main portion in the development of an application.)

A list of this study guide’s chapters, along with a short description, is presented in Table 1-1.

Table 1-1. Study Guide Chapters

Chapter Topic Details

1 Introduction An introduction to Spring history, technologies, and the tools used
for practice in this study guide

2 Spring Fundamentals Spring core concepts, components, and configurations

3 Spring MVC Spring Web Framework core concepts, components, and
configurations

4 Spring Portlets What portlets are, how they can be used, and how can Spring make
this easier

5 Spring RESTful Services Advanced Spring MVC for REST applications

6 Spring Web with AJAX Advanced Spring MVC with AJAX web applications

7 Spring Web Flow Basic and advanced topics on working with Spring Web Flow

8 Spring Web Socket Basic configuration and usage of Spring Web Socket

A Appendix Two mock exams, answers to review questions, and other comments

How Each Chapter Is Structured
The introductory chapter, the one you are reading now, covers the basics of Spring and Spring
related-notions that every developer using this study guide should know: what Spring is, how it has evolved,
the number of official Spring projects, the Spring Web technologies, the technologies used to build and run
the practical exercises, how to register for the exam to become a Certified Spring Developer, and so on. This
chapter is the exception; it is structured differently than the others because it is designed to prepare you for
what is coming next.

All the other chapters are designed to cover a Spring module and associated technologies, which will
help you build a specific type of Spring web application. Each chapter is split into a few sections, but in a
nutshell, a chapter could be split as follows:

• Basics

• Configuration

• Components

• Summary

• Quick quiz

• Practical exercise

http://dx.doi.org/10.1007/978-1-4842-0808-3_3
http://dx.doi.org/10.1007/978-1-4842-0808-3_7

Chapter 1 ■ IntroduCtIon

8

Conventions
! This symbol appears in front of paragraphs that you should pay particular
attention to.

** This symbol appears in front of a paragraph that is an observation or an
execution step that you can skip.

? This symbol appears in front of a question for the user.

... This symbol replaces missing code that is not relevant in the example.

CC This symbol appears in front of a paragraph that describes a convention over
configuration practice in Spring, a default behavior that helps a developer reduce
his or her work.

[random text here] Text surrounded by square brackets means that the text within the brackets should
be replaced by a context-related notion.

Downloading the Code
This study guide comes with code examples and practical exercises. There will be missing pieces of code
that you will have to fill in to make applications work and to test your understanding of Spring Web. It
is recommended that you go over the code samples and do the exercises, as similar pieces of code and
configurations will appear in the certification exam.

The following downloads are available:

• Source code for the programming examples in the book chapters

• Source code for the programming examples in the practice section

You can download these items from the Source Code area of the Apress web site (www.apress.com).

Contacting the Author
More information on Iuliana Cosmina can be found at http://ro.linkedin.com/in/iulianacosmina.
She can be reached at iuliana.cosmina@gmail.com. Follow her personal coding activity at
https://github.com/iuliana.

Recommended Development Environment
If you decide to attend the official course, you will notice that the development environment recommended
in this book differs quite a lot from the one used for the course—a different editor is recommended, and a
different application server, and even a different build tool. The reason for this is to improve and expand
your experience as a developer and to offer a practical development infrastructure. Motivation for each
choice is mentioned in the corresponding sections.

http://www.apress.com/
http://ro.linkedin.com/in/iulianacosmina
mailto:iuliana.cosmina@gmail.com
https://github.com/iuliana

Chapter 1 ■ IntroduCtIon

9

Recommended Build Tools
The recommended development environment should be composed of the following technologies:

Java 8. Download and install the JDK matching your operating system from
http://www.oracle.com.

! It is recommended to set the JAVA_HOME environment variable to point to the directory where Java 8 is
installed (the directory in which the JDK was unpacked) and add $JAVA_HOME/bin to the general path of the
system. The reason behind this is to ensure that any other development application written in Java will use
this version of Java, and prevent strange incompatibility errors during development.

! Verify that the version of Java that your operating system sees is the one you just installed. Open a
terminal (Command+Prompt in Windows, or any type of terminal you have installed on Mac OS or Linux)
and type the following:

java -version

You should see something similar to this:

java version "1.8.0_40"
Java(TM) SE Runtime Environment (build 1.8.0_40)
Java HotSpot(TM) 64-Bit Server VM (build 25.25-b02, mixed mode)

Grade 2.x

** The sources attached to this book can be compiled and executed using the Gradle Wrapper, which
is a batch script on Windows, or by using a shell script on other operating systems. When you start a Gradle
build via the wrapper, Gradle is automatically downloaded and used to run the build, thus you do to need to
install Gradle as stated previously. Instructions on how to do this can be found on the public documentation
at www.gradle.org/docs/current/userguide/gradle_wrapper.html.

It is a good practice to keep code and build tools separate, but this study guide uses the Wrapper
to easily set up the practice environment by skipping the Gradle installation step, and also because the
recommended source code editor uses the Wrapper internally.

If you decide to use Gradle outside the editor, you can download the binaries only (or, if you are more
curious, you can download the full package, which contains binaries, sources, and documentation) from
the official site (https://www.gradle.org), unpack it and copy the contents somewhere on the hard drive.
Create a GRADLE_HOME environment variable and point it to the location where you have unpacked Gradle.
Also add $GRADLE_HOME/bin to the general path of the system.

Gradle was chosen as a build tool for the sources of this book because of the easy setup, small
configuration files, flexibility in defining execution tasks, and the fact that the SpringSource team currently
uses it to build all Spring projects.

http://www.oracle.com/
http://www.gradle.org/docs/current/userguide/gradle_wrapper.html
https://www.gradle.org/

Chapter 1 ■ IntroduCtIon

10

! Verify that the version of Gradle that your operating system sees is the one that you just installed. Open
a terminal (Command+Prompt in Windows, any type of terminal you have installed on Mac OS or Linux)
and type gradle –version. You should see something similar to this:

--
Gradle 2.3
--
Build time: 2014-11-24 09:45:35 UTC
Build number: none
Revision: 6fcb59c06f43a4e6b1bcb401f7686a8601a1fb4a
Groovy: 2.3.9
Ant: Apache Ant(TM) version 1.9.3 compiled on December 23 2013
JVM: 1.8.0_40 (Oracle Corporation 25.25-b02)
OS: -- whatever operating system you have --

The preceding text shows a confirmation that any Gradle command can be executed in your terminal;
Gradle was installed successfully.

 Jetty 9 is an open source web server that is
free to use and easy to install; that’s why it was chosen to be used in this study guide instead of the
SpringSource tc Server. No need to download and install this web server, though, because there is no need
to. There is a Gradle plugin called Getty that will be used to download the Jetty web server and deploy your
*.war artifact on it. If you want to read more about Jetty, you can do so at http://eclipse.org/jetty/.

Recommended IDE

 The recommended IDE to use in this study guide is Intellij IDEA. The reason for this is
that it is the most intelligent Java IDE. IntelliJ IDEA offers outstanding framework-specific coding assistance
and productivity-boosting features for Java EE. Spring also includes support for Maven and Gradle. It is the
perfect choice to help you focus on learning Spring, rather than how to use an IDE. It can be downloaded
from the JetBrains official site (https://www.jetbrains.com/idea/). It is also quite light on your operating
system and quite easy to use.

http://eclipse.org/jetty/
https://www.jetbrains.com/idea/

Chapter 1 ■ IntroduCtIon

11

Because the web applications developed as practice in this study guide are deployed on Jetty, the
community edition of Intellij IDEA can be used because we do not need the server plugin. The main
disadvantage of the community edition, though, is that it does not come with the Spring plugin, which is
very useful in creating Spring configuration files because it adds the bean namespace by default. But solving
the exercises in this book won’t require that, so you can still consider IDEA an option. If you are curious
about the full power of this IDE, you can download the Ultimate Edition, which has a trial period of 30 days.
And you can even try to deploy the code samples on a Tomcat instance from within IDEA. You will find an
example of how to do this in the appendix.

If you are already familiar with a different Java editor, you can use it—as long as it supports Gradle.

The Project Sample
Most of the code used in this study guide, except the book code modules, makes up a project named
Personal Records Manager. This is a proof of concept application that aspires to manage the personal
information of a group of people. The application is multimodular and each module is duplicated. The
projects suffixed with practice are missing pieces of code and configuration, and are the ones that need to
be solved by you to test your understanding of Spring Web. The projects suffixed with solution are proposal
resolutions for the tasks. You can see the project structure and the modules in Figure 1-3.

Chapter 1 ■ IntroduCtIon

12

Figure 1-3. The Personal Records Manager Application diagram

Chapter 1 ■ IntroduCtIon

13

The foundation module is the 00-pr-dao, which handles all database operations by using Hibernate
and Spring Data JPA. All other modules are client web applications, which will help the end user introduce
new data, modify existing data, and perform searches. Each module is specific to a part of a chapter. Each
module name is prefixed with a number, so no matter what IDE you use, you will always have the modules in
the exact order that they were intended to be used.

The general functionality of each web application is described in Figure 1-4.

Figure 1-4. The Personal Records Manager Application structure

The foundation of this application is its DAO (data access objects) module, which contains entities
classes that are mapped on database tables, and classes used to handle entities, called repositories. The web
projects use the DAO project to manipulate data according to user requests. The UML diagram in Figure 1-5
describes the general behavior of our application. In some chapters, however, diagrams that describe a more
detailed behavior are presented.

Chapter 1 ■ IntroduCtIon

14

The entities have common fields used by Hibernate to uniquely identify each entity instance (id) and
the fields used to audit each entity instance (createdAt and modifiedAt) and keep track of how many times
an entity was modified (version). These fields have been grouped in the AbstractEntity class to avoid
having duplicated code. The class hierarchy can be analyzed in Figure 1-6.

Figure 1-5. UML diagram describing the general behavior of the application

Chapter 1 ■ IntroduCtIon

15

Figure 1-6. This diagram shows the relationships between entity classes and the relationships between tables
in the database. (The pnc is a personal numerical code that uniquely identifies a person and will be used to
test some Spring validations on it. The iban is an alphanumeric code that uniquely identifies a bank account.)

This chapter does not have any practice and sample code attached to it, so more information regarding
the setup of the project, and how it is built and executed, is provided in upcoming chapters.

www.allitebooks.com

http://www.allitebooks.org

17

Chapter 2

Spring Fundamentals

This chapter is necessary for building a Spring background, which will be very helpful in the upcoming
chapters. This chapter will help you get familiar with the Spring container, context, beans, and most Spring
core modules and how they work together to allow developers to focus on solving problems instead of
building up support.

The Basics
Any application system is made of components that work together to solve a problem. In object-
oriented design they are called classes. Figure 2-1 depicts the sequence of operations necessary to
create a Person instance. Because this chapter is about Spring Core, a web application is not needed,
so requests to manipulate Person instances will be directed to implementations of the PersonManager
interface. Implementations of this interface will provide access to the database using an implementation
of PersonRepository interface. The operation is pretty simple and the setup to write and execute the
code should be too. This is where Spring comes in—providing a way to build an application using plain
old Java objects (POJOs)1 and applying enterprise services (transaction execution, remote execution)
noninvasively.

1A software term introduced by Martin Fowler, Rebecca Parsons, and Josh MacKenzie in September 2000 to refer to
ordinary Java objects not bound by any restriction.

Chapter 2 ■ Spring FundamentalS

18

Figure 2-1. UML sequence of operations necessary to create a Person instance

The components making up an application interact and depend on one another. Defining how these
objects are composed is quite difficult using plain Java. Even with the help of all the design patterns defined
by experts in the software industry, the work is still cumbersome, as the pattern components still have to
be implemented before being used. The Spring inversion of control (IoC) container was designed to help
developers compose objects into fully working applications, ready to use.2

The Spring container is responsible for the creation of components, resolving their dependencies
and providing them to other components. It does this by reading the configuration of an application from
*.xml files or annotated configuration classes, and internally constructs a graph of dependencies between
the objects. It then proceeds to traverse the graph, and creates and injects dependencies according to
the configuration. The result of this initialization is an ApplicationContext, which provides access to
application components, resource loading, internationalization support, and other features that won’t
be mentioned in this guide because it is out of scope.3 Figure 2-2 depicts the process of creating an
ApplicationContext using the Spring IoC container.

2The process through which an object is provided its dependencies, whether it is using a constructor or properties which
are set using setter methods, is called dependency injection. inversion of control is the concept through which an external
component has control over what is provided as a dependency to an object.
3For more information, see the public reference documentation at http://docs.spring.io/spring/docs/current/
spring-framework-reference.

http://docs.spring.io/spring/docs/current/spring-framework-reference
http://docs.spring.io/spring/docs/current/spring-framework-reference

Chapter 2 ■ Spring FundamentalS

19

The Spring Core Container
The Spring core container is made of the following modules:

• spring-beans

• spring-core

• spring-context and spring-context-support (provides support classes that
help integration of third-party libraries for caching, mailing, scheduling, and
template engines)

• spring-expression

The spring-core and spring-beans modules provide the fundamental part of the framework: the
IoC and dependency injection features, which the container needs to solve and inject dependencies as
specified in the configuration. The spring-context module extends the previous two modules, adding
support for internationalization, resource loading, event propagation, and transparent creation of contexts.
The core component of this module is the ApplicationContext interface. The spring-expression module
provides a powerful Expression Language for querying and manipulating an object graph at runtime, and for
operations like setting and getting property values, property assignment, and others.

Figure 2-2. How Spring works

Chapter 2 ■ Spring FundamentalS

20

Considering the diagram in Figure 2-1, the classes needed to support implementing the operation to
save a Person instance look like this:

public class PlainPersonManagerImpl implements PersonManager {
 PersonRepository repo;

 //injecting a dependency using the constructor
 public PlainPersonManagerImpl(PersonRepository repo) {

this.repo = repo;
 }
...
}
public class PlainPersonRepository implements PersonRepository {
 private DataSource dataSource;
 @Override
 public int save(Person person) {

..
 }
 //injecting a dependency using a setter method
 public void setDataSource(DataSource dataSource) {

this.dataSource = dataSource;
 }
}

■ ! the PlainPersonRepository class is a simple pOJO persistence handler. its sole responsibility is to ensure
Person instances are saved and retrieved from the database. its behavior is built on a javax.sql.DataSource
implementation. this is different from the Spring data Jpa repositories used in the personal records manager
project, which will be presented later. the approach specific to this chapter is Spring Core–based, which is more
“old-style,” before Spring data Jpa existed; this is to best introduce the Spring core modules and possibilities.

To implement that functionality in plain Java language, you have to write something like this:

PersonRepository repo = new PlainPersonRepository();

DataSource dataSource = new com.oracle.jdbc.pool.OracleDataSource();
dataSource.setUrl("jdbc:oracle:thin:@localhost:1521:orcl");
//set other dataSource properties

...
repo.setDataSource(dataSource);
PersonManager personManager = new PlainPersonManagerImpl(repo);
Person person = new Person("John", "Smith","1980-04-13");
// Use the manager
personManager.save(person);

As you can easily see, except the last line, everything else is setup code—the preparation before the
execution of the method. It is a lot of code. What would happen if you decided to change method signatures
or to use a different DataSource implementation? A big part of this code would have to be changed too.

In the next section, let’s see how Spring does the same thing.

Chapter 2 ■ Spring FundamentalS

21

Spring Configuration
There are three ways to define the configuration of an application using Spring:

• Special XML configuration files that allow usage of elements described in the
associated namespaces

• Java-based configuration classes (classes annotated with @Configuration can be
used by Spring IoC as a source for bean definitions)

• Mixed configuration: XML and annotations

All three types of configurations are covered in the following sections. The code sources attached to this
chapter will help you test your understanding of each.

XML
The following code is the XML content of a file named app-simple-config.xml, which is the configuration
file for a simple Spring application:

<beans>
<bean id="personManager" class="com.book.plain.PlainPersonManagerImpl">

<constructor-arg ref="personRepository" />
</bean>
<bean id="personRepository" class="com.book.plain.PlainPersonRepository">

<property name="dataSource" ref="dataSource" />
</bean>
<bean id="dataSource" class="com.oracle.jdbc.pool.OracleDataSource">

<property name="URL" value="jdbc:oracle:thin:@localhost:1521:orcl" />
...

</bean>
</beans>

And here is how the code to save a Person instance looks with Spring:

// Create the application from the configuration
ApplicationContext context =

new ClassPathXmlApplicationContext("app-simple-config.xml");
// Look up the application manager interface
PersonManager manager = (PersonManager) context.getBean("personManager");
// Use the manager
manager.save(new Person("John", "Smith","1980-04-13"));

As you can see, the code is a lot smaller, because all the preparation of the environment was
moved into the XML configuration file. And the configuration file can be manipulated more easily. If an
external property file is used as entry for some of the values in it, in some simple cases, the application
doesn’t even have to be recompiled to change behavior. The DataSource configuration can be separated
from the general configuration file, which can later allow you to easily switch between DataSource
implementations—depending on the context in which a code should run.

Chapter 2 ■ Spring FundamentalS

22

<util:properties id="dbProp" location="classpath:datasource/db.properties"/>

<bean id="dataSource" class=
"org.springframework.jdbc.datasource.DriverManagerDataSource">

 <property name="driverClassName" value="#{dbProp.driverClassName}"/>
 <property name="url" value="#{dbProp.url}"/>
 <property name="username" value="#{dbProp.username}"/>
 <property name="password" value="#{dbProp.password}"/>
</bean>

In the previous example, the property values that look like #{value} are loaded from the db.properties
file, which contains the following:

driverClassName=org.h2.Driver
url=jdbc:h2: ~/prod
username=prod
password=prod

The values for the properties are loaded into a java.util.Properties instance with an id of dbProp
using a functionality offered by the util namespace in the first line of the configuration, and then their
values are accessed using the SpEL (Spring Expression Language) syntax and injected into the dataSource
bean. (There is another way to do this using a component named PropertyPlaceholderConfigurer, which
is covered in the “How Bean Factory Post Processors Work” section.) Spring knows how to do this because
configuration files are constructed using XML namespaces.

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:util="http://www.springframework.org/schema/util"
xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/util
http://www.springframework.org/schema/util/spring-util.xsd">
...

</beans>

The underlined values in the previous example show how a prefix is assigned to a namespace and
how a namespace is associated with an XSD schema that contains the XML elements that can be used in
the configuration file. Usually, each namespace contains definitions for all XML tags for a specific spring
module, or a group of tags with related responsibilities.

As everything in Spring is a bean, most commonly used configuration styles use the bean’s root
element, and the namespace for it is declared using the xmlns attribute. When additional namespaces are
used, the elements defined by them need to be used inside the current element (beans). They need to have
a prefix associated so that the Spring IoC knows in which namespace to look for those element definitions;
notations such as xmlns:[prefix]="[namespace URL]" are used.

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/util
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/util
http://www.springframework.org/schema/util/spring-util.xsd

Chapter 2 ■ Spring FundamentalS

23

■ ! the running code in this example can be found in 02-chapter-solution project. this is a module of the
book-code project, which was designed to gradually test your knowledge acquired while reading this book. the
book-code contains one or more modules for each chapter. Some module names are postfixed with -practice
and contain a series of TODO tasks that the developer should be able to complete after reading a chapter.

the modules prefixed with -solution contain the completed tasks and are meant to be used for comparison
with the developer’s own solution. Sometimes a solution module might contain extra code that is meant simply
to show the developer other situations that he might encounter in Spring projects.

For example, by splitting up the configuration file to isolate the DataSource configuration, you could
have the following configuration for a production environment:

ApplicationContext context =
new ClassPathXmlApplicationContext("application-config.xml","db-config.xml");

And this configuration could be for a test environment:

ApplicationContext context =
new ClassPathXmlApplicationContext("application-config.xml","test-db-config.xml");

The two environments are completely decoupled, and the tests are very easy to write. Figure 2-3
displays a typical structure for a Spring Maven project with a split configuration for production and a test
environment.

Figure 2-3. Typical Maven structure for a project

Chapter 2 ■ Spring FundamentalS

24

■ ! in this example, the configuration files were created under a directory named spring to emphasize that
these are Spring configuration files, because in a more complex project there could be Xml configuration files
for other purposes (for example, logging or caching stored outside of the spring directory). the code in this
book intentionally skips the spring directory from the path to reduce the size of the quotes and to make the list
of configuration files more readable.

In the configuration files, and when instantiating contexts, resources are usually prefixed with a word
that tells the Spring container where they are located. These prefixes can be used for any type of resources
needed in an application. Consider a standard Maven setup for a project like the one in Figure 2-3; Table 2-1
shows the paths where a Spring container would look for resource files depending on the prefix.

Table 2-1. Prefixes and Corresponding Paths

Prefix Location Comment

no prefix In root directory where the class
creating the context is executed.

In the main or test directory. The type of the resource
being loaded depends on the ApplicationContext
instance being used. (A detailed example is presented
after this table.)

classpath: The resource should be obtained
from the classpath.

In the resources directory; the resource is of type
ClassPathResource.

file: In the absolute location following
the prefix.

The resource is loaded as a URL from the filesystem
and is of type UrlResource.

http: In the web location following
the prefix.

The resource is loaded as a URL and is of type
UrlResource.

The following is an example of resource loading without using a prefix:

Resource template = ctx.getResource("application-config.xml");

Depending on the context class used, the resource loaded can have one of the following types:

• If ctx is a ClassPathXmlApplicationContext instance, the resource type is
ClassPathResource

• If ctx is a FileSystemXmlApplicationContext instance, the resource type is
FileSystemResource

• If ctx is a WebApplicationContext instance, the resource type is
ServletContextResource

Chapter 2 ■ Spring FundamentalS

25

Annotations
Spring also supports configuration via annotations. The previous XML configuration can be replaced by a
class annotated with @Configuration, and looks like this:

@Configuration
@PropertySource(value = "classpath:datasource/db.properties")
public class AppConfig {

 @Autowired
 Environment env;

 @Bean(name="personManager")
 public PersonManager getPersonManager(){

return new PlainPersonManagerImpl(getPersonRepository());
 }

 @Bean(name="personRepository")
 public PersonRepository getPersonRepository(){

PersonRepository repo = new PlainPersonRepository();
repo.setDataSource(getDataSource());
return repo;

 }

 @Bean(name="dataSource")
 public DataSource getDataSource(){

DriverManagerDataSource dataSource = new DriverManagerDataSource();
dataSource.setDriverClassName(env.getProperty("driverClassName"));
dataSource.setUrl(env.getProperty("url"));
dataSource.setUsername(env.getProperty("username"));
dataSource.setPassword(env.getProperty("password"));
return dataSource;

 }
}

All the code to save a Person instance looks like this:

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(classes = {AppConfig.class})
public class SecondAnnotationPersonSaveTest {

 @Autowired
 PersonManager personManager;

 @Test
 public void savePerson() {

personManager.save(new Person("John", "Smith", "1980-04-13"));
 }
}

Chapter 2 ■ Spring FundamentalS

26

When annotations are used, XML configuration files are no longer needed, nor namespaces. Specific
annotations are used to mark configuration classes (@Configuration) and to mark methods as bean
definitions (@Bean); this is not covered because it is outside the scope of this book. What you need to
remember is that the @Bean annotation makes sure that every time the annotated method is called the same
bean is returned. Without it, the method will return a newly created instance each time.

■ CC in the previous code example, each @Bean annotation has the attribute name populated with a value
to name the bean created by the method. this attribute is neither mandatory nor necessary. When it is not
specified, the Spring ioC determines a name for the bean based on the method name by removing the get and
lowercasing the first letter of the remaining string.

Mixed Approach
XML and annotations can be mixed. You could have the bean classes annotated with @Component (or any
annotation extending @Repository for DAO repository classes, @Service for service classes, or @Controller
for MVC handler classes) and one or more XML files, which define just the DataSource configuration
and specifies where the beans are located. In the following code sample, the DataSource configuration is
separated in another file (as shown in the “How Bean Factory Post Processors Work” section) to decouple
configurations for production and test environments.

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd"

<context:component-scan base-package="com.book.beans"/>
...

</beans>

In XML configuration files, bean definitions describe the way a dependency should be provided to
them: using either constructors or setters. This is called autowiring. When using annotations, the way a
dependency should be provided is described using the @Autowire annotation on a constructor or setter.4
But you need to tell the Spring IoC container to look for that type of annotation, and the declaration
<context:component-scan ...> does exactly that.

When using annotations, <bean> declarations are no longer needed because each bean type is
annotated with @Component, or an extension of it, and the <context:component-scan..> declaration tell
the Spring IoC container to look for those types of annotations in the specific file. The process of identifying
annotated bean types is called autodiscovery.

4The @Autowiring annotation can also be used on the field directly, called field injection; but this approach is discouraged
because it makes testing difficult. As the field is usually private, to test the containing bean, a full Spring context must be
set up or reflection must be used to access the field.

www.allitebooks.com

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/context
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd
http://www.allitebooks.org

Chapter 2 ■ Spring FundamentalS

27

Thus what the following configuration element does is enable bean autowiring and autodiscovery
anywhere in the classpath in packages (and subpackages) named as the value of the attribute base-package.

<context:component-scan base-package="com.book.beans"/>

The <context: ..> declarations are Spring’s way of compacting the declaration of infrastructure beans
named *PostProcessor, which take care of interpreting annotations into beans definitions.

• <context:annotation-config/> registers the following:

 – AutowiredAnnotationBeanPostProcessor (supports @Autowired, @Value,
@Inject)

 – CommonAnnotationBeanPostProcessor (supports @Resource, @PostConstruct,
@PreDestroy)

 – PersistenceAnnotationBeanPostProcessor (supports @PersistenceUnit,
@PersistenceContext)

 – RequiredAnnotationBeanPostProcessor (supports @Required)

• <context:component-scan base-package="com.book.beans"/> implicitly enables
the functionality of <context:annotation-config> and adds support for more
annotations (@Repository, @Service, @Controller, which are specializations of
@Component, @Configuration, etc.)

If you want to extend your knowledge about this, you can always read the Spring Reference
Documentation.5 More detailed information is outside the scope of this book.

The Beans
The beans are the objects handled by the Spring IoC container. The following section will cover all you need
to know about how beans are created, how the beans are categorized, how they are accessed, and how they
are destroyed when they are no longer needed.

Lifecycle and Instantiation
The beans are created in order of dependency. If a bean of type B, needs a bean of type A for its creation,
the Spring container will know to first create bean A and then inject it into bean B. If an application has
multiple configuration files, the Spring container first reads all of them, internally creates a dependency tree
of bean definitions, and then starts traversing the tree, starting with its lowest level where the simplest bean
definitions are. In the cases mentioned in previous sections, the order for bean creation (instantiation) is
dataSource, personRepository, and personManager. The steps are described in Figure 2-4.

5The Spring Reference Documentation can be accessed at http://docs.spring.io/spring/docs/current/
spring-framework-reference/htmlsingle/.

http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/

Chapter 2 ■ Spring FundamentalS

28

Figure 2-4. Order of bean instantiation

A bean cannot be created if its required dependencies do not exist; an exception is thrown in case of
missing dependencies. But how does the Spring container know which dependencies are required? There
are a few ways. One is the type of injection. Spring supports two types of injection: via constructor and
via setter. The constructor injection is when the constructor of a bean is defined as having an argument
of type another bean. In the previous example, the PersonManagerImpl constructor definition requires
a PersonRepository instance as an argument, and thus the PersonManagerImpl requires a bean of type
PersonRepository to be created before its creation.

<!– Constructor injection –>
<bean id="personManager" class="com.book.PersonManagerImpl">

<constructor-arg ref="personRepository" />
 </bean>

 <!– Setter injection–>
 <bean id="personRepository" class="com.book.JdbcPersonRepository">

<property name="dataSource" ref="dataSource" />
</bean>

Chapter 2 ■ Spring FundamentalS

29

Any object that has a constructor with arguments cannot be constructed without passing in arguments.
This restriction does not apply for the setter injection, but it can be enforced in two ways:

• By annotating the setter method with @Required. If the property is not set, a
BeanInitializationException is thrown.

• By annotating the setter method with @Autowire the Spring IoC container
tries to inject a bean with the specific type. If such a bean is not found, a
BeanCreationException is thrown.

One of the advantages of using the setter injection is that you can create hierarchical beans,
and setters will be inherited. In a setter injection, bean creation and dependency injection are two
separate steps; for constructor injection there is only one step. So basically, setter injection makes your
configuration more flexible.

For a bean to “come to life” and become available to be used for a purpose, it has to go through the steps
shown in Figure 2-5.

Figure 2-5. The steps for a bean creation

Chapter 2 ■ Spring FundamentalS

30

How Bean Factory Post Processors Work
A bean definition can be modified before instantiating the bean, and this is done by beans called bean
factory post processors. They are defined as classes implementing the BeanFactoryPostProcessor interface
and are recognized by an application context and instantiated before any other beans in the container.
The most used and known in the Spring world is the PropertyPlaceholderConfigurer.

<bean id="dataSource" class=
"o.s.jdbc.datasource.DriverManagerDataSource">

 <property name="driverClassName" value="${driverClassName}"/>
 <property name="url" value="${url}"/>
 <property name="username" value="${username}"/>
 <property name="password" value="${password}"/>
</bean>

<context:property-placeholder location="classpath:datasource/db.properties"/>

The last line in this example is a simplified version of defining a PropertyPlaceholderConfigurer using
the Spring context namespace; it is equivalent to the following:

<bean class=
 "o.s.beans.factory.config.PropertyPlaceholderConfigurer">

<property name="location" value="classpath:datasource/db.properties"/>
</bean>

This bean reads those properties from the db.properties file and then populates the dataSource
source bean with their values. Of course, the easier way to do this is to use SpEL expressions and the util
namespace:

<util:properties id="dbProp" location="classpath:datasource/db.properties"/>

<bean id="dataSource" class=
 "o.s.jdbc.datasource.DriverManagerDataSource">
 <property name="driverClassName" value="#{dbProp.driverClassName}"/>
 <property name="url" value="#{dbProp.url}"/>
 <property name="username" value="#{dbProp.username}"/>
 <property name="password" value="#{dbProp.password}"/>
</bean>

Bean Initialization and Destruction
An ApplicationContext instantiates all singleton (bean scopes are covered in detail in the “Bean Scopes”
section) beans by default and also destroys them at the end of their lives. After a bean has been created and
its dependencies injected, it can be initialized automatically by telling the context to execute a specified
method. Before a bean ends its life, a different method might be called to do some resource cleanup. The
context can be told to automatically do that too. These methods must have a void no-argument signature.
There is no restriction on the accessor used for them. In the official documentation, the lifecycle methods
given as example are all public. But there are opinions that state they should be protected or private
(obviously, it does not apply to InitializingBean’s afterPropertiesSet and DisposableBean’s destroy)
to prevent direct calls of these methods from the application code, as these methods should be called only
once and only by the Spring IoC container.

Chapter 2 ■ Spring FundamentalS

31

There are multiple options for bean initialization:

• Using @PostConstruct from JSR 250

• Using @Bean’s initMethod attribute

• Implementing InitializingBean and providing implementation for the
afterPropertiesSet method (not recommended because it couples the application
code with Spring infrastructure code)

• Using the init-method attribute on a <bean/> XML definition

When a bean ends its life, some cleanup operations might be necessary; to implement this kind of
behavior, there are also multiple options:

• Using @PreDestroy from JSR 250

• Using @Bean’s destroyMethod attribute

• Implementing DisposableBean and providing implementation for the destroy
method (not recommended, as it couples the application code with Spring
infrastructure code)

• Using the destroy-method attribute on a <bean/> XML definition

In the code sample there is a bean in the com.book.spring.components package that was implemented
in such a way to clarify the Spring bean lifecycle. The bean is called CompleteLivingBean and has
@PostConstruct and @PreDestroy annotated methods, implements InitializingBean and
DisposableBean, and has methods in which names are used as values for attributes init-method and
destroy-method. This bean was implemented using a combined lifecycle strategy to clearly show when each
initializer/destruction method is called by the Spring IoC and to clearly display the bean creation steps in
Figure 2-5.

This is the configuration:

<context:component-scan base-package="com.book.beans"/>

<bean id="livingBean" class="com.book.beans.CompleteLivingBean"
init-method="initMethod"
destroy-method="destroyMethod">
<property name="internal" value="testValue"/>

</bean>

This is the definition of the bean class:

public class CompleteLivingBean implements InitializingBean, DisposableBean {
 public String internal;

 public CompleteLivingBean() {
logger.info("1. Constructor.");

 }

 public void setInternal(String internal) {
logger.info("2. Setter.");
this.internal = internal;

}

Chapter 2 ■ Spring FundamentalS

32

 @PostConstruct
 public void postConstruct(){

logger.info("3. @PostConstruct.");
 }

 @Override
 public void afterPropertiesSet() throws Exception {

logger.info("4. afterPropertiesSet.");
 }

 public void initMethod(){
logger.info("5. init-method.");

 }

 @PreDestroy
 public void preDestroy(){

logger.info("6. PreDestroy.");

 }

 @Override
 public void destroy() throws Exception {

logger.info("7. destroy.");

}

 public void destroyMethod() throws Exception {
logger.info("8. destroy-method.");

 }

}

Also, there is no restriction on method names used as values for init-method and destroy-method
attributes; initMethod and destroyMethod were used in this example to make their purpose really obvious.

■ ! in the certification exam, you might be asked which method is executed first—the one annotated with
@PostConstruct or the one mentioned by the init-method; so the CompleteLivingBean helps clear up when
methods are executed and why.

When executing the test for the com.book.beans.BeanLifecycleTest bean, you will see the
following output:

INFO c.b.b.CompleteLivingBean - 1. Constructor.
INFO c.b.b.CompleteLivingBean - 2. Setter.
INFO c.b.b.CompleteLivingBean - 3. @PostConstruct.
INFO c.b.b.CompleteLivingBean - 4. afterPropertiesSet.

Chapter 2 ■ Spring FundamentalS

33

6A snippet from the JEE official Java doc at http://docs.oracle.com/javaee/7/api/javax/annotation/
PostConstruct.html.
7A snippet from the JEE official Java doc at http://docs.oracle.com/javaee/7/api/javax/annotation/
PreDestroy.html.
8http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/beans/factory/
BeanFactory.html.

INFO c.b.b.CompleteLivingBean - 5. init-method.
...
INFO c.b.b.CompleteLivingBean - 6. @PreDestroy.
INFO c.b.b.CompleteLivingBean - 7. destroy.
INFO c.b.b.CompleteLivingBean - 8. destroy-method.

As represented in Figure 2-5, when a bean is created, the following succession of actions happens:

1. The constructor is called first to create the bean.

2. The dependencies are injected (setters are called).

3. The pre-initialization BeanPostProcessors are consulted to see if they want to
call anything from this bean. The @PostConstruct annotation is registered by
the CommonAnnotationBeanPostProcessor, so this bean will call this annotated
method. This method is executed right after the bean has been constructed and
before the class is put into service,6 before the actual initialization of the bean
(before afterPropertiesSet and init-method).

4. The InitializingBean’s afterPropertiesSet is executed right after the
dependencies were injected.

5. The init-method attribute value method is executed last, as this is the actual
initialization method of the bean.

When a bean is destroyed:

1. The @PreDestroy method is executed, as this has to be executed before a destroy
method, if one exists. The PreDestroy annotation is used on methods as a
callback notification to signal that the instance is in the process of being removed
by the container.7

2. The DisposableBean’s destroy method is executed next, as the Spring standard
order defines it so.

3. The destroy-method attribute value method is executed last, as this is the actual
destroy method of the bean, and the Spring standard order defines it so.

This is the simplified and more natural explanation of the bean lifecycle; in most cases, this is all you
will need. If you want to view the full picture with full plumbing details and other things the context does,
you can read the official JEE and Spring documentation.8

■ ! the main reason for init-method and destroy-method creation was to give the developer a little
control over beans definitions from third-party libraries, which have classes that cannot be modified or
extended. this way, the developer can decide what gets executed after creation and what executes before
destruction by using Xml configuration.

http://docs.oracle.com/javaee/7/api/javax/annotation/PostConstruct.html
http://docs.oracle.com/javaee/7/api/javax/annotation/PostConstruct.html
http://docs.oracle.com/javaee/7/api/javax/annotation/PreDestroy.html
http://docs.oracle.com/javaee/7/api/javax/annotation/PreDestroy.html
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/beans/factory/BeanFactory.html
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/beans/factory/BeanFactory.html

Chapter 2 ■ Spring FundamentalS

34

How Bean Post Processors Work
A BeanPostProcessor allows the developer to process a bean instance created by the IoC container after its
instantiation, and then again after the initialization lifecycle event has occurred on it. BeanPostProcessors
are defined as classes implementing the BeanPostProcessor interface, and are recognized by an application
context and instantiated before any other beans in the container, because after their instantiation, they are
used to manipulate other beans instantiated by the IoC container. The @PostConstruct and @PreDestroy
annotations are processed by a bean called CommonAnnotationBeanPostProcessor. This is not a default
infrastructure bean for the Spring IoC container, so to use it you have to specify it in the configuration of the
application. You would expect to need something like this in the mvc-config.xml file:

<bean class="o.s.c.a.CommonAnnotationBeanPostProcessor"/>

And this could work, but there will be some issues because configuring the bean like that overrides the
Spring defaults, which might lead to unexpected behavior. Fortunately, this bean configuration is one of
those included in the following line, a Spring shortcut based on the context namespace:

<context:component-scan base-package="com.book.beans"/>

Or in this one:

<context:annotation-config/>

The BeanPostProcessor beans wrap other beans into AOP proxies that add extra behavior (more details
on AOP in the “Spring AOP” section). The Spring Framework has different types of BeanPostProcessors
that can be used for caching, transactions, security, and so forth. The CommonAnnotationBeanPostProcessor
scans for methods annotated with @PostConstruct and @PreDestroy, and calls those methods at the
appropriate time.

The code samples use logback to display logs. By increasing the granularity of the log for
the Spring Framework to DEBUG, you can see what is happening “behind the scenes,” and what
CommonAnnotationBeanPostProcessor is actually doing. In the following configuration snippet, you are
shown how to modify the granularity of the log by editing the logger element for the Spring Framework in
the logback.xml file:

<logger name="org.springframework" level="DEBUG" additivity="false">
 <appender-ref ref="STDOUT" />
</logger>

After modifying the log file when running the BeanLifecycleTest, you can see the behavior of the
CommonAnnotationBeanPostProcessor9:

INFO CompleteLivingBean - 1. Constructor.
DEBUG CABPP - Found init method on class
 CompleteLivingBean: private void CompleteLivingBean.postConstruct()
DEBUG CABPP Found destroy method on class
 CompleteLivingBean: protected void CompleteLivingBean.preDestroy()

9CABPP is the acronym for CommonAnnotationBeanPostProcessor. It is used to fit a log quote nicely on a page.

Chapter 2 ■ Spring FundamentalS

35

DEBUG CABPP Registered init method on class CompleteLivingBean:
 InitDestroyAnnotationBeanPostProcessor$LifecycleElement@64e17f36
DEBUG CABPP Registered destroy method on class CompleteLivingBean:
 DestroyAnnotationBeanPostProcessor$LifecycleElement@a27dd7d7
INFO c.b.b.CompleteLivingBean - 2. Setter.
DEBUG CABPP - Invoking init method on bean ’livingBean’:
 private void CompleteLivingBean.postConstruct()
INFO c.b.b.CompleteLivingBean - 3. @PostConstruct.
INFO c.b.b.CompleteLivingBean - 4. afterPropertiesSet.
...
DEBUG CABPP - Invoking destroy method on bean ’livingBean’:
protected void CompleteLivingBean.preDestroy()
INFO c.b.b.CompleteLivingBean - 1. @PreDestroy.

The previous section mentioned that there are annotation attributes equivalents for the init-method and
destroy-method. If you were to define CompleteLivingBean using a class annotated with @Configuration,
it would look like this:

@Bean(initMethod = "initMethod", destroyMethod = "destroyMethod")
public CompleteLivingBean getCompleteLivingBean() {
 return new CompleteLivingBean();
}

And would be equivalent to this XML definition:

<bean id="livingBean" class="com.book.beans.CompleteLivingBean"
init-method="initMethod" destroy-method="destroyMethod"/>

Bean Scopes
When the Spring IoC instantiates beans, it creates a single instance for each bean—unless a property is set
on the bean definition specifying otherwise. The property in question is called scope and the default scope
for a bean is singleton. The scopes are defined in Table 2-2.

Table 2-2. Bean Scopes

Scope Description

singleton The Spring IoC creates a single instance of this bean and any request for beans with
an id or ids matching this bean definition results in this instance being returned.

prototype Every time a request is made for this specific bean, the Spring IoC creates
a new instance.

request The Spring IoC creates a bean instance for each HTTP request. Only valid in the
context of a web-aware Spring ApplicationContext.

session The Spring IoC creates a bean instance for each HTTP session. Only valid in the
context of a web-aware Spring ApplicationContext.

global-session The Spring IoC creates a bean instance for each global HTTP session. Only valid in
the context of a web-aware Spring ApplicationContext.

Chapter 2 ■ Spring FundamentalS

36

So when a bean is created without a scope attribute, the scope of the bean is singleton:

<bean id="personRepository" class="com.book.JdbcPersonRepository">
 <property name="dataSource" ref="dataSource"/>
</bean>

Otherwise, the scope of the bean is the one specified by the value of the scope attribute:

<bean id="personRepository" class="com.book.JdbcPersonRepository"
scope="prototype">

<property name="dataSource" ref="dataSource"/>
</bean>

There is an annotation equivalent to this that can be used on @Component (and other stereotype
annotations) annotated beans:

@Component
@Scope(value = ConfigurableBeanFactory.SCOPE_PROTOTYPE)
public class PrototypeBean {

 private Logger logger = LoggerFactory.getLogger(PrototypeBean.class);
 private static int instanceCounter = 0;
 public PrototypeBean() {

logger.info("-> Constructing instance no: " + (++instanceCounter));
 }
}

■ ! @Scope(value = ConfigurableBeanFactory.SCOPE_PROTOTYPE) is equivalent to
@Scope(ConfigurableBeanFactory.SCOPE_PROTOTYPE) and @Scope("prototype") because constant
SCOPE_PROTOTYPE is of type string and has the "prototype" value. using Spring constants eliminates the
risk of misspelling the scope value.

The @Scope annotation can also be used on a bean definition annotated with @Bean to specify the scope
of the resulting bean.

@Bean(name="personManager")
@Scope("prototype")
//or @Scope(ConfigurableBeanFactory.SCOPE_PROTOTYPE)
public PrototypeBean getPrototypeBean(){
 return new PrototypeBean();
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ Spring FundamentalS

37

If you were to execute the following test, the test would pass:

@Test
 public void testPrototype() {

// Create the application from the configuration
ClassPathXmlApplicationContext context =
new ClassPathXmlApplicationContext("classpath:test-app-config.xml");

PrototypeBean pb1 = (PrototypeBean)context.getBean("prototypeBean");
assertNotNull(pb1);
//the bean is requested by type
PrototypeBean pb2 = context.getBean(PrototypeBean.class);
assertNotNull(pb2);
assertNotEquals(pb1,pb2);

}

And this is what would be seen in the log file:

DEBUG - Creating instance of bean 'prototypeBean'
INFO -> Constructing instance no: 1
DEBUG - Finished creating instance of bean 'prototypeBean'
DEBUG - Creating instance of bean 'prototypeBean'
INFO -> Constructing instance no: 2
DEBUG - Finished creating instance of bean 'prototypeBean'

A special case of bean scope is the scope of an inner bean. An inner bean is defined within the scope
of another bean. The reason for doing this is because the bean does not need to be shared with other
beans, but is needed only for the creation of the enclosing bean. The scope attribute has no meaning for an
inner bean and is ignored; so are the attributes id and name, as the bean is anonymous. When using Java
Configuration, the inner bean is just a local variable in a method. The following code snipped declares the
DataSource bean as an inner bean:

<util:properties id="dbProp" location="classpath:datasource/db.properties"/>

<bean id="personRepository" class="com.book.JdbcPersonRepository">
 <property name="dataSource">

<bean id="dataSource" class=
"org.springframework.jdbc.datasource.DriverManagerDataSource">

<property name="driverClassName" value="#{dbProp.driverClassName}"/>
<property name="url" value="#{dbProp.url}"/>
<property name="username" value="#{dbProp.username}"/>
<property name="password" value="#{dbProp.password}"/>

 </bean>
 </property>
</bean>

Chapter 2 ■ Spring FundamentalS

38

Accessing Beans
Beans can be identified in three ways: by type, by name, and by id. The following subsections explain
these in detail; examples are provided for each case. How to access beans configured with annotates is
covered too.

Bean Identification by Type
A bean can be identified by its type if there is only one definition of a bean with that type in the Spring
configuration file.

The BeanPostPrecessor classes registered by <context:annotation-config/> that scan for
annotations are singleton infrastructure beans instantiated by the Spring IoC container, when that
configuration line is present in a Spring configuration file. At any time during the life of an application only
one instance of each of those beans will exist. Basically, this configuration file:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd">

<context:annotation-config/>

</beans>

Is equivalent to this:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<!--the org.springframework. package was shortened to o.s.
 for this code to fit the page better -->
<bean class="o.s.beans.factory.annotation.AutowiredAnnotationBeanPostProcessor"/>
<bean class="o.s.context.annotation.CommonAnnotationBeanPostProcessor"/>
<bean class="o.s.orm.jpa.support.PersistenceAnnotationBeanPostProcessor"/>
<bean class="o.s.beans.factory.annotation.RequiredAnnotationBeanPostProcessor"/>

</beans>

Considering the following bean definition:

<bean class="com.book.sandbox.SimpleBean" />

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/context
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd
http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd

Chapter 2 ■ Spring FundamentalS

39

If there is no other bean definition with the same class attribute value, the bean can be accessed
like this:

SimpleBean sb = context.getBean(SimpleBean.class);

Or can even be injected as a dependency via autowiring:

@Autowired
SimpleBean simpleBean;

■ ! in the book-code/02-chapter project, there is a class called BeanIdentificationTest that tests
various scenarios of bean identification.

Bean Identification by Name
The <bean/> element has an attribute called name. The value assigned to this attribute in a bean definition
can be used to access this bean. A duplicate bean name will invalidate a configuration file. The name is
flexible and can be used to define more than one name when the values are separated by a comma (",")
or a semicolon (";"). The bean is defined as follows:

<bean name="sbb0" class="com.book.sandbox.SimpleBean"/>

Can be accessed as follows:

// the old way
SimpleBean sb0 = (SimpleBean)context.getBean("sb0");
 // or the Spring 3.0 way
SimpleBean sb0 = context.getBean("sb0", SimpleBean.class);

And can also be injected as a dependency via autowiring using the @Qualifier annotation:

@Autowired
@Qualifier(value = "sb0")
SimpleBean simpleBean;

The @Bean annotation has a name attribute too, so an equivalent annotation configuration
can be created:

@Bean(name="simpleBean")
public SimpleBean getSimpleBean(){
 return new SimpleBean();
}

Chapter 2 ■ Spring FundamentalS

40

Bean Identification by id
The <bean/> element has an attribute called id. The value assigned to this attribute in a bean definition can
be used to access the bean. This attribute uniquely identifies a bean, so a duplicate bean id will invalidate
a configuration file. This attribute can appear alongside the name attribute, and both can be used to
access the bean. The id and the name attributes serve the same purpose: they are both used to define bean
identifications. The difference between them is that the value of the id attribute must conform to XML
standard id, which means no weird characters like a comma (",") or semicolon (";") can be contained in it.

Basically, the following bean definition is valid:

<bean name="sb0" id="id0" class="com.book.sandbox.SimpleBean"/>

And the following test will pass, as both calls will return the same bean:

@Test
public void testBeans() {
 ...
 SimpleBean sb01 = context.getBean("sb0", SimpleBean.class);
 SimpleBean sb02 = context.getBean("id0", SimpleBean.class);
 assertTrue(sb01 == sb02);
}

Accessing Annotated Beans
The beans defined using @Component and extensions of it can be autowired by name or by type without any
extra configuration.

■ CC When using annotation configuration—beans annotated with @Component or extensions of it—the Spring
ioC container also creates a logical name for these beans by lowercasing the first letter of the class name.

@Component
@Scope(value = ConfigurableBeanFactory.SCOPE_PROTOTYPE)
public class PrototypeBean { ... }
...
\\ requesting bean by name
PrototypeBean pb1 = (PrototypeBean)context.getBean("prototypeBean");
assertNotNull(pb1);
\\Requesting bean by type
PrototypeBean pb2 = context.getBean(PrototypeBean.class);
assertNotNull(pb2);
assertNotEquals(pb, pb2);

Chapter 2 ■ Spring FundamentalS

41

Spring AOP
AOP is an acronym for aspect-oriented programming and represents a programming paradigm that
aims to simplify code by grouping repetitive operations in units called aspects. AOP helps managing
common functionality that spans across the application, like logging, security, and transactionality. AOP
complements OOP (object-oriented programming) by providing a more advanced way of decoupling the
code and modularizing an application.

The AOP framework complements the Spring IoC container. The container can be used without it
in small applications that do not require the use of security or transactions, because these are the key
crosscutting concerns for enterprise applications.

In Spring, an aspect is class annotated with @Aspect. It contains methods called advices that are
annotated with aspect-specific annotations that intercept the execution of other beans’ methods and
performs specific operations before and/or after their execution, and can prevent the execution of an
intercepted method if necessary.

The AOP framework makes this possible by scanning all aspects when the application context is started,
and creates AOP proxy objects that wrap around existing beans to implement aspect contracts. When the
target beans are requested for usage or injection, the proxy object is injected or returned instead. From a
developer’s point of view, it looks like the intended object is used, but the Spring IoC container works with
the proxy object that is wrapped around it.

Let’s see how AOP can make things easier when you want to save a Person instance to the database
using the PersonManagerImpl mentioned at the beginning of the chapter.

The following is what the code looks like in Spring without AOP. Figure 2-6 shows the UML diagram.

<!-- configuration will contain this element -->
<bean id="txManager" class=

"org.springframework.jdbc.datasource.DataSourceTransactionManager">
 <property name="dataSource" ref="dataSource"/>
</bean>

 // PersonManagerImpl.java
...
@Autowired
@Qualifier("txManager")
PlatformTransactionManager transactionManager;
@Autowired
@Qualifier("personRepository")
PersonRepository repo;

public int save(Person person) {
TransactionDefinition def = new DefaultTransactionDefinition();
TransactionStatus status = transactionManager.getTransaction(def);
int result = repo.save(person);

transactionManager.commit(status);
return result;

}

Chapter 2 ■ Spring FundamentalS

42

And here is how it looks using AOP (the UML diagram is presented in Figure 2-7):

<!-- configuration will contain this element needed to switch on
the transactional behaviour -->
<tx:annotation-driven transaction-manager="txManager"/>
// PersonManagerImpl.java
@Component("personManager")
@Transactional
public class PersonManagerImpl implements PersonManager {
 @Autowired
 @Qualifier("personRepository")
 PersonRepository repo;

 public int save(Person person) {
return repo.save(person);

}
}

Figure 2-6. Diagram in non-AOP mode

Chapter 2 ■ Spring FundamentalS

43

The <tx:annotation-driven/> configuration element is defined in the Spring tx namespace, which
has to be added to the configuration file:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:tx="http://www.springframework.org/schema/tx"
xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/tx
http://www.springframework.org/schema/tx/spring-tx.xsd">
...

</beans>

And in order to run the methods of a bean in a transactional environment, you also have to specify the
TransactionManager instance used to handle the transactions. In a test environment, the annotation
@TransactionConfiguration is used:

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(locations = {"classpath:app-aop-cfg.xml",

"classpath:spring/test-db-config.xml"})
@TransactionConfiguration(transactionManager = "txManager")
public class PersonSaveTest {
...
}

Figure 2-7. Diagram in AOP mode

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/context
http://www.springframework.org/schema/tx
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/tx
http://www.springframework.org/schema/tx/spring-tx.xsd

Chapter 2 ■ Spring FundamentalS

44

To verify that the test method is running in a transaction environment, you can switch the Spring
Framework log to DEBUG, as explained in the “Lifecycle and Instantiation” section, and run the test. In the
console, the following logs will prove this:

DEBUG o.s.j.d.DataSourceTransactionManager - Acquired Connection
 conn1: url=jdbc:h2:mem:dataSource user=SA for JDBC transaction
DEBUG o.s.j.d.DataSourceTransactionManager - Switching JDBC Connection
 conn1: url=jdbc:h2:mem:dataSource user=SA to manual commit
INFO c.b.a.PersonManagerImpl - -> Calling repo.save(person)
DEBUG o.s.j.c.JdbcTemplate - Executing prepared SQL update
DEBUG o.s.j.c.JdbcTemplate - Executing prepared SQL statement
 insert into person (firstname, lastname, date_of_birth) values (?,?,?)
DEBUG o.s.j.c.JdbcTemplate - SQL update affected 1 rows
INFO c.b.a.PersonManagerImpl - -> repo.save execution completed.
DEBUG o.s.j.d.DataSourceTransactionManager - Initiating transaction commit
DEBUG o.s.j.d.DataSourceTransactionManager - Committing JDBC transaction on Connection
 conn1: url=jdbc:h2:mem:dataSource user=SA
DEBUG o.s.j.d.DataSourceTransactionManager - Releasing JDBC Connection
 conn1: url=jdbc:h2:mem:dataSource user=SA after transaction

■ CC if the bean of type TransactionManager is named transactionManager when in a transactional
environment, the Spring ioC container will detect it automatically and there is no need to specify it as an
argument for the @TransactionConfiguration annotation. even more, @TransactionConfiguration can be
replaced with @Transactional, and the test methods will still be executed in a transactional environment.

the transaction-manager attribute from the <tx:annotation-driven/> can be omitted too.

also, @Qualifier("transactionManager") is not needed when the transactionManager is autowired and
the bean of type TransactionManager has the default name.

in the code samples presented here, a bean of type TransactionManager with a different name was used to
show the developer the configurations needed to work in cases other than the default one, because in bigger
applications, multiple beans of type TransactionManager might be needed.

Testing Spring Applications
When it comes to writing code, there are two types of testing that matter: unit testing and integration testing.

• Unit testing is used to test small units of code, thus its naming. Unit testing is easy to
do—not much setup is necessary, and since JUnit10 has introduced @Test annotation
writing, unit tests have become a breeze.

10The most commonly used Java testing framework (see http://junit.org).

http://junit.org/

Chapter 2 ■ Spring FundamentalS

45

• Integration testing is used to test bigger chunks of code made up of objects
interacting together in a given context, and the focus is set on business logic and
object integration with each other. The context is usually made up of mocks or stubs
that replace the objects, which are not the focus of the tests. You can imagine that
creating a testing context is not a simple job.

The Spring Framework includes a testing module called spring-test that makes integration testing
really practical to implement. The tests that have been used throughout this chapter use the spring-test
module.

• The SpringJUnit4ClassRunner, as the names says, is a Spring class used to tell JUnit
that the tests in this class are executed in a Spring test context.

• The @ContextConfiguration receives one or more configuration files as parameters
that are used to initialize the test context.

• The @TransactionConfiguration is the annotation that injects the
transactionManager instance used to run tests in a transactional environment. As
mentioned earlier, this can be skipped, and @Transactional can be used when the
TransactionManager bean has the default name.

■ CC When using @ContextConfiguration to annotate a test class, the configuration file path can be
skipped, and then Spring ioC container will look for a file named [TestClassName]-context.xml in the same
location where the test class is defined. When the project has a maven structure, the configuration is placed in
the resources directory, and the directories matching the package name for the test class are created so the
file will have the same relative path as the test class.

So if you have test class com.book.simple.SimpleTest annotated with @ContextConfiguration, then
resources will have com/books/simple/SimpleTest-context.xml to provide the test context configuration,
which is automatically discovered and used by the Spring ioC container.

Summary
After reading this chapter, you should have a basic knowledge of how Spring does its magic and understand
the following:

• Two flavors of configuration can be mixed: XML-based (decoupled from classes
code) and Java annotation–based (bean definitions are mixed in the class code)

• The lifecycle of a bean

• How to access a bean

• What AOP is and how and where Spring can apply it

• How to test Spring applications

Chapter 2 ■ Spring FundamentalS

46

Quick Quiz
Question 1: What is a bean?

A. a plain old Java object

B. an instance of a class

C. an object that is instantiated, assembled, and managed by a Spring IoC container

Question 2: What is the default scope of a bean?

A. default

B. singleton

C. protected

D. prototype

Question 3: What types of dependency injection are supported by Spring IoC container?

A. setter injection

B. constructor injection

C. interface-based injection

D. field-based injection

Question 4: What is true about @PostConstruct and @PreDestroy ?

A. they are JSR-250 annotations

B. they are supported by AutowiredAnnotationBeanPostProcessor

C. they are registered by the <context:component-scan/> element

Detailed answers are in the Appendix.

Practical Exercise
The practice module for this chapter is in the book-code project; it is named 02-chapter-practice. The
solution is in the 02-chapter-solution module. You are given the code for a few related beans. Your task is
to complete the existing configuration files, to create test contexts, and to make sure that the tests pass.

The book-code project is a gradle multimodule project. It can be built from the command line by
running gradle build under the book-code directory. This will build all modules of the project. The build
will fail when run for the first time because of the unresolved tasks in the -practice projects. If you do it this
way, you will have something similar to the following output in your console:

$ gradle build
..
:02-chapter-practice:compileJava UP-TO-DATE
:02-chapter-practice:processResources UP-TO-DATE
:02-chapter-practice:classes UP-TO-DATE
:02-chapter-practice:jar UP-TO-DATE
:02-chapter-practice:assemble UP-TO-DATE
:02-chapter-practice:compileTestJava UP-TO-DATE
:02-chapter-practice:processTestResources UP-TO-DATE

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ Spring FundamentalS

47

:02-chapter-practice:testClasses UP-TO-DATE
:02-chapter-practice:test

com.book.plain.PlainPersonSaveTest > savePerson FAILED
java.lang.AssertionError at PlainPersonSaveTest.java:31

..
BUILD FAILED
Total time: 4.096 secs

If you decided to use the Intellij IDEA editor on the Gradle tab, you already have available all the
predefined Gradle tasks and you can just double-click the one you are interested in. In the following image,
the selected task is the build task for the project book-code; but if you scroll down in that view, you will
see the modules in the project and you can choose to build a specific module. So double-click under the
:02-chapter-practice on the build task and execute it. The build will fail, but this is expected. This task will
succeed because it does not execute the tests. In Figure 2-8 you can see how your IDE should look.

Figure 2-8. Intellij IDEA Gradle run

■ ! to compile projects without failing (due to tests in practice projects that are not fixed yet), you can use the
allCompile task, which was created this purpose.

Chapter 2 ■ Spring FundamentalS

48

On the left in the Project view, you can see the book-code project and the component modules. Each
module has the typical Maven structure mentioned earlier in the chapter (see Figure 2-3). Expand the
02-chapter-practice and look in the com.book.base package. In it you will notice the implementation of
the Person class. The instances of this class are used in the test examples and are handled by instances of
classes that implement PersonManager.

The PersonManager interface defines the int save(Person person) method, which should return the
number of records that were affected. In this case, it can be only 1 (one Person instance was saved) or 0 (no
Person instance was saved).

The PersonRepository interface will be implemented by the repository classes used in this example.
Some repositories will actually save Person instances into a test database, but most of them will just print
a log message to tell the developer that the method was executed correctly. The code for this chapter was
created to show how a Spring application is configured, so more complex functionality is not covered.
Classes and methods are commented properly, so using them is very straightforward.

Every time a project or module is built with gradle, a directory named build is created containing the
detailed results of the build for that project or module. This can be seen in Figure 2-9.

Figure 2-9. Intellij IDEA Project view

Chapter 2 ■ Spring FundamentalS

49

What is relevant when working with these sources is the reports\tests\index.html file. When opened
in a browser, it displays all the failing tests in that module. This page can be refreshed during development
to track, step by step, the number of tests that have to be fixed. When accessed after the first gradle build, it
should display what is depicted in Figure 2-10.

Figure 2-10. Gradle-generated index.html

There are eight tests failing, and they do so because the implementation for them is incomplete.
Completing them has been left as practice for you, the developer reading this book. Click the TODO label in
the bottom-left corner. A view will open that should look like what is shown in Figure 2-11. Click and expand
everything. Every TODO task has a number attached. Start resolving the tasks in ascending order.

Chapter 2 ■ Spring FundamentalS

50

Figure 2-12. Intellij IDEA— running a Gradle test

The root package is called com.book. Under this package all packages will group classes with a common
purpose. For example, the plain package contains classes that implement the functionality for saving a
Person instance by using plain Java—no Spring beans or configuration files, as was shown in the beginning
of the “The Spring Core Container” section. As Maven convention requires, the test classes are placed in the
same package as the classes being tested, but under the test directory. The first exercise is to complete the
plain Java implementation to save a Person instance and make the com.book.plain.PlainPersonSaveTest.
After you have written the code, run the test.

Just right-click anywhere in the file and choose Run and the class name in the menu, similar to what you
see in Figure 2-12.

Figure 2-11. Intellij IDEA TODO tab

Chapter 2 ■ Spring FundamentalS

51

If the test does not pass, go back and re-read the beginning of this chapter to refresh your memory on
how dependency injection is handled in plain Java. After you are done and you have a successful build for
02-chapter-practice, you can compare your solution to the one in 02-chapter-solution.

Also, you should take a look at the sources, test sources, and resources under packages aop, noaop,
and sandbox.

The book.code.spring.noaop package contains classes that implement a transactional bean used to
save a Person instance, but opening and committing a transaction are done manually.

The book.code.spring.aop package contains classes that implement a transactional bean used to
save a Person instance using Spring AOP.

Both implementations are tested in a test context that uses a H2 in-memory database to perform
the actual save of a Person instance. The configuration of the test database is in the test-db-config.xml
file, and you will notice that the Spring jdbc namespace is used. As JPA is not used, you need some *.sql
initialization files, which can be found under the test/resources/datasource directory.

<jdbc:embedded-database id="dataSource" type="H2">
 <jdbc:script location="classpath:datasource/db-schema.sql"/>
 <jdbc:script location="classpath:datasource/db-test-data.sql"/>
</jdbc:embedded-database>

The com.book.spring.sandbox contains classes and tests designed to help you understand how bean
identification works.

When you have passed all the tests and you feel confident that you have a solid grasp of the Spring
fundamentals, you can continue to the next chapter.

53

Chapter 3

Spring MVC

This chapter was written with the intention of teaching a developer how to create a simple Spring web
application and understand how the background plumbing can be modified according to the desired
approach. Think of Spring infrastructure components as LEGO pieces. You can connect them in different
ways to get the final result: a working web application. After going through this chapter, you should be able
identify and use the main components of Spring MVC to create a web application in a few easy steps.

Aside from describing and giving examples on how Spring Web MVC works, this chapter also teaches
you how to integrate it with different view technologies, like JSP, Apache Tiles, and Thymeleaf.1

MVC Basics
Spring Web MVC is a popular request-driven framework based on the model-view-controller software
architectural pattern, which was designed to decouple components that by working together make a fully
functional user interface.

The typical model-view-controller behavior is displayed in Figure 3-1.

1Thymeleaf is the new sheriff in Web town. It is an XML/XHTML /HTML5 template engine that works both in web and
non-web environments. It is really easy to integrate it with Spring. If you want to read more about it before using it in the
practice code for this chapter, go to the official site at http://www.thymeleaf.org/.

Figure 3-1. Typical MVC behavior

http://www.thymeleaf.org/

Chapter 3 ■ Spring MVC

54

The Spring Web MVC provides preconfigured beans for the implementation of this behavior.
These beans are contained in two main libraries:

• spring-web.jar

• spring-webmvc.jar

These libraries are the core of all Spring-related modules. At the center of the Spring Web MVC
framework sits the DispatcherServlet class, which is the entry point for any Spring web application. Before
any HTTP request reaches the specific controller, it has to go through DispatcherServlet for that controller
to be identified.2 In a nutshell, the DispatcherServlet coordinates all request-handling operations using
other infrastructure components defined in Spring and user-defined components. And it acts as a front
controller, an entry point for the web application. The Spring components mentioned earlier can be
categorized as follows:

• Spring MVC infrastructure components

• handler mappings

• handler adapters

• view resolvers

• personalization beans

• exception resolvers

• User-provided web components

• handler interceptors

• controllers

Thus, the Spring MVC functional flow can be sketched somewhat like in Figure 3-2.

2If it looks as if Spring MVC resembles Struts, you are definitely not imagining things. The Spring Web MVC was inspired
by Struts, which was one of the first MVC-based frameworks. The DispatcherServlet in Spring has the same responsi-
bilities as the ActionServlet in Struts, as both are implementations of the Front Controller Pattern. You can read more
about this software design pattern at http://www.martinfowler.com/eaaCatalog/frontController.html.

http://www.martinfowler.com/eaaCatalog/frontController.html
http://www.martinfowler.com/eaaCatalog/frontController.html

Chapter 3 ■ Spring MVC

55

Briefly put, to configure a Spring web application, you need to do the following:

• Define the DispatcherServlet as the main servlet handling all requests
to the application in web.xml and link it to the Spring configuration, or
configure this servlet programmatically by using a class implementing
WebApplicationInitializer (only possible in a Servlet 3.0+ environment)

• Define the application configuration (usually in a Spring configuration file named
mvc-config.xml or a Java configuration class), which should do the following:

• Define the MVC context used (handler adapter, handler mapping, and other
infrastructure beans)

• Define a view resolver (or more)

Configuring MVC
Spring Web MVC can be configured just like any other Spring application, via XML (using mostly the <mvc/>
namespace), Java configuration annotations, or by mixing these. A Spring web application can be configured
in two ways:

• All-in-one configuration: web.xml (part of JEE specification) or a
WebApplicationInitializer implementation and Spring application configuration
files. Back-end and front-end configurations are coupled and the DispatcherServlet
is the only entry point to the application.

• Separate configuration: Used for more complex applications when the
DispatcherServlet is not the only entry point (usually applications that require the
back end to be accessed via REST or SOAP requests/web services, and in this case,
the back end needs a separate listener).

Figure 3-2. Spring MVC functional flow

Chapter 3 ■ Spring MVC

56

Typical Java web applications that can be built with Gradle have the internal structure consecrated by
Maven. The folder containing web-specific files, configuration files, and static resources is named webapp.
The projects used in this chapter all have this structure (in Intellij IDEA), as shown in Figure 3-3.

Figure 3-3. Typical Java web application structure with web.xml configuration file

XML Configuration
Spring XML configuration for core applications was covered in the previous chapter. But XML namespaces
can be used for declaring web-specific infrastructure beans too. There are multiple ways to configure a web
application; multiple files can be used for web-specific beans to be grouped together based on their purpose.
In this chapter, multiple ways to create a configuration are presented, and after getting familiar with all of them,
you will be able to “mix and match” to create configurations for the types of applications that you will develop.

All-in-One Configuration
This is the simplest way to configure a web application. The Spring configuration files are all referred to in
the web.xml file as a value for the contextConfigLocation parameter.

<servlet>
 <servlet-name>admin</servlet-name>
 <servlet-class>
 org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 <init-param>

<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring/mvc-config.xml
/WEB-INF/spring/app-config.xml
</param-value>

 </init-param>

</servlet>

Chapter 3 ■ Spring MVC

57

<servlet-mapping>
 <servlet-name>admin</servlet-name>
 <url-pattern>/</url-pattern>
</servlet-mapping>

In the preceding case, the mvc-config.xml contains the Spring configuration for the front-end
(controllers and MVC infrastructure beans) of the application, and the app-config.xml contains the
back-end configuration (service beans). In this case, all Spring configuration files are loaded by the
DispatcherServlet and a web context is created.

Separate Configuration
The proper way to configure a more complex web application to make it more extensible and flexible is to
decouple the front-end configuration the back-end configuration. Such an implementation provides web
services access to the back end. This can be done by having a separate listener for the back-end configuration.
This complicates the content of web.xml a bit, and the configuration looks similar to the next one:

<context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>/WEB-INF/spring/app-config.xml</param-value>
</context-param>

<listener>
 <listener-class>

org.springframework.web.context.ContextLoaderListener
 </listener-class>
</listener>

<servlet>
 <servlet-name>admin</servlet-name>
 <servlet-class>

org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 <init-param>

<param-name>contextConfigLocation</param-name>
<param-value>/WEB-INF/spring/mvc-config.xml</param-value>

 </init-param>
</servlet>
<servlet-mapping>...</servlet-mapping>

■ CC When the back-end Spring configuration file is named applicationContext.xml, there is no need to
specify the <context-param> element in your configuration. the Spring ioC container accepts the previously
mentioned file name as a default name for the backed configuration file and it will load it automatically.

www.allitebooks.com

http://www.allitebooks.org

Chapter 3 ■ Spring MVC

58

The web.xml file is transformed to this:

 <listener>
<listener-class>

org.springframework.web.context.ContextLoaderListener
</listener-class>

 </listener>
 <!-- The backend configuration file is named applicationContext.xml -->
 <!-- The <context-param> is no longer needed.-->

<listener>
 <listener-class>

org.springframework.web.context.ContextLoaderListener
 </listener-class>
</listener>

<servlet>
 <servlet-name>mvc-dispatcher</servlet-name>
 <servlet-class>

o.s.web.servlet.DispatcherServlet
 </servlet-class>
 <init-param>

<param-name>contextConfigLocation</param-name>
<param-value>/WEB-INF/spring/mvc-config.xml</param-value>

 </init-param>
</servlet>
<servlet-mapping>...</servlet-mapping>

■ ! throughout this book, package names may not be presented fully: or.springframework. usually
becomes o.s. the reason for this is to fit the configuration and code samples better in the page to make
them more readable.

■ CC if the Spring MVC configuration file is named [servletName]-servlet.xml, there is no need to
specify the <init-param> element either. the Spring ioC container accepts the previously mentioned file
name template (replace servletName with the name given to the servlet) as a default name for the front-end
configuration file and it will load it automatically.

The separate configuration can be simplified like this:

 <context-param>
<param-name>contextConfigLocation</param-name>
<param-value>/WEB-INF/app-config.xml</param-value>

 </context-param>

Chapter 3 ■ Spring MVC

59

 <listener>
<listener-class>

org.springframework.web.context.ContextLoaderListener
</listener-class>

 </listener>

 <servlet>
<servlet-name>mvc-dispatcher</servlet-name>

<!-- The frontend configuration file is named mvc-dispatcher-servlet.xml -->
 <!-- The <init-param> is no longer needed.-->

<servlet-class>
o.s.web.servlet.DispatcherServlet

</servlet-class>
<load-on-startup>1</load-on-startup>

 </servlet>
 <servlet-mapping>

<servlet-name>mvc-dispatcher</servlet-name>
<url-pattern>/</url-pattern>

 </servlet-mapping>

Customizing the configuration is easy. All rules from Spring core configuration apply. Wildcards are
supported. Different resource prefixes can be used. The DispatcherServlet can even be configured to
a different url-pattern. In this case, the requests to the application must contain the value of the
url-pattern value, otherwise they won’t be handled by the DispatcherServlet. This approach is suited
when the application uses multiple DispatcherServlet instances.

<init-param>
<param-name>contextConfigLocation</param-name>
<param-value>

/WEB-INF/spring/*-beans.xml
classpath:com/book/app-config.xml

</param-value>
 </init-param>
...
<servlet-mapping>
 <servlet-name>admin</servlet-name>
 <url-pattern>/admin/*</url-pattern>
</servlet-mapping>

In the previous example, the DispatcherServlet handles the request with the URL matching
[server:port]\[application-name]\admin*.

■ ! throughout this book and in all code examples, the Spring MVC configuration file is named mvc-config.xml
to emphasize that only Spring MVC components are defined in it; otherwise, this configuration file can be named
in any other way. the contents of this file are used for view, locale, and time zone resolution and for customizing
handler mappings and other Spring MVC infrastructure beans.

Chapter 3 ■ Spring MVC

60

The controllers can be defined in the mvc-config.xml configuration file using the bean tag element,
just like any other bean, but starting with Spring 3.0, the preferred way to define controllers is using the
@Controller annotation, which is why the Spring MVC is often referred to as @MVC.

The main component of an MVC XML configuration is the <mvc:annotation-driven/> element
that registers all necessary default infrastructure beans for a web application to work: handler mapping,
validation conversion beans, and many others.

Another component that is important is the <mvc:default-servlet-handler/>. Usually in Spring
web applications the default servlet mapping “/” is mapped to the DispatcherServlet. This means that
static resources have to be served by it too, which might introduce a certain lag in providing a response as
the DispatcherServlet has to find the resources that the request URL is mapped to. The <mvc:default-
servlet-handler/> configures a DefaultServletHttpRequestHandler with a URL mapping of “/*” and the
lowest priority relative to other URL mappings. Its sole responsibility is to serve static resources.

You can see some user-defined beans needed for configuring a Spring MVC application in the following
example. Configurations might differ, depending on the types of resources used.

<!-- Defines basic MVC defaults (handler mapping, date formatting, etc) -->
<mvc:annotation-driven/>

<!-- Configures a handler for serving static resources by forwarding to the
 Servlet container's default Servlet.-->
<mvc:default-servlet-handler/>

<!-- ResourceBundle bean used for internationalization -->
<bean name="messageSource"
 class="o.s.context.support.ReloadableResourceBundleMessageSource"
 p:basename="classpath:messages/global"/>

<!-- View resolver bean used to render a *.jsp page -->
<bean id="jspViewResolver"
 class="o.s.web.servlet.view.InternalResourceViewResolver">
 <property name="prefix" value="/WEB-INF/"/>
 <property name="suffix" value=".jsp"/>
</bean>

■ ! Before continuing to the next section, take a look at the module project 03-chapter-01-practice under
the book-code project. this is a simple project focusing on the XML-based configuration; it can be used to test
your understanding of this section. it uses the minimum number of Spring infrastructure beans required to start
a web application and display a simple JSp page.

to run a project that is a web application from the command line, execute the gradle appRun task.

to run a project in intellij iDea, use the appStart task to start the application and appStop to stop the
application.

Make sure to execute the tasks from under the specific module in the gradle task tree. Figure 3-4 can help you
identify the task you need to run the application within intellij iDea.

Chapter 3 ■ Spring MVC

61

2015-03-01 15:48:36.834 WARN - 03-chapter-01-practice runs at:

2015-03-01 15:48:36.834 WARN - http://localhost:8080/03-chapter-01-practice

Open that location in your browser. if you see the page shown in Figure 3-5, the project is working properly.
run gradle appStop to stop the server.

Figure 3-4. Gretty plugin special tasks to start and stop web applications

Figure 3-5. Practice Spring MVC application welcome page

Configuration Using Annotations
An equivalent configuration using Java configuration can be created, but there are a few additional details
needed for the configuration class to work properly. The configuration class has to also be annotated
with the @EnableWebMvc annotation and has to either implement WebMvcConfigurer or extend an
implementation of this interface, for example: WebMvcConfigurerAdapter, which gives the developer the
option to override only the methods he or she is interested in.

Chapter 3 ■ Spring MVC

62

Annotating a configuration class with @EnableWebMvc has the result of importing the Spring MVC
configuration implemented in the WebMvcConfigurationSupport class; it is equivalent to <mvc:annotation-
driven/>. This class registers a lot of Spring infrastructure components that are necessary for a web
application (covered later in this chapter).3

To tell the DispatcherServlet that the configuration will be provided by a configuration class instead of
a file, the following changes have to be made in web.xml:

• Define an initialization parameter named contextClass with the full name of the
Spring class used to create an annotation-based context as the value.

• The initialization parameter named contextConfigLocation should have the full
name of the configuration class written by the developer as the value.

<servlet>
<servlet-name>admin</servlet-name>
<servlet-class>

org.springframework.web.servlet.DispatcherServlet
</servlet-class>
<init-param>

<param-name>contextClass</param-name>
<param-value>
o.s.web.context.support.AnnotationConfigWebApplicationContext
</param-value>

</init-param>
<init-param>

<param-name>contextConfigLocation</param-name>
<param-value>

com.book.config.WebConfig
</param-value>
</init-param>

</servlet>

The configuration class for what was configured with XML in the previous chapter looks like this:

@Configuration
@EnableWebMvc // equivalent with <mvc:annotation-driven/>
@ComponentScan(basePackages = {"com.book.controllers"})
// equivalent with <context:component-scan base-package="com.book.controllers"/>
//used to scan only web components
public class WebConfig extends WebMvcConfigurerAdapter {
 ...

 @Bean(name = "messageSource")
 MessageSource getMessageSource() {

ReloadableResourceBundleMessageSource
messageSource = new ReloadableResourceBundleMessageSource();

...
return messageSource;

 }

3If you want, you can look in the API documentation for detail information about this class, which is available at
http://docs.spring.io/spring/docs/current/javadoc- api/.

http://docs.spring.io/spring/docs/current/javadoc-api/

Chapter 3 ■ Spring MVC

63

 // <=> <mvc:default-servlet-handler/>
 @Override
 public void configureDefaultServletHandling(

DefaultServletHandlerConfigurer configurer) {
configurer.enable();

 }

 @Bean
 InternalResourceViewResolver getViewResolver(){

InternalResourceViewResolver resolver = new InternalResourceViewResolver();
resolver.setPrefix("/WEB-INF/");
resolver.setSuffix(".jsp");
return resolver;

 }
}

The @ComponentScan annotation is the equivalent of <context:component-scan />. It is used to find all
the classes annotated with @Controller in the package com.book.controllers.

■ ! Before continuing to the next section, take a look at the module project 03-chapter-02-practice under
book-code. this is a simple project focusing on the Java configuration–based configuration and can be used to
test your understanding of this section. it uses the minimum number of Spring infrastructure beans required to
start a web application and display a simple JSp page.

the gradle running instructions are the same as the instructions for the previous section.

Mixed Configuration

■ ! there are Spring-specific annotations like @Controller, @Service, @Component, and @Repository,
which can be used to configure a Spring application without the need to use a Java configuration class;
instead, an XML file is used, containing context or MVC namespace element definitions. this is called a mixed
configuration, because it uses annotations to define the beans, and XML to define the context.

In practice, most common and frequently used Spring configurations imply a combination of XML
and annotations. The primary reason for this is legacy code, as XML configuration was the first and only
way to configure a Spring application prior to Spring 2.5. Migration to a more recent version of Spring is
usually a slow process, and projects remain stuck between worlds for some periods of time. And there are
also developers that still prefer XML because it seems easier to separate configurations for the back end,
front end, security, web services, and so on, in separate files (although this can just as easily be done with
Java configuration classes). It is also intuitive and very readable when it comes to dependency injection.
It is more practical to have the definition of the relationship between the beans decoupled from the bean
implementation. Because it is more practical to implement transaction management using annotations, it is
very visible which method is executed in a transaction.

Chapter 3 ■ Spring MVC

64

Annotations should be applied when they provide functionality and/or visibly mark the annotated
classes or methods for a specific purpose. Annotations should not tie the code down to some specific
process, so the code should function normally without them. The most obvious case here is the @Controller
annotated classes for the web side of an application. In the back end, @Repository and @Service
annotations are used for the same purpose. When looking at the code of a controller class, you see the
annotation and you can easily infer what the purpose of that class is. All annotation mentioned earlier are
Spring stereotype annotations, which are used to denote the roles of types in the overall architecture.

A typical Spring web application configuration uses an mvc-config.xml file to declare the infrastructure
beans and @Controller annotated classes.

Configuration Without Using web.xml
Starting with Servlet 3.0+, the web.xml file is no longer needed to configure a web application. It
can be replaced with a class implementing the WebApplicationInitializer (or a class extending
any of the Spring classes that extend this interface). This class is detected automatically by
SpringServletContainerInitializer (an internal Spring supported class, which is not meant to be used
directly or extended). The SpringServletContainerInitializer class is bootstrapped automatically by any
Servlet 3.0+ container.

The SpringServletContainerInitializer4 extends javax.servlet.ServletContainerInitializer
and provides a Spring-specific implementation for the onStartup method. This class is loaded and
instantiated, and the onStartup is invoked by any Servlet 3.0–compliant container during container startup,
assuming that the Spring-web module JAR is present on the classpath.

Considering you have a web.xml file that looks like this:

<servlet>
 <servlet-name>admin</servlet-name>
 <servlet-class>o.s.w.s.DispatcherServlet</servlet-class>
 <init-param>

<param-name>contextConfigLocation</param-name>
<param-value>

/WEB-INF/spring/mvc-config.xml
</param-value>

 </init-param>
 <load-on-startup>1</load-on-startup>
</servlet>
<servlet-mapping>
 <servlet-name>admin</servlet-name>
 <url-pattern>/</url-pattern>
</servlet-mapping>

4The code for this class is at https://github.com/spring-projects/spring-framework/blob/master/spring-
web/src/main/java/org/springframework/web/ SpringServletContainerInitializer.java.

https://github.com/spring-projects/spring-framework/blob/master/spring-web/src/main/java/org/springframework/web/SpringServletContainerInitializer.java
https://github.com/spring-projects/spring-framework/blob/master/spring-web/src/main/java/org/springframework/web/SpringServletContainerInitializer.java
https://github.com/spring-projects/spring-framework/blob/master/spring-web/src/main/java/org/springframework/web/SpringServletContainerInitializer.java
https://github.com/spring-projects/spring-framework/blob/master/spring-web/src/main/java/org/springframework/web/SpringServletContainerInitializer.java

Chapter 3 ■ Spring MVC

65

The most obvious way to implement WebApplicationInitializer is this:

public class WebInitializer implements WebApplicationInitializer {
 @Override
 public void onStartup(ServletContext servletContext) throws ServletException {

ServletRegistration.Dynamic registration =
servletContext.addServlet("dispatcher", new DispatcherServlet());

registration.setLoadOnStartup(1);
registration.addMapping("/");
registration.setInitParameter("contextConfigLocation",

"/WEB-INF/spring/mvc-config.xml");
}

}

The class does not need to be annotated or linked to any other configuration file existing in the
application. You can easily notice which lines from XML turned into which lines in the code, right?

But there is another way, which involves constructing the application context first and then injecting
it into the DispatcherServlet:

XmlWebApplicationContext appContext = new XmlWebApplicationContext();
appContext.setConfigLocation("/WEB-INF/spring/mvc-config.xml");
ServletRegistration.Dynamic registration =
 servletContext.addServlet("dispatcher", new DispatcherServlet(appContext));
registration.setLoadOnStartup(1);
registration.addMapping("/");

And there is an even simpler way—by extending AbstractDispatcherServletInitializer, an abstract
implementation of the WebApplicationInitializer:

public class WebInitializer extends AbstractDispatcherServletInitializer {

 @Override
 protected WebApplicationContext createRootApplicationContext() {
//there is no root application context for the web application context to inherit
 return null;
}

 @Override
 protected WebApplicationContext createServletApplicationContext() {

XmlWebApplicationContext cxt = new XmlWebApplicationContext();
cxt.setConfigLocation("/WEB-INF/spring/mvc-config.xml");
return cxt;

 }

 @Override
 protected String getServletMappings() {

return new String { "/" };
 }
}

Chapter 3 ■ Spring MVC

66

Java-based annotation configurations are supported too—in multiple ways. Consider that you have a
WebConfig class and a web.xml that looks like this:

<servlet>
 <servlet-name>admin</servlet-name>
 <servlet-class>

o.s.web.servlet.DispatcherServlet
</servlet-class>

 <init-param>
<param-name>contextClass</param-name>
<param-value>

o.s.web.context.AnnotationConfigWebApplicationContext
</param-value>

 </init-param>
 <init-param>

<param-name>contextConfigLocation</param-name>
<param-value>

com.book.config.WebConfig
</param-value>

 </init-param>
 <load-on-startup>1</load-on-startup>
</servlet>

<servlet-mapping>
 <servlet-name>admin</servlet-name>
 <url-pattern>/</url-pattern>
</servlet-mapping>

This is the most obvious way to implement WebApplicationInitializer’s onStartup() method:

ServletRegistration.Dynamic registration =
 servletContext.addServlet("dispatcher", new DispatcherServlet());
registration.setLoadOnStartup(1);
registration.addMapping("/");
registration.setInitParameter("contextConfigLocation", "com.book.config.WebConfig");
registration.setInitParameter("contextClass",
 "o.s.w.c.s.AnnotationConfigWebApplicationContext");

But wait, there’s more! You can create the application context and inject it into the DispatcherServlet
as you did before:

AnnotationConfigWebApplicationContext context =
 new AnnotationConfigWebApplicationContext();
context.register(WebConfig.class);

ServletRegistration.Dynamic registration =
 servletContext.addServlet("dispatcher", new DispatcherServlet(context));
registration.setLoadOnStartup(1);
registration.addMapping("/");

Chapter 3 ■ Spring MVC

67

And the easiest way to do it is with AbstractAnnotationConfigDispatcherServletInitializer,
which extends AbstractDispatcherServletInitializer, an abstract implementation of the
WebApplicationInitializer. Spring provides them to help you eliminate some of the code writing.
By extending the AbstractAnnotationConfigDispatcherServletInitializer template and using
customization methods offered by the AbstractDispatcherServletInitializer, the developer
is only required to provide concrete implementations for three methods: getRootConfigClasses,
getServletConfigClasses, and getServletMappings.

public class WebInitializer extends
AbstractAnnotationConfigDispatcherServletInitializer {

 @Override
 protected Class<?> getRootConfigClasses() {
 //there is no root application context for the web application context to inherit

return null;
 }

 @Override
 protected Class<?> getServletConfigClasses() {

return new Class { WebConfig.class };
 }

 @Override
 protected String getServletMappings() {

return new String { "/" };
 }
}

■ ! Before continuing with this chapter, take a look at the 03-chapter-03-practice and 03-chapter-04-
practice and try to make the projects run. the first requires you to configure a Spring web application using
a Spring XML–based configuration and without a web.xml file. the second requires you to configure a Spring
web application using a Java-based configuration and without a web.xml file. Be creative, read the Spring api if
necessary, and then you can even compare your solution to the ones provided in the solution projects.

the gradle running instructions are the same as in the previous section.

MVC Components
The configuration of a Spring web application integrates quite a few infrastructure beans.

The DispatcherServlet looks for implementations of type: HandlerMapping, HandlerAdapter,
ViewResolver, and HandlerExceptionResolver. Out-of-the-box implementations for the previously mentioned
interfaces are provided by Spring. The default configuration can be found in the DispatcherServlet.properties,
which is in the spring-webmvc.jar in package org.springframework.web.servlet.5

5The contents can be accessed directly on GitHub at https://github.com/spring-projects/ spring-framework/
blob/master/spring-webmvc/src/main/resources/org/springframework/web/ servlet/DispatcherServlet.
properties.

www.allitebooks.com

https://github.com/spring-projects/spring-framework/blob/master/spring-webmvc/src/main/resources/org/springframework/web/servlet/DispatcherServlet.properties
https://github.com/spring-projects/spring-framework/blob/master/spring-webmvc/src/main/resources/org/springframework/web/servlet/DispatcherServlet.properties
https://github.com/spring-projects/spring-framework/blob/master/spring-webmvc/src/main/resources/org/springframework/web/servlet/DispatcherServlet.properties
https://github.com/spring-projects/spring-framework/blob/master/spring-webmvc/src/main/resources/org/springframework/web/servlet/DispatcherServlet.properties
https://github.com/spring-projects/spring-framework/blob/master/spring-webmvc/src/main/resources/org/springframework/web/servlet/DispatcherServlet.properties
http://www.allitebooks.org

Chapter 3 ■ Spring MVC

68

■ ! You can find the jar in your local maven repository. it is recommended to open the file and study it,
because in the exam you might be asked about the default components configured in Spring for some MVC
bean types. Some of them are deprecated in the current api—DefaultAnnotationHandlerMapping, for
example—and the file will suffer some changes in future versions.

The infrastructure beans mentioned earlier can be configured manually, but this is rarely done and is
recommended to be avoided, as the explicit configuration cancels the default configuration for that bean
type. In Spring 4.0, <mvc:annotation-driven/> and the equivalent @EnableWebMvc do just that—override
the default configuration to provide the new features, so you don’t have to struggle with the configuration
yourself.

A Spring web application can use more than one infrastructure bean of a specific type. In this case, the
beans can be chained and have an associated priority value specified using the order property. For example,
you can have multiple HandlerMapping implementations:

<bean
 class="o.s.web.servlet.handler.SimpleUrlHandlerMapping">
 <property name="order" value="0"/>
</bean>

<bean
 class= "o.s.web.servlet.mvc.support.ControllerClassNameHandlerMapping">
 <property name="order" value="1"/>
</bean>

When <mvc:annotation-driven/> or @EnableWebMVC is used in the application configuration,
the RequestMappingHandlerMapping implementation is registered internally with Spring MVC. This
class was added in Spring 3.1; it allows RequestMappings for the same URL to be in different controller
classes. It is meant to replace the DefaultAnnotationHandlerMapping implementation. It was introduced
to make the annotation controller support class more customizable and open for extension. When
using the RequestMappingHandlerMapping, the actual handler is an instance of HandlerMethod, which
identifies the specific controller method that will be invoked. Starting with Spring version 4.0, the
DefaultAnnotationHandlerMapping was marked as deprecated.

The following sections cover each of the infrastructure bean types in detail.

Infrastructure Beans
Spring MVC offers developers a lot of support when it comes to building the plumbing of a web application,
so developers can focus on implementing the actual service a web application is expected to provide. The
beans provided by Spring MVC are often called infrastructure beans, which have default configurations that
work out of the box. Each of these infrastructure beans are presented in detail in the following sections.

HandlerMapping
This HandlerMapping Spring interface is implemented by classes that map parts of URL for the incoming
requests to the appropriate handlers and a list of pre- and post-processor interceptors (AOP is used for this).
Prior to Spring 3.1, it was necessary to specify one or more HandlerMapping beans in the application
context, but after the introduction of annotated controllers, there is no need to do so. All HandlerMapping
implementations are used by the DispatcherServlet to identify the handler (controller class) of a request.

Chapter 3 ■ Spring MVC

69

In the DispatcherServlet.properties, you find the following default HandlerMapping
implementations configured:

org.springframework.web.servlet.HandlerMapping=
org.springframework.web.servlet.handler.BeanNameUrlHandlerMapping,\
org.springframework.web.servlet.mvc.annotation.DefaultAnnotationHandlerMapping

The BeanNameUrlHandlerMapping class maps URLs to beans with names that start with “/”. So a request
incoming with URL http://localhost:8080/persons maps to bean:

@Controller("/persons")
public class PersonsController {
 ...
}

■ ! the DefaultAnnotationHandlerMapping is deprecated in Spring 4.0 as it was replaced by
RequestMappingHandlerMapping.

The RequestMappingHandlerMapping class maps URLs to classes annotated with @RequestMapping. So a
request coming from URL http://localhost:8080/persons/list is handled by the following controller:

@RequestMapping("/persons")
@Controller
public class PersonsController {

 @RequestMapping(value="/list")
 public void list(Model model){

...
 }
}

In the preceding example, the @RequestMapping at method level is used to narrow the mapping expressed
at class level, if one is present. The annotation is not really necessary at method level when it is present at class
level, because narrowing can be done using other criteria too; for example, the request method type.

@RequestMapping("/persons")
@Controller
public class PersonsController {
 //End user requests to see data for a certain person.
 @RequestMapping(method = RequestMethod.GET)
 public void getPerson(Model model){

...
 }

 //End user sends data to save for a certain person.
 @RequestMapping(method = RequestMethod.POST)
 public void savePerson(Person person, Model model){

...
 }
}

Chapter 3 ■ Spring MVC

70

It is mandatory for any HTTP request path to be uniquely mapped onto a specific handler. It is
recommended to keep all related handler methods in the same bean, and not span them across multiple
handler beans in order to improve code readability.

Another implementation worth mentioning is ControllerClassNameHandlerMapping, which was
introduced in the spirit of convention over configuration. This implementation offers the possibility to
generate URL path mappings from the class names and method names of registered or annotated controller
beans. The convention is to take the short name of the class, remove the Controller suffix, lower case the
first letter of the remaining text, prefix it with “/”, and then add the method name used to handle the request.
Using this implementation, the PersonsController mentioned earlier is mapped to "/persons*" and the
@RequestMapping("/persons") annotation is no longer needed.

In the book-code project, there is a sample module named 03-chapter-05-solution, which contains a
simple controller with the following implementation.

@Controller
public class WelcomeController {

 @RequestMapping
 //maps to /welcome/sayhi
 public String sayhi(Model model){

model.addAttribute("salute", "Hi!");
return "welcome";

 }

 @RequestMapping
 //maps to /welcome/sayhello
 public String sayhello(Model model){

model.addAttribute("salute", "Hello!");
return "welcome";

 }
}

In order for a request to be solved correctly using the ControllerClassNameHandlerMapping, a
HandlerAdapter implementation needs to be configured. AnnotationMethodHandlerAdapter will do, even if
it is deprecated in Spring 4.0.

...
 <context:component-scan base-package="com.book"/>
 <bean

class="o.s.web.servlet.mvc.support.ControllerClassNameHandlerMapping"
p:caseSensitive="true"/>

 <bean id="annotationMethodHandlerAdapter"
class="o.s.web.servlet.mvc.annotation.AnnotationMethodHandlerAdapter" />

...

Chapter 3 ■ Spring MVC

71

■ ! an example of how to configure the ControllerClassNameHandlerMapping bean and how it works is
implemented in the 03-chapter-05-solution module in the book-code project. this project does not have a
practice project associated with it because there is no need for one.

the gretty plugin is quite flexible and can be configured to start a web application on a different context or port.
When working locally, the UrL of the application looks like this: http://localhost:8080/03-chapter-05-
solution. the context is the string after the port, and gretty automatically takes the name of the project and
uses it as context for the web application, if not configured to do otherwise. also, the default port is 8080, which
is the default port used by most of application servers for web applications.6

As the name of the modules in book-code are quite long, Gretty was configured to use a different
context, which can also emphasize the purpose of the application.

gretty {
 port = 8080
 contextPath = '/mvc-handling'
}

HandlerAdapter
The HandlerAdapter interface is internal and is not intended for application developers. It must be
implemented by each handler to be able to handle a request. The DispatcherServlet uses this interface
to invoke handler methods because the interface is taking care of solving various annotations inside a
controller class and identifies which method should be called.

In the DispatcherServlet.properties you find the following default HandlerAdapter
implementations:

org.springframework.web.servlet.HandlerAdapter=
org.springframework.web.servlet.mvc.HttpRequestHandlerAdapter,\
org.springframework.web.servlet.mvc.SimpleControllerHandlerAdapter,\
org.springframework.web.servlet.mvc.annotation.AnnotationMethodHandlerAdapter

These are the out-of-the-box defaults if <mvc:annotation-driven/> is not specified.
When <mvc:annotation-driven/> or @EnableWebMVC is used in the application configuration,

RequestMappingHandlerAdapter is used. Introduced in Spring 3.1, the scope of this class is to work with
RequestMappingHandlerMapping to make this class the only place where a decision is made about which
method should handle a request. This actually means that every handler method is a unique endpoint that
can be identified from class and method-level RequestMapping information. Prior to Spring 3.1, identifying
and calling a handler method involved two steps: identifying a controller (handler) using a HandlerMapping
implementation and identifying the method (handler method) using a HandlerAdapter implementation.
Starting with Spring 3.1, everything is done in one step, with the two classes working together.

So Figure 3-2 is not an accurate representation for Spring >=3.1; when using <mvc:annotation-driven/>
or @EnableWebMVC, Figure 3-6 is more accurate.

6The full list of configuration options for Gretty can be found at http://akhikhl.github.io/gretty-doc/Gretty-
configuration.html.

http://akhikhl.github.io/gretty-doc/Gretty-configuration.html
http://akhikhl.github.io/gretty-doc/Gretty-configuration.html
http://akhikhl.github.io/gretty-doc/Gretty-configuration.html

Chapter 3 ■ Spring MVC

72

The old implementations were kept in the Spring MVC library, but it is recommended to use the ones
introduced in Spring 3.1 and enabled by the MVC namespace or @EnableWebMVC because these ensure
a simpler configuration and faster identification of a handler method, and take advantage of other new
features introduced in Spring 3.1. Here is a list of some of the changes introduced by this approach:

• It is no longer possible to use SimpleUrlHandlerMapping or
BeanNameUrlHandlerMapping to identify a controller and then identify the handler
method by narrowing the method choice with @RequestMapping.

• It is no longer possible to have a single method without explicit mapping to solve all
requests mapped to a controller. The new support classes will throw a Not Found
404 error.

• HandlerInterceptor and HandlerExceptionResolver (covered later in the chapter)
can now expect the object-based handler to be a HandlerMethod. They can examine
its parameters and annotations.

• Custom argument and return types are supported for handler methods.

• @PathVariable annotated parameters (covered later in the chapter) are
automatically added to the model, so it’s not necessary to manually add them if you
are providing them as part of forwarding or redirecting.

Figure 3-6. @MVC Spring >= 3.1

Chapter 3 ■ Spring MVC

73

• Supports parameterized URI template on redirect strings.

• RequestMappings now support consumes/produces, so it’s not necessary to specify h
eaders="ContentType=application/json". This is a little closer to the JAX-RS style
of specifying @Consumes/@Produces annotations. This helps in producing the correct
error code if unsupported media types are referenced on REST requests.

The preceding list is not complete. If you want a full read of all the advantages of using the new handler
support classes, you can find it in the official documentation.7 Some are also mentioned in the following
sections; those are the ones you should focus on for the exam.

When the web application starts, if the logger of the application is configured properly, you should
be able to see all the beans used in the application, including the infrastructure beans. The following is
a snippet from a debug log printed when 02-pr-mvc-basic-solution starts. Run the project yourself to
analyze the console output in more detail.

INFO Initializing Spring FrameworkServlet 'mvc-dispatcher'
...
DEBUG o.s.b.f.s.DefaultListableBeanFactory - Pre-instantiating singletons ...,
accountRepo,hospitalRepo,personManager,identityCardRepo,transactionManager,
entityManagerFactory, ..., o.s.w.s.m.m.a.RequestMappingHandlerMapping#0,
... ,o.s.w.s.m.m.a.RequestMappingHandlerAdapter#0,
o.s.w.s.m.m.a.ExceptionHandlerExceptionResolver#0,...,
org.springframework.web.servlet.view.InternalResourceViewResolver,
,messageSource,localeResolver,themeResolver,
...

ViewResolver
The HTTP response returned to the client after the execution of a handler method is constructed using
a model and a view. The model contains the data that is used to populate a view. Spring provides view
resolvers to avoid ties to a specific view technology. Out of the box, Spring supports JSP, Velocity templates,
and XSLT views. The interfaces needed to make this possible are ViewResolver and View. The first provides
a mapping between view names and actual views. The second takes care of preparing the request and
forwards it to a view technology.8

7http://docs.spring.io/spring/docs/current/spring- framework-reference/htmlsingle/#mvc-ann-
requestmapping-31-vs-30, http://docs.spring.io/spring/docs/current/spring- framework-reference/
htmlsingle/#mvc-config-enable.
8http://docs.spring.io/spring/docs/4.1.x/spring- framework-reference/htmlsingle/#mvc-viewresolver.

http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#mvc-ann-requestmapping-31-vs-30
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#mvc-ann-requestmapping-31-vs-30
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#mvc-ann-requestmapping-31-vs-30
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#mvc-config-enable
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#mvc-config-enable
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#mvc-config-enable
http://docs.spring.io/spring/docs/4.1.x/spring-framework-reference/htmlsingle/#mvc-viewresolver
http://docs.spring.io/spring/docs/4.1.x/spring-framework-reference/htmlsingle/#mvc-viewresolver

Chapter 3 ■ Spring MVC

74

All handler methods must resolve to a logical view name that corresponds to a file, either explicitly by
returning a String, View, or ModelAndView instance or implicitly based on internal conventions. The core
view resolver provided by Spring is the InternalResourceViewResolver, which is the default view resolver,
as you can see in the DispatcherServlet.properties file:

org.springframework.web.servlet.ViewResolver=
org.springframework.web.servlet.view.InternalResourceViewResolver

View Resolver Chaining
A web application can have more than one ViewResolver configured and the DispatcherServlet
discovers them by type. In this case, the default view resolver configuration is overridden, meaning the
InternalResourceViewResolver is not the default resolver anymore, so if this bean is needed, it has to be
configured explicitly. In this case, the available view resolvers can and should be chained to have a fixed
sequence of resolvers trying to obtain a view. The next example shows how two view resolvers can be
chained together to resolve JSP and Excel views:

<!-- in mvc-config.xml -->

<bean name="persons/list.xls" class="com.book.persons.PersonsExcelView"/>

<bean
 id="xlsViewResolver"
 class="...web.servlet.view.BeanNameViewResolver"
 p:order="0"/>

<bean
 class="org.springframework.web.servlet.view.InternalResourceViewResolver"
 p:order="1" />

■ ! Defining bean properties using the p: ... syntax is possible by using the p namespace that offers a way
to contract bean definitions in XML configuration files to reduce their size and make them more readable.9

Chaining view resolvers is also possible using a Java configuration class:

\\ in @Configuration annotated class
@Bean(name="persons/list.xls")
public View excelView(){

return new PersonsExcelView();
}

@Bean(name="xlsViewResolver")
public ViewResolver xlsViewResolver(){
 BeanNameViewResolver resolver = new BeanNameViewResolver();

9You can read more about it in the official documentation at http://docs.spring.io/spring/docs/current/
spring-framework-reference/html/beans.html#beans- p-namespace.

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/beans.html#beans-p-namespace
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/beans.html#beans-p-namespace
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/beans.html#beans-p-namespace

Chapter 3 ■ Spring MVC

75

 resolver.setOrder(0);
 return resolver;
}

@Bean
 public ViewResolver jspViewResolver() {
 InternalResourceViewResolver resolver = new InternalResourceViewResolver();
...
 resolver.setOrder(1);
 return resolver;
}

When a view resolver does not result in a view (usually null is returned, but there are view resolvers that
throw exceptions), Spring examines the application context for other view resolver beans and inspects each
of them until a view is obtained. If this is not possible, a ServletException is returned. When resolver beans
are chained, the inspection is done based on the value of their order property; the lower the value of the
property, the higher the priority when resolving view names.

■ ! the InternalResourceViewResolver resolves the view no matter what view name is returned. it throws
an exception if it cannot resolve a view name, so this bean always has to be placed last in the chain; otherwise,
Spring skips looking for other view resolver beans in the context. XSLt and JSOn are also resolvers that must
be last in the chain. tiles, Velocity, and FreeMarker can appear anywhere in the chain.

In the case just presented, if the BeanNameViewResolver does not return a view (a request method has
returned a logical view name different than "persons/list.xls"), the next resolver is called to do that.

The InternalResourceViewResolver is the most important implementation provided by Spring. It is
a specialization of UrlBasedViewResolver (so they cannot be used together in a configuration, chained or
not) and inherits the behavior of interpreting view names as a URL, supports the "redirect:" prefix and the
"forward:" prefix. And supports InternalResourceView(Servlets and JSPs) and JstlView.

■ ! the "redirect:" and "forward:" prefixes are appended to the logical view name to tell the servlet
container what to do.

With "forward:", the servlet container just forwards the same request to the target UrL, and the browser is not
involved and does not know the UrL has changed. a forward should be used for safe operations when reloading
the page won’t result in corrupt data (usually for requesting data to display in the page).

With "redirect:", the response status is set to 302 and the UrL to redirect to is set in a Location header,
then the response is sent to the browser. the browser then makes another request to the new UrL. redirect is
a two-step operation; it is recommended to be used when the first request is a data manipulation request, and
the browser must then be redirected to a confirmation page to prevent data duplication.

The “redirect:” prefix can be returned together with a view name to delegate the creation of the
response to another handler. The most suitable for such behavior is when a POST request was received and
the possibility to resubmit the same form data has to be eliminated. The browser sends an initial POST,
receives a response to redirect to a different URL, and then performs a GET request for the URL received as a

Chapter 3 ■ Spring MVC

76

response. This sequence of actions matches a web development design pattern named Post-Redirect-Get
that prevents duplicate form submissions. In Figure 3-7, the Post- Redirect-Get process is displayed using
the PersonsController.

"redirect:" and "forward:" are recognized by the UrlBasedViewResolver and all its subclasses. They
treat them accordingly and consider the view name after the prefix as the redirect/forward URL.

■ ! You will have the occasion to work with "redirect:" and "forward:" in the 05-pr-mvc-form-practice
project.

All view file templates are stored under /WEB-INF for security reasons. They cannot be accessed directly
via a manually introduced URL and they require a model in order to be rendered. The previously mentioned
view implementations supported by InternalResourceViewResolver have the following characteristics:

• InternalResourceView exposes the model attributes as request attributes and
forwards the request to the specified resource URL using a RequestDispatcher.

• JstlView is a specialization of InternalResourceView that exposes request
attributes specifying the locale and the resource bundle for JSTL’s formatting and
message tags, using Spring’s locale and MessageSource (the JSTL library is required
in the classpath for this View technology to be available).

Figure 3-7. Post-Redirect-Get in Spring using the "redirect:" prefix compared to "forward:"

Chapter 3 ■ Spring MVC

77

More about this topic is covered later in this chapter.
This is an example of how a view is resolved using the chained resolvers configured earlier:

/* 1 */
@RequestMapping("/persons.htm")
public String listHtml(HttpServletRequest rq, Model model) {
 model.addAttribute(personManager.getAllPersons());
 return "accounts/list";
}

/* 2. */
@RequestMapping("/persons.xls")
public String listExcel(HttpServletRequest rq, Model model) {
 model.addAttribute(personManager.getAllPersons());
 return "persons/list.xls";
}

The first method has InternalResourceViewResolver resolve the view, and the second is taken care of
by BeanNameViewResolver and a PersonsExcelView is rendered.

As you can see, the implementation for the two methods is almost identical. The URL and the logical
view name returned are different, however. And there’s a programming principle called Don’t Repeat
Yourself! that those two methods do not respect. Let’s try and respect that principle by merging the two
methods into one:

/* 1 */
@RequestMapping("/persons")
public String list(HttpServletRequest rq, Model model) {
 model.addAttribute(personManager.getAllPersons());
 if (rq.getRequestURL().toString().endsWith("xls")) {

return "persons/list.xls";
 } else {

return "persons/list";
 }
}

But this is not an acceptable solution either. What if the application is requested to support PDF views
too? That means more if-else instructions have to be added. Right now you are probably telling yourself:
“There’s gotta be a better way of doing this!” And there is. Worry not, this shall be covered in the next section.

■ ! take a look at the 03-chapter-06-solution project. it has been set up to work with the chained resolver
configuration mentioned in this chapter. the data can be viewed in a web page, an excel document or a pDF.
run it and take a look at the implementation before moving on to the next section.

www.allitebooks.com

http://www.allitebooks.org

Chapter 3 ■ Spring MVC

78

Content Type Negotiation
Another way of organizing the view resolver beans and making sure that the view name is always
resolved correctly is to use content-type negotiation. The previous approach, resolver chaining, works
only when each resource is associated with one view type. But clients might request different content-
types for the same resource via extension, request header, request parameter, and so forth. In this case,
chaining won’t work, as the type of view returned depends on some parameters that have to be taken into
consideration and then a matching view resolver must be selected to do the job. The bean that does that
is the ContentNegotiatingViewResolver, which was introduced in Spring 3.0. This bean does not resolve
views but delegates the job to the view resolver implementations defined in the application configuration,
selecting the view matching the content-type in the client request.

There are two strategies for a client to request a view from the server:

• Use a distinct URL for each resource by using a different extension in the URL
(example: http://localhost:8080/persons/list.xls requests an Excel view
containing a list of persons, while http://localhost:8080/persons/list.pdf
requests a PDF view containing a list of persons)

• Use the same URL but set the Accept HTTP request header to the desired resource
type (example: a request coming from http://localhost:8080/persons/list
having the Accept header set to application/pdf requests a PDF view containing a
list of persons)

■ ! the problem with the Accept header is that it cannot be used when the client is a browser, as most
browsers force its value to text/html. Because of this, web applications are always built to use the first
approach and each view type is mapped to its own UrL (taking the extension into consideration; for example:
/persons/list.html, /persons/list.xls). the Accept header approach is most useful for reSt web services and
similar automation scenarios.

The ContentNegotiatingViewResolver implements the Ordered interface, so it can be used alongside
other resolvers, it can be part of a view resolver chain, and it has to have the highest priority in the chain.
This is due to its behavior; if theContentNegotiatingViewResolver cannot select a View, it returns null,
and Spring examines the application context for other view resolver beans and inspects each of them until
a view is obtained. Usually the ContentNegotiatingViewResolver is configured to pick up view resolvers
automatically from the application context, so it should always resolve to a View. The next resolvers in the
chain can be considered a fallback solution, to make sure that a View is provided.

The ContentNegotiatingViewResolver can be configured in a similar way, as shown in the following
example:

<bean class="o.s.web.servlet.view.ContentNegotiatingViewResolver"
 p:order="-1">
 <property name="mediaTypes">

<map>
<entry key="html" value="text/html"/>
<entry key="xls" value="application/vnd.ms-excel"/>
<entry key="pdf" value="application/pdf"/>
<entry key="json" value="application/json"/>

</map>
 </property>

Chapter 3 ■ Spring MVC

79

 <property name="viewResolvers">
<list>

<bean class="o.s.web.servlet.view.BeanNameViewResolver"/>
<bean class="o.sweb.servlet.view.tiles3.TilesViewResolver" />
<bean class="com.book.resolver.JsonViewResolver"/>

</list>
 </property>
 <property name="defaultViews">

<list>
<bean class="o.s.web.servlet.view.json.MappingJackson2JsonView" />

</list>
 </property>
 <property name="defaultContentType" value="text/html"/>
 <property name="ignoreAcceptHeader" value="true"/>
 <property name="favorParameter" value="false"/>
 <property name="favorPathExtension" value="true"/>
</bean>

<!-- Fallback Resolver: If no extension matched, use JSP view -->
<!-- Resolves view names to protected .jsp resources within the

/WEB-INF directory -->
<bean class="o.s.web.servlet.view.InternalResourceViewResolver"
 p:prefix="/WEB-INF/"
 p:suffix=".jsp"
 p:order="0"/>

Here is the meaning of each property used in the previous configuration:

• mediaTypes: Map containing extension to content-type correspondences. This
property is not mandatory and it does not have to be set in the application when the
JavaBeans Activation Framework is used, in which case the types are determined
automatically.10

• viewResolvers: The list of view resolvers to delegate to. This property is not
mandatory and when it is not set, all view resolver beans in the context are detected
and used, but they have to be ordered.

• defaultViews: The default view to use when a more specific view could not be
obtained.

The property is not mandatory.

• defaultContentType: The type to render in case a match was not found. The
property is not mandatory.

• ignoreAcceptHeader: Indicates that the HTTP Accept header should be ignored if
true, and taken into consideration if false. The property is not mandatory, and
if not set, it defaults to false.

10By default, strategies for checking the extension of the request path and the Accept header are registered. The path
extension check performs lookups through the ServletContext and the JavaBeans Activation Framework (if present)
unless media types are configured. In order to use the JavaBeans Activation Framework, the activation.jar has to be
in the classpath of the application.

Chapter 3 ■ Spring MVC

80

• favorParameter: Indicates if a request parameter named format should be used to
determine the requested content-type. The property is not mandatory, and if not set,
it defaults to false.

• favorPathExtension: Indicates if the extension of the request URL should be used to
determine the requested content-type. The property is not mandatory, and if not set,
it defaults to true.

Starting with Spring 3.2, ContentNegotiationManagerFactoryBean and ContentNegotiationManager
were introduced in order to encapsulate all content-type related configurations for the
ContentNegotiatingViewResolver.

ContentNegotiationManagerFactoryBean provides access to a ContentNegotiationManager
configured with one or more ContentNegotiationStrategy. An equivalent configuration to the preceding,
after Spring 3.2, looks like this:

<bean class="o.s.web.servlet.view.ContentNegotiatingViewResolver">
 <property name="viewResolvers">

<list>
<bean class="o.s.web.servlet.view.BeanNameViewResolver"/>
<bean class="o.sweb.servlet.view.tiles3.TilesViewResolver"/>
<bean class="com.book.resolver.JsonViewResolver"/>

</list>
</property>
<property name="defaultViews">

<list>
<bean class="o.s.web.servlet.view.json.MappingJackson2JsonView" />

</list>
</property>

<!-- All content-type related configuration is now done by this bean
since Spring 3.2 -->
<property name="contentNegotiationManager">

<bean class="o.s.web.accept.ContentNegotiationManagerFactoryBean>
<property name="mediaTypes">

<map>
<entry key="html" value="text/html"/>
<entry key="json" value="application/json"/>
<entry key="pdf" value="application/pdf"/>
<entry key="xls" value="application/vnd.ms-excel"/>

</map>
</property>
<property name="defaultContentType" value="text/html"/>
<property name="ignoreAcceptHeader" value="true"/>
<property name="favorParameter" value="false"/>
<property name="favorPathExtension" value="true"/>

</bean>
</property>

Chapter 3 ■ Spring MVC

81

■ ! the problem with using JavaBeans activation Framework is that if the extension is not recognized, it sets
the content-type to application/octet-stream by default. this means that the Views configured with the
defaultViews property are not taken into consideration and the ContentNegotiatingViewResolver will return
null. that’s why in Spring 3.2, the useJaf property was introduced; it can be set to false to disable the JavaBeans
activation Framework. this property has been added to ContentNegotiationManagerFactoryBean too.

Considering the previous configuration, the following code displays how a view is resolved using
content negotiation type:

// In PersonsController.java
@RequestMapping("/persons")
public String list(Model model) {

model.addAttribute(personManager.getAllPersons());
return "persons/list";

}
<!-- In mvc-config-->
<bean class="com.book.persons.PersonsExcelView"/>

As you can see, there is no need for the bean name to be persons/list.xls, because the
ContentNegotiatingViewResolver does the match without it.

■ ! in the following XML configuration, the util namespace is introduced to simplify the configuration. the
util namespaces allows you to define and use collections in the same way that beans are defined and used in
a configuration file.

This configuration can be simplified by using the p and util namespaces, which allow the
ContentNegotiatingViewResolver XML bean definition to be simplified, as follows:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:mvc="http://www.springframework.org/schema/mvc"
xmlns:p="http://www.springframework.org/schema/p"
xmlns:util="http://www.springframework.org/schema/util"
xsi:schemaLocation="http://www.springframework.org/schema/mvc
http://www.springframework.org/schema/mvc/spring-mvc.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd
http://www.springframework.org/schema/util
http://www.springframework.org/schema/util/spring-util.xsd">

...

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/context
http://www.springframework.org/schema/mvc
http://www.springframework.org/schema/p
http://www.springframework.org/schema/util
http://www.springframework.org/schema/mvc
http://www.springframework.org/schema/mvc/spring-mvc.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd
http://www.springframework.org/schema/util
http://www.springframework.org/schema/util/spring-util.xsd

Chapter 3 ■ Spring MVC

82

<!-- sample usage of the util namespace to declare a map -->
 <util:map id="mediaTypesMap">

<entry key="html" value="text/html"/>
<entry key="xls" value="application/vnd.ms-excel"/>
<entry key="pdf" value="application/pdf"/>
<entry key="json" value="application/json"/>

 </util:map>

 <!-- sample usage of the util namespace to declare a list -->
 <util:list id="defaultViewsList">

<!-- Excel view-->
<bean class="com.pr.views.PersonsExcelView"/>
<!-- JSON View -->
<bean class="o.s.web.servlet.view.json.MappingJackson2JsonView"/>

 </util:list>

 <util:list id="resolverList">
<bean class="com.pr.resolver.JsonViewResolver"/>
<bean class="o.s.web.servlet.view.BeanNameViewResolver"/>
<!-- Resolves logical view names to Tiles 3 definitions -->
<bean id="tilesViewResolver"

class="o.s.web.servlet.view.tiles3.TilesViewResolver"
p:requestContextAttribute="requestContext"/>

 </util:list>
 <bean class="o.s.web.servlet.view.ContentNegotiatingViewResolver"

p:order="-1"
p:defaultViews-ref="defaultViewsList"
p:viewResolvers-ref="resolverList">

<property name="contentNegotiationManager">
<bean class="o.s.web.accept.ContentNegotiationManagerFactoryBean"

p:defaultContentType="text/html"
p:ignoreAcceptHeader="true"
p:favorParameter="false"
p:favorPathExtension="true"
p:mediaTypes-ref="mediaTypesMap"/>

</property>
 </bean>

<beans>

Of course, this means taking out the defaultViewsList and the mediaTypesMap outside the declaration
of the ContentNegotiatingViewResolver, which is the only place that they are needed. In this configuration,
they can be used by other beans, although this is rarely needed. The choice belongs to the developer,
depending on what configuration approach he is most comfortable with.

■ ! When the p namespace is used, the p:[property-name]-ref means this property is a reference to an
existing bean in the context, with the id specified as the value.

Chapter 3 ■ Spring MVC

83

That’s mostly it when it comes to content-type negotiation. What is left to add is some sample code for
the Java configuration:

@Configuration
@EnableWebMvc
public class WebConfig extends WebMvcConfigurerAdapter {
// Configures the contentNegotiationManager bean
@Override
public void configureContentNegotiation(ContentNegotiationConfigurer configurer) {

configurer
.ignoreAcceptHeader(true)
.defaultContentType(MediaType.TEXT_HTML)
.favorParameter(false)
.favorPathExtension(true);

}

//Configure ContentNegotiatingViewResolver
@Bean
public ViewResolver contentNegotiatingViewResolver

(ContentNegotiationManager manager) {
 ContentNegotiatingViewResolver resolver = new ContentNegotiatingViewResolver();
 resolver.setContentNegotiationManager(manager);

 // Define all possible view resolvers
 List<ViewResolver> resolvers = new ArrayList<>();

resolvers.add(beanNameViewResolver());
resolvers.add(tilesViewResolver());
resolvers.add(jsonViewResolver());
resolver.setViewResolvers(resolvers);

List<View> defaultViewList = new ArrayList<>();
defaultViewList.add(jsonView);
resolver.setDefaultViews(defaultViewList);

resolver.setOrder(0);
return resolver;

}
@Bean
public ViewResolver jsonViewResolver() {
 return new JsonViewResolver();
}

@Bean
public MappingJackson2JsonView jsonView(){
 return new MappingJackson2JsonView();
}

Chapter 3 ■ Spring MVC

84

@Bean
InternalResourceViewResolver getViewResolver(){
 InternalResourceViewResolver resolver = new InternalResourceViewResolver();
 resolver.setPrefix("/WEB-INF/");
 resolver.setSuffix(".jsp");
 resolver.setOrder(1);
 return resolver;
}

 // other bean definitions ...
}

In the Java-annotated configuration there is no need to create a ContentNegotiationManager using the
ContentNegotiationManagerFactoryBean. Spring does it automatically if you provide a configuration for it
by overriding the implementation for the configureContentNegotiation method.

JSON View Resolver
In this section, in the code samples, the MappingJackson2JsonView is an example of a default View.
This is a Spring MVC View implementation that renders JSON content by serializing the model for the
current request using the Jackson 2.x ObjectMapper. By default, everything serializable (classes that
implement the Serializable interface) in a model map is being serialized, except for framework-specific
classes and classes or fields annotated with @JsonIgnore. The configuration for the view is provided by
Jackson2ObjectMapperBuilder.

The only tiny issue is that there is no view resolver provided by Spring, which could resolve this type of
view. So a developer has to create one; but worry not— it’s quite easy:

@Component
public class JsonViewResolver implements ViewResolver {

 @Override
 public View resolveViewName(String viewName, Locale locale) throws Exception {

MappingJackson2JsonView view = new MappingJackson2JsonView();
//make JSON output readable using proper indentation
view.setPrettyPrint(true);
return view;

 }
}

When using Java configuration classes, all that is needed is a @Bean annotated method:

@Bean
public ViewResolver jsonViewResolver() {

MappingJackson2JsonView view = new MappingJackson2JsonView();
view.setPrettyPrint(true);
return view;

}

The Jackson library provides a set of annotations designed to be used when implementing classes
subjected to JSON serialization to customize what is serialized and in which format. This way of working is
similar to JPA and JAXB.

Chapter 3 ■ Spring MVC

85

■ ! the project 03-chapter-07-solution has a view resolver configuration that uses a
ContentNegotiatingViewResolver. the data can be viewed in a web page, excel document, pDF document,
or JSOn. run it and take a look at the implementation before moving on to the next section.

Personalization Beans
Most web applications are created to provide a certain service to users from different places in the
world, so the application needs to adapt to the language used by those customers (a process called
internationalization). Some web applications offer their users the ability to customize the application’s
interface based on a number of available themes. Spring offers the ability to easily customize the locale and
look-and-feel of a web application via a couple of infrastructure beans.

MessageSource
To support internationalization, a Spring application must have in its context a bean named messageSource.
The class of this bean must implement the MessageSource interface and provides access to localized
messages. This class provides concrete implementations for localization methods named getMessage(...).
When an ApplicationContext is loaded, it automatically searches for this bean in the context and all calls to
getMessage(...) methods are delegated to this bean.

Spring provides two out-of-the-box implementations for the MessageSource interface:
ResourceBundleMessageSource and StaticMessageSource. The second one allows messages to be
registered programmatically and it is intended to be used in testing. The first implementation relies on
JDK’s ResourceBundle implementation. Reloading a resource bundle during execution is not possible,
as ResourceBundle caches loaded bundles files forever, so the implementation usually used in a web
application is ReloadableResourceBundleMessageSource, which is a Spring-specific implementation that
accesses bundles using specified base names, participating in the Spring ApplicationContext’s resource
loading. This class supports reloading properties files containing the internationalization information; it is
usually slightly faster than ResourceBundleMessageSource. Another advantage is that it can read properties
files with a specific character encoding.

In the following, you can see a simple XML configuration of this bean:

<bean id="messageSource"
 class="o.s.context.support.ReloadableResourceBundleMessageSource">
 <property name="basenames">

<list>
<value>/WEB-INF/messages/global<value/>

</list>
 </property>
 <property name="cacheSeconds">1</property>
</bean>

When only one resource bundle and the p-namespace are used, the previous definition becomes this:

<bean id="messageSource"
 class="o.s.context.support.ReloadableResourceBundleMessageSource"
 p:basename="/WEB-INF/messages/global"
 p:cacheSeconds="1"/>

Chapter 3 ■ Spring MVC

86

When Java-based configuration is used, the bean definition looks like this:

@Bean
public MessageSource getMessageSource(){
 ReloadableResourceBundleMessageSource messageSource =

new ReloadableResourceBundleMessageSource();
 messageSource.setBasename("/WEB-INF/messages/global");
 messageSource.setCacheSeconds(1);
 return messageSource;
}

The cacheSeconds property is used to set the number of seconds to cache the loaded property files.
Internationalization messages are loaded from properties files under /WEB-INF/messages/; they are named
global_[locale].properties.

To use the messageSource bean to retrieve internationalized resources inside handler methods, simply
inject the bean in the controller and call the desired getMessage(...) method. The Spring type library is
used for this purpose too. The fmt tag library, which is a component of JSTL, can be used too. The syntax is a
little different, as you can see in the following example:

<!-- JSTL fmt way -->
<fmt:message key="menu.home"/>
 <!-- Spring way -->
<spring:message code="menu.home"/>

When using the spring:message tag, the MessageSource classes can be integrated with the
Spring context. The spring:message- tag works with the locale support that comes with Spring. If the
“code” attribute isn’t set or cannot be resolved, the “text” attribute is used as the default message. And
spring:message supports dynamic names for internationalization codes, so a message code can be an
expression:

<spring:message code="myPrefix.${account.state}"/>

ReloadableResourceBundleMessageSource is able to load messages from properties files with a specific
encoding. In order for those messages to be successfully incorporated in a view, Spring provides a class
called CharacterEncodingFilter, which is used to apply character encoding to requests. It can work in two
modes to do the following:

• Enforce the encoding

• Apply the encoding if one is not already defined

This bean is added to the web.xml file like this:

<filter>
 <filter-name>characterEncodingFilter</filter-name>
 <filter-class>o.s.web.filter.CharacterEncodingFilter</filter-class>
 <init-param>

<param-name>encoding</param-name>
<param-value>UTF-8</param-value>

 </init-param>

Chapter 3 ■ Spring MVC

87

 <init-param>
<param-name>forceEncoding</param-name>
<param-value>true</param-value>

 </init-param>
 </filter>
<filter-mapping>
 <filter-name>characterEncodingFilter</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

Equivalent Java-based configuration looks like in the following code snippet:

\\in class implementing WebApplicationInitializer
 @Override
protected Filter getServletFilters() {
 CharacterEncodingFilter characterEncodingFilter = new CharacterEncodingFilter();
 characterEncodingFilter.setEncoding("UTF-8");
 characterEncodingFilter.setForceEncoding(true);
 return new Filter { characterEncodingFilter};
}

LocaleResolver
In order for the messageBean to solve the messages, a locale must be defined for a web application. The value
for the locale is taken from the browser. The bean resolving the locale must be named localeResolver and
it must implement the LocaleResolver interface, because the DispatcherServlet looks for such a bean to
use. A LocaleResolver can also store a different locale defined by the user. In Spring, there are three types of
locale resolvers defined:

• AcceptHeaderLocaleResolver: Reads the locale from the request

• CookieLocaleResolver: Reads/writes the locale from/to a cookie named org.
springframework.web.servlet.i18n.CookieLocaleResolver.LOCALE (unless
named otherwise in the bean definition using property cookieName)

• SessionLocaleResolver: Reads/writes the locale from/to an HTTP session

■ ! the default name of the cookie can be confusing because it looks like a full name for a static variable, but
no such variable exists. the same applies to the theme cookie mentioned in the next section.

When a specific LocaleResolver is not defined, AcceptHeaderLocaleResolver is used as
default. When users select language, CookieLocaleResolver or SessionLocaleResolver can be used.
CookieLocaleResolver is most often used in stateless applications without user sessions; this bean is
defined in the mvc-config.xml file. The following definition is quite common:

<bean id="localeResolver" class="o.s.w.s.i18n.CookieLocaleResolver"
p:defaultLocale="en"
p:cookieMaxAge="3600"/>

Chapter 3 ■ Spring MVC

88

The cookieMaxAge sets the maximum age in seconds for the cookie. If set to –1, the cookie is deleted
only when the client shuts down.

In order for Spring to be notified of the changes in the locale, a bean of type LocaleChangeInterceptor
needs to be configured. This ensures that the locale interceptor will be applied to all handler mappings.

<mvc:interceptors>
 <bean class="org.springframework.web.servlet.i18n.LocaleChangeInterceptor" />
 </mvc:interceptors>

An equivalent Java configuration for this bean can be used by providing an implementation for the
addInterceptors method when implementing WebMvcConfigurer or overriding the same method when
extending WebMvcConfigurerAdapter:

\\in the @Configuration and @EnableWebMvc annotated class
 @Override
 public void addInterceptors(InterceptorRegistry registry) {

registry.addInterceptor(localeChangeInterceptor());
\\other interceptors can be added here

 }

 @Bean
public LocaleChangeInterceptor localeChangeInterceptor(){
 return new LocaleChangeInterceptor();
}

This interceptor detects requests to change the locale by looking for a request parameter named locale
by default. The LocaleResolver bean is used to store the value of this parameter. A different name can be set
by using a different value for the parameterName property. Request URLs to change the locale are expected to
contain the parameter name and a value in the URL: http://myapp.com/?[parameterName]=[locale_name]
(under /WEB-INF/messages/ a [filename]_[locale_name].properties files is defined).

ThemeResolver
If the web application has a customizable look and feel, the different themes can be managed using a bean
named themeResolver. The bean resolving the theme has to implement the ThemeResolver interface,
because the DispatcherServlet looks for such a bean to identify the resources needed for creating a
response.

To use a ThemeResolver, you have to do the following:

1. Create a [theme].properties file on the classpath (under /WEB-INF/classes/).
The “theme” term can be replaced with any word describing that theme. In it,
add the properties specific to that theme. In the code samples attached to this
chapter, you have a file named blue.properties that contains the following
theme properties:

style.css=/styles/decorator-blue.css
banner.image=/images/banner-blue.png

http://myapp.com/

Chapter 3 ■ Spring MVC

89

2. Use the Spring theme tag to resolve theme properties.

<%@ taglib prefix="spring" uri="http://www.springframework.org/tags" %>
...
<spring:theme var="styleCss" code="style.css"/>
<c:url var="styleCssUrl" value="${styleCss}"/>
<link type="text/css" type="stylesheet" href="${styleCssUrl}" />

To access the current theme in a view, you can use the RequestContext; but first you need to expose a
requestContext attribute:

<bean class="org.s.web.servlet.view.InternalResourceViewResolver">
 <property name="requestContextAttribute" value="requestContext"/>
</bean>

 <c:if test="${requestContext.theme.name eq 'blue'}">
...

In Spring there are three types of theme resolvers defined:

• FixedThemeResolver: The default implementation uses a configured default theme

• CookieThemeResolver: Reads/writes the theme attribute from/to a cookie named
org.springframework.web.servlet.theme.cookieThemeResolver.THEME
(unless named otherwise in the bean definition using property cookieName)

• SessionThemeResolver: Reads/writes the theme attribute from/to a HTTP session

Figure 3-8. List of cookies for the Personal Records Manager application

http://www.springframework.org/tags

Chapter 3 ■ Spring MVC

90

You can view the two cookies using the Firebug extension for Firefox by opening the console and
looking in the Cookies tab. You should see a cookie listing similar to the one shown in Figure 3-8.

For Spring to be notified of the changes in the theme, a bean of type ThemeChangeInterceptor needs to
be configured. This ensures that the theme interceptor is applied to all handler mappings:

<mvc:interceptors>
 <bean class="org.springframework.web.servlet.theme.ThemeChangeInterceptor" />
</mvc:interceptors>

An equivalent Java configuration for this bean can be used by providing an implementation for the
addInterceptors method when implementing WebMvcConfigurer or overriding the same method when
extending WebMvcConfigurerAdapter:

\\in the @Configuration and @EnableWebMvc annotated class
 @Override
 public void addInterceptors(InterceptorRegistry registry) {

registry.addInterceptor(themeChangeInterceptor());
\\other interceptors can be added here

 }

 @Bean
public ThemeChangeInterceptor themeChangeInterceptor(){
 return new ThemeChangeInterceptor();
}

This interceptor detects requests to change the theme by looking for a request parameter named
theme by default. The ThemeResolver bean is used to store the value of this parameter. A different
name for it can be set by using a different value for the parameterName property. Request URLs to change
the theme are expected to contain the parameter name and a value defined in the application:
http://[parameterName]?theme=[theme_name] (under /WEB-INF/classes/ a [theme_name].properties
files is defined).

HandlerExceptionResolver
Exceptions can be thrown during handler mapping or execution. Spring MVC catches and handles the
exceptions using implementations of HandlerExceptionResolver. The developer writing the application
can customize the beans provided by Spring or provide his own implementation. The typical way to treat an
MVC exception is to prepare a model and select an error view. Multiple exception resolvers can be used to
treat different types of exceptions in different ways. They can also be chained using the order property like
any other infrastructure bean. Spring MVC supports the following default resolvers:

org.springframework.web.servlet.HandlerExceptionResolver=
o.s.w.s.m.a.AnnotationMethodHandlerExceptionResolver,\
o.s.w.s.m.a.ResponseStatusExceptionResolver,\
o.s.w.s.m.s.DefaultHandlerExceptionResolver

Chapter 3 ■ Spring MVC

91

An exception resolver provides information related to the context in which the exception was thrown,
which handler method was executing, and which arguments it was called with.

Spring MVC also provides some implementation of its own, which you can configure and use
instead of writing a full implementation. The preferred ways to handle exceptions are by using
the SimpleMappingExceptionResolver bean and annotating methods with @ExceptionHandler.
SimpleMappingExceptionResolver can be used to map exception classes to different views. The
SimpleMappingExceptionResolver provides the following options:

• Maps exception classes to view names

• Specifies a default error page for any exception that is not handled

• Logs a message if configured to do so by setting a logger name for the
warnLogCategory property

• Sets the name of the exception attribute to add to the model so it can be used inside
a view

The following is an example on how to configure a SimpleMappingExceptionResolver bean to map
exception types to error views, depending on the class name:

<bean class="o.s.web.servlet.handler.SimpleMappingExceptionResolver">
 <property name="exceptionMappings">
 <map>

<!-- No need for package name, any package name will match. If you have
two exceptions with the same name in different packages, you need to use
the full class name to implement the proper behaviour -->
<entry key="DataAccessException" value="databaseError"/>
<entry key="InvalidPncException" value="pncError"/>
<!-- The databaseError and pncError are logical view names -->

 </map>
 </property>
 <property name="defaultStatusCode" value="500"/>
 <property name="defaultErrorView" value="error"/>
</bean>

An equivalent Java configuration can be obtained by defining the bean programmatically:

\\in the @Configuration and @EnableWebMvc annotated class
@Bean(name="simpleMappingExceptionResolver")
 public SimpleMappingExceptionResolver createSimpleMappingExceptionResolver() {

SimpleMappingExceptionResolver resolver =
new SimpleMappingExceptionResolver();

 }

Properties mappings = new Properties();
mappings.setProperty("DatabaseException", "databaseError");
mappings.setProperty("InvalidPncException", "pncError");

resolver.setExceptionMappings(mappings); // None by default
resolver.setDefaultStatusCode(HttpStatus.INTERNAL_SERVER_ERROR.value());
resolver.setDefaultErrorView("error");
return resolver;

Chapter 3 ■ Spring MVC

92

■ ! Views returned from @ExceptionHandler methods do not have access to the exception,
but views defined to SimpleMappingExceptionResolver do. this means that when using
SimpleMappingExceptionResolver, the @ExceptionHandler methods must construct and return a
ModelAndView instance. (See example in the 02-pr-mvc-basic-solution module.) in order to return a logical
view name from a method annotated with @ExceptionHandler, ExceptionHandlerExceptionResolver must
be extended.

To provide a custom implementation, the SimpleMappingExceptionResolver can be extended; its
methods can be overridden to provide the desired functionality.

Methods annotated with @ExceptionHandler can be used to handle exceptions inside a single
controller or they may apply to many when defined inside a class annotated with @ControllerAdvice.

Annotated exception handler methods are automatically called when controller methods throw an
exception, and the method does not treat it itself. Method signatures are as flexible for an exception handler
method as the controller handler methods (this is discussed in the “Controllers” section). Next you see an
exception handler method used to handle database exceptions for the PersonsController class:

@Controller
public class PersonsController {
...
 @ExceptionHandler
 public String handleException(DataAccessException ex) {

return "databaseError";
 }
}

The @ExceptionHandler can be set to treat a specific type of exception, using the annotation parameter,
thus rendering the exception argument of the method unnecessary.

@Controller
public class PersonsController {
...
 @ExceptionHandler(DataAccessException.class)
 public String handleException() {

return "databaseError";
 }
}

But using a parameter gives access to the exception, which can be treated or logged. Of course, the two
approaches can be mixed.

The @ExceptionHandler can be set to treat an array of exceptions. If an exception is thrown that
matches one of the types in the list, then the method annotated with the matching @ExceptionHandler is
invoked. The same can be done by setting the array as an argument for the annotated method. By using
different @ExceptionHandler annotated methods for each type of exception, the code can become crowded.
So exceptions can be grouped by different criteria; for example, an @ExceptionHandler method can handle a
group of database access exceptions, another can treat security exceptions, and so on. The chosen approach
depends on the exception handling specifications of a project and developer preference.

Chapter 3 ■ Spring MVC

93

Spring MVC internal exceptions raised while processing a request are translated by a class named
DefaultHandlerExceptionResolver to specific error codes: a client error (4xx) or a server error (5xx), which
is set on the response. This class is registered by default with the MVC namespace and @EnableWebMVC.

But when writing your own exceptions, you can set the status code on the exception class, like this:

@ResponseStatus(value= HttpStatus.NOT_FOUND, reason="Requested item not found")
public class NotFoundException extends Exception {
...
}

A class annotated with @ControllerAdvice allows you to use the same exception handling techniques
across the whole application, not just a single controller. Three types of methods are supported inside a class
annotated with @ControllerAdvice:

• Methods annotated with @ExceptionHandler that are used to handle exceptions

• Methods annotated with @ModelAttribute that are used to add data to the model

• Methods annotated with @InitBinder that are used for configuring form-handling

A controller advice class used only for exception handling could look like in the following example,
which depicts a global default exception handler:

@ControllerAdvice
public class GlobalExceptionHandler {

 @ExceptionHandler(value = Exception.class)
 public ModelAndView defaultErrorHandler(HttpServletRequest req, Exception e)

throws Exception {
if (AnnotationUtils.findAnnotation(e.getClass(),

ResponseStatus.class) != null){
// we test to see if the exception is annotated with @ResponseStatus
// if it is, we will re-throw it and let Spring handle it.
throw e;

}

ModelAndView mav = new ModelAndView();
//set exception details to be displayed in the page
mav.addObject("exception", e);
//set request URL to be displayed in the page, so the request causing
//the problem can be identified
mav.addObject("url", req.getRequestURL());
mav.setViewName("error");
return mav;

 }
}

Chapter 3 ■ Spring MVC

94

■ ! notice in the previous example that the exception handler method returns a ModelAndView instance that
is created inside the method body. the reason for this is that the methods in classes annotated with
@ControllerAdvice are methods that apply to a group of controllers in the application. this can be customized
via annotations(), basePackageClasses(), and basePackages() methods. But the methods are not part
of the controller, so a model cannot be automatically injected by Spring. also, a global exception handler like
this one uses the same view to display all exception-specific messages in the application, so the view must be
linked to the model, which in this case can only be done by creating a ModelAndView instance that is handled
appropriately by the DispatcherServlet.

If you want to analyze the full capabilities of treating exceptions with Spring MVC, you can take a look at
tutorials posted on their official site.11 For passing the certification exam, all that was presented here should
suffice.

User-Provided Components
Although Spring MVC offers a lot of ready-to-use components for creating web applications (all that is
required are small customizations), there are components that need to be implemented by the developer.
Such components are controllers and interceptors. Controllers include and are the focus object of everything
that has been presented so far. Controllers are the handlers identified by handler mappings; their methods
handle application requests and return views. They can use message source to populate models with
internationalized data and can contain methods for exception handling. If until now it was hard to connect
all the infrastructure beans and picture what exactly they did, this mystery will be solved in the “Controllers”
section, which puts every LEGO piece in its proper place. The handler interceptors are not really a big thing
compared to it, but they are useful too.

Controllers
Controllers are POJOs—simple beans annotated with the @Controller annotation—that are used to handle
requests. Each controller class contains methods that are mapped to a request URL via the @RequestMapping
annotation. These methods are used to handle different requests. Each method executes three steps:

1. Invoke services.

2. Populate a model.

3. Select a view.

11A detailed explanation of exception handling using Spring MVC is at https://spring.io/blog/2013/11/01/
exception-handling-in-spring-mvc.

https://spring.io/blog/2013/11/01/exception-handling-in-spring-mvc
https://spring.io/blog/2013/11/01/exception-handling-in-spring-mvc
https://spring.io/blog/2013/11/01/exception-handling-in-spring-mvc

Chapter 3 ■ Spring MVC

95

Here is a simple controller example. Notice the syntax for @RequestMapping annotation.

@Controller
@RequestMapping("/persons")
public class PersonsController {

 private PersonManager personManager;

 @Autowired
 public PersonsController(PersonManager personManager) {

this.personManager = personManager;
 }

 // Handles requests to list all persons.
 @RequestMapping(value="/", method = RequestMethod.GET)
 public String list(Model model) {

model.addAttribute("persons", personManager.findAll());
return "persons/list";

 }

 //Handles requests to shows detail about one person.
 @RequestMapping(value="/{id}", method = RequestMethod.GET)
 public String show(@PathVariable Long id, Model model) {

model.addAttribute("person", personManager.findOne(id));
return "persons/show";

 }
}

When @RequestMapping is used to annotate a controller class, the path that the controller is mapped to
is a part of the request’s URL. The previous methods handle requests looking like this:

handled by the list menthod
http://localhost:8080/persons/

handled by the show menthod
http://localhost:8080/persons/144

All handling methods are relative to the path set by the @RequestMapping at class level. This means that
the class mapping is solved first, and then the request mapping.

■ ! a controller can have methods that are not annotated with @RequestMapping. these methods are not
used to solve requests. they are practically ignored, processing a user request.

Chapter 3 ■ Spring MVC

96

The methods of a controller can be mapped using @RequestMapping with the following URI templates:

• By URL only:

@RequestMapping("persons/list")
public String list(Model model) {
...
}

• By URL and request method:

@RequestMapping("persons/list", method = RequestMethod.GET)
public String list(Model model) {
...
}

• By URL with request parameters:

@RequestMapping(value="/persons/show", params={"id"})
public String show(@RequestParam("id") Long id, Model model) {
...
}

• By URL with a parameter and a specific value for it:

@RequestMapping(value="/persons/show", params={"id=1123"})
public String show(@RequestParam("id") Long id, Model model) {
...
}

• By URL with a path variable:

@RequestMapping(value="/persons/{id}")
public String show(@PathVariable("id") Long id, Model model) {
...
}

• By URL with a path variable and a regular expression that the value must match:

@RequestMapping(value = "/{id:[\\d]*}")
//the regular expression [\\d]* insures the id to be numeric,
//made of one or more digits.
public String show(@PathVariable("id") Long id, Model model) {
...
}

Chapter 3 ■ Spring MVC

97

The preceding are simple examples of URIs onto which controllers methods are mapped. The options
do not stop here and any of these can be mixed, depending on the developer’s needs. For example, you can
do something like this in web applications:

@RequestMapping(value="/persons/{id}/?dateOfBirth=1983-08-18")
public String show(@RequestParam("dateOfBirth") Date date,
 @PathVariable Long id, Model model) {
...
}

The controller methods can have very flexible signatures. The following can be used as arguments in
any combination or order:

• Model

• HttpServletRequest

• HttpServletResponse

• HttpSession

• Locale

• Principal

In the body of a controller method, path variables and request parameters must be accessed to process
the request. If the URI template is a RESTful URI,12 then the variable is part of the URI, called a path variable,
and can be accessed using @PathVariable:

@RequestMapping(value="/persons/{id}")
public String show(@PathVariable("id") Long identifier, Model model) {
...
}

■ CC When the method argument has the same name with the path variable, the value for the @
PathVariable annotation is no longer required.

So the preceding method becomes:

@RequestMapping(value="/persons/{id}")
public String show(@PathVariable Long id, Model model) {
...
}

12A RESTful URI identifies a domain resource (like a book, or a person, in this case) rather than an application resource
like a web page or a form. URI is the acronym for Uniform Resource Identifier. URL is the acronym for Uniform
Resource Locator. REST services work only with URIs and @PathVariable.

Chapter 3 ■ Spring MVC

98

And handles requests similar to: http://localhost:8080/persons/144.
There is a special case when the @PathVariable is not even needed and the default is the argument

name; this happens when the application is compiled with debug symbols enabled. It is rarely used because
the result is an unoptimized/debuggable byte code. This is mentioned here because the official course
mentions it too, and it might be useful to know that this possibility exists in case you ever need it.

When the URI is non-RESTful, the variable is provided as a parameter in the request URL. The request
parameter can be accessed using the @RequestParam annotation.

@RequestMapping(value="/persons/show", params={"id"})
public String show(@RequestParam("id") Long identifier, Model model) {
...
}

Type conversion is applied, and if the parameter value is missing or has the wrong type, an exception is
thrown.

■ CC When the method argument has the same name with the request parameter, the value for
the @RequestParam annotation is no longer required. the params property is no longer needed for the
@RequestMapping either.

So the preceding method becomes this:

@RequestMapping(value="/persons/show")
public String show(@RequestParam Long id, Model model) {
...
}

The request parameter can be set as optional if it is not a primitive type; in this case, it defaults to null
and must be handled in the method body.

@RequestMapping(value="/persons/show", params={"id"})
public String show(@RequestParam(value="id", required=false) Long identifier,
Model model) {
if(identifier == null) {
//return a specific view
}
...
}

The request parameter can also be set as optional when the request parameter is a primitive type and a
fallback default value is provided.

@RequestMapping(value="/persons/show", params={"id"})
public String show(@RequestParam(value="id", required=false,

defaultValue = "2") long identifier, Model model) {
 if(identifier == null) {

//return a specific view
 }

 ...
}

Chapter 3 ■ Spring MVC

99

Request parameters can have any type, including Date and Number, and these types can be formatted by
using the following annotations:

//matches http://localhost:8080/persons/1983-08-18
@RequestMapping(value="/persons/{birthDate}")
public String list(@PathVariable

@DateTimeFormat(pattern = "yyyy-MM-dd") Date birthDate,
Model model) {

...
}

//matches http://localhost:8080/accounts/?minAmount=$5000.50
@RequestMapping(value="/accounts" params={"minAmount"})
public String list(@RequestParam

@NumberFormat(style = NumberFormat.Style.CURRENCY) Double minAmount,
Model model) {

...
}

To generate a Spring-parametrized URI in a JSP file, a combination of <spring:url> tag and
<spring:param/> is used:

<%@ taglib prefix="spring" uri="http://www.springframework.org/tags" %>
...
 <spring:url var="showUrl" value="{id}">
 <spring:param name="id" value="${person.id}"/>
</spring:url>
 ${person.id}

The first three lines of the preceding example generate a URI similar to http://localhost:8080/
person/123 by using the current context of the application and the person attribute in the model. The
generated URI is stored as a value for the showUrl attribute in the model. In the next line, that attribute is
used to populate the HTML link element.

After the execution of the code in a mapping method, the controller selects a view for the resulting data
to be rendered in. The controller’s responsibility includes populating a model map with the data to display
in the view. There are multiple ways of specifying the resulting view too, but the default is for the mapping
method to return a string, which is the logical view name. (By default, a path to a JSP file is expected, unless
some view resolver is used, such as TilesResolver, for example). Also, the controller can directly write to
the response stream and complete the request (when handling AJAX calls or REST services, cases that are
presented in detail in the following chapters). The process to identify which view is being used is called view
resolution, which is performed by one view resolver class or a chain of view resolver classes.

http://www.springframework.org/tags

Chapter 3 ■ Spring MVC

100

Accessing Model Data
Accessing Model data instances is simple, especially when the model is used as an argument of the request
method, and Spring takes care of injecting it:

@RequestMapping("/persons")
public String list(Model model) {
 model.addAttribute("persons", personManager.findAll());
 return "persons/list";
}

All model attributes are available in the JSP for rendering.
Attributes can be added to the model without specifying a name. There are convention-over-

configuration rules applied by Spring to infer the name of an attribute based on the type of the attribute
value set. For example:

• Person person = personManager.getById(id);

model.addAttribute(person);
//added as "person" as the reference type is Person

• List<Person> persons = personManager.findAll();

model.addAttribute(persons);
// added as "personList" as reference type is List<Person>

■ CC When objects are added to a model without specifying an attribute name, this is inferred by lowercasing
the first letter of the reference type. if the attribute is a collection of objects, the attribute name is composed
from the reference type with first letter lowercased and suffixed with the specific collection suffix (a simple
name of the Collection interface implemented): “Set” for Set<?>, “List” for List<?>, etc.

When only one object needs to be added to the model, the object can simply be returned by the method
and it is automatically added to the model. This obviously does not work with objects of type String,
because Spring assumes the returned String value is a logical view name. When the following approach
is used, the returned object is added to the model as an attribute and the name is inferred based on the
conventions mentioned earlier.

@RequestMapping("/persons/list")
public List<Person> list() {
 return personManager.findAll();
 //model name attribute convention will be used
}

But the attribute name can be specified by annotating the method with @ModelAttribute and
specifying a different attribute name.

@RequestMapping("/persons/list")
@ModelAttribute("persons")
public List<Person> list() {
 return personManager.findAll();
}

Chapter 3 ■ Spring MVC

101

■ CC When the handler method returns an object, the DispatcherServlet has to infer the view to render the
model. the logical view name is extracted from the mapping UrL by stripping the first "/" and the extension if
present. in the preceding examples, the logical view name used is "persons/list".

Selecting a View
A controller method selects a view by returning its name, and DispatcherServlet takes care of the rest using
the ViewResolvers in the context. But there are conventions over configurations in place that allow a controller
method to return null and a view is still selected, like the convention mentioned right before this section.

The logical view name can be extracted from the request URI by removing the leading slash and
extension. This is done by the RequestToViewNameTranslator.

@RequestMapping("/persons/list.html")
public String list(Model model) {...}
// logical view name is: "persons/list"

■ CC the same view name “persons/list” is inferred if you have a @RequestMapping ("/persons") on the
controller class and @RequestMapping ("/list.html") on the method.

When <mvc:annotation-driven/> or @EnableWebMVC is used in the application configuration for
simple views that do not require a model being populated with data can be defined without controllers. The
following sample code shows how to configure such views using XML and Java configuration.

<!-- in mvc-config.xml -->
<mvc:view-controller path="/" view-name="welcome"/>

//in class annotated with @Configuration and @EnableWebMvc
// and implementing WebMvcConfigurer
@Override
public void addViewControllers(ViewControllerRegistry registry) {
 registry.addViewController("/").setViewName("welcome");
}

Redirecting
Controller methods can also make redirect requests instead of selecting a view. This is done by returning a
string representing a view name prefixed with "redirect:". Redirecting implies a new HTTP request being
created and usually some request attributes need to be passed from one request to the other. Until Spring 3.1,
this was done using @ModelAttribute on a controller method, or @SessionAtributes on the controller class.

The @ModelAttribute makes sure that the annotated method is always invoked before a request
handling method, thus adding the person instance to the model as an attribute with the name "person":

@ModelAttribute
public Person getPerson(@PathVariable Long id) {
 return personManager.getPerson(id);
}

Chapter 3 ■ Spring MVC

102

The object is not added to the HttpServletRequest to fulfill this purpose, but to the model; the reason
for this is that Spring MVC wants to keep the view usage as generic as possible, which means not forcing the
application to use only view technologies based on HttpServletRequest.

The @SessionAttributes is used on a controller class to designate which model attributes should be
stored in the session.

@SessionAttributes("person")
@Controller
@RequestMapping("/persons")
public class PersonsController {

 @RequestMapping("/{id}", method = RequestMethod.GET)
 public Person show(@PathVariable Long id, Model model) {

model.add("person", personManager.getPerson(id));
return "persons/show";

 }
}

Starting with Spring 3.1, there is another way: using flash attributes, which are saved in an object
model implementing the RedirectAttributes interface. Flash attributes provide a way for one request to
store attributes intended for use in another. Flash attributes are supported by default; no extra configuration
is needed. They are automatically added to the model after the redirect, but they must be added to the
redirectAttributes object before the redirect call.

@Controller
@RequestMapping("/persons")
public class PersonsController {

 @RequestMapping(method = RequestMethod.POST)
 public String edit(@Valid Person person,
 final RedirectAttributes redirectAttributes,
 BindingResult result, Model model) {

if (result.hasErrors()) {
return "persons/edit";

}
personManager.update(person);
redirectAttributes.addFlashAttribute("person", person);
return "redirect:/persons/show";
}

 }

 @RequestMapping("/show", method = RequestMethod.GET)
 public String show(@ModelAttribute("person") Person person) {

// because the attribute is already in the model,
//the only thing left to do is return the view name

return "persons/show";
 }

}

Chapter 3 ■ Spring MVC

103

The object added to the redirectAttributes model is added to the model at redirect time with the
same attribute name. So if the parameter name is different in the method being called at redirect time, a
value representing the attribute name for the @ModelAttribute has to be set. In the previous example, this
was done anyway just to make it obvious, but because of the Spring convention over configuration is in
place, the value for the verb|@ModelAttribute| can be skipped, as the name of the argument is considered.

■ ! a sample of what controller methods look like and a sample of “redirect:” usage are found in the
03-pr-mvc-layout-solution module. the equivalent practice module is covered at the end of this chapter.

Testing Controllers
When testing controllers, the focus is to check that handler methods return the expected logical view name
and that the expected data has been placed in the model as an attribute. When doing unit testing, the
manager does not need to be involved, as saving data to the database defeats the purpose of testing a small
unit. So managers used in the controllers can be replaced with skeleton objects with simulated functionality.
This can be done by creating skeleton objects, called stubs, or mocking libraries can be used, to pass to them
the responsibility of implementing the objects according to the desired functionality. The library used to
mock the managers used in the code samples for this book is called Mockito.13 The tests have to be run with
MockitoJUnitRunner for the mock objects to be treated accordingly.

Assuming you have a controller that looks like this...

public class PersonsController {

 private PersonManager personManager;

 @Autowired
 public PersonsController(PersonManager personManager) {

this.personManager = personManager;
 }

 @RequestMapping(value="/list", method = RequestMethod.GET)
 public String list(Model model) {

model.addAttribute("persons", personManager.findAll());
return "persons/list";

}

A test method for the list handler method will look like this:

@RunWith(MockitoJUnitRunner.class)
public class PersonsControllerTest {
 private PersonsController personsController;

 @Mock
 private PersonManager managerMock;

13More information about it is at http://mockito.org.

http://mockito.org/

Chapter 3 ■ Spring MVC

104

 @Before
 public void setUp(){

personsController = new PersonsController(managerMock);
 }

 @Test
 public void list() {
 // setting up a mock manager that returns an empty list when
 // findAll() is called

when(managerMock.findAll()).thenReturn(new ArrayList<>());

 //a model object is "manually" constructed to pass as argument
 // to the controller method

Model model = new BindingAwareModelMap();
String view = personsController.list(model);
assertEquals("persons/list", view);

//this tests if the handler method has added
//the "persons" attribute to the provided model.
assertNotNull(model.asMap().get("persons"));

 }
}

The @Mock annotation makes sure that the object is treated as a mock object by the library and a
skeleton implementation is provided transparently. Statements beginning with calls to the when method
define the behavior of the respective object when its mock methods are called. The syntax is quite intuitive
and really easy to use. The statement underlined in the preceding code sample can be translated as: “When
the findAll() method is called on the mock object, return an empty list of persons.”

Integration testing of the controllers can be done by creating a test context for their execution, and it has
the advantage of testing the integration of application layers with each other. The test class looks like this:

@RunWith(SpringJUnit4ClassRunner.class)
@WebAppConfiguration
@ContextConfiguration({

"file:src/main/webapp/WEB-INF/spring/mvc-config.xml",
"classpath:spring/app-dao-config.xml",
"classpath:spring/test-db-config.xml"

 })
public class AllControllerTest {

 @Autowired
 private PersonsController personsController;

 @Before
 public void setUp(){

//we are making sure the controller was initialized correctly
assertNotNull(personsController);

 }

Chapter 3 ■ Spring MVC

105

 @Test
 public void list() {

Model model = new BindingAwareModelMap();
String view = personsController.list(model);
assertEquals("persons/list", view);
assertNotNull(model.asMap().get("persons"));

// test to see id the manager returned the expected result
assertTrue(((List<Person>) model.asMap().get("persons")).size() == 16);

 }
}

The WebAppConfiguration annotation makes sure that the context in which the test methods in this
class are run is WebApplicationContext. The root path of the web application is set using this annotation,
and the default value for it is the one consecrated by Maven "src/main/webapp". There are other ways of
initializing a test web context or even for mocking one using MockMvc, which is the main entry point for
server-side Spring MVC test support. Other test libraries can be used to fully test a controller and all objects
involved in handling a request. For example, Hamcrest, a testing library that offers a lot of useful methods
named matchers test the type of expected params, attribute values, results, and so forth.14

@RunWith(SpringJUnit4ClassRunner.class)
@WebAppConfiguration
@ContextConfiguration({"file:src/main/webapp/WEB-INF/spring/mvc-config.xml",

"classpath:spring/app-dao-config.xml", "classpath:spring/test-db-config.xml"})
public class HospitalsControllerTest {

 @Autowired
 private WebApplicationContext wac;

 private MockMvc mockMvc;

 @Before
 public void setUp() {

assertNotNull(wac);
this.mockMvc = MockMvcBuilders.webAppContextSetup(this.wac).build();

 }

 @Test
 // test all aspects handling a request to "/hospitals/
 public void list() throws Exception {

mockMvc.perform(get("/hospitals/"))
// test if response status is 200
.andExpect(status().isOk())

// test if the attribute "hospital" was added to the model
.andExpect(model().attributeExists("hospitals"))

14Read more about it on the official site at http://hamcrest.org/.

http://hamcrest.org/

Chapter 3 ■ Spring MVC

106

//when using Tiles, we can test the forward of the request to
//the template for the page
.andExpect(forwardedUrl("/WEB-INF/templates/layout.jsp"));

 }
 @Test
 //test a method returning "redirect:/persons/list"
 // (all persons born at the hospital with code =134181)
 public void listp() throws Exception {

mockMvc.perform(get("/hospitals/134181"))
// test if response status is 302
.andExpect(status().isFound())

//test if the "persons" attribute was added to the redirectAttributes model
.andExpect(flash().attributeExists("persons"))

// test if the redirect request is sent to the expected URL
.andExpect(redirectedUrl("/persons/list"));

 }
}

These are the Spring MVC flavors presented in the book; choose whichever you feel most comfortable with.

Handler Interceptors
Handler interceptors are very useful for adding common functionality for all controllers inside an
application. For example, a handler interceptor in an application could be used to audit requests, or to
monitor the execution time of handler methods, or to generate performance reports. The most obvious
examples for the use of an interceptor are internationalization, validation of data in the request, and request
data convertors. Security checks could also be executed by a handler interceptor to give or restrict access to a
handler method.

When using REST, a special interceptor of type JsonViewResponseBodyAdvice can be used to customize
the response before the JSON serialization with MappingJackson2HttpMessageConverter.

The handler interceptors are beans in the application context. A handler interceptor class must
implement the HandlerInterceptor interface and provide concrete implementation for any of the methods
that the user is interested in:

• preHandle: Called after the HandlerAdapter has identified the handler method and
before its invocation. This method controls the execution of other interceptors in the
chain and the handler method by returning a Boolean value.

• postHandle: Called after the HandlerAdapter invokes the handler method and
before the DispatcherServlet renders the view (can add extra objects to the model).

• afterCompletion: Called after the request has processed and the view has rendered.

This method is called regardless of the outcome of the handler method call; it can be used for resources
cleanup (behavior similar to a finalize method).

The interceptors that modify the response before serialization must implement
ResponseBodyInterceptor and provide an implementation for the beforeBodyWrite method.
(This is covered in more detail in Chapter 5.

http://dx.doi.org/10.1007/978-1-4842-0808-3_5

Chapter 3 ■ Spring MVC

107

When personalizing the application with locale and theme, the LocaleChangeInterceptor and
ThemeChangeInterceptor are configured like this:

<!-- XML -->
 <mvc:interceptors>

<bean class="o.s.web.servlet.i18n.LocaleChangeInterceptor"/>
<bean class="o.s.web.servlet.theme.ThemeChangeInterceptor"/>

 </mvc:interceptors>

//Java Configuration
//in the @Configuration and @EnableWebMvc annotated class
@Override
public void addInterceptors(InterceptorRegistry registry) {
 registry.addInterceptor(localeChangeInterceptor());
 registry.addInterceptor(themeChangeInterceptor());
}

@Bean
public LocaleChangeInterceptor localeChangeInterceptor(){
 return new LocaleChangeInterceptor();
}

@Bean
public ThemeChangeInterceptor themeChangeInterceptor(){
 return new ThemeChangeInterceptor();
}

Both interceptors use their preHandle method to set locale and theme values on the appropriate
resolvers.15

Users can also create their own interceptors; in 02-pr-mvc-basic-solution the AuditInterceptor is
given as an example.

@Component
public class AuditInterceptor extends HandlerInterceptorAdapter {
@Override
public boolean preHandle(HttpServletRequest request,
 HttpServletResponse response, Object handler)
throws Exception {
 // custom implementation here
 return true;
}

15You can take a look at these interceptors’ code on GitHub at https://github. com/spring-projects/spring-
framework/blob/master/spring- webmvc/src/main/java/org/ springframework/web/servlet/theme/
ThemeChangeInterceptor.java and https://github.com/spring-projects/spring-framework/blob/master/
spring-webmvc/src/main/java/org/springframework/web/servlet/i18n/LocaleChangeInterceptor.java.

https://github.com/spring-projects/spring-framework/blob/master/spring-webmvc/src/main/java/org/springframework/web/servlet/theme/ThemeChangeInterceptor.java
https://github.com/spring-projects/spring-framework/blob/master/spring-webmvc/src/main/java/org/springframework/web/servlet/theme/ThemeChangeInterceptor.java
https://github.com/spring-projects/spring-framework/blob/master/spring-webmvc/src/main/java/org/springframework/web/servlet/theme/ThemeChangeInterceptor.java
https://github.com/spring-projects/spring-framework/blob/master/spring-webmvc/src/main/java/org/springframework/web/servlet/theme/ThemeChangeInterceptor.java
https://github.com/spring-projects/spring-framework/blob/master/spring-webmvc/src/main/java/org/springframework/web/servlet/theme/ThemeChangeInterceptor.java
https://github.com/spring-projects/spring-framework/blob/master/spring-webmvc/src/main/java/org/springframework/web/servlet/i18n/LocaleChangeInterceptor.java
https://github.com/spring-projects/spring-framework/blob/master/spring-webmvc/src/main/java/org/springframework/web/servlet/i18n/LocaleChangeInterceptor.java
https://github.com/spring-projects/spring-framework/blob/master/spring-webmvc/src/main/java/org/springframework/web/servlet/i18n/LocaleChangeInterceptor.java

Chapter 3 ■ Spring MVC

108

@Override
public void postHandle(HttpServletRequest request,
 HttpServletResponse response, Object handler, ModelAndView modelAndView)

throws Exception {
 // custom implementation here
}

@Override
public void afterCompletion(HttpServletRequest request,
 HttpServletResponse response, Object handler, Exception ex)

throws Exception {
 // custom implementation here
}
}

To enable this interceptor, you have to configure it in the context. The following snippets show how this
can be done in XML and using Java configuration:

<!-- XML -->
<mvc:interceptors>
 <bean class="com.pr.interceptor.AuditInterceptor"/>
</mvc:interceptors>

//Java Configuration
//in the @Configuration and @EnableWebMvc annotated class
@Override
public void addInterceptors(InterceptorRegistry registry) {
 registry.addInterceptor(auditInterceptor());
}

@Bean
public AuditInterceptor auditInterceptor(){
 return new AuditInterceptor();
}

The schema in Figure 3-9 displays what happens “behind the scenes” when a handler interceptor is
used in a Spring MVC application.

Chapter 3 ■ Spring MVC

109

View Technologies
Again, Spring MVC was designed to be as view agnostic as possible. Most web applications generate HTML
content. The “ViewResolver” section mentions how a Spring web application can generate other types
of content, such as PDF, Excel, or JSON. The complete list of view technologies that Spring supports is far
longer than this. To put it in perspective, anything that provides a ViewResolver and a View implementation
is compatible with Spring.

Based on the type of content being generated, the views can be categorized as follows:

• Display views: The response is an HTML page generated using a template: JSP, Tiles,
Thymeleaf, FreeMarker, or Velocity.

• File-generating views: The response is an output file when rendered and it is
automatically downloaded by the browser: Apache POI, JExcelApi (Excel), IText
(PDF), JasperReports, or XSLT transformation.

• Data-delivery views: The response is actually just data and it is meant to be used
with AJAX and web services: JSON, Java-XML Marshalling, Atom, and RSS.

This book covers Tiles and Thymeleaf. Tiles is in the official certification course. Thymeleaf is a bonus
section that was added because it is the newest template engine in the web development world (its “birth”
year was 2014) and it is quite a promising technology. Its goal is to provide templates that are easy to use and
extend. It works in web and non-web environments.

Figure 3-9. Handler Interceptor methods and places where invoked

Chapter 3 ■ Spring MVC

110

■ ! the book-code module 03-chapter-07-solution covers all three categories of the views mentioned.
take a look at it before advancing to the next section.

Tiles Layouts
A web application of composed of more html pages which have a common structure, typically a header/
footer, a menu for navigation, and a section with the actual content of the page. The header, footer, and
navigation menu are usually the same on every page and they can separate from the contents of a page in
their own files to be reused every time a new page is created. If you were working with JSP, the files header.
jsp, footer.jsp, and menu.jsp would be included in every page by using <jsp:include page=..."/>.
This means three repetitive include statements in every page.

A more practical approach is to create a page template that contains common page elements and
placeholders for dynamic content, similar to what is depicted in Figure 3-10. The placeholders are replaced
at rendering time with whatever is needed (usually subviews).16

Figure 3-10. Reusable page template

16This approach is described by the Composite View pattern that introduces the notions of composite and atomic views.
A composite view is a tree structure of atomic views. An atomic view can be included dynamically and it changes based
on the context.

Chapter 3 ■ Spring MVC

111

Doing this with only plain JSP is not an option. There are currently multiple ways available to do it. But
the one that was interesting for the Spring creators is Apache Tiles.

Apache Tiles is an open source template engine framework that was a part of the currently deceased
Apache Struts 1. It is based on the Composite View pattern and was built to simplify the development of user
interfaces. To use tiles in a Spring web application, you have to do the following:

1. Define template layout for the pages.

2. Configure tiles definitions in tiles.xml file(s).

3. Configure the tiles resolver bean.

Apache Tiles 3.0.5, which is the version used for the code samples, is the most recent stable release at
the time this book was written.

Define Page Templates
A simple template layout, matching the page representation in Figure 3-10, is as simple as this:

...
<%@ taglib prefix="tiles" uri="http://tiles.apache.org/tags-tiles" %>
...
<!-- /WEB-INF/templates/layout.jsp -->
<head>

<tiles:insertAttribute name="pageTitle"/>
</head>
<body>

<div class="header">...</div>
<div class="menu">...</div>
<div class="content">

<tiles:insertAttribute name="content"/>
</div>
<div class="footer">...</div>

</body>

Configure Tiles Definitions
The tiles.xml files are Tiles configuration files, which define the structure of a page using XML. One or
more tiles definitions can be in the same file; it is recommended to store the configuration file and the pages
configured in the same directory, as shown in Figure 3-11.

http://tiles.apache.org/tags-tiles

Chapter 3 ■ Spring MVC

112

Tiles definitions are reusable fragments consisting of a template and attributes. Inheritance is possible
using the extends attribute. A tile definition element looks like this:

<!DOCTYPE tiles-definitions PUBLIC
"-//Apache Software Foundation//DTD Tiles Configuration 3.0//EN"
"http://tiles.apache.org/dtds/tiles-config_3_0.dtd">

<tiles-definitions>
 <definition name="layout" template="/WEB-INF/templates/layout.jsp"/>
</tiles-definitions>

This example is called a base tile because every other definition extends it. Without this tile definition,
every other tile definition in your project has to be configured with the template attribute, underlined in the
preceding example.

The extended version of the layout.jsp is quite big, and some parts are replaced by “...” . To view its real
and full content, please see the 03-pr-mvc-layout-practice project.

...
<%@ taglib prefix="tiles" uri="http://tiles.apache.org/tags-tiles" %>
...
<!-- /WEB-INF/templates/layout.jsp -->
<head>
...

Figure 3-11. Tiles configuration files and templates positioning in the application structure

http://tiles.apache.org/dtds/tiles-config_3_0.dtd
http://tiles.apache.org/tags-tiles

Chapter 3 ■ Spring MVC

113

 <title>
<spring:message>

<tiles:insertAttribute name="pageTitle"/>
</spring:message>

 </title>
</head>
...
<div class="page">

 <!-- The header is actually a png image banner,
that will be loaded depending on the chosen theme-->

 <div class="banner"></div>

 <!-- section to select Locale and Theme -->
 <div class="themeLocal"> ...</div>

 <!-- section with the navigation menu, dynamic data
 The menu item is modified to display the current page
 based on the value for the menuTab attribute -->
 <div class="menu">

<c:if test="${menuTab eq 'home'}">

<a href="<c:url value="/"/>"><spring:message code="menu.home"/>

</c:if>

<c:if test="${menuTab != 'home'}">
<a href="<c:url value="/"/>"><spring:message code="menu.home"/>

</c:if>

...

 </div>

 <!-- Dynamic data - body of the page -->
 <div class="content">

<tiles:insertAttribute name="content"/>
 </div>

 <div class="footer">
<p><spring:message code="footer.text"/></p>

 </div>

This is what a simple tile definition that extends the base tile looks like:

<definition name="home" extends="layout">
 <put-attribute name="pageTitle" value="home.title"/>
 <put-attribute name="content" value="/WEB-INF/home.jsp"/>
 <put-attribute name="menuTab" value="home" />
</definition>

Chapter 3 ■ Spring MVC

114

The tiles attributes are the placeholders for dynamic data; the gaps in the template need to be filled.
The following can be an attribute:

• A string that will be rendered or used as it is.

• A template with or without attributes that need to be filled to render the page.

• A tile definition with all (some) attributes filled.

■ ? in the code sample, can you identify which of these types of tiles attributes were used?

Accessing tiles attributes in JSP is done using the tag provided by tiles:

• <tiles:insertAttribute/>: The standard approach to insert the value of an
attribute into a page17

• <tiles:importAttribute/>: This is used to add attributes to model (it works only
with Spring)18

In the following example, the menuTab attribute is used for navigation in the application. Each tile
definition sets a different value for that attribute. The value is tested and the menu navigation option
matching the current page is displayed in bold text.

...
<tiles:importAttribute name="menuTab" />
<c:if test="${menuTab eq 'home'}">
 <!-- show the home menu option with bold text -->
</c:if>

Configure the Tiles Resolver Bean
Spring MVC provides out-of-the-box support for Apache Tiles. There is a TilesView to interpret logical
view names as tiles definitions. There is a TilesViewResolver bean to resolve views and a class named
TilesConfigurer to bootstrap Tiles with a set of configuration files.

<!-- Resolves view names to Tiles 3 definitions -->
<bean id="tilesViewResolver"
 class="org.springframework.web.servlet.view.tiles3.TilesViewResolver"/>

<!-- Configures Tiles 3 -->
<bean id="tilesConfigurer"
 class="org.springframework.web.servlet.view.tiles3.TilesConfigurer">

<property name="definitions">

17Detailed API information on tiles:insertAttribute is at https://tiles.apache.org/framework/
tiles-jsp/tlddoc/tiles/insertAttribute.html.
18Detailed API information on tiles:importAttribute is at https://tiles.apache.org/framework/
tiles-jsp/tlddoc/tiles/insertAttribute.html.

https://tiles.apache.org/framework/tiles-jsp/tlddoc/tiles/insertAttribute.html
https://tiles.apache.org/framework/tiles-jsp/tlddoc/tiles/insertAttribute.html
https://tiles.apache.org/framework/tiles-jsp/tlddoc/tiles/insertAttribute.html
https://tiles.apache.org/framework/tiles-jsp/tlddoc/tiles/insertAttribute.html
https://tiles.apache.org/framework/tiles-jsp/tlddoc/tiles/insertAttribute.html
https://tiles.apache.org/framework/tiles-jsp/tlddoc/tiles/insertAttribute.html

Chapter 3 ■ Spring MVC

115

<list>
<value>/WEB-INF/tiles.xml</value>
<!-- add more tiles definition files if present -->

</list>
</property>

</bean>

The equivalent Java configuration looks like this:

// In the @Configuration and @EnableMvc annotated class
@Bean
 TilesViewResolver tilesViewResolver(){

return new TilesViewResolver();
 }

 @Bean
 TilesConfigurer tilesConfigurer(){

TilesConfigurer tilesConfigurer = new TilesConfigurer();
tilesConfigurer.setDefinitions("/WEB-INF/tiles.xml");
// add more tiles definition files if present
return tilesConfigurer;

}

This code sample replaces the InternalResourceViewResolver with TilesViewResolver. The
InternalResourceViewResolver can be configured for plain *.jsp files too, but do not forget to set the
order property and/or configure a content negotiating resolver.

■ ! the module 03-pr-mvc-layout-practice of the personal records Manager project covers tiles
definitions and their usage with Spring MVC. Further details are presented in the practice section of this chapter,
but you can take a look at the 03-pr-mvc-layout-solution if you cannot wait to see the tiles in action.

Thymeleaf
When asked why he decided to create another template engine, because there were already quite a few
available, co-creator Daniel Fernandez said this on the Thymeleaf official forum:19

In my humble opinion, Spring MVC 3 is a fantastic web framework tied to a horrible,
extremely old and spaghetti-code-loving template engine: JSP. That’s why I wanted the
combination of Spring MVC with Thymeleaf to really shine. In some ways I suppose
I wanted to give Spring MVC the template engine it deserved. Not from the performance
point of view (matching the speed of JSPs, which run in specialized containers, would be
very difficult), but more from the points of view of code elegance, readability, and design/
coding separation of concerns. Also, I wanted to provide first-class support for the emerging
HTML5 standard.

19A full discussion is at http://forum.thymeleaf.org/why-Thymeleaf-td3412902.html.

http://forum.thymeleaf.org/why-Thymeleaf-td3412902.html

Chapter 3 ■ Spring MVC

116

The underlined text in Fernandez’s reply should interest any developer. Thymeleaf is not a
certification exam subject, so it can be skipped. But Thymeleaf is nevertheless a practical alternative to JSP,
and the SpringSource team fancies it quite a bit, so knowing how to configure it and use it could be useful in
the future.

Both Spring and Tiles come with an attribute set that you can use to write your page templates.
Thymeleaf is more flexible because it allows you to define a set of template attributes or even tags with the
names that you want and with the logic that you want. So it is not just a template engine, it is a framework.
Something called standard dialects are offered: Standard and SpringStandard, which contain all you might
need to create a page template. You can recognize them in a page because they are prefixed with "th:". The
two dialects are almost identical, but the one created for Spring has additional capabilities for integrating
into Spring MVC applications (it supports SpEl , the Spring expression language).

Most Thymeleaf attributes allow their values to be set as or containing expressions called Standard
Expressions, which can be of the following types:

• Variable expressions

<td th:text="${person.firstName}"></td>
<!-- or -->
<tr th:each="person : ${personList}">

• Selection or asterisk expressions: These are executed on a previously selected
object instead of the entire context variables map.

<div th:object="${person}">
<p th:value="*{firstName} *{lastName}"></p>

</div>

• Text externalized expressions (internationalization expressions) used to retrieve
locale specific messages from external sources (*.properties files). They even
accept parameters.

<tr>
 <td th:text="#{person.label.firstname} & #{person.label.lastname}</td>
 <!-- or -->
 <td th:text="#{person.created(${id})}"</td>
</tr>

• URL expressions used to generate session- and context-specific URIs (equivalent to
<spring:url/> and <c:url/>).

<img alt="Simple tymeleaf application" title="logo"
th:src="@{/images/banner.png}"/>

<form th:action="@{/createPerson}">

Thymeleaf allows HTML attributes so that templates can link to each other nicely when opened directly
in a browser, outside the context of the application, in the same way that Thymeleaf attributes link to each
other when executed in the context of a web application. In the previous example, if you want to view
your template before deploying the application, you can open the file in a browser and the th:href will be
replaced by the values of the static href.

Chapter 3 ■ Spring MVC

117

Considering the following Thymeleaf template:

...
<h4>
 Welcome to the sample page with Spring MVC and Thymeleaf!

 Here is a list of random persons:
</h4>

<div class="content" th:if="${not #lists.isEmpty(personList)}">
 <table>

<thead>
<tr>

<td>Cnt.</td>
<td>First Name</td>
<td>Last Name</td>

</tr>
</thead>
<tbody>
<tr th:each="person,iterationStatus : ${personList}">

<td><a th:text="${iterationStatus.count}" href="show.html"
th:href="@{/persons(id=${person.id})}">1</td>

<td th:text="${person.firstName}">John</td>
<td th:text="${person.lastName}">Smith</td>

</tr>
</tbody>

 </table>
</div>
...

In Figure 3-12 you can see what the page looks like when opened in the browser outside the application
context.

Figure 3-12. Thymeleaf template page opened in the browser outside the application context

Chapter 3 ■ Spring MVC

118

In the application context, all the Thymeleaf expressions are resolved and the resulting page looks like
the one shown in Figure 3-13.

The URL expression th:href="@{/persons(id=${person.id})} turns into a URL with a request
parameter; for example, .../persons?id=4. To generate a URI, .../persons/4 the expression has to be
modified to this:

th:href="@{/persons/ ${person.id}__}".

The notions presented here are the minimum necessary to create a Thymeleaf simple template. The
03-chapter-08-solution module in the book-code project is a perfect example of how simple it is to create
a Thymeleaf template to display a list of persons. All that is left now is to explain how Thymeleaf can be
integrated with Spring.

Thymeleaf integrates with both Spring 3.x and Spring 4.x and uses two separate libraries, which are
packaged in separate *.jar files: thymeleaf-spring3-{version}.jar and thymeleaf-spring4-{version}.
jar. As this book is being written, the most current version of Thymeleaf is 2.1.4.RELEASE. The library
corresponding to the Spring version used needs to be added to the classpath together with the thymeleaf.
jar. Thymeleaf offers a set of Spring integrations equivalent to the ones in JSP:

• Spring SpEl can be used in Thymeleaf templates

• It creates forms in templates that are completely integrated with form-backing beans
and result hidings

• It displays internationalization messages from message files managed by Spring via
MessageSource

To integrate Thymeleaf with Spring, you need to define the following:

• The view resolver bean of type ThymeleafViewResolver

• The Thymeleaf engine bean of type SpringTemplateEngine used to handle the
Thymeleaf expressions

• The template resolver bean of type ServletContextTemplateResolver used to
configure the location and type of templates that the other beans are expected to
work with

Figure 3-13. Thymeleaf template page opened in the browser in the application context

Chapter 3 ■ Spring MVC

119

<bean id="templateResolver"
class="org.thymeleaf.templateresolver.ServletContextTemplateResolver">

 <property name="prefix" value="/WEB-INF/persons/" />
 <property name="suffix" value=".html" />
 <property name="templateMode" value="HTML5" />
 <!-- Template cache is true by default. Set to false if you want -->
 <!-- templates to be automatically updated when modified. -->
 <property name="cacheable" value="true" />
</bean>
 <bean class="org.thymeleaf.spring4.view.ThymeleafViewResolver">
 <property name="templateEngine" ref="templateEngine" />
 <property name="order" value="1"/>
</bean>

<bean id="templateEngine" class="org.thymeleaf.spring4.SpringTemplateEngine">
 <property name="templateResolver" ref="templateResolver" />
</bean>

And this is all. If you would like to use Thymeleaf in your future projects, you can find all the
information you need on their official site at http://www.thymeleaf.org. Also, before continuing to the next
section, you might want to run and take a look at the 03-chapter-08-solution module.

Forms
Starting with version 2.0, Spring provides a set of specialized tags for handling form elements when using
JSP and the Spring Web MVC. Each tag provides support for a set of attributes matching the ones in the
corresponding HTML element, which makes Spring quite easy for the user. The Spring tag library is
integrated into Spring MVC, which allows the tags to have access to the command object and model.

The Spring tag library is inside the spring-webmvc.jar. To use the tags in a JSP page, the following
directive must be added on top of the JSP page:

<%@ taglib prefix="sf" uri="http://www.springframework.org/tags/form" %>

The "sf" prefix is short for spring form. Any prefix can be used, but in this book, "sf" was chosen
because it is short and its meaning is quite obvious. The "spring" prefix will be used for Spring-specific tags
that are not related to forms (internationalization and URL generation).

In the examples attached to this chapter, you create forms to edit and to search for a person. A form for
editing a person is depicted in Figure 3-14.

http://www.thymeleaf.org/
http://www.springframework.org/tags/form

Chapter 3 ■ Spring MVC

120

The Spring form tag library provides equivalent elements for the HTML elements needed to design a
form, annotations for data binding and data validation, and tools for error processing. The code that creates
form follows Figure 3-14.

...
<%@ taglib prefix="sf" uri="http://www.springframework.org/tags/form" %>
<%@ taglib prefix="spring" uri="http://www.springframework.org/tags" %>
...
<div class="person">
 <spring:url value="/persons/{id}" var="editUrl">

<spring:param name="id" value="${person.id}"/>
 </spring:url>
 <sf:form modelAttribute="person" action="${editUrl}" method="POST">

<table>
<tr>

<th>
<label for="firstName">

*
<spring:message code="label.Person.firstname"/> :

</label>
</th>
<td><sf:input path="firstName"/>
<sf:errors cssClass="error" path="firstName"/></td>

</tr>
...
<tr>

<th>
<label for="dateOfBirth">

*
<spring:message code="label.Person.dob"/> :

</label>
</th>

Figure 3-14. Form used to edit a Person

http://www.springframework.org/tags/form
http://www.springframework.org/tags

Chapter 3 ■ Spring MVC

121

<td><sf:input path="dateOfBirth"/>
<sf:errors cssClass="error" path="dateOfBirth"/></td>

</tr>

<tr>
<th>

<label for="gender">
<spring:message code="label.Person.gender"/> :

</label>
</th>
<td>

<sf:radiobutton path="gender" value="MALE"/>
<spring:message code="label.Person.male"/>
<sf:radiobutton path="gender" value="FEMALE"/>
<spring:message code="label.Person.female"/>

</td>
</tr>
<tr>

<th>
<label for="hospital">

*
<spring:message code="label.Hospital"/> :

</label>
</th>
<td>

<sf:select path="hospital">
<c:choose>

<c:when test="${person == null}">
<sf:option value="">
<spring:message code="label.choose"/></sf:option>

</c:when>
<c:otherwise>

<sf:option value="${person.hospital.id}">
${person.hospital.name}

</sf:option>
</c:otherwise>

</c:choose>

<sf:options items="${hospitalList}"
itemValue="id" itemLabel="name"/>

</sf:select>

</td>
</tr>
<tr>

<td>
<button id="saveButton" type="submit">

<spring:message code="command.save"/>
</button>

</td>

Chapter 3 ■ Spring MVC

122

<td>

<spring:message code="command.cancel"/>

</td>
</tr>

</table>
</sf:form>

</div>

In the previous code there are a few elements that are underlined. They are Spring form tags equivalent
to HTML form tags. The only difference is that they are fully integrated with Spring MVC and their content
is populated from the modelAttribute and other Spring form–specific objects, which are covered a little
bit later.

The behavior of a Spring form can be described using this succession of steps:

1. An initial GET request causes the form object to be created and presented
to the user.

2. The user inserts data in the form and sends a POST request to submit the form.
In this step, the data inserted is evaluated, validated, and stored in the form
object.

3. POST-Redirect-GET if the operation is successful (if the objective of the POST
request has succeeded, a GET request is created to present a confirmation
message to the user).

Without the POST-Redirect-GET behavior, an application will behave incorrectly, because subsequent
POST requests could lead to duplicate data and/or data corruption. The forms used for search operations
do not need a POST request, because submitting a search query has no side effects and it redirects to the
results page.

When working with forms, all the fields in a form should map to the fields of an object called a data
transfer object (DTO). In the example, this is done for the Search Person form, which is covered later. When
editing a person, it is more suitable to use a Person object as a data transfer object. The Person object
is an instance of an @Entity class, and maps to a row in the person table in the database. These types of
objects are called domain objects. This requires that the object used for this purpose should have a default
constructor, getters, and setters for all the fields used in the form. Although using a domain object as a form
object welcomes the undesired possibility that some web logic–specific operations might creep in, it is
practical to use when the objects handled are simple20 and entity fields are annotated with specific validation
annotations (example: @NotEmpty, NotNull, etc.), because implementing a validator class at the web layer
may no longer be necessary.

Form-specific data transfer objects are also required when the information from a form is aggregated
from multiple domain objects. This allows the form object to encapsulate only what is needed to be
displayed on the screen: web layer logic, validation logic, logic for information transfer between the form
object, and domain object.

Figure 3-15 shows the correspondence between the form tags and the fields in the CriteriaDto object.

20Adam Bien, one of the most respected Java developers in the world, has named DTOs objects “anemic in general and
do not contain any business logic” on his blog at http://www.adam-bien.com/roller/ abien/entry/
value_object_vs_data_transfer.

http://www.adam-bien.com/roller/abien/entry/value_object_vs_data_transfer
http://www.adam-bien.com/roller/abien/entry/value_object_vs_data_transfer
http://www.adam-bien.com/roller/abien/entry/value_object_vs_data_transfer

Chapter 3 ■ Spring MVC

123

The following can be said when using Spring forms:

• The CriteriaDto object is linked to the form via modelAttribute="criteriaDto"
and it corresponds to the @ModelAttribute annotated object in the controller class.

• The Spring form has a method attribute the same as an HTML form, and the value of
this attribute is the type of request being sent to the server.

<sf:form action="${personsUrl}" modelAttribute="criteriaDto" method="get">

</sf:form>

• The Spring form has an action attribute the same as an HTML form, and the value of
this attribute is the URL of the request.

<spring:url value="/persons/go" var="personsUrl"/>
 <sf:form action="${personsUrl}" modelAttribute="criteriaDto" method="get">

</sf:form>

• <sf:input path="fieldName"/> is rendered into an HTML input field that is
populated with the value of the field named fieldName in the criteriaDto object.
Each of the fields defined in a Spring form specifies a path attribute that corresponds
to a getter/setter method of the model attribute (in this case the CriteriaDto
object). When the page is loaded, Spring calls the getter of each field to populate
the form view. When the form is submitted, the setters are called to save the values
submitted by the user using the form to the model attribute fields.

• <sf:select/> elements are rendered into HTML select elements and can be
constructed using domain object lists:

<sf:select path="hospital" itemValue="id" itemLabel="name"
items="${hospitalList}"/>

Figure 3-15. Form to search a Person

Chapter 3 ■ Spring MVC

124

The hospitalList has to be added to the model by the controller as an attribute:

model.addAttribute("hospitalList", hospitalRepo.findAll());

• <sf:select/> elements can have customized behavior by using the <sf:option/>
and <sf:options/> tag.

For example, if the same form is used for editing and creating a person instance, when a new person is
created, you might want to display a default option in the hospital drop-down list, making it obvious for the
user that a value has to be selected. That default option is not part of the hospital list model attribute. When
a person is edited, you want to select the hospital where that person was born.

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
....
<sf:select path="hospital">
 <c:choose>

<!-- no person attribute, form is used to create a person -->
<c:when test="${person == null}">

<sf:option value="">
<!-- default option not in the hospital list model attribute -->
<spring:message code='label.choose'/>

</sf:option>
</c:when>
<!-- form is used to edit a person, person model attribute is set -->
<c:otherwise>

<sf:option value="${person.hospital.id}">
${person.hospital.name}

</sf:option>
</c:otherwise>
</c:choose>
<!-- Dynamic list of options -->
<sf:options items="${hospitalList}" itemValue="id" itemLabel="name"/>

</sf:select>

The preceding example is rendered as an HTML select element containing all hospitals in the
hospitalList model attribute and an extra static Choose hospital option when the form is used to create a
person. The names of the hospitals are used as labels for the available options in the select element. The JSP
c taglib is used for conditional operations.

• The Spring JSP tag library integrates nicely with other JSP libraries, like
Tiles and JSTL.

• The <sf:errors/> is a Spring special tag for displaying errors. The error messages
can be internationalized; this is covered in the “Data Validation” section.

When it comes to using Spring forms, three key subjects must be well understood to use them like
an expert: formatting, data binding, and validation; each of these is given the proper coverage in its own
section.

http://java.sun.com/jsp/jstl/core

Chapter 3 ■ Spring MVC

125

Data Formatting
In the Person edit form, you need to display and eventually edit a java.util.Date instance and a Hospital
instance. These are complex types and the Spring tag library does not know how to handle them on its
own. The developer must provide implementations for the org.springframework.format.Formatter<T>
interface for the specific type of object handled in the form. Formatter classes parse text data, turn them into
objects, and transform beans into text data ready for rendering. In the 05-pr-mvc-form-solution module,
which is the project specific to this section, two formatters are used in the Edit person form; where they are
used is shown in Figure 3-16.

Figure 3-16. Formatters used in the form to edit a person

Formatters can be used in four places in the application:

• On the field using annotations (all JSPs pages displaying this annotation use this
formatter)

@DateTimeFormat(pattern = "yyyy-MM-dd")
private Date dateOfBirth;

• In the JSP tags (used when multiple JSP pages need to display data differently)

<fmt:formatDate value="${person.dateOfBirth}" pattern="yyyy-MM-dd" />

•	 Registered in the application using the FormattingConversionServiceFactoryBean bean

<mvc:annotation-driven conversion-service="typeConversionService" "/>

<!-- Define a custom ConversionService -->
<bean id="typeConversionService"

class="o.s.format.support.FormattingConversionServiceFactoryBean">
 <property name="formatters">

<set>
<bean class="com.pr.util.DateFormatter"/>
<bean class="com.pr.util.HospitalFormatter"/>

</set>
 </property>
</bean>

Chapter 3 ■ Spring MVC

126

The DateFormatter implementation used in the personal-records project looks like this:

public class DateFormatter implements Formatter<Date>{
 public static final SimpleDateFormat formatter =

new SimpleDateFormat("yyyy-MM-dd");

 @Override
 public Date parse(String s, Locale locale) throws ParseException {

return formatter.parse(s);
 }

 @Override
 public String print(Date date, Locale locale) {

return formatter.format(date);
 }
}

• On the controller or service method arguments by using implementation of the org.
springframework.validation.Validator interface and the @Validated annotation.
In the following example, the URI path variable used to request data about a person
is of type String and it has to be checked for whether it represents a valid id.

@Component
public class IdValidator implements Validator {

 @Override
 public boolean supports(Class<?> clazz) {

return String.class.equals(clazz);
 }

 @Override
 public void validate(Object target, Errors errors) {

String id = (String) target;
if(!id.matches("/{id:\\d*}")) {

errors.reject("id.malformed");
}

 }
}

The controller method to retrieve a person’s data and using that validator looks like this:

@RequestMapping(value = "/{id}", method = RequestMethod.GET)
public String show(@Validated(IdValidator.class)@PathVariable String id,
 Model model) throws NotFoundException {
 Long theId = Long.parseLong(id);
 Person person = personManager.findById(theId);
 if(person == null) {

throw new NotFoundException(Person.class, theId);
 }
 model.addAttribute("person", person);
 return "persons/show";
}

Chapter 3 ■ Spring MVC

127

In the examples in this book, only Date and Hospital formatters are covered because they are the only
ones needed in the associated projects, but any complex field type can have a formatter. For example:

• formatting numbers:

@NumberFormat(style=Style.NUMBER, pattern="#,###.###")
private final BigDecimal amount;

• formatting currencies:

@NumberFormat(style=Style.CURRENCY)
private final BigDecimal amount;

When field values are formatted inside a JSP page, formatting annotations are no longer needed. When
formatters are registered using the FormattingConversionServiceFactoryBean bean, the specific types are
automatically converted without another annotation or tag.

The <mvc:annotation-driven/> and @EnableWebMVC registers default formatters for Numbers and
Dates by offering support for specific annotations: @NumberFormat and @DateTimeFormat. If Joda Time is in
the classpath, support for it is also enabled.

Java configuration to register custom formatters can be done in two ways: by defining a @Bean of type
ConversionService, or by implementing the addFormatters method defined in WebMvcConfigurer
(or by overriding it when implementations of this interface are used).

The second way is easier:

\\in the @Configuration & @EnableWebMvc annotated class
@Override
 public void addFormatters(FormatterRegistry formatterRegistry)
 {

formatterRegistry.addFormatter(getDateFormatter());
formatterRegistry.addFormatter(getHospitalFormatter());

 }

 @Bean
 public DateFormatter getDateFormatter(){

return new DateFormatter();
 }

 @Bean
 public HospitalFormatter getHospitalFormatter(){
 return new HospitalFormatter();
}

The first way is more complicated. The following is an example of an annotated ConversionService
bean definition:

\\ in the @Configuration annotated class
 public ConversionService conversionService() {

FormattingConversionServiceFactoryBean bean =
new FormattingConversionServiceFactoryBean();

bean.setFormatters(getFormatters());
bean.afterPropertiesSet();
ConversionService object = bean.getObject();
return object;

 }

Chapter 3 ■ Spring MVC

128

 private Set<Formatter> getFormatters() {
 Set<Formatter> formatters = new HashSet<>();

formatters.add(dateFormatter);
 formatters.add(dateFormatter);
 return formatters;
 }

// definition for formatter beans as in the previous example

Now you have the conversionService bean. Let’s look at the equivalent for <mvc:annotation-driven
conversion-service="conversionService" />:

@FeatureConfiguration
class MvcFeatures {

@Feature
public MvcAnnotationDriven annotationDriven(

ConversionService conversionService) {
return new MvcAnnotationDriven().conversionService(conversionService)

}
...

}

MvcAnnotationDriven provides the same options as the XML elements using a conveniently chained
method API. But who needs a complicated way to do this when there is an easier way, right?

HospitalFormatter is a custom formatter specifically created to be used in projects attached to this
book. It basically transforms a Hospital instance into its name so that it can be rendered in a view. And it
takes a hospital id and retrieves the Hospital instance from the database to be returned to the controller,
where it is used further. As the HospitalFormatter is a bean like any other, the HospitalManager bean can
be injected into it to make this happen. So the custom implementation looks like this:

public class HospitalFormatter implements Formatter<Hospital> {

 @Autowired
 HospitalManager hospitalManager;

 @Override
 public Hospital parse(String text, Locale locale)

throws ParseException {
Long id = Long.parseLong(text);
return hospitalManager.findOne(id);

 }

 @Override
 public String print(Hospital hospital, Locale locale) {

return hospital.getName();
 }
}

Chapter 3 ■ Spring MVC

129

Data Binding
Form objects, data transfer objects, and domain objects have been mentioned so far. But how are they
linked together? How does the information from a form object get transferred to a data transfer object or
to a domain object? How does Spring MVC know how to do this? The answer to these three questions is a
process named data binding.

Spring MVC binds the request to the form object. When a form is submitted, string data is transformed
into objects that are injected into the form object using getters and setters. A POST request or form
submission means setters for the form model attribute are called. A GET or page/form load means getters
are called upon the form model attribute to populate the view. Each object is identified using the path
attribute value in the corresponding Spring element tag. The form object it tightly bound to the JSP page,
and if the form object cannot be created, the JSP page won’t be rendered correctly. The form object is linked
to the JSP page using the modelAttribute attribute in the <sf:form/> tag:

<sf:form modelAttribute="person" action="${editUrl}" method="POST">
...
</sf:form>

In the controller, the form object can be accessed in multiple ways. It can be received as an argument to
the method mapped to the ${editUrl}.

@Controller
public class PersonsController {

 @RequestMapping(method=RequestMethod.POST)
 public String update(Person person) {
 ...
}

In this case, data is copied automatically into the object, and the object is re-created on every request.
You can annotate the form object with the @ModelAttribute annotation.

@Controller
public class PersonsController {

 @RequestMapping(method=RequestMethod.POST)
 public String edit(@ModelAttribute("person") Person person) {
 ...
}

■ CC When the name of the modelAttribute is the same as the name of the argument in a handler method,
the value for @ModelAttribute can be skipped. So in the previous case, public String update
(@ModelAttribute("person") Person person) is equivalent to public String update(@ModelAttribute
Person person).

This annotation was mentioned in the “Redirecting” section; it can be used the same way for forms too,
because in this case, you have a controller that handles the edit and show requests for a person instance.
@ModelAttribute annotated methods are executed before the chosen @RequestMapping annotated handler
method. They effectively pre-populate the implicit model with specific attributes, in this case, the person
instance to be displayed or edited.

Chapter 3 ■ Spring MVC

130

So you can simplify the controller like this:

@Controller
@RequestMapping("/persons/{id}")
public class PersonsController {

 @ModelAttribute
 public Person findPerson(@PathVariable Long id) {

return personManager.findOne(id);
 }

 @RequestMapping(method = RequestMethod.GET)
 public String show() {

return "persons/show";
 }

 @RequestMapping(value="/edit", method = RequestMethod.GET)
 public String edit(Model model) {

//we add the hospitalList to show in the Hospital drop-down list
model.addAttribute(hospitalRepo.findAll());
return "persons/edit";

 }
@RequestMapping(method = RequestMethod.POST)
public String save(Person person, BindingResult result, Model model) {
 if (result.hasErrors()) {

// we need to add this here as the dropdown list
// has to be populated correctly
// and "hospitalList" is not a model attribute
model.addAttribute(hospitalRepo.findAll());
return "persons/edit";

 }
 personManager.save(person);
 return "redirect:/persons/".concat(person.getId());
 }

}

In this implementation, you do not have to concern yourself with the existence of the form object
because the methods of this controller are only accessible when the URL is constructed with a valid
person id.

By default, all fields in a form are binded to the form object, but Spring MVC offers the possibility to
modify the default behavior by customizing a WebDataBinder object. Some fields can be blacklisted or
whitelisted for the binding process:

@InitBinder
public void initBinder(WebDataBinder binder) {
 //allowed fields
 binder.setAllowedFields("firstName", "lastName");
 //disallowed fields
 binder.setDisallowedFields("pk", "*Pk");
}

Chapter 3 ■ Spring MVC

131

The recommended behavior is to whitelist only the necessary fields, even if there might be a lot of them
to minimize the security holes.

The validation errors are binded to the form object too using a BindingResult object.

@RequestMapping(method = RequestMethod.POST)
 public String save(@Valid Person person, BindingResult result, Model model) {

if (result.hasErrors()) {
return "persons/edit";

}
 ...
}

If you look at the beginning of this section, where the Edit person form code is, you see that some
elements look like this:

<sf:errors cssClass="error" path="dateOfBirth"/></td>

They are right next to their analogue elements:

<sf:input path="dateOfBirth"/>

And they have the exact path attribute value. These elements are used to display validation errors when
the POST handler method returns back to the edit view because the BindingResult object was populated
by an existing validator bean. When returning to the form, the submitted data is still there, but there is extra
information about the state and condition of the submitted data, something more or less like what you see in
Figure 3-17.

Figure 3-17. Spring default validation errors displayed after a form failed submission

Chapter 3 ■ Spring MVC

132

Spring MVC has its own validator messages, but supports externally provided validator messages too.
Data binding error messages can be customized and internationalized. The following are some examples;
depending on the validation library used, the message keys could be different:

NotEmpty.person.firstName=Please insert First Name Value
Size.person.firstName=Length must be between {2} and {1}
typeMismatch.dateOfBirth=Invalid format, should be \'yyyy-mm-dd\'
typeMismatch.amount=Incorrect amount

And after the customization, when a submit fails, the invalidated form looks like what’s shown in
Figure 3-18.

Figure 3-18. Customized validation errors displayed after a form failed submission

Data Validation
Spring MVC supports JSR 303/349 Bean Validation for validating form objects. If the library javax.
validation:validation-api:[version] is in the classpath and the application is configured using
<mvc:annotation-driven/> or @EnableWebMvc, it is automatically detected and enabled.

Spring 4+ also supports Hibernate Validator 4.3+, but for the org.hibernate:hibernate-
validator:[version] library to be used, a custom validator that implements org.springframework.
validation.Validator must be set in the configuration; for example:

<!-- Enables hibernate validator -->
<bean id="validator"
 class="o.s.validation.beanvalidation.LocalValidatorFactoryBean"/>

<!-- Defines basic MVC defaults (handler adapter, mapping,
date formatting, etc) -->

<mvc:annotation-driven validator="validator"/>

The Hibernate Validator is an extension of the default set of validation annotations provided by the
validation-api library, that’s why when using Hibernate Validator, validation-api is enabled by default,
as validation-api is a dependency of the Hibernate Validator.

Chapter 3 ■ Spring MVC

133

■ ! to depict this, a special gradle task was created for you in the 00-pr-dao module: allCompileDeps.
When executed, gradle prints the dependency tree for the 00-pr-dao module in the intellij iDea console.
if you analyze the output, you will find the following snippet.

+--- org.hibernate:hibernate-validator:5.1.3.Final
| +--- javax.validation:validation-api:1.1.0.Final
| +--- org.jboss.logging:jboss-logging:3.1.3.GA
| \--- com.fasterxml:classmate:1.0.0

The following are examples of validation annotations:

• @NotNull: Field cannot be null

• @Size (min, max): File must have a length in the range (min, max)

• @Pattern: String not null and matching

• @NotEmpty: String must not be empty (Hibernate)

• @Min(val), @Max(val): String must be of length at least minimum,
or maximum in size

They are used on the fields of interest in the domain object or data transfer object:

public class Person extends AbstractEntity {

 @Size(min=2, max=50)
 public String firstName;

 @Size(min=2, max=50)
 public String lastName;

 @NotNull
 // comment the following if a custom formatter is registered
 @DateTimeFormat(pattern = "yyyy-MM-dd")
 private Date dateOfBirth;
...
}

The validation is invoked by annotating the form object with @Valid and the errors are registered in the
BindingResult object too, alongside the binding errors.

In the JSP form, the way the errors are displayed can also be customized. In the previous section, each
error was mapped to its field, but you can also print all the errors in the same place by using the following
syntax:

<sf:form modelAttribute="person">
<form:errors path="*"/>

...
</sf:form>

This approach is not recommended for big forms. It is also quite annoying for the user to have to search
for the form field he has to correct. By linking the error to the form field, it becomes quite obvious where the
correction must be applied.

Chapter 3 ■ Spring MVC

134

The Hibernate Validator contains its own set of internationalization files with default internationalized
messages. The Resource bundle is named ValidationMessages; it is located in the hibernate-valdiator.jar
under the org.hibernate.validator package. You can expand the hibernate-validator.jar and look at it
contents in Intellij IDEA, as shown in Figure 3-19.

Figure 3-19. Contents of the hibernate-validator.jar

The message keys in the ValidationMessages.properties files are the message keys set by default in the
definition of each annotation. For example, the following is a snippet of code for the @NotEmpty annotation:

@Constraint(validatedBy = { })
@Target({ METHOD, FIELD, ANNOTATION_TYPE, CONSTRUCTOR, PARAMETER })
@Retention(RUNTIME)
@ReportAsSingleViolation
@NotNull
@Size(min = 1)
public @interface NotEmpty {
 String message() default "{org.hibernate.validator.constraints.NotEmpty.message}";

...
}

For every field that fails, the @NotEmpty validation has the default error message printed next to it
(if configured so), read from the Hibernate Validator resource bundle files. These messages can be
overridden by creating your own ValidationMessages resource bundle in the classpath of the project. Also,
the message keys can be customized by making the new message key a parameter for the message property
when using the annotation; this allows specific messages to be displayed when the same annotation is used
on different fields:

// in the Person entity class
@NotEmpty(message="lastname.notempty")
public String lastName;

#in the ValidationMessages.properties
lastname.notempty=Lastname cannot be empty!

Chapter 3 ■ Spring MVC

135

When using Spring forms, the error messages can be part of the application resource bundle under
WEB-INF\messages; the message keys usually respect the following template:

constraintName.modelAttributeName.propertyName

Each part of the Spring message key is linked to elements in the application, as depicted in Figure 3-20.

Figure 3-20. Spring message keys and linked elements

The message samples at the end of the previous section include customized validation messages, used
in the 05-pr-mvc-form-practice and solution modules.

Spring also supports the JEE @Constraint21 annotation, which can be used to define customized
validation annotations.

// Pnc.java
@Constraint(validatedBy = [PncValidator.class])
@Target({ ElementType.METHOD, ElementType.FIELD })
@Retention(RetentionPolicy.RUNTIME)
public @interface Pnc {
 //using specific message key
 String message() default "{pncFormatExpected}";
 Class<?>[] groups() default {};
}

21See http://docs.oracle.com/javaee/7/api/javax/validation/Constraint.html.

http://docs.oracle.com/javaee/7/api/javax/validation/Constraint.html

Chapter 3 ■ Spring MVC

136

//In PncValidator.java
public class PncValidator implements

ConstraintValidator<Pnc, String> {
 @Override
 public void initialize(Pnc constraintAnnotation) {

// nothing to initialize
 }

 @Override
 public boolean isValid(String value, ConstraintValidatorContext context) {

return (value == null) || value.matches("[1-2][0-9]*");
 }
}

// In Resouce bundle global.properties files
pncFormatExpected= A valid Personal Numerical Code is required!
// Usage in IdentityCard.java
public class IdentityCard extends AbstractEntity {
...
@Pnc
private String pnc;
...
}

Or the org.springframework.validation.Validator interface can be implemented to provide a
custom validator implementation, which can be specific to a controller and can be set using @InitBinder:

class PncValidator extends Validator {
 public void validate(Object target, Errors errors) {

if ((Person)target)
.identityCard.pnc.matches("[1-2][0-9]*"))

errors.rejectValue("pnc", "pncFormatExpected");
 }

 public boolean supports(Class<?> clazz) {
return clazz instanceof Person.class;

 }
}

@InitBinder
public void initBinder(WebDataBinder binder) {
 binder.setValidator(new PncValidator());
}

Chapter 3 ■ Spring MVC

137

Or a validation method can be implemented directly into the data transfer object and called from the
controller:

public class CriteriaDto {
 public void validate(Errors errors) {
 if (fieldValue == null || fieldValue.isEmpty())

errors.rejectValue("fieldValue", "valueExpected");
 }
}
...

@RequestMapping(method=RequestMethod.Get)
public String search(CriteriaDto criteriaDto, BindingResult result) {
 criteriaDto.validate(result);
 // process failure or success normally ...
}

Managing the Form Object
Using a form implies multiple requests, which means that the form object has to be the same across two or
more requests (when validations fail, for example). There are more ways to manage the form object:

• The object is created on every request. This strategy is recommended when
creating a new object and the form contains all required data for it.

• The object is retrieved on every request using a @ModelAttribute annotated
method. This strategy works best for editing existing objects. It scales well and it is
very simple. The disadvantage is that before every request, the method to retrieve
the object is called; thus Spring MVC must bind the request parameters to it. For big
forms using data transfer objects representing an aggregation of domain objects, this
process can introduce a certain latency because domain objects have to be retrieved
from the database and then aggregated.

• The object is stored in the session between requests. This strategy works for both
creating and editing objects. It performs better, but it does not scale because it
crowds the session.

• The object is managed by using flash attributes. This is the best solution for both
scenarios, as the object is passed from one request to another by Spring MVC.

In the first case, the object is created in the initial GET request, and then Spring MVC takes care of
creating it again and binding all request parameters to it.

@Controller
@RequestMapping("/persons/{id}")
public class PersonsController {

 //1. object is being created on every request
 // initial GET request, object is created
 @RequestMapping(value="/new", method=RequestMethod.GET)
 public String new(Model model) {

model.add(new Person());
 }

Chapter 3 ■ Spring MVC

138

 //2. object is being retrieved
 @ModelAttribute
 public Person findPerson(@PathVariable Long id) {

return personManager.findOne(id);
 }

 // the POST request - Spring MVC takes care of creating the object and binding
 @RequestMapping(method=RequestMethod.POST)
 public String save(Person person) {

...
 }
}

In the second case, the object is retrieved by a manager (service class) before every request and
@ModelAttribute annotation on a method is used for this; you can see this in the code sample at the
beginning of the “Data Binding” section. The last two cases were covered in the “Redirecting” section.

Summary
After reading this chapter, you should have a wide understanding of Spring Web MVC and all it has to offer.
Here is a simple list of topics that you should keep handy when reviewing your new knowledge:

• What is the DispatcherServlet and what is its role in Spring Web MVC applications?

• What is the controller programming model?

• How do you configure Spring MVC applications using XML, Java configuration,
mixed cases, and Servlet 3.0 with no web.xml configurations?

• What are the Spring MVC infrastructure beans and how are they configured?

• What is the difference between a URL and a URI?

• How you can create a reusable layout using Tiles for a Spring web application?

• How do you personalize a Spring MVC application?

• What types of views does Spring MVC support? What must be provided to do so?

• How do you chain ViewResolvers to support multiple view types in a single
application?

• How do you configure a ContentNegotiatingViewResolver to support multiple view
types for the same resource?

• How do you create a Spring form?

• Spring MVC provides a JSP tag library for form rendering. How do you format and
validate data handled by the form?

• How does data binding work?

• How do you write unit and integration tests to test controllers logic?

Chapter 3 ■ Spring MVC

139

Quick Quiz
Question 1: Considering the following configuration in web.xml, what is the name of the parameter that
holds the location of the Spring MVC configuration file?

<servlet>
 <servlet-name>mvc-dispatcher</servlet-name>
 <servlet-class>o.s.web.servlet.DispatcherServlet</servlet-class>
 <init-param>

<param-name>?????</param-name>
<param-value>

/WEB-INF/spring/mvc-config.xml
</param-value>

 </init-param>
 <load-on-startup>1</load-on-startup>
</servlet>
<servlet-mapping>
 <servlet-name>mvc-dispatcher</servlet-name>
 <url-pattern>/</url-pattern>
</servlet-mapping>

A. contextListener

B. configurationLocation

C. contextConfigLocation

Question 2: Considering the following configuration in web.xml, what is the name of the parameter that
points to the Spring infrastructure bean that enables Java configuration?

<servlet>
<servlet-name>mvc-dispatcher</servlet-name>
<servlet-class>o.s.web.servlet.DispatcherServlet</servlet-class>
<init-param>
 <param-name>???</param-name>
 <param-value>

o.s.web.context.support.AnnotationConfigWebApplicationContext
 </param-value>
</init-param>
<init-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>

com.book.config.WebConfig
 </param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
</servlet>

<servlet-mapping>
 <servlet-name>mvc-dispatcher</servlet-name>
 <url-pattern>/</url-pattern>
</servlet-mapping>

Chapter 3 ■ Spring MVC

140

A. contextClass

B. configClassLocation

C. contextConfigLocation

D. contextClassName

Question 3: In web.xml, the servlet name has been configured to mvc-dispatcher. What is the default name
of the MVC configuration file that Spring looks for?

A. mvc-config.xml

B. mvc-dispatcher.xml

C. mvc-dispatcher-servlet.xml

Question 4: As a developer, what do you need to do to configure Spring Web MVC application without using
an web.xml file ?

A. Extend the AbstractDispatcherServletInitializer class and override at
least createServletApplicationContext and getServletMappings.

B. Extend the AbstractAnnotationConfigDispatcherServletInitializer
class and override at least getServletConfigClasses and
getServletMappings.

C. Implement WebApplicationInitializer.

D. Extend WebApplicationInitializer and annotate the class with @
EnableWebMvc.

Question 5: Which of the following are Spring MVC infrastructure components?

A. Validator implementations

B. HandlerAdapter implementations

C. HandlerMapping implementations

D. ControllerAdvice implementations

Question 6: The purpose of HandlerMapping implementations is to map incoming requests to the
appropriate handlers and a list of pre- and post-processor interceptors. Is this statement true?

A. Yes

B. No

Question 7: RequestMappingHandlerMapping is registered by default when the following configuration style
is used for a Spring web application:

A. XML configuration using the MVC namespace specific element
<mvc:annotation-driven/>

B. Java configuration using a configuration class annotated with @EnableWebMVC

Chapter 3 ■ Spring MVC

141

Question 8: What are the key interfaces used by Spring to render responses without tying itself to a specific
view technology?

A. View

B. ViewResolver

C. ViewConfigurer

Question 9: Which of the following is an out-of-the-box view technology supported by Spring?

A. JSP

B. Thymeleaf

C. Velocity templates

D. XSLT

E. Tiles

Question 10: What is the default ViewResolver implementation configured by Spring?

A. InternalResourceViewResolver

B. JspResourceViewResolver

C. UrlBasedViewResolver

D. BeanNameViewResolver

Question 11: What is the difference between chaining ViewResolver beans and content-type negotiation?

A. There is no difference.

B. View Resolver chaining allows supporting multiple view types in a single
application.

C. Content-type negotiation allows support for multiple view types for the same
resource.

Question 12: What is true about the HTTP Accept header?

A. It can be used in a Spring Web MVC application to decide the view type for a
resource only when the client is a browser.

B. It is used for REST web services.

C. It is useless when the client is a browser.

D. It can be taken into consideration by setting a value for the
ignoreAcceptHeader property in the ContentNegotiatingViewResolver
bean.

Question 13: From the following list, select the Spring infrastructure bean types responsible with application
personalization:

A. MessageSource implementations

B. LocaleChangeInterceptor

C. LocaleResolver implementations

D. ThemeResolver implementations

Chapter 3 ■ Spring MVC

142

Question 14: What is true about the @ExceptionHandler and @ControllerAdvice annotations?

A. They are used for handling exceptions thrown by controller methods.

B. When a method inside a controller is annotated with @ExceptionHandler,
this method handles the exceptions thrown only in that controller.

C. @ControllerAdvice is used at class level; in addition to @ExceptionHandler
annotated methods, this class can define other types of methods.

Question 15: Given the following controller, to what request will the call method be mapped to?

@Controller
 @RequestMapping("/persons")
public class PersonsController {

 @RequestMapping("/list")
 public String call(Model model,HttpServletRequest rq) {
 ...
 }
}

A. http://localhost:8080/persons

B. http://localhost:8080/persons/list

C. http://localhost:8080/persons/call

Question 16: Given the following controller, is the declaration of the show method correct?

@Controller
 @RequestMapping("/persons")
public class PersonsController {

 @RequestMapping("/{id}")
 public String show(@PathVariable String number, Model model) {
 ...
 }
}

A. Yes

B. No

Question 17: What of the following is something that a Spring MVC handler method could not return?

A. a string

B. a Model

C. a ModelAndView

D. a JstlView instance

E. a null value

Chapter 3 ■ Spring MVC

143

Question 18: Which of the following statements regarding annotation-based configuration are true?

A. Annotating a class with Controller is not enough for that class to handle
requests; the class also has to extend Spring’s AbstractController class.

B. @RequestMapping is both used at class and method level.

C. To enable auto-detection of controller classes, you have to enable component
scanning in your configuration.

D. @ModelAttribute can only be used to annotate controller method
arguments.

Question 19: What is true about @ModelAttribute ?

A. This annotation is used to bind a method parameter or method return value
to a named model attribute, exposed to a web view.

B. If a method is annotated with it, that method will be executed before
handling any request.

C. This annotation is used to bind a form object to a controller.

Question 20: What is @InitBinder used for?

A. To initialize a controller.

B. To mark a method that initializes the WebDataBinder, which is used to
populate command and form object arguments of annotated handler
methods.

C. To mark a method for execution before handling any request.

Question 21: Which is true when a new view technology is added to a Spring web application?

A. The view technology in question must provide a class implementing Spring’s
View interface.

B. The view technology in question must provide a class implementing Spring’s
ViewResolver interface.

C. The view technology must require specific configuration beans to be defined.

Question 22: When working with Spring forms, which is the recommended workflow?

A. A GET request is made to display the form, a POST request is made to submit
the data, and a GET request is made to display a confirmation page and
prevent multiple resubmissions.

B. A GET request is made to display the form, and a POST request is made to
submit the data.

Question 23: Given the following Spring form definition, what is wrong with it?

<%@ taglib prefix="sf" uri="http://www.springframework.org/tags/form" %>
...
 <sf:form action="${personsUrl}" method="GET">
 ...
</sf:form>

http://www.springframework.org/tags/form

Chapter 3 ■ Spring MVC

144

A. The method of a form cannot be GET.

B. The modelAttribute is missing.

C. The <%@ taglib prefix="spring" uri="http://www.springframework.
org/tags" %> is missing

Question 24: Does Spring MVC support validation of form data?

A. Yes

B. No

Question 25: Which of the following are validation annotations used on form object fields?

A. @NotNull

B. @Size

C. @Valid

D. @NotEmpty

E. @Constraint

F. @Required

G. @Pattern

Practical Exercise
This chapter is quite big, so it has four module projects associated with it and each of the modules covers a
specific section. Figure 3-21 depicts the eight module projects attached to this chapter: four practice projects
and four proposed solutions for them. You are welcome to analyze the proposed solutions and compare
them to your solutions to test your understanding of Spring MVC.

Figure 3-21. Practice projects for Chapter 3

http://www.springframework.org/tags
http://www.springframework.org/tags
http://dx.doi.org/10.1007/978-1-4842-0808-3_3

Chapter 3 ■ Spring MVC

145

All web modules depend on the 01-pr-service module. This project contains the @Service classes and
the repositories used to manage data. The 01-pr-service depends on the 00-pr-dao module that contains
entity classes and common classes (formatters, enums, and utility classes) used by all other modules. The
service module was created to respect the standardized three-tiered software architecture pattern, depicted
in Figure 3-22. Each tier has a specific responsibility:

• The data tier is the data access layer that usually encapsulates persistence
mechanisms and exposes the data. It should provide an application programming
interface (API) to the logic tier that exposes methods of managing the stored data
without exposing or creating dependencies on the data storage mechanisms.22

• The logic tier (also known as the service layer) controls an application’s functionality
by performing detailed processing. This tier is needed when the application needs to
be accessed by different type of clients (browsers, web services, etc.).

• The presentation layer is the topmost level of the application that users can directly
access, such as a web page or a desktop GUI.

Figure 3-22. Typical standardized three-tiered architecture

22In the PErsonal REcords Manager project, because Spring DATA JPA is used, the implementation of the repositories
API is reduced to interfaces extending the JpaRepository interface. They are placed in the logic tier/service layer.

Chapter 3 ■ Spring MVC

146

Because the Personal Records Manager is quite a small project, the service classes do not do much
besides calling analogous methods form repository beans.

The HospitalFormatter is part of the 01-pr-service module because it needs a manager instance to
retrieve the hospital instance from the repository.

The DBInitializer class is also located in the service class; it is used to populate the database with
some sample entries when a web application starts. This class is a simple bean with access to all the service
components used in the application, and with a @PostConstruct annotated method that uses those service
classes to insert data. This is the most practical way to initialize a small test-scoped database that does not
require external configuration files or additional libraries in the classpath. The bean is annotated with
@Component and it is automatically discovered, created, and initialized at application boot time.

The @Service annotated classes are organized in the hierarchy depicted in Figure 3-23.

Figure 3-23. Service classes hierarchy

They are all named [EntityType]ManagerImpl, where EntityType is the type of object managed by the
class. The Impl suffix is used to emphasize that the class is a concrete implementation for the [EntityType]
Manager interface.

The BaseManager interface contains all the basic method skeletons common to all service classes.

 @Transactional
public interface BaseManager<E extends AbstractEntity> {

 @Transactional(readOnly = true)
 List<E> findAll();

 @Transactional(readOnly = true)
 E findById(Long id);

 E save(E e);

 void delete(E e);

 void deleteById(Long id);
}

The manager interfaces extending it add method skeletons specific to each managed entity-type.
The repository components are created using Spring Data JPA and are in fact interfaces extending the

JpaRepository interface. This interface extends CrudRepository, which provides sophisticated CRUD
functionality for the entity class being managed. All other method definitions that are needed, but not

Chapter 3 ■ Spring MVC

147

provided, are defined in the interface extending JpaRepository. They are annotated with the @Query
annotation, and the query to be executed is set through it; for example:

@Query("select p from Person p where p.lastName = :lastName")
List<Person> getByLastname(@Param("lastName") String lastName);

For Spring to provide proxy repositories with the configured implementation for the interfaces that
extend JpaRepository, the following line has been added to the app-dao-config.xml configuration file:

<beans xmlns="http://www.springframework.org/schema/beans"
 ...
 xmlns:jpa="http://www.springframework.org/schema/data/jpa"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 ...
 http://www.springframework.org/schema/data/jpa
 http://www.springframework.org/schema/data/jpa/spring-jpa.xsd
 ...">
 <jpa:repositories base-package="com.pr.repos"/>
</beans>

The equivalent Java configuration makes use of the @EnableJpaRepositories annotation:

@Configuration
@EnableJpaRepositories("com.pr.repos")
class ApplicationConfiguration {

 @Bean
 public EntityManagerFactory entityManagerFactory() { ... }
 @Bean
 public DataSource dataSource() {...}

...
{

The basic configuration *.gradle file for each web module project looks like this:

(1) apply plugin: 'war'
apply from: 'https://raw.github.com/akhikhl/gretty/master/pluginScripts/gretty.plugin'

dependencies {
(2) compile project(':01-pr-service')
compile misc.slf4jApi, misc.slf4jJcl, misc.logback,

hibernate.ehcache, hibernate.em, hibernate.core, hibernate.validator,
spring.jdbc, spring.orm, spring.contextSupport, spring.data,
spring.webmvc,
misc.dbcp, misc.h2, misc.joda, misc.jstl, misc.tilesJsp,
misc.tilesReqApi, misc.javaxEl

 testCompile tests.junit, tests.mockito, spring.test,
tests.hamcrestCore, tests.hamcrestLib

}

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/data/jpa
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/data/jpa
http://www.springframework.org/schema/data/jpa/spring-jpa.xsd
https://raw.github.com/akhikhl/gretty/master/pluginScripts/gretty.plugin

Chapter 3 ■ Spring MVC

148

gretty {
 port = 8080
(3) contextPath = '/mvc-layout'

}

1. This line is where the Gretty plugin is defined to run this module.

2. This is the line where the dependency from the 01-pr-service project is defined.
This line ensures that before compiling the web application, the 01-pr-service
is compiled first.

3. This is the line where the Gretty plugin is configured to start the application with
a different context than the name of the project. In the case presented
here after starting the application, the web interface can be accessed at
http://localhost:8080/mvc-layout This was necessary for practical reasons,
because by default the module name is used, and the names of the modules in
this chapter are quite long.

All the projects can be built without the tests by running the allCompile task, as mentioned earlier in
the book. In case you forgot, the task can be found directly under the project root, in this case the personal-
records project, in the Intellij IDEA Gradle task tab, as you can see in Figure 3-24.

Figure 3-24. The Gradle allCompileTask

The other two tasks you need to use are the appStart and appStop under the module-project name in
the Intellij IDEA Gradle task tab; they start and stop the web application, as depicted in Figure 3-25.

Chapter 3 ■ Spring MVC

149

All the modules in personal-records can be built and run separately when using Gradle outside of
Intellij IDEA, by using the command line in a terminal and running specific Gradle tasks:

$ cd personal-records
$ gradle :02-pr-mvc-basic-practice:build
$ gradle :02-pr-mvc-basic-practice:run

In the previous examples, the :02-pr-mvc-basic-practice is the name of the submodule, and :build
and run are Gradle tasks to be run for the modules.

■ ! When running examples in the command line, the run task is used instead of appStart to run the web
modules in gretty, so the execution can be ended by pressing any key in the terminal.

Each of the projects suffixed with -practice is incomplete, missing either a bean definition or a
configuration. In its place there is a TODO comment explaining what you have to do to make the project
build. Each project covers a specific topic from the chapter, as follows:

• 02-pr-mvc-basic-practice is a simple Spring web application project that displays
a list of persons from the applications. It should contain proper definitions for all the
personalization beans you read about in the chapter; it is what the TODOs are all
about: configuring the personalization beans properly. It has only one controller, the
PersonsController, which is used to populate the list.jsp and show.jsp views.
This controller also has an @ExceptionHandler method that handles cases when a
link is manually created with a non-existing person id. (Test the exception handling
method by manually accessing http://localhost:8080/mvc-basic/persons/99.)

• 03-pr-mvc-layout-practice is a simple Spring web application project that uses the
Tiles engine to create views. Some configuration is missing and some methods have
to be added for the project to work correctly. The Tiles template for the application
is found under webapp/WEB-INF/templates; it is called layout.jsp. You can see the
full path within the project in Figure 3-26.

Figure 3-25. The Gerry start and stop web application tasks

Chapter 3 ■ Spring MVC

150

There are two controllers defined PersonsController and HospitalsController. Each of
the controllers has the responsibility of populating the corresponding list.jsp views and the
HospitalsController has a method that uses redirect: and redirectAttributes. This project also contains
unit and integration tests designed to test you controllers.

• 04-pr-mvc-view-practice is a simple Spring web application project that uses
content view negotiation to present the data to the user in a specific view format
for the persons/list URL. All it is missing is a proper configuration for the
ContentNegotiatingViewResolver bean.

• 05-pr-mvc-form-practice is a simple Spring web application project that presents
the user with a form to edit users and one to search for users. The TODO tasks
require the user to place the correct annotation on methods to enable validation and
finish implementing the person search form. The part of the application managing
Hospital entries has been removed for the purpose of simplicity, but if you want to
practice your Spring form skills, you are welcome to try to create an edit form for a
Hospital entry after you have solved the existing TODOs.

All the applications are internationalized and themed. There are two languages available—English and
German, and two colored themes—blue and green.

When all the tests pass, all the applications start successfully and provide the expected functionality, and
you feel confident that you have a solid grasp of the Spring Web MVC, you can continue to the next chapter.

Figure 3-26. Path of the Tiles layout template

151

Chapter 4

Spring Portlets

Although not required for the certification exam, spring portlets are covered in this book because a lot of
medium-sized companies tend to favor portal applications, which come with a set of modules already
implemented. Companies may also hire developers to provide the customized functionality via pluggable
components. Usually, these portal applications are licensed and supported, which is an advantage when
things do not go exactly as planned, because you have direct contact with a team of experts that can help you
with problems specific to the software.

Portlets are pluggable web components used when creating a portal, which is a complex web-based
application that provides personalization, authentication, and customizable content aggregation from
multiple sources. A portlet is a Java-based web component; its lifecycle is managed by a portlet container,
which processes requests and generates dynamic content.1 Each portlet produces a fragment of markup
that is combined with the markup of other portlets in the context of a composite portal page. On enterprise
application servers, a new war archive is deployed on a server, either manually by copying it into a
deployment directory, or by uploading it using a manager application. A standard Java portlet should be
deployable on any portlet container2 that complies with the standard.

The advantage of using portlets is that the developer has to only handle the implementation of the logic
inside a portlet; the portal server takes care of the rest, such as building and securing the page. Although this
seems restrictive, the value of a portal application is the control that is given to administrators and users.

A portlet (or a collection of portlets) behaves as a web-based application per-se, and it can be
aggregated to build more complex web applications—portals. Portal applications are as widely used as
servlet applications and the design of such applications comes in two flavors:

• Portlets provide small units of functionality and are aggregated by the portal server
into a larger application (see Figure 4-1).

1This definition is given in the official Java portlet specification at https://jcp.org/en/jsr/detail?id=286.
2A portlet container is an application that runs portlets and provides the appropriate context. Examples of well-known
and widely used portal applications that can be customized using portlets include IBM WebSphere Portal; Liferay Portal,
an enterprise web platform for building business solutions; GateIn Portal (formerly JBoss Portal), an open source web
site framework; and the Blackboard learning management system.

https://jcp.org/en/jsr/detail?id=286

Chapter 4 ■ Spring portletS

152

• Whole applications can be written to reside in only one or a few portal pages
(see Figure 4-2).

Figure 4-1. Diagram of portlets as units of a single-page portal application

Figure 4-2. Diagram of a multipage portal application

Chapter 4 ■ Spring portletS

153

Choosing which approach to use depends on the requirements of the application and the number of
different functionalities that the application must provide. For example, a university’s portal application
is made of multiple pages, and each of those is made of multiple portlets with functionality related to a
common domain. But a smaller application—a blog, for example—does not need multiple pages; the whole
application can fit into one portal page.

Liferay Community Edition version 6.2-ce-ga43 is used to run the examples in this chapter (Figure 4-3
shows the official Liferay site to help you easily see what you need to download). Choices are made by taking
compatibility with Spring into consideration, as well as how practical development and deployment will be.
Every portal application requires specific configurations, but Liferay allows high decoupling between portal
and application configuration, which is quite an important feature, as you will soon discover.

Figure 4-3. Liferay Portal version to download: Community Edition Bundle with Tomcat

Spring provides an MVC framework for the JSR-168 and JSR-268 portlet development. This framework
tries, as much as possible, to mirror the Web MVC framework, and also uses the same underlying view
abstractions and integrations technology to make portlet development more practical.

3Download the Liferay Community Edition from http://www.liferay.com/downloads/liferay-portal/
available-releases.

http://www.liferay.com/downloads/liferay-portal/available-releases
http://www.liferay.com/downloads/liferay-portal/available-releases
http://www.liferay.com/downloads/liferay-portal/available-releases

Chapter 4 ■ Spring portletS

154

Portlet Basics
Portlet workflow is different from servlet workflow because it involves two distinct phases: an action phase
and a render phase. The action phase is executed only once; this is the phase where backend logic is
executed. During the render phase, the response that gets sent back to the user is produced. So there is a
separation between activities that affect the state of the system and the activities that generate data to be
displayed.

Figure 4-4 depicts the difference between MVC servlet handling and MVC portlet handling when
using Spring.

In the early versions of Spring MVC framework, implementing a controller class in a servlet-based
application meant extending the o.s.web.servlet.mvc.AbstractController class (or implementing the
org.springframework.web.servlet.mvc.Controller interface) and overriding the handleRequest()
method, which is called by DispatcherServlet. Starting with Spring 3.0, this was no longer necessary,
because annotations (@Controller and @RequestMapping) are used to provide a more flexible and practical
way of working with controllers.

There is an equivalent Spring class for portlets that should be extended to create a portlet: the
org.springframework.web.portlet.mvc.AbstractController class (and an equivalent interface
org.springframework.web.portlet.mvc.Controller).

The handleActionRequest() and the handleRenderRequest() methods should be overridden; the
org.springframework.web.portlet.DispatcherPortlet handles their invocation.

Since Spring 3.0, annotations have made things easier for development of portlets too. @Controller is
used to annotate a portlet controller, @RenderMapping is used to annotate a render method, and
@ActionMapping is used to annotate an action method.

Figure 4-4. Spring MVC portlet handling

Chapter 4 ■ Spring portletS

155

The advantage of annotations is that multiple render and action methods can be defined, and they can
be called depending on the request parameters.

The DispatcherPortlet uses a few special infrastructure beans to process requests and render
appropriate views; they are implementations of interfaces analogous to MVC servlet interfaces. So when it
comes to portlets, handler mappings are used to map requests and portlet modes with controllers, multipart
resolvers, and handler exception resolvers. Data binding, command object usage, model handling, and
view resolution are the same as in the servlet framework, and they are performed by the same classes. An
intermediary servlet bridge class, called ViewRendererServlet, is used for rendering views; it transforms a
portlet rendering request to a servlet request and the view can be rendered using the servlet infrastructure
specific beans (view resolvers, messageSource, etc.). The only things not available are the usage of the
redirect: prefix and RedirectView, because these kinds of operations are linked to the URL of the request,
which in this case is generated by the portal and the results would be unexpected.

Most portal applications expect the result of rendering a portlet to be an HTML fragment, so any view
technologies like JSP/JSTL, Velocity, FreeMarker, and XSLT are allowed. This also means that Spring taglib
and Spring form taglib are supported.

Each portlet has a javax.portlet.PortletMode defined, which indicates the function the portlet is
performing in the render method. A portlet can change its portlet mode programmatically when processing
an action request. The portlet specification defines three portlet modes: VIEW, EDIT, and HELP. Depending
on the security restrictions, a user can have access only to specific portlet modes; unauthenticated users can
only use VIEW and HELP, whereas authenticated users can also use EDIT.

Portlets are required to support VIEW mode; and this is the only mode needed—even in complex
applications. EDIT and HELP are not mandatory. Portal applications can define their own custom portlet
modes. For example, the Liferay Portal has additional portlet modes:

• ABOUT

• CONFIG

• PRINT

• PREVIEW

• EDIT_DEFAULTS

• EDIT_GUEST

Liferay also allows its users to create their own portlet modes.
Spring also acts as a portlet container, providing portlets with a runtime environment and managing

their lifecycle. Spring receives requests from the portal and decides which portlet to execute. The portal is
responsible with aggregating the resulted content.

The following is the typical flow of events for using a portal application:

1. The user gets authenticated by the portal.

2. The user makes an HTTP request to the portal.

3. The request is received by the portal.

4. The portal determines if the request contains an action targeted to any of the
portlets associated with the portal page.

5. Using the portlet container, the portal invokes portlets to obtain content to be
displayed in the resulting portal page.

6. The portal aggregates the output of the portlets in the main page, and then sends
the results back to the client.

Chapter 4 ■ Spring portletS

156

As seen in this example, even if the request is directed to a single portlet in the page, the whole page is
being reconstructed and rendered. This can be avoided by using AJAX components in the portlet pages, and
instead of action requests, resource requests can be used (methods will be annotated with
@ResourceMapping), but this implies adding a lot of resource handling logic for conversion and validation,
which otherwise can be done by Spring automatically.

A portal page can be made of one or more portlets, as seen in Figure 4-5.

Configuration
Spring Portlet is a request-driven web MVC framework designed around the DispatcherPortlet,
which is the entry point for a portlet application. It plays the same role as a front controller as
DispatcherServlet does for servlet applications. Because each portlet behaves as a stand-alone
application, a DispatcherPortlet is defined for each portlet. Each DispatcherPortlet has its own
WebApplicationContext, which inherits everything defined in the root WebApplicationContext. Everything
inherited can thus be overridden in the portlet-specific scope. A context inheritance diagram example is
depicted in Figure 4-6.

Figure 4-5. Liferay Portal page with various portlet components

Chapter 4 ■ Spring portletS

157

Configuring a portlet application can be done by using only XML files, but when working with Spring
MVC portlet, it is practical to use annotations to reduce the size of XML configuration files and make them
more readable.

In the source code attached to this chapter, two portlets are defined: PortletSearch and PortletAdd.
Snippets of code from the content of one or the other are used in this book to provide examples for the terms
and definitions being mentioned.

The XML Part of the Configuration
The DispatcherPortlet(s) is/are declared in a configuration file name portlet.xml, which resides under
the WEB-INF directory. This file must exist with the mentioned name and in the mentioned location in any web
archive containing portlet definitions. It is the configuration file for the portlet applications. You can consider
it the equivalent of web.xml for portlets.

A portlet application has the same structure as a normal web application, but the necessary
configuration files depend on the portal application. How to use Liferay in this case will be discussed shortly;
you can see the application structure provided in Figure 4-7.

Figure 4-6. Context inheritance diagram in this chapter’s application sample

Chapter 4 ■ Spring portletS

158

Each file under WEB-INF has a specific purpose that will be discussed in detail later in this chapter.
A short description of these files and their purposes can be seen in Table 4-1.

Table 4-1. Message Converters Table

File Name Purpose Observation

app-config.xml Application configuration Spring, part of the root context

liferay-display.xml List of portlets available Liferay

liferay-portlet.xml Portlets configuration in the portal Liferay

mvc-config.xml Web infrastructure configuration Spring, part of the root context

personAdd-portlet.xml PersonAdd portlet configuration file Spring, inherits root context

personSearch-portlet.xml PersonSearch portlet configuration file Spring, inherits root context

Figure 4-7. The structure and configuration files for a Liferay portlet application

The following list describes what every configuration file contains.

• app-config.xml and mvc-config.xml are the typical Spring configuration files that
contain the user-defined application beans and web infrastructure beans that are
inherited by portlet contexts:

<!-- app-config.xml -->
 <context:component-scan base-package="com.pr">

<context:include-filter type="annotation"
expression="o.s.stereotype.Service"/>

<context:include-filter type="annotation"
expression="o.s.stereotype.Repository"/>

 </context:component-scan>

Chapter 4 ■ Spring portletS

159

 <!-- Import configuration for the datasource and the dao project -->
 <import resource="classpath:spring/app-dao-config.xml"/>
 <import resource="classpath:spring/db-config.xml"/>

<!-- mvc-config.xml -->
 <bean id="viewResolver"

class="o.s.web.servlet.view.InternalResourceViewResolver"
p:viewClass="org.springframework.web.servlet.view.JstlView"
p:prefix="/WEB-INF/person/" p:suffix=".jsp"/>

<bean id="messageSource"
class="o.s.context.support.ReloadableResourceBundleMessageSource"
p:basename="classpath:localization/global"
lazy-init="true"/>

• liferay-display.xml is a Liferay Portal configuration file, which contains the list
of portlets available to add in the pages of a site and a category that groups them
together. This file is not mandatory, but it is recommended to create it to shorten
the deployment process. Having this file in the war (alongside liferay-display.xml)
allows you to install a portlet war application using the App Manager in Liferay,
without any additional operations (see Figure 4-8).

Figure 4-8. The App Manager in Liferay

Chapter 4 ■ Spring portletS

160

• This is the syntax of the file:

<display>
<category name="Personal Records">

<portlet id="personAdd" />
<portlet id="personSearch" />

</category>
</display>

• And when creating a site or a site template, Liferay provides user portlets
(see Figure 4-9).

Figure 4-9. How Liferay provides user portlets for usage in portal pages

Chapter 4 ■ Spring portletS

161

• liferay-portlet.xml is a Liferay configuration file that contains typical settings for
user created portlets in the context of the web application: portlet names, if they can
be used more than once in a page,4 additional JavaScript files, CSS files,5 and so forth.

<liferay-portlet-app>
 <portlet>

<!-- The canonical name of the portlet, it has to be unique -->
<portlet-name>personSearch</portlet-name>
<!-- Indicates if multiple instances of this portlet

can appear on the same page -->
<instanceable>false</instanceable>

<!-- not used in the example, but can appear in a configuration -->
<footer-portlet-javascript>/js/main.js</footer-portlet-javascript>
<header-portlet-css>/styles/general.css</header-portlet-css>
<requires-namespaced-parameters>false</requires-namespaced-parameters>

 ...
</portlet>

</liferay-app>

As these settings are Liferay specific, they won’t be covered in detail here. If you are interested in
working with Liferay, you can find more details on the official site at www.liferay.com.

! Starting with liferay 6.2, the requires-namespaced-parameters parameter must be specified for a portlet.
it must be set to false for parameter values to be read correctly. When not specified, the default value is true
and the portal associates a unique name to each htMl element in the page to prevent name collisions between
different portlets in the page.

• personSearch-portlet.xml and personAdd-portlet.xml are portlet application
configuration files. A configuration file for each portlet must be created. All beans
used by the portlet controller bean (except the beans inherited from the root context)
are declared in it. The name must match the <portletName>-portlet.xml template,
where <portletName> is the name of the portlet as declared in portlet.xml. In our
example, only the definition of the portlet controller bean can be specified. This file
is loaded by the DispatcherPortlet:

<bean id="personSearch" class="com.pr.search.PersonController"
 p:personManager-ref="personManager"/>

4Portlets behave as stand-alone applications, so it is possible to add the same portlet multiple times to a page, unless
configured differently.
5Liferay and other portlet containers provide a context for the portlets to run in. This context contains theme elements
defined in CSS files, and additional functionality in the interface via JavaScript. But the user can override or complement
Liferay by providing custom CSS and JavaScript files.

http://www.liferay.com/

Chapter 4 ■ Spring portletS

162

But if you want to use annotations as much as possible, you could do so:

<!-- in personSearch-portlet.xml -->
 <context:component-scan base-package="com.pr.search"/>
 <mvc:annotation-driven/>

<!-- in personAdd-portlet.xml -->
 <context:component-scan base-package="com.pr.add"/>
 <mvc:annotation-driven/>

The scanned package contains the portlet controller class and all the
components involved in defining the functionality of a portlet. Although the <mvc:annotation-driven/>
declaration seems redundant, it is actually needed because portlets are independent applications, even if
they inherit the same root context and they reside in the same portal application context.

As mentioned, each portlet behaves as a standalone application, and that’s why these configuration files
are needed. The root Spring configuration is defined in the
app-config.xml and mvc-config.xml. Without these configuration files, the deployment will fail, because
the Spring MVC portlet expects a configuration file for each portlet. Here is what happens at deploy time if the
personSearch-portlet.xml file is missing:

o.s.w.p.c.XmlPortletApplicationContext - Refreshing PortletApplicationContext
for namespace 'personSearch-portlet'...
o.s.b.f.x.XmlBeanDefinitionReader - Loading XML bean definitions from
PortletContext resource /WEB-INF/personSearch-portlet.xml
ERROR o.s.w.p.DispatcherPortlet - Context initialization failed
o.spring.beans.factory.BeanDefinitionStoreException: IOException parsing XML
document from PortletContext resource /WEB-INF/personSearch-portlet.xml;
nested exception is java.io.FileNotFoundException:
Could not open PortletContext resource /WEB-INF/personSearch-portlet.xml
...

• portlet.xml is the configuration file that defines settings for the portlet(s), such
as the portlet request handler (the portlet class). When working with Spring only,
DispatcherPortlet, supported modes, supported locales, supported MIME types,
and the resource bundle are used. This file contains multiple portlet elements—one
for each portlet defined in the application.

<portlet-app ...>
<portlet>
 <portlet-name>personSearch</portlet-name>
 <portlet-class>o.s.web.portlet.DispatcherPortlet</portlet-class>

<supports>
<mime-type>text/html</mime-type>
<portlet-mode>view</portlet-mode>

</supports>
<resource-bundle>localization.global</resource-bundle>
<portlet-info>

<title>Person Search</title>
</portlet-info>

</portlet>

<portlet>

Chapter 4 ■ Spring portletS

163

 <portlet-name>personAdd</portlet-name>
 ...
 <!-- configuration is analogous to the one for personSearch -->
</portlet>
<!-- More settings for other portlets -->
</portlet-app>

• web.xml contains the deployment descriptor for the web resources, and this is
where the ViewRendererServlet is declared and the connection to the Spring MVC
configuration is made. There is no DispatcherServlet defined, because portlet
applications run in a portlet context, which is different form a servlet context.
According to Portlet Specification 1.0, every portlet application is also a Servlet
Specification 2.3–compliant web application, and thus it needs a web application
deployment descriptor, meaning a web.xml file:

<web-app ...>
 <context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>/WEB-INF/root-context.xml</param-value>
 </context-param>
 <listener>

<listener-class>o.s.web.context.ContextLoaderListener</listener-class>
 </listener>

<servlet>
<servlet-name>ViewRendererServlet</servlet-name>
<servlet-class>o.s.web.servlet.ViewRendererServlet</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>ViewRendererServlet</servlet-name>
<url-pattern>/WEB-INF/servlet/view</url-pattern>

</servlet-mapping>
</web-app>

The ViewRendererServlet is the bridge servlet for portlet support. During the render
phase, DispatcherPortlet wraps PortletRequest into ServletRequest and forwards control to
ViewRendererServlet for actual rendering. This process allows the Spring Portlet MVC framework to use the
same View infrastructure as that of its servlet version; that is, the Spring Web MVC framework. The /WEB-
INF/servlet/view is the default value available for internal resource dispatching. The ViewRendererServlet
bridge servlet can be mapped to a different URL pattern by using the viewRendererUrl property.

Chapter 4 ■ Spring portletS

164

! as mentioned at the beginning of the chapter, the controllers can be created without annotations by extending
the |o.s.web.portlet.mvc.AbstractController class. this is the old way of doing things, before the
introduction of the @Controller annotation. it is still supported, but not recommended, and it is not as practical
as using an annotated controller. in this case, the <portletName>-portlet.xml looks a little different. the
HelloWorldController in the book-code/04-chapter-solution module has a configuration file that looks
like this:

<bean id="helloWorldController" class="com.book.HelloWorldController"/>

<bean id="portletModeHandlerMapping"

 class="o.s.web.portlet.handler.PortletModeHandlerMapping">
 <property name="portletModeMap">
 <map>
 <entry key="view">

<ref bean="helloWorldController"/>

 </entry>
 </map>
 </property>
</bean>

the PortletModeHandlerMapping class is an implementation of the o.s.web.portlet.HandlerMapping
interface used by Spring to map from the current PortletMode to request handler beans.

The Annotation Part of the Configuration
At the time this book is being written, a full annotation configuration for a portlet-based application is not
possible. A combination of XML and annotations can be used, because Spring MVC annotations are available
for usage in portlet controllers too. For example, in the PersonAddController, the @ModelAttribute is used
in a similar manner as for a servlet container. The PersonAddController is a simple controller that allows the
user to create a person instance.

import org.springframework.stereotype.Controller;

...

@Controller("personAdd")
@RequestMapping("VIEW")
public class PersonAddController {
...
@RenderMapping
 public String render(Model model) {
 model.addAttribute(new Person());
 return "add";
 }

Chapter 4 ■ Spring portletS

165

@ModelAttribute
private List<Hospital> getHospitals() {
 return hospitalManager.findAll();
}

@ActionMapping("add")
public void addPerson(@Valid @ModelAttribute Person person,
 BindingResult result, ActionRequest actionRequest,
 ActionResponse actionResponse,
 SessionStatus sessionStatus, Model model) {
 if (!result.hasErrors()) {

logger.info("ACTION: action saving person = " person);
try {

personManager.save(person);
model.addAttribute("message",

messageSource.getMessage("label.Person.saved", null,
actionRequest.getLocale()));

sessionStatus.setComplete();
} catch (Exception e) {

logger.error("Unexpected error when saving person.", e);
model.addAttribute("error", "Internal Error.

Contact Administrator.");
}

 } else {
logger.info("Validation failed");
model.addAttribute("errors", result);

 }
 }
}

The model attribute defined by getHospitals() is used to populate the hospital drop-down list in the
view fragment in add.jsp. The view fragment is basically normal JSP code; any taglibs can be used, and the
portlet taglib is used to define the render and action URLs that will be mapped to methods in the controller
responsible for populating and managing data for the JSP fragment.

(1) <%@ taglib prefix="portlet" uri="http://java.sun.com/portlet_2_0"%>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="fn" uri="http://java.sun.com/jsp/jstl/functions" %>
(2) <%@ taglib prefix="sf" uri="http://www.springframework.org/tags/form" %>
<%@ taglib prefix="spring" uri="http://www.springframework.org/tags" %>

(3) <portlet:defineObjects />

<h3>
 <spring:message code="persons.add.title"/>
</h3>

(4) <portlet:actionURL var="addPersonUrl">
<portlet:param name="javax.portlet.action" value="add"/>

</portlet:actionURL>

http://java.sun.com/portlet_2_0
http://java.sun.com/jsp/jstl/core
http://java.sun.com/jsp/jstl/functions
http://www.springframework.org/tags/form
http://www.springframework.org/tags

Chapter 4 ■ Spring portletS

166

(5) <portlet:renderURL var="cleanPersonUrl">
<portlet:param name="action" value="clean" />

</portlet:renderURL>

<div class="person">
...
<sf:form name="person" modelAttribute="person"

action="${addPersonUrl}"
method="POST">

 <table>
<tr>

<th>
<label for="firstName">

*
<spring:message code="label.Person.firstname"/>

</label>
</th>
<td><sf:input path="firstName"/></td>
<td><sf:errors cssClass="error" path="firstName"/></td>

</tr>
<tr>

<th>
<label for="middleName">

<spring:message code="label.Person.middlename"/>
</label>

</th>
<td><sf:input path="middleName"/></td>
<td><sf:errors cssClass="error" path="middleName"/></td>

</tr>
...
<!-- other form elements -->
<tr>

<td>
<input type="submit"

value=" <spring:message code=’command.save’/>">
</td>
<td>

<spring:message code="command.cancel"/>

</td>

</tr>
</table>

 </sf:form>
</div>

Chapter 4 ■ Spring portletS

167

The previous sample code is a snippet from the definition of the add.jsp fragment. A few lines are
marked with numbers in parentheses; here is why those lines are important:

• (1) The portlet taglib definition for JRS 286. (A portlet container that supports JSR
286 should also support JSR 168.)

• (2) The Spring form taglib definition.

• (3) Needed to use renderRequest, renderResponse, and portletConfig variables.6

• (4) An element used to define an action URL for a portlet. The javax.portlet.action
parameter value must match the value of the @ActionMapping annotation placed on
the action method in the controller. Other parameters with different names can be
used and the {name,value} pairs, must appear as a value for the @ActionMapping
annotation params attribute to correctly identify the action method to use. In the
case described in the preceding snippet, the following method will be mapped to the
addPersonUrl:

@Controller("personAdd")
@RequestMapping("VIEW")
public class PersonAddController {
...
@ActionMapping("add")

public void addPerson(...){
...
}

 ...
}

• (5) An element used to define a render URL. This element has a parameter, and
its name and value appears in the @RenderMapping annotation params attribute to
correctly identify the render method to use. In the case described in the preceding
snippet, the following methods will be mapped to the cleanPersonUrl:

@Controller("personAdd")
@RequestMapping("VIEW")
public class PersonAddController {
...
 @RenderMapping(params = "action=clean")
 public String renderNew(Model model) {
 //the model attribute is removed from the model and a new on is added
 //causing the form to be emptied of data

model.asMap().remove("o.s.validation.BindingResult.person");
model.addAttribute(new Person());
return "add";

 }
...
}

6https://blogs.oracle.com/deepakg/entry/jsr286_defineobjects_tag.

https://blogs.oracle.com/deepakg/entry/jsr286_defineobjects_tag

Chapter 4 ■ Spring portletS

168

Configuration Details and Recommendations
If you paid enough attention to the example configuration files presented in the previous sections, you
might have noticed that there are some common elements between the configuration files; portlet names
and portlet ids have to respect some strict rules in order for the portlets to be deployed correctly. Figure 4-10
is a mashup of all files used in defining a portlet. In this image, only configuration elements specific to the
PersonAdd portlet are depicted. Analogous elements are also defined for the PersonSearch portlet in this
book’s code samples. If you decide to experiment with the provided code and create your own portlet, the
configuration should be done similarly to what is presented in Figure 4-10 for the PersonAdd portlet.

When developing a portlet, it is important to keep a standard for naming beans and configuration
items; make it as global as possible, because when elements are not found, Spring reports these as errors in
the portal application. Spring is quite clear in telling you what is missing, but portal application exceptions
can be quite confusing, especially when you are working with a portal application for the first time. So if you
want your portlet development to go flawlessly, try to follow these recommendations:

1. Try to start development by writing the controller. Name the controller
appropriately. A controller name should be made of the following:

a. The name of object type being manipulated

b. The type of manipulation (list, search, edit, add)

c. The Controller suffix

Figure 4-10. All the files defining the PersonAdd portlet

Chapter 4 ■ Spring portletS

169

For example, a controller that handles requests for searching for a person would be named
PersonSearchController. The name of the controller bean should be the object type name + manipulation
type. So the PersonSearchController name is annotated with @Controller("personSearch").

2. The second file is the Spring portlet configuration type. It is named as follows:

a. The name of the object type being manipulated

b. The type of manipulation (list, search, edit, add)

c. The -portlet suffix

So, a file to configure a portlet that performs a person search would be called personSearch-portlet.xml.
Inside this file, a bean defines the controller type that you previously created, and dependencies are injected
when XML configuration is used. The bean id is the name of the controller bean defined in the previous step.

<bean id="personSearch">
 <property name="personManager" ref="personManager"/>
</bean>

When annotations are used to configure the necessary components, only the package that you are
interested in is scanned, and the <mvc:annotation-driven/> is added:

<context:component-scan base-package="com.pr.search"/>
<mvc:annotation-driven/>

3. The liferay-display.xml is next. Set the portlet id as object type name +
manipulation type.

4. In the liferay-portlet.xml, set the portlet name as object type name +
manipulation type too.

So, for the portlet that displays a list of people, the portlet id and portlet name should be personList.

5. In portlet.xml, use the same portlet name as you did in the previous step.

6. Another recommendation is to make portlets that display data instanceable and
the portlets that alter data non-instanceable. The reason for this is as follows: if
a portlet that displays data is placed twice in the page, both portlets will always
display the same data, because they share the request. The same happens with
portlets that alter data; so basically, two action requests are made with the same
parameters, even if the input parameters have been populated in only one of
them. This leads to exceptions at the database level if the database is properly
designed. If not, this leads to data duplications, and sometimes data corruption.

7. If you have only one portlet, the root-context.xml is not necessary and all
Spring infrastructure beans can be declared in the <portletName>-portlet.xml.

The Development and Deployment of a Portlet Application
Since this chapter does not cover topics required for the certification exam, no quiz or practical exercises are
in it; instead, a short step-by-step tutorial explains how to install, start, and configure Liferay, and deploys the
code samples offered to you. After you understand the process and create some portal pages with the given
portlets, you can try to create your own portlet by following the recommendations from the previous section.

Chapter 4 ■ Spring portletS

170

Download, Install, Start, and Configure Liferay
As mentioned in the beginning of this chapter, Liferay can be downloaded from www.liferay.com/
downloads/liferay-portal/available-releases. The following examples use the Community Edition,
bundled with Tomcat, because it is free and can be downloaded directly. Also, Tomcat is really easy to use.

After you click the Download button a *.zip file is saved onto your computer. The file is usually named
liferay-portal-tomcat-[version]-ce-ga[index]-[date+build_number].zip. Unpack the archive in a
desired location. And this is the end of the install process.

If you open the directory, you will see the content depicted in Figure 4-11.

The tomcat-[version] is the version of Tomcat that Liferay is based upon. It has the normal structure
and functionality of a Tomcat application server, but it contains some extra jars and configuration files for
the Liferay Portal application.

! Currently, liferay is based on tomcat 7, so a configuration without a web.xml file is not possible.

To start Liferay, you have to open a shell terminal or a Command Prompt instance. Go to the
tomcat/bin directory inside the Liferay installation. Start the server as you would start Tomcat.

Windows / Command Prompt
C:\{directory}\liferay-{version}\omcat-{version}\bin catalina.bat run
you also have the option to "double-click" on startup.bat

Linux / MacOs shell terminal
cd /{directory}/liferay-{version}/tomcat-{version}/bin ./startup.sh

Figure 4-11. The Liferay installation archive

http://www.liferay.com/downloads/liferay-portal/available-releases
http://www.liferay.com/downloads/liferay-portal/available-releases

Chapter 4 ■ Spring portletS

171

You can look in tomcat-[version]/logs/catalina.out to see when the server is up and whether
exceptions were thrown due to incompatibilities between the Java version and Liferay. There could be other
tomcat *.log files in the directory, but the catalina.out file is the one you should be interested in, because
it is the main logging file for Tomcat and logs are written into it in real time when the server is up. Liferay 6.2
is compatible with Java 8, however, so no such problem should arise. When the server is started, a window is
opened in your default system browser at the address http://localhost:8080.

This page asks you to insert a few settings details. For the examples in this book, the default
configuration can be used. The page should look like the one shown in Figure 4-12.

Click the Finish Configuration button on the bottom-left corner of the page. The default settings are
saved in an internal in-memory database. You should see a confirmation page that looks like the shown one
in Figure 4-13.

Figure 4-12. The Liferay welcome page

Chapter 4 ■ Spring portletS

172

Click the Go to my Portal button in the bottom-left corner of the page. The next page is the Terms of
Use page. Just scroll down and click the I Agree button. Next, you are presented with a page requiring you
to add a password reminder. Just insert something simple and click the Save button. The default password
for user test@liferay.com is test (see Figure 4-14). After introducing a password reminder, you should
be redirected to the portal home page (see Figure 4-15). If you see this page, then your server is correctly
configured and you can start deploying custom portlets.

Figure 4-13. Liferay configurations saved confirmation page

Figure 4-14. Liferay Password Reminder page

http://mailto:test@liferay.com/

Chapter 4 ■ Spring portletS

173

In Liferay, portlets have to be added manually to a page by selecting them from a list with available
components. A page is usually part of a site. In Liferay, there are also site templates, which can be used
to create multiple sites that inherit the configuration of a template. Of course, you could add the portlets
directly to the home page you see after logging in, and then start testing them; but for the examples in this
chapter, you will use Liferay the proper way.

The first step is to create a site template. To do this, expand the Admin menu and select Control Panel.
Figure 4-16 shows where this option is found on the menu.

Figure 4-15. Liferay Portal home page

Figure 4-16. Liferay Admin menu

Chapter 4 ■ Spring portletS

174

After selecting the Control Panel option, an admin page with all possibilities is displayed (see Figure 4-17).

These options are numbered in Figure 4-17 to show you their order of usage when creating your site:

1. Link to the Site Templates administration page.

2. Link to the portlets (Applications) administration page.

3. Link to the Sites administration page.

This page takes care of administration for the portal application and all sites hosted by it. Sites can be
secured or public. They can have users with different access roles and rights. They can have custom pages.
Site templates can be created and user-provided portlets can be installed by using the App Manager. So let’s
create a public site and populate it with the provided portlet samples.

Click the Site Templates link to display the Site Template configuration page. Click the +Add button.
The form for creating the site template is displayed (see Figure 4-18). Insert the name of the site template
and a description, if you want (description is not mandatory, the site name is). Click the Save button.

Figure 4-17. Liferay admin page

Chapter 4 ■ Spring portletS

175

The more extended site template configuration is next. Click the Pages option in the menu on the
left. Next, click the Site pages option. In the center of the page, a set of options for all the pages in the site
template are presented. One of these options is the theme for all pages. Select the Dark radio button under
the Color Schemes section to use the dark scheme for the site template, because in the style sheet used in
the example, the style is defined to be compatible with it (see Figure 4-5). Then click the Save button on the
right. Figure 4-19 depicts the actual page and the order of operations.

1. Link to all site pages configurations.

2. Select the Dark theme option.

3. Link to the home page template configuration page.

4. Click the Save button.

Figure 4-18. Liferay create Site Template page

Chapter 4 ■ Spring portletS

176

Click the home link (3), to customize the home page. Change the name if you want; in this example, the
first letter is in uppercase. Next, select a layout. The preferred layout is 2 Columns (50/50), so the portlets
can be added side by side in the page. After doing this, click the Save button. A green message box should
appear at the top of the page, letting you know that all went well (see Figure 4-20).

Figure 4-19. Liferay customize site template page

Chapter 4 ■ Spring portletS

177

So, now a site template has been created; it contains a single page named Home, which is the page the
sample portlets implementations will be placed. To do that, you have to preview the site template, which is
done by going back to the Site Templates Administration page and clicking the Site Templates button at the
top of the page. A list with all the defined site templates is displayed. The last one on the list should be the
recently created site template. Click the Actions button for the site and select the View Pages option
(see Figure 4-21).

Figure 4-20. Liferay customize Home Page Template

Chapter 4 ■ Spring portletS

178

In a new browser window or tab, your site template is opened for customizations. On the left, there
is a light-blue button with a + sign on it. If you click it, a menu opens to allow you to modify the content of
the home page. Since there is only one page, it is automatically selected. (When there are multiple pages to
customize, you would just click a page header to select it, and then all customizations to be done on it.) Click
the Applications menu item to see a list of the available out-of-the-box Liferay portlets to add on the page.
They are grouped by category. The page in administration mode is shown in Figure 4-22.

Figure 4-21. Liferay Site Templates page

Chapter 4 ■ Spring portletS

179

Now it is time to load the sample portlets.
Open the book-code project and run the war task under the 04-chapter-solution project. The

execution of this task creates a *.war file under 04-chapter-solution\build\libs that needs to be
deployed to the Liferay Portal. The module contains two portlets:

• Hello World Portlet is a simple portlet application with a controller created
by implementing the o.s.web.portlet.mvc.Controller, as mentioned at the
beginning of the chapter. The handleRenderRequest of this portlet sets an attribute
to the model, which is displayed during the render phase.

import javax.portlet.ActionRequest;
import javax.portlet.ActionResponse;
import javax.portlet.RenderRequest;
import javax.portlet.RenderResponse;

import o.s.web.portlet.ModelAndView;
import o.s.web.portlet.mvc.Controller;

public class HelloWorldController implements Controller {

Figure 4-22. Site Template home page in administration mode

Chapter 4 ■ Spring portletS

180

 public ModelAndView handleRenderRequest(RenderRequest request,
RenderResponse response) throws Exception {

Map<String, Object> model = new HashMap<String, Object>();
model.put("helloWorldMessage",

"Hello World from Spring WEB portlet example application!!");
return new ModelAndView("helloWorld", model);

}

 public void handleActionRequest(ActionRequest request,
ActionResponse response) throws Exception {

//we do not have action requests
 }
}

• Hello World Portlet2 is a simple portlet application with a controller created
and configured using a typical Spring configuration: annotations and XML. As a
bonus, this portlet has a @ResourceMapping annotated method that is used to send
a text directly to the browser. These types of methods can be used in AJAX calls, as
mentioned at the beginning of this chapter.

import o.s.stereotype.Controller;
import o.s.ui.Model;
import o.s.web.bind.annotation.RequestMapping;
import o.s.web.portlet.bind.annotation.ActionMapping;
import o.s.web.portlet.bind.annotation.RenderMapping;
import o.s.web.portlet.bind.annotation.ResourceMapping;
@Controller("helloworld2")
@RequestMapping("VIEW")
public class HelloWorldController2 {

@RenderMapping
public String render(Model model){
 model.addAttribute("helloWorldMessage",

"Hello World from Annotated Spring Portlet!!");
 return "helloWorld2";
}

//We do not need to do anything here.
//Empty method given as example of how action methods are defined.
@ActionMapping(value="doSomething")
public void action(ActionRequest request, ActionResponse response){
}

 //Example of resource request method
 @ResourceMapping(value = "getData")
 public void getData(ResourceRequest resourceRequest,

ResourceResponse resourceResponse) throws IOException {
resourceResponse.getWriter().write("Test data for Ajax call.");

 }
}

Chapter 4 ■ Spring portletS

181

Please take the time to analyze the code and the configuration files, and then execute the task and build
the *.war. If the task is executed correctly, you should see the result in 04-chapter-solution\build\libs.
Compare Figure 4-23 with your own environment.

Figure 4-23. The 04-chapter-solution portlet sample

Now that you have the archive with the portlets, it is time to upload them to Liferay. For this you need to
go the portal administration page (Control Panel) and click the App Manager link. A page with all available
portlets is displayed.

The following actions must be performed:

1. Click the Install tab on the menu.

2. A page with an upload Form will be displayed, asking you to upload an LPKG
or a WAR file. Click the Browse button. (On some systems, this button might be
named Choose File.)

3. Select the 04-chapter-solution-1.0-SNAPSHOT.war file.

4. Click the Install button.

If the *.war file is installed correctly, a green message box appears on the top of the page with the
message: The plugin was uploaded successfully and is now being installed (see Figure 4-24).

Chapter 4 ■ Spring portletS

182

! Community editions of liferay may have minor bugs and throw exceptions, although everything is
happening as it should. For example, the liferay version used to test the portlet implementations, liferay-
portal-6.2-ce-ga4, throws a com.liferay.portal.kernel.messaging. MessageListenerException:java.lang.
NullPointerException, which is printed in the catalina.out log file, but the portlets are installed correctly.

To make sure that the portlets were installed correctly and are ready to use, click the Manage tab. The
04-chapter-solution-1.0-SNAPSHOT application should be at top of the list because of its name, and if you
expand the gray rectangle underneath, you should see something similar to what’s shown in Figure 4-25.

Figure 4-24. Using the App Manager to install custom portlets in Liferay

Chapter 4 ■ Spring portletS

183

Now is the time to go back to the site template and place these two portlets in the home page.
Liferay has a quick navigation menu on top of the page, which can be used for faster navigation between
administrative pages. (It is pinpointed to you in Figure 4-25). There is a Sites option on it. By clicking this,
the Liferay site–related configurations page is displayed (see Figure 4-21). Now all you have to do is click the
Site Templates button, and then preview the site template as shown earlier.

The page shown in Figure 4-22 should have an extra category now, the Chapter 04 Sample. Expand
this, and then drag each portlet to the page and place it accordingly. The home page should look like what’s
shown in Figure 4-26; you can also see the new category group for the HelloWorld sample portlets.

Figure 4-25. Correctly installed portlet samples in Liferay

Figure 4-26. Sample portlets added to the page

http://dx.doi.org/10.1007/978-1-4842-0808-3_04

Chapter 4 ■ Spring portletS

184

Before creating a site using the template, the way to uninstall a war application should be presented,
because things might go wrong during portlet development. For example, the following exception is thrown
at Liferay deployment when the configuration of a portlet application is incorrect:

o.s.w.p.c.XmlPortletApplicationContext - Refreshing PortletApplicationContext
for namespace 'personSearch-portlet'...
o.s.b.f.x.XmlBeanDefinitionReader - Loading XML bean definitions from
PortletContext resource /WEB-INF/personSearch-portlet.xml
ERROR o.s.w.p.DispatcherPortlet - Context initialization failed
o.spring.beans.factory.BeanDefinitionStoreException: IOException parsing XML
document from PortletContext resource /WEB-INF/personSearch-portlet.xml;
nested exception is java.io.FileNotFoundException:
Could not open PortletContext resource /WEB-INF/personSearch-portlet.xml
...

Configuration errors—such as missing beans or missing expected configuration files (like in the
preceding exception)—are displayed only in the catalina.out file. In the App Manager you can see the
green message confirmation box as long as the file can be read. The difference is message under the portlet
name in the Manage section: There are no configurable plugins for this app.

When this happens, click the Manage tab, and then click the Actions button attached to the application
you want to uninstall. Select the Uninstall option. See Figure 4-27 for the message and uninstall option.

Figure 4-27. Uninstall a portlet application

Now let’s create a site. Select Sites from the top menu, and then select Sites. Click the +Add button.
Next, select the Personal Records Template. The succession of these steps is depicted in Figure 4-28.

Chapter 4 ■ Spring portletS

185

You will be directed to a new page, where a name and description can be inserted for the site. There are
other options possible, but for now, just accept the default values and click the Save button. The page will
look like the one shown in Figure 4-29.

Figure 4-28. The steps to create a site using a site template

Figure 4-29. Site configuration page

Chapter 4 ■ Spring portletS

186

After creating the site, more configuration options become available, and you can see them all in the
page that is loaded after the save operation. A recommended practice is to customize the site URL, as Liferay
will generate one from the site name (which might not be an acceptable URL). For example, for a site named
Personal Records Manager, the site URL generated by Liferay is personal-records-manager. To modify a
site URL, in the site configuration page, click the Site URL menu option on the right, and then change the
generated site URL with the desired URL under the Friendly URL section, as depicted in Figure 4-30.

Figure 4-30. Site URL configuration

Click the Save button, and then access the newly created site from the menu. Go to My Sites. The
site name should appear in the menu. By clicking it, you should be redirected to the site home page (see
Figure 4-31).

Chapter 4 ■ Spring portletS

187

Figure 4-31. Accessing a Liferay site

After the two extra-simple HelloWorld portlets from the book-code project are added to the site, look
in personal-records for the module named 06-pr-mvc-portlet-solution. This module contains two
complex portlets: one for creating a Person instance and one for searching the Person database and deleting
Person instances. These are complex portlets that access a database and perform actual data modification;
they don’t just display data. Most code samples mentioned in this chapter are from these portlets. These
portlets have been developed in such a way that all Spring MVC has to offer is included: model attributes,
Spring forms, automatic conversion and validation, and so on. The code for the Spring form and validation is
the same as the one for forms used in a servlet environment, and you can find it all in Chapter 3. The reason
for this is that servlet and portlet environments differ only by the type of requests being resolved and the way
they are mapped to handlers. Once a request has been mapped to a handler, processing the data inside the
body of a request is independent of the application type.

Please take a look at the project, and then deploy the portlets on Liferay and add them to the site
template in the same manner presented so far. Your updated site should afterward look like what is shown in
Figure 4-32, or a little different if you chose a different way to place your portlets in the page.

http://dx.doi.org/10.1007/978-1-4842-0808-3_3

Chapter 4 ■ Spring portletS

188

Figure 4-32. The Personal Records Manager portal site

Summary
After reading this chapter, you should have a basic understanding of how to use the Spring MVC Portlet
framework with the Liferay Portal application. Here is a list of things that you should remember in case you
ever end up working on a portal project:

• Portlets are specialized web components that behave as stand-alone web
applications and used to create composite pages in portal applications.

• The Spring MVC Portlet framework mirrors the Spring MVC framework. The role of
the front controller is played by the DispatcherPortlet in portlet applications.

• A portlet works with two types of requests: render and action. The render requests
do not involve business logic or data manipulation; they just request data from the
portal to display it in the page. Actions do the actual data manipulation.

• Most Spring MVC infrastructure beans and features are available for use in portlet
applications.

• Liferay is very compatible with Spring MVC Portlet; the configuration is totally
decoupled.

189

Chapter 5

Spring RESTful Services

REST is an acronym for REpresentational State Transfer. It was introduced and defined in 2000 by Roy
Fielding in his doctoral dissertation. REST is a lightweight alternative to mechanisms like RPC (Remote
Procedure Calls) and web services (SOAP, WSDL, etc.). REST is an architecture style for designing networked
(distributed) applications. The idea is that, rather than using complex mechanisms such as CORBA, RPC,
or SOAP to connect machines, simple HTTP is used to make calls between machines. RESTful applications
use HTTP requests to post data (create and/or update), read data (e.g., make queries), and delete data. Thus,
REST uses HTTP for all four CRUD (create/read/update/delete) operations.

Core REST Concepts
The REST architectural style describes six constraints:

• Uniform interface: Defines the interface between client and server. Rest uses HTTP
as an application protocol, as a platform, not just a transport protocol. The following
HTTP specifications are used:

• HTTP verbs are used as actions to execute on the resources (GET, PUT, PATCH,
POST, DELETE, HEAD, and OPTIONS)1

• URIs are used to identify resource names. The resources are conceptually
separate from representations. Representations of the resources are returned
from the server to the client, after a client request (typically JSON or XML).
Representations contain metadata that can be used by the client to modify or
delete the resource on the server, provided it has permission to do so.

• HTTP response: Response codes, the body, and headers are used to deliver state
to clients. Clients deliver state using body content, query-string parameters,
request headers, and the URI.

1Although REST seems strongly connected to HTTP, REST principles can be followed using other protocols too,
for example: POP, IMAP, and any protocol that uses URL-like paths and supports GET and POST methods.

Chapter 5 ■ Spring reStful ServiCeS

190

• Statelessness: The server should contain no client state. Each request has enough
context for the server to process the message. The URI uniquely identifies the
resource, and the body contains the state (or state change) of that resource if the
request is one that has a body (PUT, POST, PATCH). When working with a specific
container, a session is used to preserve state across multiple HTTP requests. When
using REST, there is no need for this, which increases the scalability because the
server does not have to maintain, update, or communicate the session state.

• Client-server: A RESTful architecture is a client-server architecture, so the system
is disconnected. The server might not be available all the time, so operations are
asynchronous.

• Cacheable: Anything returned by the server can be cached explicitly (the server
specifies conditions for caching), implicitly (the client uses its own caching
conditions), or negotiated(the client and the server negotiate caching conditions)

• Layered system: The client cannot assume direct connection to the server.
Sometimes a requested resource can be cached, and some other unknown software
and hardware layers are interposed between the client and the server. Intermediary
servers may improve system scalability and/or security by enabling load balancing,
providing shared caches, and enforcing security policies.

• Code on demand: Executable code can be transferred as a representation to the
client (usually JavaScript or compiled Java applications known as applets).

■ Note processes running on different hosts communicate over a layered set of network protocols
defined by the OSi model. the uppermost level is the application layer and protocols specific to it are called
application protocols. this is the layer that is closest to the user, which means the user interacts directly with
the software application. Between the application layer and the transport layer are two more layers.

the transport layer provides the functional and procedural means of transferring variable-length data
sequences from a source to a destination host via one or more networks, while maintaining the quality of
service functions. the protocols specific to it are called transport protocols.

When using reSt, data is not just sent and received via http (transport), but data is actively manipulated by the
user in the context of an application. More information about network layers and protocols can be found on the
internet; if you are interested in finding out more, you can check out Wikipedia at https://en.wikipedia.org/
wiki/OSI_model. advanced networking is not the object of this book or the certification exam.

Complying with the first five constraints ensures that a RESTful application will be scalable, simple,
easy to modify, portable, and reliable. The last constraint is optional; a REST application can be built without
code being transferred to clients, if there is no need for such operations. The main REST HTTP methods are
presented in Table 5-1.

https://en.wikipedia.org/wiki/OSI_model
https://en.wikipedia.org/wiki/OSI_model

Chapter 5 ■ Spring reStful ServiCeS

191

Table 5-1. Message Converters

HTTP Method Purpose Observation

GET Read Reads a resource; does not change it: therefore, it can be considered safe.
Reading the same resource always returns the same result: therefore, it can
be considered idempotent.

POST Create Used to create a new resource. Neither safe nor idempotent. Two identical
POST requests will result in two identical resources being created or errors
at application level.

PUT Update Most often used for update capabilities. It is not safe, because it modifies
the state on the server, but is idempotent (unless subsequent calls of the
same PUT request increments a counter within the resource, for example).

DELETE Delete Used to delete resources. Not safe, but can be considered idempotent
because requests to delete a resource that no longer exists will always
return a 404 (not found).

To analyze contents of the REST requests and responses handled by the browser, the Firebug plugin in
Firefox can be used. Simply install it directly from the official site (http://getfirebug.com/) and enable it
by clicking the little bug on the right corner of the page (1). To see the contents of a request, just click on the
Net tab (2), as depicted in Figure 5-1.

Figure 5-1. Using the Firebug plugin in Firefox to analyze REST requests and responses handled by the browser

http://getfirebug.com/

Chapter 5 ■ Spring reStful ServiCeS

192

The following describes the GET example shown in Figure 5-2:

• It retrieves a representation of a resource.

• It might have length restrictions.2

• It is a safe operation; idempotent; repetitive execution that has no side effects.

• It is cacheable and ETags are used to keep tags on resource versions.3

• When a resource is not found, a 404 (Not Found) status code is returned;
otherwise 200 (OK)

Figure 5-2. GET Request and Response example; snippets form the Firebug console

2Servers should be cautious about depending on URI lengths above 255 bytes, because some older client or proxy
implementations may not properly support these lengths. When a browser does not support a certain request length,
a 400 (Bad Request) status code is returned.
3You can read more about ETags at http://en.wikipedia.org/wiki/HTTP_ETag.

The following describes the POST example shown in Figure 5-3:

• It creates a new resource.

• It is not idempotent; repetitive execution causes duplicate data and/or errors.

• The response has the created resource location URI in the response header.

• When the resource being created requires a parent that does not exist a
404 (Not Found) status code is returned. When an identical resource already exists
a 409 (Conflict) status code is returned. When the resource was created correctly a
201 (Created) status code is returned.

http://en.wikipedia.org/wiki/HTTP_ETag

Chapter 5 ■ Spring reStful ServiCeS

193

The following describes the PUT example shown in Figure 5-4:

• It updates an existing resource or creates it with a known destination URI. The URI of
a resource contains an identifier for that resource. If that identifier is not generated
by the application, but can be created by the client a behavior such as this can be
implemented: when a PUT request refers to an existing resource, the resource is
updated, otherwise a new resource with the identifier from the URI and the contents
in the request body is created.

• It is idempotent; repetitive execution has the same result.

• It is not safe; repetitive updates could corrupt data.

• When the resource being updated requires a parent that does not exist, or the
resource requested to be updated does not exist, a 404 (Not Found), status code
is returned. When the resource is updated correctly, a 200 (OK) (or a 204
(No Content) if not returning any content in the body) status code is returned.

Figure 5-3. POST Request and Response example

Figure 5-4. PUT Request and Response example

Chapter 5 ■ Spring reStful ServiCeS

194

The following describes the DELETE example shown in Figure 5-5:

• It deletes a resource.

• It is idempotent; repetitive execution has the same result.

• It is not safe; repetitive deletes could corrupt data.

• When the resource being deleted does not exist, a 404 (Not Found), status code
is returned. When the resource was deleted correctly, a 200 (OK) status code is
returned.

When it comes to REST, everything is about resource states and transferring them between a client
and a server, in different forms. The request specifies the representation type using the Accept HTTP
header for GET and the Content-Type HTTP header for PUT and POST, as you have seen in the preceding
images, because when the client is not a browser (remember Chapter 3), the Accept header is taken
into consideration. The URI extension can be used as a representation type identifier too. The response
reports the representation type returned using the Content-Type HTTP header. When using Spring, the
representation type is specified using an attribute of the @RequestMapping annotation and well-known
media types defined in the MediaType class:

@RestController
@RequestMapping(value = "/rest-persons")
public class PersonsRestController extends BaseController {
...
@ResponseStatus(HttpStatus.OK)
@RequestMapping(value = "id/{id}", method = RequestMethod.GET,

produces = MediaType.APPLICATION_JSON_VALUE)
public Person getPersonById(@PathVariable Long id) throws NotFoundException {
 logger.info("-----> PERSON: " + id);
 Person person = personManager.findById(id);
 if (person == null) {

throw new NotFoundException(Person.class, id.toString());
 }
 return person;
}
...
}

Figure 5-5. DELETE Request and Response example

http://dx.doi.org/10.1007/978-1-4842-0808-3_3

Chapter 5 ■ Spring reStful ServiCeS

195

//Exception handler class for Rest errors.
@ControllerAdvice(basePackages = "com.pr.rest")
public class RestExceptionProcessor {
/

Maps NotFoundException to a 404 Not Found HTTP status code.

 @ResponseStatus(value = HttpStatus.NOT_FOUND,
reason = "This entity is not found in the system")

 @ExceptionHandler({NotFoundException.class})
 public void handleNotFound(NotFoundException nfe) {

// just return empty 404
logger.info("-----> Entity " + nfe.getObjType() +
" with identifier" + nfe.getObjIdentifier() + "not found.");

 }
}

HATEOAS
On his public blog,4 Roy Fielding mentioned that most REST services are not really RESTful, because
fully RESTful services should only return links. Basically, HATEOAS implies that when a client makes a
REST request to a server, the server should return a response that informs the client of all possible REST
operations using links. For example, a resource should contain links to related resources, including URIs for
editing it and deleting it, and so forth. Following this idea, well-known author Leonard Richardson defined
the Richardson Maturity Model,5 which describes four levels of REST compliance:

• Level 0, also known as the Swamp of POX. Only HTTP is used as a transport method.

• Level 1, also known as the Resource Level. HTTP is used as a transport method and
URIs are used to identify resources.

• Level 2, also known as the HTTP Verb Level. This is the level where HTTP headers,
statuses, methods, distinct URIs and everything else HTTP has to offer to provide a
REST service. At this level, HTTP is used the way it’s meant to be.

• Level 3, also known as the Hypermedia Controls Level. This is the final level, where a
fully complying REST service should be. HATEOAS, an abbreviation for Hypermedia
As The Engine Of Application State, is a constraint of the REST application
architecture that distinguishes it from most other network application architectures.
The principle is that a client interacts with a network application entirely through
hypermedia provided dynamically by application servers.

The Spring team has developed a separate project to make it easy to implement RESTful services that
comply with the third level. Spring HATEOAS6 provides APIs to ease creating REST representations that
follow the HATEOAS principle when working with Spring, and especially Spring MVC.

4This blog is at http://roy.gbiv.com.
5Martin Fowler has a great article on this at http://martinfowler.com/articles/richardsonMaturityModel.html.
6The project official page is at http://projects.spring.io/spring-hateoas/.

http://roy.gbiv.com/
http://martinfowler.com/articles/richardsonMaturityModel.html
http://martinfowler.com/articles/richardsonMaturityModel.html
http://projects.spring.io/spring-hateoas/

Chapter 5 ■ Spring reStful ServiCeS

196

HATEOAS is a concept of application architecture, which defines the way clients interact with servers
using hypermedia links they find inside representations returned by the server. To implement HATEOAS,
resources representations must comply with a set of standards and contain hypermedia information.
One of the most common standards used to hyperlink resources is HAL.7 A resource in HAL is just a
plain-old JSON or XML object with whatever properties needed, but that provides the possibility to
hyperlink resources. The following is a code snippet showing what a resource representation that complies
to the HAL standard looks like:

//GET Request: /persons/5 using JSON format
// Response representation returned below:
{
" links": {
 "self": { "href": "/persons/5" },
 "parents": [
 { "href": "/persons/2", "title": "mother" },
 { "href": "/persons/3", "title": "father }
]
},
 "firstName" : "John",
 "middleName" : "Constantine",
 "lastName" : "Smith",
 "dateOfBirth" : "1935-10-01",
 "gender" : "MALE",
 "hospital" : {
 "code" : "134181",
 "name" : "General Hospital",
 "address" : "Sample address",
 "location" : "Constance, Romania"
},
"identityCard" : {
 "pnc" : "1351001134181",
 "series" : "CO",
 "number" : "205727",
 "emittedAt" : "1949-10-01",
 "expiresAt" : "1985-10-01",
 "address" : "34eeb1d5-0ff4-4d4a-b811-4ff32aa15ada"
 }

}

//GET Request: /persons/5 analogous example using XML
<?xml version="1.0" encoding="utf-8"?>
<person rel="self" href="/person/5">
 <linkList>

<link rel="parent" title="mother" href="/persons/2"/>
<link rel="parent" title="father" href="/persons/3"/>

 </linkList>

7This is at http://stateless.co/hal_specification.html.

http://stateless.co/hal_specification.html

Chapter 5 ■ Spring reStful ServiCeS

197

 <firstName>John</firstName>
 <lastName>Constantine</lastName>
 <!-- other simple properties-->
 ...
 <hospital>

<code>134181</code>
<!-- other simple properties-->

...
 </hospital>
 <identityCard>

<pnc>1351001134181</pnc>
<!-- other simple properties-->

...
 </identityCard>

</person>

Advantages of REST
The following list describes the advantages of REST.

• REST is simple.

• REST is widely supported.

•	 Resources can be represented in a wide variety of data formats (JSON, XML, Atom, etc.).

• You can make good use of HTTP cache and proxy servers to help you handle high
loads and improve performance.

• It reduces client/server coupling.

• Browsers can interpret representations.

• JavaScript can use representations.

• A REST service can be consumed by applications written in different languages.

• It is easy for new clients to use a RESTful application, even if the application was not
designed specifically for a client.

• Because of the statelessness of REST systems, multiple servers can be behind a load
balancer and provide services transparently, which means increased scalability.

• Because of the uniform interface, documentation of the resources and basic API
operations are unnecessary.

• The hypermedia constraint assures that application processing transitions are always
navigable by clients, simply by following opaque server-provided links. Thus, the
client does not need to understand anything more than the data format. (And when
JSON is used, the data format is quite obvious.)

• Using REST does not imply specific libraries at the client level in order to
communicate with the server. With REST, all that is needed is a network connection.

Chapter 5 ■ Spring reStful ServiCeS

198

REST services can be secured, but as the interaction between the client and server is stateless,
credentials have to be embedded in every request header. Basic authentication is the easiest to implement
without additional libraries (HTTP Basic, HTTP Digest, XML-DSIG, or XML-Encryption), but it guarantees
the lowest level of security. Basic authentication should never be used without TLS (formerly known as
SSL) encryption because the credentials can be easily decoded otherwise. In Figure 5-6, you can see how
basic authentication is used when a client communicates with a RESTful application that requires basic
authentication.

! When a collection is expected, it is enough use: /persons (plural) and /hospitals (plural). the /all
link was used here because the original web controllers implemented in Chapter 3 were kept separate, so you
can access the interface and verify the changes you are doing via reSt in the browser. Basically, the reSt and
web functionalities are fully decoupled. and because the PersonsController was already mapped to /persons
and the HospitalController was already mapped to /hospitals, there was no other way to do this but to
map the reSt controllers to different urls.

! Snippets of code from the HospitalsRestController are not mentioned in the book, because the code is
almost identical to the one for the reSt methods in PersonsController; the only difference is the resource
type. But the code is available for you to practice on in the book’s code samples.

Other common protocols used with RESTful systems are OAuth 1.0a and OAuth 2.0. Custom security
implementation should be used only if necessary, because the skill to understand cryptographic digital
signatures is quite difficult to master.

There may be a lot more to say about REST in general, but the introduction to REST must end here,
as this chapter is about Spring and how Spring can be used to develop RESTful applications. And you will
notice that providing and consuming REST services with Spring is so easy that a deep understanding of REST
is not actually needed.

Figure 5-6. Basic authentication when using RESTful systems

http://dx.doi.org/10.1007/978-1-4842-0808-3_3

Chapter 5 ■ Spring reStful ServiCeS

199

RESTful Applications Using Spring MVC
To learn how to implement and test RESTful services using MVC, module 09-pr-rest-practice was
created. This module contains the implementation of the operations depicted in Figure 5-7.

RESTful Clients with Spring
A RESTful application can be accessed by any type of client that can create the type of request supported
by the application. To test a Spring RESTful application, Spring provides two classes: RestTemplate and
AsyncRestTemplate.

The RestTemplate is Spring’s central class for synchronous client-side HTTP access. This class provides
a wide set of methods for each HTTP method, which can be used to access RESTful services and enforces
REST principles.8 Figure 5-8 depicts a correspondence between HTTP methods and RestTemplate methods
that can be used to access REST services.

Figure 5-7. RESTful architecture for the practice section

8Javadoc for this class can be found at http://docs.spring.io/spring/docs/4.1.x/javadoc-api/org/
springframework/web/client/RestTemplate.html.

http://docs.spring.io/spring/docs/4.1.x/javadoc-api/org/springframework/web/client/RestTemplate.html
http://docs.spring.io/spring/docs/4.1.x/javadoc-api/org/springframework/web/client/RestTemplate.html
http://docs.spring.io/spring/docs/4.1.x/javadoc-api/org/springframework/web/client/RestTemplate.html

Chapter 5 ■ Spring reStful ServiCeS

200

As you can see, the execute and exchange methods can be used for any type of REST calls, as long
as the HTTP method is given as a parameter for the methods. All methods are polymorphic,9 and using
one or another depends on the requirements and the developer’s preferences. URI instances are returned
to identify resources, and RestTemplate methods support URI templates. So, the following two calls are
identical:

//using URI Template
String url = "http://localhost:8080/mvc-rest/rest-person/id/{id}";
Person person = restTemplate.getForObject(url, Person.class, "1");

// using URI
String url = "http://localhost:8080/mvc-rest/rest-personid/1";
Person person = restTemplate.getForObject(url, Person.class);

Figure 5-8. RestTemplate api to HTTP methods correspondence

9Multiple methods with the same name, but different signatures are provided. Just check out the Spring API for
RestTemplate at http://docs.spring.io/spring/docs/4.1.x/javadoc-api/org/springframework/web/client/
RestTemplate.html.

http://docs.spring.io/spring/docs/4.1.x/javadoc-api/org/springframework/web/client/RestTemplate.html
http://docs.spring.io/spring/docs/4.1.x/javadoc-api/org/springframework/web/client/RestTemplate.html
http://docs.spring.io/spring/docs/4.1.x/javadoc-api/org/springframework/web/client/RestTemplate.html

Chapter 5 ■ Spring reStful ServiCeS

201

Table 5-2. Message Converters

Message Converter Data Type Observation

StringHttpMessageConverter text/plain

MappingJackson2HttpMessageConverter application/*+json Only if Jackson 2 is present
on the classpath

AtomFeedHttpMessageConverter application/atom+xml Only if Rome is present on
the classpath

RssChannelHttpMessageConverter application/rss+xml Only if Rome is present on
the classpath

MappingJackson2XmlHttpMessageConverter application/*+xml Only if Jackson 2 is present
on the classpath

The execute method can also be given a RequestCallback implementation as a parameter, which tells
the RestTemplate what to do with the request before sending it to the server. Considering this, a GET request
for a Person instance with id=1 could be written with the exchange method like this:

String url ="http://localhost:8080/mvc-rest/rest-person/id/{id}";
Person person = restTemplate.execute(url, HttpMethod.GET,
new RequestCallback() {

@Override
public void doWithRequest(ClientHttpRequest request)

throws IOException {
HttpHeaders headers = request.getHeaders();
headers.add("Accept", MediaType.APPLICATION_JSON_VALUE);
System.out.println("Request headers = " + headers);

}
 }, new HttpMessageConverterExtractor<Person>(Person.class,

restTemplate.getMessageConverters())
, new HashMap<String, Object>() {{

put("id", "1");
 }});

Objects passed to and returned from the methods getForObject(), postForLocation(), and put()
are converted to HTTP requests and from HTTP responses by HttpMessageConverters. Message converters
are automatically detected and used by Spring in applications configured with <mvc:annotation-driven/>
or @EnableWebMvc. In the code sample for this chapter, the representations are in JSON format, so
MappingJackson2HttpMessageConverter is used. And because the message format is supported by default,
the HttpMessageConverterExtractor<T> is not necessary in the previous example. Also, if no Accept header
is specified, all formats supported by Spring are considered. So in this case, RequestCallback becomes
unnecessary too, so you can stick to the simpler restTemplate.getForObject method that was mentioned
in the previous code snippet.

Speaking of message converters, restTemplate deals only with objects, so it internally converts
resources to representations, and vice-versa, using message converter implementations of the
HttpMessageConverter<T> interface. Spring comes with a default long list of supported message converters,
but if necessary, a developer can provide his own implementation of the HttpMessageConverter<T>.
Table 5-2 provides a list of the most commonly used message converters and the datatype handled:

Chapter 5 ■ Spring reStful ServiCeS

202

To use a restTemplate, you can define and initialize it directly where you need it, or declare a bean
and inject it. restTemplate handles HTTP connections internally, so the developer does not have to write
extra code with opening and closing connections. A different HTTP client can also be used, and Apache
provides an implementation that can be injected into a RestTemplate bean. This is highly recommended for
production applications when authentication and HTTP connection pooling are usually needed.

To use the Apache Commons HttpClient, Spring provides a factory class named
HttpComponentsClientHttpRequestFactory, which provides an HttpClient instance that uses a default
org.apache.http.impl.conn.PoolingClientConnectionManager10 that is able to service connection
requests from multiple execution threads.

<bean id="restTemplate" class="o.s.web.client.RestTemplate">
 <property name="requestFactory">

<bean class= "o.s.http.client.HttpComponentsClientHttpRequestFactory"/>
 </property>
</bean>

Configuring a RestTemplate bean using Java Configuration looks like this:

\\in the @Configuration and @EnableWebMvc annotated class
@Bean
 public RestTemplate restTemplate() {
 RestTemplate restTemplate = new RestTemplate();
 restTemplate.setRequestFactory(new HttpComponentsClientHttpRequestFactory());
 return restTemplate;
}

Other examples of restTemplate usage are in the following code snippet:

// GET request to retrieve all persons born at a hospital with a specific code
String url = "http://localhost:8080/mvc-rest/rest-hospitals/{code}/persons";

Person[] persons = restTemplate.getForObject(url, Person[].class, "134181");

// POST request to create a person
Person person = buildPerson();
final HttpHeaders headers = new HttpHeaders();
headers.setContentType(MediaType.APPLICATION_JSON);

final HttpEntity<Person> personRequest = new HttpEntity<>(person, headers);
String url = "http://localhost:8080/mvc-rest/rest-persons/create";
// this method returns the created resource
Person newPerson = this.restTemplate.postForObject(url, personRequest, Person.class);
//this method returns the URI of the created resource
URI uri = this.restTemplate.postForLocation(url, personRequest, Person.class);

//DELETE request to delete a person by id
String url = "http://localhost:8080/mvc-rest/rest-persons/delete/23";
restTemplate.delete(url);

10The class is part of the Apache http-client library. JavaDoc API can be accessed at http://hc.apache.org/
httpcomponents-client-ga/httpclient/apidocs/org/apache/http/impl/ conn/PoolingClientConnection
Manager.html.

http://hc.apache.org/httpcomponents-client-ga/httpclient/apidocs/org/apache/http/impl/conn/PoolingClientConnectionManager.html
http://hc.apache.org/httpcomponents-client-ga/httpclient/apidocs/org/apache/http/impl/conn/PoolingClientConnectionManager.html
http://hc.apache.org/httpcomponents-client-ga/httpclient/apidocs/org/apache/http/impl/conn/PoolingClientConnectionManager.html
http://hc.apache.org/httpcomponents-client-ga/httpclient/apidocs/org/apache/http/impl/conn/PoolingClientConnectionManager.html

Chapter 5 ■ Spring reStful ServiCeS

203

REST services are used most commonly by AJAX components in a web application, and currently all
HTTP methods are supported in AJAX. But most browsers do not support any other methods besides GET
and POST in HTML forms. To use them in a form, Spring has introduced hidden methods. Basically, a
hidden input is added to a form with a regular POST method. If the POST request is to be treated as a PUT
request, the value of the field will be equal to this method name, as shown in the code sample below. A filter
interceptor intercepts the request, searches for that parameter, and modifies the request accordingly before
sending it to the appropriate handler.

For this to work, the Spring form has the method attribute value set to the desired HTTP method, and
the resulting HTML form has a hidden field added:

<!-- Spring form -->
<sf:form method="put" action=".." modelAttribute="..">
 ...
</sf:form>

<!-- HTML form -->
<form method="post" action="...">
 <input type="hidden" name="method" value="put" />
 ...
</form>

The filter interceptor that takes care of intercepting requests and modifying the methods is the
HiddenHttpMethodFilter, which can be configured in a web.xml file or in a class implementing
WebApplicationInitializer.

<!-- in web.xml -->
 <!-- Enables use of HTTP methods PUT and DELETE -->
 <filter>

<filter-name>httpMethodFilter</filter-name>
<filter-class>o.s.web.filter.HiddenHttpMethodFilter</filter-class>

 </filter>

 <filter-mapping>
<filter-name>httpMethodFilter</filter-name>
<url-pattern>/*</url-pattern>

 </filter-mapping>

\\in class extending AbstractDispatcherServletInitializer
\\ or AbstractAnnotationConfigDispatcherServletInitializer
@Override
protected Filter[] getServletFilters() {
 return new Filter[] { new HiddenHttpMethodFilter()};
}

Asynchronous REST Calls
At the beginning of this section, AsyncRestTemplate was mentioned. This class can be used to create Spring
REST clients that make asynchronous calls to a REST service. The AsyncRestTemplate class is nothing
other than a wrapper class for RestTemplate that provides the asynchronous behavior via a set of methods
(analogous to the ones in RestTemplate) that return Future<T> wrappers (or ListenableFuture<F>

Chapter 5 ■ Spring reStful ServiCeS

204

that extends Future<T> when a callback method is needed) instead of concrete data. An example of an
asynchronous GET request can be found in the AsyncRestTemplateTest class, in the 07-pr-rest-solution.
In the same class, you can also find an example with a callback.

private static final String PERSON_BASE_URL =
"http://localhost:8080/mvc-rest/rest-persons/id/{id}";

AsyncRestTemplate asyncRestTemplate = new AsyncRestTemplate();
...

Future<ResponseEntity<Person>> futurePerson =
 asyncRestTemplate.exchange(url, HttpMethod.GET, entity, Person.class, "5");
 //waiting a little, to give time to the async call to complete

Thread.sleep(1000L);

ResponseEntity<Person> result = futurePerson.get();
Person person = result.getBody();
assertNotNull(person);

//callback example
ListenableFuture<ResponseEntity<Person>> futurePerson =

asyncRestTemplate.exchange(url, HttpMethod.GET, entity, Person.class, "5");
 futurePerson.addCallback(new ListenableFutureCallback<ResponseEntity<Person>>() {

@Override
public void onSuccess(ResponseEntity result) {
Person person = (Person) result.getBody();
assertNotNull(person);
}

@Override
public void onFailure(Throwable t) {

logger.error("------> Async call failure!", t);
}

});

Implementing REST with Spring MVC
There are multiple Java frameworks available for implementing RESTful applications: Spark, Restlet,
JAX-RS(Java EE), and RESTEasy, but Spring MVC is the easiest to use. This section contains a lot of
information and code snippets to convince you that this affirmation is true. REST support was added to
Spring MVC in version 3.0, and although developing RESTful applications was always easy, in version 4.x
things have become even more practical.

Among the aforementioned frameworks, JAX-RS is shipped with out-of-the-box Spring Integration.
This framework encapsulates the Java API for RESTful web services (JAX-RS, defined in JSR 311). Jersey, the
reference implementation of JAX-RS, implements support for the annotations defined in JSR 311, making
it easy for developers to build RESTful web services by using the Java programming language. It is focused
more on application-to-application communication, so the focus is not on browser clients. That’s the
amazing thing about Spring MVC—a Spring RESTful application does not care about its client type at all.

Chapter 5 ■ Spring reStful ServiCeS

205

Spring MVC provides the following resources to build RESTful applications:

• The potential to declare status codes.

• URI templates.

• Content negotiation.

• Many message converters offer out-of-the-box support.

• RestTemplate and AsyncRestTemplate classes are used for easily creating client
applications or for testing RESTful application services.

• Browsers are supported as clients, although HTTP method conversion is necessary
for PUT and DELETE methods. When making REST requests from a web page,
jQuery can be used (this is covered in Chapter 6).

A few of these have already been mentioned in the previous section, as they were involved in creating
REST clients; the others are covered in this section.

To develop a RESTful service class with Spring MVC, you have to do the most obvious thing: create a
controller that contains handler methods that return resources representations instead of views, which are
the actual response body. In Spring 3.0, we had to do the following:

@Controller
@RequestMapping(value = "/rest-persons")
public class PersonsRestController {

@Autowired
PersonManager personManager;

 @ResponseStatus(HttpStatus.OK)
 @RequestMapping(value = "/id/{id}", method = RequestMethod.GET)

public @ResponseBody Person getPersonById(@PathVariable Long id)
throws NotFoundException {
Person person = personManager.findById(id);
if (person == null) {

throw new NotFoundException(Person.class, id.toString());
}
return person;

 }
}

Looks like any MVC controller, right? The only difference is the @ResponseBody that indicates a method
return value should be bound to the web response body. The advantage here is that, in the same controller
you can also have methods that are not used to provide REST representations, having all the people
management data in one place. But, because it is a good practice to decouple code with different scopes,
in Spring MVC 4.0 the @RestController was introduced. This annotation is conveniently annotated with

http://dx.doi.org/10.1007/978-1-4842-0808-3_6

Chapter 5 ■ Spring reStful ServiCeS

206

@Controller and @ResponseBody, which practically means that if you annotate a class with it, all handler
methods are transparently annotated with @ResponseBody. Also, the purpose of this controller becomes
quite obvious—it handles only REST requests. Thus, the preceding code becomes the following:

@RestController
@RequestMapping(value = "/rest-persons")
public class PersonsRestController extends BaseController {

 @ResponseStatus(HttpStatus.OK)
 @RequestMapping(value = "/id/{id}", method = RequestMethod.GET)

public Person getPersonById(@PathVariable Long id) throws NotFoundException {
... // identical content as above

 }
}

And this is all. All methods defined inside this class can then be called from REST clients, and
they will receive the requested representations. What happens in the background—the way that the
DispatcherServlet is involved—is depicted in Figure 5-9.

Figure 5-9. Spring MVC RESTFul Container

Chapter 5 ■ Spring reStful ServiCeS

207

So basically, the controller methods return data directly to the client—data that no longer needs
to be processed in order to render a view. Every time a request is mapped to a handler method that has
parameters annotated with @RequestBody, or the method is annotated with @ResponseBody, Spring loops
over all HttpMessageConverters; it is seeking the first that fits the given MIME type and class, and then uses
it for the actual conversion.

Mapping requests to methods is the same as with web controllers. All annotations applicable in web
handler methods are applicable in REST handler methods too: @PathVariable, @Valid, and so forth.
@RequestParam can be used too, but this would break the REST constraints mentioned at the beginning of
the chapter.

HTTP Status Codes
When a web application returns a response, that response has a status code that describes a certain state
of the returned resource or the result of the operation that the request triggered on the server. The most
familiar is probably the 404 Not Found status code that is returned when a requested resource cannot
be found. A full list of HTTP status codes can be found on Wikipedia, which you should look at if you are
curious about and unfamiliar with HTTP status codes.11

RESTful applications use HTTP status codes to communicate with their clients. With Spring MVC, the
status code of a response can be set easily using the @ResponseStatus annotation. This annotation can
receive as a value any of the constants defined in Spring class HttpStatus. Table 5-3 contains the most
common response statuses used in RESTful applications.

Here are some examples of @ResponseStatus annotated REST handlers that you will work with in the
practice project for this chapter:

@ResponseStatus(HttpStatus.NO_CONTENT)
@RequestMapping(value = "/delete/{pnc}", method = RequestMethod.DELETE)
public void deletePerson(@PathVariable String pnc) throws NotFoundException {
 ...
}

@ResponseStatus(HttpStatus.CREATED)
@RequestMapping(value = "/create", method = RequestMethod.POST,

produces = MediaType.APPLICATION_JSON_VALUE,
consumes = MediaType.APPLICATION_JSON_VALUE)

public Person createPerson(@RequestBody @Valid Person newPerson) {
 ...
}

@ResponseStatus(HttpStatus.OK)
 @RequestMapping(value = "/all", method = RequestMethod.GET,
 produces = MediaType.APPLICATION_JSON_VALUE)
public List<Person> getAll() {
...
}

11See http://en.wikipedia.org/wiki/List_of_HTTP_status_codes.

http://en.wikipedia.org/wiki/List_of_HTTP_status_codes

Chapter 5 ■ Spring reStful ServiCeS

208

Table 5-3. HTTP Status Codes

HTTP Status HttpStatus Constant Observation

200 OK Successful GET with returned content.

201 CREATED Successful PUT or POST; location header should
contain URI or new resource.

204 NO_CONTENT Empty response; after
successful PUT or DELETE.

404 NOT_FOUND Resource was not found.

403 FORBIDDEN Server is refusing to respond to the request, because
the response is not authorized.

405 METHOD_NOT_ALLOWED HTTP method is not supported for the resource
identified by the Request-URI.

409 CONFLICT Problems when making changes, when PUT or POST
try to save data that already exists and is marked as
unique

415 UNSUPPORTED_MEDIA_TYPE The server is refusing to service the request because
the entity of the request is in a format not supported
by the requested resource for the requested method.

! the "produces" and "consumes" properties are covered later in the chapter.

! normally, void or null returning methods result in a default view name determined by the request’s path
information (from @RequestMapping annotations on the class and method, as explained in Chapter 3).the
@ResponseStatus overrides the default behavior, causing a null ModelAndView to be used, which indicates
that the response has been handled by the controller method already. So, obviously the @ResponseStatus is
mandatory for a reStful handler method returning void or null.

Exception Handling
The status codes can be used for exception handlers too. Yes, RESTful handlers can also throw exceptions,
and they have to be properly handled. Similar to Spring MVC web specific controllers, exception handlers
can be defined either in the body of the REST controller, or they can be defined in class annotated with
@ControllerAdvice. And the same ExceptionHandler annotation is used to annotate the exception handler
methods. In the next code snippet, such a class was defined with two exception handlers for different types
of exceptions, and the handlers were limited to the com.pr.rest package, using the basePackages attribute,
in order to handle exceptions thrown only by controllers in that package.

http://dx.doi.org/10.1007/978-1-4842-0808-3_3

Chapter 5 ■ Spring reStful ServiCeS

209

 @ControllerAdvice(basePackages = "com.pr.rest")
public class RestExceptionProcessor {
 private Logger logger = LoggerFactory.getLogger(RestExceptionProcessor.class);

 //Maps IllegalArgumentExceptions to a 404 Not Found HTTP status code
 @ResponseStatus(value = HttpStatus.NOT_FOUND,

reason = "This entity is not found in the system")
 @ExceptionHandler({NotFoundException.class})
 public void handleNotFound(NotFoundException nfe) {

 // just return empty 404
 logger.info("-----> Entity " + nfe.getObjType() + " with identifier"

+ nfe.getObjIdentifier() + "not found.");
}

 // Maps DataIntegrityViolationException to a 409 Conflict HTTP status code.
 @ResponseStatus(value = HttpStatus.CONFLICT,

reason = "Another entity with the same identity exists")
 @ExceptionHandler({DataIntegrityViolationException.class})
 public void handleAlreadyExists() {

// just return empty 409
logger.info("-----> Entity save operation failure");

 }
}

Content can be returned using an exception handler, but in this case, the client must be implemented to
handle the response.

@ExceptionHandler(NotFoundException.class)
 @ResponseStatus(value= HttpStatus.NOT_FOUND)
 @ResponseBody
 public JsonError personNotFound(HttpServletRequest req, NotFoundException ex) {

Locale locale = LocaleContextHolder.getLocale();
String errorMessage = messageSource.

getMessage("error.no.person.id", null, locale);

errorMessage += ex.getObjIdentifier();
String errorURL = req.getRequestURL().toString();

return new JsonError(errorURL, errorMessage);
}

 ...
public class JsonError {
 private String url;
 private String message;

 public JsonError(String url, String message) {
this.url = url;
this.message = message;

 }

 // getters and setters
}

Chapter 5 ■ Spring reStful ServiCeS

210

The “produces” and “consumes” Properties
In the previous examples, the consumes and produces annotation properties of the @RequestMapping were
used. These two attributes are used to narrow the primary mapping for a request. The consumes attribute
defines the consumable media types of the mapped request (defined on the server) and the value of the
Content-Type header (defined on the client side) must match at least one of the values of this property in
order for a method to handle a specific REST request. Let’s say, for example, that in the REST client, the
following headers were set:

final HttpHeaders headers = new HttpHeaders();
final String url = "http://localhost:8080/mvc-rest/rest-persons/create";
\\"application/json"
headers.setContentType(MediaType.APPLICATION_JSON);
final HttpEntity<Person> personRequest = new HttpEntity<>(person, headers);

Person newPerson =
restTemplate.postForObject(url, personRequest, Person.class);

On the server, the following REST handler would be mapped to process this request:

@ResponseStatus(HttpStatus.CREATED)
@RequestMapping(value = "/create", method = RequestMethod.POST,
 produces = MediaType.APPLICATION_JSON_VALUE,
 consumes = {MediaType.APPLICATION_JSON_VALUE,
 //Public constant media type for {@code application/octet-stream}.
 MediaType.APPLICATION_OCTET_STREAM})
public Person createPerson(@RequestBody @Valid Person newPerson) {
...
}

The produces attribute defines the producible media types of the mapped request, narrowing the
primary mapping. The value of the Accept header (on the client side) must match at least one of the values
of this property in order for a method to handle a specific REST request. Let’s say, for example, that in the
REST client there is the following request:

final String url = "http://localhost:8080/mvc-rest/rest-persons/id/{id}";
Person person = restTemplate.execute(url, HttpMethod.GET, request -> {

HttpHeaders headers = request.getHeaders();
headers.add("Accept", MediaType.APPLICATION_JSON_VALUE);

}, new HttpMessageConverterExtractor<>(Person.class,
restTemplate.getMessageConverters())
, new HashMap<String, Object>() {{

put("id", "1");
}});

! as mentioned, the code for making a reSt request for a person can be far simpler than what was depicted
earlier. the execute method was used here to show how this method can be used.

Chapter 5 ■ Spring reStful ServiCeS

211

On the server, the following REST handler would be mapped to process this request:

@ResponseStatus(HttpStatus.OK)
@RequestMapping(value = "/id/{id}", method = RequestMethod.GET,
 produces = MediaType.APPLICATION_JSON_VALUE)
public Person getPersonById(@PathVariable Long id) throws NotFoundException {

return personManager.findById(id)
}

Accessing Servlet Environment and Request Data
Because RESTful controllers are run in a servlet environment, and the interface is the DispatcherServlet,
the servlet environment properties can be injected and accessed in the same manner presented in Chapter 3.
The RESTful handler methods can have flexible signatures. HttpServletRequest or HttpServletResponse
can be used as parameters, and Spring will take care of populating them for you. The @PathVariable and
@RequestParam annotations can be used to tell Spring to inject request data automatically. @Valid can be
used to validate resources submitted with POST or PUT. And so on. Even SpEL expressions are supported.
The next example depicts a REST handler for a POST method, which creates a person and adds the URI of
the new resource; this is built from the original request URL that is populated by Spring as a value for the
Location header:

@ResponseStatus(HttpStatus.CREATED)
@RequestMapping(value = "/create2", method = RequestMethod.POST)
 public void createPerson2(@RequestBody @Valid Person newPerson,

@Value("#{request.requestURL}")StringBuffer originalUrl,
HttpServletResponse response) {

Person person = personManager.save(newPerson);
logger.info("-----> PERSON: " + person);
response.setHeader("Location",

getLocationForPersonResource(originalUrl, person.getId()));
}

//Determines URL of person resource based on the full URL of the given request,
//appending the path info with the given childIdentifier using a UriTemplate.
protected static String getLocationForPersonResource
 (StringBuffer url, Object childIdentifier) {
 String newURL = url.toString();
 newURL = newURL.replace("create2", "id/{id}");
 UriTemplate template = new UriTemplate(newURL);
 return template.expand(childIdentifier).toASCIIString();
}

http://dx.doi.org/10.1007/978-1-4842-0808-3_3

Chapter 5 ■ Spring reStful ServiCeS

212

Another method for accessing request and response is the HttpEntity<T> class and its subclasses:
RequestEntity<T> and ResponseEntity<T>. By using these classes, you can get access to the request and
response body. RequestEntity<T> and ResponseEntity<T> can be used as follows:

• In the REST client to encapsulate every detail about a REST request that is made by
calling restTemplate.exchange.

final String url = "http://localhost:8080/mvc-rest/rest-persons/id/{id}";

final RequestEntity<Person> entity = RequestEntity.post(new URI(url))
.accept(MediaType.APPLICATION_JSON)
.contentType(MediaType.APPLICATION_JSON)

//setting a custom header that will be accessed in the handler method
.header("custom", "true")
.body(person);

ResponseEntity<Person> response = restTemplate.exchange(entity,
Person.class);

Person newPerson = response.getBody();

//get URI location for the Person created
HttpHeaders headers = response.getHeaders();
URI uri = headers.getLocation();

• In the RESTful handler method to access request headers, read the body of a request,
and write headers to the response stream.

@ResponseStatus(HttpStatus.CREATED)
@RequestMapping(value = "/create3", method = RequestMethod.POST)
public ResponseEntity<Person> handle(HttpEntity<Person> requestEntity,

@Value("#{request.requestURL}") StringBuffer originalUrl)
throws UnsupportedEncodingException {

// will return "true"
String requestHeader = requestEntity.getHeaders().getFirst("custom");

//we are just making sure the header is the one sent from the client
assertTrue(Boolean.parseBoolean(requestHeader));

Person person = requestEntity.getBody();
Hospital hospital = hospitalManager.

findByCode(person.getHospital().getCode());
person.setHospital(hospital);
Person newPerson = personManager.save(person);

HttpHeaders responseHeaders = new HttpHeaders();
responseHeaders.set("Location",

getLocationForPersonResource(originalUrl, person.getId()));
return new ResponseEntity<>(newPerson, responseHeaders,

HttpStatus.CREATED);
}

Chapter 5 ■ Spring reStful ServiCeS

213

! as with @RequestBody and @ResponseBody, Spring uses HttpMessageConverter<T> to convert to and from
the request and response streams. the HttpMessageConverter<T> and supported implementations were
covered in the “reStful applications using Spring MvC” section.

Asynchronous REST Services Using @Async Annotated Methods
The “Asynchronous REST Calls” section showed how to make an asynchronous REST call using the
AsyncRestTemplate class. In that case, the client did the rest call and could then focus on other operations
until the Future object returned the concrete data.

But asynchronous calls can be made in a different way using @Async annotated methods. This
annotation marks a method as a candidate for asynchronous execution. It can also be used at type level;
in this case, all methods in the class are considered asynchronous. Asynchronous methods can have any
signature and any parameter types. There are absolutely no restrictions about this. However, the return type
is restricted to void and Future (and implementations of this interface). Immediately after a client calls an
asynchronous method, the invocation returns and the execution of the method is submitted to a Spring
TaskExecutor12. Asynchronous methods that return void are used when the client does not expect a reply.

By default, to execute a method annotated with @Async, the executor that is used is the one supplied to
the <task:annotation-driven/> element. (The Spring Task namespace was introduced in Spring 3.0 to help
configure TaskExecutor and TaskScheduler instances.)

<task:annotation-driven executor="prExecutor"/>
<task:executor id="prExecutor" pool-size="100"/>

In Java Configuration, support for @Async can be enabled using @EnableAsync in one of the
configuration classes of the application—those annotated with @Configuration. To provide a different
executor, like in the preceding XML example, the class must implement org.springframework.scheduling.
annotation.AsyncConfigurer and provide a concrete implementation for the getAsyncExecutor method.

@Configuration
@EnableAsync
 public class AppConfig implements AsyncConfigurer {

 @Override
 public Executor getAsyncExecutor() {

ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor();
executor.setCorePoolSize(100);
executor.initialize();
return executor;

 }
 ...
}

12Spring’s TaskExecutor interface is equivalent to the java.util.concurrent.Executor interface and extends it
without modifying the API in order for clients to declare a dependency on an executor and receive any TaskExecutor
implementation. It was created to remove the need for Java libraries when using thread pools.

Chapter 5 ■ Spring reStful ServiCeS

214

Also the @Async annotation has a value attribute to indicate that an executor other than the default
should be used when the executor13 is defined as a bean:

@Async("otherExecutor")
public Future<Person> findPerson(Long id) throws InterruptedException {
 String url = "http://localhost:8080/mvc-rest/rest-persons/id/{id}";
 Person person = restTemplate.getForObject(url, Person.class, "1");
 Thread.sleep(1000L);
 return new AsyncResult<>(person);
}

<!-- in a spring configuration file we define an Executor bean -->
 <bean id="otherExecutor"

class="o.s.scheduling.concurrent.ThreadPoolTaskExecutor"
init-method="initialize" destroy-method="shutdown">
<property name="corePoolSize" value="100"/>

 </bean>

// in a class annotated with @Configuration
@Bean(name="otherExecutor", destroyMethod = "shutdown",
 initMethod = "initialize")
 ThreadPoolTaskExecutor getExecutor() {

ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor();
executor.setCorePoolSize(100);
return executor;

 }

! an example of an @Async annotated method and usage can be found in 07-pr-rest-solution. the example
is covered in the “practical exercise” section.

Intercepting REST Calls
There is a section in Chapter 3 about handler interceptors for controller methods, which mentions that REST
requests can be intercepted too, but the REST interceptors have to implement the ResponseBodyAdvice<T>
or extend one of its subclasses and provide the proper implementation for the beforeBodyWrite and
supports.

When extending JsonViewResponseBodyAdvice or AbstractMappingJacksonResponseBodyAdvice,
the beforeBodyWriteInternal method must be implemented, because the
AbstractMappingJacksonResponseBodyAdvice class provides a concrete implementation for beforeBodyWrite,
which calls beforeBodyWriteInternal after creating a proper JSON body container. ResponseBodyAdvice<T>
implementation allows you to customize the response after the execution of a @ResponseBody or a
ResponseEntity<T> method, but before being passed for conversion to an HTTP message converter. These
interceptors are annotated with @ControllerAdvice and are automatically picked up and used by Spring.

13You can see all methods available for a ThreadPoolTaskExecutor at http://docs.spring.io/spring/docs/4.1.x/
javadoc-api/org/springframework/scheduling/concurrent/ThreadPoolTaskExecutor.html.

http://dx.doi.org/10.1007/978-1-4842-0808-3_3
http://docs.spring.io/spring/docs/4.1.x/javadoc-api/org/springframework/scheduling/concurrent/ThreadPoolTaskExecutor.html
http://docs.spring.io/spring/docs/4.1.x/javadoc-api/org/springframework/scheduling/concurrent/ThreadPoolTaskExecutor.html
http://docs.spring.io/spring/docs/4.1.x/javadoc-api/org/springframework/scheduling/concurrent/ThreadPoolTaskExecutor.html
http://docs.spring.io/spring/docs/4.1.x/javadoc-api/org/springframework/scheduling/concurrent/ThreadPoolTaskExecutor.html

Chapter 5 ■ Spring reStful ServiCeS

215

In the 07-pr-rest-solution module, such an interceptor is implemented for you:

@ControllerAdvice(basePackages = "com.pr.rest")
//this interceptor is retricted to the classes in package "com.pr.rest"
public class AuditRestInterceptor
 extends JsonViewResponseBodyAdvice {
 private Logger logger = LoggerFactory.getLogger(AuditRestInterceptor.class);

 @Override
 public boolean supports(MethodParameter returnType, Class converterType) {

logger.info("-----> Audit REST interceptor supports(Person.class) ? "
+ Person.class.isAssignableFrom(returnType.getParameterType()));

return (super.supports(returnType, converterType)
&& returnType.getMethodAnnotation(JsonView.class) != null);

 }

....
}

The supports method tests if the AuditRestInterceptor supports the given controller method return
type and the selected HttpMessageConverter<T> type.

The value logged in the preceding supports method implementation is true if the controller method
return type is assignable to a reference of type Person.

 @ControllerAdvice(basePackages = "com.pr.rest")
//this interceptor is retricted to the classes in package "com.pr.rest"
public class AuditRestInterceptor
 extends JsonViewResponseBodyAdvice {
 private Logger logger = LoggerFactory.getLogger(AuditRestInterceptor.class);
 ...

 @Override
 protected void beforeBodyWriteInternal(MappingJacksonValue bodyContainer,

MediaType contentType, MethodParameter returnType,
ServerHttpRequest request, ServerHttpResponse response) {

logger.info("-----> Audit REST interceptor beforeBodyWrite");
response.getHeaders().add(HttpHeaders.CONTENT_ENCODING, "UTF-8");

super.beforeBodyWriteInternal(bodyContainer, contentType, returnType,
request, response);

 }
}

In the beforeBodyWriteInternal, the CONTENT_ENCODING header is added to the response, so the
presence of this header can be tested in the client and you can make sure that the interceptor did its job.
After that, the super.beforeBodyWriteInternal() is called to keep the original behavior of the extended
class, which is to modify the response body before being converted and sent back to the client.

Chapter 5 ■ Spring reStful ServiCeS

216

You see this interceptor in action when testing your REST services, because the log messages are
printed in the log console.

INFO c.p.r.AuditRestInterceptor - -->
 Audit REST interceptor supportsPerson.class ? true
INFO c.p.r.AuditRestInterceptor - --> Audit REST interceptor beforeBodyWrite

Using Spring HATEOAS
HATEOAS and Spring HATEOAS project were mentioned at the beginning of the chapter. When the
Hypermedia REST constrains are respected by a REST service, it is said that the service is a Hypermedia
Driven REST web service. Hypermedia is quite important for REST, because it allows you to build services
that are almost fully decoupled from their clients. The representations returned by the REST services contain
links that indicate further locations of resources that the client needs access to.

To build a Hypermedia Driven REST web service with Spring, the spring-hateoas dependency must
be added to the project. The current version of spring-hateoas is 0.17.0.RELEASE. This library (it is only one
jar currently, but it will probably grow into a framework) provides a set of classes used to generate resource
URIs. It also provides classes to decorate representations with links to return to the HATEOAS complying
client.

In this chapter’s examples, the Person class is wrapped inside a PersonHateoas class that extends
the core class of spring-hateoas: ResourceSupport. This class provides methods useful to add links to
representations and to access representations links. The PersonHateoas looks like this:

...
import com.fasterxml.jackson.annotation.JsonCreator;
import com.fasterxml.jackson.annotation.JsonProperty;
import org.springframework.hateoas.ResourceSupport;

public class PersonHateoas extends ResourceSupport {

 private Person person;

 @JsonCreator
 public PersonHateoas(@JsonProperty("person") Person person) {

this.person = person;
 }

 public Person getPerson() {
 return person;
 }
}

The PersonHateoas class has a field of type Person. By extending class ResourceSupport, methods to
generate HATEOAS links and references are inherited. When requesting a Person resource from a HATEOAS
REST service, a PersonHateoas is serialized and sent to the client. When the serialization is done in JSON
format, some specific JSON annotations are needed when declaring the PersonHateoas class. The
@JsonProperty specifies that at serialization time, the resulted object will contain a property named person
that will be mapped to a serialized version of the Person instance. Looks like a simple POJO, right? Well,
that’s what it is.

Chapter 5 ■ Spring reStful ServiCeS

217

A controller that returns an instance of PersonHateoas must define handler methods that
populate the PersonHateoas instances with HAREOAS-specific links. In order to do, Spring offers utility
methods that allow you to create links by pointing to controller classes, which are grouped under the
ControllerLinkBuilder. The controller and the method do nothing special, except that before returning
the response, the personHateoas object is populated with its own URI, using utility methods from the
ControllerLinkBuilder class that link together in a very readable way. For example, the underlined
code snippet in the previous example can be read like this: Add link to which the handler method
getPersonHateoasById from the PersonHateoasController class is mapped, with PathVariable id equal to
person.getId() to the personHateoas ph instance. The sources for spring-hateoas are available on GitHub
at https://github.com/spring-projects/spring-hateoas.

In the following code snippet, the linkTo and methodOn methods from ControllerLinkBuilder are
statically imported and used to generate the resource link for the Person instance with id=1.

...
import static org.springframework.hateoas.mvc.ControllerLinkBuilder.linkTo;
import static org.springframework.hateoas.mvc.ControllerLinkBuilder.methodOn;

@RestController
@RequestMapping(value = "/hateoas")
public class PersonHateoasController {

private Logger logger = LoggerFactory.getLogger(PersonHateoasController.class);

@ResponseStatus(HttpStatus.OK)
@RequestMapping(value = "/{id}", method = RequestMethod.GET,
 produces = MediaType.APPLICATION_JSON_VALUE)
public HttpEntity<PersonHateoas> getPersonHateoasById(
 @PathVariable Long id) throws NotFoundException {
 logger.info("-----> PERSON: " + id);
 Person person = personManager.findById(id);
 if (person == null) {

throw new NotFoundException(Person.class, id.toString());
 }
 PersonHateoas ph = new PersonHateoas(person);
 ph.add(

linkTo(
methodOn(PersonHateoasController.class)

.getPersonHateoasById(person.getId())
).withSelfRel()

);
 return new ResponseEntity<>(ph, HttpStatus.OK);
 }
}

In the previous example, the controller class is the one that takes care of setting the links by inspecting
the mappings. But Spring provides another way—by using EntityLinks implementations. To use them,
the controller class must be annotated with @ExposesResourcesFor, which makes EntityLinks available

https://github.com/spring-projects/spring-hateoas

Chapter 5 ■ Spring reStful ServiCeS

218

by dependency injection. Also, the configuration class must be annotated with @EnableEntityLinks. The
EntityLinks interface API exposes methods to access links pointing to controllers backing an entity type.
So the controller becomes this:

...
import org.springframework.hateoas.EntityLinks;
import org.springframework.hateoas.ExposesResourceFor;
@Controller
@ExposesResourceFor(Person.class)
@RequestMapping("/hateoas")
public class PersonHateoasController extends BaseController {
 private Logger logger = LoggerFactory.getLogger(PersonHateoasController.class);

 @Autowired
 private EntityLinks entityLinks;

 @RequestMapping(value = "/{id}", method = RequestMethod.GET,
produces = "application/hal+json")

 public HttpEntity<PersonHateoas> getPersonHateoasById
(@PathVariable Long id) throws NotFoundException {
logger.info("-----> PERSON: " + id);
Person person = personManager.findById(id);
if (person == null) {

throw new NotFoundException(Person.class, id.toString());
}
PersonHateoas ph = new PersonHateoas(person);

ph.add(entityLinks.linkForSingleResource(Person.class, id).withSelfRel());
return new ResponseEntity<>(ph, HttpStatus.OK);

 }
}

And the @EnableEntityLinks annotation is added to the configuration class. Also, to enable HAL
support, the EnableHypermediaSupport should be added to the configuration class too.

import org.springframework.hateoas.config.EnableEntityLinks;
import org.springframework.hateoas.config.EnableHypermediaSupport;
import org.springframework.hateoas.config.EnableHypermediaSupport.HypermediaType;
...
@EnableEntityLinks
@EnableHypermediaSupport(type= {HypermediaType.HAL})
@Configuration
@EnableWebMvc
@ComponentScan(basePackages = {"com.pr, com.pr.web, com.pr.rest, com.pr.hateoas"})
@ImportResource({"classpath:spring/app-service-config.xml",
 "classpath:spring/db-config.xml"})
public class WebConfig extends WebMvcConfigurerAdapter {
....
}

Chapter 5 ■ Spring reStful ServiCeS

219

The full documentation for spring-hateoas can be found at http://docs.spring.io/spring-hateoas/
docs/current/reference/html/.

The Hypermedia Driven REST web service that was just created can be tested with
restTemplate, just like any REST service. But to deserialize the HATEOAS links correctly, a custom
MappingJackson2HttpMessageConverter must be set for the restTemplate. The ObjectMapper must also be
customized to register the Jackson2HalModule implementation provided by Spring HATEOAS.

import org.springframework.core.ParameterizedTypeReference;
import org.springframework.hateoas.Resource;
import org.springframework.hateoas.hal.Jackson2HalModule;
...
public class PersonHateoasControllerTest {

 @Test
 public void getHateoasPerson() throws Exception {

ObjectMapper mapper = new ObjectMapper();
mapper.configure

(DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES, false);
mapper.registerModule(new Jackson2HalModule());

MappingJackson2HttpMessageConverter
converter = new MappingJackson2HttpMessageConverter();

converter.setSupportedMediaTypes(
MediaType.parseMediaTypes("application/hal+json"));

converter.setObjectMapper(mapper);

RestTemplate restTemplate = new RestTemplate(
Collections.<HttpMessageConverter<?>> singletonList(converter));

String url = "http://localhost:8080/mvc-rest/hateoas/{id}";

ResponseEntity<PersonHateoas> responseEntity =
restTemplate.getForEntity(url, PersonHateoas.class, "1");

PersonHateoas personHateoas = responseEntity.getBody();

assertNotNull(personHateoas);
assertTrue(personHateoas.hasLinks());
assertEquals("http://localhost:8080/mvc-rest/hateoas/1",

ppersonHateoas.getLink("self").getHref());
assertEquals("John", personHateoas.getPerson().getFirstName());
assertEquals("Smith", personHateoas.getPerson().getLastName());

 }
}

http://docs.spring.io/spring-hateoas/docs/current/reference/html/
http://docs.spring.io/spring-hateoas/docs/current/reference/html/
http://docs.spring.io/spring-hateoas/docs/current/reference/html/

Chapter 5 ■ Spring reStful ServiCeS

220

And the response sent to the client will look like this:

{"person":
 {"firstName":"John",
 "middleName":null,
 "lastName":"Smith",
 "dateOfBirth":"1935-10-01",
 "gender":"MALE","
 "hospital":{...},
 "identityCard":{...},
 " links":{"self":{"href":"http://localhost:8080/mvc-rest/hateoas/1"}}
 }

! the hospital and identityCard objects are not displayed in the previous example, as their contents are
not relevant for it. the content of those properties represents the JSOn serialization of the hospital and
identityCard fields specific to the Person instance. their contents are displayed in figure 5-15.

The response body contains two properties: "person" and "links". The "person" property value is
the JSON representation of the Person instance with id=1. The "links" property contains a link and its
meaning. The "rel":"self" tells the client that the link points to the current resource. In this chapter, the
fundamentals of creating and consuming RESTful services with Spring MVC were covered, which is enough
for the certification exam.

Summary
After reading this chapter, you should have a proper understanding of how Spring can be used to provide
and consume REST services. Here is a simple list of topics that you should keep handy when reviewing your
acquired knowledge:

• What is REST?

• What type of clients can access a web application?

• How are resources exposed to the client?

• How many types of representations are supported?

• What is the difference between @Controller and @RestController?

• Make sure that you can describe Spring MVC support for RESTful applications.

• Understand how to access request/response data.

• Use message converters.

• How is asynchronous REST supported?

• What is HATEOAS?

• How do you build a HATEOAS complying service with Spring HATEOAS and MVC?

Chapter 5 ■ Spring reStful ServiCeS

221

Quick Quiz
Question 1: What is REST?

A. a software design pattern

B. a framework

C. an architecture style

Question 2: Which of the following methods are HTTP methods?

A. PUT

B. GET

C. SUBMIT

D. OPTIONS

Question 3: What Spring class can be used to access and test REST services?

A. RestTemplate

B. AsyncRestTemplate

C. Both

D. None

Question 4: What does the RestTemplate handle?

A. Resources

B. Representations

C. Both

Question 5: What can be said about the @RestController annotation?

A. It is used to declare a controller providing REST services.

B. Is annotated with @Controller and @ResponseBody.

C. Controller methods annotated with @RequestMapping assume @ResponseStatus
semantics by default when the controller is annotated with @RestController.

Question 6: What is the effect of annotating a method with @ResponseStatus?

A. The default behavior for resolving to a view for methods returning void or null is
overridden.

B. The HTTP status code matching the @ResponseStatus is added to the response
body.

C. It forces usage of HTTP message converters.

Question 7: Which of the following HTTP message converters are supported by Spring MVC?

A. StringHttpMessageConverter

B. MappingJackson2HttpMessageConverter, but Jackson2 must be in the classpath

C. YamlMessageConverter

Chapter 5 ■ Spring reStful ServiCeS

222

Question 8: Which of the following RestTemplates can be used to make a GET REST call to a URL?

A. restTemplate.getForObject(...)

B. optionsForAllow(...)

C. getForEntity(...)

D. exchange(..., HttpMethod.GET,...)

Question 9: Does the following REST handler method comply with the HATEOAS constraint?

@ResponseStatus(HttpStatus.CREATED)
@RequestMapping(value = "/create", method = RequestMethod.POST,
 produces = MediaType.APPLICATION_JSON_VALUE,
 consumes = MediaType.APPLICATION_JSON_VALUE)
 public Person createPerson(@RequestBody @Valid Person newPerson) {
 logger.info("-----> CREATE");
 Hospital hospital = hospitalManager.findByCode(

newPerson.getHospital().getCode());
 newPerson.setHospital(hospital);
 Person person = personManager.save(newPerson);
 logger.info("-----> PERSON: " + person);
 return person;
}

A. Yes, because it returns a representation of the object that was created.

B. No, because it does not set the location header to the URI of the created resource.

C. This is not a REST handler method.

D. No, because a Link object is not added to the returned resource.

Practical Exercise
The practical exercises for this chapter require you to develop some REST client test methods to check your
understanding of implementing RESTful application with Spring MVC. The project module is named
07-pr-rest-practice. An analogous module with proposed solutions exists, which is named
07-pr-rest-solution. The projects and their TODOs are shown in Figure 5-10.

Chapter 5 ■ Spring reStful ServiCeS

223

The project is split into packages that contain classes grouped by purpose:

• com.pr.config contains the Java Configuration class used to configure the application.

• com.pr.hateoas contains classes that describe a hypermedia-driven REST web service

• com.pr.problem contains classes that handle the exceptions thrown in the application.

 – GlobalExceptionHandler handles exceptions thrown by methods in the
controllers under the com.pr.web package. The restriction is done using
@ControllerAdvice(basePackages = "com.pr.web").

 – NotFoundException is a type of exception thrown when a resource cannot be
found.

 – RestExceptionProcessor handles exceptions thrown by methods in the REST
controllers under the com.pr.rest package.

Figure 5-10. Projects associated with this chapter

Chapter 5 ■ Spring reStful ServiCeS

224

• com.pr.rest contains classes that implement REST services and interceptors.

 – AuditRestInterceptor is an interceptor for REST services that prints simple
messages and adds a header to the response before it is written.

 – HospitalsRestController is a REST controller for managing Hospital
resources.

 – PersonsRestController is a REST controller for managing Person resources.

• com.pr.web contains the web controllers that receive requests from a browser and
return views. The structure of the project is depicted in Figure 5-11.

Figure 5-11. Package organization of the 07-pr-rest-practice project module

The tests for the rest controllers are located under the same packages as the controllers being tested.
The only exception is the com.pr.async that contains a configuration class, a service class, and a test class
used to test an asynchronous REST method annotated with @Async. You have no TODO tasks in this package;
the example is simply provided for you to run it and see how an REST asynchronous is made.

All the TODO tasks are in the RestPersonControllerTest class. They cover GET, POST, and DELETE
operations.

The practical exercise for this chapter requires Gradle tasks to be run in parallel, because the REST tests
require the web application to be started. To do this, you have to create an Intellij IDEA Gradle launcher to
start the application, and another to stop it. The test cases are run by right-clicking the method you want to
execute, and then selecting Run from the menu that appears.

Chapter 5 ■ Spring reStful ServiCeS

225

To create a Gradle launcher, you have to do the following:

1. In the Gradle Task view, right-click the appStart task. A menu is displayed. Select
Create personal-records:07-pr-rest-practice.

2. In the popup check the Single instance only check box. Modify the name to
something more relevant, like mvc-rest-start.

3. Click Apply, and then OK. Your launcher should be available in the Intellij IDEA
launcher menu.

The flow for creating a Gradle launcher is depicted in Figure 5-12. Do the same to create a launcher for
the appStop task.

Figure 5-12. Creating a Gradle launcher

Chapter 5 ■ Spring reStful ServiCeS

226

Then from the launcher menu, select the mvc-rest-start launcher and start the application. If the
application starts correctly, you should see in the console the following log:

 INFO Jetty 9.2.10.v20150310 started and listening on port 8080
 INFO mvc-rest runs at:
 INFO http://localhost:8080/mvc-rest
Run 'gradle appStop' to stop the server.

Open the link in a browser. You should see the page shown in Figure 5-13.

Figure 5-13. The mvc-rest web application

The web application will help you verify that your REST requests have executed correctly.
Once you have the web application up, you can go ahead and try to solve the TODO tasks. There are

eight TODOs, numbered from 15 to 22, that require you to perform certain types of REST requests.

! get requests can be done directly in the browser, so if you want to get creative with get reSt handler
methods, you can test them in a browser. for example, try to access http://localhost:8080/mvc-rest/
rest-persons/id/1. You should see a JSOn reply like the one depicted in the figure 5-14.

Chapter 5 ■ Spring reStful ServiCeS

227

To format JSON representations properly for display, a @MappingJackson2HttpMessageConverter bean
has to be defined and configured accordingly. There are two ways of doing this:

• Call setPrettyPrint on the @MappingJackson2HttpMessageConverter

@Bean
public MappingJackson2HttpMessageConverter

mappingJackson2HttpMessageConverter() {
 MappingJackson2HttpMessageConverter converter

= new MappingJackson2HttpMessageConverter();
 converter.setObjectMapper(objectMapper());
 converter.setPrettyPrint(true);
 return converter;
}

@Bean
public ObjectMapper objectMapper() {
 return new ObjectMapper();
}

Figure 5-14. JSON response for a GET REST request

Chapter 5 ■ Spring reStful ServiCeS

228

• Enable the indentation of the serialization output by calling enable on the
objectMapper set for the @MappingJackson2HttpMessageConverter bean

@Bean
public ObjectMapper objectMapper() {
 ObjectMapper objMapper = new ObjectMapper();
 objMapper.enable(SerializationFeature.INDENT_OUTPUT);
 return objMapper;
}

! pOSt and Delete requests can be tested using a firefox plugin called poster.14 figure 5-15 shows a reSt
pOSt request and response done with poster.

Figure 5-15. POST REST request and response done with Poster. You have to copy and paste the RequestBody
into the Poster content text area

14The plugin can be found at https://addons.mozilla.org/en-US/firefox/addon/poster/.

https://addons.mozilla.org/en-US/firefox/addon/poster/

229

Chapter 6

Spring Web with AJAX

The topic of this chapter is not a subject in the certification exam, but it is useful to know all the tools that
can be used to develop a web application in the most efficient way. A properly designed user interface
should ensure that a request is sent to the server only when the content of the request is complete and valid
so that it can be used by a server operation. Using requests between the client and the server application is
not a good practice. It is time-consuming and can go wrong when the network connection is unstable.

What Is AJAX?
AJAX is an acronym for asynchronous JavaScript and XML, but over the years, this term has grown and
means so much more than the technologies that make the acronym. AJAX describes the way that various
web technologies can make web applications highly responsive and provide the user with an almost
desktop-like interaction. Basically, web applications developed with AJAX can provide rich interaction,
just-in-time information, and dynamic information without a page refresh. Of course, this comes with
programming complexity; some of the logic that happens on the server must be moved on the client side,
where the logic must be implemented in JavaScript. The most obvious example is the validation of user
input. There's no point in sending invalid data to the server, right?1

Before AJAX, a web application functioned like this:

1. The user requested a page using a browser.

2. The server where the web application was installed created and sent a response
to be rendered in the browser.

3. The user sent some data to the server.

4. The server received the data and validated it. If the validation failed, the data and
validation errors were put into a response that was sent back to the browser.

5. The response was received by the browser, which displayed the new page.

1There are JavaScript libraries that can validate form user input before submission; for example, the jQuery validation
plugin (http://jqueryvalidation.org).

http://jqueryvalidation.org/

Chapter 6 ■ Spring Web With aJaX

230

This happens for any user request; the whole page is rebuilt and displayed every time a response is
received from the server. It is quite a time-consuming process, depending on the health of the network, and
the user may see an annoying flickering as the web pages are displayed. Figure 6-1 depicts the traditional
pre-AJAX web application communication flow with the client.

Figure 6-1. Traditional pre-AJAX web application communication flow

The validation case was chosen because an example of an editing form with validation was presented
in Chapter 3 (the 05-pr-mvc-form module). The validation was implemented on the server side using the
@Valid annotation. This can be easily seen by installing the Firebug plugin in Firefox (see the Net tab). All
the steps mentioned next are depicted in Figure 6-2.

1. Start 05-pr-mvc-form-solution.

2. Open the Firebug console (1), click the Net tab (2), and then click (3) Enable.

3. Click the Persons menu item (4). Select a user (5), click the link to see the details,
and then click the Edit link (6).

4. Click the Clear option (7) in the Firebug console to make sure that you do not
have previous requests polluting the console.

5. Delete the first name (8) and last name (9). Click Save (10) and then analyze
what is shown in the Net console.

http://dx.doi.org/10.1007/978-1-4842-0808-3_3

Chapter 6 ■ Spring Web With aJaX

231

Figure 6-2. Steps to analyze the communication between client and server

Chapter 6 ■ Spring Web With aJaX

232

Figure 6-3. The final step of communication, validation failure response

After performing the last step, you should see the POST request in the console. If you expand it, you
see the response sent by the server (returned by the DispatcherServlet), a new HTML page containing
the HTML code of the page, plus the validation elements. There are also a few GET requests for the static
contents of the page, which are handled by the default servlet container for static resources. Figure 6-3
depicts the last communication with the server.

Chapter 6 ■ Spring Web With aJaX

233

In the preceding example, a POST request was sent to the server. The validation was executed on the
server and failed, so no data was saved. Basically, this was a useless request, and the full page was rebuilt
and redisplayed just to show the user what was wrong with the data. The GET requests to retrieve the
header and footer information, and the styling *.css files, are also useless, because they are used to retrieve
information already present in the page. These useless requests can be avoided either by using caching or by
making sure only the form part of the page is dynamic. AJAX can help with this. A request can be sent to the
server with the form data by using an AJAX request; the data retrieved from the server can be used to rebuild
only a part of the page by using an AJAX callback. Or even better, validation can be performed on the client
side by using JavaScript (pure or competent JavaScript libraries like the jQuery validation plugin). And an
AJAX request sends data to the server, which is processed successfully. This is just an example. AJAX can also
be used when searching data. An autocomplete behavior can be implemented for the search field by using
an AJAX call to build a list (server side) and afterward to display the list using JavaScript (usually below the
autocomplete input).2

One of the most popular JavaScript frameworks is jQuery3 because it is small and provides a wide
range of functionalities—document traversal and manipulation, event handling, and animations—in a very
practical way. Most popular JavaScript frameworks are actually developed using jQuery.4

A new way of developing web applications nowadays is to totally decouple the Web from server
functionality, keeping all web logic on the client and all back-end logic on the server, reducing
communication between the client and the server as much as possible, and handling requests in a manner
similar to REST. AJAX remoting was not supported until Spring 3. JSON also became very popular once
jQuery took off and it is now the most common format for performing data exchange between a client and a
server.

! a sample of this behavior is implemented in the RestSearchController that you can find in the 08-pr-ajax-
solution. it is presented in detail later in the chapter.

Making AJAX Requests
AJAX requests can be made using a JavaScript object of type XMLHttpRequest, which was designed by
Microsoft and adopted by Mozilla, Apple, and Google, and standardized in W3C5. All modern browsers
support it. To create an instance of XMLHttpRequest, you just instantiate it:

var xhr = new XMLHttpRequest();

2jQuery UI provides a plugin that to implement the behavior with little effort (https://jqueryui.com/
autocomplete/).
3The official jQuery site (https://jquery.com).
4Examples include jQuery UI (https://jqueryui.com), Bootstrap (http://getbootstrap.com), AngularJS
(https://angularjs.org).
5See http://www.w3.org/TR/XMLHttpRequest/.

https://jqueryui.com/autocomplete/
https://jqueryui.com/autocomplete/
https://jquery.com/
https://jqueryui.com/
http://getbootstrap.com/
https://angularjs.org/
http://www.w3.org/TR/XMLHttpRequest/

Chapter 6 ■ Spring Web With aJaX

234

The xhr object can make requests to a server and update only a portion of the page. Figure 6-4
depicts XMLHttpRequest. When the client sends a request using this type of object, the server responds by
populating the xhr.responseText property.

Figure 6-4. AJAX request diagram

A search request for a person with a first name that contains the letter a can be send to the server using
a function similar to the following. Everything after ? are request parameters.

<script type="text/javascript">
var url="${personsUrl}/ajax?fieldName=firstName"

¨&fieldValue=a"
¨&exactMatch=false";

var xhr = new XMLHttpRequest();
xhr.open("GET", url);
xhr.send();
xhr.onreadystatechange =
 function () {

if (xhr.readyState == 4 && xhr.status == 200) {
displayResults(xhr.response);

 }
};
</script>

The xhr.send() method has multiple forms. It sends the request body to the URL that a connection was
previously open to by calling xhr.open("GET", url). In the previous example, there was no request body to
send, because all the request parameters were in the URL.

The readyState can have different values, but the one in the fourth example tests if the request has
finished and the response is ready. The status property is the HttpStatus value that was mentioned in
Chapter 3; it is result code from the server. If you want to know more about the XMLHttpRequest type,
you can take a look at the full specifications at https://xhr.spec.whatwg.org/. But since jQuery was
introduced, there's been no need to use it explicitly because there are better and more practical ways to
make AJAX requests.

http://dx.doi.org/10.1007/978-1-4842-0808-3_3
https://xhr.spec.whatwg.org/

Chapter 6 ■ Spring Web With aJaX

235

! an example for making a request using an object of type XMLHttpRequest can be found in the 08-pr-
ajax-solution. Just look for the legacySearch JavaScript function in the search.jsp file. to test that
function, just comment the $.getJSON call in line 112 and uncomment the legacySearch call in line 113.
restart the application and try it. but you might want to do this after finishing reading this chapter, when your
understanding of jQuery, JavaScript, and the logic of the application will make things easier for you.

As you can see, using objects of type XMLHttpRequest to perform AJAX calls is quite cumbersome. A
lot of problems might appear when the response type is something more complex than text; like JSON, for
example, because a lot of extra code has to be written to perform conversions that get the response body in a
proper format.

The methods and properties of the XMLHttpRequest class used in the previous example are explained in
Table 6-1.

Table 6-1. XMLHttpRequest Methods and Properties

Method Description

open(http method, URL,
[asynch-Flag, username, password])

Initializes a request. This method is to be used from JavaScript code.

send(content in various formats) This method sends a request. The content can be null. If the request
is asynchronous (which is the default), this method returns as soon
as the request is sent.

onreadystatechange This property returns an EventHandler every
time the readyState attribute changes.

readystate Returns an unsigned short, the state of the request, and the API.
(http://www.w3.org/TR/XMLHttpRequest/#xmlhttprequest)
defined values are:
0 -> UNSENT : open() was not called yet
1 -> OPENED : send() was called
2 -> HEADERS_RECEIVED : send() was called and headers and
status are available
3 -> LOADING : downloading; responseText holds partial data
4 -> DONE : the request was completed

status This property is of type unsigned short and contains the HTTP result
code. Most common values are
200 -> ok
201 -> Created
400 -> bad request
404 -> not found
403 -> forbidden
500 -> internal server error

responseText This property contains the response to the request as text, or null if
the request was unsuccessful or has not yet been sent.

http://www.w3.org/TR/XMLHttpRequest/#xmlhttprequest

Chapter 6 ■ Spring Web With aJaX

236

Introducing jQuery
In the practice exercise, you will perform a search request that updates only the content of a <div> element.
The JSP page is /webapp/WEB-INF/persons/search.jsp. The contents are as follows:

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="fn" uri="http://java.sun.com/jsp/jstl/functions" %>
<%@ taglib prefix="spring" uri="http://www.springframework.org/tags" %>
<%@ taglib prefix="sf" uri="http://www.springframework.org/tags/form" %>

<h2>
 <spring:message code="persons.search.title"/>
</h2>

<div class="form">
 <spring:url value="/persons" var="personsUrl"/>
 <sf:form modelAttribute="criteriaDto" method="get">
 <table>
 <tr>

<th>
<label for="fieldName">
<spring:message code="label.Criteria.fieldname"/> :

</label>
</th>

<td>
<sf:select path="fieldName" id="fieldName">
<sf:option value="firstName">

<spring:message code="label.Person.firstname"/>
</sf:option>
<sf:option value="lastName">

<spring:message code="label.Person.lastname"/>
</sf:option>
<sf:option value="dob">

<spring:message code="label.Person.dob"/>
</sf:option>
<sf:option value="pnc">

<spring:message code="label.ic.pnc"/>
</sf:option>
<sf:option value="hospital">

<spring:message code="label.Hospital.name"/>
</sf:option>

</sf:select>
</td>
<td></td>

 </tr>
<tr>
<th>
<label for="fieldValue">
*
<spring:message code="label.Criteria.fieldvalue"/> :
</label>

http://java.sun.com/jsp/jstl/core
http://java.sun.com/jsp/jstl/functions
http://www.springframework.org/tags
http://www.springframework.org/tags/form

Chapter 6 ■ Spring Web With aJaX

237

</th>
<td><sf:input path="fieldValue" id="fieldValue"/>

<spring:message code="label.dateFormat.accepted"/>

</td>
<td><label class="error" id="fieldValueError"/>
</td>

</tr>
<tr>
<td></td>
<td colpan="2">
<sf:checkbox path="exactMatch" id="exactMatch"/>
<spring:message code="label.Criteria.exactmatch"/>

</td>
</tr>
<tr>
<td>
<input id="searchButton" type="submit"
value="<spring:message code='command.search'/>"/>

</td>
<td>
<input id="cancelButton" type="submit"
value="<spring:message code='command.cancel'/>"/>

</td>
</tr>
<tr>
<td colspan="3">
<!-- HTML element that will be dynamically populated -->

<label class="error" id="noResults"/>
</td>

</tr>
 </table>
 </sf:form>
</div>

<!-- The div with results, that will be loaded dynamically -->
<div id="resultDiv">
 <table>
 <thead>
 <tr>

<td>
<spring:message code="label.ic.pnc"/>

</td>
<td>
<spring:message code="label.Person.firstname"/>

</td>
<td>
<spring:message code="label.Person.lastname"/>

</td>
 </tr>
 </thead>

Chapter 6 ■ Spring Web With aJaX

238

 <tbody id="resultTable">
 </tbody>
 </table>
</div>

<script type="text/javascript">
$(document).ready(function () {
 // JavaScript content to make the page dynamic
}
</script>

A few Spring form elements have been replaced with HTML elements that will be displayed and
populated by JavaScript methods. HTML elements from a page can be populated or emptied, hidden or
displayed using JavaScript. If you click the Search button, a request (only one) is made to retrieve results,
and the resultTable is populated and the resultDiv is displayed. Figure 6-5 depicts an AJAX request to
search for people. The result table is populated and displayed with the response returned. As you can see,
no other requests are necessary. This is the power of AJAX: a practical way of retrieving from server only the
information that is really needed.

Figure 6-5. AJAX request

Chapter 6 ■ Spring Web With aJaX

239

The JavaScript code that is missing from the earlier code snippet is written using jQuery. By providing
functions that are more practical and easier to use, this framework helps the developer to focus on the key
aspects of making a request: which resource is requested from the server (the URI), which parameters are to
be used for the request, and which callback method is to be executed when the response is received.6 That
is what jQuery is—a library or a collection of JavaScript functions that a developer can use to avoid writing
complicated JavaScript logic. jQuery provides the following features:

• DOM element selection

• DOM element manipulation

• CSS manipulation

• Events and event-related functions

• JavaScript effects and animations

• Strong cross-browser support

• Small footprint and speed

• Functions for JSON parsing

To use jQuery, the jquery.js file containing JavaScript functions has to be referred in the page. When
using Spring and Tiles, the jquery.js file is referred in the template file that builds every page of the site.
The jquery.js file can be added to the project or it can be referred directly from the Web if access to the
Internet is assumed to always be possible. The 08-pr-ajax-practice is the project for this chapter and its
structure is depicted in Figure 6-6.

Figure 6-6. Practice project to exercise Spring with AJAX

6Some jQuery AJAX methods allow definition of two callback methods: one for successful requests and one for failed ones.

Chapter 6 ■ Spring Web With aJaX

240

The jQuery.js file is part of the project; it is stored under \webapp\js. Its name is postfixed with the
version of jQuery—in this case, 2.1.4; it is referred in \webapp\WEB-INF\templates\layout.jsp like this:

<head>
 <script type="text/javascript" src="<c:url value='/js/jquery-2.1.4.js' /> ">
 </script>
</head>

When Internet access is always assumed, the file does not have to be part of the project; it can be
referred directly using the link from the official site:

<head>
 <script type="text/javascript" src="http://code.jquery.com/jquery-2.1.4.min.js">
 </script>
</head>

On the official site, two versions are available. The development version, which was copied in the
project, is uncompressed and has proper formatting that is readable; it should be used during development.
The minified (obfuscated) version is compressed, not readable, reduced in size, and appropriate for
production use.7

jQuery HTML DOM Manipulation
The principle of jQuery is to select an element(s) and perform some action(s) on it (them):

$(selector).action();

The $ is actually a variable of type jQuery that is added to the current page when the jquery.js file
is referred. Every function defined in the jQuery type can thus be used. You can check this for yourself by
inspecting the code in the jquery.js. You find the following:

jQuery = function(selector, context) { ...}
window.jQuery = window.$ = jQuery;

The selector can be anything: an HTML id, a CSS class, an HTML element type, or a combination of any
of these. jQuery is flexible like that. The identification of the element is done by a selector engine. Examples
are depicted in the following code snippet:

<!-- Selecting elements by type -->
$("p") // selects all <p> elements in the page
$("p a") // selects all anchor tags inside a paragraph tag

<!-- Selecting element having id=resultDiv-->
$("#resultDiv")

<!-- Selecting all elements with class=error -->
$(".error")

7Smaller resources load faster on browsers; that’s why production minified files are recommended.

http://code.jquery.com/jquery-2.1.4.min.js

Chapter 6 ■ Spring Web With aJaX

241

The action can be any function available for that HTML element. For example, the val and text
functions get and set values for a field:

<!-- Getting the value form a text field -->
var fieldName = $("#fieldName").val();
<!-- Setting the "John" value of text field -->
$("#fieldValue").val("John");
<!-- Setting the value of a label element -->
$("#fieldValueError").text(err);

And there are special functions to manipulate HTML, such as adding, removing, replacing, displaying,
or showing extra elements :

<!-- The contents of the element with id "resultTable" are deleted-->
$("#resultTable").empty();
<!-- Adding HTML elements to the element with "resultTable" id -->
$("#resultTable").append("<tr><td>123456</td></tr>")
<!-- Replacing HTML content of the element with "resultTable" id-->
$("#resultTable").html("<tr><td>123456</td></tr>");
<!-- Hide all elements with class "error"
$(".error").hide();
<!-- Fading out element with certain speed: slow/fast/normal -->
$("#resultDiv").fadeOut("fast");
<!-- Fading in element with certain speed: slow/fast/normal -->
$("#resultDiv").fadeIn("fast");

Specific behavior can be attached to elements using JavaScript HTML DOM events.8

<!-- Attach 'onClick' event handler to the search button using HTML.
Static - the event handler is always bound to the button-->
<input id="searchButton"

type="submit"
value="<spring:message code='command.search'/>"
onclick="submitSearch"/>

// Attach 'onClick' event handler to the search button using javascript
// Dynamic - developer can decide when/if the event handler
// is bound to the search button.The following function is called when the DOM

// is ready
$(function() {
 $("#searchButton").onclick = submitSearch;
});

An HTML event called DOMContentLoaded triggers on an HTML document when the page is ready. It
waits for the full HTML and scripts, and then triggers. The ${function){} is equivalent to $(document).
ready(function () {} and handles the ready event. This ensures that the JavaScript code in the body is
executed after all the HTML elements were rendered.

8The complete list of HTML DOM events can be found at http://www.w3schools.com/jsref/dom_obj_event.asp.

http://www.w3schools.com/jsref/dom_obj_event.asp
http://www.w3schools.com/jsref/dom_obj_event.asp

Chapter 6 ■ Spring Web With aJaX

242

After the submitSearch method is bound to the searchButton, the method is called when the button is
clicked. The body of the method contains jQuery HTML element manipulation statements.

function submitSearch(event) {
 //prevent submission of the form so this function can send the request
 event.preventDefault();

 // extract values form HTML elements
 var fieldName = $("#fieldName").val();
 var fieldValue = $("#fieldValue").val();
 var exactMatch = $("#exactMatch").is(":checked");

 //validate parameters before sending the request
 if (isValid(fieldName, fieldValue)) {
 //definition of the isValid method is not relevant in this context
 // and will be covered later

 var params = {
fieldName: fieldName,
fieldValue: fieldValue,
exactMatch: exactMatch

 };
 //clear errors from previous attempts if any
 $(".error").hide();

 //sending request to http://localhost:8080/mvc-ajax/ajax
 $.getJSON("${personsUrl}/ajax", params, displayResults);
 //definition of the displayResults method is not relevant in this context
 // and will be covered later
 }
 return false;
}

In earlier versions of jQuery, the .bind() method was used for attaching an event handler directly to
elements.

$(function() {
 $("#searchButton").bind("click", submitSearch);
 }

The same can be done using the jQuery click() function to directly bind a function to the button:

$(function() {
 $("#searchButton").click(
 function (event) {

//content of submitSearch method mentioned earlier
 });
});

Chapter 6 ■ Spring Web With aJaX

243

jQuery AJAX Calls
jQuery provides methods to make AJAX calls using the ajax method. Because the syntax of this method is
complicated, wrappers for performing GET and POST requests are provided.9

$.get(URL, parameters, callback, dataType)

• URL: The URL of the server resource being requested via GET

• parameters: Any data that should be sent to the server using a GET request
(string, Object, Array)

• callback: A function to be executed after the request is completed

• dataType: The type of data representing the response body (text, XML, JSON, etc.)

This method can be used like this:

$(function() {
 $("#searchButton").bind("click", submitSearch);
});

function submitSearch(event) {
 ...
 // code to extract parameters is the same as previous example

 //sending request to http://localhost:8080/mvc-ajax/ajax
 $.getJSON("${personsUrl}/ajax", params, displayResults);
 }
}

The displayResults method should receive a JSON array as an argument that transforms into <tr/>
elements that will be added to the resultTable. Each line contains a link (which is the person's personal
numeric code) to the details page in the first column, the first name in the second column, and the last name
in the third column. The HTML code should be similar to the following:

<tr>
 <td>

 2600909134181

 </td>
 <td>Jessica</td>
 <td>Jones</td>
</tr>

9The full API for jQuery in a very readable format can be accessed at http://jqapi.com/.

http://jqapi.com/

Chapter 6 ■ Spring Web With aJaX

244

The link is a function call that displays a pop-up with that person’s information. The personal numeric
code is used as an argument, because the person id is not serialized and it is not used in the JavaScript
functions for security reasons.

function displayResults(results) {
 if (results.length == 0) {
 $("#noResults").fadeIn("fast");
 $("#noResults").text("No results for search");
 } else {
 $("#resultTable").empty();
 results.forEach(function(person){

$("#resultTable").append(
"<tr>"
+ "<td>"
+'<a href="#"' + 'onclick="getPersonDetails('
+ "'"+ person.identityCard.pnc +"'" + ')">'
+ person.identityCard.pnc +''

+ "</td>"
+ "<td>" + person.firstName + "</td>"
+ "<td>"+ person.lastName + '</td>"
+"</tr>");

});
 $("#resultDiv").fadeIn("fast");
 }
}

• $.getJSON(URL, parameters, callback): Load JSON-encoded data from the server
using a GET HTTP request. Basically, equivalent to $.get (URL, parameters,
callback, "json"). The parameters argument is an object containing the request
parameters and their values. Before making the request, that object is parsed and the
parameter names and values are extracted and added to the request URL.

• $.post(URL, parameters, callback, dataType): A method to make a POST
request. Parameters have the same meaning, as mentioned previously for $.get.

! in JavaScript and htML, the single quote(') and double quote(") have the same meaning and can be used
together in complicated text constructions to avoid escaping them. this was done in the previous code snippet
to create the contents of the "resultTable" element.

! the JavaScript code in this chapter's example might not be optimal, but it was written in such a way to use all
the examples given in the book.

Chapter 6 ■ Spring Web With aJaX

245

Spring MVC, AJAX, and jQuery
The main advantage of AJAX is that you can have one JSP page that handles the request and the result, so
no need to redirect to another page (view) to display the result. When using Spring, a controller handles the
AJAX request. The controller method to handle AJAX requests has the following typical syntax:

@RequestMapping(value = "/ajax", method = RequestMethod.GET)
public @ResponseBody
 List<Person> getPersons(CriteriaDto criteria) {
 try {
 List<Person> persons = personManager.getByCriteriaDto(criteria);
 return persons;
 } catch (InvalidCriteriaException ice) {
 ice.printStackTrace();
 }
 return new ArrayList<>();
}

Of course, a view cannot represent the response, so the controller methods must be annotated with
@ResponseBody. The response will be serialized to JSON because the client (the $.getJSON in this case)
accepts this content type. And because the jackson library is in the classpath of the project, Spring does its
thing, and serializes the response properly, without the need for any other configuration.

If the client does not specify the type of the format for the response, then produces = MediaType.
APPLICATION_JSON_VALUE should be added to the @RequestMapping annotation. But using this attribute
when the client requests the default format would just be redundant.

getByCriteriaDto is a service method to search a person using the criteria provided by the user. It was
covered in Chapter 3.

The client jQuery method is depicted in the following code snippet:

$("#searchButton").click(
 function (event) {
 event.preventDefault();
 var fieldName = $("#fieldName").val();
 var fieldValue = $("#fieldValue").val();
 var exactMatch = $("#exactMatch").is(":checked");
 //console.log('Criteria:' + fieldName + ", " + fieldValue

+ ", " + exactMatch);

 if (isValid(fieldName, fieldValue)) {
 var params = {
 fieldName: fieldName,
 fieldValue: fieldValue,
 exactMatch: exactMatch
 }
 $(".error").hide();
 $.getJSON("${personsUrl}/ajax", params, displayResults);
 }
 return false;
});

http://dx.doi.org/10.1007/978-1-4842-0808-3_3

Chapter 6 ■ Spring Web With aJaX

246

 //global variables representing internationalized error messages
 // they are set by the controller
 var fieldValueErrMessage = "${fieldValueErrMessage}";
 var fieldDateErrMessage = "${fieldDateErrMessage}";

function isValid(fieldName, fieldValue){
 var err='';
 if(fieldValue.length == 0) {

err = fieldValueErrMessage;
 } else if(fieldName == 'dob' && !isValidDate(fieldValue)) {

err = fieldDateErrMessage;
 }

if(err.length > 0) {
 $("#fieldValue").focus();
 $("#fieldValueError").text(err);
 $("#fieldValueError").fadeIn('fast');
 return false;
 }
 return true;
}

As mentioned, the params object is constructed to group the parameter names and values for the GET
request. Even if it looks like a JSON object, it is not, and it does not need to be because it is not used as such.
The params object is not placed in the body of the request to be deserialized in the controller; instead, its
content is extracted and added as request parameters to the request URL before making the request. Spring
MVC takes these parameters and uses them to create an argument of type CriteriaDto, which is then
passed as arguments of the search method in the controller.

The isValid method validates the request parameters and displays an error message if the parameters
are invalid. If the request parameters are valid, the request is sent to the server and the response is processed
using the displayResults method. The isValidDate is a utility method that matches a string to a date
format.

Using REST-Style Remoting with JSON
If the request body and the response body are both in JSON format, considering that an AJAX request is
all about data exchange, REST could be used to make AJAX calls. So instead of using @Controller,
@RestController could handle AJAX calls. The JavaScript must change too. To demonstrate how this can
be done, a new menu option was created in 08-pr-ajax-solution. A new form was also added. They are
depicted in Figure 6-7.

Chapter 6 ■ Spring Web With aJaX

247

The form is a simplified version of the one previously used, because the field name in the search criteria
is not selectable anymore. This was done to reduce the complexity of the JavaScript and to focus on the AJAX
request. The only restriction now is for the user-inserted string to not be empty. Also, the page technically
does not even need a Spring form anymore. A POST request can be done without having a form by using the
jQuery $.ajax method to perform the AJAX call. So no model attribute is needed to populate the form; you
have a simpler web interface, as another Spring component was removed. The following code can be found
in /webapp/WEB-INF/persons/rest-search.jsp:

<div class="person">
 <spring:url value="/rest-search/perform" var="searchUrl"/>

<table>
<tr>

<th>
<spring:message code="label.Criteria.fieldname"/> :

</th>

<td>
<label>

<spring:message code="label.Person.firstname"/>
</label>

</td>
<td></td>

</tr>
<tr>

<th>
*
<spring:message code="label.Criteria.fieldvalue"/> :

</th>
<td><input name="fieldValue" id="fieldValue"/>
</td>

Figure 6-7. Menu item and form for using a RestController to perform a search

Chapter 6 ■ Spring Web With aJaX

248

<td>
</td>

</tr>
<tr>

<td></td>
<td colpan="2">

<input type="checkbox" id="exactMatch" />
<spring:message code="label.Criteria.exactmatch"/>

</td>
</tr>
<tr>

<td>
<input id="searchButton" type="submit"

value="<spring:message code='command.search'/>"/>
</td>
<td>

<input id="cancelButton" type="submit"
value="<spring:message code='command.cancel'/>"/>

</td>
</tr>
<tr>

<td colspan="3"><label class="error" id="noResults"/></td>
</tr>

</table>
</div>

<div id="resultDiv">
<!-- this div does not change-->
</div>

To display the form, a different controller than the one handling the AJAX request has to be used,
because a REST controller does not use views.

@Controller
@RequestMapping(value = "/rest-search")
public class RestFormController {

 // Displays the REST customized person search form to the user
 @RequestMapping(method = RequestMethod.GET)
 public String search() {

return "persons/rest-search";
 }
}

The controller to handle the AJAX requests is a typical REST controller, annotated with @RestController,
which was introduced in Chapter 5. The method handling the AJAX request expects the criteria to be
submitted in JSON format (the consumes attribute) and provides a response that will be serialized to the
JSON format (the produces attribute).

http://dx.doi.org/10.1007/978-1-4842-0808-3_5

Chapter 6 ■ Spring Web With aJaX

249

@RestController
@RequestMapping(value = "/rest-search/perform")
public class RestSearchController {

 @Autowired
 protected PersonManager personManager;

 @ResponseStatus(HttpStatus.OK)
 @RequestMapping(method = RequestMethod.POST,

produces = MediaType.APPLICATION_JSON_VALUE,
consumes = MediaType.APPLICATION_JSON_VALUE)

 public List<Person> getAll(@RequestBody CriteriaDto criteria)
throws InvalidCriteriaException {
if (criteria.getFieldValue() == null || criteria.getFieldValue().isEmpty()) {

return personManager.getByCriteriaDto(criteria);
}
return new ArrayList<>();

 }
}

To make things more interesting, two callbacks will be used: one for the case when the request is
resolved correctly and one for the case when the request fails.

<script type="text/javascript">
$(function () {

 $("#searchButton").click(
 function (event) {
 event.preventDefault();
 sendAjaxReq();
 });

 });
 function sendAjaxReq(){

var fieldValue = $("#fieldValue").val();
var exactMatch = $("#exactMatch").is(":checked");

if (fieldValue != '') {
$.postJSON("${searchUrl}",
JSON.stringify({

"fieldName": "firstName",
"fieldValue": fieldValue,
"exactMatch": exactMatch}),displayResults);

 // the displayResults method was not changed
}

 }

Chapter 6 ■ Spring Web With aJaX

250

//function is added to the jQuery object
// so it can be called with $.postJSON
$.postJSON = function(url, data, callback) {

return $.ajax({
"type": "POST",
"url": url,
"contentType": "application/json",
"data": data,
"dataType": "json"

}).done(function(results) {
displayResults(results);

}).fail(function (){
alert("ERROR!");

});
};

The first new function that requires attention is JSON.stringify, which converts a JavaScript value to a
JSON string. This is needed because the $.ajax method performs a POST into a CriteriaDto object at the
controller level. The response is already in JSON format, so its sister method, JSON.parse, which transforms
a string into a JSON object, is not needed.10

The done and the fail callback methods can be chained with the $.ajax call. They are called on the
request object that is returned by the $.ajax method.

Depending on the requirements of the application, the implementation with Spring MVC or Spring
REST can be used. The last one is usually recommended for applications that also have clients that do not
use a web interface, like REST web services, mobile applications, and so forth.

Custom Tags
Web applications are deployed on application servers when they are used in production. When the
applications are small, multiple applications can be deployed on the same server, and each of them should
have a contextPath defined for requests to be filtered and received by the appropriate application. The
application does not know on which server it will be deployed, on which port the server was configured to
work on, and under which name the application will be available, because that's what a context is, sort of.
Other applications can be deployed on that server, and without a context for each of them, the server would
not be able to forward requests to the specific application. That is why all links in an application must be
relative to the context of the application.

In the sample applications used with this book, a context path is defined by configuring the Gretty
plugin:

gretty {
 port = 8080
 contextPath = '/mvc-ajax'
}

10The API for these two functions can be found at https://msdn.microsoft.com/library/cc836459%28v=
vs.94%29.aspx .

https://msdn.microsoft.com/library/cc836459%28v%3Dvs.94%29.aspx
https://msdn.microsoft.com/library/cc836459%28v%3Dvs.94%29.aspx
https://msdn.microsoft.com/library/cc836459%28v%3Dvs.94%29.aspx

Chapter 6 ■ Spring Web With aJaX

251

Each request to any resource of this application contains mvc-ajax because of that setting. All the
links in the application are relative to this context, so in case the context changes, the links still point to
the correct resources. When the application is started locally, it can be accessed at the following link:
http://localhost:8080/mvc-ajax. This link can be considered an entry point in the application. If
contextPath = '/mvc-ajax' changes to contextPath = '/myproject', the entry point link changes to
http://localhost:8080/myproject and all the other links in the application are relative to the new
context as well.

To generate a link relative to an application context in a JSP page, development Java scriptlets were used
at the beginning of Java Web applications:

<a href="<%=request.getContextPath()%>Display Persons

But scriptlets make the JSP code quite difficult to read, and they could not be inherited or reused. They
became obsolete in JSP 2.0. The smarter features that replaced them are called JSP tags. These are custom
JSP elements that can be used inside a JSP page to add extra functionality or wrap up repetitive JSP code. To
create a URL relative to the context of an application, the c:url can be used like this:

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core"%>
<c:url value="/persons" var="url"/>
Display Persons

With the spring:url tag, a link relative to the context can be defined in a JSP page in a similar way as
using c:url:

<%@ taglib prefix="spring" uri="http://www.springframework.org/tags"%>
<spring:url value="/persons" var="url"/>
Display Persons

JSP tags make the JSP pages more readable. The most popular JSP tag collection is JSTL (JSP Standard
Tag Library).11 The c:url tag is one of the core tags in this library. If you want to take a look at the contents of
the JSTL library, go to Intellij IDEA and look in the Project view. There is a node named External Libraries.
Expanding that node makes all the dependencies of the project become visible. Look for Maven:javax.
servlet:jstl:1.2 and expand that node; you should see something similar to what's shown in Figure 6-8.

11JSTL is part of the JEE web development platform and extends the JSP specification by adding a set of JSP tags that
can be used for the most common tasks, like XML and text processing, conditional execution, loops, and so forth. More
details about tag libraries can be found on the official page https://jstl.java.net/.

http://java.sun.com/jsp/jstl/core
http://www.springframework.org/tags
https://jstl.java.net/

Chapter 6 ■ Spring Web With aJaX

252

A developer can create his own custom JSP tags to define a custom task and use it in a JSP page. To
create a custom tag, a dedicated file containing JSP code needs to be created for that tag (in Figure 6-8, the
dedicated files are the ones with .tld extension). A class and a *.tld file (tag library descriptors) are needed
if the tag is complex (the tld file and the class are more verbose and won't be covered in this book).

In the following code snippet, you can see the definition of a custom tag that allows context relative URL
to be generated in a simple manner (and tests it too):

<!-- WEB-INF/tags/smart.tag -->
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core"%>
<%@ attribute name="inputURL" required="true" rtexprvalue="true"%>
<%@ attribute name="text" required="true" rtexprvalue="true"%>
<c:url value="${inputURL}" var="url"/>
${text}

<!-- usage in a JSP file -->
<%@ taglib prefix="url" tagdir="/WEB-INF/tags"%>
...
<url:smart inputURL="/persons/search/" text="Search Persons"/>

Figure 6-8. Contents of the jstl.jar library

http://java.sun.com/jsp/jstl/core

Chapter 6 ■ Spring Web With aJaX

253

The inputURL and text are tag attributes that are populated when the tag is used. The following is the
HTML code that results from the <url:smart /> line:

Search Persons

If you are interested in learning more about custom tag creation, Oracle has a very good public
tutorial.12

Summary
After reading this chapter, you should have a proper understanding of how Spring can be combined with
AJAX technologies to create efficient web applications with responsive pages. Here is a small list of questions
that you might want to keep handy when reviewing your acquired knowledge:

• What is AJAX?

• What is an instance of XMLHttpRequest used for?

• What is jQuery and how can it be used to access Spring applications?

• What is a custom JSP tag is and how do you create one?

Quick Quiz
Question 1: What is AJAX?

A. a framework to create responsive web pages

B. a set of standards on how to create responsive web pages

C. an acronym for Asynchronous JavaScript and XML

D. a set of technologies that can be used to create highly responsive web
applications

Question 2: What can be said about jQuery?

A. It is a tag library.

B. It is a set of technologies to create responsive web pages.

C. It is the most popular JavaScript library.

Question 3: What jQuery method can be used to make a GET request?

A. $.get

B. $.getJSON

C. $.ajax

D. $.post

12Oracle custom tags creation; see https://docs.oracle.com/javaee/7/tutorial/.

https://docs.oracle.com/javaee/7/tutorial/

Chapter 6 ■ Spring Web With aJaX

254

Question 4: What is a custom JSP tag?

A. a custom tag is a user-defined JSP language element

B. a special class that handles JSP tasks execution

Practical Exercise
The practical exercises for this chapter require you to develop a REST handler method to search and return a
list of people matching the criteria sent from the browser, as well as a few JavaScript functions using jQuery
to display results and errors. You'll use the 08-pr-ajax-practice project module. 08-pr-ajax-solution is
analogous module with a proposed solution. This module also contains extra implementations that were
mentioned earlier in the chapter.

The TODO tasks for this chapter are shown in Figure 6-9.

Figure 6-9. TODO tasks for Spring with AJAX practice module

Chapter 6 ■ Spring Web With aJaX

255

The PersonsSearchController is the controller used to handle requests that come from the search.jsp
page. The PersonsController contains a single method that is used to retrieve a person's information and
return it to the client in JSON format. The rest of the project setup (configuration and tiles) are the same as in
previous modules. No extra settings are needed to handle AJAX requests.

The application is configured via Jetty to run at http://localhost:8080/mvc-ajax. Just run the
application using 'gradle appStart' and stop it using 'gradle appStop'.

After you complete the proposed TODOs, as a bonus exercise, you can try creating the start custom tag
described in the last section of this chapter.

257

Chapter 7

Spring Web Flow

As time went by, and more and more services could remotely use web applications, the web applications
became more complex—and designing and implementing them became a cumbersome process. Most
applications imply creating objects and passing them through several states, or creating objects depending
on each other. Spring Web Flow (SWF) is a component of the Spring Framework’s web stack that was created
to help develop complex applications by reducing the difficulty in development.

The Spring Web Flow complements the @Controller model and provides the infrastructure needed to
build complex web applications that support controlled page navigation and state transition; all of this adds
up to a rigorously defined conversation between the end user and the application. It is possible to write such
applications with any other web technology, but the definition of a flow is interconnected with the rest of the
web components; it is scattered all over the implementation, which makes refactoring and maintenance a
real pain. What Spring Web Flow brings to the table is the possibility to define flows as separate components
detached from the rest of the implementation—web-specific classes and views. The flow components can
be defined and used similar to the way beans are used in Spring. Flow definitions can be inherited, thus
implementing flow hierarchies. Flows can be reused and customized as needed.

As this book being is written, the current version of Spring Web Flow is the 2.4.2.RELEASE,1 so this is
the version added as a dependency for the Web Flow chapter sources. This version includes the ability to
configure flows using Java Configuration and many other features.

The main library is called spring-webflow. When building the project for the first time, the spring-js
and spring-binding transitive dependencies should be downloaded too.

What Is a Flow?
A flow models the sequence of steps necessary to perform a task. The most common and simple flow
example is ordering items on the Internet. This operation requires the following steps in which the user
is guided through: choose item, proceed to checkout, create an account or log in to your account, insert
shipping detail, insert payment details, and approve payment to complete the process. Each failure to
provide the correct information stops the user from advancing to the next step. If the user wants to go back
and review a previous screen, he can do so, unless configured otherwise. But there are web operations that
depend on the data received from the user to direct them from one flow to another.

1The official site of the project (http://projects.spring.io/spring-webflow/) is usually updated late, so it might
show an earlier version; the most recent release can be found on the Maven public repositpry site at
http://mvnrepository.com.

http://projects.spring.io/spring-webflow/
http://mvnrepository.com/

Chapter 7 ■ Spring Web FloW

258

By using the Personal Records Manager at the completion of this chapter, you will be able to create
an account and personal data for a person. This operation requires you to design a flow that executes the
following steps:

1. Insert personal data.

2. If the hospital where the user was born is in the system, select it.

3. Otherwise, the user is directed to the page where he can create a Hospital
instance.

4. Return to the previous step and complete creating the Person instance.

5. Insert IdentityCard data.

6. Review data.

7. If the person is an adult (age > 18), add an account.

These steps are depicted in Figure 7-1.

Figure 7-1. Personal Records Manager web flow

In Spring Web Flow, a flow consists of a series of steps called states. A flow will always have only one
start point and one or more end points. Leaving one state and passing into another can be restricted by the
result of a conditional expression. Entering a new state usually results in a view being displayed to the user.
The user works with the view, causing user events to occur. The user events trigger transitions between
states, which in turn cause navigation to another view.

Chapter 7 ■ Spring Web FloW

259

Aside from making development easier and clearer, Spring Web Flow was created to solve the following
problems related to complex web navigation:

• Duplicate submissions.

• Pop-up window support within a flow.

• State synchronization problems between the server and the client caused by using
the browser’s back and refresh buttons.

• State collisions between windows.

• Stale session state. (A session can end up containing inactive data, when a timeout is
set. The inactive items must be precisely identified and purged.)

• Short-circuiting navigation rules. (Possibility to jump over steps in the navigation,
depending on navigation conditions.)

Web Flow Architecture
In Spring Web Flow, flows are defined using an XML-based flow definition language. The backing
classes follow the model already established by Spring MVC. Spring Web Flow provides its own classes to
identify handler methods matching flow execution requests and resolving views. The DispatcherServlet is
still the front controller when the application is servlet based. For implementation with portlets, there is an
analogous implementation provided with DispatcherPortlet(s) as entry points. The similarities with the
Spring MVC model can be observed in Figure 7-2.

Figure 7-2. The Spring Web Flow backing classes

Chapter 7 ■ Spring Web FloW

260

The FlowController class is the adapter between the Spring MVC Controller layer and the Spring Web
Flow engine. Its responsibility is to provide implementation so that Spring Web Flow can run embedded as a
controller within a DispatcherServlet. So basically, the FlowController is itself a front controller for Spring
Web Flow.

The FlowHandlerMapping maps all flow requests to the appropriate handlers using
FlowDefinitionRegistry. The FlowHandlerAdapter takes care of executing the flow handler methods in a
servlet environment using the FlowExecutor implementation.

After they do their jobs, the DispatcherServlet uses the FlowViewResolver interface to resolve a view
from the state of an executing flow.

When working with flows, each flow definition is declared in a specific configuration file and is
registered in the system by the FlowDefinitionRegistry. For each flow in the system, a configuration file is
created and placed in the same directory with all resources implied in the flow execution: views templates,
property files, and others. In Figure 7-3, you can see how the files are organized in the practice project for
this chapter.

Figure 7-3. Personal Records Manager web flow configuration file and resources

Chapter 7 ■ Spring Web FloW

261

The newPerson-flow.xml configuration file contains the states that the users are directed through to
create a new person. For now, the empty file is presented containing only the Spring Web Flow namespace
used to define flow elements:

<?xml version="1.0" encoding="UTF-8"?>
<flow xmlns="http://www.springframework.org/schema/webflow"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/webflow

http://www.springframework.org/schema/webflow/spring-webflow.xsd">

 <!-- states and actions will be placed here later -->
</flow>

The flows are exposed to the client as web resources. The client starts flows by accessing these
resources. For example, accessing http://localhost:8080/webflow-basic/persons/newPerson starts
the newPerson flow. (The reason the URL has that particular structure is explained later.) Starting a flow
actually means starting a new flow execution, meaning an execution context for the task currently in progress
is created. The execution context is user session-scoped, meaning all the variables and data needed for the
execution of the task is kept in the user session, unless an execution step requires otherwise. (Sometimes
data can be saved to the database and removed from the session.)

Web Flow Internal Logic
When the flow starts executing, you can use the URL changing to

http://localhost:8080/webflow-basic/persons/newPerson?execution=e1s1

The parameter execution is the session-scoped execution key. Its value contains the flow execution
identifier (e1) and the identifier of the execution step that is currently in progress (s1). Every time the
flow progresses a step, the step identifier is incremented. Every time a new flow execution is started, the
execution identifier is incremented.

A user resumes flow executions by clicking buttons in the interface—buttons (or links) that have events
associated with them using the name property. For example:

<button id="newPersonButton" name=" eventId proceed" type="submit">
 <spring:message code="command.proceed" />
</button>

So when the button with the newPersonButton id is clicked, a request is sent to the URL.

.../persons/newPerson?execution=e1s1&_event_id=proceed

The data provided by the user is bound to the flow context. The flow handles the event, processes the
data as defined, and decides what to do next based on the definition of the flow: display a new view to the
user, display the same view, and remain in the same step of execution if validation failed or ends the flow.
When a flow execution has ended, the execution cannot be resumed; this implies that the transaction cannot
be completed multiple times. After a flow execution ends, the flow state is automatically cleaned.

The interaction between a client and a flow always consists of two separate steps: the client will request
a resource or activate (trigger) an event and the flow will redirect to the appropriate state. This means that
each web flow interaction involves two requests: the client request and the flow redirect request. This has
another implication: the data submitted by the initial request will not be available after the redirecting is

http://www.springframework.org/schema/webflow
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/webflow
http://www.springframework.org/schema/webflow/spring-webflow.xsd

Chapter 7 ■ Spring Web FloW

262

done and the next view has already been rendered. But there are ways of persisting the data across requests
when using web flows; this is covered later in the chapter. In Figure 7-4, the interaction between the client
and a flow is displayed.

Configuration and Infrastructure Beans
Spring provides two ways of configuring the environment in which the web flow components can be used:
using an the XML namespace and defining the infrastructure beans in an webflow-config.xml file, or using
Java Configuration annotations by defining a configuration class that extends a specific Spring class.

■ ! the configuration file can be named in whatever way the developer desires, as long as it is relevant in the
context of the developed application. the beans can be defined in any other Spring configuration file already
existing in the application; but the recommended approach and best practice is to keep infrastructure beans
definitions grouped by their purpose. in the application used for practice with this book, the beans are grouped
as follows:

• MVC infrastructure beans in mvc-config.xml

• application custom beans in app-config.xml

• Web Flow infrastructure beans in webflow-config.xml

• Security infrastructure beans in security-config.xml

Figure 7-4. Schema of an interaction between the client and a flow

Chapter 7 ■ Spring Web FloW

263

When configuring an application that uses Web Flow, there are roughly three steps that have to be
covered:

1. A flow executor and a flow registry bean have to be defined and configured to
match the structure of the application so that the flows can be executed correctly
by Spring Web Flow.

2. A flow adapter and a flow mapping bean have to be defined and added to the
list of existing handler mapping and handler adapter beans for the Spring MVC
configuration to enable flow handling by Spring MVC.

3. An MvcViewFactoryCreator bean has to be created and configured to use the
bean view resolvers already defined in the application.

The following two sections cover how this is done when using XML and Java Configuration.

Configuration Using XML
As mentioned in previous chapters, the Spring MVC configuration infrastructure beans are defined
in the examples of this book into a file named mvc-config.xml. In this file, FlowHandlerMapping and
FlowHandlerAdapter bean definitions have to be added:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:mvc="http://www.springframework.org/schema/mvc"
xmlns:p="http://www.springframework.org/schema/p"
xsi:schemaLocation="http://www.springframework.org/schema/mvc
http://www.springframework.org/schema/mvc/spring-mvc.xsd

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

 <mvc:annotation-driven
 conversion-service="typeConversionService"
 validator="validator"/>

 <bean id="validator"
 class="org.springframework.validation.beanvalidation.LocalValidatorFactoryBean"/>

<!-- Define a custom ConversionService -->
 <bean id="typeConversionService"
 class="o.s.format.support.FormattingConversionServiceFactoryBean">
 ...
 </bean>

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/mvc
http://www.springframework.org/schema/p
http://www.springframework.org/schema/mvc
http://www.springframework.org/schema/mvc/spring-mvc.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd

Chapter 7 ■ Spring Web FloW

264

<!-- other Spring MVC specific beans, look in Chapter 3 for reference -->
...
 <!-- Maps requests to flows in the flowRegistry; e.g. a path of
 /persons/newPerson looks for a flow with id "persons/newPerson" -->
 <bean id="flowMappings"
 class="org.springframework.webflow.mvc.servlet.FlowHandlerMapping"

p:order="-1"
p:flowRegistry-ref="flowRegistry"/>

 <!-- Dispatches requests mapped to flows to FlowHandler implementations -->
 <bean class="org.springframework.webflow.mvc.servlet.FlowHandlerAdapter"

p:flowExecutor-ref="flowExecutor"/>

</beans>

In the previous example, because <mvc:annotation-driven/> is used, the annotation-driven
Spring MVC Controller programming model is automatically enabled, and no other HandlerMapping
implementation needs to be defined. However, the FlowHandlerMapping must be the first HandlerMapping
implementation used to try to retrieve a mapping to make sure that the flow is identified correctly; that’s why
order="-1" is used to set the highest priority in the handler mappings list. This class returns null in the case
of no flow id match, allowing the next handler mapping in the chain to execute.

In the webflow-config.xml file, the Spring Web Flow–specific beans are defined and the specific
namespace are used:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:webflow="http://www.springframework.org/schema/webflow-config"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/webflow-config
 http://www.springframework.org/schema/webflow-config/spring-webflow-config.xsd">

 <!-- Executes web flows -->
 <webflow:flow-executor id="flowExecutor" flow-registry="flowRegistry" />
 <!-- Contains the flows defined by this application -->
 <webflow:flow-registry id="flowRegistry" base-path="/WEB-INF"

flow-builder-services="flowBuilderServices">
<webflow:flow-location-pattern value="**/*-flow.xml" />

 </webflow:flow-registry>

 <!-- Configures services needed to build flow definitions -->
 <webflow:flow-builder-services id="flowBuilderServices"

view-factory-creator="mvcViewFactoryCreator"
conversion-service="conversionService"
development="true" />

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/webflow-config
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/webflow-config
http://www.springframework.org/schema/webflow-config/spring-webflow-config.xsd

Chapter 7 ■ Spring Web FloW

265

 <!-- Configures Web Flow to render Tiles views resolved by Spring MVC -->
 <bean id="mvcViewFactoryCreator"

class="org.springframework.webflow.mvc.builder.MvcViewFactoryCreator">
<property name="viewResolvers" ref="tilesViewResolver" />
<property name="useSpringBeanBinding" value="true"/>

 </bean>

 <!-- Configures Web Flow to automatically convert custom types
(using the same converter as for Spring MVC) -->

 <bean id="conversionService"
class="org.springframework.binding.convert.service.DefaultConversionService">
<constructor-arg ref="typeConversionService" />

 </bean>

</beans>

The Spring webflow-config namespace provides XML elements that make defining Spring Web Flow
components more practical and more readable for the user, but a more detailed explanation is needed for
the preceding configuration.

• flowExecutor: This bean created is of type FlowExecutorImpl and it uses the
flowRegistry bean to identify all flows eligible for execution. This bean is the
entry point into the Web Flow system, as it manages starting and resuming flow
executions. When an executor bean is created, Spring automatically looks for a flow
registry bean named flowRegistry, so the preceding definition can be simplified to

<webflow:flow-executor id="flowExecutor"/>

Also, because this is the central bean of the Spring Web Flow engine, listeners
can be registered for it to verify rights to perform specific execution steps or audit
the execution steps for debugging purposes.

<webflow:flow-executor id="flowExecutor">
 <webflow:flow-execution-listeners>

<webflow:listener ref="secureFlowExecutionListener" />
<webflow:listener ref="auditFlowExecutionListener" />

 <webflow:flow-execution-listeners>
</webflow:flow-executor>
 ...
<bean id="secureFlowExecutionListener"
 class="org.springframework.webflow.security.SecurityFlowExecutionListener"/>
<bean id="auditFlowExecutionListener"
 class="com.pr.audit.AuditFlowExecutionListener"/>

■ ! the flow execution listeners can be configured to be applied only on certain flows; for example:

<webflow:listener ref="secureFlowExecutionListener"

 criteria="administrativeFlow1, administrativeFlow2"/>

Chapter 7 ■ Spring Web FloW

266

the flowExecutor can be configured to tune flow execution persistence settings by adding a customized
definition for flow-execution-repository.

<webflow:flow-executor id="flowExecutor" flow-registry="flowRegistry">

<webflow:flow-execution-repository max-executions="5"

 max-execution-snapshots="30" />
</webflow:flow-executor>

the max-executions property is used to configure the maximum number of persistent flow executions allowed
per user session. When the maximum number of executions is exceeded, the oldest execution is removed.

the max-execution-snapshots property is used to configure the maximum number of history snapshots
allowed per flow execution. history snapshots enable browser back button support. When snapshotting is
disabled, pressing the browser back button will not work. it will result in using an execution key that points to a
snapshot that has not been recorded.

• flowRegistry: Each flow definition registered in this registry bean is assigned a
unique identifier. The base-path property is used specify the root directory, under
which all the flow definition files are found; usually this is the WEB-INF directory.
The flow-location-pattern further narrows the search for the flow definitions,
providing a wildcard template file name for the flow definition files. But flow
definitions can be also registered one at a time using flow-location elements. For
example:

<webflow:flow-registry id="flowRegistry" base-path="/WEB-INF"
 flow-builder-services="flowBuilderServices">
 <webflow:flow-location path="persons/newPerson/newPerson-flow.xml"/>
</webflow:flow-registry>

• flowBuilderServices: This bean registers custom implementations of services
needed to build flow definitions: view resolvers, data convertors, formatters,
validators, and others. In version 2.4.0.RELEASE, the validation-hints were added,
so flow definition can apply partial validation on the model through the validation-
hints attribute supported on view state and transition elements. This bean was
modified to add a property named validation-hint-resolver that can be used to
set a custom validation hints resolver. (An example is presented later in the book.)

■ ! the development="true" is quite important, because as you will solve the practice exercises, you might
not want to restart the application every time you make a change to a flow definition. Setting the development
property to "true" ensures that changes to a flow definition is autodetected and results in a flow refresh.

Chapter 7 ■ Spring Web FloW

267

• mvcViewFactoryCreator: This bean is used by a FlowBuilder to configure a flow’s
view states with Spring MVC–based view factories. In this case, the tiles view
resolver is injected into it, so it can be used to resolve view states using it. The
useSpringBeanBinding property is set to “true” to enable the same binding system
used by the Spring MVC in a Web Flow environment.

• conversionService: This bean is a wrapper for the conversion service bean used by
Spring MVC, which is provided to the flowBuilderServices bean to be used during
a flow execution.

Configuration Using Annotations
For the 09-pr-webflow-basic-practice, a full Java Configuration is used; no web.xml. Three classes were
defined for such proposes under the com.pr.config package. Figure 7-5 depicts all three classes, their
parents, and the relationship between them.

Figure 7-5. Configuration classes for Personal Records Manager project when Spring Web Flow is used

■ ? Can you tell which class takes care of a certain part of the infrastructure just by looking at the diagram in
Figure 7-5?

Chapter 7 ■ Spring Web FloW

268

Each class covers a part of the infrastructure setup needed to run a Spring web application without a
web.xml file that uses Spring Web Flow.

• The MvcConfig class encapsulates the Spring MVC infrastructure bean definitions
that were covered in Chapter 3. To plug in the Web Flow beans, some modifications
were done. The webFlowConfig was injected so the handler mapping and handler
adapter specific to flows could be configured.

 ...
import org.springframework.webflow.mvc.servlet.FlowHandlerAdapter;
import org.springframework.webflow.mvc.servlet.FlowHandlerMapping;

@Configuration
@EnableWebMvc
public class MvcConfig extends WebMvcConfigurerAdapter {
 @Autowired
 private WebFlowConfig webFlowConfig;

 //other Spring MVC infrastructure beans: formatters, interceptors,
 // resolvers, etc. Review Chapter 3 for reference.
 ...

 //Web Flow specific infrastructure beans
@Bean

 public FlowHandlerMapping flowHandlerMapping() {
FlowHandlerMapping handlerMapping = new FlowHandlerMapping();
handlerMapping.setOrder(-1);
handlerMapping.setFlowRegistry(this.webFlowConfig.flowRegistry());
return handlerMapping;

 }

 @Bean
 public FlowHandlerAdapter flowHandlerAdapter() {

FlowHandlerAdapter handlerAdapter = new FlowHandlerAdapter();
handlerAdapter.setFlowExecutor(this.webFlowConfig.flowExecutor());
handlerAdapter.setSaveOutputToFlashScopeOnRedirect(true);
return handlerAdapter;

 }
}

The WebFlowConfig class encapsulates the Spring Web Flow infrastructure
bean definitions. To align these beans with Spring MVC, the mvcConfig
bean was injected, so formatter, validators, and view resolvers could be
accessed and set to use during flow executions. This class extends the
Spring specialized AbstractFlowConfiguration class, which does not
provide any configuration itself but provides access via protected methods
to builders for flow executor (getFlowExecutorBuilder()), flow registry
(getFlowDefinitionRegistryBuilder()), and flow builder services
(getFlowBuilderServicesBuilder()).

http://dx.doi.org/10.1007/978-1-4842-0808-3_3

Chapter 7 ■ Spring Web FloW

269

 ...
import org.springframework.webflow.config.AbstractFlowConfiguration;
import org.springframework.webflow.definition.registry.FlowDefinitionRegistry;
import org.springframework.webflow.engine.builder.support.FlowBuilderServices;
import org.springframework.webflow.executor.FlowExecutor;
import org.springframework.webflow.mvc.builder.MvcViewFactoryCreator;

@Configuration
public class WebFlowConfig extends AbstractFlowConfiguration {

 @Autowired
 private MvcConfig mvcConfig;

 @Bean
 public FlowExecutor flowExecutor() {

return getFlowExecutorBuilder(flowRegistry())
// apply the listener for all flow definitions
.addFlowExecutionListener(new AuditFlowExecutorListener(), "*")
.build();

 }

 @Bean
 public FlowDefinitionRegistry flowRegistry() {

return getFlowDefinitionRegistryBuilder(flowBuilderServices())
.setBasePath("/WEB-INF")
.addFlowLocationPattern("/**/*-flow.xml")
.build();

 }

 @Bean
 public FlowBuilderServices flowBuilderServices() {

return getFlowBuilderServicesBuilder()
.setViewFactoryCreator(mvcViewFactoryCreator())
.setValidator(this.mvcConfig.validator())
.setConversionService(conversionService())
.setDevelopmentMode(true)
.build();

 }

 @Bean
 public MvcViewFactoryCreator mvcViewFactoryCreator() {

MvcViewFactoryCreator factoryCreator = new MvcViewFactoryCreator();
factoryCreator.setViewResolvers(Arrays.<ViewResolver>asList(

this.mvcConfig.tilesViewResolver()));
factoryCreator.setUseSpringBeanBinding(true);
return factoryCreator;

 }

Chapter 7 ■ Spring Web FloW

270

 @Bean
 DefaultConversionService conversionService() {

return new DefaultConversionService(
conversionServiceFactoryBean().getObject());

 }

 @Bean
 FormattingConversionServiceFactoryBean conversionServiceFactoryBean() {

FormattingConversionServiceFactoryBean
fcs = new FormattingConversionServiceFactoryBean();

Set<Formatter> fmts = new HashSet<>();
fmts.add(this.mvcConfig.dateFormatter());
fmts.add(this.mvcConfig.hospitalFormatter());
fcs.setFormatters(fmts);
return fcs;

 }
}

■ ! to tune the flow execution persistence settings in Java, the following configuration has to be present in
the WebFlowConfig class:

@Bean

public FlowExecutor flowExecutor() {

 return getFlowExecutorBuilder(flowRegistry())
 .addFlowExecutionListener(new AuditFlowExecutorListener(), "*")
 .setMaxFlowExecutions(5)
 .setMaxFlowExecutionSnapshots(30)
 .build();
}

• The WebInitializer class provides the Servlet 3.0 configuration that replaces the
web.xml file. The configuration classes are added to the array of configuration classes
used to create the application context by providing the proper implementation for
the getRootConfigClasses.

public class WebInitializer extends
 AbstractAnnotationConfigDispatcherServletInitializer {

 @Override
 protected Class<?> getRootConfigClasses() {

return null;
 }

 @Override
 protected Class<?> getServletConfigClasses() {

return new Class<?>{
MvcConfig.class,
WebFlowConfig.class

};
 }

Chapter 7 ■ Spring Web FloW

271

 @Override
 protected String getServletMappings() {

return new String{"/"};
 }

 @Override
 protected Filter getServletFilters() {

CharacterEncodingFilter cef = new CharacterEncodingFilter();
cef.setEncoding("UTF-8");
cef.setForceEncoding(true);
return new Filter{new HiddenHttpMethodFilter(), cef};

 }
}

At this time, you might be wondering about the FlowController that you saw in Figure 7-2 and why it
wasn’t mentioned anywhere in the configuration section. This class is the bridge between the Spring MVC
Controller layer and the Spring Web Flow engine; it allows Spring Web Flow to run embedded as a Controller
within a DispatcherServlet and it is used internally. This class uses the handlers and executor defined in the
configuration to execute flows; it does this transparently.2

■ ! before continuing to the next section, look at the 09-pr-webflow-basic-practice module under the
person-manger project. Start the application using the appStart gretty task for this module. in the browser,
you will notice that a new link has appeared, named New Person. the application is depicted in Figure 7-6.

if you click the link, you will notice it fails with a 404 error. this is because no handler has been registered for
this resource Url. a few configurations have been set up, but some beans and configurations are missing so
that this application can use the Spring Web Flow engine. this is left for you to do. the toDo tasks contain
comments that direct you where you could implement the required changes. this module will help you test your
understanding of the Spring Web Flow Java Configuration. the configuration files have been created, but it is
your responsibility to fill them correctly. the flow itself is empty, and no execution step is defined.

after clicking New Person link, you see the form in Figure 7-6. this means your configuration is correct and
you can continue with the chapter. if you have difficulties in completing the configuration, you can look at the
09-pr-webflow-basic-solution module, which contains the proposed solution for the given tasks.

2The code for the class is publicly available on GitHub at https://github.com/spring-projects/spring-webflow/
blob/master/spring-webflow/src/main/java/org/springframework/webflow/mvc/servlet/FlowController.
java.

https://github.com/spring-projects/spring-webflow/blob/master/spring-webflow/src/main/java/org/springframework/webflow/mvc/servlet/FlowController.java
https://github.com/spring-projects/spring-webflow/blob/master/spring-webflow/src/main/java/org/springframework/webflow/mvc/servlet/FlowController.java
https://github.com/spring-projects/spring-webflow/blob/master/spring-webflow/src/main/java/org/springframework/webflow/mvc/servlet/FlowController.java

Chapter 7 ■ Spring Web FloW

272

Create a Flow
A flow describes a sequence of steps that is executed in the order established by the flow definition. A web
flow is made of tree types of elements: states, transitions, and data. In a flow definition, the following types of
states can be used:

• View state: In this type of state, the execution of a flow is paused to render a view
to the user and wait for input data. It is defined using the <view-state ../> XML
element.

• Action state: In this type of state, Java code is executed, and sometimes the next state
to transition to depends on the outcome of this code. It is defined using the <action-
state ../> XML element.

• Decision state: In this type of state, some branch logic is implemented using the
XML flow definition language. It is defined using the <decision-state ../> XML
element.

• Subflow state: The execution is transferred to another flow. When the subflow
execution is completed, the execution will return to this state. It is defined using the
<decision-state ../> XML element.

• End state: The final state of the flow execution. It is not mandatory for this state to
render a view, but usually a confirmation view is rendered to the user. It is defined
using the <end-state ../> XML element.

The states will be referred to using the XML element names in order to faciltate association between the
state type and the element used to configure it.

The switch from one state to the other is called a transition and it is triggered by events. Some data can
be shared among states, depending on the scope of that data. The simple schema of a flow definition and
composing elements is depicted in Figure 7-7. The data is the information that is carried from one state to
the other; it has a life span that depends on the scope on which it was declared.

Figure 7-6. Link to the New Person flow

Chapter 7 ■ Spring Web FloW

273

Flow Definition
A flow is defined in a single XML file, and all the states composing it are defined as child elements of the
flow element. The content of the flow element is actually a task algorithm. All resources used by a flow
(views, internationalization files) when being executed must be placed in the same directory as the flow
definition file. Basically, each flow defined in an application has its own directory that contains all flow
definition resources. This was mentioned in the “Spring Web Flow Architecture” section. In this section, all
the necessary steps in defining a flow are covered in detail. For example, to develop the /persons/newPerson
flow, the following has to be created (use Figure 7-8 or reference).

Figure 7-8. The components of a flow definition

Figure 7-7. The general schema of a flow definition and composing elements

Chapter 7 ■ Spring Web FloW

274

• A directory with the same name as the flow you are trying to create, so as the path
inside the WEB-INF matches the URL path that you want to map the flow to

• message.properties internationalization files

• View files

• A tiles configuration file, if tiles are used

• A *-flow.xml spring configuration flow definition file

When developing a flow, it is recommended to think and design the flow logic first—define the states
and transitions, review the flow with business analysts, use mock views (plain HTML files that replace the
view in testing scenarios)—to depict the steps and then add the behavior. To define the states of a flow, the
*-flow.xml file must be populated. Usually, the first step is a view-state that displays a view to the user to
provide data to the flow.

<!-- newPerson-flow.xml -->
<?xml version="1.0" encoding="UTF-8"?>
<flow xmlns="http://www.springframework.org/schema/webflow"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/webflow

http://www.springframework.org/schema/webflow/spring-webflow.xsd">

<view-state id="enterPersonInfo"/>
</flow>

The view-state id resolves to a view template; by default, a *.jsp file is searched for in the current
directory. View resolution is pluggable, depending on the view technology used. In the examples given
in this book, Apache Tiles are used to define and resolve views; so the view to display when entering
the enterPersonInfo state is defined in the tiles.xml under the flow directory. The views used for the
workflows extend the same tiles template, webapp/WEB-INF/standard/layout.jsp, defined for views in
Chapter 3.

<!-- tiles.xml -->
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE tiles-definitions PUBLIC

"-//Apache Software Foundation//DTD Tiles Configuration 3.0//EN"
"http://tiles.apache.org/dtds/tiles-config_3_0.dtd">

<tiles-definitions>

 <definition name="enterPersonInfo" extends="layout">
<put-attribute name="pageTitle" value="persons.new.title" />
<put-attribute name="content"

value="/WEB-INF/persons/newPerson/newPersonInfo.jsp" />
<put-attribute name="menuTab" value="newPerson" />

 </definition>
</tiles-definitions>

http://www.springframework.org/schema/webflow
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/webflow
http://www.springframework.org/schema/webflow/spring-webflow.xsd
http://dx.doi.org/10.1007/978-1-4842-0808-3_3
http://tiles.apache.org/dtds/tiles-config_3_0.dtd

Chapter 7 ■ Spring Web FloW

275

In the newPersonInfo.jsp view file template, the user event is linked to a button using the name
attribute.

<!-- newPersonInfo.jsp -->
<h2>
 <spring:message code="persons.new.title"/>
</h2>

<div class="person">
 <sf:form id="newPersonForm" method="POST" modelAttribute="person">

<table>
<tr>

<th>
<label for="firstName">

*
<spring:message code="label.Person.firstname"/> :

</label>
</th>
<td><sf:input path="firstName"/></td>
<td><sf:errors cssClass="error" path="firstName"/></td>

</tr>
<!-- other form elements -->
...
<tr>

<td colspan="2">
<button id="newPersonButton" name="_eventId_proceed"

type="submit">
<spring:message code="command.proceed" />

</button>
</td>

</tr>
</table>

 </sf:form>
</div>

Next, a transition must be defined by adding the <transition> element as a child to the state you
are transitioning from when a user event is activated. If no navigation is performed (for example, when
validation fails), the initial view is refreshed.

 <!-- newPerson-flow.xml -->
 <flow ...>
<view-state id="enterPersonInfo">

<transition on="proceed" to="reviewPerson" />
</view-state>

<view-state id="reviewPerson">
<transition on="confirm" to="enterIdentityCard"/>

</view-state>
...
</flow>

Chapter 7 ■ Spring Web FloW

276

When performing typical web navigations, there is always a Cancel button that allows the user to cancel
the whole process. When using Spring Web Flow, this can be done by declaring a <global-transition>
element, but using global transition elements sort of breaks the flow. It’s similar to using a goto statement.
It also makes the flow definition less readable.3

<flow ...>
 <global-transition on="cancel" to="cancelled" />
 ...
</flow>

A flow can have one or multiple end-states defined (<end-state> elements are used to define them)
and a flow execution can end in any of them, based on the events the user triggers. After a flow execution
reaches an end state, the flow terminates and the outcome is returned, unless the end state sends a final
response or redirects the user to another resource, typically a confirmation page.

<flow ...>
 <end-state id="end" />
</flow>

Redirecting to a confirmation page after a flow has finished the execution is tricky, as the flow data is
gone. The solution is to use a redirect to a stateless confirmation page and to use a parameter that has a
value that can be used to display confirmation data. The <end-state> element has a view attribute that can
be used to specify the URL to redirect to.

<flow ...>
<end-state id="finish"

view="externalRedirect:contextRelative:/person/1" />
</flow>

■ ! the value is hard-coded id value (“1”) in the previous example only because the concept that could be
used to make that link dynamic— flow variable—has not been covered yet.

The contextRelative prefix is one of the explicit redirects supported in the context of a flow execution.
Without these prefixes, the returned resource location is relative to the current servlet mapping. The flow
redirect prefixes help you have more control over where the user is redirected. The following is the complete
list of flow redirection prefixes:

• servletRelative: Redirects to a resource relative to the current server

• contextRelative: Redirects to a resource relative to the current web application
context path

• serverRelative: Redirects to a resource relative to the server root

• http:// or https:// Redirects to a fully qualified resource URI

3The GOTO statement (see https://en.wikipedia.org/wiki/Goto).

https://en.wikipedia.org/wiki/Goto

Chapter 7 ■ Spring Web FloW

277

These redirect prefixes are supported in a flow definition together with the externalRedirect: directive
in view-state or end-state elements. The view-state element has a view property that can be used to
specify a different view than the one with the same state id, and this view can be outside the newPerson flow
directory:

<flow ...>
 <view-state id="reviewPerson"

view="externalRedirect:contextRelative:/verifyPerson">
<transition on="confirm" to="enterIdentityCard"/>

 </view-state>
</flow>

A flow can also redirect to a different flow by using the flowRedirect: directive in its end state; this
basically means the current flow ends and a new one is started.

In conclusion, when creating a web flow, it is recommended that the following steps be followed in this
order:

1. Define view states and end states.

2. Define transition between states.

3. Create mock views to test the connection of the states.

4. Add the intended behavior.

To create a web flow like the one shown in Figure 7-1, the following must be done:

• When defining view states and end states, the focus is on the steps that the user is
guided through. The why (conditions and events) and how (business logic) is left for
later.

<flow ...>
<!-- newPerson-flow.xml -->
<view-state id="enterPersonInfo" />
<view-state id="enterHospitalInfo" />
<view-state id="enterIdentityCard" />
<view-state id="reviewPersonData" />
<view-state id="enterAccountInfo" />
<view-state id="reviewAccountData" />
<end-state id="end" />
</flow>

• Then transitions should be defined as follows:

<!-- newPerson-flow.xml -->
<flow ...>
<view-state id="enterPersonInfo" >

<transition on="addHospital" to="enterHospitalInfo" />
<transition on="proceed" to="enterIdentityCard" />

 </view-state>

 <view-state id="enterHospitalInfo" >
<transition on="save" to="enterPersonInfo" />

 </view-state>

Chapter 7 ■ Spring Web FloW

278

 <view-state id="enterIdentityCard" >
<transition on="review" to="reviewPersonData" />

 </view-state>

 <view-state id="reviewPersonData" >
<transition on="addAcount" to="enterAccountInfo" />

 </view-state>

 <view-state id="enterAccountInfo" >
<transition on="review" to="reviewAccountData" />

 </view-state>

 <view-state id="reviewAccountData" >
<transition on="save" to="end" />

 <view-state>

 <end-state id="end" />
</flow>

• To test the connections between the states, mock views should be created. This is
an approach that helps users interact with the flow process to test the transitions
between the states. Mock views contain static data; no extra data needs to be
inserted by the user and no validation is performed. The dynamic behavior is added
later, when the back end of the application is developed.

<!-- newPersonInfo.jsp -->
<h2> Mock New Person </h2>
<div class="person">
 <form id="newPersonForm" method="POST" >

<table>
<tr>

<th>
First Name

</th>
<td><input path="firstName"/></td>

</tr>
<!-- other form elements -->
...
<tr>

<td colspan="2">
<button id="newPersonButton" name=" eventId proceed"

type="submit">
Proceed

</button>
</td>

</tr>
</table>

 </form>
</div>

Chapter 7 ■ Spring Web FloW

279

 <!-- enterIdentityCard.jsp -->
 <h2> Mock New Account </h2>
 <div class="identityCard">
 <form id="newIdentityCardForm" method="POST" >

<table>
<tr>

<th>
Account Number

</th>
<td><input path="accountNumber"/></td>

</tr>
<!-- other form elements -->
...
<tr>

<td colspan="2">
<button id="newAccountButton" name="_eventId_review"

type="submit">
Review

</button>
</td>

</tr>
</table>

 </form>
</div>

 <!-- other mock views look similar so their content will not be listed here -->

■ ! as you probably noticed in the previous example, only view and end states were used. this is because
these are the simplest states that can be used to create a flow; also, defining them is very easy and intuitive.
the other types of states (action, decision, and subflow) are covered later and added, one by one, to the flow
you have become familiar with to allow you to gradually increase your understanding of Spring Web Flow.

Testing Web Flows
Every flow in an application should have a unit test to verify that the flow logic works as expected.
The Spring Web Flow provides a test class at org.springframework.webflow.test.execution.
AbstractXmlFlowExecutionTests that has to be extended to use unit tests to test flows. This class provides
the test infrastructure needed to test that a flow definition executes as expected; no Spring or JUnit
annotations are needed. All that is needed is for the getResource(FlowDefinitionResourceFactory
resourceFactory) method to be implemented correctly is to provide the test a flow definition file.

Chapter 7 ■ Spring Web FloW

280

import org.springframework.webflow.config.FlowDefinitionResource;
import org.springframework.webflow.config.FlowDefinitionResourceFactory;
import org.springframework.webflow.test.MockExternalContext;
import org.springframework.webflow.test.execution.AbstractXmlFlowExecutionTests;

public class NewPersonFlowTest extends AbstractXmlFlowExecutionTests {
 private static final String ENTER_PERSON_INFO = "enterPersonInfo";
 private static final String ENTER_IDENTITY_CARD = "enterIdentityCard";
 private static final String REVIEW_ACCOUNT_DATA = "reviewAccountData";
 private static final String END = "end";

 @Override
 protected FlowDefinitionResource getResource

(FlowDefinitionResourceFactory resourceFactory) {
return resourceFactory.createFileResource(

"src/main/webapp/WEB-INF/persons/newPerson/newPerson-flow.xml");
 }

 public void testStart() throws Exception {
startFlow(new MockExternalContext());
assertCurrentStateEquals(ENTER_PERSON_INFO);

 }

 public void testEnterPersonInfoProceed() throws Exception {
setCurrentState(ENTER_PERSON_INFO);
MockExternalContext externalContext = new MockExternalContext();
externalContext.setEventId("proceed");
resumeFlow(externalContext);
assertCurrentStateEquals(ENTER_IDENTITY_CARD);

 }

// other similar transition tests
..

 public void testReviewPersonConfirm() throws Exception {
setCurrentState(REVIEW_ACCOUNT_DATA);
MockExternalContext externalContext = new MockExternalContext();
externalContext.setEventId("save");
resumeFlow(externalContext);
assertFlowExecutionEnded();
assertFlowExecutionOutcomeEquals(END);
assertTrue(externalContext.getExternalRedirectRequested());
assertEquals("contextRelative:/persons/1",

externalContext.getExternalRedirectUrl());
 }
}

The testStart method starts the flow by calling startFlow and tests that the flow has entered the start
state by calling assertCurrentStateEquals.

Chapter 7 ■ Spring Web FloW

281

The testEnterPersonInfoProceed tests that starting from an exact state when an event is triggered,
the transition is done to the expected state. Triggering the event is done by using a mock context and calling
setEventId on it.

■ ! before continuing to the next section, take a look at the 10-pr-webflow-fundamentals-practice
module under the person-manger project. all the files necessary for creating a very simple flow have been
provided for you. Figure 7-9 depicts the simplified version of the newPerson flow that is required to complete
the practice example. it uses mock views and only view states; no business logic is required to complete this
practice exercise. the purpose of this module is to help you test your understanding of defining states and
transitions, and using mock flows and testing the simple flow you have created.

this flow guides the user through the process of creating a person using the minimum amount of information.
the first step of this flow should display a form to the user. after submitting the form, the user should be taken
to a screen where he can review the information before being confirmed. after confirming, the user should be
taken to the screen displaying the details of the completed transaction.

the practice module has ten toDo tasks to be resolved, numbered from 40 to 49. each task has a short
description instructing you on what you have to do. the web application can be started by executing the
appStart gradle task. the newPerson flow definition has been completed and the execution works completely
if the user can be guided through all the expected steps. the test has been implemented correctly if all the
methods pass.

When executing the flow, and the current state is the reviewPersonData. try clicking the back button of the
browser to see what happens. You should be able to go back and resubmit. no browser warnings should occur,
and the request Url should depict that you are back to the previous step of the same flow execution.

if the current Url were http://localhost:8080/persons/newPerson?execution=e1s2, clicking the back
button should redirect the user to http://localhost:8080/persons/newPerson?execution=e1s1.

try the same after the flow has finished its execution and note the parameters in the request Url. the flow
execution should be restarted and the execution Url parameter should have the expected value.

■ ? Can you remember how the execution parameter value should change when a new flow execution is
started?

Figure 7-9. Link to the simplified New Person flow

Chapter 7 ■ Spring Web FloW

282

Actions and Scopes
During the execution of a web flow, it is expected for business services to be called for the flow to accomplish
its task. Using view states only rendering a view and establishing the next view state in the navigation is
possible. Thus, more elements are needed to define which business services are called and what to do with
the results in the context of a flow. These elements are called actions; they can be called within a flow on
several execution points.

Actions are defined in Spring Web Flow using the Spring Expression Language. Most of the time, their
result has to be stored in a flow variable that has a life span defined by the scope that they are declared for.
Explaining the type of actions that can be defined for a web flow, and when and how they should be used,
cannot be done properly without first mentioning web flow scopes.

In Figure 7-7, in the bottom-left corner of each rectangle grouping state, you see a scope specific to
that group of states, written in italics. Within a flow, you can define instance variables. For example, when
creating a new person using a flow, the Person instance can be stored in a flow variable and be made
available during the flow execution; and so at the end of the flow execution, redirection can be done to a
page to render the instance just created:

<flow ...>
 <var name="person" class="com.pr.ents.Person"/>
 ...
 <end-state id="finish"

view="externalRedirect:contextRelative:/person/#{person.id}" />
</flow>

Flow variables and other data objects exist in a scope, and when using web flows, multiple types of
scopes are available to implement the desired functionality. Each flow provides a context where objects are
stored. The data scopes are provided by this context and its state is managed by the Spring Web Flow. During
flow execution, objects are added to different scopes, depending on the flow definition. They are cleaned
when they go out of scope.

The previous example depicted the explicit creation of a flow variable; the <var /> element was used
for that. But variables can be assigned dynamically by using actions. The advantage of using actions to assign
variables is that the variables can be assigned to any scope possible. Explicit variables, declared with <var/>,
can be assigned only a flow scope and a view scope. There are five web flow scopes that are supported by the
context of a flow:

• Flow scope: This is the scope that lasts until the flow ends.

• View scope: This is the scope associated with each view-state.

• Request scope: This is the scope matching a single request

• Flash scope: This the scope allocated when a flow starts; it is cleaned automatically
after each view is rendered and destroyed when the flow ends.

• Conversation scope: This is a global execution scope; all subflows share this scope.
It gets allocated when a top-level flow starts and it is destroyed when the top-level
flow ends.

■ ! the conversation-scoped objects are stored in the http session and should generally be serializable to
account for typical session replication.

Chapter 7 ■ Spring Web FloW

283

Flow Variables

The scope of a variable can be determined contextually. For example, when the explicit definition of a
variable is directly under the <flow/> element, the scope for that variable is the flow scope. When the
explicit definition of a variable is under the <view-state/> element, the scope of that variable is view scope.
But when using EL expressions and Java code, the scope needs to be specified explicitly.

When using <var/> to define variables, you have to keep in mind that if the objects are complex and
require other properties to be injected, they must either have a constructor, setters annotated with
@Autowired, or both depending on the chosen configuration.

 <!-- newPerson-flow.xml -->
<flow ...>
 <var name="identityCardProcessor" class="com.pr.webflow.IdentityCardProcessor"/>
 ...
</flow>

// com.pr.webflow.IdentityCardProcessor.java
public class IdentityCardProcessor implements Serializable {
 private IdentityCardManager identityCardManager;

 @Autowired
 public IdentityCardProcessor(

IdentityCardManager identityCardManager){...}
}
// or
public class IdentityCardProcessor implements Serializable {
 private IdentityCardManager identityCardManager

 @Autowired
 public void setIdentityCardManager(

IdentityCardManager identityCardManager){...}
}

Explicit variables are most often used as data models for views. They are used to pass as arguments to
business services invoked by the flow; such an implementation is depicted in Figure 7-10.

Figure 7-10. Explicit flow variable usages example

Chapter 7 ■ Spring Web FloW

284

■ ? From what has been covered so far, can you tell to which scope the person variable in the previous code
sample belongs?

Explicit variables can be defined as view-scoped objects too. In this case, the variable is created when
the view-state is entered and is destroyed when the transition to the next view-state occurs. They can be
used as data models for a single view. They are often updated using AJAX requests before being used for the
expression conditioning the transition to the next state; such an implementation is depicted in Figure 7-11.

Figure 7-11. Explicit flow variable in view scope usages example

In the previous examples, you can see that performing the transition depends on the result of the
evaluation of the expression in the <evaluate /> element. The expression in that element is a standard EL
expression that can be evaluated directly by the EL; it does not need to be enclosed in delimiters such as #{ }.
The delimiters are not needed when the expression is a string that represents a method call or property access,
and using them will throw an IllegalArgumentException.

The delimiters are only needed when the argument string is a template EL expression that implies
mixing literal text with one or more standard expressions, as in the redirect link for the end state in previous
examples.

<flow ...>
 <end-state id="finish"

view="externalRedirect:contextRelative:/person/#{person.id}" />
</flow>

Conversation Variables

The conversation scope is the widest web flow scope. Variables defined within this scope are available to
subflows too. The conversation variables are similar to global variables and have the same disadvantages.
Conversation variables introduce a dependency between top-level flows and their subflows; that’s why the
recommendation is to not use them if a different option exists. When working with subflows, input/output
parameters can be used to avoid conversation variables. A variable can be assigned to the conversation
scope using the <evaluate /> element.

Chapter 7 ■ Spring Web FloW

285

In the following example, a Person instance retrieved using a PersonManager service is being assigned
to the conversation scope:

<flow ...>
<!-- The result of this expression is stored into the person variable -->
 <evaluate result="conversationScope.person"

expression="personManager.findById(personId)"/>
</flow>

Request and Flash Scopes

Attributes placed in flash scope exist through the life of the current request and until the next view
rendering. After the view renders, the flash scope is cleared. Flash scope is typically used to store messages
that should be preserved until after the next view renders. This scope is useful to pass data from one request
to another as one flow state involves two requests, as depicted in Figure 7-4.

• The first request lasts between the transition from the current state until entering the
next state.

• The second lasts from the moment before the view is rendered to the end of
rendering the same state.

You can consider the flash scope as an extension of the request scope in the Web Flow context, because
the request scope is not quite useful when using web flow, as is explained later in this section.

Attributes placed in request scope exist for the life of the current request into the flow execution. When
the request ends, any attributes in request scope goes out of scope. Variables should be assigned the request
scope when their values are refetched every time a state is redisplayed. If the data can be cached, the view
scope would be more appropriate for the variable.

■ ! the request scope can be useful when creating a sports betting site. the application should have a web
flow defined, through which the user can place a bet. a request variable should be used to extract the most
recent results of games being played, so the user can be informed in real time of his winning chances.

Also, data with request scope can be used in cases where it is needed only to initialize the next view; but
it should not be displayed by it.

■ ! Consider the example of a betting site: only the list of games currently being played should be displayed,
so a specific time interval value can be stored in a variable and used as criteria for selection.

To implement the previously mentioned cases, the flow scope can be used, and the games the user
can bet on can be retrieved using AJAX calls. Request scope is pretty useless, considering that usually a
developer is interested in sharing the data between the two requests implied by a web flow state.

Chapter 7 ■ Spring Web FloW

286

Figure 7-12 is a simple diagram with the duration of the flash scope and the request scope depicted to
make their differences in the context of a flow execution more obvious.

In Figure 7-12, you can clearly see the two requests implied by a flow state. One of them is the user
request to start the flow with URL /person/newPerson. Accessing this URL makes the web flow engine send
a request to /persons/newPerson?execution=e1s1. The request to this web flow resource is the second
request. The two arrows under the REQUEST bubble show exactly how long the attributes in the request
scope is available. And under the FLASH bubble, you can see the longer arrow, which depicts how long the
attributes in the flash scope are available. The execution points— :on-entry, on-render, and so forth—are
covered in the next section.

Actions

Now that web flow scopes have been covered, it is time to introduce actions. Actions execute behavior at
specific points within the flow. There are several points where you can execute actions:

• on flow start: The <evaluate /> element is declared as a child of the <on-start />
element that marks the start of a flow execution. This action is executed only once,
when the flow execution starts.

<flow ...>
 <on-start>
 <evaluate expression="..."/>
 </on-start>
</flow>

Figure 7-12. Comparison between request and flash scope

Chapter 7 ■ Spring Web FloW

287

• on state entry: The <evaluate /> element is declared as a child of the <on-entry />
element that marks the entry in a state. (A view state in the following example). This
action is executed only once, when entering the state.

<flow ...>
 <view-state ...>

<on-entry>
<evaluate expression="..."/>

</on-entry>
 </view-state>
</flow>

• on view render: The <evaluate /> element is declared as a child of the <on-render
/> element that marks the moment immediately before a view is rendered. The
action is executed on every browser refresh.

<flow ...>
 <view-state ...>

<on-render>
<evaluate expression="..."/>

</on-render>
 </view-state>
</flow>

• on transition execution: The <evaluate /> element is declared as a child of the
<transition /> element. Actions imply evaluating expressions and the results are
assigned to variables that have a specific scope assigned. The <evaluate /> action
element used in the following example can be used to evaluate an expression and
assign the result a specific scope. It can prevent a transition if an exception is thrown
or false is returned as a result when the expression is evaluated. How exceptions are
handled in the web flow context is covered later in the chapter. Only one <evaluate />
expression is allowed.

<flow ...>
 <view-state ...>

<transition on="confirm" to="nextStep">
<evaluate expression="..."/>

</transition>
 </view-state>
</flow>

• on state exit: The <evaluate /> element is declared as a child of the <on-exit/>
element that marks the exit of a state. (A view state in the following example).
This action is executed only once, when exiting the state.

<flow ...>
 <view-state ...>

<on-exit>
<evaluate expression="..."/>

</on-exit>
 </view-state>
</flow>

Chapter 7 ■ Spring Web FloW

288

• on flow end: The <evaluate /> element is declared as a child of the <on-end />
element that marks the end of a flow execution. This action is executed only once,
when the flow execution ends.

<flow ...>
...
 <on-end>
 <evaluate expression="..."/>
 </on-end>
</flow>

The examples presented so far were simplified to set the focus on the syntax when defining your
actions. The following example is a concrete one that you will use in the practice exercises:

<flow ...>
<!-- newPerson-flow.xml -->
 <view-state id="enterPersonInfo">

<on-render>
<evaluate expression="hospitalManager.findAll()"

result="flowScope.hospitalList" />
</on-render>
<transition on="proceed" to="reviewPerson" />

 </view-state>
</flow>

The <evaluate /> element can also be used to resolve properties on beans and even perform
conversions. The actions are usually expressed in Spring EL,4 but Unified EL Standard and OGNL are
supported too. Using this type of syntax makes the actions more concise for executing behavior and easier to
read from a development point of view.

A Spring EL expression has the following template:

<variable_name>.property_or_method

The variable_name is resolved against the current flow context. Variables referring to data scopes
(flowScope, viewScope, requestScope, etc.) should only be used when assigning a new variable to one of the
scopes. To resolve a flow variable, reserved variables are searched first, then the variable is searched within
each flow scope, starting with request and expanding the scope gradually: flash, view, flow, conversation.
If the variable is not found, the flow application context is searched for a bean matching the variable name.
Let’s look at a few examples to make usage of Spring EL expressions with web flows easier to understand:

• flowScope.person: The person variable is resolved in flow scope

• person: The person variable is searched in all scopes

• hospitalManager.findAll(): The findAll method is called on the
hospitalManager variable (in this book’s examples, hospitalManager is actually a
bean).

• hospitalManager.findByCode(hospitalCode): Calling a bean method and using
the hospitalCode variable as an argument.

4See http://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.
html#expressions-language-ref.

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html#expressions-language-ref
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html#expressions-language-ref

Chapter 7 ■ Spring Web FloW

289

When using Spring EL to write expressions, a few reserved variables can be used without any prior
manual initialization (Spring takes care of initializing them).

• scope-specific variables: requestScope, flashScope, viewScope, flowScope,
conversationScope

• environment-specific variables: flowExecutionUrl, flowRequestContext,
requestParameters, externalContext, messageContext, resourceBundle,
currentEvent, currentUser

• externalContext.sessionMap is used to access HTTP session contents.
(No sessionScope variable exists in the context of a flow definition.)

Some of these variables can be used in view template files also; in JSP, all scope variables are accessible,
flowExecutionUrl is the URL of the current page, flowRequestContext is the RequestContext. Additional
variables are available: pageScope, requestParameters, sessionScope, and so forth.

So far, only the <evaluate /> element has been used, but there are alternatives more suitable in
particular cases. The <set /> action element is used to set the value of a variable, but it does not prevent a
transition and can be used multiple times within a transition element. For example, if you just want to view
the details on a person after it was selected from a list; there is nothing to evaluate, you just want view some
data. The <set /> element is more suitable for this case:

<flow ...>
<!-- reviewPerson-flow.xml -->
 <view-state id="reviewPersonInfo">
 <on-render>

<evaluate expression="personManager.getByDateOfBirth(dob)"
result="viewScope.persons" result-type="dataModel" />

 </on-render>
 <transition on="select" to="viewPerson">

<set name="flowScope.person" value="persons.selectedRow" />
 </transition>
 </view-state>
</flow>

When using <set />, a scope must be specified when creating a new variable, as there is no default.
In the following example, the firstName variable is assigned to the flowScope scope.

<set name="flowScope.firstName"
value="requestParameters.firstName"/>

When updating an existing variable, or one of its properties, the scope is no longer required and the
algorithm presented previously is used to perform scope resolution.

<set name="person.firstName"
value="requestParameters.firstName"/>

Chapter 7 ■ Spring Web FloW

290

Request Parameters

In the previous code sample, the requestParameters system variable was used. This variable contains all
the URL parameters for the current request. These parameters are not in the requestScope, and if they are
needed further in the execution flow, they need to be assigned to a proper scope; otherwise, they will be lost
when the current request ends.

<view-state id="reviewPersonInfo">
 <transition on="cancel" to="cancelled">
 <evaluate expression=

"personManager.delete(requestParameters.personId)">
 </transition>
</view-state>

■ ? to test your understanding, look at the following code snippet:

 <view-state id="practiceInfo">
 <on-entry>
 <set name="flashScope.var1" value="var1" >
 <set name="requestScope.var2" value="var2" >
 <on-entry>
 <on-render>
 <set name="requestScope.var3" value="var3" >
 <set name="flashScope.var4" value="var4" >
 <set name="requestScope.var5" value="var5" >

 </on-render>
 </view-state>

try to determine which of the following affirmations is true and which is not, and why.5

1. var2 is available after the view is rendered.

2. var2 can be used to initialize the view, but is lost when the view is rendered.

3. var1, var3, var4, and var5 are available after the view is rendered.

4. var1 is lost if the view is refreshed.

51. False. This variable is defined in the first requestScope and a state has two requests. Rendering the view is done in
the second request. 2. True. As explained earlier. 3. True. var1 and var4 are defined in flashScope; var3 and var5 are
defined in the scope of the rendering requestScope. 4. True. var1 is lost because it is defined when entering the state,
and if the page is reloaded, entering the page is done only once. So when the page is reloaded, the flash scope is cleaned
and var1 is lost.

Chapter 7 ■ Spring Web FloW

291

Actions are really useful components of a flow, but a flow definition must stay clear and readable. The
recommended practice is to keep your flow definition as simple as possible, use actions only to prevent
transactions or to decide to which state to transition next. The heavy-lifting actions should be performed in
Java.

As you probably figured out by now, a web flow definition is a bridge between the service and the web
layer that can be used to control the navigation.

Model Objects
In Chapter 3, you learned about controllers, models, and views. A model object handles data used in a view.
The views used in web flows view states also need model objects to render data. In web flow definitions,
model objects can be assigned different scopes and are associated to a view state using the model attribute.

<flow ...>
 <view-state id="enterPersonInfo" model="person">

...
 </view-state>
</flow>

The model object is accessible from the view template files and can be set as a model attribute for forms.
The Spring forms used in web flow views are identical to the ones used when working with Spring MVC; the
only difference is represented by the Submit button, which is used to trigger a user event when using web
flows. This is what a Spring MVC view used to save a Person instance looks like:

<!-- addPerson.jsp -->
<%@ taglib prefix="spring" uri="http://www.springframework.org/tags" %>
<%@ taglib prefix="sf" uri="http://www.springframework.org/tags/form" %>
 <spring:url value="/persons/{id}" var="editUrl">

<spring:param name="id" value="${person.id}"/>
 </spring:url>
 <sf:form modelAttribute="person" action="${editUrl}" method="POST">

<table>
<tr>

<th>
<label for="firstName">

*
<spring:message code="label.Person.firstname"/> :

</label>
</th>
<td><sf:input path="firstName"/></td>
<td><sf:errors cssClass="error" path="firstName"/></td>

</tr>
<!-- other form fields-->
...
<tr>

<td>
<button id="saveButton" type="submit">

<spring:message code="command.save"/>
</button>

</td>
<td>

http://dx.doi.org/10.1007/978-1-4842-0808-3_3
http://www.springframework.org/tags
http://www.springframework.org/tags/form

Chapter 7 ■ Spring Web FloW

292

<spring:message code="command.cancel"/>

</td>

</tr>
</table>

</sf:form>

This is what a Spring Web Flow view used to save a Person instance looks like:

 <!-- newPersonInfo.jsp -->
 <%@ taglib prefix="spring" uri="http://www.springframework.org/tags" %>
<%@ taglib prefix="sf" uri="http://www.springframework.org/tags/form" %>
<sf:form modelAttribute="person" method="POST" id="newPersonForm">
 <table>

<tr>
<th>

<label for="firstName">
*
<spring:message code="label.Person.firstname"/> :

</label>
</th>
<td><sf:input path="firstName"/></td>
<td><sf:errors cssClass="error" path="firstName"/></td>

</tr>
<!-- other form fields-->
...
<tr>

<td>
<button id="newPersonButton" name="_eventId_proceed"

type="submit">
<spring:message code="command.proceed" />

</button>
</td>
<td>

<button id="cancelOpButton" name="_eventId_cancel"
type="submit">
<spring:message code="command.cancel" />

</button>
</td>

</tr>
</table>

</sf:form>

The cancel user event is handled by a global transition, a concept that is covered later.
The model is populated with the request parameter process, also known as data binding. Validation

and conversion are supported for all properties, but can be suppressed if needed (usually during
development) using the bind and validation attributes on the <transition /> element, by setting them to
"false".

<view-state id="enterPersonInfo"

http://www.springframework.org/tags
http://www.springframework.org/tags/form

Chapter 7 ■ Spring Web FloW

293

model="person">
 <transition on="submit" to="reviewPersonInfo" />
 <transition on="cancel" to="end"

bind="false" validate="false"/>
</view-state>

When using Spring MVC, the @InitBinder annotation was used to customize the properties of a model
object that should be binded to a view. Spring Web Flow has an equivalent for this too, because there is no
point in binding properties that the user does not modify or is not meant to use for security reasons. For
example, after personal data is introduced and the validation has passed, the enterIdentityCardInfo data
used to generate the unique personal numerical code should no longer be editable by the user; otherwise,
the personal numerical code is no longer valid. The <binder /> element can be used to white-list elements
eligible for binding, like in the following example:

 <!-- enterIdentityCardInfo-floq.xml -->
 <view-state id="enterIdentityCardInfo"

model="identityCard">
 <binder>

<binding property="series" required="true"/>
<binding property="number" required="true"/>
<!--current date will be used-->
<binding property="emittedAt" required="false"/>
<!-- current date 10 years will be used-->
<binding property="expiresAt" required="false"/>
<binding property="address" required="true"/>

 </binder>
</view-state>

When the form is really big, the model object has a lot of fields and the web flow definition might
become too verbose. A more appropriate solution in cases like this is to create a validator bean or method for
the model objects, as covered in Chapter 3.

Validation, Formatting, and Conversion

Formatters and converters used with web flows are the same as in Spring MVC: default ones are present
out of the box, and custom formatters and converters have to be declared and associated with the web flow
engine using the flow builder services, as shown in the “Configuration and Infrastructure Beans” section.
The same goes for validators: they have to be set on the flow builder services to be used.

■ ! a Spring convertor is a general-purpose class used for conversion between two types that implement
org.springframework.core.convert.converter.GenericConverter or one of its subinterfaces, or
implement org.springframework.core.convert.converter.Converter<S,T> or subinterfaces.

http://dx.doi.org/10.1007/978-1-4842-0808-3_3

Chapter 7 ■ Spring Web FloW

294

a Spring formatter is a class specializing in transforming objects into strings or vice-versa, because when
Spring MVC or Spring Web Flow is used, this is the focus of model objects. the classes must implement the
org.springframework.format.Formatter<T> interface or one of its subinterfaces. the Formatter<T>
interface is favored by developers because it is more suitable for web applications.

Although the registered converters are applied to any model objects, if needed, a different converter
can be set for a property using the converter attribute of the <binding /> element. A converter cannot be
specified in the web flow definition on a property that is not required; otherwise, when no value is provided,
validation errors are generated and rendered in the view.

<!-- enterIdentityCardInfo-floq.xml -->
<view-state id="enterIdentityCardInfo"

model="identityCard">
 <binder>

<binding property="series" required="true"/>
<binding property="number" required="true"/>
<binding property="emittedAt" required="true" converter="simpleDate"/>
<binding property="expiresAt" required="true" converter="simpleDate"/>
<binding property="address" required="true"/>

 </binder>
</view-state>

JSR 349 bean validation is supported and annotations on the form object properties are used to set up
the validation; but to enable it, a bean of type LocalValidatorFactoryBean has to be defined and set on the
on the flowBuilderServices bean. A validator set on the FlowBuilderServices bean is applied to all model
objects in the application. For customizations, custom validators can also be used, just like in Spring MVC.

■ ! remember the annotation validations?

 @Entity
 @SequenceGenerator(name = "seqGen", allocationSize = 1)
 public class Person implements Serializable {
 @Column(nullable = false)
 @Size(min=2, max=50)
 @NotEmpty
 public String firstName;
 @Enumerated(EnumType.STRING)
 @NotNull
 private Gender gender;
 ...

 }

Chapter 7 ■ Spring Web FloW

295

When it comes to validation, there is one major difference between Spring MVC and Spring Web Flow—
the template of the internationalized validation message keys. In Spring Web Flow, the message key must
match the following template to be picked up automatically. In Spring MVC, the message name is placed at
the beginning; in Spring Web Flow is placed at the end.

 #MVC
messageName.modelObject.property
 #Web Flow
modelObject.property.messageName

But this difference can be eliminated by using a bean of type DefaultMessageCodesResolver that is set
on the MvcViewFactoryCreator. Here is the XML configuration needed to make this happen:

<!-- webflow-config.xml -->
 <!-- Configures Web Flow to render Tiles views resolved by Spring MVC -->
 <bean id="mvcViewFactoryCreator"
 class="org.springframework.webflow.mvc.builder.MvcViewFactoryCreator">
 <property name="viewResolvers" ref="tilesViewResolver" />
 <property name="useSpringBeanBinding" value="true"/>
 <property name="messageCodesResolver" ref="mcr" />
 </bean>

<bean id="mcr"
class="org.springframework.validation.DefaultMessageCodesResolver"/>

And here is the Java Configuration:

 \\ WebFlowConfig.java
 @Bean
 public MvcViewFactoryCreator mvcViewFactoryCreator() {

MvcViewFactoryCreator factoryCreator = new MvcViewFactoryCreator();
factoryCreator.setViewResolvers(Arrays.<ViewResolver>asList(

this.mvcConfig.tilesViewResolver()));
factoryCreator.setUseSpringBeanBinding(true);
factoryCreator

.setMessageCodesResolver(messageCodesResolver());
return factoryCreator;

 }

 @Bean
 public DefaultMessageCodesResolver messageCodesResolver(){
 return new DefaultMessageCodesResolver();
 }

Chapter 7 ■ Spring Web FloW

296

Another way to validate a model object is to use programmatic validation. You can define a validation
method in the model object class specific to the view state. The method must have a specific name to be
discovered and the convention naming is

"validate" + {view-state-id(first letter is up-cased)}

So if instead of using a Person instance as model object, a specific form object implementation would
be used. That implementation can also be defined with a view-state specific validation method:

<!-- Flow definition file-->
<view-state id="enterPersonInfo" model="personModelObject" >
 ...
</view-state>

<!-- PersonModelObject.java -->
public class PersonModelObject implements Serializable {

public void validateEnterPersonInfo(
ValidationContext validationContext) {
...

}
}

Keep in mind that model objects are being serialized and deserialized by Spring to populate the form
with values, or retrieve field values from the form, so the model object class must implement the java.
io.Serializable interface.

If the model object cannot be modified, a validator bean can be used. The bean name must match a
specific convention:

{model object name} + "Validator"

To be automatically detected, the validation method must match the preceding conventions, but the
signature has an extra parameter—the model object that is automatically passed as an argument.

<!-- Flow definition file-->
<view-state id="enterPersonInfo" model="person" > ...</view-state>

<!-- PersonValidator.java -->
@Component
public class PersonValidator {

public void validateEnterPersonInfo(
Person person,
ValidationContext validationContext) {
...

}
}

Chapter 7 ■ Spring Web FloW

297

■ ! When writing a validator class and using annotations to define the bean, make sure to specify a name
corresponding to the convention mentioned earlier, or make sure that you name the class appropriately.

Another way of defining validation with web flows is using the <evaluate /> element to call validation
methods and prevent transitions if the validation fails. But doing this is not recommended because it will
overcrowd the flow definition. Still, in some cases, this kind of approach could be necessary, so that’s why it
is covered.

<!-- Flow definition file-->
<view-state id="enterPersonInfo" model="person" >

 <transition on="submit" to="enterIdentityCardInfo">
 <evaluate expression="personValidator.check(person, messageContext)"/>
 </transition>
</view-state>

<!-- PersonValidator.java -->
@Component("personValidator")
public class PersonValidator{

public boolean check(
Person person,
MessageContext messageContext) {
...

}
}

The method returns a Boolean value that can be used to prevent a transition when the result of its
evaluation is false.

Validation methods have flexible signatures and can use different types of objects to register errors.
They can use a ValidationContext object to register errors:

import org.springframework.binding.message.MessageBuilder;
import org.springframework.binding.validation.ValidationContext;
...
public void validateEnterPersonInfo(ValidationContext validationContext) {
 validationContext.getMessageContext().
 addMessage(new MessageBuilder().error()
 .source("person")
 .code("Size.person.firstName")
 .defaultText ("Length must be between 2 and 50").build());
}

Chapter 7 ■ Spring Web FloW

298

Or a MessageContext object:

import org.springframework.binding.message.MessageBuilder;
import org.springframework.binding.message.MessageContext;
...
public boolean check(Person person, MessageContext messageContext) {
 messageContext.addMessage

(new MessageBuilder().error().source("firstName")
.code("Size.person.firstName").build());

return true;
}

Or an Errors object:

import org.springframework.validation.Errors;
...
public boolean check(Person person, Errors errors) {

errors.rejectValue("person",
"Size.person.firstName",
"Length must be between 2 and 50");

return true;
 }

JSR-349 bean validation supports partial validation through validation groups.6 A group defines a
subset of constraints. Instead of validating all constraints for a given object graph, only a subset is validated.
This subset is defined by the group or groups targeted.

@NotEmpty
@Size(min=2, max=50, groups=NameRule.class)
public String firstName;

@NotEmpty
@Size(min=2, max=50, groups=NameRule.class)
public String lastName;

Groups are represented by interfaces that are defined inside the model class or its parent.

package com.pr.validator;
public class PersonModelObject implements Serializable {
...
 public interface NameRule {
 }
}

6If you want more information about validation groups, the official documentation is a great start; it can be found at
https://docs.oracle.com/javaee/7/tutorial/index.html.

https://docs.oracle.com/javaee/7/tutorial/index.html

Chapter 7 ■ Spring Web FloW

299

In a flow definition, the equivalent of validation groups can be implemented using the
validation-hints attribute on the <view-state />:

<!-- Flow definition file-->
<view-state id="enterPersonInfo" model="person" validation-hints="group1,group2">

 <transition on="submit" to="enterIdentityCardInfo">
 <evaluate expression="personValidator.check(person, messageContext)"/>
 </transition>
</view-state>

The validation groups are used to group together fields of the model object that are subjected to
validation together.

@NotEmpty
@Size(min=2, max=50, groups={"group1,group2"})
public String firstName;

@NotEmpty
@Size(min=2, max=50, groups={"group1"})
public String lastName;

The validation-hints attribute is an expression that resolves to a comma-delimited string consisting
of hints that are resolved by a ValidationHintResolver bean. By default, Spring uses a bean of type org.
springframework.webflow.validation.

BeanValidationHintResolver matches the string values to class-based bean validation groups. In the
preceding case, this bean looked for interfaces named Group1 and Group2 in the model or its parent. Fully
qualified class names can also be provided.

A custom ValidationHintResolver can also be provided if necessary, but has to be set on the
FlowBuilderServices in the web flow configuration. In the following, you can see an XML and Java
Configuration sample:

 <!-- webflow-config.xml -->
<webflow:flow-builder-services id="flowBuilderServices"

view-factory-creator="mvcViewFactoryCreator"
conversion-service="conversionService"
validation-hint-resolver="customValidationHintResolver" />

<!-- WebFlowConfig.class-->
@Bean
 public FlowBuilderServices flowBuilderServices() {
 return getFlowBuilderServicesBuilder()

.setViewFactoryCreator(mvcViewFactoryCreator())

.setValidator(this.mvcConfig.validator())

.setConversionService(conversionService())

.setValidationHintResolver(customValidationHintResolver())

.setDevelopmentMode(true)

.build();
}

Chapter 7 ■ Spring Web FloW

300

@Bean
public CustomValidationHintResolver customValidationHintResolver(){
 return new CustomValidationHintResolver();
}

//CustomValidationHintResolver.java
import org.springframework.webflow.validation.BeanValidationHintResolver;
...
@Component("customValidationHintResolver")
public class CustomValidationHintResolver extends BeanValidationHintResolver {

...
}

■ ! if you want to test your understanding so far, check if you understand how view-states, actions, and
transactions interact in the context of a flow. You can take a break from reading and try to solve the
11-pr-webflow-actions-practice practice project. this project contains all the classes necessary to
implement a flow that creates a Person instance in two steps. the view templates are provided, and in the
newPerson-flow.xml, the view-states and transaction elements are already in place. the only thing you have
to do is to complete the web flow definition by adding actions and model objects. (toDo 40) Figure 7-13 shows
the elements of the flow definition and some hints about which actions should be used and where.

Figure 7-13. Web Flow action practice project flow definition

Chapter 7 ■ Spring Web FloW

301

A PersonModelObject class is provided to use an instance of this type in the flow definition. A class
called PersonBuilder is defined with helper methods that can be used to create a person model object and
save the person that the flow will create. The following are the steps executed by the web flow:

1. The enterPersonInfo view-state is entered and a form with the minimal data
required to create a person is displayed. Almost all properties of the person
model object for this form must be binded and are required, except for the
middleName. When this view is rendered, the list of hospitals must be populated.
In this example, the hospitalList is only needed to render the view. Keep
this in mind when deciding which scope this variable should be assigned to.
When leaving this state, the personal object model must be created from all
the data introduced by the user. The personal numerical code is generated
by the application. Just add an action to call the buildPersonObject of the
personBuilder bean and save the result to a variable. This variable must be
accessible to all view-states from this step on, so take this into account when
choosing the scope for it. Figure 7-14 depicts the view specific to this view-state.

Figure 7-14. The enterPersonInfo view-state

Chapter 7 ■ Spring Web FloW

302

2. Clicking the Review button must direct the user to the reviewPerson view-state,
where the information introduced by the user and the application-generated
personal numeric code is displayed. Only the transition element is missing
from the configuration state. The next state to go to is enterIdentityCardInfo.
Figure 7-15 depicts the view specific to this view-state.

Figure 7-15. The reviewPerson view-state

Chapter 7 ■ Spring Web FloW

303

3. The enterIdentityCardInfo is entered, and in this state, the personal details
introduced and generated so far are displayed. The view specific to this view-
state also contains a form that is used to insert data for the IdentityCard
instance. A Person instance cannot be created without an IdentityCard. The
personal numerical code cannot be edited; to change it, you have to go back
to the first step of the flow and change the data there. All the properties of the
identityCard object model for this form must be binded and all are mandatory.
Figure 7-16 depicts the view specific to this view-state.

Figure 7-16. The enterIdentityCardInfo view-state

Chapter 7 ■ Spring Web FloW

304

To save a person’s data, just click the Save button. In the web flow definition, the savePersonEntity
in the personBuilder bean call must be added when transitioning away to the end state. The
IdentityCardValidator class defines a validator method that is applied automatically before saving an
IdentityCard instance. The validation method is discovered and applied specifically when the flow is
transitioning away from the enterIdentityCardInfo view-state, and checks if another person with the same
personal numerical code already exists in the system. To try it out, just add a person born on January 8, 1942
at Oxford Hospital. You should get an error message like the one shown in Figure 7-17.

■ Note as an exercise, you could try to make the validation more precise by testing for number and series
duplication in an identity card.

Action States
If you remember the first logical schema (see Figure 7-1) of the web flow execution that it is meant to be
implemented after studying this chapter, you should remember that it had some decisional elements in
the if-then-else style that made the navigation flow dynamic; because when transitioning based on the
value of a variable, you can end up in different states. In the examples presented so far, this was not possible,
because view-states and actions are not enough to do this. What can be done with view-states and actions,
however, is preventing transitioning when an action fails, but not changing the state to transition to. To make
this happen dynamically, two new state types are needed: action-states and decision-states.

An action state allows transition to a state that executes one or more actions using <evaluate /> and
<set /> elements. The result of this action is raised as an event and a transition to another state is triggered.
Different events can be raised to trigger different transitions dynamically, so an action state should be
used when there is need of an action to be executed and the state to transition to is decided by the result
of that action. Multiple <evaluate /> are allowed inside an action-state, but the last one is used to control
the transition. The <set /> element can be used to define variables needed to execute that action and it is
recommended for usage when transition control is not required.

Figure 7-17. The enterIdentityCardInfo view-state when invalid data is inserted

Chapter 7 ■ Spring Web FloW

305

The result of an action state can be any of the types in the following list, but it will always be converted
to a string following the rules mentioned for each type, because to trigger a transition, the returned value
must be mapped to an event:

• Boolean: Always evaluates to "yes" or "no".

• String: The name of the event to trigger.

• Enumerated types: The enumerated values is converted to String using the
toString() method. The toString method must be defined in such a way that it
returns acceptable values to transition on. Look at the following example; depending
on the result of the evaluation of the getDecision(...) method, the transition is
done to a different state.

 //ActionEnum.java
public enum ActionEnum {

 EDIT_ACCOUNT("accountEditState"),
 DELETE_ACCOUNT("accountDeleteState"),
 CREATE_ACCOUNT("accountCreateState");

 private String value;

 ActionEnum(String value) {
this.value = value;

 }

 public String getValue() {
return value;

 }

 @Override
 public String toString() {

return value;
 }
}

//DecisionBean.java
@Component
public class DecisionBean implements Serializable {

 public ActionEnum getDecision(int decisionId) {
switch (decisionId){

case 0:
return ActionEnum.EDIT_ACCOUNT;

case 1:
return ActionEnum.DELETE_ACCOUNT;

case 2:
return ActionEnum.CREATE_ACCOUNT;

}
throw new IllegalArgumentException("Option not supported!");

 }
}

Chapter 7 ■ Spring Web FloW

306

//account-flow.xml
<flow...>
<action-state id="accountDecision">
 <evaluate

expression="decisionBean.getDecision(requestParameters.decisionId)" />
 <transition on="EDIT_ACCOUNT" to="edit"/>
 <transition on="DELETE_ACCOUNT" to="delete"/>
 <transition on="CREATE_ACCOUNT" to="create"/>
</action-state>
<view-state id="edit" ... >
..
</view-state>

<view-state id="delete" ... >
..
</view-state>

< view-state id="create" ... >
..
</view-state>

</flow>

• org.springframework.webflow.execution.Event: The transition will use the id of
the event object converted to String.

• Any other value that evaluates to "success".

■ ! When using an <evaluate /> expression inside a transition, a transition will occur if the result is any
of the true(Boolean), “yes”, “true”(String), “success”. enumerated types are converted to a String using its
toString() method and the previous rule applies. any other object is treated as “success”.

<view-state id="enterPersonInfo" model="person">
...

<transition on="proceed" to="enterIdentityCardInfo" >
<evaluate expression="personService.isNewPerson(person)"/>
<!-- Must return "true", "yes",

"success" or an object-->
</transition>

</view-state>

Chapter 7 ■ Spring Web FloW

307

So far, actions have been used in quite a simple manner and used to invoke methods on existing beans.
These actions can be categorized as No action because they are used to invoke business services directly.
The concept of “No action” might be confusing. The reason such a category exists is to categorize actions
that are not defined by action classes.

 <!-- newPerson-flow.xml-->
<action-state id="checkDuplicate">
 <evaluate expression="personService.isNewPerson(person)"/>
 <transition on="success" to="enterIdentityCardInfo"/>
 <!-- Transition always occurs -->
</action-state>

// PersonService.java
@Service("personService")
public class PersonService {
 @Autowired
 PersonManager personManager;

 public boolean isNewPerson(Person person) {
String pnc = PncBuilder.build(person);
Person existingPerson = personManager.getByPnc(pnc);
return existingPerson == null;

 }
}

But when the logic of an action becomes complicated, and even needs access to the flow context,
actions can be implemented in different ways. The most simple way is to create a POJO (a bean), pass the
flow context as an argument, and then invoke its methods by the flow. These are called the POJO actions.

■ ! to mark poJo actions, developers usually create their own annotation and set it to be component-
scanned. in the personal records Manager project, the annotation is called @WebFlowAction.

 @Target({ElementType.TYPE})
 @Retention(RetentionPolicy.RUNTIME)
 @Documented
 @Component
 public @interface WebFlowAction {
 /**
* The value may indicate a suggestion for a logical component name,

* to be turned into a Spring bean in case of an autodetected component.

* @return the suggested component name, if any

*/

String value() default "";

 }

Chapter 7 ■ Spring Web FloW

308

For Spring to scan for this annotation, you have to add it to the configuration:

 @Configuration
 @EnableWebMvc
 @ComponentScan(basePackages = {"com.pr, com.pr.persons,
 com.pr.hospitals, com.pr.validator"},
 includeFilters = @ComponentScan.Filter(
 value = WebFlowAction.class,
 type = FilterType.ANNOTATION

))
 @ImportResource({"classpath:spring/app-service-config.xml",
 "classpath:spring/db-config.xml"})
 public class MvcConfig extends WebMvcConfigurerAdapter {
 ...
 }

So, the following code can be written using a POJO action in the following manner:

 <!-- newPerson-flow.xml-->
<action-state id="checkDuplicate">
 <evaluate expression=
 "personAction.isNewPerson(requestContext)" />
 <transition on="success" to="enterIdentityCardInfo"/>
</action-state>

//PersonAction.java
import com.pr.WebFlowAction;
import org.springframework.webflow.execution.RequestContext;

@WebFlowAction
public class PersonAction {

 public String isNewPerson(RequestContext context) {
Person person = (Person) context.getFlowScope().get("person");
String pnc = PncBuilder.build(person);
Person existingPerson = personManager.getByPnc(pnc);
if (existingPerson == null) {

return "success";
} else{

throw new DuplicatePersonException(existingPerson);
}

 }
}

Notice how the context is declared as a parameter and set as an argument by the developer in the web
flow action definition. They way that exceptions are handled in a web flow execution is covered later.

Chapter 7 ■ Spring Web FloW

309

Another type of actions are the plain actions. For each action, a class is created that implements the
org.springframework.webflow.execution.Action interface or extends the Spring-provided implementation,
the org.springframework.webflow.action.AbstractAction class. The implementation provided by Spring
provides some methods that can be used to generate events. For example, this class implements the
org.springframework.beans.factory.InitializingBean interface (covered in Chapter 2) to receive an
init callback when deployed within a Spring bean factory and exposes hooks to execute pre- (doPreExecute
(RequestContext context)) and post- (doPostExecute(RequestContext context)) action execution.

The Action interface exposes only one method, named execute. Implementations of this interface are
usually used to create singleton beans instantiated and managed by a Spring web application context. The
request context is no longer declared as an argument in the flow definition, as an action defined this way is
handled by Spring, which knows the argument to call the action method with. The advantages of using plain
actions is that they can easily be parametrized with mocks and stubs in test environments. Also, action proxies
may also be generated at runtime for delegating to POJO business operations that have no dependency on the
Spring Web Flow API, which helps with decoupling components inside an application. They can be used to
simplify a flow definition when an action is simple enough, because there is no need for a SpEL in the evaluate
element or a method call; the name of the action component is enough for Spring to know what to do.

 package org.springframework.webflow.execution;
public interface Action {
 public Event execute(RequestContext context)

throws Exception;
}

The previous example can be written using a plain action too, and the code will look as follows:

 <!-- newPerson-flow.xml -->
 <action-state id="checkDuplicate">
 <evaluate expression="personAction" />
 <transition on="success" to="enterIdentityCardInfo"/>
</action-state>
//PersonAction.java
import org.springframework.webflow.execution.Action;
...
 @WebFlowAction
public class PersonAction implements Action {

 @Autowired
 PersonManager personManager;

 @Override
 public Event execute(RequestContext context) throws Exception {

Person person = (Person) context.getFlowScope().get("person");
String pnc = PncBuilder.build(person);
Person existingPerson = personManager.getByPnc(pnc);
if (existingPerson == null) {

return new Event(this, "success");
} else{

\\ how an exception is handled in webflow context is covered
\\later in the chapter
throw new DuplicatePersonException(existingPerson);

}
 }
}

http://dx.doi.org/10.1007/978-1-4842-0808-3_2

Chapter 7 ■ Spring Web FloW

310

The context is automatically passed as an argument by Spring.
The most complex type of actions are the MultiActions. They are implemented by extending the org.

springframework.webflow.action.MultiAction class, an extension of AbstractAction that provides
multiple helper methods for returning events. All action methods must have the same signature as the
execute method from the previous example; the context is also automatically passed as argument by Spring.

• success(), error(), yes(), no()

• result(), result(String), error(Exception)

The code in the previous example does not differ much when implemented with MultiAction, but it is
added here to underline the differences between the two implementations:

 <!-- newPerson-flow.xml -->
 <action-state id="checkDuplicate">
 <evaluate expression="personAction.isNewPerson" />
 <transition on="success" to="enterIdentityCardInfo"/>
</action-state>

//PersonAction.java
import org.springframework.webflow.action.MultiAction;
...
 @WebFlowAction
public class PersonAction extends MultiAction {
 @Autowired
 PersonManager personManager;

 public Event isNewPerson(RequestContext context) throws Exception {
Person person = (Person) context.getFlowScope().get("person");
String pnc = PncBuilder.build(person);
Person existingPerson = personManager.getByPnc(pnc);
if (existingPerson == null) {

return success();
} else{

throw new DuplicatePersonException(existingPerson);
}

 }
}

In the previous examples, the same behavior was implemented using all types of actions, but
technically, each type of action implementation is suitable to a certain case.

• No action: Easy to use: just plug in a business method call in the web flow definition.
The main disadvantage here is the tight coupling between business logic and
the flow definition, and the fact that business method calls can make your web
flow definition look crowded. It is proper for usage in simple web flows in simple
applications.

• POJO action: Can be used to glue the flow logic with the business login in a
decoupled way and provides a flexible way to solve business layer exceptions; but the
disadvantage is that the flow definitions might become more complex.

Chapter 7 ■ Spring Web FloW

311

• Plain action: There are not many cases when this should be used, except of course,
for explanatory exercises when teaching Spring Web Flow.

• MultiAction: Offers all the advantages of a POJO action, and the code for the
implementation class might become quite complex.

It is recommended to use POJO actions and MultiActions, if possible, while taking into account the
complexity of the flow definition vs. the complexity of the action class.

For any classes used to implement actions, the RequestContext is needed to obtain access to contextual
information about the executing request. A new instance of this object is created every time there is a start,
signalEvent(resume flow), or refresh to reconstruct the last viewed selection when the user requests a
different response.

• getFlowScope(): Returns a map that can be used to get/set flowScope attributes.

• getRequestScope(): The same as getFlowScope(), but for the requestScope.

• getActiveFlow(), getCurrentState(), getFlowExecutionURL(): Access
information about the flow itself; typically used for auditing and debugging
applications.

• getMessageContext(): This can be used when an exception is thrown during an
action execution on order to display an internationalized message regarding the
error.

• getExternalContext(): Accesses information about the calling context.

Decision States
The decision state type is an alternative for an action state type; when based on an evaluated expression,
there are multiple possibilities of transitioning. As you have seen so far with action-state, the only outcome
is the transition to a "success" view-state or the reload of the current view-state to display an error message.
The decision state allows for branching of the transition process by using a practical if/then/else syntax,
which allows an easier transitioning control. Similar to if/then/else statements in Java, the condition
returns a Boolean value that determines the next state to go. When more conditions are required, an action
state is more suitable.

<!-- newPerson-flow.xml -->
<decision-state id="checkDuplicate">
 <if test="personService.isNewPerson(person)" then="enterIdentityCardInfo"

else="reviewExistingPerson"/>
 </decision-state>

A new view-state has been introduced in this example, reviewExistingPerson; it allows the user to
inspect the person already in the system to verify that the existing person is the one he tried to insert.

A decision state can be used in the final proposed flow to implement in this chapter, which is to check if
a person’s age is greater than 18 so that an account can be created; else, end the execution:

<!-- newPerson-flow.xml -->
<decision-state id="checkAdult">
 <if test="personService.isAdult(person)" then="enterAccountInfo"

else="end"/>
 </decision-state>

Chapter 7 ■ Spring Web FloW

312

 //PersonService.java
 import java.time.*;
 ...
@Service("personService")
public class PersonService {

 // using Java 8 classes to determine age
 public boolean isAdult(Person person){

Date input = person.getDateOfBirth();
Instant instant = input.toInstant();
ZonedDateTime zdt = instant.atZone(ZoneId.systemDefault());
LocalDate birthday = zdt.toLocalDate();
long yearsDelta = birthday.until(LocalDate.now(), ChronoUnit.YEARS);
return yearsDelta>=18;

 }
}

Exception Handling
In the previous examples, the DuplicatePersonException exception class was mentioned. This class
was introduced to throw an exception when the user tries to add an existing person to the system and to
exemplify exception handling in the context of web flows.

 public class DuplicatePersonException extends RuntimeException {

 private Person person;

 public DuplicatePersonException(Person person) {
super("The person already exists in the system.");
this.person = person;

 }

 public Person getPerson() {
return person;

 }
}

When exceptions are raised in the context of a flow execution, they can be taken care of in a few ways:

• Let the exception propagate and define the web flow in such a way that an exception
will cause a transition to an exception view-state.

<transition on-exception="com.pr.problem.DuplicatePersonException"
to="errorEndState" />

Chapter 7 ■ Spring Web FloW

313

• Handle any exception globally; define a state in which any other state will transition
into when an exception is thrown.

<flow>
 ...
 <global-transitions>

<transition
on-exception="com.pr.problem.DuplicatePersonException"

to="errorEndState" />
 </global-transitions>
</flow>

• Use an <exception-handler bean="flowExceptionHandler"/> element as a child
element to any state type. The bean set by the bean attribute of this element is a bean
of type org.springframework.webflow.engine.FlowExecutionExceptionHandler.
It is recommended to avoid this option, as it can leave the flow in an invalid state
when used incorrectly. The most simple way to create a flow executor handler is
to extend the TransitionExecutingFlowExecutionExceptionHandler class that
extends the previously mentioned interface. The following code snippet is the
equivalent of the <global-transition /> element defined previously.

import org.springframework.webflow.engine.support.
TransitionExecutingFlowExecutionExceptionHandler;

public class PersonFlowExceptionHandler
 extends TransitionExecutingFlowExecutionExceptionHandler {

 public PersonFlowExceptionHandler() {
super.add(DuplicatePersonException.class, "errorStateId");

 }
}

• Catch the exception in an Action class and return an error event.

//PersonAction.java
@WebFlowAction
public class PersonAction extends MultiAction {

 @Autowired
 PersonManager personManager;

 public Event isNewPerson(RequestContext context) throws Exception {
Person person = (Person) context.getFlowScope().get("person");
String pnc = PncBuilder.build(person);
Person existingPerson = personManager.getByPnc(pnc);
if (existingPerson == null) {

return success();
} else {

return error();
}

 }
}

Chapter 7 ■ Spring Web FloW

314

■ ! before continuing further, take a look at the 12-pr-webflow-actions2-practice module project. this
project is expected to create a new Person instance, add all the details for it, and also insert a bank account into
the system. to do this, all the elements presented until now are used: actions, action-states, decision-states, and
also exception handling. the flow in Figure 7-18 requires a Hospital instance to be selected to create a Person
instance. but what if the Hospital instance does not already exist in the system and has to be created first? adding
extra logic to do this will make the definition of the flow complicated and will connect the person and hospital logic.
the proper way to do this is to add a subflow with the specific purpose of creating a new hospital instance.

Figure 7-18. Add person and account flow definition

Chapter 7 ■ Spring Web FloW

315

Figure 7-18 depicts a logical schema of the web flow definition to be implemented in this project.
All elements are required to be defined in the newPerson-flow.xml. The isNewPerson is represented as a
triangle, a decision-state, and the confirmAdult is represented as a fancy rectangle, an action-state. The
Cancel and the Error states can be reached form any other state using global transitions, so they are not
connected to the schema because it would make it quite difficult to read.

In this example, some pieces of the flow definition are missing, but all the classes needed to wrap
up the flow are fully developed and ready to use. The flow execution require three flow model objects: a
PersonObjectModel instance, an IdentityCard, and an Account instance. The Account class was not used
until now because every notion presented was covered without any complex logic being necessary. The
Account class contains four fields that are populated by the user.

• The IBAN7 field is mandatory and is considered to be 10 to 30 characters long, all
digits. An exception is thrown if the data introduced by the user does not match this
restriction.

• The bank field is mandatory and a string representing a bank name is required.

• The status field represents the status of the account and is also mandatory.

• The amount field is the amount of money being held by the banking account; this
field is not mandatory.

In the following list, they steps of the execution and resources are presented to you, in the order you
have to use them in the newPerson-flow.xml definition:

• The enterPersonInfo view-state is the same as in the previous code sample; the
initial state of the flow where a form is displayed to the user for basic personal
information to be provided. All fields but middleName are mandatory and must be
validated; the hospital drop-down list must be populated when the view-state is
rendered. The event name that causes the transition to the next step is called next
and the next state is called isNewPerson.

• The contents of the view-state definition are missing and must be implemented to
behave as described previously. (TODO 41) After the implementation is done you
should see the view as in Figure 7-19.

7See https://en.wikipedia.org/wiki/International_Bank_Account_Number.

https://en.wikipedia.org/wiki/International_Bank_Account_Number

Chapter 7 ■ Spring Web FloW

316

• The isNewPerson is a decision state using the result returned by calling the
personService.isNewPerson(person) method as a condition. The method is
defined in the com.pr.servicePersonService class, and a bean of this type named
personService is already defined. If the evaluation returns true, transitioning is
done to the enterIdentityCardInfo state, otherwise to the reviewExistingPerson
state. To test the transition to the reviewExistingPerson state, insert a person born
on October 1, 1935 at General Hospital.

The content of this decision-state definition is missing and must be implemented
to behave as described earlier. (TODO 42)

• The enterIdentityCardInfo is a view state that displays to the user a form
requesting identification information: values for the fields in the identityCard
object. All information is mandatory. The event to transition to the next state,
confirmAdult, is called save. The transition is done after evaluation of the
personBuilder.savePersonEntity(person, identityCard) method, and saving
the result in flowScope.existingPerson, because this flow variable is later used to
create an account.

Figure 7-19. The enterPersonInfo view

Chapter 7 ■ Spring Web FloW

317

• The content of this view-state definition is missing and must be implemented to
behave as described earlier. (TODO 43) After the implementation is done you should
see the view as in Figure 7-20.

Figure 7-20. The enterIdentityCardInfo view

• The reviewExistingPerson is a view-state that displays the basic information of
an existing person in the system, with the same personal numerical code as the
Person instance that the user is trying to create. The data to populate the view is
extracted at rendering time by calling personManager.getByPnc(person.pnc). The
personManager id one of the data management beans presented in Chapter 2. It is
defined in the 01-pr-service module project. The result of calling this method is
saved in the flowScope.existingPerson, because this flow variable is later used to
create an account. From this state, the user can transition to the confirmAdult state
by using the event named continue.

http://dx.doi.org/10.1007/978-1-4842-0808-3_2

Chapter 7 ■ Spring Web FloW

318

• The content of this view-state definition is missing and must be implemented to
behave as described earlier. (TODO 44) After the implementation is done you should
see the view as in Figure 7-21.

Figure 7-21. The reviewExistingPerson view

• The confirmAdult state is an action-state that evaluates the personActions.
isAdult expression. The class providing the implementation for this is com.
pr.PersonActions; it is a class extending the MultiAction class presented earlier.
On success, transition is done to the enterAccountInfo, and on error, transition is
done to end, because obviously the Person instance does not represent an adult so a
bank account cannot be added for this instance, thus this is where the flow execution
ends. (TODO 45) The content of this action-state definition is missing and must be
implemented to behave as described earlier.

• The enterAccountInfo is a view state that displays a form requesting minimum
information for a bank account. The IBAN of the account must be unique in
the system. If you want to test the validation for this field, just insert the value
US1301101250000000012300695. Using the add event, if the information introduced
is valid, a transition is done to the end state that displays the created person and
banking information existing for it in the system.

Chapter 7 ■ Spring Web FloW

319

• The content of this view-state definition is missing and must be implemented to
behave as described earlier. (TODO 46) After the implementation is done you should
see the view as in Figure 7-22.

Figure 7-22. The enterAccountInfo view

• error is a view-state used to display explicit content of the exceptions thrown in the
application. It was implemented this way so that while resolving this exercise, you
have a practical way to debug your problems, if you have any. In a real production
application, the error view is simpler and more user-friendly.

• cancel is an end-state that the flow transitions into any time the user presses the
Cancel button in any view.

• end is an end-state that redirects the user to a view with all the existing data for that
person in the system.

• The <global-transaction /> element has two transition elements: one for the
cancel scenario, when any the flow transitions to cancel, and one for any exception
that is being thrown in the flow transition to the error state.

• When your implementation is correct and the data you inserted is valid, a new
person should be created in the system and a new bank account should be added for
it, and after the flow execution, you should be redirected to a view that displays the
information, which looks similar to the one shown in Figure 7-23.

Chapter 7 ■ Spring Web FloW

320

IMpOrtaNt OBSerVatIONS

the bind="false" attribute is needed, so the form is not validated before transitioning to the cancel
state, as validation errors will prevent the transition.

<global-transitions>
 <transition on="cancel" to="cancel" bind="false" />
 <transition on-exception="java.lang.Exception" to="error" />
</global-transitions>

When using web flows, the exception handling is the most undocumented part of Spring Web Flow.
Unless a web flow exception handler is used, or action states that return error events and add the
exception object to the flowScope, catching and treating exceptions is very tricky. Developers are
basically forced into writing the code. that’s why all web flow exceptions in this project cause a
transition to the error view that uses JSp scriptlets to display a very detailed stacktrace that help
developers reading this book to easily identify the mistakes in the code and configuration. the exception
can be retrieved using the request. as mentioned, this view is only to be used for development
purposes; for production, a more user-friendly view implementation should be used.

Figure 7-23. The view that the flow should redirect to after a successful execution

Chapter 7 ■ Spring Web FloW

321

<!-- webapp/WEB-INF/error.jsp -->
<div class="error">
 <%
 Exception exception =
 (Exception) request.getAttribute("flowExecutionException");
 Exception cause =
 (Exception) request.getAttribute("rootCauseException");
 %>
...
 <%
 exception.printStackTrace(new java.io.PrintWriter(out));
 %>
...
 <% if (cause != null) { %>
 <h3>Cause: <%=cause.getMessage()%></h3>
 <p>
 <%

cause.printStackTrace(new java.io.PrintWriter(out));
 %>
 </p>
 <%} %>
</div>

in case you insert data that is invalid, you can use the browser back button to go back to the previous
state and change the information. to prevent browsing back to a state previous to a transition with the
back button, the history attribute of the transaction element can be used:

<transition on="confirm" to="end" history="discard">
<!-- or invalidate all previous visited views in the browser history -->
<transition on="confirm" to="end" history="invalidate">

the default value for this attribute is preserve, which allows returning to a state before the execution of
the transition and the data for the state is still accessible.

discard prevents backtracking to the state, meaning that all information related to the state is
discarded and using the browser back button results in a 500 http internal server error.

invalidate prevents backtracking to the state, as well as any previously entered view-state, and
pressing the browser back button has the same effect as the previous case.

the proposed solution for this project can be found in the 12-pr-webflow-actions2-solution project.

Chapter 7 ■ Spring Web FloW

322

Subflows
A subflow is a flow that is being invoked by another flow. It has its own scope and the parent flow execution is
suspended while the subflow is being executed. The conversation scope is the only scope that is shared between
the parent flow and the subflows, as depicted in Figure 7-7. The subflow must be defined in the application in
the same manner as any flow; it has its own views and language resources, because it is essentially a flow.

A subflow is launched from a special state in a parent flow called subflow-state. In the following
example, the newPerson flow calls the newHospital subflow.

<!-- newPerson-flow.xml-->
<flow ...>
 <view-state id="enterPersonInfo" model="person">
 <binder>...</binder>

<transition on="next" to="isNewPerson" />
 <transition on="addHospital" to="newHospital"/>
 </view-state>

 <subflow-state id="newHospital"
subflow="hospitals/newHospital" >

<output name="hospital"/>
<transition on="saveHospital" to="enterPersonInfo">

<evaluate expression="hospitalManager.save(hospital)"
result="flashScope.hospital" />

<set name="flashScope.hospitalMessage"
value="hospital.msg.success" />

</transition>
<transition on="cancel" to="enterPersonInfo" />

 </subflow-state>
</flow>

The subflow in the previous example allows the user to insert a new Hospital instance in the system
so that it can be used when the person is created, if the state transitioning into is saveHospital. The id of
the subflow-state is the id of this state inside the newPerson flow definition. The subflow attribute is used to
link this flow invocation with the flow definition, and contains the path inside the WEB-INF, where the flow
definition and resources can be found. In the previous case, the flow definition file is located at /WEB-INF/
hospitals/newHospital/newHospital-flow.xml. Once registered with the FlowDefinitionRegistry,
the subflow can be referred from any flow using its logical name, which is composed of the location and the
flow name as a value for the subflow attribute:

 \\WebFlowConfig.java
 @Configuration
public class WebFlowConfig extends AbstractFlowConfiguration {
...

@Bean
public FlowDefinitionRegistry flowRegistry() {
 return getFlowDefinitionRegistryBuilder(flowBuilderServices())
 .setBasePath("/WEB-INF")
 .addFlowLocation("/persons/newPerson/newPerson-flow.xml")
 .addFlowLocation("/hospitals/newHospital/newHospital-flow.xml")
 .build();
 }
}

Chapter 7 ■ Spring Web FloW

323

 <subflow-state id="newHospital"
subflow="hospitals/newHospital" >

 <!-- hospitals = directory for Hospital specific resources -->
 <!-- newHospital = flow name-->

The key values used for transitions inside the parent flow are the ids of end-states in the subflow:

 <!-- newHospital-flow.xml-->
<flow ..>
 <var name="hospital" class="com.pr.ents.Hospital"/>

 <view-state id="enterHospitalInfo" model="hospital">
<binder>

<binding property="name" required="true"/>
<binding property="code" required="true"/>
<binding property="address"/>
<binding property="location" required="true"/>

</binder>
<transition on="save" to="saveHospital"/>
<transition on="cancel" to="cancel" bind="false" />

 </view-state>

 <end-state id="saveHospital">
<output name="hospital" value="hospital"/>

 </end-state>

 <end-state id="cancel"/>

</flow>

The flashScope.hospitalMessage variable is used to display a message telling the user that the
Hospital instance was saved correctly and can be used.

Although the conversation scope is accessible to the parent flow and subflows, global variables usage is
discouraged, because it reduces the readability of the code, so that passing parameters between the parent
flow and the subflow is more appropriate.

The <output name="hospital"/> is an output parameter designed to return the Hospital instance
created by the newHospital flow to the parent flow; it is assigned the flashScope (see the evaluate element
marked with (1) in the following code snippet).

There are also input parameters, required or not, to provide a parent flow variable value to the subflow.
In the previous case, there is nothing needed, but assuming that you would need to send a Person instance
as a manager for the hospital we are trying to create, the preceding definitions will change a little. The
instance given as parameter has the flowScope in both of the flows because it is defined right under the
<flow /> element.

Chapter 7 ■ Spring Web FloW

324

<!-- newPerson-flow.xml-->
 <flow ...>
 <var name="person" class="com.pr.ents.Person"/>

 <view-state id="enterPersonInfo" model="person">
 <binder>...</binder>

<transition on="next" to="isNewPerson" />
<transition on="addHospital" to="newHospital"/>

 </view-state>

 <subflow-state id="newHospital"
subflow="hospitals/newHospital" >

<input name="manager" value="person"/>
<output name="hospital"/>

<transition on="saveHospital" to="enterPersonInfo">
(1) <evaluate expression="hospitalManager.save(hospital)"

result="flashScope.hospital" />
<set name="flashScope.hospitalMessage"

value="hospital.msg.success" />
</transition>
<transition on="cancel" to="enterPersonInfo" />

 </subflow-state>
 </flow>

<!-- newHospital-flow.xml-->
 <flow ...>

 <input name="manager" required="true"/>
 <var name="hospital" class="com.pr.ents.Hospital"/>

 <view-state id="enterHospitalInfo" model="hospital">
 ...
 </view-state>

 </flow>

When subflows are involved, unit testing is quite tricky; that’s why it is recommended to mock or stub
them when the focus of the testing is on the parent flow. By overriding the configureFlowBuilderContext
method from AbstractXmlFlowExecutionTests, a mock definition for the subflow can be added to the
context:

import org.springframework.webflow.test.execution.AbstractXmlFlowExecutionTests;

public class NewPersonFlowTest extends AbstractXmlFlowExecutionTests {
...
@Override
 protected void configureFlowBuilderContext

(MockFlowBuilderContext builderContext) {

Chapter 7 ■ Spring Web FloW

325

// setup newHospital subflow
Flow newHospital = new Flow("newHospital");
State start = new State(newHospital, "newHospital") {

@Override
protected void doEnter(RequestControlContext context)

throws FlowExecutionException {
// empty

}
};
newHospital.setStartState(start);
builderContext.registerSubflow(newHospital);

 }
 ...
}

Unfortunately, even as this book is being written, testing subflows is still cumbersome and there are a
lot of bugs opened and unresolved.8

When the scope is to test the subflows too, the getModelResources method of
AbstractXmlFlowExecutionTests must be overridden. Add the subflow definition to the flow resources
being tested:

import org.springframework.webflow.engine.Flow;
import org.springframework.webflow.test.MockExternalContext;
import org.springframework.webflow.test.MockFlowBuilderContext;
import org.springframework.webflow.test.execution.AbstractXmlFlowExecutionTests;

 public class NewPersonFlowTest extends AbstractXmlFlowExecutionTests {
...
 @Override
 protected FlowDefinitionResource
 getModelResources(FlowDefinitionResourceFactory resourceFactory) {

FlowDefinitionResource flowDefinitionResources =
new FlowDefinitionResource2;

flowDefinitionResources0 = resourceFactory.createResource
("src/main/webapp/WEB-INF/persons/newPerson/newPerson-flow.xml");

flowDefinitionResources1 = resourceFactory.createResource
("src/main/webapp/WEB-INF/hospitals/newHospital/newHospital-flow.xml");

return flowDefinitionResources;
 }
 ...
}

8A bug related to mocking subflows; still open and unresolved since version 2.0.6. See
https://jira.spring.io/browse/SWF-1079.

https://jira.spring.io/browse/SWF-1079

Chapter 7 ■ Spring Web FloW

326

■ ! Considering that the subflows are not a topic for the exam, there is no practice project with configurations
missing, but a project was created that you can run and inspect to see the subflow to add a Hospital instance
running:

13-pr-webflow-subflow-solution.

■ ? as a proposed exercise, if you want to test your understanding of subflows, you can try to turn the
creating of an Account instance into a subflow.

Flow Definition Inheritance
Flow definitions can be organized in hierarchies in a way similar way to bean definitions. Organizing
them in hierarchies allows global transitions, common states, and actions to be shared among parent and
children flows.

The child flow and the parent flow are both registered in the same flow registry.
There are a few things regarding flow definition inheritance that are interesting and worth covering.

One of them is that multiple inheritance is supported, because inheritance between web flow definitions
is more like a composition; basically, a child flow definition inherits all configuration elements form its
parents, and elements with the same id are merged. Multiple parents are specified using comma as a
separator:

<flow ... parent="parentFlow1, parentFlow2" />
 ...
</flow>

Parent flow definitions can also be abstract. In this case, these flows cannot be instantiated and
executed; their purpose in the code is to wrap up common definition elements for multiple child flow
definitions, to respect the DRY principle.9

<flow ... abstract="true" />
 ...
</flow>

Flow inheritance is analogous to bean definition inheritance. It is more a composition than inheritance,
as parent and child are merged together to create a new flow.

Another interesting thing is that flow definition inheritance can be selective, meaning there is a way that
only certain state definitions can be inherited, instead of the whole parent flow definition:

<flow ... parent="parentFlowName"/>
<view-state id="childState" parent="parentFlowName#stateId">

</flow>

The restriction here is that the child flow can inherit only from one parent when restrictions are
defined at the state level. Also, the child state definition type must be one and the same with the parent state
definition. In the preceding example, the state element with stateId must be of type view-state in the parent
too; otherwise, the web flow configuration is invalid.

9Don’t Repeat Yourself.

Chapter 7 ■ Spring Web FloW

327

Securing Web Flows
Before talking about how to secure web flows, a detailed introduction into Spring Security is necessary,
because you need to understand core security concepts and how they can be configured with Spring
Security.

Introduction to Spring Security
Spring Security is a framework that can be used to secure web applications. It is very easy to use and
highly customizable, providing access control over units of an application. When writing secure Spring
web applications, this is the default tool that developers go to because configuration follows the same
standard with all the Spring projects. Infrastructure beans are provided out of the box for multiple types of
authentication and they are clearly compatible with other Spring projects. Spring Security provides a wide
set of capabilities that can be grouped in four areas of interest: authentication, authorizing web requests,
authorizing methods calls, and authorizing access to individual domain objects.

The following are Spring Security’s core features:

• Authentication (user identification) and authorization (managing access to
resources); comprehensible and extensible support is provided.

• It is easy to configure.

• It is highly customizable.

• Protection against session fixation, clickjacking, cross-site request forgery, and other
type of attacks is provided via simple and flexible configurations.

• It can be integrated with the Servlet API.

Of course, there are more. You can read more about them on the official page of this project.10

There are five security concepts that you have to familiarize yourself with and understand to use Spring
Security:

• Credentials are identification keys that an entity presents to the application to
confirm their identity(a password or a token).

• Principal represents an authenticated entity that was recognized by the application
based on its credentials.

• Authentication is the process that determines if the credentials of an entity are valid.

• Authorization is the process that determines if a principal is allowed access to a
resource or performs a certain action. The decision process is often based on roles.
The following are the most common roles:

• GUEST, usually can just view data

• MEMBER (or USER), can insert data

• ADMIN, can insert and delete data

• Secured item is a resource that is being secured.

10Spring Security page at http://spring.io/spring-security.

http://spring.io/spring-security

Chapter 7 ■ Spring Web FloW

328

The Spring Security version used in the book is 4.0.2.RELEASE and it is compatible with Spring 4. In
the Gradle configuration of the 14-pr-web-security-practice module project, notice that the following
libraries have been added:

springSecurityVersion = '4.0.2.RELEASE'
...
securityConfig : "org.springframework.security:spring-security-config:

$springSecurityVersion",
securityWeb : "org.springframework.security:spring-security-web:

$springSecurityVersion",
securityTaglibs: "org.springframework.security:spring-security-taglibs:

$springSecurityVersion",
...
}

Why Spring Security Is Awesome
The spring-security-config module provides security namespace parsing code and is needed when using
XML configuration. As some developers still prefer to use XML configuration, the minimum configuration
needed in XML is explained in the book alongside the Java Configuration. The spring-security-web
provides filters and related web-security infrastructure beans. This library is needed for web-based
authentication. The spring-security-taglibs provides security tags that can be used to secure elements in
JSP pages.

The main reason why Spring Security is preferred when developing web applications is portability.
Spring Security does not need a special container to run in; it can be deployed as a secured archive (WAR or
EAR) and can run in stand-alone environments. For example, a secured web application archived as a WAR
can be deployed on a JBoss or an Apache Tomcat application server. And as long as the underlying method of
storing credentials is configured, the application will run exactly the same in any of these application servers.

When it comes to authentication and credential storage, Spring Security is very flexible. All common
authentication mechanisms are supported (Basic, Form, OAuth, X.509, cookies, single sign-on). Regarding
support storage for credentials databases, Spring Security supports anything—LDAP, properties file, custom
DAOs, and even beans, among many others.11

Configuring Spring Security is easy. A common practice is to define a separate file when using XML and
a separate configuration class when using Java Configuration. Infrastructure beans can be used to customize
the following:

• How a principal is defined

• Where authentication information is stored

• How authorization decisions are made

• Where security constraints are stored

As we have seen so far when using Spring, anything can be done by keeping components as decoupled
as possible. Spring Security respects the principle of separation of concerns (SoC). Restrictions are applied
using an interceptor-based approach. It was mentioned at the beginning of the book that AOP is used when
securing resources. Also, authentication and authorization are decoupled; changing the authentication
method and credentials support does not affect authorization.

11A full list of authentication technologies that Spring Security integrates with; it can be found at http://docs.
spring.io/spring-security/site/docs/current/reference/htmlsingle/#what-is-acegi-security.

http://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#what-is-acegi-security
http://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#what-is-acegi-security

Chapter 7 ■ Spring Web FloW

329

Spring Security is consistent. The authentication purpose is to create a security context with the
principal’s information; it does not depend on the mechanism used. The authorization process has the same
purpose, regardless of the resource type: consult resource properties, consult the principal’s role, and decide
to grant or deny access.

The way Spring Security works and the core components are depicted in Figure 7-24.

Figure 7-24. Spring Security anatomy

The following explains the flow described in Figure 7-24:

1. The user makes a login request. (Introduces credentials in a login form and
submits it.)

2. The user logs into the application and the Authentication Manager populates
the security information of the user into the security context.

3. When the user makes resource requests (requests to view a page, starts a flow,
requests a document) after logging in, the security interceptor intercepts them
before they invoke a protected/secured resource.

4. The Security Interceptor then retrieves the user information from the context.

5. The Access Decision Manager polls a list of voters to return a decision regarding
the rights the authenticated user has on system resources

6. The Spring Interceptor consults the resource attributes that are configured in the
application.

7. Access is granted or denied to the resource based on the user rights (5) and the
resource attributes (6).

Chapter 7 ■ Spring Web FloW

330

Spring Security XML Configuration
When using XML to configure Spring Security, any tag can be used by adding the security namespace to the
Spring configuration file at http://www.springframework.org/schema/

security/spring-security.xsd. The recommended practice is to have a separate configuration file
that contains only the security-related configurations.

To log in to the Personal Records Manager application, a separate file should be created, named
security-config.xml. This file should define the users and credentials needed to access the application
and which resources these users can access:

<!-- security-config.xml -->
<beans xmlns:sec="http://www.springframework.org/schema/security"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://www.springframework.org/schema/beans"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/security
http://www.springframework.org/schema/security/spring-security.xsd">

 <!-- styling&internationalization resources do not need to be secured -->
 <sec:http pattern="/images/*" security="none"/>
 <sec:http pattern="/styles/*" security="none"/>
 <sec:http pattern="/resources/*" security="none"/>

 <sec:http auto-config="true">
<sec:intercept-url pattern="/auth*" access="permitAll"/>
<sec:intercept-url pattern="/persons/newPerson"

access="ROLE_ADMIN"/>
<sec:intercept-url pattern="/**"

access="ROLE_USER, ROLE_ADMIN"/>
<sec:form-login login-page="/auth"

authentication-failure-url="/auth?auth_error=1"
default-target-url="/"/>

<sec:logout logout-url="/j_spring_security_logout"
logout-success-url="/home />

 </sec:http>

 <sec:authentication-manager>
<sec:authentication-provider>

<sec:user-service>
<sec:user name="john" password="doe"

authorities="ROLE_USER"/>
<sec:user name="jane" password="doe"

authorities="ROLE_USER,ROLE_ADMIN"/>
<sec:user name="admin" password="admin"

authorities="ROLE_ADMIN"/>
</sec:user-service>

</sec:authentication-provider>
 </sec:authentication-manager>
</beans>

http://www.springframework.org/schema/
http://www.springframework.org/schema/security
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/security
http://www.springframework.org/schema/security/spring-security.xsd

Chapter 7 ■ Spring Web FloW

331

The configuration presented earlier uses basic authentication, without any password encryption. The
auto-config="true" is a legacy attribute that automatically registers a login form, BASIC authentication,
and a logout URL and logout services. It is not meant to be used for production applications, as the level of
security required is higher than the default one provided by Spring Security out of the box for educational
purposes.

The <intercept-url /> elements are evaluated in the order they are listed into the configuration, so
the most restrictive ones need to be at the top of the list; otherwise, the result might not be the expected one.

Three users are defined with different roles. Access to the newPerson flow has been restricted to users
having the ROLE_ADMIN role, to test the configuration. This file is Spring Security 3.0–specific and it won’t
work in a Spring Security 4 environment, because this version has introduced a lot of changes.

The <sec:logout /> logout element is used to customize logout details. The logout-url attribute
specifies the URL that will cause a logout. Spring Security initializes a filter that responds to this particular
URL. The logout-success-url attribute is used to define where the user is redirected after logging out.

In the <sec:form-login /> the URL of the page used for authentication is set as a value for the login-
page attribute. After successfully logging in, the user is redirected to the page set as a value for the default-
target-url attribute. In case of failure, the user is redirected to the login view, and using the auth_error
parameter, a proper value is displayed to the user. The auth.jsp template file presents to the user a login
form looks like this for Spring Security 3:

<!-- auth.jsp -->
 <form action="<c:url value='/j_spring_security_check'/>" method="post">

<table>
<tr>

<td>
<label for="j_username">
<spring:message code="login.username"/>

</label>
</td>
<td>

<input type='text' id='j_username' name='j_username'
value='<c:out value="${user}"/>'/>

</td>
</tr>
<tr>

<td>
<label for="j_password">

<spring:message code="login.password"/>
</label>

</td>
<td><input type='j_password' id='password'

name='j_password'/></td>
</tr>
<tr>

<td colspan="2">
<button type="submit">

<spring:message code="login.submit"/>
</button>

</td>
</tr>

</table>
<c:if test="${not empty param.auth_error}">

Chapter 7 ■ Spring Web FloW

332

<div id="errors" class="error">
<!-- detailed security exception message is printed for development purposes -->
<!-- obviously, not recommended to be used in a production application -->

<p><spring:message code="login.fail"/>:
${SPRING_SECURITY_LAST_EXCEPTION.message}

</p>
 </div>
 </c:if>
</form>

There is another way to specify access by using Spring Security Expressions, but they must be enabled
by declaring the use-expressions="true" attribute on the <sec:http /> configuration element. So, the
access attributes under the <sec:http /> configuration element become this:

<sec:http auto-config="true" use-expressions="true">
 <sec:intercept-url pattern="/auth*" access="permitAll"/>
 <sec:intercept-url pattern="/persons/newPerson"

access="hasRole('ROLE_ADMIN')"/>
 <sec:intercept-url pattern="/**"

access="hasAnyRole('ROLE_USER, ROLE_ADMIN')"/>
 <sec:form-login login-page="/auth"

authentication-failure-url="/auth?auth_error=1"
default-target-url="/"/>

 <sec:logout logout-url="/j_spring_security_logout"/>
</sec:http>

■ ! Mixing expression style configuration with direct configuration is not permitted. You either use
expressions or you don’t. Mixing them will make your configuration file invalid.

Spring Security Expressions are quite easy to use and understand:

• hasRole('role') checks whether the principal has the given role.

• hasAnyRole('role1', 'role2', ?) checks whether the principal has any of the
given roles.

• isAuthenticated() allows access for authenticated or remembered principals.

• permitAll allows unauthenticated users access to a resource. In the previous
example, this is used to make sure that the login form is accessible so a user can
insert his credentials for authentication to take place.

• Expressions can be aggregated hasRole('ROLE_ADMIN') and
hasRole('ROLE_MANAGER').

Chapter 7 ■ Spring Web FloW

333

The preceding configuration is relative to the beans namespace. Considering that the configuration file
contains only security tags, the file could be created relative to the security namespace, and so the sec prefix
would not be necessary, which makes the file more readable:

 <?xml version="1.0" encoding="UTF-8"?>
<beans:beans xmlns="http://www.springframework.org/schema/security"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:beans="http://www.springframework.org/schema/beans"
xsi:schemaLocation="http://www.springframework.org/schema/security
http://www.springframework.org/schema/security/spring-security.xsd

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

 <http pattern="/images/*" security="none"/>
 <http pattern="/styles/*" security="none"/>
 <http pattern="/resources/*" security="none"/>

 <http auto-config="true" use-expressions="true">
<intercept-url pattern="/auth*" access="permitAll"/>
<intercept-url pattern="/persons/newPerson"

access="hasRole('ROLE_ADMIN')"/>
<intercept-url pattern="/**"

access="hasAnyRole('ROLE_USER, ROLE_ADMIN')"/>
<form-login login-page="/auth"

authentication-failure-url="/auth?auth_error=1"
default-target-url="/"/>

<logout logout-url="/j_spring_security_logout"/>
 </http>

 <authentication-manager>
<authentication-provider>

<user-service>
<user name="john" password="doe" authorities="ROLE_USER"/>
<user name="jane" password="doe"

authorities="ROLE_USER,ROLE_ADMIN"/>
<user name="admin" password="admin" authorities="ROLE_ADMIN"/>

</user-service>
</authentication-provider>

 </authentication-manager>
</beans:beans>

Spring Security 4 has introduced a few critical changes that need coverage in this book; because by the
time this book is published, Spring Security 4 might be a subject on the exam.

http://www.springframework.org/schema/security
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/security
http://www.springframework.org/schema/security/spring-security.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd

Chapter 7 ■ Spring Web FloW

334

■ ! Spring Security 4 has introduced the possibility of using CSFr tokens in Spring forms to prevent cross-
site request forgery.12 a configuration without a <csrf /> element configuration is invalid, and any login
requests direct you to a 403 error page stating:

 Invalid CSRF Token 'null' was found on the request parameter
 '_csrf' or header 'X-CSRF-TOKEN'.

To migrate from Spring Security 3 to version 4, you have to add a configuration for that element, even if
all you do is disable using CSRF tokens.

<http auto-config="true" use-expressions="true">
 <csrf disabled="true"/>
 <intercept-url pattern="/auth*" access="permitAll"/>
 <intercept-url pattern="/persons/newPerson" access="hasRole('ADMIN')"/>
 <intercept-url pattern="/**" access="hasAnyRole('USER, ADMIN')"/>
 <form-login login-page="/auth"

authentication-failure-url="/auth?auth_error=1"
default-target-url="/"/>

 <logout logout-url="/logout"
delete-cookies="JSESSIONID"
logout-success-url="/"/>

</http>

The delete-cookies attribute can be used to specify a list of cookies to delete at logout time. In the
previous configuration, only one is specified, named JSESSIONID; but if the application uses more cookies,
they can be specified as a value for this attribute using their names separated by commas.

12This type of attack consists of hacking an existing session to execute unauthorized commands in a web application.
You can read more about it at https://en.wikipedia.org/wiki/Cross-site_request_forgery.

https://en.wikipedia.org/wiki/Cross-site_request_forgery

Chapter 7 ■ Spring Web FloW

335

■ ! other critical changes are related to the login form default Spring resources, such as the login Url (that
indicates an authentication request) and names of the request parameters (expected keys for generation of an
authentication token).13 these were changed to match JavaConfig. the login form in the auth.jsp view became
the following:

<form action="<c:url value='/login'/>" method="post">

 <table>
 <tr>

<td>

<label for="username">

<spring:message code="login.username"/>

</label>

</td>

<td>

<input type='text' id='username' name='username'

value='<c:out value="${user}"/>'/>

</td>

 </tr>
 <tr>

<td>

<label for="password">

<spring:message code="login.password"/>

</label>

 </td>
<td><input type='password' id='password' name='password'/></td>

 </tr>
 <tr>

<td colspan="2">

<button type="submit">

<spring:message code="login.submit"/>

</button>

</td>

 </tr>
 </table>
</form>

13The full list of configuration changes that were made to match Java Configuration is at https://jira.spring.io/
browse/SEC-2783.

https://jira.spring.io/browse/SEC-2783
https://jira.spring.io/browse/SEC-2783

Chapter 7 ■ Spring Web FloW

336

■ ! all previous examples used default values for the login Url and the authentication key names j_spring_
security_check, j_username, j_password (in Spring Security 3), login, username, password (in Spring Security 4).
Keep in mind that all of them can be redefined using Spring configuration.

If you are interested in keeping your form as secure as possible, you can configure CSRF usage and add
the token generated by Spring to your form. The following are the required modifications:

• First you must enable CSRF generation in your security-config.xml file by adding
a <csrf /> configuration element and a repository to generate the value for it.
Modify the logout element appropriately; the third bullet in this list tells you why.

<beans:beans .../>
 <beans:bean id="tokenRepo"
class="org.springframework.security.web.csrf.HttpSessionCsrfTokenRepository">

<beans:property name="sessionAttributeName" value="_csrf"/>
 </beans:bean>

 <http auto-config="true" use-expressions="true">
<csrf token-repository-ref="tokenRepo"/>
<intercept-url pattern="/auth*" access="permitAll"/>
<intercept-url pattern="/persons/newPerson" access="hasRole('ADMIN')"/>
<intercept-url pattern="/**" access="hasAnyRole('USER, ADMIN')"/>
<form-login login-page="/auth"

authentication-failure-url="/auth?auth_error=1"
default-target-url="/"/>

<logout logout-url="/logout"
delete-cookies="JSESSIONID"
invalidate-session="true"
logout-success-url="/"/>

 </http>
 ...
</beans:beans>

• Second, you must add a hidden parameter in every form that you are interested in
protecting form cross-site request forgery.

<form action="<c:url value='/login'/>" method="post">
 <input type="hidden"
 name="${_csrf.parameterName}" value="${_csrf.token}"/>
 <table>
 <tr>

<td>
<label for="username">
<spring:message code="login.username"/>

</label>
</td>

<td>
<input type='text' id='username' name='username'

value='<c:out value="${user}"/>'/>
</td>

Chapter 7 ■ Spring Web FloW

337

</tr>
<tr>

<td>
<label for="password">

<spring:message code="login.password"/>
</label>

</td>
<td><input type='password' id='password' name='password'/></td>

</tr>
<tr>

<td colspan="2">
<button type="submit">

<spring:message code="login.submit"/>
</button>

</td>
</tr>

 </table>
</form>

• And last, logging out becomes a pain when CSRF is enabled, because you need to
log out using a POST request. Thus, you cannot just use a link build like this (like in
Spring Security 3):

<a href="<spring:url value="/j_spring_security_logout"/>">
 <spring:message code="menu.logout"/>

You need to add a logout form to the page and submit it using JavaScript:

<spring:url value="/logout" var="logoutUrl" />
 <form action="${logoutUrl}" id="logout" method="post">

<input type="hidden" name="${_csrf.parameterName}"
value="${_csrf.token}"/>

 </form>

 <spring:message code="menu.logout"/>

Also, as we’ve been mentioning logout, you probably noticed the extra attributes of the <logout />
element; their names are quite obvious, and if specified at logout, the specific resources are cleaned
accordingly:

<logout logout-url="/logout"
delete-cookies="JSESSIONID"
invalidate-session="true"
logout-success-url="/"/>

Chapter 7 ■ Spring Web FloW

338

Also, a handler can be used instead of the logout-success-url that takes care of redirecting to the
proper page and eventually cleaning up any resources:

<logout logout-url="/logout"
delete-cookies="JSESSIONID"
success-handler-ref="logoutSuccessHandler"/>

To view the token Spring Security has generated, you can use Firebug to view the contents of your login
request. You should see something similar to what is depicted in Figure 7-25.

Figure 7-25. Spring Security CSRF token

■ ! another simplification change that can be done to this file is provided by a new feature introduced in
Spring Security 4 that allows access expressions to be specified without the ROLE_ prefix in front of them; thus,
the preceding configuration becomes this:

<http auto-config="true" use-expressions="true">

 <csrf disabled="true"/>
 <intercept-url pattern="/auth*" access="permitAll"/>
 <intercept-url pattern="/persons/newPerson" access="hasRole('ADMIN')"/>
 <intercept-url pattern="/**" access="hasAnyRole('USER, ADMIN')"/>
 <form-login login-page="/auth" authentication-failure-url="/auth?auth_error=1"

default-target-url="/"/>

 <logout logout-url="/j_spring_security_logout"/>
</http>

Chapter 7 ■ Spring Web FloW

339

 <authentication-manager>
 <authentication-provider>
 <user-service>

<user name="john" password="doe" authorities="ROLE_USER"/>

<user name="jane" password="doe" authorities="ROLE_USER,ROLE_ADMIN"/>

<user name="admin" password="admin" authorities="ROLE_ADMIN"/>

 </user-service>
 </authentication-provider>
 </authentication-manager>

Another part of configuration needs to be added in the web.xml file, if used. A security filter needs to be
added to intercept all requests to the application. springSecurityFilterChain is a mandatory name and
refers to an infrastructure bean with the same name. This bean is responsible for all the security within the
application (protecting the application URLs, validating submitted usernames and passwords, redirecting to
the log in form, etc.).

<filter>
<filter-name>springSecurityFilterChain</filter-name>
<filter-class>

org.springframework.web.filter.DelegatingFilterProxy
</filter-class>

 </filter>
 <filter-mapping>

<filter-name>springSecurityFilterChain</filter-name>
<url-pattern>/*</url-pattern>

 </filter-mapping>

Configure Authentication

It was mentioned that authentication can be configured to work with almost any credential support
technology. In this subsection, a few of them are covered. By default, in Spring Security the DAO
authentication provider is used, as well as a specific UserDetailsService implementation to provide
credentials and authorities. In the examples so far, the credentials were basically read from the configuration
file and stored into memory. The credentials were not encrypted, so even if Spring Security is used, the
application is not that secure. To encrypt credentials, the configuration must be modified to specify the
encryption type:

 <!-- spring-config.xml -->
<authentication-manager>
 <authentication-provider>

<password-encoder hash="md5" >
<salt-source system-wide="MySalt"/>

</password-encoder>
<user-service properties="/WEB-INF/users.properties" />

 </authentication-provider>
</authentication-manager>

Chapter 7 ■ Spring Web FloW

340

#/WEB-INF/users.properties
john=a1c093d7a2742f0afef7720883a59016,ROLE_USER
#password: john

jane=a1c093d7a2742f0afef7720883a59016,ROLE_USER,ROLE_ADMIN
#password: jane

admin=5a693853b2958ecb256db46b808ac488,ROLE_ADMIN
#password: admin

In the preceding configuration, the md514 algorithm is used to encrypt the passwords and a method
called password-salting is used to increase the security passwords by adding a well-known string to
them. The string added to the password can be an application-wide string, like in the previous example
where the String is "MySalt", or it can be a property of the entity—something that won’t change, like its
unique identifier in the system, for example. A combination of properties can be used as salt too, but all the
properties must be constant for the duration of the entity; if any of the property values changes, the user
won’t be able to log in anymore because the authentication system won’t be able to create the correct hash.

The preceding encrypted strings were generated using an instance of org.springframework.security.
authentication.encoding.Md5PasswordEncoder:

import org.springframework.security.authentication.encoding.Md5PasswordEncoder;
public class PasswordGenerator {

 public static void main(String args) {
Md5PasswordEncoder encoder = new Md5PasswordEncoder();
String encrypted = encoder.encodePassword("doe", "MySalt");
System.out.println(encrypted);
encrypted = encoder.encodePassword("admin", "MySalt");
System.out.println(encrypted);

 }
}

To use an entity property as salt, the previous configuration must be modified like this:

<authentication-manager>
 <authentication-provider>

<password-encoder hash="md5">
<salt-source user-property="id" />

</password-encoder>
 </authentication-provider>
</authentication-manager>

The credentials were decoupled from the configuration by isolating them in a property file, which can
be easily edited without needing to recompile the application. The credentials property file has a specific
syntax:

[username] = [password(encrypted)],[role1,role2...]

14Read more about MD5 at https://en.wikipedia.org/wiki/MD5.

https://en.wikipedia.org/wiki/MD5

Chapter 7 ■ Spring Web FloW

341

But credentials in memory storage is not a solution for production applications; this is only suitable
for very small and educational applications. For production application, the most common storage for
credentials is a database. To provide these credentials to the authentication manager, a data source is
needed:

<authentication-manager>
 <authentication-provider>

<jdbc-user-service data-source-ref="authDataSource" />
 </provider>
</authentication-manager>

Two tables must be accessible using the authDataSource: one named users containing user credentials
and one named authorities continuing user-role correspondences. The following queries are run by the
authentication provider and must execute successfully:

SELECT username, password, enabled FROM users WHERE username = ?
SELECT username, authority FROM authorities WHERE username = ?

Another way to provide credentials is to write a custom implementation for an authentication provider:

 <authentication-manager>
 <authentication-provider user-service-ref="customCredentialsProvider" />
</authentication-manager>

The provider class can delegate to a DAO implementation to retrieve principals from a database
using a data source and customized queries. The information is returned into a format recognized in the
application. In the following example, an instance of type UserInfo is used as a principal in the application:

 [commandchars=*
@Repository
public class CustomCredentialsProvider {
 private JdbcTemplate jdbcTemplate;
 @Autowired
 public void setDataSource(DataSource dataSource) {

this.jdbcTemplate = new JdbcTemplate(dataSource);
 }

 public UserInfo getUserInfo(String username){
String sql = "SELECT u.username name, u.password pass,"+

a.authority role FROM "+
"users u INNER JOIN authorities a" +
on u.username=a.username WHERE "+
"u.enabled =1 and u.username = ?";

UserInfo userInfo =
(UserInfo)jdbcTemplate.queryForObject(sql, new Object{username},

new RowMapper<UserInfo>() {
public UserInfo mapRow(ResultSet rs, int rowNum)
throws SQLException {
UserInfo user = new UserInfo();
user.setUsername(rs.getString("name"));
user.setPassword(rs.getString("pass"));

Chapter 7 ■ Spring Web FloW

342

user.setRole(rs.getString("role"));
return user;

}
});

return userInfo;
 }
}
//UserInfo.java
public class UserInfo {

private String username;
private String password;
private String role;
//setter and getters for fields

}

No web.xml Configuration

As the official documentation says, if Spring Security is used with Spring MVC, you
need an extra empty class that extends org.springframework.security.web.context.
AbstractSecurityWebApplicationInitializer, a class provided by Spring Security that ensures that
the springSecurityFilterChain gets registered. Also, you need to include the Spring Security XML
configuration file in the Java Configuration, as depicted in the following code sample:

import org.springframework.security.web.context.
AbstractSecurityWebApplicationInitializer;

// Empty class needed to register the springSecurityFilterChain bean
public class SecurityInitializer extends AbstractSecurityWebApplicationInitializer {
}
public class WebInitializer extends AbstractDispatcherServletInitializer {

 @Override
 protected WebApplicationContext createRootApplicationContext() {

XmlWebApplicationContext ctx = new XmlWebApplicationContext();
ctx.setConfigLocation("/WEB-INF/spring/security-config.xml");
return ctx;

 }

 @Override
 protected WebApplicationContext createServletApplicationContext() {

XmlWebApplicationContext ctx = new XmlWebApplicationContext();
ctx.setConfigLocations("/WEB-INF/spring/mvc-config.xml",

"/WEB-INF/spring/app-config.xml",
"/WEB-INF/spring/webflow-config.xml");

return ctx;
 }
 ...
}

But as Java Configuration and web initializer classes were introduced to simplify configuration and get
rid of all XML, all the preceding configurations will soon be deprecated.

Chapter 7 ■ Spring Web FloW

343

Spring Security Java Configuration
The XML configuration style is close to its death, as Java Configuration gains popularity. So it was expected
that Spring Security adapt, and they did. The Java Configuration is super-simple and intuitive. When working
with Spring MVC and Spring Security to develop a working security configuration, you need to do the
following:

1. Create an empty class extending AbstractSecurityWebApplicationInitializer
to get the springSecurityFilterChain registered (as mentioned at the end of
the previous section).

2. Create a security configuration class that extends
WebSecurityConfigurerAdapter so that the developer can write the minimum
amount of code for a valid security configuration. The security configuration
class equivalent to the XML configuration presented in the previous section is
depicted in following code snippet:

package com.pr.config;
...
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Configuration;
import org.springframework.security.config.annotation

.authentication.builders.AuthenticationManagerBuilder;
import org.springframework.security.config.annotation

.web.builders.HttpSecurity;
import org.springframework.security.config.annotation

.web.configuration.EnableWebSecurity;
import org.springframework.security.config.annotation

.web.configuration.WebSecurityConfigurerAdapter;

@Configuration
@EnableWebSecurity
public class SecurityConfig extends WebSecurityConfigurerAdapter {

@Autowired
public void configureGlobal(AuthenticationManagerBuilder auth) {

try {
auth.inMemoryAuthentication()

.withUser("john").password("doe").roles("USER").and()

.withUser("jane").password("doe").roles("USER,ADMIN").and()

.withUser("admin").password("admin").roles("ADMIN");
} catch (Exception e) {

 e.printStackTrace();
}

}
@Override
protected void configure(HttpSecurity http) throws Exception {

http
.authorizeRequests()
.antMatchers("/resources/**","/images/**","/styles/**")

.permitAll()

Chapter 7 ■ Spring Web FloW

344

.antMatchers("/persons/newPerson").hasRole("ADMIN")

.antMatchers("/**").hasAnyRole("ADMIN","USER")

.anyRequest()

.authenticated()

.and()
.formLogin()

.usernameParameter("username") // customizable

.passwordParameter("password") // customizable

.loginProcessingUrl("/login") // customizable

.loginPage("/auth")

.failureUrl("/auth?auth_error=1")

.defaultSuccessUrl("/home")

.permitAll()

.and()
.logout()

.logoutUrl("/logout")

.logoutSuccessUrl("/")
.and()
.csrf().disable();

 }
}

To enable CSRF usage, the preceding configuration must also define a CSRF
provider bean and use it in the configuration:

...
import org.springframework.security.web.csrf.CsrfTokenRepository;
import org.springframework.security.web.csrf.HttpSessionCsrfTokenRepository;

 @Configuration
@EnableWebSecurity
public class SecurityConfig extends WebSecurityConfigurerAdapter {

@Bean
 public CsrfTokenRepository repo() {

HttpSessionCsrfTokenRepository repo = new
HttpSessionCsrfTokenRepository();

repo.setParameterName("_csrf");
repo.setHeaderName("X-CSRF-TOKEN");
return repo;

 }

 @Override
 protected void configure(HttpSecurity http) throws Exception {

http.
...
.and()
.csrf().csrfTokenRepository(repo());

 }

}

Chapter 7 ■ Spring Web FloW

345

No web.xml Configuration

Add the Security configuration class to the root context in the class taking care of loading all the MVC
environment components:

 package com.pr.config;
 ...
 import com.pr.config.MvcConfig;
import com.pr.config.SecurityConfig;
import com.pr.config.WebFlowConfig;
import org.springframework.web.filter.CharacterEncodingFilter;
import org.springframework.web.filter.HiddenHttpMethodFilter;
import org.springframework.web.servlet
 .support.AbstractAnnotationConfigDispatcherServletInitializer;
import javax.servlet.Filter;

public class WebInitializer
extends AbstractAnnotationConfigDispatcherServletInitializer {

 @Override
 protected Class<?> getRootConfigClasses() {

return new Class<?>{
SecurityConfig.class

};
 }

 @Override
 protected Class<?> getServletConfigClasses() {

return new Class<?>{
MvcConfig.class,
WebFlowConfig.class

};
 }
...
}

■ ! the SecurityConfig.class (and the Spring Security XMl config file) were added to the root context
because they define beans that can be used by other servlets and services in the same application. the
getServletConfigClasses() is used only to instantiate the servlet-related beans.

Chapter 7 ■ Spring Web FloW

346

Spring Security Tag Library

Security tags can be used in JSP directly to secure elements in the page and prevent their rendering if the
authenticated user is not allowed to see them. To use them, the Spring Security Tag library must be declared
in the JSP page:

<%@ taglib prefix="sec" uri="http://www.springframework.org/security/tags" %>

In the examples attached to this chapter, two elements were secured in JSP:

• The logout link must be visible only when a user is authenticated; the following is
the syntax to do this:

<!-- layout.jsp, tiles main template file -->
 <sec:authorize access="isAuthenticated()">

 <!-- we are using Security for with CSRF enabled -->

<spring:url value="/logout" var="logoutUrl" />
<form action="${logoutUrl}" id="logout" method="post">

<input type="hidden" name="${_csrf.parameterName}"
value="${_csrf.token}"/>

</form>

<spring:message code="menu.logout"/>

</sec:authorize>

So basically, the same expressions used when configuring Spring Security are
used for the access attribute.

• The NewPerson link must be visible only to users with the ADMIN role:

<!-- templates/layout.jsp -->
<sec:authorize access="hasRole('ADMIN')">

 <!--menuTab is a tiles attribute -->

<c:if test="${menuTab eq 'newPerson'}">

<a href="<c:url value="/persons/newPerson"/>">
<spring:message code="menu.new.person"/>

</c:if>
<c:if test="${menuTab != 'newPersons'}">
<a href="<c:url value="/persons/newPerson"/>">

<spring:message code="menu.new.person"/>

</c:if>

</sec:authorize>

http://www.springframework.org/security/tags

Chapter 7 ■ Spring Web FloW

347

And another tag was used to display information about the user being logged in:

<!-- layout.jsp, tiles main template file -->
 <div class="footer">

<sec:authorize access="isAuthenticated()">
<p><spring:message code="user.loggedin"/>:

<sec:authentication property="principal.username"/>
</p>

</sec:authorize>
<p><spring:message code="footer.text"/></p>

 </div>

Using the Spring Tag library and intercept-url definitions, access to resources can be centralized in
the Spring Security configuration file or class, because the access attribute can be replaced with the url
attribute that is set with URLs that are intercepted by Spring Security.

<!-- layout.jsp, tiles main template file -->
<sec:authorize access="hasRole('ADMIN')">

//New Person link
</sec:authorize>
// can be written as
<sec:authorize url="/persons/newPerson">

//New Person link
</sec:authorize>

Securing Methods

Spring Security uses AOP to secure method calls. The Spring Security namespace can be used to configure
method security using XML. But the most commonly used and easy-to-understand way to secure methods
is through annotations. Spring Security provides its own annotations, but JSR-250 annotations are supported
too. Samples for all ways of securing methods are covered.

Assuming you want to secure all action methods involved in the newPerson flow, this is how it is done
using XML:

<!-- security-config.xml -->
<security:global-method-security>
 <security:protect-pointcut
 expression="execution(* com.pr..*Actions.*(..))?

access="hasRole('ROLE_ADMIN')" />
</security:global-method-security>

Of course, method security must be enabled, which can be done by adding the following element in the
security configuration file:

<!-- security-config.xml -->
<beans:beans xmlns="http://www.springframework.org/schema/security"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:beans="http://www.springframework.org/schema/beans"

http://www.springframework.org/schema/security
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/beans

Chapter 7 ■ Spring Web FloW

348

xsi:schemaLocation="http://www.springframework.org/schema/security
http://www.springframework.org/schema/security/spring-security.xsd

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<global-method-security
secured-annotations="enabled" />
..

</beans:beans>

Securing an action method using annotations can be done using the @Secured Spring annotation,
which is activated when the global-method-security element is present in the configuration.

//AccountActions.java
...
import org.springframework.security.access.annotation.Secured;

@WebFlowAction
public class AccountActions extends MultiAction {

 @Secured("ROLE_ADMIN")
 public Event saveAccount(RequestContext context) {

...
 }
}

The equivalent of the global-method-security XML configuration is @EnableGlobalMethodSecurity(
securedEnabled = true) , which can be placed on any configuration class annotated with @Configuration:

//SpringConfig.java
...
import org.springframework.security.config.annotation.
 method.configuration.EnableGlobalMethodSecurity;

@Configuration
@EnableWebSecurity
@EnableGlobalMethodSecurity(securedEnabled = true)
public class SecurityConfig extends WebSecurityConfigurerAdapter {
...
}

To enable JSR-250 annotations, and especially the @RolesAllowed annotation (that is an equivalent for
Spring @Secured), the following configurations must be made:

<!-- security-config.xml -->
<beans:beans xmlns="http://www.springframework.org/schema/security"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:beans="http://www.springframework.org/schema/beans"
xsi:schemaLocation="http://www.springframework.org/schema/security

http://www.springframework.org/schema/security
http://www.springframework.org/schema/security/spring-security.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/security
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/security

Chapter 7 ■ Spring Web FloW

349

http://www.springframework.org/schema/security/spring-security.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<global-method-security
jsr250-annotations="enabled" />

..
 </beans:beans>
//SpringConfig.java
...
import org.springframework.security.config.annotation.
 method.configuration.EnableGlobalMethodSecurity;
@Configuration
@EnableGlobalMethodSecurity(jsr250Enabled = true)
public class SecurityConfig extends WebSecurityConfigurerAdapter {
...
}

Usage of @RolesAllowed is the same as @Secure, so the preceding code would become this:

//AccountActions.java
...
import javax.annotation.security.RolesAllowed;

@WebFlowAction
public class AccountActions extends MultiAction {

 @RolesAllowed("ROLE_ADMIN")
 public Event saveAccount(RequestContext context) {

...
 }
}

Spring Security also provides the @PreAuthorize annotation, which is used to set an expression that is
evaluated to decide if the method is invoked or not. (Basically, the equivalent of the <intercept /> XML
configuration element.) Being a Spring Security annotation, it supports SpEL. This annotation can be used
if it has been enabled using the @EnableGlobalMethodSecurity annotation. The code snippet depicts the
configuration and usage for this specific case:

//SpringConfig.java
...
import org.springframework.security.config.annotation.
 method.configuration.EnableGlobalMethodSecurity;
@Configuration
@EnableGlobalMethodSecurity(prePostEnabled = true)
public class SecurityConfig extends WebSecurityConfigurerAdapter {
...

http://www.springframework.org/schema/security/spring-security.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd

Chapter 7 ■ Spring Web FloW

350

//AccountActions.java
...
import org.springframework.security.access.prepost.PreAuthorize;

@WebFlowAction
public class AccountActions extends MultiAction {
 @PreAuthorize("hasAuthority('ROLE_ADMIN')")
 public Event saveAccount(RequestContext context) {
 ...
 }
}

Securing Flow Definitions
Any component of a flow definition—states, subflows, transitions—can be considered resources and thus
secured. So far, we have secured the web-flow link by using a <sec:authorize /> element in the templates/
layout.jsp tiles template and setting up authentication and authorization. But flow components can be
secured using a org.springframework.webflow.security.SecurityFlowExecutionListener and by
adding <secured> elements in the flow definition. Considering that authentication and authorization rules
have been set up as described earlier, the next step is to configure a SecurityFlowExecutionListener. This
can be done using XML configuration by adding the bean definition in the configuration file setting up the
web flow environment, webflow-config.xml.

<!--webflow-config.xml-->
 <flow ...>
 <!-- Executes web flows -->
 <webflow:flow-executor id="flowExecutor" >

<webflow:flow-execution-listeners>
<webflow:listener ref="auditExecutionListener"/>
<webflow:listener ref="securityFlowExecutionListener"/>

</webflow:flow-execution-listeners>
 </webflow:flow-executor>

 <bean id="auditExecutionListener"
 class="com.pr.audit.AuditFlowExecutorListener"/>

<bean id="securityFlowExecutionListener"
 class="org.springframework.webflow.security.SecurityFlowExecutionListener"/>
 ... // other flow infrastrucure beans
</flow>

■ ! the AuditFlowExecutorListener bean is a developer helper bean: that is it prints information when a
web flow event is triggered, when states are entered, and when exceptions are thrown. the class is present in
the sample project for this chapter, but its code is not relevant for this topic.

Chapter 7 ■ Spring Web FloW

351

This bean can be configured using Java Configuration by declaring it in the web flows configuration class:

//WebFlowConfig.java
...
import org.springframework.webflow.security.SecurityFlowExecutionListener;

@Configuration
public class WebFlowConfig extends AbstractFlowConfiguration {

 @Bean
 public SecurityFlowExecutionListener securityFlowExecutionListener(){

return new SecurityFlowExecutionListener();
 }
 @Bean
 public FlowExecutor flowExecutor() {

return getFlowExecutorBuilder(flowRegistry())
.addFlowExecutionListener(new AuditFlowExecutorListener(), "*")
.addFlowExecutionListener(securityFlowExecutionListener())
.setMaxFlowExecutions(5)
.setMaxFlowExecutionSnapshots(30)
.build();

 }
 ...
}

Declaring this bean and setting it up as a flow execution listener ensures that any <secured /> elements
in the flow definition are picked up and interpreted accordingly at flow execution time. This bean can define
its own decision manager, which overrides the default AccessDecisionManager in the system, by setting up
the desired bean reference to the accessDecisionManager property.

<!--webflow-config.xml-->
<bean id="securityFlowExecutionListener" class=
 "org.springframework.webflow.security.SecurityFlowExecutionListener">
 <property name="accessDecisionManager"

ref="customDecisionManager" />
</bean>

//WebFlowConfig.java
org.springframework.security.access.vote.UnanimousBased;
...
@Bean
 public SecurityFlowExecutionListener securityFlowExecutionListener(){

SecurityFlowExecutionListener sfel = new SecurityFlowExecutionListener();
sfel.setAccessDecisionManager(customDecisionManager());
return sfel;

 }

 @Bean
 AccessDecisionManager customDecisionManager(){
 //assume List<AccessDecisionVoter<? extends Object>> voterList is initialized

return new UnanimousBased(voterList);
 }

Chapter 7 ■ Spring Web FloW

352

The UnanimousBased is a simple concrete implementation of the AccessDecisionManager provided by
Spring Security; it requires all voters to abstain or grant access.

The SecurityFlowExecutionListener bean throws AccessDeniedException when the user is not
authorized to access a flow resource. The exception is caught by Spring Security servlet filter. Catching or
suppressing this exception is not recommended. When extending SimpleMappingExceptionResolver,
doResolveException should be implemented so that this exception is rethrown.

import
 org.springframework.web.servlet.handler.SimpleMappingExceptionResolver;

public class CustomExceptionResolver
extends SimpleMappingExceptionResolver {

 @Override
 protected ModelAndView doResolveException

(HttpServletRequest req, HttpServletResponse res,
Object handler, Exception ex) {

 return super.doResolveException(req, res, handler, ex);
 }
}

The following example depicts the specific points where the secured element can appear in a flow
definition:

<!--webflow-config.xml-->

<!-- 1. Under the flow element, securing the whole flow definition -->
<flow ...>

<secured attributes="ROLE_ADMIN" />
</flow>

<!-- 2. Securing a view-state -->
<flow ...>

<view-state id="enterPersonInfo" model="person">
<secured attributes="ROLE_ADMIN" />

</view-state>
</flow>

<!-- or a decision state -->
 <decision-state id="isNewPerson">
 <secured attributes="IS_AUTHENTICATED_FULLY"/>

<if test="personService.isNewPerson(person)"
then="enterIdentityCardInfo" else="reviewExistingPerson"/>

</decision-state>

Chapter 7 ■ Spring Web FloW

353

<!-- 3. Securing a transition -->
<flow ...>

<view-state id="enterPersonInfo" model="person">
...
<transition on="next" to="isNewPerson" >
<secured attributes="ROLE_ADMIN" />
</transition>

</view-state>
</flow>

The attributes attribute is a comma-separated list of Spring Security authorization attributes. Often,
these are specific security roles. But, when using a custom access decision manager, the syntax can vary; for
example, SpEL can be used when the custom access manager is a Spring bean that supports them.

Spring Security is a wide subject; if you intend to use it in your projects, there is a lot of good
documentation available online. Often, complete code samples are provided to help the curious developer
understand how it works and how to use it. And, of course, the starting point is the Spring Security Reference
at http://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/. All that is
covered in this book should suffice in helping a developer understand the basic concepts that might be in
the certification exam.

Spring Security with OAuth

OAuth15 is an open standard for authorization. It is an open protocol to allow secure authorization in a
simple and standard method for web, mobile, and desktop applications. It is designed to work with HTTP
and basically allows access tokens to be generated by a server, which can then be used by the client to access
resources on another server. It’s like there is an authentication provider that guarantees that you are who you
say you are (it vouches for you) to a different service provider.

When talking about OAuth2 (because it is the most commonly used at the moment), the following
components need to be mentioned:

• Resource owner: An entity that grants or denies access to a protected resource.

• Resource server: The server that hosts protected resources; it is capable of accepting
and responding to requests done with an access token.

• Client: The entity that requests protected resources on behalf of the owner. It can be
a web application, a mobile application, or a client-side application (JavaScript).

• AuthorizationServer: A server that provides access tokens to the client after a
successful authentication.

15The project’s official page is at http://projects.spring.io/spring-security-oauth/.

http://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/
http://projects.spring.io/spring-security-oauth/

Chapter 7 ■ Spring Web FloW

354

For example, if you have a Google account, you can install Runtastic (a sport tracker application) on
your phone and access that application using your Google account without exposing the Google password
process, as shown in Figure 7-26.

Figure 7-26. Google as authentication provider for Runtastic

In the previous example, Google is the authorization server, the user is the client, the Runtastic
application is the resource owner/resource server. But most applications—like Facebook, Twitter, LinkedIn,
and GitHub—implement the authorization and resource server role.

Currently, Spring Security can be integrated with OAuth (1a) and OAuth2. A library is provided for each
version; it needs to be included in the classpath of the application: spring-security-oauth for OAuth(1a)
and spring-security-oauth2 for OAuth2. OAuth is a simple way to publish and interact with protected
data. A lot of information about OAuth and what it can be used for can be found by searching the Internet.
The main idea is that using OAuth can give certain resources access without providing a username and
password to the server.

To configure a Spring application as an authorization server, in a @Configuration class
extending org.springframework.security.oauth2.config.annotation.web.configuration.
AuthorizationServerConfigurerAdapter, the configure method must be overridden with
an implementation that sets up the clients that can access the server. Extending the previously
mentioned class provides empty method implementations for definitions inherited from the
AuthorizationServerConfigurer interface (same package as the implementing class), making the job
easier for the developer. The class must be annotated with @EnableAuthorizationServer, which is a
convenient annotation provided by Spring to enable an authorization server.

Also, the Spring Security authentication manager (configured in the Spring Security configuration class
annotated with @EnableWebSecurity) is injected here to secure the authorization end point.

import o.s.security.oauth2.config.annotation.web.configuration.*;
import o.s.security.oauth2.config.annotation.web.configurers.*;

 @Configuration
 @EnableAuthorizationServer
 protected static class OAuth2Config extends AuthorizationServerConfigurerAdapter {

@Autowired
private AuthenticationManager authenticationManager;

Chapter 7 ■ Spring Web FloW

355

@Override (1)
public void configure(AuthorizationServerEndpointsConfigurer endpoints)

throws Exception {
endpoints.authenticationManager(authenticationManager);

}

@Override (2)
public void configure(ClientDetailsServiceConfigurer clients)

throws Exception {
clients.inMemory()

// client Id is used by OAuth to identify the client
.withClient("client-with-secret")
// grant types that are authorized for the client to use,
//by default value is empty.
.authorizedGrantTypes("password", "client_credentials")
// roles that client must have in order to access the resource
.authorities("ROLE_USER")
//comma separated rights to the resource, by default none is specified
.scopes("read", "trust")
//The secret associated with the resource, by default, no secret is empty
.secret("12#23$");

}
}

The first configure method (1) injects the Spring Security authentication manager (set up in
@EnableWebSecurity as in normal Spring Security), which is needed for the password grant defined tin the
second method.

The second configure method (2) sets up the clients that can access the server, and their properties.
To implement the resource server, another configuration class is needed; this one must be annotated

with @EnableResourceServer, which is a convenient annotation for OAuth2 resource servers, enabling a
Spring Security filter that authenticates requests via an incoming OAuth2 token. The class is recommended
to extend the org.springframework.security.oauth2.config.annotation.web.configuration.
ResourceServerConfigurerAdapter, which provides empty implementation for methods inherited from the
ResourceServerConfigurer interface (same package), making a developer’s job easier.

import o.s.security.oauth2.config.annotation.web.configuration.*;
import o.s.security.oauth2.config.annotation.web.configurers.*;

@Configuration
@EnableResourceServer
protected static class ResourceServer extends ResourceServerConfigurerAdapter {

@Override
public void configure(HttpSecurity http) throws Exception {

http
.requestMatchers().antMatchers("/","/admin/beans").and()
.authorizeRequests()
.anyRequest().access("#oauth2.hasScope('read')");

}
}

Chapter 7 ■ Spring Web FloW

356

The configure method is used to set up resources for OAuth2 protection. Access to the resources is
set up using the HttpSecurity bean, which is not something new, as it was used in previous examples to
secure resources. But what is new here is the fact that access to resources can be configured using Spring
Security Expressions that are applied on the oauth2 security object. For example, the expression #oauth2.
hasScope('read') tests the resource reading rights for the client the oauth2 object is associated with. The
expression handler is enabled by the @EnableResourceServer annotation.

The authorization and resource server application is usually an application that receives REST requests;
there is really no need for an interface of any kind. The client application can be any type of application, but
most of the time it is a web or mobile application.

When opening the Runtastic site or mobile application, a method of authentication can be selected. If
authentication using a Google account is selected, the user must provide its Google credentials, which are
sent to the Google authentication server to confirm their validity and send the confirmation to Runtastic.
But Runtastic needs to access the user account information and use it to customize its interface to the user’s
preferences on the Google account. The confirmation received earlier is actually an access code that can be
used to exchange for an access token that defines what information Google is willing to share about the user.

Technically speaking, the OAuth2 interaction between a web application and an authorization server
implies the following steps:

1. User accesses the web client application. The web client application redirects
the user to the authorization server. The user logs in and the authorization server
approves client access to the resource.

2. Authorization redirects back to the web client with the access code

3. The web client application exchanges the access code for the access token from
the authorization server.

4. The web client application uses the access token to get resources from the
resource server.

Spring Security OAuth is not part of the certification exam as this book is being written, but most web
and mobile applications require integration with popular social network applications and OAuth is the
communication protocol that makes this interaction quite practical and easier for the end user. So it is best
to have a basic idea on how this can be done. If you are interested in expanding your knowledge about it,
there are some very good resources available at projects.spring.io/spring-security-oauth/docs/
oauth2.html.

Spring Social Projects

The beginning of this book presented a list of the Spring projects currently in development. By the time
this book is published, that list will likely be deprecated: some of the projects were dropped, some were
split into smaller projects, and some matured into solid frameworks. One the projects that matured into a
solid framework is Spring Social, which provides an API to connect Spring applications to third-party APIs
for social networks like Facebook, Twitter, and others. In the century of Web 2.0 and Big Data, connecting
applications and sharing information in a practical way is a necessity. So Spring decided to start this project
to help web applications developed in Spring integrate with SaaS (Software as a Service) API providers
such as Facebook, Twitter, and LinkedIn. Currently under work, there are also integration modules for
GitHub and Tripit. The communication is done using the service type provided by any of the mentioned
applications. Most of them use REST. Facebook uses its own type of communication called the Facebook
Graph. Figure 7-27 depicts all Spring Social projects, the application they communicate with, and with which
protocol.

Chapter 7 ■ Spring Web FloW

357

Spring Social provides a lot of features designed to make the process of connecting local user accounts
to hosted provider accounts easy to implement: a controller that handles authorization between the Java/
Spring application and the service provider, a controller that enables user authentication by signing into a
service provider, connection factory classes, real-time callback handlers, and much more.

More information on how Spring Social can be used is on the official page of this project at http://
projects.spring.io/spring-social/.

Summary
After completing this chapter, you should be able to

• Describe what Web Flow is and what problems it solves.

• Describe the Web Flow architecture.

• Understand how Web Flow processes a request.

• Configure Web Flow with Spring MVC.

• Describe the typical flow implementation guidelines.

• List the elements of a flow definition.

• Define flows using the XML language.

• Test flow execution outside the container.

• Flow definition best practices.

• Describe branching.

• Describe an action-state and how it should be used.

Figure 7-27. The Spring Social projects

http://projects.spring.io/spring-social/
http://projects.spring.io/spring-social/

Chapter 7 ■ Spring Web FloW

358

• Describe a decision state.

• Describe how exceptions are handled in Spring Web Flow.

• Describe and use subflows.

• Describe and use flow inheritance.

• Configure Spring Security using XML and Java Config.

• Use Spring Security to secure parts of JSP pages and methods.

• Use Spring Security to secure your flows.

Quick Quiz
Question 1: What problems can be avoided using flows for web navigation?

• duplicate submissions

• state collisions between browser windows

• stale session state

• none of the above

Question 2: How do the DispatcherServlet and Spring MVC Flow Controller work together?

• Spring MVC Flow Controller intercepts and resolves all requests

• DispatcherServlet intercepts all requests and forwards the flow requests to the Flow
Controller

Question 3: What are the main components that need to be configured to have a working Web Flow
environment?

• a flow executor

• a flow registry

• a SecurityFlowExecutionListener bean

• a flow adapter

• a flow mapping

• an MvcViewFactoryCreator creator

Question 4: Which of the following affirmations is true about FlowExecutor?

• It is the central facade and entry-point service interface into the Spring Web Flow
system.

• It does not need a FlowRegistry to function properly.

• It handles managing flow executions.

Chapter 7 ■ Spring Web FloW

359

Question 5: Which of the following affirmations is true about FlowDefinitionRegistry?

• To configure a Spring Web Flow environment, a bean of this type is not mandatory.

• It requires a mandatory FlowBuilderServices bean as an argument so it can be
instantiated.

• It is a container of flow definitions.

Question 6: What can you say about the following code snippet?

<button id="newPersonButton" name="_eventId_proceed" type="submit">
<spring:message code="command.proceed" />

</button>

• It is the JSP definition of a button used to resume a flow that has an event named
proceed associated with it.

• It is a simple JSP definition of a button that is named _eventId_proceed.

• It is a simple JSP definitiod of a button used to submit a form.

Question 7: How many requests does a flow interaction imply?

• one

• two

• three

• none, because it uses session

Question 8: What can be said about the following web flow configuration class?

 @Configuration
 public class WebFlowConfig {
 ...
}

• To be valid, the @EnableWebFlows is necessary.

• The class could extend the AbstractFlowConfiguration class that is provided by
Spring Web Flow to provide access to builders for the Web Flow environment.

Question 9: What can be said about the FlowController?

• It is the controller that intercepts and resolves flow requests.

• It is the adapter between the Spring MVC Controller layer and the Spring Web Flow
engine

• It should be configured by the developer to define how flow requests are handled.

Chapter 7 ■ Spring Web FloW

360

Question 10: Which of the following are elements of a flow definition?

• beans

• states

• transitions

• converters

• data

Question 11: Which of the following are valid states types in a flow definition?

• start state

• action state

• decision state

• view state

• persistence state

• end state

• conversion state

Question 12: Which of the following affirmations is true about a flow definition?

• It must have exactly one end state.

• It must have at least one decision state.

• It can have as many end states as the logic requires.

• It is a flow defined in a single XML file.

Question 13: What triggers a transition?

• user events in view states

• user events in any kind of state

• the result of evaluation an expression in an action and decision state

Question 14: Which of the following is true?

• A flow definition has its own internationalization resources.

• Each view state has a corresponding view.

• Decisions states are more complex view states.

Chapter 7 ■ Spring Web FloW

361

Question 15: Consider the following flow definition:

<view-state id="enterIdentityCardInfo" model="identityCard">
 <binder>

...
 </binder>
 <transition on="save" to="confirmAdult">
 <evaluate expression="personBuilder.savePersonEntity(person, identityCard)"

result="flowScope.existingPerson" />
 </transition>
</view-state>

Which of the following is true?

• The view template logical name is the same with the view state id,
enterIdentityCardInfo in this case.

• The view template logical name can be anything as long as it is linked in the web flow
configuration file or class to the state id.

• Transitioning to the confirmAdult can be prevented by an exception being thrown
when executing the personBuilder.savePersonEntity expression.

Question 16: What can you say about global transitions?

• Only one can be declared in a web flow definition

• One or more can be declared in a web flow definition

• It is a transition type that can be used to cancel the flow execution at any point in the
execution

Question 17: Choose the proper order of the following steps in creating a flow:

1. Add the actions and states behavior.

2. Create mock views to test the connection of the states.

3. Define view states and end states.

4. Define transition between states.

• 4, 1, 3, 2

• 3, 4, 2, 1

• 3, 4, 1, 2

• 1, 3, 4, 2

Question 18: Which of the following affirmations are true about testing web flows?

• The test class must be annotated with @RunWith(SpringJUnit4ClassRunner.class).

• The test class must extend the AbstractXmlFlowExecutionTests.

• Mock views can be used to test the flow navigation during development.

Chapter 7 ■ Spring Web FloW

362

Question 19: Which of the following is true about flow scope?

• This scope is shared between parent flows and subflows.

• This scope lasts until the flow ends.

• Flow scoped variables can be declared by evaluate elements in the following
manner:

<evaluate expression="service.computeResult()"
 result="flowScope.result" />

Question 20: Which of the following is true about view scope?

• View scoped variables are available to all view states.

• View scoped variables can only be defined inside a view-state element.

• View scoped variables are created when entering the view state and destroyed when
transition to the next flow occurs.

Question 21: Which of the following is true about request scope?

• Request scope lasts for only one request.

• This scope is useless; it exists just for compatibility with request-response
mechanisms on the Web.

• Variables in this scope can be used for view initialization.

• Variables in this scope are fetched only once, and subsequent browser refresh
button-pressing won’t affect the initial fetched value.

Question 22: Which of the following is true about flash scope?

• This scope lasts for the entire flow.

• This scope lasts for the entire flow, but is cleared every time a view is rendered,
making it perfect for exchanging data between flow execution steps.

• This scope involves two requests.

Question 23: Which of the following is true about conversation scope?

• This scope is the widest web flow scope.

• Variables defined in this scope are available to subflows too.

• Variables defined in this scope introduce a dependency between subflows and
parent flows.

Question 24: Considering the following two code snippets:

1. <flow ...>
<on-start>

<evaluate expression="hospitalManager.findAll()"
result="flowScope.hospitalList" />

</on-start>
 <view-state id="enterPersonInfo" model="person">

...
 </view-state>
 </flow>

Chapter 7 ■ Spring Web FloW

363

2. <flow ...>
 <view-state id="enterPersonInfo" model="person">

<on-render>
<evaluate expression="hospitalManager.findAll()"

result="requestScope.hospitalList" />
</on-start>

 </view-render>
 </flow>

Which of the code snippets is recommended to initialize a hospital list when the enterPersonInfo view
is rendered?

• 1, because the hospitalList should be initialized only once

• 2, because the hospitalList should be refetched every time the enterPersonInfo
view is rendered, so the most recent information is available in the flow execution

• either of them

Question 25: At which points in the flow can actions be executed?

• on flow start

• on state entry

• on view render

• on transition execution

• during transition execution

• on state exit

• on flow end

• after flow end

Question 26: Which of the following Spring expressions are valid?

• <evaluate expression="searchService.suggestHospital(externalContext.
sessionMap.mostUsed)"result="viewScope.hospitals" />

• <set name="flowScope.personName" value="sessionScope.name" />

• <set name="flashScope.successMessage" value="resourceBundle.
successMessage" />

Question 27: Which of the following are valid types for an action state?

• Boolean, true or false

• Boolean, always just “yes” or “no”

• Any value that evaluates to “success”

• Any String that can be matched to a trigger event name

Chapter 7 ■ Spring Web FloW

364

Question 28: Select the way in which a developer can define an action.

• Extend the Action class

• Extend the MultiAction class

• Add call business methods directly in the web flow definition

Question 29: What can be said about authentication and authorization?

• They are tightly coupled, changing configuration for authentication will require
changes in the authorization configuration as well.

• They are fully decoupled; changing configuration for authentication will not affect
authorization.

• They are both synonyms for application security.

Question 30: What is needed to configure Spring Security with Spring MVC using Java Configuration?

• The security beans AuthenticationManager and HttpSecurity have to be defined in
a class annotated with @Configuration.

• Create a class that extends AbstractSecurityWebApplicationInitializer to
register the springSecurityFilterChain.

• Create a configuration class that extends WebSecurityConfigurerAdapter that is
annotated with EnableWebSecurity.

• Add the Security configuration class to the root context.

Practical Exercise
The practical exercise for this chapter involves configuring Spring Security. The project you have to complete
is named 14-pr-web-security-practice. The project contains a view named login.jsp, which is a custom
login form designed to work with Spring Security 4. There are a few TODO tasks that you must be able to
complete if you have been paying enough attention when reading the Security section.

The first one, (TODO 47) requests you to add a new filter of type org.springframework.web.filter.
DelegatingFilterProxy with the filter name springSecurityFilterChain. The class that will do this is
already in place and is called com.pr.init.SecurityWebApplicationInitializer; you just have to modify
it to register the filter. Afterward, you can start the application using the appStart Gradle task for this
submodule project; for reference, see Figure 7-28.

Chapter 7 ■ Spring Web FloW

365

You are not done yet, though. When starting the application, you see in the console that there was some
trouble creating your security context and your login page is not visible. This is what you should see in the
console:

00:35:40 WARN Failed startup of context o.a.g.JettyWebAppContext@2da59753
{/security,file:
/.../personal-records/14-pr-web-security-practice/build/inplaceWebapp/,STARTING}
...
Caused by: java.lang.IllegalArgumentException: An AuthenticationManager is required

at org.springframework.util.Assert.notNull(Assert.java:115) ~na:na
...

If you remember, the security section well, you already suspect what is missing. The previous task just
defines the filter. Now you need to create a Spring Security configuration class to provide your users their
roles and overall details such as the location of the login form, if a CSRF token is used. All this is marked
as TODO 48. A part of the class is already set up for you, providing the bean that generates a CSRF token.
You can find the partial implementation in com.pr.config.SecurityConfig. The comments in the TODO
task instruct you on what is further needed. After all the configuration is in place, you can try to start the
application again. And unfortunately, it won’t start. This is what you see if you try to open
http://localhost:8080/security/.

HTTP ERROR 500
Problem accessing /security/auth. Reason:
 Server Error
Caused by:
org.springframework.web.util.NestedServletException:
Request processing failed; nested exception is java.lang.IllegalStateException:
No WebApplicationContext found: no ContextLoaderListener registered?

Figure 7-28. Reference for subproject

Chapter 7 ■ Spring Web FloW

366

This is because there is still one little detail to take care of: adding the SecurityConfig class to
the root context of the application. To do this, go to com.pr.init.WebInitializer and complete the
getRootConfigClasses method body (TODO 49). After restarting the application, you should see something
really similar to Figure 7-29.

Figure 7-29. The login form displayed when Spring Security is properly configured

If the previous task is resolved correctly, the login form should be visible. But wait, the New Person
menu option is visible. You want only users with the ADMIN role to see that menu item. Something is clearly
missing. So go to 14-pr-web-security-practice/src/main/webapp/WEB-INF/templates/layout.jsp and
secure that menu item. Do not forget to reference the proper taglib!

After solving the last TODO item, the New Person menu item should not be visible on the main page
when a user is not logged in. Log in using john. If you see the New Person link, something is wrong in the
configuration of the HttpSecurity, because john has a USER role, and only users with an ADMIN role can
view and access that menu item. Log in with jane or admin. If you see that option, then your configuration is
correct and you have completed this lab.

As a bonus exercise, try playing with the security tag library and use the URL to configure access. Or
remove the tag altogether and secure the flow.

The proposed solution can be found in subproject 14-pr-web-security-solution. Try not to look
before developing your own solution, and use it only for comparison.

367

Chapter 8

Spring Boot and WebSocket

Although they are not yet part of the certification exam, Spring Boot and Spring WebSocket are included
in this book because of the potential that these two projects have in the future development of Spring Web
applications.

What Is Spring Boot?
Spring Boot is a promising Spring project that makes it really easy for developers to create Spring-powered,
production-grade applications and services. It makes configuration less of a hassle, offering complete, but
easy-to-use defaults bits and pieces that you can stack up together like LEGO bricks. (Yes, the LEGO analogy
again.) Spring Boot can be used to create stand-alone Java applications or web applications and its primary
goals are to do the following:

• Provide a faster, practical, and more accessible way to start development with Spring

• Provide a default set of customized infrastructure beans, which can be easily
overridden if a specific configuration is required

• Provide a large set of features common to large classes of projects (embedded
servers, security, metrics, etc.)

•	 Offer the option of dropping any XML configuration or the necessity of generating code

When developing web applications, a container is necessary. Usually, an application server or a web
server is necessary to run a web application.

A web server like Apache HTTP, for example, is dedicated to sending HTML to the client and forwarding
requests to application servers. It handles only static resources.

An application server, like Apache Tomcat is built around a web server and is dedicated to the efficient
execution of program and routines; it supports different types of applications, load balancing, transaction
demarcation, and so forth; and it is specifically designed to handle dynamic resources.

Apache TomEE is a full-blown Java EE container and an application server based on Apache Tomcat.
This type of application server is also called an enterprise server because it is designed to support complex
applications like ERPs.1

1Enterprise resource planning (ERP) is business-management software. It is typically a suite of integrated applications
(see https://en.wikipedia.org/wiki/Enterprise_resource_planning).

https://en.wikipedia.org/wiki/Enterprise_resource_planning

Chapter 8 ■ Spring Boot and WeBSoCket

368

The Jetty server was used in the examples in this book. Jetty is an embedded server. Application/web
servers are separate applications that you install, start up, maybe customize the configuration, and deploy
your artifact on. An embedded server does not need all that. An embedded HTTP server is software that
implements the HTTP protocol; it can be embedded into the application that you are developing. It is limited
to handling HTTP requests and can be plugged in with the default configuration, or it can be customized.
Up until now, the Jetty embedded server was plugged in at runtime by using the Gradle Gretty plugin. Using
Spring Boot, this is no longer needed. All that is needed is to configure the spring-boot-starter-jetty as a
compile-time dependency for the application.

Usage and Configuration
A simple sample for this case is the 08-chapter-01-solution project, a module of book-code. If you open
the project, you will notice the following:

• A new version element was added in the ext element of the Gradle configuration of
the build.gradle file (the book-code parent project):

springBootVersion = '1.2.7.RELEASE'

• In the same file, a new dependencies array named boot was added:

boot = [
 springBootPlugin: "org.springframework.boot:spring-boot-gradle-plugin:

$springBootVersion",
 starterWeb : "org.springframework.boot:spring-boot-starter-web:

$springBootVersion",
 starterJetty : "org.springframework.boot:spring-boot-starter-jetty:

$springBootVersion",
 actuator : "org.springframework.boot:spring-boot-starter-actuator:

$springBootVersion",
 yaml : "org.yaml:snakeyaml:1.16"
]

• The Gradle configuration file for 08-chapter-01-solution has the following contents:

apply plugin: 'spring-boot'

buildscript {
 repositories {

mavenCentral()
 }
 dependencies {

classpath boot.springBootPlugin
 }
}

dependencies {
 compile (boot.starterWeb){

(*)exclude module : "spring-boot-starter-tomcat"
 }
 compile boot.starterJetty, boot.actuator, boot.yaml

 testCompile misc.junit
}

Chapter 8 ■ Spring Boot and WeBSoCket

369

And this is all. The Gradle Gretty plugin, was replaced by the Spring-Boot plugin that is needed for
running Spring Boot applications. The default web runtime that Spring Boot uses (Tomcat) was excluded,
and spring-boot-starter-jetty was added as a dependency using the variable assigned to the
boot.starterJetty library. This is enough to develop and run a simple web application.

■ ! the spring-boot-starter-actuator added using the boot.actuator variable is not really necessary in the
examples for the book, but you need to know that this library exists. it should be used when you want to add
production-ready features like metrics and monitoring to your application. also, if you look in the log after the
application starts, you will see a few lines that look like this:

Mapped "{[/]}" onto public java.lang.String com.book.web.
HelloWorldController.index()

Mapped "{[/error],produces=[text/html]}" onto public o.s.web.servlet.
ModelAndView

Mapped "{[/beans],methods=[GET]}" onto public java.lang.Object
Mapped "{[/trace],methods=[GET]}" onto public java.lang.Object
Mapped "{[/metrics/{name:.*}],methods=[GET]}" onto public java.lang.Object
o.s.boot.actuate.endpoint.mvc.MetricsMvcEndpoint.value(java.lang.String)
apped "{[/health]}" onto public java.lang.Object
o.s.boot.actuate.endpoint.mvc.HealthMvcEndpoin

t.invoke(java.security.Principal)

these are a set of reStful endpoints added to the application to provide access to management services
provided by Spring Boot. try accessing http://localhost:8080/metrics or http://localhost:8080/health
after the application starts with the default configuration (otherwise, the port and the contextPath might be
different) and check out the data returned to you by Spring Boot.

the YaML dependency is covered later.

The core class of this application is the com.book.Application class:

[commandchars=+
package com.book;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.ApplicationContext;

@SpringBootApplication
public class Application {

 public static void main(String args) {
ApplicationContext ctx = SpringApplication.run(Application.class, args);
assert(ctx!=null);

 }

}

Chapter 8 ■ Spring Boot and WeBSoCket

370

If you run this class, you get a web application run on Jetty that is available at http://localhost:8080/.
The most important element in this class is the @SpringBootApplication annotation. Spring Boot code is
available to the public, and if you look for the annotation code on GitHub, this is what you will find:

package org.springframework.boot.autoconfigure;

...// import statements

@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Inherited
@Configuration
@EnableAutoConfiguration
@ComponentScan
public @interface SpringBootApplication {

/**
* Exclude specific auto-configuration classes
such that they will never be applied.

* @return the classes to exclude
*/
Class<?> exclude() default {};

}

When placed on a class, this annotation has the following effect:

• It indicates that this a configuration class that can be used to instantiate beans via
@Bean annotated methods (because this annotation is itself annotated with
@Configuration).

• It triggers component scanning on the package in which the class is defined
(because of the @ComponentScan annotation).

• It automatically adds @EnableWebMvc when spring-webmvc is in the classpath. This
is ensured by the spring-boot-starter-web being a dependency of this project.
This marks the application as a web application, so Spring Boot knows to set up a
DispatcherServlet.

• The @EnableAutoConfiguration annotation does exactly what the name of the
annotation says: it enables the autoconfiguration of a Spring context. So Spring Boot
wraps up a configuration by basically guessing which beans are necessary, given the
little configuration there is. Autoconfiguration is quite intelligent and if some custom
configuration is provided, the provided beans override the default ones that Spring
Boot comes with.

The scope of this annotation is enriched, starting with Spring Boot 1.3.0, which wasn’t yet released
when this book was written, but the code is available on GitHub.2

The preceding main method uses the SpringApplication.run convenient method to launch an
application. Thus, no XML was needed anywhere to create this web application. This method returns the
created ApplicationContext instance. The created context is autowired into the HelloWorldController,

2View the code at https://github.com/spring-projects/spring-boot/blob/master/spring-boot-autoconfigure/
src/main/java/org/springframework/boot/autoconfigure/SpringBootApplication.java

https://github.com/spring-projects/spring-boot/blob/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/SpringBootApplication.java
https://github.com/spring-projects/spring-boot/blob/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/SpringBootApplication.java

Chapter 8 ■ Spring Boot and WeBSoCket

371

which is a simple REST controller used to display all the beans in the context. In the spirit of keeping things
simple, a complex configuration involving a view resolver was avoided, because the scope of this module is
to show the power of Spring Boot and what exactly it does in the background. The autowired context is used
to create an HTML string that is rendered when accessing http://localhost:8080/ and shows the name of
all the beans created by Spring Boot or defined in the application; thus, you can analyze what Spring Boot is
doing in the background. The simple controller looks like this:

@RestController
public class HelloWorldController {
 @Autowired
 ApplicationContext ctx;

 @RequestMapping("/")
 public String index() {

StringBuilder sb = new StringBuilder("<html><body>");

sb.append("Hello there dear developer,
here are the beans you were looking for: </br>");

String beanNames = ctx.getBeanDefinitionNames();
Arrays.sort(beanNames);
for (String beanName : beanNames) {

sb.append("</br>").append(beanName);
}
sb.append("</body></htm>");
return sb.toString();

 }
}

This is roughly what you see in the browser:

Hello there dear developer, here are the beans you were looking for:

actuatorMetricRepository
application
applicationContextIdFilter
auditEventRepository
auditListener
autoConfigurationAuditEndpoint
basicErrorController
beanNameHandlerMapping
beanNameViewResolver
beansEndpoint
characterEncodingFilter
configurationPropertiesReportEndpoint
counterService
...
healthEndpoint
healthMvcEndpoint
helloWorldController
...

Chapter 8 ■ Spring Boot and WeBSoCket

372

Of course, the list is incomplete here—just a small snippet is depicted. You have to run the application
yourself to see the complete list.

■ ! and you can view the same list of beans in JSon format if you access the actuator service available at
http://localhost:8080/beans.

Also, if you want to know where the implementation for these beans comes from, just look at the
dependencies for your project in Gradle view in Intellij IDEA. You should see something similar to what is
depicted in Figure 8-1, but the list will be way bigger.

Figure 8-1. Transitive dependencies added by Spring Boot to a web application project

So far, only the default configuration inferred by Spring Boot has been presented. This application is
roughly similar to the one in the official tutorial at https://spring.io/guides/gs/spring-boot/; but in this
book, things are spiced up a little.

https://spring.io/guides/gs/spring-boot/

Chapter 8 ■ Spring Boot and WeBSoCket

373

Customizing Spring Boot
There are a few ways that Spring Boot configuration can be externalized”

• use properties files

• use YAML files

• use environment variables

• use command-line variables (when a Spring Boot command-line interface is
installed)

In the previous example, the controller and the configuration class were in the same package, and by
default, the configuration class annotated with SpringBootApplication scans only the current package and
its subpackages. This can be changed by annotating the same class with @ComponentScan and specifying
different package groups.

In the 08-chapter-02-solution module, the Application was moved to the com.book.init package,
and HelloWorldController was moved to com.book.web, as depicted in Figure 8-2.

Figure 8-2. Spring Boot with beans and configuration in different packages

The new configuration class code looks like this:

package com.book.init;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.ApplicationContext;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Import;

Chapter 8 ■ Spring Boot and WeBSoCket

374

@SpringBootApplication
@ComponentScan(basePackages = {"com.book.*"})
//or @ComponentScan(basePackages = {"com.book.init", "com.book.web"})
public class Application {

 public static void main(String args) {
SpringApplication.run(Application.class, args);

 }
}

But what if you want the application to be available on a different port and in a different context path?
There are a few ways to do this.

The simplest way is to create a customized bean class that implements the org.springframework.
boot.context.embedded.EmbeddedServletContainerCustomizer interface and provides a concrete
implementation for the customize method:

package com.book.init;

import org.springframework.boot.context.embedded.ConfigurableEmbeddedServletContainer;
import org.springframework.boot.context.embedded.EmbeddedServletContainerCustomizer;
import org.springframework.stereotype.Component;

/**
* Created by iuliana.cosmina on 9/23/15.
*/
@Component
public class CustomizationBean implements EmbeddedServletContainerCustomizer {
 @Override
 public void customize(ConfigurableEmbeddedServletContainer container) {

container.setPort(8083);
container.setContextPath("/boot");

 }
}

By adding this bean to the configuration, the application can now be accessed at
http://localhost:8083/boot.

Another way to do this is by using a customized factory bean for
JettyEmbeddedServletContainerFactory. Aside from port and contextPath, some settings for the
optimization of the embedded Jetty server used to run the application can be provided. The @Bean annotated
method that declares this bean can be added to any configuration class that is taken into consideration by
Spring Boot.

package com.book.init;

import org.eclipse.jetty.server.Server;
import org.eclipse.jetty.util.thread.QueuedThreadPool;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.boot.context.embedded.jetty.

JettyEmbeddedServletContainerFactory;
import org.springframework.boot.context.embedded.jetty.

JettyServerCustomizer;

Chapter 8 ■ Spring Boot and WeBSoCket

375

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

/**
* Created by iuliana.cosmina on 9/27/15.
*/
@Configuration
public class JettyFactoryConfig {

@Bean
 public JettyEmbeddedServletContainerFactory
 jettyServletContainerFactory(@Value("${server.port:8085}") final String port,

@Value("${jetty.threadPool.maxThreads:200}") final String maxThreads,
@Value("${jetty.threadPool.minThreads:8}") final String minThreads,
@Value("${jetty.threadPool.idleTimeout:60000}") final String idleTimeout) {
final JettyEmbeddedServletContainerFactory factory =

new JettyEmbeddedServletContainerFactory(Integer.valueOf(port));
factory.setContextPath("/boot");
factory.addServerCustomizers(new JettyServerCustomizer() {

@Override
public void customize(final Server server) {

// Customize the connection pool used by Jetty to handle
//incoming HTTP connections
final QueuedThreadPool threadPool =

server.getBean(QueuedThreadPool.class);
threadPool.setMaxThreads(Integer.valueOf(maxThreads));
threadPool.setMinThreads(Integer.valueOf(minThreads));
threadPool.setIdleTimeout(Integer.valueOf(idleTimeout));

}
});
return factory;

 }
}

By adding this bean to the configuration, the application can now be accessed at
http://localhost:8085/boot.

Values for the customizations can be provided, directly as done before, but they also can be provided
using properties files or YAML files. In order to provide the configuration via a properties file, a file named
application.properties has to be created and applied to the application from the outside, or it can be
packaged in the jar. If multiple profiles are used, multiple files can be added. Their naming matches the
application-{profile}.properties template.

SpringApplication looks for an application.properties file in the following locations, and adds them
to the Spring environment:

• a /config directory under the current directory

• the current directory

• a classpath /config package

• the classpath root

Chapter 8 ■ Spring Boot and WeBSoCket

376

Being a resource file, application.properties must be located during development under
src/main/resources.

The preceding list is ordered by precedence, so Spring Boot looks for property files by traversing the list
from top to bottom. The first properties file found is taken into consideration, and it does not matter if the
subsequent locations have a properties file defined.

The default name of the properties file is application.properties. Spring Boot looks for it, unless it
was changed by setting the environment variable named spring.config.name.

The location of the file can also be provided as the value for the environment variable named
spring.config.location.

So if the 08-chapter-02-solution application is packaged into a runnable jar called boot.jar, the
application could be run from the command line with the following arguments:

#Spring Boot will search in the classpath for a file named boot.properties
$ java -jar boot.jar --spring.config.name=boot

#Spring Boot will read the properties the specified file
$ java -jar boot.jar --spring.config.location=/Users/myuser/config/default.properties

In the preceding example, the file is saved under book-code/08-chapter-02-solution/src/main/
resources and has the following contents:

#application.properties
app.port=8084
app.context=/boot

These property values are injected using the @Value annotation into a customization bean that is picked
up and used by Spring Boot. The application is then accessed at http://localhost:8084/boot.

package com.book.init;

import org.springframework.beans.factory.annotation.Value;
import org.springframework.boot.context.embedded.ConfigurableEmbeddedServletContainer;
import org.springframework.boot.context.embedded.EmbeddedServletContainerCustomizer;
import org.springframework.stereotype.Component;

@Component
public class PropertiesConfBean implements EmbeddedServletContainerCustomizer {

 @Value("${app.port}")
 private Integer value;

 @Value("${app.context}")
 private String contextPath;

 @Override
 public void customize(ConfigurableEmbeddedServletContainer container) {

container.setPort(value);
container.setContextPath(contextPath);

 }
}

Chapter 8 ■ Spring Boot and WeBSoCket

377

3The property names standard list for application.properties or application.yml is at http://docs.spring.io/
spring-boot/docs/current/reference/htmlsingle/#common-application-properties.

The EmbeddedServletContainerCustomizer interface is used for customizing autoconfigured
embedded servlet containers. Any beans of this type are instantiated and used to initialize the configuration
of the embedded server before the container itself is started.

Without an EmbeddedServletContainerCustomizer bean, the contents of application.properties
look different, because they must match the standard property names3 that Spring Boot looks for, as follows:

#application.properties
server.port=8084
server.context-path=/boot

When the snakeyaml library is in the classpath, YAML files can be used instead of properties files.
YAML is a well-known format within the Ruby community. It is a superset of JSON, and as such, it is
a very convenient format for specifying hierarchical configuration data. In the previous example, if
the application.properties file is replaced by application.yml, with the following contents, the
behavior will be exactly the same, because the internal org.springframework.beans.factory.config.
YamlPropertiesFactoryBean converts the contents of the YAML file into the properties in the initial
application.properties file.

#application.yml
app:
 port:8082
 context:/boot

■ ! Both application.properties and application.yml can be used in the same project, because for
bigger projects, the configuration list could be quite large and migration could be a long duration process; it is
convenient to be able to do the migration gradually. Be careful not to have the same properties defined in both
files, because if this happens, properties defined in application.properties take precedence.

YAML properties can be used in a different way. A class can be designed to have its fields initialized
from a YAML file. The following AppSettings class is such a class.

package com.book.init;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.boot.context.properties.ConfigurationProperties;
import javax.annotation.PostConstruct;
import javax.validation.constraints.NotNull;
@ConfigurationProperties(prefix="app")
public class AppSettings {

 private static Logger logger = LoggerFactory.getLogger(AppSettings.class);

 @NotNull
 private Integer port;

http://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#common-application-properties
http://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#common-application-properties

Chapter 8 ■ Spring Boot and WeBSoCket

378

 @NotNull
 private String context;

 public Integer getPort() {
return port;

 }

 public void setPort(Integer port) {
this.port = port;

 }

 public String getContext() {
return context;

 }

 public void setContext(String context) {
this.context = context;

 }

 public AppSettings() {
 }

 @PostConstruct
 public void check() {

logger.info("Initialized {} {}", port, context);
 }
}

The annotation that allows this is @ConfigurationProperties, which marks a class to be used for
initialization with property values by the Spring DataBinder utilities. The advantage here is that usage of
the @Value annotation and hard-coding the property names is avoided. Validators can also be added on
the fields (notice the @NotNull annotations).

The prefix attribute is used to refer to the parent element in the YAML file. This bean is then autowired
into the YamlConfBean, which uses its properties as needed.

package com.book.init;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.context.embedded.ConfigurableEmbeddedServletContainer;
import org.springframework.boot.context.embedded.EmbeddedServletContainerCustomizer;
import org.springframework.stereotype.Component;

@Component
public class YamlConfBean implements EmbeddedServletContainerCustomizer {

 @Autowired
 private AppSettings appSettings;

Chapter 8 ■ Spring Boot and WeBSoCket

379

 @Override
 public void customize(ConfigurableEmbeddedServletContainer container) {

container.setPort(appSettings.getPort());
container.setContextPath(appSettings.getContext());

 }
}

For Spring Boot to know to create and initialize a bean of type AppSettings, a modification must be
made to the Application class. The @EnableConfigurationProperties (AppSettings.class) annotation
must be added to the class definition at the same level as @SpringBootApplication. If the class name
(AppSettings in this case) is not specified in the annotation, Spring Boot will scan, create, and initialize
beans of all classes annotated with ConfigurationProperties.

package com.book.init;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.boot.context.properties.EnableConfigurationProperties;
import org.springframework.context.annotation.ComponentScan;

@SpringBootApplication
@ComponentScan(basePackages = {"com.book.init", "com.book.web"})
@EnableConfigurationProperties(AppSettings.class)
public class Application {

 public static void main(String args) {
SpringApplication.run(Application.class, args);

 }

}

When using Spring Boot, a Spring ASCII banner is printed in the console at application startup, like the
one shown in Figure 8-3.

Figure 8-3. Spring Boot console banner

Chapter 8 ■ Spring Boot and WeBSoCket

380

This too can be customized. The instructions can be found in the official documentation at
http://docs.spring.io/spring-boot/docs/1.2.6.RELEASE/reference/htmlsingle/#boot-features-banner.
A banner.txt file needs to be created under the resources directory; a text-to-ASCII generator should be
used to create the desired banner. The one presented in module 08-chapter-03-solution is shown
in Figure 8-4.

Figure 8-4. Apress Spring Boot console banner

Importing Additional Configuration Elements
If an application is migrated to Spring Boot, a lot of the configuration classes and even XML configuration
elements can be imported into the Spring Boot configuration class. Additional configuration classes
can be imported using the @Import annotation or by adding a @ComponentScan to the Spring Boot core
initialization class (the one with the main method in it) and setting the basePackages attribute value with
the package name where the class can be found, which ensures that Spring automatically picks up all Spring
components, including @Configuration classes.

XML configuration can be imported using the @ImportResource annotation, as the Spring Boot
initialization class is nothing more than a more complex @Configuration class.

if you are using a Unix system, you can also test the examples attached to the chapter using the curl
command. Just open a console and execute:

curl localhost:8080/boot
#modify port or contextPath accordingly

in the console, you should see an output similar to what you see in the browser.

http://docs.spring.io/spring-boot/docs/1.2.6.RELEASE/reference/htmlsingle/#boot-features-banner

Chapter 8 ■ Spring Boot and WeBSoCket

381

Running Spring Boot Applications
The main difference between using Spring Boot and developing web applications in the typical way is that
when the Gradle spring-boot plugin is used, a web archive (*.war) is no longer created, because there is no
need for it. The war file is strictly a deployable file that needs to be run using a web server or an application
server. Spring Boot can be used to have an embedded server in the application. So when the Gradle
spring-boot plugin is used instead of a war, an executable Java archive (*.jar) is created.

The created archive can be found under the [project_root]/build/libs and can be executed just
like any jar. In the 08-chapter-03-solution.gradle configuration file, there is the line jar.archiveName =
"boot.jar", which is used to specify the name of the final archive. Without it, the name of the resulting jar
would be 08-chapter-03-solution.jar, which is long and unpractical.

To build the project, create the jar and then execute the application. The following lines can be executed
in the console (shell or command prompt):

#this will work only if you have Gradle installed on the system
$ gradle clean build
$ java -jar build/libs/boot.jar

But what if we want the result to be a web archive that should be deployed on an application server or a
web server? That can be done too, in three simple steps:

1. Modify the application to provide a Servlet initializer for the servlet environment.
This is done by making the class annotated with @SpringBootApplication to
extend the Spring Boot convenient class org.springframework.boot.context.
web.SpringBootServletInitializer and overriding its configure method:

@SpringBootApplication
@ComponentScan(basePackages = {"com.book.init", "com.book.web"})
@EnableConfigurationProperties(AppSettings.class)
public class Application extends SpringBootServletInitializer {

 @Override
 protected SpringApplicationBuilder

configure(SpringApplicationBuilder application) {
return application.sources(Application.class);

 }

 public static void main(String args) {
SpringApplication.run(Application.class, args);

 }
}

2. Leave all the Spring Boot components as dependencies, but use the Gradle
war plugin. (Basically, replace apply plugin: 'spring-boot' with apply
plugin: 'war'.)

Chapter 8 ■ Spring Boot and WeBSoCket

382

3. Set the embedded server dependency as provided:

apply plugin: 'war'
war.archiveName = "boot.war"

buildscript {
 repositories {

mavenCentral()
 }

 dependencies {
classpath boot.springBootPlugin

 }
}

dependencies {

 compile (boot.starterWeb){
exclude module : "spring-boot-starter-tomcat"

 }
 compile boot.actuator, boot.yaml
 providedCompile boot.starterJetty
 //previous 2 lines replaced:
 //compile boot.starterJetty, boot.actuator, boot.yaml

 testCompile misc.junit, misc.hamcrestCore,
misc.hamcrestLib, boot.starterTest

}

After these changes, if the project is built under the build/libs directory, a boot.war should be created
that can be deployed on any web or application server.

■ ! try to modify the configurations for the 08-chapter-03-solution to create a deployable war, as
described before. You can use Jetty to run the war on by adding the gretty plugin that was used in the examples
for this book until Spring Boot was introduced, by adding

apply from:
 'https://raw.github.com/akhikhl/gretty/master/pluginScripts/gretty.plugin'

in the 08-chapter-03-solution.gradle file, and then running the appStart gradle task.

When deploying the war to an application server or a web server, keep in mind that the relevant embedded
server settings read from the application.yml file are ignored (because they are relevant only to Spring
Boot) when a class annotated with @SpringBootApplication is used to run the application; so the application
is available on the port and location that you set for that server. When using gretty, the location that your
application can be accessed is printed in the console log.

...
INFO Jetty 9.2.10.v20150310 started and listening on port 8080
INFO 08-chapter-03-solution runs at:
INFO http://localhost:8080/08-chapter-03-solution

...

https://raw.github.com/akhikhl/gretty/master/pluginScripts/gretty.plugin

Chapter 8 ■ Spring Boot and WeBSoCket

383

Testing Spring Boot Applications
Applications built with Spring Boot can be tested using unit tests. Spring Boot provides a library to do just
that in the most practical manner possible. It is called spring-boot-starter-test. It must be added as a
dependency of the project to use it.

As for common Spring Web applications, the servlet context must be mocked, and only the controller
behavior is tested. The HelloWorldController is too simple to test, so a proper one is needed.

@RestController
public class MessageController {

 @Value("${app.message:Hello World}")
 private String message = "Hello World";

 @RequestMapping("/message")
 public String message(){

return message;
 }
}

The default value for the message property is set to Hello World, if it is not present in the application.yml file:

app:
 port: 8084
 context: /boot
 message: Testing, is this thing on?

The class to instantiate and test this controller in a mock environment looks like this:

import static org.hamcrest.Matchers.equalTo;
import static org.springframework.test.web.servlet.result.
 MockMvcResultMatchers.content;
import static org.springframework.test.web.servlet.result.
 MockMvcResultMatchers.status;

import org.junit.Before;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.boot.test.SpringApplicationConfiguration;
import org.springframework.http.MediaType;
import org.springframework.mock.web.MockServletContext;
import org.springframework.test.context.junit4.SpringJUnit4ClassRunner;
import org.springframework.test.context.web.WebAppConfiguration;
import org.springframework.test.web.servlet.MockMvc;
import org.springframework.test.web.servlet.request.MockMvcRequestBuilders;
import org.springframework.test.web.servlet.setup.MockMvcBuilders;

@RunWith(SpringJUnit4ClassRunner.class)
@SpringApplicationConfiguration(classes = MockServletContext.class)
@WebAppConfiguration
public class MessageControllerTest {

Chapter 8 ■ Spring Boot and WeBSoCket

384

 private MockMvc mvc;

 @Before
 public void setUp() throws Exception {

mvc = MockMvcBuilders.standaloneSetup(new MessageController()).build();
 }
 @Test
 public void getMessage() throws Exception {

mvc.perform(MockMvcRequestBuilders.get("/message")
.accept(MediaType.APPLICATION_JSON))

.andExpect(status().isOk())

.andExpect(content().string(equalTo("Hello World")));
// testing the default value for this field

 }
}

The MockServletContext is used as argument for the @SpringApplicationConfiguration annotation,
which provides a mock context where the MessageController can be instantiated. The MockMvcBuilders
utility class is used to instantiate the controller instance that is to be tested.

In Chapter 3, MockitoJUnitRunner.class was used to test a controller, but the Spring Test library offers
more appropriate and intuitive methods, especially for REST controllers.

The MockMvc should be familiar from Chapter 3. It is used here for the same purpose: to send HTTP
request to the DispatcherServlet, and the status and content methods come into place to help test the
results.

■ ! notice that the value returned by the content method is expected to be HelloWorld, and this is because
the mock context does not include the application.yml. to include the YaML file in the context and test the
value configured there, integration testing is needed.

Applications built with Spring Boot can be tested using integration tests. These can be written easily
for REST controllers because of a class provided by Spring Boot named org.springframework.boot.test.
TestRestTemplate that extends the classical RestTemplate. The extra feature of this class is that secured
resources can be tested too.

import com.book.init.AppSettings;
import com.book.init.Application;
import org.junit.Before;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.IntegrationTest;
import org.springframework.boot.test.SpringApplicationConfiguration;
import org.springframework.boot.test.TestRestTemplate;
import org.springframework.http.ResponseEntity;
import org.springframework.test.context.junit4.SpringJUnit4ClassRunner;
import org.springframework.test.context.web.WebAppConfiguration;
import org.springframework.web.client.RestTemplate;

http://dx.doi.org/10.1007/978-1-4842-0808-3_3
http://dx.doi.org/10.1007/978-1-4842-0808-3_3

Chapter 8 ■ Spring Boot and WeBSoCket

385

import java.net.URL;
import static org.hamcrest.Matchers.equalTo;
import static org.junit.Assert.assertThat;

@RunWith(SpringJUnit4ClassRunner.class)
@SpringApplicationConfiguration(classes = Application.class)
@WebAppConfiguration
@IntegrationTest
public class MessageControllerIT {

 @Autowired
 AppSettings appSettings;

 private URL base;
 private RestTemplate template;

 @Before
 public void setUp() throws Exception {

this.base = new URL("http://localhost:" + appSettings.getPort() +"/" +
appSettings.getContext() + "/message");

template = new TestRestTemplate();
 }
 @Test
 public void getMessage() throws Exception {

ResponseEntity<String> response =
template.getForEntity(base.toString(), String.class);

assertThat(response.getBody(),
equalTo("Testing, is this thing on?"));

 }
}

Because real configuration classes are used to create the context in integration tests, beans can be
injected and used inside the test class. In the previous example, the AppSettings bean is used to load the
configuration details from the application.yml file, so the resulting endpoint for the MessageController
is exactly the same as when the application is run with Spring Boot, and so is the content returned by the
message method.

The @IntegrationTest annotation is another convenient feature provided by Spring Boot to
start the embedded server on which the test will be run. It is designed to be used in conjunction with
@SpringApplicationConfiguration. The server is started on the port value and it is injected using the
AppSetting.port property value.

WebSocket Introduction
Interaction between a user and a software service implies some type of communication. In the Web 2.0 era,
software services are provided via web or mobile application, and communication is done over different
protocols, the most common being HTTP. HTTP is a request-response model, with the client making the
request (initiating a transaction) and the application providing the request service sending a response.

But more and more is needed from web applications, and the HTTP request-response model is
becoming insufficient because information can be transmitted from the server to the client only after a
request is received; the server cannot send data in between requests or without being asked for it by the
client first.

Chapter 8 ■ Spring Boot and WeBSoCket

386

4https://tools.ietf.org/html/rfc6455

Think about a shopping application. Users need to insert personal data into a form to place an order.
But while a user fills the form, the service that receives and processes orders might become inaccessible
because of an internal issue. Wouldn’t it be nice if the server could send a message to the browser to inform
the user that his order cannot be processed, saving him from wasting time inserting data into the form?

There are workarounds that can be implemented to implement this type of behavior, such as HTTP
long polling, which is a technique involving the client to poll the server for new information and the server
to keep that request open until new data is available. But this technique might cause trouble when the
connection between the client and the server gets interrupted frequently (like when switching between
Wi-Fi and cellular networks); messages get lost and the server might keep requests open that no longer
need to be. To overcome these situations, a communication management system must be implemented—so
things get even more complicated.

To provide a proper and practical solution, the WebSocket protocol was standardized in 2011 as RFC
6455.4 Most web browsers now implement a client API that supports it. As the official documentation says:
“The goal of this technology is to provide a mechanism for browser-based applications that need two-way
communication with servers that does not rely on opening multiple HTTP connections.”

Spring WebSocket Implementation
Oracle has released JSR 356 as part of the JEE7 standard. It is the Java API for WebSocket that should be
implemented to integrate WebSocket into web applications on the Java client and server sides. Client
applications can be developed in any technology, and as long as they are compliant with the RFC 6455, they
will be able to communicate with the server. The situation and the possibilities are depicted in Figure 8-5.

Figure 8-5. A client-server application leveraging WebSocket schema

In Spring 4.1, a module named spring-websocket was introduced to provide support for WebSocket-
based, two-way communication between the client and the server in web applications. The implementation is
a JSR-356-compatible Java WebSocket API and it also includes SockJS-based fallback options. The SockJS is a
JavaScript library that provides a WebSocket-like object (WebSocket behavior is emulated). It is most suitable
when the application needs to be supported in older browsers that do not support the WebSocket protocol.

The Spring Framework WebSocket infrastructure is based on the Spring Messaging Foundation.
Infrastructure beans like MessageChannel and MessageHandler are used as building blocks for the
WebSocket environment.

https://tools.ietf.org/html/rfc6455

Chapter 8 ■ Spring Boot and WeBSoCket

387

5STOMP is an acronym for Simple Text-Orientated Messaging Protocol. It defines a message format that any available
STOMP clients can use to communicate with any STOMP server application. Basically, it represents a standard
communication unit independent of languages and platforms.
6A popular Internet Relay Chat (IRC) used extensively in the 1990s (see http://www.mirc.com).

In the spring-messaging module, support for STOMP5 was added, providing an annotation
programming model for routing and processing messages from WebSocket clients. This means that controller
methods can be used to process HTTP requests (when methods are annotated with @RequestMapping) and
can also be used to process WebSocket messages when methods are annotated with @MessageMapping, an
annotation that was introduced in Spring 4.0.

The complementary operation, sending the result of the method back to the client, is implemented
using the @SendTo annotation, which is used to mark a subscription endpoint to which all the potential
clients are registered; this way, they are identified as receivers of messages from the server. The
communication between clients and the server application using the WebSocket protocol is asynchronous,
and when the server is overloaded, it can have delays in sending the messages.

The WebSocket protocol is streaming, and messages can be sent to/received from a WebSocket at the
same time, so a connection and a WebSocketSession implementation is needed to provide the infrastructure
through which the messages will be exchanged.

The following are the steps to create a WebSocket-compliant application using Spring WebSocket:

1. Define the format for the STOMP message and the POJO to model it.

2. Define the format for the server reply message and the POJO to model it.

3. Create a message-handling controller.

4. Configure Spring for WebSocket communication handling.

5. Create a client application.

6. Create an executable server application.

To get familiarized with WebSocket Spring components, you’ll follow steps to create a mIRC6-like
application that uses the WebSocket protocol. The application will be quite simple: it will require a
username to allow connection to the server, but no authentication will be implemented. The server will
receive messages from users and redistribute them to all connected clients. The server will communicate
the time every 60 seconds and it will censor bad words, like bomb and murder. The source code to do this is
explained later in the section.

[STEP 1] The STOMP message is a JSON representation containing the username and a message that
the sends to the server:

{
 'name' : 'jules',
 'content' : 'Hello World!'
}

The POJO is quite simple and contains two properties (the JSON key names from the previous snippet)
and getters.

package com.book.ws;

import com.fasterxml.jackson.annotation.JsonProperty;
import com.fasterxml.jackson.annotation.JsonPropertyOrder;

@JsonPropertyOrder({ "name", "content"})
public class ChatMessage {

http://www.mirc.com/

Chapter 8 ■ Spring Boot and WeBSoCket

388

 @JsonProperty("content")
 private String content;

 @JsonProperty("name")
 private String name;

 public String getName() {
return name;

 }

 public String getContent() {
return content;

 }
}

JSON-specific annotations can be used, so POJO fields can be named differently than the key names in
the JSON message and can also be used to customize the serialization. For example, the @JsonPropertyOrder
is used here to define ordering of properties at serialization time. In the previous code, the annotation ensures
that the resulting JSON object will always have “name” as the first property and “content” as the second.

■ ! the JSon annotations are used abusively in the previous example, simply for demonstration purposes. as
the field names of the class are one and the same with the JSon property names, the @JsonProperty can be
removed because it doesn’t have any effect on the code. the same goes for the @JsonPropertyOrder, which can
be removed because the order of the properties in the resulting JSon object is not really important in this case.

[STEP 2] Upon receiving a ChatMessage and extracting the information, the server application
processes it and responds with a ServerMessage instance that is sent to a separate queue that the client is
subscribed to. The response is serialized to a JSON representation. Defining a format for the server is easy in
a mIRC application; all that is needed is a JSON representation with one property:

{
'content' : 'It is 18:13'

}

The POJO class that will be serialized could look like this:

package com.book.ws;

public class ServerMessage {
 private String content;

 public ServerMessage(String content) {
this.content = content;

 }

 public String getContent() {
return content;

 }
}

Chapter 8 ■ Spring Boot and WeBSoCket

389

Spring uses the Jackson JSON library to serialize and deserialize instances used for WebSocket
communication.

[STEP 3] Creating a message-handling controller is also quite easy when using the @MessageMapping
@SendTo annotations.

package com.book.ws;

import org.springframework.stereotype.Controller;
import org.springframework.messaging.handler.annotation.MessageMapping;
import org.springframework.messaging.handler.annotation.SendTo;
import java.util.Random;

@Controller
public class ChatController {

 @MessageMapping("/mirc")
 @SendTo("/topic/chat")
 public ServerMessage process(ChatMessage message) throws Exception {

//generate random lag
Random rn = new Random();
Thread.sleep((rn.nextInt(5) + 1) * 1000);
return MessageProcessor.build(message);

 }
}

The MessageProcessor is a utility class used to build the ServerMessage instances, which is serialized
and sent to the client. The implementation is not really relevant for this section, as it only contains a static
method used to build a ServerMessage instance based on a ChatMessage instance.

package com.book.ws;
public class MessageProcessor {
 public static ServerMessage build(ChatMessage message) {

if (message.getContent() != null && !message.getContent().isEmpty()) {
if (message.getContent().contains("bomb")) {

//censoring using string.replace(...)
return new ServerMessage
("[" + message.getName() + "]: "
+ message.getContent().replace("bomb", "****"));

} else if (message.getContent().contains("murder")) {
//censoring using string.replace(...)
return new ServerMessage
("[" + message.getName() + "]: "
+ message.getContent().replace("murder", "****"));

}
return new ServerMessage
("[" + message.getName() + "]: " + message.getContent());

}

return new ServerMessage("[server]: Welcome " +message.getName());
 }
}

Chapter 8 ■ Spring Boot and WeBSoCket

390

In the preceding code snippet, the process method is mapped to the destination "mirc", so if a
message is sent to this destination, the method is called. This behavior is provided by annotating the method
with @MessageMapping("/mirc") . Any message received from the client application(s) is deserialized,
resulting in a ChatMessage instance that is used as an argument for the process method call.

The Thread.sleep call is used to simulate a delay. The Random instance is used to generate a
random duration for the delay with a maximum of 5 seconds. This artifice was added to demonstrate that
communication between the client application and the server is indeed asynchronous.

Spring WebSocket Configuration
[STEP 4] To configure Spring for WebSocket communication handling with STOMP messages, a
configuration class needs to be created.

package com.book.init;

import org.springframework.context.annotation.Configuration;
import org.springframework.messaging.simp.config.MessageBrokerRegistry;
import org.springframework.web.socket.config.annotation.
 AbstractWebSocketMessageBrokerConfigurer;
import org.springframework.web.socket.config.annotation.EnableWebSocketMessageBroker;
import org.springframework.web.socket.config.annotation.StompEndpointRegistry;

@Configuration
@EnableWebSocketMessageBroker
public class WebSocketConfig extends AbstractWebSocketMessageBrokerConfigurer {

 @Override
 public void configureMessageBroker(MessageBrokerRegistry config) {

config.enableSimpleBroker("/topic");
config.setApplicationDestinationPrefixes("/app");

 }

 @Override
 public void registerStompEndpoints(StompEndpointRegistry registry) {

registry.addEndpoint("/mirc").withSockJS()
.setStreamBytesLimit(512 * 1024)
.setHttpMessageCacheSize(1000)
.setDisconnectDelay(30 * 1000);

 }
}

Each of the elements in the previous class declaration has a specific responsibility. The following
describes each of them.

• @EnableWebSocketMessageBroker enables WebSocket message handling using a
message broker.

AbstractWebSocketMessageBrokerConfigurer is a Spring convenient class
implementing the WebSocketMessageBrokerConfigurer interface to provide
empty method bodies for optional methods that are now needed for a minimal
configuration of a WebSocket application.

Chapter 8 ■ Spring Boot and WeBSoCket

391

• The configureMessageBroker() method implementation is used to configure a
message broker. The config.enableSimpleBroker("/topic") enables a simple
memory-based message broker used to filter destinations prefixed with "/topic"
targeting the broker. The config.setApplicationDestinationPrefixes("/app")
method designates the prefix for messages that need to be handled by methods
annotated with @MessageMapping.

• The registerStompEndpoints() registers the "/mirc" STOMP endpoint, and
enables and configures the SockJS fallback options. The subsequent chained method
calls are used to configure streaming details.

Streaming transports save responses on the client side and do not free the
memory occupied by delivered messages, so the connection needs to be recycled
from time to time. WebSocket communication is based on HTTP Streaming,
which works by pushing content continuously to browser. The memory usage
is kept accumulated in browser. Basically, the browser needs to close and
reconnect the streaming channel to release memory. So there are a limited
number of bytes that can be sent before the HTTP streaming connection is closed.
The default value set by SockJS is 128K; the .setStreamBytesLimit(512 * 1024)
call sets it to 512K.

The number of server-to-client messages that can be cached in a session waiting
for the next HTTP request polling is also limited. The default is 100 and it is set by
the web server; the .setHttpMessageCacheSize(1000) call sets it to 1000.

The number of milliseconds after an inactive client is disconnected is 5 seconds
and it is set by the web server, but the .setDisconnectDelay(30 * 1000) call
sets it to 30.

To use all of these elements, the spring-websocket and spring-messaging libraries must be added
as dependencies. When using Spring Boot, only the spring-boot-starter-websocket dependency is
necessary. Spring Boot adds all the necessary dependencies.

Aside from this, the entry point of the application is the com.init.Application class, which is a typical
boot-up Spring Boot class.

package com.book.init;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.ComponentScan;

@SpringBootApplication
@ComponentScan(basePackages = {"com.book.init, com.book.ws"})
public class Application {

 public static void main(String args) {
SpringApplication.run(Application.class, args);

 }
}

Chapter 8 ■ Spring Boot and WeBSoCket

392

WebSocket Client Application
As depicted in Figure 8-5, client applications for a Spring WebSocket server application can be written in
any programming language for which a WebSocket implementation or Socket-compatible implementation
exists. For the example in this section, the simplest way to create a client application is the plain old HTML
and JavaScript pair.

[STEP 5] Creating a browser client application is easy, and for the scope of this book, it is part of the
same application and deployed on the same embedded container. The application is a JavaScript client that
sends and receives messages from the server.

The module project for this section can be found under the book-code project and it is called
08-chapter-04-solution. The module is a Spring Boot WebSocket project organized as follows:

• The sources for the WebSocket server-application can be found under src/main/java.
The configuration classes are placed in the com.book.init package. All classes
involved in WebSocket communication are placed under the com.book.ws package.

• The sources for the JavaScript client application can be found under src/main/
resources/static. The client application can be accessed at index.html. The
functions that get called on specific HTML events are all gathered in the index.js
file. The JavaScript external libraries used in the project are under the static/ext
directory.

• jQuery is used to simplify the development of the JavaScript code used to handle
HTML user events.

• SockJS is used to emulate WebSocket and provides a WebSocket-like API.

• The STOMP library is used to help create STOMP messages.

The structure of the full Spring Boot WebSocket project is depicted in Figure 8-6.

Chapter 8 ■ Spring Boot and WeBSoCket

393

The client application when no client is connected is depicted in Figure 8-7.

Figure 8-6. The 08-chapter-04-solution project structure

Figure 8-7. The client application before connection

Chapter 8 ■ Spring Boot and WeBSoCket

394

Here is the static front-end that is written in HTML and represented by the index.html file:

<!DOCTYPE html>
<html>
<head>
 <title>WebSocket mIRC-like sample application</title>
 <script src="ext/sockjs-0.3.4.js"></script>
 <script src="ext/stomp.js"></script>
 <script src="ext/jquery-2.1.4.js"></script>
 <script src="index.js"></script>
 <link rel="stylesheet" href="css/general.css">
</head>
<body>
<noscript><h2 style="color: #ff0000">Seems your browser doesn’t support
 JavaScript! Websocket relies on Javascript being enabled.
 Please enableJavascript and reload this page!</h2></noscript>
This is a simple mirc-like web chat application,
 no authentication is necessary, just provide a name and start chatting!</h4>

<div class="header">
 Name : <input id="name" type="text"/>
 <input id="connection" type="button"/>
</div>
<div class="chatDiv">
 <textarea class="chat"></textarea>
</div>
<div class="footer">
 <input id="content" type="text"/>
 <input id="send" type="button" value="Send"/>
</div>

</body>
</html>

The following describes the four JavaScript functions in index.js:

• setConnected(boolVal): The argument is a boolean value. The method is called
with true when connecting to the server application and with false when
disconnecting. The same button is used for connecting and disconnecting. The label
on the button changes depending on the current state of the application. When
the application is accessed for the first time, a name is required to connect to the
application.

function setConnected(connected) {
 \\ set label for the connect/disconnect button
 connected ? $("#connection").attr("value", "Disconnect") :

$("#connection").attr("value", "Connect");

 \\ disable name textfield so the name cannot be modified
 \\ after connecting
 $("#name").prop("disabled", connected);

Chapter 8 ■ Spring Boot and WeBSoCket

395

 \\hide the chat window
 connected ? $(".chatDiv").show() : $(".chatDiv").hide();

 \\hide the insert message textfield
 connected ? $(".footer").show() : $(".footer").hide();

 \\empty the chat window
 $(".chat").html("");
}

• The function attached to the Connect/Disconnect button. When the application is
accessed for the first time, a name is required to connect to the application.

$("#connection").click(function () {
name = $("#name").val();
if (name != "") {

if ($("#connection").val() == "Connect") {
//connecting
var socket = new SockJS("/mirc");
stompClient = Stomp.over(socket);
stompClient.connect({}, function (frame) {

setConnected(true);
stompClient.subscribe("/topic/chat", function (message) {

showMessage(JSON.parse(message.body).content);
});
stompClient.send("/app/mirc", {},

JSON.stringify({"name": name, "content": ""}));
});

} else {
//disconnecting
stompClient.disconnect();
setConnected(false);

}
}

 });

If a name is provided, SockJS and STOMP are used to open a connection to
/mirc, that has the ChatController waiting for messages. After the connection
has succeeded, the client subscribes to the "/topic/chat" destination where
messages from the server application are published. When a server message is
published to that destination, it is added to the chat text area.

• The showMessage(message) function appends the message received from the server
application to the chat text area. The "
" character set represents a new line in
HTML.

function showMessage(message) {
 $(".chat").append(message + "
’);
}

Chapter 8 ■ Spring Boot and WeBSoCket

396

• The function attached to the Send button is used to read the name and the message
inserted by the user. The STOMP client is used to send the data to the "/app/mirc"
destination (where the ChatController is waiting for messages).

$("#send").click(function () {
var name = $("#name").val();
var content = $("#content").val();
stompClient.send("/app/mirc", {},

JSON.stringify({"name": name, "content": content}));
$("#content").val("");

 });

To test the application, it first has to be built with Gradle by running the build task in the command
line or in Intellij IDEA. This results in the creation of a jar archive under build/libs named ws-mirc.jar.
The application can be run from a terminal by executing

java -jar ws-mirc.jar.

Or the com.book.init.Application class can be executed with an Intellij IDEA launcher, as depicted
in Figure 8-8.

Figure 8-8. Intellij IDEA launcher can be used to run a Spring WebSocket application

The application can support multiple clients. In Figure 8-9, the application is accessed from a Firefox
browser by a user named Jules and it is accessed from a Safari browser by a user named John.

Chapter 8 ■ Spring Boot and WeBSoCket

397

Figure 8-9. Two clients accessing the same server

Configure the Server Application to Send Scheduled Messages
The server application should be able to send messages that tell the time to clients every 60 seconds. This
can be done using a @Scheduled annotated method that publishes messages to the destination where clients
expect messages from the server to be published. This method can be added in any class annotated with a
stereotype annotation on it (@Component, @Controller, @Service, etc.), but in the book samples, it is added
in the ChatController to keep related components together.

//ChatController.java
 @Autowired
 SimpMessagingTemplate template;

 @Scheduled(fixedDelay = 60000)
 public void setNotification() throws Exception {

LocalTime now = LocalTime.now();
this.template.convertAndSend("/topic/chat", new ServerMessage
("server: It is " now.getHour() ":" now.getMinute()));

 }

The SimpMessagingTemplate bean is initialized by Spring Boot when the WebSocket support is enabled
by having a configuration class annotated with @EnableWebSocketMessageBroker. But there is another thing
to do—declaring a scheduled method is not enough. Scheduling must be enabled for the method to be picked
up. As expected, there’s an annotation for that: @EnableScheduling, which can be used on any @Configuration
class in the application. When using Spring Boot, the most obvious way is to place it on the Application class.

Chapter 8 ■ Spring Boot and WeBSoCket

398

Monitoring and Debugging
When using the WebSocket protocol for communication between a client and a server application, a connection
must exist and be opened between the two. The first contact between the client and the server is often called a
handshake, which involves the client sending a connection request to the server and a reply being sent from the
server, confirming the connection. When using stomp.js, information regarding the internals of communication
between the client and the server can be tracked into the Firebug console. Every time a message is sent from the
client and one is received from the server, you can see it in the console, as depicted in Figure 8-10. Notice that
the handshake between the client and the server are the first two messages in the list.

Figure 8-10. stomp.js monitoring

Chapter 8 ■ Spring Boot and WeBSoCket

399

Debugging a JavaScript client application can be done by using console.log() messages in the
JavaScript code and/or by using the debugger; statement to set the breakpoint in the JavaScript code and
control execution from there.

Debugging a server-side Java application can be done easily during development, especially with a smart
development tool like Intellij IDEA. All that you have to do is start the application as usual, but instead of a
normal launcher, choose the debugging launcher. Figure 8-11 shows the debugging launcher on the menu.

Figure 8-11. Intellij IDEA debugging launcher

Chapter 8 ■ Spring Boot and WeBSoCket

400

Then place a breakpoint in the ChatController.process() message and send a message from the client
to test it. Execution is paused, so you can inspect Spring beans and objects involved in the communication.
A debug snippet using Intellij IDEA is shown in Figure 8-12.

Figure 8-12. Server application paused in a breakpoint in Intellij IDEA

In Figure 8-12, the breakpoint is placed in line 23 of class ChatController. On the bottom left of the
figure, you can see the name of the method currently being executed, process(), and on the right, you see
the contents of a ChatMessage instance.

■ ! Since the topics in this chapter are not covered in the certification exam, there is neither a quiz
section nor a practice section. But if you want to test your knowledge and understanding of Spring Boot, a
recommended exercise is to try switching the personal records manager project to Spring Boot.

401

Appendix

Resources and Quiz Answers

The purpose of this appendix is to help you set up the development environment that you will use to write,
compile, and execute the Spring applications specific to this book and to provide detailed responses for the
questions in the quiz attached to each chapter.

Study Guide Projects
The appendix for this book is quite small because it was written in such a way that you are guided through
the normal succession of steps that you would have to through every time you start development of an
application.

1. Choose your tools

2. Install your tools

3. Verify installation

4. Design the application

5. Develop and test

At the end of Chapter 1, I presented the tools and instructed you how to install them and how to verify the
correct installation. The code samples for the book were written on an Apple Mac computer. One of the strong
points of Java is that it is multi-platform, so the code can be run on any operating system. The tools recommended
(Gradle, Intellij IDEA, Liferay, and Tomcat) are Java based, and are available at their official sites. The installation
instructions are almost identical for any operating system, the only difference is in how an environment variable
is set. Information about doing this on different operating systems is widely available on the internet and
considering this book is for developers with a little experience, this should not be a problem for you.

The code for this book is split in two projects: personal-records and book-code. The personal-
records project follows the evolution of a Spring web application. It was built incrementally and module
names were prefixed with a number; if traversed in the ascending order of their prefixes, you will notice that
every module contains the code of the previous one and something extra. It simulates the evolution of the
configuration, exchanging and adding libraries until the final form of a complete web application is reached,
when security and evolved components such as web flows are in place.

Using this study guide you will learn not only how to build Spring web applications, but also how to
design a workflow for you and your team and how to design a multi-layered application from scratch.

The code was split in two because some topics such as alternative configurations and alternative view
technologies needed to be presented separately without overcrowding the personal-records project. So
really small modules covering these were created and wrapped up in a different project called book-code.

For book-code, the name of each module is constructed using the chapter number in which the module
is covered and an index number. The modules are referenced in a chapter in ascending order of their indexes.

http://dx.doi.org/10.1007/978-1-4842-0808-3_1

Appendix ■ ResouRces And Quiz AnsweRs

402

Both projects are Gradle multi-module projects and are configured in a similar manner. The project
structures can be seen side by side in Figure A-1.

Figure A-1. personal-records and book-code project structures in IntelliJ IDEA side by side

Appendix ■ ResouRces And Quiz AnsweRs

403

Gradle Configuration Explained
project-records and book-code are parent projects that define a set of libraries available for the child
modules to use. As the configurations are very similar, from this point on only the configuration of the
person-records project will be covered. person-records has the Gradle configuration in a file named
build.gradle.

All the modules have the Gradle configuration file named after the module: [module_name].gradle.
Also, there’s a closure element in personal-records/settings.gradle that verifies at build time if all
modules have their configuration file present.

rootProject.children.each {
 project -> project.buildFileName = "${project.name}.gradle"
 assert project.projectDir.isDirectory()
 assert project.buildFile.exists()
 assert project.buildFile.isFile()
}

This was a development choice; the components of a module are also more visible in an editor this way.
Plus, if you want to modify the configuration file for a module you can easily find the file in IDEA using a
unique name. Imagine the pain if you use the Command+Shift+N to search for a specific build.gradle file
and you have 20+ matches.

Another approach for a multi-modular project would have been to have only one build.gradle file
for the whole project and use Gradle-specific closures to customize configuration for each module. But in
the spirit of good development practices, I decided to keep configurations for the modules as decoupled as
possible and in the same location as the module contents.

Building and Troubleshooting
After you download the source code you need to import the project in the IntelliJ IDEA editor:

1. Select from the IntelliJ IDEA menu File ➤ New ➤ Project From Existing Sources
(the menu options are depicted in Figure A-2).

Figure A-2. Project import menu options in IntelliJ IDEA

Appendix ■ ResouRces And Quiz AnsweRs

404

3. IntelliJ IDEA can create its own type of project from the selected sources
and build it with its internal Java builder, but this option is not useful here as
personal-records is a Gradle project. Check the “Import project from external
model” radio button and select Gradle from the menu as depicted in Figure A-4.

2. A popup window will appear requesting the location of the project (Figure A-3).
Select the personal-records directory.

Figure A-3. Project import popup in IntelliJ IDEA

Appendix ■ ResouRces And Quiz AnsweRs

405

Figure A-4. Selecting the project type in IntelliJ IDEA

Figure A-5. Last popup for project import in IntelliJ IDEA

4. The last popup will appear and ask for the location of the build.gradle file and
the Gradle executable. The options will be already populated for you. If you have
Gradle installed you might want to use it (Figure A-5).

Appendix ■ ResouRces And Quiz AnsweRs

406

Before getting to work you should build the project. This can be done from IntelliJ IDEA by clicking
the Refresh button, marked with (1) in in Figure A-6. Clicking this button will cause IntelliJ IDEA to do the
following: scan the configuration of the project, resolve any dependencies (this includes downloading
missing libraries), and do an internal light build of the project, just enough to remove compile-time errors
caused by missing dependencies.

The Gradle build task executes a full build of the project. It can be used in the command line:

.../workspace/personal-records $ gradle build

Alternatively, you can use it in IntelliJ IDEA as depicted in Figure A-6, where the task is marked with (2).

Figure A-6. Gradle tasks in IntelliJ IDEA

Appendix ■ ResouRces And Quiz AnsweRs

407

It will execute the following set of tasks on every module:

:00-pr-dao:compileJava UP-TO-DATE
:00-pr-dao:processResources UP-TO-DATE
:00-pr-dao:classes UP-TO-DATE
:00-pr-dao:jar UP-TO-DATE
:00-pr-dao:assemble UP-TO-DATE
:00-pr-dao:compileTestJava UP-TO-DATE
:00-pr-dao:processTestResources UP-TO-DATE
:00-pr-dao:testClasses UP-TO-DATE
:00-pr-dao:test UP-TO-DATE
:00-pr-dao:check UP-TO-DATE
:00-pr-dao:build UP-TO-DATE

The tasks depicted here are only for the 00-pr-dao module. The Gradle build task will execute all the
tasks it depends on. As you can see, it does not run the clean task, so you need to make sure to run this
task manually when building a project multiple times, to make sure the most recent versions of the classes
are used.

As the project contains incomplete sources that you will have to complete (in modules post fixed with
-practice), executing this task will fail. You could just execute tasks clean and compile Java, but there’s a
better way. I have created a custom task in the project called allCompile. This task executes the clean and
compileJava tasks for all modules. It is marked with (3) in Figure A-6. It is defined in build.gradle and
inherited by the child modules, so it can be executed for a module separately.

Deploy on Apache Tomcat
Every web application in this project is run with the Jetty embedded web server to keep things simple. But
there are certain advantages in using an external container such as Apache Tomcat server. Starting the
server in debug mode and using breakpoints to debug an application is much easier to do is one advantage.
An external container can run multiple applications at a time without the need to stop the server. Plus
embedded servers should be used only for testing and educational purposes; in practice application servers
are preferred, because of reasons explained in Chapter 8.

http://dx.doi.org/10.1007/978-1-4842-0808-3_8

Appendix ■ ResouRces And Quiz AnsweRs

408

Here is what you have to do if you are interested in doing this. First download the latest version of
Apache Tomcat 8.x from the official site1 and unpack it somewhere on your system. Then configure an
IntelliJ IDEA launcher to start the server and deploy the chosen application. This is quite easy to do, but
there are a number of steps to be executed and they are listed below:

1. From the runnable configuration menu choose Edit Configurations (1). A popup
window will appear listing a set of launchers. Click on the + and select the Tomcat
Server option. The menu will expand: select Local (2) because you are using a
server installed on your computer. Figure A-7 depicts these menu options.

Figure A-7. Menu options to create a Tomcat launcher in IntelliJ IDEA

1http://tomcat.apache.org/

http://tomcat.apache.org/

Appendix ■ ResouRces And Quiz AnsweRs

409

2. A popup window like the one in Figure A-8 will appear and will request some
information.

Figure A-8. Popup to create a Tomcat launcher in IntelliJ IDEA

Appendix ■ ResouRces And Quiz AnsweRs

410

In the previous figure, some items are numbered and their meaning is explained in following list:

(1) The launcher name; you can insert a more obvious name in there.

(2) The Tomcat instance name.

(3) The button that will open the popup window to insert the Tomcat instance
location (Figure A-9).

Figure A-9. Configure Tomcat instance in IntelliJ IDEA

(4) The URL where the Tomcat server can be accessed.

(5) The choose artifact button. Unless there is no war set to be deployed to
Tomcat, this button will be displayed with the red light bulb icon on it.

3. Click the Fix button and select an artifact. IntelliJ IDEA will detect all artifacts
available (Figure A-10) and present them to you in a list you can choose from. If
you intend to open the server in debug mode and use breakpoints in the code,
select an artifact with the name post-fixed with (exploded); this way IntelliJ
IDEA manages the contents of the exploded war and can link the actions in the
browser with the breakpoints in the code.

Appendix ■ ResouRces And Quiz AnsweRs

411

4. Complete the configuration by clicking the OK button. You can specify a different
application context by inserting a new value in the Application Context text
field. Choosing a different application context will tell Tomcat to deploy the
application under the given name and the application will be accessible via the
following URL: http://localhost:8080/[app_context_name]/. In Figure A-11,
the application will be accessible via http://localhost:8080/mvc-basic/.

Figure A-11. Inset a new application context in IntelliJ IDEA

Figure A-10. Deployable artifact list in IntelliJ IDEA

Appendix ■ ResouRces And Quiz AnsweRs

412

Other application servers can be used in a similar way as long as IntelliJ IDEA provides support for them.
IntelliJ IDEA is really flexible and practical and that’s why it was recommended for practicing the

exercises in this study guide: launcher configurations can be duplicated, multiple Tomcat instances can be
started at the same time as long as they function on different ports, and so on. The Gradle projects can also
be imported in Eclipse and other Java editors that support Gradle.

Quiz Answers
The following sections contain answers to the quiz questions for every chapter. Answers to questions that are
simple enough to remember after reading the chapter will not be detailed. Extra details will be provided only
for questions that could be considered tricky.

Quiz Solution for Chapter 2
1. Answer: A, B, C

2. Answer: B

3. Answer: A, B, D (C, interface-based injection, is not supported in Spring. D, field-
based injection, is supported by annotating fields with @Autowired, @Value, or
related annotations; JSR-250 @Resource, JSR-330 @Inject.2)

4. Answer: A, B, C (as stated in Chapter 2.)

Quiz Solution for Chapter 3
1. Answer: C

2. Answer: A

3. Answer: C

4. Answer: A, B, C (D is incorrect because classes implementing
WebApplicationInitializer or extending its subclasses do not require any
annotations, as stated in Chapter 3.)

5. Answer: B, C

6. Answer: A.3

7. Answer: A, B

8. Answer: A, B (Interface ViewConfigurer is not part of any Spring Web library.)

9. Answer: A, B, C, D, E

10. Answer: A

11. Answer: C (B is not correct because multiple view types can be supported using
ViewResolver chaining too.)

2http://docs.spring.io/spring/docs/4.2.3.RELEASE/spring-framework-reference/
htmlsingle/#beans- annotation-config
3http://docs.spring.io/spring/docs/4.2.3.RELEASE/spring-framework-reference/
htmlsingle/#mvc- servlet-special-bean-types

http://dx.doi.org/10.1007/978-1-4842-0808-3_2
http://dx.doi.org/10.1007/978-1-4842-0808-3_2
http://dx.doi.org/10.1007/978-1-4842-0808-3_3
http://dx.doi.org/10.1007/978-1-4842-0808-3_3
http://docs.spring.io/spring/docs/4.2.3.RELEASE/spring-framework-reference/htmlsingle/#beans-annotation-config
http://docs.spring.io/spring/docs/4.2.3.RELEASE/spring-framework-reference/htmlsingle/#beans-annotation-config
http://docs.spring.io/spring/docs/4.2.3.RELEASE/spring-framework-reference/htmlsingle/#beans-annotation-config
http://docs.spring.io/spring/docs/4.2.3.RELEASE/spring-framework-reference/htmlsingle/#mvc-servlet-special-bean-types
http://docs.spring.io/spring/docs/4.2.3.RELEASE/spring-framework-reference/htmlsingle/#mvc-servlet-special-bean-types
http://docs.spring.io/spring/docs/4.2.3.RELEASE/spring-framework-reference/htmlsingle/#mvc-servlet-special-bean-types

Appendix ■ ResouRces And Quiz AnsweRs

413

12. Answer: B, C (D is not true, because it is an incomplete answer. Indeed it can be
taken into consideration by setting a value for the ignoreAcceptHeader property,
but that must be true, which is not mentioned here.)

13. Answer: A, B, C, D

14. Answer: A, B, C

15. Answer: B

16. Answer: B (The path variable name (id) is different than the method argument
name (number) and in this case the annotation @PathVariable should define in
which argument the path variable value should be injected by using the path
variable name as an argument: @PathVariable("id").)

17. Answer: E (All others are valid return types that can be matched to a view
representation. A null value will crash the application.4)

18. Answer: B, C (D is incorrect because @ModelAttribute can also be used on
methods. Look at the next question option A to see what for.)

19. Answer: A, B (C is not true because the statement is ambiguous.)

20. Answer: B

21. Answer: A, B (C is not true because the two implementations covered by A and
B could suffice. If the word "must" is replaced with "might" then this statement
would be true too.)

22. Answer: A

23. Answer: B

24. Answer: A, B, D, G (C is used on handler arguments, E is used on validation
annotations, and F is used on setter methods to enforce that a dependency is
mandatory.)

Quiz Solution for Chapter 5
1. Answer: C

2. Answer: A, B, D

3. Answer: C

4. Answer: A

5. Answer: A, B, C

6. Answer: B

7. Answer: A, B(C does not exist)

8. Answer: A, C, D

9. Answer: D

4http://docs.spring.io/spring/docs/4.2.3.RELEASE/spring-framework-reference/
htmlsingle/#mvc- ann-return-types

http://dx.doi.org/10.1007/978-1-4842-0808-3_5
http://docs.spring.io/spring/docs/4.2.3.RELEASE/spring-framework-reference/htmlsingle/#mvc-ann-return-types
http://docs.spring.io/spring/docs/4.2.3.RELEASE/spring-framework-reference/htmlsingle/#mvc-ann-return-types
http://docs.spring.io/spring/docs/4.2.3.RELEASE/spring-framework-reference/htmlsingle/#mvc-ann-return-types

Appendix ■ ResouRces And Quiz AnsweRs

414

Quiz Solution for Chapter 6
1. Answer: B, C (Ajax is a technique for building interactive applications for the

Web and an acronym. It is not a set of standards or technologies and that is why B
and D are not valid options.)

2. Answer: C

3. Answer: A, B, C

4. Answer: A

Quiz Solution for Chapter 7
1. Answer: A, B, C

2. Answer: B

3. Answer: A, B, D, E, F

4. Answer: A, C

5. Answer: B, C

6. Answer: A

7. Answer: B

8. Answer: B

9. Answer: A, B

10. Answer: A, B, C (Converters are present in the Spring WebFlow environment, but
they are not defined explicitly in a flow definition, which is why answer D is not
valid. Data is only handled when a flow is executed, which dismisses answer E.)

11. Answer: B, C, D, F (A start state is a concept and is the first state that is entered
when the flow starts its execution and is always a view state, so answer A is
dismissed. There is no such thing as a persistence state type, so answer E can
be dismissed. But as an observation, there is a special attribute in the end-state
set to persist data in the flow before completion of the flow process. G can be
dismissed, too; there is no conversion state type.)

12. Answer: C, D

13. Answer: A, C

14. Answer: A,B (C is false because a decision state does not have a view associated
with it.)

15. Answer: A, C

16. Answer: B, C

17. Answer: B

18. Answer: B, C

19. Answer: B, C

20. Answer: B, C

http://dx.doi.org/10.1007/978-1-4842-0808-3_6
http://dx.doi.org/10.1007/978-1-4842-0808-3_7

Appendix ■ ResouRces And Quiz AnsweRs

415

21. Answer: A, C

22. Answer: B, C

23. Answer: A, B, C

24. Answer: B

25. Answer: A, B, C, D, F, G (E makes no sense: during transition execution, no action
can be executed because any result of the action would be lost. F is also invalid
because an action can be executed only in the context of a flow execution.)

26. Answer: A, C

27. Answer: B, C, D

28. Answer: A, B, C

29. Answer: B

30. Answer: A, B, C, D

417

��������� A
Action phase, 154
AJAX (asynchronous JavaScript and XML), 229

communication flow, 230
components, 156
custom tags, 250
functions, 229
GET and POST requests, 233
jQuery, 233, 236

AJAX calls, 243
features, 239
HTML DOM manipulation, 240
Spring MVC, 245

JSON format
done and fail callback methods, 250
@RestController, 246

quiz solution, 414
requests

XMLHttpRequest methods, 233
@Valid annotation, 230

All-in-one configuration, Spring Web MVC, 56
AOP (aspect-oriented programming)

advices, 41
aspects, 41
@TransactionConfiguration, 43
transaction-manager attribute, 44
UML diagram, 41

Apache Tiles, 111
Apache TomEE, 367
Autodiscovery, 26
Autowiring, 26

��������� B
Base tile, 112–113
Bean factory post processors, 30

��������� C
Combined lifecycle strategy, 31
@ComponentScan annotation, 63
@ControllerAdvice, 93
ContentNegotiatingViewResolver, 78

��������� D
Data binding process, 129
Data transfer object (DTO), 122
Data validation

annotations, 133
JEE @Constraint annotation, 135
Hibernate Validator, 132, 134
hibernate-validator.jar contents, 134
message keys, 134–135

Domain objects, 122

��������� E
@ExceptionHandler, 92
External Libraries, 251

��������� F
Flash attributes, 102
Flow. See Web flow

��������� G
Guide projects

Apache Tomcat server
application context inset, 411
artifact list, 411
configuration, 410
deployment, 407

Index

■ index

418

lists, 410
menu options, 408
popup menu, 409
steps, 408

build.gradle file, 403
Gradle configuration, 403
installation, 401
personal-records and book-code, 401
project structures, 402
spring web applications, 401
steps, 401
troubleshooting

gradle tasks, 406
import popup, 404
IntelliJ IDEA editor, 403
menu options, 403
module execution, 407
popup menu, 405
project type, 404
task executes, 407

��������� H
HAL, 196
Hamcrest, 105
HandlerAdapter interface, 71
HandlerExceptionResolver, 90
Handler interceptors, 106
HandlerMapping, 68
Handshake, 398
HATEOAS, 195–196
Hibernate Validator, 132, 134
hibernate-validator.jar contents, 134
HospitalFormatter, 128
HTTP request-response model, 385
Hypermedia driven REST web service, 216, 219

��������� I
Infrastructure beans, 1
InternalResourceViewResolver, 75
Internationalization process, 85
Inversion of control (IoC), 18

��������� J, K
Jetty server, 368
JSON View Resolver, 84
JSP tags, 251
JSTL (JSP Standard Tag Library), 251

��������� L
LocaleResolver interface, 87

��������� M, N, O
MessageSource interface, 85
@Mock annotation, 104
Mockito, 103
@ModelAttribute annotated method, 137

��������� P, Q
Plain old Java objects (POJOs), 17
Pivotal, 2

��������� R
ReloadableResourceBundleMessageSource, 86
Render phase, 154
Repositories, 13
ResourceBundleMessageSource, 85
REST (REpresentational State Transfer), 189

Accept HTTP header, 194
advantages, 197
basic authentication, 198
cache, 190
client-server architecture, 190
code on demand, 190
compliance levels, 195
Content-Type HTTP header, 194
DELETE request and response, 194
GET request and response, 192
HATEOAS, 195
layered system, 190
message converters, 190
OAuth 1.0a and OAuth 2.0, 198
POST request and response, 192
PUT request and response, 193
quiz solution, 413
Spring MVC, 199

@Async annotated methods, 213
AsyncRestTemplate methods, 203
consumes and produces

properties, 210
exception handling, 208
execute and exchange methods, 200
filter interceptor, 203
handler methods, 205
HATEOAS, 216
hidden methods, 203
HttpServletRequest/

HttpServletResponse, 211
HTTP status codes, 207
interceptor, 214
message converters, 201
resources, 204
@RestController, 206
RestTemplate methods, 199

Guide projects (cont.)

■ Index

419

states, 190
transport layer, 190
transport protocols, 190
uniform interface, 189

Richardson Maturity Model, 195

��������� S
Separate configuration, Spring Web MVC, 57
Separation of concerns (SoC), 328
SimpleMappingExceptionResolver, 91
Spring, 27

accessing beans
annotated beans, 40
bean identification by id, 40
bean identification by name, 39
bean identification by type, 38

AOP (see AOP (aspect-oriented programming))
bean scopes, 35
classes, 17
configuration, 21

annotations, 25
mixed approach, 26
prefixes and corresponding paths, 24

convention over configuration paradigm, 1
core container, 19
dependency injection, 1
development environment, 8

build tools, 9
IDE, 10
Personal Records Manager application, 11

frameworks, 1
infrastructure beans, 1
integration testing, 45
library, 1
lifecycle and instantiation, 27

advantages, 29
bean factory post processors, 30
bean initialization and destruction, 30
BeanPostProcessors, 34

Pivotal, 2
PlainPersonRepository class, 20
quiz answers, 412
Spring Certification section, 5
spring-context modules, 19
spring-core and spring-beans modules, 19
spring-expression modules, 19
Spring-released projects, 2
study guide, 7

application developer, 5
code downloads, 8
conventions, 8
objectives of, 4
Spring Framework’s support, 4
structure, 7

unit testing, 44
XML configuration, 21

Spring Boot
application server, 367
execution, 381
goals, 367
testing

@IntegrationTest annotation, 385
integration tests, 384
spring-boot-starter-test, 383

usage and configuration
ApplicationContext instance, 371
AppSettings class, 377
@Bean annotated methods, 370
command-line variables, 376
@ComponentScan annotation, 370
@ConfigurationProperties, 378
EmbeddedServletContainer

Customizer, 377
@EnableAutoConfiguration

annotation, 370
@EnableConfigurationProperties, 379
environment variables, 376
Gradle configuration, 368
@Import annotation, 380
prefix attribute, 378
properties files, 373
@SpringBootApplication

annotation, 370
Spring Boot console banner, 380
transitive dependencies, 372
YAML files, 375

web server, 367
Spring Framework Reference, 5
Spring portlets

configuration, 156
definition, 151
MVC framework, 153
portlet application

admin menu, 173–174
App Manager installation, 182
Command Prompt, 170
download process, 170
Finish Configuration, 171
Hello World Portlet, 179
Liferay installation, 170
Liferay Password, 172
Person database, 187–188
Site configuration page, 185
site templates, 173–175
Site URL, 186
start Liferay, 170
uninstall option, 184

recommendations, 168
web application, 152

■ index

420

workflow, 154
XML

and annotations, 164
app-config.xml, 158
App Manager, 159
configuration, 158
definition, 157
liferay-display.xml, 159
liferay-portlet.xml, 161
message converter, 158
mvc-config.xml, 158
portlet controller bean, 161
site template, 160
syntax, 160
ViewRendererServlet, 163
web.xml, 163

SpringServletContainerInitializer, 64
Spring Web Certification Exam, 5
Spring Web MVC

behavior, 53
description, 53
DispatcherServlet, 54
form object management, 137
forms

data binding, 129
data formatting, 125
data transfer object, 122
data validation, 132
domain object, 122
editing a person, 119–120, 122
JSP c taglib, 124
to search a person, 123

functional flow, 54–55
infrastructure beans, 67–68

ContentNegotiatingViewResolver, 78
HandlerAdapter interface, 71
HandlerExceptionResolver, 90
HandlerMapping, 68
JSON View Resolver, 84
localeResolver, 87
MessageSource, 85
personalization beans, 85
ThemeResolver, 88
ViewResolver, 73
ViewResolver chaining, 74

infrastructure components, 54
libraries, 54
practice application welcome page, 61
quiz solution, 412–413
user-provided components

Accessing Model data, 100
controllers, 94
handler interceptors, 106
redirect requests, 101

selecting a view, 101
testing controllers, 103

user-provided web components, 54
view technologies

data-delivery views, 109
display views, 109
file-generating views, 109
Thymeleaf, 115
Tiles Layouts, 110

XML configuration, 56
all-in-one configuration, 55–56
<mvc\:annotation-driven/> element, 60
<mvc\:default-servlet-handler/>, 60
mixed configurations, 63
separate configuration, 55, 57
using annotations, 61
without using web.xml file, 64

Spring WebSocket
ChatMessage, 388
client application

JavaScript functions, 394
module project, 392

client-server application, 386
HTTP request-response model, 385
JSON-specific annotations, 388
MessageProcessor, 389
mIRC, 387
monitoring and debugging, 398
process method, 390
Random instance, 390
@SendTo annotation, 387
server application, 397
SockJS-based fallback, 386
STOMP messages, 390
WebSocket-compliant application, 387

StaticMessageSource, 85
Stubs, 103

��������� T, U, V
ThemeResolver, 88
Thymeleaf

selection/asterisk expressions, 116
Spring integrations, 118
standard dialects, 116
template page, 117–118
text externalized expressions, 116
URL expressions, 116
variable expressions, 116

Tiles Layout
Apache Tiles, 111
configuration files, 111
defining page templete, 111
reusable page template, 110
TilesViewResolver bean, 114

Spring portlets (cont.)

■ Index

421

��������� W, X, Y, Z
WebAppConfiguration annotation, 105
Web flow

actions, 282
EL expressions, 288
environment-specific variables, 289
findAll method, 288
on flow end, 288
on flow start, 286
HTTP session cotents, 289
RequestContext, 289
requestParameters, 290
scope-specific variables, 289
on state entry, 287
on state exit, 287
on transition execution, 287
on view render, 287

action state, 272
boolean, 305
definition, 304
enumerated types, 305
getActiveFlow(), 311
getCurrentState() method, 311
getExternalContext() method, 311
getFlowExecutionURL() method, 311
getFlowScope() method, 311
getMessageContext() method, 311
getRequestScope() method, 311
MultiActions, 310–311
No action, 307, 310
plain actions, 309, 311
POJO actions, 307, 310
string, 305

annotations, 267
MvcConfig class, 268
New Person link, 272
WebFlowConfig class, 268
WebInitializer class, 270

architecture
backing class, 259
configuration file, 261
DispatcherServlet, 260
FlowController class, 260
FlowDefinitionRegistry, 260
FlowHandlerMapping maps, 260

decision state, 311
exception handling

account flow, 315
amount field, 315
backtracking, 321
bank field, 315
cancel, 319
confirmAdult state, 318
end state, 319

enterAccountInfo, 318
enterIdentityCardInfo, 316
enterPersonInfo, 315
error, 319
flow execution, 312
IBAN field, 315
JSP scriptlets, 320
reviewExistingPerson, 317
status field, 315

flow definition
components, 273
contextRelative prefix, 276
decision state, 272
end states, 272, 277
inheritance, 326
Mock views, 278
redirect prefixes, 277
schema, 273
scope, 272
subflow state, 272
testing, 279
transitions, 272, 277
user event, 275
view-state id, 274
view states, 272, 277

infrastructure beans, 262
internal logic, 261
model object, 291

conversion, 293
data binding., 292
enterIdentityCardInfo

view-state, 303
enterPersonInfo

view-state, 301
formatting, 294
IdentityCardValidator

class, 304
JSR 349 bean validation, 294
partial validation, 298
programmatic

validation, 296
reviewPerson view-state, 302

problems, 259
quiz solution, 414
scope

conversation scope, 282, 284
explicit variables, 284
flash scope, 282, 285
flow scope, 282–283
request scope, 282, 285
standard EL expression, 284
template EL expression, 284
view scope, 282–283

scopes, 282
Spring Security

■ index

422

access decision manager, 329
advantages, 328
authentication, 327
authorization, 327
configure authentication, 339
credentials, 327
features, 327
flow definition, 350
Java configuration, 343
logout link, 346
NewPerson link, 346
OAuth, 353
portability, 328
principal, 327
secured item, 327
secure methods, 347
Social projects, 356
XML configuration, 330

states, 258
subflow

conversation scope, 323
definition, 322
flashScope.hospitalMessage

variable, 323
getModelResources method, 325
input parameters, 323
key values, 323
output parameter, 323
unit testing, 324

XML configuration, 263
conversionService, 267
flowBuilderServices, 266
flowExecutor, 265
FlowHandlerMapping, 264
flowRegistry, 266
max-executions property, 266
mvcViewFactoryCreator, 267

Web flow (cont.)

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction
	 Spring and What It Does
	 The Focus of this Study Guide
	 Who Should Use this Study Guide
	 About the Spring Web Certification Exam
	 How to Use this Study Guide
	 How this Book Is Structured
	 How Each Chapter Is Structured
	 Conventions
	 Downloading the Code
	 Contacting the Author

	 Recommended Development Environment
	 Recommended Build Tools
	 Recommended IDE
	 The Project Sample

	Chapter 2: Spring Fundamentals
	 The Basics
	 The Spring Core Container
	 Spring Configuration
	 XML
	 Annotations
	 Mixed Approach

	 The Beans
	 Lifecycle and Instantiation
	How Bean Factory Post Processors Work
	Bean Initialization and Destruction
	How Bean Post Processors Work

	 Bean Scopes
	 Accessing Beans
	Bean Identification by Type
	Bean Identification by Name
	Bean Identification by id
	Accessing Annotated Beans

	 Spring AOP
	 Testing Spring Applications
	 Summary
	 Quick Quiz
	 Practical Exercise

	Chapter 3: Spring MVC
	 MVC Basics
	 Configuring MVC
	 XML Configuration
	All-in-One Configuration
	 Separate Configuration

	 Configuration Using Annotations
	Mixed Configuration

	 Configuration Without Using web.xml

	 MVC Components
	 Infrastructure Beans
	HandlerMapping
	HandlerAdapter
	ViewResolver
	View Resolver Chaining
	Content Type Negotiation
	JSON View Resolver
	Personalization Beans
	MessageSource
	LocaleResolver
	 ThemeResolver
	 HandlerExceptionResolver

	 User-Provided Components
	Controllers
	 Accessing Model Data
	Selecting a View
	Redirecting
	 Testing Controllers
	Handler Interceptors

	 View Technologies
	 Tiles Layouts
	Define Page Templates
	 Configure Tiles Definitions
	 Configure the Tiles Resolver Bean

	 Thymeleaf

	 Forms
	 Data Formatting
	 Data Binding
	 Data Validation
	 Managing the Form Object

	 Summary
	 Quick Quiz
	 Practical Exercise

	Chapter 4: Spring Portlets
	 Portlet Basics
	 Configuration
	 The XML Part of the Configuration
	 The Annotation Part of the Configuration
	 Configuration Details and Recommendations
	 The Development and Deployment of a Portlet Application
	 Download, Install, Start, and Configure Liferay

	 Summary

	Chapter 5: Spring RESTful Services
	 Core REST Concepts
	 HATEOAS
	 Advantages of REST
	 RESTful Applications Using Spring MVC
	 RESTful Clients with Spring
	 Asynchronous REST Calls
	 Implementing REST with Spring MVC
	HTTP Status Codes
	 Exception Handling
	 The “produces” and “consumes” Properties
	 Accessing Servlet Environment and Request Data

	 Asynchronous REST Services Using @Async Annotated Methods
	Intercepting REST Calls

	 Using Spring HATEOAS

	 Summary
	 Quick Quiz
	 Practical Exercise

	Chapter 6: Spring Web with AJAX
	 What Is AJAX?
	 Making AJAX Requests
	 Introducing jQuery
	 jQuery HTML DOM Manipulation
	 jQuery AJAX Calls

	 Spring MVC, AJAX, and jQuery
	 Using REST-Style Remoting with JSON

	 Custom Tags
	 Summary
	 Quick Quiz
	 Practical Exercise

	Chapter 7: Spring Web Flow
	 What Is a Flow?
	 Web Flow Architecture
	 Web Flow Internal Logic
	 Configuration and Infrastructure Beans
	 Configuration Using XML
	 Configuration Using Annotations

	 Create a Flow
	 Flow Definition
	Testing Web Flows
	Actions and Scopes
	Flow Variables
	Conversation Variables
	Request and Flash Scopes
	Actions
	Request Parameters

	Model Objects
	Validation, Formatting, and Conversion

	 Action States

	 Decision States
	 Exception Handling
	 Subflows
	 Flow Definition Inheritance
	 Securing Web Flows
	 Introduction to Spring Security
	 Why Spring Security Is Awesome
	 Spring Security XML Configuration
	Configure Authentication
	No web.xml Configuration

	 Spring Security Java Configuration
	No web.xml Configuration
	Spring Security Tag Library
	 Securing Methods

	 Securing Flow Definitions
	Spring Security with OAuth
	 Spring Social Projects

	 Summary
	 Quick Quiz
	 Practical Exercise

	Chapter 8: Spring Boot and WebSocket
	 What Is Spring Boot?
	 Usage and Configuration
	 Customizing Spring Boot
	 Importing Additional Configuration Elements
	 Running Spring Boot Applications
	 Testing Spring Boot Applications

	 WebSocket Introduction
	 Spring WebSocket Implementation
	 Spring WebSocket Configuration
	 WebSocket Client Application
	 Configure the Server Application to Send Scheduled Messages
	 Monitoring and Debugging

	Appendix: Resources and Quiz Answers
	 Study Guide Projects
	 Gradle Configuration Explained
	 Building and Troubleshooting
	 Deploy on Apache Tomcat

	 Quiz Answers
	 Quiz Solution for Chapter 2
	 Quiz Solution for Chapter 3
	 Quiz Solution for Chapter 5
	 Quiz Solution for Chapter 6
	 Quiz Solution for Chapter 7

	Index

