

Power	Pivot	and	Power	BI:
The	Excel	User's	Guide	to	the	

Data	Revolution
by

Rob	Collie
&

Avi	Singh
Holy	Macro!	Books

PO	Box	541731

Merritt	Island,	FL	32954

Power	Pivot	and	Power	BI
©	2016	Robert	Collie	and	Tickling	Keys,	Inc.

All	rights	reserved.	No	part	of	this	book	may	be	reproduced	or	transmitted	in	any	form	or
by	 any	means,	 electronic	 or	 mechanical,	 including	 photocopying,	 recording,	 or	 by	 any
information	 or	 storage	 retrieval	 system	 without	 permission	 from	 the	 publisher.	 Every
effort	 has	 been	 made	 to	 make	 this	 book	 as	 complete	 and	 accurate	 as	 possible,	 but	 no
warranty	or	fitness	is	implied.	The	information	is	provided	on	an	“as	is”	basis.	The	authors
and	the	publisher	shall	have	neither	liability	nor	responsibility	to	any	person	or	entity	with
respect	to	any	loss	or	damages	arising	from	the	information	contained	in	this	book.

Author:	Rob	Collie	&	Avi	Singh

Layout:	Jill	Bee

Technical	Editor:	Scott	Senkeresty

Cover	Design:	Shannon	Travise	&	Jocelyn	Collie

Indexing:	Nellie	J.	Liwam

Published	by:	Holy	Macro!	Books,	PO	Box	541731	Merritt	Island	FL	32954	USA

Distributed	by:	Independent	Publishers	Group,	Chicago,	IL

ISBN:	978-1-61547-039-6	Print,	978-1-61547-226-0	PDF,	978-1-61547-349-6	ePub,	978-
1-61547-126-3	Mobi

LCCN:	2015940638

Contents	at	a	Glance
Dedications

Supporting	Workbooks	and	Data	Sets

Errata	and	Book	Support

A	Note	on	Hyperlinks

Foreword	and	Forward

Introduction	-	Our	Two	Goals	for	this	Book

1	-	A	Revolution	Built	On	YOU

2	-	Power	Pivot	and	the	Power	BI	Family:	Making	Sense	of	the	Various	Versions

3	-	Learning	Power	Pivot	“The	Excel	Way”

4	-	Loading	Data	Into	Power	Pivot

5	-	Intro	to	Calculated	Columns

6	-	Introduction	to	DAX	Measures

7	-	The	“Golden	Rules”	of	DAX	Measures

8	-	CALCULATE()	–	Your	New	Favorite	Function

9	-	ALL()	–	The	“Remove	a	Filter”	Function

10	-	Thinking	in	Multiple	Tables

11	-	“Intermission”	–	Taking	Stock	of	Your	New	Powers

12	-	Disconnected	Tables

13	-	Introducing	the	FILTER()	Function,	and	Disconnected	Tables	Continued

14	-	Introduction	to	Time	Intelligence

15	-	IF(),	SWITCH(),	BLANK(),	and	Other	Conditional	Fun

16	-	SUMX()	and	Other	X	(“Iterator”)	Functions

17	-	Multiple	Data	Tables

18	-	Multiple	Data	Tables	–	Differing	Granularity

19	-	Performance:	Keep	Things	Running	Fast

20	-	Power	Query	to	the	Rescue

21	-	Power	BI	Desktop

22	-	“Complicated”	Relationships

23	-	Row	and	Filter	Context	Demystified

24	-	CALCULATE	and	FILTER	–	More	Nuances

25	-	Time	Intelligence	with	Custom	Calendars:	Greatest	Formula	in	the	World

26	-	Advanced	Calculated	Columns

27	-	New	DAX	Functions…	and	Variables!

28	-	“YouTube	for	Data”	–	The	Importance	of	a	Server

PS:	Can	We	Ask	You	for	a	Special	Favor?

A1	-	Power	Pivot	and	SSAS	Tabular:	Two	Tools	for	the	Price	of	One	(again!)

A2	-	Cube	Formulas	–	the	End	of	GetPivotData()

A3	-	Some	Common	Error	Messages

A4	-	People:	The	Most	Powerful	Feature	of	Power	Pivot

Index

Detailed	Table	of	Contents
Power	Pivot	and	Power	BI

Dedications

Supporting	Workbooks	and	Data	Sets

Errata	and	Book	Support

A	Note	on	Hyperlinks

Foreword	and	Forward

“State	of	the	Union”	November	2015	–	What’s	Changed?

What	Has	Changed	at	Microsoft?	Virtually	Everything.

What’s	Changed	in	My	Corner	of	the	World?	Also	Everything.

Introduction	-	Our	Two	Goals	for	this	Book

1	-	A	Revolution	Built	On	YOU

Does	This	Sound	Familiar?

Excel	Pros:	The	World	Is	Changing	in	Your	Favor

Our	Importance	Today
Excel	at	the	Core

Three	Ingredients	of	Revolution
Ingredient	One:	Explosion	of	Data

Ingredient	Two:	Economic	Pressure

Ingredient	Three:	Dramatically	Better	Tools

2	-	Power	Pivot	and	the	Power	BI	Family:	Making	Sense	of	the	Various	Versions

It’s	a	Family	of	Products	Built	on	Shared	Engines
Power	Query	is	a	Close	Second	in	Importance

Visuals:	The	Crucial	“Last	Mile”

Power	BI	Desktop:	Two	Tools	for	the	(Learning)	Price	of	One!
Same	Engines,	Just	Different	Visuals

What	do	we	mean	by	the	“tough”	or	“valuable”	stuff?

Power	Pivot	(in	Excel)	Versions
Power	Pivot	for	Excel	2010

Power	Pivot	for	Excel	2013	-	Only	Available	in	“Pro	Plus”	Excel
Differences	in	User	Interface:	2010,	2013,	2016
When	We	Said	“Cosmetic”	We	Meant	“Awkward”

32-bit	or	64-bit?

Office	2010	or	Newer	is	Required

3	-	Learning	Power	Pivot	“The	Excel	Way”

Power	Pivot	is	Like	Getting	Fifteen	Years	of	Excel	Improvements	All	at	Once

Learn	Power	Pivot	As	You	Learned	Excel:	Start	Simple	&	Grow

When	to	Use	Power	Pivot,	and	How	it	Relates	to	Normal	Pivot	Usage
What	This	Book	Will	Cover	in	Depth

4	-	Loading	Data	Into	Power	Pivot

No	Wizards	Were	Harmed	in	the	Creation	of	this	Chapter

Everything	Must	“Land”	in	the	Power	Pivot	Window
Launching	the	Power	Pivot	Window

One	Sheet	Tab	=	One	Table

You	Cannot	Edit	Cells	in	the	Power	Pivot	Window

Everything	in	the	Power	Pivot	Window	Gets	Saved	into	the	Same	XLSX	File

Many	Different	Sources

Linked	Tables	(Data	Source	Type)
Advantages

Limitations

Tips	and	Other	Notes

Pasting	Data	Into	Power	Pivot	(Data	Source	Type)
Advantages

Limitations

Importing	From	Text	Files	(Data	Source	Type)
Advantages

Limitations

Databases	(Data	Source	Type)
Advantages

Limitations

Less	Common	Data	Source	Types
SharePoint	Lists

Reporting	Services	(SSRS)	Reports

Cloud	Sources	Like	Azure	DataMarket	and	SQL	Azure

“Data	Feeds”

Other	Important	Features	and	Tips
Renaming	up	Front	–	VERY	Important!

Don’t	Import	More	Columns	than	You	Need

Table	Properties	Button

Existing	Connections	Button

5	-	Intro	to	Calculated	Columns

Two	Kinds	of	Power	Pivot	Formulas

Adding	Your	First	Calculated	Column
Starting	a	Formula

Referencing	a	Column	via	the	Mouse

Referencing	a	Column	by	Typing	and	Autocomplete

Just	like	Excel	Tables!

Rename	the	New	Column

Reference	the	New	Column	in	Another	Calculation

Properties	of	Calculated	Columns
No	Exceptions!

No	“A1”	Style	Reference

Stored	Statically	with	the	File

Slightly	More	Advanced	Calculations
Function	Names	Also	Autocomplete

Aggregation	Functions	Implicitly	Reference	the	Entire	Column

Quite	a	Few	“Traditional”	Excel	Functions	are	Available

Excel	functions	Are	Identical	in	Power	Pivot

Enough	Calculated	Columns	for	Now

6	-	Introduction	to	DAX	Measures

“The	Best	Thing	to	Happen	to	Excel	in	20	Years”

Aside:	A	Tale	of	Two	Formula	Engines

Adding	Your	First	Measure
Create	a	Pivot

Add	a	Measure!

Name	the	Measure

Results

Works	As	You	Would	Expect

“Implicit”	Versus	“Explicit”	Measures

Referencing	Measures	in	Other	Measures
Another	Simple	Measure	First

Creating	a	Ratio	Measure

Original	Measures	Do	NOT	Have	to	Remain	on	the	Pivot

Changes	to	“Ancestor”	Measures	Flow	Through	to	Dependent	Measures

Cases	Where	This	Makes	Real	Sense

Reuse	Measures,	Don’t	“Redefine”

Other	Fundamental	Benefits	of	Measures
Use	in	Any	Pivot

Centrally-Defined	Number	Formatting

Whetting	Your	Appetite:	COUNTROWS()	and	
DISTINCTCOUNT()
COUNTROWS(Sales)

DISTINCTCOUNT(Sales[OrderDate])

Deriving	More	Useful	Measures	From	These	Two

Rearrange	Pivot,	Measures	Automatically	Adjust!

Slicers	in	Different	Versions	of	Excel

Measures	Are	“Portable	Formulas”

7	-	The	“Golden	Rules”	of	DAX	Measures

How	Does	the	DAX	Engine	Arrive	at	Those	Numbers?
Stepping	Through	That	Example

Translating	the	Examples	Into	Three	Golden	Rules
Rule	A:	DAX	Measures	Are	Evaluated	Against	the	Source	Data,	NOT	the	Pivot

Rule	B:	Each	Measure	Cell	is	Calculated	Independently

Rule	C:	DAX	Measures	are	Evaluated	in	6	Logical	Steps

Step	1:	Detect	Pivot	Coordinates

Step	2:	CALCULATE	Alters	Filter	Context

Step	3:	Apply	Those	Filter	Coordinates	to	the	Underlying	Table(s)

Step	4:	Filters	Follow	the	Relationship(s)

Step	5:	Evaluate	the	Arithmetic

Step	6:	Return	Result

How	the	DAX	Engine	Calculates	Measures
No	“Naked	Columns”	in	Measure	Formulas

Best	Practice:	Reference	Columns	and	Measures	Differently

Best	Practice:	Assign	Measures	to	the	Right	Tables

8	-	CALCULATE()	–	Your	New	Favorite	Function

A	Supercharged	SUMIF()
CALCULATE()	Syntax

CALCULATE()	in	Action	–	a	Few	Quick	Examples

How	CALCULATE()	Works

Two	Useful	Examples	of	CALCULATE()
Example	1:	Transactions	of	a	Certain	Type

Example	2:	Growth	Since	Inception

Alternatives	to	the	“=”	Operator	in	<Filters>

Evaluation	of	Multiple	<filters>	in	a	Single	CALCULATE()

The	“ALL”	(aka	“Unfiltered”)	Filter	Context
Not	all	Totals	Are	Completely	(or	Even	Partially)	Grand

9	-	ALL()	–	The	“Remove	a	Filter”	Function

The	Crisp	Basics

The	Practical	Basics	–	Two	Examples
Example	1	–	Percentage	of	Parent

Example	2	–	Negating	a	Slicer

Variations

ALLEXCEPT()

ALLSELECTED()

10	-	Thinking	in	Multiple	Tables

A	Simple	and	Welcome	Change

Unlearning	the	“Thou	Shalt	Flatten”	Commandment

Relationships	Are	Your	Friends

“Lookup”	Tables
The	Diagram	View

Using	Related	Tables	in	a	Pivot

Why	That	Works:	Filter	Context	“Travels”	Across	Relationships

Visualizing	Filters	Flowing	“Downhill”	–	One	of	Our	Mental	Tricks

Filters	from	All	Related	Lookup	Tables	Are	Applied

CALCULATE()	<Filters>	Also	Flow	Across	Relationships

11	-	“Intermission”	–	Taking	Stock	of	Your	New	Powers

12	-	Disconnected	Tables
A	Parameterized	Report

Adding	the	Parameter	Table

Adding	a	“Parameter	Harvesting”	Measure

The	Field	List	is	Grumpy	About	This

Using	the	Parameter	Measure	for	Something…Useful

Parameter	Table	Can	Be	Used	on	Rows	and	Columns	Too!

Why	is	it	Important	That	They	Be	Disconnected?

A	Very	Powerful	Concept

Disconnected	Table	Variation:	Thresholds
Create	a	Disconnected	Table	to	Populate	the	Slicer:

Write	a	Measure	to	“Harvest”	the	User’s	Selection:

Diverging	From	the	Prior	Example:	We	Need	to	Filter,	Not	Perform	Math

CALCULATE()	Has	a	Limitation?	Not	really.

13	-	Introducing	the	FILTER()	Function,	and	Disconnected	Tables	Continued

When	to	Use	FILTER()

FILTER()	Syntax

Why	is	FILTER()	Necessary?
It’s	All	About	Performance	(Speed	of	Formula	Evaluation)

How	to	Use	FILTER()	Carefully

Applying	FILTER()	in	the	“Thresholds”	Example
Revisiting	the	Successful	Formula

Verifying	That	the	Measures	Work

This	Could	Not	Be	Done	with	Relationships

Tip:	Measures	Based	on	a	Shared	Pattern	–	Create	via	Copy/Paste

More	Variations	on	Disconnected	Tables
Upper	and	Lower	Bound	Thresholds

Fixing	the	Sort	Order	on	the	Slicer:	The	“Sort	By	Column”	Feature

Completing	the	Min/Max	Threshold

A	Way	to	Visualize	Disconnected	Tables

Putting	This	Chapter	in	Perspective

14	-	Introduction	to	Time	Intelligence

At	Last,	It	is	Time!

“Standard	Calendar”	versus	“Custom	Calendar”
Standard	Calendars:	The	Focus	of	This	Chapter

Custom	Calendars:	Perhaps	Even	More	Important	than	Standard	(Covered	Later)

Calendar:	A	Very	Special	Lookup	Table
Where	to	Get	a	Calendar	Table

Properties	of	a	Calendar	Table

Our	Calendar	table:	Imported	and	Related

Operates	like	a	Normal	Lookup	Table

First	Special	Feature:	Enable	Date	Filtering	via	Mark	as	Date	Table

Second	Special	Feature:	Time	Intelligence	Functions!
Diving	in	with	DATESYTD()

Anatomy	of	DATESYTD()

Function	Definition

How	Does	it	Work?

Changing	the	Year-End	Date

DATESMTD()	and	DATESQTD()	–	“Cousins”	of	DATESYTD()

TOTALYTD()	–	Another	Cousin	of	DATESYTD()

The	Remaining	(Many)	Time	Intelligence	Functions	–	Grouped	Into	“Families”

FIRSTDATE()	and	LASTDATE()

ENDOFMONTH(),	STARTOFYEAR(),	etc.

DATEADD()
Growth	Versus	Last	Year	(Year-Over-Year,	YOY,	etc.)

Quirks	and	Caveats

You	Must	Have	Contiguous	Date	Ranges	on	Your	Pivot

DATEADD()	Has	Special	Handling	for	“Complete”	Months/Quarters/Years

DATEADD()	Lacks	Intelligence	for	Weeks

SAMEPERIODLASTYEAR()

PARALLELPERIOD(),	NEXTMONTH(),	PREVIOUSYEAR(),	etc.
PARALLELPERIOD()

NEXTMONTH(),	PREVIOUSYEAR(),	etc.

DATESBETWEEN()
“Life	to	Date”	Calculations

Removing	That	Hardwired	1/1/1900

DATESBETWEEN()	is	Fantastic	with	Disconnected	Tables	Too!

15	-	IF(),	SWITCH(),	BLANK(),	and	Other	Conditional	Fun

Using	IF()	in	Measures

The	BLANK()	Function

DIVIDE()	Function

The	ISBLANK()	Function

HASONEVALUE()

IF()	Based	on	Row/Column/Filter/Slicer	Fields
The	VALUES()	Function

Using	VALUES()	for	Columns	That	Are	Not	on	the	Pivot

VALUES()	Only	Returns	Unique	Values

SWITCH()
SWITCH	TRUE()

16	-	SUMX()	and	Other	X	(“Iterator”)	Functions

Need	to	Force	Totals	to	Add	Up	“Correctly?”

Anatomy	of	SUMX()

SUMX()	in	Action

Detailed	Stepthrough

MINX(),	MAXX(),	AVERAGEX()

FILTER()

COUNTX()	and	COUNTAX()
Why	is	This	Different	From	COUNTROWS(),	Then?

COUNTAX()	versus	COUNTX()

Using	the	X	Functions	on	Fields	That	Aren’t	Displayed
But	Which	Country?

RANKX()
The	Use	of	ALL()

Ties

The	Optional	Parameters

Duplicate	FullNames?

TOPN()

Non-Measure	Second	Arguments	to	the	X	Functions
The	COUNTAX()	Mystery	Solved!

17	-	Multiple	Data	Tables

Service	Calls

Service	Calls	and	Sales	Mashup
In	Traditional	Excel

Do	Not	“Flatten”

Measures	from	Different	Data	Tables	in	the	Same	Pivot!

Hybrid	Measures

Multiple	Data	Tables	Gotchas
Using	Fields	from	Lookup	Table	vs.	the	Data	Table

Data	Table	Connected	to	Some	but	Not	All	Lookup	Tables

Staying	Out	of	Trouble

18	-	Multiple	Data	Tables	–	Differing	Granularity

Example1:	Budget	versus	Actuals
Difficult	in	Normal	Excel

Much	Faster	and	More	Flexible	in	Power	Pivot

Creating	Relationships	–	We	Need	Some	New	Lookup	Tables

Where	Do	We	Get	This	New	Lookup	Table?	Consider	a	Database	or	Power	Query

SalesTerritory	is	at	Same	Granularity	Already

Repeating	the	“New	Table”	Process	for	Calendar

Integrated	Pivot

Hybrid	Measures	with	Data	at	Different	Grain

Example	2:	Using	that	Mysterious	RANKX()	Third	Argument
The	Problem:	Ranking	MY	Products	Against	Theirs!

Year	Granularity	Mismatch	Means	a	New	Lookup	Table

Simple	Measure

Now	the	Absolutely	Amazing	“Cross-Rank”	Measure

And	Since	Both	Are	Filtered	by	the	Years	Table…

19	-	Performance:	Keep	Things	Running	Fast

How	Important	is	Speed?
“Now”	Is	Three	Seconds	in	Length

What	Happens	When	Something	Takes	Longer	Than	Three	Seconds?

Slicers:	The	Biggest	Culprit
“Cross-Filtering”	Behavior

Cross-Filtering	is	Expensive	in	Terms	of	Performance

Mitigating	the	Effects	of	Cross-Filtering

How	to	Turn	off	Cross-Filtering

Turning	off	Cross-Filtering	Only	Impacts	that	Slicer

Slicers	For	Which	You	Should	Turn	Cross-Filtering	Off

The	Shape	of	Your	Source	Tables	Is	Also	Important
Narrower	Tables	are	Better

Imported	Columns	Are	Generally	Better	than	Calculated	Columns

“Star	Schema”	is	Generally	Better	than	“Snowflake	Schema”

Measure	Performance
DISTINCTCOUNT()	is	Much	Faster	than	COUNTROWS(DISTINCT())

FILTER()	Should	Only	Be	Used	Against	Lookup	Tables	and	Other	“Small”	Columns

Remember	That	the	“X”	Functions	Are	Loops

20	-	Power	Query	to	the	Rescue

Power	Query:	Bring	Order	to	Messy	Data

#1	-	Appending	Files	to	Create	a	Single	Power	Pivot	Table
Scenario

Connecting	to	One	of	the	CSV	Files

Adding	a	Custom	Column	to	“Tag”	This	File

Loading	the	Data	into	Power	Pivot

Connecting	to	the	Second	CSV	File

Connecting	to	the	Third	CSV	File

Time	for	the	Append!

“Keeping”	Only	the	Appended	Query

Testing	Refresh

Why	This	Is	a	Major	Benefit

#2	-	Combine	Multiple	Files	from	a	Folder	into	a	Single	Table
Scenario

From	Folder

Combine	CSV	Files

First	Row	As	Headers

Change	Data	Type	and	Remove	Errors

Testing	Refresh

Why	This	Is	a	Major	Benefit

#3	–	Adding	Custom	Columns	to	Your	Lookup	Tables
Scenario

Get	Data

Add	Custom	Column

Define	Custom	Formula

Why	This	Is	so	Amazing

#4	-	Using	Power	Query	to	“Unpivot”	a	Table
Scenario

Get	Data	from	Excel

Header	Row	Handling	and	Remove	Column

Unpivot!

Rename	and	Change	Type

Why	This	Is	a	Major	Benefit

#5	-	Using	Power	Query	to	Create	a	Lookup	Table	from	a	Table
Scenario

Create	Lookup	Table

Create	Data	Table

Relating	the	Two	Tables

Why	This	Is	so	Amazing

#6	-	Creating	a	Calendar	Table:	Advanced	Power	Query
“Wait,	I	Don’t	See	a	‘Make	Calendar’	Button!”

Steps

Why	This	Is	a	Major	Benefit

How	NOT	to	Use	Power	Query
Don’t	Use	Power	Query	Without	Power	Pivot

Don’t	Use	Power	Query	Calculations	as	a	Substitute	for	DAX	Measures

Don’t	Use	Power	Query	to	Flatten	Tables

Don’t	Use	Power	Query	to	Mash	Two	Data	Tables	Together

21	-	Power	BI	Desktop

Meet	the	New	Kid	On	the	Block
Tons	of	Visualizations

Creating	Reports	is	Easy	as	1-2-3

Fully-Interactive	Reports	Make	Your	Data	Come	to	Life

Power	Pivot,	Power	Query	and	Power	View++	All	in	One	Package

Download	Today!

Remember:	Same	Engines,	Different	Visuals

A	Few	Words	of	Perspective
You’re	Probably	Going	to	Use	Both

The	“Sales	Pitch”	–	Show	Excel-Based	to	the	Analysts,	Desktop	to	Execs

The	“Tour”
Missing	Terminology

The	Different	Modes

Get	Data	(a.k.a.	Power	Query)

Data	Model	(a.k.a.	Power	Pivot)

Reports	(a.k.a.	Power	View,	but	Much	Better!)

Import	Existing	Excel	Power	Pivot	Models!

Sharing	Power	BI	Desktop	Files

22	-	“Complicated”	Relationships

Multiple	Relationships	Between	the	Same	Two	Tables
USERELATIONSHIP()

Many	to	Many	Relationships
First,	a	Bad	Example

Another	Bad	Example

Real-World	Overlap:	The	Source	of	“Legit”	Many-to-Many

“Bridge”	Table

Apply	M2M	as	a	Pattern

Power	BI	Desktop

23	-	Row	and	Filter	Context	Demystified

The	Basics:	Gateway	to	Doubling	Your	Superpowers
The	Simple	Definitions

Row	Context:	The	Key	Ingredient	of	Calc	Columns

There’s	No	Row	Context	in	Measures!

Filter	Context:	The	Key	Ingredient	of	Measures

There’s	No	Filter	Context	in	Calc	Columns!

Recap	So	Far

Interaction	with	Relationships
Relationships	and	Filter	Context

Relationships	and	Row	context

Exceptions	and	Overrides!

Iterator	Functions	Create	Row	Context	During	Measure	Calculation

CALCULATE	Creates	Filter	Context	in	Calc	Columns

We	can	use	CALCULATE	to	“follow”	relationships	in	calc	columns

Using	Measures	Within	a	Row	Context:	a	Genuine	Curveball

Putting	It	All	Together:	Review	Example
Why	Did	Our	Original	Measure	Work	to	Begin	With?

Recap	Within	the	Context	of	FILTER()

In	Case	of	Emergency…

Key	Points	from	This	Chapter

24	-	CALCULATE	and	FILTER	–	More	Nuances

CALCULATE	Filter	Arguments	Override	Pivot	Filters

The	“Secret”	Second	Purpose	of	ALL(),	FILTER(),	Etc.
CALCULATE’s	Definition	Gives	Us	a	Hint!

ALL()	Is	the	“Remove	Filters”	Function,	but	it’s	Also	a	Table!

There	Are	Dozens	of	These	Dual-Purpose	Functions!

Could	Have	Been	Separate	Functions?

Nesting	Table	Functions	Inside	One	Another
FILTER	Can	Unfilter?

Putting	it	All	Together

25	-	Time	Intelligence	with	Custom	Calendars:	Greatest	Formula	in	the	World

Perhaps	Our	Favorite	Thing	in	DAX

Custom	Calendars
The	Periods	Table	-	a	“4/4/5”	Example

How	This	Changes	Things:	We	Need	to	“Write”	Our	Own	Time	Intelligence	Functions

Connecting	the	Periods	Table

Simple	“Sales	in	Period”	Measure

Another	Familiar	Concept:	Sales	per	Day

First	New	Concept:	Sales	per	Day	in	Prior	Period
Getting	Organized	First

Desired	Results

The	Greatest	Formula	in	the	World
“Clear	Filters	Then	Re-Filter”	–	Another	Name	for	GFITW

Clear	Filter

Re-Filter:	Navigation	Arithmetic

Table[Column]	Uses	Row	Context	Generated	by	FILTER

MAX()	Operates	Over	a	Filter	Context

In	Your	Periods	Table,	You	Always	Need	a	Numeric	PeriodID	Column	or	Equivalent

More	GFITW	measures	–	Year	Over	Year	and	Year	To	Date
Prior	Period	Sales

Year	Over	Year	(YOY)	Custom	Calendar	Measure

Year	To	Date	(YTD)	Measure	with	Custom	Calendar

Fixing	Measures	to	Work	at	Total	Level
Suppressing	Prior	Period	for	Totals

Fixing	YOY	to	Work	at	Total	Level

The	Fix

Fixing	Prior	Period	to	Work	on	Totals,	Too

The	Usual	“Percent	Growth”	Formulas

26	-	Advanced	Calculated	Columns

Perspective:	Calculated	Columns	Are	Not	DAX’s	Strength!
OK,	Power	Pivot	Calc	Columns	Are	a	Strength	in	Some	Ways.

But	More	Difficult	in	Some	Cases

Start	Out	With	“Not	so	Advanced”
Grouping	Columns

Unique	Columns	for	Sorting

Another	Sort	by	Column	Example

Now	For	the	Advanced	Examples
Summing	up	in	a	Lookup	Table

Use	of	the	EARLIER()	Function

EARLIER()	in	Action

An	Even	More	Advanced	Example

Calculated	Columns	are	Static

Memory	and	CPU	Consumption	During	Recalculation	of	Complex	Calc	Columns

27	-	New	DAX	Functions…	and	Variables!

Amazing	Since	2010,	and	STILL	Improving

Important	Note:	Excel	2016+	and	Power	BI	Desktop	Only!

New	Functions	–	Some	Highlights
DATEDIFF()

MEDIAN()	and	PERCENTILE

PRODUCT()

GEOMEAN()	and	GEOMEANX()

Other	Corresponding	X	Functions

CONCATENATEX:	The	Most	Interesting	Function	in	the	World?

ISEMPTY()

INTERSECT(),	EXCEPT()	and	UNION()

INTERSECT()

EXCEPT()

UNION()

More	New	Functions

DAX	Variables
Variables	Are	like	a	Tape	Recorder

Variables	Offer	Three	Benefits

Benefit	One:	Cleaner	Formulas

The	VAR	Keyword

The	RETURN	Keyword

Referencing	a	Variable

Cleaner	Formulas	(Benefit	One)	Revisited

Benefit	Two:	Less	“Mysterious”	Formulas

Example	1:	Alternative	to	EARLIER?

Example	2:	Measure	References	Inside	FILTER	(Within	a	Measure)

28	-	“YouTube	for	Data”	–	The	Importance	of	a	Server

Files	–	Great	for	Storage,	Not	Great	for	Sharing
Email	Sucks	as	a	Delivery	Vehicle	for	Our	Awesome	Work!

Network	Distribution	via	File	Shares?	Not	much	better.

Parallels	to	Video	Files,	Circa	1998

Parent,	Grandparents,	and	Pictures	of	Cats

YouTube	Happens!

Importance	of	Web/Mobile

So	We	Need	“YouTube	for	Data”
PowerBI.com	Quick	Tour

Step	1:	Upload	XLSX/PBIX	File	to	PowerBI.com

Step	2:	Sharing	Your	Dashboard

Cloud/Server	Option	Comparison
Cloud/Server	Sharing	Option:	Even	More	Valuable	than	YouTube

PS:	Can	We	Ask	You	for	a	Special	Favor?

A1	-	Power	Pivot	and	SSAS	Tabular:	Two	Tools	for	the	Price	of	One	(again!)

SSAS	Tabular	Features

Power	Pivot	to	SSAS	Tabular
Connect	to	SSAS	Tabular	from	Excel

Going	Further	with	SSAS	Tabular:	Visual	Studio

Key	Takeaways

A2	-	Cube	Formulas	–	the	End	of	GetPivotData()

Formulas	Reaching	into	Pivots	=	The	Dark	Ages

One	Click	That	Will	Change	Your	Life

The	Data	Is	Still	“Live!”

You	Can	Also	Write	Them	“From	Scratch”
For	Starters,	CUBEVALUE()	Is	All	You	Really	Need

Adding	a	Slicer	is	easy…

Perspective	–	When	to	Use,	Tradeoffs,	Etc.

More	Information

A3	-	Some	Common	Error	Messages

Addin	is	“Out	of	Sync”

“Initialization	of	the	Data	Source	Failed”

Other	Scary-But-Harmless	Errors

Perspective

A4	-	People:	The	Most	Powerful	Feature	of	Power	Pivot

Index

Dedications
Rob:

To	everyone	who	has	ever	gotten	excited	about	a	PivotTable.	We	all	share	a	kindred	and
wonderful	sickness.

Avi:

To	my	Mom	and	Dad.	For	teaching	me	that	it	is	good	to	be	important,	but	more	important
to	be	good.

Supporting	Workbooks	and	Data	Sets
The	supporting	workbooks	and	datasets	can	be	downloaded	from:

http://ppvt.pro/BookFiles

Note	that	these	are	being	provided	on	an	informal	basis.	You	may	find	the	supporting	files
helpful	but	we’ve	made	every	effort	 to	provide	 full	 coverage	of	 topics	within	 the	book.
You’ll	never	find	us	using	these	files	as	an	escape	hatch	and	saying	something	like	“take	a
look	at	the	supporting	files	if	this	isn’t	clear”.

http://ppvt.pro/BookFiles

1.	Thanks	to	SQLBI	team	for	providing	a	useful	resource	to	the	community

Errata	and	Book	Support
We	have	made	 every	 effort	 to	 ensure	 the	 accuracy	 of	 this	 book.	 If	 you	 do	 find	 an
error,	please	report	it	using	the	“Errata”	button	on	http://ppvt.pro/daxbook	page.

A	Note	on	Hyperlinks
You	will	notice	that	all	of	the	hyperlinks	in	this	book	look	like	this:

http://ppvt.pro/<foo>

Where	<foo>	is	something	that	is	short	and	easy	to	type.	Example:

http://ppvt.pro/1stBlog

⚠	These	links	are	CaSe	SeNsItIvE!	If	the	link	in	the	book	ends	in	“1stBlog”
like	 above,	 typing	 “1stbog”	or	 “1stBLOG”	will	 not	 take	 you	 to	 the	 intended
page!

This	is	a	“short	link”	and	is	intended	to	make	life	much	easier	for	readers	of	the
print	edition.	That	link	above	will	take	you	to	the	first	blog	post	Rob	ever	published,
which	went	live	in	October	of	2009.

Its	“real”	URL	is	this:

http://www.PowerPivotpro.com/2009/10/hello-everybody/

Which	would	you	rather	type?

So	just	a	few	notes:

1.	 These	short	links	will	always	start	with	http://ppvt.pro/	–	which	is	short
for	“PowerPivotPro,”	the	name	of	our	blog.

2.	 Not	 all	 of	 these	 links	 will	 lead	 to	 our	 blog	 –	 some	 will	 take	 you	 to
Microsoft	sites	for	instance.

3.	 The	book	does	not	rely	on	you	following	the	links	–	the	topics	covered	in
this	 book	 are	 intended	 to	 be	 complete	 in	 and	 of	 themselves.	 The	 links
provided	are	strictly	optional	“more	info”	type	of	content.

http://ppvt.pro/daxbook
http://ppvt.pro/1stBlog
http://www.powerpivotpro.com/2009/10/hello-everybody/

Foreword	and	Forward
“State	of	the	Union”	November	2015	–	What’s	Changed?
As	we	wrapped	up	final	edits	on	this	book,	Avi	and	Bill	said,	“OK	Rob,	you	know	those
first	two	chapters?	The	ones	that	set	the	stage	and	give	perspective	to	this	whole	thing?	It’s
time	for	you	to	revise	those	and	bring	them	up	to	date.”

They	had	a	point	–	it	had	been	more	than	three	years	since	I	wrote	those	chapters.	And	a
lot	 has	 changed	 since	 then	 in	 our	 landscape,	 reshaped	 as	 it	 is	 by	Microsoft’s	 vigorous
seismic	activity.

But	when	I	re-read	those	two	chapters,	I	found	very	little	that	I	wanted	to	alter.	I’m
leaving	those	largely	untouched,	which	is	a	rare	move	for	me.

Why	did	I	choose	to	forgo	such	a	writing	opportunity,	since	I	enjoy	it	so	much?

Here’s	why:	those	chapters	talk	about	things	that	fundamentally	do	not	change	–	the
importance	of	people,	the	importance	of	Excel,	the	massive	opportunities	afforded	to	“data
people,”	and	Microsoft’s	continued	investment	in	all	of	the	above.

I	 suspect	 that	 ten	years	 from	now,	 if	we’re	 revising	 this	book	 for	 the	Nth	edition,	 those
chapters	will	again	largely	remain	unchanged	–	except	that	we	will	be	talking	about	a	data
revolution	that’s	already	run	its	course,	rather	than	one	that’s	in	progress	

Instead	 I’m	 going	 to	 use	 this	 Foreword	 to	 reflect	 a	 bit	 on	 some	 things	 that	 truly	 have
changed.	Let’s	start	with	the	800	pound	gorilla,	my	former	employer	(and	Avi’s)…

The	Microsoft	Corporation.

What	Has	Changed	at	Microsoft?	Virtually	Everything.
Let’s	see	here,	just	a	few	things:

Ballmer	out,	Nadella	in	–	the	change	at	the	top	of	Microsoft	is	not	to	be	underestimated.
Satya	brings	a	very	different	and	more	open	perspective	to	the	game,	and	that	absolutely
makes	a	difference	to	us.	For	example,	today’s	Microsoft	does	not	stubbornly	ignore	iOS
and	Android,	whereas	the	old	regime	acted	like	“if	we	ignore	them	long	enough,	they	will
go	away.”	(A	few	years	back	when	MS	announced	their	earliest	plans	for	mobile-friendly
BI,	and	it	revolved	solely	around	the	soon-to-be-released	Windows	8	while	ignoring	other
platforms,	I	chortled	for	two	months	consecutive	before	eventually	having	to	see	a	doctor
to	make	it	stop.)	It’s	worth	reflecting	how	far	we	have	come	since	then.	Microsoft	Power
BI	is	available	in	the	Apple	App	Store,	for	crying	out	loud,	and	it’s	not	at	all	weird	to	see	it
there?	Times	have	changed.

Power	Query	–	when	the	first	edition	of	this	book	went	to	press,	I	don’t	think	we’d	even
heard	 of	 Power	 Query.	 Microsoft	 already	 had	 a	 world-changing	 data	 engine	 –	 the
DAX/Power	Pivot	engine	–	and	that	was	more	than	enough,	in	my	eyes,	to	kickstart	a	total
revolution	in	how	the	world	operates.	So	to	have	them	surprise	us,	out	of	the	blue,	with	a
relatively	 user-friendly	 desktop	 engine	 for	 shaping	 and	 cleaning	 data…	 a	 “sibling”	 that

does	 virtually	 everything	 that	 Power	Pivot	 could	 not	 do	 on	 its	 own…	um,	 yeah.	Power
Query	is	a	big	deal,	folks,	and	even	though	they	are	retiring	that	name,	the	“M	Engine”	is
here	to	stay,	and	our	professional	lives	are	forever	altered.	Dramatically	for	the	better.

Unity	–	CEO	 isn’t	 the	only	place	where	MS	has	changed	people.	There	have	also	been
several	changes	in	leadership	on	the	relevant	engineering	teams	at	Microsoft.	Some	new
arrivals	on	the	SQL	side	of	the	house	and	some	old	friends	“coming	home”	on	the	Excel
side	of	the	house	have	already	made	a	monster	impact	over	the	past	two	years.	Above	all,
I’m	struck	by	how	unified	Microsoft	seems	to	be	in	the	BI	space	these	days.	Not	perfectly
unified,	 but	 dramatically	more	 so	 than	 I	 have	 ever	 seen	 before.	 Everyone	 seems	 to	 be
pulling	 in	 the	 same	direction	–	 both	within	 the	SQL	 team’s	many	 factions	 (who,	 in	my
time	there,	were	in	open	war	with	one	another),	and	across	the	SQL/Office	boundary.	The
latter	is	particularly	important,	because	the	Excel	team	is	now	100%	“in”	on	Power	Pivot.
They	understand	its	value	and	strategic	importance	to	their	own	product,	whereas	before,
the	Excel	team	regarded	Power	Pivot	with	suspicion	–	as	something	that	had	been	done	to
their	product.

PowerBI.com	and	Power	BI	Desktop	–	consider	this:	at	the	beginning	of	2015,	neither
of	these	things	actually	existed.	In	eleven	short	months,	I’ve	been	through	the	full	cycle	of
opinions:	the	“this	is	vaporware”	phase,	the	“oh	no	they’re	de-emphasizing	Excel”	phase,
the	“what	 the	heck	 is	 this	Desktop	 thing,	 they	really	don’t	get	 it	do	 they”	phase….	And
now,	 the	“wow	this	 is	all	pretty	cool,	Excel	Services	 is	 in	PowerBI.com,	Desktop	opens
Power	Pivot	models,	I	guess	they	actually	DO	have	a	good	roadmap	that	includes	Excel,
and	it’s	all	actually	working”	phase.	Seriously,	I’ve	gone	from	feeling	ambushed	to	feeling
like	 we’ve	 been	 given	 a	 tremendous	 gift.	 And	 oh	 yeah	 –	 a	 free	 cloud	 version	 for
publishing	that	anyone	can	use,	and	that’s	easy	to	sign	up	for?	With	an	open	source	visuals
platform?	This	is	Microsoft	doing	all	 this?	Are	you	KIDDING	ME.	And	 it	all	happened
this	year.

Pace	–	 you	 can	 put	 this	 together	 from	 the	 previous	 bullet,	 but	MS	 is	 now	moving	 at	 a
frightening	 pace.	 Frightening?	 Did	 I	 say	 frightening?	Well,	 it’s	 only	 frightening	 if	 you
write	books.	There’s	now	an	ever-present	danger	of	us	writing	an	entire	chapter	on	how
you	deal	with	a	particular	problem,	and	then	three	weeks	later,	them	adding	a	feature	that
makes	 that	problem	go	away,	 rendering	 the	entire	chapter	obsolete,	 and	 thereby	making
the	authors	look	silly.	Actually,	this	is	virtually	guaranteed	to	happen.	But	outside	of	the
authoring	world,	 yeah,	 this	 is	 a	 very	 good	 thing.	Not	 having	 to	wait	 two	 years	 for	 key
omissions	and/or	bugs	to	be	addressed	has	precious	little	downside.

What’s	Changed	in	My	Corner	of	the	World?	Also
Everything.
I	 always	 tell	 first-time	 public	 speakers	 and	 bloggers	 to	 talk	 about	 their	 own	 personal
experiences.	You	are,	in	fact,	the	world’s	#1	expert	on	what	has	happened	in	your	own	life.

That’s	what	 I’m	going	 to	do	here,	because	hey,	 I	 can’t	be	wrong!	Yes,	 it	 is	 a	 “skewed”
view	in	some	ways,	to	take	small-scale	observations	from	one	person	and	put	them	next	to
the	changes	happening	at	a	goliath	like	Microsoft,	but	I	do	have	what	they	call	a	ringside

seat	 for	 this	 particular	 show.	 There’s	 relevance	 here,	 especially	 when	 it	 comes	 to	 hard
numbers	and	economics.

Let’s	stick	to	that	list	format:

4x	Community	Growth	 -	 Judging	 by	PowerPivotPro.com	blog	 stats,	 our	 community	 –
those	who	are	aware	of	and	using	Power	Pivot	and	Power	BI	–	is	now	approximately	four
times	 the	size	as	 it	was	when	 the	 first	edition	went	 to	print.	That’s	 right,	 there	are	a	 lot
more	“new”	people	at	this	point	than	grizzled	veterans.	As	it	should	be!	This	will	continue
to	hold	true	for	quite	some	time.	Welcome	everyone	

Team	 Growth	 –	 at	 time	 of	 writing	 there	 are	 now	 seventeen	 human	 beings	 with
PowerPivotPro.com	email	addresses.	Guess	how	many	humans	had	such	addresses	three
years	ago?	Zero	–	not	even	I	had	one!	Not	all	of	 the	seventeen	are	doing	Power	Pivot	 /
Power	BI	work,	 but	most	 of	 them	are.	And	 the	 handful	who	play	 auxiliary	 roles	 are	 in
some	ways	 even	more	 telling:	we	 now	 have	 an	 organization	 which	 is	 large	 enough	 to
require	auxiliary	roles.	I	find	that	incredibly	satisfying,	and	not	just	on	the	personal	front	–
our	organization	wouldn’t	be	growing	unless	 the	demand	 for	our	 services	was	growing.
We’re	not	traditional	BI	consultants,	and	we’re	not	spreadsheet	consultants.	We’re	a	new
breed	and	the	market	is	saying	“yes,	this	is	a	good	mutation,	your	virus	may	continue	to
grow.”	 In	 fact	 I’m	 aware	 of	 several	 brand-new	 firms	 that	 have	 joined	 us	 in	 this	 “new
style,”	 and	 the	 world	 of	 data	 is	 so	 large	 that	 there’s	 zero	 sense	 of	 competition,	 only	 a
shared	sense	of	joy	in	changing	the	rules	in	a	positive	way.

Avi	–	among	those	seventeen	is	our	esteemed	co-author,	Avi	Singh,	who	has	been	working
himself	 half	 to	 death	 on	 this	 2nd	 Edition.	 This	 is	 great	 news,	 because	 there	 was	 zero
chance	I’d	have	been	able	to	do	this	alone.	(I’ve	never	been	busier,	as	a	professional,	than
I	am	today).	So	First	Edition	would	probably	have	remained	Only	Edition	without	Avi	on
board.	 If	 anything,	 Avi	 believes	 in	 this	 stuff	more	 than	 I	 do	 –	 anyone	 who	 says	 “I’m
coming	to	work	with	you	even	 if	you	can’t	pay	me”	 is	a	bit	crazy,	but	 the	right	kind	of
crazy.	We	are	lucky	to	have	him,	and	yes,	we	do	pay	him	

Microsoft	 Relationship	 –	 our	 relationship	 with	 the	 “mother	 ship”	 is	 in	 a	 much	 better
place	today	than	three	years	ago.	It’s	not	like	there	was	friction	before,	and	I	do	still	have	a
lot	of	friends	there,	but	there	was	also	a	longstanding	mutual	sense	that	there	wasn’t	much
ROI	in	cooperating.	For	the	most	part,	I	ignored	Microsoft	and	they	returned	the	favor	by
ignoring	me.	But	my	views	and	their	views	on	the	world	have	converged	quite	a	bit	over
the	past	 three	years,	and	I	would	attribute	 that	 to	“everyone	getting	smarter”	 rather	 than
one	of	us	adopting	the	other’s	longstanding	stance.	Today,	our	messaging	helps	Microsoft
reach	customers,	and	Microsoft	likewise	connects	us	with	people	who	need	help.	This	may
sound	like	a	subtle	point,	but	it	could	not	feel	any	more	different.	Surprising	as	it	sounds,
this	ex-Microsoft	employee	(and	High	Priest	of	their	data	platform)	feels	like	he’s	back	in
the	family	for	 the	first	 time	in	six	years.	And	again,	 this	reflects	on	Microsoft’s	positive
direction	as	well	as	the	market.

Confidence	–	 this	one	 is	my	favorite.	Three	years	ago,	 I	was	“sure”	 that	The	New	Way
was	going	 to	 replace	The	Old	Way.	So	“sure,”	 in	 fact,	 that	 I’d	happily	argue	vigorously
with	anyone	who	disagreed	or	questioned	it.	Today	though	I’m	not	just	“sure”	–	I	am	sure.

For	example,	a	 few	weeks	back	 I	watched	a	debate	unfold	 in	 the	comments	 thread	of	a
Power	PivotPro.com	blog	post,	 in	which	one	“combatant”	was	questioning	whether	 this
stuff	 was	 catching	 on	 or	 not.	 Three	 years	 ago	 I	 would	 have	waded	 into	 the	 fray,	 guns
blazing.	But	this	time	I	sat	it	out	–	my	pulse	didn’t	rise,	I	didn’t	take	the	bait.	I	just	moved
on	to	the	next	task.	Someone	else	was	taking	up	the	good	fight	anyway	(thanks	Greg).	The
point	here	is	that	before,	my	certainty	was	predictive	in	nature,	and	that	naturally	carries
some	insecurity.	Today’s	certainty	comes	from	having	seen	it	happen	–	we	are	no	longer
talking	 about	what	will	be,	 we	 are	 talking	 about	what	 undeniably	 is.	 I’m	 a	 lot	more	 at
peace,	a	happier	person,	and	very	much	at	ease	with	the	way	things	are	unfolding.	I	hope
you	share	that	same	confidence	already,	or	that	you	soon	will.

Happy	 –	 OK,	 I	 lied.	This	 one	 is	 my	 favorite.	 If	 you	 ask	 us	 what’s	 the	 #1	 service	 we
provide	 these	 days,	 the	most	 important	 thing	we	 do	 for	 people,	my	 answer	will	 not	 be
related	to	money,	or	efficiency,	or	time.	Yes,	we	do	help	people	quite	a	bit	when	measured
in	those	terms.	But	the	thing	that	strikes	us	all	as	most	important,	is	making	people	happy.
It’s	fair	to	call	Power	Pivot	a	“hard	skill,”	and	it’s	one	that	delivers	ROI	on	a	grand	scale
(ex:	one	of	our	one-week	projects	ended	up	saving	the	client	$25	Million	a	year).	But	the
“soft”	stuff	is	what	really	energizes	us.	This	stuff	makes	people	happier,	and	you	cannot
put	 a	 price	 on	 that.	 We	 live	 charmed	 lives	 –	 working	 in	 data	 and	 solving	 valuable
problems	is	the	sort	of	thing	that	we	“expect”	to	be	boring	and	dehumanizing,	but	when	it
actually	works,	it’s	exactly	the	opposite.

Welcome	to	Happy	Data	Land.

-Rob	Collie,	November	2015

Introduction	-	Our	Two	Goals	for	this	Book
Fundamentally	 of	 course,	 this	 book	 is	 intended	 to	 train	 you	 on	 Power	 Pivot	 and
Power	BI.	 It	captures	 the	 techniques	we’ve	 learned	from	many	years	of	 teaching	Power
Pivot	 and	 its	 “cousin	 technologies”	 (in	 person	 and	 on	 PowerPivotPro.com),	 as	 well	 as
applying	it	extensively	in	our	everyday	work.

Unsurprisingly,	then,	the	contents	herein	are	very	much	instructional	–	a	“how	to”	book	if
ever	there	was	one.

But	we	also	want	you	to	understand	how	to	maximize	the	impact	on	your	career.	This
isn’t	just	a	better	way	to	do	PivotTables.	It	isn’t	just	a	way	to	reduce	manual	effort.	It’s	not
just	a	better	formula	engine.

Even	though	Rob	worked	on	the	first	version	of	Power	Pivot	while	at	Microsoft,	he	had	no
idea	 how	 impactful	 it	 would	 be	 until	 about	 two	 years	 after	 he	 left	 to	 form	 his	 own
company.	He	had	to	experience	it	in	the	real	world	to	see	its	full	potential,	and	even	then	it
took	some	time	to	overwhelm	his	skeptical	nature	(his	Twitter	profile	now	describes	him
as	“skeptic	turned	High	Priest.”)

This	 is	 the	 rare	 technology	 that	 can	 (and	 will)	 fundamentally	 change	 the	 lives	 of
millions	of	people	–	 it	has	more	 in	common	with	 the	 invention	of	 the	PC	than	with	 the

invention	of,	say,	the	VCR.

The	PC	might	 be	 a	 particularly	 relevant	 example	 actually.	At	 a	 prestigious	Seattle	 high
school	 in	 the	 early	 1970’s,	 Bill	 Gates	 and	 Paul	 Allen	 discovered	 a	 mutual	 love	 for
programming,	but	there	was	no	widespread	demand	for	programmers	at	 that	point.	Only
when	 the	 first	 PC	 (the	 Altair)	 was	 introduced	 was	 there	 an	 opportunity	 to	 properly
monetize	their	skills.	Short	version:	they	founded	Microsoft	and	became	billionaires.

But	 zoom	 out	 and	 you’ll	 see	much	more.	Thousands	 of	 people	 became	millionaires	 at
Microsoft	 alone	 (sadly,	we	 both	missed	 that	 boat	 by	 a	 few	 years).	 Further,	without	 the
Altair,	there	would	have	been	no	IBM	PC,	no	Apple,	no	Mac,	no	Steve	Jobs.	No	iPod,	no
iPhone,	no	Appstore.	No	Electronic	Arts,	no	Myst.	No	World	of	Warcraft.	The	number	of
people	who	became	wealthy	as	a	result	of	 the	PC	absolutely	dwarfs	 the	number	of
people	who	had	anything	to	do	with	inventing	the	PC	itself!

We	think	Power	Pivot	and	Power	BI	offer	the	same	potential	wealth-generation	effect
to	Excel	users	 as	 the	PC	offered	budding	programmers	 like	Gates	 and	Allen:	 your
innate	skills	remain	the	same	but	their	value	becomes	many	times	greater.	Before	diving
into	 the	 instructional	 stuff	 in	 Chapters	 2	 and	 beyond,	 Chapter	 1	 will	 summarize	 your
exciting	new	role	in	the	changing	world.

And	like	many	things	 in	when	you	hang	around	with	Rob,	 the	story	starts	with	a	movie
reference	

1	-	A	Revolution	Built	On	YOU
Does	This	Sound	Familiar?
(Updated	 Fall	 2015,	 but	 we	 decided	 to	 leave	 this	 part	 in	 Rob’s	 first-person	 “voice”	 –
because	the	authenticity	is	better-preserved).

In	 the	movie	Fight	 Club,	 Edward	 Norton’s	 character	 refers	 to	 the	 people	 he	 meets	 on
airplanes	as	“single	serving	friends”	–	people	he	befriends	for	three	hours	and	never	sees
again.	 I	have	a	unique	perspective	on	 this	phenomenon,	 thanks	 to	a	 real-world	example
that	is	relevant	to	this	book.

A	woman	takes	her	seat	for	a	cross-country	business	flight	and	is	pleased	to	see	that	her
seatmate	appears	to	be	a	reasonably	normal	fellow.	They	strike	up	a	friendly	conversation,
and	 when	 he	 asks	 her	 what	 she	 does	 for	 a	 living,	 she	 gives	 the	 usual	 reply:	 “I’m	 a
marketing	analyst.”

That	 answer	 satisfies	 99%	 of	 her	 single-serving	 friends,	 at	 which	 the	 conversation
typically	turns	to	something	else.	However,	this	guy	is	the	exception,	and	asks	the	dreaded
follow-up	question:	“Oh,	neat!	What	does	that	mean?”

She	sighs,	ever	so	slightly,	because	the	honest	answer	to	that	question	always	bores	people
to	death.	Worse	than	that	actually:	it	often	makes	the	single-serving	friend	recoil	a	bit,	and
express	a	sentiment	bordering	on	pity.

But	she’s	a	factual	sort	of	person,	so	she	gives	a	factual	answer:	“well,	basically	I	work
with	 Excel	 all	 day,	 making	 PivotTables.”	 She	 fully	 expects	 this	 to	 be	 a	 setback	 in	 the
conversation,	a	point	on	which	we	share	no	common	ground.

Does	 this	woman’s	story	sound	familiar?	Do	you	occasionally	 find	yourself	 in	 the	same
position?

Well	 imagine	 her	 surprise	 when	 this	 particular	 single-serving	 friend	 actually	 becomes
excited	after	hearing	her	answer!	He	lights	up	–	it’s	the	highlight	of	his	day	to	meet	her.

Because,	you	see,	on	this	flight,	she	sat	down	next	to	me.	And	I	have	some	exciting	news
for	people	like	her,	which	probably	includes	you	

Excel	Pros:	The	World	Is	Changing	in	Your	Favor
If	 you	 are	 reading	 this,	 I	 can	 say	 confidently	 that	 the	world	 is	 in	 the	 early	 stages	of	 an
incredible	discovery:	it	is	about	to	realize	how	immensely	valuable	YOU	are.	In	large	part,
this	 book	 is	 aimed	 at	 helping	 you	 reap	 the	 full	 rewards	 available	 to	 you	 during	 this
revolution.

That	 probably	 sounds	 pretty	 appealing,	 but	 why	 am	 I	 so	 comfortable	 making	 bold
pronouncements	about	someone	I	have	never	met?	Well,	 this	is	where	the	single-serving
friend	thing	comes	in:	I	have	met	many	people	like	you	over	the	years,	and	to	me,	you	are
very	much	‘my	people.’

In	 fact,	 for	many	years	while	 I	worked	at	Microsoft,	 it	was	my	 job	 to	meet	people	 like
you.	 I	was	 an	 engineer	 on	 the	Excel	 team,	 and	 I	 led	 a	 lot	 of	 the	 efforts	 to	 design	 new
functionality	for	relatively	advanced	users.

Meeting	 those	people,	and	watching	 them	work,	was	crucial,	 so	 I	 traveled	 to	 find	 them.
When	I	was	looking	for	people	to	meet,	the	only	criteria	I	applied	was	this:	you	had	to	use
Excel	for	ten	or	more	hours	per	week.

I	 found	 people	 like	 that	 (like	 you!)	 all	 over	 the	world,	 in	 places	 ranging	 from	massive
banks	in	Europe	to	the	back	rooms	of	automobile	dealerships	in	Portland,	Oregon.	There
are	also	many	of	you	working	at	Microsoft	itself,	working	in	various	finance,	accounting,
and	marketing	roles,	and	I	spent	a	lot	of	time	with	them	as	well	(more	on	this	later).

Over	those	years,	I	formed	a	‘profile’	of	these	‘ten	hour’	spreadsheet	people	I	met.	Again,
see	if	this	sounds	familiar.

Attributes	of	an	Excel	Pro:

They	grab	data	from	one	or	more	sources.
They	prep	the	data,	often	using	VLOOKUP.
They	then	create	pivots	over	the	prepared	data.
Sometimes	they	subsequently	index	into	the	resulting	pivots,	using	formulas,	to
produce	polished	reports.	Other	times,	the	pivots	themselves	serve	as	the	reports.
They	then	share	the	reports	with	their	colleagues,	typically	via	email	or	by	saving
to	a	network	drive.
They	spend	at	least	half	of	their	time	re-creating	the	same	reports,	updated	with
the	latest	data,	on	a	recurring	basis.

At	 first,	 it	 seemed	 to	be	a	coincidence	 that	 there	was	so	much	similarity	 in	 the	people	 I
was	meeting.	But	over	 time	it	became	clear	 that	 this	was	no	accident.	 It	started	 to	seem
more	like	a	law	of	physics	–	an	inevitable	state	of	affairs.	Much	like	the	heat	and	pressure
in	the	earth’s	crust	seize	the	occasional	pocket	of	carbon	and	transform	it	into	a	diamond,
the	demands	of	the	modern	world	‘recruit’	a	certain	kind	of	person	and	forge	them	into	an
Excel	Pro.

ⓘ	Aside:	Most	Excel	Pros	do	not	think	of	themselves	as	Pros:	I	find	that	most	are
quite	 modest	 about	 their	 skills.	 However,	 take	 it	 from	 someone	 who	 has	 studied
Excel	 usage	 in	 depth:	 if	 you	 fit	 the	 bulleted	 criteria	 above,	 you	 are	 an	 Excel	 Pro.
Wear	the	badge	proudly.

I	can	even	put	an	estimate	on	how	many	of	you	are	out	 there.	At	Microsoft	we	used	 to
estimate	that	there	were	300	million	users	of	Excel	worldwide.	This	number	was	disputed,
and	might	be	too	low,	especially	today.	It’s	a	good	baseline,	nothing	more.	But	that	was	all
users	of	Excel	–	from	the	most	casual	to	the	most	expert.	Our	instrumentation	data	further
showed	us	that	only	5-10%	of	all	Excel	users	created	PivotTables.

‘Create’	is	an	important	word	here	–	many	more	than	consume	pivots	made	by	others,	but
only	5-10%	are	able	to	create	them	from	scratch.	Creating	pivots,	then,	turns	out	to	be	an

overwhelmingly	accurate	indicator	of	whether	someone	is	an	Excel	Pro.	We	might	as	well
call	them	Pivot	Pros.

You	may	feel	quite	alone	at	your	particular	workplace,	because	statistically	speaking	you
are	quite	rare	–	less	than	0.5%	of	the	world’s	population	has	your	skillset!	But	in	absolute
numbers	you	are	far	from	alone	in	the	world	–	in	fact,	you	are	one	of	approximately	thirty
million	people.	If	Excel	Pros	had	conferences	or	conventions,	it	would	be	quite	a	sight.

ⓘ	 I,	 too,	 fit	 the	 definition	 of	 an	Excel	 Pro.	 It	 is	 no	 accident	 that	 I	 found	myself
drawn	 to	 the	Excel	 team	after	a	 few	years	at	Microsoft,	and	 it	 is	no	accident	 that	 I
ultimately	 left	 to	start	an	Excel	 /	Power	Pivot-focused	business	 (and	blog).	While	 I
have	been	using	the	word	‘you’	to	describe	Excel	Pros,	I	am	just	as	comfortable	with
the	word	‘we.’

As	I	said	up	front,	I	am	convinced	that	our	importance	is	about	to	explode	into	the	general
consciousness.	After	all,	we	are	already	crucial.

Our	Importance	Today
As	proof	of	 how	vital	we	 are,	 here’s	 another	 story	 from	Microsoft,	 one	 that	 borders	 on
legend.	The	actual	event	transpired	more	than	ten	years	ago	and	the	details	are	hazy,	but
ultimately	it’s	about	you;	about	us.

Someone	 from	 the	 SQL	 Server	 database	 team	was	meeting	with	Microsoft	 CEO	 Steve
Ballmer.	They	were	 trying	 to	 get	 his	 support	 for	 a	 ‘business	 intelligence’	 (BI)	 initiative
within	Microsoft	 –	 to	make	 the	 company	 itself	 a	 testbed	 for	 some	 new	BI	 products	 in
development	at	that	time.	If	Steve	supported	the	project,	the	BI	team	would	have	a	much
easier	time	gaining	traction	within	the	accounting	and	finance	divisions	at	Microsoft.

In	those	days,	Microsoft	had	a	bit	of	a	‘prove	it	to	me’	culture.	It	was	a	common	approach
to	 ‘play	 dumb’	 and	 say	 something	 like,	 “okay,	 tell	me	why	 this	 is	 valuable.”	Which	 is
precisely	the	sort	of	thing	Steve	said	to	the	BI	folks	that	day.

To	which	 they	 gave	 an	 example,	 by	 asking	 a	 question	 like	 this:	 “If	we	 asked	 you	 how
much	sales	of	Microsoft	Office	grew	 in	South	America	 last	year	versus	how	much	 they
grew	the	year	before,	but	only	during	the	holiday	season,	you	probably	wouldn’t	know.”

Steve	wasn’t	impressed.	He	said,	“sure	I	would,”	triggering	an	uncomfortable	silence.	The
BI	team	knew	he	lacked	the	tools	to	answer	that	question	–	they’d	done	their	homework.
Yet	here	was	one	of	the	richest	and	most	powerful	men	in	the	world	telling	them	they	were
wrong.

One	of	the	senior	BI	folks	eventually	just	asked	straight	out,	“Okay,	show	us	how	you’d
do	that.”

Steve	 snapped	 to	 his	 feet	 in	 the	 center	 of	 his	 office	 and	 started	 shouting.	 Three	 people
hurried	in,	and	he	started	waving	his	arms	frantically	and	bellowing	orders,	conveying	the
challenge	 at	 hand	 and	 the	 information	 he	 needed.	 This	 all	 happened	 with	 an	 aura	 of
familiarity	–	this	was	a	common	occurrence,	a	typical	workflow	for	Steve	and	his	team.

Those	three	people	then	vanished	to	produce	the	requested	results.	In	Excel,	of	course.

Excel	at	the	Core
Let	 that	 sink	 in:	 the	 CEO	 of	 the	 richest	 company	 in	 the	 world	 (and	 one	 of	 the	 most
technologically	 advanced!)	 relied	heavily	 on	Excel	 Pros	 to	 be	 his	 eyes	 and	 ears	 for	 all
things	financial.	Yes,	I	am	sure	that	now,	many	years	later,	Satya	Nadella	has	a	broad	array
of	sophisticated	BI	tools	at	his	disposal.	However,	I	am	equally	sure	that	his	reliance	on
Excel	Pros	has	not	diminished	by	any	significant	amount.

Is	 there	 anything	 special	 about	 Microsoft	 in	 this	 regard?	 Absolutely	 not!	 This	 is	 true
everywhere.	 No	 exceptions.	 Even	 at	 companies	 where	 they	 claimed	 to	 have	 ‘moved
beyond	spreadsheets,’	I	was	always	told,	off	the	record,	that	Excel	still	powered	more	than
90%	of	decisions.	(Indeed,	an	executive	at	a	large	Microsoft	competitor	told	me	recently
that	 his	 division,	 which	 produces	 a	 BI	 product	 marketed	 as	 a	 ‘better’	 way	 to	 report
numbers	than	Excel,	uses	Excel	for	all	internal	reporting!)

Today,	 if	 a	 decision	–	no	matter	 how	critical	 it	 is,	 or	 how	 large	 the	organization	 is	 –	 is
informed	by	data,	 it	 is	overwhelmingly	 likely	 that	 the	data	 is	 coming	out	of	Excel.	The
data	may	be	 communicated	 in	printed	 form,	or	PDF,	or	 even	via	 slide	deck.	But	 it	was
produced	in	Excel,	and	therefore	by	an	Excel	Pro.

The	message	 is	clear:	 today	we	are	an	 indispensable	component	of	 the	 information	age,
and	if	we	disappeared,	the	modern	world	would	grind	to	a	halt	overnight.	Yet	our	role	in
the	world’s	development	is	just	getting	started.

Three	Ingredients	of	Revolution
There	are	three	distinct	reasons	why	Excel	Pros	are	poised	to	have	a	very	good	decade.

Ingredient	One:	Explosion	of	Data
The	ever-expanding	capacity	of	hardware,	combined	with	the	ever-expanding	importance
of	 the	 internet,	 has	 led	 to	 a	 truly	 astounding	 explosion	 in	 the	 amount	 of	 data	 collected,
stored,	and	transmitted.

Estimates	vary	widely,	but	in	a	single	day,	the	internet	may	transmit	more	than	a	thousand
exabytes	of	data.	That’s	180	CD-ROMs’	worth	of	data	 for	each	person	on	 the	planet,	 in
just	24	hours!

However,	it’s	not	just	the	volume	of	data	that	is	expanding;	the	number	of	sources	is	also
expanding.	Nearly	every	click	you	make	on	the	internet	is	recorded	(scary	but	true).	Social
media	 is	now	‘mined’	for	how	frequently	a	certain	product	 is	mentioned,	and	whether	 it
was	 mentioned	 positively	 or	 negatively.	 The	 thermostat	 in	 your	 home	may	 be	 ‘calling
home’	to	the	power	company	once	a	minute.	GPS	units	in	delivery	vehicles	are	similarly
checking	in	with	‘home	base.’

This	explosion	of	volume	and	variety	is	often	lumped	together	under	the	term	‘Big	Data.’
A	few	savvy	folks	are	frontrunning	this	wave	of	hype	by	labeling	themselves	as	‘Big	Data

Professionals’.	By	the	time	you	are	done	with	this	book,	you	might	rightfully	be	tempted
to	do	the	same.

There’s	 a	 very	 simple	 reason	why	 ‘Big	Data’	 equals	 ‘Big	Opportunity’	 for	 Excel	 Pros:
human	beings	can	only	understand	a	single	page	(at	most)	of	information	at	a	time.	Think
about	it:	even	a	few	hundred	rows	of	data	is	too	big	for	a	human	being	to	look	at	and	make
a	decision.	We	need	to	summarize	that	data	–	to	‘crunch’	it	into	a	smaller	number	of	rows
(i.e.	a	report)	–	before	we	can	digest	it.

So	‘big’	just	means	‘too	big	for	me	to	see	all	at	once.’	The	world	is	producing	Big	Data,
but	 humans	 still	 need	 Small	 Data.	Whether	 it’s	 a	 few	 hundred	 rows	 or	 a	 few	 billion,
people	need	an	Excel	Pro	 to	shrink	it	 for	human	consumption.	The	need	for	you	is	only
growing.

ⓘ	For	more	on	Big	Data,	see	http://ppvt.pro/SaavyBigData.
Ingredient	Two:	Economic	Pressure
Much	of	the	world	has	been	in	an	economic	downturn	since	2008,	and	in	general	this	is	a
bad	thing.	If	played	properly,	however,	it	can	be	a	benefit	to	the	Excel	Pro.

Consider,	 for	 a	moment,	 the	BI	 industry.	BI	 essentially	plays	 the	 same	 role	 as	Excel:	 it
delivers	digestible	information	to	decision	makers.	It’s	more	formal,	more	centralized,	and
more	expensive	–	an	IT	function	rather	than	an	Excel	Pro	function	–	but	fills	the	same	core
need	for	actionable	information.

A	surprising	fact:	paradoxically,	BI	spending	increases	during	recessions,	when	spending
on	virtually	everything	else	is	falling.	This	was	true	during	the	dot-com	bust	of	2000	and
is	true	again	today.

Why	does	this	happen?	Simply	put:	when	the	pressure	is	on,	the	value	of	smart	decisions
is	increased,	as	is	the	cost	of	bad	ones.	I	like	to	explain	it	this	way:	when	money	is	falling
from	the	sky,	being	‘smart’	isn’t	all	that	valuable.	At	those	times,	the	most	valuable	person
is	the	one	who	can	put	the	biggest	bucket	out	the	window.	However	when	the	easy	money
stops	 flowing,	 and	 everyone’s	 margins	 get	 pressured,	 ‘smart’	 becomes	 valuable	 once
again.

Unlike	BI	 spending,	 spending	 on	 spreadsheets	 is	not	measured	 –	 people	 buy	Microsoft
Office	 every	 few	 years	 no	 matter	 what,	 so	 we	 wouldn’t	 notice	 a	 change	 in	 ‘Excel
spending’	 during	 recessions.	 I	 suspect,	 however,	 that	 if	we	 could	 somehow	monitor	 the
number	of	hours	spent	 in	Excel	worldwide,	we	would	see	a	spike	during	recessions,	 for
the	same	reason	we	see	spikes	in	BI	spending.

So	the	amount	and	variety	of	data	that	needs	to	be	‘crunched’	is	exploding,	and	at	the	same
time,	the	business	value	of	insight	is	increasing.	This	is	a	potent	mixture.

All	it	needs	is	a	spark	to	ignite	it.	And	boy,	do	we	have	a	bright	spark.

Ingredient	Three:	Dramatically	Better	Tools

http://ppvt.pro/SaavyBigData

The	world’s	need	 for	 insights	 is	 reaching	a	peak.	Simultaneously,	 the	 amount	of	data	 is
exploding,	 providing	 massive	 new	 insight	 opportunities	 (raw	 material	 for	 producing
insights).	Where	is	the	world	going	to	turn?

It	 is	going	 to	 take	an	army	of	highly	skilled	data	professionals	 to	navigate	 these	waters.
Not	everyone	is	cut	out	for	this	job	either	–	only	people	who	like	data	are	going	to	be	good
at	it.	They	must	also	be	trained	already	–	there’s	no	time	to	learn,	because	the	insights	are
needed	now!

I	 think	you	see	where	 I	 am	going.	That	army	exists	 today,	and	 it	 is	all	of	YOU.	You
already	enjoy	data,	you	are	well-versed	in	the	nuances	of	your	particular	business,	and	you
are	already	trained	on	the	most	flexible	data	analysis	tool	in	the	world.

However,	until	now	there	have	been	a	few	things	holding	you	back:

1.	 You	are	very	busy.	Many	of	you	are	swamped	today,	and	for	good	reason.	Even
a	modestly	complex	Excel	report	can	require	hundreds	of	individual	actions	on
the	part	of	the	author,	and	most	of	those	actions	need	to	be	repeated	when	you
receive	new	data	or	a	slightly	different	request	from	your	consumers.	Our	labor
in	Excel	is	truly	“1%	inspiration	and	99%	perspiration,”	to	use	Edison’s	famous
words.

2.	 Integrating	data	from	multiple	sources	is	tedious.	Excel	may	be	quite	flexible,
but	 that	does	not	mean	it	makes	every	 task	effortless.	Making	multiple	sources
‘play	nicely’	together	in	Excel	can	absorb	huge	chunks	of	your	time.

3.	 Truly	‘Big’	Data	does	not	fit	in	Excel.	Even	the	expansion	of	sheet	capacity	to
one	 million	 rows	 (in	 Excel	 2007	 and	 newer)	 does	 not	 address	 all	 of	 today’s
needs.	 In	 my	 work	 at	 Pivotstream	 I	 sometimes	 need	 to	 crunch	 data	 sets
exceeding	 100	million	 rows,	 and	 even	 data	 sets	 of	 100,000	 rows	 can	 become
prohibitively	 slow	 in	 Excel,	 particularly	 when	 you	 are	 integrating	 them	 with
other	data	sets.

4.	 Excel	has	an	image	problem.	It	simply	does	not	receive	an	appropriate	amount
of	respect.	To	the	uninitiated,	it	looks	a	lot	like	Word	and	PowerPoint	–	an	Office
application	that	produces	documents.	Even	though	those	same	people	could	not
begin	 to	 produce	 an	 effective	 report	 in	 Excel,	 and	 they	 rely	 critically	 on	 the
insights	 it	 provides,	 they	 still	 only	 assign	 Excel	 Pros	 the	 same	 respect	 as
someone	who	can	write	a	nice	letter	in	Word.	That	may	be	depressing,	but	it	is
sadly	true.

The	answer	is	here

The	Power	BI	family	of	tools	addresses	all	of	those	problems.	I	actually	think	it’s	fair	to
say	that	it	completely	wipes	them	away.

You	are	the	army	that	the	world	needs.	You	just	needed	an	upgrade	to	your	toolset.	Power
Pivot	and	its	close	cousin	Power	BI	provide	that	upgrade	and	then	some.	I	would	say	that
we	 probably	 needed	 a	 50%	 upgrade	 to	 Excel,	 but	 what	 we	 got	 is	 more	 like	 a	 500%
upgrade;	and	that	is	not	a	number	I	throw	around	lightly.

ⓘ	Imagine	the	year	is	1910,	and	you	are	one	of	the	world’s	first	biplane	pilots.	One
day	at	 the	airfield,	someone	magically	appears	and	gives	you	a	brand-new	2020	jet
plane.	You	climb	inside	and	discover	that	the	cockpit	has	been	designed	to	mimic	the
cockpit	 of	 your	 1910	 biplane!	 You	 receive	 a	 dramatic	 upgrade	 to	 your	 aircraft
without	 having	 to	 re-learn	 how	 to	 fly	 from	 scratch.	 That	 is	 the	 kind	 of	 ‘gift’	 that
Power	Pivot	provides	to	Excel	Pros.

I	bet	you	are	eager	to	see	that	new	jet	airplane.	Let’s	take	a	tour.

2	-	Power	Pivot	and	the	Power	BI	Family:	Making
Sense	of	the	Various	Versions
It’s	a	Family	of	Products	Built	on	Shared	Engines

2.	“Power	 Soup”	–	There	 are	 at	 Least	 Six	MS	Data	Products	Running	Around	with	 the	“Power”	Prefix.	But
don’t	worry!	We	are	here	to	clear	all	that	up.

“Should	I	use	Power	Query	or	Power	Pivot	or	Power	View	or	Power	BI?”

Ah,	 a	 fair	 question,	 but	 one	with	 a	 surprisingly	 simple	 answer:	 you	ALWAYS	use
Power	Pivot!	There	is,	indeed,	an	entire	family	of	closely-related	Microsoft	products
in	 this	 data	 analysis	 and	 reporting	 space,	 but	 they	 all	 revolve	 around	Power	Pivot.
Let’s	start	simple	and	then	add	pieces	back	to	the	puzzle.

Power	Pivot	is	the	Center	of	the	Power	BI	Universe

3.	Power	Pivot	is	the	centerpiece,	no	matter	which	“family	members”	you’re	using!

Power	Pivot	is	the	central	engine	that	powers	all	of	your	souped-up	workbooks	and
BI	solutions.	It	 is	the	brain,	the	heart,	and	the	spinal	cord	all	 in	one.	We	like	to	say
that	 Power	 Pivot	 is	 the	 piece	 that	 turns	 data	 into	 information	 –	 feed	 it	 “large”
quantities	of	data	 (where	sometimes	even	100	rows	 is	“large”)	and	 it	will	help	you
crunch	it	down	into	meaningful	metrics.

As	Microsoft	continues	to	evolve	its	strategy	and	messaging,	we’ve	started	to	refer	to
Power	 Pivot	 as	 “the	 DAX	 engine.”	 That’s	 because	 it	 (Power	 Pivot)	 is	 starting	 to
appear	in	more	products,	and	in	some	of	those	products	(such	as	Power	BI	Desktop),
the	 “Power	 Pivot”	moniker	 has	 been	 retired.	 Rest	 assured,	 however	 that	 the	DAX
Engine	/	Power	Pivot	is	THE	crown	jewel	(AND	brain	/	heart	/	spinal	cord	–	yes,	we
love	metaphors	around	here)	of	everything	 in	Microsoft’s	BI	suite.	As	 they	used	 to
say	on	the	pasta	sauce	commercials,	“It’s	in	there!”	(Even	though	the	ingredients	list
of	Power	BI	Desktop	omits	it).

Using	Power	Pivot	 /	 the	DAX	engine,	you	build	a	data	model,	create	 relationships,
write	calculated	column	and	measure	formulas,	etc.	We	will	primarily	focus	on	this
portion	in	our	book,	because	the	Power	Pivot	data	model	is	what	subsequently	drives
all	of	the	reporting/visualization/analysis	tools.

Power	Query	is	a	Close	Second	in	Importance
But	an	engine	needs	fuel,	and	in	this	case,	the	fuel	is	data:	whether	big	or	small,	100
rows	 or	 100	 million	 rows,	 coming	 from	 the	 web	 or	 a	 database,	 a	 text	 file	 or	 a
spreadsheet.	You	will	want	to	pull	all	of	your	business	data	into	Power	Pivot	(not	all
in	one	day		of	course.	Start	small,	iterate	fast:	Power	BI	is	agile	BI).

So	this	brings	us	to	our	second-favorite	component	of	the	Power	BI	family…

Power	Query!

4.	Two	ways	to	get	data	into	Power	Pivot:	direct	import,	or	via	Power	Query

Power	Pivot	 can	 grab	 data	 directly	 from	 a	wide	 variety	 of	 sources	 (covered	 in	 the
chapter	 on	Loading	Data).	But	 sometimes	 it	 needs	 a	 little	 help.	 Sometimes,	 before
you	can	bring	the	data	into	Power	Pivot,	you	need	to	do	some	shaping,	some	cleanup,
and	 maybe	 some	 data	 transformation.	 There	 is	 a	 tool	 built	 specifically	 for	 that	 –
Power	Query.	And	boy,	does	it	shine	at	that	task.	Power	Query	is	a	great	way	to	bring
data	into	Power	Pivot.

ⓘ	For	a	long	time	our	biggest	reservation	with	Power	Query	was	the	lack	of
ability	 to	 easily	 automate	 the	 refresh	 of	 Excel	workbooks	 that	 employ	 Power
Query.	 We	 are	 thrilled	 to	 offer	 the	 Power	 Update	 tool	 (co-created	 by
PowerPivotPro)	 which	 can	 help	 you	 do	 that	 and	 a	 lot	 more.	 Get	 it	 at
http://ppvt.pro/pwrupdate

So	Power	Query	is	an	optional	piece	of	the	puzzle:	you	aren’t	forced	to	use	it,	but	it’s
there	if	you	need	it.	In	our	experience,	whether	you	need	it	depends	primarily	on	this:
do	 you	 have	 good	 database	 support?	 If	most	 (or	 all)	 of	 your	 data	 is	 coming	 from
databases,	AND	the	people	who	run	those	databases	are	responsive	to	your	requests,
you	are	a	member	of	a	very	fortunate	minority!	In	such	an	environment,	you	can	get
your	data	cleaned	and	re-shaped	before	 it	ever	 reaches	your	desktop,	and	so	Power
Query	has	less	utility.

But	 most	 environments	 are	 “noisier”	 than	 that,	 and	 Power	 Query	 really	 shines	 in
those	places	–	as	a	complement	to	Power	Pivot.	More	specifically,	we	can	view	it	as	a
“pre-processor”	 that	 cleans	 and	 shapes	 “noisy”	 data,	 before	 it’s	 imported,	 so	 that
Power	Pivot	can	do	its	best	work.

5.	Power	Query	in	Excel	2013:	For	Shaping	and	Cleaning	Data	Before	Power	Pivot	Ever	“Sees”	It.

http://ppvt.pro/pwrupdate

ⓘ	As	of	mid-2015,	Microsoft	is	completely	retiring	the
“Power	Query”	name:	In	Excel	2016,	it	no	longer	has	its
own	ribbon	tab	for	instance,	and	is	instead	called	“Get	&
Transform”	 on	 the	 Data	 ribbon	 tab.	 That’s	 entirely
sensible	in	our	opinion,	and	the	important	thing	is	that	the
engine	remains	the	same.

Similarly,	 Power	BI	Desktop	 (described	 below)	 includes
Power	Query	but	no	longer	calls	it	that.	Instead,	you	get	to
it	 via	 buttons	 like	 “Get	 Data”	 and	 “Queries.”	 Again,
entirely	sensible,	and	again,	the	engine	remains	the	same.

So,	 much	 like	 we	 now	 often	 refer	 to	 the	 Power	 Pivot
engine	as	the	“DAX	Engine,”	you	will	also	see	us	refer	to
Power	Query’s	engine	as	the	“M	Engine.”

See	 the	 chapter	 specifically	 on	 Power	 Query	 for	 more
info.

Visuals:	The	Crucial	“Last	Mile”

6.	Power	View	and	Power	Map	are	Visualization	Layers…	But	so	is	Excel	Itself!

Power	 Pivot	 itself	 offers	 no	 visualization	 options	 –	 it	 can	 calculate	 meaningful
metrics,	but	cannot	display	them	effectively	to	end	consumers	and	decision	makers.
Think	 of	 Power	 Pivot	 as	 a	 Calculation	 Layer	 that	 provides	 robustly-calculated
metrics	to	a	variety	of	Visualization	Layers.

Excel:	 The	 most	 popular	 visualization	 layer	 of	 all	 is	 Excel	 itself.	 Most
people	build	Excel	 pivot	 tables	 and	 charts	 connected	 to	 their	Power	Pivot

data	model	(not	to	mention	another	favorite	of	ours,	cube	formulas!)	Excel
visuals	are	a	great	option,	and	within	the	Excel-based	flavors	of	Power	BI,
it’s	 still	 the	option	we	 recommend	most	 frequently.	You	also	have	 several
other	visualization	layers	to	choose	from,	however,	so	we’ll	mention	those
here	as	well.
Power	 Map:	 Introduced	 in	 Excel	 2013,	 we’re	 not	 entirely	 sure	 that
Microsoft	plans	to	feature	Power	Map	all	that	heavily	in	its	future	plans.	In
Excel	2016,	it	has	been	renamed	to	just	“3d	Maps.”	You	absolute	CAN	use
it	to	visualize	Power	Pivot	data,	but	it’s	become	enough	of	a	“niche”	product
that	we	don’t	use	it	in	our	business.
Power	View:	Power	View	 is	 another	 ‘client’	 that	 can	 render	 Power	 Pivot
data	onto	interactive	dashboards.	There’s	a	version	of	Power	view	included
in	Excel	2013	(Pro	Plus	version	only),	another	one	in	Excel	2016	(although
it’s	hidden	 from	 the	Excel	 ribbon),	 and	even	a	bit	 of	 an	outlier:	 a	version
that	 exists	 solely	 within	 SharePoint	 2010	 and	 higher.	 It’s	 fair	 to	 say,
however,	 that	 Power	View	does	NOT	 figure	 heavily	 in	Microsoft’s	 future
plans,	 and	 we	 don’t	 recommend	 going	 “all	 in”	 on	 Power	 View	 as	 your
organization’s	 visualization	 layer	 of	 choice.	 Increasingly,	 it’s	 becoming
clear	 that	 the	 two	primary	 visualization	 “horses”	 in	Microsoft’s	 stable	 are
going	 to	 be	 Excel	 itself,	 and	 Power	BI	Dashboards,	which	we	will	 cover
next.
Power	 BI	 Dashboards:	 Until	 recently,	 Excel	 has	 been	 the	 only
“environment”	in	which	the	Power	BI	tools	were	available.	If	you	wanted	to
do	some	Power	Pivot	/	DAX	modeling,	you	launched	Excel	and	went	from
there.	But	in	2015,	Microsoft	released	a	second	environment,	called	Power
BI	Desktop.	Power	BI	Desktop	includes	the	two	engines	(Power	Pivot	and
Power	 Query),	 as	 well	 as	 a	 brand-new	 visualization	 layer	 called
Dashboards.	Dashboards	 looks	 a	 bit	 like	Power	View,	 but	whereas	Power
View	 was	 somewhat	 of	 a	 frustrating	 half-step,	 Power	 BI	 Dashboards	 are
very	 robust/complete.	 They	 offer	 MANY	 visualization	 types	 that	 are	 not
available	 in	 native	 Excel,	 the	 list	 of	 visualizations	 grows	 seemingly	 with
every	 release,	AND	 they	 have	 opened	 the	 platform	 up	 so	 that	 third-party
programmers	 can	 add	 their	 own	 custom	 visualization	 types.	 Power	 BI
Desktop	and	its	companion	cloud	service	are	therefore	worthy	of	their	own
chapter,	which	you	will	find	later	in	this	book.
Others:	 As	 if	 this	 isn’t	 excitement	 enough,	 we	 also	 have	 SQL	 Server
Reporting	Services,	Datazen	and	many	other	Microsoft	and	non-Microsoft
tools	 –	 it	 seems	 everyone	 is	 “lining	 up”	 to	 connect	 their	 visualization
software	to	the	Power	Pivot	engine,	and	for	good	reason.

ⓘ	To	 enable	 some	 of	 these	 other	 visualization	 options	 you	will	 need	 a	 true
“Server”	version	of	Power	Pivot.	We’ll	cover	 that	 in	our	chapter	on	“YouTube
for	Workbooks.”

Once	your	Power	Pivot	data	model	is	built,	reporting	becomes	“cheap”	–	a	matter	of
mouse	clicks	in	a	field	list	(the	field	list	provided	by	the	visualization	layer,	such	as
Excel’s	 PivotTable	 field	 list).	 New	 reports,	 and	 variants	 on	 existing	 reports,	 are
borderline-effortless	 to	 assemble	 since	 all	 the	 business	 logic	 has	 been	 built	 at	 that
point.	With	all	the	heavy	lifting	taken	care	of	by	your	Power	Pivot	data	model,	you
can	easily	use	not	just	one	but	many	reporting	tools.

Power	Pivot	then	becomes	your	single	source	of	truth,	the	single	engine	that	powers
all	your	 reporting	across	various	 reporting	platforms	and	 serving	various	groups	of
audiences.

ⓘ	You	will	rarely,	if	ever,	catch	a	glimpse	of	Power	Pivot	(or	Power	Query	for
that	matter)	in	any	of	Microsoft’s	public	Power	BI	Demos.	In	their	materials,	the
limelight	 is	 squarely	 on	 the	 sexy	 visualizations.	 And	 we’re	 okay	 with	 that.
Microsoft’s	 competitors	 have	 long	 used	 that	 approach	 to	 sell	 their	wares,	 and
Microsoft	is	just	borrowing	a	page	from	that	book.	But	anyone	getting	down	to
implementing	Power	BI	quickly	learns	that	behind	the	scenes,	Power	Pivot	is	the
engine	driving	Power	BI.

ⓘ	 Microsoft	 made	 an	 announcement	 in	 Oct,	 2015
rolling	out	their	“Reporting	Roadmap”.	It	promises:

Symmetry	across	On-Premise	and	Cloud.	Currently
the	 cloud	 options	 on	 PowerBI.com	 have	 raced
ahead	of	any	On-Premise	reporting	options.
Making	 various	 reporting	 options	 -	 SSRS,	 Power
BI	 Desktop,	 Datazen	 etc.	 -	 work	 together	 in
harmony.
A	 rejuvenated	 SQL	 Server	 Reporting	 Services
(make	 it	 look	 like	 a	 tool	 from	 this	 century,	 as
James	Phillips	put	it)

For	more,	see	http://ppvt.pro/rptroadmap

Power	BI	Desktop:	Two	Tools	for	the	(Learning)	Price	of
One!

http://ppvt.pro/rptroadmap

7.	Excel	Power	Pivot	(left)	versus	Power	BI	Desktop:	Visually	Distinct,	but	the	same	“Under	the	Hood.”

Same	Engines,	Just	Different	Visuals
We	will	 cover	 Power	BI	Desktop	 in	 greater	 depth	 in	 a	 subsequent	 chapter,	 but	we
think	it’s	important	to	lodge	this	in	your	brain	up-front:	when	you	are	learning	Power
Pivot	in	Excel,	you	are	also	learning	Power	BI	Desktop.	The	“tough”	things	to	learn,
which	are	also	the	valuable	things	to	learn,	are	the	same	in	both	Power	Pivot	(Excel)
and	 Power	 BI	 (Desktop).	 In	 fact,	 that’s	 important	 enough	 that	 it	 warrants	 its	 own
callout…

ⓘ	 The	 “tough”	 things	 to	 learn,	 which	 are	 also	 the
valuable	things	to	learn,	are	the	same	in	both	Power	Pivot
(Excel)	and	Power	BI	(Desktop).

So	 when	 you	 learn	 one,	 you	 are	 actually	 learning	 two
amazing	tools	for	the	price	of	one.

So	 here’s	 the	 upside	 of	 all	 this	 “Power	 Soup”	 confusion:	 as	 the	 dust	 settles	 in
Microsoft’s	evolving	strategy,	we	have	been	given	TWO	amazing	tools:	Power	Pivot
in	Excel,	 and	Power	BI	Desktop,	and	we	don’t	have	 to	“invest	double”	 in	order	 to
“win	double.”

8.	Think	of	it	this	way:	Excel	and	PBI	Desktop	are	the	“containers.”	The	engines	are	the	same	in	both	places,
only	the	visualization	layers	differ.

What	do	we	mean	by	the	“tough”	or	“valuable”	stuff?

9.	Power	Pivot’s	Diagram	View	sure	looks	a	LOT	like	Power	BI’s	Relationship	View,	because	the	DAX	Engine	is
the	heart	of	both.

“Hrm,”	you	say.	“The	view	with	the	boxes	and	the	lines	is	the	same,	but	I’m	still	not
convinced.	 I	 mean,	 there	 can	 still	 be	 a	 lot	 of	 OTHER	 differences	 hiding	 in	 there,
right?”

Well	 sure!	 You	 haven’t	 even	 seen	 the	 formulas	 yet!	 Let’s	 see	 if	 you	 can	 spot	 the
difference	between	a	“Year	to	Date	Sales”	formula	in	Power	Pivot	versus	Power	BI…

Power	Pivot	version:

YTD	Sales=

CALCULATE	([Total	Sales],	DATESYTD(Calendar[Date]))

And	the	Power	BI	Desktop	version:

YTD	Sales=

CALCULATE	([Total	Sales],	DATESYTD(Calendar[Date]))

Trick	question,	they	are	EXACTLY	the	same!	Because,	hey,	it’s	the	DAX	engine
in	both	places.

ⓘ	In	Power	BI	Desktop,	the	DAX	Engine	doesn’t	get	its	own	separate	special
name	 like	 “Power	 Pivot.”	 Its	 capabilities	 are	 just	 exposed	 in	 the	Relationship
view,	and	in	the	formulas	you	write.	This	makes	sense	to	us	–	less	name	clutter.
DAX	Jedi	(or	Jedi-in-training)	like	you,	dear	reader,	should	not	be	concerned	by
this	cosmetic	“lack	of	name.”

So,	to	recap,	the	engines	are	the	same	in	both	Power	Pivot	and	Power	BI.	Here’s	one
final	summary	diagram:

10.	Excel	Power	Pivot	and	PBI	Desktop	overlap	in	the	stuff	that	warrant	your	time	reading	books	like	this	one.
Visuals,	by	contrast,	are	easy-to-learn,	mouse-clicky	stuff.	You	don’t	really	need	to	“read	the	manual”	to	figure
out	how	to	build	a	chart	in	either	environment.

ⓘ	 In	 the	 official	 Microsoft	 messaging,	 “Power	 Pivot”
now	 refers	 strictly	 to	 the	DAX	engine	 in	Excel,	with	 its
Power	 Pivot	 ribbon	 tab	 and	 Power	 Pivot	 window,	 and
“Power	BI”	now	refers	strictly	to	Power	BI	Desktop	(and
its	 accompanying	 PowerBI.com	 cloud	 publishing
mechanism).

Over	time	we	will	be	slowly	adopting	this	official	naming
as	well,	but	the	community	will	understandably	take	some
time	to	adjust.

We	will	 come	 back	 to	 Power	BI	Desktop	 in	 its	 own	 dedicated	 chapter.	 But	 in	 the
meantime,	 just	 remember	 that	 everything	you’re	 learning	 in	 subsequent	 chapters	 is
useful	in	BOTH	Power	Pivot	and	Power	BI.

Power	Pivot	(in	Excel)	Versions
Focusing	specifically	on	Power	Pivot	 (the	Excel-based	version	of	 these	 tools)	 there
have	now	been	four	different	major	releases:

Power	Pivot	 2008	R2	 (v1)	–	We	 simply	 call	 this	 “Power	 Pivot	 v1.”	 The
“2008	 R2”	 relates	 back	 to	 a	 version	 of	 SQL	 Server	 itself	 and	 has	 little
meaning	 to	 us.	 This	 runs	 exclusively	 in	 Excel	 2010,	 and	 since	 it’s	 been
superseded,	there	is	very	little	reason	to	use	this	version.	(If	you	are	running
a	version	of	Power	Pivot	that	starts	with	a	10,	like	10.x.xxxx,	that	version	is
WAY	out	of	date	and	should	upgrade	–	we	will	NOT	cover	v1	in	this	book
at	all).
Power	 Pivot	 2012	 (v2)	 –	 unsurprisingly	 we	 call	 this	 “Power	 Pivot	 v2.”
Again	the	2012	relates	to	SQL	Server,	and	again,	we	don’t	care	that	much.
But	we	DO	care	that	THIS	is	THE	version	to	be	running	if	you	are	running
Excel	2010.	Whenever	we	refer	to	Power	Pivot	2010	in	this	book,	we	are
referring	 to	 THIS	 version.	 (Make	 sure	 you	 are	 running	 11.0.5058	 or
newer).
Power	Pivot	2013	–	released	with	Excel	2013.
Power	Pivot	2016	–	released	with	Excel	2016.

You	will	get	the	same	value	out	of	this	book	regardless	of	the	Excel	version	you	are
using.	Under	 the	covers,	 fundamentals	are	 the	same	and	little	has	changed.	We	will	 talk
about	 some	 of	 the	 cosmetic	 changes	 in	 the	User	 Interface	 (UI)	 changes	 in	 this	 chapter.
(The	 2016	 release	 has	 introduced	 some	 new	 DAX	 functions,	 which	 are	 covered	 in	 a
separate	chapter,	but	those	should	be	thought	of	as	“extras”	rather	than	overhauls.)Here	is
a	primer	on	how	you	can	use	Power	Pivot	based	on	your	version	of	Excel.

Power	Pivot	for	Excel	2010
If	 you	have	Excel	 2010,	we	 exclusively	 recommend	 the	 v2	version,	which	offers	many
improvements	over	v1,	which	is	now	dead	to	us	and	will	get	no	“air	 time”	in	 this	book.
You	can	download	the	v2	version	at:
http://ppvt.pro/ppaddin2010SP2

Power	Pivot	for	Excel	2013	-	Only	Available	in	“Pro	Plus”	Excel

http://ppvt.pro/ppaddin2010SP2

Microsoft	really	surprised	us	at	the	last	minute,	just	as	2013	was	officially	released.	It	was
quietly	announced	that	Power	Pivot	would	only	be	included	in	the	“Pro	Plus”	version	of
Office	2013.	This	is	NOT	the	same	thing	as	“Professional”	–	Pro	Plus	was	only	available
through	volume	licensing	or	subscription	and	was	not	available	in	any	store.	And	unlike
with	2010,	there	is	no	version	of	Power	Pivot	that	you	can	just	download	for	Excel	2013.

This	put	Power	Pivot	out	of	reach	for	many	individuals.	After	much	noise,	on	our	part	and
others,	Microsoft	softened	their	stance	and	now	individuals	can	get	Power	Pivot	by	either
buying	Excel	2013	Standalone	or	an	Office	365	Pro	Plus	subscription.	For	more	on	this,
see	http://ppvt.pro/2013ProPlus

This	was	an	improvement,	but	still	a	source	of	great	frustration	(just	read	the	comments	on
the	link	shared	above).

Office	2016	offers	further	improvement	to	this	story,	by	including	Power	Pivot	(and	Power
Query)	 in	Standalone	Excel	(just	 like	2013),	and	all	versions	“Pro”	and	higher	(whereas
2013	required	Pro	Plus).	Still	though,	it	is	not	included	in	all	versions,	so	be	careful	to	get
Pro	or	Excel	Standalone	when	making	your	purchase.

Differences	in	User	Interface:	2010,	2013,	2016
The	User	Interface	(UI)	of	Power	Pivot	differs	-	in	cosmetic	ways	ONLY	-	between	Excel
2010,	2013,	and	2016.	Mostly	it’s	just	the	names	of	buttons	that	have	changed,	but	there
are	 a	 few	 others,	 too.	 Whenever	 there’s	 a	 notable	 difference	 in	 UI	 between	 the
versions,	 we	 will	 “pause”	 here	 in	 this	 book	 and	 show	 what	 it	 looks	 like	 in	 each
version,	at	the	moment	where	we	first	“introduce”	that	functionality.

ⓘ	 Aside	 from	 Rob:	 When	 I	 worked	 at	 Microsoft,	 I	 used	 to	 LOVE	 renaming
features.	I’d	see	a	button	that	I	thought	had	been	poorly-named	in	a	previous	version
and	say	“let’s	improve	it!”	I	even	tried	to	rename	PivotTables!	Now	that	I’m	on	the
receiving	end	of	that	behavior,	I	see	the	hubris	in	my	younger	self.	Poetic	justice,	that
I	 now	 suffer	 the	 consequences	 of	 my	 former	 peers’	 desire	 to	 constantly	 improve
things.	 (I	STILL	think	pivots	should	be	renamed	SummaryTables,	 though.	Kidding.
Mostly.)

The	 “default”	 version	 for	 screenshots	 in	 this	 book	 will	 be	 2010,	 because	 that	 version
usually	 yields	 the	 most	 helpful	 screenshots	 (see	 “awkward”	 below).	 Many	 of	 the
screenshots	 and	 figures	will	 therefore	 have	 the	 2010	 appearance.	However,	we	want	 to
again	stress:

1.	 All	concepts	covered	in	this	book	are	100%	applicable	to	2010,	2013,	AND
2016,	because	it’s	the	DAX	engine	in	all	three	cases,	and	that	has	changed	hardly
at	all.

2.	 The	 differences	 between	 the	 three	 versions	 are	 purely	 cosmetic	 in	 nature.
All	 of	 the	 core	 functionality	 –	 such	 as	 formulas	 and	 functions	 -	 behaves	 the
same.	The	main	 difference	 is	 in	 the	 user	 interface	 (UI),	 e.g.	which	button	you
click	to	edit	a	formula	or	insert	a	pivot	table.

http://ppvt.pro/2013ProPlus

3.	 Whenever	there’s	a	UI	difference	that	is	significant,	we	will	cover	that	in	the
book.	And	we	will	do	that	in	the	context	of	introducing	each	new	button	or	other
UI	element.

If	you	ever	want	 to	see	all	 the	notable	2010/2013/2016	UI	differences	 in	one	place,	 this
page	-	http://ppvt.pro/UIchanges	-	collects	them	all	into	an	online	“appendix”	of	sorts.	See
example	below.

11.	http://ppvt.pro/UIchanges	maps	all	the	UI	changes	from	Power	Pivot	across	Excel	2010,	2013,	and	2016.

When	We	Said	“Cosmetic”	We	Meant	“Awkward”
There	is	no	way	to	sugar	coat	it,	the	user	interface	took	a	step	backward	from	2010
to	2013.	It	became	harder	to	perform	some	routine	data	modeling	steps	-	such	as	to
find	and	edit	formulas,	or	to	insert	a	pivot	or	slicer.	It’s	more	awkward	(more	mouse
clicks,	harder	to	find)	to	perform	these	actions	in	2013	than	it	is	in	2010.

http://ppvt.pro/UIchanges
http://ppvt.pro/UIchanges

2016	 has	 restored	 most,	 but	 not	 all,	 of	 the	 convenient	 UI	 functionality.	 Our
consolation	again,	 is	 that	everything	under	the	hood,	beyond	the	minor	UI	changes,
works	just	the	same	and	just	as	well.

OK,	we	got	that	off	our	chests.	Let	us	continue	

32-bit	or	64-bit?
Each	of	the	three	versions	of	Power	Pivot	is	available	in	two	“flavors”	–	32-bit	and
64-bit.	Which	one	should	you	use?

On	 the	Microsoft	 download	websites,	 32-bit	 is	 labeled	 “x86”	 and	 64-bit	 is	 labeled
“AMD64.”	You	know,	just	to	make	things	interesting.

If	you	have	a	choice,	we	highly	recommend	64-bit.	64-bit	lets	you	work	with	larger
volumes	of	data	but	is	also	more	stable	during	intensive	use,	even	with	smaller	data
volumes.	We	run	64-bit	on	all	of	our	computers.

For	example,	I	(Rob)	have	a	300	million	row	data	set	that	works	fine	on	my	laptop
with	4	GB	of	RAM,	but	with	32-bit	Power	Pivot,	no	amount	of	RAM	would	make
that	possible.	(In	fact,	it	would	not	work	even	if	I	cut	it	down	to	20	million	rows).

So	if	you	have	a	choice,	go	with	64-bit	–	it	offers	more	capacity	and	more	stability.
That	said,	you	may	not	have	that	luxury.	You	have	to	match	your	choice	to	your	copy
of	Excel.

⚠	You	cannot	run	64-bit	Power	Pivot	with	32-bit	Excel,	or	vice	versa!
So	the	first	question	you	need	to	answer	is	whether	you	are	running	32-bit	or	64-bit
Excel.

In	Excel	2010,	you	can	find	that	answer	here,	on	the	Help	page

12.	Finding	whether	your	version	of	Excel	is	32-bit	or	64-bit

If	you	are	running	32-bit	Excel,	you	are	not	alone:	most	people	are	running	32-bit.
We	actually	can	think	of	no	reason	to	run	64-bit	Office	except	Power	Pivot	itself,	so	the
64-bit	 trend	 is	 really	 just	 getting	 started.	 (Who	 needs	 64-bit	 Outlook,	 Word,	 and
PowerPoint?	No	one	does).

⚠	Certain	Office	addins	only	run	in	32-bit,	so	double	check	that	before	you	decide
to	uninstall	32-bit	Office	and	switch	to	64-bit.

ⓘ	The	 64-bit	 problem	 is	 often	 solved	 by	 having	 a	 second	 computer	 purely	 for
Power	Pivot	“authoring”	purposes,	and	maintaining	your	original	computer	on	32-bit
for	compatibility	with	other	Office	addins.	In	cases	where	that’s	not	practical,	we’ve
also	 frequently	 seen	 IT	 set	up	 shared	computers	with	64-bit,	 and	 then	Power	Pivot
authors	can	remotely	use	those	computers	via	Remote	Desktop.	Lastly,	this	is	one	of
the	big	reasons	to	consider	Power	BI	Desktop,	since	you	can	run	it	in	64-bit	without
disrupting	your	Office	install,	which	can	remain	32-bit.

Office	2010	or	Newer	is	Required
No,	sadly	you	cannot	run	Power	Pivot	with	Excel	2007	or	earlier	versions.

There	were	very	good	technical	reasons	for	this,	and	it	was	not	an	attempt	by	Microsoft	to
force	 people	 into	Office	 2010.	 Remember,	 the	 Power	 Pivot	 addin	 is	 free,	 and	 it	 would
have	been	better	for	Microsoft,	too,	if	Power	Pivot	worked	with	2007.

If	you	are	curious	as	to	the	reasons	behind	the	“2010	or	newer”	requirement,	see	this	post:

http://ppvt.pro/PP2007

http://www.powerpivotpro.com/2010/12/powerpivot-for-excel-2007/

3	-	Learning	Power	Pivot	“The	Excel	Way”
Power	Pivot	is	Like	Getting	Fifteen	Years	of	Excel
Improvements	All	at	Once
Power	Pivot	was	first	released	in	2009,	but	development	began	fifteen	years	prior	to
that,	in	1994.	Back	then,	it	was	called	Microsoft	SQL	Server	Analysis	Services	(SSAS).
Actually,	SSAS	is	very	much	alive	and	well	as	a	product	today	–	it	remains	the	#1-selling
analytical	 database	 engine	 in	 the	 world.	 SSAS	was/is	 an	 industrial	 strength	 calculation
engine	for	business,	but	targeted	at	highly	specialized	IT	professionals.

In	 late	 2006,	 Microsoft	 architect	 Amir	 Netz	 launched	 a	 secret	 incubation	 project
(codename:	Gemini)	with	an	ambitious	goal:	make	the	full	power	of	SSAS	available	and
understandable	to	Excel	Pros.	A	few	months	later	he	recruited	me	(Rob)	to	join	the	effort
(he	and	I	had	collaborated	before	when	I	was	on	the	Excel	team).	Gemini	was	eventually
released	under	the	name	Power	Pivot	in	2009.

ⓘ	Continuing	with	the	“biplane	and	jet”	metaphor,	think	of	SSAS	as	the	jet	plane,
and	Power	Pivot	as	the	effort	to	install	an	Excel-style	cockpit	and	instrument	panel	so
that	Excel	Pros	can	make	the	transition.

The	key	 takeaway	for	you	 is	 this:	Power	Pivot	 is	a	much,	much	deeper	product	 than
you	would	expect	from	something	that	appeared	so	recently	on	the	scene.

This	actually	has	two	very	important	implications:

1.	 It	is	very	hard	to	exhaust	Power	Pivot’s	capabilities.	Its	long	heritage	means
that	 a	 staggering	number	 of	 needs	 have	been	 addressed,	 and	 this	 is	 very	good
news.

2.	 It	is	very	helpful	to	learn	it	in	the	right	sequence.	When	touring	the	cockpit	of
your	new	jet,	much	will	be	familiar	to	you	–	the	SUM()	function	is	there,	so	is
ROUND(),	 and	 even	 our	 old	 friend	 RAND().	 But	 there	 are	 new	 functions	 as
well,	with	names	like	FILTER()	and	EARLIER()	and	CALCULATE().	Naturally
you	want	 to	 start	with	 the	 simplest	and	most	useful	 functions,	but	 it	 is	hard	 to
know	which	ones	those	are.

That	second	point	is	very	important,	and	worth	emphasizing.

Learn	Power	Pivot	As	You	Learned	Excel:	Start	Simple	&
Grow
When	 you	 were	 first	 introduced	 to	 Excel	 (or	 spreadsheets	 in	 general),	 you	 likely
started	simple:	learning	simple	arithmetic	formulas	and	the	“A1”	style	reference	syntax.
You	didn’t	dive	right	into	things	like	pivots	until	later.	(In	fact	pivots	didn’t	even	exist	in
the	first	few	versions	of	Excel).

13.	An	Approximate	Representation	of	the	Typical	Excel	Learning	Curve

You	started	with	the	simple	stuff,	got	good	at	it,	and	only	then	branched	out	to	new
features.	Incrementally,	you	added	to	your	bag	of	tricks,	over	and	over.

Power	Pivot	 is	no	different.	 There	 are	 simple	 features	 (easy	 to	 learn	 and	 broadly
useful)	and	advanced	features	(harder	to	learn	and	useful	in	more	specific	cases).

We	have	carefully	sequenced	the	topics	in	this	book	to	follow	the	same	“simple	to
advanced”	curve	we	developed	and	 refined	while	 training	Excel	pros	over	 the	past
few	years.	The	result	is	an	approach	that	has	proven	to	be	very	successful.

14.	The	learning	curve	we	advocate	to	Excel	Pros	as	they	adopt	Power	Pivot

We	highly	recommend	that	you	proceed	through	the	book	“in	order.”	You	will
see	that	the	chapters	in	this	book	are	organized	in	roughly	the	order	pictured	above.

When	to	Use	Power	Pivot,	and	How	it	Relates	to	Normal
Pivot	Usage
We	hear	 this	question	a	 lot.	Simply	put,	Power	Pivot	 is	useful	 in	any	situation
where	 you	would	normally	want	 to	use	 a	pivot.	Whether	 you	 have	 100	 rows	 of
data	 or	 100	 million,	 if	 you	 need	 to	 analyze	 or	 report	 on	 trends,	 patterns,	 and/or
aggregates	from	that	data,	rather	than	the	original	rows	of	data	themselves,	chances
are	very	good	that	Power	Pivot	has	something	to	offer.

When	 you	 use	 a	 traditional	 (non	 Power-)	 pivot,	 your	workflow	 in	 Excel	 generally
looks	something	like	this:

1.	 Grab	data	from	one	or	more	sources,	typically	landing	in	Excel	worksheets
(but	sometimes	directly	in	the	“pivotcache”	in	advanced	cases).

2.	 If	multiple	 tables	 of	 data	 are	 involved,	 use	 VLOOKUP()	 or	 similar	 to
create	integrated	single	tables

3.	 Add	calculated	columns	as	needed
4.	 Build	pivots	against	that	data
5.	 Either	 use	 those	 pivots	 directly	 as	 the	 final	 report/analysis,	 or	 build

separate	report	sheets	which	reference	into	the	pivots	using	formulas

Our	guiding	philosophy	on	Power	Pivot	was	“make	it	 just	 like	Excel	wherever	possible,
and	where	it’s	not	possible,	make	it	‘rhyme’	very	closely	with	Excel.”	Accordingly,	the	5-
step	workflow	from	above	looks	like	this	in	Power	Pivot:

1.	 Grab	data	from	one	or	more	sources,	landing	in	worksheet-tables	in	the	Power
Pivot	window.

2.	 Use	relationships	to	quickly	link	multiple	tables	together,	entirely	bypassing
VLOOKUP()	or	similar	tedious	formulas.

3.	 Optionally	 supplement	 that	 data	 with	 calculated	 columns	 and	 measures,
using	Excel	functions	you	have	always	known,	plus	some	powerful	new	ones.

4.	 Build	pivots	against	that	data
5.	 Either	use	 those	pivots	directly	 as	 the	 final	 report/analysis,	 or	 convert	pivots
into	 formulas	 with	 a	 single	 click	 for	 flexible	 layout,	 or	 you	 can	 still	 build
separate	report	sheets	which	reference	into	the	pivots	using	formulas.

ⓘ	On	net	you	should	think	of	Power	Pivot	as	“Excel++”	–	the	only	new	things	you
have	to	learn	should	bring	you	tremendous	benefit.

What	This	Book	Will	Cover	in	Depth
Simple	Guideline:	the	more	“common	knowledge”	something	is,	the	less	pages	we	are
going	to	spend	on	it.	We	figure,	for	 instance,	 that	 the	button	you	use	to	create	pivots	is
not	worth	 a	 lot	 of	 ink.	That	 topic,	 and	many	 others,	 has	 been	 covered	 in	 depth	 by	Bill
Jelen’s	 first	 Power	 Pivot	 book,	 http://ppvt.pro/MRXLPP.	 By	 contrast,	 the	 formula
language	 of	 Power	 Pivot	 needs	 a	 lot	 of	 attention,	 so	 it	 receives	 many	 chapters	 and
consumes	most	of	the	book.

But	even	in	topics	that	are	relatively	straightforward,	we	will	still	point	out	some	of
the	 subtleties,	 the	 little	 things	 that	 you	might	 not	 expect.	 So	 for	 instance,	 in	 our	 brief
chapter	on	Data	 Import,	we	will	 provide	 some	quick	 tips	on	 things	we	have	discovered
over	time.

And	 what	 is	 this	 “DAX”	 thing	 anyway?	 “DAX”	 is	 the	 name	 given	 to	 the	 formula
language	in	Power	Pivot,	and	it	stands	for	Data	Analysis	eXpressions.	We're	not	actually
all	that	fond	of	the	name	–	we	wish	it	were	called	“Formula+”	or	something	that	sounds
more	like	an	extension	to	Excel	rather	than	something	brand	new.	But	the	name	isn’t	the
important	thing	–	the	fact	is	that	DAX	is	just	an	extension	to	Excel	formulas.

OK,	let’s	load	some	data.

http://ppvt.pro/MRXLPP

4	-	Loading	Data	Into	Power	Pivot
No	Wizards	Were	Harmed	in	the	Creation	of	this	Chapter
We	don’t	intend	to	instruct	you	on	how	to	use	the	import	wizards	in	this	chapter.	They	are
mostly	self-explanatory	and	there	is	plenty	of	existing	literature	on	them.	Instead	we	want
to	share	with	you	the	things	we	have	learned	about	data	import	over	time.

Think	of	this	chapter	as	primarily	“all	the	things	we	learned	the	hard	way	about	data
import.”

That	said,	all	chapters	need	to	start	somewhere,	so	let’s	cover	a	few	fundamentals…

Everything	Must	“Land”	in	the	Power	Pivot	Window
As	we	 hinted	 in	 previous	 chapters,	 all	 of	 your	 relevant	 data	MUST	 be	 loaded	 into	 the
Power	 Pivot	 window	 rather	 than	 into	 normal	 Excel	 worksheets.	 But	 this	 is	 no	 more
difficult	than	importing	data	into	Excel	has	ever	been.	It’s	probably	easier	in	fact.

Launching	the	Power	Pivot	Window
The	Power	Pivot	window	 is	 accessible	via	 this	button	on	 the	Power	Pivot	 ribbon	 tab	 in
Excel:

15.	Excel	2010:	Launch	the	Power	Pivot	window

16.	Excel	2013:	Launch	the	Power	pivot	window

17.	Excel	2016:	Offers	not	one	but	two	ways	to	launch	Power	Pivot	window

ⓘ	 If	 the	 Power	 Pivot	 ribbon	 tab	 does	 not	 appear	 for	 you,	 the	 Power	 Pivot
addin	 is	 either	 not	 installed	 or	 not	 enabled.	 Watch	 the	 videos	 on
http://ppvt.pro/UIchanges	which	help	you	install	and	enable	Power	Pivot.

One	Sheet	Tab	=	One	Table
Every	table	of	data	you	load	into	Power	Pivot	gets	its	own	sheet	tab.	So	if	you	import
three	different	tables	of	data,	you	will	end	up	with	something	like	this:

18.	Three	tables	loaded	into	Power	Pivot.	Each	gets	its	own	sheet	tab.

You	Cannot	Edit	Cells	in	the	Power	Pivot	Window
That’s	right,	the	Power	Pivot	sheets	are	read-only.	You	can’t	just	select	a	cell	and	start
typing.

You	can	delete	or	rename	entire	sheet	tabs	and	columns,	and	you	can	add	calculated
columns,	but	you	cannot	modify	cells	of	data,	ever.

Does	that	sound	bad?	Actually,	it’s	a	good	thing.	It	makes	the	data	more	trustworthy,
but	even	more	importantly,	it	forces	you	to	do	things	in	a	way	that	saves	you	a	lot	of
time	later.

Everything	in	the	Power	Pivot	Window	Gets	Saved	into	the	Same
XLSX	File

19.	Both	windows’	contents	are	saved	into	the	same	file,	regardless	of	which	window	you	save	from

http://ppvt.pro/UIchanges

ⓘ	Each	instance	of	the	Power	Pivot	window	is	tightly	“bound”	to	the	XLSX
(or	 XLSM/XLSB)	 you	 had	 open	when	 you	 clicked	 the	 Power	 Pivot	Window
button	 in	 Excel.	You	 can	 have	 three	XLSX	workbooks	 open	 at	 one	 time,	 for
instance,	 and	 three	 different	 Power	 Pivot	 windows	 open,	 but	 the	 contents	 of
each	 Power	 Pivot	 window	 are	 only	 available	 to	 (and	 saved	 into)	 its	 original
XLSX.

Many	Different	Sources
Power	 Pivot	 can	 “eat”	 data	 from	 a	 very	 wide	 variety	 of	 sources,	 including	 the
following:

From	normal	Excel	sheets	in	the	current	workbook
From	 the	clipboard	–	 any	copy/pasted	data	 that	 is	 in	 the	 shape	of	 a	 table,
even	tables	from	Word	for	instance
From	text	files	–	CSV,	tab	delimited,	etc.
From	 databases	 -	 like	 Access	 and	 SQL	 Server,	 but	 also	 Oracle,	 DB2,
MySQL,	etc.
From	SharePoint	lists
From	MS	SQL	Server	Reporting	Services	(SSRS)	reports
From	cloud	sources	like	Azure	DataMarket	and	SQL	Azure
From	so-called	“data	feeds”

So	 there	 is	 literally	 something	 for	 everyone.	We	have	been	 impressed	by	Power	Pivot’s
flexibility	in	terms	of	“eating”	data	from	different	sources,	and	have	always	found	a	way
to	load	the	data	we	need.	And	now	you	have	Power	Query,	which	further	extends	the	data
sources	you	can	connect	to	and	send	the	data	into	Power	Pivot.

For	 each	 of	 the	 Power	 Pivot	methods	 above,	 we	will	 offer	 a	 brief	 description	 and	 our
advice.

Linked	Tables	(Data	Source	Type)
If	you	have	a	table	of	data	in	Excel	like	this:

20.	Just	a	normal	table	of	data	in	a	normal	Excel	sheet

You	 can	 “link”	 this	 to	 a	 Power	 Pivot	 table.	 This	will	 duplicate	 the	 selected	 Excel
table	into	the	Power	Pivot	window,	and	also	keep	them	in	sync.	Here’s	how	to	“link”
tables	for	each	of	the	Excel	versions.

Excel	2010:	Use	“Create	Linked	Table”	button	to	quickly	grab	the	table	into	Power
Pivot:

21.	Excel	2010:	From	Excel	“Power	Pivot”	tab	>	click	Create	Linked	Table

Excel	2013:	Here	the	button	is	called	“Add	to	Data	Model”

22.	Excel	2013:	From	Excel	“Power	Pivot”	tab	>	click	Add	to	Data	Model

Excel	2016:	For	2016,	the	button	is	still	called	“Add	to	Data	Model”

23.	Excel	2016:	From	Excel	“Power	Pivot”	tab	>	click	Add	to	Data	Model

ⓘ	In	Excel	2013/2016,	you’re	better	off	 if	you	format	your	data	as	an	Excel
table	and	then	give	the	table	a	proper	name.	Do	this	before	you	add	these	to	your
Power	Pivot	Data	Model.	Else	your	Pivot	Table	Field	List	may	continue	to	show
the	unfortunate	default	name	of	Table1,	Table2…;	even	when	you	rename	them
on	the	Power	Pivot	side.

Advantages
This	is	the	quickest	way	to	get	a	table	from	Excel	into	Power	Pivot
If	you	edit	 the	data	 in	Excel	–	change	cells,	 add	 rows,	etc.	–	Power	Pivot
will	 pick	 those	 changes	 up.	 So	 this	 is	 a	 sneaky	 way	 to	 work	 around	 the

“cannot	edit	in	Power	Pivot	window”	limitation.
If	 you	 add	 columns,	 those	 will	 also	 be	 picked	 up.	 We	 call	 this	 out
specifically	because	Copy/Paste	(below)	does	not	do	this,	and	we	frequently
find	 ourselves	 wishing	we	 had	 used	 Link	 rather	 than	 Copy/Paste	 for	 that
reason.

Limitations

You	 cannot	 link	 a	 table	 in	Workbook	A	 to	 the	 Power	 Pivot	window	 from
Workbook	B.	This	only	creates	a	linked	table	in	the	Power	Pivot	window	“tied”
to	the	XLSX	where	the	table	currently	resides.
This	 is	not	 a	 good	way	 to	 load	 large	 amounts	 of	 data	 into	 Power	 Pivot.	 A
couple	 thousand	 rows	 is	 fine.	 But	 ten	 thousand	 rows	 or	 more	may	 cause	 you
trouble	and	grind	your	computer	to	a	halt.
By	default,	Power	Pivot	will	update	its	copy	of	this	table	every	time	you	leave
the	Power	Pivot	window	and	come	back	to	it.	That	happens	whether	you	changed
anything	 in	 Excel	 or	 not,	 and	 leads	 to	 a	 delay	while	 Power	 Pivot	 re-loads	 the
same	data.
Linked	Tables	cannot	be	scheduled	for	auto-refresh	on	a	Power	Pivot	server.
They	can	only	be	updated	on	the	desktop.
You	cannot	subsequently	change	over	to	a	different	source	type	–	this	really
isn’t	a	limitation	specifically	of	linked	tables.	This	is	true	of	every	source	type	in
this	list:	whatever	type	of	data	source	is	used	to	create	a	table,	that	table	cannot
later	be	changed	over	to	use	another	type	of	data	source.	So	if	you	create	a	Power
Pivot	 table	 via	Linked	Table,	 you	 cannot	 change	 it	 in	 the	 future	 to	 be	 sourced
from	a	text	file,	database,	or	any	other	source.	You	will	need	to	delete	the	table
and	re-create	it	from	the	new	source.

⚠	 It	 is	 often	 very	 tempting	 to	 start	 building	 a	 Power	 Pivot	 workbook	 from	 an
“informal”	source	like	Linked	Tables	or	Copy/Paste,	with	a	plan	to	switch	over	and
connect	 the	 workbook	 to	 a	 more	 robust	 source	 (like	 a	 database)	 later.	 Resist	 this
temptation	whenever	possible!	If	you	plan	to	use	a	database	later,	load	data	from	your
informal	 source	 (like	 Excel)	 into	 that	 database	 and	 then	 import	 it	 from	 there.	 The
extra	step	now	will	save	you	loads	of	time	later.

Tips	and	Other	Notes

To	work	around	the	“large	data”	problem,	we	often	save	a	worksheet	as	CSV
(comma	separated	values)	and	 then	 import	 that	CSV	file	 into	Power	Pivot.	We
have	 imported	 CSV	 files	 with	 more	 than	 10	 million	 rows	 in	 the	 past.	 See
“Importing	from	Text	Files”	later	in	this	chapter	for	more.
Rename	your	Excel	Table	first,	before	you	bring	them	into	Power	Pivot	when
using	Excel	2013/2016.	This	 is	an	annoying	behavior	 in	Excel	2013	and	2016,
that	 even	 if	 you	 rename	 a	 Linked	 Table	 in	 Power	 Pivot,	 the	 old	 (Excel)	 table

name	 continues	 to	 show	 in	 the	 PivotTable	 Field	 List.	 To	 avoid	 this,	 simply
rename	your	Excel	Table	before	bringing	it	in	to	Power	Pivot.

24.	For	Excel	2013/2016	rename	table	before	adding	to	Power	Pivot
To	avoid	the	delay	every	 time	you	return	 to	 the	Power	Pivot	window,	we
highly	 recommend	 changing	 this	 setting	 in	 the	 Power	 Pivot	 window	 to
“Manual”.	Afterwards	you	can	click	Update	All	or	Update	Selected	buttons
to	refresh	the	linked	tables	manually.

25.	Change	the	Update	Mode	to	Manual

Pasting	Data	Into	Power	Pivot	(Data	Source	Type)
If	you	copy	a	table-shaped	batch	of	data	onto	the	Windows	clipboard,	this	button	in
the	Power	Pivot	window	will	light	up:

Advantages
You	can	paste	from	any	table-shaped	source	and	are	not	limited	to	using
just	Excel	(unlike	Linked	Tables)
You	 can	 paste	 from	 other	 workbooks	 and	 are	 not	 limited	 to	 the	 same
workbook	as	your	Power	Pivot	window

26.	This	button	could	have	been	named	“Paste	as	New	Table”

Pasted	tables	support	both	“Paste/Replace”	and	“Paste/Append”	as	shown	by	the
buttons	here:

Limitations
Suffers	from	the	same	“large	data	set”	drawback	as	Linked	Tables.
You	 can	 never	 paste	 in	 an	 additional	 column.	 Once	 a	 table	 has	 been
pasted,	 its	 columns	 are	 fixed.	 You	 can	 add	 a	 calculated	 column	 but	 can
never	change	your	mind	and	add	that	column	you	thought	you	omitted	the
first	 time	 you	 pasted.	 This	 becomes	more	 of	 a	 drawback	 than	 you	might
expect.

27.	These	paste	methods	can	come	in	handy
Not	all	 apparently	 table-shaped	 sources	 are	 truly	 table-shaped.	Tables
on	 web	 pages	 are	 notorious	 for	 this.	 Sometimes	 you	 are	 lucky	 and
sometimes	you	are	not.

Cannot	be	switched	to	another	data	source	type	 (true	of	all	data	source
types).

Importing	From	Text	Files	(Data	Source	Type)

28.	The	text	import	button	in	the	Power	Pivot	window

Advantages
Can	handle	nearly	limitless	data	volumes
You	 can	 add	new	 columns	 later	 (if	 you	 are	 a	 little	 careful	 about	 it,	 see
below)
Text	files	can	be	located	anywhere	on	your	hard	drive	or	even	on	network
drives	and	Power	Pivot	can	connect	 to	 them	directly.	 If	on	a	website,	you
can	 use	 Power	 Query	 to	 connect	 to	 them	 and	 send	 the	 output	 to	 Power
Pivot.	 So	 some	 backend	 process	might	 update	 a	 text	 file	 every	 night	 in	 a
fixed	location	(and	filename),	for	example,	and	all	you	have	to	do	is	refresh
the	Power	Pivot	workbook	the	next	day	to	pick	up	the	new	data.
Can	 be	 switched	 to	 point	 at	 a	 different	 text	 file,	 but	 still	 cannot	 be
switched	to	an	entirely	different	source	type	(like	database).

Limitations

No	reliable	column	names	–	unlike	in	a	database,	text	files	are	not	robust	with
regard	to	column	names.	If	the	order	of	columns	in	a	CSV	file	gets	changed,	that
will	likely	confuse	Power	Pivot	on	the	next	refresh.
Cannot	be	switched	to	another	data	source	type	(true	of	all	data	source	types).

Databases	(Data	Source	Type)
Advantages

Can	handle	nearly	limitless	data	volumes
You	can	add	new	columns	later

Can	 be	 switched	 to	 point	 at	 a	 different	 server,	 database,	 table,	 view,	 or
query.	Lots	of	 “re-pointability”	here,	 but	 you	 still	 can’t	 switch	 to	 another	data
source	type.
Databases	 are	 a	 great	 place	 to	 add	 calculated	 columns.	 There	 are	 some
significant	advantages	 to	building	calculated	columns	 in	 the	database,	and	 then
importing	them,	rather	than	writing	the	calculated	columns	in	Power	Pivot	itself.
This	is	particularly	true	when	your	tables	are	quite	large.	We	will	talk	about	this
later	in	the	Performance	chapter.

29.	The	Database	import	button	in	the	Power	Pivot	window
Power	Pivot	 really	 shines	when	paired	with	 a	 good	database.	There	 is
just	an	incredible	amount	of	flexibility	available	when	your	data	is	coming
from	a	database.	More	on	this	in	the	following	two	links.

ⓘ	If	you	are	curious,	you	can	 read	 the	 following	posts
about	why	Power	Pivot	is	even	better	when	“fed”	from	a
database:	 http://ppvt.pro/DBpart1,	 and
http://ppvt.pro/DBpart2

Limitations
Not	 always	 an	 option.	 Hey,	 not	 everyone	 has	 a	 SQL	 Server	 at	 their
disposal,	and/or	not	everyone	knows	how	to	work	with	databases.
Cannot	 switch	 between	 database	 types.	 A	 table	 sourced	 from	 Access
cannot	later	be	switched	over	and	pointed	to	SQL	Server.	So	in	reality,	these
are	separate	data	source	types,	but	they	are	similar	enough	that	we	did	not
want	to	add	a	completely	separate	section	for	each.
Cannot	be	switched	to	another	data	source	type	 (true	of	all	data	source
types).

http://ppvt.pro/DBpart1
http://ppvt.pro/DBpart2

Less	Common	Data	Source	Types
SharePoint	Lists
These	 are	 great	 when	 you	 have	 a	 data	 source	 that	 is	 maintained	 and	 edited	 by	 human
beings,	especially	if	more	than	one	person	shares	that	editing	duty.	But	if	your	company
does	not	use	SharePoint,	this	isn’t	terribly	relevant	to	you.

ⓘ	Only	SharePoint	2010	and	above	can	be	used	as	a	Power	Pivot	data	source.
The	Great	 Power	 Pivot	 FAQ	 is	 an	 example	 of	 a	 public	 SharePoint	 list,	where	myself	 and
others	from	the	community	can	record	the	answers	to	frequently-asked	questions,	which	are
then	shared	with	the	world.	It	is	located	here:	http://ppvt.pro/TheFAQ

Reporting	Services	(SSRS)	Reports
This	is	another	example	of	“if	your	company	already	uses	it,	it’s	a	great	data	source,”	but
otherwise,	not	relevant.

ⓘ	Only	SSRS	2008	R2	and	above	can	be	used	as	a	Power	Pivot	data	source.
Cloud	Sources	Like	Azure	DataMarket	and	SQL	Azure
Folks,	we	are	a	huge,	huge,	HUGE	 fan	of	Azure	DataMarket,	 and	 they	 improve	 it
every	day.	Would	you	like	to	cross-reference	your	sales	data	with	historical	weather	data
for	every	 single	 store	 location	over	 the	past	 three	years?	That	data	 is	now	easily	within
reach.	 International	 exchange	 rate	 data?	 Yep,	 that	 too.	 Or	 maybe	 historical	 gas	 prices?
Stock	prices?	Yes	and	yes.	There	are	thousands	of	such	sources	available	on	DataMarket.

We	don’t	remotely	have	space	here	to	gush	about	DataMarket,	so	we	will	point	you	to	a
few	posts	that	explain	what	it	is,	how	it	works,	and	why	we	think	it	is	a	huge	part	of	our
future	as	Excel	Pros.	In	the	second	post	we	explain	how	you	can	get	10,000	days	of	free
weather	data:	http://ppvt.pro/DataMktTruth,	
http://ppvt.pro/DataMktWeather	and	http://ppvt.pro/UltDate

SQL	Azure	is	another	one	of	those	“if	you	are	using	it,	it’s	relevant,	otherwise,	let’s	move
on”	sources.	But	like	DataMarket,	we	think	most	of	us	will	be	encountering	SQL	Azure	in
our	lives	as	Excel	Pros	over	the	next	few	years.

“Data	Feeds”
Data	Feeds	are	essentially	a	way	in	which	a	programmer	can	easily	write	an	“adapter”	that
makes	a	particular	data	source	available	such	that	Power	Pivot	can	pull	data	from	it.

In	fact,	SharePoint	and	SSRS	are	exposed	to	Power	Pivot	via	the	Data	Feed	protocol	–	that
is	how	that	source	types	were	enabled	“under	the	hood.”

So	we	are	mentioning	 this	here	 in	case	your	company	has	 some	sort	of	 custom	 internal
server	application	and	you	want	to	expose	its	data	to	Power	Pivot.	The	quickest	way	to	do

http://ppvt.pro/TheFAQ
http://ppvt.pro/DataMktTruth
http://ppvt.pro/DataMktWeather
http://ppvt.pro/UltDate

that	 may	 be	 to	 expose	 that	 application’s	 data	 as	 a	 data	 feed,	 as	 long	 as	 you	 have	 a
programmer	available	to	do	the	work.

For	 more	 on	 the	 data	 feed	 protocol,	 which	 is	 also	 known	 as	 OData,	 see:
http://www.odata.org/

Other	Important	Features	and	Tips
Renaming	up	Front	–	VERY	Important!
The	names	of	tables	and	columns	are	going	to	be	used	everywhere	in	your	formulas.
And	Power	Pivot	does	NOT	“auto-fix”	formulas	when	you	rename	a	table	or	column!	So
if	you	decide	to	rename	things	later,	you	may	have	a	lot	of	manual	formula	fixup	to	do.

And	besides,	bad	table	and	column	names	in	formulas	just	make	things	harder	to	read.	So
it’s	worth	investing	a	few	minutes	up	front	to	fix	things	up.

⚠	We	 strongly	 recommend	 that	 you	 get	 into	 the	 habit	 of	 “import	 data,	 then
immediately	rename	before	doing	anything	else.”	It	has	become	a	reflex	for	us.	Don’t
be	the	person	whose	formulas	reference	things	like	“Column1”	and	“Table1”	OK?

ⓘ	Excel	2016/Power	BI	Desktop:	Renames	are	automatically	handled	within	your
data	model.	That	means,	 if	you	rename	a	 table,	column	or	a	measure	all	dependent
calculations	are	updated	to	reflect	the	new	name.	WooHoo!	Well,	not	so	fast.	If	you
created	reports	connected	to	your	model,	 they	may	still	be	affected.	Thus	it’s	still	a
best	practice	to	rename	upfront.

Don’t	Import	More	Columns	than	You	Need
We	will	explain	why	in	a	subsequent	chapter,	but	for	now	just	follow	this	simple	rule:

ⓘ	If	you	don’t	expect	to	use	a	column	in	your	reports	or	formulas,	don’t	import	it.
You	 can	 always	 come	 back	 and	 add	 it	 later	 if	 needed,	 unless	 you	 are	 using
Copy/Paste.

Table	Properties	Button
This	 is	 a	 very	 important	 button,	 but	 it	 is	 hiding	 on	 the	 second	 ribbon	 tab	 in	 the	 Power
Pivot	window:

30.	For	all	data	source	types	other	than	Linked	Tables	and	Copy/Paste,	you	will	need	this	button

This	button	is	what	allows	you	to	modify	the	query	behind	an	existing	table.	So
it’s	 gonna	 be	 pretty	 important	 to	 you	 at	 some	 point.	We	 know	 someone	who	 used

http://www.odata.org/

Power	Pivot	for	two	months	before	realizing	that	there	was	a	second	ribbon	tab!

When	you	click	it,	it	returns	you	to	one	of	the	dialogs	you	saw	in	the	original	import
sequence:

31.	Here	you	can	select	columns	that	you	originally	omitted,	or	even	switch	to	using	a	different	table,	query,	or
view	in	a	database.	Table	Properties	button.	Don’t	leave	home	without	it.

Existing	Connections	Button
Also	useful	 is	 the	Existing	Connections	button.	Clicking	 this	brings	up	a	 list	of	 all
connections	previously	established	in	the	current	workbook:

32.	Excel	2010:	Existing	Connections	is	under	the	“Design”	ribbon	tab

33.	Excel	2013	&	Excel	2016:	Existing	Connections	is	under	the	“Home”	ribbon	tab

This	dialog	is	important	for	two	reasons:

1.	 The	Edit	button	lets	you	modify	existing	connections.	In	the	screenshot
above,	 you	 see	 a	 path	 to	 an	 Access	 database.	 If	 we	 want	 to	 point	 to	 a
different	Access	database,	we	would	click	Edit	here.	Same	thing	if	we	want
to	 point	 to	 a	 different	 text	 file,	 or	 if	we	want	 to	 point	 to	 a	 different	SQL
Server	database,	etc.

2.	 The	Open	button	lets	you	quickly	import	a	new	table	from	that	existing
connection.	We	highly	recommend	doing	this	rather	than	starting	over	from
the	“From	Database”	button	on	the	first	ribbon	tab.	You	get	to	skip	the	first
few	 screens	of	 the	wizard	 this	way,	AND	you	don’t	 litter	 your	workbook
with	a	million	connections	pointing	to	the	same	exact	source.

34.	List	of	connections	established	in	the	current	workbook

5	-	Intro	to	Calculated	Columns
Two	Kinds	of	Power	Pivot	Formulas
When	we	talk	about	DAX	(the	Power	Pivot	formula	language,	which	you	should	think	of
as	“Excel	Formulas+”),	there	are	two	different	places	where	you	can	write	formulas:
Calculated	Columns	and	Measures.

Calculated	 Columns	 are	 the	 less	 “revolutionary”	 of	 the	 two,	 so	 let’s	 start	 there.	 In	 this
chapter	we	will	 introduce	 the	basics	of	 calculated	columns,	 and	 then	 return	 to	 the	 topic
later	for	some	more	advanced	coverage.

Adding	Your	First	Calculated	Column
You	cannot	add	calculated	columns	until	you	have	loaded	some	data.	So	let’s	start	with	a
few	tables	of	data	loaded	into	the	Power	Pivot	window:

35.	Three	tables	loaded	into	Power	Pivot,	with	the	Sales	table	active

Starting	a	Formula
You	see	 that	blank	column	on	the	right	with	 the	header	“Add	Column?”	Select	any
cell	in	that	blank	column	and	press	the	“=”	key	to	start	writing	a	formula:

36.	Select	any	cell	in	the	“Add	Column”,	press	the	“=”	key,	and	the	formula	bar	goes	active

Referencing	a	Column	via	the	Mouse
Using	the	mouse,	click	any	cell	in	the	SalesAmt	column:

37.	Clicking	on	a	column	while	in	formula	edit	mode	adds	a	column	reference	into	your	formula

Referencing	a	Column	by	Typing	and	Autocomplete
We	are	going	to	subtract	the	ProductCost	column	from	the	SalesAmt	column,	so	we
type	a	“-“	sign.

Now,	to	reference	the	ProductCost	column,	we	type	“[“	(an	open	square	bracket).	See
what	happens:

38.	Typing	“[“	in	formula	edit	mode	triggers	column	name	autocomplete

We	can	now	type	a	“P”	to	further	limit	the	list	of	columns:

39.	Typing	the	first	character	of	your	desired	column	name	filters	the	autocomplete	list

Now	we	can	use	the	up/down	arrow	keys	to	select	the	column	name	that	we	want:

40.	Pressing	the	down	arrow	on	the	keyboard	selects	the	next	column	down

And	then	pressing	the	up	arrow	also	does	what	you’d	expect:

41.	The	up	arrow	selects	the	next	column	up

Once	the	desired	column	is	highlighted,	the	<TAB>	key	finishes	entering	the	name	of
that	column	in	our	formula:

42.	<TAB>	key	enters	the	selected	column	name	in	the	formula	and	dismisses	autocomplete

Now	 press	 <ENTER>	 to	 finish	 the	 formula,	 just	 like	 in	 Excel,	 and	 the	 column
calculates:

43.	Pressing	<ENTER>	commits	the	formula.	Note	the	entire	column	fills	down,	and	the	column	gets	a	generic
name.

Notice	 the	 slightly	 darker	 color	 of	 the	 calculated	 column?	 This	 is	 a	 really	 nice
feature	that	is	new	in	v2,	and	helps	you	recognize	columns	that	are	calculated	rather
than	imported.

Just	like	Excel	Tables!
If	that	whole	experience	feels	familiar,	it	is.	The	Tables	feature	in	“normal”	Excel	has
behaved	just	like	that	since	Excel	2007.	Here	is	an	example:

44.	Power	Pivot	Autocomplete	and	column	reference	follows	the	precedent	set	by	Excel	Tables

OK,	the	Excel	feature	looks	a	bit	snazzier	–	it	can	appear	“in	cell”	and	not	just	in	the
formula	bar	for	instance	–	but	otherwise	it’s	the	same	sort	of	thing.

Rename	the	New	Column
Notice	 how	 the	 new	 column	 was	 given	 a	 placeholder	 name?	 It’s	 a	 good	 idea	 to
immediately	 rename	 that	 to	 something	more	 sensible,	 just	 like	we	 do	 immediately
after	 importing	 data.	 Right	 click	 the	 column	 header	 of	 the	 new	 column,	 choose
Rename:

45.	Right	click	header	to	rename

Reference	the	New	Column	in	Another	Calculation
Calculated	 columns	 are	 referenced	 precisely	 the	 same	 way	 as	 imported	 columns.
Let’s	add	another	calculated	column	with	the	following	formula:

=[Margin]	/	[SalesAmt]

And	here	is	the	result:

46.	A	second	calculated	column,	again	using	a	simple	Excel-style	formula	and	[ColumnName]-style	references

ⓘ	Notice	how	we	referenced	the	[Margin]	column	using	its	new	(post-rename)
name,	as	opposed	to	its	original	name	of	[CalculatedColumn1]?	In	Power	Pivot,
the	column	names	are	not	just	labels.	They	also	serve	the	role	of	named	ranges.
There	 isn’t	one	name	used	 for	display	and	another	 for	 reference;	 they	are	one
and	 the	 same.	 This	 is	 a	 good	 thing,	 because	 you	 don’t	 have	 to	 spend	 any
additional	time	maintaining	separate	named	ranges.

Properties	of	Calculated	Columns
No	Exceptions!

Every	row	in	a	calculated	column	shares	the	same	formula.	Unlike	Excel	Tables,
you	 cannot	 create	 exceptions	 to	 a	 calculated	 column.	 One	 formula	 for	 the	 whole
column.	So	if	you	want	a	single	row’s	formula	to	behave	differently,	you	have	to	use
an	IF().

No	“A1”	Style	Reference
Power	Pivot	always	uses	named	references	like	[SalesAmt].	There	is	no	A1-style
reference	 in	 Power	 Pivot,	 ever.	 This	 is	 good	 news,	 as	 formulas	 are	 much	 more
readable	as	a	result.

Columns	are	referenced	via	[ColumnName].	And	yes,	 that	means	column	names
can	have	spaces	in	them.

Columns	can	also	be	referenced	via	 ‘TableName’[ColumnName].	This	 becomes
important	 later,	but	for	simple	calculated	columns	within	a	single	 table,	 it	 is	fine	 to
omit	the	table	name.

Tables	are	referenced	via	‘TableName’.	Single	quotes	are	used	around	table	names.
But	 the	 single	 quotes	 can	 be	 omitted	 if	 there	 are	 no	 spaces	 in	 the	 table	 name
(meaning	that	TableName[ColumnName]	is	also	legal,	without	single	quotes,	 in	 the
event	of	a	“spaceless”	table	name).

Stored	Statically	with	the	File
For	each	row,	the	value	of	the	Calculated	column	is	computed	and	upon	file	save,	is
saved	back	to	the	XLSX	file	with	our	Power	Pivot	data	model.	This	has	performance
implications	which	we	will	cover	in	the	chapter	dedicated	to	performance.

Also,	 note	 the	 use	 of	 the	 term	 “static”.	 Calculated	 column	 computation	 is	 only
triggered	by	two	events

Definition	 or	Redefinition:	When	 you	 define	 (or	 edit)	 the	 formula	 for	 the
calculated	column	and	hit	enter,	the	column	values	are	recalculated
Data	Refresh:	When	the	Power	Pivot	table	holding	the	calculated	column	is
refreshed	the	column	values	are	recalculated.

Thus	 calculated	 columns	 are	 “static”	 as	 opposed	 to	 Measures	 (introduced	 in	 the	 next
chapter)	which	 are	 “dynamic”.	We’ll	 see	 an	 example	of	 this	when	we	 revisit	 calculated
columns	in	the	chapter	on	Advanced	Calculated	Columns.

Slightly	More	Advanced	Calculations
Let’s	try	a	few	more	things	before	moving	on	to	measures.

Function	Names	Also	Autocomplete
Let’s	write	a	third	calc	column,	and	this	time	start	the	formula	off	with	“=SU”…

47.	The	 names	 of	 functions	 also	 autocomplete.	 Note	 the	 presence	 of	 two	 familiar	 functions	 –	 SUM()	 and
SUBSTITUTE()	–	as	well	as	two	new	ones	–	SUMMARIZE()	and	SUMX()

We’ll	get	to	SUMMARIZE()	and	SUMX()	later	in	the	book.	For	now,	let’s	stick	with
functions	we	already	know	from	Excel,	and	write	a	simple	SUM:

48.	SUM	formula	summed	the	entire	column

Aggregation	Functions	Implicitly	Reference	the	Entire	Column
Notice	 how	 SUM	 applied	 to	 the	 entire	 [ProductCost]	 column	 rather	 than	 just	 the
current	 row?	Get	used	 to	 that	–	aggregation	 functions	 like	SUM(),	AVERAGE(),
COUNT(),	etc.	will	always	“expand”	and	apply	to	the	entire	column.

Quite	a	Few	“Traditional”	Excel	Functions	are	Available
Many	familiar	faces	have	made	the	jump	from	normal	Excel	into	Power	Pivot.	Let’s
try	a	couple	more.

=	MONTH	([OrderDate])

and

=	YEAR	([OrderDate])

To	receive	the	following	results:

49.	MONTH()	and	YEAR()	functions	also	work	just	like	they	do	in	Excel

If	you’d	like	to	take	a	quick	tour	through	the	function	list	in	Power	Pivot,	you	can	do
so	by	clicking	the	little	“fx”	button,	just	like	in	Excel:

50.	Power	Pivot	also	has	a	function	picker	dialog.	Note	the	presence	of	many	familiar	functions.

Excel	functions	Are	Identical	in	Power	Pivot
If	 you	 see	 a	 familiar	 function,	 one	 that	 you	know	 from	normal	Excel,	 you	 already
know	how	to	use	it.	It	will	have	the	same	parameters	and	behavior	as	the	original	function
from	Excel.

OK,	before	anyone	calls	us	a	liar,	we’ll	qualify	the	above	and	say	that	it’s	true	99.9%	of
the	time.	The	keen	eye	of	Bill	Jelen	has	found	one	or	two	places	where	things	diverge	in
small	 ways,	 but	 Power	 Pivot	 has	 done	 a	 frankly	 amazing	 job	 of	 duplicating	 Excel’s
behavior,	in	no	small	part	due	to	the	Excel	team	helping	them	out.	In	most	cases,	Power
Pivot	uses	exactly	the	same	programming	“under	the	hood”	as	Excel.

Enough	Calculated	Columns	for	Now

There	 is	 nothing	 inherently	 novel	 or	 game	 changing	 about	 calculated	 columns	 really.	 If
that	 were	 the	 only	 calculation	 type	 offered	 by	 Power	 Pivot,	 it	 would	 definitely	 not	 be
analogous	to	a	“Biplane	to	jetplane”	upgrade	for	Excel	Pros.

We	will	come	back	to	calculated	columns	a	few	more	times	during	the	course	of	the	book,
but	first	we	want	to	introduce	measures,	the	real	game	changer.

6	-	Introduction	to	DAX	Measures
“The	Best	Thing	to	Happen	to	Excel	in	20	Years”
That’s	 a	 quote	 from	MrExcel	 himself,	 Bill	 Jelen.	He	was	 talking	 about	 Power	 Pivot	 in
general,	but	specifically	measures.	So	what	are	measures?

On	the	surface,	you	can	think	of	Measures	as	“formulas	that	you	add	to	a	pivot.”	But
they	offer	you	unprecedented	power	and	flexibility,	and	their	benefits	extend	well	beyond
the	first	impression.	Several	years	after	we	started	using	Power	Pivot	professionally,	we're
still	discovering	new	use	cases	all	the	time.

Aside:	A	Tale	of	Two	Formula	Engines
Some	of	you	may	already	be	saying,	“hey,	pivots	have	always	had	formulas.”

Why	yes,	yes	they	have.	Here’s	a	glimpse	of	the	formula	dialog	that	has	been	in	Excel	for
a	long	time:

51.	Power	Pivot	measures	mean	 that	you	will	NEVER	use	 this	“historical”	pivot	 formula	dialog	again	(if	you
ever	used	it	at	all)

This	old	feature	has	never	been	all	that	helpful,	nor	has	it	been	widely	used.	(Oh
and	if	you	think	it	has	been	helpful,	great!	Power	Pivot	measures	do	all	of	 this	and
much,	much	more).

It	 has	 not	 been	 very	 helpful	 or	 widely	 used	 because	 it	 never	 received	 much
investment	 from	 the	 Excel	 team	 at	 Microsoft.	 The	 Excel	 pivot	 formula	 engine	 is
completely	 separate	 from	 the	 primary	 formula	 engine	 (the	 one	 that	 is	 used	 on
worksheets).	Whenever	it	came	time	for	us	to	plan	a	new	version	of	Excel,	we	had	to
decide	 where	 to	 spend	 our	 engineering	 budget.	 The	 choice	 between	 investing
development	 budget	 in	 features	 that	 everyone	 sees,	 like	 the	 worksheet	 formula
engine,	versus	investing	in	a	relatively	obscure	feature	like	this,	was	never	one	which
required	 much	 debate.	 The	 pivot	 formula	 engine	 languished,	 and	 never	 really
improved.

Remember	the	history	of	Power	Pivot	though?	How	we	said	it	sprang	from	the
longstanding	 SSAS	 product?	 Well,	 SSAS	 is	 essentially	 one	 big	 pivot	 formula
engine.	So	now,	all	at	once,	we	have	a	pivot	formula	engine	that	is	the	result	of	nearly
20	years	of	continuous	development	effort	by	an	entire	engineering	team.	Buckle	up	

Adding	Your	First	Measure
There	are	two	ways	you	can	add	a	measure:

1.	 In	the	Excel	window	(attached	to	a	pivot)
2.	 In	the	Power	Pivot	window	(in	the	measure	grid).	Note	that	this	is	called

Calculation	 Area	 in	 the	 UI	 but	 we	 call	 it	 the	 measure	 grid	 since	 it	 only
contains	measures.

We	 highly	 recommend	 starting	 out	 with	 the	 first	 option	 –	 in	 the	 Excel	 window,
attached	 to	a	pivot,	because	 that	gives	you	 the	 right	context	 for	validating	whether	your
formula	is	correct.

ⓘ	Both	 ways	 of	 adding	measures	 are	 equivalent:	 Even	 though	 they	 may	 feel
different,	 they	both	have	 the	same	end-result	–	of	adding	 the	measure	 in	 the	Power
Pivot	Data	Model.	Let	us	emphasize	 that.	Even	when	you	add	a	Measure	 from	 the
Excel	window,	the	measure	is	still	created	in	the	Power	Pivot	Data	Model.	You	can
check	that	by	going	over	to	the	Power	Pivot	window.

Create	a	Pivot
With	that	in	mind,	let	us	create	a	pivot	connected	to	our	Power	Pivot	data	model.	This	is
slightly	different	across	the	Excel	versions.	We’ll	show	you	the	easiest	method	to	create
a	pivot	for	each	Excel	version.

Excel	2010:	From	Excel,	click	the	Power	Pivot	ribbon	tab,	then	click	Pivot	Table.

52.	Excel	2010:	Creating	a	pivot	from	Excel’s	Power	Pivot	ribbon	tab

Excel	 2013/2016:	 From	 Excel	 >	 Launch	 Power	 Pivot	 window	 >	 In	 Power	 Pivot
window	>	Click	Pivot	Table	button

53.	Excel	2013	and	2016:	Creating	a	pivot	is	best	done	from	the	Power	Pivot	window

With	Excel	2016,	you	can	easily	do	it	from	the	Excel	side	as	well:

54.	Excel	2016:	From	Excel	“Insert”	ribbon	tab,	click	Pivot	Table	and	then	OK.	Note	that	it	defaults	to	use	the
workbook	Data	Model	(a.k.a.	Power	Pivot	Data	Model)

This	yields	a	blank	pivot	on	a	new	worksheet:

55.	Blank	pivot.	Every	table	from	the	Power	Pivot	window	is	available	in	the	field	list.

Notice	 how	 the	 pivot	 field	 list	 contains	 all	 three	 tables	 from	 the	 Power	 Pivot
window?	For	now,	we	are	going	to	ignore	the	other	tables	and	just	focus	on	Sales.
Exploring	the	advantages	of	multiple	tables	is	covered	later	on.

Add	a	Measure!
Let	us	create	our	 first	measure.	Since	 the	 interface	 is	 slightly	different,	We’ll	 show
you	how	to	do	this	across	each	Excel	version.

Excel	 2010:	 Make	 sure	 you	 have	 selected	 a	 cell	 inside	 the	 Pivot	 Table	 we	 just
created.	Then	you	can	either

>	Click	the	Excel	“Power	Pivot”	ribbon	tab	>	click	New	Measure

OR

>	Right	click	a	table	in	the	PivotTable	Field	List	>	click	Add	New	Measure. 

56.	Excel	2010:	Creating	a	New	Measure	Button

Excel	2013:	Click	the	Excel	“Power	Pivot”	ribbon	tab	>	Click	“Calculated	Fields”	>
Click	“New	Calculated	Field”

ⓘ	In	Excel	2013,	“Measures”	were	renamed	as	“Calculated	Fields”.	We	were
never	 fond	 of	 this	 new	 name	 and	 ranted	 about	 it	 incessantly.	We	 are	 glad	 to
report	that	in	Excel	2016	and	in	Power	BI	Desktop,	we	are	back	to	the	original
name	of	“Measures”.	If	you	are	using	Excel	2013,	know	that	“Calculated	Field”
and	“Measures”	mean	the	same	thing.

57.	Excel	2013:	Creating	a	New	Measure	(Calculated	Field)

Excel	2016:	You	can	either

>	Click	the	Excel	“Power	Pivot”	tab	>	Measures	>	New	Measure…

OR

>	Right	click	a	table	in	the	PivotTable	Field	List	>	click	Add	Measure

This	 brings	 up	 the	 Measure	 Settings	 dialog,	 which	 we	 will	 often	 refer	 to	 as	 the
measure	editor,	or	often	as	just	“the	editor.”

58.	Excel	2016:	Creating	a	New	Measure

59.	Measure	Settings,	also	known	as	the	Measure	Editor,	or	The	Editor	

There’s	a	lot	going	on	in	this	dialog,	but	for	now	let’s	ignore	most	of	it	and	just	write
a	simple	formula:

=	SUM	(Sales[SalesAmt])

60.	Entering	a	simple	measure	formula

Name	the	Measure

Before	clicking	OK,	we	will	give	 the	measure	a	name.	This	 is	 just	as	 important	as
giving	sensible	names	to	tables	and	columns.

ⓘ	The	“Measure	name”	box	is	the	one	you	want	to	fill	in.	Ignore	the	“Custom
name”	 box	 for	 now	 –	 that	 will	 automatically	 match	 what	 you	 enter	 in	 the
“Measure	name”	box.	(In	fact,	Microsoft	removed	the	box	from	Excel	2013	and
higher!)

61.	It	is	very	important	to	give	the	measure	a	sensible	name

Results
Click	OK,	and	we	get:

62.	The	resulting	pivot

63.	New	checkbox	added	to	the	field	list	for	the	measure,	and	measure	added	to	Values	dropzone

Works	As	You	Would	Expect
Let’s	do	some	“normal	pivot”	stuff.	We	are	going	 to	drag	MonthNum	to	Rows	and
Year	to	Columns,	yielding:

64.	MonthNum	field	on	Rows,	Year	on	Columns,	Total	Sales	Measure	just	“does	the	right	thing”

OK,	 our	 first	measure	 is	working	well.	 Let’s	 take	 stock	 of	where	we	 stand	 before
moving	on.

“Implicit”	Versus	“Explicit”	Measures
We	have	done	nothing	special	so	far,	we	are	just	laying	the	groundwork.	We	mean,	a
simple	SUM	of	 the	SalesAmt	 column	 is	 something	we	 always	 could	 have	 done	 in
normal	pivots.

In	fact,	we	can	uncheck	the	[Total	Sales]	measure	and	then	just	click	the	[SalesAmt]
checkbox,	and	get	precisely	the	same	results	as	before:

65.	Unchecked	the	[Total	Sales]	measure,	checked	the	[SalesAmt]	checkbox

66.	Yields	the	same	exact	pivot	results

ⓘ	 Just	 like	 in	 normal	 pivots,	 if	 you	 check	 the	 checkbox	 for	 a	 numerical
column,	that	will	default	to	creating	a	SUM	in	the	Values	area	of	the	field	list.
And	checking	a	non-numeric	field	will	place	that	field	on	Rows	by	default.

So	we	have	two	ways	to	“write”	a	SUM	in	Power	Pivot	–	we	can	write	a	formula
using	the	Measure	Editor,	or	we	can	just	check	the	checkbox	for	a	numeric	column.

We	have	our	own	terms	for	this:

1.	 Explicit	Measure	–	a	measure	you	create	by	writing	a	formula	in	the	Editor
2.	 Implicit	Measure	–	what	you	get	when	you	just	check	a	numeric	column’s

checkbox

Turns	out,	we	have	a	very	strong	opinion	about	which	of	these	is	better.

⚠	We	never,	 ever,	EVER	create	 implicit	measures!	Even	 if	 it’s	 a	 simple	SUM
that	we	want,	we	always	fire	up	the	measure	editor,	write	the	formula,	and	give	the
measure	a	sensible	name.	We	think	it	is	important	that	checking	a	numeric	checkbox
does	what	 it	 does,	 because	 that	matches	 people’s	 expectations	 from	 normal	 Excel.
But	that	does	not	mean	you	should	do	it!	Trust	us	on	this	one,	you	want	to	do	things
explicitly.	There	are	too	many	benefits	to	the	explicit	approach.	You	will	not	see	us
create	another	implicit	measure	in	this	book.	They	are	dead	to	us	

Referencing	Measures	in	Other	Measures
We’ll	show	you	one	reason	why	we	prefer	explicit	measures	right	now.

Another	Simple	Measure	First
First,	let	us	create	another	simple	SUM	measure,	for	Margin:

=	SUM	(Sales[Margin])

67.	Creating	a	new	measure,	that	we	named	Profit

68.	Profit	measure	added	to	field	list

69.	Profit	measure	added	to	pivot,	along	with	Total	Sales	measure

Creating	a	Ratio	Measure

OK,	time	for	some	fun.	Here’s	a	new	measure:

70.	Adding	a	new	measure,	autocomplete	triggered	by	“[“

Do	you	see	the	first	item	in	the	autocomplete	list?	Zooming	in:

71.	The	[Profit]	measure	appears	in	autocomplete!

There’s	even	a	little	“M”	icon,	for	measure,	next	to	[Profit]	in	the	autocomplete.

[Total	Sales]	is	also	in	there,	so	let’s	try:

=	[Profit]	/	[Total	Sales]

72.	Measures	can	reference	other	measures,	useful	for	creating	things	like	ratios	and	percentages	(and	a	million
other	things)

Original	Measures	Do	NOT	Have	to	Remain	on	the	Pivot
We’ll	click	OK	now	and	create	this	new	[Profit	Pct]	measure,	but	then	we’ll	uncheck
the	other	two	measures	so	we	just	see	[Profit	Pct]	in	the	pivot:

73.	[Profit	Pct]	measure	displayed	by	itself	–	its	two	“ancestor”	measures	are	not	required	on	the	pivot

Changes	to	“Ancestor”	Measures	Flow	Through	to	Dependent
Measures
Let’s	simplify	the	pivot	a	bit,	and	put	the	[Profit]	measure	back	on:

74.	Removed	[Year]	from	Columns,	added	[Profit]	measure	back

Let’s	focus	just	on	that	first	row	for	a	moment:

75.	About	41%	for	[Profit	Pct],	and	979k	for	[Profit]

What	happens	if	we	modify	the	formula	for	the	[Profit]	measure?	Let’s	find	out.

Right	click	the	[Profit]	measure	in	the	field	list	and	choose	Edit	formula:

76.	It	is	easy	to	open	a	measure	to	edit	its	formula.	They	took	this	right-click	edit	away	in	2013	and	gave	it	back
in	2016.	In	2013,	you	have	to	use	the	Manage	Calculated	Fields	button	on	the	ribbon.

Now	 let’s	 do	 something	 silly.	 Let’s	 arbitrarily	 boost	 our	 profits	 by	 10%,	 by
multiplying	the	original	SUM	formula	by	1.1:

77.	You	would	never	do	this	in	real	life,	unless	you	are,	say,	Enron

Click	OK	and	let’s	look	at	the	first	row	in	the	pivot	again:

78.	[Profit]	is	now	10%	higher,	as	expected.	But	that	ALSO	impacted	[Profit	Pct],	since	[Profit	Pct]	is	based	in
part	on	[Profit].

Cases	Where	This	Makes	Real	Sense
The	model	we’re	working	with	here	is	pretty	simple	at	the	moment,	and	lacks	things
like	Tax,	Shipping,	and	Discount.	It’s	not	hard	to	imagine	defining	[Profit]	or	[Total
Sales]	 in	 ways	 that	 include/exclude	 those	 other	 miscellaneous	 amounts,	 and
sometime	later	(perhaps	much	later)	realizing	that	you	need	to	change	that.

In	 fact,	 it	might	 just	 be	 a	 change	 in	 the	 business	 that	 triggers	 you	 to	 change	 your
definition	of	[Total	Sales]	–	it	is	not	necessary	that	you	made	a	mistake!

You	 may	 ultimately	 find	 yourself	 with	 literally	 dozens	 of	 measures	 (if	 not
hundreds)	 that	 all	 depend	 back	 to	 more	 fundamental	 measures.	 Those
dependencies	can	even	run	many	“layers”	thick	–	[X]	depends	on	[Y]	which	depends
on	[Z]	etc.

When	you	realize	that	you	have	hundreds	of	impacted	calculations,	but	you	only
need	 to	 change	a	 single	 formula	 to	 fix	EVERYTHING,	 it	 is	 a	 glorious	moment
indeed.

It’s	worth	driving	this	point	home,	so	we	will	restate	it:	Imagine	having	an	entire
suite	of	sophisticated	Excel	 reports	 that	all	assume	a	certain	calculation	method	for
Profit	and	Sales.	And	then	something	fundamental	changes,	rendering	that	approach
invalid.	You	could	be	performing	spreadsheet	surgery	for	days,	perhaps	weeks.	If	you
use	 Power	 Pivot	 properly,	 that	 same	 situation	 might	 only	 take	 a	 few	 seconds	 to
address.

ⓘ	 The	 first	 time	 you	 experience	 this	 “I	 fix	 one	 thing	 and	 everything	 is
updated”	moment,	you	will	know	that	your	life	has	changed.	How	often	do	you
find	statements	like	that	in	a	book	about	formulas?	We're	guessing	never,	but	it’s
the	truth	

Reuse	Measures,	Don’t	“Redefine”
In	 order	 to	 reap	 the	 benefit	 outlined	 above,	 it’s	 important	 to	 use	 the	 names	 of
measures	in	formulas	rather	than	the	formula	that	defined	the	original	measure.

For	instance,	these	two	formulas	for	[Profit	Pct]	would	return	the	same	results:

=	SUM	(Sales[Margin])	/	SUM	(Sales[SalesAmt])

would	yield	the	same	results	as:

=	[Profit]	/	[Total	Sales]

But	only	 the	second	approach	gives	you	 the	“fix	once,	benefit	everywhere”	payoff.
So	act	accordingly.

ⓘ	 Instinctively,	 I	 (Rob)	 expected	 that	 tying	 everything
tightly	together	like	this,	building	“trees”	of	measures	that
depend	 on	 other	 measures,	 sometimes	 in	 layers,	 would
lead	to	inflexibility	and	problems	later	on.	In	practice,	that
has	 never	 been	 the	 case.	 It	 has	 been	 all	 benefit	 in	 my
experience.

Related:	 if	 you	 discover	 places	 where	 you	 need,	 for
example,	a	Sales	measure	that	is	calculated	differently,	the
right	 approach	 is	 just	 to	 define	 a	 second	 Sales	 measure
with	 an	 appropriate	 name,	 such	 as	 [Sales	 –	 No	 Tax]	 or
[Sales	 Incl	 Commissions],	 etc.	 That	 works	 splendidly.
Seriously,	I	am	smiling	as	I	type	this.

Other	Fundamental	Benefits	of	Measures
There	 are	 a	 few	more	benefits	 that	 no	 chapter	 titled	 “Intro	 to	Measures”	would	be
complete	without.	Let’s	cover	those	quickly	before	continuing.

Use	in	Any	Pivot
Up	until	now	we	have	just	been	working	with	a	single	pivot.	But	if	we	create	a	brand-
new	pivot,	 guess	what?	All	 of	 the	measures	we	 created	 on	 that	 first	 pivot	 are	 still
available	in	our	new	pivot!

79.	New	pivot,	new	worksheet,	but	the	measures	are	still	available	for	re-use!

Centrally-Defined	Number	Formatting
So	far,	we’ve	been	looking	at	ugly-formatted	measures.	Let’s	add	all	three	measures
to	this	new	pivot	to	illustrate:

80.	Unformatted	measures	in	our	pivot

We	can	always	use	Format	Cells,	or	even	better,	Number	Format,	to	change	this:

81.	These	two	ways	to	format	numbers	in	a	pivot	are	SO	antiquated!	Be	gone!

Instead,	let’s	bring	up	the	measure	editor	for	one	of	these	measures:

82.	Setting	[Profit]	to	be	formatted	as	Currency,	with	0	decimal	places

The	results	are	the	same	as	if	we	had	used	Format	Cells	or	Number	Format:

83.	[Profit]	measure	is	now	formatted	nicely	in	the	pivot,	just	as	if	we	had	used	Format	Cells	or	Number	Format.

But	 that	 format	 now	 applies	 everywhere!	 Let’s	 return	 to	 our	 previous	 pivot	 and
Refresh	it:

84.	We	return	to	the	first	pivot,	where	[Profit]	is	still	formatted	“ugly,”	and	choose	Refresh

The	pivot	picks	up	the	new	formatting!

85.	Currency	formatting	on	[Profit]	now	shows	up	on	original	pivot,	too

A	refresh	is	not	strictly	required	and	is	actually	a	bad	idea	in	2013	and	higher	because
that	 triggers	 a	 refresh	 of	 the	 data	model.	Any	manipulation	 of	 the	 other	 pivot	will
cause	the	formatting	to	be	“picked	up.”	Reorder	fields,	click	a	slicer,	click	a	“+”	to
drill	down,	etc.	–	all	of	these	will	cause	the	formatting	to	be	picked	up.

Now	let’s	set	a	percentage	format	on	the	[Profit	Pct]	measure:

86.	Formatting	as	Number,	Percentage,	1	Decimal	Place

The	results	are	as	expected:

87.	Percentage	format?	Check.

Whetting	Your	Appetite:	COUNTROWS()	and	
DISTINCTCOUNT()
This	chapter	is	running	a	bit	long,	but	hey,	there’s	a	lot	of	value	to	convey.	And	we
still	want	to	end	with	some	“sizzle.”

Let’s	use	a	couple	of	new	functions	to	define	two	measures:

[Transactions]	=
COUNTROWS	(Sales)

and

[Days	Selling]	=
DISTINCTCOUNT	(Sales[OrderDate])

ⓘ	When	 you	 see	 us	 use	 the	 syntax	 [Foo]	 =	 <formula>,	 that	 means	 we	 are
creating	 a	 new	measure	 named	 [Foo],	 with	 that	 formula.	 That	 way	 we	 don’t
have	to	show	screenshots	of	the	Measure	Editor	every	time	we	add	a	measure.

Let’s	see	what	that	looks	like:

88.	[Transactions]	and	[Days	Selling]	–	introduction	to	COUNTROWS()	and	DISTINCTCOUNT()

COUNTROWS(Sales)
This	function	does	exactly	what	it	sounds	like	–	it	returns	the	number	of	rows	in	the
table	 you	 specify.	So	 for	 instance,	 in	 the	 figure	 above,	 there	 are	 5,017	 rows	 in	 the
Sales	table	that	have	a	MonthNum	of	1.

ⓘ	We	named	this	measure	[Transactions]	only	because	we	know	that	each	row
in	our	Sales	table	is	a	transaction.	But	if	a	single	transaction	were	spread	across
multiple	 rows,	 we	 couldn’t	 do	 that.	 We’d	 have	 to	 use	 DISTINCTCOUNT()
against	a	Transaction	ID	column,	which	we	don’t	have	in	this	example.

DISTINCTCOUNT(Sales[OrderDate])
Again,	this	function	does	what	it	sounds	like	it	does.	It	returns	the	number	of	distinct
(unique)	values	of	the	column	you	specify.

So	while	 there	 are	5,017	 rows	 for	MonthNum	1,	 and	all	of	 them	obviously	have	a
value	 for	 the	 [OrderDate]	 column,	 there	 are	 only	 93	 different	 unique	 values	 for
[OrderDate]	in	those	5k	rows.

Deriving	More	Useful	Measures	From	These	Two
Now	we	define	two	more	measures	that	depend	on	the	two	measures	above.

[Sales	per	Transaction]	=	
[Total	Sales]	/	[Transactions]

and

[Sales	per	Day]	=
[Total	Sales]	/	[Days	Selling]

Results:

89.	Two	meaningful	business	measures	–	can’t	do	these	in	normal	pivots!

Rearrange	Pivot,	Measures	Automatically	Adjust!
We	remove	MonthNum	from	Rows,	drag	ProductKey	on	 instead,	 then	drag	Year	 to
slicers	and	select	2002:

90.	Completely	scrambled	the	pivot,	but	our	measure	formulas	still	work!

ⓘ	 Slicers	 are	 a	 native	 Excel	 functionality	 but	 work
beautifully	 with	 PivotTables	 connected	 to	 Power	 Pivot.

Adding	 Slicers	 to	 Power	 Pivot	 PivotTables	 has	 changed
across	Excel	 versions.	Given	 how	 useful	 Slicers	 can	 be,
we’ll	take	a	brief	side-trip	to	show	you	how	that	works	in
each	Excel	version.

Also	note	 that	one	Slicer	can	be	“connected”	 to	multiple
pivot	tables.	That	makes	them	great	to	build	a	dashboard
where	 all	 Pivot	 Tables/Charts	 are	 controlled	 by	 a	 single
set	of	slicers.

Slicers	in	Different	Versions	of	Excel
2010	Slicers:	Power	Pivot	Field	List	has	a	dedicated	area	for	slicers,	where	you	can
just	drag	and	drop	the	fields.	The	slicers	also	auto-arrange.

91.	Excel	2010:	So	easy	to	add	slicers	to	your	Pivot

92.	Excel	2010:	Slicers	auto-arrange	in	Vertical	and	Horizontal	areas

Excel	 2013	&	Excel	 2016	 Slicers:	 Slicers	 are	 slightly	 less	 friendly	 to	 use.	Here’s
how	you	can	add	them	to	your	Pivot.

Option	1	(Insert	Single	Slicer):	Right	Click	in	Field	List	>	Add	as	Slicer

Option	2	(Insert	Multiple	Slicers):

PivotTable	Tools	>	Analyze	>	Insert	Slicer

Select	Fields	>	Click	OK

93.	Excel	2013	&	Excel	2016:	Adding	a	Slicer	to	your	Pivot

Measures	Are	“Portable	Formulas”
Stop	and	think	about	that	“rearrange	the	pivot	and	the	formulas	still	work”	point	for
a	moment.	Let’s	say	your	workgroup	originally	requested	a	report	that	displayed	Sales	per
Day	and	Sales	per	Transaction,	grouped	by	Month.

How	would	you	build	that	report	in	normal	Excel?	You	couldn’t	just	write	formulas	in	a
pivot.	You’d	have	to	do	some	pretty	serious	formula	alchemy	to	get	it	working.

And	those	formulas,	in	normal	Excel,	would	be	very	much	“hardwired”	to	the	“I	want	to
see	it	by	month”	requirement.

Then	 some	 executive	 sees	 the	 report,	 loves	 it,	 and	 says	 “Wow,	 if	 only	 I	 could	 see	 this
grouped	by	Product	instead!”

Switching	the	normal	Excel	report	over	to	be	grouped	by	Product	rather	than	Month
(and	 sliceable	 by	Year)	would	not	 be	 a	modification.	That	would	 be	 starting	 from
scratch,	in	many	ways,	and	rebuilding	the	entire	report.

With	Power	Pivot,	you	just	drag	fields	around	in	the	field	list.

ⓘ	This	 is	why	we	often	describe	measures	 as	 “portable	 formulas”	–	 they	 can	be	used	 in
many	 different	 contexts	 without	 needing	 to	 be	 rewritten.	 “Write	 once,	 use	 anywhere”	 is

another	 way	 to	 say	 it.	 And	 even	 just	 the	 ability	 to	 re-use	 the	 same	 formula	 on	 another
worksheet,	in	another	pivot,	by	just	clicking	a	checkbox,	is	a	stunning	example	of	portability.
As	 your	measure	 formulas	 become	more	 sophisticated	 and	 powerful,	 this	 benefit	 becomes
more	and	more	impactful.

I	(Rob)	even	wrote	a	guest	post	for	the	official	Excel	blog	on	this	topic,	if	you	are	interested:	
http://ppvt.pro/PortableFormulas

But	before	we	go	any	further,	we	need	to	talk	about	how	measures	actually	work.

http://ppvt.pro/PortableFormulas

7	-	The	“Golden	Rules”	of	DAX	Measures
How	Does	the	DAX	Engine	Arrive	at	Those	Numbers?
In	 the	previous	 chapter	we	 showed	you	 a	 bunch	of	 examples	 of	measures,	 displayed	 in
various-shaped	 pivots.	 And	 of	 course,	 the	 numbers	 displayed	 in	 all	 of	 those	 cases	 are
accurate.

Since	we’re	writing	some	pretty	interesting	formulas	in	pivots	now,	we	need	to	take	a
quick	step	back	and	reflect,	just	a	little	bit,	about	how	pivots	work	behind	the	scenes.

ⓘ	On	 an	 instinctive	 level,	 we're	 pretty	 sure	 you	 already	 understand	 everything
we're	going	to	explain	in	this	chapter,	but	your	understanding	is	informal	and	“loose.”
What	we	need	to	do	is	take	your	informal	understanding	and	make	it	crisper.	We	need
to	put	it	into	words.

For	instance,	if	we	asked	you	what	the	highlighted	cell	in	this	pivot	“means,”	we're	pretty
sure	you	will	immediately	have	an	answer.

94.	Question:	Can	you	explain	what	the	$98,600	“means?”

Let’s	make	this	multiple	choice.	Choose	Answer	A	or	Answer	B:

Answer	A:	“$98,600	worth	of	product	344	was	sold	in	the	year	2001.”
Answer	 B:	 “When	 you	 filter	 the	 Sales	 table	 to	 just	 the	 rows	 where
Year=2001	 and	ProductKey=344,	 then	 sum	up	 the	SalesAmt	 column	over
those	remaining	rows,	you	get	$98,600.”

We	 bet	 you	 chose	 A.	 Am	 I	 right?	 Yeah,	 I’m	 right.	 Don’t	 lie	 to	me.	 Unless	 you	 have
actually	merged	with	Excel	over	the	years	to	form	a	cyborg	calculator,	you	still	think	more
like	a	person	than	a	machine.	And	people	think	like	Answer	A.

But	 Answer	 B	 is	 exactly	 how	 the	 DAX	 engine	 arrived	 at	 the	 $98,600	 number.	 So
learning	to	think	that	way,	just	a	little	bit,	is	a	goal	of	this	chapter.

ⓘ	 It’s	 important	 for	you	 to	get	 comfortable	 thinking	 about	measures	 the	way	 the
DAX	engine	thinks	about	them	-	like	Answer	B.	Thinking	like	a	human	(Answer	A)
is	still	important,	too,	and	even	when	writing	measures	it’s	going	to	be	okay	most	of
the	time.	That’s	because	most	of	the	time,	your	measure	formula	just	works	the	first
time	you	write	it.	But	when	your	measure	formula	doesn’t	do	what	you	expect,	you
usually	have	to	think	“the	DAX	way”	(Answer	B)	in	order	to	fix	it.

Teaching	you	to	“think	like	DAX”	is	essentially	the	point	of	this	chapter.	Don’t	worry	if
you	haven’t	grasped	this	yet,	we’re	going	to	break	it	down	a	few	ways	for	you.

Stepping	Through	That	Example
Let’s	step	through	that	same	“98,600”	example	from	above,	this	time	in	the	Power	Pivot
window	so	that	we	have	a	picture	at	each	step.

Here’s	the	Sales	table:

95.	Sales	table	with	all	filters	cleared

There	are	three	elements	of	this	window	we’d	like	to	call	out.

1.	 The	“Clear	All	Filters”	Button	on	the	Ribbon.	Highlighted	in	the	picture
above.	 When	 this	 is	 greyed	 out	 like	 this,	 you	 know	 there	 are	 no	 filters
applied	on	the	current	table.

2.	 The	row	count	readout.	Pictured	here,	 it	 shows	 there	are	60,398	rows	 in
the	Sales	table	when	all	filters	are	cleared.

96.	Row	Count	Readout:	60,398	rows	are	currently	being	displayed	in	the	Sale	table.
3.	 The	measure	grid	(the	three	cells	at	the	bottom	of	the	table).	Let’s	widen

the	first	column	so	we	can	see	what	those	were.

97.	Our	three	measures	from	the	pivot	also	appear	here,	in	the	Measure	Grid.

This	area	at	the	bottom	of	the	table	is	the	Measure	Grid	(Calculation	Area).	This
feature	was	 introduced	 in	Power	Pivot	v2	 release,	 and	 lets	you	add	measures	 from
within	 the	 Power	 Pivot	 window.	 Most	 users	 would	 be	 comfortable	 with	 adding
measures	from	Excel,	but	you	can	use	either	approach	or	go	back	and	forth.	The	end-
result	 is	 the	same,	a	shiny	new	measure	 in	your	Power	Pivot	model.	The	bonus	for
Measure	Grid	is	 that	 it’s	superb	for	demonstrating	“the	DAX	way,”	so	we’re	gonna
use	it	here	to	great	effect.

All	right,	let’s	filter	Year	to	be	2001:

98.	Filtering	to	Year=2001

After	the	filter	is	applied,	let’s	check	out	the	measure	grid	and	row	readout:

99.	Sales	have	dropped	from	$27M	to	$3.2M,	row	count	dropped	from	60k	to	1k

OK,	now	let’s	apply	the	ProductKey=344	filter	and	then	check	the	same	stuff:

100.	With	both	filters	applied,	we	get	the	$98,600	number	(the	sum	of	SalesAmt	from	29	rows)

Hey	 hey!	 It	 matches	 the	 pivot!	 Notice	 that	 [Profit]	 is	 displaying	 as	 $47,462	 and
[Profit	Pct]	as	48.1%?	Those	were	the	numbers	in	the	pivot	as	well:

101.	[Profit]	and	[Profit	Pct]	in	the	pivot	also	match	up	to	what	we	see	in	the	filtered	Measure	Grid.

Hey,	where	are	our	other	measures?	If	we	make	the	measure	grid	taller,	we	see	that
they	are	here	too:

102.	All	of	our	measures	are	here.	Note	that	[Transactions]	=	29,	which	is	also	what	the	row	readout	tells	us.

Do	you	think	the	[Days	Selling]	=	18	number	is	correct?	Of	course	it	is,	but	double
checking	it	is	a	good	excuse	to	show	you	another	trick	we	use	a	lot.	We	dropdown	the
OrderDate	filter:

103.	Scroll	through	this	list	and	count	how	many	dates	show	up.	(Hint:	there	are	18).

ⓘ	Dropping	down	the	filters	in	the	Power	Pivot	window	is	a	very	helpful	trick.
It	 will	 only	 show	 you	 the	 values	 that	 are	 “legal”	 in	 the	 context	 of	 the	 filters
applied	to	all	other	columns	at	the	moment,	just	like	in	normal	Excel	Autofilter.
This	trick	is	especially	useful	for	seeing	whether	there	are	any	Blank	values	in
this	 column	once	 the	other	 column	 filters	 are	 respected.	 (Even	when	 there	 are
too	many	values	in	the	column,	and	you	see	the	“Not	all	items	shown”	warning,
the	Blanks	checkbox	will	 show	up	 if	 there	are	blanks,	and	 if	 it’s	missing,	you
know	there	are	none).

Enough	examples.	We	promised	you	some	Golden	Rules,	and	Golden	Rules	We	shall
deliver.

Translating	the	Examples	Into	Three	Golden	Rules
We’ve	been	 teaching	 these,	 that	we	call	 the	Golden	Rules	of	DAX	measures,	 for	a
few	 years	 now.	 They	 serve	 as	 the	 foundation	 –	 once	 you	 understand	 these,	 most
everything	that	follows	will	be	simple	and	incremental.

ⓘ	When	you	are	 reading	 these	rules,	we	encourage	you	 to	 reference	back	 to
the	examples	above	to	help	clarify	what	the	rules	mean.

Rule	A:	DAX	Measures	Are	Evaluated	Against	the	Source	Data,	NOT
the	Pivot
It	is	very	tempting	to	think	that	the	Grand	Total	cell	at	the	bottom	of	a	pivot	is
the	sum	of	the	cells	above	it,	but	that	is	NOT	the	way	it	is	calculated.	As	far	as
DAX	 is	 concerned,	 the	 fact	 that	 the	Grand	Total	matches	 the	 sum	 of	 the	 numbers
above	it	borders	on	coincidence.

So	 when	 you	 are	 thinking	 about	 how	 to	 construct	 a	 measure	 formula,	 or	 are
debugging	one	that	isn’t	quite	working,	visualize	the	underlying	table	in	the	Power
Pivot	window,	because	the	DAX	engine	is	doing	its	work	in	that	context.

For	 an	 example	 of	 this,	we	 need	 look	 no	 further	 than	 the	 age-old	 problem	of	 “the
average	of	averages	is	meaningless.”

104.	The	six	selected	cells’	Average	is	45.5%	but	the	pivot	Grand	Total	is	44.0%	-	only	a	calculation	against	the
individual	rows	in	the	Sales	table	will	yield	the	right	result.

Rule	B:	Each	Measure	Cell	is	Calculated	Independently
When	thinking	about	how	your	measure	is	calculated,	it	is	best	to	think	“one	cell	at	a
time.”

So,	pick	a	cell	and	visualize	how	it	was	calculated,	as	if	it	were	an	island.

ⓘ	 The	 value	 in	 one	 measure	 cell	 NEVER	 impacts	 the	 value	 in	 another
measure	cell.	The	measures	are	calculated	independently,	and	calculated	against
the	source	table(s).	See	Rule	A	

105.	The	DAX	engine	may	not	calculate	in	precisely	this	1-4	order,	but	you	should	think	that	it	does

Rule	C:	DAX	Measures	are	Evaluated	in	6	Logical	Steps

Step	1:	Detect	Pivot	Coordinates
Before	the	DAX	engine	even	looks	at	your	formula,	it	detects	the	“coordinates”
of	the	current	measure	cell	(the	Values-area	cell	from	the	pivot	that	is	currently
being	calculated.)

To	illustrate	this,	let’s	use	a	slightly	“richer”	pivot:

The	selected	measure	cell	has	three	“coordinates”,	coming	in	from	the	Row,	Column
and	the	Slicer	–

Sales[MonthNum]=8
Sales[Year]=2001,	and	
Sales[ProductKey]=313

Notice	 how	we	 specify	 pivot	 coordinates	 in	Table[Column]	 format;	 that	may	 seem
redundant	now,	but	would	come	in	handy	once	we	start	dealing	with	multiple	tables,
so	get	used	to	doing	it	this	way.

106.	Detect	pivot	coordinates

ⓘ	A	measure	 cell’s	 set	 of	 filter	 coordinates	 is	 often	 referred	 to	 as	 its	Filter
Context

Step	2:	CALCULATE	Alters	Filter	Context
Covered	later	in	the	book.	We’ll	skip	the	explanation	for	this	for	now	and	save	it	for
later,	where	we	can	explain	 it	 in	 full.	 (The	only	 reason	we’re	mentioning	 it	here	 is
because	later	in	the	book,	we	want	the	number	of	the	steps	to	remain	consistent).

Step	3:	Apply	Those	Filter	Coordinates	to	the	Underlying	Table(s)
Those	coordinates	(the	filters	in	the	filter	context)	are	then	applied	to	their	respective
underlying	tables.	In	this	case,	all	three	coordinates/filters	came	from	the	Sales	table,
so	that’s	the	only	table	that	will	get	filtered.	(You	never	see	this	filtering	of	course-
because	it	happens	behind	the	scenes).	In	our	case	the	Sales	table	is	filtered	based	on
MonthNum,	Year,	ProductKey	values	in	our	filter	context.

107.	Applying	Filter	Coordinates	in	Step	3:	All	Three	Filters	Get	Applied	to	the	Sales	Table

Step	4:	Filters	Follow	the	Relationship(s)
Covered	in	Chapter	10.	We’ll	skip	this	for	now,	too.

Step	5:	Evaluate	the	Arithmetic
Once	the	filter	context	of	a	measure	cell	(determined	by	its	coordinates	in	the	pivot)
has	been	used	to	filter	the	underlying	table(s),	ONLY	THEN	is	the	arithmetic	in	your
formula	evaluated.

In	our	case,	the	arithmetic	is	simple:	SUM(Sales[SalesAmt]),	but	complex	arithmetic
would	run	in	similar	manner	on	the	filtered	set	of	rows.	In	other	words,	your	SUM()
or	 COUNTROWS()	 function	 doesn’t	 run	 until	 the	 filter	 context	 has	 been
applied	to	the	source	table(s).

108.	Evaluate	the	arithmetic	against	all	the	rows	that	“survived”	the	filtering	process

Note	that	Sales[SalesAmt]	column	itself	was	not	filtered	in	Step	3,	but	the	filters	on
the	[ProductKey],	[MonthNum],	and	[Year]	reduced	the	number	of	rows	in	the	entire
Sales	table,	and	as	a	result,	the	[SalesAmt]	column	now	contains	only	a	subset	of	its
overall	 values.	 (We’re	 running	 the	 risk	of	over-explaining	 something	obvious	here,
but	it’s	kinda	beautiful,	in	an	important	way,	so	please	indulge	us).

Step	6:	Return	Result
The	result	of	the	arithmetic	is	returned	to	the	current	measure	cell	in	the	pivot,	then
the	process	starts	over	at	step	1	for	the	next	measure	cell.

109.	Result	is	returned	back	to	the	Pivot

ⓘ	The	evaluation	steps	can	be	thought	of	as	occurring	in	two	phases:	First
the	 filters	 are	 applied,	 then	 the	 arithmetic.	You	 can	 also	 think	of	 these	 as	 two
machines	in	an	assembly	line:	the	Filter	Machine	and	then	the	Math	Machine.

110.	Some	people	find	it	helpful	to	visualize	the	calculation	process	as	an	assembly	line:	first	things	go	into	the
Filter	Machine,	then	the	Math	Machine.

How	the	DAX	Engine	Calculates	Measures
Here	is	a	recap	of	all	six	golden	rules,	which	outline	how	the	DAX	engine	works:

111.	Measure	evaluation	proceeds	as	per	steps	outlined.	Details	on	some	steps	to	be	filled-in	in	later	chapters	A
Few	More	Tips

No	“Naked	Columns”	in	Measure	Formulas
When	you	reference	a	column	in	a	measure	formula,	it	always	has	to	be	“wrapped”	in
some	 sort	 of	 function.	 A	 “naked”	 reference	 to	 a	 column	 will	 yield	 an	 error	 in	 a
measure.	Let’s	take	a	look	at	an	example:

[My	New	Measure]	=
Sales[Margin]

112.	We	enter	a	“naked”	column	reference	into	the	measure	editor,	then	click	Check	Formula…

113.	…leading	to	a	relatively	cryptic	error	message.

Let’s	look	at	that	error	message:

“Calculation	 error	 in	 measure	 ‘Sales’[My	 New	 Measure]:	 The	 value	 for	 column
‘Margin’	in	table	‘Sales’	cannot	be	determined	in	the	current	context.	Check	that	all
columns	referenced	in	the	calculation	expression	exist,	and	that	there	are	no	circular
dependencies.”

Not	a	great	error	message.	 It	 really	should	be	more	helpful.	But	when	you	see	 this
error,	in	your	head	you	should	translate	this	to	be	“I	have	a	naked	column	reference
somewhere.”

ⓘ“Cannot	 be	 determined	 in	 the	 current	 context”	 should	 become	 a	 trigger
phrase	 for	 you	 to	 think	 “I	 have	 a	 naked	 column	 reference	 somewhere	 in	my
measure	formula.”

But	all	of	the	following	would	be	valid:

Any	aggregation	 function	will	do.	Think	of	 it	 this	way:	pivots	 are,	by	 their	nature,
aggregation	 devices.	 They	 take	 sets	 of	 rows	 and	 turn	 them	 into	 more	 compact
numerical	results.	Referencing	“naked	columns”	is	what	calculated	column	formulas

do.	Measure	are	 aggregations,	 and	 they	don’t	 accept	naked	 column	references
on	their	own.

ⓘ	Remember,	 naked	 column	 references	 are	OK	 in	 calculated	 columns.	 This
rule	only	applies	to	measures.

Best	Practice:	Reference	Columns	and	Measures	Differently
Whenever	we	are	writing	a	measure	formula,

To	 reference	 a	 column,	 we	 include	 the	 table	 name:
TableName[ColumnName]
To	reference	a	measure,	we	omit	the	table	name:	[MeasureName]

We	do	this	so	that	our	formulas	are	more	readable.	If	we	see	a	reference	with	a	table
name	preceding	it,	we	know	immediately	that	it’s	a	column,	and	if	we	see	a	reference	that
lacks	a	table	name,	we	know	it’s	a	measure.

Additionally,	 there	 are	 many	 situations	 in	 which	 omitting	 the	 table	 name	 on	 a	 column
reference	will	return	an	error.	Following	this	best	practice	avoids	that	issue	as	well.

Best	Practice:	Assign	Measures	to	the	Right	Tables
The	 “Table	 name”	 box	 in	 the	measure	 editor	 controls	 which	 table	 the	measure	will	 be
assigned	to	in	the	field	list.

114.	If	you	set	this	dropdown	to	the	Sales	table…

115.	…the	measure	will	be	“parented”	to	the	Sales	table	in	the	field	list.

Simple	Rule:	We	assign	our	measures	to	the	tables	that	contain	the	numeric	columns	used
in	the	formula.

ⓘ	This	is	merely	good	hygiene	so	that	your	model	is	easier	to	understand	later	(by
you	or	 by	 someone	 else).	 If	 a	measure	 is	 returning	 numbers	 from	a	 column	 in	 the
Sales	 table,	 I	 (Rob)	 assign	 that	 measure	 to	 the	 Sales	 table.	 Assigning	 it	 to	 the
Customers	table	would	confuse	me	later	on	–	it	would	make	me	think	this	somehow
evaluated	 number	 of	 customers	 rather	 than	 amount	 of	 sales.	 (I	 used	 to	 think	 that
which	table	you	assigned	a	measure	to	actually	impacted	the	results	of	measures,	but
that	isn’t	the	case.	You	would	get	the	same	results.)

8	-	CALCULATE()	–	Your	New	Favorite	Function
A	Supercharged	SUMIF()
Have	you	ever	used	the	Excel	function	SUMIF(),	or	perhaps	its	newer	cousin,	SUMIFS()?

We	describe	CALCULATE()	as	“the	SUMIF/SUMIFS	you	always	wish	you’d	had.”	You
are	going	to	love	this	function,	because	it	works	wonders.

In	case	you	are	one	of	 the	pivot	pros	who	managed	 to	 skip	SUMIF()	and	SUMIFS()	 in
normal	Excel,	they	are	both	very	useful	functions:	they	sum	up	a	column	you	specify,	but
filter	out	rows	that	don’t	fit	the	filter	criteria	you	specify	in	the	formula.	So	for	instance,
you	can	use	SUMIF	to	sum	up	a	column	of	Sales	figures,	but	only	for	rows	in	the	table
where	the	Year	column	contains	2012.

Does	that	sound	familiar?	It	sounds	a	lot	 like	the	Golden	Rules	from	the	prior	chapter	–
“filter,	 then	 arithmetic.”	An	 interesting	 similarity,	 and	CALCULATE()	 continues	 in	 that
same	tradition.

Anyway,	 CALCULATE()	 is	 superior	 to	 SUMIF()	 and	 SUMIFS()	 in	 three	 fundamental
ways:

1.	 It	has	cleaner	syntax.	This	 is	 the	smallest	of	 the	 three	advantages,	but	 it	 feels
good.	And	a	happier	formula	writer	is	a	better	formula	writer.

2.	 It	is	an	“anything”	IF,	and	not	limited	to	SUM/COUNT/AVERAGE.	There	is
no	MAXIF()	function	in	Excel	for	instance.	That	always	bugged	us.	Nor	is	there
a	MINIF(),	 and	 there	 is	 definitely	 no	 STDEVIF().	 CALCULATE()	 is	 literally
unlimited	–	 it	allows	you	 to	 take	any	 aggregation	 function	 (or	even	a	complex
multi-function	expression!)	and	quickly	produce	an	IF	version	of	it.

3.	 It	can	be	used	in	pivots	(as	part	of	a	measure),	which	normal	SUMIF()	cannot.

CALCULATE()	Syntax

ⓘ	CALCULATE(<measure	expression>,	<filter1>,	<filter2>,	…)
Ex:	CALCULATE(SUM(Sales[Margin]),	Sales[Year]=2001)
Ex:	CALCULATE([Sales	per	Day],	Sales[Year]=2002,	Sales[ProductKey]=313)

CALCULATE()	in	Action	–	a	Few	Quick	Examples
Let’s	start	with	a	simple	pivot.	Year	on	rows,	[Total	Sales]	measure	on	values:

OK,	let’s	add	a	new	measure,	one	that	is	always	filtered	to	Year=2002:

[2002	Sales]	=	
CALCULATE	([Total	Sales],	Sales[Year]	=	2002)

Three	things	to	note	in	this	formula:

1.	 We	used	the	name	of	a	measure	for	the	<measure	expression>	argument	of
CALCULATE.	Any	expression	 that	 is	 legal	 for	 a	measure	 is	okay	 there	–	 that
includes	 the	 name	 of	 a	 pre-defined	 measure,	 or	 any	 formula	 expression	 that
could	be	used	to	define	a	measure.

2.	 In	 the	 <filter>	 argument,	 2002	 is	 not	 in	 quotes.	 That’s	 because	 the	 Year
column	 is	 numeric.	 If	 it	 were	 a	 text	 column,	 we	 would	 have	 needed	 to	 use
=”2002”	instead.

3.	 We	only	used	one	<filter>	argument	this	 time,	but	we	could	use	as	many	as
we	want	in	a	single	CALCULATE	formula.

116.	Simple	pivot	–	the	basis	for	our	first	foray	into	CALCULATE()

And	the	results:

117.	Our	new	measure	matches	the	original	measure’s	2002	value	in	every	situation!

Do	 those	 results	 surprise	 you?	We	 bet	 they	 are	 close	 to	 what	 you	 expected,	 but
maybe	not	exactly.	You	might	have	expected	years	2001	and	2003	to	display	zeroes
for	our	new	measure,	and	you	might	be	scratching	your	head	a	bit	about	 the	grand
total	cell,	but	otherwise,	having	the	new	measure	always	return	the	2002	value	from
the	original	measure	is	probably	pretty	instinctive.

It’s	not	very	often	that	we	write	a	CALCULATE	measure	that	filters	against	a
column	that	is	also	on	the	pivot	(Sales[Year]	in	this	case).	That	seldom	makes	any

real-world	 sense.	We	 just	 started	 out	 like	 this	 so	 you	 can	 see	 that	 the	 $6,530,344
number	matches	up.

So	 to	 make	 this	 a	 bit	 more	 realistic,	 let’s	 take	 Year	 off	 of	 the	 pivot	 and	 put
MonthNum	on	 there	 instead:	 This	 probably	makes	 even	more	 sense	 than	 the	 prior
pivot.	 The	 grand	 total	 is	 still	 that	 $6.5M	 number,	 but	 every	 other	 cell	 returns	 a
distinct	number	–	the	sales	from	2002	matching	the	MonthNum	from	the	pivot.

118.	Previous	results	examined:	each	month	of	2002	is	returned	separately,	and	the	grand	total	matches	all	of
2002.	Exactly	what	we	want	and	expect!

How	CALCULATE()	Works
Now	that	we’ve	looked	at	a	couple	of	examples,	let’s	examine	how	CALCULATE()
truly	works,	because	that	will	clear	up	the	handful	of	somewhat	unexpected	results	in
that	first	example.

There	are	three	key	points	to	know	about	CALCULATE(),	specifically	about	the
<filter>	arguments:

1.	 The	 <filter>	 arguments	 operate	 during	 the	 “filter”	 phase	 of	measure
calculation.	 They	 modify	 the	 filter	 context	 provided	 by	 the	 pivot	 –	 this
happens	before	the	filters	are	applied	to	the	source	tables,	and	therefore	also
before	the	arithmetic	phase.

2.	 If	a	<filter>	argument	acts	on	a	column	that	IS	already	on	the	pivot,	it
will	override	 the	pivot	 context	 for	 that	 column.	So	 in	our	 first	 example

above,	 the	 pivot	 is	 “saying”	 that	 Sales[Year]=2001,	 but	 we	 have
Sales[Year]=2002	in	our	CALCULATE(),	so	the	pivot’s	“opinion”	of	2001
is	 completely	 overridden	 by	 CALCULATE(),	 and	 becomes	 2002.	 That	 is
why	 even	 the	 2001	 and	 2003	 cells	 (and	 the	 grand	 total	 cell)	 in	 the	 first
example	returned	the	2002	sales	number.

3.	 If	 a	 <filter>	 argument	 acts	 on	 a	 column	 that	 is	 NOT	 already	 on	 the
pivot,	 that	 <filter>	will	 purely	add	 to	 the	 filter	 context.	 In	 our	 second
example,	where	we	had	Sales[MonthNum]	on	the	pivot	but	not	Sales[Year],
the	Sales[Year]=2002	filter	was	applied	on	top	of	the	Month	context	coming
in	 from	 the	 pivot,	 and	 so	 we	 received	 the	 intersection	 –	 2002	 sales	 for
month	1,	2002	sales	for	month	2,	etc.

So	 it	 is	 time	 to	 fill	 in	 Step	 #2	 in	 our	DAX	Evaluation	Steps	 diagram	 to	 explain	where
CALCULATE	inserts	itself,	allowing	us	to	alter	the	filter	context:

119.	The	DAX	Evaluation	Steps	from	last	chapter:	revised	to	explain	CALCULATE()’s	impact	on	filter	context

Two	Useful	Examples	of	CALCULATE()
The	 [2002	Sales]	measure	 that	we	have	been	using	as	an	example	 so	 far	 is	 a	good
way	to	show	you	how	CALCULATE()	works,	but	it	might	not	seem	terribly	useful.
So	let	us	show	you	two	quick	examples	that	are	much	more	broadly	applicable.

Example	1:	Transactions	of	a	Certain	Type
Here	is	one	that	we	see	all	the	time	in	the	retail	sales	business:	not	all	transactions	are
normal	 sales.	 Some	 businesses	 record	 many	 different	 transaction	 types	 including
“Normal	Transaction,”	“Refund,”	and	“Promotional	Sales	Transaction.”

Our	database	has	a	column	for	that,	so	we	went	ahead	and	imported	it	into	our	Sales
table	(using	Table	Properties).	Here,	we	see	that	it	has	three	values:

120.	Our	newly-imported	TransType	column

We	now	want	to	write	four	new	measures,	defined	here	in	English:

“Regular”	Sales	–	Just	transactions	of	type	1
“Promotional”	Sales	–	Just	transaction	of	type	3
“Refunds”	–	transactions	of	type	2,	expressed	as	a	negative	number
“Net	Sales”	–	Regular	plus	Promotional	sales,	less	Refunds

Now,	here	are	the	formulas	for	each:

[Regular	Sales]	=
CALCULATE	([Total	Sales],	Sales[TransType]	=	1)

[Promotional	Sales]	=
CALCULATE	([Total	Sales],	Sales[TransType]	=	3)

[Refunds]	=
CALCULATE	([Total	Sales],	Sales[TransType]	=	2)

*	-1

[Net	Sales]	=
[Regular	Sales]	+	[Promotional	Sales]	+	[Refunds]

ⓘ	 Note	 that	 our	 treatment	 of	 [Refunds]	 assumes	 that	 refunds	 are	 recorded	 as
positive	values	in	our	Sales	table.	If	they	were	recorded	as	negative	values,	we	would
remove	the	multiplication	by	-1	from	the	[Refunds]	measure.

Results:

121.	All	four	measures	added	to	pivot,	with	Year	on	rows

Neat	huh?

And	then	continuing	down	Practical	Road,	let’s	see	what	percentage	of	our	sales	are
due	to	us	running	promotional	campaigns:

[Pct	Sales	on	Promo]	=
[Promotional	Sales]
/	([Regular	Sales]	+	[Promotional	Sales])

Results:

122.	Highlighted	measure	tells	us	what	percentage	of	our	sales	dollars	come	from	promotional	campaigns

Example	2:	Growth	Since	Inception
We’re	going	to	define	a	new	“base”	measure	 that	 tracks	how	many	customers	were
active	in	a	given	timeframe:

[Active	Customers]	=
DISTINCTCOUNT	(Sales[CustomerKey])

ⓘ	 “Base	 measure”	 is	 how	 we	 refer	 to	 measures	 that	 do	 not	 refer	 to	 other
measures,	and	are	pure	arithmetic	like	the	one	above.

And	now	a	measure	 that	 always	 tells	 us	how	many	customers	were	 active	 in	2001
(our	first	year	in	business):

[2001	Customers]	=

CALCULATE	([Active	Customers],	Sales[Year]	=	2001)

Results:

123.	Active	customers	by	year,	and	active	customers	for	2001	specifically

And	then	a	measure	that	tells	us	percentage	growth	in	customer	base	since	2001:

[Customer	Growth	Since	2001]	=	
DIVIDE	([Active	Customers]	–	[2001	Customers],	[2001	Customers])

Results:

124.	Percentage	growth	in	customer	base	since	2001

Alternatives	to	the	“=”	Operator	in	<Filters>
In	 a	 <filter>	 argument	 to	 CALCULATE(),	 you	 are	 not	 limited	 to	 the	 “=”
operator.	You	can	also	use:

<	(Less	than)
>	(Greater	than)
<=	(Less	than	or	equal	to)
>=	(Greater	than	or	equal	to)
<>	(Not	equal	to)

Evaluation	of	Multiple	<filters>	in	a	Single	CALCULATE()
All	 of	 the	 <filter>	 arguments	 in	 a	 single	 CALCULATE()	 behave	 as	 if	 they	 are
wrapped	 in	 an	 AND()	 function.	 In	 other	 words,	 a	 row	 must	 match	 every	 <filter>
argument	in	order	to	be	included	in	the	calculation.

If	you	need	an	“OR()”	style	of	operation,	you	can	use	the	“||”	operator.	For	instance:

=CALCULATE	([Total	Sales],
Sales[TransType]	=	1	||	Sales[TransType]	=	3)

⚠	When	you	use	the	||	operator	within	one	of	the	Calculate	filter	arguments,	it	can
only	be	used	between	comparisons	on	a	single	column	–	TransType	in	this	case.	You
cannot	 use	 ||	 between	 comparisons	 that	 operate	 on	 different	 columns,	 such	 as
TransType	and	Year.

The	“ALL”	(aka	“Unfiltered”)	Filter	Context
That	[Active	Customers]	measure	provides	an	opportunity	to	explain	how	the	Grand	Total
cell	works	in	the	pivot.

Let’s	look	at	the	pivot	again:

125.	Sum	of	all	years	is	MUCH	higher	than	the	Grand	Total	cell

A	 perfect	 example	 of	 why	 it’s	 important	 to	 think	 about	 the	 measures	 evaluating
against	 the	 source	 table(s)	 rather	 than	 in	 the	 pivot	 itself.	 Also,	 we’ve	 talked	 a	 lot
about	filter	context	to	this	point,	but	so	far,	we	have	not	discussed	the	filter	context	of
the	grand	total	cell.

It’s	pretty	simple	actually:	the	grand	total	cell	represents	the	absence	of	a	filter.
In	the	context	of	that	cell,	it’s	as	if	the	Year	field	is	not	even	on	the	pivot.

To	drive	this	home,	let’s	remove	Year	from	the	pivot:

126.	Remove	Year	from	the	pivot,	and	the	result	matches	the	Grand	Total	cell	 from	when	Year	IS	on	the	pivot.
This	is	not	an	accident!

It	makes	sense:	some	of	our	customers	from	2001	stuck	around	and	bought	things	in
2002	 (and	 later),	 and	 some	 2002	 customers	 similarly	 persisted	 into	 2003.	 If	 we
summed	the	individual	totals	for	each	year,	we’d	count	those	“carryover”	customers
more	 than	 once	 (and	 end	 up	 with	 24,376).	 But	 when	we	 clear	 the	 Year	 filter,	 the
DISTINCTCOUNT(Sales[CustomerKey])	arithmetic	runs	against	an	unfiltered	table,
and	only	counts	 each	customer	once!	We	end	up	with	18,484,	which	 is	 the	 correct
answer.

ⓘ	Don’t	skip	the	paragraph	above.	The	world	won’t	end	if	you	do	skip	it,	but
it’s	worth	more	attention	than	the	average	un-bolded	text	

Not	all	Totals	Are	Completely	(or	Even	Partially)	Grand
To	clarify,	let’s	drag	Year	to	Columns,	and	add	MonthNum	to	rows:

127.	Filter	context	 for	 three	different	kinds	of	grand	 totals	–	 total	across	Years,	 total	across	MonthNums,	and
total	across	both.

Every	total	 in	a	pivot	 is	really	just	the	absence	of	one	or	more	filters	–	a	place
where	 one	 or	 more	 of	 the	 pivot	 fields	 does	 not	 apply,	 as	 if	 the	 field	 were
completely	absent	from	the	pivot.

As	you	add	more	 fields	 to	 rows	and	columns,	you	get	many	different	variations	of
totals.	For	 instance,	 nothing	 really	 changes	when	you	nest	 one	 field	under	 another.
Let’s	nest	MonthNum	under	Year	on	Rows	as	an	example:

128.	Nesting	does	not	really	change	anything.	Note	the	subtotal	for	2002	(2677)	was	a	grand	total	cell	when	Year
was	on	Columns	(in	the	previous	pivot).

ⓘ	The	physical	 location	 of	 a	measure	 cell	 in	 the	 pivot	 is	not	 important.
Only	 its	 “coordinates”	 are	 important.	 A	 filter	 context	 of	 Year=2002,
Month=ALL	is	exactly	the	same	to	the	DAX	engine,	no	matter	where	the	Year
and	MonthNum	fields	were	located	–	rows,	columns,	report	filters,	or	slicers.

9	-	ALL()	–	The	“Remove	a	Filter”	Function
Given	where	 the	 last	 chapter	 left	 off,	 this	 sure	 seems	 like	 a	 great	 time	 to	 introduce	 the
ALL()	function.

In	 fact,	 given	 last	 chapter’s	 section	 on	 the	 “ALL”	 filter	 context,	 and	 the	 title	 of	 this
chapter,	 you	 can	 probably	 already	 guess	 most	 everything	 you	 need	 to	 know	 about	 the
ALL()	function.	So	we	won’t	bore	you	with	long-winded	explanations	of	the	basics.	We
will	keep	it	crisp	and	practical.

The	Crisp	Basics
The	 ALL()	 function	 is	 used	 within	 a	 CALCULATE(),	 as	 one	 of	 the	 <filter>
arguments,	to	remove	a	filter	from	the	filter	context.

Let’s	jump	straight	to	an	example.	Consider	the	following	pivot:	[Net	Sales]	displayed	by
MonthNum,	with	Year	on	a	slicer:

129.	We	will	use	this	pivot	to	demonstrate	the	usage	of	ALL().

OK,	time	for	a	new	measure:

[All	Month	Net	Sales]	=
CALCULATE	([Net	Sales],	ALL	(Sales[MonthNum]))

And	the	results:

130.	Because	ALL()	removed	the	filter	from	MonthNum,	every	measure	cell	in	the	right	column	has	precisely	the
same	filter	context	(coordinates)	as	the	grand	total	in	the	left	column

ⓘ	 We	 suppose	 you	 can	 also	 think	 of	 ALL()	 as	 a	 means	 by	 which	 to
“reference”	one	of	the	total	cells	in	a	pivot,	as	long	as	you	also	understand	that
fundamentally,	what	you	are	doing	 is	clearing/removing	a	 filter	 from	 the	 filter
context.

The	Practical	Basics	–	Two	Examples
Time	for	a	couple	of	examples	of	where	ALL()	is	useful.

Example	1	–	Percentage	of	Parent
Let’s	do	a	simple	ratio	of	the	two	measures	already	on	the	pivot:

[Pct	of	All	Month	Net	Sales]	=
[Net	Sales]	/	[All	Month	Net	Sales]

Results:

131.	New	measure	returns	each	month’s	contribution	to	the	“all	month”	total

We	can	remove	the	original	ALL	measure	from	the	pivot	and	the	new	“pct	of	total”
measure	still	works:

132.	Pct	of	total	measure	still	works	without	the	ALL()	measure	on	the	pivot

ⓘ	Yes,	you	can	do	this	in	Excel	pivots	without	the	use	of	ALL().	You	can	use
the	 Show	 Values	 As	 feature	 and	 achieve	 the	 same	 visual	 result.	 But	 that
conversion	 (from	 raw	value	 to	%	of	 total)	 happens	 after	 the	DAX	engine	 has
done	 its	work,	meaning	 that	 the	DAX	engine	only	has	 the	 raw	value.	 In	other
words,	if	you	ever	want	to	use	a	“Pct	of	total”	value	in	a	DAX	calculation,	Show
Values	As	is	useless	–	you	absolutely	need	to	use	ALL()	as	illustrated	above.

Example	2	–	Negating	a	Slicer
This	one	is	useful,	but	also	a	lot	of	fun.	Let’s	start	with	the	following	pivot	(we	just
added	ProductKey	as	a	slicer,	and	made	a	few	selections).

133.	Pivot	with	product	slicer

Now	add	a	measure	that	ignores	any	filters	on	ProductKey:

[Net	Sales	-	All	Products]	=
CALCULATE	([Net	Sales],	ALL	(Sales[ProductKey]))

And	a	measure	that	is	the	ratio	of	that	to	the	original	[Net	Sales]:

[Selected	Products	Pct]	=
[Net	Sales]	/	[Net	Sales	-	All	Products]

Results:

134.	The	seven	selected	products	account	for	4.3%	of	all	Net	Sales	in	April	2003,	but	only	0.1%	of	all	sales	in
July	2003.

ⓘ	 We're	 a	 big	 believer	 in	 conditional	 formatting.	 We	 apply	 conditional
formatting	to	our	pivots	almost	instinctively	at	this	point.

Now	we	change	the	selection	of	products	on	the	slicer:

135.	These	 five	 products	 account	 for	 a	 lot	 larger	 share	 of	 Net	 Sales	 than	 the	 previous	 seven.	 Note	 that	 the
highlighted	middle	column	(the	ALL	measure)	is	unchanged	from	the	previous	screenshot.

ⓘ	You	cannot	achieve	these	results	using	Show	Values	As.	ALL()	is	the	only
way.

Variations
ALL()	 can	 be	 used	 with	 arguments	 other	 than	 a	 single	 column.	 Both	 of	 these
variations	are	also	valid:

ALL(<Col1>,	 <Col2>,	 …)	 –	 You	 can	 list	 more	 than	 one	 column.	 EX:
ALL(Sales[ProductKey],	Sales[Year])
ALL(<TableName>)	–	shortcut	for	applying	ALL()	to	every	column	in	the
named	table.	EX:	ALL(Sales)

ALLEXCEPT()

Let’s	say	you	have	12	columns	in	a	table,	and	you	want	to	apply	ALL()	to	11	of
the	12,	but	leave	1	of	them	alone.
You	can	then	use	ALLEXCEPT(<Table>,	<col1	to	leave	alone>,	<col2	to	leave
alone>…)
Example:

ALLEXCEPT	(Sales,	Sales[ProductKey])

Is	the	same	as	listing	out	every	column	in	the	Sales	table	except	ProductKey:

ALL	(

Sales[OrderQuantity],	Sales[UnitPrice],	
Sales[ProductCost],	Sales[CustomerKey],	
Sales[OrderDate],	Sales[MonthNum],…
<every	other	column	except	ProductKey>
)

So	ALLEXCEPT()	is	a	lot	more	convenient	in	cases	like	this.

ⓘ	The	other	difference,	besides	convenience,	is	that	if	you	subsequently	add	a	new
column	 to	 the	 Sales	 table,	 ALLEXCEPT()	 will	 “pick	 it	 up”	 and	 apply	 ALL()
behavior	to	it,	without	requiring	you	to	change	your	measure	formula.	The	ALL(<list
every	column>)	approach	obviously	will	not	apply	to	the	new	column	until	you	edit
the	formula.

ALLSELECTED()
This	is	a	new	one	in	Power	Pivot	v2,	and	it’s	something	we	have	needed	a	few	times	in	v1.
We	don’t	expect	to	use	it	super	frequently,	but	when	you	need	it,	we	have	found	there	is	no
workaround	–	when	you	need	this	function,	you	really	need	it.

First,	let	us	show	you	a	trick	that	has	nothing	to	do	with	DAX.

Did	 you	 know	 that	 a	 field	 on	 rows	 or	 columns	 or	 report	 filter	 can	 also	 be	 dragged	 to
Slicers	and	be	two	places	at	once?

136.	MonthNum	field	on	both	Rows	and	Slicer	–	makes	for	quick	filtering	of	the	Row	area	without	having	to	use
the	Row	Filters	dropdown

ⓘ	Remember	 the	people	who	consume	 the	work	of	Excel	Pros?	The	people
who	don’t	enjoy	working	with	data	as	much	as	we	do?	They	do	not	like	using
the	Row	Filters	dropdown,	at	all.	Nor	do	they	like	using	Report	Filters.	Most	of
them	do	enjoy	working	with	slicers	though,	so	this	“duplicate	a	field	on	Rows
and	on	a	Slicer”	trick	is	something	we	do	on	their	behalf.	Actually,	it’s	better	for
us,	too.

Now	let’s	just	find	the	[All	Month	Net	Sales]	measure	that	we	defined	using	ALL()
and	put	that	on	the	pivot:

137.	The	selected	measure	is	defined	with	ALL(Sales[MonthNum])

Now	let’s	clear	the	filter	on	the	slicer	and	see	what	we	get:

138.	The	selected	measure	is	defined	with	ALL(Sales[MonthNum])

But	our	goal	here	 is	 to	create	a	“percent	of	everything	I	SEE”	measure.	 If	we
select	six	months	on	the	slicer,	we	want	a	measure	that	returns	 just	the	total	of
those	six	months.

So	let’s	define	a	new	measure,	and	this	time	use	ALLSELECTED()	instead:

[Net	Sales	for	All	Selected	Months]	=
CALCULATE	([Net	Sales],	ALLSELECTED	(Sales[MonthNum]))

And	then	a	ratio	measure:

[Pct	of	All	Selected	Months	Net	Sales]	=
[Net	Sales]	/	[Net	Sales	for	All	Selected	Months]

Results:

139.	Looks	the	same	as	the	ALL()	measure,	so	far…

But	now	let’s	select	a	subset	of	the	months	on	the	slicer:

140.	NOW	we	see	a	difference.	Middle	column	is	no	longer	over	$20M.	Also	note	the	highlighted	grand	total	is
100%	-	if	we	were	using	ALL(),	that	number	would	be	lower	(closer	to	50%	since	6	months	are	selected).

That’s	enough	about	ALL()	and	its	variants	for	now.

10	-	Thinking	in	Multiple	Tables
A	Simple	and	Welcome	Change
In	the	opening	chapters,	we	mentioned	that	Power	Pivot	offers	a	lot	of	benefits	when	you
are	working	with	multiple	 tables	of	data.	But	so	far,	we	have	shown	none	of	 those	-	we
have	only	worked	with	the	Sales	table.	Why	have	we	waited?

Working	with	multiple	tables	is	not	complicated	–	it	actually	requires	you	to	unlearn	old
habits	 more	 than	 it	 requires	 you	 to	 learn	 new	 ones.	 This	 is	 not	 going	 to	 be	 a	 difficult
adjustment	for	you,	just	a	little	different.

The	reason	we	waited	until	now	to	cover	“multi	table”	is	this:	All	of	the	concepts	covered
so	far	work	the	same	way	with	multiple	 tables	as	 they	do	with	one	table.	We	didn’t
want	to	risk	confusing	you	by	teaching	the	CALCULATE()	function	at	the	same	time	as
multi-table.

So	this	chapter	really	just	extends	what	we	have	already	covered,	and	shows	how	the
same	rules	apply	across	tables	as	they	do	within	tables.

Unlearning	the	“Thou	Shalt	Flatten”	Commandment
Normal	Excel	 literally	 requires	 that	all	 of	your	data	 resides	 in	a	 single	 table	before
you	 can	 build	 a	 pivot	 or	 chart	 against	 it.	 Since	 your	 data	 often	 arrives	 in	 multi-table
format,	Excel	Pros	have	also	become	part-time	Professional	Data	Flatteners.

That	usually	means	 flattening	via	VLOOKUP().	Sometimes	 it	means	 lots	of
VLOOKUP().
Sometimes	it	involves	database	queries.	Some	Excel	Pros	who	know	their	way
around	a	database	also	write	queries	that	flatten	the	data	into	one	table	before	it’s
ever	imported.

You	do	not	need	to	do	either	of	these	anymore.	In	fact,	you	should	not.

⚠	In	Power	Pivot	there	are	many	advantages	to	leaving	tables	separate.	It	may	be
tempting	 to	 pull	 columns	 from	 Table	 B	 into	 Table	 A,	 especially	 using	 the
RELATED()	 function.	 You	 should	 resist	 this	 temptation.	 We	 sometimes	 use
RELATED()	to	partially	combine	tables	but	only	when	debugging	or	inspecting	our
data.	We	delete	that	column	when	we	are	done	with	our	investigation.

Got	 it?	Just	 leave	those	 tables	alone.	And	if	you	already	have	flattened	versions	of	your
tables	 in	 your	 database,	 we	 actually	 recommend	 not	 using	 those	 versions	 –	 import	 the
tables	 “raw”	 (separately).	 If	 flattened	 versions	 are	 the	 only	 ones	 available,	 consider
unflattening	 them	in	 the	Database	or	by	using	Power	Query,	before	you	bring	 them	into
Power	Pivot.

Relationships	Are	Your	Friends

Let’s	 create	 our	 first	 relationship	 between	 two	 Power	 Pivot	 tables.	 Take	 a	 look	 at	 our
Products	table:

141.	We	have	not	yet	used	the	Products	table,	but	it	contains	a	lot	of	useful	columns!

To	create	a	relationship,	click	on	the	‘Create	Relationship’	button	on	the	Design	tab.

142.	Creating	our	first	relationship

We’re	 going	 to	 create	 a	 relationship	 between	 Products	 and	 Sales,	 using	 the
ProductKey	column:

143.	Relating	Sales	to	Products

“Lookup”	Tables
Note	 how	we	 selected	Products	 to	 be	 the	Lookup	 table?	That’s	 important.	 So
important,	in	fact,	that	Power	Pivot	will	not	let	us	get	it	wrong.	Let’s	try	reversing	the
two	and	see	what	happens:

144.	We	reversed	Sales	and	Products,	selecting	Sales	as	our	Lookup	table,	and	we	get	a	warning

Hover	over	the	warning	icon	and	we	get	an	explanation:

145.	Power	Pivot	detects	that	we	got	the	order	wrong,	and	when	we	click	OK,	Products	will	be	correctly	used	as
the	Lookup	table!

The	use	of	the	word	“Lookup”	was	deliberate.	Back	at	Microsoft,	we	chose	that	word
so	that	it	would	“rhyme”	with	Excel	Pros’	familiarity	with	VLOOKUP.

ⓘ	Think	of	Lookup	tables	as	the	tables	from	which	you	would	have	“fetched”
values	when	writing	a	VLOOKUP.	Lookup	 tables	 tend	 to	be	 the	places	where
friendly	labels	are	stored	for	instance.

From	 here	 on,	 we	 will	 refer	 to	 the	 two	 tables’	 roles	 in	 a	 relationship	 as	 the
“lookup	table”	and	the	“data	table.”

The	Diagram	View
This	 feature	was	 introduced	 in	Power	Pivot	v2,	and	 it	becomes	very	helpful	as
your	models	grow	more	sophisticated.	But	 in	smaller	models,	Diagram	View	is	a
fabulous	gift	 to	 the	authors	of	Power	Pivot	books,	because	we	don’t	have	 to	 spend
long	hours	making	graphical	representations	of	tables	and	relationships	

146.	Click	the	Diagram	View	button	on	the	ribbon	or	in	the	bottom-right	corner	of	the	Power	Pivot	window.

Clicking	that	button	gives	us:

147.	Diagram	View!	All	three	tables	displayed,	with	two	of	them	linked	by	the	relationship	we	just	created.

ⓘ	Notice	the	direction	of	the	arrow.	Up	through	2013,	the	arrow	always	points
to	 the	 Lookup	 table.	 You	 can	 also	 create,	 edit	 and	 delete	 relationships	 in	 the
diagram	view.	We	will	see	an	example	later	in	this	chapter.

148.	In	Excel	2016	&	Power	BI	Desktop,	the	arrows	point	the	opposite	direction	which	is	an	improvement.	Trust
us.

Using	Related	Tables	in	a	Pivot
Now	 let’s	 revisit	 a	 pivot	 that	 uses	 ProductKey	 on	 Rows,	 and	 enhance	 it	 with
some	of	the	columns	from	this	Products	table.

149.	ProductKey	pivot	–	but	of	course,	ProductKey	is	meaningless	to	us.

OK,	let’s	remove	ProductKey:

150.	Be	gone,	ProductKey!	And	never	show	your	face	on	a	pivot	again.

Now	I’ll	add	ProductName	from	the	Products	table	instead:

151.	Checked	the	ProductName	field	in	the	field	list,	adding	it	to	Rows

152.	ProductName	replaced	ProductKey:	much	more	readable

But	we’re	not	limited	to	using	any	one	field	from	Products	–	all	of	them	can	be	used
now	that	we	have	a	relationship	established.	Let’s	try	a	few	different	ones:

153.	Category	(from	Products	table)	on	Rows

154.	SubCategory	(also	from	Products	table)	nested	under	Category

155.	Even	Color	can	be	used!	(Another	column	from	Products	table)

Why	That	Works:	Filter	Context	“Travels”	Across	Relationships
Let’s	examine	a	single	measure	cell	and	walk	through	the	filter	context	“flow”:

156.	Let’s	examine	how	filter	context	flows	for	the	highlighted	measure	cell

First,	the	Color=”Red”	filter	is	applied	to	the	Products	table:

157.	Products	table	filtered	to	Color=”Red”	as	result	of	filter	context

The	 ProductKey	 column	 is	 not	 filtered	 directly,	 but	 it	 obviously	 has	 been
reduced	to	a	subset	of	its	overall	values,	thanks	to	the	Color=”Red”	filter	on	the
table.

158.	Only	 those	 ProductKeys	 that	 correspond	 to	 Red	 products	 are	 left	 “active”	 at	 this	 point	 (63	 ProductKey
values	out	of	a	total	of	397).

That	filtered	set	of	63	ProductKeys	then	flows	across	the	relationship	and	filters	the
Sales	table	to	that	same	set	of	ProductKeys:

159.	Sales	table	gets	filtered	(via	relationship)	to	that	same	set	of	ProductKey	values:	{325;	324;…}

And	 then	 the	 arithmetic	 runs	 against	 the	 filtered	Sales	 table.	 So	 it’s	 the	 same
Golden	Rules	as	before.	Those	rules	just	extend	across	relationships.

ⓘ	During	the	filter	phase	of	measure	evaluation,	filters
applied	 to	 a	 Lookup	 table	 (Products	 in	 this	 case)	 flow
through	to	the	Data	table(s)	related	to	that	Lookup	table.

This	does	NOT,	however,	apply	in	reverse:	filters	applied
to	Data	tables	don’t	flow	back	“up”	to	Lookup	tables.

Visualizing	Filters	Flowing	“Downhill”	–	One	of	Our	Mental	Tricks
In	our	heads,	we	always	see	Lookup	tables	floating	above	the	Data	tables.	That	way
the	filters	flowing	“downhill”	into	the	Data	tables.

We’ll	drag	tables	around	in	the	Diagram	View	in	order	to	represent	that:

160.	Products	table	dragged	to	be	“above”	Sales	table

We	also	 resized	 the	 tables	 so	 that	 the	Data	 table	 (Sales)	 is	 bigger	 than	 the	Lookup
table	(Products)	–	another	mental	trick.

We’ll	 now	 create	 a	 relationship	 from	Customers	 to	 Sales	 .	 This	 time	we’ll	 do	 so,
within	the	Diagram	View	by	dragging	and	dropping	the	key	column	that	connects	the
two	tables.

161.	Creating	Relationships	in	the	Diagram	View

ⓘ	The	direction	in	which	you	drag	and	drop	the	key	column	–	from	the	Data
to	the	Lookup	table	or	from	the	Lookup	table	to	the	Data	table	–	generally	does
not	 matter.	 Same	 as	 it	 didn't	 matter	 when	 we	 used	 the	 Create	 Relationship

dialog,	Power	Pivot	detects	the	“correct”	direction	of	the	relationship	and	sets	it
up	in	the	correct	direction.

Here’s	the	updated	diagram:

162.	Two	Lookup	tables,	both	“above”	the	Data	table	that	they	filter

ⓘ	Note	 1:	 Relationship	 lines/arrows	 in	 Diagram	View
can	 also	 be	 imagined	 as	 “Filter	 Transmission	Wires”.
They	 “transmit”	 the	 filters	 applied	on	 the	uphill	Lookup
Tables	to	the	downhill	Data	tables.

Note	 2:	 It	 was	 a	 shame,	 in	 our	 opinion,	 that	 the
relationship	 arrows	 flowed	 toward	 the	 Lookup	 tables	 in
2010	and	2013.	Arrows	point	from	Data	to	Lookup	in	the
database	world,	but	in	Power	Pivot	we’d	prefer	that	 they
point	 in	 the	 direction	 of	 filter	 flow.	 It’s	 the	 little	 things
that	bug	us.

This	has	been	corrected	 in	Power	BI	Desktop	and	Excel
2016,	where	the	arrows	point	the	right	way	now	

Filters	from	All	Related	Lookup	Tables	Are	Applied

Let’s	put	columns	from	both	Customers	and	Products	on	the	same	pivot:

163.	Products[SubCategory]	and	[Customers[MaritalStatus]	on	the	same	pivot:	they	each	impact	measures,	as
expected

This	isn’t	worth	belaboring	really	–	we	just	wanted	to	point	out	that	you	can	use
more	than	one	Lookup	table	on	a	single	pivot	with	no	issue.

CALCULATE()	<Filters>	Also	Flow	Across
Relationships
Until	now,	all	of	our	<filter>	arguments	in	CALCULATE	have	been	filtering	columns
in	the	Sales	table.	But	<filter>	arguments	are	completely	legal	against	Lookup	tables
(in	fact,	encouraged!),	so	 let’s	define	a	CALCULATE	measure	using	a	column	in	a
Lookup	table:

[Sales	to	Parents]	=
CALCULATE	([Total	Sales],	
Customers[NumberChildrenAtHome]	>	0)

And	compare	that	to	its	base	measure,	[Total	Sales]:

164.	Proof	 that	 CALCULATE	 <filters>	 also	 flow	 across	 relationships:	 [Sales	 to	 Parents]	 returns	 smaller
numbers	than	its	base	measure	[Total	Sales]

ⓘ	We	think	 that’s	probably	sufficient	 to	explain	 the	concept,	but	 to	be	super
precise,	we	should	also	say	that	<filters>	in	CALCULATE()	are	applied	before
filters	flow	across	relationships.

Taking	that	precision	one	step	further,	here’s	the	final	version	of	the	DAX	Evaluation
Steps	Diagram,	with	the	crucial	step#4	filled	in:

165.	DAX	Evaluation	Steps	diagram	updated	to	include	step	#4	showing	that	relationship	traversal	happens	after
CALCULATE()	<filters>	are	applied

Y	you	can	download	a	digital	copy	of	this	and	other	useful	PowerPivot/DAX	tips	in	our	8-
page	reference	card	at	
http://ppvt.pro/powerbirefcard

http://ppvt.pro/powerbirefcard

11	-	“Intermission”	–	Taking	Stock	of	Your	New
Powers
If	 you’ve	 followed	 everything	 up	 until	 this	 point	 in	 the	 book,	 I	 (Rob)	want	 you	 to
know	three	things:

1.	 You	understand	about	as	much	about	Power	Pivot	formulas	(DAX)	as	I	did	after
several	months	of	experimenting	on	my	own.

(And	“experimenting”	is	the	right	word	–	I	had	moved	away	from	Redmond	before
DAX	was	ready	to	be	used,	even	by	members	of	the	Power	Pivot	team.	So	I	learned
as	an	“outsider.”)

2.	 What	you’ve	read	so	far	covers	about	the	same	amount	of	material	as	a	full	day
of	intensive	training	in	one	of	my	onsite,	personalized	courses.

3.	 If	Power	Pivot	only	contained	the	functionality	covered	so	far,	it	would	still	be	a
massive	enhancement	to	your	capabilities	as	an	Excel	Pro.

In	other	words,	 if	 you	wanted,	 you	could	 stop	right	now,	 close	 the	book	and	 file	 it
away.	You’d	still	improve	the	quantity	and	quality	of	the	insights	you	can	deliver	by
4-5x,	without	needing	to	know	anything	covered	hereafter.

But	 there’s	 no	 reason	 to	 do	 that.	What	 follows	 is	 no	more	 difficult	 than	what’s	 been
covered	 so	 far.	 Actually	 I	 think	 it’s	 easier,	 because	 it	 just	 builds	 on	 the	 fundamentals
established	in	the	previous	chapters.	And	there	is	some	serious	magic	awaiting	you	

My	point	in	this	brief	“intermission”	was	just	to	let	you	know	that	you’re	already	VERY
competent	at	Power	Pivot.	Take	a	bow.	Now	let’s	go	cover	some	seriously	amazing	stuff	

12	-	Disconnected	Tables
A	disconnected	table	is	one	that	you	add	to	your	Power	Pivot	model	but	intentionally
do	not	relate	it	to	any	other	tables.	At	first	that	may	seem	a	little	strange	–	if	there	is	no
relationship	between	it	and	any	other	tables,	filter	context	can	never	flow	into	it	or	out	of
it,	 so	 a	 disconnected	 table	 would	 never	 contribute	 anything	 meaningful	 to	 a	 pivot
involving	other	tables.

But	once	you	learn	a	simple	new	trick,	it	will	make	sense.	It	helps	to	have	an	example.

A	Parameterized	Report
Let’s	work	backwards	this	time:	we	will	show	you	the	result,	and	then	explain	how	we	did
it.

Take	a	look	at	this	pivot:

166.	Just	a	simple	little	pivot	with	two	slicers,	right?

Nothing	exciting	on	the	surface.	But	let’s	change	that	“USD	per	EUR”	from	$1.10	to
$1.80	and	see	what	happens:

167.	Net	Sales	in	Euros	dropped	sharply	while	the	original	Net	Sales	(in	Dollars)	remained	unchanged

Are	you	seeing	what	we’re	 seeing?	This	 is	a	pivot	where	 the	user/consumer	can
dynamically	input	parameters	(via	slicers)	and	have	those	parameters	reflected
in	calculations!

This	is	absolutely	real,	and	it’s	simple	to	build.

Adding	the	Parameter	Table
We’re	going	to	ignore	one	of	our	own	recommendations	here	and	create	a	table
via	copy/paste.	We	feel	okay	about	doing	so,	because	this	is	a	table	that	isn’t	going
to	change	frequently	(if	at	all),	and	we’re	not	going	to	write	a	bunch	of	formulas	on
this	table	(so	if	we	needed	to	recreate	it	later,	it	would	not	be	difficult	to	do).

We	 create	 a	 single	 column	 table	 in	 Excel.	 This	 is	 going	 to	 be	 the	 basis	 for	 our
“USD	per	EUR”	(dollars	per	euro)	slicer:

And	then	paste	as	new	table	in	Power	Pivot,	yielding:

168.	Copying	a	simple	table	of	data	from	Excel	and	Pasted	as	Exch	Rates	table	in	Power	Pivot

Now	we	can	create	a	new	pivot,	and	put	that	column	on	a	slicer:

169.	New	pivot,	Category	on	Rows	and	the	newly-pasted	table/column	on	a	slicer

ⓘ	Because	we	most	often	use	Disconnected	Tables	as	parameters,	 and	 those
parameters	are	usually	exposed	as	slicers,	you	may	also	think	of	them	as	“Slicer
Tables”	or	“Parameter	Tables.”

Adding	a	“Parameter	Harvesting”	Measure
Now	we’re	going	to	do	something	interesting:	we’re	going	to	add	a	measure	on	the
Exch	Rates	table.	This	will	be	the	first	(but	not	last!)	time	that	we	create	a	measure
on	a	non-data	table.

The	measure	is:

[EURUSD]	=
MAX	('Exch	Rates'[USD	per	EUR])

And	the	result:

170.	Measure	that	returns	$1.95	all	the	time?	Why	would	we	want	such	a	thing?

The	“punchline”	here	is	that	when	we	make	a	selection	on	the	slicer,	something	neat
happens:

171.	The	measure	returns	whatever	is	selected	on	the	slicer!

Cool!	 But	 this	 is	 just	 regular	 old	 filter	 context	 doing	 its	 thing.	 Before	 the
arithmetic	(MAX)	runs,	the	Exch	Rates	table	gets	filtered	by	the	pivot,	and	the	pivot
is	saying	“[USD	per	EUR]=$1.45.”

ⓘ	Because	 only	 a	 single	 row	 is	 selected	when	 the	 user	 picks	 a	 single	 slicer
value,	we	 could	 also	have	used	MIN()	or	AVERAGE()	or	 even	SUM()	 as	 the
aggregation	function	in	our	[ExchangeRateEURUSD]	measure	–	they	all	return
the	same	result	when	a	single	value	is	selected.	Your	choice	of	function	in	cases
like	this	 is	partly	a	matter	of	personal	preference	and	partly	a	question	of	how
you	want	 to	 handle	 cases	where	 the	user	 picks	more	 than	one	value.	You	 can
even	decide	to	return	an	error	–	which	we	will	cover	in	a	later	chapter.

The	Field	List	is	Grumpy	About	This
At	this	point,	the	field	list	is	giving	us	a	warning:

172.	Yes,	 there	 is	 no	 relationship	 between	our	Products	 table	 (where	 the	Category	 field	 comes	 from)	 and	our
Exch	Rates	table	(where	this	new	measure	comes	from)

This	warning,	alas,	merely	goes	with	the	territory	of	using	Disconnected	tables.
And	we	don’t	like	sacrificing	real	estate	in	our	field	list	to	a	warning	that	tells	us
nothing.	 So	we	 tend	 to	 turn	 this	warning	 off	 using	 the	Power	Pivot	 ribbon	 in
Excel:

173.	Toggle	this	button	to	disable	that	warning	(2010	only	-	in	2013	and	beyond,	you	can	dismiss	the	warning
but	not	disable	it)

Using	the	Parameter	Measure	for	Something…Useful
OK,	the	[ExchangeRateEURUSD]	measure	is	neat	and	all,	but	having	a	measure	that
tells	the	user	what	they’ve	selected	is	of	course	pretty	useless	

But	now	we	can	use	that	measure	in	other	measures:

[Net	Sales	-	EUR	Equivalent]	=
[Net	Sales]	/	[EURUSD]

174.	New	measure	tells	us	what	our	sales	would	look	like	in	Euros	at	the	selected	exchange	rate!

ⓘ	We	 even	 used	 the	 formatting	 options	 in	 the	measure	 editor	 to	 format	 the
new	measure	in	Euros.	Oddly	satisfying.

And	we	don’t	need	the	parameter	measure	displayed	in	order	for	it	to	work,	so	now
we	remove	it	to	clean	up	the	pivot:

175.	Remove	the	parameter	measure	to	produce	a	cleaner	report

Add	the	Year	column	from	the	Sales	table	as	a	second	slicer:

176.	Year	slicer	works	like	it	always	has

Parameter	Table	Can	Be	Used	on	Rows	and	Columns	Too!
For	grins,	clear	the	slicer	selection	so	that	all	exchange	rates	are	selected,	then	drag
that	column	to	Rows	instead:

177.	Disconnected	“slicer”	field	works	on	Rows	too!

Are	you	surprised	this	works	on	Rows	too?	It	felt	weird	to	us	the	first	time	we	did
this,	 but	 it	 shouldn’t	 have.	 Each	measure	 cell	 corresponds	 to	 a	 single	 value	 of	 the
Exch	 Rate	 column.	 This	 is	 no	 different	 from	 using	 a	 normal	 column	 (one	 that	 IS
connected	 to	 the	 Sales	 table	 via	 relationship,	 or	 is	 IN	 the	 Sales	 table)	 on	 Slicers
versus	Rows.

OK	the	result	above	is	a	little	hard	to	see,	let’s	rearrange	a	bit:

178.	Easier	to	see	now	with	Category	on	slicer	–	EUR	Equivalent	Sales	go	down	as	Exchange	Rate	goes	up

ⓘ	That	may	seem	counterintuitive	but	it	is	accurate:	if	your	country’s	currency
is	 worth	 a	 lot	 relative	 to	 other	 countries’	 currencies,	 you	 make	 less	 money
selling	 your	 products	 overseas	 than	 when	 your	 currency	 is	 worth	 less.	 So	 in
some	sense	it’s	“better”	for	a	country’s	currency	to	be	worth	less	(and	worse	in
other	ways),	but	that’s	not	exactly	a	DAX	topic	now	is	it?	We	just	didn’t	want
you	thinking	that	we	messed	this	one	up	

Why	is	it	Important	That	They	Be	Disconnected?
What	would	happen	if	our	Exch	Rates	table	were	related	to,	say,	the	Sales	table?

Short	answer:	nothing	good.	What	column	would	we	use	to	form	the	relationship?
There	 isn’t	 a	 column	 in	 the	 Sales	 table	 that	matches	 the	 values	 in	 the	 Exch	Rates
table.	 We	 could	 invent	 one	 we	 suppose,	 but	 then	 we’d	 have	 to	 arbitrarily	 assign
transaction	rows	to	individual	exchange	rate	values,	which	would	be	nonsense.

And	then	when	the	user	selected	an	exchange	rate	on	the	slicer,	not	only	would	that
impact	the	[ExchangeRateEURUSD]	measure	(as	desired)	but	it	would	also	filter	out
rows	 from	 the	Sales	 table	 (not	 desired).	We’d	 undercount	 our	 sales	 figures,	 and	 in
completely	random	fashion.

In	 real	 life,	 something	 like	 exchange	 rate	 is	 completely	 separate	 from	 Sales,	 so	 it
shouldn’t	 surprise	 us	 really	 that	we	 can’t	 create	 a	meaningful	 relationship	 between
them.

A	Very	Powerful	Concept
There	 are	many	 variations	 on	 disconnected	 tables.	 In	 fact	 this	 concept	 borders	 on
infinitely	flexible.	We	will	return	to	this	topic	and	cover	a	few	more	variations	as	the
book	progresses.	Let’s	look	at	one	right	now	in	fact.

Disconnected	Table	Variation:	Thresholds
In	 the	 previous	 example,	 we	 used	 a	 disconnected	 table	 to	 inject	 a	 numerical
parameter	 into	 certain	 calculations,	 and	 give	 the	 report	 consumer/user	 control	 over
that	parameter.

Now	let’s	try	another	example:	giving	the	user	control	over	“cutoffs,”	or	thresholds,
in	terms	of,	say,	which	products	should	be	included	and	which	shouldn’t.

Again,	let’s	work	backwards	by	showing	you	the	desired	result	first:

179.	This	pivot	shows	us,	for	instance,	that	there	are	20	different	products	under	the	Clothing	category	that	list
for	$50	or	higher,	and	they	accounted	for	$193k	in	sales.

Nifty	huh?	The	“how	to”	starts	out	just	like	the	last	example:

Create	a	Disconnected	Table	to	Populate	the	Slicer:

180.	Another	disconnected	table

Write	a	Measure	to	“Harvest”	the	User’s	Selection:
[MinListThreshold]	=
MAX	(MinListPrice[MinListPrice])

181.	“Harvester”	measure	[MinListThreshold]	created	on	the	disconnected	table

Diverging	From	the	Prior	Example:	We	Need	to	Filter,	Not	Perform
Math
Hmm,	now	what?	Last	time,	at	this	point	we	just	divided	an	existing	measure	by	our
parameter	measure	to	create	something	new.	This	time	though,	math	isn’t	going	to	do
it.

Since	we	need	to	filter	out	Products	unless	they	fit	our	criteria,	we	need	to	use
our	friend,	CALCULATE().

And	hey,	CALCULATE()	supports	the	“>=”	operator,	so	let’s	go	ahead	and	do:

[Products	Sales	Above	Selected	List	Price]	=
CALCULATE	([Total	Sales],	
Products[ListPrice]	>=	[MinListThreshold])

Enter	it	into	the	measure	editor:

182.	[Products	Sales	Above	Selected	List	Price]	entered	into	measure	editor

And	click	Check	Formula:

183.	Error:	A	 function	 ‘CALCULATE’	 has	 been	 used	 in	 a	 True/False	 expression	 that	 is	 used	 as	 a	 table	 filter
expression.	This	is	not	allowed.

ⓘ	 That’s	 a	 terribly-worded	 error	 message.	 In	 our
opinion,	here	is	what	that	error	message	should	say:

‘An	 expression	 was	 provided	 on	 the	 right	 side	 of	 a
<filter>	 argument	 to	 CALCULATE.	 Only	 static	 values
like	6	or	“Red”	are	allowed	in	that	location.’

CALCULATE()	requires	that	you	provide	a	static	value	on	the	right	side	of	a	<filter>
expression.

CALCULATE()	Has	a	Limitation?	Not	really.
Hard	to	believe	isn’t	it?	CALCULATE	never	fails	us!

Well	it’s	not	failing	us	now	either.	It’s	actually	protecting	us,	and	there	is	a	version	of
this	formula	that	works:

[Products	Sales	Above	Selected	List	Price]	=
CALCULATE	(
[TotalSales],
FILTER	(Products,	
Products[ListPrice]	>=	[MinListThreshold])
)

What	 is	 the	 FILTER()	 function,	 and	 what	 is	 it	 doing	 occupying	 one	 of	 our	 <filter>
arguments	to	CALCULATE?

FILTER()	 is	 the	 next	 function	 on	 your	 Power	 Pivot	 journey.	 And	 while	 it’s	 pretty
straightforward,	we	don’t	want	to	“hide”	it	in	this	chapter.	It	deserves	its	own.	So	we	will
come	 back	 to	 this	 threshold	 example,	 but	we	will	 do	 it	 in	 the	 context	 of	 the	 FILTER()
chapter.

13	-	Introducing	the	FILTER()	Function,	and
Disconnected	Tables	Continued
When	to	Use	FILTER()
Simple	rule:	use	FILTER()	when,	in	a	<filter>	argument	to	CALCULATE(),	you	need	to
perform	 a	 more	 complex	 test	 than	 “<column>	 equals	 <fixed	 value>”	 or	 “<column>
greater	than	<fixed	value>,”	etc.

Examples	of	<filter>	tests	that	require	you	to	use	FILTER():

<column>	=	<measure>
<column>	=	<formula>
<column>	=	<column>
<measure>	=	<measure>
<measure>	=	<formula>
<measure>	=	<fixed	value>

We	used	“=”	in	all	of	the	above,	but	the	other	comparison	operators	(<,	>,	<=,	>=,	<>)	are
all	implied.

ⓘ	 You	 can	 also	 use	 FILTER()	 as	 the	 <table>	 argument	 to	 functions	 like
COUNTROWS()	and	SUMX()	in	order	to	have	those	functions	operate	on	a	subset	of
the	table	rather	than	all	rows	in	the	current	filter	context.	This	chapter	will	focus	on
its	primary	usage	however,	which	is	as	a	<filter>	argument	to	CALCULATE().

FILTER()	Syntax

ⓘ	FILTER(<table>,	<single	“rich”	filter>)

Why	is	FILTER()	Necessary?
We	 mean,	 why	 can’t	 we	 just	 slap	 any	 old	 complex	 test	 expression	 into	 the	 <filter>
argument	of	CALCULATE()?	Why	the	extra	hassle?

We	have	made	our	peace	with	having	to	use	FILTER().	We	quite	like	it.	Here’s	why.

It’s	All	About	Performance	(Speed	of	Formula	Evaluation)
Short	answer:

1.	 Formulas	 written	 using	 just	 CALCULATE()	 are	 always	 going	 to	 be	 fast,
because	CALCULATE()	has	built-in	“safeties”	that	prevent	you	from	writing	a
slow	formula.	“Raw”	CALCULATE()	refuses	richer	<filter>	tests	because	those
can	be	slow	if	used	carelessly.

2.	 FILTER()	removes	those	safeties	and	therefore	gives	you	a	mental	trigger	to	be
more	careful	–	you	can	still	write	fast	formulas	using	FILTER(),	but	 if	you	are
careless	you	can	write	something	that	is	slow.

ⓘ	We'd	 like	 to	 introduce	 three	 terms	 that	 we	 often	 use	 when	 we	 talk
about	formula	speed:

Performance:	the	practice	of	keeping	your	reports	fast	for	your	users.	For
instance,	if	someone	clicks	a	slicer	and	it	takes	30	seconds	for	the	pivot	to
update,	 we	 would	 refer	 to	 that	 as	 “poor	 performance.”	 If	 it	 responds
instantly,	we	might	call	that	“excellent	performance,”	or	we	might	say	that
the	pivot	“performs	well.”

Response	time:	the	amount	of	time	it	 takes	a	report	 to	respond	to	a	user
action	and	display	the	updated	results.	In	the	example	above,	we	described
a	 “response	 time”	 of	 30	 seconds	 as	 poor.	 Generally	 we	 try	 to	 keep
response	times	to	3	seconds	or	less.

Expensive:	an	operation	is	said	to	be	“expensive”	if	it	consumes	a	lot	of
time	 and	 therefore	 impacts	 performance/response	 time.	 For	 instance,
above	 we	 could	 have	 described	 <column>	 =	 <static	 value>	 tests	 as
“inexpensive”	for	the	DAX	engine,	and	richer	comparisons	like	<column>
=	<measure>	as	“potentially	expensive.”

We	 will	 say	 more	 about	 these	 concepts	 in	 a	 subsequent	 chapter
dedicated	to	Performance.	For	now	this	is	enough.

Anyway,	the	important	thing	to	understand	is	that	FILTER()	removes	the	safeties	and	lets
you	perform	an	incredible	variety	of	filter	tests,	but	you	have	to	be	careful	when	you	use
it.

How	to	Use	FILTER()	Carefully
You	are	going	 to	 love	 this,	because	 the	vast	majority	of	“being	careful”	comes	down	 to
two	simple	rules:

1.	 When	you	use	FILTER(),	use	 it	against	Lookup	tables,	never	against	Data
tables.

2.	 Never	use	FILTER()	when	a	“raw”	CALCULATE()	will	get	the	job	done.

Pretty	simple.	For	those	of	you	who	want	to	know	more	about	the	“why”	behind	that	first
rule,	we	are	saving	that	for	the	chapter	on	Performance.

ⓘ	The	Secret	of	FILTER’s	Power:	We	have	already	hinted	at	 this.	The	secret	 is
that	 it’s	 an	 iterator,	 which	 just	 means	 it	 goes	 row	 by	 row	 through	 a	 table	 (first
argument)	to	evaluate	the	filter	condition	(the	second	argument).	FILTER	is	not	alone

in	this,	there	is	a	whole	family	of	iterator	function,	or	X	functions	as	they	are	often
known.	You	would	meet	them	in	a	subsequent	chapter	on	X	functions.

Applying	FILTER()	in	the	“Thresholds”	Example
Revisiting	the	Successful	Formula
Let’s	return	to	our	“thresholds”	example	from	the	previous	chapter,	where	we	wanted	to
only	include	products	whose	Products[ListPrice]	column	was	>=	our	[MinListThreshold]
measure:

184.	Back	to	the	“threshold”	example:	only	including	products	whose	ListPrice	is	>=	the	selection	on	the	slicer.

The	formula	we	ended	up	using	for	the	measure	on	the	right	was:

[Product	Sales	Above	Selected	List	Price]	=
CALCULATE	(
[Total	Sales],
FILTER	(Products,	
Products[ListPrice]	>=	[MinListThreshold])
)

Are	we	following	the	rules	for	using	FILTER()	carefully?	Let’s	check.

1.	 Products	is	a	Lookup	table,	not	a	Data	table	(like	Sales).	YES	on	rule	#1.
2.	 We	are	 comparing	Products[ListPrice]	 to	 a	measure,	 which	 cannot	 be

done	in	raw	CALCULATE().	YES	on	rule	#2.

OK,	so	now	the	[Products	Above	Selected	List	Price]	measure	–	that	gives	us	a	count	of
products	 that	 pass	 the	 [MinListThreshold]	 test,	 and	 it’s	 executed	 the	 same	 way	 as	 the
measure	above.

First	though,	we	need	a	base	measure	that	just	counts	products:

[Product	Count]	=
COUNTROWS	(Products)

Note	 how	we	 assigned	 that	measure	 to	 the	 Products	 table,	 since	 it	 counts	 rows	 in	 that
table:

185.	[Product	Count]	measure	 is	 assigned	 to	 the	 Products	 table	 since	 its	 arithmetic	 operates	 on	 the	 Product
table	(best	practice)

Now	 we	 can	 create	 [Products	 Above	 Selected	 List	 Price]	 using	 that	 new	 base
measure:

[Products	Above	Selected	List	Price]	=
CALCULATE	(
[Product	Count],
FILTER	(Products,

Products[ListPrice]	>=	[MinListThreshold])
)

ⓘ	We	could	 have	 skipped	 the	 separate	 step	 of	 defining	 the	 [Product	Count]
measure,	 and	 just	 specified	COUNTROWS(Products)	 as	 the	 first	 argument	 to
CALCULATE().	But	[Product	Count]	is	likely	to	be	a	useful	measure	elsewhere
too,	 and	 remember,	 it’s	 a	 best	 practice	 to	 build	 measures	 on	 top	 of	 other
measures,	so	that	future	changes	to	your	model	can	be	made	in	a	single	place.

Verifying	That	the	Measures	Work
Well	the	measures	are	returning	some	numbers,	but	are	they	the	right	numbers?	Let’s
investigate	a	little	bit	(we	won’t	do	this	for	every	measure	but	we	think	it’s	good	to
show	a	few	validation	approaches).

186.	How	do	we	know	the	measures	are	correct?

The	 first	 thing	 to	 do	 is	 just	 change	 slicer	 selection	 and	 make	 sure	 that	 it	 has	 an
impact.	Let’s	try	$20	as	our	minimum	list	price:

187.	We	would	expect	both	measures	to	return	larger	numbers	with	$20	as	the	selected	threshold,	and	they	both
do

A	 good	 sign.	 But	 let’s	 make	 sure	 that	 the	 measures	 are	 truly	 counting	 the	 right
products.	Let’s	put	Products[ProductKey]	on	Rows,	and	set	the	slicer	to	$3,000	since
that	should	only	show	us	a	small	number	of	products:

188.	Only	13	products	show	up	–	another	good	sign

But	we	really	need	to	see	the	ListPrice.	Let’s	put	that	on	Rows	too:

189.	OK,	all	of	the	products	showing	up	are	indeed	priced	over	$3k

Lastly,	 over	 in	 the	 Power	 Pivot	 window,	 let’s	 filter	 the	 Products	 table	 to
ListPrice>=3000:

190.	This	should	result	in	13	rows,	matching	the	grand	total	from	the	pivot…

191.	…and	it	does

OK,	 this	 last	 step	 probably	 would	 be	 the	 first	 thing	 we	 would	 check.	 But	 we
wanted	to	show	that	both	the	Power	Pivot	window	and	the	pivot	itself	are	important
tools	for	validating/debugging.	We	use	both.

Since	both	measures	use	the	same	FILTER()	logic,	once	we	validate	this	one,	we	can
be	 pretty	 confident	 that	 the	 other	 is	 working	 too.	 So	 there	 you	 have	 it:	 a	 simple
threshold	example	driven	by	slicer,	and	it	works.

This	Could	Not	Be	Done	with	Relationships
Just	 to	 reinforce:	 the	disconnected	 table	approach	was	absolutely	necessary	 for	 this
threshold	example.	A	given	product,	like	a	$75	shirt,	belongs	to	many	different	price
ranges	–	it	is	included	in	the	$0,	$5,	10,	$15,	$20,	and	$50	price	ranges.	(In	other
words,	the	price	ranges	overlap	with	each	other).

To	see	what	we	mean,	imagine	creating	a	column,	in	the	Products	table,	to	form	the
basis	 of	 the	 relationship.	What	would	 that	 column	 look	 like?	 If	 you	 committed	 to
going	down	this	road,	you’d	ultimately	end	up	with	multiple	rows	for	each	product
(one	for	each	price	range	that	product	“belongs	to”).	That	would	therefore	require	a
“many	 to	many”	relationship	with	 the	slicer	 table	 (and	with	 the	Sales	 table),	which
Power	Pivot	does	not	support.

Tip:	Measures	Based	on	a	Shared	Pattern	–	Create	via	Copy/Paste
Notice	how	the	two	FILTER()	measures	above	are	identical	except	for	their	base
measure?	One	 uses	 [Total	 Sales]	 as	 the	 first	 argument	 to	CALCULATE()	 and	 the
other	uses	[Product	Count],	but	otherwise	the	formulas	are	the	same.

You	will	do	this	all	the	time.	And	there’s	a	quick	way	to	do	it:

1.	 You	write	the	first	measure.	In	this	case,	the	[Total	Sales]	version.
2.	 Then	 you	 right	 click	 that	 measure	 in	 the	 field	 list	 (or	 in	 the	 Values

dropzone)	and	choose	edit:

192.	Edit	your	first	measure
3.	 Copy	the	existing	formula:

193.	Copy	the	existing	formula,	which	is	conveniently	selected	already	when	you	edit	an	existing	measure
4.	 Cancel	out	of	the	editor,	create	a	new	measure,	and	then	paste	the	formula:

194.	Paste	the	original	measure’s	formula
5.	 Lastly,	 just	 replace	 the	 base	 measure	 reference	 ([Total	 Sales])	 with	 the

different	desired	measure	([Product	Count]):

195.	The	whole	process	takes	just	a	few	seconds

You	would	discover	this	“trick”	on	your	own	pretty	quickly	(if	you	haven’t	already),
but	we	do	it	so	often	that	we	wanted	to	make	absolutely	sure	you	are	aware	of	it.

More	Variations	on	Disconnected	Tables
Upper	and	Lower	Bound	Thresholds
Let’s	 take	 that	 Product[ListPrice]	 threshold	 example	 and	 extend	 it.	 Here’s	 a	 new
table:

196.	A	new	disconnected	table,	but	this	time	with	min	and	max	price	columns

ⓘ	Note	again	that	the	price	tiers	overlap,	meaning	a	given	product	can	belong
to	more	than	one,	thus	making	a	relationship	impossible.

Now	we’re	going	to	define	two	“harvester”	measures	on	that	table:

[PriceTierMin]	=
MIN	(PriceTiers[MinPrice])

and

[PriceTierMax]	=
MAX	(PriceTiers[MaxPrice])

Now	we’re	going	to	use	RangeName	column	as	our	slicer:

197.	You	 can	 use	 a	 label	 column	 from	 a	 disconnected	 table	 on	 your	 pivot.	 Both	 “harvester”	measures	 again
capture	the	user’s	selection,	but	this	time	based	on	columns	that	the	user	does	not	see.

Fixing	the	Sort	Order	on	the	Slicer:	The	“Sort	By	Column”	Feature

In	 our	 first	 threshold	 example,	 we	 used	 a	 numerical	 field	 on	 the	 slicer,	 which
naturally	 sorted	 from	 smallest	 to	 largest.	 In	 this	 label	 example	 however,	 “Budget”
alphabetically	precedes	“Counter,”	and	out	sort	order	is	misleading	as	a	result.

In	 Power	 Pivot	 v1,	we	 had	 to	 “fix”	 this	 by	 prepending	 strings	 for	 correct	 sorting,
yielding	slicers	with	values	like	“1	–	Counter”	and	“2	–	Budget”	on	them.	Yuck.

In	Power	Pivot	v2	however,	we	have	a	much	better	fix:	the	Sort	By	Column	feature.

First	 we	 need	 a	 single	 numerical	 (or	 text)	 column	 that	 sorts	 the	 table	 in	 the
proper	order.

Doesn’t	matter	how	you	go	about	creating	this	column	–	as	long	as	you	create	one	(or
already	have	one),	it	works.

In	this	case	we	will	use	a	new	calculated	column:

198.	Creating	a	column	that	will	sort	properly	(in	this	case,	our	column	will	be	the	midpoint	of	each	price	tier)

Now	we	select	the	RangeName	column	and	click	the	Sort	by	Column	button	on	the
ribbon:

199.	Select	label	column,	click	Sort	by	Column

In	the	dialog,	set	it	to	sort	by	the	new	MidPt	column:

200.	Set	the	“sort	by”	column	to	the	MidPt	column

Flip	back	over	to	Excel:

201.	Changing	the	Sort	By	Column	triggers	the	“refresh”	prompt

Click	the	refresh	button	and	the	slicer	sort	order	is	fixed:

202.	Refresh,	and	the	Sort	By	Column	feature	“kicks	in”	–	the	slicer	is	now	properly	sorted

Completing	the	Min/Max	Threshold
Now,	just	like	in	the	simple	threshold	example,	we	need	versions	of	[Product	Count]
and	[Total	Sales]	measures	that	respect	the	user’s	selection	on	the	slicer:

[ProductCount	MinMaxTier]	=
CALCULATE	(
[Product	Count],

FILTER	(
Products,
Products[ListPrice]	>=	[PriceTierMin]
&&	Products[ListPrice]	<=	[PriceTierMax]
)
)

ⓘ	Since	 FILTER()	 only	 supports	 a	 single	 <rich	 filter>
expression,	we	use	 the	&&	operator	–	a	row	of	Products
table	 needs	 to	 meet	 both	 of	 those	 comparison	 tests	 in
order	to	be	included.

But	 since	 CALCULATE()	 itself	 does	 support	 multiple
<filter>	 arguments,	we	 could	have	done	 this	without	 the
&&	operator	by	using	two	FILTER()	functions:

CALCULATE(<measure>,	FILTER(…),	FILTER(…))

That	 would	 yield	 the	 same	 results.	 We	 use	 the	 &&
approach	 whenever	 we	 can	 though,	 because	 it	 is	 less
expensive	 (in	 terms	 of	 performance)	 to	 do	 so.	More	 on
this	later.

And	 then	 the	 [Total	 Sales]	 version,	 again	 employing	 the	 “copy/paste/change	 base
measure”	trick:

[Total	Sales	MinMaxTier]	=
CALCULATE	(
[Total	Sales],
FILTER	(
Products,
Products[ListPrice]	>=	[PriceTierMin]
&&	Products[ListPrice]	<=	[PriceTierMax]
)
)

Now	we’ll	put	both	measures	on	the	pivot,	and	remove	the	harvester	measures:

203.	It’s	alive!	

A	Way	to	Visualize	Disconnected	Tables
Disconnected	 tables,	 by	definition,	 have	no	 relationships	 to	 other	 tables	 in	 the
model.	If	we	look	at	diagram	view,	we	see	that	the	PriceTiers	table,	for	instance,	is	an
island	like	we	expect:

204.	PriceTiers	Disconnected	Table	has	no	Relationship	Arrows	(as	expected)

But	 when	 we	 use	 the	 “MinMaxTier”	 measures	 that	 we	 wrote	 above,	 the
PriceTiers	 table	 does	 act	 a	 lot	 like	 a	 Lookup	 table,	 since	 the	 PriceTiers	 filter

context	 (such	 as	 user	 selections	 on	 the	 slicer)	 very	 much	 impacts	 the	 measure
calculations	and	results.

So	we	often	like	to	say	that	disconnected	tables	have	a	“dotted	line”	relationship	with
the	 tables	 that	 contain	 the	 corresponding	 FILTER()	 measures.	 In	 your	 head,	 you
might	think	of	it	like	this:

205.	In	your	head,	you	can	imagine	“dotted	line”	relationships

ⓘ	Disconnected	 tables	only	 impact	 the	measures	 that	are	specifically	written
to	 “pay	 attention”	 to	 them	 –	 so	 the	 PriceTiers	 table	 impacts	 [ProductCount
MinMaxTier]	 and	 [Total	 Sales	 MinMaxTier],	 but	 no	 other	 measures	 in	 the
Products	and	Sales	tables.

Putting	This	Chapter	in	Perspective
A	couple	things	we	want	to	emphasize	before	moving	on:

We	are	not	done	with	FILTER().	There’s	more	 to	 learn	about	FILTER()	 than
what	we	have	covered	here,	but	we	want	to	come	back	to	those	points	later.	It	is

not	 essential	 to	 learn	 the	 rest	 yet,	 and	 we	 are	 sticking	 to	 our	 philosophy	 of
introducing	things	to	you	in	the	most	learnable/useful	order.
You	will	not	use	disconnected	tables	most	of	 the	time.	90%	of	 the	pivots	we
create	do	not	use	disconnected	tables.	The	other	10%	of	the	time,	they	are	very,
very	useful.	We	introduced	disconnected	tables	in	these	last	two	chapters	in	large
part	 because	 they	 are	 a	 great	 introduction	 to	 the	 FILTER()	 function	 (and	 also
because	they	are	a	useful	technique).

14	-	Introduction	to	Time	Intelligence
At	Last,	It	is	Time!
(Get	it?	Time?	There	is	no	extra	charge	for	humor	of	this	quality).

We’ve	been	eagerly	awaiting	 this	 chapter.	Power	Pivot	measures	 really	 shine	when
you	use	them	to	perform	intelligent	calculations	against	the	calendar.

It	is	a	simple	matter	to	perform	calculations	that	answer	questions	like	the	following:

How	is	our	business	performing	relative	to	the	same	time	last	year?
What	were	our	Year	to	Date	(YTD)	sales	as	of	June	1st?
What	was	our	best	quarter	over	the	past	two	years?

That	 is	merely	 scratching	 the	 surface	 though.	Good	stuff.	But	before	we	dig	 in,	 a	quick
note	about	different	types	of	calendars.

“Standard	Calendar”	versus	“Custom	Calendar”
Standard	Calendars:	The	Focus	of	This	Chapter
Right	up	front,	we	want	to	let	you	know	that	this	chapter	will	be	written	strictly	from	the
perspective	of	the	standard	calendar.

What	do	we	mean	by	“standard	calendar?”	It’s	the	calendar	with	the	following	properties:

February	has	28	days	(29	in	leap	years)	in	it,	and	all	other	months	have	30	or	31
days	in	them
Quarters	 consist	 of	 three	 consecutive	 months	 –	 months	 whose	 lengths	 are
described	above
Years	have	365	days	in	them	(366	in	leap	years)
A	given	month	this	year	might	have	more/less	Saturdays	(or	any	other	day)	in	it
than	the	same	month	last	year

In	other	words,	a	standard	calendar	is	the	calendar	that	you	have	hanging	on	your	wall.

Power	Pivot’s	time	intelligence	functions	operate	under	the	assumption	that	you	use
a	 standard	 calendar.	 So	 they	 represent	 a	 natural	 place	 to	 start	 the	 topic	 of	 time
intelligence.

Custom	Calendars:	Perhaps	Even	More	Important	than	Standard
(Covered	Later)
But	many	businesses	do	not	measure	themselves	via	the	standard	calendar.	The	standard
calendar	poses	many	problems	that	are	often	unacceptable:

Comparing	this	month	to	last	month	is	often	not	“fair”	when	last	month	had
31	days	and	this	one	has	30,	for	instance.	Did	we	really	perform	3%	worse	this
month	or	is	that	just	due	to	the	different	number	of	days?
Even	two	months	of	the	same	length	are	often	not	fair	comparisons	since	they
contain	different	numbers	of	weekend	days	versus	weekdays.
Sometimes	 the	 unit	 of	 time	 measured	 doesn’t	 even	 resemble	 the	 wall
calendar	–	“Semesters”	in	the	academic	world	and	“Seasons”	in	the	sports	world
for	example
Going	further,	sometimes	(such	as	in	science),	we	want	to	literally	compare
time	periods	instead	of	calendar	periods	–	such	as	“the	first	five	minutes	after	an
event”	compared	to	the	following	fifteen	minutes	etc.

In	 our	 experience,	 at	 least	 half	 of	 all	 organizations	 measure	 themselves	 by	 custom
calendars.	Retail	businesses	in	particular	are	very	sensitive	to	those	first	two	problems.

So	have	no	fear,	we	will	address	custom	calendars	too.	We	are	only	going	to	start	with
the	 standard	 calendar.	 Stay	 tuned,	 in	 later	 chapters,	 for	 the	 custom	 calendar
treatment.

Calendar:	A	Very	Special	Lookup	Table
Everything	in	time	intelligence	requires	that	you	have	a	separate	Calendar	table.	(It
does	not	have	to	be	named	“Calendar,”	but	we	usually	use	that	name,	or	“Dates.”)

Where	to	Get	a	Calendar	Table
There	are	many	ways	to	create	a	calendar	table.	Here	are	a	few	options:

Import	one	from	a	database.	This	 is	our	favorite,	for	several	reasons.	But	not
everyone	 would	 have	 access	 to	 a	 database.	 See	 http://ppvt.pro/sqldate	 for	 one
approach.
Create	one	 in	Excel.	Pretty	much	available	 to	everyone.	However	may	pose	a
problem	when	you	need	a	dynamic	action	 (e.g.	 trim	calendar	based	on	 today’s
date).	Download	a	sample	Excel	Calendar	Generator	at	
http://ppvt.pro/xlCalendar.
Generate	using	Power	Query.	Best	of	both	worlds,	nearly	available	to	everyone
and	 offers	 easy	 dynamic	 capabilities.	 See	 http://ppvt.pro/udate2	 and
http://ppvt.pro/pqcalendar	as	examples.
Import	one	from	Azure	DataMarket	(or	elsewhere	on	the	internet).	There’s
at	least	one	calendar	table	available	for	free	download	on	the	internet,	produced
by	the	amazing	Boyan	Penev.	See	http://ppvt.pro/UltDate	for	more.

Properties	of	a	Calendar	Table
A	calendar	table	must:

http://ppvt.pro/sqldate
http://ppvt.pro/xlCalendar
http://ppvt.pro/udate2
http://ppvt.pro/pqcalendar
http://ppvt.pro/UltDate

Contain	at	least	one	column	of	“date”	data	type.
Contain	exactly	one	row	per	day.
Contain	completely	consecutive	dates,	no	gaps	–	even	if	your	business	is	never
open	on	weekends,	those	days	must	be	in	the	calendar
Be	related	to	all	of	your	Data	tables	(Sales,	etc.)
Contain	 columns	 for	 all	 of	 your	 desired	 grouping	 and	 labels	 –	 things	 like
MonthName,	DayOfWeekName,	IsWknd,	IsHoliday,	etc.	(strictly,	you	can	have
a	Calendar	table	with	just	the	one	date	column,	but	the	Calendar	table	is	the	place
to	put	all	of	these	other	columns	if	you	do	have	them).
Ideally	 only	 “spans”	 the	 relevant	 date	 ranges	 for	 your	 purposes.	 If	 your
business	opened	in	2001,	it	doesn’t	make	sense	for	your	Calendar	table	to	start	in
2000.	And	if	today	is	June	20,	2012,	it	doesn’t	make	sense	for	June	21,	2012	to
be	in	the	Calendar	yet.	This	is	one	of	the	trickier	requirements	–	it’s	the	primary
reason	why	we	like	to	source	our	Calendar	from	a	database.	It	really	is	optional,
but	you	will	find	it	very	useful	over	time.	Don’t	worry	about	it	much	for	now.

Our	Calendar	table:	Imported	and	Related

206.	Calendar	table	–	now	we	can	get	started!

Now	we	relate	it	to	our	Sales	table,	using	the	Date	columns:

207.	Relating	Calendar	to	Sales

ⓘ	In	Power	Pivot	v1,	the	column	used	to	relate	Calendar	to	other	tables	had	to
be	of	data	 type	Date.	 In	v2,	you	can	now	relate	using	a	column	of	a	different
data	type,	such	as	an	integer,	so	you	do	not	need	a	column	of	Type	Date	in	your
Sales	 table	 anymore,	 but	 you	 do	 still	 need	 a	 column	 of	 type	 Date	 in	 your
Calendar	table.

208.	Updated	diagram	view:	Calendar	becomes	the	third	lookup	table

Operates	like	a	Normal	Lookup	Table

209.	[Total	Sales]	with	Calendar[DayNameOfWeek]	on	Rows

And	the	Sort	By	Column	feature	works	here	too	of	course:

210.	Sort	by	Column	Rides	Again!

211.	Days	sorting	in	proper	order	(if	you	want	Monday	to	be	first,	just	create	a	calculated	column	in	Calendar
that	starts	with	1	for	Monday	and	ends	on	7	for	Sunday,	and	use	that	as	your	sort	by	column	instead)

And	we	can	 repeat	 the	 same	process	 for	MonthName	–	 every	 column	can	have	 its
own	separate	sort	by	column:

212.	Setting	sort	order	for	MonthName

213.	Properly	sorted	month	names!

First	Special	Feature:	Enable	Date	Filtering	via	Mark	as
Date	Table
With	your	Calendar	table	active,	go	to	the	Design	tab	of	the	ribbon	and	select	Mark
as	Date	Table:

214.	Make	this	a	habit	for	your	Calendar/Date	table

Then,	in	the	pivot,	you	get	the	special	date	filtering	options:

215.	Power	Pivot	“tells”	Excel	 that	 this	 is	a	Date	 table,	so	Excel	enables	 these	 filter	options	 for	you	(most	of
which	are	useless	with	our	sample	data	since	the	dates	are	ancient,	but	more	useful	in	the	real	world)

⚠	 If	 you	 are	 going	 to	 use	 a	 column	 of	 non-Date	 data	 type	 to	 relate	 your
Calendar	 table	 to	your	Data	 tables,	you	MUST	“mark	 it	as	date”	 in	 the	Power
Pivot	window,	or	many	other	of	the	smart	calculation	features	covered	after	this
will	not	function	properly.

Second	Special	Feature:	Time	Intelligence	Functions!
Power	Pivot	includes	many	new	functions	relating	to	time:

216.	A	subset	of	the	DAX	functions	relating	to	time	–	a	few	are	carryovers	from	normal	Excel,	but	most	are	new.

Diving	in	with	DATESYTD()
There	are	so	many	functions	that	it	was	hard	for	us	to	choose	which	one	to	cover
first.	We	picked	DATESYTD()	not	because	 it’s	somehow	special	relative	to	the
others,	but	just	because	it	makes	for	a	good	example.

Let’s	start	with	a	simple	pivot:

217.	Our	“testbed”	for	DATESYTD()

Now	let’s	add	a	new	measure,	one	that	tracks	Year	to	Date	(YTD)	sales:

[Total	Sales	YTD]	=
CALCULATE	([Total	Sales],	DATESYTD	(Calendar[Date]))

And…

218.	New	measure	shows	us	a	running	total	of	YTD	sales	for	each	month!

And	like	all	good	Power	Pivot	measures,	this	formula	is	“portable”	into	basically	any
report	shape	you	desire,	just	by	rearranging	the	pivot	–	no	formula	surgery	required!
Remove	[Total	Sales]	and	drag	Year	to	Columns…

219.	Our	new	[Total	Sales	YTD]	measure,	like	all	good	DAX	measures,	automatically	adjusts	to	any	new	pivot
shape	–	just	rearrange	using	the	field	list,	and	the	measure	does	the	hard	work!

Anatomy	of	DATESYTD()

Function	Definition

ⓘ	DATESYTD(<date	column	in	calendar	table>,	<optional	year	end	date>)

That	first	argument,	<date	column	in	calendar	table>,	is	common	to	nearly	all	of	the
time	intelligence	functions.	In	Power	Pivot	itself,	the	function	help	just	refers	to	it	as
Dates:

220.	What	 we	 call	 “<date	 column	 in	 calendar	 table>,	 Power	 Pivot	 calls	 “Dates”	 –	 whenever	 you	 see	 that,
remember	our	version	of	it,	because	that’s	what	“Dates”	means	in	the	time	intelligence	function	definitions.

DATESYTD()	 is	 used	 as	 a	 <filter>	 argument	 to	 CALCULATE(),	 much	 like
ALL()	and	FILTER().

How	Does	it	Work?
Like	 almost	 everything	 else	 “magical”	 in	 Power	 Pivot,	 DATESYTD()	 operates	 by
manipulating	filter	context.

Let’s	return	to	a	simple	pivot	layout,	and	highlight	a	particular	measure	cell:

221.	For	the	highlighted	measure	cell…

DATESYTD()	 essentially	 identifies	 the	 latest	date	 in	 the	 current	 filter	 context,
and	then	“expands”	the	filter	context	backward	from	that	date	to	the	first	date
of	 the	 year	 (more	 specifically,	 to	 the	 first	 date	 in	 the	 year	 of	 that	 previously-
identified	latest	date,	which	is	2004	in	this	case).

OK,	then	DATESYTD()	modifies	that	filter	context.	Here’s	how.

222.	If	we	imagine	the	Calendar	table	as	a	calendar	rather	than	a	table,	where	each	row	in	Calendar	is	a	single
date,	these	are	the	active	dates	(rows)	in	the	filter	context	for	the	measure	cell	highlighted	in	the	prior	figure.

Again,	visualizing	the	Calendar	table	in	calendar	form:

223.	DATESYTD()	starts	at	the	last	date	in	the	existing	filter	context,	and	then	“expands”	the	filter	context	back
to	the	first	date	of	the	year	(the	first	date	in	the	year	of	the	current	filter	context)

Resulting	in	a	new	filter	context:

224.	New	filter	context	highlighted	(again	visualizing	the	Calendar	table	as	a	calendar)

Changing	the	Year-End	Date
That	 last	 argument	 to	 DATESYTD(),	 which	 is	 an	 optional	 argument	 that	 we	 left
blank	in	the	first	example,	allows	you	to	customize	your	calendar	just	a	little	bit.	That
allows	you	to	treat	June	30	as	the	last	day	of	the	year,	for	instance,	which	is	common
in	Fiscal	Calendars.

Here’s	a	measure	that	does	just	that:

[Total	Sales	Fiscal	YTD]	=
CALCULATE	(
[Total	Sales],
DATESYTD	(Calendar[Date],	“6/30/2004”)
)

Now	 let’s	 compare	 that	 to	 the	 original	 YTD	measure,	 side	 by	 side.	We’ve	 added
Calendar[WeekNumOfYear]	to	Rows,	nested	under	Month:

225.	Original	YTD	measure	starts	from	0	in	January,	but	Fiscal	YTD	version	already	is	approaching	$3M.

ⓘ	Note	 how	 we	 have	 sliced	 the	 pivot	 to	 2003	 even	 though	 we	 specified
6/30/2004	in	the	measure.	The	year	itself	does	not	matter	in	that	last	argument	–
the	DATESYTD()	function	only	looks	at	month	and	day	and	ignores	the	year	(in
that	particular	argument.)

Now	let’s	scroll	down	and	see	what	happens	at	the	end	of	June:

226.	Fiscal	YTD	measure	resets	at	the	end	of	June,	just	as	desired

ⓘ	 So	 the	 built-in	 time	 intelligence	 functions	 are	 capable	 of	 adapting	 to
different	year	end	dates.	This	still	falls	under	what	we	call	the	Standard	Calendar
however,	 because	 the	months	 are	 all	 still	 the	 same	 as	 the	months	 on	 the	wall
calendar	–	June	still	has	30	days,	July	has	31,	etc.	Only	when	we	start	redefining
our	notions	of	Month/Quarter/Year	 to	be	a	different	 from	the	wall	calendar	do
we	 start	 to	 “break”	 functions	 like	DATESYTD().	You	will	 see	what	we	mean
when	we	get	to	that	chapter.

DATESMTD()	and	DATESQTD()	–	“Cousins”	of	DATESYTD()
These	 functions	 are	 the	 “month	 to	 date”	 and	 “quarter	 to	 date”	 versions	 of
DATESYTD(),	 so	we	won’t	walk	you	 through	 them	–	 their	usage	 is	 just	 like	what
we’ve	illustrated	for	DATESYTD().	The	only	difference	is	that	neither	of	them	offer
that	optional	second	argument	for	YearEnd	Date.

TOTALYTD()	–	Another	Cousin	of	DATESYTD()
TOTALYTD()	 is	 actually	 a	 replacement	 for	CALCULATE(),	 one	 that	 “bakes	 in”	 a
DATESYTD().

For	example,	our	original	YTD	measure:

[Total	Sales	YTD]	=

CALCULATE	([Total	Sales],	DATESYTD	(Calendar[Date]))

Can	be	rewritten	as:

[Total	Sales	YTD]	=
TOTALYTD	([Total	Sales],	Calendar[Date])

We	 suppose	 that’s	 a	 bit	more	 readable	 –	 shorter	 for	 sure.	But	we	 don’t	 see	 this	 as
particularly	necessary,	we’d	be	fine	without	this	function.	Whether	you	choose	to	use
it	is	really	just	a	matter	of	personal	preference.

The	Remaining	(Many)	Time	Intelligence	Functions	–
Grouped	Into	“Families”
As	we	said	previously,	there	are	many	time	intelligence	functions.	But	it’s	pretty	easy
to	 group	 them	 into	 “families”	 (to	 continue	 the	 “cousin”	metaphor).	 If	we	 cover	 an
example	 from	each	 family,	 that	will	 give	you	 a	 foundation	–	 the	 ability	 to	 quickly
adopt	whatever	function	you	need	–	without	us	boring	you	to	death	covering	every
single	function.

We’ve	already	covered	the	DATESYTD()	family.	Let’s	press	forward,	and	take	a	tour
of	each	remaining	family.

FIRSTDATE()	and	LASTDATE()
This	is	a	simple	family,	and	it	only	contains	these	two.

Quite	simply,	these	are	the	date	versions	of	MIN()	and	MAX()

Briefly,	let’s	define	two	measures:

[FIRSTDATE	Example]	=
FIRSTDATE	(Calendar[Date])

And:

[LASTDATE	Example]	=
LASTDATE	(Calendar[Date])

And	look	at	them	on	our	Month/Weeknum	pivot:

227.	FIRSTDATE()	and	LASTDATE()	in	action

ⓘ	In	the	field	list	we	placed	both	of	these	measures	on	the	Calendar	table	since
their	“arithmetic”	operates	on	the	Calendar	itself	–	they	return	dates	rather	than
sales	data	or	product	counts,	etc.

ENDOFMONTH(),	STARTOFYEAR(),	etc.
These	 return	 single	dates,	 and	have	 special	 handling	 for	different	 “size”	periods	of
time.

Again,	let’s	illustrate	by	example:

228.	Does	about	what	you	expect	right?

Now	let’s	swap	out	Month	for	Quarter	on	Rows:

229.	9/30/2001	is	the	last	date	in	the	last	month	of	Q3	2001

Make	sense?	If	you	feed	more	than	a	single	month	to	ENDOFMONTH(),	it	will	find
the	last	date	in	the	last	month.

But	 when	 you	 feed	 it	 a	 filter	 context	 of	 “size”	 less	 than	 a	 month,	 we	 get
something	different:

230.	ENDOFMONTH()	returns	the	last	day	of	the	month	even	if	that	day	is	NOT	part	of	the	current	filter	context.

The	rest	of	this	family	behaves	in	much	the	same	way.

CLOSINGBALANCEMONTH(),
CLOSINGBALANCEYEAR(),	ETC.
These	 functions	are	CALCULATE()	 replacements	 that	have	“hardwired”	date	 logic
equivalent	to	ENDOFMONTH(),	
STARTOFYEAR(),	etc.

ⓘ	 CLOSINGBALANCEMONTH(<measure	 expression>,<Date	 Column>,
<optional	filter>)

Example	measure:

[Total	Sales	CLOSINGBALANCEMONTH]	=

CLOSINGBALANCEMONTH	([Total	Sales],	Calendar[Date])

231.	CLOSINGBALANCEMONTH()	always	returns	the	value	of	its	base	measure	on	the	last	day	of	the	month	in
the	current	filter	context	(We	have	used	a	Sales	measure	here	to	demonstrate,	but	in	reality,	these	functions	are
more	useful	with	things	like	Inventory	or	Cash	Balance.)

DATEADD()
This	function	is	also	used	as	a	<filter>	argument	to	CALCULATE(),	and	shifts	your
date	filter	context	forward	or	backward	in	time.

ⓘ	DATEADD(<Date	Column>,	<number	of	intervals>,	<interval	type>)
<Date	Column>	-	the	usual.	Put	your	date	column	from	your	calendar	table
here.
<Number	of	Intervals>	-	Set	this	to	1	to	move	one	interval	later	in	time,	-1
to	move	back	one,	etc.
<Interval	Type>	-	Set	this	to	Year,	Quarter,	Month,	or	Day	–	no	quotes

Example	measure	that	shows	us	last	year’s	[Total	Sales]:

[Total	Sales	DATEADD	1	Year	Back]	=
CALCULATE	(
[Total	Sales],
DATEADD	(Calendar[Date],	-1,	YEAR)
)

Here	are	its	results	for	2003	side-by-side	with	a	pivot	showing	the	original	[Total	Sales]
measure	for	2002:

232.	DATEADD()	version	filtered	to	2003	matches	the	original	measure	filtered	to	2002

And	now	the	same	comparison,	but	with	Quarter	on	Rows	instead:

233.	Same	comparison,	just	with	Quarter	on	Rows	rather	than	Month.	Again,	perfect	match.

Growth	Versus	Last	Year	(Year-Over-Year,	YOY,	etc.)
One	obvious	application	of	DATEADD()	and	similar	functions	 is	 the	calculation	of
growth	versus	the	prior	year.

[Pct	Sales	Growth	YOY]	=
([Total	Sales]	-	[Total	Sales	DATEADD	1	Year	Back])
/	[Total	Sales	DATEADD	1	Year	Back]

234.	[Pct	Growth	YOY]	displayed	for	2003	and	compared	to	2002	in	the	second	pivot

Quirks	and	Caveats
There	 are	 a	 few	 things	you	will	 discover	 about	DATEADD()	 that	might	make	you
scratch	your	head	a	bit,	so	We’ll	give	some	advanced	notice.

You	Must	Have	Contiguous	Date	Ranges	on	Your	Pivot
If	we	filter	a	Quarter	out	of	our	pivot	we	will	get	an	error:

235.	Filtering	Quarter	3	out	of	the	pivot…

236.	…yields	an	error	with	DATEADD()

The	same	thing	would	happen	if	we	were	using	Month	on	rows	and	filtered	out	one
or	more	months.

ⓘ	Note	 that	 the	error	occurs	 in	 the	Grand	Total	cell.	There	 is	nothing	wrong
with	each	of	 the	 single-Quarter	measure	cell	 calculations,	but	when	 the	Grand
Total	 fails,	 the	 entire	 pivot	 fails.	 The	 filter	 context	 of	 the	Grand	 Total	 cell	 is
Quarter={1,2,4}	 and	Year={2003},	 and	when	DATEADD()	 goes	 back	 a	 year,
that	“skips”	Quarter	3	of	2002,	which	DATEADD()	cannot	do.

ⓘ	Merely	hiding	 the	Grand	Total	 (using	 the	pivot	Design	 tab	on	 the	 ribbon)
will	not	fix	this	problem.	The	only	way	to	fix	this	is	to	prevent	the	Grand	Total
from	 even	 being	 calculated	 in	 the	 first	 place,	 which	 we	 will	 explain	 in	 the
chapter	on	IF().

DATEADD()	Has	Special	Handling	for	“Complete”
Months/Quarters/Years
This	one	and	the	next	one	are	really	subtle.	If	you	struggle	to	understand,	don’t
worry	about	it	–	just	remember	that	there’s	something	special	going	on	here,	so	that
if/when	 you	 discover	 this	 on	 your	 own,	 you	 can	 come	 back	 here	 and	 re-read	 this
section.

2004	is	a	leap	year,	in	which	February	contains	29	days.	Let’s	add	a	simple	measure
to	the	Calendar	table	that	shows	this:

[Number	of	Days]	=
COUNTROWS	(Calendar)

237.	29	days	in	Feb	2004

And	 now	 we	 will	 add	 the	 DATEADD()	 measure	 we	 created	 before,	 [Total	 Sales
DATEADD	1	Year	Back]:

238.	Question:	does	$489,090	represent	28	days	of	2003	sales,	or	29	days?

Let’s	compare	that	to	a	2003	pivot	for	the	“raw”	[Total	Sales]	measure:

239.	DATEADD()	 is	 returning	28	days’	worth	of	Feb	2003	sales	even	 though	 it	 starts	out	with	a	29-day	 filter
context	in	2004!

DATEADD()	Lacks	Intelligence	for	Weeks

240.	With	WeekNum	on	Rows,	the	DATEADD()	measure	does	NOT	match!

To	see	why	the	numbers	don’t	match,	we	need	to	add	Date	to	Rows	as	well:

241.	Both	pivots	report	Sunday	through	Monday,	but	the	DATEADD()	measure	is	returning	2003’s	Sunday	sales
in	the	context	of	2004	Monday

Stated	another	way,	the	weeks	are	misaligned	by	one	day:

242.	Why	doesn’t	this	work,	if	it	works	for	Month	and	Quarter?	Well	for	starters,	52	weeks	in	a	year	times	7
days	per	week	=	364.	So	we	are	never	going	to	get	weeks	quite	right	unless	we	change	years	to	be	364	days	long
instead	of	365	(which	some	custom	calendars	actually	do).

So	 the	 concept	 of	 “week”	 is	 defined	 only	 in	 our	 Calendar	 table,	 in	 the
WeekNumOfYear	 column.	Look	 at	 the	 pivots	 above	 –	Week	 1	 of	 2004	 has	 only	 3
days	in	it!	And	Week	1	of	2003	has	only	4!

That’s	purely	the	“fault”	of	our	Calendar	table:

243.	Our	Calendar	table	DOES	only	have	3	days	in	it	for	Week	1	of	2004

Whereas	 the	 time	 intelligence	 functions	can	 intrinsically	“know”	what	we	mean	by
Month/Quarter/Year,	 they	 rely	on	 the	calendar	 table	 for	all	other	concepts,	 so	 there
isn’t	 any	 “magic	 fixup”	 when	 we	 navigate	 using	 DATEADD()	 in	 a	 filter	 context
involving	weeks.

SAMEPERIODLASTYEAR()

ⓘ	SAMEPERIODLASTYEAR(<Date	Column>)

This	 is	 a	 shortcut	 function	 that	 is	 just	 a	 wrapper	 to	 DATEADD().	 It	 is	 100%
equivalent	to	DATEADD()	with	“-1,	Year”	as	the	last	two	arguments:

SAMEPERIODLASTYEAR	(Calendar[Date])

Is	exactly	the	same	as:

DATEADD	(Calendar[Date],	-1,	YEAR)

PARALLELPERIOD(),	NEXTMONTH(),
PREVIOUSYEAR(),	etc.
PARALLELPERIOD()
This	one	is	almost	a	wrapper	to	DATEADD(),	but	it	differs	in	one	crucial	way	that	is
best	shown	by	example.

ⓘ	 PARALLELPERIOD(<Date	 Column>,	 <number	 of	 intervals>,	 <interval
type>)

Let’s	create	an	example	measure:

[Total	Sales	PARALLELPERIOD	Back	1	Year]	=
CALCULATE	(
[Total	Sales],
PARALLELPERIOD	(Calendar[Date],	-1,	YEAR)
)

244.	PARALLELPERIOD()	always	 fetches	 the	 full	 year	when	you	go	back	1	year,	no	matter	what	“size”	your
filter	context	is	(Month	in	this	case).

So	PARALLELPERIOD()	navigates	 just	 like	DATEADD(),	but	when	 it	 gets	 to
its	 “destination,”	 it	 expands	 the	 filter	 context	 to	 the	 size	 of	 the	 specified
<interval	type>	-	Year,	Quarter,	or	Month.

ⓘ	Reminder:	 you	 don’t	 have	 to	 remember	 all	 of	 the	 details	 of	 all	 of	 these
functions.	(We	sure	don’t!)	You	just	need	to	know	that	they	exist,	then	be	able	to
find	the	one	that	serves	your	current	purpose,	and	quickly	re-familiarize	yourself
as	needed.

NEXTMONTH(),	PREVIOUSYEAR(),	etc.
These	functions	are	all	 just	wrappers	 to	PARALLELPERIOD()	–	 they	navigate	and
expand	in	exactly	the	same	way.

[Total	Sales	NEXTMONTH]	=
CALCULATE	([Total	Sales],	NEXTMONTH	(Calendar[Date]))

245.	NEXTMONTH()	always	grabs	the	FULL	next	month,	even	if	we	start	in	the	context	of	a	single	day.

DATESBETWEEN()
Ah,	we	have	a	special	place	in	our	hearts	for	DATESBETWEEN().	Sometimes,
you	don’t	want	anything	special	–	you	just	want	total	control	over	the	date	range
in	a	measure.	And	DATESBETWEEN()	delivers	just	that.

ⓘ	DATESBETWEEN(<date	column>,	<start	date	expr>,	<end	date	expr>)

Let’s	start	with	a	very	simple	example:

246.	Note	how	DATESBETWEEN()	completely	overrides	existing	filter	context	on	the	Calendar	table,	otherwise
it	would	be	blank	for	July-December	(and	for	January-June	would	match	[Total	Sales]	for	each	month)

“Life	to	Date”	Calculations
Earlier,	we	used	DATESYTD()	to	calculate	“year	to	date”	sales,	but	what	if	you	want
a	 running	 total	 that	 does	 not	 reset	 at	 the	 start	 of	 each	 year,	 but	 instead	 just	 keeps
piling	up	year	after	year?

Fortunately,	DATESBETWEEN()	lets	us	use	expressions	for	the	endpoint	arguments:

[Total	Sales	Life	to	Date]	=
CALCULATE	(
[Total	Sales],
DATESBETWEEN	(
Calendar[Date],
“1/1/1900”,	LASTDATE	(Calendar[Date])
)
)

247.	“Life	to	Date”	using	DATESBETWEEN()	matches	grand	total	across	2001-2003,	as	expected

248.	Expanding	to	Month	level,	“Life	to	Date”	measure	still	returns	expected	results

Removing	That	Hardwired	1/1/1900
Yeah,	that’s	ugly.	Let’s	replace	it	with	FIRSTDATE(ALL(Calendar[Date])):

[Total	Sales	Life	to	Date]	=
CALCULATE	(
[Total	Sales],
DATESBETWEEN	(
Calendar[Date],
FIRSTDATE	(ALL	(Calendar[Date])),
LASTDATE	(Calendar[Date])
)
)

Why	ALL(Calendar[Date])?	Because	otherwise	we’d	just	get	 the	first	date	 in	 the	filter
context,	(which	would	be	January	1,	2003	in	the	$10,235,582	cell	highlighted	in	the	pivot

above).	We	need	 to	apply	ALL()	 in	order	 to	clear	 the	current	 filter	 context	 and	 literally
find	the	first	date	in	the	entire	Calendar	table.

ⓘ	 Note	 that	 we	 do	 not	 want	 ALL()	 on	 the	 LASTDATE()	 in	 the	 <end	 date>
argument	of	DATESBETWEEN()	in	this	case,	otherwise	it	would	always	return	sales
for	all	time,	and	not	sales	up	until	the	current	filter	context	date.

DATESBETWEEN()	is	Fantastic	with	Disconnected	Tables	Too!
You	 remember	 the	Min/Max	Threshold	 version	 of	 disconnected	 tables?	You	 can	 do	 the
same	thing	with	dates,	using	a	disconnected	DateRange	table,	your	normal	Calendar	table,
and	DATESBETWEEN().

We	won’t	belabor	that	here,	since	it’s	a	repetition	of	a	familiar	pattern,	but	for	a	detailed
example,	see	
http://ppvt.pro/ABCampaign

http://ppvt.pro/ABCampaign

15	-	IF(),	SWITCH(),	BLANK(),	and	Other
Conditional	Fun
Using	IF()	in	Measures
It	 is	 time	 to	 introduce	 conditional/branching	 logic	 into	 our	 formulas.	 This	 starts	 out	 as
simple	as	you	would	expect.

Consider	our	[Pct	Sales	Growth	YOY]	measure	from	last	chapter:

[Pct	Sales	Growth	YOY]	=
([Total	Sales]	-	[Total	Sales	DATEADD	1	Year	Back])
/	[Total	Sales	DATEADD	1	Year	Back]

We	get	an	error	because	[Total	Sales	DATEADD	1	Year	Back]	is	0	for	2001	–	there	were
no	sales	in	2000,	so	this	is	really	a	“div	by	0”	error.

ⓘ	Technically	 speaking,	 [Total	Sales	DATEADD	1	Year	Back]	 is	not	 returning	0
for	 2001,	 it	 is	 returning	 blank	 –	 when	 there	 are	 no	 rows	 in	 the	 source	 tables
corresponding	 to	 the	 filter	 context,	measures	 return	 blank.	But	when	we	 divide	 by
blank,	that’s	the	same	as	dividing	by	zero	in	terms	of	causing	an	error.

249.	We	get	a	#NUM	error	for	2001

This	 is	an	easy	 fix	–	we	 just	edit	 the	 formula,	and	wrap	our	original	 formula	 in	an
IF():	And	the	results:

250.	Now	returns	0%	instead	of	an	error

The	BLANK()	Function
We	can	do	better	than	0%	though	can’t	we?	0%	implies	that	we	had	0	growth,	when
in	reality,	this	calculation	makes	no	sense	at	all	for	2001.	So	rather	than	return	0,	we
can	return	the	BLANK()	function.

Let’s	edit	the	formula	accordingly:

[Pct	Sales	Growth	YOY]	=
IF	(
[Total	Sales	DATEADD	1	Year	Back]	=	0,
BLANK	(),
([Total	Sales]	-	[Total	Sales	DATEADD	1	Year	Back])
/	[Total	Sales	DATEADD	1	Year	Back]
)

And	the	results:

251.	Aha!	Now	2001	is	gone	completely,	nice!

Why	 does	 2001	 disappear	 from	 the	 pivot	 completely?	 Because	 all	 displayed
measures	return	BLANK()	for	2001.

ⓘ	This	is	a	VERY	helpful	trick.	Retuning	BLANK()	in	certain	situations	will
become	one	of	your	most	relied-upon	techniques.

If	we	add	a	measure	that	is	not	BLANK()	for	2001,	2001	is	displayed	once	again:

252.	2001	is	displayed	as	long	as	any	single	measure	returns	a	non-blank	result

You	 can	 force	 2001	 to	 display,	 however,	 even	 if	 all	measures	 are	blank.	Under
Pivot	Options,	on	the	Pivot	Options	tab,	are	the	following	two	checkboxes:

253.	Check	that	first	checkbox…

254.	…and	2001	will	be	displayed	even	when	all	measures	are	blank.

DIVIDE()	Function
The	DIVIDE()	function	was	introduced	in	an	update	to	Power	Pivot	v2	and	has	been
our	favorite	since.	Here	is	the	function	description:

ⓘ	DIVIDE(<numerator>,	<denominator>	[,<alternateresult>])
Safe	Divide	function	with	ability	to	handle	divide	by	zero	case
<alternateresult>	 is	 an	 optional	 argument	 and	 defaults	 to	 BLANK,	 which	 is
good	in	most	cases.

Here	is	how	you	can	rewrite	the	measure	we’ve	been	working	on	using	DIVIDE.

[Pct	Sales	Growth	YOY	using	DIVIDE]	=
DIVIDE	(
[Total	Sales]	-	[Total	Sales	DATEADD	1	Year	Back],
[Total	Sales	DATEADD	1	Year	Back]
)

Elegant,	right?	And	generates	the	same	results.

255.	DIVIDE()	Function	gets	us	the	same	result,	but	in	an	elegant	formula

The	 DIVIDE()	 version	 isn’t	 just	 aesthetically	 pleasing,	 but	 even	 offers	 better
performance	than	the	earlier	version	of	our	measure.	We	now	use	it	pretty	much	by
default	whenever	division	is	required.

Keep	 in	mind	 that	 the	 if..then..else	 pattern	we	 developed	 prior	 to	DIVIDE,	 is	 still
valuable.	And	would	come	in	handy	in	many	scenarios,	not	just	division	by	zero.

ⓘ	IF(<test>,	<DAX	expression>,	BLANK())	 is	 a	 valuable	 pattern	 you	will
find	useful	in	many	scenarios

The	ISBLANK()	Function
Excel	has	this	function	too,	of	course,	but	it’s	worth	bringing	up	here.	When	we	test
for	“=0”	as	we	did	in	the	formulas	above,	and	the	measure	returns	BLANK(),	the	IF()
evaluate	to	True.

We	could	have	tested	for	ISBLANK()	 instead	of	“=0”,	but	 that	would	still	 leave	us
exposed	to	an	error	in	the	case	where	[Total	Sales	DATEADD	1	Year	Back]	returned
a	legitimate	0	(meaning,	there	were	rows,	but	the	sum	of	the	SalesAmt	column	was	0
–	rare	but	possible).

So	most	of	the	time,	we	just	test	for	“=0.”	But	when	you	want	to	distinguish	between
0	and	BLANK(),	ISBLANK()	is	what	you	need.

HASONEVALUE()
Another	new	function	in	Power	Pivot	V2.	Primarily	you	can	think	of	this	as	the	“am	I
in	 a	 subtotal	 or	 grand	 total	 cell?”	 function,	 although	 it	 definitely	 comes	 in	 handy
elsewhere	too.

To	demonstrate,	first	let	us	create	the	following	measure:

[Subcategory	pct	of	Category	Sales]	=
[Total	Sales]	/
CALCULATE	([Total	Sales],	
ALL	(Products[SubCategory]))

And	here	it	is	with	along	with	[Total	Sales],	and	Category/Subcategory	on	Rows:

Those	 100.0%	 subtotals	 and	 grand	 total	 are	 useless	 though.	We’d	 love	 to	 suppress
them.

To	 do	 this,	we	 are	 going	 to	 detect	when	 our	 filter	 context	 contains	more	 than	 one
Subcategory,	 because	 having	 more	 than	 one	 Subcategory	 is	 the	 definition	 of	 a
subtotal/grand	total	cell	for	that	field,	as	explained	in	the	chapter	on	ALL().

256.	Each	Subcategory	is	calculated	as	a	percentage	of	its	parent	Category,	in	terms	of	[Total	Sales]

So	 we	 edit	 our	 original	 measure	 to	 detect	 that	 condition,	 using	 the
HASONEVALUE()	function:

[Subcategory	pct	of	Category	Sales]	=
IF	(
HASONEVALUE	(Products[SubCategory]),
[Total	Sales]	/
CALCULATE	([Total	Sales],
ALL	(Products[SubCategory])	
),
BLANK	()
)

ⓘ	HASONEVALUE()	is	equivalent	to	IF(COUNTROWS(VALUES())=1	–	we
used	 to	 have	 to	 use	 this	 latter	 approach,	 but	 now	 in	 Power	 Pivot	 v2,
HASONEVALUE()	is	much	better.

Results:

257.	Subtotals	and	grand	totals	suppressed	for	just	this	measure,	still	“on”	for	[Total	Sales]

ⓘ	We	could	turn	off	Subtotals	and/or	Grand	Totals	via	the	Pivot	Design	tab	on
the	ribbon,	but	that	would	turn	off	totals	for	[Total	Sales]	as	well.	We	want	to	do
this	just	for	[Subcat	pct	of	Cat	Sales].

IF()	Based	on	Row/Column/Filter/Slicer	Fields
Our	first	use	of	IF()	in	this	chapter	tested	against	the	value	of	a	measure.	But	what	if
we	want	to	test	where	we	“are”	in	the	pivot	in	terms	of	filter	context?

For	 example,	 what	 if	 we	want	 to	 calculate	 something	 a	 little	 differently	 for	 a
specific	country?

We’ve	added	a	new	lookup	table	to	our	model,	one	named	SalesTerritory.	It	contains
a	 Country	 column,	 which	 we	 are	 displaying	 on	 Rows,	 along	 with	 our	 [Sales	 to
Parents]	measure:

258.	We	don’t	trust	that	number	for	Canada…

All	 right,	 let’s	 invent	 a	 problem.	 Pretend	 for	 a	 moment	 that	 we	 cannot	 trust	 the
[NumberOfChildren]	 column	 in	 our	 Customers	 table	 for	 Canadian	 customers	 –
something	 about	 the	 way	 we	 collect	 data	 in	 Canada	 makes	 that	 number	 not
trustworthy.	And	that	column	is	the	basis	for	our	[Sales	to	Parents]	measure.

So	for	Canada,	and	Canada	only,	we	want	to	substitute	a	different	measure,	[Sales	to
Married	Couples],	for	that	measure.	(And	of	course,	everyone	in	our	organization	is
“on	board”	with	this	change	–	We’re	not	deliberately	misleading	anyone!)

So,	how	do	we	detect	when	Country=Canada?	We’ll	give	you	the	measure	formula
first	and	then	explain	it.

[Sales	to	Parents	Adj	for	Canada]	=
IF	(
HASONEVALUE	(SalesTerritory[Country]),
IF	(
VALUES	(SalesTerritory[Country])	=	“Canada”,
[Sales	to	Married	Couples],
[Sales	to	Parents]
),
BLANK	()
)

The	VALUES()	Function
First,	let’s	explain	what	this	VALUES()	function	is	all	about.	Quite	simply,	it	returns
the	filter	context	as	specified	by	the	pivot.	So	sometimes	it	returns	a	single	value	for	a
column,	and	other	times	it	returns	multiple	values	(if	you	are	in	a	total	cell).

Examples:

259.	For	the	highlighted	measure	cell,	VALUES(SalesTerritory[Country])	returns	“Canada”

260.	In	this	case	though,	it	returns	multiple	values:	{“Australia”,”	Canada”,	“France”…	,	“United	States”}

OK,	now	let’s	work	from	the	inside	out	and	explain	the	formula.

1.	 IF(VALUES(SalesTerritory[Country])=”Canada”	 –	 we	 cannot	 directly
test	IF(SalesTerritory[Country])	–	that	violates	the	“no	naked	columns”	rule
of	measures.	And	since	Country	is	a	text	string,	we	need	to	use	something
other	than	MIN,	MAX,	etc.,	so	we	use	VALUES().

2.	 IF(HASONEVALUE(SalesTerritory[Country])	 –	 If	 we	 perform	 an
IF(VALUES())	=”Canada”	test	in	a	case	where	there	is	more	than	one	value,
we	will	get	an	error.	So	we	need	to	“protect”	our	IF(VALUES())	 test	with
the	IF(HASONEVALUE())	 test,	and	only	let	 the	IF(VALUES())	 test	“run”
in	cases	where	there	is	only	one	value.

OK,	let’s	see	the	measure	in	action:

261.	Our	special	measure	differs	only	for	Canada,	as	desired.

Using	VALUES()	for	Columns	That	Are	Not	on	the	Pivot
You	are	not	restricted	to	using	VALUES()	with	columns	that	are	on	the	pivot.	In
fact	it	is	often	quite	useful	to	use	VALUES()	with	a	column	that	is	not	used.

For	 instance,	 let’s	 look	 at	 this	 pivot	 that	 has	 two	 fields	 from	 the	Products	 table	on
Rows	(Category	and	Color),	and	the	simple	[Product	Count]	measure:

262.	Simple	Products	pivot

Now	let’s	focus	on	a	single	cell:

263.	For	the	highlighted	measure	cell,	what	does	VALUES(Products[Color])	return?

In	 this	 case,	VALUES(Products[Color])	 returns	 {“Black”,	 “Blue”,	 “Red”,	 “Silver”,
“Yellow”}.

ⓘ	Note	how	“Grey”	and	“NA”	are	not	returned	for	this
“Bikes”	measure	 cell,	 but	 those	 two	 colors	 are	 returned
for	Accessories.	This	is	because	Category	and	Color	(the
fields	on	Rows)	are	both	columns	from	the	Products	table,
which	means	that	a	Category	filter	has	an	impact	on	what
is	 valid	 for	Color.	Category=”Bikes”	 filters	 the	Products
table,	and	there	are	no	Bikes	of	Color	“Grey”	or	“NA”.

The	same	sort	of	thing	would	be	true	if	Color	came	from
Products	and	Category	came	from	a	related	table,	one	that
had	 a	Lookup	Table	 role	with	 respect	 to	Products	 (since
Lookup	tables	filter	their	partner	Data	tables).

Now,	 if	we	remove	Color	from	the	pivot,	what	does	VALUES(Products[Color])
return?

264.	Same	pivot	cell	after	Color	has	been	removed	–	what	does	VALUES(Products[Color])	return?

It	 returns	 exactly	 the	 same	 list	 as	 before:	 {“Black”,	 “Blue”,	 “Red”,	 “Silver”,
“Yellow”}.

Whether	Color	was	on	the	pivot	or	not,	the	cell	we	had	highlighted	did	not	have
any	direct	filters	applied	for	Color.	The	only	Color	filters	were	those	implied	by
the	Category	filter	context,	which	is	still	there.

ⓘ	So	 if	we	had	Calendar[Year]	on	 the	pivot	 in	place	of	Products[Category],
VALUES(Products[Color])	would	return	all	colors,	since	Calendar	and	Products
have	no	relationship	between	them.

VALUES()	Only	Returns	Unique	Values
We	had	the	[Product	Count]	measure	on	the	pivot	for	a	reason:

265.	There	 are	 35	 Products	 in	 the	 Accessories	 Category,	 which	 is	 35	 rows	 of	 the	 Products	 table,	 but	 only	 6
different	values	for	Color.

So	even	though	the	filter	context	has	35	rows	of	the	Products	table	“active”	for	the
highlighted	cell,	COUNTROWS(VALUES(Products[Color]))	would	return	6.

To	drive	that	home,	let’s	do	exactly	that:

[Color	Values]	=
COUNTROWS(VALUES(Products[Color]))

266.	Proof	that	VALUES()	only	returns	the	unique	values

SWITCH()
What	 if	we	want	 to	do	 something	different	 for	multiple	different	 countries	 though,
and	 not	 just	 Canada?	 Nested	 IF()’s	 are	 one	 way	 of	 course,	 but	 the	 new	 function
SWITCH()	is	much	cleaner.

We	will	define	a	Calculated	Column	to	see	SWITCH	in	action	but	it	can	be	used	in
measures	in	the	same	manner.

Here’s	an	example	where	we	are	determining	Continent	based	on	the	Country	name
in	our	Territory	table:

=SWITCH([Country]
,	“United	States”,	“North	America”
,	“Canada”,	“North	America”
,	“France”,	“Europe”
,	“Germany”,	“Europe”
,	“United	Kingdom”,	“Europe”
,	“Rest	of	the	World”
)

Let	us	show	you	the	results	and	then	come	back	to	explain	it:

267.	Results	of	SWITCH()	function

Here’s	how	SWITCH()	works:

1.	 Starting	with	the	second	argument,	SWITCH()’s	arguments	operate	in
pairs	 –	 if	 it	 matches	 “United	 States”	 it	 returns	 “North	 America,	 if	 it
matches	“France”	it	returns	“Europe”

2.	 If	you	end	SWITCH()	with	an	“odd”	argument,	 that	 is	 treated	as	 the
“ELSE”	 –	 the	 “Rest	 of	 the	World”	 is	 by	 itself,	 not	 paired	 with	 another
argument.	So	if	the	current	value	doesn’t	match	any	of	the	prior	tests,	“Rest
of	the	World”	will	be	returned.

SWITCH	TRUE()
SWITCH()	can	be	even	more	versatile	when	TRUE()	is	passed	as	the	first	argument.	Then
it	lets	you	specify	a	condition	to	match	on,	instead	of	an	exact	value.

For	 example,	 let’s	 add	 another	Calculated	Column	 in	 the	 Products	 table	 to	 indicate	 the
ListPrice	range:

=SWITCH(TRUE()
,	[ListPrice]	<	100,	“$”
,	[ListPrice]	<	500,	“$$”
,	[ListPrice]	<	1000,	“$$$”
,	“$$$$”
)

And	the	results	are:

268.	SWITCH	with	TRUE()	is	even	more	versatile

Here’s	how	SWITCH()	is	working	here:

1.	 Starting	with	the	second	argument,	SWITCH()’s	arguments	operate	in	pairs,
as	 before.	 However,	 here	 instead	 of	 matching	 a	 specific	 value,	 they	 are
evaluating	 the	 condition;	 if	 true	 then	 that	 paired	 value	 is	 selected.	 E.g.	 if
[List	Price]	<	100	is	true,	then	“$”	is	returned

2.	 If	 you	 end	 SWITCH()	 with	 an	 “odd”	 argument,	 that	 is	 treated	 as	 the
“ELSE”,	as	before.	In	this	case	“$$$$”	is	by	itself	and	is	returned	if	none	of
the	conditions	match

3.	 The	order	of	conditions	is	important,	since	the	first	match	would	yield	a
result.	 So	 if	 you	 specified	 [List	 Price]	 <	 1000	 as	 the	 first	 condition,	 that
would	be	true	for	an	item	priced	at	$90	as	well	as	$400,	and	“$$$”	would	be
returned	for	each	of	those.	Defeating	what	we’re	trying	to	do	here.

See	http://ppvt.pro/switchTrue	for	more	on	this.

ⓘ	For	file	size	reasons,	sometimes	it's	better	to	create	calculated	columns	outside	of
Power	Pivot	(ex:	in	a	database	or	using	Power	Query)	and	then	import	them	as	part	of
the	original	 table	-	as	opposed	 to	creating	 them	as	calculations	within	Power	Pivot.
But	that's	only	sometimes	-	we	write	calculated	columns	in	Power	Pivot	all	the	time
without	worry.	See	the	Performance	chapter	for	more	on	this.

http://ppvt.pro/switchTrue

16	-	SUMX()	and	Other	X	(“Iterator”)	Functions
Need	to	Force	Totals	to	Add	Up	“Correctly?”
Remember	our	[Sales	per	Day]	measure?	Let’s	take	another	look	at	it:

269.	The	subtotals	do	not	match	the	sum	of	their	parts

As	 your	 measures	 get	 more	 sophisticated,	 this	 will	 happen	 a	 lot:	 you	 will	 get
subtotals	 and	 grand	 totals	 that	 don’t	 equal	 the	 sum	 (or	 even	 the	 average)	 of	 their
children.	 (In	 this	case,	 it’s	because	 [Sales	per	Day]	has	a	different	denominator	 for
each	ModelName	of	bike).

Of	course,	many	times	that	is	100%	desirable.	If	you	have	an	average	temperature	for
each	of	the	12	months	of	the	year,	for	instance,	averaging	those	12	numbers	will	not
give	 you	 the	 average	 temperature	 for	 the	 year,	 since	 each	 month	 consists	 of	 a
different	number	of	days.

But	 again,	 in	 sophisticated	measures	 (and	business	contexts)	 sometimes	 the	correct
logic	for	the	smallest	granularity	is	not	correct	for	the	next	level	up.

In	 other	words,	 sometimes	 you	 need	 to	 force	 a	 total	 to	 equal	 the	 sum	 (or	 the
average,	etc.)	of	its	children.

SUMX(),	and	other	“X”	functions	like	it,	will	help	you	do	just	that.

Anatomy	of	SUMX()

ⓘ	SUMX(<table	or	table	expression>,	<arithmetic	expression>)

That’s	it.	Two	arguments.

SUMX()	operates	as	follows:

1.	 It	 steps	 through	 every	 single	 row	 in	<table	or	 table	 expression>,	 one	 at	 a
time.	You	can	pass	a	 raw	 table	name	 for	 this	 argument,	or	use	a	 function
that	returns	a	table,	such	as	VALUES()	or	FILTER().	The	contents	of	<table
or	table	expression>	are	subject	to	the	filter	context	of	the	current	measure
cell.	(This	“stepping	through”	behavior	is	often	described	as	“iterating.”)

2.	 For	each	row,	it	evaluates	<arithmetic	expression>	using	the	filter	context	of
the	current	row.

3.	 It	 remembers	 the	 result	 of	 <arithmetic	 expression>	 from	 each	 row,	 and
when	done,	it	adds	them	all	up.

SUMX()	in	Action
Returning	to	the	subtotals	example,	let’s	look	at	the	pivot	again:

270.	[Sales	per	Day]	with	Calendar[Year]	and	Products[ModelName]	on	Rows

Now	we	write	a	new	measure:

[Sales	per	Day	Totals	Add	Up]	=
SUMX	(VALUES	(Products[ModelName]),
[Sales	per	Day])
)

Note	 that	 we	 used	 VALUES(Products[ModelName])	 for	 the	 <table	 or	 table
expression>	argument.	That	lets	us	be	very	specific	–	we	want	this	SUMX()	to	step
through	all	of	the	unique	values	of	ModelName	from	the	current	filter	context.	If	we
specified	 the	 entire	 Products	 table	 instead	 (and	 no	 VALUES	 function),	 SUMX()
would	 step	 through	every	 row	of	 the	Products	 table	 from	 the	current	 filter	 context,
which	might	be	a	different	number	of	rows.

Results:

271.	New	measure:	the	totals	are	the	sum	of	the	individual	models

Detailed	Stepthrough
Just	to	drive	it	home,	let’s	walk	through	the	evaluation	of	the	measure	above,	for	the
highlighted	cell	in	the	pivot:

272.	We	are	going	to	step	through	how	the	SUMX()	clause	of	the	measure	arrived	at	$21,600

Following	the	3	points	outlined	in	the	“anatomy	of	SUMX()”	section:

1.	 SUMX()	steps	through	every	row	in	VALUES(Products[ModelName]).
The	 filter	 context	 provided	 by	 the	 pivot	 in	 this	 case	 is	 a	 completely
unfiltered	 Products	 table	 because	 this	 cell	 is	Year=2001,	 Products=All	 (it
has	 no	 “coordinates”	 in	 the	 pivot	 from	 the	 Products	 table).	 So
VALUES(Products[ModelName])	 returns	 every	 single	 unique	 value	 of
[ModelName]	from	the	Products	table.

How	many	values	is	that,	actually?	Let’s	check.

[ModelName	Values]	=
COUNTROWS	(VALUES	(Products[ModelName]))

273.	That	is	119	values,	even	though	we	only	see	3	on	the	pivot	below	2001	in	the	prior	screenshot!

ⓘ	Why	 119	 versus	 3?	All	 119	 are	 evaluated	 even	 in	 the	 original	 pivot,	 but
because	only	3	return	non-blank	results	for	[Sales	per	Day],	that’s	all	the	pivot
showed	us.

2.	 For	 each	 of	 those	 119	 values,	 SUMX()	 evaluates	 the	 [Sales	 per	 Day]
measure.	 The	 Year=2001	 filter	 context	 is	 maintained	 throughout	 this
process,	 for	 every	 row.	 But	 the	 Products[ModelName]	 filter	 context
changes	every	time	SUMX()	moves	to	the	next	of	the	119	rows.

So	 it	 evaluates	 [Sales	 per	 Day]	 with	 filter	 context	 Year=2001,
ModelName=”All-Purpose	 Bike	 Stand”,	 and	 that	 returns	 blank,	 because	 that
model	 was	 not	 sold	 in	 2001	 (there	 are	 no	 rows	 in	 the	 Sales	 table	 with
Year=2001,	 ModelName=”All-Purpose	 Bike	 Stand”.)	 Then	 it	 moves	 on	 to
Year=2001,	 ModelName=”Bike	Wash”,	 then	 Year=2001,	 ModelName=”Cable
Lock”,	etc.

Only	 three	of	 those	119	 rows	 in	VALUES(Products[ModelName])	 return	non-
blank	results	for	[Sales	per	Day],	and	those	are	 the	 three	we	saw	displayed	on
the	original	pivot:	“Mountain-100”,	“Road-150”,	and	“Road-650”.

3.	 All	119	results	of	[Sales	per	Day]	are	then	summed	up.	116	blank	values
sum	to	0	of	course,	and	then	the	other	three	sum	to	$21,600.

MINX(),	MAXX(),	AVERAGEX()
These	three	operate	in	precisely	the	same	manner	as	SUMX.

The	only	difference	is	in	that	last	step	–	rather	than	summing	up	all	of	the	results	returned
by	each	step,	they	then	apply	a	different	aggregation:	MIN(),	MAX(),	or	AVERAGE().

FILTER()
FILTER	could	have	been	named	FILTERX,	since	it’s	very	much	a	part	of	the	X	function
family.	They	key	difference	is	that	FILTER	returns	a	table,	instead	of	a	single	value	like
SUMX	(or	other	X	functions).	However	the	workings	of	the	two	are	quite	similar.	Here’s
their	syntax	side	by	side:

SUMX(<table	or	table	expression>,	<arithmetic	expression>)

FILTER(<table	or	table	expression>,	<filter	condition>)

Here’s	how	the	two	work:

Both	functions	go	row	by	row	over	the	<table>	(first	argument),	in	other	words
they	iterate	over	the	<table>.
SUMX	 computes	 the	 <arithmetic	 expression>;	 FILTER	 evaluates	 the	 <filter
condition>	for	each	row
In	the	end,	SUMX	sums	up	all	the	values	computed	at	each	row.	FILTER	gathers
all	the	table	rows	which	passed	the	<filter	condition>	and	returns	them	as	a	table.

We	hope	you	see	the	striking	resemblance	here.

STDEVX.P(),	STDEVX.S(),	VARX.P(),	VARX.S()

Again,	these	are	exactly	the	same	as	all	of	the	other	“X”	functions	discussed	so	far,	but	we
separated	them	out	because	of	the	“.P	versus	.S”	flavors.

The	 difference	 between	 the	 P	 and	 S	 versions	 is	 precisely	 the	 same	 difference	 as	 that
between	the	STDEVP()	and	STDEVS()	functions	in	normal	Excel.	You	use	the	P	version
when	your	data	set	represents	the	entire	population	of	results,	and	the	S	function	when	all
you	have	is	a	sample	of	the	data.

It’s	a	statistics	thing,	not	a	DAX	thing.

COUNTX()	and	COUNTAX()

Technically	speaking,	these	are	no	different	from	the	others	mentioned	so	far.	But	there	is
a	subtle	difference	when	you	think	about	it	carefully.

Let’s	return	to	our	SUMX()	example	from	before.	Remember	the	formula?	It	was:

SUMX	(VALUES	(Products[ModelName]),	[Sales	per	Day])

And	it	iterated	through	119	unique	values	of	ModelName,	of	which	only	3	had	non-blank
values	for	[Sales	per	Day].

If	we	replaced	SUMX()	with	COUNTX(),	what	would	we	get	for	an	answer?

We’d	get	3,	because	COUNTX()	does	not	“count”	blanks.

So	we	can	think	of	COUNTX()	as	being	“COUNT	NONBLANK	X()”	really.

Why	is	This	Different	From	COUNTROWS(),	Then?
COUNTROWS()	cannot	take	a	measure	as	an	argument,	so	it	cannot	be	used	to	evaluate
how	many	times	that	measure	returns	a	non-blank	value,	which	COUNTX()	can	do.

COUNTAX()	versus	COUNTX()
COUNTAX()	will	also	return	3	in	this	case,	so	it’s	really	no	different	in	the	vast	majority
of	 cases.	 There	 is	 one	 specific	 kind	 of	 case	 where	 COUNTAX()	 returns	 something
different	–	we	will	use	that	as	an	example	at	the	end	of	this	chapter.

ⓘ	COUNTAX()	 treats	 the	 absence	 of	 rows,	 and	 blank	 results	 from	 a	 measure,
exactly	 the	 same	 way	 as	 COUNTX().	 The	 only	 place	 where	 COUNTAX()	 differs
from	COUNTX()	 is	when	you	 are	 counting	 text	 values	 in	 a	 column,	 and	 there	 are
rows	with	 text	 values	 of	 “”	 –	 rows	 that	 exist,	 but	 which	 contain	 an	 empty	 string.
There	will	be	an	example	of	that	at	the	end	of	this	chapter.

Using	the	X	Functions	on	Fields	That	Aren’t	Displayed
In	 the	 one	 set	 of	 illustrations	 so	 far,	 you’ve	 seen	 SUMX()	 used	 to	make	 totals	 add	 up
“correctly.”

But	you	can	also	use	an	X	function	to	loop	over	a	field	that	is	not	on	the	pivot,	then	report
back	on	what	it	found.

Let’s	take	the	pivot	we	used	for	SUMX():

274.	Where	we	left	off	with	our	completed	SUMX()	measure

And	let’s	add	a	new	measure:

[Max	Single-Country	Sales]	=
MAXX	(VALUES	(SalesTerritory[Country]),	[Total	Sales])

Results:

275.	Interesting	new	measure,	but	is	it	correct?

Let’s	check	by	adding	Country	to	the	pivot:

276.	It	is	indeed	reporting	the	max	single-country	sales

But	Which	Country?
Since	 this	 is	most	“magical”	when	the	Country	field	 is	not	on	 the	pivot,	one	of	 the
most	common	questions	we	get	is	“OK	but	how	can	I	display	which	Country	was	the
max	when	Country	 is	not	on	 the	pivot?	Knowing	which	one	 is	 just	as	 important	as
knowing	the	amount.”

As	of	Power	Pivot	v2	there	isn’t	a	function	that	just	does	that	for	you.

We	did	write	a	post	on	this	though,	that	won’t	fit	here	for	space	reasons.	It	uses	the
function	 FIRSTNONBLANK()	 –	 check	 it	 out	 here	 if	 you	 are	 interested:
http://ppvt.pro/WhatDidXFind

RANKX()
OK,	this	one	is	actually	quite	a	bit	different	from	the	others	even	though	its	syntax	is
similar.

Let’s	do	that	whole	“work	backward	from	desired	result”	thing	again:

http://ppvt.pro/WhatDidXFind

277.	We	want	a	measure	that	ranks	customers	by	[Total	Sales]

Here’s	the	formula	for	that	rank	measure:

[Customer	Sales	Rank]	=
RANKX	(ALL	(Customers[FullName]),	[Total	Sales])

The	Use	of	ALL()
The	only	difference	we	see	so	far	is	that	we	used	ALL()	instead	of	VALUES()	in	the
first	argument.

Why	is	that?

Because	if	we	use	VALUES(),	we	get	1’s	for	everyone:

278.	If	we	replace	ALL()	with	VALUES(),	everybody’s	our	#1	customer!

OK,	why	is	that?

Well	it	makes	some	sense	actually	–	for	each	row	of	the	pivot,	there	is	only	one	value
of	Customer[FullName]	–	so	the	RANKX	measure	ranks	each	customer	as	if	he/she
were	the	only	customer	in	the	world	

So	by	applying	ALL(),	we	rank	each	customer	against	everyone	else.	We	guess	that’s
intuitive,	but	the	more	we	think	about	it,	the	more	even	that	doesn’t	feel	right.

The	pragmatic	thing	to	do	here	is	not	worry	about	it.	Just	use	ALL()	and	be	happy	we
have	the	function	

Ties
Let’s	look	at	the	bottom	of	that	same	pivot,	with	ALL()	restored	so	not	everyone	is
#1:

279.	By	default,	 ties	are	handled	like	this,	but	you	can	override	that	with	the	fifth	(and	optional	argument),	by
setting	it	to	Dense

The	Optional	Parameters
RANKX()	actually	has	five	parameters	instead	of	the	two	possessed	by	the	other	X
functions,	but	the	last	three	are	optional:

ⓘ	RANKX(<table	 or	 table	 expression>,	 <arithmetic	 expression>,	 <optional
alternate	 arithmetic	 expression>,	 <optional	 sort	 order	 flag>,	 <optional	 tie-
handling	flag>

<optional	alternate	arithmetic	expression>	-	The	third	argument	to	RANKX()	may	be
the	most	mysterious	thing	in	all	of	Power	Pivot.	If	we	weren’t	writing	this	book,	we
would	happily	continue	to	ignore	that	we	don’t	understand	it.	We	recommend	always
leaving	 it	 blank.	 Seriously.	 (But	 we	 will	 return	 to	 it	 in	 Chapter	 17,	 because
completely	taking	a	“pass”	on	it	doesn’t	feel	right).

<optional	 sort	 order	 flag>	 -This	 allows	 you	 to	 control	 rank	 order
(ascending/descending)	 by	 setting	 to	 1	 or	 0.	 It	 defaults	 to	 0	 if	 you	 leave	 it	 blank,
which	ranks	largest	values	highest.

<optional	 tie-handling	flag>	-	This	can	be	set	 to	Skip	or	Dense.	It	defaults	 to	Skip,
which	is	 the	behavior	seen	in	the	previous	picture.	If	we	change	it	 to	Dense,	 this	is
what	the	ties	look	at	near	the	bottom	of	the	pivot:

RANKX	(ALL(Customers[FullName]),	[Total	Sales],,,DENSE)

280.	Dense	tie	handling	–	resumes	with	the	very	next	integer	after	a	series	of	tied	ranks

Duplicate	FullNames?
Very	dangerous,	this	one.	If	you	have	two	customers	with	the	same	FullName,	they
will	be	combined	into	a	single	customer	and	ranked	unfairly	high	by	their	combined
sales.

So	 make	 sure	 you	 rank	 by	 a	 unique	 field.	 We	 recommend	 concatenating
CustomerKey	or	something	unique	with	FullName	so	that	you	can	still	recognize	the
customer	by	name,	and	still	maintain	uniqueness.

ⓘ	 For	 more	 fun	 with	 RANKX	 check	 out	 http://ppvt.pro/moreRANKX	 for
ranking	items	within	and	across	groups	(e.g.	Popsicles	can	be	#1	selling	item	in
Ice-Creams	but	be	#23	in	Desserts).

TOPN()
Okay,	you	got	us,	TOPN()	is	not	an	X	function.	But	RANKX	and	TOPN	kinda	play
in	the	same	sandbox.	So	we’ll	cover	TOPN	here.

ⓘ	TOPN(<n_value>,	<table>,	<orderBy_expression>,	[<order>],…)
Returns	the	top	N	rows	of	the	specified	table.

RANKX	assigns	a	numeric	rank.	TOPN	ranks	the	rows,	but	then	filters	them	to	the
top	N	rows	(N	is	user	specified)	and	returns	these	set	of	rows.	We	think	of	RANKX
when	we	actually	need	to	see	the	rank	of	an	item	on	a	pivot.	We	think	of	TOPN	when
we	need	 to	 filter	 down	 to	 top	 rows	 (say	 top	products,	 top	 customers,	 top	 salesmen
etc.),	 before	 we	 perform	 some	 calculation	 on	 these	 top	 rows.	 Let’s	 see	 this	 in	 an
example.

Here	are	our	sales	figures	and	the	count	of	products	we	sold	in	2002:

281.	2002	seems	a	fairly	stable	year	for	Sales

We	want	to	get	a	sense	of	how	“top	heavy”	are	we,	in	terms	of	products?	Do	a	few
top	 products	 comprise	 a	 majority	 of	 our	 sales?	 How	 has	 that	 changed	 over	 time?
Let’s	take	it	from	the	TOPN	(Get	it?	Sigh!	The	futility	of	nerd	jokes	in	print).	Here’s
our	measure:

http://ppvt.pro/moreRANKX

Sales	for	Top	5	Products	=
CALCULATE	(
[Total	Sales],
TOPN	(5,	Products,	[Total	Sales])
)

Let’s	look	specifically	at	TOPN.

1st	argument:	5.	This	just	tells	TOPN,	what	N	is?	Is	it	TOP5,	TOP10	or	TOP20?	i.e.
How	many	top	rows	are	to	be	returned.

2nd	 argument:	 Products.	 This	 is	 the	 table	 from	 which	 TOPN	 rows	 are	 to	 be
extracted.

ⓘ	Note:	For	 the	2nd	argument,	you	are	not	 restricted	 to	passing	 in	 just	 table
names	which	exist	in	your	model.	You	can	use	any	DAX	expression	that	returns
a	table,	such	as	VALUES(),	FILTER()	etc.

3rd	Argument:	[Total	Sales].	This	tells	TOPN	how	to	evaluate	what	is	a	“top”	row?
You	want	top	products	by	sales,	by	cost,	by	margin	or	something	else?	So	specify	the
appropriate	measure	here,	which	you	want	TOPN	to	use	to	rank	your	rows.

We’ll	 add	 one	 more	 “derived”	 measure	 before	 we	 see	 our	 results	 (Ooh!	We	 love
reusing	measures	and	hence	all	derived	measures).

%	Sales	for	Top	5	Products	=
DIVIDE	([Sales	for	Top	5	Products],	[Total	Sales])

And	here	are	our	results:

282.	TOPN	really	helps	us	understand	what	is	going	on	with	our	business

It	is	clear	that	we	have	lessened	our	reliance	on	just	a	top	few	products	to	generate	a
bulk	 of	 our	 sales.	 A	 good	 move	 by	 any	 company,	 especially	 fictitious	 ones	 like
AdventureWorks.

Non-Measure	Second	Arguments	to	the	X	Functions
So	far,	we’ve	only	used	measures	for	that	second	argument	to	these	X	functions.

But	actually	this	is	one	place	where	you	can	break	the	“no	naked	columns”	rule.	You
actually	can	just	put	a	column	name	in	for	that	second	argument.	And	SUMX()	will
happily	sum	it.

In	 fact,	 you	 can	 even	 put	 a	 calculated	 column	 style	 formula	 in	 there,	 like
Customers[YearlyIncome]	/	Customers[NumberOfChildren],	and	that	will	also	work.

The	COUNTAX()	Mystery	Solved!
The	 ability	 to	 use	 a	 non-measure	 expression	 as	 that	 final	 argument	 helps	 us
solve	 the	 COUNTAX()	 conundrum.	 When	 you	 use	 a	 measure	 as	 the	 second
argument,	 we	 do	 not	 believe	 there	 is	 any	 situation	 in	 which	 COUNTX()	 and
COUNTAX()	will	return	different	results.

But	COUNTAX()	will	 let	 you	 use	 a	 text	 column	 as	 the	 second	 argument,	whereas
COUNTX(),	if	you	use	a	column	as	the	second	argument,	requires	that	it	be	numeric
or	date	type.

So	here’s	a	silly	little	table	we	added	to	the	Power	Pivot	window	as	a	test:

283.	CountTest	table	–	a	testbed	for	COUNTAX()

Here’s	a	measure	we	wrote	against	it:

[COUNTAX	Test]	=
COUNTAX	(CountTest,	CountTest[Column1])

And	the	results:

284.	The	measure	returns	7.	From	an	8-row	table.	So	 it	didn’t	count	 the	one	row	with	a	blank	value,	which	 is
different	from	the	absence	of	a	row.	Subtle!

Change	 the	 COUNTAX()	 to	 COUNTX()	 and	we	 get	 an	 error	 –	 COUNTX()	 refuses	 to
accept	a	text	column	as	the	second	argument.

So	there	you	have	it.	The	reason	COUNTAX()	exists.

(It’s	 actually	 more	 useful	 in	 calculated	 columns	 than	measures,	 so	 this	 wasn’t	 really	 a
“fair”	test	of	its	value).

17	-	Multiple	Data	Tables
So	far	we	have	only	been	working	with	a	single	Data	table	–	Sales.	Data	tables	typically
represent	 business	 processes,	 and	 in	 this	 case	 the	 Sales	 table	 represents	 the	 sales
transactions.	But	clearly	a	real	business	would	have	more	than	one	business	process	and
they	would	be	collecting	data	on	each	one	of	those.	Let	us	introduce	“Service	Calls”	as	our
next	business	process.

Service	Calls
In	 our	 scenario	we	 have	 a	 central	 call	 center	 that	 receives	 service	 calls	 from	 all	 of	 our
customers.	We	record	 the	customer	ID,	 the	date	of	 the	call	and	 the	product	about	which
they	called.	We	also	 record	 the	call	duration	 (in	minutes)	 for	 each	call	 and	a	 subjective
assessment	 as	 to	 whether	 the	 resolution	 was	 positive,	 negative	 or	 neutral.	 This	 data	 is
available	to	us	at	the	end	of	each	day	in	a	CSV	format	shown	as	below.

285.	Service	Calls	data	as	recorded	in	our	system

Let	us	bring	in	this	data	into	our	model.

286.	Use	Get	External	Data	to	connect	to	the	CSV	file	and	import	it	into	our	data	model

Now	we	have	the	ServiceCalls	table	within	our	model.

287.	ServiceCalls	table	imported	into	our	data	model

For	 the	 next	 few	 steps,	 let’s	 pretend	 that	ServiceCalls	 is	 the	 only	 data	 table	 in	 our
model.

We	 are	 well	 versed	 in	 the	 steps	 required	 to	 build	 such	 a	 data	 model:	 creating
relationships	 and	 defining	 new	measures	 (we	 love	 those	measures,	 don’t	 we!).	 So
let’s	do	that.	Let’s	start	with	relationships:

288.	Relationships	created	for	the	new	ServiceCalls	table

ⓘ	 Notice	 how	 we	 did	 NOT	 create	 relationships	 between	 Sales	 and
ServiceCalls?	This	 is	 an	 extremely	 important	 point:	YOU	NEVER	RELATE
DATA	 TABLES	 TO	 ONE	 ANOTHER!	 Power	 Pivot	 won’t	 even	 let	 you,
actually,	because	there	are	duplicates	in	each	Data	table’s	key/id	columns.	(For
instance,	we	take	multiple	calls	on	a	single	day,	and	sell	multiple	products	on	a
single	 day,	 so	 Sales	 and	 ServiceCalls	 each	 contain	multiple	 rows	 for	 a	 given
date.)	This	 is	one	of	 the	most	common	mistakes	we	see	Excel	pros	making	as
they	transition	to	Power	Pivot,	but	the	“antidote”	is	a	simple	rule:	The	way	to
“splice”	additional	Data	tables	into	a	model	is	by	relating	them	to	a	shared
set	 of	Lookup	 tables,	NOT	by	attempting	 to	 relate	Data	 tables	directly	 to
one	another.

289.	NEVER	attempt	to	relate	Data	tables	to	one	another

290.	Instead,	we	splice	multiple	Data	tables	into	a	model	by	relating	them	to	one	or	more	shared	Lookup	tables

OK,	terrific!	Now	that	ServiceCalls	is	related	to	our	Lookup	tables,	we	are	at	par	with
the	Sales	table.	Now	we	can	define	some	basic	measures:

[Calls]	=	COUNTROWS	(ServiceCalls)

[Total	Call	Minutes]	=	SUM	(ServiceCalls[Minutes])

[Avg	Call	Length]	=	DIVIDE	([Total	Call	Minutes],[Calls])

Additionally,	our	Call	Center	Director	has	informed	us	that	it	costs	us	an	average	of
$1.75	per	minute	for	the	service	call,	considering	the	personnel,	telecommunication
and	other	costs.	We	can	then	create	a	measure	for	[Cost	of	Calls]:

[Cost	of	Calls]	=	[Total	Call	Minutes]	*	1.75

With	measures	and	relationships	defined,	we	can	start	quickly	gleaning	 insight	 into
our	 service	 calls	 in	much	 the	 same	way	 that	we’ve	 been	 able	 to	 analyze	 our	 sales
data:

291.	Our	modified	model	now	provides	insight	on	our	Service	Calls	business	process

Service	Calls	and	Sales	Mashup
But	 if	 that	 were	 The	 Whole	 Story,	 we	 would	 not	 have	 an	 entire	 chapter
dedicated	 to	 it!	Oh	no,	 dear	 friends,	 the	 true	magic	 is	 just	 beginning.	What	 if	we
want	to	see	our	Sales	metrics	“side	by	side”	with	our	Service	Call	metrics?

In	Traditional	Excel
In	 traditional	 Excel,	 “side	 by	 side”	 analysis	 of	 multiple	 Data	 tables	 is…	 tedious.
Clumsy.	Depressing.	It	can	wear	you	down	in	a	big	way.	(We’re	talking	about	data
here,	and	calling	it	depressing.	But	it’s	the	truth.)	In	that	old	world,	we	could	take	a
few	approaches.	A	typical	one	is	to	show	two	pivot	tables	side	by	side.	And	we	could
do	that	with	our	Power	Pivot	model	as	well:

292.	This	traditional	approach	feels	so	caveman-like.	We	can	do	better.

This	breaks	down	quickly	as	you	build	your	pivots,	 for	 instance	in	cases	where	the
labels	do	not	line	up.

293.	Some	elements	may	appear	in	one	pivot	but	not	the	other

In	 traditional	 Excel,	 perhaps	 you’d	 then	 hide	 the	 pivots	 and	 start	writing	 formulas
that	“peer”	into	the	pivots,	fetching	values,	and	then	using	those	formulas	to	construct
a	report	sheet	from	scratch.	But	regardless	of	the	approach,	such	side-by-side	analysis
of	two	disparate	data	sets	in	traditional	Excel	is	labor-intensive.

Furthermore,	whatever	you	build	would	be	 tied	 to	a	 specific	 shape	of	 report.	For
example	 if	 you	 build	 a	 report	 to	 compare	 Service	 Calls	 and	 Sales	 by	Month	 and
Product	Category;	if	you	are	then	asked	to	change	that	to	show	Product	SubCategory
–	you	would	almost	have	to	start	from	scratch	to	build	this	new	report.

Do	Not	“Flatten”

294.	Thou	shalt	not	“flatten”	data	tables	together	into	Frankentables	

We	have	also	seen	an	approach	where	the	two	Data	tables	are	combined	together	in
one	flattened	Franken-Data	 table.	This	 is	one	of	 the	places	where	Access	 is	often
used,	for	instance,	or	SQL	queries	if	you’re	using	a	“real”	database.	(We’ve	also	seen
Power	Query	used	to	perform	this	flattening.)

Flattening	is	an	unnecessary	step,	and	even	worse,	it	requires	you	to	“pre-aggregate”
the	 data	 as	 part	 of	 the	 flattening	 process,	 which	 “destroys”	 a	 lot	 of	 useful	 detail.
DON’T	DO	THIS!		In	our	training	classes	we	often	say	that	for	Excel	users,	learning

Power	Pivot	is	more	about	unlearning	than	learning	something	new.	And	one	of
those	unlearning	commandments	 is	 “Thou	shall	no	 longer	 flatten	 tables	 together
into	franken-tables”.	You	 should	 neither	 flatten	Data	 and	Lookup	 tables	 together,
nor	multiple	Data	 tables	 into	 one.	Multiple	Data	 tables	 typically	 represent	 distinct
business	processes	(think	how	different	a	Sales	Transaction	is	to	a	Service	Call)	and
do	not	belong	mashed	together	in	the	same	table.

Measures	from	Different	Data	Tables	in	the	Same	Pivot!
By	now,	you	have	hopefully	fallen	in	love	with	the	portability	of	DAX	measures	and
their	 “define	 once,	 use	 anywhere”	 capability,	 and	 also	 their	 “re-arrange	 your
pivots	at	will,	and	the	measures	will	automatically	adjust”	flexibility.

Well	 that	 portability	 now	has	 another	 awesome	benefit:	 instead	 of	 the	 side-by-side
pivots	approach,	we	can	just	place	both	the	Service	Calls	measures	and	the	Sales
measures	in	the	same	pivot!	Like	this:

295.	Your	old	and	tedious	job	of	slaving	in	the	data	mines	is	over.	Get	ready	for	your	new	life!

Whoa!	That	worked.	And	it’s	fully	portable.	Try	changing	the	shape	of	the	pivot:

296.	Measures	from	different	data	sets	adapt	to	the	shape	of	our	pivot

Were	 you	 surprised	 that	 this	 worked?	 Feels	 like	 magic,	 doesn’t	 it?	 But	 there	 is
fundamentally	nothing	new	going	on	here.	Everything	is	still	governed	by	the	same
DAX	rules	that	you	have	already	learned.	Remember	rule	#4	from	the	golden	rules?

297.	Filters	flow	downhill	across	relationships

The	key	here	 are	 the	 common	Lookup	 tables	 -	Lookup	 tables	 that	 connect	 to	 both
data	tables	via	relationships.	And	we	know	relationships	flow	downhill,	so	a	filter	on
an	 uphill	 lookup	 table	 (e.g.	 Products	 or	Calendar)	will	 flow	down	 to	Data	 tables	 -
both	data	tables	in	this	case	(Sales	&	Service	Calls).	Thus	the	measures	give	us	the
correct	results	in	the	combined	pivot	table.

298.	Filter	on	a	Lookup	table	flows	downhill	to	ALL	related	Data	tables

That’s	worth	re-emphasizing:	a	filtered	Lookup	table	will	“transmit”	that	filtering	to
ALL	of	its	related	Data	tables.	All	of	its	outgoing	“filter	transmission	wires”	will	be
activated,	if	we	allow	ourselves	to	use	that	metaphor.

Hybrid	Measures
So,	we	can	take	any	measure	from	any	of	these	data	tables,	show	them	side-by-side	in
the	same	pivot,	and	slice	and	dice	them	using	any	attribute	from	a	common	lookup
table.	Awesome.

But	sometimes	we	want	to	go	even	further,	and	run	a	calculation	across	these	two
data	 sets.	 For	 example,	 can	 we	 “improve”	 our	 existing	 [Profit]	 measure	 to	 also
account	for	the	cost	of	service	calls?

299.	Can	we	write	a	measure	that	“hybridizes”	data	from	two	Data	tables?

Remember,	 this	 would	 use	 numbers	 from	 two	 different	 data	 tables.	 In	 traditional
Excel,	 this	would	 take	 the	 “labor-intensiveness”	 to	 an	 even-deeper	 level.	 But	with
Power	Pivot,	let’s	give	it	a	try:

[Net	Profit]	=	[Profit]	-	[Cost	of	Calls]

300.	Our	hybrid	measure	performs	a	calculation	across	measures	from	different	Data	tables

We	have	 created	 a	 new	 species	 of	measures,	 are	 you	 feeling	 all-powerful	 yet?
Now	 that	 we	 have	 our	 new	measure,	 we	 do	 not	 need	 [Profit]	 and	 [Cost	 of	 Calls]
displayed	on	the	pivot.	We	can	take	them	off	and	focus	just	on	Net	Profit.	Or	you	can
continue	 to	 show	 them	side-by-side,	 totally	your	 choice.	You	can	even	use	another
visualization	tool	to	pull	together	a	quick	profit	report.

301.	This	Profit	Dashboard	was	created	using	Power	View	in	a	matter	of	minutes

ⓘ	 This	 is	 an	 important,	 let-that-sink-in	 moment.
Power	Pivot	is	the	heart	of	all	the	Power	BI	products,	and
relationships	 and	measures	 are	 the	 core	 of	 Power	 Pivot.
Harnessing	 their	 power,	 you	 are	 well	 on	 your	 way	 to
mastering	the	world	of	data.

The	 “rest”	 is	 easy.	Visualization	 –	 building	 reports	 and
such	 –	 becomes	 cheap	 and	 nearly	 free!	 Using	 portable
measures,	 you	 can	 slice	 and	 dice	 using	 any	 of	 the
attributes	available	and	quickly	build	any	report.

To	quickly	build	a	report/dashboard	 is	one	thing,	but
to	quickly	ADJUST	is	perhaps	even	MORE	important.
How	many	 times	have	you	been	asked	 to	build	a	 report,
and	then	provided	precisely	what	you	were	asked	for,	only
to	have	the	“requestor”	immediately	request	a	change?	In
the	old	days,	that	change	(a	“minor”	one	in	the	requestor’s
mind)	often	would	take	you	as	long	as	it	took	to	build	the
original	report!

In	 the	 Power	 Pivot	 world,	 though,	 here’s	 how	 that
story	will	play	out.	You	will	go	back	to	your	office,	click
one	 checkbox	 in	 the	 field	 list,	 and	You.	Are.	Done.	We
like	 to	 say	 that	 you	 should	 then	wait	 30	minutes	 before
providing	 the	 result,	 so	 that	you	maintain	 some	 sense	of
mystery	and	magic	.	30	minutes	is	AMAZING	turnaround
compared	 to	 the	 old	 days,	 but	 10	 seconds	 is	 almost	 too
fast	 –	 it	 makes	 it	 seem	 trivial,	 and	 cheapens	 the	 smart
investments	you	previously	made	in	your	data	model.	Use
the	 30-minute	 waiting	 period	 to	 do	 something	 else
productive.	You’ve	earned	it.

We	also	 encourage	you	 to	 forgive	 the	 requestors	 who
change	 the	 requirements	 on	 you	 as	 soon	 as	 you	 deliver
what	 they	 originally	 said	 they	 needed.	 This	 is	 a
fundamental	 truth	 that	 we	 have	 learned	 the	 hard	 way:
human	 beings	 do	 not	 know	 what	 they	 need	 until	 they
have	seen	what	they	asked	for.	Accept	and	embrace	this
fact,	the	sooner	the	better.	Our	traditional	tool	sets	were	in
outright	 conflict	 with	 this	 basic	 human	 behavior,	 but
Power	Pivot	flows	right	along	with	us,	in	the	way	that	we
naturally	 think	 and	 operate.	 The	 difference	 could	 not	 be
bigger.

Multiple	Data	Tables	Gotchas
There	are	a	 few	rules	and	guidelines	which	you	should	be	aware	of	when	working
with	multiple	data	tables.

Using	Fields	from	Lookup	Table	vs.	the	Data	Table
Let	 us	 look	 at	 our	 total	 sales	 and	 count	 of	 service	 calls	 by	 date.	We	 can	 do	 so	 in
separate	pivots	as	shown	below.

302.	Both	pivots	work	and	return	correct	result

But	 as	 we	 have	 seen	 earlier,	 you	 could	 put	 both	measures	 side-by-side	within	 the
same	pivot.	You	try	to	do	that	and	get	this	result.

303.	The	[Calls]	measure	is	not	returning	expected	result

The	[Calls]	measure	is	simply	repeating	the	same	number	throughout	–	7,374	which
happens	 to	 be	 the	 grand	 total	 of	 all	 calls.	 Whatever	 happened	 to	 the	 promise	 of
“define	once,	use	anywhere”?	Are	you	feeling	let	down?	Let’s	peel	the	covers	and	see
what	is	going	on.

If	we	examine	the	pivot,	we	realize	we	have	used	the	Sales[OrderDate]	column	(from
a	 Data	 table)	 on	 our	 pivot	 Rows,	 instead	 of	 Calendar[Date]	 from	 the	 Calendar
(Lookup)	 table.	 Why	 does	 this	 matter?	 Because	 relationships	 flow	 downhill,	 not
uphill.

304.	We	used	a	column	from	a	Data	table	instead	of	a	Lookup	table

The	 same	 golden	 rules	 we	 have	 covered	 apply	 to	 the	 calculation	 of	 any	 DAX
measures,	 and	 “stepping	 through”	 that	 process	 should	 always	 be	 our	 first	 instinct
when	 we	 get	 a	 confusing	 result.	 Let’s	 step	 through	 the	 calculation	 for	 the	 row
highlighted	above.	The	incoming	filter	coordinates	here	are

Sales[OrderDate]	=	7/1/2001

Remember	our	insistence	on	thinking	about	the	Pivot	Table	Coordinates	(Step	1	in
the	Golden	Rules)	as	Table[Column]	=	Value.	This	is	where	it	pays	off.	If	you	think
of	it	generically	as

Date	=	7/1/2001

That	would	not	help	you.	As	humans	we	do	tend	to	think	this	way,	but	with	DAX	it
helps	to	think	like	the	DAX	engine.	In	DAX,	Sales[OrderDate]	is	very	different	than
Calendar[Date].

Next	 we	 follow	 the	 chain	 of	 steps	 in	 the	 golden	 rules.	 When	 we	 get	 to	 Step	 4:
Relationships	 flow	downhill,	we	 realize	 that	 our	 filter	 (Sales[OrderDate])	 is	 on	 the
Data	table	and	would	not	flow	uphill	to	the	Calendar	Lookup	table.	That	means	that
the	ServiceCalls	table	ends	up	with	no	filters	applied	in	step	5	(the	arithmetic	step),
and	hence	we	get	the	grand	total	of	all	rows	(7,374)	returned	in	the	pivot.	The	same
happens	for	each	row	in	the	pivot	table.

305.	Filters	do	not	flow	uphill	across	a	relationship

Now	that	we	know	what	the	issue	is,	the	fix	is	easy.	We	will	use	the	[Date]	column
from	Calendar	–	our	Lookup	table.

306.	Measures	show	correctly	with	the	Calendar[Date]	field	from	the	Lookup	table

ⓘ	 Use	 fields	 from	 the	 Lookup	 Tables	 (and	 not	 the	 Data	 Tables)	 on
Rows/Columns	 (and	 Filters/Slicers)	 when	 analyzing	 measures	 from
different	 data	 tables.	 This	 is	 a	 good	 rule	 of	 thumb.	 In	 fact,	 it’s	 often	 good
practice	even	in	models	that	have	only	ONE	data	table.

The	best	way	to	avoid	falling	into	this	trap	is	to	hide	the	Data	table	columns.	This	is
easily	done	by	right	clicking	and	selecting	‘Hide	from	Client	Tools’.

307.	Hide	the	column	from	Data	Tables

⚠	What?	You	say	your	Data	table	had	not	only	the	Date	column,	but	also	Year,
Quarter,	 and	 Month	 columns?	 Perhaps	 you	 also	 have	 these	 fields	 in	 your
Calendar	lookup	table,	but	you	just	like	having	them	around	in	the	Data	table	as
well.	Or	maybe	you	actually	brought	them	into	your	Data	table	from	the	Lookup
table	using	RELATED().	Don’t	do	that!	 	Don’t	keep	copies	of	 these	columns,
since	 they	 “bloat”	 your	 model	 and	 also	 tempt	 you	 into	 making	 unconscious
mistakes.

Here	are	some	good	guidelines:

Ideally	your	Data	tables	should	contain	only	numeric	“amount”	columns
(like	 quantity	 and	 amount	 paid),	 plus	 the	 “Key”	 or	 “ID”	 fields	 (Date,
ProductKey,	CustomerKey…)	which	are	used	to	connect	to	Lookup	tables.
All	other	columns	 should	 ideally	“live”	 in	related	Lookup	 tables.	Yep,
all	of	them.
One	 “check”	 we	 like	 to	make	 is	 to	 visually	 scan	 Data	 tables	 for	 text
columns.	Usually,	text	columns	are	not	needed	in	Data	tables,	and	when	we
see	 text,	 it’s	 a	 clue	 that	we	 could	 “outsource”	 such	 columns	 to	 a	Lookup
table.
So	 in	 an	 ideal	 Data	 table,	 you	 can	 hide	 ALL	 of	 the	 columns!	 “Key”
columns	(that	form	relationships)	are	hide-able	since	you	already	have	their
“twins”	in	the	Lookup	tables.	And	your	numeric	amount	columns	are	hide-
able	since	you	have	defined	‘Explicit’	measures	for	them.	If	you	don’t	quite
reach	this	nirvana,	don’t	sweat	it	–	it’s	merely	something	to	strive	for,	plus	it
illustrates	some	good	concepts	to	think	it	through.

Data	Table	Connected	to	Some	but	Not	All	Lookup	Tables
You	may	have	noticed	that	we	have	been	diligently	avoiding	using	the	SalesTerritory	table
in	any	of	our	pivots	in	this	chapter.	We	don’t	want	it	to	feel	left	out,	so	here	we	go.

308.	Houston,	we	have	a	problem!

Alas!	The	 repeating	 number	 (Usually	 a	 red	 flag,	 but	 not	ALLways!	 	Get	 it?	 Sigh,
hard	to	land	ALL()	function	jokes	in	print).	But	did	we	expect	anything	less?	After
all	the	two	tables	are	not	related.

309.	SalesTerritory	to	ServiceCalls:	Do	I	know	you?

SalesTerritory	does	not	apply	to	our	ServiceCalls	data,	neither	in	our	data	nor	in	our
business	processes.	Thus	there	would	never	be	a	relationship	between	SalesTerritory
and	ServiceCalls,	but	 it	also	wouldn’t	even	make	sense	for	us	 to	want	a	 report	 that
broke	support	data	out	by	territory.

If	 our	 business	model	 changes	 and	we	 started	 operating	 Service	 Centers	 based	 on
SalesTerritory,	and	we	added	a	Territory	column	to	our	ServiceCalls	table	in	order	to
track	 that,	 then	 we	 would	 update	 our	 model.	 But	 right	 now	 we	 operate	 a	 single
Service	Center	which	serves	all	our	customers.

If	you	pulled	in	a	table	of	Star	Wars	locations	in	your	data	model	and	used	that	in	a
Pivot	with	a	Sales	measure,	you	would	expect	the	same	result	–	a	repeating	number
(the	grand	total)	since	 there	would	be	no	relationship	between	these	 two	tables	and
thus	no	filters	applied	to	Sales	table.

310.	Sales	has	no	relation	with	Star	Wars	locations

While	 the	 behavior	 is	 expected	 and	 correct,	 this	 is	 still	 something	 you	 need	 to	 be
careful	about.

ⓘ	 The	 modified	 general	 rule	 then	 becomes:	 Use	 fields	 from	 the	 shared
Lookup	tables	when	analyzing	measures	from	different	data	tables.

Staying	Out	of	Trouble
You	can	get	into	trouble	in	a	few	ways,	even	though	they	all	come	back	to	the	same
underlying,	mechanical	 fundamentals	of	 the	Golden	Rules.	The	easiest	would	be	 if
you	use	a	column	that	does	not	apply	and	you	get	a	repeating	number.	Fairly	easy	to
spot.

311.	Repeating	number	pattern	is	easy	to	spot

But	 what	 if	 you	 build	 a	 pivot	 as	 shown	 below.	 You	 add	 a	 filter	 –
SalesTerritory[Country]	 =	 “Australia”	 but	 may	 not	 realize	 that	 the	 new	 filter	 only
filtered	[Total	Sales]	and	[Calls]	is	unchanged	(showing	you	a	worldwide	number).	If
you	happen	to	send	this	report	out	to	someone	they	would	be	totally	unfamiliar	with
your	 model	 and	 would	 assume	 you	 are	 showing	 them	 numbers	 just	 for	 Australia.
Refer	back	to	the	general	rule	to	stay	out	of	such	trouble.

312.	Are	we	seeing	numbers	for	Australia	or	Worldwide	or	both?

You	have	 to	exercise	extra	care	when	using	Hybrid	Measures,	 such	as	our	 [Net
Profit]	 measure.	 At	 first	 glance	 the	 pivot	 below	 raises	 no	 red	 flags	 (as	 there’s	 no
repeating	number	at	least).

313.	Looks	can	be	deceiving,	for	hybrid	measures:	it’s	the	inside	that	counts.

Only	 when	 you	 remind	 yourself	 of	 the	 definition	 of	 the	 [Net	 Profit]	 measure	 and
bring	in	the	underlying	measures,	do	you	see	what’s	going	on.

314.	If	two	wrongs	don’t	make	a	right,	one	wrong	certainly	does	not	make	a	right

Now	you	can	see	that	the	[Profit]	measure	calculates	correctly	by	Country,	however	[Cost
of	 Calls]	 does	 not,	 since	 the	 ServiceCalls	 is	 not	 related	 to	 the	 SalesTerritory	 table.
Therefore	[Net	Profit]	also	is	returning	a	spurious	number.	Just	refer	back	to	the	general
rule	and	stay	out	of	such	trouble.

18	-	Multiple	Data	Tables	–	Differing	Granularity
It’s	 time	 to	 have	 a	 responsible	 conversation	 about	 grains,	 and	 how	 “fat”	 are	 your	 data
rows.	Even	if	you’re	on	a	Paleo	diet	and	have	forsaken	all	grains,	this	chapter	should	go
down	easy.	“Grain”	defines	what	a	single	row	in	your	data	table	represents.

In	more	 granular	 data	 sets,	 each	 row	 represents	 a	 relatively	 “small”	 slice	 of
data.	Highly	granular	data	sets	tend	to	contain	more	rows,	and	each	row	contains
“small”	numbers.
In	 less	 granular	 data	 sets,	 each	 row	 represents	 a	 “fatter”	 chunk	 of	 data,	 and
therefore	these	data	sets	tend	to	contain	fewer	rows.
We	are	deliberately	using	 imprecise	 terms	 like	 “more,”	 “less,”	 and	 “fewer,”
because	 there	 is	no	precise	definition	of	high-	and	 low-granularity.	 It	 truly	 is	 a
relative	concept	that	only	matters	in	comparison:	the	only	thing	that’s	important
is	whether	your	multiple	data	tables	match	each	other	in	terms	of	granularity.
If	your	data	tables	have	the	same	granularity,	 the	previous	chapter	is	all	you
need.	But	if	they	have	differing	granularities,	well,	welcome	to	this	chapter	

ⓘ	The	most	 common	 example	 of	 a	 granularity	 difference	 occurs	with	 respect	 to
time.	Example:	in	one	data	set,	a	single	row	may	represent	an	individual	transaction
(“high”	granularity),	but	 in	another,	 an	entire	week’s	worth	of	 transactions	are	pre-
aggregated	into	a	single	row	(“low”	granularity).

Pre-aggregation	is	not	limited	to	time,	however.	For	instance,	one	data	set	might	contain
rows	 for	 individual	 Locations,	 whereas	 another	 could	 be	 pre-aggregated	 to	 an	 entire
Region	(each	row	represents	a	collection	of	individual	Locations).

Your	grains	will	impact	how	your	data	model	will	be	built.	In	general,	the	more	granular
the	dataset,	the	more	powerful	and	flexible	your	model	can	be,	so	at	PowerPivotPro,	we’re
always	saying	“give	us	the	most	granular	you’ve	got!”	However,	you	may	not	always	have
this	choice	based	on	what	data	is	made	accessible	to	you.	So	let’s	review	this	using	some
examples.

Example1:	Budget	versus	Actuals
Here’s	 a	 common	 problem:	 you	 have	 a	 Sales	 table,	 where	 each	 row	 represents	 an
individual	transaction.	In	our	case	that’s	about	60	thousand	rows.	But	then	you	also	have	a
Budget	table,	where	each	row	is	typically	captured	at	a	coarser	granularity,	and	is	much
smaller	in	terms	of	row	count.

For	instance,	here’s	a	sample	Budget	table	that	we’ve	imported	into	Power	Pivot:

315.	Budget	table:	1,877	rows	at	Year/Month/Territory/SubCategory	granularity

And	 now	 the	 common	 question:	 how	 are	 our	 products	 selling	 compared	 to
budget?

Difficult	in	Normal	Excel
Solving	that	problem	in	normal	Excel	is	tedious.	The	normal	VLOOKUP()	routine
that	we	used	 in	Excel	 for	 combining	a	Data	 table	 (like	Sales)	with	a	Lookup	 table
(like	Products)	does	not	work	in	this	case.

The	problem	is	essentially	that	Sales	and	Budget	are	both	Data	tables.	Which	one
would	 you	VLOOKUP()	 “into”	 the	 other?	 Plus,	 each	 table	 has	multiple	 rows	 that
correspond	 to	 multiple	 rows	 in	 the	 other,	 so	 even	 if	 you	 decided	 which	 way
VLOOKUP()	should	“flow,”	you	wouldn’t	be	able	to	successfully	construct	a	single
VLOOKUP()	formula.

A	common	solution,	as	we’ve	seen	earlier,	 involves	creating	 two	pivots	–	one	to
measure	 Sales,	 the	 other	 to	 measure	 Budget,	 and	 then	 writing	 formulas	 that
index	into	each	pivot	to	form	one	unified	“Sales	vs.	Budget”	report.	Takes	awhile	to
get	it	right,	and	then	when	someone	inevitably	wants	to	see	a	slightly	different	report
format	or	rollup	level,	it’s	almost	as	much	work	to	modify	as	it	was	to	create	the	first
time!

Much	Faster	and	More	Flexible	in	Power	Pivot
Hey,	we	wouldn’t	be	bringing	it	up	if	we	didn’t	have	a	solution	for	you	

The	short	version	is	that	with	Power	Pivot,	Sales	and	Budget	can	co-exist	in	the
same	pivot.	And	you	still	don’t	need	to	combine	them	into	one	table.

Creating	Relationships	–	We	Need	Some	New	Lookup	Tables
The	 next	 piece	 of	 good	 news	 is	 that	 we	 can	 achieve	 everything	 we	 need	 with
relationships.	 No	 fancy	 disconnected	 tables	 or	 “dotted	 line”	 relationships	 through
measures.

But	we	do	have	a	problem:	the	Budget	table	refuses	to	relate	to	any	of	our	Lookup
tables.

For	 instance,	 let’s	 try	 relating	 Budget	 to	 Products	 using	 the	 only	 Product-related
column	in	Budget:	the	SubCategory	column.

316.	Attempting	to	relate	Budget	to	Products…

317.	…results	in	the	dreaded	“many	to	many”	error.

Well	that	makes	sense:	each	SubCategory	value	(like	“Mountain	Bikes”)	does	appear
many	times	in	each	table.

We	have	a	mismatched	granularity	problem	between	Budget	and	the	rest	of	our
model	 that’s	existed	so	 far.	Which	 is	why	 it’s	 such	a	 tough	problem	 in	normal
Excel	actually.	So	how	do	we	solve	it?	We	need	a	SubCategories	Lookup	table!

318.	A	single-column	SubCategories	table

Then	 we	 relate	 it	 to	 Products	 and	 Budget	 tables,	 matching	 the	 SubCategory
column	in	each.

So	now	our	Diagram	View	looks	like:

319.	Updated	Diagram	View	–	SubCategories	table	now	acts	as	Lookup	table	to	both	Products	and	Budget	tables

Remember,	 filter	 context	 “flows”	 in	 the	 opposite	 direction	 of	 the	 relationship
arrows	in	Power	Pivot	2010	and	2013.	Let’s	visualize	that:

320.	Filter	context	flow	represented	by	orange	arrows.	Note	that	SubCategories	table	filter	context	DOES	flow
through	to	Sales,	even	though	it’s	a	“multi-step”	flow.

ⓘ	 Filter	 context	 flows	 from	 SubCategories	 to	 Products,	 and	 then	 from
Products	 to	 Sales.	 In	 other	words,	 the	 SubCategories	 still	 influences	 Sales	 (in
terms	of	filter	context)	as	if	SubCategories	were	directly	related	to	Sales.	Stated
more	generally,	filter	context	is	transitive:	if	table	A	is	a	Lookup	table	for	table
B,	and	table	B	is	a	Lookup	table	for	table	C,	a	filter	on	table	A	will	impact	table
C.

Where	Do	We	Get	This	New	Lookup	Table?	Consider	a	Database	or
Power	Query
It’s	mighty	tempting	to	create	this	SubCategories	table	via	copy/paste.	But	this	is
another	one	of	those	places	where	sourcing	your	data	using	a	Database	or	Power
Query	 really	 shines.	 You	 can	 automatically	 build	 a	 unique	 list	 of	 SubCategory
values,	 using	 a	 table	 or	 query	 in	 a	 database,	 or	 by	 transforming	 the	 data	 in	 Power
Query	(whose	“Remove	Duplicates”	command	may	as	well	have	been	named	“Make
Lookup	Table	from	a	Data	Table.”)	This	 is	an	absolute	 lifesaver,	since	 it	saves	you
from	manual	update	work	in	the	future	when	you	gain	new	SubCategories	(or	retire
old	ones).

ⓘ	Note:	Later	in	the	Power	Query	chapter	we	will	actually	walk	you	through
an	example	of	creating	a	Lookup	table.

In	absolute	terms,	it	isn’t	a	ton	of	manual	effort	to	update	the	SubCategories	table
that	you	created	via	copy/paste.	So	compared	to	the	normal	Excel	way,	it’s	not	a	big
deal.

But	 little	manual	 stuff	 like	 that	 starts	 to	 stand	 out	 a	 lot	more,	 once	 the	 other
95%	of	your	spreadsheet	life	now	lacks	manual	drudgery.

When	you	get	to	the	point	where	an	entire	family	of	sophisticated	Excel	reports
would	 just	 be	 running	 themselves	 every	 day	 if	 it	weren’t	 for	 this	 one	manual
step,	 suddenly	 that	 one	manual	 step	 becomes	 a	 big	win	 to	 eliminate,	whereas	 that
same	 task	would	 have	 been	 hardly	 noticeable	 in	 the	 old	world	 of	 constant	 tedious
effort.

SalesTerritory	is	at	Same	Granularity	Already
For	SalesTerritory,	we	do	not	need	to	create	a	new	Lookup	table.	SalesTerritory	is	the
one	place	where	Budget	does	match	 our	 existing	 granularity.	 So	we	 just	 create	 the
relationship	for	that	one,	no	new	table	required.

Repeating	the	“New	Table”	Process	for	Calendar
Budget’s	granularity	in	terms	of	time	only	goes	down	to	Year/Month	pairs.	So	again,
we	need	a	new	lookup	table	at	that	same	granularity.

Here	is	the	newly-create	YearMonths	table:

321.	The	 new	 YearMonths	 table.	 Note	 the	 rowcount	 of	 37,	 and	 the	 calculated	 column	 we	 will	 use	 to	 create
relationships.

ⓘ	 That	 YearMonth	 calculated	 column	 is	 a	 pattern	 I	 (Rob)	 find	 myself
repeating	a	lot.	The	FORMAT()	function	is	used	to	add	the	extra	zero	in	front	of
single-digit	month	numbers.	That	 isn’t	 strictly	necessary	here	–	 I	use	 it	 just	 to
make	Year/Month	combos	sort	properly	–	but	it’s	become	such	force	of	habit	for
me	that	I	figured	I	would	share	it.

We	add	that	same	sort	of	YearMonth	calculated	column	to	our	Budget	table,	and
our	 Calendar	 table,	 then	 create	 both	 relationships,	 yielding	 the	 following
Diagram	View:

322.	Diagram	View	updated	to	show	new	tables,	relationships,	and	filter	context	flow	(orange	arrows).	Note	that
with	this	many	tables,	we	have	turned	off	the	details	on	each	table	so	that	more	can	fit	on	a	single	screen.

Integrated	Pivot
We	can	now	construct	a	single	pivot	using	measures	from	both	Sales	and	Budget,	as
long	 as	 we	 only	 use	 fields	 from	 shared	 Lookup	 tables	 on
Rows/Column/Filters/Slicers.

A	“shared”	Lookup	table	is	a	table	that	filters	both	of	our	Data	tables.

In	 this	 case,	 there	 are	 three	 shared	Lookup	 tables:	YearMonths,	SalesTerritory,	 and
SubCategories,	all	marked	with	asterisks	in	this	diagram:

323.	When	constructing	a	pivot	that	displays	measures	from	both	Budget	and	Sales,	only	the	three	tables	marked
with	asterisks	 should	be	used	on	Rows/Columns/Filters/Slicers,	 because	only	 those	 three	 filter	 both	Sales	and
Budget.

We	have	created	a	single,	simple	measure	on	the	Budget	table:

[Total	Budgeted	Sales]	=	SUM	(Budget[Budgeted	Sales])

Let’s	put	that	on	a	new	pivot,	along	with	[Total	Sales]	from	the	Sales	table:

324.	These	measures	come	from	different	Data	tables:	Budget	and	Sales

But	 the	real	 test	comes	when	we	start	adding	fields	 to	Rows,	for	 instance.	Here	we
have	Year	on	rows:

325.	Year	on	Rows,	and	both	measures	still	work!	But	note	 that	 in	 this	case,	Year	comes	 from	the	YearMonths
table	and	NOT	from	the	Calendar	table!

⚠	Once	you	have	the	same	sort	of	field	(like	Year)	in	more	than	one	table	in
your	model,	you	need	to	make	sure	you	are	using	the	right	one	for	the	measures
in	 your	 pivot.	 The	 Calendar[Year]	 column	 will	 not	 work	 properly	 with	 your
Budget	measures,	for	instance.	When	we	are	diligent,	we	try	to	rename	one	set
of	fields	using	a	sensible	prefix/suffix	so	that	we	can	easily	differentiate	the	two
different	fields	coming	from	different	tables.

Hybrid	Measures	with	Data	at	Different	Grain
This	next	part	 is	 either	going	 to	make	you	yawn	and	 say	“yeah,	 that’s	obvious”	or
make	 you	 scream	 “that	 is	 the	 most	 awesome	 thing	 I	 have	 EVER	 seen!”	 Or
somewhere	in	between	perhaps.	We	still	get	smiles	on	our	faces	every	single	time	we
do	this.

We	can	write	new	measures	that	reference	(and	compare)	measures	from	these
separate	tables,	Budget	and	Sales,	in	spite	of	their	differing	granularity.

For	instance:

[Sales	vs.	Budget]	=
([Total	Sales]	-	[Total	Budgeted	Sales])
/	[Total	Budgeted	Sales]

Results:

326.	[Sales	versus	Budget]	in	action.	(We	added	the	conditional	formatting,	that	was	not	automatic).

Now	 we	 can	 remove	 the	 original	 two	 measures,	 then	 pile	 some	 more	 fields	 onto
Rows	and	Columns:

327.	Sales	vs.	Budget,	made	criminally	simple.	Under-	and	Over-	Performers	just	jump	out	at	you.	And	this	pivot
can	be	 rearranged/restructured	at	will	–	 the	 formulas	will	 just	 keep	working,	as	 long	as	you	only	use	Lookup
tables	that	filter	both	Data	tables.

Example	2:	Using	that	Mysterious	RANKX()	Third
Argument
All	right,	this	has	become	a	matter	of	honor.	The	third	argument	will	be	put	to	good
use.	But	we	had	to	invent	new	data	in	order	to	put	together	a	credible	example.

First,	 here	 is	 the	 new	 data.	 Pretend	 we	 have	 acquired	 sales	 figures	 for	 our	 chief
competitor,	and	how	well	their	bikes	have	been	selling	over	the	past	few	years.

That	is	here	in	the	CompetitorSales	table:

328.	CompetitorSales	is	just	three	columns:	ModelName,	Year,	and	SalesAmt

The	Problem:	Ranking	MY	Products	Against	Theirs!
So…	what	 if	 we	 want	 to	 see	 how	OUR	 products	 rank	 against	 our	 competitors	 in
terms	of	sales?

For	 example,	 if	 one	 of	 our	models	 sold	 $3M	worth	 of	 product,	 and	 their	 top
three	Models	 sold	$4M,	$3.5M,	and	$2.5M,	 that	means	our	model	would	rank
3rd	against	their	models.

(Credit	goes	to	Scott	Senkeresty	for	breaking	the	logjam	and	suggesting	a	scenario	in
which	the	third	argument	could	be	used.)

Year	Granularity	Mismatch	Means	a	New	Lookup	Table
Just	like	in	Sales	vs.	Budget,	since	we	have	a	granularity	mismatch,	we	need	a	new
Lookup	table.	This	time	it’s	the	simplest	one	yet:	Years.

329.	The	new	Lookup	table,	Years

Now	we	relate	that	to	CompetitorSales,	and	also	to	Calendar	(so	we	can	filter	Sales
via	“two-hop”	relationship	path),	yielding	the	following	table	diagram:

330.	Table	diagram	(other	tables	moved	aside	to	highlight	just	this	“corner”	of	the	model)

Simple	Measure
Now	we	add	a	very	simple	measure	on	the	CompetitorSales	table:

[Compete	Sales]	=
SUM	(CompetitorSales[SalesAmt])

And	here	it	is	on	a	simple	pivot:

331.	[Compete	Sales]	with	CompetitorSales[ModelName]	on	Rows

Now	the	Absolutely	Amazing	“Cross-Rank”	Measure
Back	on	the	Sales	table	(or	the	Products	table	if	you	prefer):

[Model	Sales	Rank	vs	Competition]	=
RANKX	(
VALUES	(CompetitorSales[ModelName]),
[Compete	Sales],
[Total	Sales]
)

What	 does	 that	 formula	mean?	 It	 starts	 out	 like	 it’s	 going	 to	 just	 rank	 competitive
products	against	each	other	and	then	takes	a	twist:

VALUES(CompetitorSales[ModelName])	–	 this	means	that	 the	“entities”
being	ranked	are	in	fact	the	unique	ModelNames	from	the	CompetitorSales
table.
[Compete	Sales]	–	this	means	that	the	measure	by	which	those	competitive
models	will	be	ranked	will	be	 their	own	[Compete	Sales]	measure.	So	far,
this	is	just	normal,	totally	understandable	usage	of	RANKX().
[Total	 Sales]	 –	 but	 whoa!	 This	 means	 we’re	 going	 to	 take	 the	 value	 of
[Total	Sales]	in	our	current	filter	context	(which	on	the	left-side	pivot,	is	a
ModelName	 from	 our	 company),	 and	 insert	 it	 into	 the	 pecking	 order
established	 by	 the	 first	 two	 arguments!	 Essentially,	 treat	 the	 value	 of	 this
measure,	in	the	current	filter	context,	as	if	it	were	a	participant	in	the	normal
evaluation	of	RANKX()	as	controlled	by	the	first	two	arguments.

And	results:

332.	New	Cross-Rank	measure	compared	to	pivot	displaying	competitive	sales.	Our	top	product	would	indeed	be
behind	their	13	best	products,	earning	a	rank	of	14.

And	Since	Both	Are	Filtered	by	the	Years	Table…
We	can	add	Years[Year]	as	a	slicer	to	both	pivots!

Let’s	see	if	it	still	works	when	we	slice	to	a	different	year:

333.	Shared	Year	slicer:	measure	still	works

Wow.

19	-	Performance:	Keep	Things	Running	Fast
How	Important	is	Speed?
“Now”	Is	Three	Seconds	in	Length
Let’s	start	here.	Research	suggests	that	human	beings	perceive	the	moment	of	“now”
to	be	three	seconds	in	length.	Hugs	are	even	typically	three	seconds!	Think	of	it	as	the
fundamental	unit	of	human	time	–	something	that	takes	three	seconds	or	less	is	happening
“now,”	and	something	that	lasts	longer	than	that	requires…	waiting.

Sound	squishy	or	touchy-feely	to	you?	Well	it’s	relevant	to	us	data	crunchers	too,	in	a	big
way.

Earlier	 this	 year,	 someone	 at	Microsoft	 emailed	 and	 asked	me	 (Rob)	 the	 following
question:	“For	large	Power	Pivot	workbooks,	how	long	do	you	think	users	will	expect	to
wait	when	they	click	a	slicer?”

My	answer:	“It	must	be	fast,	period.	They	don’t	care	that	there	is	a	lot	of	data	behind	it.	If
it	 isn’t	 fast,	 they	 won’t	 engage.	 The	 limits	 of	 human	 patience	 are	 not	 the	 least	 bit
sympathetic	to	our	data	volume	or	complexity	problems.”

When	we	produce	interactive	reports	or	dashboards	for	consumption	by	the	rest	of
our	 workgroup,	 we	 must	 keep	 in	 mind	 that	 the	 speed	 of	 interaction	 is	 critical.
Anything	longer	than	three	seconds,	and	we	risk	losing	the	consumer	altogether.

ⓘ	 If	 you	would	 like	 to	 read	 an	 interesting	 article	 on	 this	 “3	 seconds”	 topic,	 see
http://ppvt.pro/3srule

What	Happens	When	Something	Takes	Longer	Than	Three	Seconds?
If	a	slicer	click	or	related	interaction	takes	too	long,	three	things	happen:

1.	 The	user’s	train	of	thought	is	broken	while	waiting	on	the	click	to	complete.
Their	mind	wanders	off	topic	and	they	often	flip	back	over	to	email	while	they
wait.	They	sometimes	forget	to	come	back.

They	do	not	“commit”	to	the	experience,	do	not	get	absorbed,	and	generally	decide	to
remain	“shallow”	in	their	thoughts	toward	it.

2.	 If	they	grow	to	expect	“long”	wait	times,	they	will	ultimately	decide	not	to
click	at	all.	If	they	know	that	conducting	a	slicer	click	exploration	of	the	data	is
going	to	take	15	seconds	a	click,	and	they	may	have	to	execute	10	clicks	over	the
course	of	their	exploration,	they	simply	decide	not	to	do	it	at	all.

Yeah,	 if	 they	 had	 invested	 that	 2.5	minutes,	 they	may	 have	 discovered	 something
amazing	or	revolutionary	in	the	data.	Tough.	Humans	aren’t	built	for	that.	They	want
their	three	seconds.

http://ppvt.pro/3srule

3.	 Ultimately,	and	most	importantly,	your	impact	as	a	professional	is	severely
diminished.	Putting	 together	 something	 amazing	 that	 no	 one	 uses	 is	 the	 same
thing	 as	 doing	 nothing	 at	 all.	 Your	 work	 (and	 you)	 will	 be	 undervalued	 and
viewed	as	expendable.

So	 it	 is	 important	 to	 think	 of	 speed	 as	 an	 equal,	 a	 “peer,”	 of	 the	 content	 you	 are
delivering.	You	cannot	simply	tell	yourself,	“I’m	delivering	a	ton	of	great	information,	it’s
worth	the	wait	for	people	when	they	click	the	slicer.”	Speed	is	just	as	important	as	having
the	right	numbers.

To	 underscore	 that	 point:	 it	 is	 better	 to	 produce	 something	 that	 delivers,	 say,	 10
“points”	 of	 information	 that	 everyone	 is	 using	 than	 to	 deliver	 50	 “points”	 of
information	that	only	10%	of	people	use.	That’s	not	just	a	point	about	speed	of	course	–
making	the	report	visually	clean	and	understandable	is	also	important.	And	while	we	have
many	opinions	about	that	stuff,	we	don’t	have	space	for	it	in	this	book.	So	we’ll	stick	to
performance.

Slicers:	The	Biggest	Culprit
It	 may	 surprise	 you	 to	 learn	 that	 those	 innocuous,	 friendly	 little	 slicers	 on	 your
report	are	usually	far	and	away	the	most	expensive	parts	of	your	report.

ⓘ	Time	to	revisit	those	three	terms	we	introduced	in	the	FILTER()	chapter:
Performance:	 the	 practice	 of	 keeping	 your	 reports	 fast	 for	 your	 users.	 For	 instance,	 if
someone	clicks	a	slicer	and	it	takes	30	seconds	for	the	pivot	to	update,	we	would	refer	to	that
as	“poor	performance.”	If	it	responds	instantly,	we	might	call	that	“excellent	performance,”	or
we	might	say	that	the	pivot	“performs	well.”

Response	time:	the	amount	of	time	it	takes	a	report	to	respond	to	a	user	action	and	display
the	updated	results.	In	the	example	above,	we	described	a	“response	time”	of	30	seconds	as
poor.	Generally	we	try	to	keep	response	times	to	3	seconds	or	less.

Expensive:	an	operation	is	said	to	be	“expensive”	if	it	consumes	a	lot	of	time	and	therefore
impacts	performance/response	time.	For	instance,	above	we	could	have	described	<column>
=	 <static	 value>	 tests	 as	 “inexpensive”	 for	 the	 DAX	 engine,	 and	 richer	 comparisons	 like
<column>	=	<measure>	as	“potentially	expensive.”

“Cross-Filtering”	Behavior
You’ve	probably	 seen	 cross-filtering	 in	 action	but	 not	 given	 it	much	 thought.	Here’s	 an
example	from	the	NFL	(American	football)	data	that	we	use	occasionally	on	the	blog:

334.	No	selections	made	on	slicers,	but	no	player	heavier	than	330	pounds	has	ever	caught	a	Touchdown	(TD)
Pass	(at	least	not	in	this	data	set)

Now	we	select	two	“tiles”	in	the	top	slicer	–	the	ones	at	320	and	340	pounds:

335.	Note	that	the	“CollegeAttended”	slicer	now	has	only	two	selectable	values	–	all	other	are	disabled

Why	 has	 the	 CollegeAttended	 slicer	 “filter	 itself”	 if	 we	 have	 not	 made	 any
selection	on	it?

Well	 there	are	only	 two	players	 in	 this	data	set	weighing	320	pounds	or	more	who
have	a	TD	Catch	–	Jason	Peters	and	Jonathan	Ogden,	and	they	attended	Arkansas	and
UCLA.	 The	 slicer	 is	 being	 helpful	 and	 showing	 you	 that	 clicking	 any	 other
CollegeAttended	will	yield	a	completely	blank	pivot.

ⓘ	 If	 clicking	a	given	“tile”	 in	a	 slicer	would	yield	a	completely	blank	pivot
(every	measure	returning	blank),	then	that	tile	will	be	disabled.	That’s	what	we
call	“cross	filtering,”	and	it’s	a	slicer	behavior	that	is	enabled	for	all	slicers	by
default.

Cross-filtering	can	be,	and	usually	is,	a	very	helpful	feature.

Cross-Filtering	is	Expensive	in	Terms	of	Performance
But	 it’s	 also	 a	 LOT	 of	 work	 for	 the	 Power	 Pivot	 engine.	 Here,	 we	 add	 another
measure	to	the	previous	pivot,	without	changing	our	slicer	selections	at	all:

336.	Added	one	measure,	[Total	Catches],	and	now	two	more	Colleges	are	clickable

See	that?	So	the	slicers	are	not	just	sensitive	to	each	other,	they	are	also	sensitive	to
the	measures	on	the	pivot.	That	means	the	measures	have	to	be	evaluated	for	each	of
the	Colleges	in	the	slicer	(even	though	we	have	clicked	none)	to	see	if	either	measure
would	return	a	value	for	each	tile!

ⓘ	In	order	to	enable	or	disable	tiles	in	a	slicer,	the	cross-
filtering	behavior	actually	re-runs	the	entire	pivot	behind
the	 scenes,	 as	 if	 the	 tiles	 in	 the	 slicer	were	on	Rows	 (or
Columns)!	 Those	 rows	 of	 the	 “behind	 the	 scenes”	 pivot
that	returned	at	least	one	non-blank	value	are	the	tiles	that
will	be	displayed	as	clickable.

That	 “behind	 the	 scenes”	 process	 is	 repeated	 for	 every
slicer	 connected	 to	 your	 pivot,	 every	 time	 the	 report
consumer	clicks	something.

So	the	short	version	is	this:	every	slicer	you	add	is	just	as	expensive	as	adding	an
entire	new	pivot.	A	single	pivot	with	 five	 slicers,	 in	other	words,	will	be	about	as
slow	as	six	pivots.	Let	that	sink	in.

Mitigating	the	Effects	of	Cross-Filtering
So,	what	do	we	do	about	this?	A	few	possibilities:

1.	 Do	nothing.	If	you’re	still	under	3	seconds,	you	may	not	need	to	worry.
2.	 Use	fewer	slicers.	Always	worth	considering	since	they	eat	so	much	screen

real	estate	anyway.	If	a	particular	slicer	 is	unlikely	 to	be	used	most	of	 the
time,	and	is	there	“just	in	case	the	consumer	needs	it,”	you	might	consider
creating	a	completely	separate	report	to	address	that	use	case.

3.	 Turn	off	cross-filtering	for	some	slicers.	This	is	simple	to	do,	the	question
is	more	about	when	to	do	it	–	for	which	slicers?	Let’s	cover	the	“how”	first.

How	to	Turn	off	Cross-Filtering

1.	 Select	a	slicer.	We	do	this	by	clicking	somewhere	in	the	label	area	of	the	slicer,
typically.	The	key	is	to	get	the	slicer	Options	tab	to	show	up	in	the	ribbon:

337.	Select	a	slicer	in	the	sheet	itself	(not	the	field	list),	and	this	ribbon	tab	will	appear
2.	 Click	the	Slicer	Settings	button	on	that	ribbon	tab:

338.	Click	this	button
3.	 On	the	resulting	dialog,	uncheck	this	checkbox:

339.	Unchecking	this	checkbox	turns	off	cross-filtering	for	this	slicer

Turning	off	Cross-Filtering	Only	Impacts	that	Slicer
To	see	what	we	mean	by	this,	check	out	the	slicer	after	cross-filtering	has	been	turned
off:

340.	The	highlighted	tile	used	to	be	disabled	and	sorted	to	the	end,	but	now	with	cross-filtering	off,	it’s	enabled
and	back	to	its	original	position

OK,	so	disabling	cross-filter	did	have	an	impact	there.

But	now	look	at	the	other	slicer:

341.	The	other	slicer	is	STILL	only	showing	four	enabled	tiles

So	 this	means	 this	 slicer	 is	 still	 affected	 by	 the	 other.	 For	 instance,	 let’s	 clear	 the
selection	on	the	first	slicer	and	see	what	happens:

342.	Even	though	Slicer	1	has	cross	filtering	turned	off,	selections	made	in	Slicer	1	STILL	impact	Slicer	2

ⓘ	 A	 slicer	 with	 cross-filtering	 turned	 off	 still	 impacts	 all	 other	 slicers.
Disabling	 cross-filter	 only	 impacts	 whether	 that	 slicer	 is	 impacted	 by	 other
slicers.	 Think	 of	 this	 as	 turning	 off	 “incoming”	 filtering	 for	 that	 slicer,	 rather
than	“outgoing”	filtering.

Slicers	For	Which	You	Should	Turn	Cross-Filtering	Off

At	a	high	 level	 there	are	 three	kinds	of	slicers	for	which	we	feel	pretty	good	about
disabling	cross	filtering:

1.	 Slicers	for	which	all	tiles	almost	always	have	data.	If	all	or	most	tiles	are
always	 going	 to	 be	 active	 anyway,	 why	 have	 cross-filtering	 chewing	 up
response	 time?	 One	 common	 example	 of	 this	 is	 Calendar/Time	 related
slicers.	You	 generally	 have	 data	 for	 every	month	 for	 instance	 (if	 not	 you
may	want	to	consider	trimming	your	Calendar	table).

2.	 Slicers	with	 very	 few	 tiles.	 The	 cross-filtering	 feature	 is	most	 useful	 for
keeping	 the	consumer	 from	having	 to	 scroll	 the	 slicer,	 looking	 for	 the	 tile
they	want	to	select.	So	if	there	are	only	four	tiles,	and	there	is	no	scrollbar
to	worry	about,	that	slicer	jumps	out	at	us	as	a	candidate.

3.	 Slicers	that	form	the	“top”	of	a	hierarchy.	If	you	have	three	slicers	–	one
for	Country,	one	for	State,	and	one	for	City,	the	consumer	tends	to	make	a
choice	on	Country,	 then	State,	and	 then	City	(assuming	they	need	 to	filter
that	deep).	It’s	pretty	critical	that	State	and	City	slicers	retain	cross-filtering
(for	 the	 long	 scrolling	 reason),	 but	 disabling	 it	 for	 Country	 does	 not
compromise	 that.	Plus,	 the	 topmost	slicer	 in	a	hierarchy	 tends	 to	have	 the
fewest	tiles	too.

343.	An	example	of	all	three	kinds	of	“turn	off	cross-filter”	candidates

OK,	 that’s	 the	 easiest/most	 obvious	 thing	 to	 look	 at	 if/when	 a	 report	 is	 slow.	Let’s
move	on	to	data	shaping.

The	Shape	of	Your	Source	Tables	Is	Also	Important
The	 shape	 (and	 characteristics)	 of	 your	 source	 tables	 can	 also	 have	 a	 tremendous
impact	on	performance.	In	this	section	we	will	list	some	of	our	most	impactful	tips.
Some	of	these	changes	are	easy	to	make,	and	others	require	more	up-front	planning.

Narrower	Tables	are	Better
Remove	columns	you	aren’t	going	to	use.	Leave	them	out	when	importing
or	delete	unneeded	columns	from	existing	tables.
Move	as	many	columns	as	you	can	from	Data	tables	to	Lookup	tables.
The	 “narrower	 is	 better”	 rule	 applies	 more	 forcefully	 to	 tables	 that	 have
higher	row	counts.	So	if	you	can	move	a	row	from	a	Data	table	to	a	Lookup
table,	even	if	 it	means	creating	a	new	Lookup	table,	 it	 is	very	often	worth
doing	so.

Here’s	a	quick	example:

344.	A	 fragment	 of	 a	 Sales	 table.	 Note	 how	 every	 time	 we	 have	 98033	 for	 ZIPCode,	 City=Kirkland	 and
State=WA

We	don’t	need	all	 three	columns	(City/State/ZIP)	 in	 this	Sales	 table	–	ZIP	is	all	we
need	in	order	to	precisely	“pin	down”	City	and	State.	So	we	can	move	City	and	State
to	another	table:

345.	Our	new	Locations	table	(could	also	sensibly	have	been	named	ZIPCodes)

And	remove	City	and	State	columns	from	Sales:

346.	City	and	State	columns	removed	from	Sales	table

Then	we	relate	Sales	to	Locations:

347.	Relate	them,	and	we’ve	now	done	the	right	thing
Sometimes	 it	 may	 even	 be	 worth	 “pivoting”	 the	 source	 data	 before
import	 (moving	 columns	 to	 rows).	 Power	 Query	 has	 the	 UNPIVOT
transformation,	 that	can	 turn	a	wide	and	short	 table	 into	a	 tall	and	narrow
table.	 If	 you	 are	 working	 with	 a	 Database,	 you	 can	 also	 use	 the	 SQL
UNPIVOT	command.	This	sometimes	can	make	a	big	difference,	and	other
times	have	no	impact,	so	it	requires	some	experimentation.

Here’s	an	example	of	a	“wide”	Sales	table:

348.	Many	numerical	columns:	a	“wide”	table	(9	columns,	1M	rows)

Here’s	that	same	table	“unpivoted”	to	be	tall	and	narrow:

349.	Table	has	been	reduced	to	4	columns,	but	now	7M	rows

Then,	rather	than	your	[Total	Sales]	measure	formula	being	SUM(Sales[TotalSales]),
it	will	now	be	CALCULATE(SUM(Sales[Amt]),	AmtType=1).

Imported	Columns	Are	Generally	Better	than	Calculated	Columns
If	 you	 can	 implement	 a	 calculated	 column	 in	 the	 original	 data	 source	 (typically	 a
database),	and	 then	 import	 that	column	rather	 than	calculate	 it	 in	Power	Pivot,	 that
can	surprisingly	improve	slicer	click	performance.	If	you	can,	implement	a	calculated
column	before	 importing	 to	Power	Pivot	 (typically	within	 a	 database	OR	by	using
Power	Query),	and	 then	bring	 in	 that	new	source	column	rather	 than	calculate	 it	 in
Power	 Pivot.	 That	 can	 surprisingly	 improve	 slicer	 click	 performance.	 (Imported
columns	are	compressed	more	efficiently,	 leading	 to	 smaller	 file	 sizes,	 lower	RAM
consumption,	and	usually	better	slicer	click	performance).

A	few	notes	on	this:

Again,	the	more	rows	in	the	table,	the	more	impactful	this	change	can
be.	We	don’t	worry	about	it	in	small	Lookup	tables	for	instance.
If	 the	 calculated	 column	 is	 commonly	 used	 on	Rows/Columns/Slicers,
that	is	more	impactful	than	a	numeric	column.	Converting	a	column	like
“Category”	 from	 calculated	 to	 imported	 will	 yield	 a	 bigger	 performance
improvement,	for	instance,	than	“QuantitySold,”	which	is	typically	just	used

as	 the	 basis	 for	 a	 SUM()	 measure.	 (But	 if	 you’ve	 moved	 all	 of	 your
Row/Column/Slicer/Filter	fields	to	smaller	Lookup	tables	as	recommended
earlier	in	the	book,	this	sort	of	change	would	be	happening	in	a	smaller	table
anyway	and	may	not	be	much	help.)
If	 the	 calculated	 column	 is	 the	 basis	 for	 a	 relationship,	 that	 is	 more
impactful.	 This	 is	 basically	 an	 extension	 of	 the	 previous	 bullet,	 since	 a
relationship	column	is	used	to	link	a	Lookup	table	to	its	Data	table,	and	the
Lookup	 table’s	 columns	 are	 used	 on	 Rows/Columns/Slicers/Filters.	 So	 if
nearly	every	column	in	your	Data	and	Lookup	 tables	 is	 imported,	but	you
created	a	single	calculated	column	in	your	Data	table	so	that	you	could	link
it	 to	 the	Lookup	table,	you’re	 likely	paying	most	of	 the	calculated	column
penalty	despite	your	efforts	elsewhere.

“Star	Schema”	is	Generally	Better	than	“Snowflake	Schema”
Longtime	database	folks	already	know	what	we	are	 talking	about.	Everyone	else	has	no
idea,	so	the	following	explanation	is	for	you	

ⓘ	Snowflake	schema	=	multiple	levels	of	Lookup	tables.
Star	schema	=	one	level	of	Lookup	tables.

350.	Snowflake	schema:	multiple	levels	of	Lookup	tables

351.	Star	schema:	if	you	can	“squash”	chained	lookup	tables	into	single,	larger	tables,	that	often	can	improve
performance	(yes	even	though	it	makes	the	tables	wider	–	the	most	important	table	to	keep	narrow	is	the	Data
table)

Note:	 in	 the	 chapter	 on	 Multiple	 Data	 Tables	 (such	 as	 Budget	 versus	 Sales),	 it	 was
explained	that	sometimes	you	cannot	avoid	multi-hop	Lookup	table	arrangements.	That’s
fine.	Just	don’t	go	crazy	and	create	lots	of	chained	Lookup	tables	because	you	can	–	do	it
only	when	you	have	to.	And	if	your	reports	exhibit	good	response	times	already,	you	can
ignore	this	guideline	altogether	

Measure	Performance
We	could	write	many	chapters	on	this,	and	they	still	wouldn’t	be	enough.	In	fact,	others
such	 as	Marco	Russo,	Alberto	 Ferrari,	 and	Chris	Webb	 are	 the	 “go	 to”	 people	when	 it
comes	 to	measure	 tuning	and	performance.	We	 learn	 from	 them	all	 the	 time	–	we	don’t
claim	 to	 be	 the	 world’s	 greatest	 at	 DAX.	 (Our	 knack	 is	 more	 for	 explaining	 it	 and
prioritizing	 what	 you	 need	 to	 know	 first).	 Their	 blogs	 and	 books	 are	 definitely	 worth
checking	out	if	you	find	yourself	“outgrowing”	this	book	

But	there	are	a	few	quick	tips	worth	sharing.

DISTINCTCOUNT()	is	Much	Faster	than	COUNTROWS(DISTINCT())
In	 v1,	 we	 had	 to	 use	 COUNTROWS(DISTINCT()),	 because	 we	 lacked	 a
DISTINCTCOUNT()	function.

Now	though	you	should	always	use	DISTINCTCOUNT().	It	is	dramatically	faster.

FILTER()	Should	Only	Be	Used	Against	Lookup	Tables	and	Other
“Small”	Columns
This	tip	has	been	mentioned	before,	but	the	reason	behind	it	has	not.	Here	it	is,	as	briefly
as	possible.

A	 “raw”	 <filter>	 argument	 to	 CALCULATE()	 has	 the	 ability	 to	 inspect	 large
“blocks”	of	rows	all	at	once	 to	see	whether	those	rows	should	be	active	according	to	a
specified	filter	context	like	Products[Color]=”Blue”.	That	is	what	makes	a	raw	<filter>	so
blindingly	fast	to	evaluate,	even	against	tens	or	hundreds	of	millions	of	rows	of	data!

FILTER()	lacks	that	“block	inspection”	capability,	and	always	steps	through	the	rows
in	 its	<table>	argument	one	 at	 a	 time.	A	 raw	CALCULATE()	 <filter>	 that	 scans	 100
million	rows	might	only	have	to	look	at	1,000	different	blocks	in	order	to	decide	which	of
the	100	million	rows	should	be	active.	But	if	you	use	a	FILTER()	against	those	same	100
million	rows,	it	may	have	to	make	100	million	inspections	rather	than	1,000,	which	means
it	could	be	100,000	times	slower!	In	practice	DAX	uses	various	optimization	and	caching
techniques,	thus	your	results	would	vary	based	on	your	data	model	and	complexity	of	the
measure.

However,	as	a	general	rule,	with	FILTER(),	smaller	tables	are	your	friend.

Remember	That	the	“X”	Functions	Are	Loops
If	you	have	a	SUMX()	measure	in	your	pivot,	for	instance,	remember	that	it	looks	at
every	row	in	the	<table>	argument	one	at	a	time,	just	like	FILTER().	Sometimes	it’s
easy	to	forget	how	much	work	SUMX()	and	similar	functions	are	doing	behind	the	scenes.

It’s	especially	easy	to	forget	how	much	work	is	going	on	if	the	column	or	table	from	the
<table>	argument	is	not	displayed	on	the	pivot.	(It’s	not	actually	slower,	it’s	just	that	you
don’t	see	what	it’s	looping	through.)

In	 our	 experience,	 a	 single	 X	 function	 is	 rarely	 a	 problem.	 But	 when	 you	 start
“nesting”	loops	inside	of	other	loops,	things	can	get	crazy	in	a	hurry.

For	instance,	one	time	we	wrote	a	measure	that	was	essentially	a	SUMX()	of	a	MAXX()	–
our	formula	was	something	like:

SUMX(<table	with	1k	rows>,	[Another	Measure])

But	the	formula	for	[Another	Measure]	was:

MAXX(<table	with	1k	rows>,	<simple	SUM	measure>)

You	see	where	this	is	going.	We	had	a	1,000	row	loop	inside	another	1,000	row	loop,
so	our	measure	was	doing	1	million	loops	for	every	single	measure	cell	in	the	pivot!
That	was…	not	fast.

Similarly,	 if	you	have	an	X	 function	measure	as	part	of	 the	<rich	 filter>	argument
inside	a	FILTER()	 function,	you	can	again	get	 into	nested	 loops	 just	 like	 this	–	 the
FILTER()	might	step	through	1,000	rows,	evaluating	a	1,000-loop	SUMX()	at	each	step,
resulting	in	1	million	loops	for	each	measure	cell	in	the	pivot.

We	have	given	you	a	 lot	of	ways	you	 should	 shape	your	data	 to	optimize	performance,
let's	talk	about	a	tool	that	can	help	you	do	that.

20	-	Power	Query	to	the	Rescue
Databases	are	a	“luxurious”	data	source.	The	data	that	we’ve	been	loading	into	Power
Pivot	 throughout	 this	 book	 originated	 from	 a	 very	 clean	 sample	 data	 set	 provided	 by
Microsoft.	We	then	made	some	adjustments	and	additions	 to	make	said	data	suitable	for
the	purposes	in	this	book.

That’s	a	key	characteristic	of	databases:	human	beings	put	effort	into	them	so	that	the	data
is	clean,	complete,	and	optimized	for	how	it’s	going	to	be	used.

So	if	most	of	your	data	for	analysis	comes	from	a	database,	that’s	great	news!	And	even
better	 if	 you	 are	 on	 good	 terms	with	 the	Database	Administrator	 (DBA)	who	 runs	 said
database.	If	you	have	“bad”	data,	the	DBA	is	usually	able	to	clean	that	up	and	turn	it	into
“good”	data	before	it	gets	loaded	into	Power	Pivot.

352.	If	you	have	a	DBA	(Database	Administrator)	–	love	them,	hug	them,	thank	them.	And	then	ask	them	nicely
to	clean	and	re-shape	data	for	your	purposes.

But	 outside	 of	Database	Land,	Real	Data	 is…	Messy.	 Sadly,	most	 of	 the	world
does	NOT	get	their	data	from	databases.	Most	of	the	world	is	up	to	its	eyeballs	in	text
files	and	Excel	files,	and	those	are	the	source	of	data	for	analysis	and	reporting.

In	fact,	even	 in	cases	where	you	do	have	a	database,	and	 a	 friendly	DBA,	some	of
your	data	is	still	likely	coming	from	those	sorts	of	Wild	West	sources.	After	all,	the
Export	to	Excel	button	is	the	3rd	most	common	button	in	all	traditional	data	and	BI
applications	(after	OK	and	Cancel	of	course),	and	those	buttons	produce	these	sorts
of	files.

(This	is	deliciously	ironic	of	course	–	all	of	those	tools	that	were	supposed	to	be	the
“be	all,	end	all”	for	reporting	and	analysis	–	well,	they	fail,	in	practice,	99	times	out
of	 100.	 So	 then	we	 just	 use	 those	 expensive	 and	 bloated	 systems’	Export	 to	Excel
buttons	as	data	sources	for	the	real	work,	which	always	happens	in	Excel,	and	now
also	in	Power	Pivot	and	Power	BI.	Such	is	the	world	of	data,	everywhere.)

Yes,	real	data	is	often	split	across	numerous	files	when	you	really	want	it	in	a	single
file.	Real	data	 is	 strung	across	columns	when	you	 really	need	 it	 in	 rows.	Real	data
comes	in	a	flat	table	when	you	really	need	separate	data	and	lookup	tables.

353.	Most	people,	sadly,	live	outside	of	Database	Fairy	Tale	Land.	They	live	in	the	Messy	Real	World	of	Data.

So,	this	chapter	is	not	for	those	of	us	who	reside	full-time	in	Database	Land.	 If
you	live	in	Database	Land,	and	have	a	friendly	DBA	who	will	clean	and	shape	all	of
your	data	for	you,	fantastic,	skip	to	the	next	chapter!

This	chapter	 is	 for	 the	rest	of	us.	When	you	need	 to	 clean	and	 re-shape	data	out
here	 in	 the	Messy	 Real	World	 of	 data	 dumps	 and	 exports,	 responsible	 data	 ninjas
reach	for	Power	Query.

Power	Query:	Bring	Order	to	Messy	Data
Power	Query	lets	you	clean,	shape	and	transform	your	data	while	still	 retaining	the
ability	of	one	click	or	automated	 refresh.	Gone	are	 the	23	manual	 steps	you	did	 in
Excel	and	could	never	really	remember.

Here	are	some	reasons	we	love	Power	Query:

Perfect	Complement	to	Power	Pivot:	Power	Pivot	has	very	limited	means
to	clean,	shape	and	transform	data	(hence	the	earlier	reliance	on	databases).
Thus	 Power	 Query	 as	 an	 Excel	 Add-In	 (also	 integrated	 with	 Power	 BI
Desktop)	becomes	the	perfect	complement	to	Power	Pivot.
Easy	to	learn,	but	also	incredibly	deep:	Okay,	the	instant	love	comes	from
the	“easy	to	 learn”	part.	 It	 is	 incredibly	easy	to	start	with.	The	interface	 is
very	 intuitive	with	most	actions	driven	by	 the	 friendly	and	 familiar	Office

ribbon	interface.	But	you	are	not	limited	to	the	buttons	on	the	ribbon	–	there
is	an	entire	language	lurking	under	the	surface,	ready	to	do	your	bidding.

Power	Query	has	so	much	to	offer	that	you	could	write	a	whole	book	about	it.	In	fact,	we
recommend	 “M	 Is	 for	 (Data)	Monkey”	 by	 the	 wizards	 Ken	 Puls	 and	Miguel	 Escobar:
http://ppvt.pro/DataMonkey

354.	If	you	seek	an	entire	book	on	Power	Query	and	M,	look	no	further	than	this	cleverly-titled	tome

So,	while	we	clearly	don’t	have	the	space	to	include	an	entire	second	book	in	these
pages,	we	will	cover	the	highest-value	and	easiest-to-learn	techniques	here.

You	can	view	 this	 as	 an	 introduction,	or	you	can	view	 it	 as	 “All	 I	Ever	Needed	 to
Know	 About	 Power	 Query,	 I	 Learned	 In	 Kindergarten.”	 And	 this	 chapter,	 dear
friends,	is	Power	Query	Kindergarten.

ⓘ	Power	Query	 (within	Excel	and	Power	BI	Desktop)	 is	currently	 receiving
updates	 on	 a	 monthly	 basis.	 That	 means	 you	 can	 expect	 new	 and	 improved
functionality	 going	 forward.	 That	 also	 means	 that	 the	 interface	 might	 look
slightly	different	than	the	screenshots	you	see	here.	Usually	this	should	at	worst
be	a	case	of	renaming	or	reshuffling.	Power	Query	has	stabilized	enough	that	we
expect	the	core	functionality	covered	here	to	remain	the	same.
We	have	used	Excel	2013	screenshots	in	this	chapter.	Sample	files	are	available
in	Excel	2013	format	and	PBIX	(Power	BI	Desktop)	format.

With	all	that	said,	let’s	dive	into	the	key	examples.

http://ppvt.pro/DataMonkey

#1	-	Appending	Files	to	Create	a	Single	Power	Pivot
Table
Scenario
You	would	like	to	create	a	Product	Lookup	table.	However	the	challenge	is	that	your
company	 has	 three	 manufacturing	 plants	 and	 each	 manufactures	 a	 distinct	 set	 of
products.	You	receive	a	separate	Product	file	from	each	plant,	and	you	would	like	to
combine	 these	 files	 into	 a	 single	 table	 before	 feeding	 them	 into	 Power	 Pivot.
Furthermore,	 you	would	 ideally	 like	 this	 to	be	 automatic,	 so	 the	next	 time	you	get
new	 files,	 a	 single	 click	 will	 process	 the	 whole	 kit	 and	 caboodle.	 (Or	 better	 yet,
schedule	an	automatic	refresh	–	the	mythical	Zero	Click	Solution	spoken	of	in	hushed
tones	around	campfires	late	at	night.)

And	just	to	make	things	a	bit	more	difficult,	let’s	say	that	the	Product	files	from	each
plant	are	published	to	a	website:

355.	Need	to	combine	three	CSV	files	of	identical	structures	–	located	on	a	website

You	don’t	need	to	download	the	CSV	files	to	your	computer!	You	can	leave	the	files
where	 they	 are	 and	 build	 a	 completely	 automatic	 system—one	 that	 requires	 zero
manual	intervention	on	an	ongoing	basis.

Connecting	to	One	of	the	CSV	Files
Once	Power	Query	is	downloaded	and	installed,	you	get	a	Power	Query	ribbon	tab,
which	has	a	“From	Web”	button	on	it:

356.	You	start	by	clicking	the	“From	Web”	button	on	the	Power	Query	ribbon	tab	(Excel	2013	version	pictured)

After	you	click	this	From	Web	button	on	the	Power	Query	ribbon	tab,	enter	the	URL
for	one	of	the	CSV	Files:

357.	Don’t	download	the	CSV	–	just	link	to	it	on	the	website!

You	now	get	a	pop-up	query	window	with	its	own	ribbon:

358.	Ooh.	We	like	ribbons	full	of	tools.

Adding	a	Custom	Column	to	“Tag”	This	File
Next,	 you	 need	 to	 add	 a	 column	 to	 “tag”	 this	 file	 as	 containing	 the	 products	 from
Chicago	 plant.	 Click	 Add	 Custom	 Column,	 specify	 the	 column	 name	 and	 enter	 a
static	formula	(=”CH”):

359.	Creating	 a	Custom	Column	 in	Power	Query	 –	 there’s	 a	 lot	more	 you	 could	 do	 here	 using	Power	Query
formulas

Once	you	hit	OK	you	should	see	the	results:

360.	Our	new	custom	column	has	been	added	to	the	results

Notice	the	following:
a)	The	custom	column	gets	added	in	the	Power	Query	result
b)	The	Applied	Steps	 show	a	new	step	for	 the	‘Added	Custom’	Column.	Notice	 it
shows	a	catalog	of	all	Power	Query	Steps	taken	so	far.	This	represents	the	core	ability
of	 Power	Query,	 to	 record	 and	 replay	 all	 data	 transformation	 steps	 you	 take.	Thus
enabling	one-click	or	automated	refresh.	All	in	a	human	friendly	interface.
c)	The	formula	bar	shows	the	M	language	formula	for	this	step.	Power	Query	has	its
own	formula	language	known	as	‘M’.	The	formula	bar	gives	you	a	glimpse	into	the
world	of	M.	However,	you	don’t	need	to	learn	or	understand	M	in	order	to	use	Power
Query	via	its	powerful	ribbon	tools.

Then	you	rename	this	query	and	click	Close	&	Load:

361.	Rename	this	query	to	be	Products_CH,	and	click	Close	&	Load

Loading	the	Data	into	Power	Pivot
The	steps	above	“land”	the	data	in	Excel:

362.	This	is	not	QUITE	what	you	want.	You	want	the	data	in	Power	Pivot,	aka	the	Data	Model.

No	 sweat.	You	 just	 bring	 up	 the	Query	 Pane	 in	Excel	 (if	 not	 already	 visible)	 then
right	click	and	choose	‘Load	To…’:

363.	Load	To	lets	you	change	the	‘target’	where	Power	Query	data	gets	loaded

We	find	the	Load	To	dialog	box	one	of	the	confusing	ones	in	Power	Query	but	here	is
what	you	need	to	select	in	order	to	get	the	desired	result:

Only	Create	Connection:	This	essentially	tells	Power	Query	not	to	load	it	in
Excel
Add	 this	data	 to	 the	Date	Model:	This	 tells	Power	Query	 to	 load	 the	data
into	Power	Pivot

364.	The	above	combination	loads	the	data	in	Power	Pivot	but	not	in	Excel

You	may	see	a	warning	as	below,	essentially	warning	that	the	data	would	be	removed
from	Excel,	just	click	Continue.

365.	Click	Continue	to	proceed	with	the	data	load	if	you	see	this	warning

Now	you	see	the	data	in	the	Power	Pivot	window	instead	of	in	Excel:

366.	Power	Query	loads	data	directly	to	Power	Pivot

ⓘ	The	 ability	 to	 send	Power	Query	data	 directly	 to	Power	Pivot	 only	 exists
Excel	2013	onwards.	For	Excel	2010,	you	could	load	the	data	to	Excel	and	click
‘Create	Linked	Table’	to	send	it	to	Power	Pivot.	(Or	go	into	Power	Pivot,	open
Existing	Connections,	and	use	will	see	one	created	by	Power	Query.	Open	that
one.)

Connecting	to	the	Second	CSV	File
To	connect	 to	 the	second	CSV	file,	you	use	 the	same	steps	as	 for	 the	 first	one,	but
with	a	different	URL:

367.	From	Web	again,	but	now	a	different	URL

You	repeat	all	of	the	steps	from	the	first	CSV,	but	this	time,	you	assign	our	Custom
Column	(PlantCode)	a	static	value	of	“LA”	rather	than	“CH”,	and	a	different	Query
name:

368.	Same	steps	as	before,	but	different	custom	column	value	and	query	name.

Connecting	to	the	Third	CSV	File
As	you	might	guess,	 connecting	 to	 the	 third	CSV	file	 is	 just	 like	connecting	 to	 the
first	two,	but	with	“NY”	instead	of	“LA”	or	“CH”	in	the	custom	column	and	query
name.

After	you	connect	to	the	third	file,	you	have	three	queries	defined	in	the	workbook.
The	Workbook	Queries	pane	now	shows	all	three	CSV	queries:

369.	The	Workbook	Queries	pane	now	shows	all	three	CSV	queries

Time	for	the	Append!
Now,	back	on	the	Excel	Power	Query	ribbon,	you	click	Append:

370.	Launch	the	Append	dialog

In	the	Append	dialog,	you	specify	Products_CH	and	Products_LA:

371.	The	Append	dialog	lets	you	choose	only	two	tables/queries,	but	that’s	okay	for	now.

Next,	 Power	Query	 asks	 you	 about	 privacy.	 Since	 these	CSV	 files	 are	 on	 a	 100%
public	website,	you	can	select	Public:

372.	Public	seems	like	a	safe	choice	here.

⚠	In	Power	Query	option	settings,	you	can	choose	to	ignore	the	Privacy	levels
thereby	suppressing	this	warning.	However	only	do	so	once	you	understand	the
implications.	See	http://ppvt.pro/pqPrivacy	for	more.

Rename	the	query	as	Products,	but	also	check	out	the	Power	Query	formula	bar:

373.	The	formula	bar	shows	Table.Combine,	an	M	function	in	use.	Can	you	modify	that	directly?

Can	you	modify	the	formula	in	the	formula	bar	directly	and	add	Products_NY?	Yes,
you	absolutely	can	edit	 the	formula	yourself,	and	create	a	3-table	append	all	 in	one
step:

374.	Edit	the	formula	manually	to	add	the	third	table/query	to	the	Append!

“Keeping”	Only	the	Appended	Query
You	now	have	four	tables	in	the	Power	Pivot	window:	the	three	original	CSV	queries,
plus	the	Append	result:

375.	Four	tables,	but	we	really	only	need	the	one	combined/appended	table.

Although	 you	 have	 four	 tables,	 you	 really	 only	 need	 the	 one	 combined/appended
table.	 Fixing	 the	 needless	 duplication	 is	 no	 problem.	 Just	 revisit	 the	 three	 original

http://ppvt.pro/pqPrivacy

queries	and	uncheck	‘Add	this	data	to	the	Data	Model’.	Click	continue	if	you	see	any
Data	Loss	warning,	just	warning	you	that	data	would	be	removed	from	Power	Pivot.

376.	For	all	three	original	queries,	uncheck	both	boxes,	then	Load.

Now	you	get	just	one	table	in	Power	Pivot,	and	YES,	it	does	contain	all	three	tables
combined:

377.	Only	our	Products	table	shows	up	in	Power	Pivot

Notice	 that	 there	 is	now	only	one	 tab	 in	Power	Pivot.	 It	has	606	rows,	which	 is	all
three	CSV	files	combined.	And	the	PlantCode	column,	which	did	not	exist	in	any	of
the	CSV	files,	 is	present	 in	 the	 result,	with	all	 three	different	values	 for	PlantCode
(CH,	LA,	NY).

ⓘ	Load	To…	Dialog	Box:	If	you	select	‘Only	Create	Connection’	and	leave
unchecked	‘Add	this	data	 to	 the	Data	Model’,	 the	data	 is	not	 loaded	anywhere
and	 the	 query	 is	 labeled	 ‘Connection	Only’.	Which	may	 seem	 useless,	 but	 as
you	have	seen,	is	in	fact	quite	useful	in	defining	interim	queries	in	Power	Query
which	you	 later	combine,	merge	or	operate	upon.	Also	note	 that	Power	Query
Options	 let	 you	 change	 the	default	Load	To	behavior	 and	 enable	 a	 ‘Fast	Data
Load’	option.

378.	Power	Query	Options	let	you	change	the	default	Load	To	and	enable	Fast	Data	Load

Testing	Refresh
With	only	the	final	result	table	“landing”	in	Power	Pivot,	will	Refresh	know	what	to
do?	Test	it	to	find	out:

379.	The	Append	table	is	active	and	you	click	Refresh	–	not	even	Refresh	All.	Will	it	successfully	re-run	the	three
“child”	queries,	fetching	all	three	CSV	files	and	then	appending	them	together?

Yes,	yes	it	does:

380.	Success.	This	is	sweet.

Why	This	Is	a	Major	Benefit
This	trick	in	Power	Query	makes	for	some	very	happy	Excel	pros	for	a	few	reasons:

1.	 You	don’t	 have	 to	 import	 the	CSV	 files	 as	 three	 different	 tables,	 and
worry	about	how	you	would	connect	these	to	your	other	tables.	Or	struggle
with	writing	duplicate	measures	against	each	one	(like	[Product	Count	CH],
[Product	 Count	 LA],	 etc.),	 and	 then	 add	 them	 all	 together	 to	 form
something	 like	 [Total	 Product	Count].	Writing	 four	 times	 the	 formulas	 is
never	fun,	convenient,	or	maintainable.

2.	 You	 don’t	 have	 to	 perform	 manual	 steps	 every	 time	 you	 want	 to
refresh.	 You	 can	 refresh	 your	 data	 with	 just	 one	 click	 (click	 Refresh	 or
Refresh	 All).	 You	 can	 even	 schedule	 an	 automated	 refresh	 using
PowerBI.com	or	Power	Update	(see	http://ppvt.pro/pwrupdate).

3.	 Despite	 both	 of	 those	 advantages,	 you	 can	 still	 do	 this	 100%	 on	 our
own,	 in	 Excel,	 without	 having	 to	 recruit	 the	 help	 of	 a	 database	 to	 get	 it
done.	Until	now,	if	you	wanted	to	combine	files	and	have	autorefresh,	you
needed	a	database	“intermediary”	standing	between	your	workbook	and	the
data	 sources	 (the	 CSV	 files).	 And	 that	 usually	 meant	 both	 a	 hardware
investment	(a	database	server	that	is	always	on)	and	a	human	investment	(a
database	pro	to	set	it	all	up).	And	this	is	often	neither	practical	nor	possible.
Now	you	can	avoid	all	that.

4.	 This	trick	is	not	limited	to	CSV	files.	Any	of	the	many	sources	that	Power
Query	supports	can	be	appended	like	this.	If	the	files	on	your	website	were
XML	or	Excel,	or	even	a	mixture	of	types,	or	if	some	of	the	files	were	on
the	web	and	some	on	a	network	drive,	this	would	all	still	work.

#2	-	Combine	Multiple	Files	from	a	Folder	into	a	Single
Table

http://ppvt.pro/pwrupdate

Scenario
You	would	 like	 to	 create	 a	 single	 table	 containing	 all	 of	 your	 sales	 data.	 However	 the
challenge	 is	 that	you	 receive	 the	 sales	data	broken	out	by	year	 and	month	 in	 individual
files	(or	even	worse:	a	new	file	per	day	or	week).

381.	Need	to	combine	multiple	files	in	a	folder	into	a	single	Sales	table

You	would	like	to	easily	combine	these	files,	including	any	new	files	created	in	that
folder	 over	 time,	 so	 that	 you	 can	 get	 the	 latest	 sales	 data	with	 a	 single-click	 or	 an
automated	refresh.

From	Folder
From	the	Power	Query	ribbon	you	click	From	File	>	From	Folder:

382.	You	then	specify	the	path	for	the	folder	where	the	files	are	located	and	click	OK.	This	could	be	a	network
folder	or	even	an	FTP	or	a	SharePoint	folder	that	you	have	mapped	to	a	drive.

383.	The	Power	Query	window	may	leave	you	disappointed	at	first,	but	be	patient…

384.	Power	Query	is	simply	showing	the	list	of	files.	How	do	you	get	to	their	content?

Combine	CSV	Files
The	trick	is	using	what	we	call	the	action	button.	Take	a	look	at	the	buttons	next	to
the	column	names	at	the	top.	Most	columns	have	a	filter	button,	which	is	useful	as	it
provides	 you	 various	 filter	 options	 to	 apply	 on	 that	 column.	 But	 notice	 how	 the
button	in	the	Content	column	looks	different.	These	are	what	we	call	action	buttons
as	they	do	something	cool	when	you	click	them.

385.	Click	the	button	next	to	the	Content	column	heading

Clicking	 the	 action	 button	 adds	 several	 steps:	 Combined	 Binaries,	 Imported	 CSV,
Changed	Type.	Now	it	looks	quite	promising.

386.	All	files	in	the	folder	have	been	imported	and	combined

First	Row	As	Headers
You	still	have	a	few	steps	to	take	in	order	to	load	the	final	data.	Notice	the	column
headers	 say	Column1,	Column2,	etc.	Let’s	 fix	 that	by	choosing	 ‘Use	First	Row	As
Headers’	from	the	Power	Query	ribbon:

387.	Year,	Month,	ProductKey	etc.	show	up	as	proper	column	headers

Change	Data	Type	and	Remove	Errors
If	 you	 select	 the	Year	 column,	 you	will	 notice	 in	 the	Power	Query	 ribbon	 that	 the
Data	Type	 is	 set	 to	Text.	You	 can	 click	 on	 the	Data	Type	dropdown	 and	 select	 the
appropriate	data	type.

388.	Power	Query	is	good	at	detecting	appropriate	Data	Type	for	each	column,	however	you	can	also	choose	the
Data	Type	yourself	when	needed

If	you	scroll	down	you	will	notice	that	there	are	rows	which	now	show	an	Error	for
the	Year	 column.	This	 row	 is	 actually	 the	 header	 row	 coming	 in	 from	 each	 of	 our
CSV	file.	Since	each	of	our	underlying	CSV	file	has	column	headers,	the	headers	are
also	 interspersed	 in	 the	 combined	 data	 table	 –	 blech!	 To	 filter	 these	 out,	 you	 can
simply	click	the	‘Remove	Errors’	button	on	the	Power	Query	ribbon:

389.	Click	Remove	Errors	to	remove	the	header	rows	within	the	combine	data	table

With	that	taken	care	of,	check	the	data	type	for	the	other	columns	and	change	where
needed.	After	that,	click	the	dropdown	on	the	‘Close	&	Load’	button	and	click	‘Close
&	Load	To’.	This	will	bring	up	the	Load	To	dialog	box,	where	you	choose	to	load	the
table	to	the	Data	Model	(Power	Pivot)	only.

390.	Load	this	query	to	the	Power	Pivot	Data	Model

All	the	CSV	files	will	be	combined	and	loaded	up	into	a	single	Sales	table:

391.	24	different	files	covering	the	period	of	two	years	have	been	combined	into	a	single	table

Testing	Refresh
What	 if	 additional	 files	 were	 dropped	 in	 that	 folder?	 Will	 Refresh	 pick	 them	 up
automatically?	Let’s	test	it	to	find	out.	In	our	case	we’ll	place	new	files	for	the	year

2008	in	the	folder.

392.	New	files	received	in	the	folder.	Will	Power	Query	automatically	pick	up	these	files?

Yes,	yes	it	does:

393.	Sweet	Success.	This	is	getting	to	our	heads	now.

Why	This	Is	a	Major	Benefit
Here	is	why	we	love	this	Power	Query	trick:

1.	 You	 can	 combine	 an	 unlimited	 number	 of	 files	 in	 a	 folder.	For	 a	 few
files,	 you	 can	 use	 the	 append	 approach	 covered	 earlier.	 But	 for	 large
number	of	files,	especially	when	the	exact	number	of	files	is	unknown	and
can	vary	over	time,	this	approach	combines	all	files	in	one.	And	delivers	the
one-click	and	automated	refresh	possible	with	Power	Query.

2.	 You	 can	 write	 all	 your	 Power	 Pivot	 measures	 easily	 against	 a	 single
table.	With	the	multiple	Product	table,	there	was	the	option,	albeit	painful,
to	bring	in	the	files	separately	and	define	a	measure	on	each	file.	Bringing
in	files	individually	is	not	even	an	option	if	you	have	monthly/weekly/daily
files	you	need	to	combine.	The	“From	Folder”	option	is	the	one	to	choose.

3.	 This	 is	 easier	 and	more	 human	 friendly	 than	writing	 a	macro.	Excel
ninjas	 at	 times	 scoff	 at	Power	Query,	 alluding	 that	 they	 already	know	 ten
different	 ways	 to	 do	 the	 same	 tasks	 in	 Excel.	 Well	 that’s	 great,	 but
inevitably	at	some	time	whatever	you	build	in	Excel	–	you	would	transition
it	to	someone	else.	Power	Query	makes	the	transition	dead	simple.	It	is	self-
documenting.	Anyone	can	 just	go	 into	Power	Query,	and	step	 through	 the
Applied	Steps	one	by	one	to	see	the	transformations	being	applied.	And	if

one	of	the	steps	is	erroring	out,	it	is	super	easy	to	locate	the	erroneous	step
and	fix	it.	Power	Query	works	for	Excel	ninjas	as	well	as	novices.	How
cool	is	that!

#3	–	Adding	Custom	Columns	to	Your	Lookup	Tables
Scenario
You	would	 like	 to	add	one,	or	a	 few	custom	columns,	 to	your	Lookup	 tables.	You	have
read	the	advice	(in	the	Performance	chapter)	that	“imported	columns	are	generally	better
than	calculated	columns”.	However	for	this	data	source	you	do	not	have	the	support	of	a
Database	Administrator	who	could	help	you	add	these	columns.

For	this	scenario,	you	would	like	to	add	a	simple	“PriceBucket”	column	to	your	Products
table	 to	 bucket	 them	 as	 -	 $	 (Inexpensive),	 $$	 (Moderate),	 $$$	 (High-End),	 $$$$
(Premium).

394.	Add	a	Custom	Column	for	PriceBucket

You	could	do	this	yourself	using	Power	Query.

Get	Data
We’ll	use	a	 jumpstart	here	and	start	with	our	basic	 tables	 loaded	already.	These	are
simply	 pulled	 in	 from	 our	 original	 AdventureWorks	 Access	 database,	 via	 Power
Query	with	some	basic	transformations.

395.	Our	basic	tables	have	already	been	pulled	in

Add	Custom	Column
On	 the	 ‘Add	Column’	 tab	 in	 the	 ribbon,	you	have	plenty	of	options	 to	 add	custom
columns	simply	by	clicking	a	ribbon	button.

396.	Plenty	of	options	to	Add	Column	with	just	a	click	of	a	button

ⓘ	Note:	 The	 specific	 set	 of	 options	 that	 are	 enabled,	 versus	 others	 that	 are
disabled	are	based	on	the	data	type	of	the	column	you	have	clicked	and	selected
in	Power	Query.	Therefore	you	should	first	click	and	select	the	column	you	are
looking	to	use;	in	some	cases	you	may	also	need	to	change	the	data	type	of	your
column	(can	be	done	from	Power	Query	Home	tab).

However,	for	our	scenario,	we	need	some	specific	logic,	thus	we	will	click	the	‘Add
Custom	Column’	button.

397.	Click	to	add	a	custom	column

Define	Custom	Formula
You	would	get	the	same	Add	Custom	Column	window	that	we	have	seen	before.	But
this	time,	we	are	doing	something	fancier	than	adding	a	static	value.	For	help	you	can
click	on	the	‘Learn	about	Power	Query	formulas’	link	or	grab	your	copy	of	“M	Is	for
(Data)	Monkey”	which	you	always	keep	handy	

Here	is	our	final	formula:

398.	Our	Custom	Column	formula

Fairly	straightforward,	but	know	that	you	have	a	lot	of	power	available	to	you	here	as
you	tap	into	the	M	language.

After	you	load	your	table	into	Power	Pivot,	 the	new	custom	column	can	be	used	to
slice	and	dice	your	measures	as	you	please.

399.	Our	PriceBucket	custom	column	in	action	inside	a	pivot	table

Why	This	Is	so	Amazing
Power	Query	becomes	the	one-stop-shop	for	all	data	cleaning-shaping-transforming
needs.	 Custom	 Column	 falls	 squarely	 in	 that	 area,	 and	 once	 you	 get	 a	 little
comfortable	with	the	M	language,	you	would	be	using	Power	Query	to	add	all	your
custom	columns.

We	 certainly	 prefer	 to	 do	 that	 now	 in	 Power	 Query	 and	 not	 have	 to	 worry	 about
Calculated	Columns	in	Power	Pivot.

#4	-	Using	Power	Query	to	“Unpivot”	a	Table
Scenario
Even	if	you	are	not	familiar	with	the	term	‘Unpivot’,	you	will	recognize	the	problem
when	you	see	it.	This	is	one	of	the	most	common	and	most	frustrating	data	shaping
tasks	on	the	planet.	Let’s	say	you	have	a	table	of	Budget	data	that	looks	like	this:

400.	Data	arranged	in	columns	instead	of	rows

This	is	a	very	common	shape	–	data	arranged	in	columns	-	especially	from	exported
data.	You	see,	a	lot	of	exports	are	exports	from	“reports”	–	things	that	were	meant	to
be	The	Last	Word	on	a	topic,	but	don’t	get	the	job	done.	And	much	like	we	often	like
to	put	dates	on	columns	of	our	pivots,	these	reports	are	designed	to	be	friendly	to	the
human	 eyeball.	 But	 Power	 Pivot	 isn’t	 an	 eyeball.	 It’s	 a	 hardcore	 data	 crunching
machine,	and	it	prefers	dates	captured	in	rows	instead	of	across	multiple	columns.

401.	Desired	End-Result	after	reshaping,	data	in	rows

When	 you	 have	 date-related	 columns	 in	 your	 source	 data,	 you	 really	 should	 turn
those	into	a	single	date	column,	turning	the	“wide	and	short”	table	into	a	“narrow	and
tall”	table.

Date	columns	like	this	are	very	inconvenient	in	Power	Pivot.	They	force	you	to	write
measures	 for	 each	month,	 for	 instance	 ([Jan	 Sales],	 [Feb	 Sales],	 etc.)	and	make	 it
impossible	 to	 perform	 time-series	 analysis	 using	 things	 like	 DATEADD,
DATESYTD,	and	The	Greatest	Formula	in	the	World	(covered	in	a	later	chapter).

So	how	would	you	re-shape	this	table	into	something	that	is	much	more	Power	Pivot
friendly?	Again,	Power	Query	to	the	rescue.

Get	Data	from	Excel
This	time,	the	source	data	lives	in	an	Excel	(.XLSX)	file.	Select	From	File	>	From
Excel	and	then	select	your	XLSX	file.	Once	file	is	selected,	you	are	presented	with	a
list	 of	 all	 the	 tables	 available	 in	 that	 workbook	 (in	 this	 case,	 it’s	 just	 the	 Budget
worksheet).	Select	the	Budget	worksheet	and	click	Edit.

402.	Connecting	Power	Query	to	an	Excel	file

Header	Row	Handling	and	Remove	Column
This	will	 launch	 the	Power	Query	 editor	window.	 Initially,	 Power	Query	 treats	 the
first	row	of	the	table	as	data	rather	than	as	a	header	row.	No	problem:	Just	click	the
Use	First	Row	as	Headers	button	to	take	care	of	the	header	row	issue	once	and	for	all.

403.	Click	the	highlighted	button	to	use	first	row	as	headers

Notice	the	Grand	Total	column	at	 the	very	end.	That	column	is	redundant	since	we
already	have	data	 at	 the	month	 level	which	we	can	 add	up	 to	get	 the	Grand	Total.
Thus	select	the	column	and	click	Remove	Columns	button.

404.	Remove	unnecessary	columns

Unpivot!
The	 Unpivot	 operation	 (moving	 data	 from	 columns	 to	 rows)	 is	 found	 under	 the
Transform	 tab	on	 the	 ribbon.	Here	you	 can	 select	 all	 the	month	 columns	 and	 click
Unpivot.	 But	 as	 a	 shortcut,	 we	 can	 select	 the	 columns	 to	 the	 left	 of	 the	 Month
columns	(Region,	Market,	Model)	and	then	click	Unpivot	Other	Columns.

(Note:	To	select	multiple	columns,	hold	down	Ctrl	key	and	click	the	column	headers)

405.	Unpivot	Other	Columns

And	here’s	the	result:

406.	Unpivoting	moved	the	data	from	column	to	rows

The	 advantage	 of	 the	 “Unpivot	Other	Columns”	 approach	 (over	 just	 “Unpivot”)	 is
that	you	can	deal	with	an	arbitrary	number	of	columns.	If	the	same	file	later	picks	up
new	columns	for	the	year	2016,	guess	what,	Power	Query	will	still	be	able	to	reshape
the	whole	data	if	you	used	Unpivot	Other	Columns.

407.	Unpivot	Other	Columns	will	still	correctly	reshape	all	our	data	as	columns	get	added

Rename	and	Change	Type
Just	 a	 few	 final	 steps.	 Unpivot	 gave	 us	 an	 “Attribute”	 column	 that	 is	 our	 desired
Month	column,	and	a	“Value”	column	with	the	Budget	data.	Right	click	and	rename
the	Attribute	column	and	change	the	data	type	of	Value	column	to	currency,	yielding:

408.	Bingo.

Load	it	to	Power	Pivot	Data	Model,	similar	to	earlier	examples	and	we’re	done:

409.	We	have	the	right	shape,	with	the	right	columns,	and	576	rows	(our	original	“wide”	data	set	had	only	48
rows,	but	far	more	columns).

And	oh	yeah	–	when	you	click	Refresh,	it	all	just	works.

Why	This	Is	a	Major	Benefit
Not	only	is	unpivoting	good	for	our	formulas,	but	it	means	you	can	write	a	single
Sales	measure	instead	of	12,	and	time	intelligence	calculations	are	possible	–	but	it	is
also	good	for	file	size	and	speed.	One	of	the	topics	covered	in	“Performance”	chapter
is	precisely	this	“unpivot”	operation,	and	its	tremendous	benefits.

Now	you	can	set	up	this	Unpivot	query	one	time,	and	every	time	you	click	Refresh
(or	a	scheduled	refresh	runs),	the	right	thing	just	happens.

Note	from	Avi:	Before	Power	Query,	I	used	to	use	SQL	statements	(in	a	database)	to
Unpivot	data,	but	each	time	I	had	to	crack	open	my	SQL	book	to	look	up	the	–	not	so
simple	–	syntax.	Now,	 I	 just	 love	being	able	 to	do	 it	 in	Power	Query	with	a	single
click!

ⓘ	Note:	Kinda	 funny	 isn’t	 it	 –	 in	 a	world	of	Pivots,	 one	of	 the	most	 useful
tools	is	called	“Unpivot.”	And	then	you	use	it	to	feed	data	into…Power	Pivot.

#5	-	Using	Power	Query	to	Create	a	Lookup	Table	from	a
Table
Scenario

You	want	to	create	separate	Data	and	Lookup	tables	in	your	Power	Pivot	Data	Model
as	 per	 the	 best	 practices.	However	 you	 often	 receive	 a	 single	 flattened	 table,	with
elements	of	both	data	and	lookup	tables.

410.	Bookings	-	Is	this	a	Data	table?	Or	is	it	a	Data	Table	with	a	Lookup	table	hiding	inside	of	it?

ⓘ	Reminder:	Why	We	Need	Lookup	Tables
In	our	chapter	on	relationships	and	performance,	we	covered	the	many	benefits
of	 separate	Data	 and	Lookup	 tables.	 Performance,	 file	 size,	 and	 the	 ability	 to
analyze	multiple	data	tables	in	the	same	pivot	(such	as	Budget	and	Actuals)	all
are	greatly	improved	by	separating	your	Lookup	and	Data	tables.

Each	row	 in	 the	Bookings	 table	 captures	 three	 essential	pieces	of	 information:
When,	Who,	 and	How	Much.	A	 single	 column	 (Date,	CustomerKey,	 and	Amount,
respectively)	is	responsible	for	capturing	each	piece	of	information.	This	is	the	kind
of	information	that	data	tables	are	meant	to	capture.	So	far,	so	good.

But	 the	 table	 also	 contains	 additional	 information	 about	 each	 customer	 –
FullName,	Phone,	and	Address.	This	is	overkill;	there	is	no	need	for	each	of	the	first
three	rows,	for	instance,	to	tell	us	that	customer	11000	lives	at	3761	N.	14th	St.	If	we
know	it’s	customer	11000,	we	could	look	up	their	address	in	a	separate	table!

That	 is	 the	 sort	 of	 information	 that	 is	 better	 captured	 in	 Lookup	 tables,	 and
ideally,	 we	 would	 “outsource”	 those	 columns	 (FullName,	 Phone,	 and	 Address)	 to
precisely	such	a	table.

Here	is	your	desired	end	result:

411.	Bookings	and	Customers	as	separate	Data	and	Lookup	tables

Let’s	see	how	we	can	do	this	using	Power	Query	so	that	our	Data	and	Lookup	tables
are	always	accurate	and	stay	up-to-date	with	a	one-click	or	automated	refresh.

ⓘ	One-click	or	Automated	Refresh:	We	 keep	 saying	 this	 again	 and	 again,
and	for	good	reason.	You	may	be	thinking,	what’s	the	big	deal	–	I	can	do	these
steps	in	plain	old	Excel	in	less	than	five	minutes.	The	five	minutes,	doesn’t	seem
much	when	you	 are	 spending	hours,	 if	 not	 days,	 slaving	 away	 to	put	 together
reports.	But	with	all	the	Power	BI	tools,	when	nearly	everything	is	automated,	a
five-minute	 manual	 step	 will	 start	 to	 chafe	 at	 you.	 And	 once	 you	 do	 go	 to
automated	refresh,	you	will	never	want	to	go	back!

Create	Lookup	Table
Our	 Booking	 table	 lives	 in	 Access,	 so	 in	 the	 Power	 Query	 ribbon	 select	 ‘From
Access’,	 then	 select	 the	Bookings	 table	 and	click	Edit	 (to	 launch	 the	Power	Query
Editor):

412.	Our	Booking	table	lives	in	Access,	so	that’s	the	Power	Query	button	we	are	going	to	press.

Now	we	remove	the	columns	that	we	do	not	want	in	our	new	Customers	table.	Date
and	Amount	are	not	relevant	in	a	table	that	describes	each	Customer,	so	we	ctrl-click
those	 two	 column	 headers	 to	 select	 them,	 then	 right	 click	 and	 choose	 Remove
Columns:

413.	Ctrl-click	the	two	columns	we	don’t	need,	then	right	click	to	Remove	them

We	will	 sort	 by	CustomerKey,	 by	 selecting	 that	 column	 and	 clicking	 the	Sort	A-Z
button.	This	step	is	purely	for	demonstration,	so	we	can	easily	show	you	the	effect	of
the	next	step	(Remove	Duplicates).	This	step	is	not	needed	to	build	Lookup	tables.

414.	Sort	by	CustomerKey,	just	so	we	can	observe	the	effects	of	the	next	step

Now	we	just	select	the	CustomerKey	column	and	click	Remove	Duplicates:

415.	To	get	a	single	row	for	each	CustomerKey,	we	simply	remove	the	duplicates!

As	a	last	step,	we	rename	this	query	to	be	Customers,	and	then	continue	on	and	load
it	to	the	Power	Pivot	data	model.	You	can	see	that	the	CustomerKey	is	now	unique,
with	duplicates	removed.

416.	Change	query	name	and	load	to	Data	Model	only

Let’s	look	at	our	freshly-minted	Customers	table	in	Power	Pivot:

417.	It’s	 sorted	 by	CustomerKey.	 Each	 key	 appears	 just	 once,	 but	 we	 still	 have	 their	 properties	 columns	 like
FullName,	Address,	and	Phone!	Perfect!

Create	Data	Table
Now	we	can	go	back	and	 import	 the	original	Data	 table	 (Bookings).	This	 time,	 the
only	 change	 we	 will	 make	 to	 the	 “raw”	 Booking	 table	 is	 to	 remove	 those	 excess
customer	 property	 columns	 (FullName,	 Phone,	 and	Address).	 Do	 this	 by	 selecting
those	columns	and	clicking	the	Remove	Columns	button	on	the	Power	Query	ribbon,
which	yields	this	result:

418.	The	Bookings	data	table,	with	the	customer	properties	removed	(via	the	ribbon	button)

Continue	on	and	load	the	table	into	Power	Pivot.

Relating	the	Two	Tables
Now	that	we	have	both	our	Data	(Bookings)	and	Lookup	(Customers)	table,	we	can
easily	relate	them	in	Power	Pivot	via	the	CustomerKey.	Thus	getting	our	final	result:

419.	Linking	our	Data	and	Lookup	tables	in	Power	Pivot

Why	This	Is	so	Amazing
Before	 Power	 Query,	 back	 before	 the	 earth	 cooled,	 yes,	 there	 were	 other	 ways	 to
create	Lookup	tables	from	similar	data	sets.

You	could	do	this	in	plain	old	Excel,	by	using	manual	steps	to	create	a	unique	list	of
CustomerKey	and	customer	attributes,	and	importing	that	into	Power	Pivot.	But	that
requires	manual	effort	each	time	we	want	to	refresh	and	import	 the	latest	Bookings
data.	 New	 customers	 are	 likely	 to	 be	 appearing	 in	 the	 data	 all	 the	 time,	 and	 our
manually-created	Lookup	table	will	constantly	fall	out	of	date.

You	 also	 could	 build	 such	 a	 Lookup	 table	 in	 the	 original	 source	 database	 (or	 ask
nicely	 for	 someone	 else	 to	do	 that	 for	 you).	That’s	 a	 fabulous	 solution	–	when	 it’s
actually	an	option.	You	don’t	always	have	access	 to	a	database	(and/or	 the	skills	 to
operate	one).

With	 Power	 Query,	 in	 just	 a	 few	 simple	 steps	 you	 can	 do	 yourself,	 you	 have	 a
refreshable,	 self-maintaining	 lookup/data	 table	 pair.	 An	 elegant	 solution	 to	 a	 very
common	data	transformation	problem.

#6	-	Creating	a	Calendar	Table:	Advanced	Power	Query
Power	 Pivot	 needs	 a	 Calendar	 table	 like	 Rob	 needs	 coffee:	 when	 deprived	 of	 this
essential	 ingredient,	 both	 are	 still	 useful	 to	 an	 extent,	 but	 fall	 short	 of	 their
potential…and	sometimes	return	incorrect	or	confusing	answers.

<pause	for	sip	of	coffee>

Of	 course,	 creating	 a	 Calendar	 table	 involves	 all	 the	 same	 problems	 as	 creating	 a
Lookup	 table;	 after	 all,	Calendar	 table	 is	merely	a	 special	kind	of	Lookup	 table!	 If

you	manually	 create	 a	 Calendar	 table,	 you	 have	 to	 update	 it	 frequently	 to	 include
more	recent	dates	(and	sometimes	“drop”	older	dates	from	the	past),	OR	you	have	to
be	okay	with	a	Calendar	table	that	extends	“into	the	future”	–	which	can	pollute	your
slicers	and	pivots	with	needless	date	values	AND	make	some	of	your	calculations	do
funny	things	in	the	most	recent	(incomplete)	month.

Trust	us	on	 this,	 it’s	 less	hassle	 to	have	a	Calendar	 table	 that	 is	 “in	 lockstep”	with
your	Data	table(s)	–	one	that	starts	on	the	first	date	for	which	you	have	data,	and	ends
on	the	last	date	for	which	you	have	data.

To	 have	 that	 “lockstep”	 Calendar,	 you	 have	 the	 same	 choices	 as	 above:	 manual
(repeatedly),	or	database.	And	now,	Power	Query.

“Wait,	I	Don’t	See	a	‘Make	Calendar’	Button!”
Yes,	 as	 of	 version	 2.26	 in	 late	 2015,	 Power	Query	 does	not	 offer	 a	 nice	 one-click
solution	to	 this	problem.	(Excel	2016	Power	Pivot	does	offer	something,	but	not	as
part	of	Power	Query,	and	so	far	we	find	the	“create	calendar”	functionality	in	Excel
2016	 to	 be	 lacking.	 It	will	 improve	over	 time,	we	 are	 sure,	 but	 for	 now…	we	 still
need	something,	and	Power	Query	is	our	best	bet).

What	 Power	 Query	 does	 have,	 however,	 is	 something	 called	 “M.”	 M	 is	 not	 a
character	from	a	James	Bond	story,	but	a	data	 transformation	formula	 language.	So
it’s	even	more	exciting	than	a	secret	agent.

The	bad	news:	M	is	brand	new	and	uses	different	syntax	than	Excel	and	DAX.	The
good	 news:	 if	 you’ve	 been	 following	 the	 Power	 Query	 examples	 above,	 you’ve
already	been	writing	M.

420.	The	 language	 you	 see	 in	 the	 formula	 bar	 is	M	 that	 was	 generated	 by	 the	 ribbon	 buttons.	 A	 query	 can
contain	multiple	formula	steps,	and	each	step	can	reference	previous	steps	by	name.

So	 the	 ribbon	 buttons	 on	 the	 Power	 Query	 ribbon	 tab	 are	 similar	 to	 the	 Macro
Recorder	for	VBA	macros	–	they	help	you	write	M	without	knowing	M,	but	then	you
can	edit	the	M	by	hand	if	you	want.

ⓘ	Note:	We	won’t	lie	to	you.	We	did	not	know	how	to	write	the	M	formulas	to
generate	a	“lockstep”	Calendar	table.	But	we	did	know	who	to	ask	at	Microsoft,
and	they	happily	sent	us	the	M	we	needed.

Steps
Within	the	Excel	Power	Query	ribbon,	click	From	Other	Sources	>	Blank	Query.

421.	This,	as	expected,	brings	up	a	blank	query.	Change	 the	name	of	 the	query	 to	Calendar,	 then	click	on	 the
Advanced	Editor,	button.

422.	Now	select	and	remove	all	text	within	the	Advanced	Editor	window	and	paste	the	M	language	code	as	below
(available	with	the	file	downloads	for	this	book):

let
ChangedType	=	Table.TransformColumnTypes(Bookings,{{“Date“,	type	date}}),
MaxDate	=	Record.Field(Table.Max(ChangedType,	“Date“),”Date“),
MinDate	=	Record.Field(Table.Min(ChangedType,	“Date“),”Date“),
DaysElapsed	=	Number.From(MaxDate-MinDate),
DatesList	=	List.Dates(MinDate,	DaysElapsed+1,Duration.From(1)),
RawDatesTable	=	Table.FromList(DatesList,	Splitter.SplitByNothing(),	
{“Date”},	null,	ExtraValues.Error),

ChangedType1	=	Table.TransformColumnTypes(RawDatesTable,{{“Date”,	type
date}}),
InsertedDay	=	Table.AddColumn(ChangedType1,	“Day”,	each	Date.Day([Date]),
type	number),
InsertedMonth	=	Table.AddColumn(InsertedDay,	“Month”,	each	
Date.Month([Date]),	type	number),
InsertedYear	=	Table.AddColumn(InsertedMonth,	“Year”,	each	Date.Year([Date]),
type	number)
in
InsertedYear

This	code	snippet	can	be	found	in	the	accompanying	book	files	and	assumes	that	you
have	an	original	table	named	Bookings,	and	it	contains	a	column	named	Date.	(The
places	where	those	names	appear	in	the	formulas	above	are	highlighted	in	color.	So
that	you	can	see	where	to	change	them	in	order	to	match	your	own	data	set.)

Click	done	on	the	Advanced	Editor	window	(make	sure	there	were	no	syntax	errors
detected):

423.	You	can	paste	or	edit	M	code	within	the	Advanced	Editor	window

This	should	yield	our	final	result,	which	you	can	load	to	Power	Pivot	data	model:

424.	Our	final	calendar	table	generated	using	M	code

Why	This	Is	a	Major	Benefit
This	showcases	the	possibilities	in	Power	Query,	with	the	use	of	its	M	language.	Here
we	get	an	auto-generated	Calendar	table,	in	Power	Pivot,	that	starts	on	our	oldest	date
from	the	data	 table	and	continues	up	 to	 (and	 including)	 the	most	 recent	date	 in	our
data	 table.	 Each	 date	 appears	 only	 once,	 and	NO	 dates	 are	 skipped.	 Those	 are	 all
important	 qualities	 of	 a	 Calendar	 table.	 And,	 of	 course,	 all	 of	 this	 updates
automatically	and	properly	every	time	we	click	Refresh	(or	with	a	scheduled	refresh).

425.	Power	Query	used	our	original	Bookings	table	(27,617	rows)	to	produce	a	Calendar	table	(1,127	rows)	–
one	instance	of	each	date,	with	no	gaps.

You	can	also	insert	additional	columns	as	needed	in	your	Calendar	table,	just	by
using	the	ribbon	buttons.	Select	your	Date	column,	and	in	the	Add	Columns	ribbon
tab,	click	Date,	then	choose	your	transformation	(e.g.	Day	of	Week).

426.	Creating	additional	columns	in	your	Calendar	table	is	fairly	easy

You	can	insert	new	M	formula	steps	easily	wherever	the	ribbon	interface	falls	short
of	what	you	need.	This	opens	your	world	 to	all	 the	richness	 the	M	language	has	 to
offer.	Just	click	the	“fx”	button	and	type	in	your	M	formula	in	the	formula	bar.

427.	You	can	also	edit	the	M	code	for	any	step,	even	the	steps	generated	by	clicking	the	ribbon	buttons.	Just	click
in	the	formula	bar	to	start	editing.	Or	if	you	are	feeling	brave,	click	on	the	Advanced	Editor	button	(as	we	did	to
paste	our	Calendar	code)	to	edit	all	your	steps	at	once.

How	NOT	to	Use	Power	Query
Don’t	Use	Power	Query	Without	Power	Pivot
You	may	 encounter	 a	 few	 one-off	 tasks	where	 you	only	 use	 Power	Query,	 but	when	 it
comes	 to	 building	 any	 scalable,	 durable,	 agile	BI/Reporting	 system,	 Power	 Pivot	 is	not

optional.	 Power	Query	 is	 a	 great	 tool	 but	 it	 does	 not	 replace	 Power	 Pivot.	A	well-built
Power	 Pivot	 data	 model	 has	 the	 ability	 to	 answer	 not	 only	 the	 questions	 that	 you	 are
asking	right	now,	but	also	the	questions	you	may	ask	in	the	future.	You	have	your	“Define
Once,	Use	Everywhere”	measures	which	you	can	slice-and-dice	any	which	way	you	want
via	the	power	of	relationships.	You	do	not	get	that	with	Power	Query	alone.

Power	Query	and	Power	Pivot	complement	each	other.	Use	Power	Query	to	clean,	shape
and	transform	your	data	before	it	lands	in	your	data	model.	Continue	to	use	Power	Pivot	to
build	data	models,	define	relationships	and	a	treasure	trove	of	measures.

Don’t	Use	Power	Query	Calculations	as	a	Substitute	for	DAX	Measures
This	one	 is	essentially	a	continuation	of	 the	previous	one.	Once	you	get	 the	hang	of	M,
Power	Query’s	calculation	engine	starts	 to	tempt	you	–	maybe	you	should	not	 just	clean
and	shape	data	with	it,	but	also	start	to	crunch	numbers…	you	know,	actually	produce	the
final	reports.	We’ve	seen	a	number	of	our	clients	doing	this.

Using	M	 /	 Power	 Query	 to	 add	 calculated	 columns	 is	 awesome,	 and	 is	 something	 we
highly	recommend	if	you	have	sufficient	M	skill.

But	using	M	as	a	substitute	for	DAX	measures	is	a	mistake.	Measures	are	more	dynamic	–
they	 automatically	 adjust	 and	 recalculate	 in	 response	 to	 Slicers,	 Filters,	 and	 different-
shaped	 pivots.	 DAX	measures	 are	 the	 “portable	 formulas.”	M	 only	 re-calcs	 when	 you
reload	the	data.	And	for	aggregations	like	SUM,	etc.,	DAX	is	far	more	efficient/fast.

Some	 egregious	 examples	 we	 have	 seen	 include,	 using	 Power	 Query	 to	 add	 a
Cumulative	 Total	 column,	 or	 using	 Power	 Query	 to	 perform	 Time	 Intelligence
calculation	(Year	over	Year	etc.).	At	a	recent	client	visit,	when	we	replaced	these	Power
Query	custom	columns	with	Power	Pivot	measures	we	reduced	the	size	of	the	model	by	a
phenomenal	90%!

Don’t	Use	Power	Query	to	Flatten	Tables
From	previous	chapters	you	already	know	that	flat	tables	which	“blend”	Data	and	Lookup
tables	 into	 one	 table	 are	not	 the	 ideal	 shape	 for	 Power	 Pivot.	Yes,	 Power	Query	would
make	 it	easier	 to	merge	Data	and	Lookup	 tables	 like	 that.	But	you	know	better	by	now.
Resist	 the	 temptation.	You	will	 get	maximum	value	 from	 your	 data	model	 via	 separate
Data	 and	 Lookup	 tables.	 If	 still	 in	 doubt,	 reread	 the	 chapters	 on	 Multiple	 Tables	 and
Relationships,	and	also	on	Performance.

Don’t	Use	Power	Query	to	Mash	Two	Data	Tables	Together
We	 advised	 against	 this	 in	 the	Multiple	 Data	 Tables	 chapter,	 and	 will	 reiterate	 it	 here.
Separate	data	tables	typically	capture	data	from	separate	business	processes.	For	example,
the	 budget	 setting	 process	 is	 very	different	 than	how	your	 sales	 transactions	 occur.	 Just
because	you	need	to	analyze	them	together	does	not	mean	you	mash	them	in	to	a	single
table.

Again,	Power	Query	makes	it	very	easy	to	produce	such	“franken-monster”	tables,	but	that
doesn’t	mean	you	should.	Follow	the	best	practices	we	have	 laid	out	 in	 this	book,	 leave

your	Data	 tables	separate,	 tie	 them	together	via	shared	Lookup	tables,	and	 then	bust	out
some	serious	Measures	on	them.	That	will	yield	a	far	more	flexible	and	powerful	model
than	any	“frankentables”	you	might	be	tempted	to	create	in	Power	Query.

You	have	now	met	Power	Query,	one	of	the	“newer”	tools	in	the	Power	BI	family.	It's	time
now	to	meet	another	member;	one	of	the	latest	additions	-	Power	BI	Desktop.

21	-	Power	BI	Desktop
Meet	the	New	Kid	On	the	Block
And	the	new	kid	has	all	the	fancy	toys:

428.	Power	BI	Desktop	(Report	mode)

Get	ready	for	some	shock	and	awe	before	we	dive	into	the	details.	Here	is	some	of
what	Power	BI	Desktop	has	to	offer.	And	remember,	all	of	this	is	at	your	fingertips
TODAY	without	learning	anything	new	-	it's	the	same	engines!

Tons	of	Visualizations

429.	Many	visualizations	to	choose	from,	heck	you	can	even	build	your	custom	visuals

Creating	Reports	is	Easy	as	1-2-3
Easily	add	visuals	to	your	report:

1.	 Choose	your	visualization
2.	 Drag	and	Drop	fields	from	your	field	list
3.	 Pump	up	your	visuals	using	all	the	customization	options

430.	Create	your	visuals	using	the	familiar	field	list	(similar	to	the	one	you	see	when	creating	pivot	tables)

Fully-Interactive	Reports	Make	Your	Data	Come	to	Life
Reports	 are	 fully	 interactive,	 offering	 cross-filtering	 by	 clicking	 any	 element	 and
drill-down	 across	multiple	 levels.	You	 also	 have	 options	 to	 deploy	 your	 reports	 to
web	or	mobile	(we’ll	cover	that	in	the	“YouTube	for	Data”	chapter).

431.	Click	on	any	element	to	cross-filter	your	report	-	it's	like	everything	is	a	slicer!

432.	Drilldown	to	multiple	levels

Power	Pivot,	Power	Query	and	Power	View++	All	in	One	Package
This	isn’t	just	about	pretty	visuals,	Power	BI	Desktop	actually	has	Power	Pivot	and
Power	Query	all	rolled	in	with	the	visualization	piece.	Beauty	with	Brains!

433.	Power	BI	Desktop	has	all	the	strength	of	Power	Pivot	and	Power	Query	inside

Download	Today!
Best	 of	 all,	 Power	 BI	 Desktop	 is	 available	 to	 download	 for	 free	 from	 Microsoft
(http://ppvt.pro/pbiDownload).

Remember:	Same	Engines,	Different	Visuals
In	one	of	the	early	chapters	of	this	book,	we	outlined	how	Power	BI	Desktop	fits	into
the	overall	picture,	and	how	it	relates	to	Excel,	Power	Pivot,	and	Power	Query.	The
short	version	of	that	is	“Power	BI	Desktop	contains	the	same	PP	and	PQ	engines,	and
is	merely	a	different	container	with	a	different	visualization	layer.”

To	 demonstrate	 that	 “same	 engines”	 compatibility,	 we	 are	 going	 to	 intersperse
Desktop	examples	into	the	rest	of	the	book.	(In	parallel	with	Excel-based	examples,
because	we	think	the	Excel-based	versions	of	these	engines	are	still	very	important).

And	 it	doesn’t	 seem	“fair”	 to	start	using	Desktop	examples	without	some	words	of
introduction.	But	since	Desktop	is	so	similar	to	Excel-based	Power	BI,	it	won’t	take
very	long	

A	Few	Words	of	Perspective
You’re	Probably	Going	to	Use	Both

http://ppvt.pro/pbiDownload

Who	 is	 going	 to	 use	 Power	 BI	 Desktop	 versus	 Excel-based	 Power	 BI?	 More
specifically,	what	should	you	decide	to	do?	Which	one	should	you	use?

First	rule	here	is,	don’t	sweat	it.	Let	this	question	answer	itself	naturally.

Let’s	break	the	world	into	four	groups	of	people:

1.	 People	who	exclusively	use	Excel-based	Power	BI	tools
2.	 People	who	exclusively	use	Power	BI	Desktop
3.	 People	who	use	both	flavors,	Excel-based	and	Desktop
4.	 Unfortunate	souls	who	use	neither	–	because	they	haven’t	heard	of	them	or

because	they	are	forced	to	use	some	other,	incredibly	clumsy	toolset

Most	 of	 you	 reading	 this	 are	 in	 the	 process	 of	 escaping	 group	 #4,	 or	 have	 recently
completed	your	escape	

New	 “escapees”	 then	 overwhelmingly	 find	 themselves	 in	 group	 #1,	 because	 the	 Excel
versions	are	the	most	naturally	inviting.

A	handful	find	themselves	in	group	#2,	because	they	were	explicitly	looking	for	a	BI	tool
rather	than	an	Excel	turbocharger.	Nothing	wrong	with	that	of	course,	it’s	legitimate.	It’s
just	that	this	is	not	the	majority	of	humans.

But	guess	what?	We	think	that,	over	time,	the	largest	group,	by	far,	will	be	group	#3.

You	will	probably	wind	up	using	both.	Maybe	not	soon,	but	eventually.

Because	they	share	the	same	engines,	you	can	move	between	them	with	very	little	trouble.
And	there	are	things	that	you	can	do	in	one	that	you	can’t	do	in	the	other.

That	even	starts	with	how	to	“sell”	these	tools	to	your	organization.

The	“Sales	Pitch”	–	Show	Excel-Based	to	the	Analysts,	Desktop	to	Execs
That’s	an	important	point,	so	let’s	stop	and	call	it	out…

If	 you	 are	 trying	 to	 gain	 buy-in	 for	 the	 Power	 BI	 toolset	 at	 your	 company,	 let	 us
recommend	the	following	two-pronged	“sales”	approach:

When	 you	 are	 pitching	 the	 tools	 to	 “analyst”	 types	 who	 use	 Excel	 (the
“producers”	of	analytics),	show	them	the	Excel-based	versions	as	their	“gateway
drug.”	They	don’t	want	to	be	pitched	on	a	brand	new	container/app	like	Desktop.
They	 are	 programmed	 to	 resist	 it,	 and	 for	 good	 reason	 –	 they’ve	 been	 burned
repeatedly	 by	 other	 “miracle”	 tools	 that	 were	 supposed	 to	 replace	 Excel,	 and
every	time,	those	tools	have	failed	them.	Much	better	to	tell	them	that	“Excel	has
become	way	more	powerful,	let	me	show	you.”
When	 you	 are	 pitching	 to	 executives	 and	 other	 “consumers”	 of	 analytics,
consider	 showing	 them	 the	 Power	 BI	 Desktop	 visuals.	 A	 polished	 demo	 of
something	that	uses	data	that	is	relevant	to	them,	in	that	environment,	tends	to	be
very	 compelling.	 (Better	 yet,	 use	 the	 PowerBI.com	 web	 renderings	 or	 mobile
apps,	 to	 be	 discussed	 in	 the	 chapter	 on	YouTube	 for	 Data.)	 Don’t	 show	 these

people	 formulas,	 relationships,	 or	 any	 of	 that	 “behind	 the	 scenes”	 stuff.	 Show
them	finished	awesomeness,	and	that	will	win	you	the	buy-in	your	need	in	order
to	continue	your	important	work	–	with	formulas	and	relationships	of	course	

The	“Tour”
OK,	 as	 promised,	 we	 will	 now	 give	 you	 a	 brief	 introduction	 to	 the	 tool	 (caveat:	 the
interface	is	changing	rapidly	so	things	may	have	moved	around	by	the	time	you’re	reading
this).	 The	 easiest	 way	 to	 learn	 is	 to	 download	 Desktop	 for	 free,	 from	 Microsoft
(http://ppvt.pro/pbiDownload)	and	try	it	out	for	yourself.

Missing	Terminology
As	we	pointed	out	earlier,	Power	BI	Desktop	has	moved	away	from	the	Power*	names,
using	new	terms	as	below:

Power	Query	=>	Get	Data
Power	Pivot	=>	Data	Model
Power	View	=>	Reports

This	takes	the	focus	away	from	the	tools	and	onto	the	task	you	need	to	perform.	And	since
Power	BI	Desktop	has	broken	out	of	 the	mold	of	Excel,	 instead	of	 the	 add-in	 feel,	 you
have	 a	 well-blended	 experience:	 the	 functionality	 of	 Power	 Pivot,	 Power	 Query	 and	 a
much-improved	version	of	Power	View	all	in	one	neat	little	package,	despite	the	cosmetic
changing	of	names.	Let’s	dig	in.

http://ppvt.pro/pbiDownload

434.	Click	to	switch	to	Report,	Data	or	Relationship	modes

The	Different	Modes
Power	BI	Desktop	has	 three	modes:	Report,	Data	and	Relationships	 that	you	can
toggle	through	based	on	the	task	you	are	focusing	on.

The	report	mode	was	the	first	screenshot	in	the	chapter,	and	is	where	you	share	and
present	 information	 to	consumers	 (much	 like	 the	 role	played	by	 the	Excel	grid	and
charts	in	Power	Pivot).

Here	are	the	Data	and	Relationship	modes:

435.	Data	mode	in	Power	BI	Desktop	–	looks	a	lot	like	the	Power	Pivot	data	model	window.

436.	Relationship	mode	in	Power	BI	Desktop	–	looks	a	lot	like	Power	Pivot’s	Diagram	View.

Get	Data	(a.k.a.	Power	Query)
The	Get	Data	 button	 is	 the	way	 to	 pull	 all	 data	 into	 the	Power	BI	Desktop.	Those
familiar	with	Power	Query	will	find	the	interface	very	similar.	And	those	totally	new
will	still	find	it	fairly	intuitive	and	easy	to	use.

437.	Click	Get	Data	to	start	pulling	data	into	your	model

438.	The	list	of	options	look	familiar	to	those	in	Power	Query

439.	Query	Interface	lets	you	shape	and	transform	the	data	you	bring	in	to	your	model

Once	you	connect	to	your	data	you	can:

1.	 Use	the	options	on	the	ribbon	to	shape	and	transform	your	data	as	needed
2.	 Specify	Query	Settings	such	as	Name	and	review/edit	applied	steps
3.	 Review	other	queries	if	you	have	brought	in	multiple	tables	into	your	model
4.	 Click	‘Close	&	Apply’	to	load	the	data	into	your	model

From	 the	 main	 Power	 BI	 Desktop	 window	 you	 can	 click	 Edit	 Queries	 to	 launch	 the
“Power	Query”	window	again.

440.	Click	Edit	Queries	to	launch	the	“Power	Query”	window	again

Data	Model	(a.k.a.	Power	Pivot)

You	will	not	find	a	Power	Pivot	or	Data	Model	button	in	Desktop.	But	 the	‘Home’
and	‘Modeling’	tabs	on	the	ribbon	have	most	of	what	we	need	(The	‘Modeling’	tab	is
currently	shown	only	in	‘Data’	mode).

441.	Manage	relationships	and	create	new	measures,	what	more	do	we	need	

442.	Few	more	options	on	the	Modeling	tab

Manage	Relationships:	This	 looks	 similar	 to	manage	 relationships	 in	Power	Pivot
for	 Excel,	 except	 for	 the	 Advanced	 Options	 available	 (covered	 in	 the	 chapter	 on
“Complicated”	 Relationships).	 You	 can	 also	 create	 relationships	 by	 dragging	 and
dropping	 in	 the	 Power	 BI	 Desktop	 relationship	 mode	 -	 which	 acts	 similar	 to	 the
Power	Pivot	diagram	view.

443.	Manage	Relationships	in	Power	BI	Desktop

Create	New	Measures:	You	can	use	the	‘New	Measure’	button	on	the	Home	tab	on
the	 ribbon.	 However,	 we	 often	 find	 ourselves	 right	 clicking	 in	 the	 field	 list	 and
selecting	‘New	Measure’,	since	we	want	 to	make	sure	our	measure	 is	placed	in	 the
right	table.

444.	Create	new	measure	by	right	clicking	in	the	Fields	list

445.	Define	your	measure	in	the	formula	bar	that	pops	up	using	the	same	DAX	syntax	you	have	been	using	with
Power	Pivot

Create	Calculated	Columns:	Creating	calculated	column	is	equally	easy.	Just	right
click	and	select	‘New	Column’.

446.	Adding	a	calculated	column

Specify	 the	 DAX	 formula	 for	 the	 calculated	 column,	 just	 as	 you	 would	 in	 Power
Pivot.

447.	DAX	formula	for	calculated	column

Here	is	our	new	calculated	column,	as	seen	in	the	Data	mode

448.	Our	newly	minted	calculated	column

ⓘ	As	you’ve	 seen,	you	can	easily	create	calculated	columns	 in	your	 (Power
Pivot)	 Data	 Model.	 Know	 that	 you	 also	 have	 the	 option	 to	 go	 back	 to	 Edit
Queries	 mode	 and	 add	 a	 custom	 column	 there	 using	 the	 ribbon	 interface	 (as
covered	in	the	Power	Query	chapter).

Reports	(a.k.a.	Power	View,	but	Much	Better!)
Building	 reports	 in	Desktop	will	 feel	 similar	 to	Power	View,	 if	 you	 are	 one	of	 the
small	minority	who	 tried	out	Power	View	before	Microsoft	 called	 a	 “do	over”	 and
started	developing	Power	BI	Desktop	instead.

But	 if	 you	 have	 never	 used	 Power	View,	 you	will	 still	 find	 Reports	 (in	 Power	 BI
Desktop)	easy	 to	 learn.	Essentially	you	pick	elements	 from	the	Fields	 list	 (just	 like
when	building	an	Excel	Pivot	Table)	then	choose	your	visualization-	there	are	many
available	with	more	on	the	way.

ⓘ	 In	 fact	Microsoft	has	promised	a	new	visualization	“Every	Single	Week”.
Power	BI	now	also	allows	users	to	use	custom	visuals	from	a	library	of	visuals
developed	 by	 Microsoft	 as	 well	 as	 the	 Power	 BI	 community.	 Read
http://ppvt.pro/morevisuals	for	the	announcement.

449.	Choose	your	visualization	in	Power	BI	Desktop

You	also	have	 lots	of	ways	 to	customize	your	visuals.	Of	course	you	can	drag	and
drop	 the	 fields	 that	 you	want	 to	 see	 in	 your	visual.	But	 you	 can	 also	 fine	 tune	 the
colors,	the	x/y-axis,	data	labels,	background	and	other	settings.

http://ppvt.pro/morevisuals

450.	Lots	of	ways	to	customize	the	Fields	and	Formats	for	your	visuals

Import	Existing	Excel	Power	Pivot	Models!
This	one	is	important	enough	to	be	called	out:

ⓘ	If	you	have	existing	Excel	Power	Pivot	models,	 you	can	easily	 import
them	 into	 Power	 BI	 Desktop	 (just	 select	 File	 >	 Import	 >	 Excel	 Workbook

Contents).	 This	 imports	 elements	 including	 Power	 Query,	 Power	 Pivot	 and
Power	View	sheets.	See	http://ppvt.pro/importExcel	for	more	details.

451.	This	should	really	say	“Import	Power	Pivot	Model	from	Excel	Workbook”	(but	it	also	imports	Power	Query
queries	and	Power	View	display	sheets).

Remember,	 Power	 BI	 Desktop	 uses	 the	 same	 data	 engines	 as	 the	 “Power	 engines”
we’ve	 been	 learning	 in	 Excel!	 Power	 Pivot	 and	 Power	Query	 are	 included	 in	Desktop,
even	though	they	aren’t	given	those	names.

So,	 this	 “import”	 is	 really	 just	 Desktop	 “stealing”	 all	 of	 the	 tables,	 formulas,
relationships,	and	queries	from	an	existing	Power	Pivot	workbook.	It	is	not	even	correct	to
call	this	a	conversion,	because	the	languages	(DAX	and	M)	are	unchanged.

Sharing	Power	BI	Desktop	Files
As	of	writing,	you	can	publish	your	Power	BI	Desktop	files	only	to	PowerBI.com.	(That
may	change	in	the	future).

ⓘ	You	could	also	share	the	Power	BI	Desktop	(.pbix)	file	itself,	but	given	how	it’s
geared	towards	“authors”	it	makes	for	a	poor	experience	for	“end-users”

Now	that	we	have	made	friends	with	some	of	the	new	members	in	Power	BI	family,	it's
time	to	go	back	to	Power	Pivot	(the	DAX	Engine)	and	dive	into	some	deeper	topics.	But
never	 fear!	 Power	 BI	 Desktop	 WILL	 make	 many	 more	 appearances	 in	 this	 book,
especially	(but	not	only)	in	the	“YouTube	for	Data”	chapter.

http://ppvt.pro/importExcel

22	-	“Complicated”	Relationships

452.	It’s	OK.	It	happens	sometimes,	and	we	are	here	to	help.

In	DAX,	as	in	life,	relationships	are	very	important.	(We	often	joke	about	how	we	are
here	 to	 help	 you	 with	 your	 relationship	 problems	 –	 nerdy	 and	 corny,	 yes,	 but	 it
always	draws	laughs).

And	in	DAX,	as	in	life,	some	relationships	are	more,	um,	complicated	than	others.

Multiple	Relationships	Between	the	Same	Two	Tables
Consider	 the	 Sales	 table	 and	 the	 Calendar	 table;	 we	 already	 have	 a	 relationship
between	these	two	tables	as	shown	below	using	columns

Sales[OrderDate]	->	Calendar[Date]

453.	Can	these	two	tables	have	more	than	one	relationship	to	each	other?

Order	 date	 is	 not	 the	 only	 date	 field	 we	 have	 in	 our	 Sales	 table.	We	 also	 have	 a
ShipDate.	What	if	we	sometimes	wanted	to	analyze	our	sales	data	by	ShipDate?

How	do	we	handle	that?	Do	we	create	another	relationship	between	these	two	tables?
Would	that	even	work?	Let’s	give	it	a	try.

454.	Attempting	to	create	relationship	between	Sales[ShipDate]	->	Calendar[Date]

Maybe	you	were	expecting	an	error	when	you	clicked	the	create	button	on	the	dialog
box	above.	But	it	actually	does	work,	sort	of.

You	notice,	 in	the	diagram	below,	that	 the	newly	created	relationship	is	represented
by	a	dotted	line	instead	of	a	solid	line.

455.	Double	dates	don’t	always	go	smoothly

It	is	easier	to	understand	what’s	going	on	if	we	open	the	Manage	Relationships	dialog
box	from	the	Design	tab.	Note	the	Active	column	for	 the	two	relationships	between
Sales	and	Calendar	table.

While	one	says	Active=Yes,	for	the	other	Active=No.

456.	Only	one	relationship	can	be	active	between	two	tables	at	any	given	time

Turns	out,	 at	 any	given	 time,	only	one	 relationship	 can	be	active	between	any	 two
tables.	So	how	do	we	solve	for	the	scenario	where	we	want	to	analyze	the	Sales	data
by	ShipDate?

Well,	 we	 could	 flip	 the	 Active	 relationship,	 by	 editing	 it	 from	 the	 Manage
Relationship	dialog	box.

457.	Edit	relationships,	to	change	the	one	that	is	active

If	you	had	a	pivot	 table	showing	[Total	Sales]	by	Calendar	Year	and	Month	Name,
here	is	how	it	would	change	as	you	change	the	relationship	that	is	active.

458.	Pivot	shows	Total	Sales	based	on	Order	Date	or	Ship	Date	based	on	the	active	relationship

Note	the	change	in	July	numbers;	 looks	 like	some	items	ordered	in	July	2001	were
not	shipped	in	the	same	month.

Now	of	course,	this	would	be	a	very	clumsy	approach	even	for	you	(model	author),
let	alone	the	end-users.	So	let’s	explore	some	more	elegant	options	to	do	the	same.

USERELATIONSHIP()
CALCULATE	is	a	magical	 function	and	 it	comes	 to	our	rescue	one	more	 time.	We
started	using	CALCULATE	with	very	simple	arguments	like	Sales[Year]=2002.	But

the	example	below	shows	yet	another	power	that	CALCULATE	can	wield.	We	write
a	new	measure	as	below:-

[Total	Sales	by	Ship	Date]	=
CALCULATE	(
[Total	Sales],
USERELATIONSHIP	(Sales[ShipDate],	Calendar[Date])
)

Now	we	can	put	both	[Total	Sales]	and	[Total	Sales	by	Ship	Date]	measures	on	the
same	pivot.

459.	Total	Sales	by	OrderDate	and	by	ShipDate,	both	on	the	same	pivot

When	you	need	it,	this	is	a	powerful	weapon	indeed.

ⓘ	Yes,	you	will	need	to	“clone”	some	or	all	of	your	existing	Sales	measures
(just	those	that	you	plan	to	also	display	by	ShipDate)	using	CALCULATE	and
USERELATIONSHIP.	 But	 that’s	 a	 small	 price	 to	 pay	 for	 such	 smooth
integration.	 And	 remember,	 DAX	 formulas	 are	 portable	 –	 write	 once,	 use
everywhere	–	so	it’s	not	like	you	will	need	to	repeat	that	process	indefinitely.

Many	to	Many	Relationships
First,	a	Bad	Example
We	currently	have	Sales[OrderDate]	connected	to	Calendar[Date].	This	is	a	“one	to
many”	 relationship.	 The	 Calendar	 table	 represents	 the	 ‘one’	 side,	 since	 in	 the
Calendar	 table	 a	 specific	 date	 only	 appears	 once.	 The	 Sales	 table	 represents	 the
‘many’	 side	of	 the	 relationship,	 because	 in	 the	Sales	 table,	 each	date	 appears	more
than	once.	(Since	we	hopefully	make	more	than	one	sale	on	any	given	date).

ⓘ	This	“one	to	many”	flavor	of	relationship	is	the	default	kind	of	relationship
in	DAX,	and	it’s	the	only	kind	we’ve	been	dealing	with	thus	far.

Now	let’s	do	something	silly.	We	also	have	a	date	field	 in	 the	Customers	 table,	 the
customer	 BirthDate.	 Would	 we	 be	 able	 to	 create	 a	 relationship	 between
Sales[OrderDate]	and	Customer[BirthDate]?

460.	Would	Power	Pivot	allow	us	to	relate	Sales[OrderDate]	->	Customers[BirthDate]?

Note	 that,	 while	 Sales[OrderDate]	 has	 repeated	 values,	 so	 does	 the
Customers[BirthDate].

461.	We	have	many	repeated	values	for	both	columns

Let	us	go	ahead	and	attempt	to	create	this	relationship.

462.	Attempt	to	create	relationship

We	promptly	get	an	error	as	below.

463.	Error	Message:	The	relationship	cannot	be	created	because	each	column	contains	duplicate	values.	Select
at	least	one	column	that	contains	only	unique	values.

This	 is	 one	 of	 those	Microsoft	 error	messages	which	 is	 easy	 to	 understand:	 Power
Pivot	 would	 not	 let	 us	 create	 a	 relationship	 because	 there	 are	 repeated	 (duplicate)
values	on	each	side.

It’s	almost	as	if	Power	Pivot	knows	that	what	we’re	trying	to	do	here	makes	no	sense
at	all.

ⓘ	 It’s	worth	stressing,	again,	 that	 this	example	 is	NOT	realistic,	 as	 it	makes
ZERO	sense	to	ever	relate	Customer	BirthDate	to	a	transaction	date.	We	chose	it
just	to	illustrate	that	we	get	an	error.

So	if	we	ignore	this	comically	contrived	example,	what	IS	a	good	example?

Another	Bad	Example
But	wait,	first	we	want	to	share	another	bad	example!

Remember	how	we	said,	in	our	first	chapter	on	Multiple	Data	Tables,	that	you	should
NEVER	try	to	relate	two	Data	tables	to	one	another?

Heck,	let’s	live	dangerously	and	try	it,	just	for	grins.

Pretend	we	just	imported	ServiceCalls	for	the	first	time,	and	rather	than	relating	it	to
the	Lookup	tables,	we	try	creating	a	relationship	between	it	and	Sales,	on	OrderDate
and	CallDate:

464.	Let’s	try	relating	two	Data	tables	together,	because	we	like	error	messages

This	gives	us	the	same	error	of	course:

465.	Same	error	when	we	try	relating	Data	tables	to	each	other

So	why	did	we	bother	to	do	this?	To	drive	home	a	point,	of	course.

ⓘ	Multi-Data	table	situations	are	VERY	often	“mistaken”	for	many-to-many.
You	 should	 NOT	 solve	 such	 situations	 with	 the	 “official”	 many-to-many
techniques!	As	 illustrated	previously,	multiple	Data	 tables	are	“solved”	via	 the
use	of	shared	Lookup	tables!

OK,	 with	 that	 out	 of	 the	 way,	 we’ll	 now	 get	 on	 to	 describing	 what	 makes	 a
“legitimate”	many-to-many	situation.

Real-World	Overlap:	The	Source	of	“Legit”	Many-to-Many
In	 our	 experience,	 true	 many-to-many	 usually	 “happens”	 in	 your	 Lookup	 tables
themselves.	 It	 can	 be	 spotted,	 in	 other	words,	 even	 if	 you	 completely	 ignore	 your
Data	tables.

Many-to-many,	or	M2M	as	 the	cool	kids	call	 it,	comes	down	to	how	your	business
(or	the	real	world)	is	organized,	and	specifically	to	the	concept	of	membership:

ⓘ	Can	a	single	entity	(a	product,	location,	person,	etc.)	simultaneously	belong
to	 two	 parent	 groups?	Or	 does	 each	 entity	 uniquely	 fall	 into	 one	 bucket?	 If	 a
single	entity	can	belong	to	multiple	groups,	bingo,	that’s	“true”	M2M.

And	 we	 don’t	 mean	 cases	 like	 a	 particular	 product	 belonging	 to	 Color=Blue	 and
Category=Bikes.	 Those	 are	 different	 columns.	 Only	 single	 columns	 count.	 So	 if	 a
single	 product	 can	 be	 Category=Bikes	 and	 Category=EcoVehicles,	 then	 you	 have
true	M2M.

Here,	let’s	illustrate	with	a	sketch,	cuz	we	like	sketches:

466.	Countries	 and/or	 regions	 each	 fall	 into	 exactly	 one	 continent.	 But	 ice	 cream	 can	 be	 simultaneously
categorized	as	Dairy	and	Dessert!

This	leads	to	a	Lookup	table	(Foods)	that	contains	two	rows	for	a	single	food:

467.	We	now	have	duplicates	 in	our	LOOKUP	table,	and	 that’s	a	problem	–	we	won’t	be	able	 to	relate	 it	 to	a
Data	table	because	of	those	dupes!

So,	um…	now	what?

If	you	tried	to	create	a	relationship	between	your	Data	table	(Sales)	and	this	“broken”
Lookup	table,	it	would	fail	as	expected.	Here	are	both	tables

468.	Our	Lookup	Table	has	multiple	rows	for	the	same	food

469.	If	you	tried	creating	a	relationship,	you	would	get	the	expected	error

First	thing	we	need	to	do	is	to	remove	the	multiple	rows	in	our	lookup	table;	for	that
we	will	 separate	 the	 “Category”	 column	 (the	multiple	piece)	 from	 the	Foods	 table.
That	will	let	us	relate	our	Sales	and	Food	table.

470.	Separate	Category	from	Food	to	get	a	clean	Lookup	table

471.	Now	you	can	relate	Food	and	Sales

But	 our	Category	 table	 is	 sitting	 all	 by	 itself,	 feeling	 lonely.	 They	way	 to	 connect
Food	and	Category,	is	via	a	“Bridge”	table.

“Bridge”	Table
A	many-to-many	 relationship	 between	 two	 entities	 can	 be	 handled	 using	 a	 bridge
table.	For	example	the	Food	and	Category	tables	need	a	bridge	table	as	below.

472.	Many	to	Many	relationship	is	mapped	via	a	bridge	table

FoodCategory	 (the	bridge	 table)	 lists,	 for	 each	 food,	 all	 of	 the	 categories	 to	which
that	food	belongs	-	one	row	per	“parent”	category	for	that	food.

Now	we	can	go	ahead	and	create	relationships	as	shown	below,	between

FoodCategory[Food]	->	Food[Food]

FoodCategory[Category]	->	Category[Category]

473.	FoodCategory	can	be	connected	to	Food	and	Category	via	a	standard	relationship

But	trouble	looms	ahead.	Let’s	define	a	basic	measure

Units	Sold	=	SUM	(Sales[Units])

Nothing	earth	shattering	here,	and	it	all	works	as	expected.

474.	Standard	measures	work	as	expected

Now	 let’s	 see	 if	 we	 can	 analyze	 this	 by	 FoodCategory.	 As	 soon	 as	 we	 drag	 in
something	from	the	Category	table	in	the	pivot,	we	see	that	things	aren’t	quite	right.
(Even	if	we	were	to	 try	 the	bridge	table	FoodCategory[Category]	column,	we’d	get
the	same	result.)

475.	The	same	number	repeats	for	all	categories

Clearly	 that	 is	 not	 the	 right	 result.	 Let's	 break	 down	 what	 is	 going	 on	 here	 by
following	the	steps	in	the	Golden	Rules.	We	will	step	through	using	the	highlighted
cell,	Units	Sold	for	Category	“Breakfast”.

Step	1.	Detect	Pivot	Coordinates:	Category[Category]	=	“Breakfast”

Step	2.	Apply	filters	from	CALCULATE:	N/A

Step	3.	Apply	filters	to	respective	tables:	Apply	filter	to	Category	table

Step	 4.	 Flow	 relationships	 downhill	 (Lookup	 to	 Data	 table):	 Since	 Category	 is
filtered	in	step	3	and	Category	is	the	Lookup	table	for	FoodCategory	(which	is	acting
as	a	Data	table	for	this	relationship),	the	filter	flows	downhill	and	is	applied	as	shown
to	FoodCategory.

Step	5	&	6:	Evaluate	the	arithmetic	and	return	result	to	Pivot:	
Units	Sold	=	SUM	(Sales[Units)

Wait	a	minute…the	Sales	 table	never	got	filtered	in	any	of	the	steps	above!	So
SUM(Sales[Units])	would	return	the	sum	of	all	rows	in	the	Sales	table;	3,355,276.
And	 the	 same	number	 repeats	 for	each	Units	Sold	cell,	with	 the	 same	answer	each
time,	since	the	Sales	table	never	gets	filtered.

476.	FoodCategory	filtered	to	FoodCategory[Category]=”Breakfast”

The	Sales	table	does	not	get	filtered	since	relationships	only	flow	downhill,	and	never
uphill	across	a	relationship.	The	image	below	summarizes	our	predicament.

1.	 Filters	coming	from	this	table.
2.	 Filter	flows	“downhill”	automatically.
3.	 Filter	would	not	flow	“uphill”	(not	without	help).
4.	 Measure	[Unit	Sold]	calculated	in	Sales	table	which	never	gets	filtered.

477.	Filters	flow	“downhill”	across	relationships,	not	“uphill”

Turns	out	there	is	a	really	simple	way	to	force	the	filters	to	flow	“uphill”.	Simple	to
write	 down,	 not	 simple	 to	 come	up	with.	 It	 took	 some	genius	work	 on	 the	 part	 of
greats	 like	 Jeffrey	Wang	 and	 Gerhard	 Brueckl	 to	 come	 up	 with	 this.	 But	 we	 can
simply	put	it	to	good	use.

To	 write	 a	 new	 measure,	 which	 forces	 the	 relationship	 to	 flow	 “uphill”,	 we	 can
simply	write	using	the	pattern	below:

Units	Sold	by	Category	=
CALCULATE	([Units	Sold],	FoodCategory)

478.	If	the	force	(of	CALCULATE)	is	with	you,	you	can	force	a	relationship	“uphill”

ⓘ	 Using	 the	 “downstream”	 table	 (Bridge	 Table)	 as	 a	 filter	 argument	 in
CALCULATE	forces	the	filters	to	flow	“uphill”	across	the	relationship

See	the	end	result	below	with	our	new	measure	working	as	expected:

479.	Our	new	measure	shows	the	right	results

Do	note	 that	 if	you	sum	up	 the	 individual	 rows,	 they	do	NOT	add	up	 to	 the	Grand
Total.	This	is	easily	explained	when	we	add	Food	to	the	pivot	as	well.

Remember	 Ice	 Cream	 had	 a	 dual	 identity;	 we	wanted	 it	 categorized	 as	 Dairy	 and
Dessert.	And	indeed	our	FoodCategory	table	maps	Ice	Cream	to	Dairy	and	Dessert.
Thus	 Ice	Cream	shows	 in	both	places.	The	 same	 is	 true	 for	other	 foods	mapped	 to
multiple	 categories.	 Hence	 the	 values	 shown	 for	 Category	 are	 correct	 (as	 per	 our
mapping),	but	 if	you	add	 them	up,	you	would	end	up	double-counting	your	values.
But	 the	Grand	Total	cell	does	 the	right	 thing	and	shows	you	 the	correct	 total	units
sold	(without	any	double-counting)!

480.	One	can	never	have	enough	Ice	Cream

Apply	M2M	as	a	Pattern
We	would	 recommend	you	 simply	 learn	 and	 apply	 this	 as	 a	 pattern,	wherever	 you
encounter	a	true	Many-to-Many	relationship:

ⓘ	M2M	Measure	=	CALCULATE	([Measure],	BridgeTable)

For	 the	 truly	 curious	 you	 can	 dig	 through	 articles	 by	 Jeffrey	 and	 Gerhard:
http://ppvt.pro/jeffLink	and	
http://ppvt.pro/GERHARD1.

Power	BI	Desktop
Surprise!	 Power	 BI	 Desktop	 has	 a	 feature	 that	 removes	 the	 need	 for	 the
CALCULATE	pattern	covered	above	(but	not	the	need	for	bridge	tables!)

First	let's	load	the	same	Food,	Category,	FoodCategory	 tables	in	Power	BI	Desktop
and	create	the	same	simple	measure	as	before:

Units	Sold	=	SUM	(Sales[Units])

http://ppvt.pro/jeffLink
http://ppvt.pro/GERHARD1

The	measure	 happily	works,	 even	when	 you	 drag	Category	 on	 the	 Pivot	 table.	No
alteration	or	additional	work	required!

481.	In	 Power	 BI	 Desktop,	 regular	 formulas	 can	 work	 across	 our	 many-to-many	 relationship	 without	 any
additional	changes

The	 secret	 is	 uncovered	when	you	 examine	 the	 relationships	with	 the	bridge	 table.
When	you	open	the	relationship	view,	you’ll	notice	that	the	arrows	are	bi-directional
–	indicating	that	filters	flow	uphill	as	well	as	downhill!

482.	Filters	flow	both	in	both	directions	across	these	relationships!

You	can	change	this	behavior	if	you	like	by	clicking	Manage	Relationships	and	then
editing	the	relationship.

483.	Manage	Relationship	>	Edit	Relationship	>	Advanced	lets	you	control	the	filtering	direction	(Cross	Filter
Direction	can	be	set	to	‘Single’	or	‘Both’)

How	did	this	relationship	get	set	to	“Both”	directions?	Actually,	during	data	import,	Power
BI	 automatically	 detected	 that	 this	was	 a	Bridge	 table	 situation,	 and	 did	 it	 for	 us.	 This
makes	 the	 filters	 flow	 both	 ways	 across	 the	 relationship	 (downhill	 and	 uphill	 in	 our
terminology).	 Hence	 solving	 our	 many-to-many	 scenario,	 without	 any	 additional	 DAX
work	required	on	our	side.

23	-	Row	and	Filter	Context	Demystified
The	Basics:	Gateway	to	Doubling	Your	Superpowers
For	 the	 first	 year	 or	 two	 of	 our	 respective	DAX	 careers,	we	must	 admit	 that	we	 kinda
feared	these	two	sets	of	words:	Row	Context	vs.	Filter	Context.	(Actually,	Filter	Context
was	mostly	non-mysterious,	but	Row	Context	ironically	proved	to	be	more	difficult).

And	 to	 be	 clear,	 we	 were	 still	 doing	 fantastic	 things	 with	 Power	 Pivot,	 despite	 that
mystery!	 That	 whole	 “learning	 curve	 similar	 to	 Excel,”	 and	 the	 contents	 of	 the
Intermission	chapter,	are	no	joke.	You	can	generate	millions	of	dollars	of	value	per	year
without	understanding	this	chapter.	Seriously.	We’ve	been	there.

But	during	 those	early	days,	writing	 the	more	complicated	DAX	expressions	 sometimes
felt	like	pulling	the	handle	on	a	Vegas	slot	machine.	Would	the	Context	Gods	smile	upon
us	and	make	our	formula	work?	When	they	did	smile,	it	was	quite	literally	“jackpot”	–	a
satisfying	result	and	often	lucrative	as	well.	But	at	least	once,	we	lost	days	trying	to	write
a	single	formula,	so	the	point	of	this	chapter	is	to	spare	you	experiences	like	those.

After	months	 and	years	 of	 continuously	becoming	 exponentially	more	 adept	 at	 the	Dax
Kwon	Do	martial	arts,	we	found	ourselves	on	a	“plateau”	for	awhile.	It	was	weird.	For	the
first	time,	our	powers	weren’t	doubling	in	strength	every	three	months.

But	 then,	 this	 chapter	 happened.	 OK,	 this	 chapter	 didn’t	 exist	 back	 then,	 so	 it’s	 more
accurate	 to	 say	 that	 the	 things	 in	 this	 chapter	 were	 the	 missing	 ingredient	 in	 our	 own
brains.	Once	this	all	crystallized	–	especially	the	Exceptions	later	in	this	chapter	–	boom,
we	were	off	and	running	again,	powers	doubling	every	few	months	like	clockwork.

So,	 that’s	how	you	should	view	this	chapter.	Optional,	especially	 in	 the	early	going,	but
when	you	are	ready,	grasshopper,	THIS	is	how	you	snatch	the	pebble	from	our	hand.

The	Simple	Definitions
As	 it	 happens,	 both	of	 these	 are	 straightforward	 concepts	 that	we	 can	 “defang”	 for	 you
today.	We	can	define	them,	for	starters,	as	below:

ⓘ	Row	Context	=	Current	Row
Filter	Context	=	Filter	Coordinates	Coming	from	the	Pivot

Note:	Yes,	we	have	covered	Filter	Context	extensively	in	prior	chapters.	This	is	necessary
in	 order	 to	 properly	 contrast	 it	 with	 Row	 Context,	 and	 to	 explain	 all	 the	 deliciously-
powerful	exceptions	that	make	us	cackle	like	mad	scientists	today.

Row	Context:	The	Key	Ingredient	of	Calc	Columns
Row	Context	 is	simply	 the	knowledge	of	current	row.	Power	Pivot,	unlike	Excel,	does
not	have	the	A1	style	reference	(rows	are	not	numbered),	but	it	does	have	the	current	row.
The	row	context	(current	row)	is	automatically	defined	for	Calculated	Columns.	Let's	hear
that	again:

ⓘ	Row	Context	(current	row)	is	automatically	defined	for	Calculated	Columns
That	is	why,	you	can	define	a	Calculated	Column,	Amount	Due,	as	below

[Unit	Price]	*	[Quantity]

When	we	refer	to	[Unit	Price]	or	[Quantity]	there	is	no	ambiguity,	we	are	referring	to	these
values	in	the	current	row.

484.	Row	Context	is	automatically	defined	for	Calculated	Columns

ⓘ	Keep	 in	mind,	you	cannot	 refer	 to	 the	Next	Row	or	Previous	 row	(no	A1
style	 reference)	 without	 resorting	 to	 some	 trickery	 (See
http://ppvt.pro/CurRowNextRow).	 But	 you	 do	 have	 the	 current	 row	 and	 that
enables	you	to	write	“single	row	at	a	time”	calculated	columns.

There’s	No	Row	Context	in	Measures!
What	about	in	a	Measure	though?	Do	we	have	a	Row	Context	there?	Attempting	to
write	a	measure	using	 the	same	 formula	as	 the	Calculated	Column	above	yields	an
error.	We	know	this	already	from	the	‘No	Naked	Columns	in	Measures’	rule	outlined
earlier.

[Total	Amount	Due]	=
[Unit	Price]	*	[OrderQuantity]

http://ppvt.pro/CurRowNextRow

485.	No	“Naked	Columns”	in	Measures

In	 a	Measure,	we	do	NOT	have	 a	Row	Context	 (we	have	no	 sense	of	 a	 current
row).

Think	 of	 it	 this	way:	 in	 a	measure,	 the	DAX	engine	 always	 assumes	 that	multiple
rows	 are	 “left	 standing”	 after	 the	 filter	 engine	 does	 its	 work.	 And	 how	 can	 [Unit
Price]	be	“reduced”	to	a	single	value	if	there	are	multiple	rows	of	it?

ⓘ	This	is	why	measures	always	require	an	aggregation	function:	to	“collapse”
multiple	 rows	 of	 values	 into	 a	 single	 value.	 In	 a	 calc	 column,	 however,	 a
“naked”	 column	 reference	 is	 legal,	 because	we	 have	 a	 Row	Context	 (aka	 the
current	 row),	and	 therefore	have	no	need	 for	“collapsing”	multiple	values	 into
one.

Filter	Context:	The	Key	Ingredient	of	Measures
Consider	 the	 Excel	 table	 below,	 you	 can	 see	 that	 for	 the	 rows	 shown,	 the	 Calorie
column	adds	up	to	756.

486.	All	rows	sum	up	to	a	total	of	756

Now,	let	us	filter	the	table	to	Category	=	“Drinks”	as	below.

487.	Now	the	rows	are	filtered	to	Category	=	“Drinks”

Now	you	can	see	Calorie	column	adds	up	to	194.

You	can	state	this	as:
a)	The	Sum	of	Calorie	for	Drinks	is	194.
b)	 The	 Sum	 of	 Calorie	 for	 the	 current	 Filter	 Context,	 FoodCalorie[Category]	 =
“Drinks”	is	194

a)	Is	how	a	human	might	speak,	b)	is	closer	to	DAX	talk.	But	what	it	boils	down	to,
Filter	Context	 is	 nothing	 but	 the	 set	 of	 rows	 that	 you	 have	 filtered	 down	 to.	Your
filter	 context	 originates	 from	 the	 coordinates	 coming	 in	 from	 the	 Pivot	 Table
(row/column/filters).	 Which	 can	 then	 flow	 downhill	 across	 relationships	 and	 be
altered	by	CALCULATE.	But	none	of	this	is	any	more	complicated	than	the	simple
filter	we	chose	in	the	Excel	table	above.

ⓘ	Filter	Context	is	the	set	of	coordinates	coming	from	the	pivot	for	the	current
measure	cell	being	calculated.	Those	coordinates,	in	turn,	result	in	a	filtered	set
of	rows	upon	which	the	arithmetic	ultimately	runs.

There’s	No	Filter	Context	in	Calc	Columns!
Above	we	explained	that	Measures	lack	a	Row	Context.	Well,	Calc	Columns	return
the	favor	and	lack	a	Filter	Context!

To	illustrate,	let’s	go	into	our	Sales	table	and	write	a	calc	column	with	the	following
formula:

[My	Calc	Column]	=
SUM	(Sales[Freight])

And	see	what	we	get:

488.	We	get	the	same	answer	for	every	row	of	the	calc	column	when	using	an	aggregation	function	like	SUM

This	is	actually	three	lessons	in	one,	so	let’s	spell	them	out	very	carefully:

1.	 Aggregation	 functions	 like	 SUM	 always	 ignore	 Row	 Context,	 and
operate	against	the	Filter	Context	instead.

2.	 But	there	is	NO	Filter	Context	in	a	Calc	Column.	That	doesn’t	mean	we
get	no	data,	however.	In	fact	quite	the	opposite…

3.	 No	 Filter	 Context	 is	 the	 same	 as	 “the	 absence	 of	 filters.”	 So	 the

aggregation	 function	 (SUM)	 ends	 up	 “operating	 on”	 the	 entire	 [Freight]
column	–	all	of	the	rows	get	added	up!

ⓘ	We	are	reasonably	positive	that	you	skimmed	those	three	points	.	Go	back
and	 re-read	 them	 until	 it	 all	makes	 sense,	 because	 they	 are	 CRUCIAL	 to	 the
additional	superpowers	conveyed	by	this	chapter.	We’ll	wait	right	here.

Recap	So	Far

489.	Row	Context	is	literally	always	a	SINGLE	row,	and	a	Row	Context	is	“present”	in	Calc	Column	formulas.
By	contrast,	Filter	Context	 is	 the	 set	of	 coordinates	coming	 from	 the	pivot,	and	usually	 results	 in	MULTIPLE
rows	being	active.	Filter	Context	 is	 present	 in	Measure	 formulas.	These	 concepts	are	 therefore	almost	perfect
opposites.

Interaction	with	Relationships
Relationships	and	Filter	Context
As	 we've	 seen	 repeatedly	 in	 our	 Golden	 Rules,	 filter	 context	 flows	 downhill	 via
relationships.	Again	filter	context	is	simply	a	set	of	filters/coordinates.	So	what	do	we
mean	when	we	say	‘Filter	context	flows	downhill	via	the	relationship’?

Let	us	understand	with	an	example,	again	with	the	caveat	that	this	is	a	review:

490.	SalesTerritory	Table	is	filtered	to	[Country]	=	“United	States”

This	 filters	 the	 SalesTerritory	 table.	 But	 the	 SalesTerritory	 and	 Sales	 tables	 are
related.

The	 filter	 on	 SalesTerritory	 will	 flow	 down	 to	 the	 Sales	 table,	 by	 virtue	 of	 the
relationship,	 aka	 the	 filter	 transmission	 wire.	 That	 “wire”	 is	 attached	 via	 the	 key

columns	connecting	the	two	tables.	The	SalesTerritory[Country]	=	“United	States”
filter,	filters	the	column:-

SalesTerritory[SalesTerritoryKey]	=	{	1,	2,	3,	4,	5}

Due	to	the	relationship	the	Sales	table	is	then	also	filtered	down	to

Sales[SalesTerritoryKey]	=	{	1,	2,	3,	4,	5}

491.	SalesTerritory	and	Sales	are	related

492.	Filter	Context	flows	down	via	a	relationship

This	 is	a	 simple	example.	But	even	 for	complex	scenarios,	 the	mechanism	remains
the	same.

ⓘ	Filter	 context	 flows	 downhill	 by	 default.	 But	 can	 also	 be	 forced	 to	 flow
uphill	 via	 advanced	 tricks,	 such	 as	 in	 the	 chapter	 on	 many	 to	 many
relationships,	in	which	we	used	CALCULATE	to	perform	this	special	magic.

Relationships	and	Row	context
What	about	relationships	and	row	context?	Well,	those	two	aren’t	on	speaking	terms.
They	do	not	talk	to	each	other.

Seriously,	 there’s	 no	 interaction	whatsoever	 between	 relationships	 and	 row	 context
(except	when	you	use	relationship-aware	functions	like	RELATED	of	course).	Row
context	does	not	affect,	nor	is	it	affected	by,	relationships.

Again,	with	the	exception	of	RELATED	and	RELATEDTABLE,	Row	Context	does
not	interact	with	relationships	at	all	–	relationships	are	only	“used”	in	Filter	Context
situations.

Exceptions	and	Overrides!
Iterator	Functions	Create	Row	Context	During	Measure	Calculation
Aha!	We	told	you	there	were	some	delicious	exceptions!	Welcome	to	 the	first	such
juicy	 morsel:	 You	 can	 “manufacture”	 a	 Row	 Context,	 in	 a	 measure,	 when	 using
Iterator	functions.

ⓘ	The	X	functions	(like	SUMX,	RANKX,	etc.)	and	the	FILTER	function	are
special.	They	are	iterators	that	step	through	the	<table>	you	give	them	-	one	row
at	a	time.	So,	within	these	functions,	you	DO	have	a	Row	Context,	and	do	NOT
require	aggregation	functions	around	column	references!

For	 example,	 inside	 the	 SUMX	 function,	 we	 can	 reference	 columns	 as	 values,
without	aggregation	functions:

[Total	Amount	Due]	=
SUMX	(Sales,	Sales[Unit	Price]	*	Sales[Quantity])

And	that	works	 just	 fine.	So	 if	you	need	 to	perform	row-wise	calculations	within	a
measure,	the	X	functions	are	the	way	to	do	it.

Similarly,	inside	a	FILTER	function,	you	can	perform	any	math	you	want	using
“naked”	column	 references.	This	 comes	 in	very	handy	at	 times	where	you	want	 to
keep	rows	where	“two	times	column	A	is	greater	than	column	B”	for	instance.

⚠	But	using	an	iterator	function	does	NOT	suddenly	create	a	Row	Context	for
the	 entire	 measure	 formula.	 The	 Row	 Context	 only	 exists	 within	 the	 iterator
function	itself.

CALCULATE	Creates	Filter	Context	in	Calc	Columns

Yep,	there’s	a	tricky	“backdoor”	method	for	this	as	well,	and	it	comes	back	to	our	old
friend	CALCULATE.

That’s	 right,	 our	 favorite	 function	 does	 more	 than	 allow	 us	 to	 manipulate	 filter
context.	It	even	creates	filter	contexts	where	there	previously	were	none.

The	CALCULATE	 function	 transforms	 the	 current	Row	Context	 into	a	Filter
Context.	“What	the	heck,”	you	say?	Yeah.	It’s	probably	easier	to	just	show	you.	So
let’s	return	to	that	previous	example,	where	we	had	a	SUM()	inside	a	calc	column:

And	this	time,	let’s	wrap	the	SUM	inside	a	CALCULATE:

=	CALCULATE	(SUM	(Sales[Freight]))

If	 you	 were	 to	 write	 a	 measure	 as	 above,	 using	 CALCULATE	 with	 no	 filter
arguments,	you	would	feel	silly.	But	for	a	calculated	column,	this	serves	a	very	useful
function.	 CALCULATE	 takes	 the	 current	 Row	Context	 and	 “pretends”	 that	 it	 was
actually	a	Filter	Context.

493.	SUM(Sales[Freight])	in	a	calc	column	yields	the	same	number	for	every	row.

Which	gives	us	this	result:

494.	Wahoo!	A	calc	column	that	precisely	duplicates	the	Freight	column	we	already	had!

OK,	so	that	is	also	not	terribly	useful,	is	it?	More	interesting	than	the	same	value	on
every	 row,	 but	 still	 doesn’t	 provide	 us	 with	 actual	 useful	 results.	 So	 let’s	 change

examples	to	one	where	it	is	helpful.

We	can	use	CALCULATE	to	“follow”	relationships	in	calc	columns
Instead	of	a	calc	column	in	the	Sales	table,	let’s	go	to	one	of	our	Lookup	tables,	like
Products,	and	write	one	there:

495.	Ooh!	Now,	in	our	Lookup	table’s	calc	column,	we	get	the	sum	of	all	MATCHING	rows	from	the	Data	table
(Sales).

Why	is	that?	Because	Filter	Context	does	flow	across	relationships.

So,	if	you	ever	want	to	get	a	“subtotal”	type	of	calc	column	in	a	Lookup	table,	look
no	further	than	CALCULATE.

ⓘ	Note	 that	we	 typically	 do	not	 need	 such	 subtotal	 columns	 in	 our	Lookup
tables,	 as	 we	 dynamically	 calculate	 subtotals	 in	 pivots	 using	 measures.	 The
“valid”	 reason	 to	 do	 something	 like	 this	 is	 so	 that	 you	 can	 then	 group	 your
Products,	 for	 instance,	 into	buckets	 like	“Top	Sellers,”	“Mid	Sellers,”	etc.	–	 in
other	words,	we	typically	aren’t	interested	in	the	subtotal	number	itself	as	a	calc
column,	 but	 we	 use	 the	 number	 as	 an	 input	 to	 another	 calculation	 (one	 that
buckets	 the	 rows	 into	 groups,	 that	 we	 subsequently	 use	 on	 Rows,	 Columns,
Filters	or	Slicer,	or	potentially	as	a	filter	clause	in	CALCULATE…	you	get	the
idea.)

Using	Measures	Within	a	Row	Context:	a	Genuine	Curveball
We	have	long	had	a	[Total	Sales]	measure	defined:

Total	Sales	=
SUM	(Sales[SalesAmt])

So,	what	happens	if	we	define	a	calc	column	in	the	Products	table	as	below:-

=	[Total	Sales]

Check	out	the	results:

496.	Using	a	Measure	produces	surprisingly	“correct”	results

So	what	happened	to	row	context	not	interacting	with	relationships?	Well,	whenever
you	reference	a	measure,	the	DAX	engine	pretends	you	had	wrapped	a	CALCULATE
around	it.	Thus,	when	operating	in	a	Row	Context	(in	a	Calculated	Column	or	inside
an	iterator	function	like	FILTER),	if	you	reference	a	Measure,	it	will	act	as	if	it	had
been	wrapped	in	a	CALCULATE.	i.e.	the	Row	Context	will	be	transitioned	to	a	Filter
Context.

497.	Measure	references	always	act	as	if	wrapped	inside	a	CALCULATE

ⓘ	Whenever	you	reference	a	measure	 in	a	calc	column	(or	 inside	an	 iterator
function),	 there	 is	 an	 implied	 CALCULATE	 wrapped	 around	 it.	 This	 will
frustrate	 you	 to	 no	 end,	 for	 instance,	 if	 you’ve	 been	 pulling	 your	 hair	 out	 for
days,	wondering	why	your	FILTER	function	is	behaving	very	strangely.	In	fact,
that	is	the	#1	place	that	this	“implied	CALCULATE”	will	burn	you.	In	fact,	let’s
look	at	precisely	such	an	example…

Putting	It	All	Together:	Review	Example
We	already	have	a	measure	defined	to	count	transactions

Transactions	=
COUNTROWS	(Sales)

Let	us	define	a	new	measure	 to	count	 transaction	only	 for	our	highest	priced	 items
(the	highest	price	point	in	our	Products	table	happens	to	be	$3578.27)

Transaction	for	Highest	Price	=	CALCULATE(
COUNTROWS(Sales),
FILTER(
Products,
Products[ListPrice]	=	MAX	(Products[ListPrice])
)
)

We	can	see	that	the	measure	works

498.	Measure	returns	the	desired	result

As	a	best	practice,	we	often	encourage	you	to

Build	Measures	step	by	step
Reuse	Measures	whenever	possible

In	that	spirit,	what	if	we	altered	the	measure	as	below,	defining	an	intermediate	measure
and	reusing	the	same.

Highest	Price	=	MAX	(Products[ListPrice])
Transaction	for	Highest	Price	BROKEN	=	CALCULATE(
COUNTROWS(Sales),
FILTER(
Products,
Products[ListPrice]	=[Highest	Price]
)
)

Okay,	we	might	have	given	it	away	by	the	name	of	the	measure,	but	see	for	yourself.	Our
new	measure	does	not	seem	to	work,	even	though	it	seems	logically	similar.

499.	New	measure	does	not	work	even	though	“logically	similar”

In	our	opinion,	this	is	the	least	sensible	thing	in	the	entire	DAX	language	–	the	one
place	where	a	measure	name	 returns	a	different	 result	 than	 the	underlying	 formula.
(Hey,	it’s	an	amazing	language,	and	it’s	remarkable	that	it	manages	to	be	as	complete
as	it	is,	with	so	few	warts.	This	one	stands	out	primarily	as	a	byproduct	of	that	near-
perfection,	because	“lesser”	languages	have	far	more	head-scratching	examples,	not
to	mention	absolute	breakdowns.)

Let’s	 evaluate	 the	 measure	 with	 DAX	 eyes.	We	 will	 number	 the	 lines	 so	 we	 can
easily	reference	them.

1.	Transaction	for	Highest	Price	BROKEN	=	CALCULATE(
2.	COUNTROWS(Sales),
3.	FILTER(
4.	Products,
5.	Products[ListPrice]	=[Highest	Price]
6.)
7.)

FILTER	 on	 line	 3	 is	 an	 Iterator	 (closely	 related	 to	 SUMX	 and	 all	 the	 other	 X
functions),	and	we	know	what	iterators	are	useful	for	–	manufacturing	a	row	context
within	 measures.	 They	 iterate	 row	 by	 row	 over	 a	 given	 table	 and	 thus	 give	 us	 a
current	row	(row	context).

On	line	5,	we	used	a	measure	([Highest	Price])	where	we	have	a	row	context	(thanks
to	 our	 iterator	 FILTER).	 Remember	 how	 to	 read	 measures	 when	 there	 is	 a	 row
context	 in	 play?	You	 imagine	 it	 wrapped	 inside	 a	 CALCULATE,	 transitioning	 the
row	context	to	a	filter	context.

Let	 us	 follow	 the	 path	 for	 a	 single	 pivot	 row	 Sales[OrderDate]	 =	 7/1/2001	 and
compute	our	new	measure	[Transaction	for	Highest	Price	BROKEN]	:

1.	 FILTER	 iterates	 through	 the	Products	 table.	The	 complete	Products	 table,
by	 the	 way.	 Remember	 filter	 context	 does	 not	 flow	 uphill,	 so
Sales[OrderDate]	=	7/1/2001	in	no	way	filters	down	the	Products	table.

2.	 But	since	COUNTROWS(Sales)	will	only	return	a	value	where	ProductKey
exists	in	the	Sales	table,	for	our	purposes	we	will	focus	on	the	ProductKey
sold	on	7/1/2001	=	{	336,	310,	346	}

3.	 For	ProductKey	=	336,	FILTER	evaluates	the	condition
Products[ListPrice]	=[Highest	Price]

4.	 Products[ListPrice]	=	$699.09	We	have	a	row	context,	thanks	to	the	iterator,
thus	a	naked	column	reference	is	perfectly	legit.

5.	 [Highest	 Price],	 being	 a	 measure	 reference,	 operates	 as	 if	 it	 is	 wrapped
inside	CALCULATE.	Thus	the	row	context	(Product[ProductKey]	=	336)	is
transitioned	to	a	filter	context.	What	would	the	below	measure	evaluate	to
with	this	filter	context?
Filter	Context:	Product[ProductKey]	=	336
Highest	Price=	MAX(Products[ListPrice])
You	guessed	it,	$699.09

6.	 So	how	does	the	filter	condition	evaluate	for	row	ProductKey	=	336
Products[ListPrice]	=[Highest	Price]
$699.09	=	$699.09
Evaluates	to	TRUE!

7.	 It	is	(hopefully)	apparent	at	this	point	that	the	filter	condition	will	evaluate
to	 TRUE	 for	 every	 single	 Product.	 Since	 both	 sides	 of	 the	 comparison
would	always	evaluate	to	the	same	value.

8.	 Thus	our	FILTER	in	 this	case	does	not	provide	any	additional	 filters.	The
only	 filter	 would	 be	 the	 ones	 coming	 from	 the	 original	 pivot
(Sales[OrderDate]	=	7/1/2001).	So	our	broken	measure	works	the	same	as	-
COUNTROWS(Sales)	 and	 always	 returns	 the	 same	 number	 as	 our
[Transactions]	measure

Why	Did	Our	Original	Measure	Work	to	Begin	With?
Transaction	for	Highest	Price	=	CALCULATE(
COUNTROWS(Sales),
FILTER(
Products,
Products[ListPrice]	=	MAX	(Products[ListPrice])
)
)

Do	you	recall	the	result	we	got	when	we	defined	a	Calculated	Column	in	Product	table	as

=	SUM	(Sales[SalesAmt])

We	got	the	same	repeating	number	in	each	row	–	the	sum	of	all	the	Sales	table	rows,	since
there	was	no	filter	context	in	place.

Our	 MAX(Products[ListPrice])	 meets	 the	 same	 fate.	 Since	 there	 is	 No	 filter	 context
around	the	Products	 table,	 it	always	returns	 the	maximum	List	Price	across	all	products,
which	is	$3578.27,	shared	by	multiple	products,	all	of	which	make	it	through	our	FILTER.

500.	Without	Row	Context	transition	Filter	Context	returns	all	rows	in	original	Filter	Context

Take	a	deep	breath	and	realize	that	none	of	the	steps	involved	are	complicated.	It	is
just	the	interaction	amongst	all	of	them	applied	in	totality	that	is	“hard”	to	grasp.	Re-
read	the	above,	mechanically,	and	it	will	eventually	“gel.”

Recap	Within	the	Context	of	FILTER()
It	is	worthwhile	to	recap	how	row	and	filter	context	applies	to	the	arguments	of	the
FILTER	function.

501.	Anatomy	of	FILTER()

First	Argument:	<table>
Can	 be	 a	 table	 name	 (e.g.	 Products)	 or	 a	 table	 expression	 using	 any	 function	 that
returns	a	 table	 (e.g.	ALL(Products)).	The	original	 filter	context	 (incoming	from	the
pivot)	applies	to	this	table.	Unless,	of	course,	you	override	it	using	ALL().

Second	Argument:	<condition>

Within	this	argument,	here’s	how	each	of	the	following	expressions	will	evaluate:

table[column]	 –	 a	 column	 reference	 uses	 the	 Row	 Context	 generated	 by
FILTER	(an	iterator).	Note	that	typically	a	“Naked”	table[column]	reference
(without	any	aggregation	functions	around	it)	 is	not	allowed	in	a	measure,
since	measures	lack	a	Row	Context.	But	since	FILTER	is	an	iterator,	it	steps
through	row	by	row	(of	the	table	in	the	first	argument)	and	generates	a	row
context	for	us	at	each	step	of	that	iteration.
SUM()	or	other	aggregation	formula	–	always	refers	to	the	Filter	Context,
and	ignores	Row	Context	–	even	the	Row	Context	created	by	FILTER.	The
only	Filter	Context	that	is	available	is	the	one	that	comes	from	the	pivot,	so
that’s	what	the	SUM	will	reference.
CALCULATE(SUM())	–	the	Row	Context	created	by	each	iteration	of	the
FILTER	 function	will	 be	 transformed	 into	 a	 Filter	Context,	 and	 the	 SUM
will	 then	 operate	 off	 of	 that,	 respecting	 the	 Row	 Context,	 following
relationships,	etc.
[Measure]	 –	Will	 behave	 exactly	 the	 same	 as	 CALCULATE(SUM()),	 or
CALCULATE	 of	 any	 other	 aggregation	 function,	 because	 measure
references	imply	a	CALCULATE.

In	Case	of	Emergency…
Ever	 heard	 the	 phrase,	 “percussive	 maintenance?”	 It’s	 the	 fancy	 way	 of	 saying	 “if
something	isn’t	working,	pound	on	it	with	your	fist	and	see	if	that	fixes	it.”	This	is	one	of
those	old	clichés	that’s	going	out	of	style,	because	primarily,	we	used	to	pound	our	fists	on
tv’s	back	in	the	day	–	and	today’s	tv’s	don’t	exactly	respond	to	it.

So	let’s	try	a	more	modern	equivalent:	“reboots	are	magic	fixes.”	How	many	times	have
you	 rebooted	 a	 computer,	 a	 smart	 phone,	 or	 an	 application	 hoping	 that	 a	 problem
magically	vanishes?	And	how	many	 times	has	 it	worked?	 (Quite	 frequently	–	 that’s	our
answer	to	both	questions).

Well,	if	this	chapter	has	left	your	head	spinning,	don’t	fret.

When	something	mysterious	starts	happening,	 there’s	no	shame	in	semi-randomly	trying
these	fixes:

1.	 Wrapping	an	aggregation	function	in	a	CALCULATE.
2.	 Replacing	a	measure	reference	with	its	underlying	formula.

Even	 we	 occasionally	 find	 ourselves	 applying	 one	 of	 these	 techniques	 semi-blindly,
without	bothering	to	think	it	through.	DAX	is	pretty	cool	like	that,	because	once	a	formula
works,	it	doesn’t	randomly	stop	working.	We	encourage	you	not	to	feel	any	shame	from
such	heroics	

Key	Points	from	This	Chapter

Row	Context	is	the	knowledge	of	the	Current	Row
Filter	Context	is	the	set	of	filter	coordinates	coming	from	the	pivot
Measures	do	not	have	a	Row	Context
But	we	can	manufacture	Row	Context	 in	Measures,	using	Iterator	 functions	(X
functions	and	FILTER).
Calculated	Columns	do	not	have	a	Filter	Context
But	 we	 can	 create	 one,	 using	 CALCULATE.	 CALCULATE	 transitions	 the
current	Row	Context	into	a	Filter	Context,	which	adds	to	existing	Filter	Context.
The	key	 implication	being	 that	 relationships,	 and	 the	 “filter	 transmission”	 they
provide,	will	be	respected	within	that	calculation.
Measure	references	used	within	a	Row	Context	behave	as	if	they	were	wrapped
inside	 a	CALCULATE,	 thus	 transitioning	 the	 existing	Row	Context	 to	 a	Filter
Context.

24	-	CALCULATE	and	FILTER	–	More	Nuances
Continuing	the	theme	of	“you	already	have	superpowers,	so	consider	this	chapter	optional
or	something	you	save	for	later…”

CALCULATE	Filter	Arguments	Override	Pivot	Filters
We	already	covered	this	in	Chapter	8	on	CALCULATE,	but	let’s	revisit	that	in	some	new
light.	This	time,	we	will	use	a	visual	approach	that	has	helped	us	grasp	the	concept.	Let’s
say	we	have	a	measure	defined	as:-

[Red	Bikes	bought	by	Females]	=
CALCULATE	(
SUM	(Sales[OrderQuantity]),
Products[Color]	=	“Red”,
Products[Category]	=	“Bikes”,
Customers[Gender]	=	“F”
)

We	have	a	pivot	table	as	shown	below	where	we	have	pivot	filters	on	Product[Color]	and
Customer[Gender]	and	Calendar[CalendarYear]	on	rows:

502.	Pivot	Table	coordinates	provide	the	initial	filter	context

Let	us	try	to	understand	the	filters	in	play	for	the	highlighted	cell.

503.	CALCULATE	and	Pivot	filter	on	the	same	fields,	who	wins?

The	pivot	 table	 coordinates	 (filters)	 coming	 from	 the	 pivot	 can	be	 seen	 as	 a	 set	 of
blocks,	 with	 each	 block	 representing	 a	 table[column]	 filter.	 This	 is	 the	 original
(incoming)	set	of	filters	for	the	highlighted	cell:-

504.	Incoming	filters	from	the	Pivot	Table

Now,	let’s	layer	on	the	filters	added	by	CALCULATE.

505.	CALCULATE	Filters	can	override	the	Filters	coming	from	Pivot	Table

Now	you	see,	when	they	both	operate	on	the	EXACT	SAME	table[column],	the
CALCULATE	filters	hide	(override)	the	incoming	filters,	like	Product[Color]	and
Customer[Gender].	 Otherwise,	 CALCULATE	 filters	 simply	 ADD	 to	 the	 filter
context,	 like	 Product[Category].	 The	 original	 filters	 which	 do	 not	 conflict	 with
CALCULATE	filters	pass	through	untouched,	like	Calendar[Year]	in	this	case.

Now	let’s	take	another	look	at	the	CALCULATE	filter	arguments.

The	“Secret”	Second	Purpose	of	ALL(),	FILTER(),	Etc.
CALCULATE’s	Definition	Gives	Us	a	Hint!
If	we	check	the	syntax	of	the	CALCULATE	function,	here	is	what	it	has	to	say	about
the	filter	arguments.

ⓘ	CALCULATE(<expression>,<filter1>,<filter2>…)
filter1,	filter2…	A	comma	separated	list	of	True/False	expressions	or	tables

In	 the	CALCULATE	chapter	we	 started	by	using	 simple	True/False	 expressions	 as
filter	arguments,	such	as

CALCULATE	([Total	Sales],	Sales[Year]	=	2002)

ⓘ	A	True/False	Expression	for	CALCULATE	is	of	the	form
Table[Column]	<op>	fixed	value
Where	<op>	is	a	comparison	operator	like	=	>	<	<=	<=	<>

But	 then,	 we	 quickly	 started	 also	 passing	 functions	 like	 ALL(),	 FILTER(),
DATESYTD()	 etc.	 as	 filter	 arguments	 to	 CALCULATE.	 Those	 functions	 are
definitely	not	True/False	expressions,	so	are	they…	tables??

Let’s	focus	specifically	on	ALL()	for	a	moment.

ALL()	Is	the	“Remove	Filters”	Function,	but	it’s	Also	a	Table!
Our	 good	 friend	ALL()	 –	we	 first	 learned	 it	 as	 the	 “remove	 filters”	 function.	And
when	we	pass	it	as	an	argument	to	CALCULATE,	that	is	precisely	what	it	does.

But	ALL(),	like	any	superhero,	has	a	secret	second	identity.

Let’s	 take	 a	 look	 at	 another	 old	 friend,	 COUNTROWS.	 Its	 only	 argument	 is
described	merely	as	“<table>”	–	 the	 same	exact	description	of	what	CALCULATE
can	take	as	filter	arguments!

So…	can	we	pass	ALL()	as	an	argument	 to	COUNTROWS?	You	bet	we	can!	And
also	DATESBETWEEN	and	VALUES,	just	to	name	two…

[Count	Days	All	Calendar]	=
COUNTROWS	(ALL	(Calendar))

[Count	Me	Some	Days]	=
COUNTROWS	(

DATESBETWEEN	(Calendar[Date],	“2/1/2002”,	“3/1/2002”)
)

[Count	All	Months]	=
COUNTROWS	(ALL	(Calendar[MonthName]))

[Count	Included	Months]	=
COUNTROWS	(VALUES	(Calendar[MonthName]))

506.	COUNTROWS	accepts	<table>	as	argument,	thus	can	be	used	with	Table	functions

There	Are	Dozens	of	These	Dual-Purpose	Functions!
All	 of	 these	 functions	 –	 ALL,	 FILTER,	 TOPN,	 DATESBETWEEN,	 DATEADD,
DATESYTD,	 VALUES,	 and	 many	 others	 –	 return	 a	 table,	 and	 thus	 can	 be	 used
anywhere	DAX	asks	us	for	a	table	(such	as	COUNTROWS	in	this	case).

That	is	in	addition	to	being	usable	as	a	<filter>	argument	to	CALCULATE.	For	that
reason,	we	like	to	refer	to	all	of	these	functions	as	dual-purpose.

You	could	 rewrite	 the	 first	 formula	 (or	all	 the	 rest)	using	CALCULATE	instead,	as
below:-

[Count	Days	All	Calendar	using	CALCULATE]	=
CALCULATE	(COUNTROWS	(Calendar),	ALL	(Calendar))

507.	Two	ways	to	get	the	same	result:	Use	ALL	as	table	argument	or	filter	argument

ⓘ	Nearly	all	of	the	“special”	functions	that	we	can	pass	as	<filter>	arguments
to	CALCULATE	can	 also	 be	 used	wherever	DAX	asks	 us	 for	 a	<table>.	The
only	 exception	 we	 are	 aware	 of	 is	 USERELATIONSHIP,	 which	 can	 only	 be
used	as	a	<filter>,	and	not	as	a	<table>.

Could	Have	Been	Separate	Functions?

To	help	explain	this	dual-purpose	concept,	we	often	tell	students	that	Microsoft	could
have	created	separate	functions	for	each	purpose,	like	ALLFILTER	and	ALLTABLE,
and	 only	 allowed	 us	 to	 use	 them	 one	 place	 each	 (the	 former	 as	 a	 <filter>	 to
CALCULATE,	and	the	latter	as	a	<table>),	but	rather	than	“pollute”	the	function	list
by	nearly	doubling	it	in	length,	they	allowed	us	to	use	the	functions	either	place.

(DAX	purists	may	disagree	with	this	notion,	and	say	they	always	see	them	as	table
functions,	period,	which	is	fine	too.	It’s	just	a	teaching	trick	that	people	seem	to	find
helpful).

Nesting	Table	Functions	Inside	One	Another
It’s	time	to	have	some	fun	with	all	of	this	new	knowledge.	In	most	examples	so	far
we	have	seen	FILTER	restrict,	or	filter	down,	the	set	of	rows	that	we	were	operating
upon.	 But	 can	 you	 use	 FILTER	 to	 unfilter,	 thus	 including	 more	 rows	 in	 the
calculation	than	were	originally	“requested”	by	the	pivot?

Look	at	this	silly	measure:

[Transactions	Silly]	=
CALCULATE	([Transactions],	FILTER	(Products,	1))

508.	Since	1	is	always	True,	FILTER	is	not	really	filtering	here	–	every	row	passes	the	test

The	 FILTER	 function	 here	 is	 really	 not	 doing	 anything.	 It	 starts	 with	 the	 Product
table	 (the	 first	 argument	 to	FILTER,	 the	 current	 filter	 context	 applies	here)	 iterates
over	that,	and	since	the	condition	(1,	the	second	argument	to	FILTER)	is	always	true,
it	returns	all	the	rows	that	it	started	with.	So	it	does	not	alter	the	result	in	any	way.

Moving	on,	it	turns	out	that	FILTER	accepts	<table>	as	its	first	argument:

ⓘ	FILTER(<table>,<filter>)
So	we	can	pass	a	table	function	in	as	the	first	argument	to	FILTER,	which	is	itself	a
table	 function!	 This	 represents	 a	 significant	 expansion	 of	 your	 powers	 once	 you
digest	it.

FILTER	Can	Unfilter?

Since	ALL	is	a	table	function,	let’s	give	it	a	try:-

[Transactions	All	Products]	=
CALCULATE	([Transactions],	FILTER	(ALL	(Products),	1))

Look	at	the	result;	that	did	indeed	clear	the	filter	on	Product	table	in	our	pivot.

509.	FILTER	can	unfilter?	Now	the	force	is	truly	with	us!

Let’s	break	this	down	into	steps,	working	from	the	inside	out:

1.	 ALL(Products)	temporarily	creates	a	virtual	copy	of	the	Products	table	with
all	 filters	 removed.	 So	 this	 temporary	 table	 (that	 exists	 in	 the	 computer’s
memory	 only	 during	 the	 calculation	 of	 this	 formula)	 contains	 the	 entire
Products	table,	regardless	of	the	initial	filter	context	specified	by	the	pivot.

2.	 FILTER(ALL(Products),1)	then	steps	through	that	temporary	table,	one	row
at	a	time,	and	evaluates	the	True/False	expression.	Since	that	expression	is	a
hard-coded	1,	 it’s	 always	True,	which	means	every	 row	 in	 that	 temporary
table	 is	 kept.	 Since	 the	 temporary	 table	 started	 out	 with	 every	 row	 from
Products,	FILTER	returns	another	 temporary	table,	also	with	every	row	of
Products	in	it.

3.	 Finally,	 since	 FILTER	 (step	 2)	 was	 used	 as	 a	 <filter>	 argument	 to
CALCULATE,	 and	 such	 <filter>	 arguments	 override	 the	 ones	 coming	 in
from	the	pivot,	we	get	the	Transaction	count	for	all	products	on	each	row.

So	there	you	go,	we	have	just	used	FILTER	to	unfilter.

Putting	it	All	Together
Let’s	go	way	back	to	the	very	first	example	of	CALCULATE()	that	we	wrote

[2002	Sales]	=
CALCULATE	([Total	Sales],	Sales[Year]	=	2002)

Now	that	we	know	that,	for	CALCULATE	we	can	either	pass	a	True/False	expression	or	a
table	 as	 a	 filter	 argument;	 can	 we	 rewrite	 the	 measure	 above	 by	 using	 a	 table
expression?	 (Why	would	we	care	about	 rewriting	 it	 thus?	Hold	your	peace	on	 that	one,
we’ll	come	to	that).

Let’s	try	that	same	thing	with	FILTER()	instead,	which	would	return	a	filtered	table:

[2002	Sales]	=
CALCULATE	(
[Total	Sales],
FILTER	(Sales,	Sales[Year]	=	2002)
)

510.	Our	first	try	with	FILTER	did	not	produce	matching	results

You	 can	 see,	 the	 results	 are	 not	 quite	 alike.	 The	 two	 measures	 produce	 different
results	in	the	pivot	shown.	Why?

Because	CALCULATE	overrides	or	 ignores	 the	 incoming	pivot	 filter.	Thus	at	each
row	it	ignores	the	incoming	filter	of	Year=2001,	Year=2002,	Year=2003,	Year=2004
and	applies	its	own	filter	Year=2002.

We	need	to	replicate	the	same	behavior	in	our	FILTER	version	and	write	the	measure
as	below

[2002	Sales	via	FILTER	ALL	Sales	Year]	=
CALCULATE	(
[Total	Sales],
FILTER	(ALL	(Sales[Year]),	Sales[Year]	=	2002)
)

511.	Our	second	try	with	FILTER	matches	perfectly

Terrific!	We	 have	 been	 able	 to	 rewrite	 our	 original	measure	 faithfully	 using	 a	 FILTER
table	expression.

ⓘ	This,	in	itself,	is	not	useful,	because	hey,	we	achieved	the	same	result	much	more
efficiently	with	 the	 simple	True/False	<filter>	 from	before.	Our	 intent	 is	merely	 to
illustrate	 a	 concept,	 and	 set	 the	 stage	 for	 other	 things.	 The	 ability	 to	 nest	 table
functions	 inside	other	 table	 functions	 turns	out	 to	be	 incredibly	powerful,	 as	 is	 the
ability	to	nimbly	flip	back	and	forth	between	using	them	as	<table>’s,	and	using	them
as	<filter>’s.

25	-	Time	Intelligence	with	Custom	Calendars:
Greatest	Formula	in	the	World
Perhaps	Our	Favorite	Thing	in	DAX
Working	with	custom	calendars	in	DAX	has	become	something	that	we’d	almost	do
for	free,	it’s	so	much	fun.	Specifically,	it	just	feels	powerful,	like	you	can	do	just	about
anything.

That	 said,	 it	 took	 us	 a	 little	 while	 to	 discover	 the	 magic	 formula.	 It	 took	 some
experimentation.	But	you	won’t	have	to	do	any	of	that	–	we	will	give	you	the	secret,	and
explain	how	it	works.

It	 also	 provides	 a	 platform	 to	 apply	 some	 of	 the	 things	 we	 have	 learned	 about
CALCULATE	and	FILTER.

Custom	Calendars
There	can	be	many	types	of	custom	calendars,	such	as	Retail,	Academic,	Farming,	Sport
Season	 etc.	Here	 is	 an	 example	 of	 the	 4-5-4	Calendar	 published	 by	 the	National	 Retail
Federation.

512.	Sample	Custom	Calendar	as	used	in	Retail	Source:	NRF.com

We	will	use	a	“4/4/5”	calendar,	but	the	concepts	learned	and	measures	used	will	be
easily	portable	to	any	custom	calendar.

The	Periods	Table	-	a	“4/4/5”	Example
Let’s	 say	our	 company	operates	on	 the	“4/4/5”	calendar,	which	 is	very	common	 in
retail.	“4/4/5”	refers	to	the	number	of	weeks	in	each	period,	where	a	period	is	roughly
a	month.	These	calendars	 rotate	 through	four	quarters	 in	a	year,	each	consisting	13
total	weeks.

Here’s	an	example	–	a	Periods	table	imported	into	Power	Pivot:

513.	Periods	table	–	39	rows	spanning	from	7/1/2001	to	9/25/2004	–	note	the	repeating	28/28/35	pattern,	which
is	4/4/5	weeks

How	This	Changes	Things:	We	Need	to	“Write”	Our	Own	Time
Intelligence	Functions
The	critical	point	is	not	merely	the	existence	of	this	table.	The	“wrinkle”	here	is
that	 all	 “sales	 for	 period	 X”	 reports,	 as	 well	 as	 all	 comparisons	 of	 growth	 –
versus	 last	 year,	 versus	 prior	 periods	 –	 must	 be	 performed	 according	 to	 the
periods	defined	 in	this	 table.	Likewise,	 all	 “year	 to	date”	and	similar	calculations
must	respect	this	table.

The	 “smarter”	 time	 intelligence	 functions	 like	 DATESYTD(),	 DATEADD(),	 and
SAMEPERIODLASTYEAR()	 –	 the	 ones	 with	 built-in	 knowledge	 of	 the	 standard
calendar	–	will	not	work	properly	in	this	regard.

So	we	will	need	to	essentially	write	our	own	versions	of	those	functions	from	scratch,
using	 other	 more	 primitive	 functions	 like	 FILTER(),	 ALL(),	 and
DATESBETWEEN().

Connecting	the	Periods	Table
To	connect	our	Periods	table,	we	will	add	a	PeriodID	column	to	our	existing	Calendar
table,	so	that	we	can	connect	these	tables	together.

514.	Add	PeriodID	in	our	regular	Calendar	Table

515.	PeriodID	would	let	us	connect	Periods	table	to	Calendar	which	is	connected	to	Sales

ⓘ	An	alternate	approach	would	be	 to	build	your	Custom	Calendar	 (Periods)
table	 at	 a	 daily	 grain	 and	 connect	 it	 directly	 to	 our	 data	 table	 (Sales).	 Either
approach	is	acceptable	and	the	formulas	we	write	would	work	in	either	case.

Simple	“Sales	in	Period”	Measure
Let’s	start	with	the	basics.	We	want	a	pivot	that	shows	something	like	this:

516.	Simplest	pivot:	just	display	sales	data	according	to	the	custom	Periods	table	(the	4/4/5	calendar)

This	is	pretty	straightforward	actually,	since	we	can	use	our	existing	measure	[Total
Sales]	for	this	purpose	without	making	any	changes.

[Total	Sales]	=
SUM	(Sales[SalesAmt])

This	 just	works,	 since	 filters	 flow	downhill	 via	 relationship	 across	 any	number	of
levels.	Thus,	for	example,	filters	on	Periods[Year]	will	flow	down	to	Calendar	table,
and	will	then	flow	down	to	Sales	table.

517.	Our	existing	[Total	Sales]	measure,	shows	us	Sales	in	Period	and	works	at	all	levels	(Year,	Qtr,	Period)

To	help	you	visualize	how	the	filters	are	flowing,	let	us	add	a	few	measures	as	below,
and	add	them	to	our	pivot.

[PeriodStartDate]	=
FIRSTDATE	(Periods[Start])

[PeriodEndDate]	=
LASTDATE	(Periods[End])

518.	Our	new	measures	added	to	the	pivot

Here	 you	 can	 see,	 how	 for	 the	 2001-Q3-P8	 period	 the	 Calendar	 table	 would	 be
filtered	 to	 dates	 between	 7/29/2015	 and	 8/25/2015,	 which	 in	 turn	 would	 filter	 the
Sales	table.	Thus,	finally	returning	the	total	sales	just	for	that	period.

Another	Familiar	Concept:	Sales	per	Day
Let’s	add	a	simple	measure	to	show	us	the	total	number	of	days	in	the	selected	period
range.

Days	in	Period	=
SUM	(Periods[Days])

Let’s	add	this	new	measure	to	our	pivot	and	add	some	conditional	formatting.

519.	Note	the	“bump”	in	the	third	period	of	each	quarter	for	days	and	sales,	due	to	the	4/4/5	structure

Since	our	periods	are	of	varying	sizes,	in	order	to	fairly	compare	“apples	to	apples”
we	should	have	a	measure	that	compares	sales	per	day	(or	per	week).

We	write	our	new	measure	that	calculates	sales	per	day	in	each	period	as	below,	by
simply	reusing	our	existing	measures:

[Sales	per	Day	in	Period]	=
DIVIDE	([Total	Sales],	[Days	in	Period])

520.	[Sales	per	Day	in	Period]	–	note	how	the	length	of	each	period	does	not	determine	the	size	of	its	value.	We
can	now	compare	“apples	to	apples”	–	for	“4	versus	4	versus	5”	Period	but	also	versus	Quarter	and	Year.

First	New	Concept:	Sales	per	Day	in	Prior	Period
Getting	Organized	First
First	 let’s	 add	 a	PeriodYear	 column	 to	 the	Periods	 table,	 so	 that	we	 have	 a	 unique
label	for	each	period	regardless	of	what	year	it	is	in:

521.	Unique	label	for	periods,	across	years

Use	the	Sort	by	Column	setting	to	make	sure	it	sorts	correctly,	instead	of	the	default
alphabetical	sort	(which	would	be	unpleasant).

522.	Use	Sort	By	Column	to	make	sure	our	new	label	sorts	correctly	in	pivots

And	here	is	our	new	column	in	a	pivot:

523.	PeriodYear	on	Rows,	[Sales	per	Day	in	Period]	on	Values

Desired	Results
In	the	context	of	that	pivot,	here	is	what	we	want	to	end	up	with:

524.	This	is	what	we	want:	a	measure	that	returns	the	[Sales	per	Day	in	Period]	value	for	the	immediately	prior
period.

The	Greatest	Formula	in	the	World
Let’s	take	the	“work	backwards”	theme	one	step	further	and	just	reveal	the	formula,
before	we	come	back	and	explain	it:

[Prior	Period	Sales	per	Day]	=
CALCULATE	(
[Sales	per	Day	in	Period],
FILTER	(
ALL	(Periods)
,	Periods[PeriodID]	
=	MAX	(Periods[PeriodID])	-	1	
)
)

On	our	blog,	we	only	half-jokingly	refer	to	this	pattern	as	the	Greatest	Formula
in	 the	World,	 or	GFITW.	 It	 is	 by	 far	 the	 #1	 pattern	 you	 need	 to	 know	when
dealing	with	custom	calendars	and	its	application	goes	far	beyond	as	well.

As	you	get	comfortable	with	the	GFITW,	some	of	you	may	prefer	to	treat	it	as
just	 that:	a	pattern	 that	you	can	adapt	 to	your	needs.	 It’s	not	 strictly	necessary
that	 you	 understand	 in	 depth	why	 it	works,	 at	 least	 not	 immediately.	 (We	 certainly
have	copied	a	few	normal	Excel	formulas	and	macros	off	the	web	in	our	day	that	we
didn’t	fully	understand	at	the	time,	no	shame	in	it	right?)

So	for	a	moment	let’s	just	boil	it	down	to	the	pattern	itself:

ⓘ	The	GFITW	Pattern	–	adapt	and	reuse	this	for	all
your	custom	calendar	needs!

CALCULATE(<base	measure>,	
FILTER(ALL(<custom	periods	table>)
,	<row	test	with	navigation	arithmetic>
)
)

Got	 it?	 Now	 to	 explain	 how	 it	 works,	 starting	 from	 a	 high	 level	 and	 then	 getting
progressively	more	detailed.

“Clear	Filters	Then	Re-Filter”	–	Another	Name	for	GFITW
At	 a	 high	 level,	 here’s	 the	 way	 to	 understand	 GFITW:	 you	 clear	 all	 existing
time-related	filter	context,	then	filter	it	back	down	to	a	new	filter	context.	That
new	 filter	 context	 is	 one	 that	 you	 control,	 typically	 using	math	 that	 navigates
backward	in	your	custom	calendar	table.	For	this	reason,	you	can	also	think	of
GFITW	as	“Clear	filters,	then	re-filter.”

Another	 way	 to	 say	 it:	 first	 you	 clear	 all	 time-related	 filter	 context,	 yielding	 a
completely	“blank	slate.”	Once	 that	 is	done,	you	can	reconstruct	a	brand	new	filter
context,	 from	 scratch,	 without	 worrying	 about	 interference	 from	 the	 original	 filter
context.

With	that	understanding,	it’s	not	hard	to	“parse”	the	GFITW	into	its	component	parts:

FILTER(ALL(<custom	 periods	 table>)…	 -	 the	 ALL()	 insider	 the
FILTER(),	 is	 part	 of	 the	 “Clear”	 phase.	As	we’ve	 seen	 it	 in	 action	 in	 the
previous	chapter.
FILTER(…	 <row	 test	 with	 navigation	 arithmetic>)	 –	 this	 is	 the	 “re-
filter”	phase,	the	part	where	you	build	up	a	new	filter	context	from	scratch,
using	whatever	logic	is	required.

Let’s	step	through	it	using	the	cell	below	as	the	example	we	are	trying	to	calculate

525.	Let’s	step	through	our	GFITW	measure	for	the	highlighted	cell

Clear	Filter
We	want	to	step	through	the	Periods	table	row	by	row	and	select	only	the	rows	that
we	need	for	‘Prior	Period’	calculation.	We	are	using	FILTER	for	that	purpose,	which
does	just	that.

However,	if	we	passed	the	first	argument	to	FILTER	as	below…

FILTER	(Periods,	<row	test>)

…the	 Periods	 table	 is	 subject	 to	 the	 original	 pivot	 filters,	 and	 by	 default	 is	 still
filtered	to	Period[YearPeriod]	=	“2001-P8”.	By	definition,	though,	we	need	to	“get”
P7's	sales,	and	this	pre-existing	P8	filter	will	prevent	that.

526.	The	original	filter	context	needs	to	be	cleared	before	we	proceed	further

But	if	we	clear	that	 initial	filter,	we	will	be	able	to	subsequently	iterate	through	the
complete	Periods	table,	so	that	we	can	precisely	select	the	Periods	row	(or	rows)	that
we	need.

So	we	use	ALL()	when	passing	the	first	argument	to	FILTER:

FILTER	(ALL(Periods),	<row	test>)

This	gives	us	a	clean	slate	to	operate	in	the	next	step.

Re-Filter:	Navigation	Arithmetic
Now	that	we	are	stepping	through	the	complete	Periods	table,	let’s	see	how	we	select
only	the	rows	we	need.

Here	is	the	entire	FILTER()	that	we	used	in	our	[Prior	Period	Sales	per	Day]	GFITW
measure:

FILTER	(
ALL	(Periods)
,	Periods[PeriodID]	
=	MAX	(Periods[PeriodID])	-	1	
)

The	 part	 of	 the	GFITW	 pattern	 that	 we	 call	 “navigation	 arithmetic”	 is	 the	 second
argument:

Periods[PeriodID]	=	MAX	(Periods[PeriodID])	-	1

How	does	that	work?

At	first,	it	seems	kinda	strange:	how	can	there	be	a	row	where	PeriodID	equals	itself
minus	one?	The	answer	lies	in	another	important	detail	of	the	FILTER()	function.

Table[Column]	Uses	Row	Context	Generated	by	FILTER
Periods[PeriodID]	is	a	“Naked”	column	reference,	which	we	first	learned	is	not	to	be
used	inside	a	measure	(because	there	is	no	concept	of	current	row	inside	a	measure).
Then	 how	 is	 Periods[PeriodID]	 working	 in	 our	 measure?	 Well,	 because	 FILTER,
being	 a	 row-by-row	 iterator,	 has	 created	 a	 current	 row	 (row	 context)	 for	 us.	 Thus
Periods[PeriodID]	refers	to	the	specific	Periods	row	that	FILTER	is	stepping	through.
And	remember,	it	steps	through	the	entire	Periods	table	since	we	used	ALL(Periods)
as	the	first	argument	to	FILTER.

527.	Periods[PeriodID]	refers	one-by-one	to	each	row	as	FILTER	steps	through	the	entire	Periods	table

So	that’s	what	we	are	testing	in	our	comparison,	but	what	are	we	comparing	it	to?

MAX()	Operates	Over	a	Filter	Context
MAX()	-	or	we	could	have	used	MIN()	–	is	an	aggregation	function	and	operates	over
a	filter	context.	“Which	filter	context?”	you	ask.	Well,	there	is	only	one,	the	original
pivot	 filter	 context.	 FILTER	 just	 generates	 a	 Row	 Context,	 it	 doesn’t	 touch	 Filter
Context	 in	 any	 way.	 Thus	 the	 original	 filters	 coming	 in	 from	 our	 pivot	 table	 still
apply	within	our	MAX().

For	 the	 cell	we	 are	 using	 as	 an	 example,	 the	 filter	 context	 is	Period[YearPeriod]	=
“2001-P8”.	Which	means	MAX(Periods[PeriodID])	would	return	PeriodID	=	2.

528.	Filter	YearPeriod=2001-P8	yields	PeriodID	=	2

And	since	the	comparison	is	to	MAX(…)	-	1…

MAX	(Periods[PeriodID])	-	1

We	 are	 essentially	 looking	 for	 Periods[PeriodID]	 =	 1.	 Which	 is	 the	 correct	 prior
period	in	our	case.

ⓘ	Subtracting	 1	 from	 the	 PeriodID	 in	 this	 case	 yields	 the	 previous	 period,
because	the	Periods	have	consecutive	PeriodID	values.

To	drive	things	home,	let’s	look	at	the	anatomy	of	this	FILTER	statement

529.	Anatomy	of	FILTER	statement	used	for	GFITW

In	Your	Periods	Table,	You	Always	Need	a	Numeric	PeriodID
Column	or	Equivalent
Since	our	navigation	always	comes	down	to	some	sort	of	math,	you	absolutely	need	a
PeriodID	column;	one	that:

Contains	a	unique	number	for	each	row
Increases	as	time	goes	on
Has	consecutive	numbers	for	periods	that	are	consecutive	in	time

Pretty	 simple	 –	 if	 you	 don’t	 have	 a	 column	 on	 which	 you	 can	 perform	 sensible
arithmetic,	you	aren’t	going	to	be	able	to	navigate.

More	GFITW	measures	–	Year	Over	Year	and	Year	To	Date
Let’s	do	a	few	more	custom	calendar	measures.	But	before	that	let’s	define	a	convenience
measure

Sales	in	Period	=
[Total	Sales]

This	 simply	 reuses	 our	 [Total	 Sales]	 measure,	 but	 gives	 us	 a	 convenient,	 easier	 to
remember	measure	when	we	are	working	with	our	custom	calendar.

Prior	Period	Sales
Let’s	define	this	one	before	we	build	the	other	measures.	For	prior	period	sales,	you	can
copy/paste	 the	GFITW	 pattern	 from	 [Prior	 Period	 Sales	 per	 Day]	measure,	 and	 simply
substitute	the	<base	measure>	to	be	[Sales	in	Period].	Here	is	the	measure	with	changed
part	highlighted:

[Prior	Period	Sales]	=
CALCULATE	(
[Sales	in	Period],
FILTER	(
ALL	(Periods)
Periods[PeriodID]	
=	MAX	(Periods[PeriodID])	-	1	
)
)

530.	Prior	Period	Sales	using	the	GFITW	pattern

Year	Over	Year	(YOY)	Custom	Calendar	Measure
This	one	again	applies	the	GFITW	pattern,	and	only	differs	in	terms	of	the	navigation
arithmetic.

[YOY	Period	Sales]	=

CALCULATE	(
[Sales	in	Period],
FILTER	(
ALL	(Periods),
Periods[PeriodID]
=	MAX	(Periods[PeriodID])	–	12
)
)

Really	the	only	thing	changed	here	is	that	we	are	subtracting	12	rather	than	1.

Here	are	the	results:

531.	[YOY	Period	Sales]	goes	back	12	periods.

Year	To	Date	(YTD)	Measure	with	Custom	Calendar
Let’s	get	right	to	it.	First,	we	add	a	new	column	to	our	Periods	table:

532.	We	will	explain	this	calculated	column	formula	in	the	chapter	on	advanced	calculated	columns.	For	now,
just	focus	on	how	it	is	used	in	the	measure.

ⓘ	 Again,	 if	 you	 have	 a	 database	 as	 your	 data	 source,	 and	 the	 skill	 (or
assistance)	to	manipulate	it,	this	is	the	sort	of	column	that	we	highly	recommend
be	 implemented	 in	 the	database	rather	 than	 in	a	DAX	column.	Another	option
you	have	now	is	to	leverage	Power	Query	when	sourcing	this	table	and	adding	a
custom	column	using	Power	Query.

And	now,	the	measure;	the	same	GFITW	pattern	with	updated	navigation	arithmetic:

YTD	Period	Sales	=
CALCULATE	(
[Sales	in	Period],
FILTER	(
ALL	(Periods),
Periods[PeriodID]	
<=	MAX	(Periods[PeriodID])
&&	Periods[PeriodID]	
>=	MAX	(Periods[FirstPeriodInYear])
)
)

And	the	results:

533.	YTD	Period	Sales	measure	with	custom	calendar	–	good	stuff.

Here	 is	 an	example	 to	 show	you	how	 the	navigation	arithmetic	 is	working,	 for	 the
highlighted	cell.	First	 the	incoming	filter	context	is	essentially	YearPeriod	=	“2001-
P11”.	 Next	 this	 yields	 us	 5	 and	 1	 as	 the	 MAX([PeriodID])	 and	 the
MAX([FirstPeriodInYear])	values.	Then	FILTER	iterates	over	 the	Periods	 table	and
just	helps	us	select	the	periods	between	1	and	5.

534.	Once	 you	 get	 going	with	 the	GFITW	 pattern,	 figuring	 out	 the	 navigation	 arithmetic	 is	 straight-forward,
even	fun!

Fixing	Measures	to	Work	at	Total	Level
Measures	written	as	above	for	custom	calendars	can	display	some	unexpected	results
when	 the	 pivot,	 instead	 of	 looking	 at	 a	 single	 “Period”,	 is	 showing	 a	 sub-total	 or
grand-total	 across	 Year/Quarters.	 This	 is	 because	 the	 logic	 we	 have	 used	 is	 very
specific	and	operates	at	a	period	level.	But	you	can	easily	make	some	small	fixes	to
make	your	measures	work	again	at	totals/subtotals.

Suppressing	Prior	Period	for	Totals
Notice	that	our	[Prior	Period	Sales]	measure	displays	meaningless	value	for	the	year
subtotal.

535.	Prior	Period	Sales	is	showing	a	meaningless	value	for	Subtotal/Total

For	now,	 let’s	 say	 that	 “Prior	Period	Sales”	only	needs	 to	be	 shown	when	a	 single
period	is	being	shown.	There	would	be	cases,	such	as	this,	where	a	measure	does	not
make	sense	in	a	total/subtotal	setting,	and	it	is	best	simply	suppressed.

ⓘ	We	will	see	an	alternate	way	to	address	Prior	Period	Sales	in	a	later	section

Here	is	how	we	would	rewrite	our	measure:

Prior	Period	Sales	Total	Suppressed	=
IF	(
HASONEVALUE	(Periods[PeriodID]),
CALCULATE	(
[Sales	in	Period],
FILTER	(
ALL	(Periods),
Periods[PeriodID]	=	MAX	(Periods[PeriodID])	-	1)
)
,	BLANK()
)

Essentially,	we	have	wrapped	our	earlier	measure	inside	a	HASONEVALUE()	test.	If
PeriodID	has	only	one	value,	we	show	our	measure,	else	it	returns	a	blank.

536.	HASONEVALUE	test	suppresses	the	measure	for	totals/subtotals

Fixing	YOY	to	Work	at	Total	Level
The	[YoY	Period	Sales]	measure	also	does	not	work	correctly	at	subtotal/total	level:

537.	Can	we	make	[YOY	Period	Sales]	work	at	the	totals	level?

Here	 is	 the	formula	again	with	 the	section	relevant	 to	our	discussion	highlighted	 in
bold

[YOY	Period	Sales]	=
CALCULATE	(
[Sales	in	Period],
FILTER	(
ALL	(Periods),
Periods[PeriodID]
=	MAX	(Periods[PeriodID])	–	12
)
)

First	let	us	try	to	determine	why	the	measure	is	not	working	for	the	subtotal	cell	we
highlighted.	Do	you	 remember	 how	 to	 debug	your	measures?	Think	 like	 the	DAX
engine.	And	to	do	that	you	follow	the	Golden	Rules	outlined	in	an	earlier	chapter.

Step	1:	Detect	Pivot	Coordinates:	For	 the	 cell	we	highlighted,	 incoming	 filters	 are
Periods[Year]	=	2003

Step	 2:	 CALCULATE	 alters	 filter	 context:	 This	 is	 where	 we	 are	 doing	 the	 heavy
lifting	using	the	FILTER	function.	FILTER	function	is	an	iterator	and	would	iterate
over	all	periods	and	evaluate	 the	condition	specified.	Let’s	 focus	on	 this	portion	of
our	formula:

=	MAX	(Periods[PeriodID])	–	12

MAX	is	an	aggregation	function	and	our	filter	context	(coming	from	Step	1)	would
apply	here.	So	what	is	the	MAX(Periods[PeriodID])	for	Year	2003?

538.	MAX()	operates	on	our	current	filter	context

For	our	Periods	table,	that	returns	PeriodID=30.	If	we	subtract	12	from	that,	we	get
30	-12	=	18.	PeriodID	18	in	our	table	represents	YearPeriod	=	2002-P12.	And	that	is
what	our	pivot	table	is	showing.

539.	Golden	rules	help	us	understand	the	behavior	of	our	formula

The	Fix
Great,	so	now	we	understand	why	our	measure	is	not	working.	If	you	think	about	it,
the	right	way	to	shift	 to	prior	year	would	be	 to	 take	whatever	 is	 the	 incoming	time
period	 (could	be	at	Year/Quarter/Period	 level)	 and	shift	 the	WHOLE	time	period
back	by	12	“periods”.

The	best	way	to	do	that	is	to	subtract	12	from	the	beginning	of	the	current	time	frame
and	12	from	the	end	of	it.	So	we	subtract	12	from	the	MIN()	and	12	from	the	MAX()
of	the	PeriodID,	and	select	only	Periods	that	fall	between	that	range.

ⓘ	In	the	single-period	case,	the	beginning	and	the	end	are	the	same	PeriodID,
so	nothing	actually	changes	there.	Only	when	multiple	periods	are	selected,	as	is
the	case	 in	a	 total	cell,	does	 this	change	 in	 formula	make	a	difference.	 In	 that
case	the	whole	time	range	is	shifted	12	periods	back.

Here	is	our	new	measure:

YoY	Period	Sales	Totals	Fixed	=
CALCULATE	(
[Sales	in	Period],
FILTER	(

ALL	(Periods),
Periods[PeriodID]
>=	MIN	(Periods[PeriodID])	–	12
&&	Periods[PeriodID]
<=	MAX	(Periods[PeriodID])	–	12
)
)

This	 shifts	 the	 time	 period	 back	 by	 12	 periods,	 and	 works	 at	 all	 levels	 –
Year/Quarter/Period.

540.	Our	new	measure	shifts	back	the	time	period	by	12	months…

541.	…and	works	at	Year,	Quarter	or	Period	level

We	 can	 now	 also	 copy/paste	 that	 formula	 above	 and	 change	 the	 base	 measure	 to
create	a	YOY	version	of	[Sales	per	Day	in	Period].	The	measure:

YoY	Period	Sales	per	Day	=
CALCULATE	(
[Sales	per	Day	in	Period],
FILTER	(
ALL	(Periods),
Periods[PeriodID]
>=	MIN	(Periods[PeriodID])	–	12
&&	Periods[PeriodID]
<=	MAX	(Periods[PeriodID])	–	12
)
)

The	result:

542.	Sales	per	day	version	of	the	YOY	measure,	more	useful	for	“apples	to	apples”	comparisons

Fixing	Prior	Period	to	Work	on	Totals,	Too
For	 our	 first	 pass	 at	 the	 [Prior	 Period	 Sales]	 measure	 we	 simply	 suppressed	 the
measure	(returned	blank),	when	we	detected	more	than	one	PeriodID.	But	let’s	take	it
a	step	further	and	try	to	show	the	[Prior	Period	Sales]	for	the	“corresponding”	period.
This	is	trickier	than	YOY	–	if	the	current	total	cell	is	a	Quarter,	we	need	to	shift	back
3	periods.	But	if	the	current	total	cell	is	a	Year,	we	need	to	shift	back	12.	Here	is	our
measure:

[Prior	Period	Sales	Fixed]	=
CALCULATE	(
[Sales	in	Period],
FILTER	(
ALL	(Periods),
Periods[PeriodID]
>=	MIN	(Periods[PeriodID])	-	COUNTROWS	(Periods)
&&	Periods[PeriodID]
<=	MAX	(Periods[PeriodID])	-	COUNTROWS	(Periods)
)
)

So	 rather	 than	 subtracting	 a	 fixed	 number,	 like	 12	 for	 YOY,	 we	 subtract
COUNTROWS(Periods),	which	is	the	number	of	currently	selected	periods;	in	other
words,	the	“size”	of	the	current	time	selection.

Results:

543.	Prior	Period:	Now	matches	at	Period,	Qtr,	and	Year	levels.	What	can	we	say?	Third	time	is	a	charm	

ⓘ	Note:	We	are	keeping	all	versions	of	this	measure	to	be	able	to	show	how
they	 are	 operating	 differently	 and	 generating	 different	 results.	 For	 your	 own
models,	only	keep	the	latest	version	of	the	formula	shown

The	Usual	“Percent	Growth”	Formulas
Now	you	can	do	the	usual	“new	minus	old,	divided	by	old”	 trick	 to	get	 the	growth
percentage.	You	can	do	so	with	any	measure,	we’ll	use	sales	per	day	as	an	example.
We	already	have	the	[Sales	per	Day	in	Period]	and	the	[YOY	Period	Sales	per	Day]
measures	 defined.	We’ll	 reuse	 these	measures	 to	 define	 year-over-year	 growth	 and
growth	percentage.

ⓘ	 Best	 Practice:	 We’ve	 said	 so	 before	 and	 we’ll	 say	 again,	 reuse	 your
measures,	 wherever	 you	 can,	 and	 to	 define	 “derived”	 measures,	 rather	 than
redefining	the	same	formula	in	your	new	measure

Our	measures:

Sales	per	Day	in	Period	YoY	Growth	=
[Sales	per	Day	in	Period]	-	[YOY	Period	Sales	per	Day]

Sales	per	Day	in	Period	YoY	Growth	%	=
DIVIDE	([Sales	per	Day	in	Period	YoY	Growth],	
[YOY	Period	Sales	per	Day])

And	results:

544.	Percent	 growth	 is	 as	 simple	 a	 calc	 as	 it	 always	 was,	 even	 though	 its	 component	 measures	 are	 quite
sophisticated

26	-	Advanced	Calculated	Columns
Perspective:	Calculated	Columns	Are	Not	DAX’s	Strength!
We	 are	 not	 saying	 that	 DAX	 is	 bad	 at	 calculated	 columns.	 We	 are	 just	 saying	 that
Measures	are	the	magic	in	DAX,	which	is	why	we’ve	spent	the	vast	majority	of	the	book
on	measures.	We’ve	always	had	calculated	columns	in	“normal”	Excel,	so	there	can’t	be
too	much	special	about	DAX	columns,	right?

OK,	Power	Pivot	Calc	Columns	Are	a	Strength	in	Some	Ways.
Well,	even	we	have	to	stop	for	a	moment	and	say:	we’ve	never	had	the	ability	to	write
a	calc	column	against	a	141	million	row	table	now	have	we?

545.	Calculated	 column	written	against	 a	 table	with	 141	million	 rows	 in	 it!	 (And	 this	wasn’t	 some	beast	 of	 a
computer	 -	 we	 did	 this	 on	 a	 featherweight,	 4	 GB	 RAM	 Ultrabook	 that	 cost	 $899	 retail	 when	 purchased	 in
January	2012!	Requires	64-bit	of	course.)

OK,	so	we’ll	refine	our	point:	other	than	the	benefits	provided	by	massive	data
capacity,	 seamless	 refresh,	 named	 reference,	 and	 relationships,	 Power	 Pivot
calculated	columns	are	nothing	new	to	us	

But	More	Difficult	in	Some	Cases
Actually,	 to	 be	 completely	 honest,	 Power	 Pivot	 calculated	 columns	 are	 a	 bit	more
difficult	than	normal	Excel	columns,	at	least	in	some	circumstances,	because	Power
Pivot	lacks	“A1”	style	reference.

In	 completely	 “row-wise”	 calcs,	 like	 [Column1]	 *	 [Column2],	 Power	 Pivot	 is	 no
more	difficult	than	normal	Excel.	But	when	you	want	to	do	something	like	“sum	all
the	rows	in	this	table	where	the	[ProductID]	is	the	same	as	this	current	row,”	it	gets	a
bit	trickier.

ⓘ	We’re	not	 criticizing	Power	Pivot	 for	 lacking	A1-style	 reference.	No,	 that
was	 absolutely	 the	 correct	 decision.	We	 just	 want	 to	 set	 your	 expectations	 –
sometimes	you	will	have	 to	work	a	 little	harder	 in	a	Power	Pivot	calc	column
than	you	would	 in	 an	Excel	 calc	 column,	 but	 even	 then,	 only	when	your	 calc
goes	beyond	a	single	row.

Anyway,	we’ll	get	 to	 that.	But	 first,	 some	simple	stuff	 that	 just	didn’t	 fit	 anywhere
else.

Start	Out	With	“Not	so	Advanced”
OK,	there	are	a	couple	of	calculated	column	quick	topics	we’d	like	to	cover	that	don’t
really	deserve	the	label	“advanced,”	but	should	be	covered	somewhere.

Grouping	Columns
We’ve	 seen	 a	 quick	 example	 of	 grouping	 columns	 in	 SWITCH…TRUE,	 but	 let’s
cover	it	in	some	more	detail.	Our	favorite	example	of	grouping	columns	is	the	Sales
by	Temperature,	aka	“Temperature	Mashup”	demo.	In	that	demo,	we	import	a	table
of	temperature	(weather)	data,	relate	it	to	the	Sales	table,	and	then	report	[Sales	per
Day]	broken	out	by	temperature:

OK,	we	obviously	do	NOT	care	to	see	temperature	ranges	broken	out	by	a	tenth	of	a
degree.	We	want	to	group	them	into	more	useful	ranges.

You	can	do	this	with	a	calculated	column.	In	the	demo,	here’s	the	formula	we	use	in
the	Temperature	table:

=	SWITCH	(
TRUE	(),
[Avg	Temp]	<	40,	“Cold”,
[Avg	Temp]	<	55,	“Cool”,
[Avg	Temp]	<	70,	“Warm”,
“Hot”
)

546.	Sales	per	Day	with	Temperature	on	Rows,	but	the	temperature	is	very	precise

Here’s	what	it	looks	like	in	the	Temperature	table	as	a	calc	column:

547.	Grouping	column	in	the	Temperature	table

And	here’s	what	it	looks	like	used	on	Rows	instead	of	the	Avg	Temp	column:

548.	TempRange	on	Rows	–	MUCH	better

ⓘ	We’ve	used	many	kinds	of	formulas	along	these	lines	–	ROUND()	has	been
a	very	popular	function	for	us	in	this	regard,	for	instance.

To	see	the	whole	“Temperature	Mashup”	demo	end	to	end	that	first	debuted	in	2009
(!),	visit	
http://ppvt.pro/TempMash

Unique	Columns	for	Sorting
Did	you	notice	that	the	sort	order	is	“off”	in	that	Temperature	report?	Here	is	current
and	the	desired	order:

549.	We	would	prefer	the	sort	order	to	be	Cold,	Cool,	Warm,	Hot

OK,	 so	 let’s	 use	 the	 Sort	 by	 Column	 feature,	 and	 use	 AvgTemp	 to	 sort	 the
TempRange	column:

http://ppvt.pro/TempMash

550.	Attempting	to	use	AvgTemp	as	the	Sort	By	Column	for	TempRange

This	yields	an	error:

551.	It	does	not	like	Green	Eggs	and	Ham	–	not	in	a	box,	not	with	a	fox.	OK	and	it	also	doesn’t	like	AvgTemp	as
a	Sort	By	Column.

I	(Rob)	guess	it	could	have	used	AvgTemp,	since	no	single	AvgTemp	corresponds	to
two	 different	 TempRange	 values	 (48.1	 for	 instance	 always	 maps	 to	 “Cool”),	 but
Power	Pivot	doesn’t	want	to	trust	me.	It	wants	each	value	of	TempRange	to	have	a
single	 value	 in	 the	 Sort	 By	 Column,	 and	 as	 a	 former	 (and	 sometimes	 current)
software	engineer	myself,	I	can	understand	why	it	doesn’t	want	to	trust	me	

So	in	this	case,	a	SWITCH()	does	the	trick	–giving	us	a	column	with	values	1-4:

=	SWITCH	(
TRUE	(),
[Avg	Temp]	<	40,	1,
[Avg	Temp]	<	55,	2,
[Avg	Temp]	<	70,	3,
4

)

552.	A	valid	candidate	for	a	sorting	column	–	this	one	works

Setting	TempRange	column	 to	 sort	by	TempRangeSequence	column	would	give	us
the	desired	result.

Another	Sort	by	Column	Example
For	 a	 slightly	more	 sophisticated	 problem,	 consider	 the	 “QtrYearLabel”	 column	 in
our	Periods	table:

We	deliberately	positioned	it	next	to	the	PeriodID	column	so	you	could	see	that	we
have	the	same	“matches	multiple”	problem	here	as	the	one	we	had	in	the	Temperature
example.	Each	QtrYearLabel	value	matches	multiple	PeriodID,	thus	we	would	not	be
able	to	sort	QtrYearLabel	using	PeriodID.

We	need	to	create	a	calculated	column	that	we	can	use	as	a	SortBy.	But	a	SWITCH()
isn’t	going	to	save	us	this	time.	We	need	to	do	some	math.	Here’s	a	pattern	that	we
use	over	and	over	again:

([Year]	*	4)	+	[Qtr]

OK,	in	pattern	form	that	is:

(<Year	Column>	*	
<number	of	periods	per	year>)	+	
<period	column>

Where	 “period”	 can	 be	 quarter	 (of	which	 there	 are	 4	 per	 year),	month	 (12),	week
(52),	semester	(2),	whatever

553.	QtrYearLabel	–	note	how	each	value	matches	multiple	PeriodID	values

That	gives	us:

554.	Unique	sort	id/sequence	column	for	our	QtrYearLabel	column

555.	And	this	one	works

Now	For	the	Advanced	Examples
Summing	up	in	a	Lookup	Table
Let’s	 say	 you	 wanted	 to	 create	 a	 Total	 Sales	 column	 in	 your	 Products	 table,
reflecting	the	sales	for	each	Product.

First,	 Rob	 might	 scold	 you.	 That’s	 what	 measures	 are	 for!	 Why	 would	 you
summarize	a	value	in	your	Lookup	table?	But	then	Rob	would	calm	down	and	admit
that	there	are	definitely	cases	where	you	might	occasionally	need	to	do	this	

We	have	in	fact,	already	defined	this	in	the	chapter	on	Row	Filter	context.	Here	it	is
again:

=	CALCULATE	(SUM	(Sales[SalesAmt]))

556.	CALCULATE	changes	Row	to	a	Filter	Context	giving	us	the	Total	Sales	for	each	Product

But	what	 if	we	wanted	 to	do	something	different?	Let’s	say	we	wanted	 to	create	a
Total	Sales	column,	reflecting	the	sales	for	the	category	that	the	Product	belongs
to.	This	is	slightly	tricky	terrain,	but	let’s	plow	through.

Use	of	the	EARLIER()	Function
Ah,	the	EARLIER()	function.	It	was	two	years	before	we	understood	how/when
to	use	it.	Only	in	recent	years	has	it	felt	comfortable.	But	we	are	slow	learners	(well,
Rob	is	at	least),	so	your	mileage	may	vary.

And	again,	 there	are	patterns	 for	 its	use,	and	that’s	really	all	you	are	going	to
need,	at	least	for	a	long	time.

Here	 is	 the	 end	 result	we	 are	 looking	 for,	 showing	on	 each	 row	 the	 total	 sales
from	all	products	with	a	matching	category:

557.	Every	row	with	Category=Accessories	sums	to	the	same	amount,	which	is	the	sum	of	all	Accessories	Sales
Amount

558.	Filtered	to	Bikes

OK,	here’s	the	formula:

1.	=CALCULATE	(
2.	SUM	(Sales[SalesAmt]),
3.	FILTER	(
4.	Products,
5.	Products[Category]	=	EARLIER	(Products[Category])
6.)
7.)

The	only	difference	from	our	previous	formula	(for	calc	column	SalesPerProduct)	is
the	 FILTER	 clause	 passed	 in	 the	 second	 argument	 to	 CALCULATE.	 Some	 salient
points	before	we	move	on	to	look	at	EARLIER	in	line	5:

Without	 the	second	FILTER	argument,	CALCULATE	would	transition	the
current	 row	context	 into	 a	 filter	 context,	 and	we	would	essentially	get	 the
same	result	as	SalesPerProduct	which	we	have	seen	before
The	second	FILTER	argument	overrides	that	and	lets	us	handpick	the	set	of
rows	we	want	to	use
Note	 that,	 inside	 FILTER	 on	 line	 4,	 we	 do	 not	 need	 to	 specify
ALL(Products),	just	Products.	Refer	back	to	Figure	501	which	explains	that
for	FILTER’s	first	table	argument,	the	original	filter	context	applies.	And	for
a	Calculated	Column	there	 is	no	filter	context	 to	begin	with.	Thus	there	 is
no	need	to	clear	any	filters	by	using	ALL().
If	 you	 ignore	 the	 EARLIER	 function,	 we	 seem	 to	 be	 comparing
Products[Category]	 to	 Products[Category]?!	 What	 gives?	 How	 many
Products[Category]	are	there?

EARLIER()	in	Action
Products[Category],	being	a	naked	column	reference,	refers	to	the	Products[Category]	in
the	row	context.	But	how	many	row	contexts	are	there?	Well,	as	it	turns	out,	in	our	case
there	are	two	row	contexts:

1.	 Initial	Row	Context	for	the	Calculated	Column
2.	 Row	Context	generated	by	FILTER	as	it	iterates	over	the	Products	table

If	 we	 are	 attempting	 to	 calculate	 TotalCategorySales	 say,	 for	 the	 row	 with
ProductKey=597,	then	the	image	below	shows	the	row	contexts	in	play:

559.	FILTER	creates	a	new	“inner”	row	context,	thus	we	end	up	with	two	row	contexts	in	play

As	FILTER	iterates	over	the	Products	table,	 it	evaluates	the	condition	for	each	row,
and	if	TRUE,	would	 include	 that	 row	in	 the	 table	 it	 returns.	Let’s	catch	FILTER	in
action	as	it’s	doing	this	for	a	specific	row,	ProductKey=475	in	our	case.

560.	EARLIER	helps	us	navigate	to	the	“outer”	row	context

When	we	are	at	 row	ProductKey=475,	we	want	 to	compare	 the	Products[Category]
for	 that	 row	 (our	 current	 row	 context,	 since	 we’re	 inside	 FILTER)	 with	 the
Products[Category]	of	the	initial	row.	The	EARLIER()	function	accomplishes	that	for
us,	by	going	back	one	level	to	the	previous	(earlier)	row	context	that	existed.

In	 this	 comparison,	 current	 row	 Products[Category]	 =	 “Clothing’,	 whereas
EARLIER(Products[Category])	 =	 “Bikes”	 thus	 this	 row	would	 not	 be	 returned	 by
FILTER.	But	as	FILTER	moves	through	the	Products	table	it	would	collect	and	return
all	rows	with	Products[Category]	=	“Bikes”.

If	all	of	 that	didn’t	sink	in,	don’t	sweat	 it.	Freely	apply	this	as	a	pattern,	your
results	will	be	equally	awesome.	Let	the	understanding	grow	over	time	as	you	keep
working	with	 these	patterns.	 If	you	 look	carefully,	 the	pattern	we	 just	developed	 is
strikingly	similar	to	the	GFITW,	with	some	adaptations	for	it	 to	work	in	Calculated
Column.

ⓘ	GFITW	Pattern	Modified	 for	 Calc	 Column:	 Use
when	you	need	to	calculate	over	all	rows	in	the	table,	but
comparing	it	to	some	value	in	the	current	row

CALCULATE(<base	calculation>,
FILTER(<table>),	
<row	test	condition	using	EARLIER>	
)
)

Simple	row	test	condition	would	look	like

table[column]	=	EARLIER(table[column])

Where	you	see	“=”	you	can	use	any	comparison	operator:
=,	>,	<,	<=,	>=,	<>
You	 can	 also	 combine	 multiple	 conditions	 using	 &&
(logical	AND)	or	||	(logical	OR)

An	Even	More	Advanced	Example
We	 had	 to	 include	 this	 one,	 both	 because	 it	 shows	 a	 few	 twists	 on	 the	 previous
technique,	 and	 because	 it	 is	 one	 of	 the	 coolest,	 most	 inspiring	 examples	 of	 the
potential	we	all	now	have	as	Excel	Pros.

Rob	has	a	neighbor	who’s	a	neuroscientist.	In	his	field,	he’s	kind	of	a	big	deal,	like
Will	Ferrell	in	the	movie	“Anchorman.”	His	name	is	Dan	Wesson,	he	runs	a	research
lab	 at	 Case	Western	 Reserve	 University	 (CWRU),	 and	 his	 lab	 has	 been	 on	 CNN
thanks	to	some	exciting	developments	 in	Alzheimer’s	research	that	he	spearheaded.
(See?	People	know	him).

This	 is	a	well-funded	 lab	with	all	kinds	of	expensive	equipment.	 It’s	an	 impressive
place	–	we’ve	toured	it.	Dan	even	has	individual	software	packages	that	cost	$10,000
for	a	single	seat!

And	oh	yeah,	with	our	help,	Dan	has	converted	most	of	his	data	analysis	over	to
Power	Pivot.	You	know,	the	next	generation	of	spreadsheet.	That	thing	that	costs
approximately	$10,000	less	than	his	other	software.	That’s	right,	Excel	Pros	–	we
even	do	Alzheimer’s	research!

Here	are	a	few	of	our	favorite	pictures	of	all	time:

561.	This	“DNA”	view	is	data	from	the	Neuroscience	lab	at	CWRU.	The	red	and	blue	“waves”	are	rats	inhaling
and	exhaling	–	red	is	inhale,	blue	is	exhale,	and	each	row	represents	1/100	of	a	second!

562.	Zoomed	in	on	one	of	the	inhale/exhale	waves.

Now	here’s	the	one	that	makes	us	the	happiest:

563.	Detecting	the	peak	of	each	inhale	event	is	very	important	to	Dan’s	work.	Look	where	the	$10,000,	purpose-
built	scientific	software	places	the	peaks	versus	where	Power	Pivot	puts	them!

That	“peak	detection”	is	just	a	calc	column.	Here’s	what	the	data	looks	like:

The	 most	 critical	 component	 of	 detecting	 an	 inhale	 peak	 is	 finding	 the	 most
negative	 value	 in	 any	 given	 timeframe.	 Think	 of	 it	 as	 like	 a	moving	 average,
except	that	it’s	a	moving	minimum!

564.	Time	(in	hundredths	of	a	second),	RatID,	and	Value	-	negative	for	inhale,	positive	for	exhale.	The	bigger	the
absolute	value,	the	more	forceful	the	inhale/exhale.

And	here’s	our	calc	column	formula	for	moving	minimum:

1.	=CALCULATE(MIN(Data[value]),
2.	FILTER(Data,
3.	Data[Rat]=EARLIER(Data[Rat])	&&
4.	Data[TimeID]	<=	EARLIER(Data[TimeID])	+5	&&
5.	Data[TimeID]	>=	EARLIER(Data[TimeID])	–5
6.)
7.)

Hey,	 it’s	 the	 same	 “GFITW	Pattern	 for	Calc	Column”	 reapplied.	 Just	 like	 the	 first
example	we	showed	you	for	the	EARLIER()	function.	But	there	are	a	few	wrinkles:

Multiple	conditions	–	don’t	let	this	scare	you.	You	can	do	as	many	as	you
want	and	combine	them	in	using	&&	(logical	AND),	as	we	have,	or	using	||
(logical	OR).
The	first	condition	set	–	 (Line	3)	 is	 just	 like	our	previous	example.	Only
rows	 for	 the	 current	 rat	 should	 be	 counted,	 otherwise	 we’re	 looking	 at
someone	else’s	breathing	
The	second	condition	set	 is	kinda	cool	–	(Line	4	and	5)	 it	basically	says
“only	count	the	five	rows	that	happened	sequentially	before	me,	and	the	five
rows	that	happened	right	after	me.”	So	we	end	up	 looking	at	a	window	in
time	that	is	11	rows	“long,”	which	is	actually	0.11	seconds.

The	 net	 result	 of	 the	 formula	 is	 that	 it	 tells	 us	 the	 smallest	 value	 in	 the	 current	 11-row
window.

From	there,	other	calc	columns	can	detect	if	the	current	row’s	Value	column	matches	the
new	11-row	minimum	column,	in	which	case	we’re	probably	looking	at	a	peak	inhale.

See	 http://ppvt.pro/PkSniff	 for	 the	 full	 blog	 post;	 the	 formula	 shared	 in	 this	 book
supersedes	the	one	used	in	the	blog	post,	since	we	have	refined	the	formula	over	time	as
we	gained	deeper	understanding	of	DAX	

If	you’re	interested	in	reading	more	about	this	project,	see:

http://ppvt.pro/Peak2Freq	-	where	we	move	on	 to	use	our	peak	calc	columns	 to	produce
frequency	and	amplitude	measures.

http://ppvt.pro/FzzyTime	 -	 where	 we	 correlate	 the	 inhale/exhale	 data	 with	 events	 in
another	table	that	cannot	be	directly	related	(more	calc	column	wizardry	ensues)

Calculated	Columns	are	Static
In	 the	 intro	 to	 calculated	 column,	 we	 mentioned	 that	 there	 are	 only	 two	 events	 which
trigger	the	calculation/recalculation	of	a	Calculated	Column

Definition	 or	 Redefinition:	 When	 you	 define	 (or	 edit)	 the	 formula	 for	 the
calculated	column	and	hit	enter,	the	column	values	are	recalculated
Data	 Refresh:	 When	 the	 Power	 Pivot	 table	 holding	 the	 calculated	 column	 is
refreshed	the	column	values	are	recalculated.

The	computed	values	for	each	row	are	 then	stored	within	 the	data	model	along	with	 the
other	columns,	back	to	the	file.

In	 contrast,	 for	 Measures,	 the	 actual	 values	 are	 never	 stored	 and	 are	 always
calculated	“dynamically”	based	on	the	pivot	that	you	build.

Let’s	see	this	in	a	pivot,	showing

1.	 Calculated	Column	SalesPerProduct=CALCULATE(SUM(Sales[SalesAmt]))
2.	 Measure	[Total	Sales]	=	SUM(Sales[SalesAmt])
3.	 Measure	[SalesPerProduct	Measure]=CALCULATE(SUM(Sales[SalesAmt]))

We	threw	in	the	third	one	to	be	clear	that	 the	behavior	you	would	see	has	nothing	to	do
with	CALCULATE,	and	everything	to	do	with	Calculated	Columns	vs.	Measures.	Thus	#3
has	the	exact	formula	as	#1.	Although	the	CALCULATE	in	a	measure,	without	any	filter
arguments	isn’t	any	different	than	#2	

Starting	off	with	a	basic	pivot,	all	three	seem	to	be	providing	the	same	result.

http://ppvt.pro/PkSniff
http://ppvt.pro/Peak2Freq
http://ppvt.pro/FzzyTime

565.	Similarities	between	Calc	Column	and	Measures	are	only	skin	deep

But	 as	 soon	 as	we	 add	 a	 filter	 to	CalendarYear,	 by	 using	 a	 slicer,	we	 can	 see	 that
while	 the	 calculated	 column	 values	 remain	 unchanged,	 measures	 are	 recalculated
based	on	the	Pivot	Table	filters:

566.	Calc	Columns	are	“static”,	Measures	are	“dynamic”

You	 can	 think	 of	 the	 Calculated	 Column	 values	 as	 being	 stamped	 on	 to	 the	 respective
rows,	and	behaving	more	like	others	columns	coming	from	your	data	source	i.e.	the	value
stamped	is	not	going	to	change	based	on	any	input	coming	from	your	pivot	table.

Memory	and	CPU	Consumption	During	Recalculation	of
Complex	Calc	Columns
Calculated	 Columns	 do	 have	 a	 memory	 footprint	 which	 can	 impact	 the	 “runtime”
performance	 i.e.	 displaying	 results	 in	 a	 Pivot	 Table.	 We	 discussed	 the	 implications	 of
calculated	columns	in	the	Performance	chapter.

However,	 there	 is	 another	 penalty	 that	 you	 incur	 with	 calculated	 columns,	 when	 you
refresh	your	data.	That	 is	 the	penalty	of	 all	 your	 calculated	 columns	being	 recomputed.
Usually	this	is	a	non-issue:	most	calculated	columns	do	not	take	that	long	to	compute	and

likely	you	are	running	an	automated	refresh	of	your	model	during	after-hours,	thus	a	delay
isn’t	 really	 a	big	deal.	Therefore	 as	 long	as	 “runtime”	performance	 is	 fine,	 this	 is	not	 a
concern.

However	certain	kinds	of	calculated	columns	can	eat	a	truly	staggering	amount	of	RAM
when	they’re	running.	Take	our	“moving	minimum”	example	 from	the	peak	detection
scenario	above	for	instance.	That	formula	is	written	to	only	look	at	the	previous	five	rows
and	the	next	five	rows,	plus	the	current	row.	So	we’re	only	inspecting	11	rows	at	a	time.

But	to	find	those	11	rows	to	inspect,	Power	Pivot	starts	from	scratch	and	goes	looking
through	the	entire	table,	one	row	at	a	time,	and	deciding	whether	each	row	belongs	in
that	current	window	of	11.

In	normal	Excel,	relative	reference	takes	care	of	this	–	Excel	literally	goes	and	looks	five
rows	up	and	five	rows	down.	It	does	not	have	to	scan	the	entire	worksheet,	row	by	row,	in
order	to	find	the	right	11	rows.	When	it	comes	to	“look	at	the	rows	close	to	me,”	Power
Pivot	 is	 just	 fundamentally	 less	 intelligent	 than	 normal	 Excel.	 That’s	 a	 consequence	 of
lacking	A1-style	reference,	which	we’ve	said	before	is	a	necessary	evil	 in	order	 to	get	a
truly	robust	environment.

We’ll	 leave	you	with	one	last	observation	on	this	 topic:	 if	you	have	one	million	rows	in
your	 table,	 that	means	scanning	a	million	rows	 to	calculate	 just	a	single	 row	of	 the	calc
column.	And	 since	 there	 are	 a	million	 rows	 to	 calc,	 you	 have	 a	million	 loops,	 each	 of
which	is	a	million	rows	of	loop	in	itself.	That’s	literally	a	trillion	comparisons!	Not	only
does	that	take	a	lot	of	time	and	processor	power,	but	it	takes	a	lot	of	RAM	too.

Ultimately,	with	Dan’s	 project,	we	 had	 to	 abandon	 using	Power	Pivot	 calc	 columns	 for
peak	detection	and	implement	the	same	“moving	minimum”	formula	in	SQL	Server.	That
inhale/exhale	table	of	his	grew	to	be	over	100	million	rows!	But	we	still	use	Power	Pivot
for	all	of	the	measures	and	reporting,	which	after	all	is	Power	Pivot’s	strength.

27	-	New	DAX	Functions…	and	Variables!
Amazing	Since	2010,	and	STILL	Improving
The	DAX	language	 (and	 the	engine	 that	goes	with	 it)	arrived	on	 the	scene	 in	2010	 in	a
stunningly	complete	state.	Unlike	most	“brand	new”	products,	the	DAX	language	offered
tremendous	 breadth	 and	 depth	 in	 its	 very	 first	 release.	 That	 was	 no	 accident:	 the
engineering	 team	 behind	 DAX	 had	 more	 than	 a	 decade	 of	 experience	 developing	 and
refining	a	precursor	 language	 (called	MDX).	We,	 the	users	of	DAX,	 therefore	benefited
tremendously	 from	all	 of	 that	 experience,	 and	 there	were	very	 few	places	where	 “DAX
v1”	left	us	unsatisfied.

But	Microsoft	has	continued	to	add	to	the	language	anyway,	which	is	awesome	

Excel	2016	and	Power	BI	Desktop	both	offer	a	number	of	new	functions	to	make	your	life
easier.	In	this	chapter,	we	will	highlight	a	few	of	our	favorites.

Important	Note:	Excel	2016+	and	Power	BI	Desktop	Only!
Yes,	 we	 just	 hinted	 at	 this	 in	 the	 immediately-preceding	 paragraph,	 but	 it	 needs	 to	 be
called	out	in	bright,	blazing	letters:

⚠	Everything	in	this	chapter	will	ONLY	work	in	Excel	2016	or	newer,	or	in	Power
BI	Desktop!	Nothing	in	this	chapter	will	work	in	Excel	2010	or	Excel	2013!

567.	This	is	the	sort	of	error	message	you	will	see	if	you	try	to	use	these	new	functions	in	Excel	2010	or	Excel
2013	Power	Pivot

New	Functions	–	Some	Highlights
DATEDIFF()

ⓘ	DATEDIFF(<start_date>,	<end_date>,	<interval>)
<interval>	can	be:	Second,	Minute,	Hour,	Day,	Week,	Month,	Quarter,	Year

Example:	We	 can	 define	 a	 calculated	 column,	 to	 determine	 the	 product	 lifespan	 in
months,	as	below

ProductLifeSpan	(Months)	=
DATEDIFF	(‘Product’[StartDate],	‘Product’[EndDate],	MONTH)

568.	DATEDIFF	makes	it	easy	to	calculate	a	date	or	time	span

This	 function	 should	 be	 useful	 in	 quite	 a	 few	 scenarios	 involving	 date/time	 span
calculation.

Sometimes	we	 twist	 ourselves	 in	 knots,	 thinking	what	 the	 right	 answer	 should	 be,
given	specific	dates.	We	like	how	the	documentation	explains	what	the	return	value	is
going	to	be:

ⓘ	 DATEDIFF	 Return	 Value:	 The	 count	 of	 interval	 boundaries	 crossed
between	two	dates

So	if	you	look	at	the	month	of	January	2015	and	the	week	boundary	(Sunday	is	the
default	start	of	the	week)…

569.	Sunday	marks	the	start	of	a	week	or	week	boundary

…the	DATEDIFF	results	shown	below	will	all	make	sense:

570.	DATEDIFF	returns	the	count	of	interval	boundaries	crossed

MEDIAN()	and	PERCENTILE
Median	and	Percentile	used	to	be	fairly	difficult	to	calculate	in	DAX	(Percentile	was
covered	in	a	three	part	article,	see	http://ppvt.pro/percentile).	But	now	you	can	simply
use	the	new	functions.

Median:

ⓘ	MEDIAN(<column>)

Example:

Median	Sales	=
MEDIAN	(Sales[SalesAmount])

571.	Note	how	Average	and	Median	are	distinct	values

Percentile:

Percentile	comes	in	a	pair	of	functions

ⓘ	PERCENTILE.INC(<column>,	<k>)
PERCENTILE.EXC(<column>,	<k>)

http://ppvt.pro/percentile

These	are	similar	 to	the	PERCENTILE.INC	AND	PERCENTILE.EXC	functions	in
Excel.

Example:

Percentile50	=
PERCENTILE.INC	(Sales[SalesAmount],	0.50)

Percentile90	=
PERCENTILE.INC	(Sales[SalesAmount],	0.90)

572.	Showing	the	50th	Percentile	(same	as	Median)	and	90th	Percentile

Notice	the	drop	in	50th	and	90th	percentile	Sales	amount	in	year	2003,	2004.	That	is
due	 to	 lower	 priced	 categories	 that	 AdventureWorks	 started	 selling	 those	 years
(accessories	and	clothing,	besides	bikes).	You	have	to	admire	the	bold	move	there	by
the	company.

PRODUCT()
Being	 able	 to	 multiply	 values	 in	 a	 column	 was	 missing	 previously	 (see
http://ppvt.pro/PRODUCTX	for	the	kinds	of	workarounds	that	were	required).

The	calculation	of	cumulative	returns	is	probably	the	most-common	example	of	when
we	need	this.

Let	us	say	our	dataset	consists	of	monthly	returns	for	the	S&P	500:

573.	Monthly	returns	for	S&P	500

If	monthly	return	for	month	1	was	R1,	for	month	2	it	was	R2	and	so	on,	the	annual
rate	of	return	would	be	computed	as:

(1+R1)	x	(1+R2)…(1+R12)	-	1

http://ppvt.pro/PRODUCTX

We	already	have	 the	value	1+R	stored	 in	 the	column	‘Factor’.	Thus	we	can	define
our	measure	as:

Annual	Return	=
PRODUCT	(MonthlyReturn[Factor])	-	1

574.	Annual	Rate	of	return	calculated	from	Monthly	Returns

A	very	official	and	reliable	source	confirms	that	our	results	are	accurate.	The	slight
difference	 in	 decimal	 points	 is	 due	 to	 the	 fact	 that	 our	 monthly	 source	 data	 was
rounded	at	the	2nd	decimal	place.

575.	Wikipedia	confirms	the	veracity	of	our	results

GEOMEAN()	and	GEOMEANX()
There	are	several	measures	of	central	tendency,	such	as	median,	arithmetic	mean	and
geometric	 mean.	 In	 some	 scenarios	 geometric	 mean	 is	 more	 effective	 than	 the
arithmetic	mean.	Geometric	mean	 is	 the	preferred	approach	 (over	arithmetic	mean)
when	 values	 are	 percentages	 (e.g.	 rate	 of	 return)	 or	 at	 different	 scales	 (e.g.	movie
ratings	and	movie	box	office	total).

For	our	dataset	we	want	to	calculate	the	arithmetic	and	geometric	mean	of	our	annual
returns	 over	 several	 years.	 For	 this	 we	 would	 use	 the	 X	 version	 of	 GEOMEAN

function,	which	lets	us	iterate	over	the	Years	and	calculate	the	mean	returns.

Example:

Annual	Return	Arithmetic	Mean	=
AVERAGEX	(VALUES	(MonthlyReturn[Year]),	[Annual	Return])

Annual	Return	Geometric	Mean	=
GEOMEANX	(VALUES	(MonthlyReturn[Year]),	[Annual	Return])

576.	Notice	how	the	Geometric	Mean	and	Arithmetic	Mean	are	different

This	 article	 provides	 more	 information	 about	 geometric	 mean:
http://ppvt.pro/geomeanMath.

Other	Corresponding	X	Functions
We	used	GEOMEANX	earlier.	We	will	just	point	out	that	MEDIAN,	PERCENTILE
and	PRODUCT	each	have	their	X	function	equivalents,	namely:

MEDIANX,	PERCENTILEX.INC,	PERCENTILEX.EXC,	PRODUCTX

Just	like	SUMX,	these	“X”	functions	all	give	you	the	ability	to	operate	over	Measure
values	(as	opposed	to	values	in	a	column,	to	which	the	non-X	functions	are	limited),
and	to	carefully	control	the	<table>	over	which	the	calculation	operates	–	including
temporary	tables	created	by	table	functions	like	ALL	and	FILTER!	(As	described	in
the	chapter	on	CALCULATE	and	FILTER	–	More	Nuances).

ⓘ	We	suspect	that	the	“X”	versions	of	these	functions	will	be	just	as	useful
to	you	as	the	“non-X”	versions,	if	not	more	so,	since	the	X	versions	can	be	used
to	 find	 the	median	of	a	set	of	measure	values	 (or	product	of	 them,	or	where	a
single	measure	value	“ranks”	percentile-wise),	and	not	just	operating	on	values
in	a	column.	So	make	sure	you	check	those	out!

CONCATENATEX:	The	Most	Interesting	Function	in	the	World?
“I	don’t	 always	need	 to	 concatenate	 a	variable	number	of	 text	 values	 together	 in	 a
DAX	formula,	but	when	I	do,	I	require	CONCATENATEX.”

-Rob	Collie

Here	is	a	very	special	one:

http://ppvt.pro/geomeanMath

ⓘ	CONCATENATEX(<table>,	<expression>,	[delimiter])
CONCATENATEX	 is	 worth	 its	 weight	 in	 gold	 when	 you	 need	 it.	 This	 is	 another
function	we	have	been	wanting	for	a	while	(See	http://ppvt.pro/containsx).	Let’s	put
CONCATENATEX	to	some	good	use.

Example:

We	will	build	this	one	in	two	steps.	
Step	1:	First	we	define	a	Top	N	measure	to	show	us	the	Sales	for	our	Top	3	products
as	below	(note	that	TOPN	is	not	a	new	function	and	is	also	available	in	Excel	2010
and	2013).

Top	3	Products	Sales	=
CALCULATE	(
[Total	Sales],
TOPN	(3,	Product,	[Total	Sales])
)

Step	2:	Next	we	want	to	actually	list	the	Top	3	Products.	We	can	do	so	by	combining
the	power	of	TOPN	with	our	new	function	CONCATENATEX	as	below	(numbered
to	aid	with	explanation	later):

1.	Top	3	Products	Names	=	
2.	CONCATENATEX(
3.	TOPN(3,	Product,	[Total	Sales])
4.	,Product[ProductName]
5.	,	“,	“
6.	,[Total	Sales]
7.	,DESC
8.)

Let	us	show	you	the	results	first:

577.	CONCATENATEX	lets	us	show	the	names	of	the	Top	3	Products

http://ppvt.pro/containsx

578.	We	can	validate	the	top	3	products	for	2001	July

Here	is	the	complete	syntax	of	the	function	(we	had	skipped	some	optional	arguments
earlier):

ⓘ	 CONCATENATEX(<table>,	 <expression>,	 [delimiter],
[orderby_expression1],	[order1]…)

<table>	(Line	3):	Like	the	other	X	functions,	it	 takes	a	table	as	its	first	argument	–
the	table	over	which	it	will	iterate.	In	this	case,	that	is	supplied	by	the	TOPN	function
on	 line	3,	which	 simply	provides	a	 temporary	 table	of	 the	 top	 three	Products	 (well
actually,	potentially	more	than	3	in	case	of	ties).

<expression>	(Line	4):	This	is	the	expression	that	would	be	calculated	for	each	row
of	<table>	and	in	the	end	would	be	concatenated.	We	supply	the	ProductName	here.

<delimiter>	(Line	5):	We	supply	comma	as	a	delimiter	here.

<orderby_expression1>	(Line	6)	and
<order1>	 (Line	7):	If	 this	argument	is	not	provided	then	you	may	get	results	 in	no
particular	order.	We	would	like	to	see	ProductName	sorted	by	[Total	Sales]	so	that	we
show	our	 top	product	 first,	 then	second	 ranked	product	and	so	on.	Thus	we	supply
[Total	Sales]	in	Line	6	and	specify	DESC	in	Line	7.

ISEMPTY()

ⓘ	ISEMPTY(<table_expression>)

Wherever	 you	were	 using	 logic	 like	 COUNTROWS(<table_expression>)	 =	 0,	 you
can	now	use	a	shortcut,	ISEMPTY().

Example:	We	define	a	new	measure

ProductNotSold	=
ISEMPTY	(Sales)

579.	ISEMPTY	at	work

Our	 expectation	 is	 that	 ISEMPTY()	 is	 probably	 going	 to	 calculate	 faster	 than
COUNTROWS()=0,	 since	 if	 you	 think	 about	 it,	 counting	 all	 the	 rows	 is	 lot	 more
math	 than	 simply	 checking	 if	 a	 table	 is	 empty.	 You	 may	 only	 see	 a	 noticeable
difference	when	working	with	really	large	datasets.	Still	though,	even	for	readability
reasons,	ISEMPTY()	should	be	preferred	as	a	best	practice.

INTERSECT(),	EXCEPT()	and	UNION()

ⓘ	INTERSECT(<LeftTable	>,	<RightTable>)
EXCEPT(<LeftTable	>,	<RightTable>)

UNION(<table_expression1>,	 <table_expression2>	 [,
<table_expression>]…)

These	functions	come	in	handy	when	you	are	operating	on	lists	and	comparing	and
combining	them	in	some	manner.	Here’s	how	they	work	in	general

INTERSECT:	Returns	the	rows	of	left-side	table	which	appear	in	right-side	table.

EXCEPT:	Returns	the	rows	of	left-side	table	which	do	not	appear	in	right-side	table.

UNION:	Returns	the	union	of	the	two	tables	whose	columns	match.

Here’s	a	visual	that	may	help:

580.	INTERSECT,	EXCEPT	and	UNION	illustrated	graphically

Let’s	try	these	out	with	an	example.	Let’s	say	we	have

List	1:	List	of	Top	10	Products	by	Sales
List	2:	List	of	Top	10	Products	by	Margin

Here	is	how	these	lists	look	for	the	“Clothing”	product	category:

581.	Our	Top	10	products	by	sales	and	by	margin

INTERSECT()
Using	INTERSECT,	we	want	to	determine	the	count	of	products	that	appear	in	List	1
and	in	List	2.	Here’s	our	measure

Count	Products	with	TopSales	AND	TopMargin	=
COUNTROWS	(
INTERSECT	(
TOPN	(10,	‘Product’,	[Total	Sales]),
TOPN	(10,	‘Product’,	[Margin])
)
)

And	here	are	the	results:

582.	INTERSECT	 shows	 us	 the	 count	 of	 Products	 found	 in	 both	 List1	 and	 List2.	 (We	 are	 using	 Power	 BI’s
“Card”	Visualization	to	Display	our	measure	here.	We	merely	diagrammed	the	tables	at	the	top	so	you	can	see
which	rows	contribute	to	that	count).

EXCEPT()
Using	EXCEPT,	we	want	 to	 determine	 the	 count	 of	 products	 that	 appear	 in	List	 1
(Top	10	Sales)	but	not	in	List	2	(Top	10	Margin).	Here’s	our	measure

Count	Products	with	TopSales	and	NOT	TopMargin	=
COUNTROWS	(
EXCEPT	(
TOPN	(10,	‘Product’,	[Total	Sales]),
TOPN	(10,	‘Product’,	[Margin])
)
)

And	here	are	the	results:

583.	EXCEPT	 shows	 us	 the	 count	 of	 Products	 in	 List1	 but	 not	 in	 List2.	 (We	 are	 using	 Power	 BI’s	 “Card”
Visualization	 to	Display	our	measure	here.	We	merely	diagrammed	 the	 tables	at	 the	 top	so	you	can	see	which
rows	contribute	to	that	count).

UNION()
Using	UNION,	we	want	to	determine	the	count	of	products	that	appear	in	List	1	(Top
10	Sales)	or	 in	List	 2	 (Top	 10	Margin).	 This	 one	 is	 a	 little	 tricky,	 since	UNION()
retains	all	duplicate	rows.	Therefore	we	write	this	one	slightly	differently.

Here’s	our	measure,	and	this	one	definitely	falls	under	“go	ahead	and	treat	this	as	a
pattern.”

Count	Product	with	TopSales	OR	TopMargin	=
VAR	TopSalesOrMargin	=
UNION	(
TOPN	(10,	‘Product’,	[Total	Sales]),
TOPN	(10,	‘Product’,	[Margin])
)
RETURN
COUNTROWS	(SUMMARIZE	(TopSalesOrMargin,	‘Product’[ProductKey])

What	 just	 happened	 there?!	Don’t	 panic,	we	 told	 you	 it	was	 a	 pattern,	 no	 need	 to
think	too	deeply	.

But	 OK,	 assuming	 you	 are	 still	 curious…	 firstly	 what	 is	 a	 VAR?	VAR	 is	 used	 to
declare	a	Variable.	Yes,	Variables	are	a	new	feature	in	DAX,	we	will	talk	about	them
in	a	moment.	But	for	now,	you	can	think	of	the	measure	as	calculating	in	two	steps.

Step	1:	UNION	our	List	1	and	List	2.	However,	UNION	retains	the	duplicates,	so	we
need	 to	 remove	 duplicates	 before	 we	 can	 count	 our	 rows	 (else	 your	 answer	 will
always	be	10	rows	+	10	rows	=	20).	That’s	what	Step	2	is	for.

Step	 2:	 SUMMARIZE	 then	 COUNTROWS.	 SUMMARIZE	 is	 a	 very	 versatile
function,	but	one	that	we	never	teach	in	our	two-day	seminars.	(Rob	likes	to	say	that
this	one	is	too	hard	for	him,	so	why	torture	others?).

In	 truth	 it’s	not	 that	bad,	but	 it	 is	 rare	 that	 you	would	 ever	 need	 it.	 SUMMARIZE
returns	 a	 temporary	 table	 that,	 if	 we	 could	 see	 it,	 would	 strongly	 resemble	 a
PivotTable	–	one	with	‘Product’[ProductKey]	on	Rows,	and	nothing	on	Columns	or
Values	 in	 this	case.	And	we	know	that	pivots	remove	dupes	from	Rows,	collapsing
duplicates	into	a	single	row	of	the	pivot.	So	does	SUMMARIZE.

So	here,	we	are	using	SUMMARIZE	merely	to	remove	the	duplicates	(SQL	folks	can
think	 of	 SUMMARIZE	 as	 “Group	 By”	 SQL	 clause).	 With	 duplicates	 removed,
COUNTROWS	gives	us	the	desired	result.

584.	UNION	and	then	SUMMARIZE	gets	us	count	of	Products	in	List1	or	in	List2

More	New	Functions
These	 are	 just	 some	 of	 the	 new	 functions,	 for	 a	 complete	 list	 see
http://ppvt.pro/newfxn.	For	updates	on	the	new	functionality	released	with	Power	BI
Dekstop	(expected	on	a	monthly	cycle)	see	http://ppvt.pro/pbiDesignerBlog.

DAX	Variables
Variables	Are	like	a	Tape	Recorder

http://ppvt.pro/newfxn
http://ppvt.pro/pbiDesignerBlog

585.	DAX	Variables	let	you	“record”	a	value	in	one	part	of	your	formula,	and	“replay”	that	value	multiple	other
places	in	your	formula	without	re-calculating	it	every	time.

At	 a	 high	 level,	Variables	 let	 us	 tell	 the	DAX	 engine,	 “go	 evaluate	 an	 expression,
remember	the	answer	you	get,	and	then	use	that	answer	elsewhere	in	the	formula.”

So	it’s	sort	of	like	a	tape	recorder	(with	apologies	to	those	of	you	who	are	too	young
to	have	ever	seen	a	 tape	 recorder).	Go	“play”	 this	chunk	of	a	 formula,	“record”	 its
value,	and	then	“re-play”	that	value	multiple	times	during	the	rest	of	the	formula	

Oh,	but	it’s	been	long	enough	now	that	we	think	it’s	time	to	repeat	our	warning…

⚠	Everything	in	this	chapter	will	ONLY	work	in	Excel	2016	or	newer,	or	in
Power	BI	Desktop!	Nothing	 in	 this	 chapter	will	work	 in	Excel	2010	or	Excel
2013!

Variables	Offer	Three	Benefits
Assuming	you	are	running	Excel	2016	or	newer,	or	Power	Pivot	Desktop,	 there	are
three	basic	answers	to	the	question,	“why	are	Variables	useful?”

ⓘ	Three	Benefits	of	Variables:
1.	 They	 make	 certain	 formulas	 “cleaner”	 -	 less

tedious	 to	 write,	 and	 also	 easier	 to	 read	 and	 edit
later	 on,	 by	 removing	 duplicate	 expressions	 from
the	formula.

2.	 They	make	 certain	 formulas	 easier	 to	 write,	 with
less	 conceptual	worry	about	 row	context	vs.	 filter
context.

3.	 They	make	certain	formulas	perform	faster,	by	not
requiring	the	DAX	engine	to	re-evaluate	the	same
expression	multiple	times.

Of	course,	sometimes	Variables	can	provide	all	of	those	benefits	at	the	same	time,	but
we	think	it’s	easier	to	cover	each	one	separately,	with	its	own	example.

Benefit	One:	Cleaner	Formulas
Consider	for	a	moment	the	following	formula:

Transaction	Count	=
IF	(
CALCULATE	(COUNTROWS	(Sales))	>	0,
CALCULATE	(COUNTROWS	(Sales)),
-1
)

Pretty	simple:	we	perform	a	calculation	to	see	if	it’s	greater	than	zero.	If	so,	we	return
that	same	calculation	as	the	output	of	our	formula.	Otherwise,	we	return	-1	(or	0	or
some	other	number	–	there’s	nothing	special	about	-1	in	this	example).

Sadly	 this	 requires	 us	 to	 repeat	 that	CALCULATE(COUNTROWS(…))	 expression
twice	in	our	formula.	Blech.

This	 is	 an	 age-old	 pattern	 that	 we’ve	 all	 seen,	 even	 back	 in	 traditional	 Excel
formulas.	It’s	quite	similar	to	the	IF(ISERROR(some	calc),	0,	that	same	calc)	pattern
actually.	That	pattern	was	made	simpler	with	 the	IFERROR	function,	which	allows
us	to	write	“some	calc”	only	once.

But	in	our	case	we’re	not	testing	for	an	error,	which	means	we	can’t	use	IFERROR	to
remove	our	duplicate	expression.

Until	Excel	2016	and	Power	BI	Desktop,	that	 is,	because	in	 those	products,	we	can
do	this	instead:

Transaction	Count	=
VAR	RowCount	=
CALCULATE	(COUNTROWS	(Sales))
RETURN
IF	(RowCount	>	0,	RowCount,	-1)

OK,	that	formula	doesn’t	look	a	whole	lot	cleaner	than	the	original.	It’s	got	these	new
keywords	 VAR	 and	 RETURN	 in	 there,	 and	 on	 net,	 it’s	 actually	 longer	 than	 the
original!

But	bear	with	us…	because	sometimes,	your	repeated	expression	is	much	longer	than
the	example	we’re	using	here.	Let’s	stick	with	this	example	for	the	moment,	because
it	illustrates	the	concepts	quite	nicely.

The	VAR	Keyword
The	 first	 thing	 you	will	 notice	 is	 that	 the	VAR	 keyword	 does	 not	 appear	 in	 auto-
complete:

586.	Using	Power	BI	Desktop,	we	see	that	VAR	does	not	appear	in	autocomplete,	which	is	admittedly	a	bit	weird

Don’t	worry,	VAR	does	exist!	Just	type	VAR,	press	the	spacebar,	and	voila:

587.	Note	that	VAR	does	appear	in	special	blue	font,	indicating	DAX	knows	that	it’s	special

Once	 the	 DAX	 engine	 sees	 the	 VAR	 keyword,	 it	 is	 expecting	 you	 to	 then
immediately	 provide	 a	 <variable	 name>	 =	 <expression>	 block	 next,	 like	 we	 did
above:

VAR	RowCount	=
CALCULATE	(COUNTROWS	(Sales))

And	let’s	see	what	the	formula	editor	does	with	this:

588.	RowCount	is	formatted	in	green,	indicating	that	DAX	knows	that	is	a	Variable	we	have	created

ⓘ	So,	in	short,	you	put	the	VAR	keyword	at	the	front	of	a	formula	when	you
want	 to	create	a	Variable,	and	 then	 include	a	<variable	name>	=	<expression>
block.	Yes,	you	can	create	multiple	Variables	within	a	single	formula,	in	which
case	each	<variable	name>	=	<expression>	block	MUST	be	preceded	by	its	own
VAR	keyword.

The	RETURN	Keyword
Now	that	we	have	our	VAR	and	our	<variable	name>	=	<expression>	block,	we	tell
the	DAX	engine	 “OK,	 enough	with	 that	Variable	 stuff,	 now	we’re	 going	 to	 do	 the
normal	old	formula	thing.”

589.	The	RETURN	keyword	also	does	not	show	up	in	autocomplete,	but	also	like	VAR,	it	does	get	recognized	and
formatted	in	blue

Everything	after	RETURN,	then	behaves	just	like	a	normal	formula.	Well,	except	for
the	awesome	fact	that	you	can	then	reference	your	Variable	by	name,	of	course.

Referencing	a	Variable
Using	your	Variable	is	then	quite	simple:	just	type	its	name!

After	we	 reference	 the	Variables	 in	our	completed	 formula,	 the	Variable	appears	 in
green	every	time	it	shows	up	–	both	inside	the	VAR	section,	and	inside	the	RETURN
section:

590.	Good	news:	Variable	names	do	appear	in	autocomplete,	and	even	get	their	own	special	icon!

591.	Variable	names	always	appear	in	green,	both	within	the	VAR	section	and	within	the	RETURN	section

Cleaner	Formulas	(Benefit	One)	Revisited
OK,	with	 that	groundwork	 laid	down,	we	can	consider	 another	 “with	and	without”
example	of	formula	simplification.

Another	Example	–	Without	Variables

AdjustedLeadTime	=
SWITCH	(
[ProductCategory],
“Bikes”,	CALCULATE	(
MAX	(‘Product’[DaysToManufacture]),
FILTER	(
‘Product’,
‘Product’[ProductCategory]	
=	EARLIER	(‘Product’[ProductCategory])
)
)
+	3,
“Clothing”,	CALCULATE	(
MAX	(‘Product’[DaysToManufacture]),
FILTER	(
‘Product’,
‘Product’[ProductCategory]	

=	EARLIER	(‘Product’[ProductCategory])
)
)
+	2,
“Accessories”,	CALCULATE	(
MAX	(‘Product’[DaysToManufacture]),
FILTER	(
‘Product’,
‘Product’[ProductCategory]	
=	EARLIER	(‘Product’[ProductCategory])
)
)
+	1,
“Components”,	CALCULATE	(
MAX	(‘Product’[DaysToManufacture]),
FILTER	(
‘Product’,
‘Product’[ProductCategory]	
=	EARLIER	(‘Product’[ProductCategory])
)
)
+	4
)

And	now	the	same	formula,	simplified	using	Variables…

AdjustedLeadTime	=
VAR	MaxCategoryDays	=
CALCULATE	(
MAX	(‘Product’[DaysToManufacture]),
FILTER	(
‘Product’,
‘Product’[ProductCategory]	
=	EARLIER	(‘Product’[ProductCategory])
)
)
RETURN
SWITCH	(
[ProductCategory],
“Bikes”,	MaxCategoryDays	+	3,
“Clothing”,	MaxCategoryDays	+	2,
“Accessories”,	MaxCategoryDays	+	1,
“Components”,	MaxCategoryDays	+	4
)

Which	do	you	prefer?	We	strongly	prefer	the	latter,	especially	in	cases	where	we	must
“revisit”	a	formula	later	–	merely	reading	and	understanding	it	is	much	simpler	with
the	Variable	approach,	but	imagine	having	to	edit	said	formula	in	four	different	places
(which	we	often	have	to	do	without	Variables).

Benefit	Two:	Less	“Mysterious”	Formulas

Example	1:	Alternative	to	EARLIER?
Hey,	 remember	 that	 EARLIER	 function?	Well,	 with	Variables,	 you	may	 decide	 to
forgo	the	use	of	EARLIER	and	skip	all	of	that	mumbo-jumbo.

Here’s	the	formula	example	that	we	used	to	explain	EARLIER	in	a	previous	chapter:

CategorySalesWithEarlier	=
CALCULATE	(
[Total	Sales],
FILTER	(
‘Product’,
‘Product’[ProductCategory]	=	
EARLIER	(‘Product’[ProductCategory])
)
)

And	here’s	the	same	thing,	written	using	a	Variable	instead	of	EARLIER:

CategorySalesWithVariable	=
VAR	Category	=	‘Product’[ProductCategory]
RETURN
CALCULATE	(
[Total	Sales],
FILTER	(‘Product’,
‘Product’[ProductCategory]	=	Category)
)

They	both	return	the	same	results:

592.	The	version	that	employs	EARLIER	and	the	version	that	employs	Variables	yield	the	exact	same	results

There	are	two	ways	to	think	about	this:

1.	 “Sweet,	 that	 business	 with	 EARLIER	 confused	 me,	 I’m	 not	 ready	 to
understand	that	yet,	so	yeah,	I’ll	 just	use	Variables	for	now	and	bypass	all
that	heavy	thinking.”

2.	 “EARLIER	 isn’t	 that	 bad	 really,	 so	 I	 can	 keep	 using	 it,	 but	 hey,	 how	 do
Variables	 allow	 me	 to	 get	 the	 same	 result	 as	 EARLIER?	 I	 need	 to
understand	the	machinery	under	the	hood!”

As	always,	we	are	 totally	OK	with	you	following	a	pattern.	So	 type	1	people,	go	 for	 it.
Ignore	the	next	three	paragraphs.

Type	2	people,	here’s	 the	answer:	EARLIER	is	only	required	when	you	are	evaluating	a
column’s	value	from	within	a	row	iterator	function	like	FILTER,	and	need	to	get	the	value
from	the	“original	row,”	also	known	as	the	value	from	the	original	row	context.	Outside	of
FILTER,	getting	that	original	value	is	simple	–	just	reference	the	column.

Well	 that’s	 the	key	here.	Since	the	VAR	block	is	evaluated	once,	outside	of	 the	FILTER
function,	 the	 value	 for	 [ProductCategory]	 respects	 the	 “this	 row”	 row	 context,	 and	 that
value	for	the	Category	Variable	is	going	to	be	“remembered,”	as	a	static	value,	for	the	rest
of	the	calculation.

This	doesn’t	mean	that	Variables	can	replace	EARLIER	in	all	circumstances,	because	in
certain	 advanced	 situations,	 you	might	 be	 juggling	more	 than	 two	 row	 contexts	 (!),	 in
which	case	no	single	value	will	suffice,	but	hey,	most	usage	of	EARLIER	can	be	replaced
with	Variables	if	you	so	choose.

Example	2:	Measure	References	Inside	FILTER	(Within	a	Measure)
In	the	chapter	on	Row	and	Filter	Context,	we	saw	that	this	measure	worked	fine:

Transactions	for	Highest	Price	=	CALCULATE(
COUNTROWS(Sales),
FILTER(
Products,
Products[ListPrice]	=	MAX	(Products[ListPrice])
)
)

But	then	if	we	defined	a	[Highest	Price]	measure	and	then	used	that	inside	our	FILTER…

Highest	Price	=	MAX	(Products[ListPrice])

Transactions	for	Highest	Price	BROKEN	=	CALCULATE(
COUNTROWS(Sales),
FILTER(
Products,
Products[ListPrice]	=	[Highest	Price]
)
)

We	got	a	“bogus”	result	in	the	pivot:

593.	The	 reasons	 for	 this	 are	 explained	 in	 that	 previous	 chapter,	 but	 boil	 down	 to	 the	 interaction	 between
measure	names,	CALCULATE	(the	implied	flavor),	row	context,	and	filter	context.

Turns	out,	we	can	re-write	the	measure	like	this:

Transactions	for	Highest	Price	FIXED	=
VAR	HighPrice	=	[Highest	Price]
RETURN
CALCULATE	(
COUNTROWS	(Sales),
FILTER	(Products,	Products[ListPrice]	=	HighPrice)
)

And	this	works	just	fine,	as	displayed	here	in	Power	BI	Desktop:

594.	“FIXED”	version	of	the	measure	(using	Variables)	returns	the	1,	2,	4,	2…	correct	results

Maybe	 this	 isn’t	 all	 that	 much	 simpler,	 conceptually	 speaking,	 because	 VAR	 and
RETURN	are	not	exactly	“introductory”	concepts.	But	at	least	it	does	let	you	go	back	to
the	best	practice	of	“I	only	write	each	 formula	once”	–	a	 rule	you	had	 to	“break”	when
operating	inside	FILTER	previously	in	such	situations.

A	small	victory	perhaps,	but	still	a	victory!

We	are	still	getting	used	to	Variables	actually,	and	the	simplifying	power	that	they	bring.	A
year	 from	 now	we	 expect	 to	 be	 using	 them	 in	ways	we	 had	 not	 anticipated	 at	 time	 of
writing.

28	-	“YouTube	for	Data”	–	The	Importance	of	a
Server
Files	–	Great	for	Storage,	Not	Great	for	Sharing

595.	At	the	risk	of	being	overly-obvious…	everything	we	create	in	Power	BI	Desktop	gets	saved	to	a	.PBIX	file
(left),	or	in	the	case	of	Power	Pivot,	to	an	.XLSX	file	(right)

Everything	we	have	done	with	Power	Pivot	so	far,	as	well	as	with	Power	BI	Desktop,
has	been	saved	 to	a	 file.	And	hey,	 files	are	great	 for	storage,	which	 is	why	 they’ve
been	 a	 feature	 of	 computing	 basically	 since	 the	 advent	 of	magnetic	 storage	 (tapes,
floppy	disks,	and	hard	drives).

But	storage	is	typically	not	sufficient.

Maybe	this	starts	out	like	a	Model	Railroad	hobby	-	where	you	build	something	epic
in	your	basement	for	you,	and	never	share	it	with	the	world.

Pretty	quickly	though,	in	order	to	get	“fair	market	value”	out	of	your	work,	you	will
need	 to	 share	 it	 with	 others	 -	 your	 team,	 your	 manager,	 or	 maybe	 the	 entire
organization.	(We’re	not	talking	about	your	model	train.	You	don’t	even	have	one	of
those.	We’re	talking	about	your	data	models	and	reports	here,	please	try	to	keep	up)

Well,	 what	 is	 humanity’s	 “go-to”	 method	 for	 sharing	 files?	 Yep,	 email.	 However,
email	has	some	serious	flaws	as	a	sharing	mechanism.	One	might	even	get	a	bit	harsh
about	it	and	say…

Email	Sucks	as	a	Delivery	Vehicle	for	Our	Awesome	Work!

596.	Email	doesn’t	work	that	well	as	a	sharing/publishing	mechanism

Email	 is	 a	 passable	 sharing/publishing	 mechanism	 on	 the	 surface,	 but	 there	 are
definite	drawbacks	that	become	apparent	over	time:

Files	are	often	too	big	for	email
Others	don’t	have	the	right	version	of	Excel	(or	Power	Pivot,	or	Power	BI
Desktop)
Others	want	to	use	tablets	and	phones
Email	provides	no	security	or	protection	for	sensitive	data	and	logic
YOU,	 the	 author,	 are	 responsible	 for	 updating	 the	 files,	 distributing	 the
latest,	and	reminding	everyone	to	stop	using	the	older	versions
Very	quickly,	 there	are	 too	many	versions	of	 the	file	floating	around	to	be
trusted

Network	Distribution	via	File	Shares?	Not	much	better.

597.	Network	shares	are	only	slightly	better	than	email

Yeah	yeah	yeah.	You’ve	got	a	fancy	network	at	your	job,	and	you	can	save	massive
files	out	to	the	Z	drive	or	whatever	else	you	call	it.

OK,	 that	 “fixes”	 the	 file	 size	 problem,	 sort	 of,	 but	 all	 of	 the	 other	 problems	 listed
above	are	still	in	play.	It’s	still	chaotic,	error-prone,	and	unfun.

So,	when	we	say	“email,”	we	mean	“anything	that	actually	delivers	the	file	to	other
people.”	Including	network	file	servers.

(“Sucks,”	by	the	way,	may	as	well	be	an	official	software/techno	term	by	now.	We’re
pretty	 sure	 that,	 back	 in	 the	day,	 the	 entire	Excel	 for	Windows	 engineering	project
started	with	someone	saying,	“you	know	what,	Lotus	1-2-3	kinda	sucks.”	History	is
made	in	such	ways.)

Parallels	to	Video	Files,	Circa	1998
Keep	 those	 drawbacks	 in	 mind,	 and	 let’s	 look	 at	 another	 problem	 with	 similar
characteristics.	History	has	a	powerful	lesson	to	teach	us.

Parent,	Grandparents,	and	Pictures	of	Cats
Back	 in	 the	 late	 90s,	 the	 Internet	 was	 already	 a	 big	 deal.	 Our	 parents	 and
grandparents	had	 email	 addresses	by	 this	point	 in	 time,	 and	 they	were	using	 them.
How	do	we	remember?	Because	we	were	receiving	dozens	of	forwarded	email	chains
per	day	–	jokes,	top	10	lists,	hoaxes,	and	images.	Lots	of	entirely	meaningless	noise,
primarily	generated	by	family	members	who	had	lots	of	time	on	their	hands.

These	email	chains	were	the	precursor	to	Facebook,	in	other	words.

By	1998,	yes,	we	were	already	seeing	multiple	cute	pictures	of	cats	per	day.	Society
had	 advanced	 to	 that	 point	 very	 quickly.	 (We	 suspect	 that	 in	 alien	 cultures	 it	 also
unfolds	that	way:	Step	one,	invent	Internet.	Step	two,	pictures	of	cats.)

But	you	know	what	was	almost	never	being	shared?

Video.	Video	sharing	was	not	a	thing	back	then.

If	you	wanted	 to	share	a	video	 file	with	someone,	 it	was	VERY	difficult.	The	 files
were	 too	 big	 for	 email,	 but	 even	when	 you	 circumvented	 that	 obstacle,	 the	 person
receiving	the	video	had	at	BEST	a	50%	chance	of	being	able	to	view	it.	For	instance,
if	 the	video	was	produced	on	a	Mac	and	the	viewer	only	had	a	PC,	they	very	often
had	to	go	track	down	and	install	additional	software.	Even	when	it	was	PC	to	PC,	you
often	 lacked	 the	 right	 video	 codec.	 So	 only	 the	most	 dedicated	 nerds	managed	 to
share	video	files.

YouTube	Happens!

598.	YouTube	changed	video	publishing	from	“share	the	file”	to	“upload	and	send	link”

YouTube	 changed	 all	 of	 that.	 No	 more	 sending	 large	 files,	 because	 YouTube
compressed	 the	 files	 and	 also	 streamed	 them.	 No	 more	 worrying	 about	 the
technology	 installed	 on	 the	 viewers’	 desktops	 either,	 because	 YouTube	 converted
ALL	videos	to	Adobe	Flash,	which	everyone	already	had.

Video	sharing	EXPLODED.

ⓘ	300	hours	of	video	are	uploaded	to	YouTube	every	minute.	And	every	day
people	watch	hundreds	of	millions	of	hours	on	YouTube	and	generate	billions	of
views.	(Source:	http://ppvt.pro/ytStats)

People	are	watching	on	their	desktops,	their	tablets,	their	phones,	and	on	their	Smart
TVs	and	devices.	By	the	way,	half	of	YouTube	views	are	on	mobile	devices!

Importance	of	Web/Mobile
YouTube	 is	 just	 one	 example.	 If	 you	 look	 around,	many	 of	 our	 interactions	 have
moved	away	from	“heavy”	desktop	applications,	and	onto	web	and	mobile	platforms.

Think	of	all	the	content	you	consume	in	a	day.	How	much	of	it	is	shared	with	you	via
a	link	or	a	location,	and	how	much	of	it	actually	arrives	in	the	form	of	a	file	you	can
save	to	your	desktop?

Sharing	 the	 file	 is	 just	 heavy,	 awkward,	 and	 inconvenient	 for	 everyone.	 Yes	 you
could	 place	 your	workbook	 files	 on	 a	 network	 share	 or	 online	 file	 share,	 but	 until
your	users	can	consume	that	information	via	a	link,	and	without	installing	software,
well,	you	lose.

ⓘ	 Research	 suggests	 that	 you	 can	 potentially	 double	 the	 success	 of	 BI
adoption	 in	 your	 company	 by	 delivering	 reports	 to	 mobile	 devices.	 (Source:
http://ppvt.pro/junderwood1)

So	We	Need	“YouTube	for	Data”

http://ppvt.pro/ytStats
http://ppvt.pro/junderwood1

599.	We	need	this,	for	the	same	reasons	that	video	needed	YouTube,	but	actually	we	need	it	MORE	than	video
did!

YouTube	opened	the	floodgates	on	video	sharing	by	solving	the	file	size	problem	and
the	software	compatibility	problem.

And	we	definitely	have	both	of	those	problems	in	Power	Pivot	/	Power	BI	(we	even
had	them	back	in	traditional	Excel	actually).

So,	where’s	our	version	of	YouTube?

How	can	we	publish	our	work	online,	so	users	can	consume	it	via	web/mobile?	Turns
out,	you	have	not	one,	but	a	few	cloud/server	sharing	options.	Here	are	the	top	three
options	as	of	Fall	2015:

PowerBI.com	(Cloud)
SharePoint	with	SSAS	Tabular	(On-Premises)
Excel	Desktop	connected	SSAS	Tabular	(On-Premises)

Let’s	walk	through	PowerBI.com	in	detail,	since	it’s	the	newest,	and	then	briefly	contrast
the	three	options	versus	one	another.

PowerBI.com	Quick	Tour
We	will	first	use	PowerBI.com	to	demonstrate	the	‘YouTube	for	Data’	paradigm.	(And	the
usual	disclaimer:	since	the	interface	is	evolving	rapidly,	by	the	time	you	are	reading	this,
we	are	certain	at	least	some	small	things	will	have	changed	in	appearance.)

Step	1:	Upload	XLSX/PBIX	File	to	PowerBI.com
If	you	are	using	Power	BI	Desktop,	all	you	have	to	do	is	to	click	the	“Publish”	button	to
send	 it	 to	 PowerBI.com.	 You’ll	 be	 prompted	 to	 sign-in	 to	 your	 PowerBI.com	 account,
which	you	can	create	for	free,	if	you	do	not	already	have	one.	(You	can	also	upload	your
Power	Pivot	Excel	workbooks	very	easily).

600.	Click	Publish	to	upload	a	Power	BI	Desktop	model	to	PowerBI.com

Your	 dataset	 would	 be	 imported	 from	 the	 file	 and	 your	 reports	 would	 also	 be
transferred	to	PowerBI.com.	On	PowerBI.com	you	also	have	the	option	to	create	new
reports	connected	to	the	dataset	and	to	schedule	refresh	for	the	dataset.

601.	Your	data	model	and	reports	all	made	it	to	PowerBI.com

There	 is	 another	 new	 element	 on	 PowerBI.com,	 the	 “Dashboard”.	 It	 is	 initially
empty,	 but	 you	 can	 pin	 elements	 from	your	 report	 to	 the	 dashboard.	You	 can	 then
navigate	 to	 the	 dashboard	 and	 resize	 and	 arrange	 pinned	 items.	 You	 can	 also	 pin
items	from	multiple	reports	to	the	same	dashboard.

602.	Pin	any	element	you	like	to	your	dashboard

603.	You	can	also	use	natural	language	Q&A	to	ask	your	questions	and	pin	the	results	to	your	dashboard

604.	Your	 dashboard	would	 look	 a	 lot	more	 interesting	 once	 you	 have	 pinned	 all	 the	 key	 visuals	 you	 need	 to
monitor	at	a	glance

Step	2:	Sharing	Your	Dashboard
Next	you	can	click	‘Share’	button	and	specify	who	you	want	to	share	the	dashboard
with.

605.	Dashboards	are	better	when	shared

606.	Recipients	can	open	the	dashboard	from	the	link	in	the	invitation	email

That’s	it!	The	recipient	can	open	the	Dashboard	in	their	desktop	browser,	or	on
their	Windows,	iOS	(Apple)	or	Android	mobile	device	using	the	Power	BI	Mobile
App	(download	from	http://ppvt.pro/pbiDownload).

607.	View	the	dashboard	on	your	desktop	browser	or…

http://ppvt.pro/pbiDownload

608.	On	your	Windows/iOS	mobile	device

ⓘ	Dashboard	 is	 the	“unit	of	 sharing”	 in	PowerBI.com.	There	are	no	options
(currently)	to	share	a	Report.	However,	when	you	share	the	Dashboard	you	are
also	 sharing	 the	 underlying	 report.	 Recipient	 will	 be	 able	 to	 click	 the	 pinned
elements	 to	 open	 the	 report	 (in	 their	 desktop	 browser	 at	 least).	Also	 note	 that
recipients	can	only	view	and	not	make	any	changes	to	the	dashboard	or	report.

For	 a	 more	 detailed	 overview	 of	 PowerBI.com	 you	 can	 watch
http://ppvt.pro/p3webinarRec

Cloud/Server	Option	Comparison
Here	is	a	quick	comparison	of	the	Server	options	currently	available:

http://ppvt.pro/p3webinarRec

609.	Subject	to	change	as	things	evolve,	but	provides	a	good	picture	as	of	Fall	2015

Basically,	 if	your	company	is	“open”	to	the	idea	of	the	cloud,	PowerBI.com	is	by	far
your	best	bet.	It	provides	the	most	functionality	at	the	lowest	price	and	hassle.

If	cloud	is	currently	off-limits	for	your	company,	that	probably	means	you’re	going	for
the	 SharePoint	 +	 SSAS	 Tabular	 option,	 because	 most	 people	 want	 that	 web	 browser
consumption	experience.

If	you	don’t	care	about	web	browser	access,	however,	you	can	use	desktop	Excel	as	a
“thin	client”	connected	 to	SSAS	Tabular.	 In	 this	setup,	basically	any	version	of	Excel	 is
sufficient,	 no	 Power	 Pivot	 install	 required,	 no	 worries	 about	 32-	 versus	 64-bit,	 and	 no
upgrades	 required.	 The	 important	 stuff	 –	 the	 data	 and	 the	 data	 model	 –	 are	 centrally
located	 and	 protected	 on	 the	 SSAS	 Tabular	 server.	 The	 lightweight	 report	 workbooks
themselves	 are	 files	 again,	 which	 re-opens	 some	 of	 those	 file-centric	 drawbacks	 we’re
trying	to	avoid,	but	keep	in	mind	that	those	files	are	much	smaller,	and	contain	very	little
sensitive	information	relative	to	the	data	model	on	the	server.

If	you	have	more	questions	about	choosing	a	“YouTube	for	Data”	that’s	right	for	your
organization,	we	 at	 PowerPivotPro	 offer	 short	 roadmap	 planning	 sessions.	We	 typically
get	you	pointed	confidently	in	the	right	direction	with	nothing	more	than	a	two-hour	call.
Drop	 us	 a	 note	 at	 http://www.PowerPivotPro.com/contact-us/	 if	 you	 require	 this	 sort	 of
assistance.

Cloud/Server	Sharing	Option:	Even	More	Valuable	than	YouTube
Guess	what?	Power	Pivot	/	Power	BI	Workbooks	benefit	from	cloud/server	sharing	even
MORE	than	video!	Here	are	some	additional	benefits	from	cloud/server	sharing:

Security
Automatic	data	refresh
Create	multiple	reports	for	various	audience	groups

Security	 and	hands-free	 automatic	 data	 refresh	 are	NOT	 things	 that	 typically	matter	 for
video.	But	oh	boy,	do	they	matter	for	reports,	dashboards,	and	data	models.

http://www.powerpivotpro.com/contact-us/

You	 can	 either	 leverage	 the	 data	 refresh	 options	 made	 available	 by	 your	 cloud/server
platform,	 or	 use	 a	 tool	 like	 Power	 Update	 (see	 http://ppvt.pro/pwrupdate)	 to	 schedule
automated	refresh	on	your	desktop.	(We	at	PowerPivotPro	had	a	hand	in	developing	that
utility	 in	 order	 to	 overcome	 limitations	 of	 server-driven	 refresh,	 but	 either	 way	 the
important	 thing	 is	 that	 the	 server	 is	 where	 people	 “go”	 to	 see	 their	 dashboards	 and
reports).

In	our	sharing	by	email	scenario,	here	is	a	very	common	query	that	you	would	get

Q:	Hey,	can	you	send	me	the	latest	copy	of	the	report?

Your	answer	can	now	be:

A:	Just	open	the	same	URL	that	I	sent	you	last	time.	The	report	is	automatically	refreshed
daily
(try	to	hide	your	satisfied	smile	when	you	say	this).

PS:	Can	We	Ask	You	for	a	Special	Favor?

Hopefully	 this	 book	 has	 given	 you	 the	 keys	 to	 start	 or	 sustain	 your	 own	 personal	 data
revolution.

We	would	like	to	ask	you	for	a	favor:	would	you	be	kind	enough	to	leave	a	review	for	this
book	on	Amazon?	Rather	than	cede	control	of	our	work	to	the	big	publishing	houses,	we
remain	 staunchly	 independent,	 and	 rely	 on	 word	 of	 mouth	 and	 endorsement	 from	 real
people	rather	than	massive	multinational	marketing	machines.

We	like	it	 this	way,	and	think	you	do	too	–	we	get	 to	write	 the	way	we	like,	rather	 than
under	the	thumb	of	overzealous	grammar	editors.

So	your	review	would	be	greatly	appreciated!

http://ppvt.pro/pwrupdate

Power	On!
-	Rob	and	Avi

A1	-	Power	Pivot	and	SSAS	Tabular:	Two	Tools	for
the	Price	of	One	(again!)
In	 this	book	we’ve	made	 some	bold	 claims	 about	Power	Pivot’s	 impact	 on	your	 career.
We’ve	 used	 words	 like	 “programmer,”	 “engineer,”	 and	 “developer”	 to	 describe	 your
changing	role.

Excel	Power	Pivot	is	quite	amazing.	However	at	some	point	in	your	Power	Pivot	journey,
you	might	discover	a	need	 to	move	 to	 the	big	 leagues.	Maybe	Power	Pivot	 is	no	 longer
sufficient	 –	 your	 files	 are	 growing	 too	 big	 for	 desktops,	 or	 you’ve	 outgrown	 its	 “all	 or
nothing”	security	access	model.	Well,	meet	Power	Pivot’s	bigger	sibling:	SSAS	Tabular.

Is	it	then	time,	to	go	enroll	in	an	SSAS	Tabular	course?	Nope.	Since	SSAS	Tabular	is	just
Power	Pivot’s	elder	cousin	and	they	share	the	same	engine,	all	that	you	have	learned
so	far	applies	directly	to	SSAS	Tabular.	With	SSAS	Tabular,	you	can	take	your	Power
Pivot	skills	to	even	greater	heights.

ⓘ	SSAS	(SQL	Server	Analysis	Services)	has	been	Microsoft’s	flagship,	industrial-strength
BI	 platform	 for	 a	 long	 time:	 the	 “Apex	 Predator”	 of	 their	 BI	 platform.	 However	 the
traditional	product	(now	termed	SSAS	Multidimensional)	was	not	easy	to	learn	or	use.	SSAS
Pros	could	charge	a	premium	price	for	their	skills.

But	SSAS	Tabular	is	the	new	game	in	town.	Microsoft	doesn’t	like	to	publicly	say	that	SSAS
Tabular	supersedes	and	replaces	SSAS	Multidimensional…	but	trust	us,	that	is	precisely	what
is	going	on.

Even	the	longstanding	“celebrities”	of	SSAS	Multidimensional,	such	as	Chris	Webb,	Marco
Russo,	and	Alberto	Ferrari,	now	use	Tabular	for	most	of	their	projects.

Neat	huh?	We	all	now	speak	the	same	language.

610.	Excel	Users	can	scale	new	heights	by	learning	Power	Pivot	and	SSAS	Tabular

SSAS	Tabular	Features
While	 the	underlying	 engine	 in	SSAS	Tabular	 is	 the	 same	 as	Power	Pivot	 (it’s	 the
DAX	engine),	there	are	some	key	differentiating	features

Robust	and	More	Scalable:	Theoretically	there	is	no	limit	on	the	number
of	rows	your	model	can	contain!	We	have	worked	on	occasion	with	Tabular
models	with	sizes	in	Terabytes;	something	that	just	isn’t	possible	with	Excel
Power	Pivot.
Advanced	Features	 like	Partitions	 and	Row	Level	Security.	Partitions	 let
you	refresh	only	the	most	recent	data,	 instead	of	the	whole	table.	This	can
be	really	handy	if	you	have	a	table	with	100’s	of	million	rows.	Row	Level
Security	can	check	 the	 identity	of	 the	User	accessing	 the	Data	Model	and
grant	access	based	on	that.	For	example	a	North	America	Salesperson	may
only	 be	 able	 to	 see	 North	 America	 Sales	 data,	 even	 though	 the	 model
contains	Worldwide	data.
Author	Data	Models	 in	Visual	Studio:	You	 can	 continue	 to	 author	 your
Data	Model	in	Excel	Power	Pivot	and	upload	it	to	SSAS	Tabular	(we’ll	see
this	 in	 action).	 But	 you	 also	 have	 the	 option	 to	 use	 Visual	 Studio	 for

authoring	Tabular	Models.	This	opens	up	the	advanced	features	(as	above)
and	 also	 has	 all	 the	 bells	 and	 whistles	 of	 Visual	 Studio.	 Like	 Integration
with	 Source	Control	 (to	 easily	 version	 control	 your	Model),	 kind	 of	 stuff
that	developers	care	about.
Administrative/Scripting	 Capability:	 SSAS	 falls	 under	 the	 SQL	 Server
family,	thus	you	have	a	lot	of	tools/options	for	Administrators.	You	can	also
script	and	automate	tasks	using	the	XMLA	scripting	language.
YouTube	for	Workbooks:	We	covered	this	in	the	YouTube	chapter.	But	just
to	remind	you,	SSAS	Tabular	allows	hundreds	of	users	to	connect	to	Tabular
Models	from	desktop	Excel.

ⓘ	One	reason	we	love	SSAS	Tabular	is	that	it’s	not	only	easy	to	use,	it’s	also
easy	to	install	and	administer.	Get	help	from	your	DBA/IT	team	if	you	can.	But
setting	up	an	SSAS	Tabular	server	is	within	reach	of	Excel	users.	In	fact	you	can
be	 up	 and	 running	 in	 less	 than	 30	 minutes.	 See	 for	 yourself	 at
http://ppvt.pro/pp2ssas	
(Compare	this	to	SharePoint	which	is	a	beast	to	setup	and	administer)

Power	Pivot	to	SSAS	Tabular
A	good	way	 to	 transition	 to	SSAS	Tabular	 is	 to	 continue	 to	 author	your	models	 in
Excel	Power	Pivot	and	then	“upload”	them	to	SSAS	Tabular.	This	will	get	you	most
of	 the	 benefits	 of	 SSAS	 Tabular	 while	 maintaining	 your	 familiar	 Excel-oriented
development	environment.

Here	 is	how	 to	upload	your	Excel	Power	Pivot	model	 to	SSAS	Tabular	 in	 two
easy	steps.

Step	1:	Open	SQL	Server	Management	Studio	 (SSMS)	 and	 connect	 to	your	SSAS
Tabular	Server.	Right	click	and	select	“Restore	from	Power	Pivot”

Step	2:	Point	to	the	location	of	the	Excel	Power	Pivot	file	(Backup	file)	you	want	to
upload	(restore).	Fill	in	some	other	details	and	click	OK.

611.	Right	click	and	select	Restore	from	Power	Pivot

http://ppvt.pro/pp2ssas

That’s	it,	you’re	done!	You	have	uploaded	your	Excel	Power	Pivot	Model	to	SSAS
Tabular.

612.	Your	Excel	Power	Pivot	Model	now	available	as	SSAS	Tabular	Model

Uh…okay,	but	how	do	we	use	it?

Connect	to	SSAS	Tabular	from	Excel
To	connect	 to	your	Tabular	Model	 from	Excel,	 from	 the	 ribbon	click	Data	>	From
Other	Sources	>	From	Analysis	Services.

613.	Connecting	to	SSAS	Tabular	from	Excel

Specify	 the	 SSAS	Tabular	 Server	Name,	 select	 the	Model	 you	want	 to	 connect	 to
then	click	Finish	and	OK.

614.	Specify	server	name	and	select	model

That	would	give	you	a	Pivot	Table	with	a	 field	 list	connected	 to	 the	SSAS	Tabular
Model.	Note	that	the	field	list	has	all	the	tables,	columns,	measures	that	existed	in	the
Excel	Power	Pivot	model	we	uploaded.	(The	measures	are	shown	grouped	at	the	top,
in	∑Customers	and	∑Sales).

This	should	be	a	familiar	playground	for	any	Excel	user	and	building	your	first	Pivot
Table	should	be	a	snap.

615.	Pivot	Table	connected	to	an	SSAS	Tabular	Model

ⓘ	If	you	were	to	save	this	file,	its	size	would	likely	be	a	handful	of	Kilobytes
(KBs).	 That	 is	 because	 this	 “Report”	 file	 does	 not	 store	 the	 complete	 Data
Model.	The	Data	Model	is	hosted	on	your	SSAS	Tabular	server	and	could	be	a
few	Megabytes	or	several	Terabytes.	Your	“report”	files	will	always	be	small.

Almost	 all	 visualization	 tools	 support	 connecting	 to	 an	 SSAS	 Tabular	 Cube.
PowerBI.com	 has	 a	 special	 Analysis	 Services	 Connector	 (download	 at
http://ppvt.pro/pbiDownload)	which	would	allow	Power	BI	to	connect	to	your	SSAS
Tabular	Server.

You’ve	seen	how	easy	it	is	to	upload	an	Excel	Power	Pivot	model	to	SSAS	Tabular
Server.	However,	to	go	the	next	step	in	this	journey	you	should	consider	using	Visual
Studio	to	author	your	Tabular	Data	Models.

Going	Further	with	SSAS	Tabular:	Visual	Studio
To	go	further	with	SSAS,	say	to	build	large	data	models	or	to	leverage	some	of	the
advanced	features,	you	would	need	 to	switch	 to	Visual	Studio.	This	unnerved	us	 to
begin	with,	till	we	actually	gave	it	a	try.	And	to	our	delight,	we	found	that	it’s	quite
similar	 to	 the	 Excel	 Power	 Pivot	 environment	 –	 so	 similar,	 in	 fact,	 that	 the
heavyweight	BI	pros	complain	to	Microsoft	that	“you	only	gave	us	the	same	quality
tools	as	you	put	in	Excel!”	

http://ppvt.pro/pbiDownload

The	 easiest	 way	 to	 get	 started	 using	Visual	 Studio	 is	 to	 “import”	 an	 Excel	 Power
Pivot	model	into	a	new	Visual	Studio	project.

We’ll	 start	 by	 opening	 Visual	 Studio	 Ultimate	 –	 a	 real	 development	 tool.	 This	 is
where	SSAS	Pros	do	their	work,	as	well	as	web	developers,	mobile	app	developers,
etc.	–	this	is	the	programming	tool	from	Microsoft:

616.	Visual	Studio	Ultimate:	Even	the	name	sounds	impressive

But	rather	than	build	something	from	scratch,	let’s	try	something	simpler.	There’s	a
convenient	option	to	Import	from	Power	Pivot:

617.	Import	from	Power	Pivot

Guess	what	happens	next?	We	browse	for	a	Power	Pivot	workbook:

618.	Just	select	a	Power	Pivot	workbook

What	we	see	next	is	a	very,	VERY	familiar	experience:

619.	Our	Power	Pivot	model	used	in	this	book,	now	loaded	in	Visual	Studio!

Other	than	the	blue	tint	versus	green	tint,	and	the	treeview	docked	on	the	right,	this	is
precisely	what	we	see	in	the	Power	Pivot	window!	Tables,	sheet	tabs,	etc.

Zooming	in	a	bit,	we	continue	the	“identical	to	Power	Pivot”	theme:

620.	Measure	grid	and	sheet	tabs

621.	DAX	formula	is	exactly	the	same

We	can	even	toggle	into	diagram	view,	which	again	looks	identical:

622.	Relationship	view	is	also	the	same

Thus	 you	 can	 easily	 import	 your	 existing	 Excel	 Power	 Pivot	 models	 and	 continue	 to
develop	 them	 in	 Visual	 Studio.	 For	 more	 on	 SSAS,	 read	 some	 of	 our	 articles	 at
http://ppvt.pro/pp2ssas	and	http://ppvt.pro/pp2tabular.

ⓘ	Do	you	have	to	make	the	transition	to	Visual	Studio?	No,	not	at	all.	In	fact,
we	didn’t	for	a	very	long	time.	You’ve	seen	how	you	can	upload	your	Excel	Power
Pivot	 workbooks	 to	 SharePoint,	 SSAS	 Tabular	 and	 PowerBI.com.	 Thus	 you	 can
continue	 to	 use	 Excel	 Power	 Pivot	 but	 still	 leverage	 these	 platforms.	 However	 at
some	point,	you	may	want	to	consider	trying	out	Visual	Studio	to	build	large	models
or	leverage	some	of	the	advanced	features.

Key	Takeaways

Microsoft	 is	 betting	 heavily	 on	 “the	 Power	 Pivot	 way.”	 You	 don’t	 “infect”
your	 flagship	 product	 with	 something	 new	 unless	 that	 new	 thing	 is	 awesome.
Power	 Pivot	 –	 that	 thing	 running	 on	 your	 desktop	 –	 is	 good	 enough	 for	 the
heavyweight	BI	pros.	Digest	that	thought.

http://ppvt.pro/pp2ssas
http://ppvt.pro/pp2tabular

There’s	an	“upgrade	path”	for	important	Power	Pivot	models.	This	is	a	great
selling	point	for	IT	if	they	are	nervous	about	Power	Pivot.	Unlike	regular	Excel
workbooks,	 a	 Power	 Pivot	 workbook	 that	 becomes	 business	 critical	 CAN	 be
“taken	 over”	 by	 IT,	 and	made	 into	 something	 centralized	 and	 blessed,	without
having	to	rewrite	it.
There’s	 an	 “upgrade	 path”	 for	 Excel	 Pros.	 With	 very	 little	 effort,	 an
established	 Power	 Pivot	 pro	 can	 “change	 hats”	 and	 label	 herself	 a	 Business
Intelligence	 Pro,	 a	 Tabular	Modeler	 –	 even	 if	 she	 were	 “just”	 an	 Excel	 Pro	 a
couple	years	 ago.	Again,	 not	 that	 she	has	 to,	 because	Power	Pivot	 itself	 offers
practically	limitless	power.	She	just	can.	Exciting	huh?

A2	-	Cube	Formulas	–	the	End	of	GetPivotData()

623.	This	 IS	 Excel.	 And	 this	 IS	 a	 live,	 interactive	 Power	 Pivot	 Report.	 But	 there	 are	 NO	 PivotTables
ANYWHERE.

Formulas	Reaching	into	Pivots	=	The	Dark	Ages
In	the	old	days,	before	we	had	the	DAX	engine,	there	were	many	scenarios	in	which
we	found	ourselves	creating	one	or	more	pivots,	“hiding”	them	on	other	sheets,	and
then	 reaching	 into	 them	with	 formulas	 in	 order	 to	 create	 a	 final	 report	 on	 another
sheet.

That	part	in	italics	was	brutal.	It	was	super	tedious	to	create	reports	that	way	the	first
time,	 but	 modifying	 them	 was	 even	 worse.	 GETPIVOTDATA(),	 anyone?	 (The
hardcore	 people	 graduated	 from	 that	 of	 course	 and	 started	 the	 INDEX(MATCH())
game,	but	that	merely	“sucked	less”	and	should	not	be	considered	a	“good”	solution).

But	in	those	old	days,	there	were	essentially	three	different	cases	in	which	you	were
forced	to	do	this:

1.	 When	you	needed	the	same	pivot	filtered	a	few	different	ways	in	order	 to
produce	 a	 final	 report	 composed	 of	 ratios	 or	 percentages	 between	 those
different	subsets	of	the	data.

2.	 When	 you	 had	 two	Data	 tables,	 and	 therefore	 couldn’t	 VLOOKUP	 them
together	into	a	single	wide	table,	you	produced	two	pivots	and	then	built	a
report	off	of	that.

3.	 When	 you	 simply	 needed	 a	 shape	 of	 report	 that	 a	 pivot	 could	 never	 give
you.

Well,	CALCULATE()	means	we	never	have	to	do	#1	anymore	–	just	build	filters	into	the
Measures	themselves!	And	relationships	mean	we	never	have	to	do	#2	anymore	–	see	the
chapters	on	Multiple	Data	Tables.

But	#3…	#3	is	still	a	problem…	until	someone	shows	you	this	button…

One	Click	That	Will	Change	Your	Life

624.	Select	a	cell	in	ANY	Power	Pivot	PivotTable,	find	this	button	on	the	ribbon,	click	it,	and	catch	your	breath

Seriously,	go	do	that	right	now.	We’ll	wait	right	here.

<waiting>

Hey,	you’re	back!	Neat	huh?

Did	you	try	moving	some	cells	around?	How	about	inserting	some	blank	spacer	rows
and	columns?

To	give	you	an	idea,	this	was	a	pivot	about	60	seconds	before	we	took	the	screenshot:

625.	This	used	to	be	a	pivot,	before	we	clicked	Convert	to	Formulas	and	made	a	few	formatting	tweaks

The	Data	Is	Still	“Live!”
And	guess	what?	This	isn’t	like	Copy/Paste	as	Values.	It’s	still	100%	linked	to	your
data	model.

So	for	instance:

Slicers	that	were	connected	to	the	pivot	before	conversion	will	STILL	slice
the	numbers	in	these	individual	cells!
When	you	refresh	the	underlying	data	model,	these	numbers	will	update!

So	these	cube	formulas	are	just	as	“live”	as	pivots	–	it’s	just	that	you	get	MUCH	finer-
grained	control	over	the	layout	of	the	report.

You	Can	Also	Write	Them	“From	Scratch”
For	Starters,	CUBEVALUE()	Is	All	You	Really	Need
Converting	 a	 pivot	 is	 not	 the	 only	way	 to	 use	 cube	 formulas.	You	 can	 also	write	 them
manually,	as	long	as	you	are	working	in	a	Power	Pivot	workbook.

For	example,	in	any	of	the	bike	sales	example	workbooks,	go	to	a	cell	on	any	sheet	and
enter	this	formula:

=CUBEVALUE(“ThisWorkbookDataModel”,”[Measures].[Total	Sales]”,
“[Products].[Category].[All].[Bikes]”)

626.	You	can	type	a	CUBEVALUE	formula	directly	into	a	cell,	no	need	to	convert	a	pivot

That	 formula	will	 fetch	 the	 [Total	 Sales]	Meausure’s	 value,	 filtered	 to	 “Bikes.”	 In
fact,	 the	 DAX	 engine	 does	 not	 know	 the	 difference	 between	 a	 cube	 formula	 cell
asking	 for	 a	 number	 versus	 a	 pivot	 asking	 for	 a	 number.	 (In	 this	 case,
Products[Category]=”Bikes”	 is	 sent	 in	 to	 the	DAX	 engine	 as	 a	 coordinate,	 a	 filter
context,	just	like	what	happens	with	pivots!)

Don’t	sweat	the	CUBEVALUE	syntax	in	any	depth,	just	follow	the	pattern	above	for
now	(or	just	convert	pivots)	and	you	will	STILL	be	a	hero.

⚠	The	first	input	to	CUBEVALUE	(and	other	cube	functions)	should	be	set	to
“PowerPivot	 Data”	 in	 Excel	 2010,	 but	 “ThisWorkbookDataModel”	 in	 all
subsequent	versions.

Adding	a	Slicer	is	easy…
If	you	want	a	cube	formula	cell	to	“listen”	to	a	Slicer,	that’s	easy	too:

627.	Just	add	another	argument	to	the	CUBEVALUE	and	start	 typing	“Slicer”	–	you	will	get	an	autocomplete
list	of	all	slicers	in	the	workbook.	Pick	one	and	now	that	cell	will	“listen”	to	that	Slicer!

Perspective	–	When	to	Use,	Tradeoffs,	Etc.
A	few	tips	and	principles:

1.	 Cube	formula	reports	are	“fixed	axis”	reports	–	meaning	if	you	have	a	cube
formula	report	 that	 lists	all	 the	countries	where	you	do	business,	and	next

month	 you	 start	 doing	 business	 in	 a	 new	 country,	 that	 new	 country	 will
NOT	appear	in	your	report	automatically.	(Unlike	in	a	pivot).

2.	 So	if	the	shape	and/or	dimensions	of	your	report	need	to	change	frequently,
as	the	underlying	data	changes,	cube	formulas	are	not	a	good	fit.

3.	 The	 places	 to	 use	 them,	 then,	 are	 for	 scorecards	 and	 key	 performance
dashboards,	as	well	as	for	single	cells	of	“extra”	information	placed	next	to
pivots	and	charts.

4.	 If	you	can	make	a	pivot	to	do	what	you	want,	don’t	use	cube	formulas.
5.	 If	you	are	 tempted	 to	write	a	 formula	 that	 “grabs”	a	value	out	of	 a	pivot,

you	should	be	using	cube	formulas	instead	(or	CALCULATE	or	multi-data-
table	modeling,	if	it’s	one	of	those	first	two	scenarios).

More	Information
We	could	probably	write	an	entire	book	on	cube	formulas,	but	really,	90%	of	their	value	is
easy	to	grasp,	and	already	covered	here.

If	 you	 do	 want	 to	 continue	 learning	 about	 them,	 here’s	 a	 listing	 of	 articles	 on
PowerPivotPro.com:

http://ppvt.pro/CubeFormulasCat2

http://ppvt.pro/CubeFormulasCat

A3	-	Some	Common	Error	Messages
There	 are	 a	handful	of	 errors	 that	 you	will	 see	 from	 time	 to	 time	–	 error	messages	 that
sound	scary	but	ultimately	mean	very	little.	We	want	to	dedicate	just	a	quick	page	or	two
and	cover	these,	so	that	you	know	what	to	do	when	you	see	them.

Addin	is	“Out	of	Sync”

628.	“The	command	was	canceled”

629.	“Formula	is	invalid”

630.	“Element	not	found”

All	three	of	these	indicate	that	the	Power	Pivot	addin	and	Excel	have	gotten	“out	of
sync”	with	each	other.	More	specifically,	Power	Pivot	knows	about	the	field	you	are
trying	to	add,	but	Excel	does	not	think	that	field	exists.	This	happens	with	fields	you
recently	created	–	we	have	never	 seen	 this	occur	with	a	 field	 that	we	have	already
used	in	a	pivot.

The	fix	for	this	is	essentially	to	reboot	the	Power	Pivot	addin.

You	can	do	that	by	trying	one	of	the	three	following	techniques:

1.	 Give	up	on	the	current	pivot	and	create	a	new	pivot.	The	new	pivot	will	not
have	this	problem.

2.	 Turning	off	 the	Power	Pivot	addin	 (under	COM	Addins	on	 the	Developer
tab	 of	 the	 ribbon,	 or	 under	 Excel	 Options	 >	 Addins	 >	 Manage	 COM
Addins),	and	turn	it	back	on.

3.	 Saving	 and	 closing	 the	 workbook,	 closing	 Excel	 completely	 (all	 Excel
windows	closed!),	then	reopening	the	workbook.

Note	 that	 if	you	 just	added	a	 table,	column,	or	measure	 to	your	data	model,	and	 it’s	not
showing	up	in	your	field	list,	the	same	fixes	above	will	work.

“Initialization	of	the	Data	Source	Failed”

631.	We	see	this	one	all	the	time	in	2010.	It	is	100%	harmless.

Simply	put,	you	can	completely	ignore	this	error	message.	Click	OK	and	everything
is	fine.	We	cannot	recall	a	single	instance	where	we	clicked	OK	and	something	bad
happened	afterwards.

Quite	literally,	we	have	seen	this	popup	thousands	of	times	now,	and	it’s	never	once
indicated	something	was	actually	broken.

Other	Scary-But-Harmless	Errors

632.	These	Unhandled	Exceptions	pop	up	from	time	to	time,	and	very	rarely	indicate	something	is	truly	wrong.
Just	ignore	them,	and	if	something	bad	is	happening	afterward,	restart	Excel	(or	just	the	Power	Pivot	addin	–	see
above).

633.	Wow,	Linguistic	Schema	failed	to	update.	Oh	noes!	Totally,	100%	ignorable.	But	it	does	give	us	a	chuckle
every	time	we	see	it.	It’s	a	virtual	lock	for	the	Error	Message	Hall	of	Fame.

634.	If	 you	 see	 this	 one,	 you	may	be	 in	 formula	 editing	mode	over	 in	 the	Power	Pivot	window.	 Just	 flip	 over
there,	hit	the	ESC	key,	and	come	back.	If	you	are	NOT	editing	a	formula	in	the	Power	Pivot	window,	just	close
said	Power	Pivot	window	(this	won’t	lose	your	work)	and	the	error	goes	away.

Perspective
Note	that	these	problems	will	NEVER	impact	the	consumers	of	your	work.	They	are
merely	an	annoyance	for	us,	the	producers,	and	once	a	pivot	is	working,	it	stays	working.

A4	-	People:	The	Most	Powerful	Feature	of	Power
Pivot
Power	 Pivot	 is	 a	 pretty	 good	 piece	 of	 technology.	 It	 offers	 a	 lot	 of	 powerful	 new
capabilities.	But	 technology	 itself	never	changes	 the	world	–	 it’s	what	people	 do	with	 it
that	matters.	The	 revolution,	 in	other	words,	 is	not	Power	Pivot.	The	 revolution	 is	what
you,	the	Excel	Pro	“army,”	are	going	to	do	with	it	(and	are	doing	already).

In	a	similar	vein,	I	(Rob)	started	the	blog	in	late	2009.	Without	the	readership,	questions,
and	 feedback	of	 the	blog	audience,	 this	book	never	would	have	happened.	Many	of	 the
names	below	have	been	with	me	for	a	long	time.	Their	support,	enthusiasm,	and	adoption
have	been	a	huge	help	to	me	over	the	years.	They	have	validated,	repeatedly,	my	beliefs
about	the	future	of	data	and	Excel’s	role	in	it.	So	here	they	are,	some	of	the	people	on	the
very	tip	of	the	spear:

Refa	 Abay,	 Access	 Analytic	 (Jeff	 Robson),	 Rob	 Adams,	 Saul	 Mendez	 Aguirre,	 Chris
Akina,	Matthew	Akins,	Roger	Alexander,	Areef	Ali,	Tom	Allan,	Belinda	L	Allen,	Matt
Allington,	 Carl	 Allison,	 Husein	 'ochenk'	 Alatas,	 Jeff	 Anderson,	 A.L.	 Apolloni,	 Alex
Thomas	Aranzamendi,	David	Araujo,	Arilindo,	Noam	Arnold,	Azhagappan	Arunachalam,
Jonathan	Ashby,	Mark	Askey,	Mark	Ayo

Pablo	 Baez,	 Pamela	 O	 Baker,	 Lorenzo	 Baraldo,	 Rachel	 Barnette,	 Oskar	 H	 Diaz
Barrenechea,	 Breanna	 Bartmann,	 Andrew	 Basey,	 Doug	 Beardmore,	 Hussein	 Belal,
Bemvilac	 ,	 Stephen	Bennett,	Robert	Bentley,	 J	L	Berliet,	 Stanton	Berlinsky,	Roz	Beste,
Daphne	Betts-Hemby,	João	Biagini,	Stan	Bialowas,	Carsten	Bieker,	Doug	Binkley,	Ramon
Drudis	 Biscarri,	 Antonio	 Blanco,	 Vernon	 P	 Blessing,	 Dan	 Bobrovsky,	 Thomas	 Boge,
Anders	Bogsnes,	Gail	Bolden,	Mark	Bond,	Ivan	Bondarenko,	Erik	Bonfrere,	Paul	Borela,
Lucas	 Brisingamen,	 Dustin	 Broach,	 Quentin	 Brooke,	 Reena	 Brown,	 Shawn	 Brown,
Stephanie	Bruno,	Haakon	Thor	Brunstad,	Edward	Bunt,	Michael	Bunyan,	Doug	Burke,
Bweiss03

Jeff	Cable,	Charlton	Calhoun,	Angel	Ortego	Camacho,	Dennis	Campbell,	Gerson	Cano,
Michael	Carter,	Guy-François	Castella,	Muness	Castle,	Catsnbettas,	GLCauble,	Natthorn
Chaiyapruk,	 Chan	 Phooi	 Lai,	 Santiago	 Robert	 Chang	 Lay,	 Ken	 Chapman,	 Dr.	 Cody
Charette,	Petros	Chatzipantazis	(Spreadsheet1.com)	,	Krishna	Cheruvu,	Kenneth	Cheung,
Paul	 Chon,	 Qaisar	 Choudhary,	 Christophe,	 Huang	 Chung	 Chuan,	 Luann	 Clark,	 Barry
Clarke,	 Thomas	Coats,	Nicholas	Colebatch,	 Larry	Compton,	 Steve	Coons,	Rob	Corbin,
Alex	 Cordero,	 Thomas	 P	 Costello	 Jr,	 Michael	 Couturier,	 Colleen	 Cravener,	 Colleen
Cravener,	Chris	Criddle,	Phil	Cross,	Anthony	Crouchelli

Debra	 Dalgleish,	 Kellan	 Danielson,	 Meredith	 Darlington,	 Jay	 Dave,	 Heather	 Davis,	 O
Depolito,	Mary	Myers	 DeVlugt,	 Bryan	 Dewberry,	 Tony	 Diepenbrock,	Mike	 Dietterick,
Joseph	 DiPisa,	 Sal	 Distefano,	 Jason	 Ditzel,	 Andrey	 Dmitriev,	 Mark	 Domeyer,	 Marcel
Domingus,	Paigemon	Douraghi,	Susan	Draht,	Bill	Draper,	Oz	du	Soleil,	Stewart	J	Dunlop,
Anand	Dwivedi,	Rachel	Dyer,	Steven	Dyer

Mark	Eames,	 John	Egerter,	 Ted	Eichinger,	Dan	English,	 Eric	 Entenman,	 James	 Enyart,
Lori	Eppright,	Ernestas	Ernis,	Boje	Ervenius,	Gary	Etherton,	ExceleratorBI.com.au

Anton	 Fagerström,	 Luis	 Fajardo,	 Pedro	 Fardilha,	 Kelly	 Farmer,	 Søren	 Faurum,
fazzbuilder,	 Peter	H	 Feddema,	 Edward	 Feder,	 James	 F.	 Fedor,	 Imke	 Feldmann,	Vicente
Castello	Ferrer,	H.	Fielding,	 Justin	Fillip,	Chris	Finlan,	 Jeremy	Firth,	Randy	Fitzgerald,
Eric	Flamm,	Adam	Flath,	Jim	Fleming,	Lawrence	Foat,	Kåre	Foged,	James	Follent,	Kevin
Follonier,	 Mike	 Foos,	 Norah	 Fox,	 Steve	 Fox,	 Brian	 Freeman,	 Urbano	 Freitas,	 Steve
French,	Yuri	Friedman,	Gordon	Fuller,	Scott	Futryk

David	 Gainer,	 James	 Gammerman,	 Yesenia	 Garcia,	 Garth,	 Matthew	 Gaskins,	 Alan
Gazaway,	GDRIII,	Graham	Getty,	 Anthony	Ghent,	Forrest	Gibson,	Chris	Gilbert,	Adam
Gilpatrick,	 Angela	 Girard,	 Tom	 Goishi,	 Jordan	 “Option	 Explicit”	 Goldmeier,	 Brett
Goodman,	Michael	Goodwin,	Martin	Gorgas,	Roger	Govier,	Donald	Grassmann,	Michael
Greene,	 Jonathan	 Gregory,	 Kyle	 Grice,	 Alexander	 Grinberg,	 Mathew	 Grisham,	 S.
Groeneveld,	Matthew	Grove

Christopher	Haas,	Rachel	Haggard,	David	Haggarty,	Dean	Hale,	Kyle	Hale,	Charlie	Hall,
Chris	Hall,	Elaine	Hammer,	Mohamed	Ben	Hamouda,	John	Hanson,	Scott	Hardin,	Trevor
Hardy,	Sean	Hare,	Randy	Harris,	David	Harshany,	Ed	Harvey,	Kamal	Hathi,	Reid	Havens,
Mike	 Haynes,	 Dena	 Heathman,	 Sean	 Heffernan,	 Rüdiger	 Hein,	 Peter	 Heller,	 Philipp
Heltewig,	Roberta	Henifin,	John	Henning,	Gregory	Hernandez,	Staffan	Hillberg,	Staffan
Hillberg,	James	Hinton,	Brad	Hobgood,	David	Hoey,	Eric	Hofrichter,	Michael	J	Holleran
II,	Llewellyn	Holtshausen,	Carl	Hooker,	 Jeffrey	Hou,	Nicolas	Hubert,	Melody	Huckins,
Gareth	Hutchinson,	John	Hutchinson

Braulio	Iglesia,	Rod	Ippisch

Stephen	 Jakubowski,	 Kristian	 Jansson,	 Amy	 Jarrow,	 Joseph	 Jasper,	 Bill	 Jelen,	 Stephen
Jenkins,	Jonny	Johansen,	John,	Al	Johnston,	Jonathon,	Melissa	Jones,	Tommy	Jørgensen,
Andy	Josolyne,	Amy	Julian,	Jumpingjacqs,	Junk.Doo.Erz

Henri	Kääriäinen,	Ruth	Kadel,	Fred	Kaffenberger,	Fahim	Kanji,	Eric	Kaplan,	Greg	Karl,
William	 Karlin,	 Karmicstaf,	 Alison	 Katagiri,	 Michael	 Kelley,	 To	 Wai	 Keung,	 Scott
Kevgas,	Muhannad	Khalaf,	Alexander	Khryakov,	Don	Knowles,	Caitlin	Knox,	SRINIVAS
KOLLI,	Don	Kollmann,	Eric	C	Kong,	Sabareesh	Kornipalli,	Joel	Kossol,	Brad	Kostreva,
Manish	Kotecha,	Reuvain	Krasner,	 Peter	Kretzman,	 Johann	Krugell,	Olga	Kryuchkova,
Brian	Kwartler

Jennifer	 Lachnite,	Victor	Andrés	Araya	 Lagos,	 Philip	 Laliberte,	 Bas	 Land,	Keith	 Lane,
Stéphane	 Langer,	 Jonas	 Langeteig,	 Mike	 Lavalley,	 Matt	 Layfield,	 Alan	 Lazzarich,
Michael	S	Lee,	Arthur	Lee,	Rebekah	Lensky,	Joe	Kwok	Tai	Leung	 ,	Jane	Leung,	David
Lewinski,	 Geoff	 Lilley,	 En	 L,	 Charles	 Lincoln,	 Samantha	 Linden,	 Karen	 Lindenberg,
Jonas	Lindskog,	Jeff	Lingen,	Timothy	Lizotte,	Amir	Ljubovic,	Chuck	Lombardo,	Joseph
Looney,	Mourad	 Louha,	 Inge	 Løvåsen,	 Kevin	 Lovell,	 David	 Lowzinski,	Martin	 Lucas,
John	A.	Luff,	Mark	Luhdorff,	John	Lythe

Jen	Mackan,	Andrew	Mackay,	Madison	Power	BI	User	Group,	Akhil	Mahajan,	Michael
Maher,	 Piotr	Majcher,	Rob	Makepeace,	 Tomislav	Mališ,	 Pawel	Maminski,	Mike	Mann,

Kristin	 Marceaux,	 Edward	 Marceski,	 Sharon	 Markatcheff,	 Cristin	 Marshall,	 Christian
Masberg,	Jeffrey	Masse,	Brian	Mather,	Tom	Matthews,	Steven	Maxwell,	 Jim	McAlister,
Celeste	McCabe,	 John	McGough,	Dan	McGuane,	 Jeff	McKinnis,	Robin	McLean,	Wyatt
McNabb,	 Renee	 Mcvety,	 Parth	 Mehta,	 Raul	 J.	 Benavente	 Mejías,	 Ken	 Melies,	 Shelly
Meny,	 Craig	 Merry,	 Eddy	 Mertens,	 Mr.	 Metric,	 Colin	 Michael,	 Dennis	 Mickelsen,
Microsoft	 Power	 BI	 Team,	 W	 Middelman,	 Mary	 Middleton,	 Kávási	 Mihály,	 Jonathan
Miller,	 Josh	 Miller,	 David	 Mills,	 Li	 Min,	 Wayne	 Mircoff,	 Pinaki	 Mitra,	 Andreas
Moosbrugger,	Stephen	A	Morfey,	 Jeffrey	S	Morgan,	Sean	Morgan,	 Jeff	Morris,	Thomas
Morris,	Travis	Morris,	Lee	Morton,	Stephen	Morton,	Hans	Mostafavi,	Ted	Murphy,	Mike
Murray,	Seth	Murray,	www.MyExcelOnline.com

Hiroshi	Nakanishi,	Nanousers,	Talat	Nauman,	Stephan	Nelles,	Tom	Neo,	Nevtek,	Cristian
Nicola,	Mike	J	Nicoletti,	Heather	Nieman,	Nmacabales	,	Bill	Noonan,	Jonas	Nørgaard

Wendall	F	Oakes,	Dave	Ojeda,	Brian	O'Kelly,	Omarosorno,	David	Onder,	Cristopher	Ong,
Victor	Ooi,	Michael	Ortenberg,	Brad	Osterloo,	Kevin	Overstreet,	Remi	Øvstebø,	Jonathan
Owen

Rafael	 Paim,	 Jose	 Paredes,	 Donald	 Parish,	 Jaehyun	 Park,	 Catherine	 Parkinson
(@CatParky),	 Steve	 Parton,	 Brent	 Pearce,	 James	 Penko,	 Maureen	 Penzenik,	 Daniel
Pereira	Barbosa,	Kirill	Perian,	Ylinen	Pertti,	Darrell	Peterson,	Michelle	Pfann,	Lap	Phan,
James	Phillips,	Rob	Phillips,	Chris	M	Pieper,	Michael	Piercefield,	Lauri	Pietarinen,	Adam
Pifer,	Nicky	Pike,	John	Pittman,	Dan	Popp,	Martin	Povey,	Ppipl,	Ketan	Pradhan,	Miguel
Denis	Prieto,	David	Primrose,	Mary	Ann	Prunier,	Psycho	Bunny,	Thomas	F	Puglia

Liu	Qilong,	Julie	Quick,	Frank	Quillin

Lisa	Radonich,	Robinson	Ramirez,	Palakodeti	Bangaru	Rayudu,	Maury	Readinger,	Nigel
Reardon,	 Fran	 Reed,	 Sayth	 Renshaw,	 Micheal	 Reynolds,	 Tommy	 Reynolds,	 Tony
Richards,	 Dale	 Rickard,	 Cecelia	 Rieb,	 Cecil	 Rivera,	 Juan	 Rivera,	 Bentley	 W	 Roberts,
Monica	Robinson,	Hernan	G.	Rodriguez,	Bill	Rolison,	Collin	Roloff,	Don	Romano,	Cliff
Rosell,	 Jason	 Roth,	 Tony	 Rozwadowski,	 Michael	 J	 Rudzinski,	 Brian	 Russell,	 Ken	 W
Russell,	Rob	Russell,	Steven	Rutt,	Kevin	Rutty

Egor	Sadovnic,	Grímur	Sæmundsson,	David	Saez	Cortell,	Alexander	Samogin,	Sirajudeen
Samsudeen,	Alfonso	Sanchez,	Christy	Sandberg,	Bradley	Sawler,	Victor	Scelba,	Anthony
J	 Schepis,	 Walter	 Schoevaars,	 Peter	 Schott,	 Don	 Schulze	 ,	 Michael	 Schupp,	 Scott
Schwartz,	 Tim	 Scott,	 Thomas	 Scullion,	Mati	 Selg,	 Scott	 Senkeresty,	 Austin	 Senseman,
David	 Seymour,	 Ron	 Shaeffer,	 Mike	 Shellito,	 Thomas	 Sherrouse,	 Kurt	 Shuler,	 Rich
Siegmund,	 Brian	 Simmons,	 Mark	 S	 Sirianni,	 David	 Sisson,	 Dani	 Skrobar,	 Susan
Slinkman,	Lee	Smith,	Randy	W	Smith,	Susan	E	Smith,	John	Snyder,	Adam	Soil,	Jukka-
Pekka	Sokero,	Dmitriy	Solovev,	Ghulam	Soomro,	Joseph	Sorrenti,	Scott	St.	Amant,	Lou
Stagner,	Torbjörn	Stamholt,	 Jeff	Standen,	 Justin	Stanley,	Brent	Starace,	Lawrence	Stein,
Zackary	Stephen,	Andrew	Stewart,	 Jon	Stielstra,	Henson	D	Sturgill,	Antti	Suanto,	Ryan
Sullivan,	Bill	Sundwall,	Sam	Suppe	,	Supraflyer,	Peter	Susen

Laurie	 Tack,	 Joe	 Takher-Smith,	 Sarah	 Talbot,	 James	 Tallman,	 Manolo	 Tamashiro,	 Tan
Kwang	Hui,	 Roberto	 Tapia,	 James	 Tarr,	 Dean	 Taunton,	 TenaciousData,	 Perry	 Thebeau,

Mark	 Theirl,	 Supak	 Thienlikid,	 Thysvdw,	 Amy	 Ticsay,	 Andrew	 Toal,	 Vinnie	 Toaso,
Andrew	Todd,	Hang	Tran,	Joe	Treanor,	Tviesturs,	Don	Tyrrell

Jen	Underwood,	Luis	E	Berdugo	Urrutia,	Tom	Urtis

Vaasek,	Mark	Vaillancourt,	Patrick	Van	De	Belt,	Wouter	van	der	Schagt,	Diderico	van	Eyl,
Gary	 Van	Meter,	 Brent	 Van	 Scoy,	 Klaas	 Vandenberghe,	 Roelof	 van	 Heerden,	 Roy	Van
Norstrand,	Travis	VanNoy,	Eltjo	Verweij,	Vinoth	,	Tomi	Vir,	John	Vizard,	Sven	Vosse

Tsui	Wai	 Chun	David,	 Ian	Wainwright,	 Steve	Wake,	 Ross	Wallace,	Anne	Walsh,	Mark
Walter,	 CPA,	 Raphael	 Walter,	 Jeff	 Walters,	 Ross	 Waterston,	 Ronald	 Webb,	 Nathan
Webster,	 Russ	Webster,	 Darren	Weinstock,	 Rob	White,	 Rod	Whiteley,	 Kevin	Williams,
Rick	Williams,	Bradford	Wills,	Rick	Wilson,	Ryan	Wilson,	Bradley	Wing,	Steven	Wise,
Bartholomew	Wistuk,	Sean	Wong,	Alan	Wood,	Daye	Wu,	Sam	Wu

Kent	 Lau	 Chee	 Yong,	 Steve	 Young,	 Pete	 Zaker,	 Robert	 Zaufall,	 Nathan	 Zelany,	 Ido
Zevulun

Index
Symbols
3	Seconds	243

5-	Step	workflow	18

32-bit	vs	64-bit	14

A
A1-style	reference	36

Active	customers	93

Adapter	27

Aggregation	functions	37

ALL	97

acting	as	a	table	355

ALLEXCEPT	101

ALLSELECTED	102

Alzheimer's	example	397

Appending	files	259

Associative	law

violating	on	purpose	197

Average	of	averages	79

AVERAGEX	200

Azure	DataMarket	27,	153

B
Ballmer,	Steve	xv

Big	Data	4

BLANK	184

Bridge	table	329

Budget	vs	actuals	228

C
CALCULATE	88

disconnected	tables	136

via	lookup	table	119

with	FILTER	137

Calculated	columns	36

advanced	386

intro	32

Calculations

vs	importing	253

Calendar

custom	360

standard	152

Calendar	table	152

from	Power	Query	294

Cannot	be	determined	85

Cell	as	island	79

CLOSINGBALANCEMONTH	171

CLOSINGBALANCEYEAR	171

Cloud	options	430

Column,	referencing	36

Command	was	cancelled	446

Complete	months

DATEADD	175

CONCATENATEX	408

Contiguous	date	error	173

Copy	&	paste	24

formulas	144

COUNTAX	201

Count	nonblank	201

COUNTROWS	67

COUNTX

vs	COUNTROWS	201

Cross-filtering	244

disabling	246

Cross	ranking	241

Cube	formulas	442

CUBEVALUE	444

Custom	calendars	360

D
Databases

importing	26

Data	feeds	27

DATEADD	172

complete	months	175

DATEDIFF	403

DATESBETWEEN	180

DATESMTD	168

DATESQTD	168

DATESYTD	160

DAX	definition	19

Dense	ranking	205

Diagram	view	108

Disconnected	tables	123

thresholds	134

DISTINCTCOUNT	68

on	Performance	255

Distributive	law

violating	on	purpose	197

Dotted	line	relationship	151

Double	counting	335

Downhill	116

Dual-purpose	functions	356

E
EARLIER	394

Alternative	419

Economic	pressure	4

Edit	cells,	can't	21

Element	not	found	446

ENDOFMONTH	169

Error	messages	446

Escobar,	Miguel	258

Euro	example	123

Excel	2016	403

Excel	team	40

EXCEPT	410

Existing	connections	29

Explicit	vs	implicit	50

Explosion	of	data	4

F
Facebook	424

Fight	Club	2

Filter	138

ALL	94

dates	158

operator	94

OR	94

performance	of	255

replace	vs	override	90

via	lookup	table	110

FILTER	357

Filter	context	340

Filter	trick	74

FIRSTDATE	169

Fiscal	year	166

Fix	one	thing	61

Flatten	commandment	106

Flattening	is	unnecessary	215

FORMAT	234

Formula	is	invalid	446

Formula	speed	138

Frankendata	table	215

fx	Button	38

G
Gemini	16

GEOMEAN	407

Get	&	Transform	8

GFITW	369

Granularity	197

differing	228

hybrid	measures	237

Growth	of	power	pivot	xvi

Growth	percent	384

Growth	rate	173

Growth	since	inception	93

H
HASONEVALUE	186

Hide	from	client	tools	222

History	of	Power	Pivot	16

Hybrid	measures	237

I
IF

measures	183

overriding	calculation	188

SWITCH	instead	194

Implicit	vs	explicit	50

Importing	data	20

Initialization	failed	447

INTERSECT	410

ISBLANK	186

ISEMPTY	409

Island,cell	as	79

Items	with	no	data	184

Iterator	functions	197

manufacturing	row	context	344

L
LASTDATE	169

Learning	curves	16

Life	to	date	180

Linguistic	schema	error	447

Linked	tables	22,	23

Loading	data	20

Load	to	data	model	263

Lookup	tables	107

in	common	216

Lower	bounds	146

M
Manual	update	24

Many	to	many	relationships	144,	324

Mark	as	date	table	158

Mashup	2	data	tables	214

MAXIF	replacement	88

MAXX	200

Measures

after	rearranging	69

ancestor	57

creating	41

golden	rules	73

grid	74

Hybrid	217

referencing	measures	52

six	steps	80

validating	140

vs	calculated	fields	40

MEDIAN	405

Memory	401

Messy	data	257

MINX	200

M	Is	for	(Data)	Monkey	258

Modify	query	28

MONTH	37

Month	names

sorting	158

Multiple	tables	209

N
Nadella,	Satya	xv

Naked	columns	84

ok	with	SUMX	207

National	Retail	Federation	360

Navigation	arithmetic	370

Negating	slicer	99

Netz,	Amir	16

NEXTMONTH	179

No	data,	items	with	184

Nonblank

count	201

Number	format	62

O
Only	create	connection	270

OR	operator	94

P
PARALLELPERIOD	178

PBIX	file	422

Peaks,	detecting	399

Penev,	Boyan	153

Percentage	format	66

Percentage	of	parent	98

Percentage	of	Selected	104

PERCENTILE	405

Performance	243

PeriodID	column	372

Periods	table	361

Portable	formulas	72

PowerBI.com	quick	tour	425

Power	BI	Desktop

downloading	306

introduced	10

manage	relationships	312

reports	315

sharing	317

three	modes	307

Power	Query	257

action	button	274

appending	files	259

appending	queries	266

applied	steps	262

calendar	table	294

combining	files	from	folder	272

creating	lookup	table	289

custom	columns	280

importance	7

in	Power	BI	Desktop	309

remove	duplicates	233

unpivoting	284

when	not	to	use	300

Power	soup	6

Power	update	8

Power	View	deamphasized	9

PREVIOUSYEAR	179

PRODUCT	406

Puls,	Ken	258

R
Ranking	us	vs.	them	239

RANKX	203,	238

Rats	breathing	398

RELATED	106

problems	223

Relationship	106

filter	context	342

many	to	many	324

multiple	318

two	data	tables	212

Remove	duplicates	233

Rename

column	35

table	27

Repeating	number	error	224

Reporting	roadmap	10

Reporting	services	27

RETURN	416

Reusable	measures	61

Row	context	338

S
SAMEPERIODLASTYEAR	178

Server	options	430

Shape	of	source	tables	249

SharePoint	list	27

Slicer

could	not	be	added	446

cross-filtering	243

in	CUBEVALUE	444

negating	99

sorting	147

tables	125

various	versions	70

Snowflake	schema	254

Sort	by	column	147,	389

Speed	243

SQL	Azure	27

SSAS	16

SSAS	Tabular	433

SSRS	27

Standard	deviation	200

Star	schema	254

STARTOFYEAR	171

STDEVIF	replacement	88

SUMIF	equivalent	88

SUMX	197,	198

Suppressing	subtotal	186

SWITCH	194

T
Table

Excel	34

referencing	36

Table	properties	28

Tape	recorder	415

Temperature	mashup	387

Text	files,	importing	25

Ties,	handling	204

Time	intelligence

custom	calendars	360

standard	calendars	159

TOPN	205

Totals	for	measures	377

Totals,	unusual	95

TOTALYTD	168

U
Unhandled	exceptions	447

UNION	410

Unique	values	193

Unpivoting	284

Update,	manual	24

Upper	bounds	146

USERELATIONSHIP	323

User	interface	differences	13

V
Validating	measures	140

VALUES	189

VAR	416

Variables	415

Variance	200

Variance	percent	384

Version	differences	12

Violating	math	laws	197

Visuals	9

Visual	Studio	436

W
Weekdays,	sorting	157

Weeks,	DATEADD	fails	176

Wesson,	Dan	397

X
X	functions	197

Y
YEAR	37

Year	over	year	173

YouTube	for	data	422

YOY	173

custom	calendar	366

YTD	sales	161

http://xbi.com.au/learndax

http://powerbi.com/daxmaster

	Power Pivot and Power BI
	Dedications
	Supporting Workbooks and Data Sets
	Errata and Book Support
	A Note on Hyperlinks
	Foreword and Forward
	“State of the Union” November 2015 – What’s Changed?
	What Has Changed at Microsoft? Virtually Everything.
	What’s Changed in My Corner of the World? Also Everything.
	Introduction - Our Two Goals for this Book
	1 - A Revolution Built On YOU
	Does This Sound Familiar?
	Excel Pros: The World Is Changing in Your Favor
	Our Importance Today
	Excel at the Core

	Three Ingredients of Revolution
	Ingredient One: Explosion of Data
	Ingredient Two: Economic Pressure
	Ingredient Three: Dramatically Better Tools

	2 - Power Pivot and the Power BI Family: Making Sense of the Various Versions
	It’s a Family of Products Built on Shared Engines
	Power Query is a Close Second in Importance

	Visuals: The Crucial “Last Mile”
	Power BI Desktop: Two Tools for the (Learning) Price of One!
	Same Engines, Just Different Visuals
	What do we mean by the “tough” or “valuable” stuff?

	Power Pivot (in Excel) Versions
	Power Pivot for Excel 2010
	Power Pivot for Excel 2013 - Only Available in “Pro Plus” Excel

	Differences in User Interface: 2010, 2013, 2016
	When We Said “Cosmetic” We Meant “Awkward”

	32-bit or 64-bit?
	Office 2010 or Newer is Required
	3 - Learning Power Pivot “The Excel Way”
	Power Pivot is Like Getting Fifteen Years of Excel Improvements All at Once
	Learn Power Pivot As You Learned Excel: Start Simple & Grow
	When to Use Power Pivot, and How it Relates to Normal Pivot Usage
	What This Book Will Cover in Depth

	4 - Loading Data Into Power Pivot
	No Wizards Were Harmed in the Creation of this Chapter
	Everything Must “Land” in the Power Pivot Window
	Launching the Power Pivot Window
	One Sheet Tab = One Table
	You Cannot Edit Cells in the Power Pivot Window
	Everything in the Power Pivot Window Gets Saved into the Same XLSX File

	Many Different Sources
	Linked Tables (Data Source Type)
	Advantages
	Limitations
	Tips and Other Notes

	Pasting Data Into Power Pivot (Data Source Type)
	Advantages
	Limitations

	Importing From Text Files (Data Source Type)
	Advantages
	Limitations

	Databases (Data Source Type)
	Advantages
	Limitations

	Less Common Data Source Types
	SharePoint Lists
	Reporting Services (SSRS) Reports
	Cloud Sources Like Azure DataMarket and SQL Azure
	“Data Feeds”

	Other Important Features and Tips
	Renaming up Front – VERY Important!
	Don’t Import More Columns than You Need
	Table Properties Button
	Existing Connections Button

	5 - Intro to Calculated Columns
	Two Kinds of Power Pivot Formulas
	Adding Your First Calculated Column
	Starting a Formula
	Referencing a Column via the Mouse
	Referencing a Column by Typing and Autocomplete
	Just like Excel Tables!
	Rename the New Column
	Reference the New Column in Another Calculation

	Properties of Calculated Columns
	No Exceptions!
	No “A1” Style Reference
	Stored Statically with the File

	Slightly More Advanced Calculations
	Function Names Also Autocomplete
	Aggregation Functions Implicitly Reference the Entire Column
	Quite a Few “Traditional” Excel Functions are Available
	Excel functions Are Identical in Power Pivot

	Enough Calculated Columns for Now
	6 - Introduction to DAX Measures
	“The Best Thing to Happen to Excel in 20 Years”
	Aside: A Tale of Two Formula Engines
	Adding Your First Measure
	Create a Pivot
	Add a Measure!
	Name the Measure
	Results
	Works As You Would Expect

	“Implicit” Versus “Explicit” Measures
	Referencing Measures in Other Measures
	Another Simple Measure First
	Creating a Ratio Measure
	Original Measures Do NOT Have to Remain on the Pivot
	Changes to “Ancestor” Measures Flow Through to Dependent Measures
	Cases Where This Makes Real Sense
	Reuse Measures, Don’t “Redefine”

	Other Fundamental Benefits of Measures
	Use in Any Pivot
	Centrally-Defined Number Formatting

	Whetting Your Appetite: COUNTROWS() and DISTINCTCOUNT()
	COUNTROWS(Sales)
	DISTINCTCOUNT(Sales[OrderDate])
	Deriving More Useful Measures From These Two
	Rearrange Pivot, Measures Automatically Adjust!

	Slicers in Different Versions of Excel
	Measures Are “Portable Formulas”
	7 - The “Golden Rules” of DAX Measures
	How Does the DAX Engine Arrive at Those Numbers?
	Stepping Through That Example

	Translating the Examples Into Three Golden Rules
	Rule A: DAX Measures Are Evaluated Against the Source Data, NOT the Pivot
	Rule B: Each Measure Cell is Calculated Independently
	Rule C: DAX Measures are Evaluated in 6 Logical Steps
	Step 1: Detect Pivot Coordinates
	Step 2: CALCULATE Alters Filter Context
	Step 3: Apply Those Filter Coordinates to the Underlying Table(s)
	Step 4: Filters Follow the Relationship(s)
	Step 5: Evaluate the Arithmetic
	Step 6: Return Result

	How the DAX Engine Calculates Measures
	No “Naked Columns” in Measure Formulas
	Best Practice: Reference Columns and Measures Differently
	Best Practice: Assign Measures to the Right Tables

	8 - CALCULATE() – Your New Favorite Function
	A Supercharged SUMIF()
	CALCULATE() Syntax
	CALCULATE() in Action – a Few Quick Examples

	How CALCULATE() Works
	Two Useful Examples of CALCULATE()
	Example 1: Transactions of a Certain Type
	Example 2: Growth Since Inception

	Alternatives to the “=” Operator in <Filters>
	Evaluation of Multiple <filters> in a Single CALCULATE()
	The “ALL” (aka “Unfiltered”) Filter Context
	Not all Totals Are Completely (or Even Partially) Grand

	9 - ALL() – The “Remove a Filter” Function
	The Crisp Basics
	The Practical Basics – Two Examples
	Example 1 – Percentage of Parent
	Example 2 – Negating a Slicer

	Variations
	ALLEXCEPT()
	ALLSELECTED()
	10 - Thinking in Multiple Tables
	A Simple and Welcome Change
	Unlearning the “Thou Shalt Flatten” Commandment
	Relationships Are Your Friends
	“Lookup” Tables
	The Diagram View
	Using Related Tables in a Pivot
	Why That Works: Filter Context “Travels” Across Relationships
	Visualizing Filters Flowing “Downhill” – One of Our Mental Tricks

	Filters from All Related Lookup Tables Are Applied
	CALCULATE() <Filters> Also Flow Across Relationships
	11 - “Intermission” – Taking Stock of Your New Powers
	12 - Disconnected Tables
	A Parameterized Report
	Adding the Parameter Table
	Adding a “Parameter Harvesting” Measure
	The Field List is Grumpy About This
	Using the Parameter Measure for Something…Useful
	Parameter Table Can Be Used on Rows and Columns Too!
	Why is it Important That They Be Disconnected?
	A Very Powerful Concept

	Disconnected Table Variation: Thresholds
	Create a Disconnected Table to Populate the Slicer:
	Write a Measure to “Harvest” the User’s Selection:
	Diverging From the Prior Example: We Need to Filter, Not Perform Math
	CALCULATE() Has a Limitation? Not really.

	13 - Introducing the FILTER() Function, and Disconnected Tables Continued
	When to Use FILTER()
	FILTER() Syntax
	Why is FILTER() Necessary?
	It’s All About Performance (Speed of Formula Evaluation)
	How to Use FILTER() Carefully

	Applying FILTER() in the “Thresholds” Example
	Revisiting the Successful Formula
	Verifying That the Measures Work
	This Could Not Be Done with Relationships
	Tip: Measures Based on a Shared Pattern – Create via Copy/Paste

	More Variations on Disconnected Tables
	Upper and Lower Bound Thresholds
	Fixing the Sort Order on the Slicer: The “Sort By Column” Feature
	Completing the Min/Max Threshold
	A Way to Visualize Disconnected Tables

	Putting This Chapter in Perspective
	14 - Introduction to Time Intelligence
	At Last, It is Time!
	“Standard Calendar” versus “Custom Calendar”
	Standard Calendars: The Focus of This Chapter
	Custom Calendars: Perhaps Even More Important than Standard (Covered Later)

	Calendar: A Very Special Lookup Table
	Where to Get a Calendar Table
	Properties of a Calendar Table
	Our Calendar table: Imported and Related
	Operates like a Normal Lookup Table

	First Special Feature: Enable Date Filtering via Mark as Date Table
	Second Special Feature: Time Intelligence Functions!
	Diving in with DATESYTD()
	Anatomy of DATESYTD()
	Function Definition
	How Does it Work?
	Changing the Year-End Date

	DATESMTD() and DATESQTD() – “Cousins” of DATESYTD()
	TOTALYTD() – Another Cousin of DATESYTD()

	The Remaining (Many) Time Intelligence Functions – Grouped Into “Families”
	FIRSTDATE() and LASTDATE()
	ENDOFMONTH(), STARTOFYEAR(), etc.
	DATEADD()
	Growth Versus Last Year (Year-Over-Year, YOY, etc.)
	Quirks and Caveats
	You Must Have Contiguous Date Ranges on Your Pivot
	DATEADD() Has Special Handling for “Complete” Months/Quarters/Years
	DATEADD() Lacks Intelligence for Weeks

	SAMEPERIODLASTYEAR()
	PARALLELPERIOD(), NEXTMONTH(), PREVIOUSYEAR(), etc.
	PARALLELPERIOD()
	NEXTMONTH(), PREVIOUSYEAR(), etc.

	DATESBETWEEN()
	“Life to Date” Calculations
	Removing That Hardwired 1/1/1900
	DATESBETWEEN() is Fantastic with Disconnected Tables Too!

	15 - IF(), SWITCH(), BLANK(), and Other Conditional Fun
	Using IF() in Measures
	The BLANK() Function
	DIVIDE() Function
	The ISBLANK() Function
	HASONEVALUE()
	IF() Based on Row/Column/Filter/Slicer Fields
	The VALUES() Function
	Using VALUES() for Columns That Are Not on the Pivot
	VALUES() Only Returns Unique Values

	SWITCH()
	SWITCH TRUE()

	16 - SUMX() and Other X (“Iterator”) Functions
	Need to Force Totals to Add Up “Correctly?”
	Anatomy of SUMX()
	SUMX() in Action
	Detailed Stepthrough

	MINX(), MAXX(), AVERAGEX()
	FILTER()
	COUNTX() and COUNTAX()
	Why is This Different From COUNTROWS(), Then?
	COUNTAX() versus COUNTX()

	Using the X Functions on Fields That Aren’t Displayed
	But Which Country?

	RANKX()
	The Use of ALL()
	Ties
	The Optional Parameters
	Duplicate FullNames?

	TOPN()
	Non-Measure Second Arguments to the X Functions
	The COUNTAX() Mystery Solved!

	17 - Multiple Data Tables
	Service Calls
	Service Calls and Sales Mashup
	In Traditional Excel
	Do Not “Flatten”
	Measures from Different Data Tables in the Same Pivot!
	Hybrid Measures

	Multiple Data Tables Gotchas
	Using Fields from Lookup Table vs. the Data Table
	Data Table Connected to Some but Not All Lookup Tables
	Staying Out of Trouble

	18 - Multiple Data Tables – Differing Granularity
	Example1: Budget versus Actuals
	Difficult in Normal Excel
	Much Faster and More Flexible in Power Pivot
	Creating Relationships – We Need Some New Lookup Tables
	Where Do We Get This New Lookup Table? Consider a Database or Power Query
	SalesTerritory is at Same Granularity Already
	Repeating the “New Table” Process for Calendar
	Integrated Pivot
	Hybrid Measures with Data at Different Grain

	Example 2: Using that Mysterious RANKX() Third Argument
	The Problem: Ranking MY Products Against Theirs!
	Year Granularity Mismatch Means a New Lookup Table
	Simple Measure
	Now the Absolutely Amazing “Cross-Rank” Measure
	And Since Both Are Filtered by the Years Table…

	19 - Performance: Keep Things Running Fast
	How Important is Speed?
	"Now" Is Three Seconds in Length
	What Happens When Something Takes Longer Than Three Seconds?

	Slicers: The Biggest Culprit
	“Cross-Filtering” Behavior
	Cross-Filtering is Expensive in Terms of Performance
	Mitigating the Effects of Cross-Filtering
	How to Turn off Cross-Filtering
	Turning off Cross-Filtering Only Impacts that Slicer
	Slicers For Which You Should Turn Cross-Filtering Off

	The Shape of Your Source Tables Is Also Important
	Narrower Tables are Better
	Imported Columns Are Generally Better than Calculated Columns
	“Star Schema” is Generally Better than “Snowflake Schema”

	Measure Performance
	DISTINCTCOUNT() is Much Faster than COUNTROWS(DISTINCT())
	FILTER() Should Only Be Used Against Lookup Tables and Other “Small” Columns
	Remember That the “X” Functions Are Loops

	20 - Power Query to the Rescue
	Power Query: Bring Order to Messy Data
	#1 - Appending Files to Create a Single Power Pivot Table
	Scenario
	Connecting to One of the CSV Files
	Adding a Custom Column to “Tag” This File
	Loading the Data into Power Pivot
	Connecting to the Second CSV File
	Connecting to the Third CSV File
	Time for the Append!
	“Keeping” Only the Appended Query
	Testing Refresh

	Why This Is a Major Benefit

	#2 - Combine Multiple Files from a Folder into a Single Table
	Scenario
	From Folder
	Combine CSV Files
	First Row As Headers
	Change Data Type and Remove Errors
	Testing Refresh

	Why This Is a Major Benefit

	#3 – Adding Custom Columns to Your Lookup Tables
	Scenario
	Get Data
	Add Custom Column
	Define Custom Formula

	Why This Is so Amazing

	#4 - Using Power Query to “Unpivot” a Table
	Scenario
	Get Data from Excel
	Header Row Handling and Remove Column
	Unpivot!
	Rename and Change Type

	Why This Is a Major Benefit

	#5 - Using Power Query to Create a Lookup Table from a Table
	Scenario
	Create Lookup Table
	Create Data Table
	Relating the Two Tables

	Why This Is so Amazing

	#6 - Creating a Calendar Table: Advanced Power Query
	“Wait, I Don’t See a ‘Make Calendar’ Button!”
	Steps
	Why This Is a Major Benefit

	How NOT to Use Power Query
	Don’t Use Power Query Without Power Pivot
	Don’t Use Power Query Calculations as a Substitute for DAX Measures
	Don’t Use Power Query to Flatten Tables
	Don’t Use Power Query to Mash Two Data Tables Together

	21 - Power BI Desktop
	Meet the New Kid On the Block
	Tons of Visualizations
	Creating Reports is Easy as 1-2-3
	Fully-Interactive Reports Make Your Data Come to Life
	Power Pivot, Power Query and Power View++ All in One Package

	Download Today!

	Remember: Same Engines, Different Visuals
	A Few Words of Perspective
	You’re Probably Going to Use Both
	The “Sales Pitch” – Show Excel-Based to the Analysts, Desktop to Execs

	The “Tour”
	Missing Terminology
	The Different Modes
	Get Data (a.k.a. Power Query)
	Data Model (a.k.a. Power Pivot)
	Reports (a.k.a. Power View, but Much Better!)
	Import Existing Excel Power Pivot Models!
	Sharing Power BI Desktop Files

	22 - “Complicated” Relationships
	Multiple Relationships Between the Same Two Tables
	USERELATIONSHIP()

	Many to Many Relationships
	First, a Bad Example
	Another Bad Example
	Real-World Overlap: The Source of “Legit” Many-to-Many
	“Bridge” Table
	Apply M2M as a Pattern

	Power BI Desktop
	23 - Row and Filter Context Demystified
	The Basics: Gateway to Doubling Your Superpowers
	The Simple Definitions
	Row Context: The Key Ingredient of Calc Columns
	There’s No Row Context in Measures!
	Filter Context: The Key Ingredient of Measures
	There’s No Filter Context in Calc Columns!
	Recap So Far

	Interaction with Relationships
	Relationships and Filter Context
	Relationships and Row context

	Exceptions and Overrides!
	Iterator Functions Create Row Context During Measure Calculation
	CALCULATE Creates Filter Context in Calc Columns
	We can use CALCULATE to “follow” relationships in calc columns
	Using Measures Within a Row Context: a Genuine Curveball

	Putting It All Together: Review Example
	Why Did Our Original Measure Work to Begin With?
	Recap Within the Context of FILTER()
	In Case of Emergency…

	Key Points from This Chapter
	24 - CALCULATE and FILTER – More Nuances
	CALCULATE Filter Arguments Override Pivot Filters
	The “Secret” Second Purpose of ALL(), FILTER(), Etc.
	CALCULATE’s Definition Gives Us a Hint!
	ALL() Is the “Remove Filters” Function, but it’s Also a Table!
	There Are Dozens of These Dual-Purpose Functions!
	Could Have Been Separate Functions?

	Nesting Table Functions Inside One Another
	FILTER Can Unfilter?

	Putting it All Together
	25 - Time Intelligence with Custom Calendars: Greatest Formula in the World
	Perhaps Our Favorite Thing in DAX
	Custom Calendars
	The Periods Table - a “4/4/5” Example
	How This Changes Things: We Need to “Write” Our Own Time Intelligence Functions

	Connecting the Periods Table
	Simple “Sales in Period” Measure
	Another Familiar Concept: Sales per Day
	First New Concept: Sales per Day in Prior Period
	Getting Organized First
	Desired Results

	The Greatest Formula in the World
	“Clear Filters Then Re-Filter” – Another Name for GFITW
	Clear Filter
	Re-Filter: Navigation Arithmetic
	Table[Column] Uses Row Context Generated by FILTER
	MAX() Operates Over a Filter Context

	In Your Periods Table, You Always Need a Numeric PeriodID Column or Equivalent

	More GFITW measures – Year Over Year and Year To Date
	Prior Period Sales
	Year Over Year (YOY) Custom Calendar Measure
	Year To Date (YTD) Measure with Custom Calendar

	Fixing Measures to Work at Total Level
	Suppressing Prior Period for Totals
	Fixing YOY to Work at Total Level
	The Fix

	Fixing Prior Period to Work on Totals, Too

	The Usual “Percent Growth” Formulas
	26 - Advanced Calculated Columns
	Perspective: Calculated Columns Are Not DAX’s Strength!
	OK, Power Pivot Calc Columns Are a Strength in Some Ways.
	But More Difficult in Some Cases

	Start Out With “Not so Advanced”
	Grouping Columns
	Unique Columns for Sorting
	Another Sort by Column Example

	Now For the Advanced Examples
	Summing up in a Lookup Table
	Use of the EARLIER() Function
	EARLIER() in Action

	An Even More Advanced Example

	Calculated Columns are Static
	Memory and CPU Consumption During Recalculation of Complex Calc Columns
	27 - New DAX Functions… and Variables!
	Amazing Since 2010, and STILL Improving
	Important Note: Excel 2016+ and Power BI Desktop Only!
	New Functions – Some Highlights
	DATEDIFF()
	MEDIAN() and PERCENTILE
	PRODUCT()
	GEOMEAN() and GEOMEANX()
	Other Corresponding X Functions
	CONCATENATEX: The Most Interesting Function in the World?
	ISEMPTY()
	INTERSECT(), EXCEPT() and UNION()
	INTERSECT()
	EXCEPT()
	UNION()

	More New Functions

	DAX Variables
	Variables Are like a Tape Recorder
	Variables Offer Three Benefits
	Benefit One: Cleaner Formulas
	The VAR Keyword
	The RETURN Keyword
	Referencing a Variable
	Cleaner Formulas (Benefit One) Revisited
	Benefit Two: Less “Mysterious” Formulas
	Example 1: Alternative to EARLIER?
	Example 2: Measure References Inside FILTER (Within a Measure)

	28 - “YouTube for Data” – The Importance of a Server
	Files – Great for Storage, Not Great for Sharing
	Email Sucks as a Delivery Vehicle for Our Awesome Work!
	Network Distribution via File Shares? Not much better.
	Parallels to Video Files, Circa 1998
	Parent, Grandparents, and Pictures of Cats
	YouTube Happens!
	Importance of Web/Mobile

	So We Need “YouTube for Data”
	PowerBI.com Quick Tour
	Step 1: Upload XLSX/PBIX File to PowerBI.com
	Step 2: Sharing Your Dashboard

	Cloud/Server Option Comparison
	Cloud/Server Sharing Option: Even More Valuable than YouTube

	PS: Can We Ask You for a Special Favor?
	A1 - Power Pivot and SSAS Tabular: Two Tools for the Price of One (again!)
	SSAS Tabular Features
	Power Pivot to SSAS Tabular
	Connect to SSAS Tabular from Excel

	Going Further with SSAS Tabular: Visual Studio
	Key Takeaways
	A2 - Cube Formulas – the End of GetPivotData()
	Formulas Reaching into Pivots = The Dark Ages
	One Click That Will Change Your Life
	The Data Is Still “Live!”
	You Can Also Write Them “From Scratch”
	For Starters, CUBEVALUE() Is All You Really Need
	Adding a Slicer is easy…

	Perspective – When to Use, Tradeoffs, Etc.
	More Information
	A3 - Some Common Error Messages
	Addin is “Out of Sync”
	“Initialization of the Data Source Failed”
	Other Scary-But-Harmless Errors
	Perspective
	A4 - People: The Most Powerful Feature of Power Pivot
	Index

