WEST
~81%
1:39
NORTHEAST
=\

/18.3%.-
/ L 143

1:40

| e
‘ NORTHWEST
\27 9%
| e 1'25

| o
| e

R GhLr

o
Z
=

Power =

the Data Revolution

!

\""I

= i'
\'J

he Excel Users Guide t

Proportions of Compliance

Highest Lowest

South Northeast
80.1% 8.1%

2" Edition

Summary Facts

Division 6 Division &

35.6%
Corporate 138 PM
88.4%

Sales Pipaling

Female
56.8%

m
22.6%

Operations 1
68.8%

Salect Ona:
ol

AN L6

AdventureWorks

@
AR

$29M

[|
[=]
EHCES
=
"M

Cotigary @ Miimidioai B Oty

Rob Collie & Avichal Singh

15,268 Proportions of Compliance
= 20.0% Highest Lowest
el Summary Facts o
a0 15.9% i)
- 14488 Ohison 6
L 200 356%
' e 70.7%
. 1m l' . " e ATAT @ T8 P * 0 kD
.l H.ﬂ'b Sulan Pipaling
= 1‘-”3 JI'.p..n-. ;
2o e o] —
o 86,8% 56.8% 43.2%
ik .
ir HR N
o712 22.6% 0.1% N
e 20.0%
Coul 76.3% Operatlons 1 fther Ppsin
w0 19.1% 68.8% 4.9% '
w 10827 14 o e
e 20.0% ﬁ : x
T oue TI2%| | e ST 1
m a4
AdventureWorks
®
,.AE) - $29M
=
. |
BCm
ﬁ

UNITE%MT.&& g
99.“’*

e e

Rob Collie & Avichal Singh

Power Pivot and Power BI:
The Excel User's Guide to the

Data Revolution
by
Rob Collie

&
Avi Singh

Holy Macro! Books

PO Box 541731
Merritt Island, FL. 32954

Power Pivot and Power BI

© 2016 Robert Collie and Tickling Keys, Inc.

All rights reserved. No part of this book may be reproduced or transmitted in any form or
by any means, electronic or mechanical, including photocopying, recording, or by any
information or storage retrieval system without permission from the publisher. Every
effort has been made to make this book as complete and accurate as possible, but no
warranty or fitness is implied. The information is provided on an “as is” basis. The authors
and the publisher shall have neither liability nor responsibility to any person or entity with
respect to any loss or damages arising from the information contained in this book.

Author: Rob Collie & Avi Singh

Layout: Jill Bee

Technical Editor: Scott Senkeresty

Cover Design: Shannon Travise & Jocelyn Collie

Indexing: Nellie J. Liwam

Published by: Holy Macro! Books, PO Box 541731 Merritt Island FL 32954 USA
Distributed by: Independent Publishers Group, Chicago, IL

ISBN: 978-1-61547-039-6 Print, 978-1-61547-226-0 PDF, 978-1-61547-349-6 ePub, 978-
1-61547-126-3 Mobi

LCCN: 2015940638

Contents at a Glance

Dedications

Supporting Workbooks and Data Sets

Errata and Book Support
A Note on Hyperlinks

Foreword and Forward

Introduction - Our Two Goals for this Book

1 - A Revolution Built On YOU

2 - Power Pivot and the Power BI Family: Making Sense of the Various Versions
3 - I earning Power Pivot “The Excel Way”

4 - Loading Data Into Power Pivot

5 - Intro to Calculated Columns

6 - Introduction to DAX Measures

7 - The “Golden Rules” of DAX Measures

8 - CALCULATE() — Your New Favorite Function
9 - ALL() — The “Remove a Filter” Function

10 - Thinking in Multiple Tables

11 - “Intermission” — Taking Stock of Your New Powers
12 - Disconnected Tables

13 - Introducing the FILTER() Function, and Disconnected Tables Continued

14 - Introduction to Time Intelligence

15 - IF(), SWITCH(), BLANK(), and Other Conditional Fun
16 - SUMX() and Other X (“Iterator”) Functions

17 - Multiple Data Tables

18 - Multiple Data Tables — Differing Granularity

19 - Performance: Keep Things Running Fast

20 - Power Query to the Rescue

21 - Power BI Desktop

22 - “Complicated” Relationships

23 - Row and Filter Context Demystified
24 - CALCULATE and FILTER — More Nuances

25 - Time Intelligence with Custom Calendars: Greatest Formula in the World

26 - Advanced Calculated Columns

27 - New DAX Functions... and Variables!

28 - “YouTube for Data” — The Importance of a Server

PS: Can We Ask You for a Special Favor?

Al - Power Pivot and SSAS Tabular: Two Tools for the Price of One (again!)
A2 - Cube Formulas — the End of GetPivotData()

A3 - Some Common Error Messages
A4 - People: The Most Powerful Feature of Power Pivot

Index

Detailed Table of Contents

Power Pivot and Power BI

Dedications

Supporting Workbooks and Data Sets

Errata and Book Support
A Note on Hyperlinks

Foreword and Forward

“State of the Union” November 2015 — What’s Changed?

What Has Changed at Microsoft? Virtually Everything.

What’s Changed in My Corner of the World? Also Everything.

Introduction - Our Two Goals for this Book

1 - A Revolution Built On YOU

Does This Sound Familiar?

Excel Pros: The World Is Changing in Your Favor

Our Importance Today
Excel at the Core

Three Ingredients of Revolution

Ingredient One: Explosion of Data
Ingredient Two: Economic Pressure
Ingredient Three: Dramatically Better Tools

2 - Power Pivot and the Power BI Family: Making Sense of the Various Versions

It’s a Family of Products Built on Shared Engines

Power Query is a Close Second in Importance

Visuals: The Crucial “Last Mile”
Power BI Desktop: Two Tools for the (Learning) Price of One!

Same Engines, Just Different Visuals

What do we mean by the “tough” or “valuable” stuff?

Power Pivot (in Excel) Versions

Power Pivot for Excel 2010

Power Pivot for Excel 2013 - Only Available in “Pro Plus” Excel

Differences in User Interface: 2010, 2013, 2016
When We Said “Cosmetic” We Meant “Awkward”

32-bit or 64-bit?

Office 2010 or Newer is Required

3 - Learning Power Pivot “The Excel Way”

Power Pivot is Like Getting Fifteen Years of Excel Improvements All at Once

Learn Power Pivot As You Learned Excel: Start Simple & Grow

When to Use Power Pivot, and How it Relates to Normal Pivot Usage

What This Book Will Cover in Depth

4 - Loading Data Into Power Pivot

No Wizards Were Harmed in the Creation of this Chapter
Everything Must “Land” in the Power Pivot Window

Launching the Power Pivot Window
One Sheet Tab = One Table
You Cannot Edit Cells in the Power Pivot Window

Everything in the Power Pivot Window Gets Saved into the Same XI.SX File

Many Different Sources
Linked Tables (Data Source Type)

Advantages
Limitations

Tips and Other Notes

Pasting Data Into Power Pivot (Data Source Type)

Advantages
Limitations

Importing From Text Files (Data Source Type)

Advantages
Limitations

Databases (Data Source Type)

Advantages

Limitations
Less Common Data Source Types
SharePoint Lists

Reporting Services (SSRS) Reports
Cloud Sources Like Azure DataMarket and SQL Azure
“Data Feeds”

Other Important Features and Tips

Renaming up Front — VERY Important!
Don’t Import More Columns than You Need

Table Properties Button

Existing Connections Button
5 - Intro to Calculated Columns

Two Kinds of Power Pivot Formulas

Adding Your First Calculated Column

Starting a Formula
Referencing a Column via the Mouse

Referencing a Column by Typing and Autocomplete
Just like Excel Tables!

Rename the New Column
Reference the New Column in Another Calculation
Properties of Calculated Columns

No Exceptions!
No “A1” Style Reference

Stored Statically with the File
Slightly More Advanced Calculations

Function Names Also Autocomplete

Aggregation Functions Implicitly Reference the Entire Column
Quite a Few “Traditional” Excel Functions are Available

Excel functions Are Identical in Power Pivot

Enough Calculated Columns for Now
6 - Introduction to DAX Measures

“The Best Thing to Happen to Excel in 20 Years”

Aside: A Tale of Two Formula Engines

Adding Your First Measure

Create a Pivot
Add a Measure!

Name the Measure

Results

Works As You Would Expect

“Implicit” Versus “Explicit” Measures

Referencing Measures in Other Measures

Another Simple Measure First

Creating a Ratio Measure

Original Measures Do NOT Have to Remain on the Pivot

Changes to “Ancestor” Measures Flow Through to Dependent Measures

Cases Where This Makes Real Sense

Reuse Measures, Don’t “Redefine”

Other Fundamental Benefits of Measures

Use in Any Pivot

Centrally-Defined Number Formatting

Whetting Your Appetite: COUNTROWS() and
DISTINCTCOUNT()

COUNTROWS(Sales)
DISTINCTCOUNT(Sales[OrderDate])

Deriving More Useful Measures From These Two

Rearrange Pivot, Measures Automatically Adjust!

Slicers in Different Versions of Excel

Measures Are “Portable Formulas”

7 - The “Golden Rules” of DAX Measures

How Does the DAX Engine Arrive at Those Numbers?

Stepping Through That Example

Translating the Examples Into Three Golden Rules

Rule A: DAX Measures Are Evaluated Against the Source Data, NOT the Pivot
Rule B: Each Measure Cell is Calculated Independently
Rule C: DAX Measures are Evaluated in 6 L.ogical Steps

Step 1: Detect Pivot Coordinates

Step 2: CALCULATE Alters Filter Context

Step 3: Apply Those Filter Coordinates to the Underlying Table(s)
Step 4: Filters Follow the Relationship(s)

Step 5: Evaluate the Arithmetic

Step 6: Return Result

How the DAX Engine Calculates Measures

No “Naked Columns” in Measure Formulas

Best Practice: Reference Columns and Measures Differently

Best Practice: Assign Measures to the Right Tables
8 - CALCULATE() — Your New Favorite Function

A Supercharged SUMIF()

CALCULATE() Syntax
CALCULATE() in Action — a Few Quick Examples

How CALCULATE() Works

Two Useful Examples of CAL.CULATE()

Example 1: Transactions of a Certain Type
Example 2: Growth Since Inception

Alternatives to the “= Operator in <Filters>

Evaluation of Multiple <filters> in a Single CALCULATE()
The “ALL” (aka “Unfiltered”) Filter Context

Not all Totals Are Completely (or Even Partially) Grand
9 - ALL() — The “Remove a Filter” Function
The Crisp Basics

The Practical Basics — Two Examples

Example 1 — Percentage of Parent
Example 2 — Negating a Slicer

Variations

ALLEXCEPT()

ALLSELECTED()

10 - Thinking in Multiple Tables

A Simple and Welcome Change

Unlearning the “Thou Shalt Flatten” Commandment
Relationships Are Your Friends

“Lookup” Tables

The Diagram View
Using Related Tables in a Pivot
Why That Works: Filter Context “Travels” Across Relationships

Visualizing Filters Flowing “Downhill” — One of Our Mental Tricks
Filters from All Related L.ookup Tables Are Applied

CALCULATE() <Filters> Also Flow Across Relationships

11 - “Intermission” — Taking Stock of Your New Powers

12 - Disconnected Tables

A Parameterized Report

Adding the Parameter Table

Adding a “Parameter Harvesting” Measure

The Field List is Grumpy About This

Using the Parameter Measure for Something...Useful

Parameter Table Can Be Used on Rows and Columns Too!

Why is it Important That They Be Disconnected?

A Very Powerful Concept

Disconnected Table Variation: Thresholds

Create a Disconnected Table to Populate the Slicer:

Write a Measure to “Harvest” the User’s Selection:

Diverging From the Prior Example: We Need to Filter, Not Perform Math
CALCULATE() Has a Limitation? Not really.

13 - Introducing the FILTER() Function, and Disconnected Tables Continued
When to Use FILTER()

FILTER() Syntax
Why is FILTER() Necessary?

It’s All About Performance (Speed of Formula Evaluation)

How to Use FILTER() Carefully
Applving FILTER() in the “Thresholds” Example

Revisiting the Successful Formula
Verifying That the Measures Work

This Could Not Be Done with Relationships

Tip: Measures Based on a Shared Pattern — Create via Copy/Paste

More Variations on Disconnected Tables

Upper and Lower Bound Thresholds

Fixing the Sort Order on the Slicer: The “Sort By Column” Feature
Completing the Min/Max Threshold

A Way to Visualize Disconnected Tables

Putting This Chapter in Perspective

14 - Introduction to Time Intelligence
At Last, It is Time!

“Standard Calendar” versus “Custom Calendar”

Standard Calendars: The Focus of This Chapter
Custom Calendars: Perhaps Even More Important than Standard (Covered Later)

Calendar: A Very Special L.ookup Table

Where to Get a Calendar Table

Properties of a Calendar Table

Our Calendar table: Imported and Related

Operates like a Normal Lookup Table

First Special Feature: Enable Date Filtering via Mark as Date Table

Second Special Feature: Time Intelligence Functions!

Diving in with DATESYTD()
Anatomy of DATESYTD()

Function Definition

How Does it Work?

Changing the Year-End Date

DATESMTD() and DATESQTD() — “Cousins” of DATESYTD()
TOTALYTD() — Another Cousin of DATESYTD()

The Remaining (Many) Time Intelligence Functions — Grouped Into “Families”

FIRSTDATE() and LASTDATE()
ENDOFMONTH(), STARTOFYEAR(), etc.

DATEADD()
Growth Versus I ast Year (Year-Over-Year, YOY, etc.)
Quirks and Caveats
You Must Have Contiguous Date Ranges on Your Pivot
DATEADD() Has Special Handling for “Complete” Months/Quarters/Years
DATEADD() Lacks Intelligence for Weeks

SAMEPERIODIASTYEAR()

PARALIFELPERIOD(), NEXTMONTH(), PREVIOUSYEAR(), etc.
PARALLEI PERIOD()

NEXTMONTH(), PREVIOUSYEAR(), etc.

DATESBETWEEN()

“Life to Date” Calculations

Removing That Hardwired 1/1/1900
DATESBETWEEN() is Fantastic with Disconnected Tables Too!

15 - TF(), SWITCH(), BLANK(), and Other Conditional Fun

Using IF() in Measures
The BLANK() Function
DIVIDE() Function

The ISBLANK() Function
HASONEVALUE()

IF() Based on Row/Column/Filter/Slicer Fields
The VALUES() Function

Using VALUES() for Columns That Are Not on the Pivot
VALUES() Only Returns Unique Values

SWITCH
SWITCH TRUE()

16 - SUMX() and Other X (“Iterator”) Functions
Need to Force Totals to Add Up “Correctly?”
Anatomy of SUMX()

SUMX() in Action

Detailed Stepthrough
MINX(), MAXX(), AVERAGEX

FILTER()
COUNTX() and COUNTAX()

Why is This Different From COUNTROWS(), Then?
COUNTAX() versus COUNTX()

Using the X Functions on Fields That Aren’t Displayed

But Which Country?

RANKX()

The Use of ALL()

Ties

The Optional Parameters
Duplicate FullNames?

TOPN()
Non-Measure Second Arguments to the X Functions

The COUNTAX() Mystery Solved!

17 - Multiple Data Tables

Service Calls

Service Calls and Sales Mashup

In Traditional Excel

Do Not “Flatten”

Measures from Different Data Tables in the Same Pivot!

Hybrid Measures

Multiple Data Tables Gotchas

Using Fields from Lookup Table vs. the Data Table

Data Table Connected to Some but Not All L.ookup Tables

Staying Out of Trouble

18 - Multiple Data Tables — Differing Granularity

Examplel: Budget versus Actuals

Difficult in Normal Excel

Much Faster and More Flexible in Power Pivot

Creating Relationships — We Need Some New Lookup Tables
Where Do We Get This New Lookup Table? Consider a Database or Power Query

SalesTerritory is at Same Granularity Already

Repeating the “New Table” Process for Calendar

Integrated Pivot

Hybrid Measures with Data at Different Grain

Example 2: Using that Mysterious RANKX() Third Argument

The Problem: Ranking MY Products Against Theirs!

Year Granularity Mismatch Means a New L.ookup Table
Simple Measure

Now the Absolutely Amazing “Cross-Rank” Measure
And Since Both Are Filtered by the Years Table...

19 - Performance: Keep Things Running Fast
How Important is Speed?

“Now” Is Three Seconds in I.ength
What Happens When Something Takes I.onger Than Three Seconds?
Slicers: The Biggest Culprit

“Cross-Filtering” Behavior
Cross-Filtering is Expensive in Terms of Performance
Mitigating the Effects of Cross-Filtering
How to Turn off Cross-Filtering
Turning off Cross-Filtering Only Impacts that Slicer
Slicers For Which You Should Turn Cross-Filtering Off

The Shape of Your Source Tables Is Also Important

Narrower Tables are Better

Imported Columns Are Generally Better than Calculated Columns
“Star Schema” is Generally Better than “Snowflake Schema”

Measure Performance
DISTINCTCOUNT() is Much Faster than COUNTROWS(DISTINCT())
FILTER() Should Only Be Used Against I.ookup Tables and Other “Small” Columns

Remember That the “X” Functions Are L.oops

20 - Power Query to the Rescue

Power Query: Bring Order to Messy Data

#1 - Appending Files to Create a Single Power Pivot Table

Scenario

Connecting to One of the CSV Files

Adding a Custom Column to “Tag” This File

Loading the Data into Power Pivot
Connecting to the Second CSV File

Connecting to the Third CSV File

Time for the Append!

“Keeping” Only the Appended Query

Testing Refresh
Why This Is a Major Benefit

#2 - Combine Multiple Files from a Folder into a Single Table

Scenario
From Folder
Combine CSV Files

First Row As Headers

Change Data Type and Remove Errors

Testing Refresh
Why This Is a Major Benefit

#3 — Adding Custom Columns to Your IL.ookup Tables

Scenario

Get Data
Add Custom Column

Define Custom Formula

Why This Is so Amazing
#4 - Using Power Query to “Unpivot” a Table

Scenario
Get Data from Excel
Header Row Handling and Remove Column
Unpivot!
Rename and Change Type
Why This Is a Major Benefit

#5 - Using Power Query to Create a L.ookup Table from a Table

Scenario

Create Lookup Table

Create Data Table

Relating the Two Tables
Why This Is so Amazing
#6 - Creating a Calendar Table: Advanced Power Query

“Wait, I Don’t See a ‘Make Calendar’ Button!”

Steps
Why This Is a Major Benefit

How NOT to Use Power Query

Don’t Use Power Query Without Power Pivot

Don’t Use Power Query Calculations as a Substitute for DAX Measures

Don’t Use Power Query to Flatten Tables

Don’t Use Power Query to Mash Two Data Tables Together

21 - Power BI Desktop
Meet the New Kid On the Block

Tons of Visualizations

Creating Reports is Easy as 1-2-3

Fully-Interactive Reports Make Your Data Come to Life

Power Pivot, Power Query and Power View++ All in One Package

Download Today!

Remember: Same Engines, Different Visuals

A Few Words of Perspective

You’re Probably Going to Use Both

The “Sales Pitch” — Show Excel-Based to the Analysts, Desktop to Execs

The “Tour”

Missing Terminology
The Different Modes

Get Data (a.k.a. Power Query)

Data Model (a.k.a. Power Pivot)

Reports (a.k.a. Power View, but Much Better!)

Import Existing Excel Power Pivot Models!
Sharing Power BI Desktop Files

22 - “Complicated” Relationships

Multiple Relationships Between the Same Two Tables
USERELATIONSHIP()

Many to Many Relationships

First, a Bad Example
Another Bad Example
Real-World Overlap: The Source of “Legit” Many-to-Many

“Bridge” Table
Apply M2M as a Pattern

Power BI Desktop

23 - Row and Filter Context Demystified

The Basics: Gateway to Doubling Your Superpowers

The Simple Definitions

Row Context: The Key Ingredient of Calc Columns
There’s No Row Context in Measures!

Filter Context: The Key Ingredient of Measures
There’s No Filter Context in Calc Columns!

Recap So Far
Interaction with Relationships

Relationships and Filter Context

Relationships and Row context

Exceptions and Overrides!

Iterator Functions Create Row Context During Measure Calculation

CALCULATE Creates Filter Context in Calc Columns

We can use CALCULATE to “follow” relationships in calc columns

Using Measures Within a Row Context: a Genuine Curveball
Putting It All Together: Review Example

Why Did Our Original Measure Work to Begin With?
Recap Within the Context of FILTER()

In Case of Emergency...
Key Points from This Chapter
24 - CALCULATE and FILTER — More Nuances

CALCULATE Filter Arguments Override Pivot Filters
The “Secret” Second Purpose of ALL(), FILTER(), Etc.

CALCULATE’s Definition Gives Us a Hint!
ALL() Is the “Remove Filters” Function, but it’s Also a Table!

There Are Dozens of These Dual-Purpose Functions!

Could Have Been Separate Functions?
Nesting Table Functions Inside One Another

FILTER Can Unfilter?
Putting it All Together
25 - Time Intelligence with Custom Calendars: Greatest Formula in the World

Perhaps Our Favorite Thing in DAX
Custom Calendars

The Periods Table - a “4/4/5” Example
How This Changes Things: We Need to “Write” Our Own Time Intelligence Functions

Connecting the Periods Table

Simple “Sales in Period” Measure

Another Familiar Concept: Sales per Day
First New Concept: Sales per Day in Prior Period

Getting Organized First
Desired Results

The Greatest Formula in the World

“Clear Filters Then Re-Filter” — Another Name for GFITW

Clear Filter

Re-Filter: Navigation Arithmetic

Table[Column] Uses Row Context Generated by FILTER

MAX() Operates Over a Filter Context

In Your Periods Table, You Always Need a Numeric PeriodID Column or Equivalent

More GFITW measures — Year Over Year and Year To Date

Prior Period Sales

Year Over Year (YOY) Custom Calendar Measure
Year To Date (YTD) Measure with Custom Calendar

Fixing Measures to Work at Total Level

Suppressing Prior Period for Totals

Fixing YOY to Work at Total L.evel
The Fix

Fixing Prior Period to Work on Totals, Too

The Usual “Percent Growth” Formulas

26 - Advanced Calculated Columns

Perspective: Calculated Columns Are Not DAX’s Strength!
OK, Power Pivot Calc Columns Are a Strength in Some Ways.

But More Difficult in Some Cases

Start Out With “Not so Advanced”

Grouping Columns
Unique Columns for Sorting
Another Sort by Column Example

Now For the Advanced Examples

Summing up in a Lookup Table
Use of the EARLIER() Function
EARLIER() in Action

An Even More Advanced Example

Calculated Columns are Static

Memory and CPU Consumption During Recalculation of Complex Calc Columns
27 - New DAX Functions... and Variables!

Amazing Since 2010, and STILL Improving
Important Note: Excel 2016+ and Power BI Desktop Only!

New Functions — Some Highlights
DATEDIFF()
MEDIAN() and PERCENTILE

PRODUCT()
GEOMEAN() and GEOMEANX()

Other Corresponding X Functions
CONCATENATEX: The Most Interesting Function in the World?

ISEMPTY()

INTERSECT(), EXCEPT() and UNION()
INTERSECT()
EXCEPT()
UNION()

More New Functions

DAX Variables

Variables Are like a Tape Recorder

Variables Offer Three Benefits

Benefit One: Cleaner Formulas
The VAR Keyword
The RETURN Keyword

Referencing a Variable
Cleaner Formulas (Benefit One) Revisited

Benefit Two: Less “Mysterious” Formulas
Example 1: Alternative to EARLIER?
Example 2: Measure References Inside FILTER (Within a Measure)
28 - “YouTube for Data” — The Importance of a Server

Files — Great for Storage, Not Great for Sharing

Email Sucks as a Delivery Vehicle for Our Awesome Work!

Network Distribution via File Shares? Not much better.

Parallels to Video Files, Circa 1998

Parent, Grandparents, and Pictures of Cats

YouTube Happens!
Importance of Web/Mobile

So We Need “YouTube for Data”

PowerBl.com Quick Tour
Step 1: Upload XIL.SX/PBIX File to PowerBl.com
Step 2: Sharing Your Dashboard

Cloud/Server Option Comparison

Cloud/Server Sharing Option: Even More Valuable than YouTube

PS: Can We Ask You for a Special Favor?

Al - Power Pivot and SSAS Tabular: Two Tools for the Price of One (again!)
SSAS Tabular Features

Power Pivot to SSAS Tabular

Connect to SSAS Tabular from Excel

Going Further with SSAS Tabular: Visual Studio

Key Takeaways

A2 - Cube Formulas — the End of GetPivotData()

Formulas Reaching into Pivots = The Dark Ages
One Click That Will Change Your Life

The Data Is Still “Live!”

You Can Also Write Them “From Scratch”

For Starters, CUBEVALUE() Is All You Really Need
Adding a Slicer is easy...

Perspective — When to Use, Tradeoffs, Etc.

More Information

A3 - Some Common Error Messages
Addin is “Out of Sync”

“Initialization of the Data Source Failed”

Other Scary-But-Harmless Errors

Perspective
A4 - People: The Most Powerful Feature of Power Pivot

Index

Dedications

Rob:

To everyone who has ever gotten excited about a PivotTable. We all share a kindred and
wonderful sickness.

Avi:

To my Mom and Dad. For teaching me that it is good to be important, but more important
to be good.

Supporting Workbooks and Data Sets

The supporting workbooks and datasets can be downloaded from:

http://ppvt.pro/BookFiles

Note that these are being provided on an informal basis. You may find the supporting files
helpful but we’ve made every effort to provide full coverage of topics within the book.
You’ll never find us using these files as an escape hatch and saying something like “take a
look at the supporting files if this isn’t clear”.

http://ppvt.pro/BookFiles

BEAUTIFIED WITH
DAX FORMATTER

1. Thanks to SQLBI team for providing a useful resource to the community

Errata and Book Support

We have made every effort to ensure the accuracy of this book. If you do find an
error, please report it using the “Errata” button on http://ppvt.pro/daxbook page.

A Note on Hyperlinks

You will notice that all of the hyperlinks in this book look like this:
http://ppvt.pro/<foo>

Where <foo> is something that is short and easy to type. Example:
http://ppvt.pro/1stBlog

/N These links are CaSe SeNsItIVE! If the link in the book ends in “1stBlog”
like above, typing “l1stbog” or “1stBLOG” will not take you to the intended
page!

This is a “short link” and is intended to make life much easier for readers of the

print edition. That link above will take you to the first blog post Rob ever published,
which went live in October of 2009.

Its “real” URL is this:

http:// www.PowerPivotpro.com/2009/10/hello-everybody/

Which would you rather type?
So just a few notes:

1. These short links will always start with http://ppvt.pro/ — which is short
for “PowerPivotPro,” the name of our blog.

2. Not all of these links will lead to our blog — some will take you to
Microsoft sites for instance.

3. The book does not rely on you following the links — the topics covered in
this book are intended to be complete in and of themselves. The links
provided are strictly optional “more info” type of content.

http://ppvt.pro/daxbook
http://ppvt.pro/1stBlog
http://www.powerpivotpro.com/2009/10/hello-everybody/

Foreword and Forward

“State of the Union” November 2015 — What’s Changed?

As we wrapped up final edits on this book, Avi and Bill said, “OK Rob, you know those
first two chapters? The ones that set the stage and give perspective to this whole thing? It’s
time for you to revise those and bring them up to date.”

They had a point — it had been more than three years since I wrote those chapters. And a
lot has changed since then in our landscape, reshaped as it is by Microsoft’s vigorous
seismic activity.

But when I re-read those two chapters, I found very little that I wanted to alter. I’'m
leaving those largely untouched, which is a rare move for me.

Why did I choose to forgo such a writing opportunity, since I enjoy it so much?

Here’s why: those chapters talk about things that fundamentally do not change — the
importance of people, the importance of Excel, the massive opportunities afforded to “data
people,” and Microsoft’s continued investment in all of the above.

I suspect that ten years from now, if we’re revising this book for the Nth edition, those
chapters will again largely remain unchanged — except that we will be talking about a data
revolution that’s already run its course, rather than one that’s in progress

Instead I’'m going to use this Foreword to reflect a bit on some things that truly have
changed. Let’s start with the 800 pound gorilla, my former employer (and Avi’s)...

The Microsoft Corporation.

What Has Changed at Microsoft? Virtually Everything.

Let’s see here, just a few things:

Ballmer out, Nadella in — the change at the top of Microsoft is not to be underestimated.
Satya brings a very different and more open perspective to the game, and that absolutely
makes a difference to us. For example, today’s Microsoft does not stubbornly ignore iOS
and Android, whereas the old regime acted like “if we ignore them long enough, they will
go away.” (A few years back when MS announced their earliest plans for mobile-friendly
BI, and it revolved solely around the soon-to-be-released Windows 8 while ignoring other
platforms, I chortled for two months consecutive before eventually having to see a doctor
to make it stop.) It’s worth reflecting how far we have come since then. Microsoft Power
Bl is available in the Apple App Store, for crying out loud, and it’s not at all weird to see it
there? Times have changed.

Power Query — when the first edition of this book went to press, I don’t think we’d even
heard of Power Query. Microsoft already had a world-changing data engine — the
DAX/Power Pivot engine — and that was more than enough, in my eyes, to kickstart a total
revolution in how the world operates. So to have them surprise us, out of the blue, with a
relatively user-friendly desktop engine for shaping and cleaning data... a “sibling” that

does virtually everything that Power Pivot could not do on its own... um, yeah. Power
Query is a big deal, folks, and even though they are retiring that name, the “M Engine” is
here to stay, and our professional lives are forever altered. Dramatically for the better.

Unity — CEO isn’t the only place where MS has changed people. There have also been
several changes in leadership on the relevant engineering teams at Microsoft. Some new
arrivals on the SQL side of the house and some old friends “coming home” on the Excel
side of the house have already made a monster impact over the past two years. Above all,
I’m struck by how unified Microsoft seems to be in the BI space these days. Not perfectly
unified, but dramatically more so than I have ever seen before. Everyone seems to be
pulling in the same direction — both within the SQL team’s many factions (who, in my
time there, were in open war with one another), and across the SQL/Office boundary. The
latter is particularly important, because the Excel team is now 100% “in” on Power Pivot.
They understand its value and strategic importance to their own product, whereas before,
the Excel team regarded Power Pivot with suspicion — as something that had been done to
their product.

PowerBl.com and Power BI Desktop — consider this: at the beginning of 2015, neither
of these things actually existed. In eleven short months, I’ve been through the full cycle of
opinions: the “this is vaporware” phase, the “oh no they’re de-emphasizing Excel” phase,
the “what the heck is this Desktop thing, they really don’t get it do they” phase.... And
now, the “wow this is all pretty cool, Excel Services is in PowerBl.com, Desktop opens
Power Pivot models, I guess they actually DO have a good roadmap that includes Excel,
and it’s all actually working” phase. Seriously, I’ve gone from feeling ambushed to feeling
like we’ve been given a tremendous gift. And oh yeah — a free cloud version for
publishing that anyone can use, and that’s easy to sign up for? With an open source visuals
platform? This is Microsoft doing all this? Are you KIDDING ME. And it all happened
this year.

Pace — you can put this together from the previous bullet, but MS is now moving at a
frightening pace. Frightening? Did I say frightening? Well, it’s only frightening if you
write books. There’s now an ever-present danger of us writing an entire chapter on how
you deal with a particular problem, and then three weeks later, them adding a feature that
makes that problem go away, rendering the entire chapter obsolete, and thereby making
the authors look silly. Actually, this is virtually guaranteed to happen. But outside of the
authoring world, yeah, this is a very good thing. Not having to wait two years for key
omissions and/or bugs to be addressed has precious little downside.

What’s Changed in My Corner of the World? Also
Everything.

I always tell first-time public speakers and bloggers to talk about their own personal
experiences. You are, in fact, the world’s #1 expert on what has happened in your own life.

That’s what I’'m going to do here, because hey, I can’t be wrong! Yes, it is a “skewed”
view in some ways, to take small-scale observations from one person and put them next to
the changes happening at a goliath like Microsoft, but I do have what they call a ringside

seat for this particular show. There’s relevance here, especially when it comes to hard
numbers and economics.

Let’s stick to that list format:

4x Community Growth - Judging by PowerPivotPro.com blog stats, our community —
those who are aware of and using Power Pivot and Power BI — is now approximately four
times the size as it was when the first edition went to print. That’s right, there are a lot
more “new” people at this point than grizzled veterans. As it should be! This will continue
to hold true for quite some time. Welcome everyone

Team Growth — at time of writing there are now seventeen human beings with
PowerPivotPro.com email addresses. Guess how many humans had such addresses three
years ago? Zero — not even I had one! Not all of the seventeen are doing Power Pivot /
Power BI work, but most of them are. And the handful who play auxiliary roles are in
some ways even more telling: we now have an organization which is large enough to
require auxiliary roles. 1 find that incredibly satisfying, and not just on the personal front —
our organization wouldn’t be growing unless the demand for our services was growing.
We’re not traditional BI consultants, and we’re not spreadsheet consultants. We’re a new
breed and the market is saying “yes, this is a good mutation, your virus may continue to
grow.” In fact I’'m aware of several brand-new firms that have joined us in this “new
style,” and the world of data is so large that there’s zero sense of competition, only a
shared sense of joy in changing the rules in a positive way.

Avi — among those seventeen is our esteemed co-author, Avi Singh, who has been working
himself half to death on this 2nd Edition. This is great news, because there was zero
chance I’d have been able to do this alone. (I’ve never been busier, as a professional, than
I am today). So First Edition would probably have remained Only Edition without Avi on
board. If anything, Avi believes in this stuff more than I do — anyone who says “I’m
coming to work with you even if you can’t pay me” is a bit crazy, but the right kind of
crazy. We are lucky to have him, and yes, we do pay him

Microsoft Relationship — our relationship with the “mother ship” is in a much better
place today than three years ago. It’s not like there was friction before, and I do still have a
lot of friends there, but there was also a longstanding mutual sense that there wasn’t much
ROI in cooperating. For the most part, I ignored Microsoft and they returned the favor by
ignoring me. But my views and their views on the world have converged quite a bit over
the past three years, and I would attribute that to “everyone getting smarter” rather than
one of us adopting the other’s longstanding stance. Today, our messaging helps Microsoft
reach customers, and Microsoft likewise connects us with people who need help. This may
sound like a subtle point, but it could not feel any more different. Surprising as it sounds,
this ex-Microsoft employee (and High Priest of their data platform) feels like he’s back in
the family for the first time in six years. And again, this reflects on Microsoft’s positive
direction as well as the market.

Confidence — this one is my favorite. Three years ago, I was “sure” that The New Way
was going to replace The Old Way. So “sure,” in fact, that I’d happily argue vigorously
with anyone who disagreed or questioned it. Today though I’'m not just “sure” — I am sure.

For example, a few weeks back I watched a debate unfold in the comments thread of a
Power PivotPro.com blog post, in which one “combatant” was questioning whether this
stuff was catching on or not. Three years ago I would have waded into the fray, guns
blazing. But this time I sat it out — my pulse didn’t rise, I didn’t take the bait. I just moved
on to the next task. Someone else was taking up the good fight anyway (thanks Greg). The
point here is that before, my certainty was predictive in nature, and that naturally carries
some insecurity. Today’s certainty comes from having seen it happen — we are no longer
talking about what will be, we are talking about what undeniably is. I'm a lot more at
peace, a happier person, and very much at ease with the way things are unfolding. I hope
you share that same confidence already, or that you soon will.

Happy — OK, I lied. This one is my favorite. If you ask us what’s the #1 service we
provide these days, the most important thing we do for people, my answer will not be
related to money, or efficiency, or time. Yes, we do help people quite a bit when measured
in those terms. But the thing that strikes us all as most important, is making people happy.
It’s fair to call Power Pivot a “hard skill,” and it’s one that delivers ROI on a grand scale
(ex: one of our one-week projects ended up saving the client $25 Million a year). But the
“soft” stuff is what really energizes us. This stuff makes people happier, and you cannot
put a price on that. We live charmed lives — working in data and solving valuable
problems is the sort of thing that we “expect” to be boring and dehumanizing, but when it
actually works, it’s exactly the opposite.

Welcome to Happy Data Land.
-Rob Collie, November 2015

Introduction - Our Two Goals for this Book

Fundamentally of course, this book is intended to train you on Power Pivot and
Power BI. It captures the techniques we’ve learned from many years of teaching Power
Pivot and its “cousin technologies” (in person and on PowerPivotPro.com), as well as
applying it extensively in our everyday work.

Unsurprisingly, then, the contents herein are very much instructional — a “how to” book if
ever there was one.

But we also want you to understand how to maximize the impact on your career. This
isn’t just a better way to do PivotTables. It isn’t just a way to reduce manual effort. It’s not
just a better formula engine.

Even though Rob worked on the first version of Power Pivot while at Microsoft, he had no
idea how impactful it would be until about two years after he left to form his own
company. He had to experience it in the real world to see its full potential, and even then it
took some time to overwhelm his skeptical nature (his Twitter profile now describes him
as “skeptic turned High Priest.”)

This is the rare technology that can (and will) fundamentally change the lives of
millions of people — it has more in common with the invention of the PC than with the

invention of, say, the VCR.

The PC might be a particularly relevant example actually. At a prestigious Seattle high
school in the early 1970’s, Bill Gates and Paul Allen discovered a mutual love for
programming, but there was no widespread demand for programmers at that point. Only
when the first PC (the Altair) was introduced was there an opportunity to properly
monetize their skills. Short version: they founded Microsoft and became billionaires.

But zoom out and you’ll see much more. Thousands of people became millionaires at
Microsoft alone (sadly, we both missed that boat by a few years). Further, without the
Altair, there would have been no IBM PC, no Apple, no Mac, no Steve Jobs. No iPod, no
iPhone, no Appstore. No Electronic Arts, no Myst. No World of Warcraft. The number of
people who became wealthy as a result of the PC absolutely dwarfs the number of
people who had anything to do with inventing the PC itself!

We think Power Pivot and Power BI offer the same potential wealth-generation effect
to Excel users as the PC offered budding programmers like Gates and Allen: your
innate skills remain the same but their value becomes many times greater. Before diving
into the instructional stuff in Chapters 2 and beyond, Chapter 1 will summarize your
exciting new role in the changing world.

And like many things in when you hang around with Rob, the story starts with a movie
reference

1 - A Revolution Built On YOU

Does This Sound Familiar?

(Updated Fall 2015, but we decided to leave this part in Rob’s first-person “voice” —
because the authenticity is better-preserved).

In the movie Fight Club, Edward Norton’s character refers to the people he meets on
airplanes as “single serving friends” — people he befriends for three hours and never sees
again. I have a unique perspective on this phenomenon, thanks to a real-world example
that is relevant to this book.

A woman takes her seat for a cross-country business flight and is pleased to see that her
seatmate appears to be a reasonably normal fellow. They strike up a friendly conversation,
and when he asks her what she does for a living, she gives the usual reply: “I'm a
marketing analyst.”

That answer satisfies 99% of her single-serving friends, at which the conversation
typically turns to something else. However, this guy is the exception, and asks the dreaded
follow-up question: “Oh, neat! What does that mean?”

She sighs, ever so slightly, because the honest answer to that question always bores people
to death. Worse than that actually: it often makes the single-serving friend recoil a bit, and
express a sentiment bordering on pity.

But she’s a factual sort of person, so she gives a factual answer: “well, basically I work
with Excel all day, making PivotTables.” She fully expects this to be a setback in the
conversation, a point on which we share no common ground.

Does this woman’s story sound familiar? Do you occasionally find yourself in the same
position?

Well imagine her surprise when this particular single-serving friend actually becomes
excited after hearing her answer! He lights up — it’s the highlight of his day to meet her.

Because, you see, on this flight, she sat down next to me. And I have some exciting news
for people like her, which probably includes you

Excel Pros: The World Is Changing in Your Favor

If you are reading this, I can say confidently that the world is in the early stages of an
incredible discovery: it is about to realize how immensely valuable YOU are. In large part,
this book is aimed at helping you reap the full rewards available to you during this
revolution.

That probably sounds pretty appealing, but why am I so comfortable making bold
pronouncements about someone I have never met? Well, this is where the single-serving
friend thing comes in: I have met many people like you over the years, and to me, you are
very much ‘my people.’

In fact, for many years while I worked at Microsoft, it was my job to meet people like
you. I was an engineer on the Excel team, and I led a lot of the efforts to design new
functionality for relatively advanced users.

Meeting those people, and watching them work, was crucial, so I traveled to find them.
When I was looking for people to meet, the only criteria I applied was this: you had to use
Excel for ten or more hours per week.

I found people like that (like you!) all over the world, in places ranging from massive
banks in Europe to the back rooms of automobile dealerships in Portland, Oregon. There
are also many of you working at Microsoft itself, working in various finance, accounting,
and marketing roles, and I spent a lot of time with them as well (more on this later).

Over those years, I formed a ‘profile’ of these ‘ten hour’ spreadsheet people I met. Again,
see if this sounds familiar.

Attributes of an Excel Pro:

e They grab data from one or more sources.

e They prep the data, often using VLOOKUP.

e They then create pivots over the prepared data.

e Sometimes they subsequently index into the resulting pivots, using formulas, to
produce polished reports. Other times, the pivots themselves serve as the reports.

e They then share the reports with their colleagues, typically via email or by saving
to a network drive.

e They spend at least half of their time re-creating the same reports, updated with
the latest data, on a recurring basis.

At first, it seemed to be a coincidence that there was so much similarity in the people I
was meeting. But over time it became clear that this was no accident. It started to seem
more like a law of physics — an inevitable state of affairs. Much like the heat and pressure
in the earth’s crust seize the occasional pocket of carbon and transform it into a diamond,
the demands of the modern world ‘recruit’ a certain kind of person and forge them into an
Excel Pro.

@ Aside: Most Excel Pros do not think of themselves as Pros: I find that most are
quite modest about their skills. However, take it from someone who has studied
Excel usage in depth: if you fit the bulleted criteria above, you are an Excel Pro.
Wear the badge proudly.

I can even put an estimate on how many of you are out there. At Microsoft we used to
estimate that there were 300 million users of Excel worldwide. This number was disputed,
and might be too low, especially today. It’s a good baseline, nothing more. But that was all
users of Excel — from the most casual to the most expert. Our instrumentation data further
showed us that only 5-10% of all Excel users created PivotTables.

‘Create’ is an important word here — many more than consume pivots made by others, but
only 5-10% are able to create them from scratch. Creating pivots, then, turns out to be an

overwhelmingly accurate indicator of whether someone is an Excel Pro. We might as well
call them Pivot Pros.

You may feel quite alone at your particular workplace, because statistically speaking you
are quite rare — less than 0.5% of the world’s population has your skillset! But in absolute
numbers you are far from alone in the world — in fact, you are one of approximately thirty
million people. If Excel Pros had conferences or conventions, it would be quite a sight.

@ I, too, fit the definition of an Excel Pro. It is no accident that I found myself
drawn to the Excel team after a few years at Microsoft, and it is no accident that I
ultimately left to start an Excel / Power Pivot-focused business (and blog). While I
have been using the word ‘you’ to describe Excel Pros, I am just as comfortable with
the word ‘we.’

As I said up front, I am convinced that our importance is about to explode into the general
consciousness. After all, we are already crucial.

Our Importance Today

As proof of how vital we are, here’s another story from Microsoft, one that borders on
legend. The actual event transpired more than ten years ago and the details are hazy, but
ultimately it’s about you; about us.

Someone from the SQL Server database team was meeting with Microsoft CEO Steve
Ballmer. They were trying to get his support for a ‘business intelligence’ (BI) initiative
within Microsoft — to make the company itself a testbed for some new BI products in
development at that time. If Steve supported the project, the BI team would have a much
easier time gaining traction within the accounting and finance divisions at Microsoft.

In those days, Microsoft had a bit of a ‘prove it to me’ culture. It was a common approach
to ‘play dumb’ and say something like, “okay, tell me why this is valuable.” Which is
precisely the sort of thing Steve said to the BI folks that day.

To which they gave an example, by asking a question like this: “If we asked you how
much sales of Microsoft Office grew in South America last year versus how much they
grew the year before, but only during the holiday season, you probably wouldn’t know.”

Steve wasn’t impressed. He said, “sure I would,” triggering an uncomfortable silence. The
BI team knew he lacked the tools to answer that question — they’d done their homework.
Yet here was one of the richest and most powerful men in the world telling them they were
wrong.

One of the senior BI folks eventually just asked straight out, “Okay, show us how you’d
do that.”

Steve snapped to his feet in the center of his office and started shouting. Three people
hurried in, and he started waving his arms frantically and bellowing orders, conveying the
challenge at hand and the information he needed. This all happened with an aura of
familiarity — this was a common occurrence, a typical workflow for Steve and his team.

Those three people then vanished to produce the requested results. In Excel, of course.
Excel at the Core

Let that sink in: the CEO of the richest company in the world (and one of the most
technologically advanced!) relied heavily on Excel Pros to be his eyes and ears for all
things financial. Yes, I am sure that now, many years later, Satya Nadella has a broad array
of sophisticated BI tools at his disposal. However, I am equally sure that his reliance on
Excel Pros has not diminished by any significant amount.

Is there anything special about Microsoft in this regard? Absolutely not! This is true
everywhere. No exceptions. Even at companies where they claimed to have ‘moved
beyond spreadsheets,’ I was always told, off the record, that Excel still powered more than
90% of decisions. (Indeed, an executive at a large Microsoft competitor told me recently
that his division, which produces a BI product marketed as a ‘better’ way to report
numbers than Excel, uses Excel for all internal reporting!)

Today, if a decision — no matter how critical it is, or how large the organization is — is
informed by data, it is overwhelmingly likely that the data is coming out of Excel. The
data may be communicated in printed form, or PDF, or even via slide deck. But it was
produced in Excel, and therefore by an Excel Pro.

The message is clear: today we are an indispensable component of the information age,
and if we disappeared, the modern world would grind to a halt overnight. Yet our role in
the world’s development is just getting started.

Three Ingredients of Revolution

There are three distinct reasons why Excel Pros are poised to have a very good decade.

Ingredient One: Explosion of Data

The ever-expanding capacity of hardware, combined with the ever-expanding importance
of the internet, has led to a truly astounding explosion in the amount of data collected,
stored, and transmitted.

Estimates vary widely, but in a single day, the internet may transmit more than a thousand
exabytes of data. That’s 180 CD-ROMs’ worth of data for each person on the planet, in
just 24 hours!

However, it’s not just the volume of data that is expanding; the number of sources is also
expanding. Nearly every click you make on the internet is recorded (scary but true). Social
media is now ‘mined’ for how frequently a certain product is mentioned, and whether it
was mentioned positively or negatively. The thermostat in your home may be ‘calling
home’ to the power company once a minute. GPS units in delivery vehicles are similarly
checking in with ‘home base.’

This explosion of volume and variety is often lumped together under the term ‘Big Data.’
A few savvy folks are frontrunning this wave of hype by labeling themselves as ‘Big Data

Professionals’. By the time you are done with this book, you might rightfully be tempted
to do the same.

There’s a very simple reason why ‘Big Data’ equals ‘Big Opportunity’ for Excel Pros:
human beings can only understand a single page (at most) of information at a time. Think
about it: even a few hundred rows of data is too big for a human being to look at and make
a decision. We need to summarize that data — to ‘crunch’ it into a smaller number of rows
(i.e. a report) — before we can digest it.

So ‘big’ just means ‘too big for me to see all at once.” The world is producing Big Data,
but humans still need Small Data. Whether it’s a few hundred rows or a few billion,
people need an Excel Pro to shrink it for human consumption. The need for you is only
growing.

@ For more on Big Data, see http://ppvt.pro/SaavyBigData.
Ingredient Two: Economic Pressure

Much of the world has been in an economic downturn since 2008, and in general this is a
bad thing. If played properly, however, it can be a benefit to the Excel Pro.

Consider, for a moment, the BI industry. BI essentially plays the same role as Excel: it
delivers digestible information to decision makers. It’s more formal, more centralized, and
more expensive — an IT function rather than an Excel Pro function — but fills the same core
need for actionable information.

A surprising fact: paradoxically, BI spending increases during recessions, when spending
on virtually everything else is falling. This was true during the dot-com bust of 2000 and
is true again today.

Why does this happen? Simply put: when the pressure is on, the value of smart decisions
is increased, as is the cost of bad ones. I like to explain it this way: when money is falling
from the sky, being ‘smart’ isn’t all that valuable. At those times, the most valuable person
is the one who can put the biggest bucket out the window. However when the easy money
stops flowing, and everyone’s margins get pressured, ‘smart’ becomes valuable once
again.

Unlike BI spending, spending on spreadsheets is not measured — people buy Microsoft
Office every few years no matter what, so we wouldn’t notice a change in ‘Excel
spending’ during recessions. I suspect, however, that if we could somehow monitor the
number of hours spent in Excel worldwide, we would see a spike during recessions, for
the same reason we see spikes in BI spending.

So the amount and variety of data that needs to be ‘crunched’ is exploding, and at the same
time, the business value of insight is increasing. This is a potent mixture.

All it needs is a spark to ignite it. And boy, do we have a bright spark.

Ingredient Three: Dramatically Better Tools

http://ppvt.pro/SaavyBigData

The world’s need for insights is reaching a peak. Simultaneously, the amount of data is
exploding, providing massive new insight opportunities (raw material for producing
insights). Where is the world going to turn?

It is going to take an army of highly skilled data professionals to navigate these waters.
Not everyone is cut out for this job either — only people who like data are going to be good
at it. They must also be trained already — there’s no time to learn, because the insights are
needed now!

I think you see where I am going. That army exists today, and it is all of YOU. You
already enjoy data, you are well-versed in the nuances of your particular business, and you
are already trained on the most flexible data analysis tool in the world.

However, until now there have been a few things holding you back:

1. You are very busy. Many of you are swamped today, and for good reason. Even
a modestly complex Excel report can require hundreds of individual actions on
the part of the author, and most of those actions need to be repeated when you
receive new data or a slightly different request from your consumers. Our labor
in Excel is truly “1% inspiration and 99% perspiration,” to use Edison’s famous
words.

2. Integrating data from multiple sources is tedious. Excel may be quite flexible,
but that does not mean it makes every task effortless. Making multiple sources
‘play nicely’ together in Excel can absorb huge chunks of your time.

3. Truly ‘Big’ Data does not fit in Excel. Even the expansion of sheet capacity to
one million rows (in Excel 2007 and newer) does not address all of today’s
needs. In my work at Pivotstream [sometimes need to crunch data sets
exceeding 100 million rows, and even data sets of 100,000 rows can become
prohibitively slow in Excel, particularly when you are integrating them with
other data sets.

4. Excel has an image problem. It simply does not receive an appropriate amount
of respect. To the uninitiated, it looks a lot like Word and PowerPoint — an Office
application that produces documents. Even though those same people could not
begin to produce an effective report in Excel, and they rely critically on the
insights it provides, they still only assign Excel Pros the same respect as
someone who can write a nice letter in Word. That may be depressing, but it is
sadly true.

The answer is here

The Power BI family of tools addresses all of those problems. I actually think it’s fair to
say that it completely wipes them away.

You are the army that the world needs. You just needed an upgrade to your toolset. Power
Pivot and its close cousin Power BI provide that upgrade and then some. I would say that
we probably needed a 50% upgrade to Excel, but what we got is more like a 500%
upgrade; and that is not a number I throw around lightly.

@ Imagine the year is 1910, and you are one of the world’s first biplane pilots. One
day at the airfield, someone magically appears and gives you a brand-new 2020 jet
plane. You climb inside and discover that the cockpit has been designed to mimic the
cockpit of your 1910 biplane! You receive a dramatic upgrade to your aircraft
without having to re-learn how to fly from scratch. That is the kind of ‘gift’ that
Power Pivot provides to Excel Pros.

I bet you are eager to see that new jet airplane. Let’s take a tour.

2 - Power Pivot and the Power BI Family: Making
Sense of the Various Versions

It’s a Family of Products Built on Shared Engines

POWER VIEW POWER Bl
DESKTOP

POWER QUERY

POWER POWERBI.COM
POWER MAap PIVOT

4

2. “Power Soup” — There are at Least Six MS Data Products Running Around with the “Power” Prefix. But
don’t worry! We are here to clear all that up.

“Should I use Power Query or Power Pivot or Power View or Power BI?”

Ah, a fair question, but one with a surprisingly simple answer: you ALWAYS use
Power Pivot! There is, indeed, an entire family of closely-related Microsoft products
in this data analysis and reporting space, but they all revolve around Power Pivot.
Let’s start simple and then add pieces back to the puzzle.

Power Pivot is the Center of the Power BI Universe

RAW DATA VISUALS
(The Inputs) POWE R PIVOT (Charts, Pivots, Dashboards)

(The DAX Engine, aka “The Brain”)
3. Power Pivot is the centerpiece, no matter which “family members” you’re using!

Power Pivot is the central engine that powers all of your souped-up workbooks and
BI solutions. It is the brain, the heart, and the spinal cord all in one. We like to say
that Power Pivot is the piece that turns data into information — feed it “large”
quantities of data (where sometimes even 100 rows is “large”) and it will help you
crunch it down into meaningful metrics.

As Microsoft continues to evolve its strategy and messaging, we’ve started to refer to
Power Pivot as “the DAX engine.” That’s because it (Power Pivot) is starting to
appear in more products, and in some of those products (such as Power BI Desktop),
the “Power Pivot” moniker has been retired. Rest assured, however that the DAX
Engine / Power Pivot is THE crown jewel (AND brain / heart / spinal cord — yes, we
love metaphors around here) of everything in Microsoft’s BI suite. As they used to
say on the pasta sauce commercials, “It’s in there!” (Even though the ingredients list
of Power BI Desktop omits it).

Using Power Pivot / the DAX engine, you build a data model, create relationships,
write calculated column and measure formulas, etc. We will primarily focus on this
portion in our book, because the Power Pivot data model is what subsequently drives
all of the reporting/visualization/analysis tools.

Power Query is a Close Second in Importance

But an engine needs fuel, and in this case, the fuel is data: whether big or small, 100
rows or 100 million rows, coming from the web or a database, a text file or a
spreadsheet. You will want to pull all of your business data into Power Pivot (not all
in one day of course. Start small, iterate fast: Power Bl is agile BI).

So this brings us to our second-favorite component of the Power BI family...

Power Query!

RAW DATA

VISUALS
POWER PIVOT

RAW DATA POWER QUERY

4. Two ways to get data into Power Pivot: direct import, or via Power Query

Power Pivot can grab data directly from a wide variety of sources (covered in the
chapter on Loading Data). But sometimes it needs a little help. Sometimes, before
you can bring the data into Power Pivot, you need to do some shaping, some cleanup,
and maybe some data transformation. There is a tool built specifically for that —
Power Query. And boy, does it shine at that task. Power Query is a great way to bring
data into Power Pivot.

@ For a long time our biggest reservation with Power Query was the lack of
ability to easily automate the refresh of Excel workbooks that employ Power
Query. We are thrilled to offer the Power Update tool (co-created by
PowerPivotPro) which can help you do that and a lot more. Get it at

http://ppvt.pro/pwrupdate

So Power Query is an optional piece of the puzzle: you aren’t forced to use it, but it’s
there if you need it. In our experience, whether you need it depends primarily on this:
do you have good database support? If most (or all) of your data is coming from
databases, AND the people who run those databases are responsive to your requests,
you are a member of a very fortunate minority! In such an environment, you can get
your data cleaned and re-shaped before it ever reaches your desktop, and so Power
Query has less utility.

But most environments are “noisier” than that, and Power Query really shines in
those places — as a complement to Power Pivot. More specifically, we can view it as a
“pre-processor” that cleans and shapes “noisy” data, before it’s imported, so that
Power Pivot can do its best work.

3@ H - | o s Book1 - Excel

m HOME INSERT PAGE LAYOUT FORMULAS DATA REVIEW VIEW DEVELOPER POWER QUERY POWERPIVOT

pm=a =R = = e 'S m & 2 Send Feedback ~
& &3 4 7 & = A il as

© Heip
r v how Launch DataSource Options Update DataCatalog My Data Sign
File= Database~ Azure~ Sources~ Sources~ Table Pane Editor Settings Search Catalog Queries n About

5. Power Query in Excel 2013: For Shaping and Cleaning Data Before Power Pivot Ever “Sees” It.

http://ppvt.pro/pwrupdate

@ As of mid-2015, Microsoft is completely retiring the

“Power Query” name: In Excel 2016, it no longer has its
own ribbon tab for instance, and is instead called “Get &
Transform” on the Data ribbon tab. That’s entirely
sensible in our opinion, and the important thing is that the
engine remains the same.

Similarly, Power BI Desktop (described below) includes
Power Query but no longer calls it that. Instead, you get to
it via buttons like “Get Data” and “Queries.” Again,
entirely sensible, and again, the engine remains the same.

So, much like we now often refer to the Power Pivot
engine as the “DAX Engine,” you will also see us refer to
Power Query’s engine as the “M Engine.”

See the chapter specifically on Power Query for more
info.

Visuals: The Crucial “Last Mile”

POWER VIEW

(Interactive Explorer)

EXCEL PIVOTS,
CHARTS, & GRID

(Versatile, Ubiquitous, Underrated)

POWER QUERY
(Import / Sh?}c— Data) POWER prOT
(Model / Calculate / “Crunch”) POWER MAP

(Map Charts & “Tours")

6. Power View and Power Map are Visualization Layers... But so is Excel Itself!

Power Pivot itself offers no visualization options — it can calculate meaningful
metrics, but cannot display them effectively to end consumers and decision makers.
Think of Power Pivot as a Calculation Layer that provides robustly-calculated
metrics to a variety of Visualization Layers.

e Excel: The most popular visualization layer of all is Excel itself. Most
people build Excel pivot tables and charts connected to their Power Pivot

data model (not to mention another favorite of ours, cube formulas!) Excel
visuals are a great option, and within the Excel-based flavors of Power BI,
it’s still the option we recommend most frequently. You also have several
other visualization layers to choose from, however, so we’ll mention those
here as well.

e Power Map: Introduced in Excel 2013, we’re not entirely sure that
Microsoft plans to feature Power Map all that heavily in its future plans. In
Excel 2016, it has been renamed to just “3d Maps.” You absolute CAN use
it to visualize Power Pivot data, but it’s become enough of a “niche” product
that we don’t use it in our business.

e Power View: Power View is another ‘client’ that can render Power Pivot
data onto interactive dashboards. There’s a version of Power view included
in Excel 2013 (Pro Plus version only), another one in Excel 2016 (although
it’s hidden from the Excel ribbon), and even a bit of an outlier: a version
that exists solely within SharePoint 2010 and higher. It’s fair to say,
however, that Power View does NOT figure heavily in Microsoft’s future
plans, and we don’t recommend going “all in” on Power View as your
organization’s visualization layer of choice. Increasingly, it’s becoming
clear that the two primary visualization “horses” in Microsoft’s stable are
going to be Excel itself, and Power BI Dashboards, which we will cover
next.

e Power BI Dashboards: Until recently, Excel has been the only
“environment” in which the Power BI tools were available. If you wanted to
do some Power Pivot / DAX modeling, you launched Excel and went from
there. But in 2015, Microsoft released a second environment, called Power
BI Desktop. Power BI Desktop includes the two engines (Power Pivot and
Power Query), as well as a brand-new visualization layer called
Dashboards. Dashboards looks a bit like Power View, but whereas Power
View was somewhat of a frustrating half-step, Power BI Dashboards are
very robust/complete. They offer MANY visualization types that are not
available in native Excel, the list of visualizations grows seemingly with
every release, AND they have opened the platform up so that third-party
programmers can add their own custom visualization types. Power BI
Desktop and its companion cloud service are therefore worthy of their own
chapter, which you will find later in this book.

e Others: As if this isn’t excitement enough, we also have SQL Server
Reporting Services, Datazen and many other Microsoft and non-Microsoft
tools — it seems everyone is “lining up” to connect their visualization
software to the Power Pivot engine, and for good reason.

@ To enable some of these other visualization options you will need a true

“Server” version of Power Pivot. We’ll cover that in our chapter on “YouTube
for Workbooks.”

Once your Power Pivot data model is built, reporting becomes “cheap” — a matter of
mouse clicks in a field list (the field list provided by the visualization layer, such as
Excel’s PivotTable field list). New reports, and variants on existing reports, are
borderline-effortless to assemble since all the business logic has been built at that
point. With all the heavy lifting taken care of by your Power Pivot data model, you
can easily use not just one but many reporting tools.

Power Pivot then becomes your single source of truth, the single engine that powers
all your reporting across various reporting platforms and serving various groups of
audiences.

@ You will rarely, if ever, catch a glimpse of Power Pivot (or Power Query for
that matter) in any of Microsoft’s public Power BI Demos. In their materials, the
limelight is squarely on the sexy visualizations. And we’re okay with that.
Microsoft’s competitors have long used that approach to sell their wares, and
Microsoft is just borrowing a page from that book. But anyone getting down to
implementing Power BI quickly learns that behind the scenes, Power Pivot is the
engine driving Power BI.

@ Microsoft made an announcement in Oct, 2015
rolling out their “Reporting Roadmap”. It promises:

e Symmetry across On-Premise and Cloud. Currently
the cloud options on PowerBl.com have raced
ahead of any On-Premise reporting options.

e Making various reporting options - SSRS, Power
BI Desktop, Datazen etc. - work together in
harmony.

e A rejuvenated SQL Server Reporting Services
(make it look like a tool from this century, as
James Phillips put it)

For more, see http://ppvt.pro/rptroadmap

Power BI Desktop: Two Tools for the (Learning) Price of
One!

http://ppvt.pro/rptroadmap

EYNSS

B Ed H + s T 1-DATESYTD, DATEADE, ard Nen
HOME AULL DATA REVEW IE LR [
| p2s 1 2001
CalendarYear Row Labels - YIDSales LTD Sales

Jul 2001 | 5473388 473,388
o g 7001] 4979580 $979,580
2002 Sep 2001 B sua3s:) $1453,523
2003 Oct 2001 B s:9s6852 $1,966,852
o novzoor I szswosas Ml 52510846
Dec 2001 | SEEEFIE BRI
janzoe2 | sssora7 @l 93863120
sWknd Feb 2002 B s:a7seal se413937
Weekcay marzo0z M sirorese [l ssoseom
2002 £2,455391 55,721,764

Woekerd Agpr W s2oss0a 502,
wmayzooz [ls3azesar [l 36,395,321
nnzooz EEEB:eos7i B 57072084
Jul 2002 S 06075 I 57,572,419
Aug 2002 R 552077 [35118451
fam N o B o oach oee

DATEADD and Lastrear | DA

FrTD Sales
473388 | 5473388
sarasan] 4979580
s1as3525 0 s1483523
ss13320 51,066,852
s105732: @ sz2510846

sipzesi Ml saaeeam | |

s596,747 B $3,863,120
s1a756: Il S¢413937
s1,70n,602 [ss.0s8p72
s663,602 [5=.721,760
51,337,245 6,395,321
$2,014,01; R 7,072 D84
sso0,365 | $500,365

31,008,367 | 51,086367 | |
taancors M csancana | |

WNITED STATES

—
—
[-
e
[-
-
B
=S
=

7. Excel Power Pivot (left) versus Power BI Desktop: Visually Distinct, but the same “Under the Hood.”

Same Engines, Just Different Visuals

We will cover Power BI Desktop in greater depth in a subsequent chapter, but we
think it’s important to lodge this in your brain up-front: when you are learning Power
Pivot in Excel, you are also learning Power BI Desktop. The “tough” things to learn,
which are also the valuable things to learn, are the same in both Power Pivot (Excel)
and Power BI (Desktop). In fact, that’s important enough that it warrants its own

callout...

@ The “tough” things to learn, which are also the

valuable things to learn, are the same in both Power Pivot
(Excel) and Power BI (Desktop).

So when you learn one, you are actually learning two
amazing tools for the price of one.

So here’s the upside of all this “Power Soup” confusion: as the dust settles in
Microsoft’s evolving strategy, we have been given TWO amazing tools: Power Pivot
in Excel, and Power BI Desktop, and we don’t have to “invest double” in order to

“win double.”

ENGINES © VISUALS ENGINES © VISUALS

CONTAINER: Excel CONTAINER: PBI Desktop

8. Think of it this way: Excel and PBI Desktop are the “containers.” The engines are the same in both places,
only the visualization layers differ.

What do we mean by the “tough” or “valuable” stuff?

V8 - | skt for sty - Powart Beaiog P

H - + N ot for B BATI T 4 . nf = 8 H* &
- B v | (I

I Engisnoreducmiame
T ssadaringt X

9. Power Pivot’s Diagram View sure looks a LOT like Power BI’s Relationship View, because the DAX Engine is
the heart of both.

“Hrm,” you say. “The view with the boxes and the lines is the same, but I’m still not
convinced. I mean, there can still be a lot of OTHER differences hiding in there,
right?”

Well sure! You haven’t even seen the formulas yet! Let’s see if you can spot the
difference between a “Year to Date Sales” formula in Power Pivot versus Power BI...

Power Pivot version:

YTD Sales=

CALCULATE ([Total Sales], DATESYTD(Calendar[Date]))
And the Power BI Desktop version:

YTD Sales=

CALCULATE ([Total Sales], DATESYTD(Calendar[Date]))

Trick question, they are EXACTLY the same! Because, hey, it’s the DAX engine
in both places.

@ In Power BI Desktop, the DAX Engine doesn’t get its own separate special
name like “Power Pivot.” Its capabilities are just exposed in the Relationship
view, and in the formulas you write. This makes sense to us — less name clutter.
DAX Jedi (or Jedi-in-training) like you, dear reader, should not be concerned by
this cosmetic “lack of name.”

So, to recap, the engines are the same in both Power Pivot and Power BI. Here’s one
final summary diagram:

EXCEL PBI DESKTOP
POWER PIVOT
TurbocCharged
PivotTables Formulas (DAX) Dashboards
PivotCharts Data Modeling “Matrix” (Pivot)
(Power Pivot [“Tabular”)
Power View Charts, Cards, Maps...
Data Shaping
(Power Query [/ M) .
v '

The Engines (the “Brains”) are nothing Standard, “mouse-clicky” stuff.
short of REVOLUTIONARY. And they are Trivial to learn, but become gamechanging
the same in both environments! when you pair them with the Engines.

10. Excel Power Pivot and PBI Desktop overlap in the stuff that warrant your time reading books like this one.
Visuals, by contrast, are easy-to-learn, mouse-clicky stuff. You don’t really need to “read the manual” to figure
out how to build a chart in either environment.

@ In the official Microsoft messaging, “Power Pivot”
now refers strictly to the DAX engine in Excel, with its
Power Pivot ribbon tab and Power Pivot window, and
“Power BI” now refers strictly to Power BI Desktop (and
its accompanying PowerBl.com cloud publishing
mechanism).

Over time we will be slowly adopting this official naming
as well, but the community will understandably take some
time to adjust.

We will come back to Power BI Desktop in its own dedicated chapter. But in the
meantime, just remember that everything you’re learning in subsequent chapters is
useful in BOTH Power Pivot and Power BI.

Power Pivot (in Excel) Versions

Focusing specifically on Power Pivot (the Excel-based version of these tools) there
have now been four different major releases:

e Power Pivot 2008 R2 (vl) — We simply call this “Power Pivot v1.” The
“2008 R2” relates back to a version of SQL Server itself and has little
meaning to us. This runs exclusively in Excel 2010, and since it’s been
superseded, there is very little reason to use this version. (If you are running
a version of Power Pivot that starts with a 10, like 10.x.xxxx, that version is
WAY out of date and should upgrade — we will NOT cover v1 in this book
at all).

e Power Pivot 2012 (v2) — unsurprisingly we call this “Power Pivot v2.”
Again the 2012 relates to SQL Server, and again, we don’t care that much.
But we DO care that THIS is THE version to be running if you are running
Excel 2010. Whenever we refer to Power Pivot 2010 in this book, we are
referring to THIS version. (Make sure you are running 11.0.5058 or
newer).

e Power Pivot 2013 — released with Excel 2013.

e Power Pivot 2016 — released with Excel 2016.

You will get the same value out of this book regardless of the Excel version you are
using. Under the covers, fundamentals are the same and little has changed. We will talk
about some of the cosmetic changes in the User Interface (UI) changes in this chapter.
(The 2016 release has introduced some new DAX functions, which are covered in a
separate chapter, but those should be thought of as “extras” rather than overhauls.)Here is
a primer on how you can use Power Pivot based on your version of Excel.

Power Pivot for Excel 2010

If you have Excel 2010, we exclusively recommend the v2 version, which offers many
improvements over v1, which is now dead to us and will get no “air time” in this book.
You can download the v2 version at:

http://ppvt.pro/ppaddin2010SP2
Power Pivot for Excel 2013 - Only Available in “Pro Plus” Excel

http://ppvt.pro/ppaddin2010SP2

Microsoft really surprised us at the last minute, just as 2013 was officially released. It was
quietly announced that Power Pivot would only be included in the “Pro Plus” version of
Office 2013. This is NOT the same thing as “Professional” — Pro Plus was only available
through volume licensing or subscription and was not available in any store. And unlike
with 2010, there is no version of Power Pivot that you can just download for Excel 2013.

This put Power Pivot out of reach for many individuals. After much noise, on our part and
others, Microsoft softened their stance and now individuals can get Power Pivot by either
buying Excel 2013 Standalone or an Office 365 Pro Plus subscription. For more on this,

see http://ppvt.pro/2013ProPlus

This was an improvement, but still a source of great frustration (just read the comments on
the link shared above).

Office 2016 offers further improvement to this story, by including Power Pivot (and Power
Query) in Standalone Excel (just like 2013), and all versions “Pro” and higher (whereas
2013 required Pro Plus). Still though, it is not included in all versions, so be careful to get
Pro or Excel Standalone when making your purchase.

Differences in User Interface: 2010, 2013, 2016

The User Interface (UI) of Power Pivot differs - in cosmetic ways ONLY - between Excel
2010, 2013, and 2016. Mostly it’s just the names of buttons that have changed, but there
are a few others, too. Whenever there’s a notable difference in UI between the
versions, we will “pause” here in this book and show what it looks like in each
version, at the moment where we first “introduce” that functionality.

@ Aside from Rob: When I worked at Microsoft, I used to LOVE renaming
features. I’d see a button that I thought had been poorly-named in a previous version
and say “let’s improve it!” I even tried to rename PivotTables! Now that I’m on the
receiving end of that behavior, I see the hubris in my younger self. Poetic justice, that
I now suffer the consequences of my former peers’ desire to constantly improve
things. (I STILL think pivots should be renamed SummaryTables, though. Kidding.
Mostly.)

The “default” version for screenshots in this book will be 2010, because that version
usually yields the most helpful screenshots (see “awkward” below). Many of the
screenshots and figures will therefore have the 2010 appearance. However, we want to
again stress:

1. All concepts covered in this book are 100% applicable to 2010, 2013, AND
2016, because it’s the DAX engine in all three cases, and that has changed hardly
at all.

2. The differences between the three versions are purely cosmetic in nature.
All of the core functionality — such as formulas and functions - behaves the
same. The main difference is in the user interface (UI), e.g. which button you
click to edit a formula or insert a pivot table.

http://ppvt.pro/2013ProPlus

3. Whenever there’s a Ul difference that is significant, we will cover that in the

book. And we will do that in the context of introducing each new button or other
UI element.

If you ever want to see all the notable 2010/2013/2016 UI differences in one place, this

page - http://ppvt.pro/Ulchanges - collects them all into an online “appendix” of sorts. See
example below.

Create New Mcasure (Calculated Field)
Excel 2013

m HOME INSERT SOWERPIVOT F
@‘ [t | - E ﬁll:n Verh-n I}r
4 L EE

Alizn Horzonta by
lMznaze Calculatez <Pi:
“ields » v
g Row Coleuleted Fizld .

Cha a4 I ol

" 1{? onaje calculztez Fdzs..

r i
ar

PowerPyok > Calculated Fields :» hew Tzlculated Field
Excel 2070
“ Huor e e, SougE Sy, Sayw e

& = | — ==
t' '\.—J .
B a Tl it 1% I b Bt :

Wi dow B=asur= hlea
Prazoures

11. http://ppvt.pro/Ulchanges maps all the UI changes from Power Pivot across Excel 2010, 2013, and 2016.

When We Said “Cosmetic” We Meant “Awkward”

There is no way to sugar coat it, the user interface took a step backward from 2010
to 2013. It became harder to perform some routine data modeling steps - such as to
find and edit formulas, or to insert a pivot or slicer. It’s more awkward (more mouse
clicks, harder to find) to perform these actions in 2013 than it is in 2010.

http://ppvt.pro/UIchanges
http://ppvt.pro/UIchanges

2016 has restored most, but not all, of the convenient UI functionality. Our
consolation again, is that everything under the hood, beyond the minor UI changes,
works just the same and just as well.

OK, we got that off our chests. Let us continue

32-bit or 64-bit?

Each of the three versions of Power Pivot is available in two “flavors” — 32-bit and
64-bit. Which one should you use?

On the Microsoft download websites, 32-bit is labeled “x86” and 64-bit is labeled
“AMDG64.” You know, just to make things interesting.

If you have a choice, we highly recommend 64-bit. 64-bit lets you work with larger
volumes of data but is also more stable during intensive use, even with smaller data
volumes. We run 64-bit on all of our computers.

For example, I (Rob) have a 300 million row data set that works fine on my laptop
with 4 GB of RAM, but with 32-bit Power Pivot, no amount of RAM would make
that possible. (In fact, it would not work even if I cut it down to 20 million rows).

So if you have a choice, go with 64-bit — it offers more capacity and more stability.
That said, you may not have that luxury. You have to match your choice to your copy
of Excel.

A You cannot run 64-bit Power Pivot with 32-bit Excel, or vice versa!

So the first question you need to answer is whether you are running 32-bit or 64-bit
Excel.

In Excel 2010, you can find that answer here, on the Help page

!i; Home Insert Page Layout Formulas Data Review View Developer PowerPivot Options Design

l‘;_-‘ Save
[save As i Off' Microsoft®
= Microsoft Office Hel % Ice
= Open f = - e — ; L:E!l

e L Get help using Microsoft Office.

I_j Close L]
Product Activated

Info -

Getting Started Microsoft Office Professional Plus 2010
See what's nEw 3'“_' find resources te help you This product contains Microsoft Access, Microsoft]

Recent learn the basics quickly. OneMote, Microsoft Outlook, Microsoft PowerPoi
InfoPath,

New Contact Us

. Let us know if you need help or how we can make About Microsoft Excel
Print Office better.
it Version: 14.0.6123.50010 (54-bit) |
Save & Send Additional Version and Copyright Information
Tools for Working With Office Part of Microsoft Office Professional Plus 2010
© 2010 Microsoft Corporation. All rights reserved.
= Optiens Microsoft Customer Services and Support

12. Finding whether your version of Excel is 32-bit or 64-bit

If you are running 32-bit Excel, you are not alone: most people are running 32-bit.
We actually can think of no reason to run 64-bit Office except Power Pivot itself, so the
64-bit trend is really just getting started. (Who needs 64-bit Outlook, Word, and
PowerPoint? No one does).

/\ Certain Office addins only run in 32-bit, so double check that before you decide
to uninstall 32-bit Office and switch to 64-bit.

@ The 64-bit problem is often solved by having a second computer purely for
Power Pivot “authoring” purposes, and maintaining your original computer on 32-bit
for compatibility with other Office addins. In cases where that’s not practical, we’ve
also frequently seen IT set up shared computers with 64-bit, and then Power Pivot
authors can remotely use those computers via Remote Desktop. Lastly, this is one of
the big reasons to consider Power BI Desktop, since you can run it in 64-bit without
disrupting your Office install, which can remain 32-bit.

Office 2010 or Newer is Required

No, sadly you cannot run Power Pivot with Excel 2007 or earlier versions.

There were very good technical reasons for this, and it was not an attempt by Microsoft to
force people into Office 2010. Remember, the Power Pivot addin is free, and it would
have been better for Microsoft, too, if Power Pivot worked with 2007.

If you are curious as to the reasons behind the “2010 or newer” requirement, see this post:

http://ppvt.pro/PP2007

http://www.powerpivotpro.com/2010/12/powerpivot-for-excel-2007/

3 - Learning Power Pivot “The Excel Way”

Power Pivot is Like Getting Fifteen Years of Excel
Improvements All at Once

Power Pivot was first released in 2009, but development began fifteen years prior to
that, in 1994. Back then, it was called Microsoft SQL Server Analysis Services (SSAS).
Actually, SSAS is very much alive and well as a product today — it remains the #1-selling
analytical database engine in the world. SSAS was/is an industrial strength calculation
engine for business, but targeted at highly specialized IT professionals.

In late 2006, Microsoft architect Amir Netz launched a secret incubation project
(codename: Gemini) with an ambitious goal: make the full power of SSAS available and
understandable to Excel Pros. A few months later he recruited me (Rob) to join the effort
(he and I had collaborated before when I was on the Excel team). Gemini was eventually
released under the name Power Pivot in 2009.

@ Continuing with the “biplane and jet” metaphor, think of SSAS as the jet plane,

and Power Pivot as the effort to install an Excel-style cockpit and instrument panel so
that Excel Pros can make the transition.

The key takeaway for you is this: Power Pivot is a much, much deeper product than
you would expect from something that appeared so recently on the scene.

This actually has two very important implications:

1. It is very hard to exhaust Power Pivot’s capabilities. Its long heritage means
that a staggering number of needs have been addressed, and this is very good
news.

2. Itis very helpful to learn it in the right sequence. When touring the cockpit of
your new jet, much will be familiar to you — the SUM() function is there, so is
ROUND(), and even our old friend RAND(). But there are new functions as
well, with names like FILTER() and EARLIER() and CALCULATE(). Naturally
you want to start with the simplest and most useful functions, but it is hard to
know which ones those are.

That second point is very important, and worth emphasizing.

Learn Power Pivot As You Learned Excel: Start Simple &
Grow

When you were first introduced to Excel (or spreadsheets in general), you likely
started simple: learning simple arithmetic formulas and the “A1” style reference syntax.
You didn’t dive right into things like pivots until later. (In fact pivots didn’t even exist in
the first few versions of Excel).

How Excel is Usually Learned:
A “Simple to Advanced” Path

Macros
¢ Array

Formulas
PivotTables

~ VLOOKUP
SUMIF(), etc. ()
etc.

Advanced Data Import

Charts
Simple Conditional
SUMY(), Charts o Formatting
COUNTY(), " Sortand
etc.

Filter

Complexity of Features ->

SAS1vs.
Al

Al+Bl1-C1

Time Spent Working in Excel ->

13. An Approximate Representation of the Typical Excel Learning Curve

You started with the simple stuff, got good at it, and only then branched out to new
features. Incrementally, you added to your bag of tricks, over and over.

Power Pivot is no different. There are simple features (easy to learn and broadly
useful) and advanced features (harder to learn and useful in more specific cases).

We have carefully sequenced the topics in this book to follow the same “simple to
advanced” curve we developed and refined while training Excel pros over the past
few years. The result is an approach that has proven to be very successful.

How PowerPivot SHOULD Be Learned:
Via a Similar “Simple to Advanced” Path
N SUMX(), etc.
1
o DATESBETWEEN(), _Custom Time
":— DATEADD() Series Calcs
Ll 3 tc.
= Understanding &
o Measure FIERY)
> Evaluation
£ Surad ALL()
0] COUNTROWS()
"o | Relationships CALCULATE()
& andMulti- ”~ .)
: . Simple Pivot

@]
S Table PNOFS_ = E

Calculated (Measures)

Columns

Time Spent Working in PowerPivot->

14. The learning curve we advocate to Excel Pros as they adopt Power Pivot

We highly recommend that you proceed through the book “in order.” You will
see that the chapters in this book are organized in roughly the order pictured above.

When to Use Power Pivot, and How it Relates to Normal
Pivot Usage

We hear this question a lot. Simply put, Power Pivot is useful in any situation
where you would normally want to use a pivot. Whether you have 100 rows of
data or 100 million, if you need to analyze or report on trends, patterns, and/or
aggregates from that data, rather than the original rows of data themselves, chances
are very good that Power Pivot has something to offer.

When you use a traditional (non Power-) pivot, your workflow in Excel generally
looks something like this:

1. Grab data from one or more sources, typically landing in Excel worksheets
(but sometimes directly in the “pivotcache” in advanced cases).

2. If multiple tables of data are involved, use VLOOKUP() or similar to

create integrated single tables

Add calculated columns as needed

Build pivots against that data

5. Either use those pivots directly as the final report/analysis, or build
separate report sheets which reference into the pivots using formulas

W

Our guiding philosophy on Power Pivot was “make it just like Excel wherever possible,
and where it’s not possible, make it ‘rhyme’ very closely with Excel.” Accordingly, the 5-
step workflow from above looks like this in Power Pivot:

1. Grab data from one or more sources, landing in worksheet-tables in the Power
Pivot window.

2. Use relationships to quickly link multiple tables together, entirely bypassing
VLOOKUP() or similar tedious formulas.

3. Optionally supplement that data with calculated columns and measures,
using Excel functions you have always known, plus some powerful new ones.

4. Build pivots against that data

5. Either use those pivots directly as the final report/analysis, or convert pivots
into formulas with a single click for flexible layout, or you can still build
separate report sheets which reference into the pivots using formulas.

@ On net you should think of Power Pivot as “Excel++” — the only new things you
have to learn should bring you tremendous benefit.

What This Book Will Cover in Depth

Simple Guideline: the more “common knowledge” something is, the less pages we are
going to spend on it. We figure, for instance, that the button you use to create pivots is
not worth a lot of ink. That topic, and many others, has been covered in depth by Bill
Jelen’s first Power Pivot book, http://ppvt.pro/MRXIL.PP. By contrast, the formula
language of Power Pivot needs a lot of attention, so it receives many chapters and
consumes most of the book.

But even in topics that are relatively straightforward, we will still point out some of
the subtleties, the little things that you might not expect. So for instance, in our brief
chapter on Data Import, we will provide some quick tips on things we have discovered
over time.

And what is this “DAX” thing anyway? “DAX” is the name given to the formula
language in Power Pivot, and it stands for Data Analysis eXpressions. We're not actually
all that fond of the name — we wish it were called “Formula+” or something that sounds
more like an extension to Excel rather than something brand new. But the name isn’t the
important thing — the fact is that DAX is just an extension to Excel formulas.

OK, let’s load some data.

http://ppvt.pro/MRXLPP

4 - Loading Data Into Power Pivot

No Wizards Were Harmed in the Creation of this Chapter

We don’t intend to instruct you on how to use the import wizards in this chapter. They are
mostly self-explanatory and there is plenty of existing literature on them. Instead we want
to share with you the things we have learned about data import over time.

Think of this chapter as primarily “all the things we learned the hard way about data
import.”

That said, all chapters need to start somewhere, so let’s cover a few fundamentals...

Everything Must “Land” in the Power Pivot Window

As we hinted in previous chapters, all of your relevant data MUST be loaded into the
Power Pivot window rather than into normal Excel worksheets. But this is no more
difficult than importing data into Excel has ever been. It’s probably easier in fact.

Launching the Power Pivot Window

The Power Pivot window is accessible via this button on the Power Pivot ribbon tab in
Excel:

File Henme lirvsert Porwe rPrnod Page Layoud Farmulss Diada Revne
| - . = “r e
I - [Frb = o
| L — B — = 3
PowerPvot FreotTable Create Upadate
Window = Linked Table All
Kleatuse Pt Fucel Diaka

15. Excel 2010: Launch the Power Pivot window

m HOME NSERT POWERPIVOT PAGE LAYOUT FORMULAS DATA

. — : Alsgn Verticallky _T ---- ':I'
g = &y 7 o

" Align Horizentally '
KPk Add to '.J;:lrid:r Dietect Eﬂ'f'.‘::"!ll_]'.

- Dafa Marded All

"l.".r! LA r_]r

Data Moge algulatigns ShageEr Alignment Tapley BElatianinips

16. Excel 2013: Launch the Power pivot window

Page Layout Formulas

=1 —
G I 88 8 &
Manage M8§sures KPIs Addto Update Detect Settings
= Data Model Al
Data Madel Calculations Tables Relationships

arme Insert Page Layout you want to do.,

File H ’
- = [Show Queries] ’j‘ E a s E A r
o o =i e =] = H
Blslp 3 B BEaE s $ 5 @&
Frarn From From From Other Existing Mewy Textto Flash Remowe Data Consolidate Relationships Manage

Access MWeb Text Sources~ Connections Query~ [Recent Sources Columns Fill Duplicates Walidation - Data Madel
Get Bxternal Data Get & Transform Data Tools

17. Excel 2016: Offers not one but two ways to launch Power Pivot window

@ If the Power Pivot ribbon tab does not appear for you, the Power Pivot
addin is either not installed or not enabled. Watch the videos on
http://ppvt.pro/Ulchanges which help you install and enable Power Pivot.

One Sheet Tab = One Table

Every table of data you load into Power Pivot gets its own sheet tab. So if you import
three different tables of data, you will end up with something like this:

e

Sales | Customers | Froducts |

18. Three tables loaded into Power Pivot. Each gets its own sheet tab.

You Cannot Edit Cells in the Power Pivot Window

That’s right, the Power Pivot sheets are read-only. You can’t just select a cell and start
typing.

You can delete or rename entire sheet tabs and columns, and you can add calculated
columns, but you cannot modify cells of data, ever.

Does that sound bad? Actually, it’s a good thing. It makes the data more trustworthy,
but even more importantly, it forces you to do things in a way that saves you a lot of
time later.

Everything in the Power Pivot Window Gets Saved into the Same
XLSX File

@@ e Q= [Bu:u:uk:Data chE.xst]- Microsoft Excel
g Home Insert Page Layout Formulas Data Review View Develo
[—— o— A | s

| P - T e =
= 7 === & B
| o — — EL
PowerPivot Mew PivotTable Create Update
Window Measure b=y Linked Table All
Measures KPIs Excel Data

B3 168 | (X (= = 'Pu:uwerF‘imtf-:urExcel‘EDDkData chz.xla
E Home Design

A B

: iy " i 4 Drat4

1 = =2 B8 |a
._ J £ = 2] | 4
7 irs = Faorn
Paste From From From Azure Refresh | PivotTable

3 =2 | Database~ Report DataMarket _i T =
4 -1 Clipboard Get External Data

19. Both windows’ contents are saved into the same file, regardless of which window you save from

http://ppvt.pro/UIchanges

@ Each instance of the Power Pivot window is tightly “bound” to the XLSX

(or XLSM/XLSB) you had open when you clicked the Power Pivot Window
button in Excel. You can have three XLSX workbooks open at one time, for
instance, and three different Power Pivot windows open, but the contents of
each Power Pivot window are only available to (and saved into) its original
XLSX.

Many Different Sources

Power Pivot can “eat” data from a very wide variety of sources, including the
following:

e From normal Excel sheets in the current workbook

e From the clipboard — any copy/pasted data that is in the shape of a table,
even tables from Word for instance

e From text files — CSV, tab delimited, etc.

e From databases - like Access and SQL Server, but also Oracle, DB2,
MySQL, etc.

e From SharePoint lists

e From MS SQL Server Reporting Services (SSRS) reports

e From cloud sources like Azure DataMarket and SQL Azure

e From so-called “data feeds”

So there is literally something for everyone. We have been impressed by Power Pivot’s
flexibility in terms of “eating” data from different sources, and have always found a way
to load the data we need. And now you have Power Query, which further extends the data
sources you can connect to and send the data into Power Pivot.

For each of the Power Pivot methods above, we will offer a brief description and our
advice.

Linked Tables (Data Source Type)

If you have a table of data in Excel like this:

CalendarYear MonthMumberOfYear SalesTerritoryRegion EnglishProductSubcategoryMame Budgeted Sales

2001) Australia Mountain Bikes 71510
2001 7 Australia Road Bikes 190248
2001) Canada Mountain Bikes 4183
2001 7 Canada Road Bikes 15429
2001 7 France Mountain Bikes 7916
2001 7 France Road Bikes 31825
2001 2 Germany Mountain Bikes 4384
2001 7 Germany Road Bikes 36068

= e aro Ll a s) P -

20. Just a normal table of data in a normal Excel sheet

You can “link” this to a Power Pivot table. This will duplicate the selected Excel
table into the Power Pivot window, and also keep them in sync. Here’s how to “link”
tables for each of the Excel versions.

Excel 2010: Use “Create Linked Table” button to quickly grab the table into Power
Pivot:

i d v ModelExcel2010.x1sx - Mice
“ Home [miert PowerFrnod Page Layout Formiulas Mhata Rrvirw
- qHE = rm =
== 1 : }._ — ey :_'?n
EEE W Y == =
FewerPnot Mew Delete Medsure Prvollable Create Lreate Update
Wirnd o Measure Measure Settings . Kt

Linked Table AN

21. Excel 2010: From Excel “Power Pivot” tab > click Create Linked Table
Excel 2013: Here the button is called “Add to Data Model”

B B - ;
m HOME INSERT POWERPIVOT PAGE LAYOUT FOI
- | .
e r— = Algn Vertically - —
B K [Leeeed 5[
[[] 1 '

m "I_.-'|.||g'l. M
Addto Update

Dala Model Al

Diata Model Calculaticons Slicer Alignment Tables

Manage Calculated KPls
Frelds -

22. Excel 2013: From Excel “Power Pivot” tab > click Add to Data Model
Excel 2016: For 2016, the button is still called “Add to Data Model”

- -
¥oreeer Fnaool

e | i | _;_‘
- .

Addta Lpdate
Datas Madel L4J

Lane 3 MMDOE| L 1= ..|'.l’||'|" J=]E-

Manage 5 GERAT

23. Excel 2016: From Excel “Power Pivot” tab > click Add to Data Model

@ In Excel 2013/2016, you’re better off if you format your data as an Excel

table and then give the table a proper name. Do this before you add these to your
Power Pivot Data Model. Else your Pivot Table Field List may continue to show
the unfortunate default name of Tablel, Table2...; even when you rename them
on the Power Pivot side.

Advantages

e This is the quickest way to get a table from Excel into Power Pivot

e If you edit the data in Excel — change cells, add rows, etc. — Power Pivot
will pick those changes up. So this is a sneaky way to work around the

“cannot edit in Power Pivot window” limitation.

e If you add columns, those will also be picked up. We call this out
specifically because Copy/Paste (below) does not do this, and we frequently
find ourselves wishing we had used Link rather than Copy/Paste for that
reason.

Limitations

¢ You cannot link a table in Workbook A to the Power Pivot window from
Workbook B. This only creates a linked table in the Power Pivot window “tied”
to the XLSX where the table currently resides.

e This is not a good way to load large amounts of data into Power Pivot. A
couple thousand rows is fine. But ten thousand rows or more may cause you
trouble and grind your computer to a halt.

¢ By default, Power Pivot will update its copy of this table every time you leave
the Power Pivot window and come back to it. That happens whether you changed
anything in Excel or not, and leads to a delay while Power Pivot re-loads the
same data.

¢ Linked Tables cannot be scheduled for auto-refresh on a Power Pivot server.
They can only be updated on the desktop.

¢ You cannot subsequently change over to a different source type — this really
isn’t a limitation specifically of linked tables. This is true of every source type in
this list: whatever type of data source is used to create a table, that table cannot
later be changed over to use another type of data source. So if you create a Power
Pivot table via Linked Table, you cannot change it in the future to be sourced
from a text file, database, or any other source. You will need to delete the table
and re-create it from the new source.

/\ 1t is often very tempting to start building a Power Pivot workbook from an
“informal” source like Linked Tables or Copy/Paste, with a plan to switch over and
connect the workbook to a more robust source (like a database) later. Resist this
temptation whenever possible! If you plan to use a database later, load data from your
informal source (like Excel) into that database and then import it from there. The
extra step now will save you loads of time later.

Tips and Other Notes

e To work around the “large data” problem, we often save a worksheet as CSV
(comma separated values) and then import that CSV file into Power Pivot. We
have imported CSV files with more than 10 million rows in the past. See
“Importing from Text Files” later in this chapter for more.

¢ Rename your Excel Table first, before you bring them into Power Pivot when
using Excel 2013/2016. This is an annoying behavior in Excel 2013 and 2016,
that even if you rename a Linked Table in Power Pivot, the old (Excel) table

name continues to show in the PivotTable Field List. To avoid this, simply
rename your Excel Table before bringing it in to Power Pivot.

H ©- : Book1 - Excel TABL...
HOM INSE PAGE DAT REVIE VIEW ADD- DEVE FOR POW POW DESIGN
Table Mame: jze with PreotTable E r = H
Tablel uplicates £ 3

- Insert Dxport Refresh lable3tyle Q¢
1 Recire Tahle Convert ta Range - o = Options = Sgy

Froperties | ools txtermal lable Lata lablg

B4 v Jx | wmexico

A B L v E F G

1 CountryCode ~ Country -

? LS LISA

1 A Canada

24. For Excel 2013/2016 rename table before adding to Power Pivot
e To avoid the delay every time you return to the Power Pivot window, we
highly recommend changing this setting in the Power Pivot window to
“Manual”. Afterwards you can click Update All or Update Selected buttons
to refresh the linked tables manually.

H T ol Tazle Tzols

ﬂ | lare Mi=eign dA—wmnce - lmce- Tah »

"R s - o
[¥, o5 EocelTable: Tablz » |9
S =Sy — |
Indate Lip-ake .I.E Lo =C Bace lab e I pdate
&l Seledled Kode -|
. o
Lopvhemnd k] = MU0 MEthe
2 7

25. Change the Update Mode to Manual

Pasting Data Into Power Pivot (Data Source Type)

If you copy a table-shaped batch of data onto the Windows clipboard, this button in
the Power Pivot window will light up:

Advantages

¢ You can paste from any table-shaped source and are not limited to using
just Excel (unlike Linked Tables)

¢ You can paste from other workbooks and are not limited to the same
workbook as your Power Pivot window

26. This button could have been named “Paste as New Table”

Pasted tables support both “Paste/Replace” and “Paste/Append” as shown by the
buttons here:

Limitations

o Suffers from the same “large data set” drawback as Linked Tables.

¢ You can never paste in an additional column. Once a table has been
pasted, its columns are fixed. You can add a calculated column but can
never change your mind and add that column you thought you omitted the
first time you pasted. This becomes more of a drawback than you might
expect.

27. These paste methods can come in handy
e Not all apparently table-shaped sources are truly table-shaped. Tables
on web pages are notorious for this. Sometimes you are lucky and
sometimes you are not.

e Cannot be switched to another data source type (true of all data source
types).

Importing From Text Files (Data Source Type)

[X] % | PowerPivot for Excel - BookData ch2 xisx
J_q - _,j ;-J:.l:-l--.r-_lr-!!:_;;l_.l. ‘

— 11 o ! | From Text
) From From From Azure® -
== Lopy Dalabrase - Repuil DalaMankel _j From Other Sources

28. The text import button in the Power Pivot window

Advantages

e Can handle nearly limitless data volumes

¢ You can add new columns later (if you are a little careful about it, see
below)

o Text files can be located anywhere on your hard drive or even on network
drives and Power Pivot can connect to them directly. If on a website, you
can use Power Query to connect to them and send the output to Power
Pivot. So some backend process might update a text file every night in a
fixed location (and filename), for example, and all you have to do is refresh
the Power Pivot workbook the next day to pick up the new data.

e Can be switched to point at a different text file, but still cannot be
switched to an entirely different source type (like database).

Limitations
e No reliable column names — unlike in a database, text files are not robust with

regard to column names. If the order of columns in a CSV file gets changed, that
will likely confuse Power Pivot on the next refresh.

e Cannot be switched to another data source type (true of all data source types).
Databases (Data Source Type)
Advantages

e Can handle nearly limitless data volumes
¢ You can add new columns later

e Can be switched to point at a different server, database, table, view, or
query. Lots of “re-pointability” here, but you still can’t switch to another data
source type.

e Databases are a great place to add calculated columns. There are some
significant advantages to building calculated columns in the database, and then
importing them, rather than writing the calculated columns in Power Pivot itself.
This is particularly true when your tables are quite large. We will talk about this
later in the Performance chapter.

" L 3 3 From Catz |

! -

= Jr._m",_l_'

Mrovm Fram From &70re
Dalalase - | Repo . Da_ aldark =L J From Otrer

-

3 FI':IIII 5': = ;'E |._:I
9
A [rom Access |
j From Aanalysis Sepvice: or PowearPvaot

29. The Database import button in the Power Pivot window
e Power Pivot really shines when paired with a good database. There is
just an incredible amount of flexibility available when your data is coming
from a database. More on this in the following two links.

@ If you are curious, you can read the following posts
about why Power Pivot is even better when “fed” from a

database: http://ppvt.pro/DBpart1, and
http://ppvt.pro/DBpart?2

Limitations

e Not always an option. Hey, not everyone has a SQL Server at their
disposal, and/or not everyone knows how to work with databases.

e Cannot switch between database types. A table sourced from Access
cannot later be switched over and pointed to SQL Server. So in reality, these
are separate data source types, but they are similar enough that we did not
want to add a completely separate section for each.

e Cannot be switched to another data source type (true of all data source

types).

http://ppvt.pro/DBpart1
http://ppvt.pro/DBpart2

Less Common Data Source Types

SharePoint Lists

These are great when you have a data source that is maintained and edited by human
beings, especially if more than one person shares that editing duty. But if your company
does not use SharePoint, this isn’t terribly relevant to you.

@ Only SharePoint 2010 and above can be used as a Power Pivot data source.

The Great Power Pivot FAQ is an example of a public SharePoint list, where myself and
others from the community can record the answers to frequently-asked questions, which are
then shared with the world. It is located here: http://ppvt.pro/TheFAQ

Reporting Services (SSRS) Reports

This is another example of “if your company already uses it, it’s a great data source,” but
otherwise, not relevant.

@ Only SSRS 2008 R2 and above can be used as a Power Pivot data source.
Cloud Sources Like Azure DataMarket and SQL Azure

Folks, we are a huge, huge, HUGE fan of Azure DataMarket, and they improve it
every day. Would you like to cross-reference your sales data with historical weather data
for every single store location over the past three years? That data is now easily within
reach. International exchange rate data? Yep, that too. Or maybe historical gas prices?
Stock prices? Yes and yes. There are thousands of such sources available on DataMarket.

We don’t remotely have space here to gush about DataMarket, so we will point you to a
few posts that explain what it is, how it works, and why we think it is a huge part of our
future as Excel Pros. In the second post we explain how you can get 10,000 days of free
weather data: http://ppvt.pro/DataMktTruth,

http://ppvt.pro/DataMktWeather and http://ppvt.pro/UltDate

SQL Azure is another one of those “if you are using it, it’s relevant, otherwise, let’s move
on” sources. But like DataMarket, we think most of us will be encountering SQL Azure in
our lives as Excel Pros over the next few years.

“Data Feeds”

Data Feeds are essentially a way in which a programmer can easily write an “adapter” that
makes a particular data source available such that Power Pivot can pull data from it.

In fact, SharePoint and SSRS are exposed to Power Pivot via the Data Feed protocol — that
is how that source types were enabled “under the hood.”

So we are mentioning this here in case your company has some sort of custom internal
server application and you want to expose its data to Power Pivot. The quickest way to do

http://ppvt.pro/TheFAQ
http://ppvt.pro/DataMktTruth
http://ppvt.pro/DataMktWeather
http://ppvt.pro/UltDate

that may be to expose that application’s data as a data feed, as long as you have a
programmer available to do the work.

For more on the data feed protocol, which is also known as OData, see:
http://www.odata.org/

Other Important Features and Tips

Renaming up Front — VERY Important!

The names of tables and columns are going to be used everywhere in your formulas.
And Power Pivot does NOT “auto-fix” formulas when you rename a table or column! So
if you decide to rename things later, you may have a lot of manual formula fixup to do.

And besides, bad table and column names in formulas just make things harder to read. So
it’s worth investing a few minutes up front to fix things up.

N we strongly recommend that you get into the habit of “import data, then
immediately rename before doing anything else.” It has become a reflex for us. Don’t
be the person whose formulas reference things like “Column1” and “Table1” OK?

@ Excel 2016/Power BI Desktop: Renames are automatically handled within your

data model. That means, if you rename a table, column or a measure all dependent
calculations are updated to reflect the new name. WooHoo! Well, not so fast. If you
created reports connected to your model, they may still be affected. Thus it’s still a
best practice to rename upfront.

Don’t Import More Columns than You Need

We will explain why in a subsequent chapter, but for now just follow this simple rule:

@ If you don’t expect to use a column in your reports or formulas, don’t import it.
You can always come back and add it later if needed, unless you are using
Copy/Paste.

Table Properties Button

This is a very important button, but it is hiding on the second ribbon tab in the Power
Pivot window:

Design

4 | 3 = ’ e

: j 2 a8 |2 = ok

jf EEEE ::TJ J'_:I J'—:I j Redo
Insert Calculation Existing Create Manage Table Mark as

Function Options =~ Connections | Relationship Relationships §Propertiesf Date Table =

30. For all data source types other than Linked Tables and Copy/Paste, you will need this button

This button is what allows you to modify the query behind an existing table. So
it’s gonna be pretty important to you at some point. We know someone who used

http://www.odata.org/

Power Pivot for two months before realizing that there was a second ribbon tab!

When you click it, it returns you to one of the dialogs you saw in the original import
sequence:

2
Edit Table Properties [2 [t

Edit Table Properties
|Use this page to change the table, column, or row filter mappings

Table Name: Products| Switch to: | Table Preview -

Connection Name: Access AdventureWoarks

Source Name: ProductMaster » | Refresh Preview

Column names from: @ Source) Model

il 3| @ ProductAlternatek...

|| 587 BK-M38S-38

|] 583 BK-M385-40 118

] 589 BK-M38S-42 118

|| 590 BK-M385-46 118

|| 344 BK-M825-38 118

|] 345 BK-M825-42 118

| 346 BK-M825-44 118

| 347 BK-M825-48 118

| 343 BK-M828-38 118 .
4 1L k
Last Refreshed: 8/29/2012 12:14:50 PM

| Save |’ Cancel l

31. Here you can select columns that you originally omitted, or even switch to using a different table, query, or
view in a database. Table Properties button. Don’t leave home without it.

Existing Connections Button

Also useful is the Existing Connections button. Clicking this brings up a list of all
connections previously established in the current workbook:

PBld-0-+

Homie Design Aadvanied

r a =
j Drelele - T 1
. - '\.j
| |Fregeze = i
Add o, Exitting Create
[1 Width on Lonnections Helationship |
- alumnd Laleulatians H& kst

32. Excel 2010: Existing Connections is under the “Design” ribbon tab

gl " 2 3

ﬂ Fiome Design Advanced

e |
| [
l Fram Froom Diakd Fr Eusting
=, ? o
—rr— Database * Service - ‘iu:_:|_!', Conmections

33. Excel 2013 & Excel 2016: Existing Connections is under the “Home” ribbon tab
This dialog is important for two reasons:

1. The Edit button lets you modify existing connections. In the screenshot
above, you see a path to an Access database. If we want to point to a
different Access database, we would click Edit here. Same thing if we want
to point to a different text file, or if we want to point to a different SQL
Server database, etc.

2. The Open button lets you quickly import a new table from that existing
connection. We highly recommend doing this rather than starting over from
the “From Database” button on the first ribbon tab. You get to skip the first
few screens of the wizard this way, AND you don’t litter your workbook
with a million connections pointing to the same exact source.

=
Existing Connections M

Selectan Existing Connection
Select a connection to a data source that contains the data that you want to impaort.

Select a data source connection:

PowerPivot Data Conneclions

Access AdventureWorks
== Data Source = C\Users\RobiDes ktop\Adventurelworks.accdb

Local Connections
No connechons found
Workbook Connections

No connechions found

34. List of connections established in the current workbook

5 - Intro to Calculated Columns

Two Kinds of Power Pivot Formulas

When we talk about DAX (the Power Pivot formula language, which you should think of
as “Excel Formulas+”), there are two different places where you can write formulas:
Calculated Columns and Measures.

Calculated Columns are the less “revolutionary” of the two, so let’s start there. In this
chapter we will introduce the basics of calculated columns, and then return to the topic
later for some more advanced coverage.

Adding Your First Calculated Column

You cannot add calculated columns until you have loaded some data. So let’s start with a
few tables of data loaded into the Power Pivot window:

B |,._7| = + | PowerPivot for Excel - ch5xlsx l = | B e S
B~ | Home Design @
P EHf Detete X —] = = ik 4} Undo -
Il] Freeze = 'fx i—' —‘:;'_‘: :K_EI j_ﬂ ﬁ Redo
Add | ges Insert Calculation Existing Create Manage Table Mark as
1 Width Function Options * | Connections | Relationship Relationships | Properties | Date Table ~
Columns Calculations Relationships Edit
[SalesAmt] v! |4_99 [
adl | PFC e bl | C B ~ | SalesAmt * | Add Column st
8/1/2003 477 16982 1 4.99 1.8663 4.99
8/2/2003 A477 16781 1 4.99 1.8663
8/3/2003 477 21918 1 4.99 1.8663 4.99
8/6/2003 477 16353 1 4.99 1.8663 4.99
8/7/2003 477 17506 1 4.99 1.8663 4.99
8/7/2003 A477 16814 1 4.99 1.8663 4.99
8/7/2003 477 18110 1 4.99 1.8663 4.99
8/8/2003 477 23277 1 4.99 1.8663 4.93
8/8/2003 477 17447 1 4.99 1.8663 4.99
8/8/2003 A477 18102 1 4.99 1.8663 4.99
8/9/2003 477 18095 1 4.99 1.8663 4.99
8/15/2003 477 17014 1 4.99 1.8663 4.99 z
lSLres |Cu5tomer5_| Products |
Fecord: 4 4 2of 60,358 boH El?j; :

35. Three tables loaded into Power Pivot, with the Sales table active
Starting a Formula

You see that blank column on the right with the header “Add Column?” Select any
cell in that blank column and press the “=" key to start writing a formula:

Cal Elati-:ms Relationships Edit
| x v&[H
[~] [~] E [+] [~] [~ [~ | Add Column
/2003 477 16982 at 4.99 1.8663 4.9
/2003 477 16781 il 4.99 1.8663 4.@
12002 A77 219182 1 499 1 8662 499

36. Select any cell in the “Add Column”, press the “=" key, and the formula bar goes active
Referencing a Column via the Mouse

Using the mouse, click any cell in the SalesAmt column:

—
:[SalesAmt]| I

v |

477 16982 1 4.99
a77 16781 1 4.99
A7 21918 1 499

37. Clicking on a column while in formula edit mode adds a column reference into your formula
Referencing a Column by Typing and Autocomplete

We are going to subtract the ProductCost column from the SalesAmt column, so we
type a “-“ sign.

Now, to reference the ProductCost column, we type “[“ (an open square bracket). See
what happens:

A7T j Cri=1xare,

4,._. Vi d2Cuantily”
a7 | ProduciCont]
77 | Prociuczkey |
a7 1 5zlcsamt]

377 | LinitFr ze

—|S=lesdmit |
- ["Cula 2 Kuyl

38. Typing “[“ in formula edit mode triggers column name autocomplete

We can now type a “P” to further limit the list of columns:

—|SalesAmt]-[F

a7 i [Fradaztkcy

39. Typing the first character of your desired column name filters the autocomplete list

Now we can use the up/down arrow keys to select the column name that we want:

-|Galesamt]- [P
) ProduczCost] | dcfﬂ_u:]nt;

{_-W

40. Pressing the down arrow on the keyboard selects the next column down

And then pressing the up arrow also does what you’d expect:

-|5alesAmt]-|F
-j [FradaztCest
477 (= [Frodaztkey,

41. The up arrow selects the next column up

Once the desired column is highlighted, the <TAB> key finishes entering the name of

that column in our formula:

=|5zlesamt -|Proc l.--:tr.:-:u:tjl

ﬂ (H=rnmeari ey ﬂ
)

42. <TAB> key enters the selected column name in the formula and dismisses autocomplete

Now press <ENTER> to finish the formula, just like in Excel, and the column

calculates:

|=[Sa|esﬁ.mt]—[ProductCost]

- = - - * 4 CalculatedColumnl "\
16982 1 4.99 1.8663 4.9 3.1237
16781 1 4.99 1.8663 a9 | 3.1237]
21918 1 4.99 1.8663 4.9 3.1237
16953 il 4.99 1.3663 a, 3.1237
17506 1 4.99 1.3663 4.99 3.12@/

43. Pressing <ENTER> commits the formula. Note the entire column fills down, and the column gets a generic
name.

Notice the slightly darker color of the calculated column? This is a really nice

feature that is new in v2, and helps you recognize columns that are calculated rather
than imported.

Just like Excel Tables!

If that whole experience feels familiar, it is. The Tables feature in “normal” Excel has
behaved just like that since Excel 2007. Here is an example:

F G [eempe—] K L
il Budgeted Sales R AdjFactor u NewCol iy
71510 40.7%|=[Budgeted Sales] * |
1950248 40.7% &4 Calendaryear

4183 61.4% &3] MonthMurmberCfy ear

15479 34.9% & SalesTerritoryRegion
7916 63.4% &3] EnglishProductSubcategoryMame

: -3 Budgeted Sales

31825 35.7%
4334 47.5% B Newtol

36068 1.7%

44. Power Pivot Autocomplete and column reference follows the precedent set by Excel Tables

OK, the Excel feature looks a bit snazzier — it can appear “in cell” and not just in the
formula bar for instance — but otherwise it’s the same sort of thing.

Rename the New Column

Notice how the new column was given a placeholder name? It’s a good idea to
immediately rename that to something more sensible, just like we do immediately

after importing data. Right click the column header of the new column, choose
Rename:

|-I-
s _EJ:LII-EJ' e L | II.JJ.F L] *
=3 Coedle Seamshp.
- i, 5 ;)
ag [ARG T0 FCancd |ab
v O
A -=PY
29
My Iracr Coclurn
49 .
B Debele Cubime
94 = St
reme Loun”
99 [_
] lre=sel oumes b
29
Limireaza Al colurnie
ST
99 lidet=r il -cas
— Colurn YAd-..
b
| He= k
29 o
exnption..
i d.
L |

45. Right click header to rename
Reference the New Column in Another Calculation

Calculated columns are referenced precisely the same way as imported columns.
Let’s add another calculated column with the following formula:

=[Margin] / [SalesAmt]

And here is the result:

‘=[Margin] [[Salesamit] i

v v = CalculatedColumnl ~ || A
4.99 1.8663 4.99 3.1237 I 0.52599198395?935|
4,93 1.8663 4.99 3.1237 0.625991983967936
4 99 1,.8663 4. 99 21237 (1,.625991933967936

46. A second calculated column, again using a simple Excel-style formula and [ColumnName]-style references

@ Notice how we referenced the [Margin] column using its new (post-rename)
name, as opposed to its original name of [CalculatedColumn1]? In Power Pivot,
the column names are not just labels. They also serve the role of named ranges.
There isn’t one name used for display and another for reference; they are one
and the same. This is a good thing, because you don’t have to spend any
additional time maintaining separate named ranges.

Properties of Calculated Columns

No Exceptions!

Every row in a calculated column shares the same formula. Unlike Excel Tables,
you cannot create exceptions to a calculated column. One formula for the whole
column. So if you want a single row’s formula to behave differently, you have to use
an IF().

No “A1” Style Reference

Power Pivot always uses named references like [SalesAmt]. There is no Al-style
reference in Power Pivot, ever. This is good news, as formulas are much more
readable as a result.

Columns are referenced via [ColumnName]. And yes, that means column names
can have spaces in them.

Columns can also be referenced via ‘TableName’[ColumnName]. This becomes
important later, but for simple calculated columns within a single table, it is fine to
omit the table name.

Tables are referenced via “TableName’. Single quotes are used around table names.
But the single quotes can be omitted if there are no spaces in the table name
(meaning that TableName[ColumnName] is also legal, without single quotes, in the
event of a “spaceless” table name).

Stored Statically with the File

For each row, the value of the Calculated column is computed and upon file save, is
saved back to the XL.SX file with our Power Pivot data model. This has performance
implications which we will cover in the chapter dedicated to performance.

Also, note the use of the term “static”. Calculated column computation is only
triggered by two events

e Definition or Redefinition: When you define (or edit) the formula for the
calculated column and hit enter, the column values are recalculated

e Data Refresh: When the Power Pivot table holding the calculated column is
refreshed the column values are recalculated.

Thus calculated columns are “static” as opposed to Measures (introduced in the next
chapter) which are “dynamic”. We’ll see an example of this when we revisit calculated
columns in the chapter on Advanced Calculated Columns.

Slightly More Advanced Calculations

Let’s try a few more things before moving on to measures.

Function Names Also Autocomplete

Let’s write a third calc column, and this time start the formula off with “=SU”...

imons REIRTIONsZNIRS Cait

X o fel|=sy]
N Vi | Replaces existing text with new tesd in a tesd string

v mf' T T S AU CoT
4.99 S 5UM 1237 0.625991983967936 |
4.99 Jr) SUMMARIZE 525 0.625991983967936
4.99 Sr) SURAK 1237 0.625991983967936
A 9g 3 1237 (i} HTRQQ1£EQQF|T"-‘|QF|

47. The names of functions also autocomplete. Note the presence of two familiar functions — SUM() and
SUBSTITUTE() — as well as two new ones — SUMMARIZE() and SUMX()

We’ll get to SUMMARIZE() and SUMX() later in the book. For now, let’s stick with
functions we already know from Excel, and write a simple SUM:

L I-SUM[[ProvudCosl])

Caloulatecioliimn? = | A

[0.2259:193:2967=36 T2I71S3.5757
0.52593198396736 1TETrI53.5757

. TR TR I TR I AT WINTTIIN,

48. SUM formula summed the entire column
Aggregation Functions Implicitly Reference the Entire Column

Notice how SUM applied to the entire [ProductCost] column rather than just the
current row? Get used to that — aggregation functions like SUM(), AVERAGE(),
COUNT(), etc. will always “expand” and apply to the entire column.

Quite a Few “Traditional” Excel Functions are Available

Many familiar faces have made the jump from normal Excel into Power Pivot. Let’s
try a couple more.

= MONTH ([OrderDate])
and
= YEAR ([OrderDate])

To receive the following results:

monthvum _ Bllvear __ GETL
2003

2003
2003
2003

o OO ©f 6O o5

49. MONTH() and YEAR() functions also work just like they do in Excel

If you’d like to take a quick tour through the function list in Power Pivot, you can do
so by clicking the little “fx” button, just like in Excel:

Calculation Existing Create Manage Table hark as |
Opti >
.p ek Insert Function [? ﬂh,l
ns
£ Select a category:
| Math & Trig -
Select a function:
16
16 CEILING B
21 CURRENCY 2
EXF
1 FACT
FLOOR i
17
ABS{Number)
1 Returns the absolute value of a number
18
23
17
18
1
3 | ok || cancel |

50. Power Pivot also has a function picker dialog. Note the presence of many familiar functions.

Excel functions Are Identical in Power Pivot

If you see a familiar function, one that you know from normal Excel, you already
know how to use it. It will have the same parameters and behavior as the original function
from Excel.

OK, before anyone calls us a liar, we’ll qualify the above and say that it’s true 99.9% of
the time. The keen eye of Bill Jelen has found one or two places where things diverge in
small ways, but Power Pivot has done a frankly amazing job of duplicating Excel’s
behavior, in no small part due to the Excel team helping them out. In most cases, Power
Pivot uses exactly the same programming “under the hood” as Excel.

Enough Calculated Columns for Now

There is nothing inherently novel or game changing about calculated columns really. If
that were the only calculation type offered by Power Pivot, it would definitely not be
analogous to a “Biplane to jetplane” upgrade for Excel Pros.

We will come back to calculated columns a few more times during the course of the book,
but first we want to introduce measures, the real game changer.

6 - Introduction to DAX Measures
“The Best Thing to Happen to Excel in 20 Years”

That’s a quote from MrExcel himself, Bill Jelen. He was talking about Power Pivot in
general, but specifically measures. So what are measures?

On the surface, you can think of Measures as “formulas that you add to a pivot.” But
they offer you unprecedented power and flexibility, and their benefits extend well beyond
the first impression. Several years after we started using Power Pivot professionally, we're
still discovering new use cases all the time.

Aside: A Tale of Two Formula Engines

Some of you may already be saying, “hey, pivots have always had formulas.”

Why yes, yes they have. Here’s a glimpse of the formula dialog that has been in Excel for
a long time:

Inzert “alculzted Szid 0)
Hare - ad:
=ornuls: |- 0 Cisl= be
“jol=s

MzntTumberi)“rcar
“AaesTemi-nryResion

Znighsl Produc 1S _bos sy yhans
Sucgstec Sales

adi-actor

Nead"

recthgd

51. Power Pivot measures mean that you will NEVER use this “historical” pivot formula dialog again (if you
ever used it at all)

This old feature has never been all that helpful, nor has it been widely used. (Oh
and if you think it has been helpful, great! Power Pivot measures do all of this and
much, much more).

It has not been very helpful or widely used because it never received much
investment from the Excel team at Microsoft. The Excel pivot formula engine is
completely separate from the primary formula engine (the one that is used on
worksheets). Whenever it came time for us to plan a new version of Excel, we had to
decide where to spend our engineering budget. The choice between investing
development budget in features that everyone sees, like the worksheet formula
engine, versus investing in a relatively obscure feature like this, was never one which
required much debate. The pivot formula engine languished, and never really
improved.

Remember the history of Power Pivot though? How we said it sprang from the
longstanding SSAS product? Well, SSAS is essentially one big pivot formula
engine. So now, all at once, we have a pivot formula engine that is the result of nearly
20 years of continuous development effort by an entire engineering team. Buckle up

Adding Your First Measure

There are two ways you can add a measure:

1. In the Excel window (attached to a pivot)

2. In the Power Pivot window (in the measure grid). Note that this is called
Calculation Area in the UI but we call it the measure grid since it only
contains measures.

We highly recommend starting out with the first option — in the Excel window,
attached to a pivot, because that gives you the right context for validating whether your
formula is correct.

@ Both ways of adding measures are equivalent: Even though they may feel
different, they both have the same end-result — of adding the measure in the Power
Pivot Data Model. Let us emphasize that. Even when you add a Measure from the
Excel window, the measure is still created in the Power Pivot Data Model. You can
check that by going over to the Power Pivot window.

Create a Pivot

With that in mind, let us create a pivot connected to our Power Pivot data model. This is
slightly different across the Excel versions. We’ll show you the easiest method to create
a pivot for each Excel version.

Excel 2010: From Excel, click the Power Pivot ribbon tab, then click Pivot Table.

File Hame Imggm P PR Page Layaan Fome

g 2N X =R NF

PérmeiPredl e Délete Mesiurd Pwatiabie
‘dinciow Measurse RMeamiuie %ol -

Meddarel

52. Excel 2010: Creating a pivot from Excel’s Power Pivot ribbon tab

Excel 2013/2016: From Excel > Launch Power Pivot window > In Power Pivot
window > Click Pivot Table button

HUME INSERT FUWERFIVO1 FAGE LAYOUT FURMULAS DATA

= &8 = &

Manage Addto Update Detect Settings
Data Model All
Data Model Tables Relationships

Home Design Aovanced

In Power Pivot

window click button
Clipboard in Home 1ab

53. Excel 2013 and 2016: Creating a pivot is best done from the Power Pivot window

With Excel 2016, you can easily do it from the Excel side as well:

Tabiles

Chooie The dals Ehat you want 1o sn sy

L0 Eelect 3 kakie or rampe
LAkl Fangs:
- Wi an extrmal daks jource

L]

(LM I 18|

Conrcticn name:
& Use this wortbook's Data Model

Chadds widne you wink the Freatl st
U Hew Werk shieet
9 Larting Worksheet
Locstion: SheetHE?
Chooie wheetber pou want bo anakger mu
Add this dais to the Dakts Model

o b plsced

ImicmL:

54. Excel 2016: From Excel “Insert” ribbon tab, click Pivot Table and then OK. Note that it defaults to use the
workbook Data Model (a.k.a. Power Pivot Data Model)

This yields a blank pivot on a new worksheet:

Iﬂ' Lﬂ) - a 1k chB.xlsx - Microsoft Excel | Pivotlable Tools | | = I @_—Jl"éz-
Ele Home Insert Page Layout Formulas Data Review View Developer PowerPivot Options Dresign & @ = B 22
= o— = N e | I 7 =0
1 p f— —— = 4T =] j = B |
== I = -_:21 j]
PowerPivot Mew e e | PivotTable = dit KF Create Update | Settings Field Relationship
Window Measure Measure Settings - setting Linked Table A&ll List Detection
Measures KPIs Excel Data
B3 - 5 ~
A B | C D E F G H I 1 Ii' PowerPivot Field List v X
1 | [Searen |p|
__%_. # Customers -
3| | . # Products
4 [= [Sales
5 CustomerKey
Margin |
6 Turn on the PivotTable Field MenthMNum =
& List to work with the OrderDate
8 PivotTable OrderQuantity
g ProductCost
ProductKey
10 = SalesAmt
2| R — UnitPrice ¥.
12 = =
13 s 1# Slicers Vertical i Slicers Horizontal
14 N El
15 1
16 " Report Filter #4 Column Labels
2 7
18
- ; bel |
i Row Labels Values
20 | & z
21
fa ks | 2
[« ¥ W] Sheet4 “Sheetl . “Sheetd ~“Sheef3 'Sheefd . Sheet{l[4 | 140
Ready | P | | M 100% (=) {} {+]

55. Blank pivot. Every table from the Power Pivot window is available in the field list.

Notice how the pivot field list contains all three tables from the Power Pivot
window? For now, we are going to ignore the other tables and just focus on Sales.
Exploring the advantages of multiple tables is covered later on.

Add a Measure!

Let us create our first measure. Since the interface is slightly different, We’ll show
you how to do this across each Excel version.

Excel 2010: Make sure you have selected a cell inside the Pivot Table we just
created. Then you can either

> Click the Excel “Power Pivot” ribbon tab > click New Measure

OR

> Right click a table in the PivotTable Field List > click Add New Measure.

“ rMome vl Preol Fage L
- ke — | —
it I
= 2 =
FowerFreat ¢ PoolTable
Wl G Mebdiaie " i ¥
Rl LR E
PowerPivot Field List v A
Seach Ij:l
& Chlendar
+ Custamer
5 Produc
+ ETIE
* Temit Fapand
L A
Lapand All
~ollapse Al
Add Hew Measure...

56. Excel 2010: Creating a New Measure Button

Excel 2013: Click the Excel “Power Pivot” ribbon tab > Click “Calculated Fields” >
Click “New Calculated Field”

@ In Excel 2013, “Measures” were renamed as “Calculated Fields”. We were
never fond of this new name and ranted about it incessantly. We are glad to
report that in Excel 2016 and in Power BI Desktop, we are back to the original
name of “Measures”. If you are using Excel 2013, know that “Calculated Field”
and “Measures” mean the same thing.

rNL ([P k30T 2CWLRPWCT F

@ U:!:I El = Aligr Yert zaly

HE aligr | adzor=zlv
st b alled <)
Fides - -

2l b el 5‘?'51 Hew Calculstes MNec o

- I Wanage faoulaned Felds,
i

57. Excel 2013: Creating a New Measure (Calculated Field)

Excel 2016: You can either

> Click the Excel “Power Pivot” tab > Measures > New Measure...
OR

> Right click a table in the PivotTable Field List > click Add Measure

This brings up the Measure Settings dialog, which we will often refer to as the
measure editor, or often as just “the editor.”

& [_l] [

Merece Slesnges Yoty Upeste
- - il & I Al

Laz Yade rd Flows idess ¢ .

j‘jr Fdo =1 0, B o =y

=l

“vetleaoe ia s =
Az |

e e Jy oo Wl rpowl O -|

L E Pk

FilEn ™
b Sde bl=acure..

58. Excel 2016: Creating a New Measure

Measure Settings m

Table name: Sales -

Measure name (all FivotTables): Measure 1

Custom name (this PivotTable): Measure 1

Description:
Formula: Check formula
]

Formatting Options

Category:
[Geneal |

MNumber
Cumency

Diate
TRUE/FALSE

59. Measure Settings, also known as the Measure Editor, or The Editor

There’s a lot going on in this dialog, but for now let’s ignore most of it and just write
a simple formula:

= SUM (Sales[SalesAmt])

s

Measure Settings M

Table name: Sales -

Measure name (all PivotTables): Measure 1
Custom name (this FivotTable): Measure 1

Description:

Formula:
=SUM(Sales[SalesAmt])

Formatting Options

Category:

Mumber
Cumency

Date
TRUESFALSE

60. Entering a simple measure formula

Name the Measure

Before clicking OK, we will give the measure a name. This is just as important as
giving sensible names to tables and columns.

@ The “Measure name” box is the one you want to fill in. Ignore the “Custom
name” box for now — that will automatically match what you enter in the

“Measure name” box. (In fact, Microsoft removed the box from Excel 2013 and
higher!)

il

Weasure Setting:

Ta e naire o
Msazus rarme (3l FivoTadlee] Totsl Saed
{ umtorn e (thas oonk | akde) Ikl * s

1 Ceecriztion

Fur e i] Cloecs fanrml = |
=SUM(Sales[5SalasAmt])

61. It is very important to give the measure a sensible name

Results
Click OK, and we get:

ITntnI sales i
2935867 T.24

62. The resulting pivot

Poware: = ol Fre'd Ll v i
Segmh =

=l S5sleg a~
CuzTom erk=y
kKla2in

k1o~ thiNum
CroerDats
CrderQusndy
ProzuctCosT
Froc ucthey
Salzenm™m
LnitF-ioe

"I Lokers Vortica Ei zhacrs 4znzortal

nl

B O S L O R

“f Wcpor-hter df columiLazda

2] wow Labels

63. New checkbox added to the field list for the measure, and measure added to Values dropzone
Works As You Would Expect

Let’s do some “normal pivot” stuff. We are going to drag MonthNum to Rows and
Year to Columns, yielding:

Total Sales !Cnlumn Labels ~

Ruw Labels - 2001

1

2

3

4

]

6

7 473388.163
2 506191.6912
w | 473943.0312
10 513329.474
11 543993.4058
12 T55527.R914
Grand Total 3266373.657

2002
596746.5568
550816.694
A44135 2097
66369.2.28068
073330.1978
676763.6456
500365.155
516001.4702
350400.9312
415390.2333
335095.0887
577314.0007
6520342.526

2003
4388065.1718
489090.3356
A85574.7923
S06399.2654
302772.50435
554795.2281

886668.84
2147113.51
1010258.13
10804459.58
1196981.11
17317R7.77
0791060.298

2004
1340244.95
1462479.83
1420M905.18
1608750.5]
1878317.31
1343361.11

50840.63

0770899.74

Grand Tulal

2375856.679

2502386.86
2610615.175
277884.2.082
3114646.272
3180923.988
1911262.788
1899606.672
1834008.152
2009169.287
2076069.605
INAAR9 AARD
2M)ILBETT.22

64. MonthNum field on Rows, Year on Columns, Total Sales Measure just “does the right thing”

OK, our first measure is working well. Let’s take stock of where we stand before

moving on.

“Implicit” Versus “Explicit” Measures

We have done nothing special so far, we are just laying the groundwork. We mean, a
simple SUM of the SalesAmt column is something we always could have done in

normal pivots.

In fact, we can uncheck the [Total Sales] measure and then just click the [SalesAmt]

checkbox, and get precisely the same results as before:

Customerkey
Margin
MonthMum
UrgerUate
Oraerjuanary
ProQuiTCost
ProduclEey
dlesfmml
UnitPrice

Year

Total Salcs (G

1L

I.E Slivers Verlivel :ﬁ Slivers Hurigunlal

S Report Filter = Column Labels

Year ot
£] Rawl ahels ¥ Values
Mot bl UM o7 3alesAmt ™

65. Unchecked the [Total Sales] measure, checked the [SalesAmt] checkbox

ITotaI Sales .ICD“.HI'IH Labels f_'*

Row Labels - 2001 2002 2003 2004 Grand Total
1 596746.5568 438865.1718 1340244.95 2375856.679
2 550816.694 489090.3356 1462479.83 2502386.86
3 644135.2022 485574.7923 1480905.18 2610615.175
1 663692.2868 506399.2654 1608750.53 2778842.082
5 673556.1978 562772.5645 1878317.51 3114646.272
6 676763.6496 554799.2281 1949361.11 3180923.988
7 473388.163 500365.155 886668.84 50840.63 1911262.788
8 506191.6912 546001.4708 847413.51 1899606.672
9 473943.0312 350466.9912 1010258.13 1834668.152
10 513329.474 415390.2333 1080449.58 2009169.287
11 543993.4058 335095.0887 1196981.11 2076069.605
12 755527.8914 577314.0002 1731787.77 3064629.662
Grand Total 3266373.657 6530343.526 9791060.298 9770899.74 29358677.22

66. Yields the same exact pivot results

@ Just like in normal pivots, if you check the checkbox for a numerical

column, that will default to creating a SUM in the Values area of the field list.
And checking a non-numeric field will place that field on Rows by default.

So we have two ways to “write” a SUM in Power Pivot — we can write a formula
using the Measure Editor, or we can just check the checkbox for a numeric column.

We have our own terms for this:

1. Explicit Measure — a measure you create by writing a formula in the Editor

2. Implicit Measure — what you get when you just check a numeric column’s
checkbox

Turns out, we have a very strong opinion about which of these is better.

AN\ we never, ever, EVER create implicit measures! Even if it’s a simple SUM
that we want, we always fire up the measure editor, write the formula, and give the
measure a sensible name. We think it is important that checking a numeric checkbox
does what it does, because that matches people’s expectations from normal Excel.
But that does not mean you should do it! Trust us on this one, you want to do things
explicitly. There are too many benefits to the explicit approach. You will not see us
create another implicit measure in this book. They are dead to us

Referencing Measures in Other Measures

We’ll show you one reason why we prefer explicit measures right now.

Another Simple Measure First

First, let us create another simple SUM measure, for Margin:

= SUM (Sales[Margin])

-

Measure Settings

Table name:

Sales

Measure name (all PivotTables): Profit]

Custom name (this PivotTable): Profit

Description:

Eormula:
=SUM(Sales[Margin])

Formatting Options

Category:

MNumber

TRUE/FALSE

67. Creating a new measure, that we named Profit

" PowerPivot Field List

Customertey
Margin

o MonthNum
Oraerlate
OraderCuantty
Proguctiost
Productiey
alesamt
UnitPrice

i

& Repart Filter

M Column Labels

Year
3 Values

68. Profit measure added to field list

| !Cuhmn Labels | ~ |
2001

19 Slicers Vertical [y Slicers Horizontal

2002 2003 2004 Total Total Sales Total Profit

Row Labels| ~ | Total sales Profit TotalSales Profit TotalSales Profit Total Sales Profit

1 586746.557 24032091 438865172 183728.206 1340245 554859023 2375856.679 979008.139
2 550816.694 21950752 489090336 205186474 14524798 604917116 2502386.86 1029611.11
3 644135.202 259370.475 485574792 203897.055 1480905.2 6512934286 2610615.175 1076201.82
4 663692.287 267392.109 506399265 212618.101 1608750.5 662243.34 2778842.082 1142253.55
15, 673556.108 271926439 562772565 238672303 18723175 779974147 3114645272 1290572.89
B 67676365 273032.243 554799.228 235050.708 19493611 80630087 3180923988 1314383.82
7 473388.163 190967.542 500365.155 202013054 82666384 362115145 5084063 28365.7176 1911262 788 7B83461.459
8 506191.6912 203872516 545001471 221445745 84741351 353404.118 18996506.672 778722379
g 4739430312 188489.502 350466991 14209659 1010258.13 420575.209 1834668.152 751161611
10 513329474 20612174 415390233 172136184 1080449.58 449117.105 2009169.287 B27375.029
11 543993 4058 21892475 335095089 136436.673 1196981.11 496559426 2076069605 851920.849
12 7555278914 303229182 577314 2431171901 173178777 711209271 3064620 662 1256219?&
Grand Total 3266373.657 1311605.87 653034353 2646850.15 9791060.3 4072733.12 97708997 40496945 29358677.22 12080883.6

69. Profit measure added to pivot, along with Total Sales measure

Creating a Ratio Measure

OK, time for some fun. Here’s a new measure:

-

Measure Settings | ¥ % |

Table name: Sales

Measure name (all PivotTables): Profit Pt

Custom name (this PivotTable): Profit Pct

Description:

Farmula:

o'
i [Total Sales]
=) [Customerkey]
=1 [Margin]

Eh' - [MonthMum] =
o= [CrderDate]
L
T

=) [OrderQuantity]
2l [ProductCost]
=1 [Productkey]
=) [SalesAmi]

i [UmitPrice] I
=l [Year]

oK | [cancel

70. Adding a new measure, autocomplete triggered by “[“

Do you see the first item in the autocomplete list? Zooming in:

Formula: | fi | | Check formula

71. The [Profit] measure appears in autocomplete!
There’s even a little “M” icon, for measure, next to [Profit] in the autocomplete.
[Total Sales] is also in there, so let’s try:

= [Profit] / [Total Sales]

;
Measure Settings

Table name:

Descrnption:

Measure name (all PivotTables):

Custom name (this PivotTable):

Sales

Eormula: | & | | Check formula

Profit Pt
Proft Pt

Formatting Options

Category:

Mumber
Cumency

Date
TRUE/FALSE

72. Measures can reference other measures, useful for creating things like ratios and percentages (and a million

other things)

=[Profit] / [Total Sales]

Original Measures Do NOT Have to Remain on the Pivot

We’ll click OK now and create this new [Profit Pct] measure, but then we’ll uncheck

the other two measures so we just see [Profit Pct] in the pivot:

i

Profit Pct 1
Row Labels -~ 2001

L= = = B L L T

=
[=

12
Grand Total

Column Labels ~

0.403405524
0.402757532
0.297704976
0.401538877

0.40244008

0.40134828
0.401548019

2002

0.402718553
0.398512831
0.402664648
0.402885660
0.403717522
0.403438103
0.403731259
0.405577196
0.405450167
0.414396319
0.407158079
0.417748228
0.405315607

2003

0.418643851
0.41952674
0.41990865

0.419862579

0.424100815

0.423668052

0.408399539

0.417038569

0.416204701

0.415676135
0.414584316

0.411025694

0.415964461

2004

0.414072833
0.413624246
0.413591648
0.411650736
0.415251491
0.413623143

0.35793403

0.414464851

Grand Total

0.412065218
0.411451613
0.412240696
0.411053783
0.414356167
0.413208183

0.40991323
0.409938747
0.409426419

0.41173956
0.410352739
0.409906295
0.411492778

73. [Profit Pct] measure displayed by itself — its two “ancestor” measures are not required on the pivot

Changes to “Ancestor” Measures Flow Through to Dependent

Measures

Let’s simplify the pivot a bit, and put the [Profit] measure back on:

IH-:mr Label= T.IFIu‘I'i‘t Pct Profit

1 0412062318 357300z.1382
2 0411451013 1029611.111
3 0412240096 1076201.810
4 0411053783 1142223.551
3 0414350167 12907728:
G 0413202183 1314323.321
! LAFFIHZL A db1.AY)H
K PP M FiRFP AP
J AFMIATY SSTTRLATTE
lt (S R0 T Y FA VLY (7
17 (ATIES, £8) BT L HE
12 AP PHETS T/500 TN
virand 1atal DATI44/ /7K 1 AR LR

74. Removed [Year] from Columns, added [Profit] measure back

Let’s focus just on that first row for a moment:

Iﬂﬂw Labels - !Fri:hlil: Pct Protit

1 (LT MIBSY FTH I ERIRT EHYS

75. About 41% for [Profit Pct], and 979k for [Profit]

What happens if we modify the formula for the [Profit] measure? Let’s find out.

Right click the [Profit] measure in the field list and choose Edit formula:

PowerPivot Field List v X
Seansfy e

Margin &
MonthNum
OrderDate
OrderQuantity
ProductCost
Productkey
Saleshmt
UnitPrice
Year

Profit Collapse Sales’
Tota|
I

1Z] Slicers Vertic nEdit farmula..

LT‘E'EI‘I.EI Me..

Delete

mENIE NI

Create KPL..

‘W Report ﬁH:CJ & Add to Slicers Horizontal

76. It is easy to open a measure to edit its formula. They took this right-click edit away in 2013 and gave it back
in 2016. In 2013, you have to use the Manage Calculated Fields button on the ribbon.

Now let’s do something silly. Let’s arbitrarily boost our profits by 10%, by
multiplying the original SUM formula by 1.1:

#
Measure Settings &lg

Table name: Sales -

Measure name (all PivotTables): Profit

Custom name (this PivotTable): Profit

Description:

Formula:

=SUM(SaIes[Margin]@

Formatting Options

Category:

Mumber
Cumency

Date
TRUE/FALSE

77. You would never do this in real life, unless you are, say, Enron

Click OK and let’s look at the first row in the pivot again:

Row Labels - |Profit Pct Profit
1 0.45327185 1076908.952

78. [Profit] is now 10% higher, as expected. But that ALSO impacted [Profit Pct], since [Profit Pct] is based in
part on [Profit].

Cases Where This Makes Real Sense

The model we’re working with here is pretty simple at the moment, and lacks things
like Tax, Shipping, and Discount. It’s not hard to imagine defining [Profit] or [Total
Sales] in ways that include/exclude those other miscellaneous amounts, and
sometime later (perhaps much later) realizing that you need to change that.

In fact, it might just be a change in the business that triggers you to change your
definition of [Total Sales] — it is not necessary that you made a mistake!

You may ultimately find yourself with literally dozens of measures (if not
hundreds) that all depend back to more fundamental measures. Those
dependencies can even run many “layers” thick — [X] depends on [Y] which depends
on [Z] etc.

When you realize that you have hundreds of impacted calculations, but you only
need to change a single formula to fix EVERYTHING, it is a glorious moment
indeed.

It’s worth driving this point home, so we will restate it: Imagine having an entire
suite of sophisticated Excel reports that all assume a certain calculation method for
Profit and Sales. And then something fundamental changes, rendering that approach
invalid. You could be performing spreadsheet surgery for days, perhaps weeks. If you
use Power Pivot properly, that same situation might only take a few seconds to
address.

@ The first time you experience this “I fix one thing and everything is

updated” moment, you will know that your life has changed. How often do you
find statements like that in a book about formulas? We're guessing never, but it’s
the truth

Reuse Measures, Don’t “Redefine”

In order to reap the benefit outlined above, it’s important to use the names of
measures in formulas rather than the formula that defined the original measure.

For instance, these two formulas for [Profit Pct] would return the same results:

= SUM (Sales[Margin]) / SUM (Sales[SalesAmt])

would yield the same results as:
= [Profit] / [Total Sales]

But only the second approach gives you the “fix once, benefit everywhere” payoff.
So act accordingly.

@ Instinctively, I (Rob) expected that tying everything

tightly together like this, building “trees” of measures that
depend on other measures, sometimes in layers, would
lead to inflexibility and problems later on. In practice, that
has never been the case. It has been all benefit in my
experience.

Related: if you discover places where you need, for
example, a Sales measure that is calculated differently, the
right approach is just to define a second Sales measure
with an appropriate name, such as [Sales — No Tax] or
[Sales Incl Commissions], etc. That works splendidly.
Seriously, I am smiling as I type this.

Other Fundamental Benefits of Measures

There are a few more benefits that no chapter titled “Intro to Measures” would be
complete without. Let’s cover those quickly before continuing.

Use in Any Pivot

Up until now we have just been working with a single pivot. But if we create a brand-
new pivot, guess what? All of the measures we created on that first pivot are still
available in our new pivot!

F G H I] K L | PowerPivot Field List

|5¢=.a.-'r:"?
_! E Sales
E : [T CustomerKey
PivotTablel :
| votTab [Margin
5 3 [MonthMum
Turn on the PivotTable Field [OrderDate
List to work with the [] OrderQuantity
PivotTable [[] ProductCost
[Productkey
[Salesfimt
[UnitPrice
- o = [] =
= = Profit |23
= |:| o Profit Pct (23]
= : Total Sales |35
[=]
e

- 18] Slicers Vertical (g Slicers

W Report Filter £ Colum

§7] Row Labels ¥ Values

Sheetl2 ,

79. New pivot, new worksheet, but the measures are still available for re-use!

Centrally-Defined Number Formatting

So far, we’ve been looking at ugly-formatted measures. Let’s add all three measures
to this new pivot to illustrate:

II-"H'I-ﬁI‘ llﬂﬂ Lales Prafit Pet
W

132889701 29338677.22 0.432692058

80. Unformatted measures in our pivot

We can always use Format Cells, or even better, Number Format, to change this:

Brofit |BIE=%—4~-5-*T43;}

13135-511_.:.:‘ s b L e R, Lt Lo, b | L
1

bormit Colls.
boum e Formel...

ReTrELh

81. These two ways to format numbers in a pivot are SO antiquated! Be gone!

Instead, let’s bring up the measure editor for one of these measures:

r
Measure Settings m

Table name: -Sales .

Measure name (all PivotTables): F'_roﬁt
Custom name (this PivotTable): Profi
Description: '

ESUM(Sales[Margin]) = 1.1

Formatting Options

Category:
: : Symbal: s -
e — i (2]

TRUE/FALSE /| Use 1000 separator (,)

82. Setting [Profit] to be formatted as Currency, with 0 decimal places

The results are the same as if we had used Format Cells or Number Format:

Total Sales PFrofit Pct

Pl b B R LY Y)

83. [Profit] measure is now formatted nicely in the pivot, just as if we had used Format Cells or Number Format.

But that format now applies everywhere! Let’s return to our previous pivot and
Refresh it:

Row Labels = | Profit pot

1 04532712
2 0452596775 1132572222

3 J 4534645765 11853821.998

a 2.4521591610 1255478.906

5 04557917330 1413630.179

§ 0.A5152900141413823.203

7 0450910053 SBTRUTINOS:

2 DAS0932522 3565945172

9 DASDRG o —msmmmmmnn

10 IS |l il L L

11 gasiae B 7 B - A - -

84. We return to the first pivot, where [Profit] is still formatted “ugly,” and choose Refresh

The pivot picks up the new formatting!

Row Labels = Proflt Pct rrof

1 0.45327185
2 0.452595775 § 51,132,572
3 0.153461765 J§ 51,183,812
-. 0.132155161 § 51,256,179
5 0.155791783 § 51,119,630
6 0151525 51,115,82
7 0.420910053
3 0.470932G22 5$:56,5%5
9 0.470365061 5526,273
0 0.472975516 510,113
11 G R TN 210
s CLASIHI=I2YS 5T U H017

Grand Intal S, SRR NP

04 76a A%

85. Currency formatting on [Profit] now shows up on original pivot, too

A refresh is not strictly required and is actually a bad idea in 2013 and higher because
that triggers a refresh of the data model. Any manipulation of the other pivot will
cause the formatting to be “picked up.” Reorder fields, click a slicer, click a “+” to
drill down, etc. — all of these will cause the formatting to be picked up.

Now let’s set a percentage format on the [Profit Pct] measure:

r
Measure Settings m

Table name: Sales =

Measure name (all PivotTables): Profit Pct

Custom name (this PivotTable): Profit Pct

Description:

E[Profit] / [Total Sales]

Formatting Options

Category:

Format
Decimal places: L
e (=

TRUE/FALSE Use 1000 separator ()

86. Formatting as Number, Percentage, 1 Decimal Place

The results are as expected:

Ruw Labiels « Profit Pol Profit i

1 15.3 % $1,076.50%
2 15.3% $51,132.57
z 45.3'% 51,183,522
1 152% 51,256,479 |
5 45.6'% 51,419,030
5 155'% 513453522
'] an 1 % -,'.Hh'l i
A% 1% -,'.lLHh-.-.'l‘a
] a5.0% “Hh. s R
i AL 1% -,'q'l'll-llii
11 35.1% 5937112
12 35.1% 51,381,832
Grand Total 45.3 % $13,288,072

87. Percentage format? Check.

Whetting Your Appetite: COUNTROWS() and
DISTINCTCOUNTY()

This chapter is running a bit long, but hey, there’s a lot of value to convey. And we
still want to end with some “sizzle.”

Let’s use a couple of new functions to define two measures:

[Transactions] =
COUNTROWS (Sales)

and
[Days Selling] =
DISTINCTCOUNT (Sales[OrderDate])

@ When you see us use the syntax [Foo] = <formula>, that means we are
creating a new measure named [Foo], with that formula. That way we don’t
have to show screenshots of the Measure Editor every time we add a measure.

Let’s see what that looks like:

How Labels = T1otal sales [Days sellingyIransactions
52,375,854 : % 017
52,502,38 3,039
52,610,615 3,1/8
52,778,844 g 5.589
53,114,646
£3,180,924
$1,911,26
$1,899.60
$1.834,66
$2.009,16
$2,076,07¢C
12 53,064,63(
Grand Total 529,358,67

M DD) O WD O W P el

-
L =

88. [Transactions] and [Days Selling] — introduction to COUNTROWS() and DISTINCTCOUNT()
COUNTROWS(Sales)

This function does exactly what it sounds like — it returns the number of rows in the
table you specify. So for instance, in the figure above, there are 5,017 rows in the
Sales table that have a MonthNum of 1.

@ We named this measure [Transactions] only because we know that each row

in our Sales table is a transaction. But if a single transaction were spread across
multiple rows, we couldn’t do that. We’d have to use DISTINCTCOUNT()
against a Transaction ID column, which we don’t have in this example.

DISTINCTCOUNT(Sales[OrderDate])

Again, this function does what it sounds like it does. It returns the number of distinct
(unique) values of the column you specify.

So while there are 5,017 rows for MonthNum 1, and all of them obviously have a
value for the [OrderDate] column, there are only 93 different unique values for
[OrderDate] in those 5k rows.

Deriving More Useful Measures From These Two
Now we define two more measures that depend on the two measures above.

[Sales per Transaction] =
[Total Sales] / [Transactions]

and

[Sales per Day] =
[Total Sales] / [Days Selling]

Results:

Row Labels ~ Total Sales Days Selling Transactiong®Sales per Transactiol

1 52,375,857 93 3,0 5473.56
2 52,502,387 83 53,0383 5454.64
3 52,610,615 93 5,18

4 52,778,842 90 5,540

5 53,114,646 93 &, 0

6 53,180,924 90 6,03

7 51,911,263 124 4,019

8 51,899,607 92 4,21

9 51,834,668 a3 4,219

10 2,009,169 92 4.5

11 52,076,070 90 4,5

12 53,064,630 93 3,8

Grand Total $29,358,677 1124 60,

89. Two meaningful business measures — can'’t do these in normal pivots!
Rearrange Pivot, Measures Automatically Adjust!

We remove MonthNum from Rows, drag ProductKey on instead, then drag Year to
slicers and select 2002:

Year T
2001 | 2002 | 2003 2004

Productkey -- Total Sales Days Selling Transactlons Sales per Transactlon Sales per Day
312 $658,402 123 184 $3,578.27 $5,353
313 5608,306 111 170 53,578.27 55,480
310 $608,306 107 170 $3,578.27 §5,685
314 5508,945 39 159 53,578.27 55,747
311 5504,536 106 141 $3,578.27 54,760
in $235,609 76 108 $2,181.56 $3,100
177 £235,609 a0 108 $2,181.56 §7,945
369 5219,902 70 90 62,4413.15 53,14
3/ S2UZ, /9% ob 83 $2,443.35 53,073
375 $185,433 B4 85 52,181.56 52,897
IR8 8175 971 58 T2 €7 443 315 231 N33

90. Completely scrambled the pivot, but our measure formulas still work!

@ Slicers are a native Excel functionality but work
beautifully with PivotTables connected to Power Pivot.

Adding Slicers to Power Pivot PivotTables has changed
across Excel versions. Given how useful Slicers can be,
we’ll take a brief side-trip to show you how that works in
each Excel version.

Also note that one Slicer can be “connected” to multiple
pivot tables. That makes them great to build a dashboard
where all Pivot Tables/Charts are controlled by a single
set of slicers.

Slicers in Different Versions of Excel

2010 Slicers: Power Pivot Field List has a dedicated area for slicers, where you can
just drag and drop the fields. The slicers also auto-arrange.

PowerPivot Field List v x
Searh =
= Calendar
[Date
[FigcaiMontn
[l FiscalMenthMum
[1 FiscalQuarer
[1 Fiscalvear
[Monzh
[MomihNum
[MomihYear
[l MpninYearlong
[l MonmYearNum
¥ Quarer
] Weekday
[WeekdayN
[Weekds
¥ Year

¥ Customer

= Product

¥ Sales

¥ Tenitories

EHHM 0 year
SubCategony * | Quarer

-

|
'

{5 Sicers Verticsl g Shicers Horizontal
oors Verticsl i) Sicens Horlzontal

TVl ues

Rowlabels X Values
Region v || sales

91. Excel 2010: So easy to add slicers to your Pivot

Year & Quarter
2006 2007 a1 Q2
2008 2009 a3 Q4
Category ’ Row Labels |~ Sales
R - Australia 54,383,480
stttk Canada $1,088,380
Bikes France $1,532,881

Clothing Germany I 51,?34,10}1
United Kingdom | Sales

e United States ;’alue:SET.TE—'l_JC'?
Grand Total $ \o,w. ,erman,-
SubCategory
Bike Racks ~
Bike Stands

Bottles and Cages
Caps

Cleaners

Fenders

Gloves

Helmets

Hydration Packs

92. Excel 2010: Slicers auto-arrange in Vertical and Horizontal areas

Excel 2013 & Excel 2016 Slicers: Slicers are slightly less friendly to use. Here’s
how you can add them to your Pivot.

Option 1 (Insert Single Slicer): Right Click in Field List > Add as Slicer
Option 2 (Insert Multiple Slicers):
PivotTable Tools > Analyze > Insert Slicer

Select Fields > Click OK

PivotTable Fields =

ACTIVE All Review View Developer
— A
Choose fields to add to report i T 2 t— kil — | 4 B
insert Y Filter Refr lange Data
= e - "xJ_-] :nd
shcer Tim®line Connection: - ~Ource =
— Filter ata
.|'I|"r| 1:" F
4 I Customer Insert Dicers - el
Addresslinel |
ALIWE | AL
BirthDate |
CommuteDistance v - L Calendar 4 .
E z E | B Cslendar Hyl L--—-—
Cu Add to Keport Filter | 4 o
Tear 4
Diat Add to Reaw Labels | _'I..ir"f..-xj_-_-
Edu Add to Column Lfll':':‘;i-] Month
Firz Add to Walues .// Fitcal Miersrchy
- r Mare Field
Fu .__-,: Add as Slicer 4
1) [Cuntomer
Addresilinel
BurtnDate
Commaute D itange
B 7
ad !r,
N 4 N

QK | Loangal

93. Excel 2013 & Excel 2016: Adding a Slicer to your Pivot

Measures Are “Portable Formulas”

Stop and think about that “rearrange the pivot and the formulas still work” point for
a moment. Let’s say your workgroup originally requested a report that displayed Sales per
Day and Sales per Transaction, grouped by Month.

How would you build that report in normal Excel? You couldn’t just write formulas in a
pivot. You’d have to do some pretty serious formula alchemy to get it working.

And those formulas, in normal Excel, would be very much “hardwired” to the “I want to
see it by month” requirement.

Then some executive sees the report, loves it, and says “Wow, if only I could see this
grouped by Product instead!”

Switching the normal Excel report over to be grouped by Product rather than Month
(and sliceable by Year) would not be a modification. That would be starting from
scratch, in many ways, and rebuilding the entire report.

With Power Pivot, you just drag fields around in the field list.

@ This is why we often describe measures as “portable formulas” — they can be used in
many different contexts without needing to be rewritten. “Write once, use anywhere” is

another way to say it. And even just the ability to re-use the same formula on another
worksheet, in another pivot, by just clicking a checkbox, is a stunning example of portability.
As your measure formulas become more sophisticated and powerful, this benefit becomes
more and more impactful.

I (Rob) even wrote a guest post for the official Excel blog on this topic, if you are interested:
http://ppvt.pro/PortableFormulas

But before we go any further, we need to talk about how measures actually work.

http://ppvt.pro/PortableFormulas

7 - The “Golden Rules” of DAX Measures

How Does the DAX Engine Arrive at Those Numbers?

In the previous chapter we showed you a bunch of examples of measures, displayed in
various-shaped pivots. And of course, the numbers displayed in all of those cases are
accurate.

Since we’re writing some pretty interesting formulas in pivots now, we need to take a
quick step back and reflect, just a little bit, about how pivots work behind the scenes.

@ On an instinctive level, we're pretty sure you already understand everything
we're going to explain in this chapter, but your understanding is informal and “loose.”
What we need to do is take your informal understanding and make it crisper. We need
to put it into words.

For instance, if we asked you what the highlighted cell in this pivot “means,” we're pretty
sure you will immediately have an answer.

lWow | abhels T Profit | ntal Sales Profit Prt
= AN SR, NS Sh%A Wh! 44.0%
112 S TS T NRUY W IF DS S
328 S2,831 56,292 45.0%
134 S47.462 48.1%
=1 2002 £337,581 5768586 43.0°
112 £284.772 5658402 43.3%
3123 $5.317 511,885 45.0%
IM 7462 598,500 48.1%
Grand Tulal 5621,668 $1,121,253 41.0%

94. Question: Can you explain what the $98,600 “means?”

Let’s make this multiple choice. Choose Answer A or Answer B:

e Answer A: “$98,600 worth of product 344 was sold in the year 2001.”

e Answer B: “When you filter the Sales table to just the rows where
Year=2001 and ProductKey=344, then sum up the SalesAmt column over
those remaining rows, you get $98,600.”

We bet you chose A. Am I right? Yeah, I'm right. Don’t lie to me. Unless you have
actually merged with Excel over the years to form a cyborg calculator, you still think more
like a person than a machine. And people think like Answer A.

But Answer B is exactly how the DAX engine arrived at the $98,600 number. So
learning to think that way, just a little bit, is a goal of this chapter.

@ It’s important for you to get comfortable thinking about measures the way the
DAX engine thinks about them - like Answer B. Thinking like a human (Answer A)
is still important, too, and even when writing measures it’s going to be okay most of
the time. That’s because most of the time, your measure formula just works the first
time you write it. But when your measure formula doesn’t do what you expect, you
usually have to think “the DAX way” (Answer B) in order to fix it.

Teaching you to “think like DAX” is essentially the point of this chapter. Don’t worry if
you haven’t grasped this yet, we’re going to break it down a few ways for you.

Stepping Through That Example

Let’s step through that same “98,600” example from above, this time in the Power Pivot
window so that we have a picture at each step.

Here’s the Sales table:

(- ,ﬂ (=] + | PowerPivot for Excel - ch7xdsx ';:;1 rev = ‘_ﬁ: 0O f; H ers = E Ji‘-r
MR rone | Don . O clear () = —
EF B 2l 0 rox IR i Eled RS
F Fraom Em From Azure | R:;;h PI\’ELH: i s AU ‘F} LRy =
53 | patsbase~ Report DataMarket 0 - - A Filt gBlumn ~
[torderpate] . [8/1/2003 12:00:00 AM ¥ !
OrderDate [=[2% M | 'T_]‘, B M !
| 477 16982 1 4,99 1.8663 4.93 3 2003 |
| 8/2/2003 477 16781 1 4,99 1.8663 4.99 8 2003
8/3/2003 477 21918 2 4.99 1.8663 4.99 8 2003 [
8/6/2003 477 16953 1 4.99 1.8663 4.99 8 2003 |
8/7/2003 477 17506 1 4.99 1.8663 4.99 8 2003 |
8/7/2003 477 16814 1 4,99 1.8663 4,99 8 2003
s 42003 a5 18110 1 4.99 1.8b63 4.93 8 2003
8/8/2003 477 23277 1 4.99 1.8663 4.99 8 2003
8/8/2003 477 17447 1 4,99 1.8663 4.99 8 2003
8/8/2003 477 18102 1 4,99 1.8663 4.95 8 2003
8/9/2003 477 18095 1 4.99 1.8663 4.99 8 2003
8/15/2003 477 17014 1 4.99 1.8663 4.99 8 2003
8/17/2003 477 17165 1 4,99 1.8663 4,99 8 2003~
Total Sales: 5...
Profit: $13,28...
Profit Pct: 45.... !
m
Illes 1 Customers | Prudur.ts_| ||
Record: W 4 1 of 60,398 b s ;I

95. Sales table with all filters cleared

There are three elements of this window we’d like to call out.

1. The “Clear All Filters” Button on the Ribbon. Highlighted in the picture
above. When this is greyed out like this, you know there are no filters
applied on the current table.

2. The row count readout. Pictured here, it shows there are 60,398 rows in
the Sales table when all filters are cleared.

Froft Err s 5

96. Row Count Readout: 60,398 rows are currently being displayed in the Sale table.
3. The measure grid (the three cells at the bottom of the table). Let’s widen
the first column so we can see what those were.

8f8) £0U5

8/8/2003

8/9/2003
8/15/2003
8/17/2003
Total Sales: $29,358,677
Profit: 13,288,972
Profit Pct: 45.3 %

97. Our three measures from the pivot also appear here, in the Measure Grid.

This area at the bottom of the table is the Measure Grid (Calculation Area). This
feature was introduced in Power Pivot v2 release, and lets you add measures from
within the Power Pivot window. Most users would be comfortable with adding
measures from Excel, but you can use either approach or go back and forth. The end-
result is the same, a shiny new measure in your Power Pivot model. The bonus for
Measure Grid is that it’s superb for demonstrating “the DAX way,” so we’re gonna
use it here to great effect.

All right, let’s filter Year to be 2001:

Micalecamt B monthMNum B vear

Surl Smiallesl Lo Largesl
Sort Largest to Smallest

Clear Sort From “Year™

Clear Filter From "Year"

Number Filters

m (Select All)
ol

O

[] 2003

] 2004

98. Filtering to Year=2001

After the filter is applied, let’s check out the measure grid and row readout:

" Profil: $1,M2,756
! Profit Pet: 34.2 %

99. Sales have dropped from $27M to $3.2M, row count dropped from 60k to 1k

OK, now let’s apply the ProductKey=344 filter and then check the same stuff:

100. With both filters applied, we get the $98,600 number (the sum of SalesAmt from 29 rows)

Hey hey! It matches the pivot! Notice that [Profit] is displaying as $47,462 and
[Profit Pct] as 48.1%? Those were the numbers in the pivot as well:

How labels .7 Profit Intal Sales Profit Prt
=M CORIOAF ShANY WhY 8A0%
iz SR Charas &L01%

328 $6.292 45.0%
i34 $98,500
- 2002 £768.586 43.0%
312 5284,772 5658.402 39
128 $5.347 §11.885 AS5.0%
M STAE $98.500 481%
Grand Tolal 621,668 $1,1421,253 AMM.0%

101. [Profit] and [Profit Pct] in the pivot also match up to what we see in the filtered Measure Grid.

Hey, where are our other measures? If we make the measure grid taller, we see that
they are here too:

Totzl Salos: $58,600
Prctit: 547,462
Prcftt Petz 38.1%
CaysS=alling: 1z
Transactions (23]

Salss par lransachan: S, fFLY)
Sales ver Day: 55,178

4|

an s ‘l Cu=stom=rs | Pm-iwts

102. All of our measures are here. Note that [Transactions] = 29, which is also what the row readout tells us.

Do you think the [Days Selling] = 18 number is correct? Of course it is, but double

checking it is a good excuse to show you another trick we use a lot. We dropdown the
OrderDate filter:

&l Lot (1ldesttr Nawest

il Sorl Newesl loCliesl

L Ulrar Hart] nom "(irdedlate”

far 1 ilter 1 rom "'{ri=dlate’

D=tz Filters -

7 | Selecl All) >
) 7/2/2001 E
7 74222001 '
7 8/5/2001

7 &/5/ 2001

7 8/15/2001

7 8/ 24/2001 =

I Cacel

103. Scroll through this list and count how many dates show up. (Hint: there are 18).

@ Dropping down the filters in the Power Pivot window is a very helpful trick.
It will only show you the values that are “legal” in the context of the filters
applied to all other columns at the moment, just like in normal Excel Autofilter.
This trick is especially useful for seeing whether there are any Blank values in
this column once the other column filters are respected. (Even when there are
too many values in the column, and you see the “Not all items shown” warning,
the Blanks checkbox will show up if there are blanks, and if it’s missing, you
know there are none).

Enough examples. We promised you some Golden Rules, and Golden Rules We shall
deliver.

Translating the Examples Into Three Golden Rules

We’ve been teaching these, that we call the Golden Rules of DAX measures, for a
few years now. They serve as the foundation — once you understand these, most
everything that follows will be simple and incremental.

@ When you are reading these rules, we encourage you to reference back to
the examples above to help clarify what the rules mean.

Rule A: DAX Measures Are Evaluated Against the Source Data, NOT
the Pivot

It is very tempting to think that the Grand Total cell at the bottom of a pivot is
the sum of the cells above it, but that is NOT the way it is calculated. As far as
DAX is concerned, the fact that the Grand Total matches the sum of the numbers
above it borders on coincidence.

So when you are thinking about how to construct a measure formula, or are
debugging one that isn’t quite working, visualize the underlying table in the Power
Pivot window, because the DAX engine is doing its work in that context.

For an example of this, we need look no further than the age-old problem of “the
average of averages is meaningless.”

Row Labels -T Prohit Total Szles Protit Pct

2001 $287,087 $652,367 A40'%
312 $236,754 5547 47C 43.3'%
348 52,831 50,292 450'%
344 7,452 258,000 48.1'%

2002 $337,581 $708,880 439'%
312 284,772 S6I840Z 433 %
328 55,347 511,33° 453.0'%
344 >7,402 258,000 8 1

Grand Total $024,608 51,421,253

Does NOT
Matqh .

arrag® 4% T =R Counk 6 S 27200

104. The six selected cells’ Average is 45.5% but the pivot Grand Total is 44.0% - only a calculation against the
individual rows in the Sales table will yield the right result.

Rule B: Each Measure Cell is Calculated Independently

When thinking about how your measure is calculated, it is best to think “one cell at a
time.”

So, pick a cell and visualize how it was calculated, as if it were an island.

@ The value in one measure cell NEVER impacts the value in another

measure cell. The measures are calculated independently, and calculated against
the source table(s). See Rule A

Munth_ - Profit

1 e G1,076,900
2 D —p 51,132,572
% 2 _w 51,183,822
1 51,256,1/9
: 4 ¥ o 61,419 630
6 51,115,822
7 5861 808
% 583G,595
9 S876. 278
10 5910,113
11 §937.113
12 51,381,832
Grand Total £13,288. 972

105. The DAX engine may not calculate in precisely this 1-4 order, but you should think that it does

Rule C: DAX Measures are Evaluated in 6 Logical Steps
Step 1: Detect Pivot Coordinates

Before the DAX engine even looks at your formula, it detects the “coordinates”
of the current measure cell (the Values-area cell from the pivot that is currently
being calculated.)

To illustrate this, let’s use a slightly “richer” pivot:

The selected measure cell has three “coordinates”, coming in from the Row, Column
and the Slicer —

Sales|[MonthNum|]=8
Sales|[Year]=2001, and
Sales[ProductKey]=313

Notice how we specify pivot coordinates in Table[Column] format; that may seem
redundant now, but would come in handy once we start dealing with multiple tables,
so get used to doing it this way.

| MonthMum %

L g 3 4 3 6

Intal ~ales in | abals ~
How | abels =) 2601 AN ANy tirand Intal
114 51 1174, 504
XN YA ‘hihfd
-54,4°9 S64,409
575,144 73,144
S8, 582,300
A9 “A99

106. Detect pivot coordinates

@ A measure cell’s set of filter coordinates is often referred to as its Filter
Context

Step 2: CALCULATE Alters Filter Context

Covered later in the book. We’ll skip the explanation for this for now and save it for
later, where we can explain it in full. (The only reason we’re mentioning it here is
because later in the book, we want the number of the steps to remain consistent).

Step 3: Apply Those Filter Coordinates to the Underlying Table(s)

Those coordinates (the filters in the filter context) are then applied to their respective
underlying tables. In this case, all three coordinates/filters came from the Sales table,
so that’s the only table that will get filtered. (You never see this filtering of course-
because it happens behind the scenes). In our case the Sales table is filtered based on
MonthNum, Year, ProductKey values in our filter context.

Detected Filter Context for current cell

-

— SalesfMonthNumj|=8
SalesfYear]=2001
- SalesfProductKey]=313)

: 2 | vonthNum _ K| vear
8/1/2001 313 3578.27 8] [2001])
8/1/2001 313 3578.27 & 2001
8/1/2001 313 3578.27 8 2001
a/3/2001 313 3578.27 8 2001
8/4/2001 313 3578.27 3 2001
8/6/2001 313 3578.27 3 2001
a/g/200m1 313 I5TR 2T 2 2001

107. Applying Filter Coordinates in Step 3: All Three Filters Get Applied to the Sales Table

Step 4: Filters Follow the Relationship(s)

Covered in Chapter 10. We’ll skip this for now, too.

Step 5: Evaluate the Arithmetic

Once the filter context of a measure cell (determined by its coordinates in the pivot)
has been used to filter the underlying table(s), ONLY THEN is the arithmetic in your

formula evaluated.

In our case, the arithmetic is simple: SUM(Sales[SalesAmt]), but complex arithmetic
would run in similar manner on the filtered set of rows. In other words, your SUM()
or COUNTROWS() function doesn’t run until the filter context has been
applied to the source table(s).

8/1/2001
8/1/2001
8/1/2001
8/3/2001
8/4/2001
8/6/2001
8/9/20m

L -7

313

J13

313
313
313
313
212

3578.27 8 2001
AS78.27 B 2001
3578.27 | 8 2001
3578.27 8 2001
3578.27 & 2001
3578.27 8 2001
3578 27 B 20m

108. Evaluate the arithmetic against all the rows that “survived” the filtering process

Note that Sales[SalesAmt] column itself was not filtered in Step 3, but the filters on
the [ProductKey], [MonthNum], and [Year] reduced the number of rows in the entire
Sales table, and as a result, the [SalesAmt] column now contains only a subset of its
overall values. (We’re running the risk of over-explaining something obvious here,
but it’s kinda beautiful, in an important way, so please indulge us).

Step 6: Return Result
The result of the arithmetic is returned to the current measure cell in the pivot, then

the process starts over at step 1 for the next measure cell.

Total Sales Column Labels -

]1& Row Labels ~ 2001 2002 2003 Grand Total
» 3210 $114,505 $114,505
O {-‘} 311 553,674 553,674
312 564,409 564,409
—t e —— 575,144 575,144

575’14'1 311 EHa, 300 $82,300
=1 1 = oy oy

109. Result is returned back to the Pivot

@ The evaluation steps can be thought of as occurring in two phases: First
the filters are applied, then the arithmetic. You can also think of these as two
machines in an assembly line: the Filter Machine and then the Math Machine.

Filter Engine A Calculatioh Engine

110. Some people find it helpful to visualize the calculation process as an assembly line: first things go into the
Filter Machine, then the Math Machine.

How the DAX Engine Calculates Measures

Here is a recap of all six golden rules, which outline how the DAX engine works:

(1 :IIDetectPivatC(deinatesofCurrentMeasureCell
(2 !CALCULAEAItersFiIterComext...

3 Applythe coordinates in the filter context to each of the respective tables. This results in
a set of “active” rows in each of those tables.

(4 E Filters Followthe RelatlomhmsE

Evaluatethe Arithmetic Once all filters are applied, evaluate the arithmetic - SUM(),
COUNTROWS(), etc. in the formula against the remaining active rows.

Retum Result The result of the arithmetic is returned to the current measure cellin the
pivot, then the process starts over at step 1 for the next measure cell.

111. Measure evaluation proceeds as per steps outlined. Details on some steps to be filled-in in later chapters A
Few More Tips

No “Naked Columns” in Measure Formulas

When you reference a column in a measure formula, it always has to be “wrapped” in
some sort of function. A “naked” reference to a column will yield an error in a
measure. Let’s take a look at an example:

[My New Measure] =
Sales[Margin]
[Measure Settings m
Table name: Sales

Measure name (all PivotTables): M:.'.Néw Measure
Custom name (this PivotTable): My New Measure

Description:

.'=Sales[!u'largin]|

Formatting Ophons

Category:
Mumber
Cumency
Date
TRUE/FALSE

112. We enter a “naked” column reference into the measure editor, then click Check Formula...

-

Measure Settings I. 2 ﬁ]

Table name: Sales

Measure name (all FivotTables): My New Measure
Custom name (this FivotTable): My New Measure

Descnption:

=Sales[Margin]

Calculation emaor in measure "Sales My Mew Measure]: The value for column "Margin® in table "Sales’ cannot be

determined in the cument context. Check that all columns referenced in the calculation expression exist, and that
there are no circular dependencies.

-~

Formatting Options

Categorny:

Mumber
Cumency

Date
TRUE/FALSE

oK][Cancel

113. ...leading to a relatively cryptic error message.

Let’s look at that error message:

“Calculation error in measure ‘Sales’[My New Measure]: The value for column
‘Margin’ in table ‘Sales’ cannot be determined in the current context. Check that all

columns referenced in the calculation expression exist, and that there are no circular
dependencies.”

Not a great error message. It really should be more helpful. But when you see this

error, in your head you should translate this to be “I have a naked column reference
somewhere.”

@“Cannot be determined in the current context” should become a trigger
phrase for you to think “I have a naked column reference somewhere in my
measure formula.”

But all of the following would be valid:

Any aggregation function will do. Think of it this way: pivots are, by their nature,
aggregation devices. They take sets of rows and turn them into more compact
numerical results. Referencing “naked columns” is what calculated column formulas

do. Measure are aggregations, and they don’t accept naked column references
on their own.

@ Remember, naked column references are OK in calculated columns. This
rule only applies to measures.

Best Practice: Reference Columns and Measures Differently
Whenever we are writing a measure formula,

e To reference a column, we include the table name:
TableName[ColumnName]

e To reference a measure, we omit the table name: [MeasureName]

We do this so that our formulas are more readable. If we see a reference with a table
name preceding it, we know immediately that it’s a column, and if we see a reference that
lacks a table name, we know it’s a measure.

Additionally, there are many situations in which omitting the table name on a column
reference will return an error. Following this best practice avoids that issue as well.

Best Practice: Assign Measures to the Right Tables

The “Table name” box in the measure editor controls which table the measure will be
assigned to in the field list.

Measure Settings | ? i;h]
Table name: Sales] l:]
Measure name (all PivotTables):

e Products
Custom name (this PivotTable): wremsare—r—
Description:

Formula: |E| Check formula |

Formatting Options

Category:
Gl |
| Number
| Cumency
Date
| TRUE/FALSE

oK Cancel

114. If you set this dropdown to the Sales table...

Pomse: Spwol Fods List

_:;__.r'"—.r'

s L e ey

Wagin
o Voo ilun
D CerDa L=
¢ =rod ctkey
alesd ot

115. ...the measure will be “parented” to the Sales table in the field list.

Simple Rule: We assign our measures to the tables that contain the numeric columns used
in the formula.

@ This is merely good hygiene so that your model is easier to understand later (by
you or by someone else). If a measure is returning numbers from a column in the
Sales table, I (Rob) assign that measure to the Sales table. Assigning it to the
Customers table would confuse me later on — it would make me think this somehow
evaluated number of customers rather than amount of sales. (I used to think that
which table you assigned a measure to actually impacted the results of measures, but
that isn’t the case. You would get the same results.)

8 - CALCULATE() — Your New Favorite Function
A Supercharged SUMIF()

Have you ever used the Excel function SUMIF(), or perhaps its newer cousin, SUMIFS()?

We describe CALCULATE() as “the SUMIF/SUMIFS you always wish you’d had.” You
are going to love this function, because it works wonders.

In case you are one of the pivot pros who managed to skip SUMIF() and SUMIFS() in
normal Excel, they are both very useful functions: they sum up a column you specify, but
filter out rows that don’t fit the filter criteria you specify in the formula. So for instance,
you can use SUMIF to sum up a column of Sales figures, but only for rows in the table
where the Year column contains 2012.

Does that sound familiar? It sounds a lot like the Golden Rules from the prior chapter —
“filter, then arithmetic.” An interesting similarity, and CALCULATE() continues in that
same tradition.

Anyway, CALCULATE() is superior to SUMIF() and SUMIFS() in three fundamental
ways:

1. It has cleaner syntax. This is the smallest of the three advantages, but it feels
good. And a happier formula writer is a better formula writer.

2. Itis an “anything” IF, and not limited to SUM/COUNT/AVERAGE. There is
no MAXIF() function in Excel for instance. That always bugged us. Nor is there
a MINIF(), and there is definitely no STDEVIF(). CALCULATE() is literally
unlimited — it allows you to take any aggregation function (or even a complex
multi-function expression!) and quickly produce an IF version of it.

3. It can be used in pivots (as part of a measure), which normal SUMIF() cannot.

CALCULATE() Syntax

@ CALCULATE(<measure expression>, <filter1>, <filter2>, ...)

Ex: CALCULATE(SUM(Sales[Margin]), Sales[Year]=2001)
Ex: CALCULATE([Sales per Day], Sales[Year]=2002, Sales[ProductKey]=313)

CALCULATE() in Action — a Few Quick Examples

Let’s start with a simple pivot. Year on rows, [Total Sales] measure on values:
OK, let’s add a new measure, one that is always filtered to Year=2002:

[2002 Sales] =
CALCULATE ([Total Sales], Sales[Year] =)

Three things to note in this formula:

1. We used the name of a measure for the <measure expression> argument of
CALCULATE. Any expression that is legal for a measure is okay there — that
includes the name of a pre-defined measure, or any formula expression that
could be used to define a measure.

2. In the <filter> argument, 2002 is not in quotes. That’s because the Year
column is numeric. If it were a text column, we would have needed to use
=72002” instead.

3. We only used one <filter> argument this time, but we could use as many as
we want in a single CALCULATE formula.

Year * Total sale=

2001 33,266,371
2002 36,530,314
2003 99,791,020
2004 49,770,500
Girand Intal L9 VSR b F

116. Simple pivot — the basis for our first foray into CALCULATE()

And the results:

Yed « Tolal S3les 2002

2001 s

2002

2003 59,791,060 506,530,344

2004 59, 777,900 156,730,344
Grand Intal 29, W8 b7 Sh, ',

117. Our new measure matches the original measure’s 2002 value in every situation!

Do those results surprise you? We bet they are close to what you expected, but
maybe not exactly. You might have expected years 2001 and 2003 to display zeroes
for our new measure, and you might be scratching your head a bit about the grand
total cell, but otherwise, having the new measure always return the 2002 value from
the original measure is probably pretty instinctive.

It’s not very often that we write a CALCULATE measure that filters against a
column that is also on the pivot (Sales[Year] in this case). That seldom makes any

real-world sense. We just started out like this so you can see that the $6,530,344
number matches up.

So to make this a bit more realistic, let’s take Year off of the pivot and put
MonthNum on there instead: This probably makes even more sense than the prior
pivot. The grand total is still that $6.5M number, but every other cell returns a
distinct number — the sales from 2002 matching the MonthNum from the pivot.

This is the sales
for month 2 (Feb)
of 2002

= | Tolal Sales 2002 Sales

1
2 :
3 52.610,615] &
4 62,776,842] 5663,692
> $3,114,0640] 56/3,550
6 $3,180,924] $676,764
All 12 cells 7 $1,911,263] 500,365
8 $1,899,607] $516,001
selected sum . 41 5346650 350401
to our "magic” v 92,003,169 - $415,330)
$6.5M number. 11 $2,076,070] $335,095

12 53,064,620
and matches 2 are

grand total

et/ ‘Sheetb - Sheetll Sheetll (/|4
Average: 5544195 Count: 13 Sum: 56,530 344

118. Previous results examined: each month of 2002 is returned separately, and the grand total matches all of
2002. Exactly what we want and expect!

How CALCULATE() Works

Now that we’ve looked at a couple of examples, let’s examine how CALCULATE()
truly works, because that will clear up the handful of somewhat unexpected results in
that first example.

There are three key points to know about CALCULATE(), specifically about the
<filter> arguments:

1. The <filter> arguments operate during the “filter” phase of measure
calculation. They modify the filter context provided by the pivot — this
happens before the filters are applied to the source tables, and therefore also
before the arithmetic phase.

2. If a <filter> argument acts on a column that IS already on the pivot, it
will override the pivot context for that column. So in our first example

above, the pivot is “saying” that Sales[Year]=2001, but we have
Sales[Year]=2002 in our CALCULATE(), so the pivot’s “opinion” of 2001
is completely overridden by CALCULATE(), and becomes 2002. That is
why even the 2001 and 2003 cells (and the grand total cell) in the first
example returned the 2002 sales number.

3. If a <filter> argument acts on a column that is NOT already on the
pivot, that <filter> will purely add to the filter context. In our second
example, where we had Sales|MonthNum] on the pivot but not Sales[Year],
the Sales[Year]=2002 filter was applied on top of the Month context coming
in from the pivot, and so we received the intersection — 2002 sales for
month 1, 2002 sales for month 2, etc.

So it is time to fill in Step #2 in our DAX Evaluation Steps diagram to explain where
CALCULATE inserts itself, allowing us to alter the filter context:

| =]

|lf/ :
\

M

.f"3

(4

DetectPivot Coordinates of Current Measure Cel

; ':\ f CALCULATE Alters Filter Context: If applicable, apply <filters> from CALCULATE(),

ht

adding/removing /modifying coordinates and producing a new filter context.

'_T Applythe Coordinatesin the filter context to each of the respective tables. This results in

a set of “active” rows in each of those tables.

] i i . . .
.(Evaluatethe Arithmetic Once all filters are applied, evaluate the arithmetic - SUM(),

. Returmn Result: The result of the arithmeticis returned to the current measure cell in the

COUNTROWS(), etc. in the formula against the remaining active rows.

pivot, then the process starts over at step 1 for the next measure cell.

119. The DAX Evaluation Steps from last chapter: revised to explain CALCULATE()’s impact on filter context

Two Useful Examples of CALCULATE()

The [2002 Sales] measure that we have been using as an example so far is a good
way to show you how CALCULATE() works, but it might not seem terribly useful.
So let us show you two quick examples that are much more broadly applicable.

Example 1: Transactions of a Certain Type

Here is one that we see all the time in the retail sales business: not all transactions are
normal sales. Some businesses record many different transaction types including
“Normal Transaction,” “Refund,” and “Promotional Sales Transaction.”

Our database has a column for that, so we went ahead and imported it into our Sales
table (using Table Properties). Here, we see that it has three values:

Sort Smallest to Largest
Sort Largest to Smallest

Clear Sort From "TransType”
Clear Filller From T';|:_—T";_||:'

Mumber Filters

(Select All)

. 00 00 0 00 00 00 00 00 0O O 0 00 @ 0 o

120. Our newly-imported TransType column

We now want to write four new measures, defined here in English:

e “Regular” Sales — Just transactions of type 1

e “Promotional” Sales — Just transaction of type 3

e “Refunds” — transactions of type 2, expressed as a negative number
e “Net Sales” — Regular plus Promotional sales, less Refunds

Now, here are the formulas for each:

[Regular Sales] =
CALCULATE ([Total Sales], Sales[TransType] = 1)

[Promotional Sales] =
CALCULATE ([Total Sales], Sales[TransType] = 3)

[Refunds] =
CALCULATE ([Total Sales], Sales[TransType] = 2)

]

[Net Sales] =
[Regular Sales] + [Promotional Sales] + [Refunds]

@ Note that our treatment of [Refunds] assumes that refunds are recorded as

positive values in our Sales table. If they were recorded as negative values, we would
remove the multiplication by -1 from the [Refunds] measure.

Results:

Row Labels -~ Normal Sales Promo Sales Refunds Net Sales

2001 52,235,112 5505.235 (5526,027) 52,214,320
2002 $4,677,472 $915,346 ($937,525) 94,655,293
2003 $6,965,623 $1,441,621 ($1,383,817) $7,022,427
2004 $6,906,155 51,480,472 (3$1,384,273) 57,002,355
Grand lotal S20,/88,3b2 $4,342,06/4 (54,231,042) 520,895,394

121. All four measures added to pivot, with Year on rows

Neat huh?

And then continuing down Practical Road, let’s see what percentage of our sales are
due to us running promotional campaigns:

[Pct Sales on Promo] =
[Promotional Sales]
/ ([Regular Sales] + [Promotional Sales])

Results:
Row Labels ~ Mormal 5ales Promo Sales Refunds Met Sales
2001 52,235,112 5505,235 {5526,02?} 52,214,3
2002 54,677,472 §915,346 ($937,525) $4,655,2
2003 56,965,623 51,441,621 {51,383,81?} 57,0234
2004 56,906,155 51,480,472 (51,384,273) 57,002,3
Grand Total 520,784,362 54,342,674 [54,231,542] £20,805,3

122. Highlighted measure tells us what percentage of our sales dollars come from promotional campaigns
Example 2: Growth Since Inception

We’re going to define a new “base” measure that tracks how many customers were
active in a given timeframe:

[Active Customers] =
DISTINCTCOUNT (Sales[CustomerKey])
@ “Base measure” is how we refer to measures that do not refer to other

measures, and are pure arithmetic like the one above.

And now a measure that always tells us how many customers were active in 2001
(our first year in business):

[2001 Customers] =

CALCULATE ([Active Customers], Sales[Year] =)

Results:
Year * Active Customers 2001 Customers
2001 1013 1013
2002 2077 1013
2003 9309 1013
2004 11377 1013
Grand Total 18484 1013

123. Active customers by year, and active customers for 2001 specifically
And then a measure that tells us percentage growth in customer base since 2001:

[Customer Growth Since 2001] =
DIVIDE ([Active Customers] — [2001 Customers], [2001 Customers])

Results:

Year + Active Customere 2001 Customers Customer Growth Since 2001

2001 1013 10 0.0 %
LU0 2017 1U 164.3 %
2003 9309 10 819.0%
2004 11377 n 1M23.1%

Grand Total 18484 101

124. Percentage growth in customer base since 2001

Alternatives to the “=” Operator in <Filters>

In a <filter> argument to CALCULATE(), you are not limited to the “=”
operator. You can also use:

e < (Less than)

e > (Greater than)

e <= (Less than or equal to0)

e >= (Greater than or equal to)
e <> (Not equal to)

Evaluation of Multiple <filters> in a Single CALCULATE()

All of the <filter> arguments in a single CALCULATE() behave as if they are
wrapped in an AND() function. In other words, a row must match every <filter>
argument in order to be included in the calculation.

If you need an “OR()” style of operation, you can use the “||” operator. For instance:

=CALCULATE ([Total Sales],
Sales[TransType] = 1 || Sales[TransType] = 3)

/N\ When you use the || operator within one of the Calculate filter arguments, it can
only be used between comparisons on a single column — TransType in this case. You

cannot use || between comparisons that operate on different columns, such as
TransType and Year.

The “ALL” (aka “Unfiltered”) Filter Context

That [Active Customers] measure provides an opportunity to explain how the Grand Total
cell works in the pivot.

Let’s look at the pivot again:

Year * Active Customers
2001 1013
2002 2677
2003 9309
2004 11377
Grand Total . 18484 |
t12 . Sheetll 4 ~4 -

. =
AVerage a4 Count 4 § Sum: 24376

125. Sum of all years is MUCH higher than the Grand Total cell

A perfect example of why it’s important to think about the measures evaluating
against the source table(s) rather than in the pivot itself. Also, we’ve talked a lot

about filter context to this point, but so far, we have not discussed the filter context of
the grand total cell.

It’s pretty simple actually: the grand total cell represents the absence of a filter.
In the context of that cell, it’s as if the Year field is not even on the pivot.

To drive this home, let’s remove Year from the pivot:

Active Customers
18484

126. Remove Year from the pivot, and the result matches the Grand Total cell from when Year IS on the pivot.
This is not an accident!

It makes sense: some of our customers from 2001 stuck around and bought things in
2002 (and later), and some 2002 customers similarly persisted into 2003. If we
summed the individual totals for each year, we’d count those “carryover” customers
more than once (and end up with 24,376). But when we clear the Year filter, the
DISTINCTCOUNT/(Sales[CustomerKey]) arithmetic runs against an unfiltered table,
and only counts each customer once! We end up with 18,484, which is the correct
answer.

@ Don’t skip the paragraph above. The world won’t end if you do skip it, but
it’s worth more attention than the average un-bolded text

Not all Totals Are Completely (or Even Partially) Grand

To clarify, let’s drag Year to Columns, and add MonthNum to rows:

Active Customers Year %

MonthNum * | 2001 2002 2003 2004 Grand Total
1 188 244 1777 | 2132]
2 171 272 1794 2167
3 199 272 1879 2260
4 207 294 1981 2418
5 214 335 2145 2621
o 214 321 2135 2596
7 146 253 511 931 1817
8 156 281 1509 1926
9 146 158 1553 1885
10 161 229 1624 1991
11 169 193 1634 1571
12 a3z 330 2037 2532
Grand Total | 1013 2677 9309 11377 18484

127. Filter context for three different kinds of grand totals — total across Years, total across MonthNums, and
total across both.

Every total in a pivot is really just the absence of one or more filters — a place
where one or more of the pivot fields does not apply, as if the field were
completely absent from the pivot.

As you add more fields to rows and columns, you get many different variations of
totals. For instance, nothing really changes when you nest one field under another.
Let’s nest MonthNum under Year on Rows as an example:

Year-Month - | Active Customers

=12001 03 Year=2001, Month=11
7 146
B8 156
3 146
10 161
1 169
12 235
20
1 188
2 171
; 199 Year=2002, Month=ALL

128. Nesting does not really change anything. Note the subtotal for 2002 (2677) was a grand total cell when Year
was on Columns (in the previous pivot).

@ The physical location of a measure cell in the pivot is not important.
Only its “coordinates” are important. A filter context of Year=2002,
Month=ALL is exactly the same to the DAX engine, no matter where the Year
and MonthNum fields were located — rows, columns, report filters, or slicers.

9 - ALL() — The “Remove a Filter” Function

Given where the last chapter left off, this sure seems like a great time to introduce the
ALL() function.

In fact, given last chapter’s section on the “ALL” filter context, and the title of this
chapter, you can probably already guess most everything you need to know about the
ALL() function. So we won’t bore you with long-winded explanations of the basics. We
will keep it crisp and practical.

The Crisp Basics

The ALL() function is used within a CALCULATE(), as one of the <filter>
arguments, to remove a filter from the filter context.

Let’s jump straight to an example. Consider the following pivot: [Net Sales] displayed by
MonthNum, with Year on a slicer:

7 - % Month * Mot Sales
5325,923
5334,359
$332,465
5364,024
5458,230
5340, 21Y
5675,507
S570.07
6783,061
5756,351
$807,463
12 51,218,949
Grand Total 57,023,427

2001 2002
2003 2004

D 20 =] & U B W k=

| el
| =]

129. We will use this pivot to demonstrate the usage of ALL().

OK, time for a new measure:

[All Month Net Sales] =
CALCULATE ([Net Sales], ALL (SalesfMonthNum]))

And the results:

Year

2001
20032

2002
2004

1 $325,923
2 $384,359
3 $332,465
a $364,024
3 $458,236
6 $346,219
7 $675,507
8 $570,071
g $783,861
10 $756,351
11 $807,463
12 2 949

Grand Total 57,023,427

Month | = NetSales All Month Net Sales

130. Because ALL() removed the filter from MonthNum, every measure cell in the right column has precisely the

same filter context (coordinates) as the grand total in the left column

@ We suppose you can also think of ALL() as a means by which to

“reference” one of the total cells in a pivot, as long as you also understand that
fundamentally, what you are doing is clearing/removing a filter from the filter

context.

The Practical Basics — Two Examples

Time for a couple of examples of where ALL() is useful.

Example 1 — Percentage of Parent

Let’s do a simple ratio of the two measures already on the pivot:

[Pct of All Month Net Sales] =
[Net Sales] / [All Month Net Sales]

Results:
Year &
2001 2002
2003 2004

Month |~ NetSales All Month Net Sales

ﬁt-of All Month Net Sa&

4.6 %
5.5%
4.7 %
5.2%
6.5 %
4.9%
9.6 %
8.1%
11.2%

1 $325,923 $7,023,42
2 $384,359 $7,023,42
3 $332,465 $7,023,42
4 $364,024 $7,023,42
5 $458,236 $7,023,42
6 $346,219 $7,023,42
7 $675,507 $7,023,42
8 4570,071 $7,023,42
g $783,861 $7,023,42
10 $756,351 $7,023,42
11 $807,463| $7,023,42
12 $1,218,949 $7,023,42
Grand Total 57,023,427 $7,023,42

10.8 %

11.5%

17.4%
100.0

131. New measure returns each month’s contribution to the “all month” total

We can remove the original ALL measure from the pivot and the new “pct of total”
measure still works:

Year & Month ~ MetSales Pct of All Month Met Sales
1 5325,923 4.6%
i . 2 $384,359 5.5%
2003 2004 3 $332,465 4.7%
4 $3A4,074 5.2 %
5 458,236 6.5%
b 5340,219 4.9 %
7 $675,507 9.6 %
8 $570.071 8.1%
9 £783,861 11.2%
10 5736,351 10.8 %
11 $807,463 11.5%
12 51.218.949 17.4%
Grand Total $7,023,427 100.0 %

132. Pct of total measure still works without the ALL() measure on the pivot

@ Yes, you can do this in Excel pivots without the use of ALL(). You can use
the Show Values As feature and achieve the same visual result. But that
conversion (from raw value to % of total) happens after the DAX engine has
done its work, meaning that the DAX engine only has the raw value. In other
words, if you ever want to use a “Pct of total” value in a DAX calculation, Show
Values As is useless — you absolutely need to use ALL() as illustrated above.

Example 2 — Negating a Slicer

This one is useful, but also a lot of fun. Let’s start with the following pivot (we just
added ProductKey as a slicer, and made a few selections).

Yoo & Month ~ NetSales

: 1 511,745

202 2008 2 513,311

2004 3 $14,094

4 515,660

ProductKey W 5 $17,226

(i 514,877

214 217 - 7 $900

222 225 = 8 51,450

2 221 q 41,850

10 52,799

234 | 237 W

11 52,250

21 23 12 $2,599

325 || 327 Grand Total $98,760
329 331
333 335
b e o 330

133. Pivot with product slicer
Now add a measure that ignores any filters on ProductKey:

[Net Sales - All Products] =
CALCULATE ([Net Sales], ALL (Sales[ProductKey]))

And a measure that is the ratio of that to the original [Net Sales]:

[Selected Products Pct] =
[Net Sales] / [Net Sales - All Products]

Results:
Year T Month |~ | Met Sales NetSales - All Products Selected Products Pct
1 $11,745 $325,923 | 3l6%
2002 (2003 | 2 $13,311 4384,359 |} 3.5%
2004 2001 3 514,094 $332,465 42
4 515,660 $364,024 B 4.3 %
—— - 5 17,226 458,236 3.8%
6 414,877 5345,2136 43 “ﬂ]
214 217 = 7 $900 $675,50 0.1%
222 225 ‘E ‘ 3 $1,450 $570,071 | 0.3%
% 31 | B 9 $1,850 $783,861 I:_Il 0.2%
10 2,799 756,351 0.4%
[=][=] 52, 5756,351 | |
: 11 $2,250 $807,463 | | 0.3%
321]E 23| 12 $2,599 $1,218,949 [| 0.2%
[325][327] Grand Total $98,760 $7,023,427 1.4%
233 2325

134. The seven selected products account for 4.3% of all Net Sales in April 2003, but only 0.1% of all sales in
July 2003.

@ We're a big believer in conditional formatting. We apply conditional
formatting to our pivots almost instinctively at this point.

Now we change the selection of products on the slicer:

[]
Smlrm * MNet Salegf Net Sales - All Products

elected Products Pct

1 $12,00. 5325,923 3.7%

2 $384,359 4.4%

I o Sa $332,465 3.9%

a $364,024 5.5 %

sereenshot oo

$345,219 3.5%

384 383 * 7 $675,507 2.2%

386 387 8 $570,071 3.9%

338 339 3 $783,861 4.1%

o e 10 $756,351 1.9%

11 $807,463 2.6%

HhS or | 12 $1,218,949 .2 %

471 472 Grand Total $251,91 $7,023,42 3.6%
AT73 A7

135. These five products account for a lot larger share of Net Sales than the previous seven. Note that the
highlighted middle column (the ALL measure) is unchanged from the previous screenshot.

@ You cannot achieve these results using Show Values As. ALL() is the only
way.

Variations

ALL() can be used with arguments other than a single column. Both of these
variations are also valid:

e ALL(<Col1>, <Col2>, ...) — You can list more than one column. EX:
ALL(Sales[ProductKey], Sales[Year])

e ALL(<TableName>) — shortcut for applying ALL() to every column in the
named table. EX: ALL(Sales)

ALLEXCEPT()

e Let’s say you have 12 columns in a table, and you want to apply ALL() to 11 of
the 12, but leave 1 of them alone.

e You can then use ALLEXCEPT(<Table>, <coll to leave alone>, <col2 to leave
alone>...)

e Example:

ALLEXCEPT (Sales, Sales[ProductKey])

Is the same as listing out every column in the Sales table except ProductKey:

ALL (

Sales[OrderQuantity], Sales[UnitPrice],
Sales[ProductCost], Sales[CustomerKey],
Sales[OrderDate], Sales|fMonthNum],...
<every other column except ProductKey>

)

So ALLEXCEPT() is a lot more convenient in cases like this.

@ The other difference, besides convenience, is that if you subsequently add a new
column to the Sales table, ALLEXCEPT() will “pick it up” and apply ALL()
behavior to it, without requiring you to change your measure formula. The ALL(<list
every column>) approach obviously will not apply to the new column until you edit
the formula.

ALLSELECTED()

This is a new one in Power Pivot v2, and it’s something we have needed a few times in v1.
We don’t expect to use it super frequently, but when you need it, we have found there is no
workaround — when you need this function, you really need it.

First, let us show you a trick that has nothing to do with DAX.

Did you know that a field on rows or columns or report filter can also be dragged to
Slicers and be two places at once?

MonthNum i
1 2 3 4
5 6 7
9 10 11 12

Month .7 Net Sales

51,829,334
51,628,165
51,870,331
2,068,226
52,293,868
52,186,330
Grand Total $11,876,254

oh A s b R e

136. MonthNum field on both Rows and Slicer — makes for quick filtering of the Row area without having to use
the Row Filters dropdown

@ Remember the people who consume the work of Excel Pros? The people
who don’t enjoy working with data as much as we do? They do not like using
the Row Filters dropdown, at all. Nor do they like using Report Filters. Most of
them do enjoy working with slicers though, so this “duplicate a field on Rows

and on a Slicer” trick is something we do on their behalf. Actually, it’s better for
us, too.

Now let’s just find the [All Month Net Sales] measure that we defined using ALL()
and put that on the pivot:

I MonthNum kS

EINIENNE
EDED /=
9

10 11 12

All Month Net Sales

Month .T Net Sales

1 $1,829.3 520,895,394
2 $1,628,1¢ $20,895,394
3 $1,870,33 520,895,394
4 52,068,22 $20,895,394
5 $2,293,8 520,895,394
A

$70,895,394

137. The selected measure is defined with ALL(Sales[MonthNum])

Now let’s clear the filter on the slicer and see what we get:

MonthNum

2 3 4

s |[7 8

0 |11 || 12
Month ~ Netsales All Month Net Sales
1 51,829,334 520,895,394
2 51,628,165 520,895,394
3 $1,870,331 520,895,391
4 52,068,226 $20,895,394
5 $2,293,868 520,895,394
6 52,186,330 520,895,394
7 41,369,087 570,895,394
g $1,235,607 $20,895,394
9 51,238,364 $20,895,3%4
10 51,474,433 520,895,394
11 51,462,976 520,895,394
12 $2,132,672

Grand Total 520,895,394

138. The selected measure is defined with ALL(Sales[MonthNum])

But our goal here is to create a “percent of everything I SEE” measure. If we
select six months on the slicer, we want a measure that returns just the total of
those six months.

So let’s define a new measure, and this time use ALLSELECTED() instead:

[Net Sales for All Selected Months] =
CALCULATE ([Net Sales], ALLSELECTED (SalesfMonthNum]))

And then a ratio measure:

[Pct of All Selected Months Net Sales] =
[Net Sales] / [Net Sales for All Selected Months]

Results:

MonthNum [

ERREIN T T

s s Jlz _Jl&8 |

&)w)m =)
Month |~ NetSales MetSales for All Selected Months Pct of All Selected Months Net Sales
1 1,829,334 %20,895,394 8.8 %
2 51,628,165 520,895,394 7.8%
3 51,870,331 520,895,394 9.0 %
4 52,068,226 520,895,394 9.9%
5 52,293,868 520,895,394 11.0%
] 52,186,330 520,895,394 10.5 %
7 51,369,088 520,895,394 6.6 %
8 51,335,607 520,895,394 6.4 %
9 51,238,364 520,895,394 5.9%
10 51,474,433 520,895,394 7.1%
11 51,462,976 520,895,394 7.0%
12 42,138,673 %20,895,394 10.2 %
Grand Total %20,895,394 $20,805,304 100.0 %

139. Looks the same as the ALL() measure, so far...

But now let’s select a subset of the months on the slicer:

Month -T|MNet Sales

MonthNum L
L J2)3 = |
ERER - s

Net Sales for All Selected Months Pct of All Selected Months Net Sales

1 $1,829,334 $11,876,254 15.4%
7 $1,628,165 $11,876,254 13.7%
3 41,870,331 411,876,254 15.7%
a 42,068,226 411,876,254 17.4%
5 42,293,868 411,876,254 19.3%
6 42,186,330 411,876,254 18.4 %
Grand Total $11,876,254 11,876,254

140. NOW we see a difference. Middle column is no longer over $20M. Also note the highlighted grand total is
100% - if we were using ALL(), that number would be lower (closer to 50% since 6 months are selected).

That’s enough about ALL() and its variants for now.

10 - Thinking in Multiple Tables
A Simple and Welcome Change

In the opening chapters, we mentioned that Power Pivot offers a lot of benefits when you
are working with multiple tables of data. But so far, we have shown none of those - we
have only worked with the Sales table. Why have we waited?

Working with multiple tables is not complicated — it actually requires you to unlearn old
habits more than it requires you to learn new ones. This is not going to be a difficult
adjustment for you, just a little different.

The reason we waited until now to cover “multi table” is this: All of the concepts covered
so far work the same way with multiple tables as they do with one table. We didn’t
want to risk confusing you by teaching the CALCULATE() function at the same time as
multi-table.

So this chapter really just extends what we have already covered, and shows how the
same rules apply across tables as they do within tables.

Unlearning the “Thou Shalt Flatten” Commandment

Normal Excel literally requires that all of your data resides in a single table before
you can build a pivot or chart against it. Since your data often arrives in multi-table
format, Excel Pros have also become part-time Professional Data Flatteners.

e That usually means flattening via VLOOKUP(). Sometimes it means lots of
VLOOKUP().

e Sometimes it involves database queries. Some Excel Pros who know their way
around a database also write queries that flatten the data into one table before it’s
ever imported.

You do not need to do either of these anymore. In fact, you should not.

/\ n Power Pivot there are many advantages to leaving tables separate. It may be
tempting to pull columns from Table B into Table A, especially using the
RELATED() function. You should resist this temptation. We sometimes use
RELATED() to partially combine tables but only when debugging or inspecting our
data. We delete that column when we are done with our investigation.

Got it? Just leave those tables alone. And if you already have flattened versions of your
tables in your database, we actually recommend not using those versions — import the
tables “raw” (separately). If flattened versions are the only ones available, consider
unflattening them in the Database or by using Power Query, before you bring them into
Power Pivot.

Relationships Are Your Friends

Let’s create our first relationship between two Power Pivot tables. Take a look at our
Products table:

- - - - - ol »
422 LLRoad Rear Wheel 45.9789 TRUE Black 1050 500 375 112.565
423 ML Road Rear Wheel 122.2709 TRUE Black 1000 500 375 275.385
413 LLRoad Front Wheel 37.9909 TRUE Black 900 500 375 85.565
424 HLRoad Rear Wheel 158.5346 TRUE Black 890 500 375 357.06
414 ML Road Front Wheel 110.2829 TRUE Black 850 500 375 243.385
415 HLRoad Front Wheel 146.5466 TRUE Black 650 500 375 330.06
557 ML Crankset 113.8816 TRUE Black 635 500 375 256.49
556 LLCrankset 77.9176 TRUE Black 600 500 375 175.49

141. We have not yet used the Products table, but it contains a lot of useful columns!

To create a relationship, click on the ‘Create Relationship’ button on the Design tab.

B |
“ Hnome Ilesign Advanren

B T Detete ﬁr — q|

L Freeze = —l e
Add Insert Calculation Existing
| Width Function Uptions™ Lonnecions

e

142. Creating our first relationship

We’re going to create a relationship between Products and Sales, using the
ProductKey column:

Create Relationship Iiléj

Create a lookup relationship between two tables

Select the tables and columns you want fo use to create the relationship.

Table: Column:

Sales - Product Key -
Related Lockup Table: Related Lookup Column:

- ProductKey -

Create] [Cancel

143. Relating Sales to Products

“Lookup” Tables

Note how we selected Products to be the Lookup table? That’s important. So
important, in fact, that Power Pivot will not let us get it wrong. Let’s try reversing the
two and see what happens:

Create Relationship |i|ﬂj

Create a lookup relationship between two tables

Select the tables and columns you want to use to create the relationship.

Table: Column:

Products - Product Key -
Related Lookup Table: Related Lookup Column:

Sales] = | @ | ProductKey =

Create] | Cancel

144. We reversed Sales and Products, selecting Sales as our Lookup table, and we get a warning

Hover over the warning icon and we get an explanation:

Table: Column: 256.49 NA G
Products - Product Key - 175.49 NA G
404.99 NA G

106.5 NA G

Related Lookup Table: Related Lookup Column; 1065 NA G
== = ekpmdm'(ey M 53.99 NA E

The relationship cannot be created in the requested direction. When you click create, the direction of the relationship will be reversed.
[Create] | Cancel | | [62.09 NA G |

145. Power Pivot detects that we got the order wrong, and when we click OK, Products will be correctly used as
the Lookup table!
The use of the word “Lookup” was deliberate. Back at Microsoft, we chose that word
so that it would “rhyme” with Excel Pros’ familiarity with VLOOKUP.

@ Think of Lookup tables as the tables from which you would have “fetched”

values when writing a VLOOKUP. Lookup tables tend to be the places where
friendly labels are stored for instance.

From here on, we will refer to the two tables’ roles in a relationship as the
“lookup table” and the “data table.”

The Diagram View

This feature was introduced in Power Pivot v2, and it becomes very helpful as
your models grow more sophisticated. But in smaller models, Diagram View is a
fabulous gift to the authors of Power Pivot books, because we don’t have to spend
long hours making graphical representations of tables and relationships

D= = o
Show Calculation 2596.2834
Hidden Area

1ew

B = T RS

1.

T —
146. Click the Diagram View button on the ribbon or in the bottom-right corner of the Power Pivot window.

Clicking that button gives us:

Home Design
'fﬂ: Delete ﬁ
| Freeze ~

| ES ﬁ | ¥ undo -~ |

Bane] ™ Redo -
Add Insert Calculation Existing Create Manage Table Mark as
I_l Width Function Options~ Connections | Relationship Relationships | Properties | Date Table -
Columns Calculations Relationships Edit

1 customerkey fH productkey
E GeographyKey @ CustomerKey
i customeralternate... i orderuantity
= Title 1 unitprice

FH FirctNama - proaductrast

1 productkey
T weightUnitMeasu...
@ SizeUnitMeasurecC...
F englishProductia...

[nan T R

L J

147. Diagram View! All three tables displayed, with two of them linked by the relationship we just created.

@ Notice the direction of the arrow. Up through 2013, the arrow always points

to the Lookup table. You can also create, edit and delete relationships in the
diagram view. We will see an example later in this chapter.

> ProductKey

CrderDate
ShipDate
Customerkey

SalesTerritoryKey

> Productkey
ProductMame
SubCategory
Category

% CtandardCact

148. In Excel 2016 & Power BI Desktop, the arrows point the opposite direction which is an improvement. Trust
us.

Using Related Tables in a Pivot

Now let’s revisit a pivot that uses ProductKey on Rows, and enhance it with
some of the columns from this Products table.

Pmductl{eyE Mormal Sales Promo Sales Refunds Met Sales Pct Sales on Promo

214 554,934 $11,932 ($11,162) $55,704 17.8%
217 $52,170 $10,742 ($10,042) $52,870 17.1%
222 $52,205 $11,547 ($10,602) $53,150 18.1%
225 513,854 53,012 (52,823) $14,042 17.9%
228 514,837 52,899 (53,643) 514,147 16.3 %
231 516,247 52,200 (53,649) $14,797 11.9%
234 $16,047 $2,500 (54,049) 514,457 13.5%
237 $14,197 $3,399 (53,049) $14,547 19.3 %
310 $862,363 $150,287 ($S189,648) $823,002 14.8 %
311 $669,136 5164,600 (5171,757) $661,980 19.7%
312 $837,315 5182,492 (5186,070) $833,737 17.9%
313 §722,811 5196,805 ($161,022) $758,593 21.4%
314 §755,015 $157,444 (5143,131) $769,328 17.3%
320 59,088 §2,097 (52,097) 59,088 18.8 %

149. ProductKey pivot — but of course, ProductKey is meaningless to us.

OK, let’s remove ProductKey:

Normal Sales Promo Sales Refunds Net Sales Pct Sales on Promo

520,784,362 $4,342,674 ($4,231,642) $20,895,394 17.3%

150. Be gone, ProductKey! And never show your face on a pivot again.

Now I’ll add ProductName from the Products table instead:

PowerPrsot Field List - X

e 2]
=l Products "
Category -

Class

Color
DaysToManufacture
DealerPrice
EndDate
EnglishDescription
FinishedGoodsFlag
Listinice 3
ModelName

Froductksy

m

o oo e o v v e § o

PFroguctName

] SaretysiockLevel
—

Birea

i

1% Slicers Vertical &) Slicers Horizontal

‘S Report Filter =] Column Labels

 WValues

MNormal $ales ¥
Fromo $ales o

Refun;}s -
NetSales hof
PctSalesonPr.. ™

151. Checked the ProductName field in the field list, adding it to Rows

ProductName -+ Normal Sales Promo Sales Ref!lnqs Net Sales Pct Sales on Promo
Road-650 Black, 58 534,312 516,191 (57,494) 543,009 32.1%
Touring-1000 Blue, 54 5226,487 5104,899 (550,065) 5281,320 31.7 %
Touring-3000 Yellow, 54 523,013 58,166 {$4,454) 526,725 26.2%
Mountain-100 Black, 38 $108,000 537,125 (520,250) $124,875 25.6 %
Mountain-400-\W Silver, 46 568,485 523,085 ($14,620) 576,949 25.2%
Touring-2000 Blue, 60 564,387 520,652 [513,363) 571,676 24.3%
Touring-1000 Yellow, 54 5252,711 573,906 [550,065) 5276,552 22.6%
Touring-3000 Yellow, 62 525,982 57,424 (53,712) 529,694 22.2%
Hitch Rack - 4-Bike 526,880 57,560 (54,920) 529,520 22.0%
Mountain-500 Silver, 44 514,125 53,955 (53,955) 814,125 21.9%
Road-650 Red, 44 536,073 59,927 (58,529) 537,472 21.6 %
Road-150 Red, 52 $722,811 $196,805 (5161,022) 5758,593 21.4%
Road-650 Black, 62 533,976 59,223 {55,844) 537,360 21.4%
Road-750 Black, 52 $140,937 537,799 ($29,699) 5149,037 21.1%
Touring-3000 Blue, 58 528,209 57,424 (56,681) 528,952 20.8%
Road-550-W Yellow, 48 5196,046 49,952 (537,777) 5208,251 20.3%
Classic Vest, L 58,255 52,096 {52,032) 58,319 20.2%
Touring-1000 Blue, 60 5236,023 559,602 (554,834) 5240,791 20.2%
Brad-550-WW Yellowy 28 G107 RAR caq 769 {84m 9811 1099 927 20) % |

152. ProductName replaced ProductKey: much more readable

But we’re not limited to using any one field from Products — all of them can be used
now that we have a relationship established. Let’s try a few different ones:

Category - Mormal Sales Promo Sales Refunds Met Sales Pct Sales on Promo
Accessories 5495,995 5107,804 {596,961 5506,838 17.9%
Bikes 520,047,702 $4,188,222 (54,082,220} $20,153,704 17.2%
Clothing 5240,664 546,649 (552,460) 5234,852 16.2 %
Grand Total 520,784,362 54,342,674 (54,231,642) 520,895,394 17.3 %

153. Category (from Products table) on Rows

Category-SubCat |~ Normal Sales Promo Sales Refunds Met Sales Pct Sales on Promo
= Accessories 5495,095 $107,804 ($96,961) §506,838 17.9%
Bike Racks 526,880 57,560 {$4,920) 529,520 22.0%
Bike Stands 528,779 55,565 ($5,247) 529,097 16.2 %
Bottles and Cages 540,697 58,151 {57.951) 540,897 16.7 %
Cleaners 85,032 51,185 {51,002) $5,215 19.1%
Fenders 533,454 56,616 {56,550) 533,520 16.5 %
Helmets 5159,309 534,220 (%31,806) 5161,724 17.7%
Hydration Packs 527,825 56,654 (55,329) 528,650 13.3 %
Tires and Tubes 5174,019 537,853 (%33,657) S178,216 17.9%
- Bikes $20,047,702 $4,188,222 ($4,082,220) 520,153,704 17.3%
Mountain Bikes 57,199,563 $1,360,830 (51,392,367) 57,168,026 15.9%
Road Bikes 510,217,336 52,130,321 (52,112,927) 510,294,730 17.7 %
Touring Bikes 52,630,803 8637,071 (9576,927) 52,690,947 19.5%
= Clothing £240,664 546,649 (552,460) $234,852 16.2 %
Caps 513,854 53,012 {52,823) 514,042 17.9%
Gloves 524,514 85,486 {$5,020) 524,980 18.3%
Jerseys $122,990 522,606 (%27,355) 5118,241 15.5%
Shorts 850,883 59,519 (510,918) 549,483 15.8 %
Socks 53,785 5629 ($692) 53,722 14.3%
Vests 524,638 55,398 (55,652) 524,384 18.0%
Grand Total $20,784,362 $4,342,674 (54,231,642) 520,895,394 17.3%

154. SubCategory (also from Products table) nested under Category

Color - Mormal Sales Promo Sales Refunds Met Sales Pct Sales on Promo
Black 56,272,549 51,267,427 {51,298,436} 56,241,540 16.8 %
Blue 51,531,913 5400,061 (5347,121) 51,584,854 20.7 %
Multi 575,241 514,009 (517,220) 572,031 15.7%
MA 5308,861 566,930 [559,326) 5316,465 17.8%
Red 55,417,765 51,153,707 (51,152,859) 55,418,613 17.6%
Silver 53,721,517 5713,957 (S677,916) 53,757,557 16.1%
White 53,785 5629 {5652} 53,722 14.3 %
Yellow 53,452,730 5725,954 {56?8,0?1} 53,500,614 17.4%
Grand Total $20,784,362 54,342,674 [$4,231,542] 420,805,304 17.3%

155. Even Color can be used! (Another column from Products table)

Why That Works: Filter Context “Travels” Across Relationships

Let’s examine a single measure cell and walk through the filter context “flow”:

Color * Normal Sales
Black $6,272,549
Blue $1.531,913
Multi $75,241
MNA 08,861
Red
Silver 53,721,517
White 23,785
Yellow 53 452 730
Grand Total 20,784 162

156. Let’s examine how filter context flows for the highlighted measure cell

First, the Color="Red” filter is applied to the Products table:

nE ol * | Colar -
320 430, 7000 TRUE
324 413.1463 TRUE Red
73 ARR_TNGREA TRLIF Red
322 413.1463 TRUE Red
321 486.7066 TRUE Red
320 413 1463 TRUE Red
331 486.7066 TRUE Red
330 413.1463 TRUE Red
329 A86.7066 TRUE Red
328 413.1463 TRUE Red
327 486.7066 TRUE Red
326 113.1163 TRUE Red
31b B84, /083 |KUE Hed
315 884.7083 TRUE Red
319 £84.7083 TRUE Red
318 884.7083 TRUE Red
317 884.7083 TRUE Red
372 1554.0479 TRULC ned
371 1320.6838 TRUE Red
37N 1518 7864 TRLIE Red

157. Products table filtered to Color="Red” as result of filter context

The ProductKey column is not filtered directly, but it obviously has been
reduced to a subset of its overall values, thanks to the Color="Red” filter on the

table.
*\‘

Active Values for the Products[ProductKey] column:
{325:224-323.292:221-320-2321-330.320:328
. 245: 244: 243- 242 241:214- 213: 212}

4

158. Only those ProductKeys that correspond to Red products are left “active” at this point (63 ProductKey
values out of a total of 397).

That filtered set of 63 ProductKeys then flows across the relationship and filters the
Sales table to that same set of ProductKeys:

;I__.,-f Ry \ :
h 324 | 699.0982 413.1463 26620 7/30

h 324 | 699.0982 413.1463 20165 10/

h 324 699.0982 413.1463 19415 12/1%

b 324 | 699.0982 413.1463 20558 1f:;r

b 324 699.0982 413.1463 12010 2/8

h 324 | 699.0982 413.1463 25718 2/1¢

] 324 699.0982 413.1463 14737 2/24

h 324 | 699.0982 413.1463 18039 3/1

b 324 699.0982 413.1463 14746 3/d

" 324 | 699.0982 413.1463 25920 a/2

324 699.0982 413.1463 14755 /28

324 | 699.0982 413.1463 19472 a/2°

: 324 699.0982 413.1463 14756 a/2

h 324 | 699.0982 413.1463 25928 5/t

324 §99.0982 413.1463 14296 5/14

324 | 699.0982 413.1463 25947 6/10

b 325 732.99 486.7066 30577 7/

" 325 | 782.99 486.7066 19924 7/11

: 325 782.99 486.7066 15155 ?;’1&;

" 325/ 782.99 486.7066 26021 7/2¢

2002 Sales: 5... PctofAll Month M... Mormal Sal... Refunds: ($19,... PctSaleson... Total Sales: 513.}

= |
|5E||ES_ | Customers | Froducts_l |

159. Sales table gets filtered (via relationship) to that same set of ProductKey values: {325; 324;...}

And then the arithmetic runs against the filtered Sales table. So it’s the same
Golden Rules as before. Those rules just extend across relationships.

@ During the filter phase of measure evaluation, filters

applied to a Lookup table (Products in this case) flow
through to the Data table(s) related to that Lookup table.

This does NOT, however, apply in reverse: filters applied
to Data tables don’t flow back “up” to Lookup tables.

Visualizing Filters Flowing “Downhill” — One of Our Mental Tricks

In our heads, we always see Lookup tables floating above the Data tables. That way
the filters flowing “downhill” into the Data tables.

We’ll drag tables around in the Diagram View in order to represent that:

i Customers

7 customerkey
7 Geographykey
7 customeralternate...

i Title

m FirctMama

@ Year

Bl ndarnin

1 Productkey
E CustomerKey
71 OrderQuantity
F unitPrice

i ProductCost
1 salesamt

T orderDate

i MonthMum

iiii Products

1 EndDate

fH status

fl subcategory
(2 category

160. Products table dragged to be “above” Sales table

We also resized the tables so that the Data table (Sales) is bigger than the Lookup
table (Products) — another mental trick.

We’ll now create a relationship from Customers to Sales . This time we’ll do so,
within the Diagram View by dragging and dropping the key column that connects the
two tables.

[customerkey EndDate
[l Geographykey 7 status
[customeraiter... [customeRhiter... subCategory
[Title {7 Title 1 cate
gory
1 Firsthiama = Ly g the 1 Firstdame
Key column
gstomerKey to connect
the tables

T Productkey
fii| Customerkey
1 orderquantity
T unitprice

| 1 productkey
g3 Customerkey
71 orderquantity

T) ik Rrien

161. Creating Relationships in the Diagram View

@ The direction in which you drag and drop the key column — from the Data
to the Lookup table or from the Lookup table to the Data table — generally does
not matter. Same as it didn't matter when we used the Create Relationship

dialog, Power Pivot detects the “correct” direction of the relationship and sets it
up in the correct direction.

Here’s the updated diagram:

] .
7| Customerkey | 1 endDate
| GeographyKey | status
1] CustomeraAlter... 11 SubCategory
 Title 1 Category
| FirstName
*
--I
i
]
| Productkey

J Customerkey

| OrderCuantity

I 1 e e g e s

162. Two Lookup tables, both “above” the Data table that they filter

@ Note 1: Relationship lines/arrows in Diagram View
can also be imagined as “Filter Transmission Wires”.
They “transmit” the filters applied on the uphill Lookup
Tables to the downhill Data tables.

Note 2: It was a shame, in our opinion, that the
relationship arrows flowed toward the Lookup tables in
2010 and 2013. Arrows point from Data to Lookup in the
database world, but in Power Pivot we’d prefer that they
point in the direction of filter flow. It’s the little things
that bug us.

This has been corrected in Power BI Desktop and Excel
2016, where the arrows point the right way now

Filters from All Related Lookup Tables Are Applied

Let’s put columns from both Customers and Products on the same pivot:

Total Sales Marital Status -

SubCategory - M 5 Grand Total
Road Bikes 57415057 57,101,527 514,520,584
Mountain Bikes G5, 208,539 54,784,220 59,952, 750
Tauring Bikes $1,974918 %1,B59,BR1 %3 844 B01
Tires and Tubes 140,253 5105,276 745,529
Helmets S123,830 5101,506 $22%,336
lerseys 93,590 79,361 172,951
Shaorts 43, 604 27,716 71,320
Bottles and Cages 32,122 24 676 %6, M8
Fenders 527,079 $19,540 $46,620
Mydration Packs 522,821 $17,487 $40,308
Bike Stands 521,783 $17.808 £39,591
Bike Racks 522,920 516,440 539,360
vests £19,558 516,129 535,687
Gloves 519,470 515,551 $35,021
Caps $10,662 $9,026 519,688
Cleaners 54,158 53,061 $7,219
Socks $3,012 $2.095 $5.106
Grand Tolal $15,187,376 514,171,301 529,358,677

163. Products[SubCategory] and [Customers[MaritalStatus] on the same pivot: they each impact measures, as
expected

This isn’t worth belaboring really — we just wanted to point out that you can use
more than one Lookup table on a single pivot with no issue.

CALCULATE() <Filters> Also Flow Across
Relationships

Until now, all of our <filter> arguments in CALCULATE have been filtering columns
in the Sales table. But <filter> arguments are completely legal against Lookup tables
(in fact, encouraged!), so let’s define a CALCULATE measure using a column in a
Lookup table:

[Sales to Parents] =
CALCULATE ([Total Sales],
Customers[NumberChildrenAtHome] > 0)

And compare that to its base measure, [Total Sales]:

M | N O | PowerPivot Field List v X
Row Labels - |,5.55_.n;¢ | p|
Bike Racks Pct of All Month Net Sales [»
Total Sales 539,360 Pct of All Selected Months Ne
Sales to Parents 516,560 Pct Sales on Promo [T
Bike Stands CIDRL =
I Sal $39,591 profitber
Total Sales 2 Promo Sales (2
Sales to Parents 516,695 3 Refunds [
Bottles and Cages T Sales per Day [E
Total sales $56-,?E|S . Sales per Transaction ,3 .
e 2 $23,298 v SalestoParents [2F |
Sales to Parents g Selected Products Par [|-
Caps v Total Sales [| '
Total Sales 519,688 Transactions [
Sales to Parents 58,289 — - - . 0
Cleaners : '
Total Sales $7,219 15| Slicers Vertical & Slicers Horizontal
Sales to Parents 53,108
Fenders
Total Sales 6,620 ;
- “F Report Filter 2 Column Labels
Sales to Parents 519,914
Gloves
Total Sales 535,021
Sales to Parents 514,547 1] Row Labels = Values
Helmets SubCategory b Total sales hd
Total Sales 5225'335 ZWalues 2T Salesto Parents ™
Sales to Parents 596,362
Hydration Packs
| 540,308 Y

164. Proof that CALCULATE <filters> also flow across relationships: [Sales to Parents] returns smaller
numbers than its base measure [Total Sales]

@ We think that’s probably sufficient to explain the concept, but to be super

precise, we should also say that <filters> in CALCULATE() are applied before
filters flow across relationships.

Taking that precision one step further, here’s the final version of the DAX Evaluation
Steps Diagram, with the crucial step#4 filled in:

Total Sales Year |~
Model -1 2014 5
Mountain-200 S807,309)
Road-150 $2,601,402 st

| Road-250 $1,571,598

Detect Pivot Coordinates of Current Measure
Cell: Calendar[Year]=2015,
Produnts[Madei]ﬂ” Road 1 SB")

.'.‘

2 CALCULATE Alters Filter Context: If applicable, apply <filters> from CALCULATE(),
_adding/removing /modifying coordinates and producing a new filter context.

3 Apply the Coordinates in the filter context to each of the respective tables (Calendar and
Products in this example). This results in a set of “active” rows in each of those tables.

Filters Follow the Relationship(s): If the filtered
tables (Calendar and Products) are Lookup
tables, follow relationships to their related Data
tables and filter those tables too. Only Data

=| rows related to active Lookup rows will be active.

I

R

ARl

TS [UnitPr, D]Produckey - [SalesAmt G
1/1/2015 3578.27 313 3578.27
1/2/2015 3578.27 312 3578.27
1/3/2015 3374.99 350 3374.99
1/3/2015 3399.99 345 3399.99
| 1/3/2015 3578.27 310 3578.27
1/1/2015 £99.0982 338 699.0982
ymems Sma Data Table (Ex: Sales)

Return Result: The result of the arithmetic is returned to the current measure cell in the
pivot, then the process starts over at step 1 for the next measure cell.

165. DAX Evaluation Steps diagram updated to include step #4 showing that relationship traversal happens after
CALCULATE() <filters> are applied

Y you can download a digital copy of this and other useful PowerPivot/DAX tips in our 8-
page reference card at

http://ppvt.pro/powerbirefcard

http://ppvt.pro/powerbirefcard

11 - “Intermission” — Taking Stock of Your New
Powers

If you’ve followed everything up until this point in the book, I (Rob) want you to
know three things:

1. You understand about as much about Power Pivot formulas (DAX) as I did after
several months of experimenting on my own.

(And “experimenting” is the right word — I had moved away from Redmond before
DAX was ready to be used, even by members of the Power Pivot team. So I learned
as an “outsider.”)

2. What you’ve read so far covers about the same amount of material as a full day
of intensive training in one of my onsite, personalized courses.

3. If Power Pivot only contained the functionality covered so far, it would still be a
massive enhancement to your capabilities as an Excel Pro.

In other words, if you wanted, you could stop right now, close the book and file it
away. You’d still improve the quantity and quality of the insights you can deliver by
4-5x, without needing to know anything covered hereafter.

But there’s no reason to do that. What follows is no more difficult than what’s been
covered so far. Actually I think it’s easier, because it just builds on the fundamentals
established in the previous chapters. And there is some serious magic awaiting you

My point in this brief “intermission” was just to let you know that you’re already VERY
competent at Power Pivot. Take a bow. Now let’s go cover some seriously amazing stuff

12 - Disconnected Tables

A disconnected table is one that you add to your Power Pivot model but intentionally
do not relate it to any other tables. At first that may seem a little strange — if there is no
relationship between it and any other tables, filter context can never flow into it or out of
it, so a disconnected table would never contribute anything meaningful to a pivot
involving other tables.

But once you learn a simple new trick, it will make sense. It helps to have an example.
A Parameterized Report

Let’s work backwards this time: we will show you the result, and then explain how we did
it.

Take a look at this pivot:

UsSD per EUR N Year &
51.00 51.05 51.10 51.15 51.20 51.25 51.30 2001 2002
51.35 51.40 51.45 51.50 51.55 51.60 51.65 2003 2004

$1.70 5175 51.80 $1.85 51.90 $1.95

Row Labels ~ | MetSales MetSales-EUR

Accessories 5296,034 € 269,122
Bikes 56,564,628 £5,967,844
Clothing 5141,693 £128,812

Grand Total $7,002,355 € 6,365,777

166. Just a simple little pivot with two slicers, right?

Nothing exciting on the surface. But let’s change that “USD per EUR” from $1.10 to
$1.80 and see what happens:

USD per EUR & Year K
51.00 51.05 51.10 51.15 51.20 51.25 51.30 2001 2002
51.35 51.40 51.45 51.50 51.55 51.60 51.65 2003 2004
51.70 51.75 51.80 51.85 51.90 51.95

Row Labels ~ MetSales Net Sales- EUR

Accessaries 5296,034 £ 164,463%
Bikes 56,564,628 € 3,647,016
Clothing 5141,693 €78,718
Grand Total $7,002,355

| £3,800,197

167. Net Sales in Euros dropped sharply while the original Net Sales (in Dollars) remained unchanged

Are you seeing what we’re seeing? This is a pivot where the user/consumer can
dynamically input parameters (via slicers) and have those parameters reflected

in calculations!

This is absolutely real, and it’s simple to build.

Adding the Parameter Table

We’re going to ignore one of our own recommendations here and create a table
via copy/paste. We feel okay about doing so, because this is a table that isn’t going
to change frequently (if at all), and we’re not going to write a bunch of formulas on

this table (so if we needed to recreate it later, it would not be difficult to do).

We create a single column table in Excel. This is going to be the basis for our

“USD per EUR” (dollars per euro) slicer:

51.25
S1.30
$1.35
$1.40
$1.45
$1.50
$1.55
$1.60
$1.65
$1.70
$1.75
$1.80
$1.85
§1.90

&

And then paste as new table in Power Pivot, yielding:

P USD per EUR

168. Copying a simple table of data from Excel and Pasted as Exch Rates table in Power Pivot

Now we can create a new pivot, and put that column on a slicer:

uspD per EUR

€100 | 51.05 $1.10 | $1.15 5120 | S1.25 51.30
$1.35 | $1.40 5145 | $1.50 5155 | $1.60 5165
61.70 | $1.75 S1.80 | $1.85 S$190 | 5195

Row Labels -
Mccessories
Bikes
Clothing
Components
Grand Total

169. New pivot, Category on Rows and the newly-pasted table/column on a slicer

@ Because we most often use Disconnected Tables as parameters, and those
parameters are usually exposed as slicers, you may also think of them as “Slicer
Tables” or “Parameter Tables.”

Adding a “Parameter Harvesting” Measure

Now we’re going to do something interesting: we’re going to add a measure on the
Exch Rates table. This will be the first (but not last!) time that we create a measure
on a non-data table.

The measure is:

[EURUSD] =
MAX ('Exch Rates'[USD per EUR])

And the result:

USD per EUR &

s$1on | $1.05 $110 | $145 S§190 | $1.25 S1.30 |

$1.35 || 5140 | 5145 || 5050 | 5155 || 51.60 | 5L.65 |
$1.70 | $1.75 | $1.80 |/ $1.85 $1.90 | $1.95

Row Labels EURUSD

Accessories £1.95
Blkes 51.95
Clothing $1.95
Components 5195
Grand Total £1.05

170. Measure that returns $1.95 all the time? Why would we want such a thing?

The “punchline” here is that when we make a selection on the slicer, something neat
happens:

USD per CUR % |

4100 $1.05 0 4115 S1.20 | %175 41.1n
513y | 5140 “L:ru L5 | 516U $1.b5

SL.70 | SL75 | S1.80 & S1.B5 | S$1.90 | SL.95

Row Labels + E
Accescoriec
Bikes

Clothing
Components
Grand Total

171. The measure returns whatever is selected on the slicer!

Cool! But this is just regular old filter context doing its thing. Before the
arithmetic (MAX) runs, the Exch Rates table gets filtered by the pivot, and the pivot
is saying “[USD per EUR]=$1.45.”

@ Because only a single row is selected when the user picks a single slicer
value, we could also have used MIN() or AVERAGE() or even SUM() as the
aggregation function in our [ExchangeRateEURUSD] measure — they all return
the same result when a single value is selected. Your choice of function in cases
like this is partly a matter of personal preference and partly a question of how
you want to handle cases where the user picks more than one value. You can
even decide to return an error — which we will cover in a later chapter.

The Field List is Grumpy About This

At this point, the field list is giving us a warning:

Powerfroot Freld Lict v M
Relaticonship may be
I_!Ed;: : d [Create
J_Jll
® Cusiomers =}
= Exch Rates A
v VUSD per EUR . |

v EURUSD OB
* Products

= Sales

Customer ey

Margin

BlonthNum

OrderDate =
L | 1] L]

1% Shcers vemical | Slicers Honzontal
ULD per EUR 2

d Report Fiter] Column Labels
{ | Row Labels E Valges
Category = [LIRLIED =

172. Yes, there is no relationship between our Products table (where the Category field comes from) and our
Exch Rates table (where this new measure comes from)

This warning, alas, merely goes with the territory of using Disconnected tables.
And we don’t like sacrificing real estate in our field list to a warning that tells us
nothing. So we tend to turn this warning off using the Power Pivot ribbon in
Excel:

Itinc: Fleld ReElztlarcrip
st Urtect Dnh

173. Toggle this button to disable that warning (2010 only - in 2013 and beyond, you can dismiss the warning
but not disable it)

Using the Parameter Measure for Something...Useful

OK, the [ExchangeRateEURUSD] measure is neat and all, but having a measure that
tells the user what they’ve selected is of course pretty useless

But now we can use that measure in other measures:

[Net Sales - EUR Equivalent] =
[Net Sales] / [EURUSD]

UsD per CUR

| N

S1.00 S1.05 S1.10 5115 S1.90 £1.75 S1.30
$1.35 S1.40 | 5145 | 5150 51.55 S1.60 51.65
§1.70 | S1.75 S51.80 | 5185 5190 | 5195

Row Labels * EURUSD Net Sales - EUR

Accescories £1.15 £ 219,544
Bikes $1.45 €13,899,106
Clothing 51.45 € 161,967
Components $1.45

Grand Total $1.45 €14 410,617

174. New measure tells us what our sales would look like in Euros at the selected exchange rate!

@ We even used the formatting options in the measure editor to format the
new measure in Euros. Oddly satisfying.

And we don’t need the parameter measure displayed in order for it to work, so now
we remove it to clean up the pivot:

USD per EUR L3
$1.00 | S$1.05 S1.10 || S1.15 S1.20 | $1.25 S$1.30
51.35 51.40 51.45 51.50 51.55 51.G60 51.G5
51.70 $1.75 51.80 $1.85 51.90 $1.95

How Labels ~ Net Sales - EUK

Accessories € 349,544
Bikes €13.899,106
Clothing €161 957
Grand Total €14,410,617

175. Remove the parameter measure to produce a cleaner report

Add the Year column from the Sales table as a second slicer:

USD per EUR & Year &
¢1.00 || %105 || ¢1.10 || 8115 || 3120 || 8125 || 8130 2001 2002
$1.35 | $1.40 [$145 | 150 | $1.55 | $1.60 | $1.65 2003 || 2004

£1.70 8175 51.80 51.85 £1.90 51.95

Row Labels ~|MNet Sales- EUR

Accessories € 204,161
Bikes €4,527,330
Clothing £97,719
Grand Total €4,829,210

176. Year slicer works like it always has

Parameter Table Can Be Used on Rows and Columns Too!

For grins, clear the slicer selection so that all exchange rates are selected, then drag
that column to Rows instead:

Year S
2001 2002
o | ——

Row Labels = MetSales EUR

= Accessorles £151,812
$1.00 € 293,024
$1.05 € 281,937
51.10 € 265,122
$1.15 €257121
51.20 € 215,095
51.25 € 255,827

e b e ———r——— i —

177. Disconnected “slicer” field works on Rows too!

Are you surprised this works on Rows too? It felt weird to us the first time we did
this, but it shouldn’t have. Each measure cell corresponds to a single value of the
Exch Rate column. This is no different from using a normal column (one that IS
connected to the Sales table via relationship, or is IN the Sales table) on Slicers
versus Rows.

OK the result above is a little hard to see, let’s rearrange a bit:

Year - Category -
2003 2004 Arressnries Rikes |

Clothing

Row Labels ~ Net Sales - EUR

$1.00 €296,034
$1.U5 £ 281,93/ |
51.10 £269,122
$1.15 €257.421
€1.20 € 246,635
51.25 € 236,827
a1.3U €221, 18
$1.35 £219,284
$1.40 €211.453
$1.45 € 201,161
$1.50 €197,356 |
$1.55 € 190,990 |
$1.60 €185,011 |
41 A5 B f179015

178. Easier to see now with Category on slicer — EUR Equivalent Sales go down as Exchange Rate goes up

@ That may seem counterintuitive but it is accurate: if your country’s currency
is worth a lot relative to other countries’ currencies, you make less money
selling your products overseas than when your currency is worth less. So in
some sense it’s “better” for a country’s currency to be worth less (and worse in
other ways), but that’s not exactly a DAX topic now is it? We just didn’t want
you thinking that we messed this one up

Why is it Important That They Be Disconnected?
What would happen if our Exch Rates table were related to, say, the Sales table?

Short answer: nothing good. What column would we use to form the relationship?
There isn’t a column in the Sales table that matches the values in the Exch Rates
table. We could invent one we suppose, but then we’d have to arbitrarily assign
transaction rows to individual exchange rate values, which would be nonsense.

And then when the user selected an exchange rate on the slicer, not only would that
impact the [ExchangeRateEURUSD] measure (as desired) but it would also filter out
rows from the Sales table (not desired). We’d undercount our sales figures, and in
completely random fashion.

In real life, something like exchange rate is completely separate from Sales, so it
shouldn’t surprise us really that we can’t create a meaningful relationship between
them.

A Very Powerful Concept

There are many variations on disconnected tables. In fact this concept borders on
infinitely flexible. We will return to this topic and cover a few more variations as the
book progresses. Let’s look at one right now in fact.

Disconnected Table Variation: Thresholds

In the previous example, we used a disconnected table to inject a numerical
parameter into certain calculations, and give the report consumer/user control over
that parameter.

Now let’s try another example: giving the user control over “cutoffs,” or thresholds,
in terms of, say, which products should be included and which shouldn’t.

Again, let’s work backwards by showing you the desired result first:

MinListPrice '3

_$0.00 $5.00 $10.00 $15.00 $20.00
5100.00 $200.00 $300.00 $400.00

$500.00 $1,000.00 $2,000.00 $3.000.00

Row Labels - Products Above Selected List Price Product Sales Above Selected List Price

Accassories 4 €119, 259
Bikes 23 3,315
Clothing '

Components 172

Grand Total nm 628 610,578

179. This pivot shows us, for instance, that there are 20 different products under the Clothing category that list
for $50 or higher, and they accounted for $193k in sales.

Nifty huh? The “how to” starts out just like the last example:

Create a Disconnected Table to Populate the Slicer:

Michisttnee B3

$1.200.00
oA CHNLIN)
$3.000.00

180. Another disconnected table
Write a Measure to “Harvest” the User’s Selection:

[MinListThreshold] =
MAX (MinListPrice[MinListPrice])

PoweziPiot =ield Cict v XK

Seon FE
4 Calc-dar =
H _uztomzrs

" =xC~ Haisc e

WinLlcz3rice

Mi~ListTres~old st
= Srod (=

FE———

181. “Harvester” measure [MinListThreshold] created on the disconnected table

Diverging From the Prior Example: We Need to Filter, Not Perform
Math

Hmm, now what? Last time, at this point we just divided an existing measure by our
parameter measure to create something new. This time though, math isn’t going to do
it.

Since we need to filter out Products unless they fit our criteria, we need to use
our friend, CALCULATE().

And hey, CALCULATE() supports the “>=" operator, so let’s go ahead and do:

[Products Sales Above Selected List Price] =
CALCULATE ([Total Sales],
Products[ListPrice] >= [MinListThreshold])

Enter it into the measure editor:

Measure Settings |i|_$_"_h]

Table name: 5ales] -

Measure name (all FivotTables): Product S-ales Above Selected List Price

Custom name (this PivotTable): Product Sales Above Selected List Price

Description:

Formula; |?_x| Check formula |
=CALCULATE([Total Sales], Products|ListPrice]>=[MinListThreshold])

Farmatting Options

Category:

General ‘ Symbol: 5 X
Number

U= Decimal places: 0 =

Date

TRUE/FALSE ‘ Use 1000 separator ()

oK | | Cancel

182. [Products Sales Above Selected List Price] entered into measure editor

And click Check Formula:

Formula: |?_x||| Check formula |'

=CALCULATE([TTI Sales], F’roduc:ts[Lisﬂ:’rice]:h=[MinLi5tThreshold])|

L Calculation emor in measure "Sales[leedasda-e68d-4°75-9996-c51039daa 18] Afunction CTALCULATE has been -
used in a True/False expression that is used as a table fitter expression. This is not allowed.

183. Error: A function ‘CALCULATE’ has been used in a True/False expression that is used as a table filter
expression. This is not allowed.

@ That’s a terribly-worded error message. In our
opinion, here is what that error message should say:

‘An expression was provided on the right side of a
<filter> argument to CALCULATE. Only static values
like 6 or “Red” are allowed in that location.’

CALCULATE() requires that you provide a static value on the right side of a <filter>
expression.

CALCULATE() Has a Limitation? Not really.
Hard to believe isn’t it? CALCULATE never fails us!

Well it’s not failing us now either. It’s actually protecting us, and there is a version of
this formula that works:

[Products Sales Above Selected List Price] =
CALCULATE (

[TotalSales],

FILTER (Products,

Products[ListPrice] >= [MinListThreshold])

)

What is the FILTER() function, and what is it doing occupying one of our <filter>
arguments to CALCULATE?

FILTER() is the next function on your Power Pivot journey. And while it’s pretty
straightforward, we don’t want to “hide” it in this chapter. It deserves its own. So we will
come back to this threshold example, but we will do it in the context of the FILTER()
chapter.

13 - Introducing the FILTER() Function, and
Disconnected Tables Continued

When to Use FILTER()

Simple rule: use FILTER() when, in a <filter> argument to CALCULATE(), you need to
perform a more complex test than “<column> equals <fixed value>” or “<column>
greater than <fixed value>,” etc.

Examples of <filter> tests that require you to use FILTER():

<column> = <measure>

e <column> = <formula>

e <column> = <column>

e <measure> = <measure>

e <measure> = <formula>

e <measure> = <fixed value>

We used “=” in all of the above, but the other comparison operators (<, >, <=, >=, <>) are
all implied.

@ You can also use FILTER() as the <table> argument to functions like

COUNTROWS() and SUMX() in order to have those functions operate on a subset of
the table rather than all rows in the current filter context. This chapter will focus on
its primary usage however, which is as a <filter> argument to CALCULATE().

FILTER() Syntax
(i) FILTER(<table>, <single “rich” filter>)

Why is FILTER() Necessary?

We mean, why can’t we just slap any old complex test expression into the <filter>
argument of CALCULATE()? Why the extra hassle?

We have made our peace with having to use FILTER(). We quite like it. Here’s why.
It’s All About Performance (Speed of Formula Evaluation)

Short answer:

1. Formulas written using just CALCULATE() are always going to be fast,
because CALCULATE() has built-in “safeties” that prevent you from writing a
slow formula. “Raw” CALCULATE() refuses richer <filter> tests because those
can be slow if used carelessly.

2. FILTER() removes those safeties and therefore gives you a mental trigger to be
more careful — you can still write fast formulas using FILTER(), but if you are
careless you can write something that is slow.

@ We'd like to introduce three terms that we often use when we talk
about formula speed:

Performance: the practice of keeping your reports fast for your users. For
instance, if someone clicks a slicer and it takes 30 seconds for the pivot to
update, we would refer to that as “poor performance.” If it responds
instantly, we might call that “excellent performance,” or we might say that
the pivot “performs well.”

Response time: the amount of time it takes a report to respond to a user
action and display the updated results. In the example above, we described
a “response time” of 30 seconds as poor. Generally we try to keep
response times to 3 seconds or less.

Expensive: an operation is said to be “expensive” if it consumes a lot of
time and therefore impacts performance/response time. For instance,
above we could have described <column> = <static value> tests as
“inexpensive” for the DAX engine, and richer comparisons like <column>
= <measure> as “potentially expensive.”

We will say more about these concepts in a subsequent chapter
dedicated to Performance. For now this is enough.

Anyway, the important thing to understand is that FILTER() removes the safeties and lets
you perform an incredible variety of filter tests, but you have to be careful when you use
it.

How to Use FILTER() Carefully

You are going to love this, because the vast majority of “being careful” comes down to
two simple rules:

1. When you use FILTER(), use it against Lookup tables, never against Data
tables.
2. Never use FILTER() when a “raw” CALCULATE() will get the job done.

Pretty simple. For those of you who want to know more about the “why” behind that first
rule, we are saving that for the chapter on Performance.

@ The Secret of FILTER’s Power: We have already hinted at this. The secret is

that it’s an iterator, which just means it goes row by row through a table (first
argument) to evaluate the filter condition (the second argument). FILTER is not alone

in this, there is a whole family of iterator function, or X functions as they are often
known. You would meet them in a subsequent chapter on X functions.

Applying FILTER() in the “Thresholds” Example

Revisiting the Successful Formula

Let’s return to our “thresholds” example from the previous chapter, where we wanted to
only include products whose Products[ListPrice] column was >= our [MinListThreshold]

measure:

MinListPrice e

55.00 510.00 515.00 520.00

5100.00 5200.00 5300.00 S400,00
$500.00 51,000.00 52,000.00 53,000.00

Row Labels * Products Above Selected List Price Product Sales Above Selected List Price

Accessories 4 £119,2549
Bikes 5 3,315
Clothing @

Components 172

Grand Total n 478,630,578

184. Back to the “threshold” example: only including products whose ListPrice is >= the selection on the slicer.
The formula we ended up using for the measure on the right was:

[Product Sales Above Selected List Price] =
CALCULATE (

[Total Sales],

FILTER (Products,

Products[ListPrice] >= [MinListThreshold])
)

Are we following the rules for using FILTER() carefully? Let’s check.
1. Products is a Lookup table, not a Data table (like Sales). YES on rule #1.

2. We are comparing Products[ListPrice] to a measure, which cannot be
done in raw CALCULATE(). YES on rule #2.

OK, so now the [Products Above Selected List Price] measure — that gives us a count of
products that pass the [MinListThreshold] test, and it’s executed the same way as the
measure above.

First though, we need a base measure that just counts products:

[Product Count] =
COUNTROWS (Products)

Note how we assigned that measure to the Products table, since it counts rows in that
table:

rf"..'1Easurﬂ.=: Settings | D |l |

Table name: i Products i -

Meazure name (all PivotTables): Product Court

Custom name (this PivotTable): Product Court

Description:

Formula: |£| Check formula |
=COUNTROWS(Products)

Eoroathins Clotiooe

185. [Product Count] measure is assigned to the Products table since its arithmetic operates on the Product
table (best practice)

Now we can create [Products Above Selected List Price] using that new base
measure:

[Products Above Selected List Price] =
CALCULATE (

[Product Count],

FILTER (Products,

Products[ListPrice] >= [MinListThreshold])
)

@ We could have skipped the separate step of defining the [Product Count]
measure, and just specified COUNTROWS(Products) as the first argument to
CALCULATE(). But [Product Count] is likely to be a useful measure elsewhere
too, and remember, it’s a best practice to build measures on top of other
measures, so that future changes to your model can be made in a single place.

Verifying That the Measures Work

Well the measures are returning some numbers, but are they the right numbers? Let’s
investigate a little bit (we won’t do this for every measure but we think it’s good to
show a few validation approaches).

MinListPrice T

50.00 55.00 510.00 515.00 520.00
| $5'U'L'iﬂ | $100.00 5200.00 5300.00 5400.00
5500.00 51,000.00 52,000.00 53,000.00

Row Labels | = Products Above Selected List Price Product Sales Above Selected List Price

Accessories 4 5119,259
Bikes 125 528,318,145
Clothing 20 5193,175
Components 172

Grand Total 321 $28,630,578

186. How do we know the measures are correct?

The first thing to do is just change slicer selection and make sure that it has an
impact. Let’s try $20 as our minimum list price:

MinListPrice T
$0.00 $5.00 $10.00 $15.00 | $20.00
$50.00 $100.00 $200.00 $300.00 $400.00
$500.00 $1,000.00 | $2,000.00 | $3,000.00

Row Labels ~ | Products Above Selected List Price Product Sales Above Selected List Price

Accessories 25 5597,086
Bikes 125 528,318,145
Clothing 41 5314,978
Components 187

Grand Total 378 £20,230,200

187. We would expect both measures to return larger numbers with $20 as the selected threshold, and they both
do
A good sign. But let’s make sure that the measures are truly counting the right
products. Let’s put Products[ProductKey] on Rows, and set the slicer to $3,000 since
that should only show us a small number of products:

MinListPrice

W

50.00
550.00
5500.00

55.00
5100.00
$1,000.00

$10.00 515.00
5200.00 5300.00

200000 (83,0000

$20.00
5400.00

Row Labels ~ Products Above Selected List Price Product Sales Above Selected List Price

310
311
312
313
314
344
345
346
347
348
349
350
351
Grand Total

e = B = B T = R S SR Sy =

[y
e

51,202,299
51,005,494
51,205,877
51,080,633
51,055,590
5197,199
5142,800
5166,600
5122,400
5165,375
5151,875
5202,499
5192,374
$6,891,018

188. Only 13 products show up — another good sign

But we really need to see the ListPrice. Let’s put that on Rows too:

MinListPrice h3
$0.00 $5.00 $10.00 $15.00 $20.00
$50.00 $100.00 $200.00 $300.00 $400.00
5500.00 51,000.00 52,000.00 53,000.00

350

344
45
A6
310
311

312

313

314
Grand Total

3
3

[S S e e L R R A e s e ar]

[}
W

$712,123
$165,375
$151,875
$202,499
$192,374
$628,998
$197,199
$142,800
$166,600
$122,400
5,549,807
$1,202,299
$1,005,494
$1,205,877
51,080,638
51,055,590

$6,891,018

189. OK, all of the products showing up are indeed priced over $3k

Lastly, over in the Power Pivot window, let’s filter the Products table to

ListPrice>=3000:

| ¥ O 2 - I | | w ¥
2} sortSmallest to Largest 52CM 48 cM
il SsortLargestto Smallest -32CM 32 CM
4l Clear Sort From "ListPrice" 58CM 58 CM
- - o v 2-46 CM 44 CMm
Clear Filter From "ListPrice
22 CM 48 CcMm
| Number Filters z Equals...
(select All) A Does Not Egual...
2.29 Greater Than...
3.99 Greater Than Or Equal To...
sy Less Than...
= Less Than Or Equal To...
8.0442
Between...
lw 8.99 o
Custom Filter...
[] 4 ‘ [Cancel l F=ECTVT ey T
‘ F&SE CM 48 CM

ann —r A= 0

190. This should result in 13 rows, matching the grand total from the pivot...

214 L1149 I HUE He

Product Coun...

2 T PR T
‘

MinListPrice | Exch Rates | Customers | SalesCalendar.
Recoml: W 4 'I P M

191. ...and it does

OK, this last step probably would be the first thing we would check. But we
wanted to show that both the Power Pivot window and the pivot itself are important
tools for validating/debugging. We use both.

Since both measures use the same FILTER() logic, once we validate this one, we can
be pretty confident that the other is working too. So there you have it: a simple
threshold example driven by slicer, and it works.

This Could Not Be Done with Relationships

Just to reinforce: the disconnected table approach was absolutely necessary for this
threshold example. A given product, like a $75 shirt, belongs to many different price
ranges — it is included in the $0, $5, 10, $15, $20, and $50 price ranges. (In other
words, the price ranges overlap with each other).

To see what we mean, imagine creating a column, in the Products table, to form the
basis of the relationship. What would that column look like? If you committed to
going down this road, you’d ultimately end up with multiple rows for each product
(one for each price range that product “belongs to”). That would therefore require a
“many to many” relationship with the slicer table (and with the Sales table), which
Power Pivot does not support.

Tip: Measures Based on a Shared Pattern — Create via Copy/Paste

Notice how the two FILTER() measures above are identical except for their base
measure? One uses [Total Sales] as the first argument to CALCULATE() and the
other uses [Product Count], but otherwise the formulas are the same.

You will do this all the time. And there’s a quick way to do it:

1. You write the first measure. In this case, the [Total Sales] version.

2. Then you right click that measure in the field list (or in the Values
dropzone) and choose edit:

Bl 210 Seleied Mo Uis het Sales |5

' G

=ILIJ_LL5=|I-_'=.,ﬁI'_H_IHI-I|I-I|||=hI B B

0 | iy
i P Y ~
Yrorrn Bmlss lE.'J Cr=al= K5

B Sicers Vertical

E:‘l‘nrmll A
X M s

[}=lete

192. Edit your first measure
3. Copy the existing formula:

Measure Settings

Table name:
Measure name (all PivotTables): Product Sales Above Selected List Price
Custom name (this PivotTable): Product Sales Above Selected List Price

Description:

Formula: Check formula

=CALCULATE([Tet=l Salac]l Ell TF R(Products, Products
Cut

| Copy k |
d Formatting Options Paste -
Select Al

Category:
T —

193. Copy the existing formula, which is conveniently selected already when you edit an existing measure
4. Cancel out of the editor, create a new measure, and then paste the formula:

Measure Settings

Talde regime. m
Mezsure name (2ll PivolTables): Products Above Selected List Price

Custom name (this FivoiTable)l: Products Above Selecied List Price
Deecription:

Formula: ﬂ Check formula

‘ Formatt Paste
Sae&iul

Catego

194. Paste the original measure’s formula
5. Lastly, just replace the base measure reference ([Total Sales]) with the
different desired measure ([Product Count]):

-~

Measure Settings

Table name: Products]
Measure name (all FivotTables): Products Above Selected List Price
Custom name (this PivotTable): Products Above Selected List Price

Description:

Formula;
=CALCULATE([Product Count], FILTER(Product

195. The whole process takes just a few seconds

You would discover this “trick” on your own pretty quickly (if you haven’t already),
but we do it so often that we wanted to make absolutely sure you are aware of it.

More Variations on Disconnected Tables

Upper and Lower Bound Thresholds

Let’s take that Product[ListPrice] threshold example and extend it. Here’s a new
table:

RangeMame b b hd

Checkout ltems 1] 5
Budget ltems 1] 125
MidRange ltems 100 500
Deluxe ltems 450 1200
Elite Items 1000 10000

PriceTiers | Exch Rates | Customers | Sales | Prg

196. A new disconnected table, but this time with min and max price columns
@ Note again that the price tiers overlap, meaning a given product can belong
to more than one, thus making a relationship impossible.

Now we’re going to define two “harvester” measures on that table:

[PriceTierMin] =
MIN (PriceTiers[MinPrice])

and

[PriceTierMax] =
MAX (PriceTiers[MaxPrice])

Now we’re going to use RangeName column as our slicer:

angeName i
Budgat Ibems Chackout ltems
| Neluxe [tams Flite [fams

RhiditanzF Rems

Prireliemdin PricelifrMax
J5[08 1NN

197. You can use a label column from a disconnected table on your pivot. Both “harvester” measures again
capture the user’s selection, but this time based on columns that the user does not see.

Fixing the Sort Order on the Slicer: The “Sort By Column” Feature

In our first threshold example, we used a numerical field on the slicer, which
naturally sorted from smallest to largest. In this label example however, “Budget”
alphabetically precedes “Counter,” and out sort order is misleading as a result.

In Power Pivot v1, we had to “fix” this by prepending strings for correct sorting,
yielding slicers with values like “1 — Counter” and “2 — Budget” on them. Yuck.

In Power Pivot v2 however, we have a much better fix: the Sort By Column feature.

First we need a single numerical (or text) column that sorts the table in the
proper order.

Doesn’t matter how you go about creating this column — as long as you create one (or
already have one), it works.

In this case we will use a new calculated column:

AL AL U uLd U

| K j‘:':|:|{[Ma><F'rice]-[MinPrice]}j’ZI
hd hd * | Add Column
ut Items 0 3
Items 0 125 | |
1ge ltems 100 500
Items 450 1200
ams 1000 10000

198. Creating a column that will sort properly (in this case, our column will be the midpoint of each price tier)

Now we select the RangeName column and click the Sort by Column button on the
ribbon:

&=y 55 =] Data Type : Text - &) ==
= 12 .
2 B . TR Bl Format : Text ~ 2l k
Paste From From From Azure Refresh | PivotTable - e Clear All| Sort by
=3 | Database~ Report DataMarket i > = B s T .00 *0 Filters |[Column -
Clipboard Get External Data Formatting Sort and Filter
| [RangeMName] v| |MidRange Items |S-:||‘t By Oth

RangeName |[= - M | Midpt ~ | Add Column

Checkout ltems 0 5 2.5

Budget Items 1] 125 62.5

[midrange items | 100 500 200

199. Select label column, click Sort by Column

In the dialog, set it to sort by the new MidPt column:

2
Sort by Column

? e

Select the column to be sorted and the column by which it is sorted (for example, sort the month
name by the month number). Click the link below to learn how to sart by a column from a different

table.
Sort By

Column Column

RangeMame - id Pt -
How to sort by & column from a different table? [(0].¢ J [Cancel

200. Set the “sort by” column to the MidPt column

Flip back over to Excel:

s,
:ﬁ'i fnoolré?fri?;ot data was
RangeName & s [
Calendar
Budget Items Checkout ltems T
Deluxe ltems Elite ltems Exch Rates
= MinListPrice
MidRange Items B [Feahae
[MaxPrice
[MinPrice
|/ RangeMame
L i L v PriceTierMax (&
PriceTierMin PriceTierMax M PriceTierMin [
450 120'0. Products
Sales
201. Changing the Sort By Column triggers the “refresh” prompt
Click the refresh button and the slicer sort order is fixed:
= Calendar
RangeMame W Custemers
Exch Rates
Checkout Items Budget Items MinListPrice
MidRange Items [@] = SRS
Elite Items L e
[MidPt
o [] MinPrice
|w] RangeMame
| PriceTierMax [ZF
[wl PriceTierMin (B
PriceTierMin PriceTierMax Products
A50 1200 Sales

202. Refresh, and the Sort By Column feature “kicks in” — the slicer is now properly sorted

Completing the Min/Max Threshold

Now, just like in the simple threshold example, we need versions of [Product Count]

and [Total Sales] measures that respect the user’s selection on the slicer:

[ProductCount MinMaxTier] =
CALCULATE (
[Product Count],

FILTER (

Products,

Products[ListPrice] >= [PriceTierMin]

& & Products[ListPrice] <= [PriceTierMax]

)
)

@ Since FILTER() only supports a single <rich filter>
expression, we use the && operator — a row of Products
table needs to meet both of those comparison tests in
order to be included.

But since CALCULATE() itself does support multiple
<filter> arguments, we could have done this without the
&& operator by using two FILTER() functions:

CALCULATE(<measure>, FILTER(...), FILTER(...))

That would yield the same results. We use the &&
approach whenever we can though, because it is less
expensive (in terms of performance) to do so. More on
this later.

And then the [Total Sales] version, again employing the “copy/paste/change base
measure” trick:

[Total Sales MinMaxTier] =

CALCULATE (

[Total Sales],

FILTER (

Products,

Products|[ListPrice] >= [PriceTierMin]

& & Products[ListPrice] <= [PriceTierMax]

)
)

Now we’ll put both measures on the pivot, and remove the harvester measures:

RangeName &

Checkout Items Budget Items
MidRange Items Deluxe ltems
Elite Items

Product Count MinMaxTier Total Sales MinMaxTier
129 51,000,912

203. It’s alive!
A Way to Visualize Disconnected Tables

Disconnected tables, by definition, have no relationships to other tables in the
model. If we look at diagram view, we see that the PriceTiers table, for instance, is an

island like we expect:

]
.__"ﬂ RangeMame
I MinPrice =
j MaxPrice
1 wmidpt
= prireTierMin
ifi i

- . o e

_] CustomerKey [T EndDate

£ Geographykey [status

[FirstName [subcategory

] middleName 7 categary

| actMame s = . . -

T !

i

__"] ProductKey
I| CustomerKey
[orderquantity
™ unitprice

[ProductCost
__":l SalesAmt

I| OrderDate

[MonthNum
[vear

1 Margin

m

204. PriceTiers Disconnected Table has no Relationship Arrows (as expected)

But when we use the “MinMaxTier” measures that we wrote above, the
PriceTiers table does act a lot like a Lookup table, since the PriceTiers filter

context (such as user selections on the slicer) very much impacts the measure
calculations and results.

So we often like to say that disconnected tables have a “dotted line” relationship with
the tables that contain the corresponding FILTER() measures. In your head, you
might think of it like this:

When the FILTER() measures aregs

used, the PriceTier table exerts | mp.ocename .
a "relationship-like" effect on 71 MinPrice .
Products and Sales, but only 7y & Maerie

on those FILTER() measures,." S8

= priraTierMin

i i 4
i Ll e e L
‘_":l Customerkey T EndDate .:
1 Geographykey] status 3
el s
1 Firsthame F subCategory .

1 MiddleName 7 categary

-

_ L)
| astName -_. . . 4 o5
"

I [

=

‘_'{| Productkey
:'I| CustomerKey
T orderquantity
P unitPrice

i ProductCost
__"'] SalesAmt

P OrderDate

T MonthMum

IJ Year

A Margin

205. In your head, you can imagine “dotted line” relationships

@ Disconnected tables only impact the measures that are specifically written

to “pay attention” to them — so the PriceTiers table impacts [ProductCount
MinMaxTier] and [Total Sales MinMaxTier], but no other measures in the
Products and Sales tables.

Putting This Chapter in Perspective
A couple things we want to emphasize before moving on:

e We are not done with FILTER(). There’s more to learn about FILTER() than
what we have covered here, but we want to come back to those points later. It is

not essential to learn the rest yet, and we are sticking to our philosophy of
introducing things to you in the most learnable/useful order.

You will not use disconnected tables most of the time. 90% of the pivots we
create do not use disconnected tables. The other 10% of the time, they are very,
very useful. We introduced disconnected tables in these last two chapters in large
part because they are a great introduction to the FILTER() function (and also
because they are a useful technique).

14 - Introduction to Time Intelligence

At Last, It is Time!

(Get it? Time? There is no extra charge for humor of this quality).

We’ve been eagerly awaiting this chapter. Power Pivot measures really shine when
you use them to perform intelligent calculations against the calendar.

It is a simple matter to perform calculations that answer questions like the following:

e How is our business performing relative to the same time last year?
e What were our Year to Date (YTD) sales as of June 1st?
e What was our best quarter over the past two years?

That is merely scratching the surface though. Good stuff. But before we dig in, a quick
note about different types of calendars.

“Standard Calendar” versus “Custom Calendar”

Standard Calendars: The Focus of This Chapter

Right up front, we want to let you know that this chapter will be written strictly from the
perspective of the standard calendar.

What do we mean by “standard calendar?” It’s the calendar with the following properties:

e February has 28 days (29 in leap years) in it, and all other months have 30 or 31
days in them

e Quarters consist of three consecutive months — months whose lengths are
described above

e Years have 365 days in them (366 in leap years)

e A given month this year might have more/less Saturdays (or any other day) in it
than the same month last year

In other words, a standard calendar is the calendar that you have hanging on your wall.

Power Pivot’s time intelligence functions operate under the assumption that you use
a standard calendar. So they represent a natural place to start the topic of time
intelligence.

Custom Calendars: Perhaps Even More Important than Standard
(Covered Later)

But many businesses do not measure themselves via the standard calendar. The standard
calendar poses many problems that are often unacceptable:

e Comparing this month to last month is often not “fair” when last month had
31 days and this one has 30, for instance. Did we really perform 3% worse this
month or is that just due to the different number of days?

¢ Even two months of the same length are often not fair comparisons since they
contain different numbers of weekend days versus weekdays.

e Sometimes the unit of time measured doesn’t even resemble the wall
calendar — “Semesters” in the academic world and “Seasons” in the sports world
for example

¢ Going further, sometimes (such as in science), we want to literally compare
time periods instead of calendar periods — such as “the first five minutes after an
event” compared to the following fifteen minutes etc.

In our experience, at least half of all organizations measure themselves by custom
calendars. Retail businesses in particular are very sensitive to those first two problems.

So have no fear, we will address custom calendars too. We are only going to start with
the standard calendar. Stay tuned, in later chapters, for the custom calendar
treatment.

Calendar: A Very Special Lookup Table

Everything in time intelligence requires that you have a separate Calendar table. (It
does not have to be named “Calendar,” but we usually use that name, or “Dates.”)

Where to Get a Calendar Table

There are many ways to create a calendar table. Here are a few options:

e Import one from a database. This is our favorite, for several reasons. But not
everyone would have access to a database. See http://ppvt.pro/sgldate for one
approach.

e Create one in Excel. Pretty much available to everyone. However may pose a
problem when you need a dynamic action (e.g. trim calendar based on today’s
date). Download a sample Excel Calendar Generator at
http://ppvt.pro/xlCalendar.

e Generate using Power Query. Best of both worlds, nearly available to everyone
and offers easy dynamic capabilities. See http://ppvt.pro/udate?2 and
http://ppvt.pro/pgcalendar as examples.

e Import one from Azure DataMarket (or elsewhere on the internet). There’s
at least one calendar table available for free download on the internet, produced
by the amazing Boyan Penev. See http://ppvt.pro/UltDate_for more.

Properties of a Calendar Table

A calendar table must:

http://ppvt.pro/sqldate
http://ppvt.pro/xlCalendar
http://ppvt.pro/udate2
http://ppvt.pro/pqcalendar
http://ppvt.pro/UltDate

e Contain at least one column of “date” data type.

e Contain exactly one row per day.

e Contain completely consecutive dates, no gaps — even if your business is never
open on weekends, those days must be in the calendar

¢ Be related to all of your Data tables (Sales, etc.)

e Contain columns for all of your desired grouping and labels — things like
MonthName, DayOfWeekName, IsWknd, IsHoliday, etc. (strictly, you can have
a Calendar table with just the one date column, but the Calendar table is the place
to put all of these other columns if you do have them).

e Ideally only “spans” the relevant date ranges for your purposes. If your
business opened in 2001, it doesn’t make sense for your Calendar table to start in
2000. And if today is June 20, 2012, it doesn’t make sense for June 21, 2012 to
be in the Calendar yet. This is one of the trickier requirements — it’s the primary
reason why we like to source our Calendar from a database. It really is optional,
but you will find it very useful over time. Don’t worry about it much for now.

Our Calendar table: Imported and Related

w

4
4
4

7/3/2003 5 Thursday 3
7/4/2003 6 Friday 1
7/5/2003 7 Saturday 5
7/6/2003 1 Sunday 5
7/7/2003 2 Monday 7
7/8/2003 3 Tuesday 2
7/9/2003 4 Wednesday g
7/10/2003 5 Thursday 10
7/11/2003 6 Friday 11
7/12/2003 7 Saturday 12
7/13/2003 1 Sunday 13
7/14/2003 2 Monday 14
7/15/2003 3 Tuesday 15
7/16/2003 4 Wednesday 16
7/17/2003 5 Thursday 17
7/18/2003 6 Friday 18
7/19/2003 7 Saturday 19
7/20/2003 1 Sunday 20
7/21/2003 2 Monday 21
7/22/2003 3 Tuesday 22
7/23/2003 4 Wednesday 23

L]

stomers | Jales | Producls

Calendar_E—?;ch Rates | MinListPrice j PriceTiers | |=
e =

206. Calendar table — now we can get started!

Now we relate it to our Sales table, using the Date columns:

Create Relaticnship |i|£—hj

Create a lookup relationship between two tables

Select the tables and columns you want to use to create the relationship.

Table: Column:

Sales - OrderDate -
Related Lookup Table: Related Lookup Column:

Calendar - Date] -

[Create] [Cancel

207. Relating Calendar to Sales

@ In Power Pivot v1, the column used to relate Calendar to other tables had to
be of data type Date. In v2, you can now relate using a column of a different
data type, such as an integer, so you do not need a column of Type Date in your
Sales table anymore, but you do still need a column of type Date in your
Calendar table.

i Customers

m Customerkey D

@ Geographykey

1 FirstName] subcategary] EnglishDayNameOf...

1 MiddleName =] category ™ payNumberOfion...
v

FH | mctiame = .~ i = HHVNIII'I'\;PI'HWPHF

1= Products

] EndDate

4 status

i Calendar

m Date

a DayNumberOfwesk

T

] Productkey
a CustomerKey
] orderQuantity
™ unitprice

F ProductCost
] salesamt

1 orderDate

1 MonthMum

m Year

Al narzin

208. Updated diagram view: Calendar becomes the third lookup table

Operates like a Normal Lookup Table

Caylamel~\Week — Total Sales

Friclay

klonday 54,154,220
Saturclay 54,342,074
Sunday 54,531,047
hursday 4. 17 437
LB Ay L L R
VuFnnesday L P LY

54,235,286

tirand 1ntal

Ly SR LY Y

209. [Total Sales] with Calendar[DayNameOfWeek] on Rows

And the Sort By Column feature works here too of course:

i1 Exch Rates

] usD per EUR
EURUSD

i MinListPrice

m MinListPrice
[& WinListThresh...

53 PriceTiers

m RangeMame
ﬂ MinPrice

Sort by Column L9 e

Select the column to be sorted and the column by which it is sorted (for example, sort the month
nabl:‘r-a by the month number). Click the link below fo learn how to sort by a column from a different
fabic,

Sort By

Column Column
DaoyMomcOfWock - DayMumborOfWeck -
Hiowe o sort by 3 eolumn from a different tahle? | ok || cance |

210. Sort by Column Rides Again!

CayNamecOfwecek ~ Total Sales

sunday $4.231,542
Konday $4.154,520
Tucscay $4.153,093
weoencsday $4.127.215
ThursJay $1.113.719
Friday 51,135,386
Salurday _$1.342.57
Grand Tolal $20,358,677

211. Days sorting in proper order (if you want Monday to be first, just create a calculated column in Calendar
that starts with 1 for Monday and ends on 7 for Sunday, and use that as your sort by column instead)

And we can repeat the same process for MonthName — every column can have its
own separate sort by column:

2
Sort by Celumn lilg
Select the column to be sorted and the column by which it is sorted (for example, sort the month
name by the month number). Click the link below to learn how to sort by a column from a different
table.
Sort By
Column Column
ManthName > MaonthMumberOfYear -
How to sort by & column from a different table? E OK] ’ Cancel

212. Setting sort order for MonthName

rMonthName - Intal %ales

ELET" LY M YR Y
I fhriary | P T
Mazarrh L2 B0 RS
april LYW Y
My 51,7178, b
lunes LT a
July 51,911,263
August 51,895,607
SCptemoer 2l.234, 663
october 52,003,169
Novembor 22,075,070
Decocmecr $3.064,630
Grand Total $29,358,677

213. Properly sorted month names!

First Special Feature: Enable Date Filtering via Mark as
Date Table

With your Calendar table active, go to the Design tab of the ribbon and select Mark
as Date Table:

Home Design
= E e = e | ¥) Und
S | f B | @@ =5 | @

] Freeze ~

Add o, Insert Calculation Existing Create Manage Table Mark as
—1 Width Function Options = Connections | Relationship Relationships | Properties | |Date Table ~
Columns Calculations Relationships) galka_sl)ate Table .
I["lﬁﬁhhlame] '| |JU|\" i B Date Tank settings |
[D... ™ B DavNumberofWee B pavName0fweel B[pavNumberofMonth o -

214. Make this a habit for your Calendar/Date table

Then, in the pivot, you get the special date filtering options:

ID-.'Jt-l: - _ITnt::lI Sales
2l somatez
2] sotztoa
More Sort Options_.. Eguals...
Before...
Diate Filters k . Aller...
Value Hiters 4 Between.
Search Date ,I}B Tomormow
v (Select All) - Today
#-v 712001 Yeckerday
3 i1 7/2/2001 e
- 7i3/2001 Mext Week
[+ 7j4/2001 Thie W
- ¥ 752001 This Week
e 76/2001 Lasxl Week
+- ¥ A7 M
S s Mext Month
- P9/ 2001 A Thiis Month
R el Last Month
l" K) | Cancel | Mext Quarter
23 71207 2001 SIL,Z56 This Quarter
2 7/21/2001 414,313 Last Quarter
25 7/22/2001 338,241 Mext Year
20 7/23/2001 515,012 Thic Ysar
27 7/24/2001 $10,735 ek
28 7/25/2001 411,424 -
29 7/26/2001 417,535 o D
30 f.ﬂ!f."!ﬂl!l 5\23_[}41 All Lates in the Penod »
4 4 ¢ M| Sheetl2 Sheetl | Sheet3 5
Ready j Custom Filter ..

215. Power Pivot “tells” Excel that this is a Date table, so Excel enables these filter options for you (most of
which are useless with our sample data since the dates are ancient, but more useful in the real world)

VNI you are going to use a column of non-Date data type to relate your

Calendar table to your Data tables, you MUST “mark it as date” in the Power
Pivot window, or many other of the smart calculation features covered after this
will not function properly.

Second Special Feature: Time Intelligence Functions!

Power Pivot includes many new functions relating to time:

Insert Function l 7 |-l

Select a categary:

[Date & Time ']
Select a function:

.
CLOSINGBALANCEQUARTER =
CLOSINGBALANCEYEAR

DATE =
DATEADD

DATESBETWEEN

DATESINPERIOD

DATESMTD

DATESQTD

DATESYTD

DATEVALUE

DAY

EDATE

ENDOFMONTH

ENDOFQUARTER

ENDOFYEAR

EOMONTH S

CLOSINGBALANCEMON TH{Expression. Dates, [Filter])
Evaluates the specified expression for the date corresponding to the end of the current month after applying specified filters

[ok || canesl

216. A subset of the DAX functions relating to time — a few are carryovers from normal Excel, but most are new.
Diving in with DATESYTD()

There are so many functions that it was hard for us to choose which one to cover
first. We picked DATESYTD() not because it’s somehow special relative to the
others, but just because it makes for a good example.

Let’s start with a simple pivot:

Calendaryear 4 Maonth — Total Sales
AN AN S i

: February =1 462 430

o | | harch 31,430,905
April 31,603,751

Rlay SLHESL TR

e S1,080, e

Iy L, T

Girand Iatal 54,770,900

217. Our “testbed” for DATESYTD()

Now let’s add a new measure, one that tracks Year to Date (YTD) sales:

[Total Sales YTD] =

CALCULATE ([Total Sales], DATESYTD (Calendar[Date]))

: Calendar Year & Month - Total Sales Total Sales YTD
: = = January 51,340,245 51,340,245
February 51,462,480 $2,802,725

2003 | 2004 March $1,480,905 $4,283,630
April $1,608,751 $5,292,3280

May 51,878,318 57,770,698

June 51,944,361 54, £20,059

July 550,841 $9,770,900

August $9,770,900

Grand Total $9,770,900 40,770,000

218. New measure shows us a running total of YID sales for each month!

And like all good Power Pivot measures, this formula is “portable” into basically any
report shape you desire, just by rearranging the pivot — no formula surgery required!
Remove [Total Sales] and drag Year to Columns...

Total Sales YTD Year *

Munth - 2001 2002 2003 2004 Grand Tulal
January S596,747 5438,865 51,340,245 51,340,245
February $1,147,563 $927,956 $2,802,725 52,802,725
March 61,791,698 51,413,530 4,283,630 &4,283.630
April 42,455,391 51,919,930 55,892,380 45,892,380
May 53,128,947 52,482,702 57,770,698 57,770,698
June $3,805,711 53,037,501 $9,720,059 59,720,059
luly A7, 388 S4.3I06 076 53924170 S9,770,900 59,770,900
August 5979,580 54,852,077 54,771,584 59,770,700 59,770,900
september 51,453,523 55,204,548 59,/81,842 95, /81,842
October $1,966,852 55,617,934 56,862,291 56,862,291
Novemhear €2,510,84F $5,953,030 58,059,773 &8,N59,273
December £3,266,374 56,530,344 59,791,060 £9,791,060

219. Our new [Total Sales YTD] measure, like all good DAX measures, automatically adjusts to any new pivot
shape — just rearrange using the field list, and the measure does the hard work!

Anatomy of DATESYTD()

Function Definition

@ DATESYTD(<date column in calendar table>, <optional year end date>)

That first argument, <date column in calendar table>, is common to nearly all of the
time intelligence functions. In Power Pivot itself, the function help just refers to it as
Dates:

[Total Sales], DATESYTD(Calendar[Dats]))

A 15F Ifntes §¥sa- nolara) |

220. What we call “<date column in calendar table>, Power Pivot calls “Dates” — whenever you see that,
remember our version of it, because that’s what “Dates” means in the time intelligence function definitions.

DATESYTD() is used as a <filter> argument to CALCULATE(), much like
ALL() and FILTER().

How Does it Work?

Like almost everything else “magical” in Power Pivot, DATESYTD() operates by
manipulating filter context.

Let’s return to a simple pivot layout, and highlight a particular measure cell:

ca’lerl;dar'rear & Month - Total Sales YTD

January 51,340,245

a == February $2,802,725
2003 2004 March

- - April $5,892, 380

May 57,770,698

June 59,720,059

July $9,770,900

August 59,770,900

Grand Total £0,770,900

221. For the highlighted measure cell...

DATESYTD() essentially identifies the latest date in the current filter context,
and then “expands” the filter context backward from that date to the first date
of the year (more specifically, to the first date in the year of that previously-
identified latest date, which is 2004 in this case).

OK, then DATESYTD() modifies that filter context. Here’s how.

January 2003
SuMe Tu'we Th Ir %a
1 I 3
4 5 & 7T & 9 10
11 12 I3 14 15 16 IT
12 I 20 21 22 33 M
<3 28 27 o 29 30 3l

Februany <04
su¥e luwe Th H La
i3 3 4 5 & 7
2 & 10 11 12 13 14
15 16 17 18 18 0 =
72 MG A6 ST A
-

kerr= 204

Tu'we Th
zZ £ 1

13

3
16
3 L3
0

222. If we imagine the Calendar table as a calendar rather than a table, where each row in Calendar is a single
date, these are the active dates (rows) in the filter context for the measure cell highlighted in the prior figure.

Again, visualizing the Calendar table in calendar form:

Inuary A3
e Tu'wes Th r %a
3
4 5 6 7 g 10
IT
e |
31

223. DATESYTD() starts at the last date in the existing filter context, and then “expands” the filter context back
to the first date of the year (the first date in the year of the current filter context)

Resulting in a new filter context:

Ianuary AX3

14

il

Februamny <
au Mo uWwe
1 2 3 4
& 9 10
15 16 17
22 1 74

kl=rr= Y04

Tuwe Th Fr

2 F % %
10 11 12
1f 18 19
I." 15 lh

224. New filter context highlighted (again visualizing the Calendar table as a calendar)

Changing the Year-End Date

That last argument to DATESYTD(), which is an optional argument that we left
blank in the first example, allows you to customize your calendar just a little bit. That
allows you to treat June 30 as the last day of the year, for instance, which is common
in Fiscal Calendars.

Here’s a measure that does just that:

[Total Sales Fiscal YTD] =

CALCULATE (

[Total Sales],

DATESYTD (Calendar[Date], “6/30/2004)

)

Now let’s compare that to the original YTD measure, side by side. We’ve added
Calendar[WeekNumOfYear] to Rows, nested under Month:

CalendarYear *® Month - Total Sales YTD Total Sales Fiscal YTD
=l lanuary
L it 1 s64,297 [| 2,788,930
12003 | 2004 2 160,190] 32,884,823
3 $266,720 B | ¢2,991,353
4 $361,655 B | 3,086,288
5 $138,865 . | 3,163,498
= February
5 s157,003 | ¢3,181,636
6 591,370 I | 53,316,003
7 $711,294 I]43,435,927
3 $247,104 [143,571,777
9 $927,956 B 3,652,588
='March
9 $937,992 0 183,662,625
10 $1,061,270 I $3,785,903
1,168,310 I 43,893,473
12 1,284,089 [¢h.008,722
13 1,371,790 I $).096,423
14 ¢1,412,530 I $4.128,163
= April
14 41,502,336 . $4.227,469
15 S1 /21 MH 557

225. Original YTD measure starts from 0 in January, but Fiscal YTD version already is approaching $3M.

@ Note how we have sliced the pivot to 2003 even though we specified

6/30/2004 in the measure. The year itself does not matter in that last argument —
the DATESYTD() function only looks at month and day and ignores the year (in

that particular argument.)

Now let’s scroll down and see what happens at the end of June:

=l hine

71 ‘paizea [55 e
pr | S PR | e AT
pR 7 e I b= Bl =
b " WALy =,)
2r S e sm | e AR
= luly
A 1,70 S | nELE .J[?!
24 53,354,585 | 5350,.43
29 53,553,304 | §525,202
30 £3,752,105 | 5744,504
31 $3,924,170 | 836,369
- August
31 $3,934,160 | 926,358
32 24,152,052 $1,144,551
33 54,336,885 | 51,299,384
id Al 5368 2T= &1 301 =74

226. Fiscal YID measure resets at the end of June, just as desired

@ So the built-in time intelligence functions are capable of adapting to
different year end dates. This still falls under what we call the Standard Calendar
however, because the months are all still the same as the months on the wall
calendar — June still has 30 days, July has 31, etc. Only when we start redefining
our notions of Month/Quarter/Year to be a different from the wall calendar do
we start to “break” functions like DATESYTD(). You will see what we mean
when we get to that chapter.

DATESMTD() and DATESQTD() — “Cousins” of DATESYTD()

These functions are the “month to date” and “quarter to date” versions of
DATESYTD(), so we won’t walk you through them — their usage is just like what
we’ve illustrated for DATESYTD(). The only difference is that neither of them offer
that optional second argument for YearEnd Date.

TOTALYTD() — Another Cousin of DATESYTD()

TOTALYTD() is actually a replacement for CALCULATE(), one that “bakes in” a
DATESYTD().

For example, our original YTD measure:

[Total Sales YTD] =

CALCULATE ([Total Sales], DATESYTD (Calendar[Date]))
Can be rewritten as:

[Total Sales YTD] =
TOTALYTD ([Total Sales], Calendar[Date])

We suppose that’s a bit more readable — shorter for sure. But we don’t see this as
particularly necessary, we’d be fine without this function. Whether you choose to use
it is really just a matter of personal preference.

The Remaining (Many) Time Intelligence Functions —
Grouped Into “Families”

As we said previously, there are many time intelligence functions. But it’s pretty easy
to group them into “families” (to continue the “cousin” metaphor). If we cover an
example from each family, that will give you a foundation — the ability to quickly
adopt whatever function you need — without us boring you to death covering every
single function.

We’ve already covered the DATESYTD() family. Let’s press forward, and take a tour
of each remaining family.

FIRSTDATE() and LASTDATE()

This is a simple family, and it only contains these two.
Quite simply, these are the date versions of MIN() and MAX()
Briefly, let’s define two measures:

[FIRSTDATE Example] =
FIRSTDATE (Calendar[Date])

And:

[LASTDATE Example] =
LASTDATE (Calendar[Date])

And look at them on our Month/Weeknum pivot:

CalendarYear

=l

2001
2003

2002
2004

Month - WeekMumOfYear ~ FIRSTDATE Example

=lJan
1
i
3
4
5

uary

= February

1/1/2003
1/1/2003
1/5/2003
1/12/2003
1/19/2003
1/26/2003
2/1/2003
2/1/2003
2/2/2003
2/9/2003
2{16/2003
2/23/2003

3/1/2003
3172003

LASTDATE Example
1/31/2003
1/4/2003
1/11/2003
1/18/2003
1/25/2003
1/31/2003
2/28/2003
2/1/2003
2/8/2003
2/15/2003
2/22f/2003
2/28/2003

3/31/2003
3 /12003

227. FIRSTDATE() and LASTDATE() in action

@ In the field list we placed both of these measures on the Calendar table since
their “arithmetic” operates on the Calendar itself — they return dates rather than
sales data or product counts, etc.

ENDOFMONTH(), STARTOFYEAR(), etc.

These return single dates, and have special handling for different “size”

time.

Again, let’s illustrate by example:

ENDOFMONTH Measure Column Labels -~

Row Labels

January
February
March
April
May
June
July
August

September

October

Movember

December

Grand Total

- 2001

7/31/2001
8/31/2001
9/30/2001
10/31/2001
11/30/2001
12/31/2001
12/31/2001

2002

1/31/2002
2/28/2002
3/31/2002
4/30/2002
5/31/2002
6/30/2002
7/31/2002
8/31/2002
9/30/2002

2004

1/31/2003 1/31/2004
2/28/2003 2/23/2004
3/31/2003 3/31/2004
4/30/2003 4/30/2004
5/31/2003 5/31/2004
6/30/2003 6/30/2004
7/31/2003 7/31/2004
8/31/2003 8/31/2004
9/30/2003

10/31/2002 10/31/2003
11/30/2002 11/30/2003
12/31/2002 12/31/2003
12/31/2002 12/31/2003 8/31/2004

Grand Total

1/31/2004
2/29/2004
3/31/2004
4/30/2004
5/31/2004
6/30/2004
7/31/2004
8/31/2004
9/30/2003
10/31/2003
11/30/2003
12/31/2003
8/31/2004

periods of

228. Does about what you expect right?

Now let’s swap out Month for Quarter on Rows:

ENDOFMOMNTH Measure Column Labels |~

Quarter - | 2001 2002 2003 2004 Grand Total
1 3/31/2002 3/31/2003 3/31/2004 3/31/2004
2 6/30/2002 6/30/2003 6/30/2004 6/30/2004
3 9/30/2001) 9/30/2002 9/30/2003 8/31/2004 8/31/2004
4 12/21/20m 12/31/2002 12/31/2003 12/31/2003
Grand Total 12/31/2001 12/21/2002 12/31/2002 8/21/2004 8/31/2004

229. 9/30/2001 is the last date in the last month of Q3 2001

Make sense? If you feed more than a single month to ENDOFMONTHY(), it will find
the last date in the last month.

But when you feed it a filter context of “size” less than a month, we get
something different:

CalendarYear & * | ENDOFMONTH Measure

- 1/31/2003
2001 2002 2003 o
2004 1/31/2003
1/31/2003

Cafzs/zons)
1/26/2003 1/31/2003
WEEkN umOerar 1/27/2003 1/31/2003
1/28/2003 1/31/2003
(1 " 2, 3) 1/29/2003 1/31/2003
1/30/2003 1/31/2003
1/21/2003 1/31/2003
2/1/2003 2/28/2003
-6 2/28/2003
2/2/2003 2/28/2003

o foy Fommmy o oo Fmm ey

230. ENDOFMONTH() returns the last day of the month even if that day is NOT part of the current filter context.

The rest of this family behaves in much the same way.

CLOSINGBALANCEMONTHY(),
CLOSINGBALANCEYEAR(), ETC.

These functions are CALCULATE() replacements that have “hardwired” date logic
equivalent to ENDOFMONTH(),
STARTOFYEAR(), etc.

(0 CLOSINGBALANCEMONTH(<measure expression>,<Date Column>,
<optional filter>)
Example measure:

[Total Sales CLOSINGBALANCEMONTH] =

CLOSINGBALANCEMONTH ([Total Sales], Calendar[Date])

CalendarYear * Row Labels -7 Total Sales Total SalesCLDSINGBALANCEm
=l lanuary 407,267 417,460

bl ALl 1/24/2003 413,759 417,469
2003 2004 1/25/2003 46,298 $17,469
1/26/2003 $20,301 $17,469

1/27/2003 45,275 $17,469

1/28/2003 $11,451 $17,469

1/29/2003 $13,474 $17,469

1/30/2003 240 $17,469

1/31/2003 $17,469

='February Y, 39,090 m;

2/1/2003 418,138 412,772

2/2/2003 $19,624 $12,772

2/2/90032 511,202 512 772

231. CLOSINGBALANCEMONTH() always returns the value of its base measure on the last day of the month in
the current filter context (We have used a Sales measure here to demonstrate, but in reality, these functions are
more useful with things like Inventory or Cash Balance.)

DATEADD()

This function is also used as a <filter> argument to CALCULATE(), and shifts your
date filter context forward or backward in time.

@ DATEADD(<Date Column>, <number of intervals>, <interval type>)

e <Date Column> - the usual. Put your date column from your calendar table
here.

e <Number of Intervals> - Set this to 1 to move one interval later in time, -1
to move back one, etc.

e <Interval Type> - Set this to Year, Quarter, Month, or Day — no quotes

Example measure that shows us last year’s [Total Sales]:

[Total Sales DATEADD 1 Year Back] =
CALCULATE (

[Total Sales],

DATEADD (Calendar[Date], -1, YEAR)

)

Here are its results for 2003 side-by-side with a pivot showing the original [Total Sales]
measure for 2002:

Calendar"fear 1 CalendaryYea l
Month - Total Sales DATEADD 1YearBack | Month v
January 5596,747 January 5596,747
February $550,817 February 5550,817
March 5644,135 March 5644,135
April $663,692 April $663,692
May $673,556 May $573,556
June 5676,764 June 5676,764
July $500,365 July 5500,365
August $546,001 August 5546,001
September $350,467 September 5350,467
Octaber 5415,390 October 5415,390
Movember 5335,095 MNovember 5335,095
December 5577,314 December 5577,314
Grand Total %6,530,344 Grand Total $6,530,344

232. DATEADD() version filtered to 2003 matches the original measure filtered to 2002

And now the same comparison, but with Quarter on Rows instead:

Calendar‘fear - CalendarYea T
Quarter ~ [Total 5ales DATEADD 1 Year Back Quarter x ‘-:rtal Salesl
1 SL/9L09E 1 51, /91,698
2 $2,014,012 2 $2,014,012
3 51,396,834 3 $1,396,834
4 $1,327,799 4 $1,3227,799
Grand Total 56,530,344 Grand Total 506,530,344

233. Same comparison, just with Quarter on Rows rather than Month. Again, perfect match.

Growth Versus Last Year (Year-Over-Year, YOY, etc.)

One obvious application of DATEADD() and similar functions is the calculation of

growth versus the prior year.

[Pct Sales Growth YOY] =

([Total Sales] - [Total Sales DATEADD 1 Year Back])

/ [Total Sales DATEADD 1 Year Back]

Calendar‘r’ear' 2003[- Calendar‘r’ear -T
Month + Pct Sales Growth YOY Total Sales Month - Total Sales
lanuary -26.5% $438,865 lanuary 5596,747
February -11.2% 5489,090 February 5550,817
March -24.6% 5485,575 March 5644135
April -23.7% 5506,399 April 5663,692
May -16.4% $562,773 May $673,556
June -18.0% 5554,799 June 5676,764
July 77.2% 5886,669 July 5500,365
August 55.2% 5847414 August 5546,001
September 188.3 % 51,010,258 September 5350,467
October 160.1% 51,080,450 October 5415,390
Movember 257.2% 51,196,981 Movember 5335,005
December 200.0% 51,731,788 December 5577,314
Grand Total 40.9% 50,701,060 Grand Total %6,530,344

234. [Pct Growth YOY] displayed for 2003 and compared to 2002 in the second pivot
Quirks and Caveats

There are a few things you will discover about DATEADD() that might make you
scratch your head a bit, so We’ll give some advanced notice.

You Must Have Contiguous Date Ranges on Your Pivot

If we filter a Quarter out of our pivot we will get an error:

CalendarYeaar 2003 X
Quarter = Total Sales DATEADD 1 Year Back
Sort AtoZ $1,791,698
Sart 7 tn A 52,014,012
MoOre SOrt Options... $1,396,824
$1,327,799
$6,530,344
Date MNikers
Value Filters
Scarch CalendarQuartc)':":EI
] (Select All)
- [1
e

235. Filtering Quarter 3 out of the pivot...

Calendaryzar 2003 T

qQuarter T Total Sales CATEADD 1 Yoar Back

i P}

Calculation error in measure

"Sales"|Total Sales DATEADD 1 Year

Back|: Function "DATEADD' only

works with contiguous date
“Werand Total selections.

236. ...yields an error with DATEADD()

The same thing would happen if we were using Month on rows and filtered out one
or more months.

@ Note that the error occurs in the Grand Total cell. There is nothing wrong
with each of the single-Quarter measure cell calculations, but when the Grand
Total fails, the entire pivot fails. The filter context of the Grand Total cell is
Quarter={1,2,4} and Year={2003}, and when DATEADD() goes back a year,
that “skips” Quarter 3 of 2002, which DATEADD() cannot do.

@ Merely hiding the Grand Total (using the pivot Design tab on the ribbon)
will not fix this problem. The only way to fix this is to prevent the Grand Total
from even being calculated in the first place, which we will explain in the
chapter on IF().

DATEADD() Has Special Handling for “Complete”
Months/Quarters/Years

This one and the next one are really subtle. If you struggle to understand, don’t
worry about it — just remember that there’s something special going on here, so that
if/when you discover this on your own, you can come back here and re-read this
section.

2004 is a leap year, in which February contains 29 days. Let’s add a simple measure
to the Calendar table that shows this:

[Number of Days] =
COUNTROWS (Calendar)

Year B,

Month ~ MNumber of Days

January 31
February
March 31
April 30

237. 29 days in Feb 2004

And now we will add the DATEADD() measure we created before, [Total Sales
DATEADD 1 Year Back]:

Year 2004 -1

Month ~ Number of Days Total Sales DATEADD 1 Year Back

January 31 38 86,
February 29
March 31 5485,575
April 30 $506,399
May 31 5562,773
June 30 $554,799
July 31 $886,669
August 31 5847414
Grand Total 244 54,771,584

238. Question: does $489,090 represent 28 days of 2003 sales, or 29 days?

Let’s compare that to a 2003 pivot for the “raw” [Total Sales] measure:

Calenda{‘f’ea T Calendar\"ear@ T

Month * MNumber of Days Total Sales DATEADD 1 Year Back Month - Total Sales Mumber of Days
January 31 31
February $489,090 February $489,09 |
March 31 S485,575 March 5485,575 31
April 30 $506,399 April $506,399 30
May 31 $562,773 May $562,773 31
lune an 5554, 799 lune 4554, 799 an

239. DATEADD() is returning 28 days’ worth of Feb 2003 sales even though it starts out with a 29-day filter
context in 2004!

DATEADD() Lacks Intelligence for Weeks

Calendar"r’ea o Calendar‘rear -7

WeekNum - Eotal Sales DATEADD 1 Year Back l WeekNum -
668 564,297

1 1

2 §100,546 2 595,893
3 $107,535 3 $106,530
a $101,609 4 $94,935
5 $83,508 5 $05,348
6 $135,289 © $134,367
7 $118,548 7 $119,924
8 $132,961 8 $135,850
g o172 793 9 5

240. With WeekNum on Rows, the DATEADD() measure does NOT match!

To see why the numbers don’t match, we need to add Date to Rows as well:

CalendarYear 2004 :'..T_ CalendarYear 2003 T
WE_EI(NIJI_'I’I:.' ‘Total Sales DATEADD 1 Year Back WeekNum | - Total Sales
=1 545,668 1 $64,297
Thursday 512,445 Wednesday 512,445
Friday 519,703 Thursday 519,703
Saturday 513,520 Friday 513,520
=2 5100,546 Saturday 518,629
Sunday 518,629 = 405,803
| Monday 513,457 [Sunday 513,497)
Tuesday 54,363 Monday 54,363
Wednesd 514,623 Tuesday 514,623
Thursday 515,733 Wednesday 515,733
Friday 518,142 Thursday 518,142
Saturday 515,558 Friday 515,558
=3 $107,535 Saturday $13,977

241. Both pivots report Sunday through Monday, but the DATEADD() measure is returning 2003’ Sunday sales
in the context of 2004 Monday

Stated another way, the weeks are misaligned by one day:

CalendarYear 2004 " § CalendarYear 2003 - |
WeekNum ~ Total 5ales DATEADD 1 Year Back WeekNum ~ Total Sales
-1 $45,668 -1 $64,297
Thursday 512,445 Wednesday 512,445
Friday $19, 702 Thursday $19,702
Saturday 513,520 riday 513,520

32 300,580 S3LUCdaYes—l 518,025
Sunday =} 595,893
Monday 513,497 sunday 513,497
Tuecday 41,363 Monday 4,363
Wednesd 514,623 Tuesday 514,623
Thursday 515,733 Wednesday $15,733
Friday 518,142 Thursday 518,142
Saturday 515,558 Friday 515,558

=3 107,535 ___Egm_.-’- 13,977
Sunday =3 4$106,530
Monday 513,255 Sunday $13,255

242. Why doesn’t this work, if it works for Month and Quarter? Well for starters, 52 weeks in a year times 7
days per week = 364. So we are never going to get weeks quite right unless we change years to be 364 days long
instead of 365 (which some custom calendars actually do).

So the concept of “week” is defined only in our Calendar table, in the
WeekNumOfYear column. Look at the pivots above — Week 1 of 2004 has only 3
days in it! And Week 1 of 2003 has only 4!

That’s purely the “fault” of our Calendar table:

wE - 7 o
1/1/2004 Thursday 1 2004
1/2/2004 rriday 1 2004
1/3/2004 Saturday 1 2004

243. Our Calendar table DOES only have 3 days in it for Week 1 of 2004

Whereas the time intelligence functions can intrinsically “know” what we mean by
Month/Quarter/Year, they rely on the calendar table for all other concepts, so there
isn’t any “magic fixup” when we navigate using DATEADD() in a filter context
involving weeks.

SAMEPERIODLASTYEAR()

() SAMEPERIODLASTYEAR(<Date Column>)

This is a shortcut function that is just a wrapper to DATEADD(). It is 100%
equivalent to DATEADD() with “-1, Year” as the last two arguments:

SAMEPERIODLASTYEAR (Calendar[Date])
Is exactly the same as:

DATEADD (Calendar[Date], -1, YEAR)

PARALLELPERIOD(), NEXTMONTH(),
PREVIOUSYEAR(), etc.

PARALLELPERIOD()

This one is almost a wrapper to DATEADD(), but it differs in one crucial way that is
best shown by example.

@ PARALLELPERIOD(<Date Column>, <number of intervals>, <interval
type>)
Let’s create an example measure:
[Total Sales PARALLELPERIOD Back 1 Year] =
CALCULATE (

[Total Sales],
PARALLELPERIOD (Calendar[Date], -1, YEAR)

)

Calendar¥ear 2003 - CalendarYear 2002 -
Row Labels ~ Total Sales PﬂHALLELPERIDDB;@mL_\ Month +* Total Sales
January 56,530,344 January 5596,747
February 56,530,344 February 5550,817
March 56,530,344 March 5644,135
April 46,530,344 April 663,692
May 46,530,344 May 4673,556
June 56,530,344 June 5676,764
July 46,530,344 July 4500,365
August 56,530,344 August 5546,001
September 56,530,344 September 5350,467
October 56,530,344 October 5415,390
Movember 56,530,344 MNovember 5335,095
December 56,530,344 December

Grand Total | 56,530,344 Grand Total

244. PARALLELPERIOD() always fetches the full year when you go back 1 year, no matter what “size” your
filter context is (Month in this case).

So PARALLELPERIOD() navigates just like DATEADD(), but when it gets to
its “destination,” it expands the filter context to the size of the specified
<interval type> - Year, Quarter, or Month.

@ Reminder: you don’t have to remember all of the details of all of these

functions. (We sure don’t!) You just need to know that they exist, then be able to
find the one that serves your current purpose, and quickly re-familiarize yourself
as needed.

NEXTMONTH(), PREVIOUSYEAR(), etc.

These functions are all just wrappers to PARALLELPERIOD() — they navigate and
expand in exactly the same way.

[Total Sales NEXTMONTH] =
CALCULATE ([Total Sales], NEXTMONTH (Calendar[Date]))

CalendarYear * Date * Total Sales NEXTMONTH Total sales
2001 2002 2003 el U Ml > T18, 06
* February $485,575,,, $489,000

il +March $506,399., , $485,575
- April ($562,773) $506,399

4/1/2003 \$562,773) $19,024

4/2/2003 $562,773 526,338

4/3/2003 5562,773 58,196

4/4/2003 $562,773 519,375

4/5/2003 $562,773 516,363

4/6/2003 $562,773 48,413

245. NEXTMONTH() always grabs the FULL next month, even if we start in the context of a single day.

DATESBETWEEN()

Ah, we have a special place in our hearts for DATESBETWEEN(). Sometimes,
you don’t want anything special — you just want total control over the date range
in a measure. And DATESBETWEEN() delivers just that.

@ DATESBETWEEN(<date column>, <start date expr>, <end date expr>)

Let’s start with a very simple example:

CalendarYear & Row Labels ~ | Total Sales Total Sales First Half 2003
— — January 5438,265
. February 5489,090]
| 2003 || 2004 ok $485,575
April 5506,399
May 5562,773
June $554,?99_
July $886,669
August 5847414
September 51,010,258
October 51,080,450
Movember 51,196,981
December 51,731,728
Grand Total %9,791,060
Sheet2 | Sheet4 . Sheet3 ¥ (4] M

Average: 5506,250 Count: 6 Eum: §3.037,501 IE

246. Note how DATESBETWEEN() completely overrides existing filter context on the Calendar table, otherwise
it would be blank for July-December (and for January-June would match [Total Sales] for each month)

“Life to Date” Calculations

Earlier, we used DATESYTD() to calculate “year to date” sales, but what if you want
a running total that does not reset at the start of each year, but instead just keeps
piling up year after year?

Fortunately, DATESBETWEEN() lets us use expressions for the endpoint arguments:

[Total Sales Life to Date] =

CALCULATE (

[Total Sales],

DATESBETWEEN (

Calendar[Date],

“1/1/1900”, LASTDATE (Calendar[Date])

)
)

Calendar¥Yea r . |

How Labels ~ lotal 5ales Life to Date

January
February
March
April

May

June

July
August
Seplember
October
November
Neremhar
Grand Total

$10,235,582
$10,724,673
$11,210,247
511,716,647
$12,279,419
$12,834,219
$13,720,887
$14,562,201
$15,578,559
516,659,009

Row Labels -T Total Sales

12001 53,200,374
= 22 $b,530,344
+2003 L Lk A

Grand Total | $19,587,777

247. “Life to Date” using DATESBETWEEN() matches grand total across 2001-2003, as expected

CalendarYear 2003 e Row Labels -T Total Sale

o L2 <+ These 3 cells
Row Labels - Total Sales Life to Date +2002 6,530,344 Sum up to
January =12003 9,791,060
February 10,724,673 $10,235’582
March 511,210,247
April 511,716,647 o
May 512,279,419 I Wh lc h
June 512,834,219 May 5562,773
July 513,720,887 June 5554,799 matc hes
August 514 SRE 301 Lialye 5226 ARG

248. Expanding to Month level, “Life to Date” measure still returns expected results

Removing That Hardwired 1/1/1900
Yeah, that’s ugly. Let’s replace it with FIRSTDATE(ALL(Calendar[Date])):
[Total Sales Life to Date] =

CALCULATE (

[Total Sales],

DATESBETWEEN (

Calendar[Date],

FIRSTDATE (ALL (Calendar[Date])),
LASTDATE (Calendar[Date])

)
)

Why ALL(Calendar[Date])? Because otherwise we’d just get the first date in the filter
context, (which would be January 1, 2003 in the $10,235,582 cell highlighted in the pivot

above). We need to apply ALL() in order to clear the current filter context and literally
find the first date in the entire Calendar table.

@ Note that we do not want ALL() on the LASTDATE() in the <end date>
argument of DATESBETWEEN() in this case, otherwise it would always return sales
for all time, and not sales up until the current filter context date.

DATESBETWEEN() is Fantastic with Disconnected Tables Too!

You remember the Min/Max Threshold version of disconnected tables? You can do the
same thing with dates, using a disconnected DateRange table, your normal Calendar table,
and DATESBETWEEN().

We won’t belabor that here, since it’s a repetition of a familiar pattern, but for a detailed
example, see

http://ppvt.pro/ABCampaign

http://ppvt.pro/ABCampaign

15 - IF(), SWITCH(), BLANK(), and Other
Conditional Fun

Using IF() in Measures

It is time to introduce conditional/branching logic into our formulas. This starts out as
simple as you would expect.

Consider our [Pct Sales Growth YOY] measure from last chapter:

[Pct Sales Growth YOY] =
([Total Sales] - [Total Sales DATEADD 1 Year Back])
/ [Total Sales DATEADD 1 Year Back]

We get an error because [Total Sales DATEADD 1 Year Back] is 0 for 2001 — there were
no sales in 2000, so this is really a “div by 0” error.

@ Technically speaking, [Total Sales DATEADD 1 Year Back] is not returning 0
for 2001, it is returning blank — when there are no rows in the source tables
corresponding to the filter context, measures return blank. But when we divide by
blank, that’s the same as dividing by zero in terms of causing an error.

How |abhels = Prft A Vi
2001 1 TN UL i

2002 9.9 %
2003 12.9%
2004 101.8 %
Grand Total 101.5%

249. We get a #NUM error for 2001

This is an easy fix — we just edit the formula, and wrap our original formula in an
IF(): And the results:

How labels — PrtSales Growth

2002 93.9 %

2003 43.9%
n 101.3 %

Grand Tolal 101.5 5%

250. Now returns 0% instead of an error

The BLANK() Function

We can do better than 0% though can’t we? 0% implies that we had 0 growth, when
in reality, this calculation makes no sense at all for 2001. So rather than return 0, we
can return the BLANK() function.

Let’s edit the formula accordingly:

[Pct Sales Growth YOY] =

IF (

[Total Sales DATEADD 1 Year Back] = 0,

BLANK (),

([Total Sales] - [Total Sales DATEADD 1 Year Back])
/ [Total Sales DATEADD 1 Year Back]

)

And the results:

Row Labels = potsales Growth YOY

22 9%.9%
2003 15.9%
27004 10M.8%
Grand Total 101.5%

251. Aha! Now 2001 is gone completely, nice!
Why does 2001 disappear from the pivot completely? Because all displayed
measures return BLANK() for 2001.

@ This is a VERY helpful trick. Retuning BLANK() in certain situations will
become one of your most relied-upon techniques.

If we add a measure that is not BLANK() for 2001, 2001 is displayed once again:

Ruw Labels ~ Pl Salus Growlh YOY Tolal Sales

2001 — T

2002 929% 56.230,314
AN 410% S0, 060
AN ME.H5 SFL AL KA

Grand Total 101.5 % 529,358,677

252. 2001 is displayed as long as any single measure returns a non-blank result

You can force 2001 to display, however, even if all measures are blank. Under
Pivot Options, on the Pivot Options tab, are the following two checkboxes:

@l H9-04-9I5 chl5xsx - Microsoft Excel 1
Home Insert Page Layout Formulas Data Review View Developer PowerPiv Options | Design

wEE R B BE

%l sort Insert | Refresh Change Data = Clear Select
icer ™ = Source ™ e i Fig

PivotTable Na? Active Field: e
| Total Sales
- ;
[Options ’?ﬂ Field Settings

PivotTable PivotTable Options) Data Adtions

— =
l D7 = .
————— | Name: |PivotTable1 |
a | F | &€ | H | !

| Layout & Format | Totals &Filhersl Display IPrinh’ng | Data | Alt Text |

Display
[¥#] show expand/collapse buttons

[¥] show contextual tooltips
[¥] Show properties in tooltips

Display field captions and filter drop downs
[] Classic PivotTable layout (enables dragging of fields in the grid)
[show the Values row

b b B o e

[¥]iShow items with no data on rows:
Show tems with no data on columns

Display item labels when pp fielde are