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Practical Graph Analytics with Apache Giraph helps you build data mining and 
machine learning applications using the Apache Foundation’s Giraph framework for 
graph processing. This book brings the power of Apache Giraph to you, showing 
how to harness the power of graph processing for your own data by building 
sophisticated graph analytics applications using the very same framework that is 
relied upon by some of the largest players in the industry today.

Graphs arise in a wealth of data scenarios and describe the connections that 
are naturally formed in both digital and real worlds. Examples of such connections 
abound in online social networks such as Facebook and Twitter, among users who 
rate movies from services like Netflix and Amazon Prime, and are useful even in 
the context of biological networks for scientific research. Whether in the context of 
business or science, viewing data as connected adds value by increasing the amount 
of information available to be drawn from that data and put to use in generating new 
revenue or scientific opportunities.

Apache Giraph offers a simple yet flexible programming model targeted to graph 
algorithms and designed to scale easily to accommodate massive amounts of data. 
Originally developed at Yahoo!, Giraph is now a top top-level project at the Apache 
Foundation, and it enlists contributors from companies such as Facebook, LinkedIn, 
and Twitter. 
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Introduction

We live in an age of so-called Big Data. We hear terms like data scientist, and there is much talk about 
analytics and the mining of large amounts of corporate data for tidbits of business value. There are even 
apocryphal stories involving diapers and beer selling together in the same store aisle. The common theme is 
the problem of having large amounts of data and somehow converting that data into actionable information. 

Enter graph theory. It’s a branch of mathematics concerned with pairwise relationships between 
objects. Graph theory can be taught abstractly, and probably often is. It’s very practical though. Imagine 
mapping all the link relationships in a web site. One page might turn out to be in more relationships than 
all the others, and perhaps that page is an important one. Likewise, one can examine relationships between 
people in a group, and perhaps the person having the largest number of connections could also be seen as 
having the widest influence. Certainly, you’d want that well-connected person if your goal were to spread a 
piece of news or gossip quickly.

The book you’re holding is about Apache Giraph and its use in creating graph structures used in 
analyzing large data sets. Apache Giraph is a graph processing engine designed to be scalable and to quickly 
answer business and scientific questions based upon connections between people and objects. It is used at 
Facebook, for example, as the basis for mining and selling information derived from the many random posts 
that you make throughout the day. 

If you have large amounts of data to be analyzed, and especially if there is information to be derived 
from the relationships between data points, then this book Practical Graph Analytics with Apache Giraph 
can unleash tremendous value. Buy the book today. Read it. And reap the business and scientific value that’s 
hidden away in your data.
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Annotation Conventions

Many of the code examples in this book are annotated using markers in the form #1, #2, #3 and so forth. 
Whenever you see such a marker in a code listing, know that it is not part of the code per se. It is instead a 
reference to an annotation resolved at the bottom of the listing. 

For example, following are some lines from Listing 5-4 in Chapter 5:

public class GiraphHelloWorld extends                                    #2
   BasicComputation<IntWritable, IntWritable,
                    NullWritable, NullWritable> {
  @Override
  public void compute(Vertex<IntWritable,                                #3 
                      IntWritable, NullWritable> vertex,
                  Iterable<NullWritable> messages) {

Look at that listing, and you’ll see the references #2 and #3 resolved following the listing in body text. 
Here’s how that looks:

...
    System.exit(ToolRunner.run(new GiraphRunner(), args));
  }  
}

#1 Required important statements. We will omit those in all future listings.

#2 Extending the most basic abstract superclass for defining our graph computation.

#3 Defining compute method that would be called for every vertex.

You’ll see the foregoing annotation convention used throughout the book. Annotations in code in the 
form #1, #2, #3 correspond to comments given immediately following the code listing.

http://dx.doi.org/10.1007/978-1-4842-1251-6_5_fpar1
http://dx.doi.org/10.1007/978-1-4842-1251-6_5
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Chapter 1

Introducing Giraph

This chapter covers

Using large amounts of graph data to obtain deeper insights

Understanding the specific objectives and design goals of Giraph

Positioning Giraph in the Hadoop ecosystem

Identifying the differences between Giraph and the other graph-processing tools

This chapter discusses the importance of data-driven decision making and how to execute it with 
Big Data. You see examples of how using large amounts of data can bring added value. You also learn how 
Giraph fits among the myriad of tools you can use to analyze large datasets. The chapter positions Giraph 
in the Hadoop ecosystem and introduces how it plays with its teammates. In addition, the chapter positions 
Giraph in contrast with other graph-based technologies, such as graph databases, and explains when and 
why you should use each technology. This is an introductory chapter, and as such it introduces concepts and 
notions that are explored more deeply in the following chapters.

Data, Data, Data
A couple of years ago, the New York Times published a fascinating article about data analytics.1 According 
to the story, a father near Minneapolis complained to a Target employee about his teenage daughter 
receiving coupons for pregnancy-related items. “My daughter got this in the mail!” he said, pointing out 
the printed coupon. “She’s still in high school, and you’re sending her coupons for baby clothes and cribs? 
Are you trying to encourage her to get pregnant?” The Target representative apologized, and then called 
the father a few days later to apologize further—but the conversation took an unexpected turn. “I had a talk 
with my daughter,” the father said. “It turns out there have been some activities in my house I haven’t been 
completely aware of. She’s due in August. I owe you an apology.”

Target, like other retailer shops, assigns each customer a unique ID (such as their credit card number) 
and uses these IDs to record the customer purchases in stores and online. By analyzing this historical data, 
companies are able to profile customers and shopping behavior. One of the things they can recognize is 
pregnancy. Not only that, but they can estimate the due date within a small time window. Apparently lotions 
are good indicators; many people buy lotion, but pregnant women tend to buy large quantities of unscented 
lotions around their second trimester. Moreover, in their first trimester, they buy supplements like calcium, 
magnesium, and zinc. These products are not specific to pregnancy, but a sudden spike in consumption, 

1Charles Duhigg, “How Companies Learn Your Secrets,” New York Times, Feb. 16, 2012, www.nytimes.com/ 
2012/02/19/magazine/shopping-habits.html.

http://www.nytimes.com/2012/02/19/magazine/shopping-habits.html
http://www.nytimes.com/2012/02/19/magazine/shopping-habits.html
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along with the purchase of other products such as hand sanitizers and washcloths, acts as a signal for 
pregnancy and closeness to the delivery date. Target’s statisticians analyzed customer purchases to figure 
out these patterns.

It is likely that in the near future, when you walk through shops and malls, your mobile phone will 
notify you of offers that fit your current needs and tastes, like those shoes you always wanted or the 
spaghetti you are running out of. But purchase data is only one example of data that can be used to 
learn more about customer behavior. We are surrounded by new devices and sensors that empower us 
to measure and record the world around us with increasing precision. As Mark Weiser put it, “The most 
profound technologies are those that disappear. They weave themselves into the fabric of everyday life until 
they are indistinguishable from it.”2 It is probably time for our ubiquitous computing devices to disappear 
into the fabric of everyday life, with their Internet connections and their set of full-fledged sensors. When 
this happens, we will be provided with a volume of data that we have not had to manage before. To allow 
these technologies to effectively integrate and disappear, the infrastructure that manages the data they 
produce must evolve with them.

The abilities provided by these technologies affect us deeply and broadly, including the way we 
communicate and socialize. The more we can connect and share, the more we do. As illustrated in Figure 1-1,  
the total amount of data created and shared—from documents to pictures to tweets—in 2011 was of 2 
zettabytes,3 around nine times the amount in 2005; and the predicted amount for 2015 is 8 zettabytes. This data 
includes information about social behavior, finances, weather, biology, and so on. It is not only valuable for 
the sciences but can also be used effectively by enterprises to understand their customers and provide better 
services.

Figure 1-1.  Past and predicted amount of data created and shared

Now consider this. We act differently depending on our mood. When we feel good and happy, we tend 
to open up to the world, try new things, and take risks. On the other hand, a negative mood can make us 
pessimistic and less prone to new adventures. Recently, scientists have taken this idea to an extreme and 
have tried to see if there is a connection between people’s moods and their behavior on the stock market. 
Do they invest differently, buying or selling certain stocks, depending on how they feel? Data exists about 
stock-market trends, but it is much more difficult to collect data about the mood of millions of people 
every second. So the scientists looked at Twitter. People post on Twitter about all sorts of things: what 
they are doing, a movie they liked, something that made them happy or angry, jokes and quotes, and so 
on. Tweets are simple and contain more emotional content than blog posts or articles. As such, the text in 
tweets can be quite representative of the mood of the people who wrote them—and they write thousands 
every second.

2Mark Weiser, “The Computer for the Twenty-First Century,” Scientific American, 1991.
3A zettabyte is 1 trillion gigabytes. Source: John Gantz and David Reinsel, IDC, “Extracting Value from Chaos,”  
June 2011, www.emc.com/collateral/analyst-reports/idc-extracting-value-from-chaos-ar.pdf.

http://www.emc.com/collateral/analyst-reports/idc-extracting-value-from-chaos-ar.pdf
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Sentiment analysis is an application of natural language processing (NLP) techniques to determine 
the attitude of a writer toward a particular topic. Simply put, by looking at the words and characters used, 
such as adjectives, verbs, emoticons, and punctuation, it is possible to assign that text a positive or negative 
classification. Sometimes it is possible to assign an evaluation of the affective state of the writer, such as 
“happy,” “sad,” or “angry.” These techniques are applied to social media to measure customer attitudes 
toward certain brands, or voter attitudes regarding candidates during political campaigns.

Returning to the connection between moods and the stock market, scientists were able to show that 
after a number of days of overall calm, as measured on Twitter, the Dow Jones index rose, whereas the 
reverse happened after an anxious period. Although the researchers claimed accuracy of around 87%, it is 
still under discussion whether the Twitter data alone can really produce such precise predictions; but it is 
generally accepted that it can act reliably as an indicator. Whether for predicting the behavior of financial 
markets or trends in social media, this is a great example of how small pieces of information, such as 
140-character tweets, can be very valuable when looked at together.

Practitioners of business intelligence are looking at data analytics to discover patterns in their data and 
support their decision-making. Looking at how customers use products allows designers and engineers to 
understand how to improve those products. Data about user behavior provides insights into how to adapt 
products to users with new or better features. The study of product usage has been traditionally performed 
via surveys and usability studies. Users are asked to describe how they perform certain actions and tasks—
How do you search for a lost e-mail in your client software, choose a hiking backpack on an e-commerce site, 
organize your appointments in your calendar?—and to list features that are missing. They may also be asked 
to use a product in a controlled environment, such as a lab, giving the product designers the opportunity 
to measure the effectiveness of their design decisions. But these approaches have one big drawback: they 
cannot be performed on a large scale. How many users can you test, and how realistic are these evaluations? 
Or, how much data can be collected, and how reliable is it?

Analyzing data is not only useful for analysts and scientists. Machine-learning algorithms can discover 
patterns and classify and categorize data as part of an application. For example, consider users and books. If 
you find out that Mark and Sharon have similar tastes in books, you can advise Mark to read the books that 
Sharon has read but Mark has not (yet), and vice versa. Or, to turn it around, if you know that two books are 
similar, you can advise the readers of the first to read the second, and so on. What these algorithms learn 
automatically from the data can be integrated directed into an application, making it more personalized 
and proactive. These concepts are at the core of recommender systems, such as those used by Amazon and 
Facebook to recommend books and friends. Or think of a search engine like Google. Google Search receives 
queries from users asking for specific content. It also collects which entries the users click on the results 
page, not to mention clicks on content provided by other Google products such as Gmail, Google Maps, and 
so on. Putting this information together, Google Search can provide different search results for the same 
query, depending on the user who performs it. If I search for a music shop, Google will probably give more 
relevance to shops that sell jazz music in Amsterdam. This is called personalized search.

One interesting fact about data is that the more you have, the better you can understand and model the 
phenomena you are looking at. In fact, studies show something even more striking. Recently, scientists have 
tested “naive” machine-learning algorithms against more sophisticated ones. They have discovered that 
often, the naive algorithms outperform the more sophisticated ones if they are fed large enough volumes of 
data. Consider the Netflix challenge. Netflix provided a large dataset containing the ratings of nearly half a 
million users for 18,000 movies. The challenge was to predict user ratings for movies they have not seen yet. 
These studies show that a simpler algorithm that takes into account additional data about the movies, such 
as information from the Internet Movie Database (IMDb), can outperform a more sophisticated algorithm 
that uses only the Netflix data. This example is tricky, because IMDb is a different (independent) dataset; but 
in general, machine-learning algorithms benefit from more data because it reduces noise and helps build 
better models.

Another counterintuitive point is that, given a large enough dataset, a sophisticated algorithm may 
perform more poorly than a naive one. Basically, more sophisticated heuristics do not help when algorithms 
are given a bigger picture; rather, they may achieve worse results. It is as if the additional complexity of the 
newer algorithms compensates for absence of evidence, and hence they work better with small datasets, 
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but the complexity biases the results that can be achieved if more evidence is available. One way to put it 
is that the sophisticated algorithms can be more opinionated, instead of basing their conclusions on facts. 
This is good news. It means you can mine data with a fairly simple and well-understood toolset (the basic 
algorithms that have been studied extensively over the last 30 years), provided you can execute them at scale.

■■ Important T he ability to create models based on data is the basis of creating better products and services. 
The volume of data being produced is already huge and is constantly growing. Unfortunately, there is no 
shortcut that will let you avoid facing these large volumes of data. You have to design algorithms and build 
platforms that can manage data at this scale. Giraph is one of these platforms.

From Big Data to Big Graphs
The previous section discussed the importance of looking at large volumes of data to extract useful 
intelligence. The examples presented use many small pieces of data that are aggregated to extract trends and 
whatnot. What is the average age of people buying a product? In what month of the year does that product 
sell best? Which other product has a similar trend? The more data you have, the more accurate the answers 
you can give to questions like these. However, for certain kinds of data, you can also take advantage of the 
connections between the entities in your data. In those cases, more important than the pieces of information 
(and their aggregations) is the way those pieces are connected—more precisely, the structure of the network 
created by these connections. Unfortunately, the power that comes from analyzing connected data has a 
cost, because analyzing graphs is usually computationally expensive and introduces new challenges and 
specific tools. Giraph is a framework you can use to run graph analytics on very large graphs across many 
commodity machines. It was specifically designed to solve problems that take the connectedness of data 
into account. In other words, it was designed to process graphs.

A graph is a structure that represents abstract entities (or vertices) and their relationships (or edges). 
Graphs are used in computer science in a variety of domains to represent data and express problems. 
Many common data structures like trees and linked lists are graphs: their nodes are connected with links 
according to the criteria that define each specific data structure. Graphs are also used in other disciplines; 
for example, in the social sciences, a graph is usually called a network. Networks are used to represent 
relationships between individuals, such as in a social network, as illustrated in Figure 1-2. As in the case of 
graphs in computer science, social networks were used in the social sciences long before social networking 
sites like Facebook became popular. And in biology, graphs are used to map interactions between proteins. 
Having such a connected structural model lets researchers look at data in a more cohesive way than as just 
a collection of single items. Chapter 2 looks at graphs in more depth and explains how to model data and 
problems through them.

http://dx.doi.org/10.1007/978-1-4842-1251-6_2
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To give you a better idea of how looking at data connections as a graph can give you added value, and 
the types of problems for which Giraph may be helpful, let’s consider some examples. Recent research 
has shown that by looking at the social network of 1.3 million individuals on Facebook, it was possible to 
predict which people were partners and whether they were going to break up in the next two months (of 
course, without looking at their relationship status). The researchers used only the network structure—
the friendship relationships between individuals. The concept behind this research is social dispersion. 
Basically, just looking at the number of friends two individuals have in common—called embeddedness—
does not provide enough information and is a low predictor metric. Dispersion, on the other hand, measures 
how much these common friends are not connected. In other words, high dispersion between two people 
means they have friends in common but only a few of those friends are friends with each other. According 
to the data, couples with long-lasting relationships tend to present high dispersion. Intuitively, the results 
suggest that strong romantic relationships are those in which people participate in different social groups, 
which they share with their partners but which remain separate. Looking at one individual and selecting 
from her social network individuals with whom she has high dispersion generates a list of possible partners 
for that individual; about 60% of the time, the person at the top of this list is indeed the correct partner. 
Moreover, couples without this particular social structure are more likely to split in the near future.

Another example of how looking at data as a graph can bring added value is the Web. As you see in the 
following chapters, one of the reasons for Google’s initial success was that it looked at the Web as a graph. 
Web pages point to other pages through hyperlinks. Early on, Google’s competitors were crawling the Web 
by jumping from page to page and following the links on each page, but the graph structure was not used 
to provide search results. Results were provided solely based on the presence of query terms on web pages, 
which led to the spamming of popular keywords on unrelated pages. Google, on the other hand, decided 
to look at the structure of the graph—which pages linked to which other pages—to rank pages based on a 
notion of popularity. According to Google’s PageRank algorithm, the popularity of a page depends on the 
number of links pointing to it and how popular those pages are. This means the entire structure of the graph 
is taken into account to define the ranking of vertices. This approach was more sophisticated, but the results 
were impressive, and you know how the story continued.

A final example relates to the temporal aspect of networks. A couple of years ago, researchers used a 
network representing sex buyers and escorts to study the spread of diseases. This dataset was a graph in 
which connections between individuals represented sexual intercourse; it also contained a temporal aspect, 
because connections had a timestamp. By studying the structure of the graph and how it developed over 
time, researchers were able to simulate epidemics and study how they developed. If they simulated some 
of the individuals being affected by a sexually transmitted infection and looked at the connections, how 

Figure 1-2.  A social network of individuals represented with a graph
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many people might be eventually infected, and how did the structure of the graph affect this outcome? 
Interestingly, similar models have been applied to online social networks to study how information is spread 
via networks like Twitter and Facebook—a process that by no coincidence is often called viral.

■■ Important T he Web, online social networks, the relationships among users who rate movies in a movie 
database, and biological networks are only a few examples of graphs. Whether in the context of business 
or science, viewing data as connected adds value to it. Analyzing these connections can help you extract 
intelligence in ways that are not possible otherwise.

Unfortunately, looking at data as graphs often requires computationally expensive algorithms as the 
larger, interleaved nature of data is taken into account. Moreover, graphs are becoming larger and larger. 
For example, the Facebook social graph contains more than 1 billion users, each with around 200 friendship 
relationships. The Web, as indexed by Google, contains more than 50 trillion pages. These graphs are huge. 
If you want to extract information out of the interleaved connections between entities in your data with a 
simple but powerful programming paradigm, read on: Giraph is probably the right tool for your use case.

Why Giraph?
Some of the things mentioned in the previous sections are not exactly new. Big Data is a movement that 
has grown during the last decade from a problem faced by a few (Google, Yahoo!, Facebook, and so on) to a 
complete paradigm shift. Initially, Big Data was characterized by the design of new solutions that overcame 
the limitations of traditional ones when managing large volumes of data. The following three technical 
challenges come with managing data at a large scale:

•	 Data is dynamic, and solutions must support high rates of updates and retrievals. 
Think of a web application with millions of users clicking links and requesting pages 
every second.

•	 Data is large, and its management must be distributed across a number of machines. 
Think of petabytes of data that are too large to be stored and processed by a single 
machine.

•	 The computing environment can be dynamic as well, and solutions have to manage 
data reliably across a number of machines that can and will fail at any moment. 
Think of a cluster of thousands of commodity machines, possibly distributed across 
different data centers.

Big Data solutions must face these challenges to support applications at large scale.
Managing Big Graphs requires solving these challenges and more. Graphs add more problem-specific 

challenges that Giraph was designed to handle:

•	 Graph algorithms are often expressed as iterative computations, and a graph-
processing system that supports such algorithms needs to perform iterations 
efficiently.

•	 Graph algorithms tend to be explorative, which introduces random access to your 
data that is difficult to predict.

•	 Usually, a small computation is executed multiple times on each graph entity, and 
such operations should be simple to express and parallelize.
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This book looks at how Giraph attacks these specific challenges technically. For now, consider that 
Giraph was designed with graphs and graph algorithms in mind, and as such it can execute graph algorithms 
up to 100 times faster than other Big Data frameworks like MapReduce.

■■ Definition G iraph is a framework designed to execute iterative graph algorithms that can be easily 
parallelized across hundreds of commodity machines. Giraph is fault-tolerant and easy to program, and it can 
process graphs of massive scale.

Although it is important to execute graph algorithms efficiently and reliably, it is just as important 
that the programming paradigm be simple and not require time-consuming and error-prone operations. 
Giraph offers what is called a vertex-centric programming model. This model requires you to put yourself 
in the shoes of a vertex that can exchange messages with the other vertices in a sequence of iterations. 
None of the programming complexity of a large-scale parallel and distributed system is exposed to the user. 
The programmer concentrates on the problem-specific aspects of the algorithm, and Giraph executes the 
algorithm in parallel across the available machines transparently. In practice, this means extending a class 
and implementing a single function. Often, Giraph algorithms are fewer than 50 lines and do not require any 
concurrent primitives such as locks, semaphores, or atomic operations.

■■ Important G iraph provides a vertex-centric programming model that requires the developer to think like 
a vertex that can exchange messages with other vertices. The programming model hides the complexity of 
programming a parallel and distributed system. Giraph executes your code transparently in parallel across the 
available machines.

Giraph was designed to compute graph analytics and social-network analysis. As you see in the next 
chapter, these are often executed as offline computations. This means Giraph applications usually sit in the 
back office, are run periodically over large datasets, and take minutes or hours. Giraph is designed for  
heavy-lifting tasks, not for quick, interactive queries.

Let’s take a quick look at an application architecture (in the broadest sense) and where Giraph would fit. 
Chapter 2 looks at this in more depth. Figure 1-3 shows such an architecture. As you can see, the architecture 
is divided into the three typical macro components: the front end, the back end, and the back office. 
The front end is where the application’s client-related components are running and includes the mobile 
application, the code that runs in the desktop browser, and so on. The back end is where the application 
servers, the databases, and all the (distributed) infrastructure run, in cooperation with the front end, to 
give the user a unified experience when they interact with the application. In the case of an application like 
Facebook, these two components are responsible for providing the data and the logic when you click the 
buttons of social-networking features like surfing your newsfeed, looking at your friends’ activity and so on. 
In the back end are your pictures, your comments and likes, and the social graph. In the back office resides 
the logic that is executed periodically to compute and materialize offline the content that is used online 
by the application. Giraph lives in the back office and is executed to compute application logic like friend 
recommendations, ranking of activity items, and so forth. It is also used on demand by the data-science 
team to run analytics on user-activity data collected by the back end. For example, Giraph is used to execute 
analyses like that mentioned earlier, seeing whether partnership relationships can be inferred from the 
social graph through the social-dispersion metric.

http://dx.doi.org/10.1007/978-1-4842-1251-6_2


Chapter 1 ■ Introducing Giraph

10

To summarize, Giraph is used to run expensive computations that are executed asynchronously with respect 
to the interaction between the user and the application, and for this reason it is said to live in the back office. The 
following sections explore how Giraph integrates with technology that resides in this component of the application 
architecture and how it differs from other tools that are positioned both in in the back office and in the back end.

■■ Important G iraph resides in the back office. It is used to compute offline graph analytics that are run 
periodically on data collected from interactions between the front end and the back end, along with all the 
additional data that may be available in the back office.

GOOGLE PREGEL AND APACHE GIRAPH

Many Apache projects under the Hadoop umbrella are heavily inspired by Google technologies. Hadoop 
originally consisted of the Hadoop Distributed File System and the MapReduce framework. These two 
systems were both inspired by two Google technologies: the Google File System (GFS) and Google 
MapReduce, described in two articles published in 2003–2004.4 In 2010, Google published an article 
about a large-scale graph-processing system called Pregel.5 Apache Giraph is heavily inspired by Pregel.

Figure 1-3.  An application’s architecture and where Giraph fits in

4Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung, “The Google File System,” ACM SIGOPS Operating 
Systems Review. Vol. 37. No. 5. ACM, 2003. 
Jeffrey Dean and Sanjay Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters.” Communications of 
the ACM 51.1 (2008): 107–113.
5Grzegorz Malewicz, Matthew H. Austern, et. al., “Pregel: A System for Large-Scale Graph Processing.” Proceedings of 
the 2010 ACM SIGMOD International Conference on Management of Data. ACM, 2010.
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Giraph was initially developed at Yahoo! and was incubated at the Apache Foundation during the summer 
of 2011. In 2012, Giraph was promoted to an Apache Top-Level Project. Giraph is an (open source) loose 
implementation of Google Pregel, and it is released under the Apache License. In 2013, version 1.0 was 
released as proof of its stability and the number of features added since its initial release.

Giraph enlists contributors from Facebook, Twitter, and LinkedIn, and it is currently used in production 
at some of these companies and others. Giraph shares with Pregel its computational model and its 
programming paradigm, but it extends the Pregel API and architecture by introducing a master compute 
function, out-of-core capabilities, and so on, and removing the single point of failure (SPoF) represented 
by the master. You see all these functionalities in detail throughout the book.

Giraph and the Hadoop Ecosystem
Hadoop is a popular platform for the management of Big Data. It has an active community and a high 
adoption rate with yearly growth of around 60%,6 and a number of companies make supporting these 
enterprises their mission. The global Hadoop market is predicted to grow to billions of dollars in the next five 
years, and skill with Hadoop is considered one of the hottest competitive factors in the ICT job market.7

Hadoop started as an implementation of the Google distributed filesystem and the MapReduce 
framework in the Apache Nutch project. Over the years, it has turned into an independent Apache 
project. Nowadays, it is much more. It has evolved into a full-blown ecosystem. Under its umbrella are 
projects beyond the Hadoop Distributed File System and the MapReduce framework. All these systems 
were developed to tackle different challenges related to managing large amounts of data, from storage to 
processing and more. Giraph is a relatively newcomer to the Hadoop ecosystem.

■■ Important A lthough Giraph is part of the Hadoop ecosystem and runs on Hadoop, it does not require you to 
be an expert in Hadoop. You just need to be able to start a Hadoop machine (or cluster).

Here is a selection of projects related to Giraph. Do not be worried if you do not know (or do not use) 
some of these tools. The aim of this list is to show you that Giraph can cooperate with many popular projects 
of the Hadoop ecosystem:

•	 MapReduce: A programming model and a system for the processing of large data 
sets. It is based on scanning files in parallel across multiple machines, modelling 
data as keys and values. Giraph can run on Hadoop as a MapReduce job.

•	 Hadoop Distributed File System (HDFS): A distributed filesystem to store data across 
multiple machines. It provides high throughput and fault tolerance. Giraph can read 
data from and write data to HDFS.

•	 ZooKeeper: A centralized service for maintaining configuration information,  
naming, providing distributed synchronization, and providing group services. 
Giraph uses ZooKeeper to coordinate its computations and to provide reliability and 
fault tolerance.

6Wall Street Journal, CIO Report, “Hadoop There It Is: Big Data Tech Gaining Traction.” April 12, 2014. For WSJ 
subscribers, http://blogs.wsj.com/cio/2014/04/12/hadoop-there-it-is-big-data-tech-gaining-traction/.
7“Job Trends,” Indeed, www.indeed.com/jobtrends.

http://blogs.wsj.com/cio/2014/04/12/hadoop-there-it-is-big-data-tech-gaining-traction/
http://www.indeed.com/jobtrends
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•	 HBase: The Hadoop database. It is a scalable and reliable data store, supporting  
low-latency random reads and high write throughput. It has a flexible column-based 
data model. Giraph can read data from HBase.

•	 Cassandra: A distributed database that focuses on reliability and scalability. 
Cassandra is fully decentralized and has no SPoF. Giraph can read data from 
Cassandra.

•	 Hive: A data warehouse for Hadoop. It lets you express ad hoc queries and analytics 
for large data sets with a high-level programming language similar to SQL. Giraph 
can read data from a Hive table.

•	 HCatalog: A table- and storage-management service for data created using Apache 
Hadoop. It operates with Hive, Pig, and MapReduce. Giraph can read data stored 
through HCatalog.

•	 Gora: Middleware that provides an in-memory data model and persistence for Big 
Data. Gora supports persisting to column stores, key-value stores, document stores, 
and RDBMSs. Through Gora, Giraph can read and write graph data from and to any 
data store supported by Gora.

•	 Hama: A pure bulk synchronous parallel (BSP) computing framework on top of 
HDFS for massive scientific computations such as matrix, graph, and network 
algorithms. Giraph was designed to solve iterative algorithms like Hama. Unlike 
Hama, Giraph does not require additional software to be installed on a Hadoop 
cluster.

•	 Mahout: A library of scalable machine-learning algorithms on top of Hadoop. It 
contains algorithms for clustering, classification, recommendations, and mining of 
frequent items. Giraph can run machine-learning algorithms designed specifically for 
graphs.

•	 Nutch: Software for web search applications. It consists of a web crawler and facilities 
for ranking and indexing web pages. Nutch can use Giraph to compute the rankings of 
web pages.

As you can see, these projects are very different, from databases to processing tools. But they share a 
common characteristic: they are designed for a large scale. Giraph fits in the list by providing a programming 
model and a system for processing large graphs. You can think of Giraph as a MapReduce that is specific to 
graph algorithms. Giraph uses existing Hadoop installations by running as a MapReduce job or as an Apache 
Hadoop YARN (Yet Another Resource Negotiator) application, where a YARN-based Hadoop installation is 
available. Giraph can read data from HDFS, HBase, HCatalog, and Hive, and it uses ZooKeeper to coordinate 
computation. Collaboration also happens also in the reverse direction: as mentioned, Nutch can use Giraph 
to compute the rankings of web pages. You see more about how to integrate Giraph with the rest of the 
ecosystem throughout this book. Figure 1-4 shows the high-level architecture of Giraph and how it uses 
different Hadoop projects to work.
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■■ Important  If you already have a Hadoop infrastructure in place or plan to deploy more in the future, Giraph 
will play well with most of it.

Giraph and Other Graph-Processing Tools
It is important to understand what distinguishes Giraph from other tools on the graph-processing scene 
in order to make the right decision about when to use it. Here’s a simple heuristic. If your computation 
requires touching a small portion of the graph (for example, a few hundred vertices) to return results within 
milliseconds, maybe because you need to support an interactive application, then you should look at a graph 
database like Neo4j, OrientDB, or the TinkerPop tools. On the other hand, if you expect your computations 
to run for minutes or hours because they require exploring the whole graph, Giraph is the right tool for the 
job. If your computations are aggregating values extracted from scanning text files or computing SQL-like 
joins between large tables, then you should look at tools like MapReduce, Pig, and Hive.

In particular, we want to stress the difference between a tool like Giraph and a graph database. You can 
use a proportion to understand the relationship between Giraph and a graph database like Neo4j: Giraph is 
to graph databases as MapReduce is to a NoSQL database like HBase or MongoDB (or a relational database 
like MySQL). In the same way MapReduce is usually used to run expensive analytics on data represented 
through tuples, Giraph can run graph-mining algorithms on data represented through a graph. In both 
cases, MapReduce and Giraph run analytics on the data stored in the databases. In both cases, the databases 
are used to serve low-latency queries: for example, to support an interactive application. What differs is 
the data model used to represent data. This analogy works well for presentation purposes, but don’t let it 
mislead you. Giraph can process also data stored in a NoSQL database, and MapReduce can do the same 
with graph databases.

■■ Tip   You can think of the relationship between Giraph and a graph database as the following proportion: 
Giraph : graph database = MapReduce : NoSQL database.

This is a very simple yet effective heuristic. But let’s try to make things even clearer. The emergence 
of Big Data has created a set of new tools. Hadoop is an ecosystem that hosts some of them, but more are 
available. The landscape of these tools is usually divided into two groups: databases for storing data and 
serving queries with low latency, and tools for long-lasting computations such as analytics. These two groups 

Figure 1-4.  Architecture of Giraph and how it integrates with other Hadoop projects
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of tools have different use cases and requirements, which lead to different design decisions. Databases focus 
on serving thousands of queries per second that require milliseconds (or a few seconds) to return results. 
Think of a database backing the content of a web page after a click. Tools for analytics focus on serving a few 
computation requests per minute, each requiring minutes or hours to return results. Think of computing 
communities in a large social network. Giraph positions itself in this second group, because it was designed 
to run long-lasting computations that require analyzing the entire graph with multiple passes. If you want to 
learn more about databases for graphs, look at systems like Neo4j, OrientDB, and the TinkerPop community.

■■ Tip  If you are interested in getting to know more about graph databases like Neo4J and OrientDB, you can 
check out Practical Neo4j, by Greg Jordan (Apress 2014).

All these tools specialize in various data models: key-value pairs, columns, documents, or graphs. 
Figure 1-5 provides a visual representation of some of them. Of these, graphs are probably the most peculiar. 
Compared to simple key-value pairs and columns, graphs have a more unstructured and interleaved nature. 
Moreover, graph algorithms tend to be explorative, where portions of the graph are visited to answer a 
specific query (compared to a bunch of specific key-value pairs, columns, or documents being retrieved). 
For these reasons, graph-processing systems require design decisions that take into account the specific 
characteristics of graphs and their algorithms. Running graph algorithms with general-purpose systems is 
possible—for example, on systems based on tuples, such as relational databases or MapReduce—but these 
solutions tend to perform worse.

Figure 1-5.  Comparing other data models to a graph

Giraph was designed for graphs since the beginning. And it is not the only such tool. Other systems 
similar to Giraph are GraphLab and GraphX. Of these, Giraph is the only one that runs transparently on 
a Hadoop cluster and has a large open source community. GraphX is perhaps most similar to Giraph; 
although it offers a simplified API for graph processing, it requires implementing your algorithm in Scala 
with a different API than that provided by Giraph (which is arguably less simple), it requires Spark, and it is 
generally slower than Giraph. GraphLab (now known as Dato Core or GraphLab Create) used to be an open 
source solution, but it is now proprietary. Figure 1-6 gives you an idea of how Giraph compares to other 
data-management systems.



Chapter 1 ■ Introducing Giraph

15

To summarize, Giraph is a good tool for these tasks:

•	 Analyzing a large set of connected data across a cluster of commodity machines 
(running Hadoop)

•	 Running an algorithm that is compute-intensive and that processes your graph 
iteratively, perhaps in multiple passes

•	 Periodically running an algorithm offline in the back end

And these are the tasks Giraph is not good for:

•	 Running aggregations on a set of unconnected or unrelated pieces of data

•	 Working with a small graph that can easily fit on a single machine

•	 Running a computation that is expected to touch a small portion of the graph—for 
example, to support an interactive workload like a web application

Summary
Big Data and data analytics are opening new ways of collecting traces and understanding user behavior. 
Mastering techniques to analyze this data allows for better products and services. Looking at aggregations 
of many small chunks of data provides insights into the data, but examining the way these chunks are 
connected enables you to take a further step into better understanding your data.

In this chapter, you learned the following:

•	 A graph is a neat and flexible representation of entities and their relationships. 
Graphs can be used to represent social networks, the Internet, the Web, and the 
relationships between items such as products and customers.

•	 Processing large graphs introduces specific challenges that are not tackled 
successfully by traditional tools for data analytics. Graph analytics requires tools 
specifically designed for the task.

Figure 1-6.  Positioning Giraph with respect to other data-management tools
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•	 Giraph is a framework for analyzing large data sets represented through graphs. 
It has been designed to run graph computations reliably across a number of 
commodity machines.

•	 Unlike graph databases, Giraph is a batch-processing system. It was designed to run 
computationally expensive computations that analyze the entire graph for analytics, 
not to run queries expected to be computed within milliseconds.

•	 Giraph is part of the Hadoop ecosystem. Giraph jobs can run on existing Hadoop 
clusters without installing additional software. Giraph plays well with its teammates, 
and it can read and write data from a number of data stores that are part of the 
Hadoop ecosystem.

Now that you have been introduced the general problem of processing large volumes of connected data 
and the ecosystems of Big Data and graph processing, you are ready to look at how to model data as graphs, 
how graphs can fit in real-world use cases, and how Giraph can help you solve the related graph-analytical 
problems.
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Chapter 2

Modeling Graph Processing  
Use Cases

This chapter covers

•	 Modeling your data as a graph

•	 Differences between offline and online computations

•	 Fitting Giraph in an application architecture

•	 Use case for Giraph at a web-search company

•	 Use case for Giraph at an e-commerce site

•	 Use case for Giraph at an online social networking site

Giraph goes beyond a basic library to facilitate graph processing. It provides a programming model and 
a framework to solve graph problems through offline computations at large scale. To use Giraph, you need to 
understand how to model data with graphs and how to fit Giraph in a system architecture to process graph 
data as part of an application. For this reason, this chapter is dedicated to three topics. First it introduces 
graphs and shows how you can use graphs to model data in a variety of domains. Then you learn the 
difference between offline and online computations to help you identify the types of processing for which 
Giraph is a good solution. The remainder of the chapter focuses on fitting Giraph into a system architecture. 
To achieve this goal, the chapter presents three uses cases based on real-world scenarios.

Graphs Are Everywhere
A graph is a neat, flexible structure to represent entities and their relationships. You can represent different 
things through a graph: a computer network, a social network, the Internet, interactions between proteins, 
a transportation network—in general terms, data. What do these examples have in common? They are all 
composed of entities connected by some kind of relationship. A computer network is composed of connected 
devices, a social network is a network of people connected by social relationships (friends, family members, 
co-workers, and so on), cities are connected by roads, and neurons are connected by synapses. The World 
Wide Web is probably one of the clearest examples: pages, images, and other resources are connected 
through the href attribute of links.

■■ Definition  A graph is a structure to represent entities that are connected through relationships.
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A graph can be used to represent these connected structures. It consists of vertices (or nodes) and the 
edges (or arcs, or links) that connect them. The two vertices connected by an edge are usually called the 
edge endpoints. The vertices connected to a specific vertex, through the respective edges, are called the 
vertex neighbors. An edge that connects a vertex to itself is called a loop. In diagrams, vertices are usually 
represented by circles and edges are represented by lines. Figure 2-1 shows these fundamental concepts; in 
its most basic form, there is nothing more to a graph.

This section guides you through several examples of how to model different data using a graph. Each 
example introduces a number of graph concepts. Let’s start with a network of computers.

Modeling a Computer Network with a Simple, Undirected Graph
A computer network comprises a collection of computing devices such as desktops, servers, workstations, 
routers, mobile phones, and so on, connected by means of a communication medium. Figure 2-2 shows an 
example of a computer network. Ignore the technology or protocol that enables the devices to communicate 
(such as Ethernet, WiFi, or a cellular network), and focus on the fact that they are connected and can 
exchange data. This is the fundamental aspect that makes a computer network a network and a graph.

Figure 2-1.  Basic concepts of a graph
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It is natural to model a computer network with a graph by representing computers as vertices and by 
connecting two vertices through an edge if the two computers they stand for are connected. Clearly, there is 
not one single correct way to model a computer network through a graph; it is up to the modeler to decide, 
for example, whether hubs and switches should be represented in the graph, or which layer of the TCP/IP 
stack should be considered. To identify each device in a graph, you assign each vertex a unique identifier 
(ID); in the case of a computer network, you can use the device hostname or an IP address. Each data 
domain has a natural data element that can be used as an ID for vertices, such as a passport number for a 
social network, a URL for a web page, and so on.

Figure 2-3 shows a graph representing the computer network from Figure 2-2. In this example, the IP 
address of each computer is used as the ID of the vertex, and two computers are connected by an edge if they 
can communicate directly at the network layer (hence ignoring switches, hubs, access points, and so on).

Figure 2-2.  A computer network

Figure 2-3.  A graph representing a computer network
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Modeling a Social Network and Relationships
Let’s move to another example: a social network. A social network consists of a number of individuals 
connected by some kind of relationship—friends, co-workers, and so on. You can easily represent a social 
network using the graph concepts introduced so far, with vertices representing individuals and edges 
connecting two vertices if the two individuals they stand for are socially tied. But how can you specify the 
particular type of relationship between two individuals? You can use a label. A label identifies the type of 
relationship, and it can be attached to an edge. Figure 2-4 shows a graph representing a social network of five 
individuals. The individual’s first name is the ID, and a label is attached to each edge to qualify the type of 
relationship.

Until now, you have only considered symmetric relationships, such as friendship. However, edges can 
be extended with direction. The direction defines the source vertex and the destination vertex of an edge. 
An edge with direction is called a directed edge. All edges that have a specific vertex as a source are called 
its outgoing edges, and those that have that vertex as a destination are called its incoming edges. One of 
the differences between the Twitter and Facebook social graphs is the result ot this aspect. For Facebook, a 
friendship relationship is symmetric (it requires confirmation by both parties), and it is better represented 
through an undirected edge. On the other hand, Twitter lets you specify a follower relationship that does not 
have to be reciprocated; hence a directed edge is more appropriate. Again, whether a relationship should 
be modeled through direction depends on the relationship, and the decision is in the hands of the modeler. 
In plots, directed edges are usually represented by an arrow. A graph with directed edges is called a directed 
graph, and a graph with undirected edges is called an undirected graph. Figure 2-5 shows the same network 
of five individuals, this time modeled using a directed graph.

Figure 2-4.  A graph representing a social network

Figure 2-5.  A directed graph representing a social network
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Modeling Semantic Graphs with Multigraphs
All the graphs so far allow only one edge between a specific pair of vertices in the undirected case (only one 
friend edge between Mark and Sarah), and two in the directed case (one edge for John father Paul and one 
edge for Paul son John). Multigraphs, on the other hand, allow multiple edges between the same pair of 
vertices, in both the directed and undirected cases, and can also support labels attached to each edge.

A good example of a labeled directed multigraph is a resource description framework (RDF) graph. 
According to the RDF data model, information can be described through a series of triples, each composed 
of a subject, a predicate, and an object. Ignoring the specifics such as syntax notations, serialization, and so 
on, RDF can be used to represent knowledge about different domains. Imagine that you want to represent 
the fact that Rome is the capital of Italy. (“Rome”, “is capital of”, “Italy”) is a valid RDF triple to represent 
such information, where “Rome” is the subject, “is capital of” is the predicate, and “Italy” is the object of the 
triple. (“Resource Description Framework”, “has abbreviation”, “RDF”) is another example of a triple.  
If you think about it, each of these triples is nothing more than a labeled directed edge, where the subject is 
the source vertex, the predicate is the label, and the object is the destination vertex. Having such a general 
and flexible way of describing concepts unleashes your ability to represent pretty much anything that can 
be expressed through a triple. RDF graphs are often referred to as semantic networks or graphs (also making 
RDF one of the core components of the Semantic Web), because they are frequently used to describe the 
semantics of things through their relationships.

DBpedia is an example of such a semantic graph. DBpedia is an effort to represent the structured 
information in Wikipedia—for example, in the info boxes—in the form of a graph. Figure 2-6 lists a number 
of (simplified) triples from DBpedia. Constructing a graph from this table is straightforward: each triple 
can be represented by an outgoing edge, leaving from the vertex representing the subject and ending in the 
vertex representing the object. Subject and object labels can be used for vertices IDs, and predicate labels 
can be represented by the edge labels. Figure 2-7 shows such a graph.

Figure 2-6.  A set of triples from DBpedia
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Notice how all the triples that have Barack Obama as a subject result in an outgoing edge for the 
vertex representing Barack Obama. Also, notice how Barack Obama has two outgoing edges (tenantOf and 
residence) toward White House. The latter is an example of the multigraph property mentioned before.

Modeling Street Maps with Graphs and Weights
Street maps are good examples of graphs as well. Perhaps the first person who ever drew a map was also 
the first person who drew a graph. Modeling a street map with a graph is intuitive: cities, towns, and villages 
are modeled with vertices, and the roads and streets that connect them are modeled with edges. In general, 
any point where a different road can be taken is modeled with a vertex. Note that although streets cross, 
edges do not (they do when you draw them in two-dimensional space, but they do not conceptually). 
Hence, crossings must be explicitly modeled through vertices. (This will be clearer when you look at paths 
in chapter 4.) In a graph representing a street map, the edges can have the type (a highway or a road) or the 
number (a combination of both) as the label, and direction can be used to model the way the street can be 
followed (a one-way road). How can you model the length of the road? Clearly, the distance between two 
cities does not depend solely on the number of roads—and, hence, edges—that need to be followed, but also 
on the length of these roads.

You can use weights for this purpose. Weights are numerical properties of edges that can be used to 
represent quantitative properties of relationships. For example, they can represent the distance between 
two towns, the ranking of a movie by a user, the similarity between two users based on some profile data, or 
the strength of a social tie. Algorithms exploit weights to compute shortest paths, recommendations, and 
different metrics of the graph. You learn more about weights when you look at paths in chapter 4. Figure 2-8 
shows a highway map of Italy and a portion of it modeled with a graph.

Figure 2-7.  A multigraph constructed from a set of triples from DBpedia

http://dx.doi.org/10.1007/978-1-4842-1251-6_4
http://dx.doi.org/10.1007/978-1-4842-1251-6_4
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Graphs are flexible structures that are natural to think about, and their modeling strongly depends on 
their purpose. Software engineers use these structures in one form or another on a daily basis. Think of an 
ER diagram, an UML diagram, or a dependency tree; these are all graphs. Most of us naturally draw graphs 
when discussing a design or an architecture during brainstorming. That is why graphs are also said to be 
whiteboard friendly. Most data-structures are some kind of graph, from trees to linked lists. But data, data 
representations, and data structures are meaningful only when coupled with the algorithms that compute 
them. The following sections and chapter 4 look at what you can do with graphs. Table 2-1 summarizes the 
concepts presented in this section.

Figure 2-8.  A transportation network modeled through a graph with weights

Table 2-1.  Core Concepts of Graphs

Name Description

Vertex An entity in a graph

Identifier (ID) The unique identifier of a vertex

Edge A relationship between two entities

Edge label A qualitative property of an edge (for example, a type)

Edge direction Specifies the source and destination vertices of an edge

Edge weight A quantitative (numerical) property of a relationship

Edge endpoints The two vertices connected by an edge

Loop An edge connecting a vertex to itself

Neighbors / Neighborhood The vertices connected to a specific vertex

Directed graph A graph comprising directed edges

Undirected graph A graph comprising undirected edges

Multigraph A graph allowing multiple edges between two vertices

http://dx.doi.org/10.1007/978-1-4842-1251-6_4
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Comparing Online and Offline Computations
Chapter 1 discussed Giraph with respect to graph databases and other tools for graph processing. You have 
seen Giraph positioned as a tool for graph analytics, and the differences between offline graph analytics and 
online interactive queries. This section digs deeper into these concepts. To better understand the differences 
between the two workloads, you explore an analogy with search in a filesystem with the Unix commands 
find and locate. After explaining the filesystem scenario, this section maps the concepts to Giraph and 
graph analytics.

One of the actions you probably perform often when using a computer is searching for files. For 
example, you may look for all the files that have a name starting with a particular prefix, or those created 
after a certain date. This does not mean a search based on the content of the file, which is performed 
differently. If you are a Unix users who uses the command line to perform searches, you must know the find 
command. find traverses a filesystem tree starting from a particular directory and returns all the file names 
that match a given pattern. To perform the pattern matching, find must visit each file and directory under 
the starting root and apply the matching function. This can be a costly operation, in particular because it 
may create extensive IO. Moreover, if you perform two or more consecutive searches, find must perform 
everything from scratch each time.

To avoid redoing all the work for each search, the locate command relies on its own database. It can 
be used like find to search for files matching a particular pattern. The database stores all the metadata 
information about the files and directories in the filesystem in a format that makes searches efficient. As 
files are created, deleted, and updated, periodically locate.updatedb is run in the background to scan 
the filesystem and update the locate database. There is clearly a sweet spot between how often to run 
the expensive indexing procedure in the background, the rate of file changes, and how often searches are 
performed. You do not want to re-index the database more often than the files are updated or searched, and 
you do not want the database to contain stale metadata. For this reason, if you work with few files in your 
home directory and modify them often, it makes more sense to rely on the find command and search only 
in the home directory. Figure 2-9 shows the differences between the two commands.

http://dx.doi.org/10.1007/978-1-4842-1251-6_1


Chapter 2 ■ Modeling Graph Processing Use Cases 

25

The point is that for certain operations, you do not want to wait a long time before you get results. Such 
applications typically interact with the user or with other applications that need to make decisions in a 
short amount of time. As in the previous example, traversing an entire filesystem is an expensive operation 
because it requires processing large amounts of data and hence calls for periodic background computations 
aimed at making the interactive ones faster. These computations process indices and other data structures 
that allow the interactive operations to perform quickly. In the previous example, the locate command 
performs the interactive lookup in the database to return the list of matching files. It has also another 
command, locate.updatedb, that is run periodically and updates the database in the background. The side 
effect of this approach is that the application may not always have access to the latest version of the data, 
because the data may have changed after the databases was updated. For these cases, it is still necessary to 
compute the results for every query. However, to return results quickly, the query must be a fast operation 
that touches a small portion of the data.

In graph terms, a query to be performed quickly might be asking for the names of the friends of a 
particular user in a social network. It could also be something more complex that requires exploring a 
small portion of the graph that goes beyond the neighborhood of a vertex. Think of a dataset such as IMDb. 
You could ask the average age of actresses who starred in a movie set in France with Brad Pitt. Because the 
number of movies and actresses connected to Brad Pitt is quite small compared to the whole database of 
movies, this query should be performed quickly by a (graph) database. This is similar to using the find 
command in a specific small directory of the filesystem. However, if you want to ask the degree of separation 
between Brad Pitt and any other actor in the movie industry—supposing two actors are connected if they 
appeared in the same movie—this cannot be computed quickly with a database the size of IMDb. It requires 
exploring the entire graph and reaching every other actor in the graph, just like exploring the entire filesystem 
starting from the / directory. If you want to query the degree of separation between any two actors frequently, 

Figure 2-9.  Searches in a filesystem with find and locate
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and you want the results quickly, you have to compute all the results in advance and store them in a database. 
Once they are computed, they can be looked up at query time. This process is similar to the functioning of the 
locate command and its background command, locate.updatedb.

Following this analogy, the ecosystem of data processing is divided into online and offline systems: 
online systems are designed to compute queries that are expected to conclude within seconds or 
milliseconds, and offline systems are designed to compute analyses that are expected to end, due to their 
size, in minutes, hours, or even days (see Figure 2-10). These systems have roles similar to the example 
using find and locate. Online systems are generally used to build interactive applications. Typical 
examples of these systems are databases like MySQL, Neo4J, and so on. They back applications that serve 
web applications, enterprise resource planning (ERP) systems, or any kind of software or service that can 
receive many short requests per second. Offline systems are generally used to compute analytics and 
batch computations. Batch computations are jobs that process batches of data without the need for human 
intervention. As mentioned earlier, Giraph is of this kind.

Now that you know the difference between online and offline systems, you are ready to see the architecture 
of an application that includes both and how each type of systems fits into this architecture. By looking at the 
architecture, you can learn how to position Giraph in the back end.

Figure 2-10.  Difference between online and offline workloads
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Fitting Giraph in an Application
As you saw in the previous section, online and offline systems can work together and are often both part of 
an application. This section presents a stereotypical architecture that is refined with more practical examples 
in the following sections. By the end of this section, you will learn how to position Giraph in your own 
architecture. Figure 2-11 shows a general architecture for an application composed of a number of different 
systems; let’s zoom in in the components that are part of it.

The architecture is divided in three main components:

•	 Front end: The part of the system where the client interacts with the system. 
Depending on the client, the front end can insert data either directly into the 
database or indirectly by interacting with the application server, which inserts data 
in the database as a result. The application server inserts data into and reads data 
from the database to serve content to the front end. This is why a double arrow 
connects the database and the application server. In the front end, human clients are 
considered along with sensors, other applications, and so on.

•	 Back end: The part of the system where the application servers and database 
reside. The data and logic of the application and the online systems live here. The 
application servers compute the replies for client requests, depending on the type of 
request, the application logic, and the related data stored in the database. The back 
end can have multiple types of application servers and databases, depending on the 
number of applications running, the different architectures, and so on. The back end 
typically includes a plethora of different systems and technologies.

Figure 2-11.  System architecture for a stereotypical application
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•	 Back office: The part of the system that is less interactive. It is also the component 
where human intervention is more involved. For example, in the back office, the 
teams responsible for data entry insert data into the database, and the data teams 
compute analytics to study the collected data and get insights about customer 
behavior. The offline systems reside here as well. Data collected from application 
logs in the form of raw logs, or stored in a structured format in the database, is 
crunched to compute analytics or to materialize new information to update the 
collections in the database. The materialized information is precisely the kind of 
data that is too expensive to compute online, and hence those results are computed 
periodically and cached in the databases in the back end.

Let’s take a moment to look at an example and better understand how these three components of the 
architecture—and the systems that compose them—interact. The example uses a simple application for the 
sake of presentation; it is by no means the “best” possible architecture for this application, so bear with us. 
The definitions and borders in these kinds of architectures are also a bit fuzzy, so concentrate on the bigger 
picture.

Imagine a user interacting with a news site through her mobile phone. When the browser loads the 
homepage for the first time, it receives an HTML page, including a JavaScript script from the web server. 
The browser, the HTML page, and the script compose the front end. As the user scrolls the page and clicks 
news items, the script in the front end issues requests to the application server. Depending on the requests 
resulting from the user actions, the application server retrieves data from the database and different content 
stores: the content of the article and related multimedia. It then sends the data back to the browser, which 
updates the user interface so it displays the news items. The application servers, database and data stores, 
and, eventually, caches and message brokers compose the back end and run on the servers of the news site. 
Figure 2-12 shows the interaction between the front end and the back end.

Figure 2-12.  Low-latency interaction between front end and back end
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When the browser requests the news items the client has clicked, the application server fetches and 
sends, along with the news items, recommendations for similar news articles. This feature helps the user find 
similar content and surf the news site. Finding similar news articles is excessively computationally expensive 
to be computed online at each client request, so recommendations are computed periodically offline 
(perhaps at night) and stored in a dedicated data store. The recommender system that computes the “similar 
articles” feature is in the back office, along with operations related to the providers of the news content, such 
as journalists and editors. To find similar articles, the system looks at the application server logs, using the 
“those who read this article also read those articles” paradigm (processing the clicks in the logs). Hence, the 
back office is connected to the back end to retrieve user-behavior data to compute the recommendations, and 
to store the recommendations to be served to the user. Figure 2-13 shows interaction between the back end 
and the back office. Note that interaction between the front end and the back end, and interaction between 
the back end and the back office, happen independently and at different time scales.

Giraph is positioned in the back office. It can be part of a number of pipelines, assuming the application 
is involved with graph data. A pipeline is nothing more than a sequence of jobs, where the output of the 
previous job acts as the input to the next one. Different pipelines can be computed in parallel or sequentially, 
depending on the workflows and the requests of the different teams. In fact, there are multiple pipelines of 
batch jobs executed in the back office, some to support certain application features, and others, for example, 
to support analytical queries from data scientists. A lot depends on the kind of results demanded at any given 
moment and, of course, on the applications. However, a general pattern—a common set of steps—can be 
identified. The following sections look at these steps in the context of real-world scenarios.

Figure 2-13.  Periodic interaction between the back office and the back end
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Figure 2-14 shows this pipeline where graph data is involved. The pipeline consists of the following steps.

	 1.	 Input: Data is collected from different sources. It is stored in different formats, 
sometimes following structured schemes, sometimes in simple formats such 
as raw text. This step of the pipeline can be implemented by storing data in a 
database or log files in a filesystem. In large architectures, it may require the 
deployment of a distributed system to collect logs streaming in real time from the 
application servers. In the “similar news articles” application, the inputs can be 
the articles themselves (for example, if articles are recommended because they 
have similar content), click logs coming from the application servers (if clicks 
are used to find similar articles), or additional metadata provided by the content 
provider (article categories, tags, and so on).

	 2.	 Construction: Data is collected in various formats and schemes, and it has not yet 
been processed to represent a graph. This data needs to be filtered, transformed, 
and aggregated until a graph is extracted. This step depends both on the type 
of data to be processed and on the algorithms to be computed in the following 
steps. Different graph algorithms often require different graph representations 
and different data types. In the news site example, articles can be represented by 
vertices, and they can be connected with an edge any time a user clicks from one 
article to another. The edge weight can represent the (normalized) number of 
times this has happened. A threshold can be applied to edge weights to avoid the 
graph becoming too dense.

	 3.	 Computations: Once the graph is constructed, it can be processed with Giraph. 
In this phase, one or multiple jobs are executed. The type and number of graph 
computations strongly depend on the mining application. Usually, graph 
algorithms are layered and built on top of each other. For example, some ranking 
algorithms use centrality measures, and those depend on the computation 
of shortest paths. Often the graph computed by one job is the input of the 
following one. For the news articles, two computations could be performed on 
the constructed graph. To compute the most popular articles, you could run 
PageRank on the clicks graph and use the rankings to sort the recommendations 
(such as most popular first). To compute which articles are related to another, 
you could run a community-detection algorithm on the clicks graph. Articles 
falling in the same community could be considered related and hence be 
recommended. You see both algorithms in chapter 4.

	 4.	 Fusion: The results of the computations performed in the previous step are 
transformed and joined or fusioned with other data, possibly coming from the 
database or from other pipelines. Keep in mind that graph computations are 
often part of a bigger application and hence may be solving only a sub-problem. 
Moreover, this step depends on the type of analytics being performed and on 
the type of materialization necessary in the databases. Fusion may actually 
require multiple steps, because the results of the computation may be reused 
for different reports and databases. For example, the rankings of the articles 
and their category computed through the community-detection algorithm 
could be joined along with the article metadata to prepare the injection into the 
recommendations data store.

http://dx.doi.org/10.1007/978-1-4842-1251-6_4
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	 5.	 Output: Once the data has been fusioned and packaged into a report or a 
materialized view, it is sent to the teams or injected into the respective databases. 
In the case of a report, the output can be a summarized view of the results; or, 
in the case of a materialized view, the output can be a data table to be injected 
into a database. In the latter case, the output phase can produce consistent load 
on the databases where the data is injected. For this reason, the injected data 
should be in a format that does not require further expensive manipulation by 
the database system. In the news article example, data can be injected into the 
recommendations data store following the schema of the store.

Now that you have learned how Giraph fits in a system architecture, the following sections look at 
specialized architectures and pipelines for various real-world scenarios.

Giraph at a Web-Search Company
What is the core product of a company working in the web-search business? Its search engine. In the most 
general terms, providing results for web searches—searching the Web for specific content, as specified by 
the user through a query. However, when a user searches for pages through a query, the search engine does 
not surf the Web looking for pages that match that query. The Web is huge, and it would take days or weeks 
for such a search to return meaningful results. Instead, the search engine contains an index of the content of 
(a portion of) the Web, which is used to answer queries in a reasonable time (milliseconds). The problem is 
very similar to the one of the find and locate commands. In fact, it works analogously to locate. A search 
engine consists of a program that periodically updates a “database” (the index) of the content of the Web, 
and a program to search the database for content that matches a query, which is used by the search page 
(like the famous Google “white page” at www.google.com). The core of a search engine is composed of two 
main components: the crawler (also called a spider) and the index. The crawler is a program that constantly 

Figure 2-14.  Data-processing pipeline in the back office

http://www.google.com/
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surfs the Web, jumping from page to page and following the links in the HTML of each page it visits. When 
the crawler reaches a new page or an updated version of a page it visited in the past, it sends the page to 
the indexer, which is responsible for keeping the index up to date with page content. Without getting into 
the details of how an index works, you can think of it as a map that links words to lists of URLs of pages that 
contain those words. Given a specific word, the map stores the URLs and the number of occurrences of that 
word in those pages. Figure 2-15 shows these components.

To create the index, the indexer goes through each page passed to it by the crawler, divides the text in 
the page body into words, counts them, and updates the index accordingly. How does a search for a  
query in the index work—for example, a query expressed as a set of keywords? Suppose you submit the 
query Hello Giraph. The index searches for each specific single keyword and returns the URLs  
http://www.foo.com, http://www.bar.com, and http://www.baz.com, because they contain either both or 
only one of the keywords (see Figure 2-16). A page where the keywords appear more frequently than they do 
on another page is considered more relevant. The order in which search results are presented is also known 
as ranking. The search page returns the search results in this order because they are sorted by relevance 
(three for http://www.foo.com, two for http://www.bar.com, and one for http://www.baz.com). Keep in 
mind that the pure number of occurrences of the keywords on the pages is a simple metric of relevance. 
More sophisticated metrics consider, for example, document length and other parameters (search, for 
example, about TF-IDF to learn more). Indexers also use other techniques such as stemming, stop-words 
filtering, anchor text, and so on, but this example keeps things simple for the sake of clarity.

Figure 2-15.  The components of a web search engine: a crawler, an index, and a search page

http://www.foo.com/
http://www.bar.com/
http://www.baz.com/
http://www.foo.com/
http://www.bar.com/
http://www.baz.com/
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This is more or less how a very basic search engine worked before Google and its PageRank algorithm. 
You might have noticed that the structure of the Web is used by the crawler only to discover pages to visit; 
it is not used for anything else, such as computing rankings. In this search engine, rankings are computed 
based on the relevance of each web page. This is why search engine optimization (SEO) techniques before 
Google were based on polluting web pages with long lists of keywords hidden from the human user. SEO 
would “pump up” a page’s rank for many different search queries. One of the things that made Google 
so successful in the beginning was its approach to ranking web pages. The PageRank algorithm uses the 
structure of the Web to rank pages. The intuition behind PageRank is very simple: the more pages link to a 
page, the higher rank the page should have. Moreover, the higher the rank of the pages that link to a page, the 
higher the rank of that page. It is a kind of meritocratic method to rank pages according to their popularity: 
if many popular pages link to a specific page, then that page must be popular and provide good content. All 
the necessary information lies in the link structure of the web pages. Although possible, it is more difficult to 
create pages with high popularity and add links from those pages to the page whose rank you want to raise.

Chapter 4 gets into the details of how PageRank works and how to implement it with Giraph. For now, 
consider that it is exactly the kind of graph algorithm that fits perfectly with an iterative computation with 
Giraph. The index can be built for an extremely large number of pages with a system like MapReduce, and 
the page rankings can be computed with Giraph. Both systems fit in the pipeline executed in the back office, 
along with the crawler. The only difference from the search engine architecture described so far would 
be to add a Giraph job to compute rankings. Once the rankings are computed, they can be used, together 
with the relevance of the pages, to decide the order in which the pages are presented to the user as search 
results. Today, many more metrics are added and considered by search engines like Google’s to compute 
page rankings; for example, consider social media, click statistics, and user profiles. However, the PageRank 
algorithm shows how to look at data as a graph and at a solution as a graph algorithm.

Figure 2-16.  An index generated from three web pages

http://dx.doi.org/10.1007/978-1-4842-1251-6_4
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Now, let’s look at the pipeline in Figure 2-14 for the case of computing PageRank for a search engine 
with Giraph:

•	 Input: Input comes directly from the crawler, so it depends on the way the crawler 
stores the pages it has fetched so far. If you want to update the current PageRank 
instead of computing it from scratch, the current values for the graph can be used as 
input as well.

•	 Construction: The crawler can store the link graph separately from the pages as it 
parses it, or it may need to go through the pages and extract the links in the HTML to 
build the graph. URLs must be filtered out (if illegal), normalized, and de-duplicated. 
Often, URLs are transformed, with the domain converted to reverse-domain notation.

•	 Computations: Once the graph is transformed, it can be loaded into Giraph and the 
computation can start. During this phase, the PageRank is computed for the loaded 
graph. Other computations can also be performed on the graph, such as computing 
related pages through other specific graph algorithms.

•	 Fusion: The index was previously built through a MapReduce job. You may want to 
add the PageRank directly to the entries for each URL in the index. This would let 
you fetch URLs at query time, along with relevance and PageRank values, to compute 
the order in which to present the results.

•	 Output: The updated index data with the PageRank values is injected into the index 
store so it can be used directly by the search page.

This is just an example of a processing pipeline, and it depends on the features supported by the search 
engine. The page indexing, supposedly performed through MapReduce, can be considered part of this 
pipeline, executed right before the PageRank computation, or part of its own pipeline. Now that you have 
seen how Giraph can help a web-search company, let’s move to another scenario.

Giraph at an E-Commerce Company
Users generally do two types of things on an e-commerce site: search for something specific they want, which 
probably brought them there in the first place; or click around and stumble onto something that triggers their 
attention and that they might decide to buy. Think about one of your browsing sessions on Amazon. To a 
certain extent, the infrastructure to support the first type of usage is similar to that of a web-search company. 
To support search, product data is indexed so that it can be found through queries. But because the data is 
already stored in the company’s databases, it does not need to be discovered through a crawler. The moment 
the data is inserted into the site, it is processed and added to the index directly. The second type of usage is 
more similar to surfing the Web. From link to link, the user explores the available products on the site, looking 
for something they like. This means the links on a product page must be carefully selected to stimulate a user 
click and increase the likelihood of the user finding something interesting. But what makes a link a good link 
for a product page? What link would be effective on the page for The Dark Side of the Moon”? Other records by 
Pink Floyd, probably, or something that fits the taste of a fan of that record. And what is the taste of such a fan? 
It is complex to delineate, and it depends on different factors.

Recommender systems are designed to recommend items to users (and sometimes users to users), 
such as a product that might be interesting to them. In the current scenario, an effective recommender 
system generates links for a given product so a user can easily find something interesting without needing 
to search for it explicitly. Although this task can be performed by humans, such as expert clerks who place 
similar records close to each other on shelves in a store, it can be effective to let a computer program 
perform it: with millions of products, having humans organize recommendations does not scale; and a data-
driven approach should produce more unbiased results.
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What does all this have to do with Giraph? It turns out that e-commerce site data can be modeled 
through graphs. An e-commerce site has two types of entities: products and customers (or users). You can 
model both of them with a vertex. Technically, they can be represented by two types of vertices, one for each 
type of entity (for example, visualizing users with circles and items with squares). Edges connect vertices 
when customers buy products. Because edges always connect two vertices of different types, this type of 
graph is also known as a bipartite graph. Figure 2-17 shows an example. Sites can also support product 
ratings—for example, using stars. Ratings can be easily modeled with edge weights, where the weight is 
set to the rating given to a product by a customer. This graph data can be analyzed following the popular 
“people who bought this item also bought these other items” pattern. By performing this analysis, you can 
automatically discover the profiles of buyers of certain products, by using customers’ purchase history. You 
can also answer the question about which items might be interesting to a customer of The Dark Side of the 
Moon. This profile data is often referred as a latent profile, because it is not directly observed but rather is 
inferred from user behavior. This approach is also known as collaborative filtering, because users collaborate 
(implicitly) in building filters that organize the item-recommendation database.

Figure 2-17.  E-commerce site data represented by a graph with users, items, and ratings

Collaborative filtering is an effective technique to build recommender systems. However, it is not the 
only one. Content-based recommenders follow a different approach. Instead of looking (only) at purchase 
history, you can recommend products based on qualitative evidence. For example, imagine having 
metadata about music albums such as genre, year of release, place of recording, mood, style, tags, and so 
on. Based on this metadata, you could define a similarity metric to measure how similar two albums are—
for example, whether they belong to the same genre and were recorded in the same period and country. 
Once the similarity between items has been established, you can build a graph in which similar products 
are connected by an edge and the weight of the edge encodes how similar those items are. Figure 2-18 
shows an example of such a graph. With this information, if a customer buys The Dark Side of the Moon, 

www.allitebooks.com

http://www.allitebooks.org
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the system can recommend other albums that have similar metadata (other psychedelic rock albums from 
the 1970s), maybe also considering other products the customer purchased in the past. This approach 
is similar to having the aforementioned expert clerk organizing the shelves of the shop for you, but in a 
more personalized and scalable way. Depending on the type of products, content-based similarity can 
be computed even without metadata. For years, scientists have been researching methods to recognize 
similarities between books by analyzing their text, songs by analyzing their audio signal, and images by 
analyzing shapes and colors. However, this goes beyond the scope of large-scale graph processing.

Both approaches have pros and cons. The advantage of collaborative filtering is that it does not require 
any type of additional data other than the purchase history. Moreover, it can compute recommendations 
across different genres of products. For example, it can recommend books based on purchase data about 
movies and music albums (maybe people who buy albums of metal rock music also buy black t-shirts). On 
the other hand, content-based recommendations do not suffer from the so-called “bootstrap problem,” 
because items can be recommended from day one without the need for historical data. Often, the two 
approaches are combined, with content-based recommendations used in the early days and the system 
gradually migrated to collaborative filtering. This book is not dedicated to building recommender systems; 
other books cover that topic. The point is that it is possible (and often desirable) to model e-commerce 
data with graphs and recommendation algorithms as algorithms that explore them. These graphs can 
get very large, so you can use Giraph to compute graph algorithms to build a recommender system for an 
e-commerce site. Chapter 4 presents an algorithm that serves this purpose; you can use it as a building block 
for your particular data model and use-case scenario.

A recommender is only an example of how Giraph can be used to analyze data from an e-commerce 
site. Analyzing customer behavior can give you general information about the effectiveness of marketing 
campaigns or site organization, among other things.

Figure 2-18.  E-commerce site data represented by a graph from metadata

http://dx.doi.org/10.1007/978-1-4842-1251-6_4
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In general, the processing pipeline for an e-commerce site may look like the following:

•	 Input: The input comes from historical purchase data, from raw web server logs 
(such as for the click graph), from a structured database in the case of content-based 
recommendations, and so on.

•	 Construction: The graph can be constructed by using products and customers as 
vertices and connecting them with purchase data or with click information. Usually, 
data is normalized to create weights—for example, the number of clicks on each 
page normalized on the total number of clicks. The similarity between items can also 
be computed according to different criteria—for example, through non-graphical 
models via MapReduce jobs or Apache Mahout.

•	 Computations: Once the graph is transformed, it can be loaded into Giraph and the 
algorithms can be computed. In the case of recommendation algorithms, the latent 
profile for each user is computed. These latent profiles can be used to compute 
predictions of ratings and recommendations in another step of the pipeline, perhaps 
through MapReduce.

•	 Fusion: The latent profiles and recommendations can be fused with structured data 
to produce new product pages with updated links to similar products. They can also 
be loaded into the database or personalized recommendations in each user’s home 
page. If recommendations are computed online based on latent profiles computed 
offline, the profile data is prepared to be loaded into the online system.

•	 Output: Recommendations are sent to the recommender data store, and web pages 
are updated with new links.

You have now seen how Giraph can fit into an architecture to support the workload of an e-commerce 
site, in particular with an eye to building a recommender system. The next section focuses on a final 
scenario: an online social networking company.

Giraph at an Online Social Networking Company
One of the reasons for the success of social networking sites is that they allow us to connect with people and 
share information about what we do and what we like. The reason why we connect with people on these 
sites depends on each site. For example, on Facebook, users tend to connect with people they already know 
in real life, whereas on Twitter they connect with people they are interested in, and on Flickr they connect 
with photographers whose work they like. Regardless of the reason, the connections created with other 
individuals generate an interesting social fabric. Representing these networks as graphs and processing 
them through graph algorithms allows you to study the underlying social dynamics reflected in the graph.

Facebook published an image in December 2010.1 Although the image resembles a satellite picture 
of the world at night (and that is what makes it so striking!), it is not. The picture presents a portion of the 
Facebook social graph. To draw this image, Paul Butler analyzed the friendship relationships of the users of 
Facebook and visualized the data according to the following criteria:

•	 For each pair of cities, Paul counted the number of friends between the two cities 
and connected the two cities with an edge.

•	 For each edge, he computed a weight as a function of the distance between the two 
cities and the number of friends between them.

1Paul Butler, “Visualizing Friendships,” Facebook, www.facebook.com/note.php?note_id=469716398919.

http://www.facebook.com/note.php?note_id=469716398919
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•	 He placed the edges according to the geospatial information of the cities they 
connected. In other words, he placed each vertex (a city) according to its position on 
the map, but without visualizing it, hence visualizing only edges.

•	 To choose the color of the edges, he chose a shade from white to blue, with the 
highest weight mapped to the white color.

•	 Long edges, like those connecting cities in different continents, were drawn with arcs 
around the world, to minimize overlapping and increase readability.

This example clearly shows that individuals on Facebook are connected by geographical relationships, 
because people connect on Facebook mostly with people they hang out with in real life (or used to). The 
description of the criteria used to analyze the data and compute the edge weights for the visualization is in 
practice a graph algorithm.

One of the most interesting properties of social networks is their division into communities. In social 
network analysis (SNA), a community is a group of individuals who are tightly connected with each other 
more than they are connected with individuals outside of that community. Intuitively, you can think 
of a community as a cluster. The graph representing a social network has particular properties due to 
this division into communities, and graph algorithms can take advantage of these properties to detect 
communities. Figure 2-19 shows a portion of one of the authors’ communities, extracted from his LinkedIn 
account and visualized through the LinkedIn Maps tool.2 Here, each vertex represents a user on LinkedIn, 
and an edge connects two vertices if the two users they stand for are connected on LinkedIn. A community-
detection algorithm was run on this graph, and the vertices were colored according to the community the 
algorithm assigned them to. Note that the algorithm did not use the information contained in each user’s 
profile, such as past jobs, to detect communities. Instead, it used only the information contained in the 
graph about how users were connected. The algorithm successfully detected communities: each color is 
indeed mapped to one of the present or past communities the author is a member of, such as his previous 
and current co-workers, the Apache Giraph community, and so on. Chapter 4 presents an algorithm to 
detect communities with Giraph. Interestingly, the graph-layout algorithm used to draw the graph is also 
a graph algorithm. The graph-layout algorithm computes the position of the vertices in two-dimensional 
space such that connected vertices appear nearby and edge crossings are minimized (for readability). The 
graph-layout algorithm uses only the connections in the graph, and the fact that vertices with the same color 
(same community) appear together is another sign of the strong community structure in the graph.

2http://inmaps.linkedinlabs.com.

http://dx.doi.org/10.1007/978-1-4842-1251-6_4
http://inmaps.linkedinlabs.com/


Chapter 2 ■ Modeling Graph Processing Use Cases 

39

The definition of community is not strict and not unique. Many real-world communities overlap, 
because each of us belongs to multiple communities at the same time. For example, on Facebook you may be 
connected to your school friends but also to your co-workers, your football teammates, and so on. Moreover, 
communities are often organized in hierarchies. You may be a member of your school community but also of 
the inner communities of your particular class, the school band, the basketball team you were a member of, 
and so on. This means a community-detection algorithm has to be tuned to the particular use case.

Why would a social networking site be interested in detecting communities? First, to study its users. By 
studying the communities of a social network, it is possible to understand how the users are organized and 
connected. This lets you target specific group behaviors and analyze the effectiveness of specific features. A site 
can also support features such as “people you may know.” For example, Figure 2-20 presents a community of 
friends. By using the friendship relationships, the site can help users connect with old friends. But communities 
are not only useful for social networking sites. Think of the recommender system for the e-commerce site in the 
previous section. The algorithm presented in this book to compute recommendations generates profiles about 
customers and items that allow you to make predictions of ratings. It basically creates a function that, given a 

Figure 2-19.  Communities in the social network of a LinkedIn user
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customer and any item, predicts the rating the customer will give to that item based on past ratings. What is 
still required is the “matchmaking”—finding the items that are predicted to receive a high rating. The naive 
solution to this problem is to match the profile of a customer with all unrated items and keep the ones with 
the highest rating. However, this solution would mean matching every customer with every item, which would 
require a massive amount of computation and would be unfeasible. Another solution is to look into a customer’s 
communities and match their profile only with items in those communities. Customer-item graphs, such as 
those presented in the previous section, tend to be organized into communities, usually delineating genres or 
tastes. It is very likely that people who like rock music will buy similar albums. This community structure tends 
to be even stronger if customers are allowed to connect on the site by creating an explicit social network. Using a 
community-detection algorithm on the customer-item graph is, in effect, a clustering computation.

Rankings can also be applied to social networks. Think of Twitter. On social media sites, users are 
usually ranked by their influence. Intuitively, a user with high influence is a user whose actions and 
behaviors reach deeply into the graph, effectively increasing the likelihood of influencing other users. Users 
with high influence are called influencers. On Twitter, influencers can be computed by looking at how their 
tweets spread across the network of followers, and by looking at actions such as retweets and mentions. 
You may want to give priority to influencers in the list of recommended individuals to follow and give their 
tweets a higher probability of being shown on a user timeline. Usually, algorithms to compute influencers 
use the same paradigm of PageRank (one of these algorithms is called TweetRank), but they also consider 
temporal aspects, such as how quickly tweets are spread.

Giraph fits in the back office of a social networking site in the pipeline that analyzes the social network. 
The different steps could be as follows:

•	 Input: The input comes from the different data stores where the social relationships 
and profiles (gender, age, country, and so on) are stored, and from raw web server logs 
(such as for the click graph). Which data is used depends on the type of application.

•	 Construction: Selecting a portion of the graph filtered depending on certain types 
of relationships and profile characteristics is often called a projection of the graph. 
For example, the social graph of male professionals living in the United States 
is a projection of the LinkedIn graph. The projection of the graph is constructed 
by filtering out unwanted data and normalizing edge weights. Often, different 
projections must be computed for different algorithms. Other times, different 
projects have to be merged in later steps of the pipeline.

Figure 2-20.  Recommendation of a friend based on a community structure
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•	 Computations: The graph is used to compute communities, rankings, influencers, 
and so on. The different computations are executed and pipelined according to the 
semantics of the analysis; for example, rankings can be used to compute influencers. 
At this point, for summarization and reports, data can be aggregated according 
to criteria such as membership in a community or profile data—for example, the 
average number of connections for male professionals in the US. Aggregations 
can be computed directly in Giraph, through tools like Hive, or directly through 
MapReduce.

•	 Fusion: The results of the computations are used to build the materialization data 
to be injected into the stores. Communities and rankings are used to build friend 
recommendations, and influencer rankings are used to recommend data items, 
depending on the sources.

•	 Output: Materialized data items are inserted into the databases or sent to the 
analytics teams.

Again, these are just some examples of features of an online social networking application. Through the 
examples provided so far, you have learned how to position Giraph in your architecture and how to integrate 
it with your existing data-processing pipeline.

Summary
Graphs are everywhere, and you can use them to describe many things in many different domains. By looking 
at data and problems through graphs, you can gain a better picture of your applications and products. 
Giraph helps you process this data at scale, as part of your application architecture.

In this chapter, you learned the following:

•	 Graphs are very simple structures, and they can be used to describe a number of 
different things.

•	 Depending on the type of data, you can use labels, directed edges, weights, and so on 
to represent specific features of your data.

•	 Computations that are computationally expensive but need to return results 
within milliseconds can be performed with a combination of online and offline 
computations.

•	 Giraph is an offline graph-processing engine that sits in the back office of an 
application architecture.

•	 You can use Giraph to compute rankings, recommendations, communities, and so 
on in cooperation with the other systems in your architecture.

Now that you have seen how to model your data with graphs and how to fit Giraph into your 
application, you are ready to look at how to program Giraph. The next chapter discusses the programming 
model and the API.
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Chapter 3

The Giraph Programming Model

This chapter covers

•	 Giraph design goals for graph processing

•	 The vertex-centric API

•	 Using combiners to minimize communication

•	 Aggregations through aggregators

•	 The bulk synchronous parallel model

This chapter digs into the nature of graphs and graph algorithms, and how graph algorithms can 
be implemented and computed with Giraph. You learn how graph problems are inherently recursive 
and why graph algorithms therefore are usually solved iteratively. You see how Giraph is designed for 
iterative graph computations and explore the vertex-centric programming API and paradigm of Giraph. 
You then look at examples of simple algorithms to get acquainted with the model. The chapter concludes 
by opening the hood of Giraph to examine the underlying distributed engine that makes iterative 
computations so fast and simple.

Simplifying Large-Scale Graph Processing
Traditionally, graph algorithms have been designed following the model of sequential programming we are 
all accustomed to. The graph is represented in main memory with native data structures such as a matrix 
or lists. The algorithms assume a global view of the graph and a single thread of execution. Both the data 
structures and the execution logic are tailored to the solution. This approach has a number of drawbacks. 
First, a new graph problem brings a new graph algorithm, and probably with it a new approach and model 
redesigned from scratch. A tailored, ad hoc solution allows for fine-grained optimizations, but it requires 
practitioners to partially reinvent the wheel every time they implement a new algorithm in a system. Second, 
algorithms need to be specifically designed or modified to run in a parallel, distributed system. Again, 
this allows for fine-grained optimizations that exploit a particular platform, but it requires reinventing the 
wheel every time a new algorithm is implemented for a parallel, distributed system. Plus, it is nontrivial to 
parallelize a graph algorithm, because graph computations are unstructured and interleaved.

Giraph tackles both problems by providing a programming model that has been designed with graph 
algorithms in mind and that at the same time hides the complexity of programming a parallel, distributed 
system. Both characteristics minimize the effort of implementing a graph algorithm that works at large scale. 
The following two sections cover these characteristics.
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Hiding the Complexity of Parallel, Distributed Computing
Giraph offers you much more than a library for executing graph computations; it offers a programming 
model and an API that let you focus on the semantics of the specific algorithm you are designing without 
having to worry about how the graph is stored in memory, the way the algorithm is executed, or how 
the computation is distributed across machines with tolerance to faults. Basically, the way the graph is 
represented in memory and the execution engine is general to any graph algorithm that can be expressed 
with Giraph. Practically, you have to write a user-defined function (UDF) that is executed iteratively on each 
vertex by the Giraph runtime across the processing units. This UDF is agnostic to the way data is shared 
across these units and the way code is executed concurrently. In other words, no locking or concurrent 
coordination is required on your side. As far as you know, your UDF is executed sequentially on a single unit. 
Figure 3-1 shows this conceptual stacked organization.

■■ Important A ccording to the Giraph programming model, you have to develop a UDF that is executed 
iteratively on the vertices in the graph. You are agnostic of the way the graph is represented in memory, the way 
the function is executed in parallel across the distributed system, and how fault-tolerance is guaranteed.

The UDF defines how each vertex manages the messages it receives to update its value, and what 
messages it sends to what other vertices. Because vertices share data through messages, no locking is 
required. Also, because each vertex is executed at most once during each iteration, there is no need for 
explicit synchronization by the user. This means you have to focus only on how to express an algorithm from 
the perspective of being a vertex that can exchange messages with other vertices in a number of iterations. 
This is why the programming model is usually referred to as a vertex-centric paradigm. Although it is more 
restrictive, this model guides you toward developing algorithms that can reach massive parallelization. 
Chapter 4 develops this idea further.

Programming through a Graph-Specific Model Based on Iterations
The previous chapter presented graphs and how they can be used to model data in different domains. Now, 
let’s have a quick look again at graphs, focusing on how they shape the programming model used to express 
graph algorithms. Graphs are characterized by a few concepts, making them very simple to understand. You 
have “just” a set of vertices with a set of edges connecting them, potentially with direction, label, and weight. 
There is nothing more to it. With a combination of these concepts, you can model pretty much anything 
you can think of. But simplicity comes at a price. The problem is that the information about each vertex is 

Figure 3-1.  Conceptual organization of an application in Giraph

http://dx.doi.org/10.1007/978-1-4842-1251-6_4
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contained not only in its adjacent vertices and in the labels and weights assigned to the edges that connect 
them, but also in vertices that are farther away. Information about each vertex is often distributed all over the 
graph, making graphs complex and expensive to manage.

Let’s look at an example of how you can gain more information about a vertex by looking further than 
its direct neighbors. In Figure 3-2, the leftmost circle represents the simplest graph of all (except, perhaps, 
an empty one). It consists of a single vertex. What does that graph tell you? As is, not much. But if you add 
a label to the vertex and connect it to a bunch of other vertices with labeled edges, you get a better picture. 
You realize that the graph contains information about Mark. He works at Banana Inc., he is in a relationship 
with Anna, and he lives in Berlin. Now look at graph on the right. It add a vertex representing Germany and 
connects it to the vertex representing Berlin, with an edge labeled “capital of”.

Figure 3-2.  The definition of a vertex through its neighbors

The interesting thing here is that by adding a vertex to the graph and connecting it to a vertex that is not 
Mark, you find out more about Mark: that Mark lives in Germany. Moreover, assuming for this example that 
Mark is not telecommuting, you can infer that Banana Inc. has an office in Berlin. The more information is 
contained in the neighbors, either direct or multi-hops away, the more you can deduce about a vertex.

In other words, the information about a vertex depends on the information about the vertices in the 
neighborhood. Naturally, those vertices also depend on their neighborhood. This introduces a recursion 
in the information about each vertex, where each vertex depends on other vertices. That is why graphs are 
tough. Each vertex depends on its neighbors. Mark is defined by the vertices Banana Inc., Anna, and Berlin, 
but Berlin is defined by vertex Germany, making Mark also defined indirectly by vertex Germany.

Let’s look at another example. It is commonly said that in order to judge a person, you have to look at 
her friends. But you may also say that to judge her friends, you have to look at their friends. As before, you 
end up having to look at the entire graph. Graph problems are often defined, in one form or another, through 
dependencies between vertices and their neighbors. Unfolding these dependencies is often what makes 
graph computations complex and expensive.
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■■ Important T he information about a vertex depends on the information about its neighbors. This makes 
graph problems recursive.

Fortunately, you know that these types of problems can be solved iteratively. Iteration after iteration, 
an iterative algorithm unfolds these dependencies one level at a time. For this reason, graph algorithms 
are often expressed as iterative algorithms, where some of the vertices are visited (once or multiple times) 
during each iteration. As the computation proceeds and intermediate states are computed, information 
about each vertex is updated in the face of updated intermediate state until the final results are computed. 
This is why the Giraph programming model is designed to express iterative algorithms and the Giraph 
execution engine is optimized for iterative computations. You have to think in terms of iterative algorithms.

■■ Important  Graph problems can be solved nicely through iterative algorithms. This is why Giraph is 
designed and optimized for iterative computations.

Let’s look at an example to clarify these concepts. Figure 3-3 shows a social graph with a number of 
people are connected by a friendship relationship. Imagine that they want to find out who is the oldest 
in the graph, but they can only communicate between friends. You can assign to each vertex a value that 
you initialize with the age of the person, and define the problem recursively by defining the value of each 
vertex as the largest value between its own value and the values of the neighbors. This definition is recursive 
because each vertex value depends on the value of the neighbors. This recursive definition works because 
the oldest person will affect the value of their friends, which in turn will affect the value of their friends, so 
that in the end the value of each individual depends on the age of the oldest person in the graph.

But how do you solve this problem? You organize the computation in a series of iterations, where during 
each iteration each vertex sets its own value to the largest between its current value and the value of its 
neighbors. Iteration after iteration, the age of the oldest person flows through the graph until it reaches all 
the vertices. If at any iteration no vertex updates its value, the computation has reached its final iteration, 
and each vertex has in its value the age of the oldest person in the graph. Figure 3-4 shows the execution of 
this example. Note how the Carla’s age reaches first Anna, then John, and ultimately Mark, iteration after 
iteration. Also, initially the Mark vertex updates its value based on John’s and later updates it again, after the 
John vertex updates its value. The next section looks at how this maps to what is usually referred to as the 
vertex-centric approach of Giraph.

Figure 3-3.  A social network of four individuals connected by a friendship relationship
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A Vertex-centric Perspective
According to the Giraph programming model and API, you have to put yourself in the shoes of being a  
vertex that has a value and that can exchange messages with other vertices in a number of iterations. This 
section presents how this works. To simplify the presentation and fit in as many examples as possible, we use 
pseudo-code instead of Java (in which Giraph is written and can be programmed). Starting in Chapter 5, 
after all the concepts are clear and you are familiar with the paradigm, the book’s examples use Java code 
with the actual Giraph API. The two APIs (pseudo-code and Java) match perfectly.

THE USE OF PSEUDO-CODE IN THIS BOOK

This chapter and the next use a pseudo-code language to present the Giraph API and the 
implementation of the algorithms. This allows you to focus on the programming model without thinking 
about the particularities of the (Java) language. Also, because the pseudo-code is much less verbose 
than Java, these chapters can cover much more material.

The language is heavily inspired by Python, so if you know that language you won’t have problems 
understanding the code. Most of the API uses the same naming as in the official Java API so you can 
easily move from the content learned here to the content present in Part 2 and Part 3, which present 
Java code.

The Giraph Data Model
This section presents the Giraph data model: the way a graph is represented. Look back at the example in 
Figure 3-4. Each person was represented with a vertex, and two vertices were connected if the people knew 
each other. This is how you build a social graph. You can use the name of a person as the identifier—for 
example, with a string. Each person also knows the friends they are connected to, so the vertex has outgoing 

Figure 3-4.  Execution of the algorithm that finds the oldest age (maximum value) in the graph

http://dx.doi.org/10.1007/978-1-4842-1251-6_5
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edges. Keep in mind that with certain graphs, like street maps, you can have also values assigned to the 
edges. Vertices with their identifiers, and edges with their values, represent the graph. For the specific 
problem of finding the highest age, you needed to store an integer value with each person. This value was 
modified each time a vertex discovered a higher age. Vertex IDs, outgoing edges with values, and vertex 
values are the elements of the data model of Giraph. Figure 3-5 summarizes these elements.

A bit more rigorously, according to Giraph, a graph is a set of vertices and edges, and each vertex is 
defined as follows:

•	 It has a unique ID, defined by a type (an integer, a string, and so on)

•	 It has a value, also defined by a type (a double, an integer, and so on)

•	 It has a number of outgoing edges that point to other vertices.

•	 Each edge can have a value, also defined by a type (an integer, a double, and so on).

The first important thing to notice from this list is that the data model is a directed graph and edges 
are assigned to their source vertex. In principle, vertices are aware only of their outgoing edges, and if an 
algorithm needs to know the incoming ones, it must discover them as part of the algorithm. The section 
“Converting a Directed Graph to Undirected” presents an algorithm to do this. A second important thing to 
notice is that for each element (vertex ID and value, edge value), you have to define a type. This type can be 
either a primitive type, like an integer or a double, or a composite type, like a class.

Although vertex IDs depend on the graph—for example, a web graph has vertex IDs characterized by 
URLs (hence strings)—vertex values are often dependent on the algorithm. For example, shortest-distances 
algorithms define vertex values as integers for unweighted graphs and as doubles for weighted graphs, 
PageRank defines vertex values as doubles, and recommendation algorithms often define vertex values 
as vectors of floats. Chapter 4 presents all these algorithms and their implementation in Giraph. For each 
algorithm you write, you must decide which data type fits the vertex value.

Edge values, on the other hand, lie somewhere in between. For certain algorithms, you use no edge 
values; for others, you use values to model the label (if any) attached to the edge in the input graph; and for 
others, you use values to model the weight. For still other algorithms, you use a totally new edge value type 
that has nothing to do with the actual graph; the algorithm may use it to store intermediate results. Vertex 
values tend to change during the computation, because they are part of the intermediate results, but edge 
values tend to stay the same. But again, this is not a rule. If you look back at the example in Figure 3-4, the 
graph would be represented with string IDs for names, integer values for ages, and no edge values.

Figure 3-5.  The Giraph data model, with vertices, IDs, values, and edges

http://dx.doi.org/10.1007/978-1-4842-1251-6_4
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In Giraph, each vertex object is an instance of the Vertex class. The interface of the Vertex class, 
presented in Listing 3-1, lets you access the vertex value and the edges and their values and add and remove 
edges. For now, ignore the voteToHalt() method, which is presented in the next section. Giraph comes with 
a default implementation of vertices and edges, so you do not need to implement them yourself as part of 
your application (unless you want some specific behavior). You need to define the types of the vertex ID, the 
vertex value, and the edge value.

Listing 3-1.  The Vertex Class

class Vertex:
    function getId() #1
    function getValue() #2
    function setValue(value) #3
    function getEdges() #4
    function getNumEdges() #5
    function getEdgeValue(targetId) #6
    function setEdgeValue(targetId, value) #7
    function getAllEdgeValues(targetId) #8
    function voteToHalt() #9
    function addEdge(edge) #10
    function removeEdges(targetId) #11

#1 Returns the ID of the vertex. The return type depends on the type of the ID.
#2 Returns the value of the vertex. The return type depends on the type of the vertex value.
#3 Sets the value of the vertex. The type of the parameter depends on the type of the value.
#4 Returns all the outgoing edges for the vertex in the form of an iterable of Edge objects.
#5 Returns the number of outgoing edges for the vertex
#6 Returns the value of the first edge connecting to the target vertex, if any. The return type depends on the 
type of the edge value.
#7 Sets the value of the first edge connecting to the target vertex, if any. The type of the parameter depends 
on the type of the value.
#8 Returns the values associated with all the edges connecting to a specific vertex. This methods is useful 
when managing multigraphs.
#9 Makes the vertex vote to halt
#10 Adds an edge to the vertex
#11 Removes all edges pointing to the target vertex

The Edge class is even simpler. It has only three methods: one to get the ID of the other endpoint, one to 
get the value, and one to set the value. The interface is presented in Listing 3-2.

Listing 3-2.  The Edge Class

class Edge:
    function getTargetVertexId() #1
    function getValue() #2
    function setValue(value) #3

#1 Returns the ID of the target vertex. The return type depends on the type of the ID.
#2 Returns the value attached to the edge. The return type depends on the type of the edge value.
#3 Sets the value of the edge. The type of the parameter depends on the type of the edge value.

Now that you have seen how the graph is represented in Giraph and how you can access it 
programmatically, you are ready to look at how to express an algorithm.
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A Computation Based on Messages and Supersteps
Once you have defined the way your graph looks through the type of vertex ID, vertex, and edge values, 
Giraph needs you to write a UDF called compute. As mentioned earlier, Giraph requires you to “think like a 
vertex.” All this logic is put in the compute() method. But before you dig into the API, let’s look at the way the 
computation is organized.

A Giraph computation is organized in a series of supersteps. They are called that because a superstep is 
composed of steps, as you see later in this chapter. Intuitively, you can think of a superstep as an iteration of 
an algorithm; this is not always the case but often is. At each superstep, a vertex can send messages to other 
vertices, access its vertex value and its edges, and vote to halt. Sent messages are delivered to the destination 
vertex at the beginning of the next superstep. Every vertex can be in either the active state or the inactive 
state. Only active vertices are computed during each superstep (once). At the beginning of the computation, 
every vertex is in the active state, and it can switch to the inactive state by voting to halt. A vertex votes to 
halt because it decides that from its local perspective, its work is done, and the computation may conclude. 
A vertex that is in the inactive state is not executed during a superstep unless it has received a message. The 
delivery of a message switches a vertex back from the inactive to the active state. A Giraph computation is 
over when all vertices have voted to halt and no message needs to be delivered. The diagram in Figure 3-6 
illustrates the way a vertex can change state between active and inactive.

A Giraph computation is said to be synchronous. A superstep is concluded when all active vertices have 
been computed and all messages have been delivered. Giraph will not compute the next superstep until 
all vertices have been computed. Because active vertices have to wait for the other vertices to be computed 
during the current superstep before their next superstep can be computed, the computation is referred to as 
synchronous and the waiting phase is called the synchronization barrier.

A Giraph computation is distributed and parallelized by spreading vertices, with their edges, across 
a number of processing units—for example, machines or CPU cores. During each iteration, each unit is 
responsible for executing the compute() method on the vertices assigned to it. Each unit is also responsible 
for delivering the sent messages to the units responsible for the vertices that should receive the messages. 
This means the more units involved in the computation, the more vertices can be executed in parallel. But 
the more units you have, the more communication is produced. Chapter 6 is dedicated to the architecture 
of Giraph and dives into the details. Figure 3-7 shows the computation of a vertex that receives three 
messages (5, 7, and 20), chooses the largest one (20), updates its value (from 2 to 20), and sends the value to 
its neighbors. Note that this chapter shows the synchronization barrier and illustrates the messages being 
sent with their own dashed arrows. To keep the figures leaner, later figures in the book do not include the 
synchronization barrier, and messages are drawn directly on the edges over which they are sent.

Figure 3-6.  Diagram of transitions between vertex states

http://dx.doi.org/10.1007/978-1-4842-1251-6_6
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In practice, to write an algorithm, you have to implement the compute() method of a class called 
BasicComputation. At each superstep, Giraph calls the compute() method on all active vertices, delivering 
the messages sent to that vertex (if any) during the previous superstep. The signature of the compute() 
method is compute(vertex, messages), where the first parameter is the vertex that is being computed and 
the second parameter is a container with the messages sent to that vertex (you can think of it for now as a 
list of messages). The BasicComputation class must be defined with the same three types as the vertex it 
operates on. However, in addition to these three types, you also need to define a fourth type: the message 
type. Giraph needs this information to know how to store and deliver messages. Listing 3-3 presents the 
most relevant methods of the BasicComputation class.

Listing 3-3.  The BasicComputation Class

class BasicComputation:
    function compute(vertex, messages) #1
    function getSuperstep() #2
    function getTotalNumVertices() #3
    function getTotalNumEdges() #4
    function sendMessage(targetId, message) #5
    function sendMessagetoAllEdges(vertex, message) #6
    function addVertexRequest(vertexId) #7
    function removeVertexRequest(vertexId) #8

#1 The method to implement, which is called by the Giraph runtime
#2 Returns the current superstep
#3 Returns the total number of vertices in the graph
#4 Returns the total number of edges in the graph
#5 Sends a message to the target vertex
#6 Sends a message to the endpoints of all the outgoing edges of a vertex
#7 Requests the addition of a vertex to the graph
#8 Requests the removal of a vertex from the graph

Figure 3-7.  Computation of a vertex that receives values through messages and propagates the largest
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This is all you need to know to program a basic graph algorithm in Giraph. The rest of this chapter 
presents the other parts of the basic API, but for now let’s focus on how to implement the example in 
Figure 3-4 using what you have seen so far. Listing 3-4 presents the compute() method that implements the 
algorithm.

Listing 3-4.  The MaxValue Algorithm

function compute(vertex, messages):
    maxValue = max(messages) #1
    if maxValue > vertex.getValue(): #2
        vertex.setValue(maxValue) #2
        sendMessageToAllEdges(vertex, maxValue) #2
    vertex.voteToHalt() #3

#1 Identify the largest value across those sent as a message.
#2 The value is larger than the value discovered so far by this vertex, so update and propagate.
#3 Vote to halt.

Figure 3-8 illustrates the execution of the algorithm on the graph from Figure 3-3. As you can see, the 
largest value propagates quickly through the graph. When vertices discover new, larger values, they are 
updated and propagated until all the vertices have discovered the largest value.
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Figure 3-8.  Computation of the MaxValue algorithm in Giraph
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Now what you have seen the simple Giraph API, the next section explores how you can make your 
algorithm more efficient through combiners.

THE BULK SYNCHRONOUS PARALLEL (BSP) MODEL

Some of the terminology in Giraph is borrowed from the bulk synchronous parallel (BSP) model, which 
inspired Pregel and Giraph. If you are interested in getting to know more about the BSP model, a section 
is dedicated to it at the end of this chapter. Keep in mind, however, that you do not need to know how 
the BSP model works to play with Giraph.

Reducing Messages with a Combiner
Messages play a very important role in Giraph, because they allow vertices to share information. Also, 
because Giraph uses messages instead of shared memory, graph computations can be parallelized without 
using (expensive) concurrency primitives. Still, exchanging messages has its cost and can impact on the total 
runtime of a computation. Can you reduce the number of messages?

A combiner is a function that combines messages sent to a vertex. Combining messages allows Giraph 
to send less data between processing units. A combiner is very simple and combines two messages into one. 
The messages it combines were sent to the same vertex during the current superstep. What is important is 
that there are no guarantees about how many times the combiner will be called or if it will be called at all. 
Basically, the only assumption you can make is that the messages passed to the combiner are all destined for 
the same vertex.

Because a combiner receives a partial collection of messages and can be called multiple times, it must 
apply a function that is commutative and associative. Listing 3-5 shows the interface of the MessageCombiner 
class. Clearly, because a combiner is defined on a specific type of message, an algorithm must use a 
combiner that matches the type of messages the vertices send.

COMMUTATIVE AND ASSOCIATIVE FUNCTIONS

A commutative function produces the same result regardless of the order in which it is applied on the 
elements. For example, sum is commutative:

1 + 2 = 2 + 1 or, more extensively, 1 + 2 + 3 + 4 = 3 + 2 + 4 + 1, and so on.

An associative function can be applied to subgroups of the input elements and produce the same result. 
For example, sum is also associative:

1 + 2 + 3 + 4 = (1 + 2) + (3 + 4) = 1 + (2 + 3) + 4, and so on.

Listing 3-5.  The MessageCombiner Class

class MessageCombiner:
    function combine(id, message1, message2) #1

#1 Returns the combination of the two messages

For the MaxValue algorithm, a viable combiner is one that returns the largest value of the two. Listing 3-6 
shows the pseudo-code for this combiner.
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Listing 3-6.  The MaxValue Combiner

function combine(id, message1, message2):
    return max(message1, message2) #1

#1 Returns the largest value

Now, let’s look at the effect of using the combiner on the example computation for the largest value (on 
a different graph). Figure 3-9 shows one superstep. On the left, messages are delivered as produced. On the 
right, however, Giraph applies the combiner two times, reducing the number of messages sent for that vertex 
to a third as many. Note also that the second combiner round might not have happened, because Giraph does 
not give any guarantees. In that case, the number of messages would be reduced only to two-thirds as many.

The interesting thing about the combiner is that the compute() method cannot make any assumptions 
whether a combiner will be executed. For this reason, the combining logic of the combiner is often 
performed by the compute() method. Note how Listing 3-6 computes a max() function on the input 
messages in line maxValue = max(messages). This is the same function as the combiner. The combiner is 
executed before you enter the compute() method on some of the messages, but the result is the same.

Combiners are very useful for minimizing the use of resources by Giraph. Often you can apply a simple 
combiner, but not all algorithms can have one. Keep this in mind when you design your own algorithm.

Computing Global Functions with Aggregators
Computing the maximum value or other aggregations on the values associated with vertices can be 
expressed as a graph algorithm. But it would be easier if you could compute these aggregations without 
having to propagate messages across vertices in a number of supersteps. This is what aggregators were 
introduced for. Aggregators allow you to think of aggregations as global functions to which vertices can send 
values. During each superstep, these global functions aggregate the values, and the results are available to 
the vertices during the following superstep.

Figure 3-9.  The effect of using the MaxValue combiner on the messages
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Aggregators compute global functions, but they are executed in parallel across processing units, and 
they are scalable. Aggregators, like combiners, require the function to be commutative and associative. The 
interface of an aggregator is presented in Listing 3-7.

Listing 3-7.  The Aggregator Class

class Aggregator:
    function aggregate(value) #1
    function getAggregatedValue() #2
    function setAggregatedValue(value) #3
    function reset() #4

#1 Aggregates the value
#2 Returns the aggregated value
#3 Sets the aggregated value to the parameter
#4 Resets the aggregated value to a neutral value

Let’s go back to the example. Instead of having vertices propagate their values, you can make vertices 
send their values to the aggregator during the first superstep and then vote to halt. This algorithm 
would execute only one superstep and finish the computation. Listing 3-8 presents the code for the 
MaxValueAggregator class. Note that for this kind of algorithm, Giraph probably is not the right tool for the 
job, because it does not exploit the structure of the graph. Still, algorithms can often use aggregators as part 
of their graph computations; Chapter 4 presents two such cases.

Listing 3-8.  The MaxValueAggregator Class

maxValue = -Inf #1
function aggregate(value):
    maxValue = max(maxValue, value) #2
function getAggregatedValue():
    return maxValue #3
function setAggregatedValue(value):
    maxValue = value #4
function reset()
    maxValue = -Inf #5

#1 Local variable where the aggregated value is stored
#2 Updates the local value to the new value, if larger
#3 Returns the aggregated value
#4 Sets the value to the new value, used (for example) for initialization
#5 Resets the value to the neutral value –Inf (neutral to the max() function)

Listing 3-9 shows the pseudo-code for a trivial MaxValue algorithm that uses an aggregator. For 
simplicity, the code assumes you have the reference to an aggregator object called maxValueAggregator. In 
Giraph, however, you can use multiple aggregators at the same time—each with a string name to distinguish 
it—that need to be declared and initialized before they are used. Presenting this complete API would require 
introducing parts of the API that are not relevant to understanding how aggregators work and how to use 
them. Chapter 5 includes the complete API in its presentation of the Java API.

Listing 3-9.  The MaxValue Algorithm with an Aggregator

function compute(vertex, messages):
    maxValueAggregator.aggregate(vertex.getValue()) #1
    vertex.voteToHalt()

#1 Aggregates the vertex value through the MaxValue aggregator

http://dx.doi.org/10.1007/9781484212523_4
http://dx.doi.org/10.1007/978-1-4842-1251-6_5
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Figure 3-10 shows how the new computation is organized. Note how the aggregator is computed 
autonomously for each value, because the function is associative and commutative.

Figure 3-10.  Computation of  MaxValue through an aggregator
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You need to know one last thing about aggregators before you move on. You might have noticed 
the reset() method in the Aggregator class. This method exists because there are two types of 
aggregators: regular and persistent. The value of a regular aggregator is reset to the initial value in each 
superstep, whereas the value of persistent aggregator lives through the application. Note that a call to 
getAggregatedValue() returns the value computed during the previous superstep, not the current one. 
The Giraph runtime uses the reset() method to reset the value of a regular aggregator. Hence, it should 
reinitialize the aggregator to a neutral value, like 0 for a sum aggregator or -Infinity for a MaxValue aggregator.

Imagine a simple application in which during each superstep, vertices send a value of 1 to an aggregator 
that sums all these values. If the aggregator is regular, then during each superstep (except the first one), 
the aggregator contains a number that is equal to the total number of vertices. Instead, if the aggregator is 
persistent the aggregated value will be the number of vertices times the superstep number. So, if you had 
four vertices in a computation of three supersteps, at the end of the computation a regular sum aggregator 
would have a value of 4, and a persistent sum aggregator would have a value of 12.

This chapter has presented the basic API and assumed that the graph was already loaded and initialized 
in memory and that the final superstep would be the last part of the computation. The next section looks 
at what happens before the first superstep and after the last superstep, to conclude your tour of a Giraph 
computation.

The Anatomy of a Giraph Computation
This chapter’s presentation of the API has assumed that the graph was already loaded into memory, the 
values were initialized, and the last superstep would be the last phase of the computation. Let’s look at a 
more complete overview. Figure 3-11 shows the anatomy of a Giraph computation.

Figure 3-11.  The different phases and steps of a Giraph computation executed by each processing unit
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The computation starts with Giraph loading the graph into memory across the processing units. In 
Giraph, the loading phase is considered superstep -1. The graph is usually read from persistent storage, like 
a filesystem or a database (both most likely distributed). This phase, the loading phase, happens in parallel, 
when possible, and requires converting the data read from storage into the internal representation of a 
graph. As Chapter 7 explains, Giraph provides an API that allows you to define the format of the persistent 
data and how it should be parsed to load the graph. The loading phase loads all the vertices and their edges 
and initializes the vertex values and the edge values. Once the graph is loaded, the computation can start.

The computation phase consists of one or multiple supersteps. Each superstep is divided into three 
phases:

	 1.	 The processing units iterate over the active vertices and call the compute() 
method with the corresponding messages, if any. As the vertices produce 
messages, they are sent to the corresponding processing unit, depending 
on the destination vertex. At various points, combiners can be applied to 
messages, if defined, either before messages leave a source or when they 
reach the destination. The processing units finish computing the vertices 
and finish sending the remaining messages. Each processing unit waits at the 
synchronization barrier for the other units to finish.

	 2.	 The processing units conclude the computation of the aggregators, if any, and 
aggregate the local aggregations. Local computations that involve aggregators 
can be performed when computing the vertices, because aggregation functions 
are commutative and associative. This means the local aggregations are not 
necessarily computed after all vertices have been computed. When processing 
units are finished with aggregations, they can move to the next superstep, if the 
computation is not over.

	 3.	 In the offloading phase—the last phase of the computation—the processing units 
have in memory the vertices with their vertex values and the edges with their 
values. This data represents the results (often, if the algorithm does not change 
the graph, only the vertex values contain the end results). The processing units go 
through this data and write it back to persistent storage. The entire computation 
is now over, and the results can be used.

DIFFERENCE BETWEEN THE BSP MODEL AND GIRAPH

Traditionally, in the BSP model, a superstep is divided into three steps: the local computation, the 
communication, and the synchronization barrier. These steps are computed one after the other. When a 
units has finished computing its state locally, it starts sending data.

Giraph computes a superstep differently, and it overlaps local computation and communication. 
Processing units begin exchanging messages as soon as they are produced, instead of waiting for the 
computation of vertices to be finished. This helps dilute network usage over a longer period of time. This 
aspect is particularly helpful in Hadoop clusters that are running multiple jobs, of which Giraph is one, 
so that Giraph does not saturate the network.

You have seen the basic Giraph API and how the computation is organized. Part 2 and Part 3 of the 
book present the Giraph Java API. Before you move to Chapter 4, which presents Giraph implementations 
of algorithms for real-world graph analytics, let’s spend the next two sections looking at some simple 
algorithms to help make you more familiar with what you have seen so far.

http://dx.doi.org/10.1007/978-1-4842-1251-6_7
http://dx.doi.org/10.1007/978-1-4842-1251-6_4
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Computing In-Out-Degrees
To acquaint you with the Giraph programming model, this section presents a simple graph algorithm that 
could be considered the “Hello World” of graph computations (if you are familiar with Hadoop MapReduce, 
this example is like the “word counting” of Giraph).

As of December 31, 2012, Facebook was reported to have 1.06 billion monthly active users and  
150 billion friend connections, which in graph terms means 1.06 billion vertices and 150 billion undirected 
edges. How many connections does a user have on Facebook or on Twitter? Figure 3-12 shows two social 
networks: one with symmetrical friend relationships (Facebook) and one with asymmetrical follower 
relationships (Twitter). In both, the graph has three vertices and three edges. In the first case, the average 
number of friends per user is two; and in the second case, the average number of followers per user is one. 
This is interesting because the ratio between the number of vertices and the number of edges is the same. 
However, because the Twitter graph is directed, and you are considering only the incoming edges (the 
followers), you do the counting differently. If you focus solely on the number of edges that “touch” a vertex, 
in both cases the average is two.

The number of edges that touch a vertex is called the degree of that vertex. For directed graphs, a vertex 
has an in-degree (the number of incoming edges), an out-degree (the number of outgoing edges), and an in-
out-degree (the sum of both). If you consider the in-out-degree, then the degree of the vertices in a directed 
graph is computed the same way as for an undirected graph. If you were to convert the undirected Facebook 
graph to a directed one, where two directed relationships with opposite direction substitute for each 
undirected friend relationship, the graph would contain six edges.

Figure 3-12.  Vertex degrees in directed and undirected graphs
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The question is, how can you compute in-out-degrees with the Giraph vertex-centric programming 
model? The fact that each vertex only knows about its outgoing edges requires some exchange of 
information between each vertex and its neighbors. To discover its incoming edges, a vertex can take 
advantage of its messaging capabilities and inform its neighbors of its existence through the outgoing edges. 
Figure 3-13 shows a directed graph with seven vertices, for which you want to compute the in-out-degrees 
(you can think of it as a graph of Twitter followership).

The algorithm works as follows:

	 1.	 At the beginning, all vertices are active and have their value initialized to 0.

	 2.	 During superstep 0, each vertex computes the number of outgoing edges and 
sets its value to this number. If you wanted to compute the out-degree only, this 
would be enough, and the vertices would contain the out-degree in their value. 
However, the incoming edges are still unknown to each vertex, so each vertex 
sends a message through its outgoing edges and votes to halt. When all the 
vertices have finished computing their degree and have sent the messages, the 
following superstep begins.

	 3.	 Vertices with incoming edges are woken up by the messages sent to them during 
the previous superstep. Each vertex has received a number of messages equal 
to the number of vertices pointing to it with an incoming edge. Each vertex now 
counts the number of messages, effectively computing its in-degree, adds it to 
its out-degree, and votes to halt. At this point, all the vertices have their in-out-
degree in their value, and the computation is over.

Figure 3-13.  A Twitter-like network of users and follower relationships
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Figure 3-14.  Computing the in-out-degree in Giraph

Figure 3-14 shows the flow of the computation for the graph presented in Figure 3-13.
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The computation of vertex degrees on the Facebook graph is trivial: it boils down to counting the 
number of edges. When an undirected graph is modeled through a directed one, as in Giraph, each 
incoming edge corresponds to an outgoing edge. Hence, a vertex can just count the number of edges it has, 
without having to depend on incoming messages. Listing 3-10 shows the pseudo-code for the algorithm.

Listing 3-10.  The InOutDegree Algorithm

function compute(vertex, messages):
    if getSuperstep() == 0:
        vertex.setValue(vertex.getNumEdges()) #1
        sendMessageToAllEdges(vertex, 0) #1
    elif getSuperstep() == 1:
        inDegree = 0
        for msg in messages: #2
            inDegree += 1 #2
        outDegree = vertex.getValue()
        inOutDegree = outDegree + inDegree #3
        vertex.setValue(inOutDegree) #3
    vertex.voteToHalt()

#1 Initializes the vertex value to the out-degree, and propagates it
#2 Counts the incoming messages as the number of incoming edges
#3 Sums in-degree and out-degree to compute the in-out-degree, and sets the vertex value to it

In a few lines, you have developed an application that computes the in-out-degree of each vertex across 
hundreds or thousands of machines without having to worry about concurrency or parallel and distributed 
computing. With all this discussion about directed and undirected graphs, let’s look at an algorithm to 
convert a directed graph to a (logically) undirected graph.

Converting a Directed Graph to Undirected
Certain algorithms require graphs to be undirected. Giraph supports only directed graphs, so this means a 
logically undirected graph. Here, logically means that each edge in the graph has a corresponding edge in the 
opposite direction. Because each edge has a corresponding edge in the opposite direction, direction is lost.

Take Figure 3-15 as an example. The original directed graph is converted to a logically undirected graph 
by adding an edge in the opposite direction if it is not already present. This simple conversion strategy may 
make you lose some edge information, but don’t worry for now; you look into that in a moment. In the 
vertex-centric API, the vertex that will be the source vertex can add the edge.
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The algorithm works in two supersteps, as follows. Note that it does not use vertex values, because it 
works only on the topology of the graph:

	 1.	 During superstep 0, each vertex sends its vertex ID to the neighbors.

	 2.	 During superstep 1, each vertex receives the IDs of the vertices that are endpoints 
of the incoming edges. That is, the vertex discovers its incoming edges. For each 
of these IDs, each vertex checks whether an edge in the opposite direction is 
already present. If this is not the case, the vertex creates an edge toward that 
vertex. In addition, active vertices vote to halt during both supersteps.

Listing 3-11 presents the pseudo-code for this algorithm.

Listing 3-11.  The Graph Conversion Algorithm

function compute(vertex, messages):
    if getSuperstep() == 0:
        sendMessageToAllEdges(vertex, vertex.getId()) #1
    elif getSuperstep() == 1:
        for msg in messages:
            if vertex.getEdgeValue(msg) is None:
                vertex.addEdge(Edge(msg)) #2
    vertex.voteToHalt()

#1 Initially propagates the ID to all the neighbors
#2 Adds an edge if an edge toward the target does not exist already

In some cases, you may want to use the edge value to store information about whether the original 
graph contained only a single edge in one direction. For example, you might want to assign an edge value 
of 2 when the original graph had two corresponding edges, and a value of 1 in the case where only one 
edge was present. Figure 3-16, for example, converts the original graph in Figure 3-15 according to this new 
heuristic. The input graph is assumed to have a value of 1 initially assigned to each edge. The pseudo-code 
for this heuristic is presented in Listing 3-12.

Figure 3-15.  The representation of a directed graph through a logically undirected graph
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Listing 3-12.  The Graph Conversion Algorithm with Weights

function compute(vertex, messages):
    if getSuperstep() == 0:
        sendMessageToAllEdges(vertex, vertex.getId()) #1
    elif getSuperstep() == 1:
        for msg in messages:
            value = vertex.getEdgeValue(msg):
            if value is None:
                vertex.addEdge(Edge(msg, 1)) #2
            else:
                vertex.setEdgeValue(msg, 2) #3
    vertex.voteToHalt()

#1 Initially propagates the ID to all the neighbors
#2 Adds an edge if an edge toward the target does not exist already
#3 Updates the weight to 2 if an edge toward the target already exists

Again, with a few lines, you can express an algorithm that can convert a large graph across many 
machines. Figure 3-17 shows the flow of the algorithm.

Figure 3-16.  The representation of a directed graph through a weighted logically undirected graph
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You have seen how to write iterative graph algorithms with the Giraph API and how the distributed 
engine executes the algorithm across a number of processing units. Before this chapter concludes, let’s open 
the hood of Giraph and look at the computational model that inspired Giraph.

Figure 3-17.  The computation in Giraph of the graph conversion to weighted logically undirected
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Understanding the Bulk Synchronous Parallel Model
This section looks at the model that inspired Giraph. As a Giraph user, you see many terms in the API that 
are borrowed from BSP model, such as superstep and synchronization barrier. As a Giraph developer, if you 
ever need to extend Giraph, its internals contain many references to the BSP model, and you need a better 
understanding of how the underlying computational model works. This section teaches you how Giraph 
works under the hood, but keep in mind that you don’t need to think in BSP terms when you program 
Giraph. These concepts are borrowed by the Giraph model, or are hidden, so you can program Giraph using 
just the concepts you have learned up to now.

Imagine that you have a list of 20 positive integer numbers, and you want to find the largest value. On 
a sequential machine, this would require going through the entire list, saving the current largest value in 
a variable, and comparing it sequentially with each element in the list. At the end of the computation, this 
variable would contain the largest value in the list.

With ten machines, can you parallelize this computation? Yes, you can. You assign two numbers to 
each machine, and you let each machine find the largest value among those assigned to that machine. The 
problem you need to solve at this point is how to compare the 20 values assigned to the 10 machines to find 
the largest among them all (also in parallel, of course). Also, you want to avoid every machine sending its 
value to all the other machines. Toward this end, you can organize the computation in a tree:

	 1.	 Machine 1 sends its value to machine 0, which compares the two values and 
saves the largest. Machine 3 sends its value to machine 2, which compares 
the two values and saves the largest, and so on. Note that this step happens in 
parallel. You now have five machines with five values that need to be compared.

	 2.	 Again, you organize the process hierarchically. So, machine 2 sends its value 
to machine 0, which compares the two values and picks the largest, machine 6 
sends its value to machine 4, which compares the results and picks the largest, 
and machine 8, which is alone, sends its value to machine 4 as well (which 
clearly has to compare three values this round).

	 3.	 You have one step to go: machine 4 sends its value to machine 0, which compares 
the two remaining values and picks the overall largest value.

Figure 3-18 presents this computation.

Figure 3-18.  The organization of a parallel MaxValue computation across ten machines
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This is one way of organizing a computation hierarchically to compute a problem in parallel. Not all 
problems need to be organized hierarchically, hence having all the machines busy only during the first 
step, but this example is simple enough to serve the purpose. Other algorithms would have each machine 
compute its part of the subproblem and communicate the result to some other machine. The BSP model 
generalizes these approaches in an abstract machine to compute parallel algorithms.

According to BSP, you have n processing units, which can communicate through a medium such as a 
network or a bus. You divide the input across the processing units, and you let each processing unit compute 
its intermediate solution to its subproblem locally. When the processing units have finished, they exchange 
the intermediate results according to the semantics of the algorithms. When a processing unit has finished 
computing its subproblem and sending its intermediate results, it waits for the others to finish as well. When 
all processing units have finished, they go on with the next iteration, computing their subproblem based on 
their previously computed state and the messages they have received. Each iteration is called a superstep, 
and the waiting phase is called the synchronization barrier—in Giraph, many concepts are borrowed from 
the BSP model. Figure 3-19 illustrates the conceptual organization of the BSP model.

At this point, you should have noticed the matching between the BSP model and the Giraph model 
presented in this chapter. The graph is split across the processing units, and the intermediate results 
exchanged during the communication phase are the messages produced by the assigned vertices. Each 
processing unit keeps its local state in memory, represented by the assigned vertices with their values and 
the messages to be processed. Figure 3-20 shows the mapping between the BSP model and the Giraph 
model.

Figure 3-19.  The organization of a BSP computation across five processing units
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As mentioned earlier, it is not necessary to think about a BSP machine when designing graph 
algorithms. Giraph builds on top of it so you can forget the underlying abstraction. Still, it can help 
you understand how Giraph was designed for iterative computations that are executed in a parallel, 
distributed system.

Summary
Designing and executing graph algorithms and a system to process them at scale is difficult. Giraph provides 
an intuitive programming paradigm that simplifies writing scalable graph algorithms, hiding the complexity 
of parallel, distributed systems. In this chapter, you learned the following:

•	 In graph algorithms, the computation of each vertex frequently depends on the 
computation of vertices nearby. For this reason, graph algorithms are often iterative.

•	 A platform for the processing of graph algorithms must support fast, iterative 
computations and possibly hide the complexity of distributed, concurrent 
programming.

•	 Giraph provides a simple vertex-centric API that requires you to “think like a vertex” 
that can exchange messages with other vertices.

•	 You can combine messages to minimize the number of messages transmitted 
between supersteps.

Figure 3-20.  The mapping of the BSP model to Giraph
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•	 You can use aggregators to compute aggregation functions across the values of the 
graph vertices. Aggregators are very scalable in Giraph.

•	 Computing vertex degrees and converting graphs from directed to undirected 
requires only a few lines of code in Giraph.

•	 The bulk synchronous parallel model defines parallel computations executed across 
a number of processing units. Giraph builds on top of this abstraction.

You have seen how to fit Giraph into a system architecture and how to program Giraph. You are now 
ready to look at more examples of algorithms and how to implement them in Giraph. The next chapter is 
dedicated to writing scalable graph algorithms with the Giraph programming model; toward this end, it 
presents the implementation of some of the algorithms from in Chapter 2.

http://dx.doi.org/10.1007/978-1-4842-1251-6_2
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Chapter 4

Giraph Algorithmic Building Blocks

This chapter covers

•	 Principles and patterns behind scalable graph algorithms

•	 Graph connectivity, paths, and connected components

•	 Ranking vertices with PageRank

•	 Predicting ratings for user-item recommendations

•	 Identifying communities with label propagation

•	 Graph types and how to characterize them

This chapter focuses on algorithmic building blocks for graph algorithms, with a particular emphasis 
on their scalability. Graph problems are commonly solved in Giraph using a number of patterns. Due to 
Giraph’s vertex-centric paradigm based on message-passing, patterns use a type of value propagation. The 
chapter presents the general pattern and looks at a number of typical problems that can be solved with this 
pattern, such as finding paths, ranking vertices, identifying components and communities, and predicting 
ratings. You also look at different types of graphs and how they can be characterized by some of the 
algorithms described in this chapter.

Designing Graph Algorithms That Scale
In the previous chapter, you saw that Giraph provides a programming model that lets you express graph 
algorithms through a simple paradigm. Vertices have values and can exchange data through messages in 
a number of iterations. Under the hood, the system takes care of executing the algorithm in parallel in a 
distributed environment. Although more restrictive, the paradigm has been designed specifically to put 
you in a position to produce scalable algorithms. An algorithm expressed following this model is inherently 
decentralized. Each vertex makes independent decisions (such as whether and how to update its value,  
send messages, or vote to halt) based on local information, such as its current vertex value and the messages 
it has received. Because each vertex makes decisions during every iteration based on this set of its own 
data, the execution of the algorithm can be massively parallelized. In fact, the user-defined function can be 
executed independently on all vertices in parallel across the available processing units. A model based on 
message-passing avoids expensive concurrency primitives—in particular in a distributed environment—such 
as locks, semaphores, and atomic operations, which are required by a model based on shared memory.

Using a restrictive model allows you to focus on the semantics of the algorithm and ignore the  
execution model, which comes with the framework. This way, little has to be reinvented each time, and only 
problem-specific code needs to be developed. Although the process is simple, you still have to consider a 
few important decisions when designing a new algorithm. It takes some time to get acquainted with the 
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Giraph model, but once your brain clicks with the vertex-centric perspective, you’ll begin looking at graph 
problems in a totally different way.

Chapter 3 used the example of a social network in which “a person is as good as her friends.” That 
example made the point that the value of a vertex depends on the value of its neighbors; the values of the 
neighbors depend in turn on the values of their neighbors, and so on. This means to compute these values, 
information needs to be propagated through the structure of the graph, iteration after iteration. Information 
propagation is the basic and fundamental pattern behind the Giraph model. An algorithm in Giraph defines 
how information is propagated through the graph and how this information is used by each vertex to make 
independent decisions, such as whether and how to update its value. You’ll see how this pattern is used 
throughout all the algorithms presented in this chapter.

■■ Note   In Giraph, the global state of a computation is distributed across the vertex values, and it is shared 
through the messages that vertices send to each other.

According to this definition, if a vertex needs a certain piece of information owned by another vertex 
to compute its value, this piece of information must be delivered to the vertex through messages. To design 
a graph algorithm in Giraph and to build on the information-propagation pattern, you have to decide a 
number of things that define how the data associated with each vertex is initialized, accessed, exchanged,  
and updated—basically, how it is used.

In particular, you must define the following elements of the algorithm that are specific to a 
decentralized, vertex-centric approach:

•	 Independent vertex decisions: The decisions made by each vertex, such as whether it 
should send a message or vote to halt, should be based on information owned by the 
vertex itself (local), and only on that (independent/decentralized).

•	 Initialization of vertex values: Although it is obvious that vertex values need to be 
initialized correctly, value initialization is much more relevant for decentralized 
vertex-centric algorithms. Because vertices make decisions based on the current 
vertex value and the incoming messages, the path the computation takes depends on 
the initial values assigned to the vertices as much as on the graph structure.

•	 Halting condition: Vertices make decisions independently, so it is important 
to design a halting condition that is consistent, is well understood, and, most 
important, can be decided on collaboratively by the vertices.

•	 Aggregators and combiners: Sometimes global computations can simplify an 
algorithm or even be unnecessary. On these occasions, aggregators can prove very 
handy and do not undermine the scalability of an algorithm. When possible, an 
algorithm should use combiners to minimize the amount of resources—such as 
network and memory—used for messages.

The bottom line is that you should use a vertex-centric approach focusing on decentralized decisions 
based on local information, which are often more practical to parallelize.

The remainder of this chapter looks concretely at how existing algorithms define each of these points. 
The following sections have a two-fold function: they help you better understand the Giraph programming 
model and the concepts presented in this section, and they present solutions that often act as building 
blocks for more complex solutions. You may want to reuse some of the principles behind these solutions in 
your own applications.

http://dx.doi.org/10.1007/978-1-4842-1251-6_3
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Exploring Connectivity
A graph is nothing more than a bunch of vertices connected to other vertices, as you have learned. At this 
point, you consider two vertices to be connected if they are direct neighbors: if they are the two endpoints 
of a single edge. This is, however, a simplified view of the structure of a graph. Connectivity can be seen as 
a broader relationship between vertices. In fact, connectivity is a transitive relationship. In other words, if 
vertex A is connected to vertex B, and vertex B is connected to vertex C, then vertex A is connected to vertex 
C. The edge connecting A to B and the edge connecting B to C constitute a path. A path is a sequence of 
edges that connect vertices. If traversed, these edges “bring” from one vertex to another. Through paths, 
connectivity can be extended to vertices that are not neighbors; they are one of the fundamental tools to 
study the structure of a graph. This section looks at how you can compute shortest paths and use them to 
identify components in the graph that are subgraphs.

Computing Shortest Paths
Imagine that you have a social graph, and you want to find out whom you should ask to introduce you to 
tennis superstar Roger Federer. If none of your acquaintances knows Roger, chances are they may know 
somebody who knows him. Or they may know somebody who knows somebody who knows Roger, and so 
on. Basically, you are looking for a path of “friend of a friend” relationships that allows you to reach Roger. 
You are probably familiar with the theory of six degrees of separation. According to this theory, in our social 
relationships we are all separated on average by six steps. For example, each of us is on average six steps 
away from Roger Federer (or anybody else on Earth), in a long chain of “friend of a friend” relationships.

At the end of the 1960s, Stanley Milgram executed a simple experiment. He sent a letter to a number 
of randomly selected individuals in the United States; these people were called sources, and each letter 
contained the full name of a target individual (in Milgram’s experiment, living in Boston) and a roster. The 
recipient was asked whether they knew the target on a first-name basis. If that was the case, the recipient was 
asked to forward the letter directly to the target. If the recipient did not know the target, they were asked to 
forward the letter to a friend who they thought was more likely to know the target. Each recipient of the letter 
put their name on the roster, to keep track of the chain. When the letter was received by the target, the roster 
contained the entire chain of “friends of friends” connecting the initial randomly chosen source and the 
target individual. This procedure was performed for more than 600 individuals, and the result was that, for 
those letters that actually reached the target, the rosters contained on average between five and six names. 
The list of names contained in each roster was a path. Figure 4-1 illustrates the possible path of one of the 
letters; for this example, the target is Maria, and the randomly chosen source is Sam.
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In practice, what Milgram did with his experiment was to compute an approximation of the average 
path length of the social graph in the United States—and this number turned out to be about six. Often, 
multiple paths exist between two vertices, and you usually care about the shortest one. In an unweighted 
graph, the shortest path between two vertices is nothing more than the path between two vertices with the 
smallest number of edges. There are many ways to compute the distance between two vertices in a graph 
and the path with such length. Most of them can be thought of as variations of the technique used by 
Milgram in his experiment.

An algorithm to search for the shortest path(s) between two vertices—or the shortest path between a 
vertex and any other (reachable) vertex—is called a single-source shortest paths (SSSP) algorithm. A very 
intuitive and simple algorithm that can be used to this end is the so-called breadth-first search (BFS).1 
Starting from a source vertex, the algorithm visits all its neighbors. These neighbors are considered to be at 
distance 1, because they are separated from the source vertex by one edge. The next vertices to be visited are 
the neighbors of these neighbors, except those that have been already visited. These vertices are considered 
to be at distance 2 from the source, or one hop more distant than the vertices they were visited from. The 
algorithm continues like this until all vertices have been visited and all distances have been computed. 
Intuitively, the way BFS visits the vertices in a graph starting from a source vertex follows a wave-like 
pattern, just like the waves produced on a flat surface by a stone thrown into water. The paths are explored in 
breadth, all of them one hop at a time.

In the case of a weighted graph, edge weights represent distances between neighbors. Hence, the length 
of a path is computed as the sum of the weights of the edges that constitute the path. To support weights, the 
algorithm has to be slightly modified. Figure 4-2 shows the execution of SSSP on a weighted graph starting 
from the leftmost vertex, Mark. Any time vertices are visited, instead of adding one hop to the distance of 
the vertices they were visited from, the weight of the traversed edge is added. Look, for example, at how 
the distance of John is defined as the weight of the edge that connects him to Mark, and how the distance 
of Peter is this value plus the distance from John. If a vertex is visited multiple times, either in the same 
iteration or in a future one, its distance is updated only if the distance has improved. For example, notice 

Figure 4-1.  A fictitious path for one of the letters from Milgram’s experiment

1BFS is a strategy to traverse a graph that can be used for computing shortest paths but also for other operations. There 
are also other algorithms that can be used to compute shortest paths.
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how Maria decides her distance (6) based on the path that goes through Julia, because it is shorter than the 
distance that goes through Peter (8). Also, notice how Sophia updates her distance in two steps, as soon as 
the shorter distance is determined.

You can consider SSSP on an unweighted graph to be like SSSP on a weighted graph where all the edge 
weights are set to 1. In Figure 4-2, the current distance from the source is written inside each vertex, and the 
currently visited vertices are contained in the bag-like shape. Distances are initialized to infinity, except for 
the source vertex, which is initialized to 0. Initializing the distances to infinity guarantees that vertices use a 
new distance as soon as it is discovered (any distance is smaller than Infinity).

Figure 4-2.  Example of execution of SSSP on a weighted graph
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Implementing SSSP becomes very natural in the vertex-centric programming model provided by 
Giraph. First, all vertices store their distance from the source vertex in their vertex value. Edge values can 
store the edge weights. Messages can be used to propagate distances from neighbors to neighbors. Hence, 
distance is the information propagated through the graph. Listing 4-1 presents the pseudocode for this 
algorithm, and Figure 4-3 shows the flow of the computation in Giraph.

Listing 4-1.  Weighted Single Source Shortest Paths (SSSP)

function compute(vertex, messages):
  if getSuperstep() == 0:                #1
    if isSource(vertex.getId()) is True: #1
      vertex.setValue(0)                 #1
      propagateDistance(vertex)          #1
    else:                                #1
      vertex.setValue(Inf)               #1
  else:
    minDistance = min(messages)          #2
    if minDistance < vertex.getValue():  #2
      vertex.setValue(minValue)          #2
      propagateDistance(vertex)          #2
  vertex.voteToHalt()
 
function propagateDistance(vertex):
  minDistance = vertex.getValue()
  for edge in vertex.getEdges():
    endpoint = edge.getTargetVertexId()
    weight = edge.getValue()
    sendMessage(endpoint, minDistance + weight) #3

#1 Vertex distances are initialized.
#2 Vertices compute the shortest distances.
#3 Vertices propagate the distances, considering edge weights.

www.allitebooks.com
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Figure 4-3.  Example of execution of SSSP in Giraph
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According to the points outlined earlier, for the SSSP algorithm you make the following decisions:

•	 Independent vertex decisions: Each vertex computes its distance based on its current 
value and the incoming messages. It selects the smallest distance contained in the 
messages and compares that distance to the shortest distance discovered so far. The 
vertex also decides whether to send new messages depending on the outcome of this 
comparison only, hence independently.

•	 Initialization of vertex values: Each vertex makes decisions based on the comparison 
between incoming distances and its currently stored shortest distance, so you 
initialize the value of each destination vertex (thus excluding the source vertex) to 
infinity. This guarantees that as soon as the first shortest distance is discovered, the 
vertex will store this distance as its vertex value. On the other hand, the source vertex 
initializes its vertex value to 0. In this sense, the vertex-centric algorithm behaves like 
the general BFS algorithm outlined earlier.

•	 Halting condition: The algorithm halts when all shortest distances have been 
discovered. Messages are sent only when a vertex discovers a new shortest distance, 
so no messages are produced when a distance is not improved. For this reason, it 
is sufficient for each vertex to vote to halt every time after it has evaluated a set of 
messages. If new candidate distances need to be evaluated, the vertex is woken up. 
Otherwise, the vertex remains inactive while storing the shortest distance discovered 
so far. Eventually, all vertices discover their shortest distance and stop sending 
messages. This heuristic allows a fully decentralized halting condition.

•	 Aggregators and combiners: Aggregators are not necessary to compute shortest 
distances, unless general statistics need to be computed, such as the maximum 
or minimum shortest distance from the source. Instead, a combiner can play 
an important role in BFS, minimizing the number of messages that need to be 
transmitted.

Listing 4-2 shows the pseudocode for the combiner.

Listing 4-2.  MinValue combiner for Single Source Shortest Paths

function ssspCombiner(messages):
  return min(messages)

The semantics of the combiner are simple. It produces a message that contains the minimum value 
contained in the messages it combines. Basically, it corresponds to line minDistance = min(messages) in 
Listing 4-1. This correspondence allows you to use (or not use) combiners transparently, without breaking 
the semantics of the algorithm. The effect of using the combiner is that each vertex may need to evaluate 
only a subset of the original messages sent to it (from the spectrum of all the original messages down to 
a single message). In other words, line 9 will not change its functioning as a result of a combiner being 
used. The only result is that unnecessary messages are discarded early by the combiner, and you avoid 
transmitting them.

Paths are very important in the study of graph connectivity. They measure the reachability of vertices. 
In a social network scenario like Facebook, reachability helps clarify the extent to which information can 
propagate in the network, or, in other words, to what extent content can go viral via the share functionality.  
A graph is said to be connected if all the vertices in the graph are connected: if for each pair of vertices, at 
least one path connects them. Intuitively, a social graph is connected if for each person you can find a chain 
of “friend of a friend” relationships to all the others. In principle, in a connected graph, the content shared by 
a user can potentially reach any other user.
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This is no different from a more traditional question applied to computer networks: to what extent 
can computers transmit data to the other computers in a network? Computers are connected through 
routers and other networking infrastructure that allows them to communicate even if they are not directly 
connected to each other. But does the topology of the network allow any computer to exchange data with 
any other computer in the network? You can easily see that this is exactly the same as the dissemination of 
information in a social network. If you think of a computer network as a graph, the traceroute program does 
nothing more than compute a path between two computers.

Computing Connected Components
So far, you have looked mostly at connected graphs. Another related concept is that of a connected 
component. A connected component, in an undirected graph, is a connected subgraph of the graph. A graph 
can be composed of multiple subgraphs. Think of a social network composed of two groups of friends, where 
none of the individuals in the first group know any of the second (and vice versa, of course). Each of these 
groups of friends is a different component, because the members of each group are disconnected from the 
members of the other. You can think of connected components as graphs composing other graphs (hence 
the term subgraph).

For an undirected graph, the definition of a connected component is pretty straightforward. For 
directed graphs, the definition is trickier. The nature of directed graphs imposes that, for example, in a 
Twitter-like network, the existence of a path from user Mark to user Julia does not imply that the inverse 
also exists (paths depend on follower edge directions). Lady Gaga has millions of followers on Twitter, and 
if she shares content, this content may reach users very far away in the network. However, regardless of her 
millions of followers, it is less likely that content shared by the “average John” reaches Lady Gaga, because 
she probably does not follow him back.

For this reason, a directed graph can either be weakly connected or strongly connected. In the former 
case, if you substitute each directed edge with an undirected edge, you obtain a connected graph: there is a 
path that connects each pair of vertices in both directions. Note that certain vertices may be connected only 
because of the conversion to undirected; this is why the graph is considered weakly connected. In the latter 
case, a graph is already connected without the need to convert the graph. Figure 4-4 shows an example of a 
weakly connected directed graph and a strongly connected graph. To obtain the second graph, we added to 
the first a bunch of edges that help connect unreachable pairs. Weakly and strongly connected components 
are respectively weakly and strongly connected subgraphs of a graph.

Figure 4-4.  Example of a weakly connected graph and a strongly connected graph
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What makes connected components interesting is that they allow you to study the initial problem about 
dissemination of information in a social network. You can identify disconnected islands where information 
can propagate; but propagation eventually encounters a barrier that does not allow information to reach the 
rest of the graph because such a path does not exist. Many real-world graphs are characterized by multiple 
connected components, with one component comprising most of the vertices. This component is also called 
the largest connected component. This component is usually the focus of further analysis, and the remaining 
components are ignored. This filtering has two main causes. First, the smaller connected components may 
be considered noise, such as people who try Facebook once and never connect to anybody. Second, some 
algorithms assume a connected graph, and hence the largest connected component is usually selected as 
the most representative for the graph.

Computing weakly and strongly connected components in Giraph is straightforward. Let’s look at a 
approach that computes connected components in undirected graphs and weakly connected components 
in directed ones. The algorithm builds on the idea that in a connected component, information can 
propagate to all the vertices. In Giraph terms, this means if a vertex sends a message to its neighbors,  
and each neighbor forwards this message to its neighbors, the message eventually reaches all the vertices.  
In particular, if vertices have comparable IDs such that you can find the maximum or minimum one  
(for example, integers or strings), each connected component can be characterized by the maximum  
(or minimum) ID of a vertex that belongs to that component. If each vertex initially uses its ID as its value 
and sends that to its neighbors, and later the vertex assigns and propagates another ID only if it is larger 
than the currently assigned ID, eventually all vertices receive the largest ID in the component. Because 
the components are disconnected from each other, this information stays within the boundaries of each 
component, and at the end of the computation vertices belonging to different components are assigned a 
different value (the largest ID of a vertex in that component).

Listing 4-3 presents the pseudocode that implements this algorithm. For directed graphs, the graph 
must be first converted to a logically undirected graph—for example, using the algorithm presented in 
Chapter 3. Figure 4-5 shows the flow of the algorithm in Giraph.

Listing 4-3.  Weakly Connected Components (WCC)

function compute(vertex, messages):
  if getSuperstep() == 0:                             #1
    vertex.setValue(vertex.getId())                   #1
    sendMessageToAllEdges(vertex, vertex.getId())     #1
  else:
    maxID = max(messages)                             #2
    if maxID > vertex.getValue():                     #2
      vertex.setValue(maxID)                          #2
      sendMessageToAllEdges(vertex, maxID)            #2
  vertex.voteToHalt()

#1 Vertices initialize their value to their ID and propagate it.
#2 Vertices update their value, if necessary, and propagate it.

http://dx.doi.org/10.1007/978-1-4842-1251-6_3
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Figure 4-5.  Execution of the Weakly Connected Components algorithm in Giraph
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Analyzing the algorithm with respect to the points presented earlier, you can outline the following decisions:

•	 Independent vertex decisions: Each vertex computes its component ID based on its 
current value and the incoming messages. It selects the maximum ID contained in the 
messages and compares that to the current ID. It also decides whether to send new 
messages depending on the outcome of this comparison only, hence independently.

•	 Initialization of vertex values: Each vertex makes decisions based on the comparison 
between incoming IDs and its currently stored ID, so you initialize the value of a 
vertex to the vertex ID. This guarantees that as soon as a larger ID is discovered, the 
vertex stores it as its vertex value.

•	 Halting condition: The algorithm halts when the maximum ID has been propagated 
to all the vertices. Messages are sent only when a vertex discovers a new maximum 
ID, so no messages are produced when a new maximum ID is not discovered. 
For this reason, it is sufficient for each vertex to vote to halt every time after it has 
evaluated a set of messages. If new candidate IDs need to be evaluated, the vertex 
is woken up. Otherwise, the vertex remains inactive while storing the maximum ID 
discovered so far. Eventually, all vertices discover the maximum ID and stop sending 
messages. This heuristic allows a fully decentralized halting condition.

•	 Aggregators and combiners: Aggregators are not necessary to compute connected 
components. Instead, a combiner can play an important role in this algorithm, 
minimizing the number of messages that need to be transmitted.

Listing 4-4 presents the pseudocode for the combiner.

Listing 4-4.  MaxValue combiner for the Weakly Connected Component Algorithm

function weaklyConnectedComponentsCombiner(messages):
  return max(messages)

The semantics of the combiner are simple. It produces a message that contains the maximum value 
contained in the messages it combines. Basically, it corresponds to line maxID = max(messages) in  
Listing 4-2. Again, this correspondence allows you to use (or not use) combiners transparently, without 
breaking the semantics of the algorithm. As with BFS, the effect of using the combiner is that each vertex 
may need to evaluate only a subset of the original messages sent to it (from the spectrum of all the original 
messages down to a single message).

POPULAR DISTANCE-BASED GRAPH METRICS

SSSP and WCC are just two examples of algorithms that can be used to explore graph connectivity. Many 
metrics that are used to study graphs are based on paths and distances. Here are some of these metrics:

•	 Eccentricity : The distance between that vertex and the furthest vertex. In other words, 
the largest distance between that vertex and any other vertex. Eccentricity is a metric 
used by the following metrics.

•	 Diameter : The largest eccentricity of any vertex in the graph. The diameter is the 
longest shortest path in the graph. It can also define the maximum number of iterations 
needed for an algorithm to complete. For example, computing SSSP will not take more 
iterations than the length of the diameter of the graph (because it is the longest of the 
shortest paths to be discovered).
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•	 Radius : The smallest eccentricity of any vertex in the graph. It represents the shortest, 
among the longest shortest paths for any vertex. The radius gives a minimum number 
of iterations used by SSSP to complete. This the case when you compute SSSP starting 
from the center of the graph.

•	 Center : Any vertex whose eccentricity equals the radius of the graph. The center of the 
graph are vertices that can reach any other vertex with few steps. These are central 
vertices to the graph because they can connect other vertices and shorten their paths. 
The information starting from these vertices can quickly reach any other vertex.

•	 Peripheral : Any vertex whose eccentricity equals the diameter of the graph. As 
opposed to the center of the graph, peripheral vertices need more steps to spread their 
information. To reach the furthest of the reachable vertices, a peripheral vertex requires 
a number of steps equal to the diameter.

Centrality measures are also interesting ways to study a graph. Like the metrics just listed, they are 
based on paths and distances between vertices. Unfortunately, a thorough presentation of all the 
metrics goes beyond what this book can cover; you can learn more at the related Wikipedia pages,  
such as http://en.wikipedia.org/wiki/Centrality and http://en.wikipedia.org/wiki/
Distance_(graph_theory).

You now understand how to compute paths and use them to measure different characteristics of a 
graph. Let’s move on to see how to rank vertices according to their importance in the graph.

Ranking Important Vertices with PageRank
A graph can have many vertices, but are they are equally important? Are all web pages equally important? 
Are all Twitter users equally important? Can you define a notion of importance in a graph? Important in this 
context is by no means a correct term, but it can often be useful to define metrics to rank vertices. Some of 
these metrics are domain-dependent, capturing the definition that is relevant for a particular problem—for 
example, by counting the number of Olympic medals as a way to rank athletes. Others look solely at the 
structure of the graph, trying to capture a more general picture. An example of such an algorithm to rank 
vertices in a graph is PageRank. As you saw in Chapter 2, PageRank was designed by Brin and Page at Google 
to identify important web pages and rank them in search results. You have also seen that PageRank is a graph 
algorithm that looks at the Web as a graph, with pages being vertices and hyperlinks being edges.

This section looks at how PageRank works and how to implement it in Giraph. There is some math 
involved, but we break it down and show you how it is translated into actual code, so you don’t need to 
remember it after you understand the underlying idea. First you look at the general model of travelling 
through a graph. Then you use this model to define the ranking of vertices through PageRank. After the 
basics are set, you learn how to implement PageRank in Giraph.

Ranking Web Pages
Although it was initially applied to the Web, PageRank can be applied to many other scenarios. To see how 
it works, let’s look at the Web as an example. Imagine that you were to open your browser and point it to a 
random URL (assuming you could pick a valid URL at random). You would then click a random link on the 
page and jump to that page. You would follow this procedure forever: an infinitely long sequence of random 
clicks from page to page. The question is, would you end up on certain pages more often than on others? 
After all, if a page is important on the Web, there should be many links pointing to that page. More links 

http://en.wikipedia.org/wiki/Centrality
http://en.wikipedia.org/wiki/Distance_(graph_theory)
http://en.wikipedia.org/wiki/Distance_(graph_theory)
http://dx.doi.org/10.1007/978-1-4842-1251-6_2
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means more probability of clicking such links and more probability of ending up on certain pages. Moreover, 
it should be safe to assume that important pages often contain links to other important pages. This increases 
the likelihood of clicking a link to an important page. Figure 4-6 shows an example of a web graph where 
vertices have been ranked with PageRank; the vertex size reflects the PageRank.

Figure 4-6.  A web graph where a page is represented by a vertex whose size depends on its PageRank

This is the model of the so-called random surfer. The model can be extended with teleportation: the 
random surfer sometimes jumps to a new random page, without following a link. This is a realistic scenario, 
if you think about it—you sometimes open a new tab and start surfing the Web from another page, either 
because you are interested in something new, or because the last page contained no links. Intuitively, 
performing random surfing on the Web for a long time, and counting the number of times you end up on 
each page, should give you a pretty good idea of how important pages are and let you rank them accordingly.

PageRank

The idea of infinitely surfing the Web is the idea behind PageRank. This concept is expressed formally like this:

Don’t be scared by the math, and bear with us for a moment. What this formula says is as simple as the 
following. The PageRank of a page is the sum of two components: the probability of landing on that page due 
to chance, and the probably of arriving there from another page. The dumping factor d allows you to control, 
as a weight, how much emphasis you want to give the first and the second components. The first component 
is obtained by dividing 1 by the total number of pages in the graph and is hence a uniform distribution. The 
second component is obtained by summing the partial PageRanks coming from the pages that have a link to 
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the page for which you are computing the PageRank. The partial PageRank of a page is its PageRank divided 
by the number of links appearing on that page. It’s as simple as that!

One thing to notice in the definition of the PageRank is that it is recursive. The PageRank of each page 
depends on the PageRank of the incoming neighbors. How can you then compute the PageRank values? 
Every vertex PageRank depends on that of its neighbors. You need a starting point. Well, you can assign 
an initial value to each page and then iteratively compute the new PageRank value for each page with the 
formula. Although each vertex starts with the same initial value—typically 1 divided by the number of 
vertices in the graph—to mimic the initial random choice of page to start the random surf, iteration after 
iteration certain pages collect a higher PageRank due to the underlying structure of the graph. After some 
iterations, the PageRank values converge to stability, meaning the values change only slightly between the 
previous value and the next one. The pseudocode for PageRank is presented in Listing 4-5. Figure 4-7 shows 
the flow of the algorithm in Giraph when using a dumping factor of 0.85.

Listing 4-5.  PageRank

function compute(vertex, messages):
  if getSuperstep() == 0:
    vertex.setValue(1 / getTotalNumVertices())        #1
  else:
    prSum = sum(messages)                             #2
    pr = (1 - D) / getTotalNumVertices() + D * prSum  #3
    vertex.setValue(pr)
  msg = vertex.getValue() / vertex.getNumEdges()      #4
  sendMessageToAllEdges(vertex, msg)
  if getSuperstep() == NUMBER_OF_ITERATIONS:
    vertex.voteToHalt()

#1 Initialization of the vertex value
#2 The sum of the partial PageRank values
#3 Computation of PageRank following the formula
#4 Current partial PageRank value to be sent
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Figure 4-7.  Three iterations of PageRank in Giraph
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Analyzing the algorithm with respect to the points presented at the beginning of the chapter, you can 
outline the following decisions:

•	 Independent vertex decisions: Each vertex computes its PageRank based on 
the incoming messages and the number of vertices (and the constant d). The 
computation is thus completely independent for each vertex.

•	 Initialization of vertex values: Each vertex is initialized based on the number of 
vertices in the graph. This value is used to compute the first iteration.

•	 Halting condition: Ideallys the algorithm would complete at convergence. Because 
convergence is reached only asymptotically, PageRank is usually computed for 
a fixed number of iterations (often fewer than 10 to 15 iterations). The halting 
condition is based on this number. An alternative approach requires you to compute 
how much the PageRank values of the vertices have changed between two iterations 
and use a threshold to decide to halt the computation.

•	 Aggregators and combiners: An aggregator could be used to implement the second 
halting condition just mentioned. This would require having an aggregator collect 
the PageRank values between two iterations to perform the thresholding. A 
combiner can also play an important role in this algorithm, minimizing the number 
of messages that need to be transmitted.

Listing 4-6 shows the pseudocode for the combiner.

Listing 4-6.  SumValues PageRank Combiner

function pageRankCombiner(messages):
  return sum(messages)

The combiner sums the values sent to a particular vertex; its semantics correspond to the line  
prSum = sum(messages) from Listing 4-5. Being the sum of an associative operation and a commutative 
operation, the combiner works transparently to the normal execution of the algorithm.

PageRank, with its model of the random surfer (or random walker), has been used for a number of 
applications in addition to ranking web pages. For this reason, understanding this algorithm and how to 
implement it in Giraph may prove useful to you; you may find an application or adaptation that can help 
you with a problem. This example is more than just the implementation of the PageRank algorithm; it shows 
a pattern in the design of an algorithm in Giraph. In particular, the algorithm implements a (stationary) 
iterative method that can be used to compute an approximate solution to a system by iteratively improving 
the solution until convergence. In this case, the vertex values represent the variables of the system 
represented by the graph and the PageRank formula. The algorithm discussed in the next section is similar 
in this respect.

Predicting Ratings to Compute Recommendations
Chapter 2 presented a use-case scenario that used a graph to model the relationships between users and 
items rated by those users. You saw a high-level way to build a recommender system on top of such a graph. 
This section presents an algorithm that follows the collaborative filtering (CF) approach to predict the ratings 
a user will give unrated items, based on the user’s past ratings. You first learn how to model users, items, 
and ratings as a graph, and then you see the design of an algorithm in Giraph to predict ratings. This section 
contains some math, but it’s broken down for you, and you see how to implement it in the code. You do not 
have to remember the precise mathematical formulation—just the idea behind it.

http://dx.doi.org/10.1007/978-1-4842-1251-6_2
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Modeling Ratings with Graphs and Latent Vectors
Think of all the sites where users can rate items like movies, books, and so on using, for example, stars on a 
scale from 1 to 5. An interesting question is whether you can predict, based on past ratings only, the ratings 
a user will give unrated items. If you can, then you can recommend to each user items with the highest 
predicted ratings. Many techniques try to achieve this goal, and discussing their differences goes beyond 
the scope of this book. This section examines the stochastic gradient descent (SGD) algorithm and how to 
implement it in Giraph. You learn how this algorithm requires minimal modification to implement another 
popular algorithm in this class: the alternating least squares (ALS) algorithm.

Figure 4-8 shows a conceptual version of a ratings database. Each column represents a user, and each 
row represents an item. Hence, each cell contains a user’s rating for an item. A question mark appears in 
each cell where no rating was provided; these are the ratings you want to predict. The basic assumption is 
that a user has assigned ratings based on a profile that describes the user’s taste. The other assumption is 
that the same kind of profile can be used to describe the items. Conceptually, you can think of this profiling 
data as a vector of variables, where each element of the vector represents a dimension of a profile space. 
You can think of each dimension as something like a genre or other feature describing the user/item 
space, but in practice this space is abstract and cannot be mapped to a human-friendly representation of 
particular genres or features. The elements of the vectors represent variables that are not directly observed 
by the system about the user’s taste or the item. For this reason, they are usually called latent variables, and 
the vector is called the latent vector of a user and of an item. Figure 4-9 shows such a project space of two 
dimensions, where items and users that are close together have similar latent vectors.

Figure 4-8.  An example of a database of ratings. A question mark (?) indicates ratings that you want to predict
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■■ Definition T he dot product between vector [1, 2, 3] and vector [4, 5, 6] is the sum of the products of the 
corresponding elements: (1 * 4) + (2 * 5) + (3 * 6) = 32.

The interesting thing about these latent vectors is that if you compute a dot product between the latent 
vector of a user and the latent vector of an item, you can interpret the result as a prediction of a rating that 
the user would give to that particular item. The extent to which this prediction will be correct depends on 
the values that compose the vectors. With your algorithm, you want to find for each user and each item the 
latent vectors that will produce the most accurate predictions of ratings. But how can you do that? You can 
use the ratings you know already. To start, you initialize the latent variables of each user and item at random, 
and you compute the predicted rating for each user-item pair for which you know the correct rating. You 
can then compare the predictions with the known ratings, and you can try to update the latent variables to 
minimize the error. In principle, if you can get your set of variables to predict correctly the past ratings, they 
should be able to predict the future ones correctly. In other words, you want to train your system, and you 
want to use the known ratings as a training set.

Minimizing Prediction Error
The question now is, how do you modify the latent variables to minimize the prediction error? In the 
answer to this question lies the difference between SGD and ALS (and other optimization methods of this 
kind). First, the procedure is the same from the perspective of both a user and an item. The principle is 
that for a given user and their latent vector, you take the latent vectors of the items that user has rated, and 
you compute the predicted ratings for those items through a dot product. Conversely, for a given item and 
its latent vector, you take the latent vectors of the users who have rated that item, and you compute the 

Figure 4-9.  An example of a two-dimensional space of features of latent vectors. Users and items that are close 
together should have a respectively high predicted rating
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predicted ratings of those users to that item through a dot product. You then modify the latent variables 
accordingly to minimize this error. Before digging in to how you perform this in parallel in Giraph, let’s look 
at the update function that modifies the latent variables to minimize the prediction error.

According to SGD, the update function of a latent vector for a user, given another latent vector of an 
item and the prediction error, can be used like this:

This formula gives you a new latent vector that produces a more accurate prediction. Keep in mind that 
the same formula can be used to compute the new latent vector for an item, given the latent vector of a user 
and the prediction error. Alpha represents the learning rate and can be used to speed up convergence at the 
cost of suboptimal convergence, and lambda is the regularization constant that is used to avoid over-fitting 
to the training data and improve prediction accuracy. As mentioned, the error can be computed via the dot 
product between the two vectors.

To this point, the update to a user latent vector or item latent vector has been a one-time operation. 
Chapter 2 introduced the concept of a bipartite graph: a graph that has two types of vertices, with the 
vertices of the first type connected only to the vertices of the second type, and vice versa. In this case, one 
type is users and the other type is items. You connect two vertices of different types with an edge if a rating 
was issued. The edge weight is used to store the rating. You keep the edge logically undirected by having two 
specular edges, one for each direction. Now comes the tricky part: you organize the computation so that at a 
given iteration, only one class of vertices is updated. During an iteration, you let only the vertices of one type 
execute their update function; during the following iteration, you let only the second type of vertices execute 
it. You continue like this, alternating which vertex type is updated during each iteration. For example, during 
an iteration, you let only users update their latent vectors based on the latent vectors of the items, and during 
the following iteration you let only the items update their latent vectors based on the latent vectors of the 
users (computed during the previous iteration). You divide the iterations according to their number and let 
one type of vertex execute during odd iterations and the other during even iterations.

This mechanism allows you to update the latent vectors of the users based on the freshly computed 
latent vectors of the items, and vice versa. This creates a “ping pong” computation, where a group of vertices 
updates their values based on the values of the other group. This computation continues for a number of 
iterations or until the latent vectors converge to a stable state: that is, they do not change more than a certain 
threshold between two iterations. Letting both types of vertices update their latent vectors during the same 
iteration would yield inaccurate results.

It is important to understand what is happening in the graph during the computation. You can see 
from the formula that the latent vectors are recursively interleaved. The latent vector of a user is updated 
based on the latent vectors of the items the user has rated, and these items’ latent vectors are updated as 
well, based on the other users who have rated them. And these users may have rated different items whose 
latent vectors have been influenced by yet another set of users. The latent vectors are influenced not only by 
direct neighbors but also throughout the entire graph, iteration after iteration. In practice, the user vertices 
act as bridges between the item vertices (because users are not directly connected), and vice versa. The 
computation of the latent vectors of each vertex in the graph is in the end influenced by the latent vectors of 
all the other vertices.

http://dx.doi.org/10.1007/978-1-4842-1251-6_2
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In the Giraph model, SGD is implemented following this pattern. At each superstep, only one of the two 
types of vertices is active and able to update the latent vectors; the other type is inactive. The latent vectors 
from the neighbors used to update a single latent vector are transmitted from each vertex to its neighbors 
through messages. Edge values are used to store the ratings.

Listing 4-7 presents the code for SGD, and Figure 4-10 shows the computation of the algorithm in 
Giraph. In particular, note in the figure how only one type of vertex is active at each iteration.

Listing 4-7.  Stochastic Gradient Descent (SGD)

function compute(vertex, messages):
  if getSuperstep() == 0:
    value = generateRandomLatentVector()                 #1
    vertex.setValue(value)                               #1
    if vertexType(vertex.getId()) == getSuperstep() % 2: #2
      propagateValue(vertex, value)
  elif getSuperstep() < NUMBER_OF_ITERATIONS:
    errorRMSE = 0
    for message in messages:
      rating = vertex.getEdgeValue(message.getSourceId())
      msgValue = message.getValue()
      oldValue = vertex.getValue()
      newValue = computeValue(oldValue, msgValue, rating)  #3
      error = computeError(newValue, msgValue, rating)     #4
      vertex.setValue(newValue)
      errorRMSE += pow(error, 2)
    aggregate(errorRMSE)                                   #5
    propagateValue(vertex, vertex.getValue())
  vertex.voteToHalt()
 
function computeError(value, msgValue, rating):
  prediction = value · msgValue                            #6
  return max(min(prediction, 5), 1) – rating
 
function computeValue(value, msgValue, rating):
  error = computeError(value, msgValue, rating)
  return value - ALPHA * (LAMBDA * value - error * msgValue) #7
 
function propagateValue(vertex, value):
  message = Message(vertex.getId(), value)
  sendMessageToAllEdges(vertex, message)

#1 Latent vectors are initialized at random.
#2 You divide the vertices according to their type.
#3 Compute the new latent vector.
#4 Compute the error with the new latent vector.
#5 Aggregate the error.
#6 Use a dot product to compute the prediction error.
#7 This is the actual SGD formula in the code.
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Note that the operations on the vectors are actually vector operations, so you have to implement the 
dot and scalar products yourself. Also, this code assumes that given a vertex ID, you can identify the type of 
vertex (user or item)—for example, via a prefix in the ID. This is what vertexType() does: it returns a value 
of 0 or 1 depending on the type of vertex. The code assumes a class called Message that is a wrapper for the 

Figure 4-10.  The flow of the computation of SGD in Giraph
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normal message and also stores the ID of the sender vertex, because you need to identify in which edge to 
store the respective latent vector.

Analyzing the algorithm with respect to the points presented at the beginning of the chapter, you can 
outline the following decisions:

•	 Independent vertex decisions: Each vertex updates its latent vector based on the 
incoming latent vectors and its current latent vector. This way, each vertex can 
independently compute its latent vector in parallel.

•	 Initialization of vertex values: Each latent vector is initialized randomly during the 
first superstep so that during the following ones, the compute() method can update 
them according to the SGD formula.

•	 Halting condition: Ideally, the algorithm would complete at convergence. Because a 
convergence is reached only asymptotically, usually SGD is computed for a number 
of iterations. The halting condition is based on this number. An alternative approach 
requires computing how much the overall mean prediction error has been improved 
between two iterations. When this error is not improved overall a certain threshold, 
the computation can halt.

•	 Aggregators and combiners: An aggregator could be used to implement the second 
halting condition mentioned. This would require having an aggregator collect the 
RMSE values between two iterations to perform the thresholding. Combiners have 
no use in this application, because you need to keep the latent vectors distinct to 
compute the SGD formula.

Listing 4-8 shows the pseudocode for the aggregate() method for the aggregator used in SGD.

Listing 4-8.  SGDAggregator

function aggregate(value):
  setAggregatedValue(getAggregatedValue() + value)

The aggregator is initialized to 0 at the beginning of each superstep, and it sums the values sent by 
each vertex. At the end of the computation, the aggregator will contain the sum of all the errors at the 
last superstep. By dividing this value by the number of ratings, you can compute the average error. This 
aggregator is just summing values, so there is nothing specific to SGD; it is usually called SumAggregator, 
which can be used as is in different algorithms.

Keep in mind that this algorithm only computes the latent vectors. The latent vectors are then used by 
another application to compute recommendations. The naive approach would be to perform a dot product 
between each user and all the items that user has not rated yet, and select the top-K. With millions of users 
and items, this approach most likely is not feasible. Instead, you can use the topology of the graph and 
compute predictions only between a user and the items that have been rated by other users who have some 
ratings in common with that user.

Another interesting aspect of this algorithm is that with a little modification, you can also implement 
another recommendation algorithm such as ALS. The only part you need to modify is the logic behind 
computeValue(), which is responsible for the method-specific math.

Now that you have learned how to rank vertices in a graph, you are ready to move to the next problem: 
how to identify communities in a social network. The next section presents a very popular algorithm called 
label propagation.
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Identifying Communities with Label Propagation
Social networks often share properties in their graphs. Look, for example, at Figure 4-11, which shows 
a social network of individuals. It is a simplified example, and the structure is overemphasized, but it 
should make the point. What do you see in this figure? The graph is divided in communities, or clusters. 
Communities are groups of vertices that tend to be connected to each other more than they are connected to 
vertices outside the community. Two good friends tend to have many friends in common—not all of them, 
but many. And these friends they have in common also tend to be friends with each other—again, not all 
of them, but this is the characteristic of groups of friends (and other groups, such as colleagues). In graph 
terms, vertices that are embedded in a community tend to have a high clustering coefficient, which measures 
the extent to which the neighbors of a vertex are also connected with each other.

Figure 4-11.  Example of a community structure in a graph

Identifying communities is an interesting problem that may yield useful information. For instance,  
you could recommend other users to connect to. Another option is to use the identified community 
structure to study other dimensions, perhaps for analytics. Does information exit the boundaries of 
communities (such as shared pictures or posts)? Do people who belong to the same community share 
characteristics such as age, hobbies, or type of work?

The basic idea of identifying communities is to assign labels to vertices, where each label represents 
a community. Typically, community-detection algorithms do not require specifying the number of 
communities in advance, as clustering algorithms tend to require (for example, k-means). The idea is that 
you should find those that are in the graph (you do not know how many). Keep in mind that in the real 
world, individuals belong to multiple communities at the same time: they have different groups of friends, 
co-workers, family, and so on. Algorithms that assign multiple labels (multiple communities) to vertices are 
also said to identify overlapping communities. This section, however, focuses on a simple algorithm called 
the label propagation algorithm (LPA) that does not detect overlapping communities, but that can be (and 
has been) adapted to accomplish that goal.

How do you assign labels to vertices? Well, the idea is simple and the intuitions behind it are as  
follows. First, at the end of the computation, each vertex in the same community should have the same label. 
If two vertices belong to the same community, then this should be reflected by the fact that they have the 
same label. Second, a vertex should have the same label as its neighbors, or at least most of them (remember 
that a user might have friends who belong to a different community, whose members are closer friends with 
that user).
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The algorithm works as follows. Each vertex has a label, initially its own ID, that it sends to its direct 
neighbors through messages. The simple heuristic that each vertex applies is to acquire the label that is 
occurring most frequently among its neighbors, breaking ties randomly (that is, if two labels occur most 
frequently across neighbors and have the same frequency, choose randomly). When a vertex acquires a new 
label, it sends the label to its neighbors. This is why the algorithm is called the label propagation algorithm. 
For example, Lady Gaga initially propagates the string “Lady Gaga”, which is her ID. At each iteration, each 
vertex acquires a new label if it finds a label that occurs more frequently across its neighbors than its current 
one. In the case of Lady Gaga, after some iterations, the label appears more frequently in the neighborhood 
of her fans should be “Lady Gaga”. In that case, the vertex propagates the label to its neighbors through a 
message. The algorithm halts when no vertex changes label. At the end of the computation, each vertex 
holds the label representing its community. This label corresponds to the ID of a vertex in its community—a 
vertex that is more “central” to the community it represents (in this example, “Lady Gaga”).

The algorithm is as simple as that. At the first iteration, there are as many labels as vertices. When each 
vertex receives IDs from its neighbors (with each label occurring exactly once), it must choose randomly 
among them. IDs of vertices with many outgoing edges are more likely to be chosen by the random tie-
breaking heuristic. In the following iteration, more vertices in the neighborhoods of these vertices have 
that same label, hence increasing the likelihood of that label being assigned to more vertices. Iteration after 
iteration, labels spread in the neighborhoods and compete with each other, until a point of equilibrium is 
reached and no more label changes occur. How and when this point of equilibrium is reached depends on 
the topology of the graph and on its community structure.

■■ Warning R unning LPA in a synchronous system like Giraph requires some ad hoc arrangements, because it 
can result in unstable states in which the algorithm oscillates between two or more solutions and never halts.

To run LPA in Giraph, you must modify the algorithm slightly. The reason is that LPA does not play 
well with synchronous systems like Giraph. Running LPA in synchronous systems can cause unstable 
states where some vertices keep oscillating between two or more labels, avoiding convergence. Consider 
this simple example. Imagine a graph with two vertices A and B, connected only to each other. At the first 
superstep, vertex A receives label B and vertex B receives label A. At this point, each vertex decides to acquire 
the received label, because it is the one occurring most frequently across their neighbors, and each vertex 
sends its label again through a message. At the next superstep, the same situation occurs, but with inverse 
labels. The problem is that the algorithm continues, with the two vertices trying to “catch” each other 
forever. This happens not only with the trivial case of two vertices connected by one edge, but also with 
more complex topologies. The good news is that this can be fixed. First you need to ensure that a vertex has 
a deterministic way to break ties—for example, by acquiring the smallest label between the (equally) most 
frequently occurring labels. Second, a vertex needs to avoid re-acquiring the label it had before the current 
label. This guarantees that vertices will reach a non-oscillating state.

Listing 4-9 presents the pseudocode of LPA. LPA works best on undirected graphs, so you assume the 
graph has been converted to a logically undirected graph. Figure 4-12 shows the flow of LPA in Giraph. Note 
that for the sake of presentation, the figure shows the flow of the algorithm without the ad hoc modifications 
to work in Giraph. The code uses an LPAValue object as a vertex value that contains both current and previous 
values, to allow you to implement the technique mentioned to guarantee convergence. Also, note that you 
store labels in edge values. This is because vertices send new labels only when they change. When a vertex 
computes label frequencies, it needs the labels of all the neighbors, including labels sent a few supersteps 
earlier. This is why you store labels in the corresponding edge. This comes in handy because labels are easily 
serialized for checkpointing by Giraph, and you don’t need additional data structures for labels.
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Listing 4-9.  Label Propagation Algorithm (LPA)

function compute(vertex, messages):
  if getSuperstep() == 0:                                       #1
    vertex.setValue(LPAValue(vertex.getId(), vertex.getId()))   #1
    propagateValue(vertex, vertex.getId())                      #1
  else:
    for message in messages:                                    #2
      label = message.getValue()                                #2
      source = message.getSourceId()                            #2
      vertex.setEdgeValue(source, label)                        #2
    labels = DefaultDictionary(0)
    for edge in vertex.getEdges():                              #3
      labels[edge.getValue()]++                                 #3
    mfLabel = computeMostFrequentLabel(labels)
    cLabel = vertex.getValue().getCurrent()
    lLabel = vertex.getValue().getLast()
    if labels[cLabel] < labels[mfLabel] and mfLabel != lLabel:  #4
      vertex.setValue(LPAValue(cLabel, mfLabel))                #4
      propagateValue(vertex, mfLabel)                           #4
  vertex.voteToHalt()
 
function computeMostFrequentValue(labels):
  maxFreq, mfLabel = -INFINITY, None
  for label, freq in labels:
    if freq > maxFreq or (freq == maxFreq and label < mfLabel): #5
      maxFreq, mfLabel = freq, label
  return mfLabel
 
function propagateValue(vertex, value):
  message = Message(vertex.getId(), value)
  sendMessageToAllEdges(vertex, message)
 
class LPAValue:
  function LPAValue(lastLabel, currentLabel):
    this.lastLabel = lastLabel
    this.currentLabel = currentLabel
  function getCurrent():
    return this.currentLabel
  function getLast():
    return this.lastLabel

#1 Vertices use their own ID as the initial label.
#2 Vertices store the new labels as edge values.
#3 Occurrences of labels are computed.
#4 The current label is updated if necessary.
#5 Find the most frequently occurring label with the smallest ID.
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Figure 4-12.  The flow of the computation of LPA in Giraph
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Analyzing the algorithm with respect to the points presented at the beginning of the chapter, you can 
outline the following decisions:

•	 Independent vertex decisions: Each vertex chooses its label according to the label 
of the neighbors and its current label. Because the neighbors’ values also depend 
on their respective neighborhood, a vertex can only consider its direct neighbors 
for its own label. Hence it has all the necessary information in these elements. The 
tie-breaking strategy is also important, because due to its deterministic nature (it is 
based on an ordering of labels), it is consistent across different vertices.

•	 Initialization of vertex values: Each vertex uses its own ID as the initial value. 
This value is by definition unique, which makes it possible to uniquely identify 
communities at the end of the computation.

•	 Halting condition: Each vertex propagates its value only when the vertex changes the 
value. The vertex votes to halt at the end of each superstep. Hence, when no vertex 
changes its label, no message is produced, and all the vertices are inactive. Because 
of the synchronous model implemented by Giraph, you have to introduce the tie-
breaking heuristic described earlier to guarantee that the job will halt.

•	 Aggregators and combiners: Combiners are not usable given the way the algorithm 
is implemented. You want to keep the messages uncombined because you need to 
keep track of senders. An aggregator could be used to keep track of the number of 
communities found and their size.

You have seen how to detect communities with an algorithm that propagates membership to 
communities following the Giraph information-propagation pattern. The algorithm is very scalable and simple 
to implement. The algorithms presented so far should give you a taste of how to design an algorithm for Giraph 
and what to pay attention to. Hopefully you’ll be inspired to get your hands dirty with the Giraph API.

By now you should understand what is relevant and what to avoid when designing an algorithm that 
scales. For convenience, the following checklist summarizes the items you should consider when designing 
an algorithm for Giraph.

GIRAPH ALGORITHM DESIGN CHECKLIST

Keep he following things in mind when you design an algorithm for Giraph. Don’t consider this a 
definitive and complete selection of items that will guarantee scalability; but this list should bootstrap 
your analysis in the right direction.

•	 The decisions a vertex makes are based on local information, such as its current vertex 
and edge values; the incoming messages; and the current superstep.

•	 A vertex sends messages mostly to known vertices, such as its neighbors, and it does 
not have to look up vertex IDs.

•	 The graph and the algorithm do not imply patterns in which vertices receive messages 
from all other vertices.

•	 The halting condition is clear and consistent.

•	 Vertex values have a well-defined initial value that is coherent with the heuristics 
applied by the vertices.

•	 If possible, messages are combined.
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•	 A vertex value’s size is not proportional to the size of the graph.

•	 The algorithm considers side cases like a vertex with no edges or only outgoing or 
incoming edges, and so on.

•	 The size of messages does not increase too much over time (for example, 
exponentially), such as when incoming messages are concatenated and propagated to 
all neighbors iteration after iteration.

•	 Although the API supports adding and removing vertices and edges, the algorithm 
should not assume that an entire graph is constructed iteration after iteration  
from scratch.

•	 Aggregators are associative and commutative functions, and they do not occupy space 
proportional to the size of the graph (such as a “fake” aggregator that stores all the 
incoming values in memory).

•	 When a received message needs to be reused, if possible store it locally instead of 
requiring it to be sent again, to save network I/O.

Characterizing Types of Graphs and Networks
Graph algorithms can be useful to build applications and run analytics on your graph. Depending on your 
business scenario, if you are modeling your data as a graph, you can find a bunch of graph algorithms that 
will prove useful to you. Some of them will probably belong to one of the classes of algorithms presented so 
far in this chapter. However, running graph algorithms on your graph can also help you better understand 
the processes or phenomena underlying your data. For example, you could study the type of social 
interactions that result in certain relationships in a social network, or the hyperlink structure of web pages.

Although all graphs consist of a number of vertices connected by edges, modeling various aspects of 
the world, the topologies of graphs modeling different data often have characteristics in common. There are 
many types of graphs, each with specific properties, many of which are common in real-world graphs—in 
particular the graphs described so far, such as social networks, the Internet, and the Web. This section presents 
a selection of the most common graph types and explains how to recognize whether a graph is of each type. 
It is very important for you to get to know your graph, and some of these algorithms are tools that allow you 
to do so.

Three characteristics are at the core of this analysis:

•	 Average path length: The average number of hops between two nodes chosen at 
random. This number is usually compared to the number of vertices in the graph.

•	 Degree distribution: The way vertex degrees are distributed across the vertices. Do 
vertices have approximately the same number of edges, or do a few have many edges 
while most of the others have a small number of edges?

•	 Clustering coefficient: The extent to which vertices are embedded in tightly 
connected clusters.

These are only some of the graph characteristics you may want to look at to identify a graph type, but 
they are usually sufficient to give you a good picture of the graph. Note that these characteristics relate 
only to the topology of the graph and do not depend on what the graph actually represents (web pages, 
individuals, users and items, and so on).
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For example, consider a graph that represents the United States’ numbered highway system. As you 
saw in Chapter 2, the road network can be modeled with a graph by using a vertex for each point where 
multiple roads can be chosen—such as a crossing, town, or city—and edges to represent the roads. If you 
look at Figure 4-13 and consider the road network as a graph, you can see that the graph has the following 
properties:

•	 All vertices tend to have a low degree. Most have five or six edges, some more, some 
fewer. This is natural, because crossings and cities are connected directly only to the 
closest neighbors.

•	 The clustering coefficient is very low, and neighbor vertices tend to share very few 
neighbors, if any.

•	 The graph has a very large average path length. If two cities are far from each other, 
such as New York and Los Angeles, the path that connects them in the graph is long.

Figure 4-13.  The United States numbered highway system

These properties are expected, because a road network resembles a grid (or lattice, or mesh).
As the name hints, a grid is a graph that, when drawn, has regular tiles, like squares. Figure 4-14 shows 

such a graph with 15 vertices. This is a very regular graph with a large average path length, which increases 
quickly as the graph grows in the number of vertices and edges. The degree distribution is very regular: the 
vast majority of the vertices have exactly four neighbors, except the vertices at the borders of the graph. The 
average clustering coefficient is zero, because vertices do not share any neighbors with their neighbors. 
This is a boring graph, and few real-world graphs have such a strict topology (although the road network in 
Figure 4-13 resembles this topology in a more relaxed way). However, as a toy graph, it serves the purpose of 
illustrating the discussion. Things get more interesting in a second.

http://dx.doi.org/10.1007/978-1-4842-1251-6_2
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Now look at the routes of domestic airlines in the United States, shown in Figure 4-15. This is a very 
different graph, although it still connects cities in the United States. First, notice how certain (few) cities 
have a very high degree, whereas most have a low degree. Those with high degree are called hub airports, 
because they can be used to connect many cities with connecting flights. In graph terms, vertices with this 
kind of role in a graph are also called hubs. This degree distribution resembles a power-law distribution. This 
kind of connectivity pattern allows an important drop in the average path length. Graphs with these type 
of connectivity are also called scale-free networks, because when you add vertices to the graph, the average 
shortest path length tends to remain low. Every city can reach any other city by passing through hubs, 
without the need to connect every city with every other city. The clustering coefficient of this graph is still 
pretty low, because airlines try to remove redundant flights that can be replaced by two connected routes 
through hubs. Of course, the flight routes do not allow all cities to be reached—only those that have a  
(large enough) airport.

Figure 4-14.  Example of a grid graph

Figure 4-15.  United States domestic flight routes

Suppose you merged the two graphs together, connecting cities through roads and airlines routes. What 
would their effect be on each other?
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Because you would be connecting cities far from each other through flight routes, you would still 
have a graph with a smaller average path length than the pure road map. Still, the average path length 
would be larger than the average path length of the airline map, because certain paths would need to be 
traversed through the road map. Also, the degree distribution of the merged graph would have a power-law 
distribution, due to the hubs. The clustering coefficient would remain low, because both graphs have a low 
clustering coefficient and you would conveniently only add long-range connections to the road map. In 
graph terms, merging the two graphs is analogous to rewiring.

Let’s go back to the lattice in Figure 4-14. Take a number of edges from this graph, and rewire them 
at random. This means you take a number of the edges (say, 18%) and reconnect one endpoint to a vertex 
chosen at random in the graph. How does this rewiring affect the three characteristics of the graph? Well, 
most important, it decreases the average path length. In the grid topology, the average path length tends 
to be large because there can be vertices that are far from each other, such as those at far left and those at 
far right in Figure 4-14. Figure 4-16 presents such a rewired graph. Rewiring vertices in the grid increases 
the chance that areas that are far from each other in the graph are connected through the rewired edge. 
Basically, these rewired edges act like bridges. Shortest paths can now traverse these bridges, with an impact 
on their length. As far as the degree distribution is concerned, because you choose endpoints at random, 
you may end up adding more edges to certain vertices than the edges you remove from those same vertices. 
Hence, their degree may change, but on average edges should still be uniformly distributed. This means you 
have a slightly different degree distribution than the deterministic distribution of the grid. In other words, 
the average vertex degree should be very similar, but this time the deviation should be larger than in the grid 
topology. For the same reason, the average clustering coefficient should be different than 0 (although still 
very small), because there is a certain likelihood that a rewired edge introduces a triangle.

Figure 4-16.  The grid and the rewired grid with 18% of edges rewired at random

To take this example to an extreme, you can generate a fully random graph, by taking the 15 vertices 
and connecting them completely at random with the same number of edges as before (continuing to 
rewire at random until you obtain a connected graph). For the same reasons discussed, this random graph, 
while having the same number of vertices and edges, has an even shorter average path length, a degree 
distribution with a similar mean but higher deviation, and a slightly higher clustering coefficient (although 
still small). Figure 4-17 shows such a graph. Grids and random graphs are not very realistic representations 
of real-world networks, but they serve to introduce the three characteristics that are commonly used to 
describe graph types.
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Figure 4-17.  A random graph can be obtained by rewiring all the edges at random

Before moving on to a realistic graph, let’s go back to the rewiring of the grid. If you used another 
rewiring strategy when rewiring a percentage of the edges, you could obtain a graph that resembles the 
graph that merges airlines map and the road map: it would have a power-law degree distribution. To obtain 
such a graph, when you choose the new endpoint of a rewired edge, instead of choosing randomly, you 
choose a vertex with a probability that is proportional to its degree. Vertices with high degree have a higher 
probability and are chosen more often. The more a vertex is chosen as the new endpoint for the rewired 
edge, the more likely it is that the next rewired edges will choose that vertex as an endpoint (due to its 
increasing degree). This process tends to make big vertices bigger. At the end of the process, you obtain a 
power-law distribution with few hubs and a long tail of vertices with low degree (this strategy is also called 
preferential attachment)—exactly like the merged graph. Figure 4-18 shows such a graph.

Figure 4-18.  A grid with 60% of the edges rewired following preferential attachment

These examples have shown the relationships between graph topology and the degree distribution, 
the clustering coefficient, and the average path length. You have also learned about hubs and the way they 
influence these metrics. Let’s now look at a final important type of graph. In the last decade, the study of 
real-world networks has shown that many of these networks have small-world properties (that in turn makes 
them small-world networks or graphs). Social graphs tend to have such properties. Think of your network of 
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friends: you tend to have friends in the region where you live (which may be the region where you also grew 
up), and many of these friends tend to be friends with each other. After all, people tend to be part of many 
communities. This means social networks tend to have a high clustering coefficient. Such a network with a 
local nature would tend to have a large average path length. However, you may also have friends who live 
far from you and who belong to very different communities. For example, you might have a friend in Japan, 
which puts you only a few hops from many Japanese people. These particular friendships act like bridges in 
the rewired grid, which significantly lowers the average path length. Finally, some people have a much larger 
network of friends than the average, perhaps because they travel a lot, or due to their job. This means social 
networks also have hubs. Summarizing, small-world networks tend to have a high clustering coefficient, 
small average path length, and a power-law degree distribution. Small-world properties are the reason 
Milgram discovered such a small average path length in a large social network like the population of the 
United States. The same sort of experiment was recently executed on the Facebook social graph, revealing a 
small average path length of four to seven! Figure 4-19 shows a graph with small-world properties.

Figure 4-19.  A graph with small-world properties

You need a better understanding of your graph in order to design, build, and master graph applications. 
If you were to build a social network such as Twitter, you would be interested in the way information (tweets) 
propagates through the followers network. In a social network with a low average path length, you know 
that only a few retweets would be necessary to reach distant areas of the graph. Moreover, a graph with a 
high clustering coefficient would increase the likelihood that information would reach a large portion of a 
community from which it started.

Graph topology has many more aspects, such as how resilient a graph is to attacks or failures, and so 
on; but network science constitutes a larger body of work than this book can present. However, with the 
tools provided in this chapter, you should be ready to start your journey toward a better understanding and 
management of your graph data.
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Summary
Modeling data as a graph is the first step toward using Giraph. The next step is to design an algorithm that 
can process it:

•	 In Giraph, algorithms build on the principle of information propagation, where the 
state of a computation is distributed across the vertex values, and vertices share it 
through messages.

•	 Paths are sequences of edges that connect vertices. SSSP is an algorithm to compute 
the distance between a source vertex and all other reachable vertices, and it fits the 
Giraph model naturally.

•	 Paths can be used to define connected components, which are subgraphs where 
each vertex can reach any other vertex. Connected components can be used to study 
how information propagates in the graph.

•	 Certain vertices are more important than others, and it is useful to identify them. 
PageRank is an algorithm that lets you rank vertices according to their importance in 
the graph.

•	 If you model users and items and their ratings as a graph, you can compute 
recommendations for users about new items through the stochastic gradient descent 
(SGD) algorithm.

•	 Graphs, and in particular social networks, can be characterized by communities 
(or clusters) where vertices are tightly connected to each other. Label propagation 
allows you to identify these communities and label each vertex with the community 
it belongs to.

•	 Different types of graphs, regardless of the data they represent, are characterized by 
particular topological properties. Using a few metrics and some graph algorithms to 
compute them, you can find out the type of a graph.

Giraph provides a programming API that helps developers design scalable graph algorithms.  
You are now ready to dig into the Giraph Java API, to implement and run algorithms on a graph with a 
Hadoop cluster.
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Chapter 5

Working with Giraph

Previous chapters introduced the generic Giraph programming model and talked about a few common use 
cases that lend themselves easily to being modeled as graph-processing applications. This chapter covers 
practical aspects of developing Giraph applications and focuses on running Giraph on top of Hadoop.

Writing a Giraph application boils down to plugging custom graph-processing logic into the Giraph 
framework. This is done by providing custom implementations of the interfaces and abstract classes 
that are later orchestrated by the Giraph BSP machinery. In this chapter, you learn how to quickly build 
graph-processing applications by extending a basic abstract class BasicComputation and providing a 
custom implementation of the compute function. This is the absolute minimum code that needs to be 
written in order to have a graph-processing application, and quite a few practical Giraph applications do 
just that; more complex ones, however, opt to use various pieces of Giraph’s framework that this chapter 
reviews in detail.

You then look into what it takes to execute a Giraph application by submitting it to Hadoop as a 
MapReduce job. Because the Giraph framework is implemented on top of Hadoop, graph-processing 
algorithms don’t care whether they are running on a single node or on a cluster of tens of thousands of 
nodes. The process of executing a Giraph application remains the same.

The rest of this chapter focuses on a single node execution via Hadoop’s local job runner. Because 
the local job runner executes jobs in a single Java virtual machine (JVM), it has the advantage of being 
extremely easy to use with common IDEs and debugging tools (the only disadvantage being that you can’t 
use a full dataset—you have to run it on a small sample of your graph data). Once you get comfortable with 
the implementation running locally, you can either go all the way to a fully distributed Hadoop cluster or 
take an intermediate step of running against a pseudo-distributed Hadoop cluster. The pseudo-distributed 
cluster gives users a chance to experience all the bits and pieces of Hadoop machinery while still running on 
a single host (they are running in different JVMs communicating over the loopback networking interface). 
Either way, the good news is that you don’t have to change anything in your implementation—you just 
need to use a different set of configuration files. If you want to find out more about all the options for using 
Hadoop, head straight to Appendix A and then come back to this chapter.

Unlike traditional graph databases, Giraph excels at turning unstructured data into graph relationships. 
This chapter looks at how to achieve this flexibility via input and output formats and how you can either use 
built-in implementations as is or extend them to let Giraph slurp data from any source and deposit it to any 
kind of sink.

Finally, you see some of the more advanced use cases for the Giraph API, such as combiners for 
messages, master compute, and aggregators. This is quite a bit of infrastructure to review in a single 
chapter—buckle up for the ride!
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“Hello World” in Giraph
Following the grand old tradition established by Brian Kernighan and his fellow C hackers at Bell Labs, your 
first Giraph application is “Hello World”: as simple an implementation as possible, which outputs a few 
text messages. One notable difference between the classic “Hello World” and a graph-processing “Hello 
World” Giraph application is the need for an input. Your Giraph application can’t function without a graph 
definition given to it; Giraph, after all, is a graph-processing framework.

For the rest of this chapter, you use the graph of Twitter followership that you saw in Chapter 3 
(alongside the pseudo-code example of computing in-out-degrees). In this section, though, you start with 
much simpler code that works on the graph. All it does is print a “Hello World” message for every vertex  
(in this case, person) and output the neighbors the vertex is connected to (those the person is following).  
To make the code as simple as possible, it uses numbers instead of people’s names. The output will 
eventually appear as follows:

Hello world from the 5 who is following: 1 2 4

All the output that you’ll see is based on the graph Figure 5-1. It’s a Twitter followership graph 
illustrating who is following whom on Twitter. Look at the node for #5. The arrows pointing toward nodes 1, 2, 
and 4 indicate that user #5 is following those other three.

Mark

Jack Julia

Natalie

Anne

John Peter

6 7

543

1 2

Figure 5-1.  Twitter followership directed graph

Defining the Twitter Followership Graph
The simplest textual representation of the graph in Figure 5-1 that your Giraph application can recognize is 
the ASCII file shown in Listing 5-1. It encodes the adjacency lists for each vertex, with each line in the input 
file formatted as follows: vertex neighbor1 neighbor2....

http://dx.doi.org/10.1007/978-1-4842-1251-6_3
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Listing 5-1.  Content of src/main/resources/1/graph.txt

1 2
2
3 1 4
4 2 7
5 1 2 4
6 3 4
7 3 5

If you’re familiar with how input data is provided to Hadoop MapReduce jobs, you see that Giraph 
follows the same approach: Giraph applications process all the files in a given subdirectory (in this case, 
src/main/resources/1) and consider them to be part of the same graph definition. You could put every 
line (defining a given vertex’s topology) into a separate file or group them in a number of files and achieve 
the same result. For example, the input shown in Listings 5-2 and 5-3 that consists of two files is considered 
identical to the input in Listing 5-1.

Listing 5-2.  Content of src/main/resources/1.1/1.txt

1 2
7 3 5

Listing 5-3.  Content of src/main/resources/1.1/2.txt

2
3 1 4
4 2 7
5 1 2 4
6 3 4

Creating Your First Graph Application
With the input data in place, let’s now turn to the Java implementation of your first “Hello World” Giraph 
application (GiraphHelloWorld.java, shown in Listing 5-4). Remember that you are trying to print as many 
lines as there are vertices in a graph, with each line reading “Hello world from the X who is following: Y Z...”.

Listing 5-4.  GiraphHelloWorld.java

import org.apache.giraph.edge.Edge;
import org.apache.giraph.GiraphRunner;
import org.apache.giraph.graph.BasicComputation;
import org.apache.giraph.graph.Vertex;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.util.ToolRunner;
 
// Giraph applications are custom classes that typically use
// BasicComputation class for all their defaults... except for
// the compute method that has to be defined
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public class GiraphHelloWorld extends
   BasicComputation<IntWritable, IntWritable,
                    NullWritable, NullWritable> {
  @Override
  public void compute(Vertex<IntWritable,
                      IntWritable, NullWritable> vertex,
                  Iterable<NullWritable> messages) {
    System.out.print("Hello world from the: " +
      vertex.getId().toString() + " who is following:");
  
    // iterating over vertex's neighbors
    for (Edge<IntWritable, NullWritable> e : vertex.getEdges()) {
      System.out.print(" " + e.getTargetVertexId());
    }
    System.out.println("");
  
    // signaling the end of the current BSP computation for the current vertex
    vertex.voteToHalt();
  }
  
  public static void main(String[] args) throws Exception {
    System.exit(ToolRunner.run(new GiraphRunner(), args));
}

Even in this trivial example, there’s quite a bit going on. You start by extending a basic abstract class for 
performing computations in Giraph’s implementation of the BSP model: BasicComputation. Immediately 
you have to specify the four type parameters that tell Giraph how to model the graph. Recall that the Giraph 
framework models every graph via a distributed data structure that is parameterized by the type of each 
vertex (VertexID), the type of label associated with each vertex (VertexData), the type of label associated 
with each edge (EdgeData), and the type of messages the BSP framework will communicate over the network 
(MessageData). Even in this simple example, you have to make choices about all four of those based on the 
representation of your input graph (integer IDs for vertices with no edge labels). Thus the type parameters 
you need to pick are IntWritable for VertexID and VertexData and NullWritable for EdgeData and 
MessageData. Once again, the choices are predetermined by the simple input format for the graph data 
you’ve settled on; they must also be compatible with an actual implementation of the vertex input format 
given to the Giraph command-line executor when a computation job is submitted to Hadoop (shown later in 
Listing 5-8). Finally, these choices mean the rest of the GiraphHelloWorld implementation expects to have 
access to the topology of the graph, with every vertex having an Integer ID and a list of edges connecting 
to other Integer IDs; but it doesn’t expect any labels to be associated with the edges and, most important, 
doesn’t send messages between the vertices of the graph (NullWritable signals the lack of data).

THE MIGHTY FOUR OF GIRAPH PROGRAMMING

Throughout Giraph, you see the following quadruple of type variables used for various generic types:

•	 VertexID is a type that can be used for referencing each vertex.

•	 VertexData is a type of a label attached to each vertex.

•	 EdgeData is a type of a label attached to each edge.

•	 MessageData is a type of message that could be sent between two vertices.
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All four types are required to extend a basic building block of the Hadoop serialization framework 
called a Writable interface. On top of that, because objects representing vertices have to be 
partitioned between different nodes in the cluster, VertexID has a stricter guarantee of extending a 
WritableComparable interface. Reusing Hadoop’s approach to object serialization means Giraph can 
use a lot of common code. Also, given that message passing between vertices residing on different 
nodes in the cluster is one of the key features of the BSP framework, the types you use must be 
extremely efficient when it comes to serialization and deserialization. In other words, they need to be 
optimized for network traffic. Fortunately, Hadoop has solved the same problem for its MapReduce 
framework by creating its own approach to serialization and deserialization built around the Writable 
interface. In any Giraph application, you can use a wide collection of Hadoop-provided classes that 
implement the Writable interface and map to all the usual data types a Java application might need 
(boolean, int, Array, Map, and so on).

Giraph expects you to implement all the computation in a method called compute() that is called 
for each vertex (at least once initially and then for as long as there are messages for it). Because you are 
extending an abstract class, you must provide a definition for compute(). This example prints a message 
with a vertex ID followed by a list of all the IDs of this vertex’s neighbors. The neighbors are determined by 
iterating over all the edges and looking up an ID of a vertex that happens to be a target of each edge. Finally, 
you call voteToHalt(), thus signaling the end of the computation for a given vertex. When all vertices call 
this method, that signals the end of the current iteration of the BSP computation (and, unless there are 
messages left, the end of the entire Giraph application run).

Finally, in case you are wondering why a main() method is defined, it is not required but is convenient 
for cases in which you want to manually execute the example without having to call the giraph command-line 
executor. One such example is given in Chapter 12, when you run Giraph applications on Amazon’s cloud.

With the Java implementation of GiraphHelloWorld in place, the only other bit of housekeeping is to 
create a project (either Maven or Ant) that helps with pulling in the right dependencies and compiling the 
example. If you decide to go with Maven, Listing 5-5 shows how your Maven pom.xml file for the project 
should look. Note that the only required dependencies are giraph-core and hadoop-core.

Listing 5-5.  Maven Project Object Model Definition: pom.xml

<?xml version="1.0" encoding="UTF-8"?>
<project>
  <modelVersion>4.0.0</modelVersion>
 
  <groupId>giraph</groupId>
  <artifactId>book-examples</artifactId>
  <version>1.0.0</version>
 
  <dependencies>
    <dependency>
      <groupId>org.apache.giraph</groupId>
      <artifactId>giraph-core</artifactId>
      <version>1.1.0</version>
    </dependency>
 
    <dependency>
      <groupId>org.apache.hadoop</groupId>
      <artifactId>hadoop-core</artifactId>

http://dx.doi.org/10.1007/978-1-4842-1251-6_12
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      <version>1.2.1</version>
    </dependency>
  </dependencies>
 
  <build>
  </build>
</project>

At this point, make sure pom.xml is at the top of the source tree and the Java implementation under  
src/main/java. This will let you easily build the project by issuing the command shown in Listing 5-6.

Listing 5-6.  Building the HelloWorld Project

$ mvn package

Once Maven is done with the build, you should see the resulting jar file appear under the target 
subdirectory. The next section explains how to use this jar to execute the GiraphHelloWorld application.

Launching Your Application
The only remaining two things you need in order to run the example are standalone installations of Hadoop 
and Giraph (Appendix A has detailed instructions for installing both). Once you have those in place, update 
your shell environment. If bash is your shell of choice, Listing 5-7 will do the job (if you are using a different 
shell, make sure to consult its documentation regarding how to export environment variables).

Listing 5-7.  Defining the Shell Environment for Giraph Execution

$ export HADOOP_HOME=<path to a root of Hadoop installation tree>
$ export GIRAPH_HOME=<path to a root of Giraph installation tree>
$ export HADOOP_CONF_DIR=$GIRAPH_HOME/conf
$ PATH=$HADOOP_HOME/bin:$GIRAPH_HOME/bin:$PATH

As long as you keep the previous environment part of your shell session, you can run the example 
Giraph application using Hadoop’s local execution mode, as shown in Listing 5-8. Note that executing 
Giraph applications results in a fairly long single command line. To fit everything on the book page, the 
single command is broken with backslash (\) characters. When typing this command line into your terminal 
window, you can either do the same (make sure the backslash is the last character on each line) or type it as 
a single line.

Listing 5-8.  Running the Giraph Application

$ giraph target/*.jar GiraphHelloWorld -vip src/main/resources/1         \
  -vif org.apache.giraph.io.formats.IntIntNullTextInputFormat            \
  -w 1 -ca giraph.SplitMasterWorker=false,giraph.logLevel=error
...
Hello world from 2 who is following:
Hello world from 1 who is following: 2
Hello world from 3 who is following: 1 4
Hello world from 4 who is following: 2 7
Hello world from 5 who is following: 1 2 4
Hello world from 6 who is following: 3 4
Hello world from 7 who is following: 3 5
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Congratulations! You’ve developed and executed your first Giraph application. Granted, it is pretty 
simple, and the output could be made better by printing the names of people instead of their numeric IDs 
(the next section deals with this), but this is a self-contained Giraph application in just under a couple of 
dozen lines of code. By the way, don’t be alarmed if you see the output lines in a slightly different order than 
they appear in Listing 5-8: the order of vertex processing in Giraph is non-deterministic, although, of course, 
all vertices are guaranteed to be processed eventually.

Let’s take one more look at Listing 5-8 and go through all the components of the command line. The 
first argument (target/*.jar) specifies the location of the jar file containing the implementation of your 
graph-processing “Hello World” application. The second argument (GiraphHelloWorld) specifies the name 
of the class with the compute method to be applied to all the vertices in the graph. The third argument (-vip) 
specifies the input path to the graph data. The fourth argument (-vif org.apache.giraph.io.formats.
IntIntNullTextInputFormat) tells the Giraph implementation what input format to use for parsing the 
Graph data. The fifth argument (-w 1) makes Giraph use only one worker to process all vertices in the 
example graph (because you are not running on a cluster, you can only use one worker). Finally, the last 
command-line argument (-ca giraph.SplitMasterWorker=false,giraph.logLevel=error) tweaks a 
few internal knobs of the Giraph implementation to allow execution with a single worker and reduce the 
verbosity level to errors only.

Although it is useful to configure Giraph application execution on the fly using the –ca command-
line option, a more practical approach is to put any reusable configuration into an XML configuration 
file. Anybody familiar with the Hadoop Configuration API will find the Giraph configuration very similar 
(internally, Giraph simply reuses Hadoop’s implementation of the Configuration API). For example, to 
create a permanent Giraph configuration for the local Hadoop execution environment, you can put the 
configuration shown in Listing 5-9 into the giraph-site.xml configuration file under $GIRAPH_HOME/conf 
folder (see Appendix A for more information on how to install and configure Giraph).

Listing 5-9.  Giraph Configuration

<configuration>
  <property>
    <name>giraph.SplitMasterWorker</name>
    <value>false</value>
  </property>
 
  <property>
    <name>giraph.logLevel</name>
    <value>error</value>
  </property>
</configuration>

With this configuration in place, you no longer have to supply the last line of the command-line options 
when executing Giraph applications.

■■ Note K eep in mind that everything you put in the static configuration file applies to all your giraph runs, so 
it’s important to keep track of the properties defined there.

Using a More Natural Definition of a Twitter Followership Graph
As mentioned before, one tiny problem with the example application is that the messages it outputs are not 
particularly descriptive. Wouldn’t it better if instead of numerical identifiers, you had the original names of 
the people, as shown next to each vertex in Figure 5-2?
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Even the definition of the graph itself looks more natural specified as shown in Listing 5-10 (the 
definition uses dummy 0s as the values for the vertex and edge labels because you are not interested in them 
for now).

Listing 5-10.  A More Natural Definition of the Twitter Followership Graph stored in src/main/
resources/2/g.txt

John 0 Peter 0
Peter 0
Mark 0 John 0 Anne 0
Anne 0 Peter 0 Julia 0
Natalie 0 John 0 Peter 0 Anne 0
Jack 0 Mark 0 Anne 0
Julia 0 Mark 0 Natalie 0

The definition of the graph looks more complete now, but the format still has a few annoying 
restrictions. Everything must be delimited by a single tab (\t) character (whitespaces won’t work), and 
dummy 0s designating vertex and label edge values need to be present even though they are not used. 
A more flexible format would be nice; but believe it or not, Giraph doesn’t support such a format out 
of the box. You have to wait until Chapter 8 to see how you can extend the built-in implementation 
of the I/O formats to tweak them to your own liking. For now, the annoying 0s will stay because 
TextDoubleDoubleAdjacencyListVertexInputFormat expects this format.

Although it is natural to assume that at this point you can simply feed this new graph definition to your 
existing Giraph application, the fact that you changed the vertex representation from integers to strings 
requires you to make a change to the type variables used in defining the compute() method and its enclosing 
class. The changes to GiraphHelloWorld are trivial; the new implementation is shown in Listing 5-11. Note 
that you use Hadoop’s Text type for string representations. This is consistent with the earlier advice to use 
Hadoop’s types to manage data in an I/O friendly way.

Mark

Jack Julia

Natalie

Anne

John Peter

6 7

543

1 2

Figure 5-2.  Twitter followership directed graph

http://dx.doi.org/10.1007/978-1-4842-1251-6_8
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Listing 5-11.  GiraphHelloWorld2.java

import org.apache.giraph.edge.Edge;
import org.apache.giraph.GiraphRunner;
import org.apache.giraph.graph.BasicComputation;
import org.apache.giraph.graph.Vertex;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.util.ToolRunner;
 
public class GiraphHelloWorld2 extends
  // note a change in type variables to match new input
  BasicComputation<Text, DoubleWritable, DoubleWritable, NullWritable> {
  @Override
  public void compute(Vertex<Text,DoubleWritable,DoubleWritable> vertex,
                      Iterable<NullWritable> messages) {
    System.out.print("Hello world from the: " +
      vertex.getId().toString() + " who is following:");
  
    for (Edge<Text, DoubleWritable> e : vertex.getEdges()) {
      System.out.print(" " + e.getTargetVertexId());
    }
    System.out.println("");
  
    vertex.voteToHalt();
  }
}

Once you rebuild the jar using the previous source code, don’t forget to also specify the new 
InputFormat on the command line, as shown in Listing 5-12.

Listing 5-12.  Running the Giraph Application with a Different InputFormat

$ giraph target/*.jar GiraphHelloWorld2  -vip src/main/resources/2 –vif           \
   org.apache.giraph.io.formats.TextDoubleDoubleAdjacencyListVertexInputFormat    \
  -w 1 -ca giraph.SplitMasterWorker=false,giraph.logLevel=error
Hello world from Julia who is following: Mark Natalie
Hello world from Natalie who is following: John Peter Anne
Hello world from Jack who is following: Mark Anne
Hello world from Anne who is following: Peter Julia
Hello world from Peter who is following:
Hello world from Mark who is following: John Anne
Hello world from John who is following: Peter

As you can see, switching between input formats was pretty easy. All you had to do was update the type 
variables in the Java implementation and specify a different input format (org.apache.giraph.io.formats.
TextDoubleDoubleAdjacencyListVertexInputFormat) in a fourth argument on the command line. The rest 
of the command line is exactly the same as Listing 5-8.

Now that you have seen the basics of Giraph applications, let’s move on to how more complex  
graph-processing algorithms are expected to use the Giraph APIs.
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Counting the Number of Twitter Connections
At this point, you should be comfortable with the basics of the Giraph framework. It is time to kick it up 
a notch and implement a few more applications. In this section, you turn pseudo-code examples from 
Chapter 3 into actual Java code that can be executed with Giraph the same way you executed the “Hello 
World” Giraph application. The first example, counting followership on Twitter, is shown in Listing 5-13.

Listing 5-13.  TwitterConnections.java

import org.apache.giraph.GiraphRunner;
import org.apache.giraph.graph.BasicComputation;
import org.apache.giraph.graph.Vertex;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.util.ToolRunner;
import org.apache.hadoop.io.Text;
 
public class TwitterConnections extends
// Note that the last type variable is no longer NullWritable.
// This is because we are going to send Text messages to vertex's
// neighbors as a way to notify target vertices that we are
// connected to them.
   BasicComputation<Text, DoubleWritable, DoubleWritable, Text> {
@Override
  public void compute(Vertex<Text, DoubleWritable, DoubleWritable> vertex,
                      Iterable<Text> messages) {
 
    if (getSuperstep() == 0) {
    // this indicates we’re in the very first superstep of BSP
    // and it is time for us to send messages that will be processed
       // in the next superstep (else clause)
      vertex.setValue(new DoubleWritable(vertex.getNumEdges()));
      sendMessageToAllEdges(vertex, new Text());
    } else {
      int inDegree = 0;
      for (Text m : messages) {
        inDegree++;
      }
      vertex.setValue(new DoubleWritable(vertex.getValue().get() +
                                         inDegree));

    }
 
    vertex.voteToHalt();
  }
}

An overall idea for the previous algorithm is to use empty messages as a way of notifying vertices 
receiving them that there’s a connection (recall that Giraph doesn’t store the set of all the vertices that 
are connected to a give vertex). You send messages during the first superstep of the BSP computation 
(getSuperstep() returning 0). Given that there are messages to be processed, the compute() method is called 
again for the next superstep. You process those messages (sent in the previous superstep) by counting them 
and assigning the sum to each vertex’s label. This is how you arrive at a value of indegree for each vertex.

http://dx.doi.org/10.1007/978-1-4842-1251-6_3
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A natural question to ask after reading the code is, how in the world are you supposed to find out the 
final indegrees of each vertex if the code doesn’t produce any output? The answer lies in the Giraph facility 
that is complementary to that of the input format: an output format. An output format is just that: a way for 
Giraph to dump the topology of a graph and all the labels once it is finished running. Using output formats 
is as simple as specifying two command-line options: -vof to request a particular implementation and –op 
to specify an output subdirectory. Listing 5-14 shows the command line required to specify an output format 
that is exactly the same as the input format used in Listing 5-12. Note that the first thing you do is removing 
the output subdirectory; this is because Giraph expects that the requested subdirectory does not exist. Also 
note that the last command outputs the content of all the files into which Giraph’s output format could 
have split the resulting graph. For big graphs, this could be quite a few individual files named part-XXX. 
Finally, although running Hadoop in local mode results in output in the local filesystem, in general the last 
command would be based on calling Hadoop’s filesystem utilities, as you see in the next section.

Listing 5-14.  Running the TwitterConnections Example with an OutputFormat

$ rm -rf output
$ giraph target/*.jar  TwitterConnections  -op output   \
-vof org.apache.giraph.io.formats.AdjacencyListTextVertexOutputFormat \
-vip src/main/resources/2    \
-vif \
org.apache.giraph.io.formats.TextDoubleDoubleAdjacencyListVertexInputFormat \
-w 1 -ca giraph.SplitMasterWorker=false,giraph.logLevel=error
$ cat output/part*
Julia    3.0    Mark    0.0    Natalie  0.0
Natalie  4.0    John    0.0    Peter    0.0    Anne    0.0
Jack     2.0    Mark    0.0    Anne     0.0
Anne     5.0    Peter   0.0    Julia    0.0
Peter    3.0
Mark     4.0    John    0.0    Anne     0.0
John     3.0    Peter   0.0

Let’s recap what you have learned so far. Every Giraph application starts with reading the graph definition 
from the set of input files. This data describes the initial Graph topology and consists of Vertex objects 
connected by Edge objects. The Giraph application runs in a distributed fashion, iterating over the set of 
Vertex objects and calling a compute() method provided in a user-defined computation class. Implementing 
the Computation interface is the only requirement for the custom computation class. In practice, though, 
most applications subclass one of the two abstract classes: AbstractComputation or BasicComputation. 
The latter is a slightly more restricted form of the former. Compute() methods for all the required vertices are 
executed in series of supersteps. A superstep finishes when all the vertices call voteToHalt(). The supersteps 
are numbered starting from 0, and the number of the current superstep can always be requested by calling 
getSuperstep(). The “Hello World” example consisted of exactly one superstep: superstep 0. The current 
example runs in two supersteps; most real-world Giraph applications iterate through a variable number of 
supersteps as part of the convergence of the algorithm. Finally, compute() can elect to call voteToHalt() on 
its Vertex object, signaling that, unless new messages are delivered to it in the next superstep, it wishes not 
to be called again. The entire Giraph application finishes when all of its vertices are halted and there is not a 
single pending message. At this point, if a user requests that the entire state of the graph be flushed to storage, 
an output format takes over and makes sure the data is serialized in files under the desired location.

Keeping input and output formats compatible makes it possible to chain Giraph applications in 
arbitrary pipelines, each operating on the output of the previous one(s). Giraph algorithms are close to 
the Unix tooling philosophy where one tool is meant to “do one thing and do it well.” The expressiveness 
comes not from the complexity of each tool or algorithm but rather from the flexibility of building arbitrary 
pipelines from multiple stages, all operating on common datasets.
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With this theoretical background, let’s turn to the second example from Chapter 3: converting directed 
graphs to undirected graphs.

Turning Twitter into Facebook
From a graph theory perspective, the biggest difference between Facebook and Twitter is directionality. The 
Twitter social graph is directional (if a user follows another one it doesn’t mean the reverse is true), and 
the Facebook graph is not (your friends consider you to be a friend). So far, in the examples, you’ve been 
using a Twitter followership graph. This has the additional benefit of mapping one to one on Giraph’s graph 
model of directional graphs. If you want to model a Facebook graph with Giraph, you have to make sure that 
vertexes are connected in both directions.

Let’s use Giraph to turn your existing Twitter connection graph into a Facebook one by running the 
code shown in Listing 5-15.

Listing 5-15.  Twitter2Facebook.java

import org.apache.giraph.GiraphRunner;
import org.apache.giraph.graph.BasicComputation;
import org.apache.giraph.graph.Vertex;
import org.apache.giraph.edge.EdgeFactory;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.util.ToolRunner;
import org.apache.hadoop.io.Text;
 
public class Twitter2Facebook extends
  BasicComputation<Text, DoubleWritable, DoubleWritable, Text> {
 
  // the following two constants will represent existing edges and the ones we
  // created to model Facebook connections
  static final DoubleWritable ORIGINAL_EDGE = new DoubleWritable(1);
  static final DoubleWritable SYNTHETIC_EDGE = new DoubleWritable(2);
 
  @Override
  public void compute(Vertex<Text, DoubleWritable, DoubleWritable> vertex,
                      Iterable<Text> messages) {

    if (getSuperstep() == 0) {
      sendMessageToAllEdges(vertex, vertex.getId());
    } else {
      for (Text m : messages) {
        DoubleWritable edgeValue = vertex.getEdgeValue(m);
        if (edgeValue == null) {
          vertex.addEdge(EdgeFactory.create(m, SYNTHETIC_EDGE));
        } else {
          // for existing edges just label them as such
          vertex.setEdgeValue(m, ORIGINAL_EDGE);
        }
      }
    }
 
    vertex.voteToHalt();
  }
}

http://dx.doi.org/10.1007/978-1-4842-1251-6_3
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At this point, you could run the code exactly the same way you ran your previous examples. That, 
however, would produce Giraph-friendly, but not necessarily human-friendly, graph output. Instead, 
you can use a different output format that can be used as an input to a variety of graph visualization 
tools. A picture, after all, is worth a thousands words. Listing 5-16 executes Giraph almost identically to 
the previous example, aside from using a different output format (org.apache.giraph.io.formats.
GraphvizOutputFormat).

Listing 5-16.  Running Twitter2Facebook with a Visualization-Friendly OutputFormat

$ rm -rf output
$ giraph target/*.jar Twitter2Facebook   -op output        \
-vof org.apache.giraph.io.formats.GraphvizOutputFormat     \
-vip src/main/resources/2                                  \
-vif \
org.apache.giraph.io.formats.TextDoubleDoubleAdjacencyListVertexInputFormat \
-w 1 -ca giraph.SplitMasterWorker=false,giraph.logLevel=error

To visualize the output generated from running this command, you first ask Hadoop to merge different 
sections of the output into a single file. Then you add a header and a footer required by the Graphviz format, 
and finally you run a Graphviz visualization command-line utility to generate a file that can be viewed on 
screen. These four commands are shown in Listing 5-17, and Figure 5-3 shows the resulting picture.

Listing 5-17.  Visualizing the Output of Giraph’s Graphviz Format

$ hadoop fs -getmerge output data.txt
$ echo "digraph Giraph {" > giraph.dot
$ cat data.txt            >> giraph.dot
$ echo "}"                >> giraph.dot
$ circo giraph.dot –Tpng -ogiraph.png
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GRAPHVIZ (DOT): A LINGUA FRANCA FOR GRAPH VISUALIZATION

Graphviz is open source graph-visualization software. Graphviz and its input language, DOT, were 
developed at AT&T Labs Research for quickly visualizing arbitrary graph data and have taken on a life of 
their own. A reference implementation is available on most Unix platforms, but there are also a number 
of cleanroom visualizer implementations for the DOT format. If the DOT visualization utility (circo) is not 
available on your platform, you can try visualizing the Facebook graph by pasting the content of the 
giraph.dot file into one of the online Graphviz tools, such as the one at www.webgraphviz.com.

The graph visualization lets you see the vertex value associated with each vertex and the edge value 
associated with each edge. Because you are not using vertex values in the example, in Figure 5-3 all of them 
appear as 0.0 in a box next to the person’s name. Edges, on the other hand, are labeled according to whether 
the edge was added as part of your conversion (2) or whether it was always present in the graph (1).

This was the first example of mutating a graph’s topology by adding new edges. The next section covers 
additional ways to change the graph structure on the fly.

Figure 5-3.  The Facebook equivalent of the Twitter followership graph

http://www.webgraphviz.com/
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Changing the Graph Structure
Adding new edges to a graph was easy enough, but what about adding new vertices? What about building 
entire graph segments directly in memory without reading the data from external sources? An extreme 
example of that would be generating a graph from scratch based on certain criteria. If you think of Giraph 
jobs forming a pipeline, generating a graph could be the first step in that pipeline. This is a typical approach 
for simulation and system testing of complex graph algorithms. The next example, shown in Listing 5-18, 
generates your old friend the Twitter followership graph starting from nothing but an empty graph.

Listing 5-18.  GenerateTwitter.java

import org.apache.giraph.GiraphRunner;
import org.apache.giraph.graph.BasicComputation;
import org.apache.giraph.graph.Vertex;
import org.apache.giraph.edge.EdgeFactory;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.util.ToolRunner;
import org.apache.hadoop.io.Text;
import java.io.IOException;
 
public class GenerateTwitter extends
  BasicComputation<Text, DoubleWritable, DoubleWritable, Text> {
 
  // two static arrays defining the same graph as input data from Listing 5.10
  private static final String[] twitterMembers = { "seed",
    "John", "Peter", "Mark", "Anne", "Natalie", "Jack", "Julia" };
  private static final byte[][] twitterFollowership = {{0},
    {2},   {},      {1, 4},  {2, 7}, {1, 2, 4}, {3, 4}, {3, 5}};
 
  @Override
  public void compute(Vertex<Text, DoubleWritable, DoubleWritable> vertex,
                      Iterable<Text> messages) throws IOException {

    if (getSuperstep() == 0) {
      for (int i = 1; i < twitterFollowership.length; i++) {
        Text destVertexID = new Text(twitterMembers[i]);
        addVertexRequest(destVertexID, new DoubleWritable(0));
       
        for (byte neighbour : twitterFollowership[i]) {
          addEdgeRequest(destVertexID, EdgeFactory.create(
                  new Text(twitterMembers[neighbour]),
                  new DoubleWritable(0)));
        }
      }
    
      removeVertexRequest(new Text("seed"));
    } else {
      vertex.voteToHalt();
    }
  }
}



Chapter 5 ■ Working with Giraph

124

When you run this example, a very logical assumption would be that because the entire point of this 
Giraph application is to generate the graph from scratch, you shouldn’t give Giraph any input files. A more 
advanced use of Giraph would allow you to do that, but for this simple example you face a small challenge. 
The code that generates a graph is part of the compute() method, and because compute() methods are 
called for vertices of an input graph, the easiest way to do what you want is to give Giraph the smallest graph 
possible: a graph with a single vertex and no edges, as shown in Listing 5-19.

Listing 5-19.  Smallest Graph Definition with a Single Vertex and No Edges (src/main/resources/3/g.txt)

seed 0

With this input in place, you can run Giraph exactly as you did for all the previous examples. Let’s run it 
with the Graphviz output format, as shown in Listing 5-20, so you can quickly check the visualized graph and 
make sure the code generated the original graph from Figure 5-2.

Listing 5-20.  Running GenerateTwitter with the Graphviz Output Format

$ rm -rf output
$ giraph target/*.jar GenerateTwitter   -op output              \
-vof org.apache.giraph.io.formats.GraphvizOutputFormat          \
-vip src/main/resources/3                                       \
-vif \
org.apache.giraph.io.formats.TextDoubleDoubleAdjacencyListVertexInputFormat \
-w 1 -ca giraph.SplitMasterWorker=false,giraph.logLevel=error

Two of the Giraph API calls used in this example to modify the topology of the graph 
(addVertexRequest and addEdgeRequest) are part of a broader API set known as graph mutation APIs. Most 
of these API calls modify the overall graph structure in one way or another. The changes can be available 
to all members of the computational process either immediately or in the next superstep (that’s why in the 
example you can’t exit immediately but must wait for the next superstep). Here’s a summary of the most 
popular mutation API methods used in real-world applications:

•	 setValue(): Modifies its own value. The result of this action is immediately visible 
(in the same superstep) to the entire computation.

•	 setEdgeValue(): Modifies the edge value of the outgoing edges. Even though the result 
is also immediately visible to the entire computation, the application of this method is 
limited because typically only a source vertex has access to the outgoing edges.

•	 addEdge(), removeEdges(): Modifies the local topology of the graph by adding or 
removing edges, with the source being the same vertex.

•	 addVertexRequest(), removeVertexRequest(), addEdgeRequest(), 
removeEdgesRequest(): Asks to modify the global topology of the graph starting 
from the next superstep.

By using these methods, you can create graphs with a very different structure and topology compared 
to the graph available to Giraph at the start of execution. Interestingly enough, in addition to the 
straightforward methods of mutating a graph presented here, a less obvious one has to do with that jack of 
all trades in Giraph: messages. This is the subject of the next section.
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Sending and Combining Multiple Messages
As mentioned, the Giraph messaging topology is completely independent of graph topology. In other words, 
every vertex can send a message to every other vertex. Sending messages to a nonexistent vertex creates the 
vertex. (See? Messages can also be considered part of the graph mutation APIs!)

This is the trick the next example exploits to build a graph topology in parallel. Instead of a single loop 
running on a single host and iterating over all the vertices and their edges, you use a two-stage approach. 
First you create all the vertices by sending messages to them. Each message contains one neighbor of 
that newly created vertex. Once the vertices are created and assigned to the worker nodes in the cluster, 
each vertex, in parallel, begins iterating over the received messages and creating edges connecting it to its 
neighbors. Listing 5-21 is a modification of the previous example that does just that.

Listing 5-21.   GenerateTwitterParallel.java

import org.apache.giraph.GiraphRunner;
import org.apache.giraph.graph.BasicComputation;
import org.apache.giraph.graph.Vertex;
import org.apache.giraph.edge.EdgeFactory;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.util.ToolRunner;
import org.apache.hadoop.io.Text;
import java.io.IOException;
 
public class GenerateTwitterParallel extends
  BasicComputation<Text, DoubleWritable, DoubleWritable, IntWritable> {
             
  private static final String[] twitterMembers = { "",
            "John", "Peter", "Mark", "Anne", "Natalie", "Jack", "Julia" };
  private static final byte[][] twitterFollowership = {{0},
            {2},   {},      {1, 4},  {2, 7}, {1, 2, 4}, {3, 4}, {3, 5}};
 
  @Override
  public void compute(Vertex<Text, DoubleWritable, DoubleWritable> vertex,
                      Iterable<IntWritable> messages) throws IOException {
 
    if (getSuperstep() == 0) {
      for (int i = 1; i < twitterFollowership.length; i++) {
        Text destVertexID = new Text(twitterMembers[i]);
        for (byte neighbour : twitterFollowership[i]) {
          sendMessage(destVertexID, new IntWritable(neighbour));
        }
      }
 
      removeVertexRequest(new Text("seed"));
    } else {
      for (IntWritable m : messages) {
        Text neighbour = new Text(twitterMembers[m.get()]);
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        vertex.addEdge(EdgeFactory.create(neighbour,
                                          new DoubleWritable(0)));
      }
 
      vertex.voteToHalt();
    }
  }
}

Of course, for a tiny graph like this one, the difference between sequential and parallel versions of the 
same code is negligible. But it does highlight an important design point that every Giraph application needs 
to consider: parallel graph processing is always limited by the amount of sequential code that cannot be 
parallelized. This is also known as Amdahl’s law of parallelism.

The latest example makes it possible for edges in the graph to be created in parallel as opposed 
to being created in a single loop running at superstep 0. This is a good thing, but there’s still one more 
optimization possible.

Consider the fact that for each edge, you have to create a dedicated message. Given that all you need 
to communicate in that message is an integer ID, the overhead can be pretty high. It would be much 
more efficient if you could somehow aggregate or combine neighbor IDs into a single message. One way 
of accomplishing this is to change the data type of the messages being communicated into a byte array. 
Another way is to use Giraph’s combiners.

You implement a combiner for messages sent between vertices whenever there’s a natural 
way to aggregate multiple messages into a single one. Giraph provides a few useful combiners to 
get you started. SimpleSumMessageCombiner, for example, sums individual messages into one; and 
MinimumIntMessageCombiner finds a minimum value in messages containing individual integers and 
creates a single message containing that value. The next example, however, creates a custom combiner that 
combines all of your messages in a bitmap array. Each integer value sent in a message is represented as a bit 
set in a bitmap. For example, if a message contains the integer 3, the third bit from the right is set to 1.  
Listing 5-22 shows the code for BitArrayCombiner.

Listing 5-22.  BitArrayCombiner.java

import org.apache.giraph.combiner.MessageCombiner;
import org.apache.hadoop.io.IntWritable;
 
public class BitArrayCombiner
  extends MessageCombiner<IntWritable, IntWritable> {
   
   // the guts of each combiner is a method that defines how to
   // combine a new message into an overall message accumulator
  @Override
  public void combine(IntWritable vertexIndex,
                      IntWritable originalMessage,
                      IntWritable messageToCombine) {
     
      originalMessage.set((1<<messageToCombine.get()) |
                          originalMessage.get());
  }
   



Chapter 5 ■ Working with Giraph

127

  // this a method that defines how to create an initial message accumulator
  // �in our case this simply creates a bit-map array with all bits set to 0 (no messages 

seen)
  @Override
  public IntWritable createInitialMessage() {
    return new IntWritable(0);
  }
}

In general, combiners tend to be dead simple: all you have to do is to define the function that 
returns an initial message. This message is used as an accumulator for the messages emitted as part of 
compute()execution. The job of accumulating the data is performed by the code defined in the combine() 
method. As you can see, this method treats originalMessage as a mutable accumulator; in this case it sets a 
bit corresponding to the neighbor integer ID in an overall integer bit array.

Combiners can be useful, but they are not transparent. First, you have to tell Giraph that it needs to use 
a combiner. This is typically done by passing a class name to the –c command-line option, just as you pass 
an input format. Second, you must modify the code from the previous example so it can unpack the bit array 
that is now the payload of each message. This issue, plus the fact that you can only work with fewer than 32 
vertices (because integers in Java are 32-bit) makes BitArrayCombiner a bit impractical and only good as an 
illustration of how easy it is to write a combiner.

Speaking of limitations, if you tried running the previous example, you probably noticed a subtle bug in 
its implementation: it’s impossible to generate the vertices with zero neighbors. The usual way to reduce the 
likelihood of this type of bug is to develop code hand-in-hand with unit tests verifying its correctness. You have 
been developing code in this chapter without any kind of testing or verification, and it is time to change that.

Unit-Testing Your Giraph Application
Developing complex applications against any framework typically requires a suite of unit tests guaranteeing 
against accidental changes in semantics during code changes and refactoring. Fortunately, the event-
driven nature of Giraph applications makes it extremely easy to test the semantics of various methods 
(such as compute()) in isolation. You can also create a miniature execution environment for full-fledged 
application testing.

As mentioned earlier, the previous example had a subtle issue. With that in mind, let’s create a unit test 
verifying that the resulting graph topology is indeed what you expect it to be; see Listing 5-23.

Listing 5-23.  TestGiraphApp.java

import org.junit.Test;
import org.junit.Assert;
import org.junit.Ignore;
import org.apache.giraph.conf.GiraphConfiguration;
import org.apache.giraph.io.formats.TextDoubleDoubleAdjacencyListVertexInputFormat;
import org.apache.giraph.io.formats.AdjacencyListTextVertexOutputFormat;
import org.apache.giraph.utils.InternalVertexRunner;
 
public class TestGiraphApp  {
  final static String[] graphSeed = new String[] { "seed\t0" };
  final static int EXPECTED_VERTICES = 7; // The number of vertices we expect to
                                          // be created in the resulting graph
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  @Test
  public void testNumberOfVertices() throws Exception {
    GiraphConfiguration conf = new GiraphConfiguration(); // Giraph configuration
       // object: it will configure our test Giraph run just like a combination of
       // static configuration files and command line options we used in all of our
       // previous examples
    conf.setComputationClass(GenerateTwitterParallel.class);
    conf.setVertexInputFormatClass(
      TextDoubleDoubleAdjacencyListVertexInputFormat.class);
    conf.setVertexOutputFormatClass(
      AdjacencyListTextVertexOutputFormat.class);

    // The following is all that is required for our test to simulate
    // a full Giraph application run: the conf is how we configure the
    // simulation and graphSeed is an array of strings simulating input
    // graph data. The result it returns back allows us to iterate over
    // the simulated output in order to check assumptions about what
    // we expect after the GenerateTwitterParallel code is done executing.
    Iterable<String> results =
          InternalVertexRunner.run(conf, graphSeed);
 
    // Iterating over the simulated output is how you check the
    // resulting graph structure. In our case we're simply counting
    // the number of lines in the simulated output.
    int totalVertices = 0;
    for (String s: results ) {
      totalVertices++;
    }
    // We expect a certain number of lines (vertex descriptions)
    // to be presented in the simulated output.
    Assert.assertEquals(EXPECTED_VERTICES, totalVertices);
  }
}

Even though this implementation is only a few lines long, a number of remarkable things happen 
behind the scenes courtesy of the InternalVertexRunner implementation. The run() method used for 
this example requires that you supply Giraph’s configuration and a String array simulating the content of 
the input. What you get from calling run() is a String array simulating the output that would be written 
to a filesystem during a normal run of the application. Although the input and output files are simulated, 
everything else is not. The conf object is constructed exactly as it would be during the actual run of the 
application by combining default settings with settings defined in giraph-site.xml and those specified as 
part of the giraph command line. If you don’t want to be constrained by the syntax of the command line, 
you can write a main() method to explicitly set configuration values.

Running the unit test is a simple matter of either hooking it up to your build system (Ant, Maven, or 
Gradle) or passing it to the JUnit executor. If you are using Maven to build the examples, all you need to 
do is save the test case under src/test/java/TestGiraphApp.java in your project file tree and add JUnit 
dependency to the pom.xml file as shown in Listing 5-24. After that, executing mvn test will run the unit tests 
for you (and so will the mvn package command).



Chapter 5 ■ Working with Giraph

129

Listing 5-24.  Maven Project Object Model Definition: pom.xml After Adding JUnit Dependency

<?xml version="1.0" encoding="UTF-8"?>
<project>
  <modelVersion>4.0.0</modelVersion>
 
  <groupId>giraph</groupId>
  <artifactId>book-examples</artifactId>
  <version>1.0.0</version>
 
  <dependencies>
    <dependency>
      <groupId>org.apache.giraph</groupId>
      <artifactId>giraph-core</artifactId>
      <version>1.1.0</version>
    </dependency>
 
    <dependency>
      <groupId>org.apache.hadoop</groupId>
      <artifactId>hadoop-core</artifactId>
      <version>1.2.1</version>
    </dependency>
 
    <dependency> <!- This is the only section we have added to the original pom file ->
      <groupId>junit</groupId>
      <artifactId>junit</artifactId>
      <version>4.12</version>
    </dependency>
  </dependencies>
 
  <build>
  </build>
</project>

Either way, the assertion fails because the resulting graph is one vertex short of what you expect. Making 
the unit tests pass is left as an exercise for you; the next section covers the somewhat orthogonal subject of 
extensions to the BSP compute model that Giraph provides.

Beyond a Single Vertex View: Enabling Global Computations
So far, the Giraph applications you’ve seen have assumed no shared state between different vertices. Sending 
messages works well for communicating data between two given vertices (or even between a given vertex 
and a set of message recipients), but it doesn’t really work if the entire computation needs to keep a running 
tally that can be updated and accessed by all compute() methods working on all the vertices in a graph.

For example, imagine a situation where you need to run a parallel search on a graph. Let’s say your 
graph represents a map, with vertices being cities, edges being roads, and edge labels being distances 
between cities. Ideally you could find an absolute shortest path between the two vertices; but more often 
than not, a close approximation of a shortest path will do. The question then becomes, how do you keep 
track of the current shortest path distance, and how do you abort the computation when the path gets to be 
small enough (but perhaps not as small as the absolute shortest path)?

Giraph offers an efficient way to solve this: named aggregators. The next two sections talk about 
aggregators and how they work with master compute.
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Using Aggregators
As mentioned earlier, aggregators really shine when you need to track graph statistics that don’t naturally 
belong to any of the vertices (or even a subset of vertices). One such statistic is the total number of 
connections (edges) in the graph. Listing 5-25 offers a very simple way to count the number of edges in the 
graph by using an aggregator. That aggregator happens to be a summing aggregator, but you don’t know that 
unless you look at Listing 5-26 and see that the aggregator implementation is registered under the name 
TotalNumberOfEdgesMC.ID.

Listing 5-25.  TotlaNumberOfEdges.java

import org.apache.giraph.graph.BasicComputation;
import org.apache.giraph.graph.Vertex;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.LongWritable;
 
public class TotalNumberOfEdges extends
  BasicComputation<Text, DoubleWritable, DoubleWritable, NullWritable> {
 
  @Override
  public void compute(Vertex<Text, DoubleWritable, DoubleWritable> vertex,
                      Iterable<NullWritable> messages) {
 
    aggregate(TotalNumberOfEdgesMC.ID, new LongWritable(vertex.getNumEdges()));
 
    vertex.voteToHalt();
  }
} 

The idea here is simple: every compute() method pushes the number of outgoing edges associated with 
a given vertex into an aggregator registered under the name TotalNumberOfEdgesMC.ID. As you can see, 
the compute() methods don’t care what happens to the values sent to the aggregator, nor do they care what 
kind of aggregator they are sending values to. Setting up an aggregator is, by itself, an example of a global 
action that must be done once before the first superstep, so you cannot do that in a vertex-centric compute() 
method. You have to use a bit of code that runs once before each superstep, and that is what the master 
compute implementation shown in Listing 5-26 allows you to do.

Listing 5-26.  TotalNumberOfEdgesMC.java

import org.apache.giraph.aggregators.LongSumAggregator;
import org.apache.giraph.master.DefaultMasterCompute;
 
public class TotalNumberOfEdgesMC extends DefaultMasterCompute { // master compute
     // implementations are usually extending the DefaultMasterCompute abstract class
     // just the same way that our basic BSP compute implementations extended
     // BasicComputation. Unlike BasicComputation you have to provide implementations
     // for two methods: compute() and initialize()
 
  public static final String ID = "TotalNumberOfEdgesAggregator"; // all registered
     // aggregators are referenced by unique (within a given application) but arbitrary
     // strings
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  @Override
  public void compute() {
    // this is a global master compute method that will be executed once
    // before every superstep. In our case we're simply outputting the
    // running tally of total number of edges in a graph
    System.out.println("Total number of edges at superstep " +
                       getSuperstep() + " is " +
                       getAggregatedValue(ID));
  }
 
  @Override
    // this method gets called during overall initialization of the Giraph
    // BSP machinery. It is an ideal place to register all required
    // aggregators.
  public void initialize() throws InstantiationException,
                                  IllegalAccessException {
        registerAggregator(ID, LongSumAggregator.class); // this is how we associate
           // an aggregator ID with a particular implementation of an aggregator:
           // in our case we are using a built-in LongSumAggregator that simply
           // sums all of the values sent to it
  }
} 

Master compute allows you to execute global actions using the entire graph topology and all the 
aggregator values available to you. Because the master compute initialize() method runs once very 
early during the initialization of Giraph, this is an ideal place to register all the aggregators you use in a 
given application. Once the aggregators are registered, vertex-centric compute() methods can send values 
to them, and the master compute() method can inspect the state of the aggregators before each superstep. 
In this case, you are using the compute() method of the master compute implementation to print out the 
current value of the summing aggregator. In real-world applications, you can use it to do any kind of global 
computations, based on the results of which you can even terminate your application early (provided that a 
globally computed heuristic of your choice has been satisfied).

Executing the example in Hadoop local mode provides the expected output, but for cluster execution you 
are better off recording the state of the aggregators to external storage at given intervals during execution of 
your application. Think of it like having the graph’s final state recorded at the end of the run. Of course, you can 
replace the System.out.println() call in master compute, but there’s a better way. Giraph provides the notion 
of an aggregator writer. An aggregator writer class is expected to implement an AggregatorWriter interface 
and provide an implementation for the writeAggregator() method that, at the end of each superstep, is 
passed a map of all the registered aggregator names, their values, and the numeric ID of a superstep (the end 
of a computation is signaled by passing the ID LAST_SUPERSTEP). As usual, you’re free to implement your own 
aggregator writer or use the default TextAggregatorWriter. For now, let’s stick with the default.

Putting it all together, Listing 5-27 shows how you can run your edge-counting Giraph application from 
the command line.

Listing 5-27.  Running the edge-counting application

$ rm -rf aggregatorValues*
$ giraph target/*.jar TotalNumberOfEdges -mc TotalNumberOfEdgesMC  \
   -aw org.apache.giraph.aggregators.TextAggregatorWriter          \
   -ca giraph.textAggregatorWriter.frequency=1                     \
   -vip src/main/resources/2                                       \
   -vif \
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org.apache.giraph.io.formats.TextDoubleDoubleAdjacencyListVertexInputFormat \
   -w 1 -ca giraph.SplitMasterWorker=false,giraph.logLevel=error
Total number of edges at superstep 0 is 0
Total number of edges at superstep 1 is 12
 
$ cat aggregatorValues*
superstep=0    TotalNumberOfEdgesAggregator=0
superstep=-1    TotalNumberOfEdgesAggregator=12

There are a couple of interesting points to note about the giraph command line presented in Listing 5-27. 
First, because you are using master compute, you tell Giraph which class contains that implementation 
as a third argument (-mc TotalNumberOfEdgesMC). Second, you tell Giraph to use an aggregator writer 
that outputs the values of the aggregators into the default Hadoop filesystem (-aw org.apache.giraph.
aggregators.TextAggregatorWriter). Finally, you specify that you want the aggregator values to be 
recorded at every superstep (-ca giraph.textAggregatorWriter.frequency=1). Note that you specify the 
frequency by providing a property that the TextAggregatorWriter implementation recognizes. You can use 
the same technique for configuration properties in your own implementations.

The last command in Listing 5-27 demonstrates that TextAggregatorWriter did, indeed, record the 
state of your aggregator at each superstep. Those values are the same as the ones produced by your  
System.out.println statements.

The next section provides an additional level of detail about how the aggregator and master compute 
machinery works. But first, let’s take a moment to look at the implementation of LongSumAggregator, shown 
in Listing 5-28. Even though this aggregator is available to you out of the box, it is useful to know how simple 
it is to create specialized aggregators of your own.

Listing 5-28.  Implementation of LongSumAggregator

import org.apache.hadoop.io.LongWritable;
 
// Most custom aggregators are extending the BasicAggregator class and
// focus on implementing two key methods createInitialValue() and
// aggregate(). The type variable used for BasicAggregator defines the
// type of the values that the aggregator will be receiving from compute()
// methods and also providing to its consumers.
public class LongSumAggregator extends BasicAggregator<LongWritable> {
  @Override
  public LongWritable createInitialValue() {
     // this method is expected to create an initial state for the aggregator,
     // which in our case happens to be the value of 0
    return new LongWritable(0);
  }
 
  @Override
  public void aggregate(LongWritable value) {
      // this method is expected to fold incoming values into the aggregator
      // created by a previous method
    getAggregatedValue().set(getAggregatedValue().get() + value.get());
  }
}
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The implementation here is as simple as it gets, but it is not a toy example. This code was lifted 
verbatim from the Giraph code base. Hopefully this provides enough inspiration for you to create your own 
aggregators for cases when Giraph doesn’t come with the ones you need.

Aggregators and Master Compute
As you have seen, aggregators are referenced via simple flat namespace of String names. Each name is associated 
with a class implementing the Aggregator interface. Once this association is established, the compute() method 
of every vertex can provide a value to be aggregated via the call to the aggregate(name, value) method or query 
the current state of the aggregator by calling getAggregatedValue(name) and expecting the value of the same type 
as the one supplied in corresponding calls to the aggregate() method. The aggregator implementation defines 
how multiple values supplied by calls to aggregate() coming from different vertices are aggregated into a single 
value of the same type. This is similar to the pattern you saw with combiners.

For example, an aggregator may sum numeric values or find a min/max value. Giraph provides about 
a dozen aggregators, and users can add to the collection by implementing the Aggregator interface directly 
or, better yet, subclassing a BasicAggregator abstract class. The latter provides a reasonable starting point 
for the most practical aggregators, whereas the former leaves the implementation unconstrained. There can 
be as many aggregators as you require: they are all independent in terms of data type and the aggregation 
performed on multiple values coming from different vertices.

Finally, aggregators can be regular or persistent. The difference is that the value of a regular 
aggregator is reset to the initial value in each superstep, whereas the value of a persistent aggregator 
exists throughout the application run. You can use the same aggregator implementation as either 
regular or persistent, depending on whether you register it by calling registerAggregator() or 
registerPersistentAggregator().

The functionality of aggregators serving as rendezvous points between vertices is useful, but their real 
power for affecting graph computation comes from combining them with master compute. The idea behind 
master compute is a slight extension of a straight BSP model. All you are doing is introducing a hook to run a 
special compute() method of a master compute object at the beginning of every superstep (before invoking 
compute() for individual vertices). This gives you a centralized location to affect every aspect of the rest of 
the graph computation. Master compute provides an ideal opportunity to register and initialize aggregators 
and also to inspect their state between consecutive supersteps. Aggregators, in turn, provide a means of 
communication between the workers and the master compute methods. The values of all the aggregators 
on all the worker nodes are always consistent in a given superstep, because their values are broadcast at 
the beginning of each superstep. On the flip side, at the end of each superstep, the values are gathered and 
made available to the next invocation of master compute. This means aggregator values used by workers 
are consistent with aggregator values from the master from the same superstep, and aggregators used by the 
master are consistent with aggregator values from the workers from the previous superstep.

A Real-World Example: Shortest Path Finder
So far, you have been focusing on artificially small examples that highlight certain aspects of Giraph's APIs. 
You may think that a real-world Giraph application is much more complex and involved. The truth, however, 
is that more often than not, even applications used in very large-scale graph-processing jobs tend to be 
pretty compact.

In general, Giraph applications follow a Unix philosophy of small tools that do one job and do it well. In 
Unix, it is common to use pipelines with the next tool operating on the output of the previous one, and so it 
is with Giraph. Giraph pipelines are strung together with the next Giraph application operating on the Graph 
representation serialized by the previous one.



Chapter 5 ■ Working with Giraph

134

Out of the box, Giraph comes with a few well-known, useful algorithms. You can get a list of built-in 
algorithms by giving Giraph the command-line option -la.

The example shown in Listing 5-29 is a complete implementation of one of the quintessential 
algorithms in graph theory: it finds the shortest paths in a graph (also known as Dijkstra's algorithm). Here’s 
what it does: given a graph representation and a vertex, it finds the shortest path between that vertex and 
every other one in the graph. For example, if you think of your graph as a map with vertices representing 
cities, edges representing roads, and integer edge labels representing driving distances, then the results are 
the shortest driving distances between a chosen city and the rest of the cities on the map.

The idea behind this algorithm is fairly straightforward. You start by assigning a driving distance of 0 
to a chosen city (after all, you don’t have to drive to get there) and a distance of infinity to all the others (the 
worst-case scenario is that there is no path between all the other cities and your starting city). You then 
proceed, in parallel, to calculate for every vertex a sum of vertex’s value (the current shortest distance to it) 
plus the distance to all the vertex’s neighbors. You can think of it as each vertex broadcasting its best-known 
shortest past to all of its neighbors and the neighbors having a chance to update their values based on that 
information. If such an update offers a shorter distance, the neighbor would be foolish not to consider it the 
new shortest path. The algorithm converges when no more updates happen on the graph.

Listing 5-29 is the unabridged source lifted directly from the Giraph code base. It is a good example of 
how even the smallest, simplest graph-processing algorithms can be indispensable in practice. It also gives 
you an opportunity to review quite a few API calls that you learned about in this chapter.

This code operates on a graph with every vertex having a LongWritable ID and a DoubleWritable 
distance to the source vertex as its vertex data. All the edges have FloatWritable labels associated with them, 
representing the distance between two connected vertices. A source vertex is given to the implementation via 
the SimpleShortestPathsVertex.sourceId command-line option; it is expected to be a LongWritable ID. You 
measure the distance from this source vertex to all the other vertices in a graph. Initially you assign a distance 
metric of Double.MAX_VALUE to all the vertices except the starting one. Each vertex expects to receive messages 
from the neighbors it is connected to, announcing the distance from the source vertex to each neighbor plus 
the distance between a neighbor vertex and a vertex that is receiving. You then pick the smallest value (because 
you are interested in the shortest paths), and if it happens to be smaller than the current distance, you assume 
that a shorter path through one of the neighbors was uncovered; you then send messages to the neighbors 
announcing that fact. Finally, an unconditional call to voteToHalt() guarantees that the computation 
continues as long as there are unprocessed messages. This makes sense, because when there are no messages 
left, it means every vertex has the shortest distance and all that is left is to record the state of the graph.

Listing 5-29.  SimpleShortestPathsComputation.java

import org.apache.giraph.graph.BasicComputation;
import org.apache.giraph.conf.LongConfOption;
import org.apache.giraph.edge.Edge;
import org.apache.giraph.graph.Vertex;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.FloatWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.log4j.Logger;
import java.io.IOException;
 
public class SimpleShortestPathsComputation extends
  BasicComputation<LongWritable, DoubleWritable,
                      FloatWritable, DoubleWritable> {
 
  // This is how we will be passing an ID of a starting
  // vertex: via command line argument given to the giraph
  // execution utility.
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  public static final LongConfOption SOURCE_ID =
    new LongConfOption("SimpleShortestPathsVertex.sourceId", 1,
                       "The shortest paths id");
 
  private static final Logger LOG =
    Logger.getLogger(SimpleShortestPathsComputation.class);
      
  private boolean isSource(Vertex<LongWritable, ?, ?> vertex) {
    return vertex.getId().get() == SOURCE_ID.get(getConf());
  }
      
  @Override
  public void compute(
    Vertex<LongWritable, DoubleWritable, FloatWritable> vertex,
        Iterable<DoubleWritable> messages) throws IOException {
    if (getSuperstep() == 0) {
      vertex.setValue(new DoubleWritable(Double.MAX_VALUE));
    }
    double minDist = isSource(vertex) ? 0d : Double.MAX_VALUE;
    for (DoubleWritable message : messages) {
      minDist = Math.min(minDist, message.get());
    }
    if (LOG.isDebugEnabled()) { // a good way to handle debug output
      LOG.debug("Vertex " + vertex.getId() + " got minDist = " +
              minDist +    " vertex value = " + vertex.getValue());
      }
    // the following is the guts of the shortest path algorithm
    if (minDist < vertex.getValue().get()) {
      vertex.setValue(new DoubleWritable(minDist));
      for (Edge<LongWritable, FloatWritable> edge : vertex.getEdges()) {
        double distance = minDist + edge.getValue().get();
        if (LOG.isDebugEnabled()) {
          LOG.debug("Vertex " + vertex.getId() + " sent to " +
                     edge.getTargetVertexId() + " = " + distance);
          }
          sendMessage(edge.getTargetVertexId(),
                      new DoubleWritable(distance));
        }
      }
      vertex.voteToHalt();
   }
}

Summary
This chapter covered these topics:

•	 Building your first “Hello World” Giraph application and writing a unit test for it

•	 Discovering various ways of specifying graph-definition data

•	 Exploring the details of the Giraph graph computation model
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•	 Manipulating the topology of the graph structure

•	 Looking into advanced uses of messaging

•	 Taking advantage of Giraph extensions to the simple BSP compute model such as 
aggregators and master compute

The Giraph framework offers a set of powerful APIs catering to variety of graph-processing algorithms. 
One thing that all Giraph implementations have in common is that they must provide an implementation 
of the compute() method that is called for every vertex at least once. Each implementation of compute() has 
full access to a variety of utility methods:

•	 Every Giraph application uses voteToHalt() when it needs to signal that a vertex 
is done computing. When all vertices call voteToHalt() and there are no more 
pending messages, the entire computation stops.

•	 You can send messages from any vertex to any other vertex (regardless of 
whether they are connected) by using methods like sendMessage() and 
sendMessageToAllEdges(). If the destination vertex doesn’t exist, it is created.

•	 On the I/O side of things, you have access to a wide array of built-in input 
and output formats for parsing various graph representations and an option 
to roll your own if needed. You saw IntIntNullTextInputFormat and 
TextDoubleDoubleAdjacencyListVertexInputFormat in this chapter, but many 
more come with Giraph and allow you to slurp data not just from files but also from 
HBase, Hive, and other data stores.

•	 Another commonly used set of APIs provides ways to query graph topology 
(getEdgeValue(), getVertexId(), and so on) and also to modify the graph during 
the application run (addVertexRequest(), addEdge(), and so on).

•	 A subset of APIs (supporting aggregators and master compute) goes beyond the 
basic BSP graph computation model.

•	 If the cost of sending a message ever becomes a concern, Giraph offers efficient 
tools to deal with it by applying combiners to multiple messages and effectively 
compressing the traffic.

This chapter laid the foundation for the rest of the book in terms of practical usage of Giraph APIs, 
but you still haven’t seen the implementation details of the Giraph framework and how it uses lower-level 
mechanisms such as Hadoop MapReduce and Apache ZooKeeper. This is the focus of the next chapter.
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Chapter 6

Giraph Architecture

The previous chapter introduced a gamut of Giraph APIs and showed how you can use them for various 
graph-processing applications. This chapter pops the hood on Giraph implementation and shows you what 
transpires behind the scenes when a graph-processing application is executed and APIs are called.

For the rest of this chapter, you use the example Giraph applications introduced in Chapter 5. Assume 
that the size of the graph on which the application operates is measured in billions of lines of input. With 
this assumption in place, the chapter traces every step of the application run on a Hadoop cluster. You 
start by learning about the functional roles of the different services that form a running Giraph application, 
how these services are assigned to compute nodes in the cluster, and how they coordinate their activity to 
perform an overall graph-processing task. You also look into steps that are needed to partition the input and 
load the initial graph topology in such a way that each vertex is assigned to a worker that performs compute 
operations on it. You then dive deep into the implementation details of each service and close the chapter by 
examining failure scenarios that a Giraph implementation needs to cope with.

Genesis of Giraph
So far, you have only used Giraph on tiny data sets that fit comfortably into the disk and memory space 
of a single host. Although Giraph is certainly applicable for use with small and medium-size graphs, its 
true power comes from its scalability. To give you a taste of the level of scalability required from a Giraph 
implementation, consider its use at Facebook: analyzing the social graph of the social network’s members. 
In 2013, the total number of vertices was estimated at around 1.1 billion, and the number of edges was well 
into the trillions. Even if storing each chunk of data associated with either a vertex or an edge takes only 
hundreds of bytes, you are approaching petabyte scale for the graph representation alone. Storing datasets of 
this size on a single node is impossible; and analyzing them using the CPU resources of a single node would 
be prohibitively time consuming. The only way to scale for both storage and compute requirements is to 
exploit clusters of commodity hardware.

It should come as little surprise, then, that a running Giraph application is a collection of distributed, 
networked services running in parallel on different nodes in the cluster. Each of these services provides a 
particular function for the rest of the Giraph application, has its own lifecycle, and interacts with the rest of 
the services running on different nodes via remote API calls. Because the majority of these interactions are 
network-based, all the complications of network programming (collectively known as fallacies of distributed 
computing) need to be dealt with. For example, the Giraph implementation spends a lot of time tuning the 
lifecycles of its internal services to enable the most efficient recovery in case of an individual service failure.

http://dx.doi.org/10.1007/978-1-4842-1251-6_5
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FALLACIES OF DISTRIBUTED COMPUTING

Back in 1994, a few smart engineers working at Sun Microsystems started to realize the power of 
distributed computing that has been unlocked by advances in local network design. Around the same 
time, one of those engineers, John Gage, coined the phrase “the network is the computer” to capture 
the company’s new direction. That was the good news. The bad news was compiled by another Sun 
engineer (Peter Deutsch) and delivered to future generations of engineers as a list of false assumptions 
to watch out for when designing this next-generation computer architecture. The list is known as the 
fallacies of distributed computing, and it is as relevant today as it was 20 years ago:

•	 The network is reliable.

•	 Latency is zero.

•	 Bandwidth is infinite.

•	 The network is secure.

•	 Topology doesn’t change.

•	 There is one administrator.

•	 Transport cost is zero.

•	 The network is homogeneous.

Keep this list in mind when reading this chapter—it will help you appreciate quite a few of the 
architectural decisions made by the Giraph implementation.

Giraph Building Blocks and Concepts
Regardless of whether you are running the example application on a single host (as you did in Chapter 5) 
or on a 1,000-node cluster, everything Giraph does boils down to making sure a piece of Java code that acts 
as a particular type of a network service can be executed on a given number of hosts. Before moving on, 
let’s quickly define the three types of network services that serve as fundamental building blocks for Giraph 
architecture: masters, workers, and coordinators.

Every Giraph computation is a result of the coordinated execution of these services, operating on 
subsets of vertices that are split into partitions and processed in parallel. Partitioning is a key optimization, 
allowing parallel execution of graph-processing tasks; it is dynamic, meaning the assignment of partitions to 
workers can change based on the characteristics of the running application. At every superstep, however, the 
overall functional structure of a Giraph application looks like Figure 6-1. All the services represented in this 
figure are internal to the Giraph implementation and are not visible to the end user, but it is still important to 
know their architecture—if for no other reason than to be able to debug failures in Giraph application runs.

www.allitebooks.com
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Masters
There are always one active master service and a few standby masters bidding to become active if the current 
master fails. The standby masters are dormant and don’t play an active role in the lifecycle of a running 
Giraph application. Once a master becomes active, its job is to coordinate computation. This task consists of 
doing the following:

•	 Transitioning the workers from one superstep to the next in a coordinated manner

•	 Before each superstep, assigning partitions to active workers

•	 Running the master compute code

•	 Monitoring the health and statistics of all the workers

Figure 6-1.  Functional structure of a running Giraph application
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Workers
Workers represent the majority of Giraph services. Their primary function is to manage the state of graph 
partitions assigned to them. Each worker exposes a set of network APIs to let remote workers manipulate 
the data in partitions assigned to it. Again, note that these network APIs are internal to the Giraph 
implementation and are not expected to be available to end users. Workers transition from superstep to 
superstep as directed by the active master. During each superstep, workers iterate over the graph partitions 
they own and execute the compute() method for all the vertices belonging to these partitions. Workers are 
also responsible for checkpointing their state from time to time as a means of recovery from a worker failure.

Note that the assignment of graph partitions to workers is not permanent and is subject to master-
driven rebalancing before every superstep. A class implementing the MasterGraphPartitioner 
interface provides the implementation of the partitioning logic. An instance of that class belonging 
to an active master manages the current mapping of partitions to workers and provides the 
generateChangedPartitionOwners() method for reevaluating the mapping based on the various statistics 
coming from the workers. The master updates the mapping via the coordination service. Workers, on the 
other hand, look up which partitions no longer belong to them and re-create the state of those partitions on 
a target worker by issuing network API calls.

Coordinators
Nodes running the coordination service provide the nervous tissue for the rest of the Giraph services. They 
don’t participate in performing any graph-processing work; instead, they provide distributed configuration, 
synchronization, and naming registry services for the rest of Giraph.

There are several coordination service implementations you can use, but the default choice in the 
Hadoop ecosystem has always been Apache ZooKeeper. The ZooKeeper service is so ubiquitous that it is 
hard to imagine a production Hadoop cluster deployment running without it. It has become synonymous 
with the coordination of any application in the Hadoop ecosystem.

A collection of nodes running a coordination service is collectively known as a ZooKeeper ensemble. All 
nodes in the ensemble are considered peers, and each node has a replica of a ZooKeeper state as a means 
of achieving high availability and fault tolerance. As long as the majority of the nodes are up, the service will 
function correctly.

Giraph provides two options for managing coordination services. The default option is to spin up 
ZooKeeper ensemble nodes on demand as part of a Giraph application run. That way, coordination 
services are no different from masters or workers: they are fully managed by Giraph, and they vanish once 
the application exits. The second option is to use a stand-alone ZooKeeper ensemble that is centrally 
maintained as part of the cluster. In that case, Giraph applications act as pure clients, and there is no need to 
have the coordination service running on nodes used by the Giraph application.

The second approach is recommended for production use of Giraph. It allows for easier postmortem 
and real-time debugging (because the coordination service stays alive after the Giraph application exits). 
Also, because it uses a cluster-wide, centralized, highly tuned, well-maintained ZooKeeper ensemble, your 
application’s performance may be better.

Bootstrapping Giraph Services
Consider any of the examples from Chapter 5, but this time assume that you have to deal with a much bigger 
input dataset. The size of the dataset makes it prohibitively expensive to execute the application on a single 
host and requires you to use a cluster. The good news is that you don’t have to change the application to 
make it run on a cluster of compute resources: the Giraph architecture is flexible enough to scale elastically. 
All you have to do to begin using a cluster is to tell Giraph how many compute resources it can use for which 
purpose.

http://dx.doi.org/10.1007/978-1-4842-1251-6_5
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Setting the configuration property giraph.maxWorkers (or passing the same value via the command-
line option –w) tells Giraph how many compute resources should be used to execute worker services. 
Another configuration property, giraph.zkServerCount (which has a default value of 1), tells Giraph how 
many compute resources need to be allocated for running master and coordination services. Finally, the 
total number of cluster resources used by an application is determined based on the configuration property 
giraph.SplitMasterWorker. If that property is set to false, all services can run on all cluster resources, and 
the total number of resources used is equal to the value of giraph.maxWorkers. On the other hand, if it is 
set to true (its default value), the total number of utilized resources is the sum of giraph.maxWorkers and 
giraph.zkServerCount.

For the rest of this chapter, assume a cluster of at least ten nodes so you can execute the example 
application with giraph.maxWorkers set to 8 and giraph.zkServerCount set to 2. Also assume the default 
value (true) for giraph.SplitMasterWorker so the total number of utilized cluster resources is exactly ten 
(eight plus two). Those resources will be used to run exactly eight worker services, two master services, and 
two coordination services (with the master and coordination services co-located together).

With these settings in mind, let’s look into the underlying mechanism that pushes the required bits of 
Java code for each service to the desired cluster resources and makes them behave like a set of eight worker 
services, two master services, and two coordination services. See Figure 6-2.

Figure 6-2.  Running an example on a cluster of 10 hosts

Although it is nice to know that given the right combination of command-line options, Giraph can start 
using the power of a Hadoop cluster, the question you answer in this chapter is how that happens. One way 
to distribute services on a cluster of compute resources requires building a custom Giraph-specific cluster-
management layer, purposefully designed with a graph-processing application in mind. There is nothing 
wrong with doing that; Apache Hama (a graph-processing framework very similar to Giraph) made exactly 
that type of design decision. It allows for a greater degree of control, but the price is maintaining low-level 
cluster-management code that has nothing to do with Graph processing.
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Unlike Hama, Giraph decided to use existing cluster-management solutions to do all the heavy lifting. 
Apache Hadoop is the most popular solution and also the one that comes by default with the Giraph 
distribution. It is not the only option, though. Even within the Hadoop project, Giraph has two alternatives: a 
more classic MapReduce framework (also available in prior versions of Hadoop) and a brand-new collection 
of resource-management APIs known as YARN. The YARN back end is still experimental, and this chapter 
assumes that the example application is executed using the Hadoop MapReduce framework.

WHEN MAPREDUCE IS NOT REALLY MAPREDUCE

The MapReduce framework for distributed data analysis was first described by two Google engineers 
(Jeffrey Dean and Sanjay Ghemawat) in the seminal 2004 paper “MapReduce: Simplified Data 
Processing on Large Clusters.” The core idea behind the framework was simple enough, but it required 
a radical shift in application design. The paper proposed that every data-processing application 
should be built around two things: a piece of code called a mapper and another piece of code called 
a reducer. Both pieces of code are transparently instantiated on a large cluster of compute resources, 
thus allowing the application to process as much data as there are compute resources. In other words, 
thousands of mapper copies run in parallel, all supplying data to hundreds of reducers, also running 
in parallel. The programmer is free from low-level cluster-management plumbing and can focus on 
implementing the mappers and reducers.

Apache Hadoop was the first highly popular, open source implementation of a MapReduce framework. 
Its availability led to explosive growth of data-processing applications that can be neatly decomposed 
into mappers and reducers. Graph processing is not one of those applications; it is typically much more 
iterative in nature, and it requires a different kind of data partitioning.

Thus, when running with a MapReduce back end, Giraph doesn’t have a chance to exploit the spirit 
of the framework. All it needs from Hadoop is a way to push a bit of its own code to a given number 
of compute resources. The trick it plays is that it constructs a fake MapReduce application with a 
fixed number of mappers and no reducers. This is known as a map-only application. Because it is 
disconnected from all the Hadoop data pipelines from Hadoop’s standpoint, it “runs forever” (as opposed 
to a normal MapReduce application, which runs as long as unprocessed data remains). Because of 
that, the Giraph implementation has to deal with ingesting the initial data and limiting the application’s 
runtime.

Even though a running Giraph application looks to a Hadoop cluster like a MapReduce application, it has 
very little to do with the behavior of a typical MapReduce job.

How does Giraph use MapReduce to spin up all the required internal services? It involves encapsulating 
Giraph’s business logic in the GraphTaskManager class implementation and expecting it to be instantiated 
on every node available to the Giraph application. The MapReduce Hadoop framework expects 
GraphTaskManager to provide a way to execute a mapper. Giraph doesn’t need to worry about the details 
of how an instance of GraphTaskManager is created; rather, it focuses on the job it needs to perform in the 
overall mesh of Giraph services. When Giraph uses MapReduce as a back end, the job of instantiating a 
GraphTaskManager object belongs to a mapper. This is the only thing this unusual mapper ever does.

At the highest level, the entire process of executing a Giraph application on a cluster of machines 
consists of the following steps (as illustrated in Figure 6-3):
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	 1.	 An underlying cluster-management framework (most likely Hadoop’s 
MapReduce or YARN, although Giraph can be plugged in to other ones as well) 
instantiates a GraphTaskManager class implementation on a number of nodes. 
The exact number is determined by Giraph’s configuration.

	 2.	 The same framework then calls the GraphTaskManager.setup() method, which 
takes care of the initialization and also determines which internal Giraph service 
(master, worker, or coordination service) this node is supposed to provide to the 
rest of the Giraph application.

	 3.	 The GraphTaskManager.execute() method gets control. The Giraph application 
run commences, with each node assuming the role of one of the three internal 
services: master, worker or coordinator.

Despite its simplicity, this architecture means Giraph doesn’t have to be concerned with the details of 
finding appropriate cluster resources, scheduling containers to run there, restarting containers on different 
hosts if they fail, and otherwise allocating low-level resources. This is a very elastic approach that lets the 

Figure 6-3.  Bootstrapping a Giraph application on a cluster of nodes
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Giraph application have as many workers as needed; the cluster-management framework is responsible for 
maintaining the worker pool. This is all good news, except for one detail: containers can be instantiated on 
any host in a cluster, and how can they communicate with each other if they don’t know the host names (or 
IP addresses) of other services?

The answer to this question lies in Giraph’s use of a coordination service that every container can 
communicate with. Different Giraph services use the coordination service as a bulletin board or directory 
where all containers can post information about themselves (such as their network coordinates, operational 
status, and so on) and inspect information posted by others. Thus, instead of every container keeping track 
of the network address and state of every other container, the only information needed to bootstrap the 
Giraph framework is the location of a coordination service.

An interesting consequence of a coordination service playing the role of central information radiator 
is that it bears the brunt of communicating with every container. To avoid overwhelming it, the Giraph 
implementation tries to minimize the amount of traffic between each container and the coordination 
service. The approach is to manage a small amount of metadata via the coordination service and opt for 
direct communication between containers whenever possible.

As long as the Giraph services are running as they should, a cluster-management framework such as 
Hadoop stays out of the way. If services fail (due to software bugs or hardware failure), it is up to the cluster-
management framework to spin up new instances. The coordination service plays a vital role in allowing the 
Giraph implementation to detect when services fail and when they are being brought back online (perhaps 
on a different host). That way, an active master always has a way to rebalance the current graph computation 
between the active workers.

Of course, detecting service failure and bringing back new instances solves only half the problem. When 
a service goes down, it also brings down its in-memory state. It would be unfortunate if Giraph had to restart 
an entire computation simply because one service out of thousands went down. An elegant solution to that 
problem is to use periodic checkpoints. At a given interval (requested via the giraph.checkpointFrequency 
configuration property), Giraph records the state of all the services in a permanent location in HDFS (under 
the home directory of a current user). Suppose giraph.checkpointFrequency is set to 5. This means after 
every five supersteps, the state of all the services is checkpointed. Should any service fail, the computation 
must redo at most five recent supersteps, because it is restarted from a checkpointed state. The exact value 
the checkpoint frequency is set to is highly application specific. On one hand, more frequent checkpointing 
increases the overall runtime of the application; on the other, it speeds up recovery if a worker fails. 
Experiment with different values, and pick the one that works for you. Just keep in mind that the default 
value for this property is 0: by default, checkpointing is disabled.

Now that you understand the mechanics of how Giraph uses cluster compute resources, let’s proceed 
with a detailed overview of what each Giraph service does and how they interact.

Anatomy of Giraph Services
Once fully bootstrapped and running, every Giraph application consists of a network of services that, 
collectively, accomplish graph processing by communicating with each other via network API calls. 
The two services implemented by Giraph (masters and workers) share a common design based on the 
CentralizedService interface and the BspService abstract class implementing it. The coordination service 
is implemented separately by a stand-alone Apache ZooKeeper project and is not discussed in this book.
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WHAT IS APACHE ZOOKEEPER?

Apache ZooKeeper is an effort to develop and maintain an open source server that enables highly 
reliable distributed coordination. It was developed in response to the proliferation of highly distributed 
applications, all trying to implement similar functionality in an ad hoc fashion. You can find information 
about the design and implementation of ZooKeeper at http://zookeeper.apache.org or in a book 
written by two of its authors, Flavio Junqueira and Benjamin Reed: ZooKeeper: Distributed Process 
Coordination (O’Reilly, 2013).

All the functionality offered by masters is implemented in a BspServiceMaster class. On the 
worker side, BspServiceWorker is the corresponding implementation. Both classes extend the common 
functionality of BspService by subclassing it and implementing more specific interfaces, as shown in the 
class hierarchy in Figure 6-4.

Both services act as network servers and clients at the same time by using the classes implementing the 
following interfaces:

•	 For masters: MasterClient and MasterServer.

•	 For workers: WorkerClient and WorkerServer.

Currently, the only implementation available for all four of these interfaces is based on the Netty 
framework. Netty is a new I/O (NIO) client/server framework that enables quick and easy development of 
network applications such as protocol servers and clients. Don’t worry if you are not familiar with Netty; as 
long as you understand that it implements NIO, you should have no trouble understanding how Giraph uses 
it. Giraph abstracts that away by wrapping the code that provides general-purpose, Netty-enabled client/
server interactions into two stand-alone classes: NettyClient and NettyServer. That part has little to do 
with the Giraph graph-processing model. The part that does is then wrapped in the four classes shown in 
Figure 6-5.

Figure 6-4.  Giraph services class hierarchy

http://zookeeper.apache.org/
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As you can see, each of the classes implements the appropriate interface by delegating all non-Giraph-
specific client/server interactions to a NettyClient or NettyServer object that it owns.

Determining which node should provide which Giraph service is handled by GraphTaskManager.
setup(). That determination is permanent during the Giraph’s application run and is driven by the 
configuration parameters given to the Giraph framework. For example, if an external ZooKeeper ensemble 
has been specified via the giraph.zkList configuration option, then there is no need for Giraph to assign 
this service to the nodes it manages. The implementation has the flexibility to assign any combination of 
services to a given node, with one exception: a coordination service cannot be the only service assigned to 
a node. In other words, nodes running coordination services always have an additional master or all three 
services running there as well. The only two impossible combinations of node service assignments are these:

•	 A node exclusively dedicated to running a coordination service

•	 A node running a coordination service and a worker service

Now that you have enough background about the generic aspects of how Giraph implements its master, 
worker, and coordination services, it is time to dive deeper into their detailed architecture.

Master Services
The master service always runs as an extra Java thread implemented by the MasterThread class. An 
instance of that class owns a reference to the BspServiceMaster object and implements its functionality by 
orchestrating calls to the APIs exposed by BspServiceMaster. The master algorithm is pretty simple, but 
it needs to be designed in a way that is resilient if the active master fails and a different master (typically 
running on a different host) assumes the responsibilities of an active master. Figure 6-6 shows the high-level 
steps that every master service goes through.

Figure 6-5.  Netty-enabled client/server architecture
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The first thing a master does is place a bid on becoming an active master via a BspServiceMaster.
becomeMaster() call. Note that although all masters issue this call, all but one will block. The one that 
succeeds will determine the active master; the others will stay blocked until the active master fails. At that 
point, one of the blocked calls will return and thus determine the next active master. This synchronization 
barrier is implemented by using the functionality of a coordination service, as you see later.

On becoming an active master, the master thread instantiates a MasterCompute object, provided it 
was requested as part of the Giraph application configuration. This, in turn, has a chance to register the 
application aggregators on the active master.

Before entering a superstep loop, an active master tries to perform one more important function: 
creating a set of input splits for the graph data (both vertex and edge data) to be loaded by the appropriate 
input formats. Because Giraph applications typically operate on a set of huge files stored in a distributed 
filesystem, effectively spreading the work of loading that data among all the available workers is a key 
scalability requirement. This functionality is implemented in the BspServiceMaster.createInputSplits() 
method, and it works as follows. First it consults a coordination service to see if the mapping of which worker 
is supposed to load which file has been established. If it hasn’t, the map is generated and externalized into 
the coordination service. This accomplishes two things at once. First, because every worker is watching the 
coordination service for updates, once the mapping is made available, the workers can load their portion 
of the input data (the details of this step are laid out in the section “Coordination Services” below). Second, 
persisting the mapping to the coordination service as a transaction makes it possible for the standby master 
to effectively take over in case the active master dies.
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Figure 6-6.  A single master service lifecycle
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Once the input splits’ mapping has been made available to all the workers, the active master transitions 
into the superstep loop that runs for as long as supersteps remain. The bulk of the functionality driving the 
superstep loop is implemented in the BspServiceMaster method coordinateSuperstep() and consists of 
the following steps:

	 1.	 Determine the set of healthy workers by observing the self-reporting available 
in the coordination service. The master observes the healthy workers for the 
duration of the superstep by listening to the coordination service events and 
takes corrective actions if they fail.

	 2.	 Assign graph partitions to the healthy workers. This is a dynamic assignment for 
a given superstep and may change in the next superstep based on worker load 
and other considerations. If any partition is assigned to a worker that doesn’t 
have the graph data for that partition in its local memory, the worker that owns 
the partition is in charge of sending graph data by issuing API calls re-creating 
the partition on a target worker. The partition data may also come from the 
checkpoint file if this superstep was restarted from a checkpoint.

	 3.	 Finalize the state of the aggregators from the previous superstep, and send them 
to the new worker owners. This is the last step in the two-phase distributed 
aggregator management. At this point the master has done the final aggregation 
and is ready to send the values back for further aggregation during the current 
superstep. See the section “Worker Services” below for the worker side of the 
two-phase distributed aggregator implementation.

	 4.	 If the current superstep is an input superstep (a fake superstep that is needed 
to make workers load the initial graph data from input splits), coordinate the 
loading of vertex and edge data. This is accomplished by partitioning the data 
files into input splits and writing the mapping of input splits to workers to the 
coordination service. The workers watching updates in the coordination service 
will notice that the mapping belonging to them is available and will interpret that 
as a signal to start loading the data.

	 5.	 Wait for all the workers to finish processing the current superstep. If any of the 
workers fail while processing the current superstep, attempt to restart from 
a checkpointed state. If that is successful, the next iteration of the superstep 
loop will assume that the previous superstep was the one restored from a 
checkpointed state.

	 6.	 If the checkpoint frequency is met, wait for all the workers to checkpoint 
their state, and then finalize the checkpointing process globally (including 
checkpointing the aggregators).

	 7.	 At this point, assume that all the workers have successfully completed the current 
superstep and it is safe to collect the values of the aggregators assigned to them.

	 8.	 Once all the aggregator values are collected and the global state of the 
aggregators (as stored in the active master’s memory) is brought up to date, call a 
master compute’s compute() method.

	 9.	 Determine whether it is time to stop the entire computation. To do so, first 
check whether an external flag was set in a coordination service, signaling to 
halt the computation for an arbitrary reason. If it wasn’t, check whether all the 
vertices voted to halt and there are no more messages pending to be delivered 
to the vertices. Finally, check whether more supersteps have happened than a 
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maximum number of supersteps allowed for this application (you can set a value 
for this using the giraph.maxNumberOfSupersteps property). If any of these 
conditions are true, record the fact that the computation has been halted in the 
global statistics for this job, and bail out of the superstep loop.

	 10.	 Publish the aggregated application state into the coordination service.

	 11.	 Depending on the value of giraph.textAggregatorWriter.frequency, check 
whether it is time to output the state of all the registered aggregators. If it is, call 
the supplied AggregatorWriter implementation.

Once the superstep loop is over, the only thing left for the master to do is to call the cleanup routine 
BspServiceMaster.cleanup(). All the master processes should signal that they are done by posting a 
special kind of note to a coordination service. When the number of notes equals the number of partitions for 
workers and masters, the master cleans up the global state associated with a job. This is how a global barrier 
is implemented with the help of a coordination service.

Getting back to the example application, there are always exactly two master services running: one 
active and one standby. Should the active master fail, the standby resumes coordination activities. As long as 
the master is active, its superstep loop goes through the steps outlined in Figure 6-7.
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Figure 6-7.  Example application’s active master superstep loop
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Worker Services
The key function of a worker service in a Giraph application is to manage the state of a few graph 
partitions assigned to it by the master. Just as with the master, the lifecycle of a worker is managed by the 
GraphTaskManager.execute() method orchestrating calls to the API methods exposed by the object of the 
BspServiceWorker class, which provides the bulk of the implementation.

Each worker service operates under the same resiliency constraints that masters operate under. Worker 
failure is a norm in a Giraph application, and the worker algorithm should be designed with that possibility 
in mind.

The algorithm consists of two phases: the setup phase and a superstep loop phase. The setup phase is 
mostly concerned with loading initial graph data into the memory of all the workers. The key steps of how it 
happens are outlined in Figure 6-8.
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Figure 6-8.  Setup phase of the worker service lifecycle

Not surprisingly, BspServiveWorker.setup() provides the implementation of a setup phase, which, 
before it loads the data, checks whether setup() was called as part of restarting the failed superstep. If that’s 
the case, it loads the state from the checkpoint and bails, because the reset of the setup() machinery only 
applies when the entire Giraph application is initialized for the first time:
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	 1.	 Start a fake superstep that does no computation but instead waits for the master 
to calculate input splits and then loads the slice of input data that is assigned 
to this worker. Internally, this superstep is called INPUT_SUPERSTEP and has a 
numeric ID of -1. An important note about loading input splits is that in general, 
you shouldn’t expect the input data from a split assigned to the worker to 
generate vertices belonging to one of the graph partitions assigned to the same 
worker. Thus, a worker loading vertex and edge data is virtually guaranteed to 
generate network traffic, sending messages to other workers and requesting them 
to create vertices in their partitions.

	 2.	 Keep loading data and creating new vertices or edges as long as unprocessed 
input splits remain. The two classes VertexInputSplitsCallable and 
EdgeInputSplitsCallable provide an implementation of this functionality.

	 3.	 When there are no splits left to process, signal that this worker is done by 
posting a message to the coordination service, and wait for the other workers 
to finish. This is necessary because it allows a worker that is finished to still 
receive network API calls and update its partitions with the vertices loaded by 
workers still processing their input splits. The fact that all workers are finished is 
recognized by the master and reflected in the coordination service.

	 4.	 When the master has signaled that all workers are finished loading their data, do 
a few housekeeping tasks: create the remaining partitions owned by this worker 
(the ones for which no input data has arrived), and finalize mutations deriving 
from requests to add edges to the vertices belonging to partitions managed by 
this worker.

	 5.	 Wait for the master to signal that the fake INPUT_SUPERSTEP has completed and 
all the vertices are ready to move into the superstep loop.

Once all workers are ready to transition to the superstep loop, they do so at once and enter the main 
computational loop of the Giraph application. This worker service superstep loop cycles through the 
following steps as long as supersteps remain:

	 1.	 Prepare for the current superstep by calling BspServiceWorker.startSuperstep().  
This combines all API requests received during the previous superstep and 
mutates the graph partitions accordingly (adding, removing, and updating 
vertices, and so on). It also waits until master is finished rebalancing the 
partitions between workers and returns this worker’s partition assignment.

	 2.	 Based on the current partition assignment, the worker may have to push some 
of its partitions to the workers they were assigned to. It does so by calling 
BspServiceWorker.exchangeVertexPartitions(). The method makes sure not 
to return until all of the worker’s dependencies are finished sending their data 
to it. As usual, the worker signals completion of pushing its own data by sending 
a message to the coordination service; it relies on the master to aggregate those 
messages and signal when the entire worker collective is done exchanging graph 
partitions.
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	 3.	 Check whether this superstep is supposed to be loaded from a checkpointed 
state or whether, instead, it is time to save the current state into a checkpoint 
(as signaled by the checkpointFrequencyMet() method). The implementation 
of both actions is provided by two complementary methods defined in 
BspServiceWorker: loadCheckpoint() and storeCheckpoint().

	 4.	 Call the BspServiceWorker.prepareSuperstep() method, which is currently 
mostly concerned with synchronizing the state of the aggregators owned by this 
worker and the rest of the workers. In this step, the worker fetches the state of the 
aggregators it manages from the master and blocks until they are pushed to all 
the other workers.

	 5.	 Call compute() for all the vertices belonging to partitions managed by 
this worker. Iterate over all the vertices, but only call compute() for those 
that either are not halted or have messages available. This is done in a 
multithreaded fashion, with threads using the ComputeCallable class as an 
implementation for the task that needs to be added to the task queue and later 
executed.

	 6.	 Call the BspServiceWorker.finishSuperstep()method, which does all the 
necessary work to complete the current superstep and then blocks, waiting 
for the master to signal that all the workers are ready for the next superstep 
to begin. As part of this step, all the aggregators that ended up having a value 
assigned to them as part of this worker are sent to their rightful owners (the 
owners are picked dynamically by the master). Then, wait to receive values of 
the aggregators that are managed by this worker from all the other workers. Once 
that is done, aggregate them one final time and push them back to the master. 
The last bit of housekeeping, performed by the finishSuperstep() method, is to 
reflect the statistics from the current superstep in a coordination service. This is 
needed to keep track of what’s happening on what worker for observability and 
load-balancing reasons.

	 7.	 Because the previous step makes the global Giraph statistics available to each 
worker, the superstep loop continues to the next superstep, provided there are 
active vertices left in the graph.

Once again, if you turn to the example application, each worker (once it enters the superstep loop 
phase) goes through the set of transitions outlined in Figure 6-9.
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Figure 6-9.  Setup phase of the worker service lifecycle

The worker superstep loop is the central process driving the execution of every Giraph application. 
Most of the steps are pretty easy to follow, and the only part worth reiterating is the implementation of 
sharded aggregators. Steps 4 and 6 are the key to understanding how sharded aggregators work.

First, during each superstep, values provided to the aggregators are partially aggregated by the workers 
locally. No network API calls are involved. Once the superstep is done, all of these partially aggregated values 
coming from different workers need to be aggregated once more, and the resulting value must be made 
available to MasterCompute.compute(). One option is to let the master manage all the aggregators because 
their value needs to end up there anyway. This simple approach unfortunately doesn’t scale if an application 
uses a lot of aggregators; it turns the master into a bottleneck from both the computation and network 
communication standpoints.
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The approach that Giraph takes is to dynamically shard the aggregators between the workers in the 
cluster. Here’s how it works: when the superstep ends, each aggregator is assigned to one of the workers, 
and that worker becomes responsible for receiving partially aggregated values from its neighbors. It is also 
expected to push the final aggregated value back to the master. That way, the master doesn’t need to perform 
any aggregation, and it always receives one final value for each aggregator. Once the values are received by 
the master and it is finished executing MasterCompute.compute(), the only worker to which that master 
sends each value is the owner of that aggregator. As a final step, the owners are expected to distribute these 
values to their neighbors.

Coordination Services
As noted earlier, a coordination service is not implemented by Giraph. The implementation comes from a 
stand-alone Apache ZooKeeper project. Still, it is important to understand the APIs it offers and how masters 
and workers use them. Most of the data that Giraph puts into a ZooKeeper is permanent, so knowing the 
details of how Giraph externalizes its state can be an invaluable tool for debugging failed applications. And 
if you want to make it even easier to observe and diagnose running Giraph applications, run them with an 
external ZooKeeper ensemble (by setting the giraph.zkList property) instead of relying on Giraph to spin 
up coordination services on demand. By running with an external ZooKeeper ensemble, you can inspect the 
internal state of the coordination service (and thus the internal state of your Giraph application) whenever 
you like, as opposed to only while the application is running.

One of the key properties of ZooKeeper is that the service it provides is highly available. The way it is 
implemented requires that all nodes that are part of the ZooKeeper ensemble know the network addresses 
(hostnames and ports) of every other node that is part of the same ensemble. That way, they can make 
the best effort to synchronize the common state between as many nodes as possible. ZooKeeper clients 
(remember, Giraph is only a ZooKeeper client) talk to only one ZooKeeper node at a time. But even the client 
has to know the network addresses of as many nodes in the ZooKeeper ensemble. After all, if the node the 
client is currently talking to goes down, the client has to know where to reconnect.

As long as Giraph uses an external ZooKeeper service, the network addresses of all the nodes in the 
ensemble are passed to the worker and master services as a static, comma-separated list specified via the 
giraph.zkList property. If, on the other hand, Giraph needs to spin up a coordination service on demand, 
it can no longer know in advance what nodes in the cluster those services will be instantiated at. It is a 
curious chicken-and-egg problem: Giraph needs ZooKeeper to store all the information that must be shared 
between services running on different nodes, but the network addresses of the ZooKeeper nodes are exactly 
the kind of information that need to be stored in ZooKeeper. It seems as though Giraph needs ZooKeeper to 
be able to bootstrap ZooKeeper. How do you avoid this infinite regression?

Giraph uses another storage substrate that all Giraph services know how to access: HDFS. Although 
most of the time HDFS is an extremely poor choice for keeping small files that need to be frequently 
updated, it is OK to use it on a case-by-case basis. That is exactly how Giraph uses it. It records the network 
addresses of the ZooKeeper ensemble nodes as names of HDFS files. The exact location where it stores these 
files is set by the giraph.zkManagerDirectory property; the default value is _bsp/_defaultZkManagerDir 
(note that because the default value has a relative, not absolute, path name, it is rooted under the home 
directory of the user running the job).

Now that you know how bootstrapping the ZooKeeper ensemble works and how master and worker 
services are enabled to connect to it as clients, let’s see what ZooKeeper client APIs they use. From a client 
perspective, ZooKeeper offers a filesystem-like hierarchical API with a namespace structured as a tree 
of nodes (each node in a tree, including inner nodes, is called a znode), with every node answering to a 
small set of API calls. Each znode in the hierarchy can hold some data, be a parent node to other nodes, or, 
unlike in any of the filesystems, do both. ZooKeeper is designed for coordination, which typically requires 
small chunks of data stored in znodes (the amount of data is capped at 1MB). All APIs are atomic, which 
means clients receive either all the data or none of it. When a client creates a znode, it may elect to declare 
the znode to be ephemeral and thus guarantee that it is visible only as long as the client that created it is 
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connected to ZooKeeper. If the node is not ephemeral, it is considered to be persistent, and an explicit delete 
call would be required to remove it from the tree. Both types of znodes can have an additional property of 
being sequential (thus ZooKeeper znodes fall into one of four categories: ephemeral, ephemeral sequential, 
non-ephemeral, or non-ephemeral sequential). A sequential znode’s name is derived from the initial name 
supplied as part of the create API call and the sequence number ZooKeeper assigns it. So, if multiple clients 
try to create a sequential znode with the same path name, each of them will end up creating a unique znode 
with ordering guaranteed by the ZooKeeper service. Finally, clients can register watches that are triggered 
when other clients perform certain types of operations on the tree of znodes. Events such as creation, 
deletion, and modification can be tracked that way.

INSPECTING THE ZOOKEEPER ZNODES TREE

By default, Giraph doesn’t provide any tools to inspect the tree of znodes it maintains in the ZooKeeper 
service. It is highly recommended that you download and install Apache ZooKeeper separately and 
use the command-line utility zkCli.sh or zkCli.cmd to browse the file tree. The only command-line 
argument you need to supply is –server. This is the comma-separated list of ZooKeeper ensemble 
nodes that the client connects to. Once the client is started, it behaves similarly to an ftp client. Type 
help to get a quick overview of supported commands.

Giraph keeps all of its coordination metadata and internal state data rooted under the _hadoopBsp 
znode. By default, it is created directly at the root of ZooKeeper’s hierarchy, but you can also instruct Giraph 
to root it at a subtree by setting the giraph.zkBaseZNode property. For example, setting giraph.zkBaseZNode 
to a value of /giraph/examples results in a running Giraph application creating the set of znodes shown in 
Listing 6-1.

Listing 6-1.  Inspecting the Znode Tree of a Running Giraph Application Using the  
zkCli.sh Command-Line Utility

$ zkCli.sh –server zknode.cluster
[zk: localhost:2181(CONNECTED) 0]  ls –R /giraph/examples
 
/giraph/examples/_hadoopBsp/job_local1896501187_0001
/giraph/examples/_hadoopBsp/job_local1896501187_0001/_applicationAttemptsDir
/giraph/examples/_hadoopBsp/job_local1896501187_0001/_applicationAttemptsDir/0
....
/giraph/examples/_hadoopBsp/job_local1896501187_0001/_masterElectionDir
/giraph/examples/_hadoopBsp/job_local1896501187_0001/_masterElectionDir/
localhost_00000000000
/giraph/examples/_hadoopBsp/job_local1896501187_0001/_masterJobState
/giraph/examples/_hadoopBsp/job_local1896501187_0001/_vertexInputSplitDir
/giraph/examples/_hadoopBsp/job_local1896501187_0001/_vertexInputSplitDir/0
....
/giraph/examples/_hadoopBsp/job_local1896501187_0001/_vertexInputSplitDoneDir
/giraph/examples/_hadoopBsp/job_local1896501187_0001/_vertexInputSplitDoneDir/localhost_0
/giraph/examples/_hadoopBsp/job_local1896501187_0001/_vertexInputSplitsAllDone
/giraph/examples/_hadoopBsp/job_local1896501187_0001/_vertexInputSplitsAllReady
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As you can see, Giraph exposes a treasure trove of information in the ZooKeeper state it maintains. 
An obvious implication of this is help with debugging; a less obvious one is integration with external 
applications that may need to track the progress of running Giraph applications. Keep in mind that the 
location and content of Giraph znodes are considered internal APIs of Giraph and may change without 
notice between releases. Figure 6-10 gives you a complete view of a hierarchy of znodes used by various 
Giraph services for coordination and metadata management.

All the znodes from the example are rooted under /giraph/examples/_hadoopBsp/
job_1394131425944_0001. This common prefix was determined by the giraph.zkBaseZNode setting and 
the ID of a graph-processing job currently run by Giraph. Under that common root are roughly five different 
classes of znodes, color-coded according to the function they serve. Magenta znodes (names starting with 
_vertexInputSplit) are used to coordinate workers processing splits. Yellow znodes (names starting with 
_edgeInputSplit) are used for the same purpose when edge-split processing is requested. For both of these, 
the postfix of the znode name determines what it is used for:

•	 _vertexInputSplitDir and _edgeInputSplitDir contain paths to the input splits 
written by the master.

•	 _vertexInputSplitDoneDir and _edgeInputSplitDoneDir contain paths to the 
vertex input splits that have been fully processed.

•	 _vertexInputSplitsAllReady and _edgeInputSplitsAllReady contain paths to the 
vertex input splits ready to be processed by workers.

•	 _vertexInputSplitsAllDone and _edgeInputSplitsAllDone contain paths to the 
finished vertex input splits, to notify the workers that they should proceed.

Using these four znodes, you can create a fault-tolerant work-sharing scheme with an active master 
coordinating the processing and assignment of edge and/or vertex input splits as part of creating the initial 
graph topology. Green znodes are used for electing the active master (_masterElectionDir) and also for 

/giraph

examples

_hadoopBsp

job_1394131425944_0001

_edgeInputSplitDir_vertexInputSplitDir

_vertexInputSplitDoneDir

_vertexInputSplitAllReady

_vertexInputSplitAllDone

_workerHealthyDir _workerUnhealthyDir _workerFinishedDir _workerWroteCheckpointDir _addressesAndPartitions _superstepFinished

node1.domain node2.domain

_edgeInputSplitDoneDir

_applicationAttemptsDir

0

-1

_superstepDir

node2.domain_00000000001node1.domain_00000000000

_masterElectionDir _masterJobState

jobState_0000000001

_haltComputation _cleanedUpDir

_edgeInputSplitAllReady

_edgeInputSplitsAllDone

/giraph

00

_checkpointAndStop

00

_partitionExchangeDir

0

Figure 6-10.  Tree of znodes used by various Giraph services for coordination
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keeping the global, master-specific job state in a safe location (_masterJobState) in case an active master 
dies. Violet znodes are used to signal from the client side to stop the current graph-processing job and also to 
track worker cleanup activities:

•	 _haltComputation: A client setting this global flag can signal Giraph to halt the 
computation regardless of whether it should be halted naturally. This is the quickest 
way to abort the job without attempting to save anything.

•	 _checkpointAndStop: A client setting this global flag can signal Giraph to do the 
checkpointing of its current state and then halt the computation. This is a graceful 
way to stop the job.

•	 _cleanedUpDir: This znode denotes which workers have been cleaned up.

Finally, blue znodes are the heart of graph processing. Each graph-processing application goes through 
a number of attempts to run a given graph-processing job the same way a Hadoop MapReduce execution 
goes through a certain number of attempts to run a mapping phase before declaring a failure. All the 
attempts are tracked under the znode path _applicationAttemptsDir/<attempt ID>. Within each attempt’s 
znode, _superstepDir tracks supersteps by ID (starting from -1). During each superstep, the master 
coordinates the progression of work among workers and rebalances the graph partitions. The following 
znodes are used to do that:

•	 _workerHealthyDir and _workerUnhealthyDir are used to partition workers (nodes) 
in the cluster into a set that can be assigned work and a set that needs to be skipped 
for work assignment. Each worker can be assigned to one or the other.

•	 _workerFinishedDir and _workerWroteCheckpointDir contain znodes of workers 
that are either done with the current superstep or done checkpointing the state of the 
current superstep, if checkpointing is enabled.

•	 _addressesAndPartitions is used for tracking master and worker addresses and 
partition assignments.

•	 _partitionExchangeDir helps coordinate the partition exchange between workers.

•	 _superstepFinished flags this superstep as finished.

Most of the time, the Giraph implementation doesn’t interact with ZooKeeper client APIs explicitly, and 
instead wraps all API calls into methods provided by the ZooKeeperExt class. This class not only acts as a 
façade for ZooKeeper client APIs but also provides extended functionality such recursive path creation and 
non-atomic operations.

The majority of znodes created by Giraph fall under the category of regular (non-ephemeral, non-
sequential) znodes; working with them is very similar to working with files in a regular filesystem. There are, 
however, a few exceptions when Giraph needs to use the APIs provided by the ephemeral and sequential 
flavors of znodes:

•	 Depending on whether they consider themselves healthy, workers create ephemeral, 
non-sequential znodes (named according to the hostname the worker is running on) 
under either the _workerHealthyDir or _workerUnhealthyDir znode. Giraph offers 
a hook for defining the criteria of what makes a node unhealthy however default 
implementation always returns health status for any node as healthy. Because 
these znodes are ephemeral, ZooKeeper guarantees that when a worker dies, a 
znode associated with it will disappear as well, and an active master will be notified 
because it maintains a watch over the two locations.
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•	 Workers processing splits assigned to them by the master put the claim on the work 
that needs to be done by creating an ephemeral, non-sequential znode with a name 
corresponding to the input split assigned to them. When a worker fails, its work 
reservation znode disappears, allowing other workers to claim its previously read 
splits.

•	 Different master services place a bid to become an active master by creating an 
ephemeral, sequential znode under _masterElectionDir. Once the bids are placed, 
ZooKeeper imposes total ordering on the file names. The master whose bid has 
the smallest ID in that order proceeds under the assumption that it can now act as 
an active master. The rest of the masters block, watching over the children of the 
_masterElectionDir znode. Whenever an active master dies, its ephemeral znode 
is automatically removed by ZooKeeper. This, in turn, wakes up all the candidate 
masters. The candidate master with the smallest sequential ID associated with its bid 
assumes the duties of an active master.

•	 An active master service maintains periodic snapshots of the global state of the 
entire Giraph job by writing it out to a persistent (non-ephemeral), but at the same 
sequential, znode named _masterJobState/jobState_XXX. This guarantees that the 
master never overwrites the previous state, but keeps creating additional snapshots 
with increasing IDs. This snapshot of the internal state is used during recovery from 
a master failure.

This concludes the review of the design and implementation of each of the three services: masters, 
workers, and coordinators. So far, the chapter has focused on the normal execution path and has not spent 
much time covering fault-tolerance considerations. This is the subject for the rest of the chapter.

Fault Tolerance
As mentioned earlier, much of the Giraph architecture is dictated by the need to effectively address the 
issues captured by the fallacies of distributed computing. The biggest one often is the fact that at Giraph’s 
typical operating scale, nothing can be assumed to be reliable.

HOW OFTEN DOES IT BREAK?

Everybody knows Google is an authority on managing the world’s information. What’s less well known 
is that based on its track record of building and operating large datacenters, Google has become one 
of the leading authorities on datacenter buildout and maintenance. The company is extremely careful 
about the design of everything that goes into its datacenters, but even Google, according to Google 
Fellow Jeff Dean (in his “Software Engineering Advice from Building Large-Scale Distributed Systems” 
talk), sees a lot of things go wrong.

In each cluster’s first year, it’s typical for 1,000 individual machine failures to occur; along with 
thousands of hard drive failures. One power distribution unit will fail, bringing down 500 to 1,000 
machines for about 6 hours; 20 racks will fail, each time causing 40 to 80 machines to vanish from the 
network; 5 racks will “go wonky,” with half their network packets missing in action; and the cluster will 
have to be rewired once, affecting 5% of the machines at any given moment over a 2-day span, Dean 
says. And there’s about a 50% chance that the cluster will overheat, taking down most of the servers in 
less than 5 minutes and requiring one or two days to recover.
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So far in this chapter, you have seen many techniques employed by Giraph to withstand various failure 
scenarios. This section looks at those scenarios and reviews the steps Giraph must go through to recover 
from disk failures, node failures, and network failures.

Disk Failure
As mentioned, Giraph is not concerned with managing storage. It does, however, interact with various 
storage layers to accomplishing the following goals:

•	 Reading the initial graph data and possibly outputting the final graph data at the 
end of the application run. Most of the time, the data comes from HDFS; but with 
an increased number of Giraph input/output formats available for other storage 
frameworks, the HDFS may be out of the picture.

•	 Storing checkpoints of each vertex state during the computation. Unlike with input/
output formats, which provide unlimited flexibility for connecting Giraph to various 
data sources, when it comes to checkpoints, flexibility is very limited. Currently, the 
Giraph implementation can only use Hadoop-compatible filesystems, but most of 
the time stock HDFS is used.

For both use cases, what happens when a disk fails depends a great deal on what storage substrate is 
being used. In the case of a correctly deployed and configured HDFS, Giraph will not notice a failure rate 
of a few disks per day. HDFS is specifically designed to cope with those types of failures behind the scenes 
and mask them from the client. This is accomplished by making copies of all the data on at least three nodes 
(one on the same server rack and one on a different server rack). As far as metadata (a mapping between 
file names and blocks) is concerned, it is also typically stored in a few alternative locations. This makes 
Giraph checkpoints and the input/output formats operating on storage frameworks riding on top of HDFS 
(HBase, Hive, and so on) extremely reliable and oblivious to the disk failure rate of a typical datacenter. On 
a correctly configured HDFS deployment, the failure of a Giraph application due to a disk failure requires a 
very improbable set of events (all three disks hosting the same block failing at the same time).

Of course, however improbable it is, it can still happen. In addition, there are input/output formats for 
non-HDFS backed storage frameworks. These frameworks may not be as tolerant to individual disk failures 
as HDFS is. Either way, if a disk fails and a storage framework cannot silently recover, the error is propagated 
to the level of Giraph. At that point, if the error was encountered while an input/output format was reading 
or writing the data, the application will fail with an error message.

Node Failure
Because nodes in a cluster typically host a collection of different services, a useful way to analyze what 
happens when a node fails is to look at what happens when a particular service fails. That way, a failure 
of a single node can be viewed as a complex event consisting of a simultaneous failure of all the services 
hosted by it.

Giraph Master Failure
A master service can be in one of two states: it can be blocked on a bid to become an active master, or 
it can function as one. The master service that is blocked on a bid doesn’t have any internal state. Thus, 
when it fails, the only event of any significance is that the znode advertising its bid for becoming an active 
master disappears from the coordination service. There is no internal state to recover (because a blocked 
master doesn’t have any state), and additional master services can be spun up (and wait to become active) 
very easily.
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A failure of an active master is more complex. If an active master fails, its ephemeral, sequential znode 
disappears as well, and that event wakes up all the master services blocked on a bid to become active. One 
of those master services will discover that its znode is now the first child of _masterElectionDir and will 
proceed to become an active master (the rest remain blocked on a bid). Because an active master keeps 
most of its state in a coordination service, a newly appointed active master doesn’t need to recover the state 
of the failed master. Even the aggregator values don’t need to be recovered, because they are fetched from 
the workers they are assigned to at the end of every superstep.

All in all, regardless of where an active master fails, a new active master can start from the beginning 
of coordinating the current superstep, fetch the state from the other services, and retrace all the steps just 
before the previous master failed.

Giraph Worker Failure
The purpose of the worker service is to manage the graph partitions and the aggregators assigned to it. This 
means, unlike a master service, a failed worker brings down quite a bit of unique state associated with it. The 
state is unique to each worker and is not redundant, and it would be undesirable for Giraph to have to restart 
an entire computation because of one failed worker. Fortunately, as mentioned earlier in this chapter, you 
can protect a long-running computation against this risk by using checkpoints.

Before you go any further with checkpoints, recall that a worker service goes through two phases: a 
split-loading phase and a superstep loop. During the split-loading phase (designated as a fake superstep 
with ID -1), each worker is tasked with loading initial graph data, turning it into vertices and/or edges, 
and sending those objects to an owning worker via network API calls. Each worker tries to load as many 
input splits as possible. The master monitors overall progress and waits for all the input splits to be loaded 
and (possibly) checkpointed on the receiving worker. If any worker fails during the split-loading phase, 
the master aborts the entire application run. This approach means there’s no need for a special recovery 
mechanism during the split-loading phase.

After the split-loading phase, each worker transitions into the superstep loop. If checkpoints are 
enabled, you are guaranteed to have the initial graph data safely stored in HDFS. From that point on, 
whenever a healthy worker fails, its ephemeral znode disappear from _workerHealthyDir and an active 
master is notified by the coordination service. On receiving this notification, the active master declares the 
current superstep as failed, immediately restarts its own superstep loop from the last checkpointed one, 
and instructs all the healthy workers to load the state corresponding to that last checkpointed superstep. 
Once that is done, the computation continues, and the current superstep is the last checkpointed superstep 
plus one. Of course, if checkpoints are not enabled, the loss of even a single worker will mean an entire 
application run will terminate immediately and be marked as a failure.

ZooKeeper Service Failure
ZooKeeper is architected to be resilient to the failures of the individual nodes participating in its ensemble 
by reliably replicating its state to the majority of nodes. It also guarantees a reliable process for nodes to 
rejoin the ensemble after they go down or are cut off from the rest of the service. As long as the majority of 
the nodes in the ensemble are available, the service will be available and consistent.

From a client perspective, a single ZooKeeper node failure triggers a connection loss event. But because 
clients are supplied with a list of all the nodes in the ensemble, they can try to reconnect to the nodes that 
are still functioning.

If Giraph uses an external ZooKeeper service, the number of nodes in the ensemble is predetermined 
and can’t be changed. If Giraph is managing its own coordination service nodes, you can control the size of 
the ensemble by setting the giraph.zkServerCount configuration property. The default value is 1, which 
doesn’t allow for any kind of recovery. If you have to run with a Giraph-managed coordination service, be 
sure to set it to at least 3. In general, it is wise to set it to an odd number, because an even number doesn’t 



Chapter 6 ■ Giraph Architecture

161

add much to the reliability of the overall service compared to the lower odd number. For example, if you set 
it to 4, ZooKeeper will tolerate at most one node failure (because if more than one node fails, the remaining 
one or two nodes won’t constitute a majority). This is no different from setting it to 3, which can also tolerate 
at most one node failure.

Network Failure
A network failure occurs when one node can no longer communicate with a subset of nodes in a cluster. 
A particularly nasty type of a network failure, known as network partitioning, happens when two subsets 
of cluster nodes can no longer communicate with each other but retain perfect communication abilities 
between the nodes in each subset.

Network failures affect Giraph in two major ways. First, network errors may prevent communication 
between the services (masters, workers, and coordinators) that form a running Giraph application. As you’ve 
seen in this chapter, the entire graph computation is done by master and worker services communicating via 
a set of network-enabled API calls. Masters and workers communicate with each other by using the Netty-
based implementation of NettyClient and NettyServer. In general, the NettyClient implementation 
tries to be as asynchronous as possible. The remote API calls made in a superstep are non-blocking and go 
into a queue of outstanding requests for asynchronous processing. The superstep is considered finished 
when the queue of outstanding requests is drained. This is accomplished by relying on the synchronization 
method waitAllRequests(), which blocks until all the outstanding API calls are finished. It doesn’t just 
passively block, though; it keeps polling for the status of outstanding requests with a frequency determined 
by the giraph.waitingRequestMsecs property (default value 15 seconds). Each API request sits in a queue 
of outstanding requests for not more than the time determined by the giraph.maxRequestMilliseconds 
property (default value 10 minutes). Any requests that take longer than that are considered to have 
failed and are resent. The size of the queue of outstanding requests is determined by the giraph.
maxNumberOfOpenRequests property (default value 10,000).

Because communication with the coordination service is not Netty based but relies on native 
ZooKeeper Java APIs, it works slightly differently and relies on a different set of timeouts and polling 
intervals. As you’ve seen, an object of class ZooKeeperExt manages a connection to a coordination service 
for both masters and workers. As part of its initialization, it expects to receive values for the following 
network-related ZooKeeper client settings:

•	 How long a connection can be in a failed state before the entire session with a 
ZooKeeper ensemble is declared to be timed out (set by the configuration property 
giraph.zkSessionMsecTimeout with a default value of 1 minute).

•	 How many times to retry connecting to a ZooKeeper ensemble before giving up (set 
by the giraph.zkOpsMaxAttempts property with a default value of 3).

•	 How much time to wait before retrying due to a connection loss. This timeout 
interval is controlled by two properties. The giraph.zkOpsRetryWaitMsecs 
property (default value 5 seconds) on the client side determines the timeout for 
the masters’ and workers’ connections to the ZooKeeper ensemble. The giraph.
zkServerlistPollMsecs property controls the same timeout for some internal 
operations and is also used for spinning up coordination service nodes on demand 
(instead of using a permanent ZooKeeper ensemble). Its default value is 3 seconds.

Finally, unbeknownst to Giraph, network-related failures may affect the internal state of the services 
it interacts with. For example, if you are using an external ZooKeeper ensemble and a network partition 
splits that ensemble in two, different masters and workers may end up interacting with different subsets of 
a single ZooKeeper ensemble. It is up to the ZooKeeper service to make sure it does whatever is necessary 
to present a consistent view of the world to all Giraph masters and workers. The last thing you want is an 
active master that has a different view of the workers than was reported by the workers themselves. This 
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could happen in a scenario where a few workers report back their state to part of a ZooKeeper ensemble that 
is currently partitioned away from the subset of the ensemble that the master is connected to. The reason 
it doesn’t happen has to do with how ZooKeeper combats network partitioning; describing the ZooKeeper 
implementation is outside the scope of this book.

Remember that whenever Giraph services are talking to external distributed services, they rely on those 
services to either report an error or maintain a fully consistent model of their world. In general, Giraph is not 
architected for interacting with eventually consistent services.

Summary
This chapter covered these topics:

•	 High-level architectural overview of the Giraph framework

•	 A detailed walkthrough of internal services that together form the Giraph 
implementation

•	 How Giraph uses Apache Hadoop for all low-level cluster-management tasks while 
remaining flexible enough to allow alternative cluster-management frameworks to 
be plugged in by putting Giraph business logic into a stand-alone GraphTaskManager 
class

•	 How Giraph uses the Apache ZooKeeper implementation for all its coordination 
tasks, and the overall structure of the znode tree that various Giraph services use to 
communicate with each other

•	 Review of failure scenarios and scalability challenges and how Giraph deals with 
them

The key takeaway from this chapter is that the Giraph architecture is fundamentally built around three 
types of internal network services (masters, workers, and coordinators) running in a distributed fashion and 
collectively orchestrating the work that needs to be done for each superstep:

•	 Workers are defined by two phases: a setup phase and a superstep loop phase, each 
of which deals with working on a particular partition of either input data or graph 
data assigned to every worker by the active master.

•	 Masters play a central role in coordinating worker partition assignments (for both 
input data and graph data) and also coordinating worker transitions from phase to 
phase and from superstep to superstep.

•	 Coordinators form a ZooKeeper ensemble and let masters and workers coordinate 
with each other while also tracking the overall composition of roles in the Giraph 
service assignment.

Throughout this chapter, you have looked at various “knobs” specific to each of the services and how 
different setting for these knobs affects the overall execution of a Giraph application (such as setting the 
number of masters via giraph.zkServerCount or specifying a checkpoint interval by setting a non-zero 
value for giraph.checkpointFrequency). Overall, the Giraph implementation is extremely tunable; to 
understand the ways you can change its behavior, you have to dig into Giraph’s source code (start with 
GiraphConstants) or consult the manual at http://giraph.apache.org/options.html.

Although this chapter is heavy on technical details, it provides an important overview of the internals 
of the Giraph implementation—something that comes in handy any time you need to debug or tune a 
Giraph application. One thing you haven’t spent much time on is how Giraph interacts with external storage 
frameworks by using its flexible input/output format extensions. This is the focus of the next chapter.

http://giraph.apache.org/options.html
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Chapter 7

Graph IO Formats

This chapter covers

•	 Graph representations

•	 Reading input graphs in different formats

•	 Saving the result of your analysis

So far, you have familiarized yourself with the concept of graphs and their constituents—vertices and 
edges—through a variety of use cases. In Chapter 5, you learned how Giraph uses the corresponding Vertex 
and Edge objects to represent a graph and to programmatically manipulate Vertex and Edge objects and 
compute useful graph metrics. But before Giraph creates Vertex and Edge objects for you to use, a graph is 
stored on a storage system in different formats: for instance, plain text files or a binary format. Similarly, you 
may require the result of a Giraph computation to be stored in different output formats.

In this chapter, you learn about the tools Giraph provides for reading input graphs and writing output, 
called input formats and output formats, respectively. Giraph uses input formats to convert an input graph 
into Vertex and Edge objects that you can then manipulate programmatically; it uses output formats to save 
the result of your analysis. When you launched your first Giraph job in Chapter 5, you were already using 
specific implementations of the input and output formats. Here, you get to know in detail how input and 
output formats work.

More important, you learn how to write your own input and output format implementations. Because 
graphs may be stored in different ways, it is difficult to provide an input format suitable for every possible 
storage system or graph format. Giraph exports a programming interface that you can implement to build 
support customized to your specific scenario. This chapter first discusses the different ways graphs can be 
represented and then teaches you how to implement input and output format interfaces to read graphs and 
output results in various formats. At the end of this chapter, you will have completed your knowledge of 
the basic features of the Giraph API and will be ready to move to more advanced features: reading graphs, 
computing, and outputting the result of your computation.

Graph Representations
Before diving into the details of the Giraph API, you first need to understand the ways you can represent 
graphs to store them in a storage medium such as a disk. Until now, this book has discussed graphs 
abstractly and with the help of two-dimensional figures. Let’s borrow the example of the Twitter social 
graph from Chapter 3, shown here in Figure 7-1, and enrich it with extra information to make it a bit more 
interesting. This example graph is used throughout the chapter.

http://dx.doi.org/10.1007/978-1-4842-1251-6_5
http://dx.doi.org/10.1007/978-1-4842-1251-6_5
http://dx.doi.org/10.1007/978-1-4842-1251-6_3
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In the example graph, every vertex corresponds to a Twitter user and is labeled with a name: the vertex 
ID. An edge from user A to a user B signifies, in this case, that A follows B on Twitter. Although vertices and 
edges are the basic constituents of a graph, in most cases you want to associate interesting information, 
or metadata, with vertices and edges. In the case of a social network, a vertex may be associated with user 
profile information. Here, the vertices have an associated user age. As you may have already observed, this 
corresponds to the Vertex value you learned about in Chapter 5. Every edge also has an associated number, 
which denotes how many times a user mentions another user; this corresponds to an Edge value.

It is easy to conceptualize a graph for this image; but to store this graph on a disk, you must break it 
into pieces of information in such a way that you can later reconstruct the original graph. The typical way 
to store a graph is by storing information about the vertices—a vertex-based representation—or by storing 
information about the relations among the vertices—an edge-based representation.

In a vertex-based representation, a graph is defined by a collection of per-vertex information. The 
adjacency list is one of the most common vertex-based graph representations. In its simplest form, an 
adjacency list is a collection of lists, where each list corresponds to a vertex and contains the vertex’s 
neighbors. For example, Figure 7-2 shows the adjacency list that represents the Twitter graph from Figure 7-1. 
Each list corresponds to user, and the vertices in the list correspond to the Twitter accounts the user follows.

Figure 7-1.  An example Twitter graph. Vertices represent users, and an edge from vertex A to vertex B denotes 
that user A follows user B. The vertex value represents the age of a user, and the edge value represents the 
number of mentions from user A to user B

Figure 7-2.  A vertex-based representation of the Twitter graph

http://dx.doi.org/10.1007/978-1-4842-1251-6_5
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Notice that the adjacency list provides exactly the same information as Figure 7-1, but in a different 
form. With this form, you break down the graph into per-vertex information that you can easily store.

Often, a graph is described not by its individual vertices, as in the previous example, but by the 
relations that exist between vertices. In this edge-based representation, a graph is defined by the set of 
edges, possibly accompanied by edge metadata. Figure 7-3 shows how you can represent the same Twitter 
graph by breaking it into per-edge information. Notice that an edge-based representation does not contain 
any information about the vertices themselves. If you try to reconstruct the Twitter graph from the edge 
information, in the end you will be missing the vertex information. In general, an edge-based representation 
is more suitable when you want to describe the structure of the graph through the relations among vertices.

You are likely to come across various representations in your encounters with graph data. In some 
cases, you choose the representation to use to store the graph data, and in other cases, you have to access 
graph data that’s organized for you. For instance, a vertex-based representation may be preferred over 
an edge-based one because it takes up less space on disk. Other times, you want to store vertex-specific 
information, such as user profile information in a social network, in which case a vertex-based format fits 
more naturally than an edge-based format.

Different representations must be handled in different ways when it comes to creating Vertex and Edge 
objects from them. For example, in a vertex-based description, you can reconstruct a Vertex object just by 
looking at an individual piece of information such as a table row in a database describing a user in social 
network. In contrast, in an edge-based representation, you need to look for and put together various pieces 
of information to reconstruct a Vertex object. This seems easy in pictures, but it becomes challenging when 
you have to deal with terabytes of distributed graph data—imagine trying to do this manually. The following 
sections examine how Giraph makes it easier to handle graph representations without worrying too much 
about such details.

Input Formats
Regardless of the representation, a graph may be stored in different storage systems, and possibly distributed 
in different formats. Giraph provides tools called input formats that simplify the task of reading an input 
graph. An implementation of an input format is essentially a way to specify how to read data from a storage 
system and then how to convert the data to the familiar Vertex and Edge objects. Giraph exports a simple 
API that you can implement to support new types of storage systems and formats. Giraph, in turn, is 
responsible for doing the hard work for you.

Figure 7-3.  An edge-based representation of the Twitter graph
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The Giraph API for vertex-based graph representations is VertexInputFormat, and the API for  
edge-based graph representations is EdgeInputFormat. These are the most basic abstract classes you extend 
to implement new input formats. Giraph also provides more specialized APIs that support common storage 
systems and formats; for instance, one common format is adjacency lists stored as text files on the Hadoop 
Distributed File System (HDFS) or on HBase tables.

In general, you can either extend the basic API to write your own input format implementation that is 
customized to your application scenario, or you can extend an existing specialized API. In many cases, you 
do not have to implement an input format from scratch; it is very likely that one of the implementations 
provided by Giraph already serves your needs.

■■ Tip   You’re encouraged to look into the available input and output format implementations before creating 
your own. The Giraph code base is constantly being enriched, and you may find what you need there and save 
some time.

In other cases, you may have to extend one of the specialized text-based input formats that already 
implements most of the functionality for you. For instance, the TextVertexInputFormat handles details like 
locating files on HDFS and reading them line by line. Implementing this specialized API only requires you to 
specify how to parse a text line into a Vertex object.

Figure 7-4 shows a small sample of the vertex-based input format classes in the Giraph code base. It also 
shows how you can build functionality starting from the basic API. White boxes represent abstract classes 
that you can extend, and shaded boxes represent concrete implementations that already exist in the Giraph 
source code.

For instance, TextVertexInputFormat is an extension of VertexInputFormat specifically for input 
graphs stored as text files on HDFS. The AdjacencyListTextVertexInputFormat abstract class, in turn,  
can handle text formats where the graph is in the form of an adjacency list. You can find all these under the 
org.apache.giraph.io.formats package in the Giraph code.

In the rest of this section, you learn how to create input formats from scratch by implementing the  
basic APIs. This will give you the necessary knowledge to create your own input format when necessary. This 
chapter uses text-based formats as examples; in Chapter 9, you learn how to use the same API to implement 
support for more advanced systems and formats, such as HBase and Hive.

Figure 7-4.  Input format class hierarchy. Starting from the basic VertexInputFormat, every child class adds 
functionality and adds a specific type of format

http://dx.doi.org/10.1007/978-1-4842-1251-6_9
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Vertex-Based Input Formats
You start by seeing how to implement input formats for vertex-based graph representations. 
VertexInputFormat is the most basic API you can implement. Let’s look at how to extend this API step by 
step to implement an input format that can be used to read graphs in the form of an adjacency list stored as 
plain text files on HDFS, one of the most common input formats. Listing 7-1 shows what the adjacency list 
representing the Twitter graph would look like in a text file.

Listing 7-1.  Example Text File Describing the Twitter Graph

John 22 Peter 10
Mark 40 John 23 Anne 11
Jack 19 Mark 1 Anne 9
Julia 29 Mark 32 Natalie 4
Anne 31 Julia 20 Peter 35
Natalie 45 Peter 2 Anne 50 John 10

In this text input, every line contains a user, the user’s age, the people they follow, and how many times 
they have mentioned those followers. This implementation is called SimpleTextVertexInputFormat.

Giraph uses VertexInputFormat to split the input data into parts and then process each part to generate 
Vertex objects. Listing 7-2 shows the VertexInputFormat API.

Listing 7-2.  VertexInputFormat Abstract Class

public abstract class VertexInputFormat<
    I extends WritableComparable,
    V extends Writable,
    E extends Writable> extends GiraphInputFormat<I, V, E> {
      
  public abstract void checkInputSpecs(Configuration conf);
 
  public abstract List<InputSplit> getSplits(JobContext context,
      int minSplitCountHint) throws IOException, InterruptedException;
 
  public abstract VertexReader<I, V, E> createVertexReader(
      InputSplit split,
      TaskAttemptContext context) throws IOException;
}

Notice first that VertexInputFormat uses Java generics to declare as parameters type I of the  
vertex ID, type V of the vertex value, and type E of the edge value. Any implementation of this API, unless 
abstract, must specify these three types. Recall from Chapter 5 that Vertex objects and Computation 
implementations also require the same parameters. Before loading the graph, Giraph uses the information 
about the types to ensure that the types of the vertices your VertexInputFormat implementation creates 
match the types of the Computation.

In the example in Listing 7-3, the vertex IDs are names, so you use type Text to represent them. Vertex 
and edge values are the age and number of mentions, respectively, so you use IntWritable to represent 
them. Next, let’s get into the details of the API method-by-method through our example.

http://dx.doi.org/10.1007/978-1-4842-1251-6_5
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Listing 7-3.  An Example Text-Based VertexInputFormat Implementation

public class SimpleTextVertexInputFormat
    extends VertexInputFormat<Text, IntWritable, IntWritable> {
 
  public void checkInputSpecs(Configuration conf) { ... }      #1
 
  @Override
  public List<InputSplit> getSplits(JobContext context,
                                    int minSplitCountHint)
    throws IOException, InterruptedException {
 
    List<FileStatus> files = getFileList(context);           #2
    List<InputSplit> splits = new ArrayList<InputSplit>();
    for (FileStatus file : files) {                          #3
      Path path = file.getPath();                            #3
      long length = file.getLen();                           #3
      splits.add(new FileSplit(path, 0, length,              #3
          new JobConf(context.getConfiguration())));         #3
    }
    return splits;                                           #4
  }
 
  public VertexReader<I, V, E> createVertexReader(
      InputSplit split, TaskAttemptContext context) throws IOException {
    return new SimpleTextVertexReader();                      #5
  }
}

#1 Check the validity of the input.
#2 Get the list of files in the input path.
#3 For every input file, create a FileSplit object and add it to a list.
#4 Return the list of FileSplit objects created.
#5 Return an implementation of the VertexReader class.

The first method you have to implement is checkInputSpecs(). Giraph calls this method before it starts 
using the input format. Typically, the role of this method is to check whether the job configuration contains 
all the necessary information for the job to read the input graph. For instance, in this method you may check 
whether an input directory has been set in the configuration or whether the input directory exists.

The next method you must implement is getSplits(). It takes as input a JobContext object, which 
contains configuration information about the job such as the input directory, and returns a list of InputSplit 
objects. An InputSplit is a logical representation of a part of the input. For instance, a FileSplit implements 
the InputSplit interface to represents a file on HDFS; the InputSplit contains information about the file’s 
path, size, and location. In this example, the getSplits() method lists all the files in the input directory 
passed as a parameter in the job configuration and creates a FileSplit for every file.

TYPES INHERITED FROM THE HADOOP API

Just as in Chapter 5, notice that certain types, such as InputSplit, JobContext, and TaskAttemptContext,  
are inherited from the Hadoop API. But in most cases you don’t need to know the Hadoop details.

http://dx.doi.org/10.1007/978-1-4842-1251-6_5
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The most important method of the class is createVertexReader(), which returns an object extending 
the VertexReader abstract class. VertexReader is responsible for performing the actual processing of the 
data described by InputSplit. For every InputSplit returned by the previous method, Giraph creates a 
VertexReader object that processes the corresponding data and creates the Vertex objects that eventually 
form your graph. Figure 7-5 illustrates this entire process.

Figure 7-5.  Putting all the pieces together. VertexInputFormat splits the input into parts. VertexReader 
processes a part and creates Vertex objects

Now let’s look at the details of VertexReader and how to implement one. Listing 7-4 shows the methods 
defined in the VertexReader abstract class.

Listing 7-4.  The VertexReader Abstract Class

public abstract class VertexReader<I extends WritableComparable,
    V extends Writable, E extends Writable> extends
    DefaultImmutableClassesGiraphConfigurable<I, V, E>
    implements WorkerAggregatorUsage {
 
  public abstract void initialize(InputSplit inputSplit,
                                  TaskAttemptContext context)
    throws IOException, InterruptedException;
 
  public abstract boolean nextVertex() throws IOException,
      InterruptedException;
 
  public abstract Vertex<I, V, E> getCurrentVertex()
    throws IOException, InterruptedException;
  
  public abstract void close() throws IOException;
}
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In Listing 7-5, you implement SimpleTextVertexReader, which is responsible for reading the lines in a 
text file one by one and creating a Vertex object for each line. This example shows how to implement each of 
the VertexReader methods.

Listing 7-5.  An Example Text-Based VertexReader

public class SimpleTextVertexReader
 extends VertexReader<Text, IntWritable, IntWritable> {
   
  private RecordReader<LongWritable, Text> lineRecordReader;
  private TaskAttemptContext context;
 
  @Override
  public void initialize(InputSplit inputSplit, TaskAttemptContext context)
     throws IOException, InterruptedException {
     this.context = context;
    lineRecordReader = new LineRecordReader();                            #1
    lineRecordReader.initialize(inputSplit, context);                     #1
  }
 
  @Override
  public final boolean nextVertex()
        throws IOException, InterruptedException {
    return lineRecordReader.nextKeyValue();                               #2
  }
 
  @Override
  public final Vertex<Text, IntWritable, IntWritable> getCurrentVertex()
     throws IOException, InterruptedException {
 
    Text line = lineRecordReader.getCurrentValue();                       #3
    Vertex<Text, IntWritable, IntWritable> vertex =
         getConf().createVertex();                                        #4
    String[] words = line.toString().split(' ');                          #5
    Text id = new Text(words[0]);                                         #6
    IntWritable age = new IntWritable(Integer.parseInt(words[1]));        #7
 
    List<Edge<TextWritable, IntWritable>> edges = new ArrrayList();
    for (int n = 2; n < tokens.length; n=n+2) {
      Text destId = new Text(tokens[n]);                                  #8
      IntWritable numMentions =                                           #8
         new IntWritable(Integer.parseInt(tokens[n+1]);                   #8
      edges.add(new DefaultEdge(dstId, numMentions));                     #9
    }
    vertex.initialize(id, age, edges);                                   #10
    return vertex;
  }
 
  @Override
  public void close() throws IOException {
    lineRecordReader.close();                                            #11
  }
}
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#1 Create a line record reader to read text files.
#2 Check whether there are more lines to read.
#3 Get the current line.
#4 Create an empty vertex object.
#5 Split the line into tokens.
#6 The first token is the vertex ID.
#7 The second token is the vertex value.
#8 Parse the destination IDs and number of mentions.
#9 Create edge objects.
#10 Initialize the vertex object.
#11 Close the input file.

The first method you implement is initialize(), which Giraph calls immediately after creating but 
before it starts using VertexReader. Giraph passes as input to this method the InputSplit that the vertex 
reader will process and a TaskAttemptContext object that contains configuration information such as the 
HDFS input directory. In general, you use this method to set up VertexReader before for execution. In the 
example, you use this to initialize the local variables and create a LineRecordReader. LineRecordReader 
is a helper class that you borrow from the Hadoop API and use to read a text file on HDFS line by line. To 
keep the example simple, it omits the LineRecordReader details; you can always use it as is by passing it the 
InputSplit and the context information.

The next two methods, nextVertex() and getCurrentVertex(), resemble an iterator interface. The 
nextVertex() method must return true if there are more vertices to read and advance the iterator to the next 
vertex. The getCurrentVertex() method returns the current vertex the iterator points to. Giraph calls these 
two methods repeatedly as a pair until there is no more data in the input to read.

Now let’s see how you implement these methods. In the example, nextVertex() only has to check 
whether there are more lines in the file and, if so, read and buffer the next line. This is the operation 
LineRecordReader performs for you automatically, so you do not need to worry about the details.

The getCurrentVertex() method, in turn, must create a Vertex object from a text line. First it gets the 
current text line read. Then it creates an empty Vertex object that you need to fill with information: the ID, 
the value of the class, and its edges. Recall that the input graph is in the form of an adjacency list, as follows:

John 22 Peter 10
Mark 40 John 23 Anne 11
Jack 19 Mark 1 Anne 9
Julia 29 Mark 32 Natalie 4
...

After you split the text line into words, the first word in the line describes the vertex ID of a user. The 
next word describe the vertex value—that is, the age of the user—which you parse into an IntWritable 
object. The next words describe the IDs this user follows on Twitter and how many times the user mentions 
them. You use these to create the vertex edges: you parse every such pair in the line and create Edge objects. 
After you have parsed the entire line, you use the initialize() method of the Vertex class to fill the empty 
Vertex object with the necessary information.

Finally, after reading an InputSplit, Giraph calls the close() method of VertexReader. In the example, 
you use this to close the file opened upon initialization. Again, LineRecordReader takes care of this for you.

This concludes the operation of VertexInputFormat. Using this simple yet very useful example, you can 
now begin writing your own vertex-based input formats.

Edge-Based Input Formats
As described in the previous section, edge-based graph representations are common as well. Recall that an 
edge-based representation looks like Figure 7-6 for the example Twitter graph.
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Listing 7-6 shows how you store such a representation in a text file. Each line in the file represents an 
edge in the graph. Recall that an edge from A to B denotes that user A follows B and is accompanied by the 
number of times A mentions B. Each line in the file includes this information as well, next to each edge.

Listing 7-6.  An Example Edge-Based Input File for the Twitter Graph

John Peter 10
Mark John 23
Mark Anne 11
Jack Mark 1
Jack Anne 9
Julia Mark 32
Julia Natalie 4
Anne Julia 20
Anne Peter 10
Natalie Peter 2
Natalie Anne 50
Natalie John 10

Giraph provides an easy way to read such representations, called EdgeInputFormat. Similar to 
VertexInputFormat, Giraph uses EdgeInputFormat to split the input data into parts and then processes the 
data in each split. The basic difference is that EdgeInputFormat does not create Vertex objects, but Edge 
objects. At this point you may wonder how Vertex objects are created; after all, when you implement a 
Computation, Giraph passes a Vertex object for you to manipulate. The answer is that Giraph handles the 
creation of the Vertex objects for you. This is one of the conveniences that EdgeInputFormat provides.

Let’s get into the details of the API, illustrated in Listing 7-7. Notice the similarities to 
VertexInputFormat. The first two methods serve exactly the same purpose: checking the validity of the 
configuration and returning a list of InputSplit objects describing the input parts. One difference to note is 
that EdgeInputFormat does not require you to specify the vertex value V, but only the vertex ID type I and the 
edge value type E. Keep in mind that the vertex ID type and edge value type still have to match those of your 
Computation.

Figure 7-6.  Edge-based representation of the Twitter graph. Edge values represent number of mentions
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Listing 7-7.  EdgeInputFormat Abstract Class

public abstract class EdgeInputFormat<I extends WritableComparable,
    E extends Writable> extends GiraphInputFormat<I, Writable, E> {
 
  public abstract void checkInputSpecs(Configuration conf);
 
  public abstract List<InputSplit> getSplits(JobContext context,
      int minSplitCountHint) throws IOException, InterruptedException;
 
  public abstract EdgeReader<I, E> createEdgeReader(
      InputSplit split,
      TaskAttemptContext context) throws IOException;
}

The most important difference in the API is the createEdgeReader() method, which returns an object 
that extends the EdgeReader abstract class, shown in Listing 7-8. EdgeReader is responsible for reading the 
data described by InputSplit and creating the Edge objects.

Listing 7-8.  EdgeReader Abstract Class

public abstract class EdgeReader<I extends WritableComparable,
    E extends Writable> {
   
  public abstract void initialize(InputSplit inputSplit,
                                  TaskAttemptContext context)
    throws IOException, InterruptedException;
 
  public abstract boolean nextEdge()
    throws IOException, InterruptedException;
   
  public abstract I getCurrentSourceId()
   throws IOException, InterruptedException;
   
  public abstract Edge<I, E> getCurrentEdge()
    throws IOException, InterruptedException;
   
  public abstract void close() throws IOException;
}

Let’s look at the methods one by one and how to implement them to read the example file in Listing 7-9. 
This implementation is called SimpleTextEdgeReader.

Listing 7-9.  Example EdgeReader for Text-Based Formats

public class SimpleTextEdgeReader extends EdgeReader<Text, IntWritable> {
  private RecordReader<LongWritable, Text> lineRecordReader;
 
  @Override
  public void initialize(InputSplit inputSplit,                    #1
       TaskAttemptContext context)                                 #1
         throws IOException, InterruptedException {                #1
    lineRecordReader = new LineRecordReader();                     #1
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    lineRecordReader.initialize(inputSplit, context);              #1
  }
 
  @Override
  public final boolean nextEdge()                                  #2
    throws IOException, InterruptedException {                     #2
      return lineRecordReader.nextKeyValue();                      #2
  }
 
  @Override
  public final Text getCurrentSourceId() throws IOException,
        InterruptedException {
    Text line = getRecordReader().getCurrentValue();               #3
    String[] words = line.toString().split(' ');                   #3
    return new Text(words[0]);                                     #3
  }
 
  @Override
  public final Edge<Text, IntWritable> getCurrentEdge()
    throws IOException, InterruptedException {
    Text line = getRecordReader().getCurrentValue();
    String[] words = line.toString().split(' ');
    Text targetVertexId = new Text(words[1]);                      #4
    IntWritable edgeValue = Integer.parseInt(words[2]);            #5
    return new DefaultEdge(targetVertexId, edgeValue);             #6
  }
 
  @Override
  public void close() throws IOException {                         #7
    lineRecordReader.close();                                      #7
  }
}

#1 This method is called at the very beginning to set up EdgeReader.
#2 Check whether there are text lines.
#3 Get the current text line, and parse the source vertex ID.
#4 Parse the target vertex.
#5 Parse the edge value.
#6 Create an Edge object with the parsed values.
#7 This method is called at the end to close the opened files.

First, notice that you have to implement initialize() and close() methods, as with VertexReader. 
These are called right before Giraph starts using the reader and at the end of execution. Here you use them to 
open and close the file described by InputSplit the same way you did previously. Their implementation in this 
case is exactly the same, so we won’t elaborate. Instead, let’s get into the most interesting part of EdgeReader.

EdgeReader implements an iterator-like interface similar to VertexReader. The nextEdge() method 
returns true if there are more edges to read in the input file and advances the iterator to the next edge. 
Although the details aren’t shown, if a line is available, LineRecordReader reads and buffers it. After Giraph 
calls this method, it can use the following two methods. First it calls the getCurrentSourceId() method. 
This method must return the source ID of the edge the iterator points to currently. Recall that Giraph creates 
Vertex objects automatically for you; this is how Giraph knows which Vertex to attach the edge to. In this 
implementation, all you have to do is read the first word in a line and return it as a Text object. Finally, 
Giraph calls the getCurrentEdge() method to create an Edge object and add it to the vertex. An edge is 
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defined by a target vertex ID and an edge value. To obtain these, the implementation parses the second and 
third words of each line and then creates and returns an Edge object.

Note the creation of the Edge objects. In Chapter 5, you were only concerned with accessing 
Edge objects through a Vertex; you never had to create one. In reality, Edge is an interface; under the 
hood, Giraph uses specific types that implement the Edge interface. DefaultEdge is one of these Edge 
implementations provided by Giraph. Most of the time, the default type will serve your needs, but you are 
free to write your own Edge implementations.

USING THE BUILT-IN EDGE IMPLEMENTATIONS

Giraph provides different implementations of the Edge interface that serve different purposes. You 
can find these in the org.apache.giraph.edge package. For instance, the EdgeNoValue edge type is 
suitable when edges have no associated value, because this implementation handles this scenario in 
a more memory-efficient way than the default implementation. As a convenience, Giraph provides the 
EdgeFactory utility class with methods to simplify the creation of Edge objects.

Combining Input Formats
You have learned that graphs can be stored in either vertex-based or edge-based representations. But in 
several scenarios, a graph may be stored in multiple representations at the same time. One common case is to 
store a graph by separating the graph structure: that is, by separating the connecting edges from the per-vertex 
information. There are various practical reasons for doing so. For instance, different analytical applications 
may require different data; you can separate the data for performance reasons so that no application needs 
to read all the data every time. In the Twitter graph scenario, you may want to keep the who-follows-whom 
relations stored in text files on HDFS in an edge-based format, and the user profile information for each user 
in a vertex-based format in a key-value store. Figure 7-7 shows an example of this separation.

This separation may be common practice, but it is also common for an application to combine data 
sources to analyze a graph in a meaningful way. An application must be able to combine the two sources on 
the right in Figure 7-7 to reconstruct the original graph.

Figure 7-7.  Graph information split into two separate representations

http://dx.doi.org/10.1007/978-1-4842-1251-6_5
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You may wonder whether you need a vertex-based or an edge-based input format to handle this 
scenario. But you will quickly realize that no one type of input format alone is sufficient for this. For instance, 
in the previous subsection, the EdgeInputFormat does not provide a means to specify a vertex value, so 
you cannot use it to read profile information. Similarly, you cannot use a VertexInputFormat because 
information about a single vertex is scattered across different places in the input. As a workaround, you 
could preprocess the data to merge the two data sources into one input data set that is in a vertex-based 
format before reading. But this approach can be cumbersome and inefficient, because you have to read the 
same data twice every time you want to do your analysis.

Fortunately, Giraph provides a more convenient and efficient way to handle this scenario by allowing 
you to combine two different graph representations. Specifically, you can use an EdgeInputFormat that is 
responsible for creating the edges of a vertex by reading the edge representation, and at the same time a 
VertexInputFormat that is responsible for setting the value of a vertex by reading the profile information.

Recall that in the example in Chapter 5, when you launched the job you specified a vertex input format 
using the –vif command-line parameter to define the input format class name and a vertex input path using 
the –vip parameter. Similarly, you can use an edge input format by replacing this with the –eif parameter 
and specifying the edge input format class name and the –eip parameter to indicate the edge input path. 
Combining two types of input formats is as simple as including all four parameters in your command line. 
Giraph takes care of the rest.

Input Filters
Filtering a graph is a common operation in graph analysis. Filtering means removing some of the vertices or 
some of the edges from the original graph and performing your analysis on the remaining graph. There are 
various reasons to do this. Certain graph-mining algorithms give good approximations even if executed on a 
random sample of the graph. This is often preferred as a way to speed up the computation.

In other cases, filtering is an implicit requirement of an application. A common scenario is when the 
weight of the edges in the graph signifies the strength of the connection between vertices, and you want to 
perform the analysis only on users with strong connections. Consider the Twitter scenario, and assume  
you want to recommend new people for Mark to follow by looking at who the users he follows—Anne and 
John—follow. For instance, John follows Peter, so Peter may be a good recommendation for Mark too. But 
to make the recommendation more relevant, perhaps you want to include in this analysis only neighbors 
with whom Mark has a strong connection. In this case, you need to filter out edges with low weights. For 
instance, you could filter out neighbors that a user mentions fewer than 20 times, excluding Anne in this 
case, indicating that Julia may not be a relevant recommendation for Mark.

You could even perform this kind of filtering based on per-vertex information. For instance, you may 
want to perform this analysis on Twitter users in a specific age range. This way, you ensure that you do not 
recommend friends to a youngster based on who older people follow. To address this, you could filter from 
the graph all vertices that have an age above an age threshold. These are only a few examples where filtering 
might be necessary.

Giraph provides an elegant way for you to integrate this filtering process into your analysis when 
necessary. It allows you to specify vertex filters and edge filters to be used along with a VertexInputFormat 
and an EdgeInputFormat. Vertex and edge filters provide a way for you to specify whether a vertex or an 
edge should be added in the final graph during the loading of the input data. You can specify filters by 
implementing the VertexInputFilter and EdgeInputFilter interfaces, shown in Listing 7-10 and  
Listing 7-11, respectively.

http://dx.doi.org/10.1007/978-1-4842-1251-6_5
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Listing 7-10.  VertexInputFilter

public interface VertexInputFilter<I extends WritableComparable,
    V extends Writable, E extends Writable> {
   
  boolean dropVertex(Vertex<I, V, E> vertex);                 #1
}

#1 Decide whether to drop a vertex.

Listing 7-11.  EdgeInputFilter

public interface EdgeInputFilter<I extends WritableComparable,
  E extends Writable> {
   
boolean dropEdge(I sourceId, Edge<I, E> edge);
}

In the case of a vertex-based input format, during the loading of the graph, Giraph uses a 
VertexInputFilter object to decide whether a vertex should be filtered. The VertexInputFilter interface 
has a single method named dropVertex() with a boolean return value. Recall from the previous sections 
that Giraph uses VertexReader to create Vertex objects. For every Vertex object created by VertexReader, 
Giraph calls dropVertex() and passes it the Vertex object as an input parameter to decide whether to keep 
the corresponding vertex. If the method returns true, then Giraph drops the vertex.

Similarly, for edge-based input formats, Giraph uses an EdgeInputFilter to decide whether an edge 
that is read should be included in the graph. For every Edge object created, Giraph calls the dropEdge() 
method and passes it the ID of the edge source vertex and the edge object itself. If the method returns true, 
Giraph drops the edge. Listing 7-12 shows an example EdgeInputFilter implementation that decides 
whether to include an edge based on the edge weight. In the example of the Twitter graph, you could use 
such an edge filter to filter out weak connections identified by a low number of mentions.

Listing 7-12.  An Example Edge Input Filter

public class WeightInputFilter extends EdgeInputFilter<Text,IntWritable> {
 
  public static int THRESHOLD = 10;
 
  boolean dropEdge(Text sourceId, Edge<Text,IntWritable> edge) {
    if (edge.getValue().get()<THRESHOLD) {
      return true;
    }
    return false;
  }
}

As you may have expected, the vertex ID and edge value types must match those of the input format 
implementation you use.

Once you have implemented your filter, you can specify that you want to use it through the  
command line. You can do this by adding the giraph.vertexInputFilterClass custom argument in the 
execution command and setting your filter implementation class name as its value.



Chapter 7 ■ Graph IO Formats

178

Note that you could implement the filtering logic in your application if you wished, using the mutation 
API you learned about in Chapter 5. This way, you would dedicate the first superstep of the computation 
to filtering. However, filters offer a couple of benefits. First, they allow you to decouple the filtering logic 
from your main application logic, leading to clean, reusable code. Second, using input filters, Giraph has an 
opportunity to do the filtering at the early stage of reading the graph, leading to more efficient graph loading. 
It is faster and requires less memory.

Alternatively, you could preprocess your graph with separate scripts. However, this can be a tedious 
task, because you have to write code to read data from different storage systems and formats. This 
functionality is already provided by Giraph and its input formats. It can also be inefficient, because you have 
to read the graph twice every time you want to analyze it: once for preprocessing and once for the actual 
analysis. Input filters simplify these tasks.

Output Formats
You have learned how to read an input graph and how to perform useful analysis on it. What you are missing 
to complete the picture is a way to output the result of your analysis. After all, the result is no good if you 
cannot somehow save it to use later. Output formats are the tools that Giraph provides for you to achieve 
this. At the end of a computation, the Vertex and Edge objects in the graph contain all the useful information 
you want to store. For instance, in the shortest-paths application you wrote in Chapter 5, at the end of the 
computation the vertices contained the value of the shortest distance. Giraph uses an output format to save 
the contents of Vertex and Edge objects to a storage system.

As with input formats, there are both vertex-based and edge-based output formats. As you may  
have guessed, a vertex-based output format is used to save information about individual vertices, and an 
edged-based output format is used to save information stored in Edge objects. In the examples in Chapter 5,  
you primarily used vertex-based output formats. The type of output format you need will depend on your 
particular scenario. For instance, when you compute a metric per vertex, such as a distance or a rank, you 
naturally need a vertex-based output format. But suppose you read an input graph in an edge-based input 
format and you simply want to transform it. (You saw an example of such a transformation in Chapter 4,  
where you converted an undirected graph to a directed one.) In this case, you may want to save the 
transformed graph in an edge-based format as well.

Similar to when reading an input graph, you may wish to store the result information to different 
storage systems and in different formats. To accommodate this, Giraph exports two basic abstract classes 
VertexOutputFormat and EdgeOutputFormat that you can extend. For instance, the GraphvizOutputFormat 
that you used in Chapter 5 is an implementation of VertexOutputFormat provided for you. In this section, 
you learn how to write your own output formats. This chapter focuses on text-based formats, but in Chapter 9  
you discover how to output data to any storage system and in any format.

Vertex-Based Output Formats
First you learn how to implement a vertex-based output format. Let’s assume that you run the shortest-
distances application, and you want to save the distance computed for every vertex in text files and store 
them to HDFS—the typical scenario. To do this, you extend the VertexOutputFormat abstract class as shown 
in Listing 7-13.

http://dx.doi.org/10.1007/978-1-4842-1251-6_5
http://dx.doi.org/10.1007/978-1-4842-1251-6_5
http://dx.doi.org/10.1007/978-1-4842-1251-6_5
http://dx.doi.org/10.1007/978-1-4842-1251-6_4
http://dx.doi.org/10.1007/978-1-4842-1251-6_5
http://dx.doi.org/10.1007/978-1-4842-1251-6_9
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Listing 7-13.  VertexOutputFormat Abstract Class

public abstract class VertexOutputFormat<
    I extends WritableComparable, V extends Writable,
    E extends Writable> {
   
  public abstract void checkOutputSpecs(JobContext context)
    throws IOException, InterruptedException;
 
  public abstract VertexWriter<I, V, E> createVertexWriter(
    TaskAttemptContext context) throws IOException, InterruptedException;
  
  public abstract OutputCommitter getOutputCommitter(
    TaskAttemptContext context) throws IOException, InterruptedException;
 
}

The first thing to notice in the VertexOutputFormat is that the vertex ID, vertex value, and edge value 
types are parameters of the class. This means your implementation, unless abstract, must specify these 
types, and they must match the corresponding types in your Computation.

Next, Listing 7-14 describes the VertexOutputFormat class methods and implements them. This 
implementation is called SimpleTextVertexOutputFormat.

Listing 7-14.  An Example Text-Based VertexOutputFormat

public class SimpleTextVertexOutputFormat
    extends VertexOutputFormat<Text, IntWritable, IntWritable> {
 
  @Override
  public void checkOutputSpecs(JobContext context)
    throws IOException, InterruptedException {
    textOutputFormat.checkOutputSpecs(context);
  }
 
  @Override
  public VertexWriter<Text, IntWritable, E> createVertexWriter(
    TaskAttemptContext context)
      throws IOException, InterruptedException {
 
    return new SimpleTextVertexWriter();                              #1
  }
 
  @Override
  public OutputCommitter getOutputCommitter(TaskAttemptContext context)
    throws IOException, InterruptedException {
    return textOutputFormat.getOutputCommitter(context);
  }
}

#1 This returns an object extending the VertexWriter class.
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Giraph calls checkOutputSpecs() at the beginning of a job and passes it a JobContext object that 
contains configuration information. Its role is to perform checks similar to the one you learned for input 
formats. For instance, you can check whether the output directory has been set in the job configuration and, 
if so, whether it already exists and contains data that cannot be overwritten. In such a case, this method may 
throw an exception.

Like VertexReader objects, Giraph uses VertexWriter objects to do most of the work of writing 
Vertex information in objects to output. Specifically, after your computation finishes, Giraph creates a 
VertexWriter object on every worker machine in your cluster and uses these objects to write information 
about every vertex to the output. It does so by calling the createVertexWriter() method of the 
VertexOutputFormat class, which returns an object extending the VertexWriter abstract class. Every such 
object is responsible for processing a set of vertices in the graph. Figure 7-8 shows this process.

Figure 7-8.  Saving a graph using a VertexOutputFormat and VertexWriter objects

Notice that Giraph follows a process that is the inverse of the one it performed when it was reading the 
graph. Giraph started by reconstructing a graph from text files, and now it must save the graph back to the 
same type of format. But let’s look what happens in a VertexWriter in more detail. Listing 7-15 shows the 
VertexWriter abstract class methods you implement.

Listing 7-15.  VertexWriter Abstract Class

public abstract class VertexWriter<I extends WritableComparable,
    V extends Writable, E extends Writable> {
 
  public abstract void initialize(TaskAttemptContext context)
    throws IOException, InterruptedException;
 
  public abstract void writeVertex(Vertex<I, V, E> vertex)
       throws IOException, InterruptedException;
 
  public abstract void close(TaskAttemptContext context)
    throws IOException, InterruptedException;
 
}
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The example output format returns a VertexWriter called SimpleTextVertexWriter, which is designed 
to write vertex information to text files. Listing 7-16 shows the implementation of SimpleTextVertexWriter 
and its methods.

Listing 7-16.  An Example Text-Based VertexWriter

public class SimpleTextVertexWriter
      extends VertexWriter<Text, IntWritable, IntWritable> {
 
  private RecordWriter<Text, Text> lineRecordWriter;
 
  @Override
  public void initialize(TaskAttemptContext context)
    throws IOException, InterruptedException {
    lineRecordWriter = createLineRecordWriter(...);             #1
  }
 
  @Override
  public final void writeVertex(Vertex vertex) throws
      IOException, InterruptedException {
    String line = vertex.getId()+” “+vertex.getValue();         #2
    lineRecordWriter.write(new Text(line), null);               #3
  }
 
  @Override
  public void close(TaskAttemptContext context)
     throws IOException, InterruptedException {
    lineRecordWriter.close(context);                            #4
  }
}

#1 Create a line record writer object.
#2 Make a string containing the vertex information to write.
#3 Use a record writer to write the string.
#4 Close the record writer.

Before it begins using the VertexWriter, Giraph calls initialize(), passing it a TaskAttemptContext 
as input. The initialize() method typically sets up the output files using configuration information from 
the TaskAttemptContext object. This involves, for instance, creating the output text file and obtaining a 
handle on the file. To write output to HDFS, you use the LineRecordWriter class, which takes care of these 
tasks for you. After the initialization of a VertexWriter, Giraph calls the writeVertex() method for every 
vertex in the graph. In this method, you must specify what information to output and how to write it. In this 
case, you write the vertex value to the output text files. The implementation first makes a string that contains 
the vertex ID and the value of the vertex; it then uses the LineRecordWriter to append the string to the 
output files.
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USING THE LINERECORDWRITER

Notice that you use the write() method of LineRecordWriter to append text to the file. The write() 
methods accepts two input parameters: a key and a value. The LineRecordWriter then writes both 
the key and value parameters to the output file. Here you only need to write a single string, so you only 
need to pass it as the key parameter and leave the second parameter as null. The LineRecordWriter 
knows to ignore the null parameter.

After writing every vertex, Giraph calls the close() method, which in this case closes the files you 
opened upon initialization. Again, the LineRecordWriter takes care of this task for you.

One new feature here is OutputCommitter. An output committer is a component borrowed from 
Hadoop; its primary job is to set up the output directory of a job. This involves setting up a directory where 
temporary output files can be written before the job finishes and moving the files from the temporary 
directory to a final one upon successful completion of the job. We do not go into the details of the 
OutputCommitter methods here. For HDFS output, you can simply reuse the standard OutputCommitter 
provided by the Hadoop API, which handles all the tasks involved in setting up the output directories for 
you. Chapter 9 revisits OutputCommitter, when it discusses storage systems.

Edge-Based Output Formats
Edge-based output formats are very similar to their vertex-based counterparts. You can immediately see the 
similarities in Listing 7-17, which shows the EdgeOutputFormat abstract class.

Listing 7-17.  EdgeOutputFormat Abstract Class

public abstract class EdgeOutputFormat<
    I extends WritableComparable, V extends Writable,
    E extends Writable> {
 
  public abstract void checkOutputSpecs(JobContext context)
    throws IOException, InterruptedException;
  
  public abstract OutputCommitter getOutputCommitter(
    TaskAttemptContext context) throws IOException, InterruptedException;
 
  public abstract EdgeWriter<I, V, E> createEdgeWriter(
    TaskAttemptContext context) throws IOException, InterruptedException;
}

The basic difference is that now you have to implement an EdgeWriter instead of a VertexWriter. 
Listing 7-18 shows the EdgeWriter abstract class. The most important method in this class is writeEdge(); 
Giraph calls this method for every edge in the graph.

http://dx.doi.org/10.1007/978-1-4842-1251-6_9
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Listing 7-18.  EdgeWriter Abstract Class

public abstract class EdgeWriter<
    I extends WritableComparable, V extends Writable,
    E extends Writable>
 
  public abstract void initialize(TaskAttemptContext context)
    throws IOException, InterruptedException;
 
  public abstract void writeEdge(I sourceId, V sourceValue, Edge<I,E> edge)
      throws IOException, InterruptedException;
 
  public abstract void close(TaskAttemptContext context)
    throws IOException, InterruptedException;
}

Let’s look at an example of how to implement an EdgeWriter that saves the edges along with their 
values into text files stored on HDFS. The implementation is called SimpleTextEdgeWriter and is shown in 
Listing 7-19.

Listing 7-19.  An Example Text-Based EdgeWriter

public class SimlpeTextEdgeWriter<
      extends EdgeWriter<Text, NullWritable, IntWritable> {
 
  private RecordWriter<Text, Text> lineRecordWriter;
 
  @Override
  public void initialize(TaskAttemptContext context)             #1
    throws IOException, InterruptedException {                   #1
    lineRecordWriter = createLineRecordWriter(...);              #1
  }
 
  @Override
  public final void writeEdge(Text sourceId,
      IntWritable sourceValue, Edge<Text, IntWritable> edge)
      throws IOException, InterruptedException {
   
    String line = sourceId+” “+                                  #2
                edge.getTargetVerexId()+” “+                     #2
                edge.getValue();                                 #2
    lineRecordWriter.write(new Text(line), null);                #3
  }
 
  @Override
  public void close(TaskAttemptContext context)
    throws IOException, InterruptedException {
    lineRecordWriter.close(context);                             #4
  }
}
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#1 Initialize the EdgeWriter by creating a line record writer.
#2 Construct the string to write to the output.
#3 Use the line record writer to write the string.
#4 Close the output files at the end.

By now, most of the methods you need to implement for the EdgeWriter should not surprise you. 
You use initialize() to set up the EdgeWriter by creating the familiar LineRecordWriter. Similar to 
VertexWriter, Giraph calls writeEdge() for every edge in the graph. Giraph passes to this method the ID of 
the source vertex of the edge and its vertex value as well as the edge object itself. In this implementation, you 
construct a string that contains the source and destination vertex IDs and the edge value. You then use the 
LineRecordWriter to write the string to the output file.

Output formats provide you with all the tools you need to output information stored on your graph: the 
vertex and edge values. But recall that a Giraph program allows you to keep information in different objects, 
as well. These are the most useful aggregators.

Aggregator Writers
Aggregators are used to hold information, such as counters and aggregate statistics, about the entire graph. 
For example, in Chapter 5, you saw an example of how to use an aggregator to keep track of the Twitter user 
with the most followers. Often, at the end of a program, aggregators hold useful information—in this case, 
the most popular Twitter user—that you want to output to a file in the same way you output information held 
in the graph’s vertices and edges.

To achieve this, Giraph provides a tool called an aggregator writer. Giraph uses aggregator writers to 
save the values of aggregators to a storage medium and in a format of your choosing: for instance, text files 
on HDFS. In Chapter 5, you used an aggregator writer implementation provided in the Giraph code base that 
saves aggregator values in a file. Here, you learn how to implement your own aggregator writer.

To specify how to save the values of aggregators, you must implement the AggregatorWriter interface 
shown in Listing 7-20. Giraph uses an AggregatorWriter at the end of every superstep to save the values 
stored in aggregators.

Listing 7-20.  The AggregatorWriter Interface

public interface AggregatorWriter
    extends ImmutableClassesGiraphConfigurable {
     
  void initialize(Context context, long applicationAttempt)
      throws IOException;
 
  void writeAggregator(Iterable<Entry<String, Writable>> aggregatorMap,
      long superstep) throws IOException;
 
  void close() throws IOException;
}

Let’s look at an example of how to implement these methods to customize the saving of aggregator 
information. Listing 7-21 shows a simple aggregator writer called SimpleAggregatorWriter that exports 
aggregator values to a text file on HDFS.

http://dx.doi.org/10.1007/978-1-4842-1251-6_5
http://dx.doi.org/10.1007/978-1-4842-1251-6_5
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Listing 7-21.  Example Aggregator Writer

public class SimpleAggregatorWriter implements AggregatorWriter {
private FSDataOutputStream output;
 
  @Override
  public void initialize(Context context, long applicationAttempt)
    throws IOException {
    Path p = new Path("aggregatedValues_" + applicationAttempt);  #1
    FileSystem fs = FileSystem.get(context.getConfiguration());
    output = fs.create(p, true);                                  #2
  }
   
  @Override
  public void writeAggregator(
    Iterable<Entry<String, Writable>> aggregatorMap,
    long superstep) throws IOException {
    for (Entry<String, Writable> entry : aggregatorMap) {         #3
      String text = entry.getKey()+” “+entry.getValue();
      output.writeChars(text);                                    #4
    }
    output.flush();
  }
 
  @Override
  public void close() throws IOException {
    output.close();                                               #5
  }
}

#1 Name the output file based on the application attempt.
#2 Create a file on HDFS.
#3 Iterate over all aggregators.
#4 Append the aggregator name and value to the file.
#5 Close the output file.

The first method you implement is initialize(). Giraph calls this method right before it starts using 
the aggregator and typically uses it to set up the aggregator writer. The first argument it passes is a Context 
object that contains configuration information about the job. The second argument indicates the number 
of the application attempt. An application attempt occurs whenever Giraph elects a new master worker; in 
most cases this happens only once, but sometimes, such as after a master worker failure, a new master must 
be elected. The example uses this method to create the HDFS file where you output the aggregator values. 
Notice how you name the output file based on the application attempt so that you can distinguish between 
attempts.

Next, you implement the writeAggregator() method. Giraph calls this method at the end of every 
superstep and passes two input arguments. The first is a Map that contains a key-value pair for each 
aggregator registered, where the key is a String representing the name of an aggregator and the value is the 
aggregator’s associated value. The second parameter is the number of the superstep that just finished. Note 
that Giraph uses the special superstep number -1 to denote that this is the last superstep. You can use this 
information to decide whether you want to perform some action at every superstep or only at the end. This 
example iterates over all aggregators; for every aggregator, you write to the output file a line containing the 
name and the value of the aggregator.
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In this method, you can implement arbitrary logic. For instance, you may want to select only specific 
aggregators to export to the file, or you may decide not to export an aggregator value unless it is the last 
superstep. You may also want to output different aggregators to different file names or even output the values 
to a different storage system or format. You have the ability to accommodate your particular application 
scenario.

Finally, you implement the close() method. Giraph calls this method at the end of a successful 
execution. Here, you use this method to close the file that you opened upon initialization.

Summary
Reading an input graph is the first step you need to perform to use Giraph, and saving the output of your 
analysis is equally necessary. These sound like simple tasks, but they can be challenging once you start 
thinking about the various types of formats and storage systems where your graph may be stored. Giraph 
provides the necessary tools to simplify this process.

In this chapter, you learned the following:

•	 Understanding how your input graph is represented, the details of the storage system 
where your graph is stored, and its format is the first step in managing your input and 
output data.

•	 You can use VertexInputFormat and EdgeInputFormat implementations to read 
input data in vertex-based and edge-based representations, respectively. Their role is 
to convert raw input data into Vertex and Edge objects for you to use.

•	 VertexOutputFormat and EdgeOutputFormat implementations, in turn, allow you to 
save output information in a vertex- or edge-based format.

•	 Giraph provides a library of input and output formats that support common cases 
and may cover your needs. Be sure to check the existing code base, because it may 
save you time.

•	 As you start using Giraph in a more advanced way and integrating it into your 
particular data-analytics architecture, you may need more than the basics. Extending 
the input and output format APIs allows you to add more functionality—for instance, 
supporting new storage systems.

•	 You may frequently need to combine different graph representations. The ability to 
combine a VertexInputFormat with an EdgeInputFormat becomes very handy in 
these cases.

In the last few chapters, you have learned how to use the basic Giraph APIs. Although this gives you the 
ability to perform sophisticated analysis on graphs, the Giraph API is even more powerful. The following 
chapters explore advanced features provided by Giraph; you learn how to add functionality to your 
applications, make them more efficient, and write cleaner and more reusable code.
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Chapter 8

Beyond the Basic API

This chapter covers

•	 Graph mutations

•	 The Aggregator API

•	 Vertex coordination

•	 Writing modular applications

In the previous chapters, you learned how to use the basic parts of the Giraph programming API to 
implement various graph algorithms. While the basic API already gives you enough flexibility to build a 
wealth of useful graph mining algorithms, this chapter covers features of the Giraph API beyond the basic 
ones that enable you to write more sophisticated applications. The Giraph API is rich with features that allow 
you to add more functionality to your applications, write algorithms more efficiently, and even make your 
life easier from a programming perspective.

While we typically think of the input graph as an immutable data structure, this chapter discusses 
scenarios where you want to alter the input graph by adding or removing vertices and edges. Giraph 
provides an API that allows you to perform such mutations to the input graph. Examples are used to describe 
the different ways that you can use this API.

Next, you revisit aggregators, a tool that allows you to compute global statistics across the entire graph. 
In previous chapters, you saw examples of typical aggregators and learned how to use them inside of 
your applications. Here you look at the Java API that Giraph provides for writing custom aggregators; it is 
explained by implementing the aggregator.

Further, one of the most important features in distributed algorithms is coordination. So far you learned 
how to think in a vertex-centric way, writing programs where vertices communicate with each other through 
messages in a distributed fashion. Giraph took care of the coordination of the execution of the algorithm. 
Here, you learn how to intervene in this coordination process when you wish to further customize the 
execution of your algorithms.

This chapter also covers the Giraph API features that make it easier for you to write sophisticated 
applications from a programming perspective. You learn how to break down a potentially complex algorithm 
into modules that perform distinct logical operations, resulting in code that is cleaner and easier to 
understand. Inversely, you also learn how to combine these modules into different applications, improving 
code reuse and saving you programming effort.
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Graph Mutations
In this subsection, you explore the ability to mutate the graph structure during the execution of an 
algorithm. In general, mutating a graph means adding or removing vertices and edges. While for the most 
part, you have thought about analyzing an input graph, here you see that mutating a graph is often a part of 
this analysis.

There are different reasons graph mutation might be necessary. In some scenarios, you may simply 
want to transform an input graph; for instance, as a preprocessing step. You already saw an example of graph 
transformation in Chapters 3 and 5, where you learned how to convert a graph from directed to undirected. 
In such cases, graph mutation is a natural requirement.

In other scenarios, the output of your analysis may be a graph that is completely different from your 
input graph. A common case is when you want to divide an input graph into communities or clusters 
and subsequently analyze the connections among the communities themselves. Community detection 
is a common application in social network analysis. In an online social network, you may want to find 
communities of users with similar profiles and output how the communities themselves connect with 
each other. In this case, the output of the community detection algorithm is a graph representing the 
communities, a graph structure totally different from your input graph. This implies that during the 
execution of your algorithm, somehow you must be able to create a graph; that is, create new vertices and 
connect them with new edges.

Graph generators make for another application scenario that requires graph mutation. Graph 
generators are useful tools that allow users to construct synthetic graphs that conform to some model, such 
as the popular “small-world” model. In fact, the Giraph code already contains implementations of a couple 
of graph generators. Graph mutations are natural in this case; these tools may start from an empty graph or 
an initial seed graph and gradually add vertices and edges until they build the final graph.

Before going into the API that allows you to change the graph, it is important to understand what it 
means to mutate the input graph. At this point, you have to remember that Giraph loads the input graph 
in-memory and maintains a copy in an internal representation. It is this copy of the graph that Giraph 
manipulates and can mutate if desired. The original copy of the graph remains intact. For instance, if you 
had stored your graph in an HDFS directory on your Hadoop cluster, and then executed an algorithm that 
uses the mutation API, the graph data on HDFS would be exactly the same after the execution.

Of course, it is possible for a user to mutate this internal copy of the graph and output a new copy to 
some external storage system. In the case of converting the graph from directed to undirected, you would be 
creating a new copy of the graph in an undirected form. This would be the output of the Giraph job.

■■ Note I t is always possible for a user to modify the original graph from within a vertex computation function. 
Imagine that the graph is stored in a table store, like HBase. Nothing prevents a user from writing a vertex 
computation that connects to HBase and modifies the graph. However, such an operation would be outside the 
scope of Giraph. Giraph makes no guarantees about the consistency of these changes. For instance, in the event 
one of the Giraph workers fails, Giraph guarantees that it will produce a correct result, but does not guarantee 
the correctness of such external changes. This is both a capability and risk that comes with the flexibility of the 
Giraph programming API. If you choose to take advantage of this flexibility, you should be aware of all the risks 
and take extra care to design your program such that it does not cause any problems, especially if used in a 
production environment.

Now that we have discussed the usefulness of graph mutations, let’s explore the actual API that gives 
you this ability. While Chapter 5 went thought the mutation API in brief, here it is explained in detail through 
a variety of examples. 

http://dx.doi.org/10.1007/978-1-4842-1251-6_3
http://dx.doi.org/10.1007/978-1-4842-1251-6_5
http://dx.doi.org/10.1007/978-1-4842-1251-6_5
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The Mutation API
Giraph provides three ways to alter the graph structure during execution: (i) direct mutations on a vertex, 
(ii) mutation requests, and (iii) mutation through messages. Each of these may allow different types of graph 
mutations and have different semantics with respect to when the mutations are realized. Next, you review 
the APIs for each of these types of mutation and illustrate their use.

Direct Mutations
To illustrate the use of the direct mutation API, let’s use an example that you have already seen in Chapter 5. 
In this example, you want to convert an input graph from a directed to an undirected one. Figure 8-1 shows 
this transformation.

Figure 8-1.  Transforming a directed graph into an undirected one 

In Figure 8-1, you see that such a transformation requires you to change the graph structure. In 
particular, you need to add some extra edges between existing vertices.

The Vertex interface contains a number of methods that allow the vertex computation function to 
directly change the structure of the vertex—that is, change its edges.

•	 They can only change the vertex from which they are called.

•	 The effect of such a call is immediate.

Let’s look at the Vertex methods that allow the mutation of its structure:

•	 addEdge(Edge<I, E> edge): Adds an edge to the vertex. The ID and value of the 
edge are specified through the passed Edge object.

•	 removeEdges(I targetVertexId): Removes from the vertex all the edges with the 
specified target ID.

•	 setEdges(Iterable<Edge<I, E>> edges): Sets the outgoing edges of the vertex by 
iterating over the passed Iterable and adding the edges, one by one.

In Listing 8-1, let’s revisit the example code from Chapter 5; the way it uses the mutation API is 
explained in detail next.

http://dx.doi.org/10.1007/978-1-4842-1251-6_5
http://dx.doi.org/10.1007/978-1-4842-1251-6_5
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Listing 8-1.  Converting a Graph from Directed to Undirected

public class ConvertToUndirected extends
  BasicComputation<Text, DoubleWritable, NulleWritable, Text> {
 
  static final NullWritable DEFAULT_EDGE_VALUE = NullWritable.get();
 
  @Override
  public void compute(Vertex<Text, DoubleWritable, DoubleWritable> vertex,
                      Iterable<Text> messages) {
 
    if (getSuperstep() == 0) {                                           #1
      sendMessageToAllEdges(vertex, vertex.getId());                     #1
    } else {
       for (Text m : messages) {                                         #2
          if (vertex.getEdgeValue(m)==null) {                            #3
           vertex.addEdge(EdgeFactory.create(m, DEFAULT_EDGE_VALUE));    #4
         }
      }
    }
    vertex.voteToHalt();
  }
}

#1 In the first superstep, every vertex sends its own ID to all its neighbors.

#2 In the second superstep, a vertex receives messages from every vertex that has an edge to it.

#3 For every such message the vertex gets, it checks whether the corresponding edge already exists.

#4 If the edge does not exist, the vertex adds it.

Note that the addEdge method takes an implementation of the Edge interface as input. While you can 
implement your own Edge types, Giraph already provides default implementations that should suffice in 
most cases. In particular, you can use the create() method of the EdgeFactory utility class to create Edge 
objects. 

Mutation Requests
Next, you are going to look at an example showing why direct mutations might not always be suitable for 
modifying the graph structure and learn how mutation requests provide more flexibility. Let’s consider that 
you want to analyze a Twitter-like social network and explore, not the individual user connections as you 
have done so far, but how users from different countries are connected. Starting from your original social 
graph, you want to create a graph where every vertex corresponds to a country, and edges imply that there 
are users among these countries that are connected. This allows you to create a high-level view of the Twitter 
graph and observe the social influence at the country level as shown in Figure 8-2. 
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It is obvious that while you are analyzing the original graph, you are also creating a new one. In fact, the 
new graph is the actual output of the algorithm. However, since the vertices of this new graph do not exist 
in advance, you cannot really use the direct mutations as before. Let’s see how mutation requests solve this 
problem.

Mutation requests are methods of the Computation interface. Just like direct mutations, you can call 
these methods from within your vertex computation function. However, unlike direct mutations, a mutation 
request has the following properties: 

•	 It can modify any part of the graph, regardless of the vertex that makes the request. 
For instance, vertex A can request the addition of an edge between vertices B and C.

•	 The effect of a mutation request is visible only after the current superstep finishes 
and right before the next one begins. 

■■ Caution T he second property might seem a bit unnatural at first, but it is really meant to simplify your 
programs. This property allows you to separate the programming logic that handles the creation or removal 
of vertices and edges from the rest of the programming logic. A vertex request has no effect on the remaining 
computation of the vertex that does the request, even if it modifies the same vertex. It has no effect on the 
computation of other vertices that may occur after the request is made, but within the same superstep.

Next, let’s see this API in action.
The Listing 8-2 shows the implementation of this algorithm. Although the logic may not be readily 

apparent, all the parts are explained in a moment.

Listing 8-2.  Finding Country Connections in the Twitter Graph

public class CreateCountryGraph extends
  BasicComputation<Text, Text, NullWritable, Text> {
 
  static final NullWritable DEFAULT_EDGE_VALUE = NullWritable.get();
 

Figure 8-2.  Analyzing how users from different countries are connected
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  @Override
  public void compute(Vertex<Text, Text, NullWritable> vertex,
                      Iterable<Text> messages) {
    Text myCountry = vertex.getValue();
    if (getSuperstep()==0) {                                             #1
      sendMessageToAllEdges(vertex, myCountry);                          #1
    } else {
      for (Text m : messages) {                                          #2
addEdgeRequest(m,                                                        #3
  EdgeFactory.create(myCountry, DEFAULT_EDGE_VALUE));                    #3
      }
      removeVertexRequest(vertex.getId());                               #4
      vertex.voteToHalt();
    }
  }
}

#1 To every user I am following, I send the name of my own country.

#2 At superstep 1, every message contains the country of a user that follows me.

#3 For every message, create a new edge from the other country to my country.

#4 Each user vertex removes itself from the graph, so what we are left only with country vertices.

In this scenario, the ID of the vertices is of type Text, representing the name of the user, and the value 
of a vertex is also of type Text, representing the country of the user. The general way the algorithm works 
should be familiar. Somehow, you need to know about what pairs of countries hide inside the followership 
graph. The natural way to do this is to have every vertex tell its neighbors about their own country. The first 
superstep of the algorithm implements exactly this logic. Every vertex sends to the vertices it follows its own 
vertex value—that is, its corresponding country (#1).

In the second superstep, each vertex now knows what countries its followers are from. In other words, it 
knows what an edge in the new country graph should be. At this point, it can simply request the creation of 
such an edge from the follower’s country to its own country, using the addEdgeRequest() method (#3).  
The addEdgeRequest() method makes a request to add an edge at the vertex with the specified source ID. 
The edge value and destination ID are specified through the passed edge object.

■■ Note Y ou do not have to explicitly create the vertices that represent the countries. By requesting the 
creation of an edge between two countries, Giraph automatically creates the corresponding vertices if they do 
not already exist.

You are not done yet though. By creating these new edges, there are two types of vertices at the end of 
the algorithm execution: user vertices that comprise the original graph and country vertices comprising the 
country graph. If you use an output format, you see that the output contains both of these types of vertices. 
In this case, though, you are only interested in the country graph, so ideally you would like the final graph to 
contain only the vertices representing the countries.

The mutation request API provides a solution to this. Apart from modifying the edges of a vertex, the 
mutation request API also allows you to create or delete vertices. To achieve this, you can make use of the 
removeVertexRequest() API. At superstep 0, apart from creating new edges and vertices, you can also 
remove the vertices that you do not need. Each vertex also makes a request to remove itself by calling the 
removeVertexRequest() method and passing as a parameter its own ID. 
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ALGORITHM DETAIL

The alert reader must have observed that no vertex halts in superstep 0. Imagine what would happen 
if vertices with no followers halted at superstep 0. They would never receive a message in superstep 1, 
and therefore, they would not be activated and run the compute() function. By not halting vertices at 
superstep 0, you allow every vertex to run the compute() function at superstep 1, and thus, allow them 
to remove themselves from the graph through the removeVertexRequest() method.

Finally, recall that by calling the addEdgeRequest() and removeVertexReqest() methods, a vertex 
only registers these requests with Giraph. The edges are not created immediately and the vertices are not 
removed immediately. You have to wait until the next superstep before these changes really happen.

Apart from these two methods that you saw in the example, the Computation interface provides the 
following methods as well:

•	 addVertexRequest(I id, V value, OutEdges<I, E> edges): Makes a request to 
create a vertex with the specified ID, value, and edges.

•	 addVertexRequest(I id, V value): Makes a request to create a vertex with the 
specified ID and value. The created vertex has no edges.

•	 removeVertexRequest(I vertexId): Makes a request to remove the vertex with the 
specified ID. Nothing happens if the vertex with the specified ID does not exist.

•	 addEdgeRequest(I sourceId, Edge<I, E> edge): Makes a request to add an edge 
at the vertex with the specified source ID. The edge value and destination ID are 
specified through the passed edge object. Note that this request affects only the 
vertex with the source ID.

•	 removeEdgesRequest(I sourceId, I targetId): Makes a request to remove an 
edge from the vertex with the passed source ID. In particular, it removes the edge 
that has the passed target ID. Nothing happens if the edge does not exist. This call 
affects only the source vertex, not the target vertex.

Although this example did not make use of these methods, they have similar semantics. They allow a 
modification that gets realized, not immediately, but at the beginning of the next superstep.

Mutation Through Messages
Next, let’s look at a third alternative way to modify the graph in Giraph. Apart from the explicit graph 
mutation through the previous APIs, Giraph also allows the creation of a vertex implicitly, by sending a 
message to a vertex that does not exist. Let’s see what this means exactly and how it could be useful.

Let’s see how you can use this way of creating vertices through the previous example. In fact, you are 
going to enrich it with the calculation of more information. Let’s assume you now want to know, not only 
what countries are connected to each other, but also the number of users from one country that follows 
users from another country. This gives us a more informed view of the country relations; you also get a 
sense of the strength of the relationship among countries, and which is the most followed country in terms 
of the total number of followers. Figure 8-3 illustrates the result you wish to get by analyzing the original 
input graph. 
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Let’s now look at the algorithm that computes these more detailed statistics. Unlike the previous 
example, here we assume that the edges have a value of type IntWritable that is used to hold the number of 
followers at the end of the execution. Listing 8-3 shows the implementation. 

Listing 8-3.  Counting the Size of Followership Between Countries

public class CreateCountryGraphWithCounts extends
  BasicComputation<Text, Text, IntWritable, Text> {
 
  @Override
  public void compute(Vertex<Text, Text, IntWritable> vertex,
                      Iterable<Text> messages) {
    Text myCountry = vertex.getValue();
    if (getSuperstep()==0) {                                             #1
      sendMessageToAllEdges(vertex, myCountry);                          #1
    } else if (getSuperstep()==1) {                                      #2
      for (Text m : messages) {                                          #2
        sendMessage(m, myCountry)                                        #3
      }
      removeVertexRequest(vertex.getId());                               #4
      vertex.voteToHalt();
    } else {                                                             #5
      for (Text m : messages) {                                          #6
        IntWritable edgeValue = vertex.getEdgeValue(m);                  #7
        if (edgeValue == null) {                                         #7
          vertex.addEdge(EdgeFactory.create(m, new IntWritable(1)));     #7
        } else {                                                         #8
          vertex.setEdgeValue(m, new IntWritable(edgeValue.get()+1));    #8
        }
      }
      vertex.voteToHalt();
    }
  }
}

Figure 8-3.  Counting how many users from one country follow users from another country



Chapter 8 ■ Beyond the Basic API

195

#1 Tell the users that I am following which country I am from.

#2 At superstep 1, every message contains the country of a user that follows me.

#3 For each country following me, send a message to a destination with ID set to that specific country.  
The message contains this vertex’s own country name.

#4 As before, each user vertex removes itself from the graph.

#5 At superstep 2, vertices representing countries are created and receive messages.

#6 A message contains a country name and represents the followership of a single user in that country.

#7 For every such country, check whether this vertex has already an edge to it. If not, add a new edge an 
initialize its value to 1.

#8 If the country already exists, increment its value by one for every message containing the corresponding 
country name.

ALGORITHM DETAIL

In the initial user graph, the edge value is not relevant and you simply assume that when the graph is 
constructed with the use of an InputFormat, it is set to 0.

Recall that the Giraph model allows a vertex to send a message simply by specifying the ID of the 
destination. In most of the cases, a vertex sends a message to one of its neighbors. It typically choses an ID by 
looking at its edges, which are constructed during the loading of the input graph. However, the Giraph API 
is really more flexible and allows you to use any ID in the sendMessage() method. Since you can specify any 
ID, you may have wondered what happens if you specify an ID that does not really exist in the input graph.

The answer is that Giraph creates the vertex for you. This way, your program can dynamically create a 
vertex by sending a message to it. In this case, the vertex is initialized with no edges and the vertex value is 
set to null.

■■ Note I t is your responsibility as a programmer to write code that handles this initialization. 

The very first part of this algorithm is the same as before. At superstep 0, every vertex sends its own 
country to the vertices it follows through a message (#1). Therefore, at superstep 1, every user vertex receives 
messages containing country names.

Before starting superstep 2, Giraph realizes that there are messages for vertices representing the 
countries. These vertices do not exist yet. Therefore, Giraph creates them and superstep 2 starts executing as 
usual. It delivers messages to all vertices and calls the compute() function.

In this case, only the newly created country vertices have messages. Messages contain country names 
as well. A message that country A receives that contains the country name B means there is a single 
followership from country A to country B. First, this means that there should be an edge between the vertex 
representing country A and the vertex representing country B (#7). Second, by counting the messages that 
contain country B, you know exactly how many users from country A follow users from country B. This count 
is the value of the edge created.

Now you have been offered three different ways to alter the graph structure during the execution of your 
algorithm. In general, which one you use depends on your algorithm and how creative you get. Sometimes 
you find that you can implement an algorithm using either of these ways, while in other scenarios you 
find that one type of mutation is preferred. For instance, when you only need to add edges to vertices and 
each vertex is responsible only for adding its own edges; like in the very first example, direct mutations are 
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probably the way to go because they are faster. If, on the other hand, you require the creation of vertices as 
well, or if a vertex is responsible for adding edges to other vertices, the mutation requests are the solution. In 
general, you need to think a bit about the design of your algorithm and choose the option that fits best.

Resolving Mutation Conflicts
Even though this was not conveyed in the previous examples, conflicts in mutation requests may occur. For 
instance, nothing prevents two vertices from making the following conflicting request: one vertex requests 
the addition of an edge with a certain value, while another vertex may request the creation of the same edge 
with a different value. What should the value of the edge be in this case? Sometimes even more confusing 
requests may occur. For instance, a program may issue a request for the addition of an edge to a vertex, while 
at the same time issue a request for the deletion of the same vertex.

At first glance, these kinds of requests might seem irrational; you may wonder why somebody would 
ever write a program like this. But you find that when writing distributed programs, such disagreements 
among the different computations taking place are unavoidable. In fact, they are part of the design of a 
distributed algorithm as long as there is a way to resolve such conflicts. Think about a simple multithreaded 
program where two threads try to increment the same, shared counter. The result is undefined if the 
program is not properly designed, and programming languages typically provide synchronization 
primitives for you to do design programs correctly. Next, you see how Giraph allows you to resolve this kind 
of conflict.

First, let’s go back to the example of the creation of the Twitter country graph. The code is shown in 
Listing 8-4. Notice that both the “Mark” vertex and the “Anna” vertex make a request to create an edge for the 
“Germany” vertex with a target ID equal to “UK”.

Every time a set of changes happen on a vertex, like an edge addition or deletion, Giraph uses a 
VertexChange object to represent such changes and a VertexResolver object that takes a VertexChange as 
input and defines how to actually handle the changes. Let’s start by describing the VertexResolver interface 
in Listing 8-4. 

Listing 8-4.  The VertexResolver Interface

public interface VertexResolver<I extends WritableComparable,
    V extends Writable, E extends Writable> {
 
  Vertex<I, V, E> resolve(I vertexId,             #1
      Vertex<I, V, E> vertex,                     #2
      VertexChanges<I, V, E> vertexChanges,       #3
      boolean hasMessages);                       #4
}

#1 The ID of the vertex to resolve.

#2 The original vertex before the changes are applied.

#3 The set of changes to this vertex.

#4 Defines whether the vertex has messages sent to it in the previous superstep.

The VertexResolver interface has a single method. Giraph calls this method for a vertex and passes 
it the set of changes that have occurred. When you implement this method, you essentially define what 
the Vertex should look like after the changes. The VertexChange interface shown in Listing 8-5 helps to 
determine the changes requested for the vertex.
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Listing 8-5.  The VertexChanges Interface

public interface VertexChanges<I extends WritableComparable,
    V extends Writable, E extends Writable> {
   
  List<Vertex<I, V, E>> getAddedVertexList();   #1
  int getRemovedVertexCount();                  #2
  List<Edge<I, E>> getAddedEdgeList();          #3
  List<I> getRemovedEdgeList();                 #4
}

#1 Returns the list of vertex additions requested for this vertex ID.

#2 Returns the number remove requests there were for this vertex ID.

#3 Returns the list of edges that were requested to be added to this vertex.

#4 Returns the list of edges that were requested to be removed from this vertex.

Before implementing your own VertexResolver, let’s see what happens if you let Giraph use the default 
VertexResolver. The default vertex resolver performs the following operations:

	 1.	 If there were any edge removal requests, first apply these removals.

	 2.	 If there was a request to remove the vertex, then remove it. This is achieved by 
setting the return Vertex object to null.

	 3.	 If there was a request to add the vertex, and it does not exist, then create the 
vertex.

	 4.	 If the vertex has messages sent to it, and it does not exist, then create the vertex.

	 5.	 If there was a request to add edges to the vertex, if the vertex does not exist, first 
create and then add the edges; otherwise, simply add the edges.

The order of this list is important because it defines exactly the way that Giraph resolves any conflicts 
by default. This means that if, for instance, there is request to remove a vertex and at the same time a request 
to add it, then because the default resolver checks the vertex creation after it does the deletion, it ends up 
creating the vertex.

THE DEFAULT VERTEX RESOLVER IMPLEMENTATION

Even though the implementation of the DefaultVertexResolver is not shown here, it is recommended 
that you look at the source code as an additional example. It gives you more insight into the use of the 
VertexResolvers.

Now let’s assume that you want to change this default behavior. In particular, let’s handle the case where 
there are multiple add requests for the same edge a bit differently. As opposed to just adding the edge to the 
vertex, you would really like to count the number of requests that exist and set this count as the value of the 
edge. This essentially gives you an alternative way to count the number of users from one country that follow 
users from another country. In Listing 8-6, let’s look at how you can do this simply by creating a custom 
VertexResolver. 
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Listing 8-6.  A Custom VertexResolver That Counts the Number of Edge Additions

public class MyVertexResolver implements VertexResolver<Text, Text, IntWritable, Text> {
  @Override
  public Vertex<Text, Text, IntWritable> resolve(
      Text vertexId,
      Vertex< Text, Text, IntWritable> vertex,
      VertexChanges<Text, Text, IntWritable > changes,
      boolean hasMessages) {
     
    if (changes!=null) {
      if (!changes.getAddedEdgeList().isEmpty()) {         #1
        if (vertex==null) {                                #2
          vertex = getConf().createVertex();               #2
          vertex.initialize(vertexId,                      #2
            getConf().createVertexValue());
        }
        for (Edge<I, E> edge : changes.getAddedEdgeList()) {
          IntWritable edgeValue =                          #3
            vertex.getEdgeValue(edge.getTargetVertexId()); #3
          if (edgeValue==null) {
            edge.setValue(new IntWritable(1));             #4
            vertex.addEdge(edge);                          #4
          } else {
            vertex.setEdgeValue(edge.getTargetVertexId(),  #5
              new IntWritable(edgeValue.get()+1));         #5
          }
        }
      }
    }
  }
}

#1 First, check if there are edge addition requests.

#2 If there are edge additions, and the vertex does not exist already, then create it.

#3 For every edge addition, check if the edge already exists.

#4 If it does not exist, add it and set its value to 1.

#5 If it already exists, just increment its value by 1.

In this example, you assume that you only need to handle edge addition requests. The custom resolver 
first checks whether there are any such additions (#1). If yes, then you need to check whether the source 
vertex already exists. Recall that in this case, you create vertices representing countries, which do not already 
exist. Therefore, if the vertex does not already exist, you need to create it (#2). After this, whenever you see a 
request for the same edge, you simply increment the value of the edge (#5).

Now that you have implemented your custom resolver, the only thing that is missing is to tell Giraph to 
use this particular implementation of the vertex resolver in place of the default one. As always, you do this 
through the familiar command-line custom arguments. You just need to add the following to your command 
line: -ca giraph.vertexResolverClass=MyVertexResolver.

Overall, mutations are one of the advanced features that can prove very useful once you start thinking 
about more sophisticated applications. Next, another advanced feature is discussed: how to write your own 
aggregators.
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The Aggregator API
Aggregators are a very useful and easy to use tool that allows you to compute global statistics across 
the entire graph. You have already seen a handful of examples that use aggregators in Chapters 3 and 5. 
Giraph already provides a set of common aggregator functions (like sum or max) that you can use in your 
applications. At the same time, Giraph allows you to implement your own aggregator functions. This section 
explains the aggregator interface in more detail and shows how to write new ones.

Giraph provides two ways for you to implement custom aggregators. The first way is to implement the 
Aggregator interface, which gives the most flexibility about how you implement an aggregator. Listing 8-7 
shows the interface methods. 

Listing 8-7.  The Aggregator Interface

public interface Aggregator<A extends Writable> {
  void aggregate(A value);            #1
  A createInitialValue();             #2
  A getAggregatedValue();             #3
  void setAggregatedValue(A value);   #4
  void reset();                       #5
}

#1 Aggregates the input value to the current value of the aggregator.

#2 Creates the initial value of the aggregator before any aggregation occurs.

#3 Returns the current value of the aggregator.

#4 Sets the current value of the aggregator.

#5 Resets the value of the aggregator.

To understand the implementation of an aggregator, let’s first discuss how Giraph uses this interface. 
The createInitialValue() is called by Giraph before it starts aggregating any values. Giraph calls the 
aggregate method whenever a vertex wants to add a value to an aggregator. Your implementation of the 
aggregator is responsible for maintaining the appropriate data structure for this aggregation to happen. For 
instance, if you are implementing a sum aggregator, your implementation should maintain a partial sum to 
which you are adding values.

Apart from the Aggregator interface, Giraph also provides an abstract class that implements part of the 
Aggregator interface and covers the most common aggregator functionality. Most of the time, extending this 
abstract class covers your needs. Let’s look at the details of the BasicAggregator and then an example that 
extends it to implement a new aggregator.(See Listing 8-8.) 

Listing 8-8.  The BasicAggregator Abstract Class

public abstract class BasicAggregator<A extends Writable> implements
    Aggregator<A> {
  private A value;                                #1
 
  public BasicAggregator() {                      #2
    value = createInitialValue();
  }
 
  @Override
  public A getAggregatedValue() {                 #3
    return value;
  }
 

http://dx.doi.org/10.1007/978-1-4842-1251-6_3
http://dx.doi.org/10.1007/978-1-4842-1251-6_5
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  @Override
  public void setAggregatedValue(A value) {       #4
    this.value = value;
  }
 
  @Override
  public void reset() {                           #5
    value = createInitialValue();
  }
}

#1 The internal value of the aggregator. It holds the current partial aggregate.

#2 The default constructor sets the internal value to its initial value.

#3 Returns the current value of the aggregator.

#4 Sets the interval value of the aggregator directly.

#5 Resets the value of the aggregator to its initial value.

The only data structure that the BasicAggregator maintains is an internal value of the same 
type that your aggregate is. This is essentially the current partial value of the aggregator. When you 
extend the BasicAggregator, your only responsibility is to define what the initial value is through the 
createInitialValue() method and also how to aggregate a new value to the current internal value of the 
aggregator through the aggregate() method. Let’s look at this with an example. You have already seen the 
logic of writing a max or a sum aggregator; here you are shown how to write an aggregator that implements 
a boolean OR function. You may use such an aggregator to detect whether any of the vertices of the graph 
meets a condition. For instance, imagine a social graph where each vertex is labeled with the age of the user. 
You also assume that sometimes the age information may be missing, in which case you stop the analysis 
and print a message. So, you really want know whether any of the vertices—at least one—is missing the age 
information. A boolean OR aggregator would implement this as “at-least one” logic. In other words, the value 
of the aggregator should be the boolean value true if there is at least one vertex that added the value true to 
the aggregator, and false otherwise. Listing 8-9 shows the implementation. 

Listing 8-9.  A Custom Aggregator That Implements a Boolean OR

public class BooleanOr extends BasicAggregator<BooleanWritable> {
 
  @Override
  public BooleanWritable createInitialValue() {       #1
    return new BooleanWritable(false);
  }
 
  @Override
  public void aggregate(BooleanWritable value) {
    boolean currValue = getAggregatedValue().get();   #2
    boolean newValue = currValue || value.get();      #3
    getAggregatedValue().set(newValue);               #4
  }
}
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#1 Initialize the value of the aggregator to false.

#2 Get the current value of the aggregator.

#3 Perform a logical OR operation between the current aggregator value and the aggregated value.

#4 Set the result of the operation as the new value of the aggregator.

THE COMMUTATIVE AND ASSOCIATIVE PROPERTY OF  
THE OR OPERATION

In Chapter 3 you saw that for Giraph to be able to perform aggregations in an efficient way, the 
operation must be commutative and associative. It is easy to see that the logical OR operator (||) is 
indeed both commutative since:

a || b = b || a

and associative since:

(a || b) || c = a || (b || c) 

The implementation is quite straightforward. Obviously, if no vertex adds a value to the aggregator, the 
result should be false. Therefore, the createInitialValue() initializes the value of the aggregator to the 
boolean value false using the Writable implementation of the boolean type. Next, through the aggregate 
method, you essentially perform a logical OR operation between the current aggregator value (#2) and the 
newly aggregated value (#3). The result replaces the value of the aggregator (#4).

Giraph already provides a rich set of aggregator implementations for the most common operations. 
As always, the more customized and sophisticated your applications become, the more you want to go 
beyond the basic functionality and implement your own. This API offers a simple way to implement useful 
aggregators that Giraph can compute for you in a scalable and efficient manner, without you having to worry 
what happens under the hood. In the next section, you come across aggregators again, this time looking at 
how they can help with the coordination of a distributed program.

Centralized Algorithm Coordination
So far you learned that the basic principle of programming in the Giraph API was the “vertex-centric” 
programming, which required you to think from the perspective of a vertex in the graph. Accordingly, you had 
to write a compute function that each vertex executes. This leads to algorithms that are naturally distributed, 
where each vertex does not need to know about the state of the rest of the graph, and only computes for itself.

But in some cases, you find that to implement your algorithm, you need the vertices to coordinate 
among themselves. This coordination may involve sharing some kind information that is common across 
the entire graph or by performing some centralized computation that affects the entire algorithm. In fact, 
you already saw such an example in Chapter 5, where you had to compute the most popular user in Twitter 
through the use of aggregators. An aggregator offers a form of centralized coordination and computation, 
since all vertices collectively contribute to the value of a single aggregator, which is then made available back 
to all vertices. Here, we talk about the MasterCompute, another way to coordinate vertices.

In general, apart from the distributed computations that you execute through the familiar compute() 
function on a per-vertex basis, you may also need to take some action that depends on or affects the graph and 
the computation as a whole. As an example, consider that halting your application depends on the value of an 
aggregator, and not on each vertex individually. Fortunately, Giraph offers the MasterCompute, a mechanism 
designed exactly for this. You have already seen some examples of how the MasterCompute can be of use, but 
here it is explained in more detail and you are given more examples of what you can achieve with it.

http://dx.doi.org/10.1007/978-1-4842-1251-6_3
http://dx.doi.org/10.1007/978-1-4842-1251-6_5
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The MasterCompute provides essentially a centralized location where you can perform actions, such as 
reading and setting aggregator values, getting statistics about the entire graph, or even stopping the entire 
job execution. In practice, you can think of the MasterCompute as a piece of application logic that executes 
only once after the end of each superstep. (See Figure 8-4.)

Listing 8-10 shows the methods of the MasterCompute abstract class, which are explained shortly, with 
an example.

Listing 8-10.  The MasterCompute Abstract Class

public abstract class MasterCompute
    extends DefaultImmutableClassesGiraphConfigurable
    implements MasterAggregatorUsage, Writable {
 
  public abstract void initialize()        #1
   throws InstantiationException, IllegalAccessException;
 
  public abstract void compute();          #2
}

#1 Called before execution starts.

#2 Called exactly once for the entire graph after each superstep finishes.

Figure 8-4.  The MasterCompute centralized point of computation. The compute() method executes once 
before each superstep. Aggregator values are passed from the MasterCompute to the vertices
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The initialize() method of the MasterCompute is called once before the execution of the algorithm 
starts; it is used typically to set up your MasterCompute implementation. As you will see in a bit, it is very 
useful to set up the operation of aggregators. The compute() method is the workhorse of the MasterCompute. 
Giraph calls this method exactly once before the execution of every superstep; that is, before it calls the 
compute() method on the vertices. More specifically, the first time Giraph calls the compute() method of the 
MasterCompute is right before the execution of superstep 0. Next, let’s look at a few examples of what you can 
do within the compute function of the MasterCompute.

Halting the Computation
Deciding when to stop the execution is one of the core aspects of a distributed graph algorithm. Think about 
the PageRank algorithm that you saw in Chapter 4. The PageRank algorithm changes the rank of a web page 
in each iteration. The decision to stop may depend on the number of iterations that you have performed so 
far, or on how much the web page ranking has changed since the last iteration. In any case, you need a way 
to instruct Giraph to stop the computation.

Until now, you have learned that in order to stop a Giraph computation, two conditions must occur: 
every vertex called the voteToHalt() method and no messages were sent in the current superstep. These 
conditions depend entirely on your vertex computation. In fact, in Chapter 4 you saw many examples of 
algorithms and how they implement this halting condition. But you may need to make a decision about 
halting the computation based on some aggregate information about your graph and your algorithm 
execution, which does not depend on individual vertices. For example, you may want such a decision 
to depend on the value of an aggregator. In the case of PageRank, you may want to stop if the aggregate 
difference of the rankings has not changed much since the last iteration; in other words, PageRank has 
converged. This type of decision cannot be made by each vertex individually, but it must be done by some 
centralized entity. As you already have guessed, the MasterCompute is the place to do so.

Giraph gives you an extra way to terminate the computation at a centralized point of control through 
the MasterCompute API. Recall that the compute() method of the MasterCompute class is called after the 
end of the superstep and before the beginning of the next. From within the compute() method of the 
MasterCompute, you can call the haltComputation() method, which terminates the execution. Note that 
once this method is called, the execution terminates no matter if there are still messages sent by vertices 
or if not all vertices have called the voteToHalt() method as you knew so far. In other words, a call to 
haltComputation() from the MasterCompute preempts the usual termination condition.

Let’s look at an example of how you could use it. A typical way to decide the termination of an algorithm 
is based on the number of supersteps executed so far. The PageRank algorithm that you saw in Chapter 4 
is such an example. There you put the logic for halting inside the vertex computation itself; here you see 
how you can do this from inside MasterCompute. One benefit you get from this is that you keep your main 
computation logic cleaner. Listing 8-11 shows how to do this from inside the MasterCompute implementation.

Listing 8-11.  Termination Based on Number of Supersteps

public class MyMasterCompute extends DefaultMasterCompute {
  @Override
  public void compute() {
    if (getSuperstep()==10) {                                    #1
      haltComputation();                                         #1
    }
  }
}

#1 Terminate computation based on the superstep number.

http://dx.doi.org/10.1007/978-1-4842-1251-6_4
http://dx.doi.org/10.1007/978-1-4842-1251-6_4
http://dx.doi.org/10.1007/978-1-4842-1251-6_4
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In general, you can implement arbitrary logic inside the compute() method of the MasterCompute. This 
logic executes in between supersteps. In this example, you simply check whether you are in superstep 10 and 
take appropriate action by halting the computation. Otherwise, the compute() method does not need to do 
something else.

Recall that when you call getSuperstep() from within MasterCompute, it returns the number 
of the superstep that it is about to execute. In the previous example, the compute() method calls 
haltComputation() right after the execution of superstep 9 and before the execution of superstep 10. 
Therefore, superstep 10 will never execute. This is a small detail that you need to be aware of to avoid 
programming your termination condition in the wrong way.

Using Aggregators for Coordination
You have already seen how useful aggregators are for computing global statistics. Apart from global statistics, 
there are other useful things you can use aggregators for, and coordination is one of them. But let’s discuss a 
more concrete example where coordination is necessary. Think about the recommendation algorithms you saw 
in Chapter 4, used to predict recommendations between users and items. These algorithms iteratively refine 
a machine learning model that tries to minimize the prediction error. The prediction error is calculated as the 
aggregate error across all vertices and is computed with the use of an aggregator. These algorithms typically 
stop execution when the aggregate prediction error has dropped below a specific threshold. One way you can 
use the aggregators in conjunction with the MasterCompute is to coordinate the halting of the execution.

More specifically, you can think of an aggregator as a global variable that all vertices can write and 
read. You can use aggregators to collect information from the vertices to a centralized location, which is the 
MasterCompute, and from there pass this information back to all their vertices during the execution of the 
algorithms and have them make decisions according to this information. In this example, you are passing 
the value of the aggregate error to the vertices, and vertices take actions based on this value. In other words, 
the aggregators are the way for the master worker to communicate with the vertices. More specifically, the 
values of the aggregators are broadcast to the workers before vertex compute() is called, and collected by the 
master before master compute() is called. Listing 8-12 shows this example.

Listing 8-12.  Termination Based on Value of an Aggregator

public class MyMasterCompute extends DefaultMasterCompute {
  @Override
  public void compute() {
    if (((DoubleWritable)getAggregatedValue(“error”)).get()<0.001) { #1
      haltComputation();                                             #2
    }
  }
}

#1 Termination is based on the aggregator prediction error falling below a threshold.

#2 When this condition holds, terminate the execution.

In this example, you assume that vertices use the “error” aggregator to sum the total prediction error. 
After each superstep, the aggregate error is made available to the MasterCompute, and you can read it from 
within the compute() method to decide the termination of the execution.

As mentioned, apart from reading the value of an aggregator, inside the compute() method of the 
MasterCompute you can also set the value of an aggregator and “broadcast” its value to every vertex in the 
graph. The value of the aggregator is available to every vertex during the next superstep execution. For 

http://dx.doi.org/10.1007/978-1-4842-1251-6_4
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instance, imagine that in the previous example, after each superstep, you want to compute the average value 
of the error across all vertices and then communicate it back to the vertices. The average error then uses 
each vertex as feedback to improve the prediction.

One way to do this is to first compute the sum of the prediction error across all vertices. You have 
already seen how to do this using the “error” aggregator. After this, from within the MasterCompute, you can 
easily compute the average by dividing the aggregator error with the number of vertices in the graph, and 
then broadcast this to all vertices. Listing 8-13 illustrates this process.

Listing 8-13.  Setting the Value of an Aggregator in the MasterCompute

public class MyMasterCompute extends DefaultMasterCompute
  @Override
  public void compute() {
    double totalError =
     ((DoubleWritable)getAggregatedValue(“error”)).get())           #1
    double avgError = totalError/(double)getTotalNumVertices()      #2
    setAggregatedValue(“avg.error”, new DoubleWritable(avgError));  #3
  }
}

#1 Get the aggregator error across all vertices.

#2 Compute the average error by dividing by the number of vertices.

#3 Broadcast the average error to all vertices through a new aggregator.

In this MasterCompute implementation, you first read the value of the “error” aggregator that holds the 
sum of the prediction errors across all vertices (#1). After this, using the getTotalNumVertices() method, 
you can easily compute the average error (#2). Finally, using the setAggregatedValue() method of the 
MasterCompute, you set the value of the “avg.error” aggregator to the average value you just computed (#3). 
The value of this aggregator is available to all vertices in the next superstep.

In general, the MasterCompute is a very useful tool for coordination among vertices. In this case, it 
has allowed functionality that was not possible by using only the distributed vertex-centric programming 
interface. In particular, it allowed you to collect communication among the vertices by aggregating 
information and making it available to the whole graph. In the following section, you find out about another 
distinct way to use the MasterCompute—that is, how to compose complex algorithms from simpler blocks.

Writing Modular Applications
So far you have explored those facilities of the Giraph API that allow you to add more functionality in your 
application or write more efficient algorithms. In this section, you look at a feature of the Giraph API that 
helps you write better applications from a programming perspective. Specifically, you will look at how 
Giraph allows you to compose potentially complex algorithms from simpler logical blocks, improving code 
readability and code reuse. Through examples, you learn how to recognize algorithms that can potentially be 
decomposed to simpler ones and how to use the Giraph API to simplify their development.

Structuring an Algorithm into Phases
Let’s start by discussing the type of algorithms that fall under this category and that could benefit from 
composability. The programming patterns that make their appearance in many algorithms and are easy to 
recognize. Note, though, that this is by no means an exhaustive list. These are only meant as common cases 
for you to understand the composable API and then be more creative with it as new scenarios appear.
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One common programing pattern that you may have observed in the Giraph algorithms you have 
seen so far is that the logic inside your algorithm may depend on the superstep that is executing. This is the 
basic pattern of graph algorithms in Giraph that you use to break down complex algorithms into simpler 
ones. Let’s revisit one of the algorithms you saw in Chapter 3 that converts a graph from a directed one to an 
undirected one. In other words, this algorithm ensures that if an edge from vertex A to vertex B exists in the 
original graph, then the output graph contains an edge from B to A as well. Several algorithms operate on 
undirected graphs, so this is a common preprocessing step. In Chapter 3, you saw the pseudocode for this 
algorithm; here you are shown the actual code. (See Listing 8-14.)

Listing 8-14.  Algorithm to Convert a Directed Graph to an Undirected

public class ConvertGraph
  extends BasicComputation<
    IntWritable, NullWritable, NullWritable, IntWritable> {
 
  @Override
  public void compute(
    Vertex<IntWritable, NullWritable, NullWritable> vertex,
    Iterable<IntWritable> messages) {
    if (getSuperstep()==0) {
      sendMessageToAllEdges(vertex, vertex.getId())   #1
      vertex.voteToHalt()
    } else {
      for (IntWritable msg : messages) {              #2
        IntWritable id = (IntWritable)msg.get();      #2
        if (vertex.getEdgeValue(id))==null) {         #3
          vertex.addEdge(message)                     #3
        }
      }
      vertex.voteToHalt()
    }
  }
}

#1 Send this vertex’s ID to all its neighbors.

#2 I got a message with an ID from a vertex that points to me.

#3 If there is no edge to that destination ID, then add it.

In this algorithm, during superstep 0, every vertex sends a message that contains its own vertex ID to all 
the vertices that it has edges to. This way, during superstep 1, a vertex A receives a message from vertex B if B 
has an edge to A. If vertex A does not have an edge to B, it can then add it. Figure 8-5 illustrates these two steps.

http://dx.doi.org/10.1007/978-1-4842-1251-6_3
http://dx.doi.org/10.1007/978-1-4842-1251-6_3
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This is a very representative example of algorithms that benefit from the ability to compose an 
algorithm from simpler blocks for the following reasons. First, you can immediately observe that it fits 
the pattern that described earlier; the computation logic depends on the superstep that is executing. In 
particular, there are two clearly separated phases: one that is executed during superstep 0, and one that is 
executed during superstep 1.

Second, converting a graph to an undirected one is usually a preprocessing step that is secondary 
to the main logic of your application. This way, along with your main logic, you would have to include 
this conversion logic inside your computation function. For instance, assume that you want to run the 
Connected Components algorithm that you saw in Chapter 4 on an undirected graph. In this case, before 
you execute the main logic of the algorithm, you have to ensure that the graph is converted to an undirected 
one by applying the conversion logic.

To illustrate this, let’s first look at how you would implement the original connected components 
algorithm. Chapter 4 described this algorithm with pseudocode; Listing 8-15 shows the actual code.

Listing 8-15.  The Connected Components Algorithm

public class ConnectedComponents
  extends BasicComputation<
    IntWritable, NullWritable, NullWritable, IntWritable> {
 
  @Override
  public void compute(
    Vertex<IntWritable, NullWritable, NullWritable> vertex,
    Iterable<IntWritable> messages) {
 
    if (getSuperstep()==0) {
      sendMessageToAllEdges(vertex, vertex.getId())                       #1
      vertex.voteToHalt()
    } else {
      int maxId = vertex.getValue().get()                                 #2

Figure 8-5.  The steps to convert a directed graph to an undirected one

http://dx.doi.org/10.1007/978-1-4842-1251-6_4
http://dx.doi.org/10.1007/978-1-4842-1251-6_4
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      for (IntWritable msg : messages) {                                  #3
        if (msg.get()>maxId) {                                            #4
          maxId = msg.get();                                              #4
        }                                                                 #4
      }
      if (maxId>vertex.getValue().get()) {                                #5
        vertex.setValue(maxId);                                           #5
        sendMessageToAllEdges(vertex, maxId)                              #5
      }
      vertex.voteToHalt();
    }
  }
}

#1 In superstep 0, every vertex sends its ID to all its neighbors.

#2 Each vertex maintains the maximum ID seen so far, which represents the ID of the component the vertex 
belongs too.

#3 In each subsequent superstep, a vertex receives the IDs of all its neighbors.

#4 A vertex finds the maximum ID among its own and the IDs of its neighbors.

#5 If the max ID is greater than the one stored currently in the vertex value, update the value and propagate 
the new max ID to all the neighbors.

Now that you have the logic for the connected components, let’s look at how to modify it to perform the 
same algorithm, but after converting a directed graph to an undirected one (see Listing 8-16).

Listing 8-16.  Applying the Connected Components Algorithm on an Undirected Graph

public class ConnectedComponents
  extends BasicComputation<
    IntWritable, NullWritable, NullWritable, IntWritable> {
  @Override
  public void compute(
    Vertex<IntWritable, NullWritable, NullWritable> vertex,
    Iterable<IntWritable> messages) {
    if (getSuperstep()==0) {                          #1
      sendMessageToAllEdges(vertex, vertex.getId())   #1
      vertex.voteToHalt()                             #1
    } else if (getSuperstep()==1) {                   #1
      for (IntWritable msg : messages) {              #1
        IntWritable id = (IntWritable)msg.get();      #1
        if (vertex.getEdgeValue(id))==null) {         #1
          vertex.addEdge(message)                     #1
        }                                             #1
      }                                               #1
      vertex.voteToHalt()                             #1
    } else if (getSuperstep()==2) {                   #2
      sendMessageToAllEdges(vertex, vertex.getId())   #2
      vertex.voteToHalt()                             #2
    } else if (getSuperstep()>2) {                    #2
      int maxId = vertex.getValue().get();            #2
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      for (IntWritable msg : messages) {              #2
        if (msg.get()>maxId) {                        #2
          maxId = msg.get();                          #2
        }                                             #2
      }                                               #2
      if (maxId>vertex.getValue().get()) {            #2
        vertex.setValue(maxId);                       #2
        sendMessageToAllEdges(vertex, maxId)          #2
      }                                               #2
      vertex.voteToHalt();                            #2
    }
  }
}

#1 Graph conversion logic is applied in the first two supersteps.

#2 Main algorithm logic is applied in subsequent supersteps.

You can clearly see that this algorithm mixes the two logics: the graph conversion and the connected 
components algorithm. Again, it uses the superstep number to distinguish between phases. It uses the 
first two supersteps to convert the graph, and the supersteps afterward to apply the logic of the connected 
components.

Even though this is a perfectly correct way to structure such an algorithm, you may find that it can lead 
to unnecessarily complicated code, as it pollutes your computation with code that is not directly related 
to the core algorithm logic. If your algorithm becomes more complex, you end up placing many different 
logical blocks inside the same computation. For instance, just like you have a graph preprocessing step here, 
in some scenarios you may also have a post-processing phase that has to be executed in the supersteps 
following the main application logic, adding to the complexity of your application. To make matters worse, 
when you write unit tests for your algorithm, now you have to account for the testing cases that exercise the 
conversion logic as well, even though they are not directly related to your main logic.

Third, it is obvious that this piece of logic, converting a graph to an undirected one, may repeat itself 
across different algorithms that must operate on undirected graphs. In fact, you could just copy the logic 
executed during supersteps 0 and 1 to different algorithms. But this is not a good programming practice 
for different reasons. For instance, it forces you to modify your main algorithm so that it applies the main 
logic only for superstep 2 and after. Apart from this, it makes code reuse and code maintenance harder. For 
instance, if you happen to find a bug in the conversion logic, you have to fix it in all the algorithms that use 
this logic. Instead, once you start building a library of algorithms, it would be nice if you could just reuse 
such common blocks of logic and not having to code them every time. Next, you look at how to actually get 
past all of these problems.

The Composable API
Hopefully, by now you are convinced that writing algorithms can get complicated from a programming 
perspective. Let’s now look at how Giraph can make this task easier for you. At a high level, Giraph gives you 
the ability to specify different computation classes for different supersteps and decide which computation 
executes in what superstep in an easy way. This way, you get to separate the logic into different computation 
classes, but at the same time you can combine them into the execution of a single algorithm. Let’s look at an 
example of how you can do this, followed by an explanation of all the benefits that it gives you.

Specifically, let’s use the example of the graph conversion into undirected. As a first step, break down 
the logic for the graph conversion into two distinct computations. The first one is responsible for sending the 
ID of the vertex to all of its neighbors. This is the operation that you used to perform in superstep 0 in your 
original, monolithic application. The second one is responsible for receiving IDs as messages and adding the 
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corresponding edges if they do not exist. This is the operation that you used to perform superstep 1 in the 
original algorithm. You can see these two computations in Listing 8-17.

Listing 8-17.  Computation That Propagates Vertex ID to Neighbors

public class PropagateId
  extends BasicComputation<
    IntWritable, NullWritable, NullWritable, IntWritable> {
 
  @Override
  public void compute(
    Vertex<IntWritable, NullWritable, NullWritable> vertex,
    Iterable<IntWritable> messages) {
 
    sendMessageToAllEdges(vertex, vertex.getId())   #1
    vertex.voteToHalt()
  }
}

#1 Send vertex ID to all neighbors.

In this example, you assume that your input graph has a vertex ID of type integer, and has no 
associated vertex value and edge value. Therefore, you assume those to be of type NullWritable. In this first 
computation, each vertex simply sends its ID to all its neighbors using the sendMessageToAllEdges() API 
and then halts. Let’s look at Listing 8-18.

Listing 8-18.  Computation That Adds Reverse Edges

public class ReverseEdges
  extends BasicComputation<
    IntWritable, NullWritable, NullWritable, IntWritable> {
 
  @Override
  public void compute(
    Vertex<IntWritable, NullWritable, NullWritable> vertex,
    Iterable<IntWritable> messages) {
 
    for (IntWritable msg : messages) {
      IntWritable id = (IntWritable)msg.get();
      if (vertex.getEdgeValue(id))==null) {
        vertex.addEdge(message)
      }
    }
 
    vertex.voteToHalt()
  }
}

At this point, you have two different computations that do not seem related whatsoever. That is because 
so far you have been thinking about algorithms in the context of a single computation class. In a moment, 
you are going to change this, and discover how you can glue them together in a very easy manner.
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Putting together different computation classes consists mainly of deciding which computation class 
is used at which superstep; in other words, coordinating the use of the computation classes. The word 
coordination must have already hinted to you that you are going to do this through the MasterCompute. 
Indeed, one of the operations you can do in a MasterCompute implementation is setting the computation to 
be used at each superstep. You apply the logic of choosing the right function inside the compute() method 
of the MasterCompute. Recall that Giraph calls the compute method of your MasterCompute implementation 
right before the execution of a superstep. Inside this method, you have the chance to set the computation 
used in the next superstep. Listing 8-19 shows an example of how to do this.

Listing 8-19.  Setting the Computation Class from the MasterCompute

public class MyMasterCompute extends DefaultMasterCompute {
 
  @Override
  public final void compute() {
    long superstep = getSuperstep();       #1
    if (superstep == 0) {                  #2
      setComputation(PropagateId.class);   #2
    } else {                               #3
      setComputation(ReverseEdges.class);  #3
    }
  }
}

#1 Get the number of the superstep to be executed next.

#2 If we are about to execute superstep 0, we set the computation to PropagateId.

#3 If we are about to execute superstep 1, we set the computation to ReverseEdges.

Let’s take a step-by-step look at the operations in this method. You first get the number of the 
superstep that Giraph is about to execute. Based on this, you choose the right computation. In particular, 
if Giraph is about to execute superstep 0, you want to perform the first phase of the conversion, which is 
having each vertex send its IDs to its neighbors. This is the logic that the PropagateId computation class 
implements. You then use the setComputation() API of the MasterCompute to indicate this to Giraph. 
Notice that you pass as an argument to this method an object of type Class that represents the specific 
computation class you want to execute. After the first superstep is executed, Giraph calls the compute() 
method of MasterCompute again. This time, you want to perform the second phase of the conversion, where 
vertices receive messages from phase one, and add the corresponding edges. This is computation class 
ReverseEdges. Therefore, if you are about to execute superstep 1, you want to set the computation class to 
ReverseEdges.class, using again the setComputation() method.

That is it. With the MasterCompute, you have easily coordinated the execution of the algorithm through 
a simple call to the setComputation() method. As you already have seen in Chapter 5, all you have to do to 
run this application is to specify the MasterCompute implementation when you run the Giraph job through 
the –mc command-line option. Giraph takes care of the rest, ensuring that the right computation is used for 
each superstep.

But let’s look back to see what you have achieved with this separation of the functionality in different 
blocks. First, it is obvious that you did not have to encode the choice of the superstep in your application 
logic, leaving it clean and intact. From a code readability point of view, the two separated computations 
encode only what they intend to do and are much simpler and easier to understand.

Apart from this, it was previously said that it would be nice to be able to easily reuse code across 
the application. In particular, let’s now revisit the scenario where you want to execute the connected 
components algorithm on an undirected graph. You already have code that converts a graph to an 

http://dx.doi.org/10.1007/978-1-4842-1251-6_5
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undirected one, and you already have code that implements the Connected Components algorithm. All you 
are going to do is use the composable API to glue them together in the MasterCompute with no modification 
in the main logic. The implementation of the MasterCompute class is shown in Listing 8-20. 

Listing 8-20.  Combining Graph Conversion with the Connected Components Algorithm

public class MasterCompute extends DefaultMasterCompute {
 
  @Override
  public final void compute() {
    long superstep = getSuperstep();
    if (superstep == 0) {
      setComputation(PropagateId.class);
    } else if (superstep == 1) {
      setComputation(ReverseEdges.class);
    } else {
      setComputation(ConnectedComponents.class);
    }
  }
}

As you may have observed, what you have done is moved the coordination and the selection of the logic 
to execute at each superstep from the main computation to a part of your code that is specifically intended 
for coordination—that is, the MasterCompute. Again, as a result, you did not have to modify the logic of the 
Connected Components algorithm at all. You just took three individual pieces of logic and put them together 
to form a new application. You only had to instruct Giraph to use the graph conversion logic for the first two 
supersteps, and then your main computation for all the subsequent supersteps. In a similar way, instead of 
the connected components algorithm, you could use these first two computations in combination with any 
other algorithm, simplifying code reuse and making it easy to build new applications.

■■ Note  While inside MasterCompute, you can set the computation class at every superstep; if you do not set 
it explicitly, Giraph uses the value set during the last superstep.

Summary
Even though the basic Giraph API is flexible enough to allow you to express a wide range of algorithms, 
Giraph provides tools that give you more capabilities. These make it possible to express new programming 
patterns, such as centralized coordination, making your algorithms more efficient, and possibly making your 
life easier from a programming perspective.

•	 The graph mutation API allows an algorithm to modify the graph during execution. 
This is often a natural requirement by many applications that must change the 
graph, but may also come as a handy tool in algorithms that require the temporary 
creation of logical vertices.

•	 Giraph provides three ways to perform mutations: (i) direct mutations on a Vertex 
object, (ii) mutation requests, and (iii) mutations through messages.
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•	 When using mutation requests, conflicts may occur. Use a VertexResolver to 
determine how you want the conflicts to be resolved.

•	 Aggregators allow you to compute global statistics, and Giraph already provides a 
rich set of common operations. At the same time, you can use the simple aggregator 
API to implement custom ones.

•	 Aggregators and the MasterCompute allow the expression of algorithms that require 
centralized coordination.

•	 Use the MasterCompute compute() method to implement your centralized 
coordination logic.

•	 Algorithms can quickly get complicated, but they are usually structured in phases 
that depend on the superstep executed. Using the composable API can simplify 
programming, enable code reuse, and result in code that is easier to maintain.

At this point, you have already started using the more advanced features of Giraph. This should 
allow you to write more sophisticated applications. In the following chapter, you continue to look at these 
advanced features of Giraph, including how to take control of the parallelization in Giraph to write more 
efficient applications.
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Chapter 9

Exposing Parallelism in Giraph

This chapter covers

•	 Per-worker computations

•	 Thread safety in Giraph

•	 The importance of graph partitioning

•	 Implementing custom partitioners

In the previous chapters, you looked at the different programming primitives of Giraph and discovered 
how to use them to implement graph algorithms. In the process of implementing graph algorithms, you 
considered graphs in an abstract way, viewing them only as vertices and edges that can communicate each 
other through messages. Fortunately, you did not have to worry about what happens under the hood; that 
is, where these vertices and edges live when Giraph executes your algorithms on a cluster or how messages 
are actually implemented. Nor did you have to worry about how Giraph manages to parallelize the execution 
of your algorithm. In fact, this is one of the great benefits of Giraph; it hides from you the complexity that 
comes with executing a graph algorithm on large compute clusters.

Then in Chapter 6, you got more insight on the internal architecture of Giraph and discovered how it 
manages the parallel processing of very large graphs. You learned that Giraph groups vertices in partitions 
and distributes them to the actual machines, or workers, responsible for the processing of each partition, 
thus parallelizing the processing. You also learned that Giraph might even perform the processing on 
different threads within the same worker, achieving further parallelization.

In this chapter, you revisit how Giraph parallelizes the processing of a large graph, but with a different 
goal. You are shown that with a little knowledge about the parallel processing mechanism, you can build 
more efficient applications on top of Giraph. For instance, the chapter discusses how you can exploit the 
distribution of vertices to worker machines through the concept of worker computations. In particular, you 
learn how to augment your vertex-centric algorithms with per-worker computations that allow you to share 
data and computations among vertices that are physically collocated on the same worker. You see in several 
scenarios that sharing data and computation can help you add new functionality or significantly improve the 
performance of your application.

This chapter also discusses graph partitioning, the placement of vertices across the different worker 
machines. Simple examples describe the impact that different graph partitioning strategies can have on 
application performance. Then you learn how different graph mining scenarios may benefit from different 
partitioning strategies. Finally, you learn how to control graph partitioning to your benefit by implementing 
custom partitioners.

http://dx.doi.org/10.1007/978-1-4842-1251-6_6


Chapter 9 ■ Exposing Parallelism in Giraph

218

Worker Computations
As you learned in Chapter 6, Giraph splits the graph into partitions and assigns partitions to the cluster 
machines, or workers. This gives Giraph the ability to parallelize the processing of the graphs by assigning 
partitions to different worker machines and potentially by assigning different partitions to different CPU 
cores within the same worker machine. More specifically, each worker machine or core is responsible for 
calling the compute function for all the vertices resident on that worker or core. The nice thing is that so far, 
you as a programmer did not really have to worry about how the graph is partitioned under the hood and 
how Giraph processes each partition; you only needed to think about the graph and algorithm abstractly, as 
vertices with edges, and vertex computations.

In this section, however, you will discover that sometimes being aware of this concept of partition and 
worker distribution can help you build better applications. In particular, you will learn that some algorithms 
may benefit from doing computation not only on a per-vertex basis, but also on a per-worker basis. For 
the first time, you will perform computations that do not fall under the typical vertex-centric mentality of 
Giraph. Here, you review some common use cases where this occurs and you learn how to take advantage of 
the concept of partitioning, either to add functionality to your applications or to make them more efficient.

Use case: Sharing Data Across a Worker
One of the most common use cases where per-worker computation becomes very handy is when you want 
to share some data structure among all vertices of a worker. Often, the programming logic inside a vertex 
computation requires access to data, potentially read from some external service, like a distributed storage 
system, which is common to all vertices.

To make this more concrete, imagine you want to process our familiar Twitter graph, depicted in 
Figure 9-1, to count the number of male or many female followers each user has.

Figure 9-1.  An example Twitter graph

In fact, in Chapter 3 you already saw pseudocode for a simpler version of this algorithm that simply 
counts Twitter followers. Before getting into the more complex algorithm, in Listing 9-1, let’s see what this 
simpler application looks like in actual code.

http://dx.doi.org/10.1007/978-1-4842-1251-6_6
http://dx.doi.org/10.1007/978-1-4842-1251-6_3
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Listing 9-1.  Algorithm That Counts Twitter Followers

public static class CountFollowers
  extends AbstractComputation<Text, IntWritable, NullWritable, Text, Text> {
   
  @Override
  public void compute(Vertex<Text, Text, NullWritable> vertex,
    Iterable<Text> messages) throws IOException {
 
    if (getSuperstep()==0) {
      sendMessageToAllEdges(vertex, vertex.getId());              #1
      voteToHalt();                                               #1
      return;                                                     #1
    }
 
    int numFollowers = 0;
    for (Text msg : messages) {                                   #2
      numFollowers++;                                             #2
    }                                                             #2
 
    vertex.setValue(new IntWritable(numFollowers));               #3
    voteToHalt();
  }
}

#1 In the 1st superstep, you send the ID to all neighbors and return

#2 In the 2nd superstep, a vertex counts messages, one from each follower

#3 Finally, a vertex sets its value as the number of followers, votes to halt, and returns implicitly

In this algorithm, during the first superstep, every vertex sends its ID to all the vertices that it has edges 
to; that is, to all users that it follows. In the second superstep, every vertex receives messages: one from every 
follower. At this point, all it has to do is to count the number of received messages and set the resulting count 
as its value.

Next, you modify this application to count followers based on their gender. First, notice that since 
the gender information might not be part of the profile of a user, you need a way to automatically decide 
whether a user is male or female and label them with a “female” or “male” tag. You assume that there is 
an external service that maintains this information; that is, the service can map a user to a gender. Such a 
service would essentially give you a classifier that can automatically detect the gender if you pass it a name.

You do not worry about the details of the service and the classifier here. You simply assume that calling 
getClassifierFromService() from within your applications contacts the external service and returns an object 
of type GenderClassifier. Once you have an instance of the GenderClassifier object, you can pass the name 
to the get(String) method of the instance, which returns a string indicating a “female” or “male” gender.

Now that you know how to access the external service and map a name to a gender, let’s look at how you 
are going to implement this application in Giraph, as shown in Listing 9-2.
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Listing 9-2.  Algorithm That Counts Twitter Followers by Gender

public static class CountFollowersByGender
  extends AbstractComputation<Text, Text, NullWritable, Text, Text> {
  
  @Override
  public void compute(Vertex<Text, Text, NullWritable> vertex,
    Iterable<Text> messages) throws IOException {
 
    if (getSuperstep()==0) {
      GenderClassifier classifier = getClassifierFromService();    #1
      String gender = classifier.get(vertex.getId());              #2
      sendMessageToAllEdges(vertex, new Text(gender));             #3
      voteToHalt();                                                #4
      return;                                                      #4
    }
 
    int femaleFollowers = 0;
    int maleFollowers = 0;
    for (Text msg : messages) {                                    #5
      if (msg.toString().equals("female")) {                       #5
        femaleFollowers++;                                         #5
      } else {                                                     #5
        maleFollowers++;                                           #5
      }                                                            #5
    }                                                              #5
    String vertexValue =
     "female:"+femaleFollowers+", male:"+maleFollowers;            #6
    vertex.setValue(new Text(vertexValue));                        #6
    voteToHalt();
  }
}

#1 Connect to external service and get gender classifier

#2 Get gender based on name from classifier

#3 Send the gender to all the users this vertex follows

#4 If this is the very first superstep, vote to halt and returns

#5 In the second superstep, messages contain gender labels of followers

#6 Set the gender counters as the vertex value

This new algorithm is fairly straightforward as well. Compared to the simpler version, the difference is 
that during superstep 0, a vertex contacts the external service to get the gender classifier to decide whether 
the user it represents is male or female. After that, it sends a “female” or “male” label to all the users that 
it follows. In the second superstep, every vertex known maintains two separate counters: one for female 
counters and one for male counters. Notice that you also change the type of the value to Text, and you set it 
to a string representing the two counts. This is all you need to count followers by gender.

Now, this is a perfectly valid way to add this functionality to your algorithm, but it presents a problem. It 
forces you to access an external service for every vertex computation that occurs. This seemingly harmless feature 
can potentially add latency to the processing, significantly degrading the performance of your application.
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However, you may have noticed that in this scenario, you repeatedly read exactly the same information 
for every vertex computation; that is, the gender classifier object. Ideally, you would like to avoid this and 
instead keep this information somewhere in memory and share it across all vertices. This would avoid all 
these unnecessary accesses and eventually speed up computation.

To achieve this, Giraph provides a facility called WorkerContext. A WorkerContext is an object that 
is shared across all vertices in a partition and lives throughout the execution of your algorithm; every 
worker has its own WorkerContext. You can use it in two ways. First, you can use it to perform per-worker 
computations at predefined points in the algorithm execution; for instance, before and after a superstep. 
Second, you can also use it to maintain shared data structures that you can access from within each 
vertex computation. Giraph provides an abstract class that you can extend to customize to your use case. 
Before looking at how you are going to use it in this particular scenario, let’s look at the methods of the 
WorkerContext abstract class, shown in Listing 9-3.

Listing 9-3.  The WorkerContext Abstract Class

public abstract class WorkerContext {
  public void preApplication();        #1
    throws InstantiationException, IllegalAccessException;
  public void postApplication();       #2
  public void preSuperstep();          #3
  public void postSuperstep();         #4
}

#1 Called on every worker before the computation begins

#2 Called on every worker after the computation finishes

#3 Called on every worker before the beginning of every superstep

#4 Called on every worker after the end of every superstep

To understand how to extend the WorkerContext abstract class, first you must know about the life 
cycle of a WorkerContext object. For every machine worker that the Giraph job runs on, Giraph creates a 
WorkerContext instance. Before the execution of your algorithm starts, Giraph calls the preApplication() 
method for each worker. You can use this method to set up the WorkerContext. After the execution starts, 
Giraph calls the preSuperstep() method of every WorkerContext right before a superstep begins. After a 
superstep finishes, Giraph calls the postSuperstep() method. Finally, at the end of your algorithm execution, 
Giraph calls the postApplication() method for every worker. During the entire execution of the algorithm, a 
vertex computation can access the WorkerContext object by calling the getWorkerContext() method.

Next, you see how to implement these methods in our particular scenario. You will create a 
WorkerContext that is used to contact the external service to get the gender classifier object and share it 
across all vertices on the same worker. Listing 9-4 shows the implementation.

Listing 9-4.  Example Implementation of WorkerContext

public class MyWorkerContext extends WorkerContext {
  
  private GenderClassifier classifier;              #1
 
  @Override
  public void preApplication() throws InstantiationException,
     IllegalAccessException {
     
    classifier = getClassifierFromService();        #2
  }
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  public GenderClassifier getClassifier() {
    return classifier;                              #3
  }
}

#1 Variable to hold the gender classifier

#2 Load data from external service before the application starts

#3 Gives access to the classifier variable

First, the WorkerContext implementation has a variable of type GenderClassifier that is the same as  
in the original algorithm and is holding the information that all vertices will share. Recall that in this case, 
you want to access an external service and read some data to be shared across the vertices. This is a step 
that you need to perform only once, since this data does not change during the execution of the algorithm. 
The preApplication() method is the perfect candidate to perform this operation. You use this method to 
get the classifier from the external service, using the same API call to connect to the service as before. This 
ensures that data is loaded before the computation of any vertex occurs and only once. In this example, you 
leave the rest of the methods of the WorkerContext class empty.

Let’s now look at how you would modify the algorithm to access the shared data maintained in the 
partition context from within the vertex computation method. This is shown in Listing 9-5.

Listing 9-5.  Modified Algorithm to Access Shared Data in WorkerContext

public static class CountFollowersByGender
  extends AbstractComputation< Text, Text, NullWritable, Text, Text> {
   
  @Override
  public void compute(Vertex<Text, Text, NullWritable> vertex,
    Iterable<Text> messages) throws IOException {
 
    if (getSuperstep()==0) {
      MyWorkerContext context = (MyWorkerContext)getWorkerContext();   #1
      GenderClassifier classifier = context.getClassifier();           #2
      String gender = classifier.get(vertex.getId());
      sendMessageToAllEdges(vertex, new Text(gender));
      voteToHalt();
      return;
    }
 
    int femaleFollowers = 0;
    int maleFollowers = 0;
    for (Text msg : messages) {
      if (msg.toString().equals("female")) {
        femaleFollowers++;
      } else {
        maleFollowers++;
      }
    }
    String vertexValue =
     "female:"+femaleFollowers+", male:"+maleFollowers;
    vertex.setValue(new Text(vertexValue));
    voteToHalt();
  }
}
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#1 Gets a reference to the worker context and casts it to your implementaiotn type

#2 Gets access to the GenderClassifier contained in the WorkerContext

In this implementation, the only difference is how you get access to the GenderClassifier object. 
Instead of reading it every time from the external service, you get it from the WorkerContext object that has 
already loaded it for you. The Computation API gives you access to the getWorkerContext() method that 
returns the WorkerContext object. Remember that this method returns an object of the WorkerContext 
superclass, so you have to cast it to the type that just implemented before you start using it. At this point, you 
can access it as you wish. In this case, you simply get a reference to the GenderClassifier object and use it 
exactly as before.

By using this simple concept of per-partition computations, you have managed not only to simplify 
the application, but also to make it more efficient. This way you have avoided loading and maintaining a 
shared data structure once for every vertex. This saves computation overhead, communication overhead, 
and memory since you do not need to replicate the same data structure multiple times. Essentially, what 
you have done in this case is create a simple cache of objects that are filled once and then reused across all 
vertices. Once you start building more sophisticated applications, this technique may prove very useful.

One final detail that you must be aware of is how to tell Giraph to use a specific WorkerContext 
implementation when it starts your job. As with many customizable aspects of Giraph, you can pass this as a 
command-line argument when you start your job. Specifically, you can set the giraph.workerContextClass 
parameter to the full class name of your WorkerContext implementation. You can do this by adding the 
following in your command line:

–ca giraph.workerContextClass=MyWorkerContext.

Use Case: Per-Worker Performance Statistics
Another use case where per-worker computations are handy is monitoring and computing fine-grained 
statistics about the runtime execution of your algorithm. Note that Giraph already maintains some aggregate 
statistics for you, like total processing time, aggregate size of the graph, and others, and apart from these, you 
may always find useful performance statistics in the logs of a Giraph job. However, you may want to maintain 
a finer view of algorithm performance; for instance, to detect performance problems that are specific to 
your application. For example, you may want to compute the number of vertices each worker holds, or the 
number of computations that happen per worker to monitor how evenly your computation is distributed 
across the workers.

To do this, you are going to use the same functionality that the WorkerContext offers: the ability to share 
an object across all vertices on a worker. In this case, this object holds performance statistics and is accessed 
and modified by every vertex computation.

Before learning how to do this, let’s first decide on the kind of information you want to maintain. In this 
scenario, you want to count the number of times that a vertex computation occurs on each worker. This gives 
you an idea of the processing load on each worker and can potentially help detect an uneven distribution 
across the workers. At the end of the application, you also want to somehow output this information so that 
it is presented to whoever is running the algorithm.

Let’s now assume that you have constructed a class called Performance that holds information about 
runtime performance, such as the number of vertex computations. You will keep this class simple and 
assume that it only contains a method to increment the number of computations that occur. Obviously, you 
could enrich such a class with (and maintain) more performance metrics, as shown in Listing 9-6.
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Listing 9-6.  Class to Maintain Simple Performance Statistics

public class Performance {
  private int numComputations;         #1
 
  public void getNumComputations() {   #2
    return numComputations;
  }
 
  public void incNumComputations() {   #3
    numComputations++;
  }
}

#1 Holds the number of vertex computations on a worker

#2 Returns the current number of worker computations

#3 Increments the number of worker computations by 1

Next, you are going to implement a WorkerContext through which you manipulate these performance 
statistics. In this application, you need to update the performance statistics during every compute method; 
you also need to output the statistics. Let’s look at the implementation of the WorkerContext in Listing 9-7.

Listing 9-7.  Implementation of WorkerContext to Maintain Performance Statistics

public class PerfStatsWorkerContext extends WorkerContext {
  
  private Performance perf;
 
  @Override
  public void preApplication()
    throws InstantiationException, IllegalAccessException {
     perf = new Performance();                               #1
  }
  synchronized public void incComputations() {
     perf.incComputations();                                 #2
  }
 
  @Override
  public void postApplication() {                            #3
   String id =
     getContext().getConfiguration().get("mapred.task.id");  #4
   Counter counter =                                         #5
     getContext().getCounter(                                #5
       "Worker Computations",                                #5
       "Worker_"+id);                                        #5
    counter.increment(perf.getNumComputations());            #5
  }
 
  @Override
  public void postSuperstep() {                              #6
   String id =
     getContext().getConfiguration().get("mapred.task.id");
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   Counter counter =
     getContext().getCounter(                                #7
       "Worker Computations",                                #7
       "Worker_"+id+"_"+getSuperstep());                     #7
    counter.increment(perf.getNumComputations());
  }
}

#1 initialize the performance statistics class

#2 To be called upon each vertex computation

#3 Called at the end to output the statistics

#4 Obtain worker id

#5 Get Hadoop counter and set value

#6 Prints statistics after each superstep for fine-grained information

#7 You construct a counter based on worker id and superstep number

USING THE MAPPER.CONTEXT

Often times you may need to get some configuration information stored inside the Mapper.Context 
object, which is inherited from Hadoop. Every Giraph worker is implemented as a Hadoop mapper, and 
the Mapper.Context gives information about the mapper configuration. In this case, you used it to (i) 
get the unique index of the mapper, which is the value of the mapred.task.id property, and hence, the 
unique index of the Giraph worker, and (ii) to access to the Hadoop counters interface.

In this scenario, the WorkerContext implementation simply has a field of type Performance that 
holds the statistics. You use the preApplication() method to initialize this field. This WorkerContext 
implementation also provides a public method called incComputations() that increments the number of 
computations by calling the corresponding method in the Performance object. You look at how and when 
you call this method in a moment.

Furthermore, you implement the postApplication() method, which you use here to output the 
information you have collected during the execution of the algorithms; that is, the total number of 
computations per worker. Apart from this, you would like to calculate and output the total number of 
computations across all workers. In other words, you would like to aggregate the partial statistics maintained 
from the different workers. Giraph provides a number of different ways to output information to the user. 
For instance, Chapter 7 talked about output formats. Here, you make use of another mechanism, one that 
you borrow from Hadoop, called Counters. Hadoop Counters make it easy to aggregate and output statistics 
using a simple API.

Now, apart from the final computation count, you may want to measure this metric at a finer 
granularity, and observe performance during each superstep. You can easily perform the same operations 
inside the postSuperstep() method of the WorkerContext. Giraph calls this method after the end of each 
superstep, giving detailed information during the execution of the algorithm.

http://dx.doi.org/10.1007/978-1-4842-1251-6_7
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USING HADOOP COUNTERS

Counters are a mechanism that Hadoop provides to output useful statistics in a friendly way to the user. 
If you have run a Hadoop or a Giraph job, you have already seen what a counter looks like in the output. 
The Hadoop web interface or the output that you see in your terminal contains such counters.

Counters typically belong to a counter group with a specific name, such as “Giraph Stats”. Each group 
may contain a number of counters, each of which has a name and associated value. For example, the 
Giraph counter group includes counters that show the time each superstep took.

You can create new counters and assign a value to them from within your code using the Hadoop API. 
In fact, counters resemble aggregators; you can increment the value of a counter, given its name, from 
anywhere in your code and Hadoop takes care of computing the final sum of the counter value.

Let’s now look at the final missing part; that is, how you would update the performance statistics from 
within an application. Listing 9-8 shows the implementation of a computation function. You omit the details 
of the computation and focus on how to access the WorkerContext. As you can imagine, this would be any 
computation that you implement.

Listing 9-8.  Modifying the Performance Statistics from Within the Application

public class MyComputation extends BasicComputation {
 
  @Override
  public void compute(Vertex<I, V, E> vertex,
      Iterable<M1> messages) {
 
   PerfStatsWorkerContext context =        #1
           (PerfStatsWorkerContext)getWorkerContext();
   context.incComputations()               #2
 
   ...                                       #3
   ...                                       #3
  }
}

#1 Get handle to worker context

#2 Increment number of computations

#3 Perform rest of computation as usual

From inside the compute() method, you simply get access to the worker context object. Recall that you 
first need to cast it to the type of your own implementation. After this, you can use any custom functionality 
you have implemented. In this case, you simply increment the number of computations. At this point, 
the implementation is done. Recall that to enable this WorkerContext implementation, you must add the 
following option in your command line:

–ca giraph.workerContextClass=PerfStatsWorkerContext

If you forget to do this, Giraph will use the default implementation and will obviously fail to cast the 
WorkerContext object to your own implementation at runtime.
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Thread Safety in Giraph
The two use cases presented in the previous sections make use of the same functionality—sharing the 
WorkerContext across vertices, but have an important difference: while in the first use case, vertices only 
read the shared data structure, in the second use case, they also modify it. This difference requires your 
attention as Giraph users, as it impacts the thread safety of your programs.

You must have noticed that, even though this entire book is dedicated to designing and implementing 
parallel algorithms, this is the first time thread safety is discussed. This is normally an important concern 
and often a source of problems when writing parallel programs. But the core Giraph programming model 
that you have used up until now purposefully hid any complex synchronizations and thread-safety 
issues from you. When you write a vertex-centric program, you do not have to worry whether vertices are 
executed at the same time or in what order they compute. In the BSP model, you assume that every vertex 
computation is independent and synchronization is explicit through messages.

However, with the introduction of the WorkerContext, you are exposing a bit more of the internal 
mechanism of Giraph. This offers the benefits you saw, but requires you to be careful. In particular, you 
must now be aware that a WorkerContext instance may be accessed by multiple threads at the same time. 
Recall that Giraph splits the graph into partitions and a single worker machine may be holding multiple 
partitions. The processing of each partition may occur on a separate thread, leveraging any opportunities for 
parallelization within the same worker machine.

Therefore, you have to take care to ensure thread safety for your applications. In some cases, you may 
only be reading the data structures maintained by the WorkerContext, so it is easier to ensure thread safety. 
The preceding example—where you read data from an external service and made it available for reading 
to all vertices—falls under this category. In other cases, like the performance-monitoring example, you 
may also be modifying the WorkerContext object. In this example, you do this with the incComputations() 
method. You may have already noticed that you declared this method as synchronized since you expected 
this method to be called by different threads. This ensures consistent access and modification of the 
performance statistics. As your applications start maintaining more complex data structures inside the 
WorkerContext, thread safety is something to pay attention to.

■■ Note  You do not need to synchronize the preApplication(), postApplication(), preSuperstep(), and 
postSuperstep() methods that you implement. Giraph calls these methods exactly once per superstep.

In this section, you revisited the concept of partitioning and distributing the graph and learned how 
you can leverage it in your benefit by doing per-working computations. You were presented with only a 
small sample of functionality that you can implement with the WorkerContext. You may become more 
creative and come up with advanced ways to use it. Often, doing this requires a bit more information and 
understanding about your algorithm. In all cases, you should remember that lifting some shared process 
or shared data from your main application logic and putting in the WorkerContext could improve the 
performance of your algorithm. Next, you go even further and discover how you can actually control the way 
Giraph partitions the graph across the workers.

Controlling Graph Partitioning
So far, you have not cared about how Giraph splits the graph into partitions, as this does not affect how 
you program our algorithm. If you think about it, you only specify per-vertex computation and message 
exchanges at a logical level. It does not really matter where the vertices are located or how these messages 
are exchanged. Even when you performed per-worker computations in the previous section, you did not 
care about which vertices a worker holds; Giraph abstracted these details.
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In this section, you look a bit more into the details of how Giraph parallelizes the processing, and in 
particular, you look at how Giraph partitions a graph. You will see that even though the way Giraph partitions 
the graph across workers does not affect the correct execution of your algorithm, it may have implications 
with respect to the performance of the execution of a graph algorithm. You will briefly look at how intelligent 
partitioning can improve performance and then focus on the facilities that Giraph provides for users to 
control the partitioning of the graph at will.

The Importance of Partitioning
Before getting into the details of the Giraph API, let’s look at why you should care about graph partitioning. 
Graph partitioning defines how the different vertices of the graph are assigned to partitions and affects the 
performance of the algorithm execution in different ways. First, it directly affects the amount of network traffic 
incurred on your cluster during the execution of your graph algorithm. To see this, consider the example 
graph shown in Figure 9-2; let’s look at the impact of different partitioning strategies on network traffic.

Figure 9-2.  An example graph representing a social network with six users

Figure 9-3.  An example partitioning of the six-node social graph across two worker machines

Imagine that your cluster consists of only two worker machines, A and B, and that Giraph partitions the 
graph across the workers in a random way. In particular, Giraph computes a hash of the vertex ID, in this 
case the name of the user. If there is an even number, it places the vertex on worker A, and if it is odd, on 
worker B. This is pretty close to deciding randomly where to place vertices. It is like having Giraph flipping 
a coin and placing the vertex in one of the two workers. In fact, this is the default partitioning strategy of 
Giraph. Let’s assume that the resulting placement is like the one shown in Figure 9-3.
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HASH PARTITIONING IN GIRAPH

The default partitioning strategy in Giraph is hash partitioning. Assume that Giraph must partition the 
graph across P partitions. For every vertex, Giraph computes the hash code H of the vertex ID and the 
computes the number H mod P, the remainder of H when divided with P. The result of this operation is 
the partition to assign the vertex.

Hash partitioning is a very common data partitioning technique. It is easy to compute, and furthermore, 
it results in an even distribution of data items, in this case vertices, across the partitions.

Now, assume that during the execution of a superstep of your algorithm, every vertex sends a message 
to each of its neighbors. This is a very common pattern; for instance, the PageRank algorithm that you saw in 
Chapter 3 behaves like this. It is easy to see from this figure that 10 of the messages will cross the machines, 
incurring network traffic on your cluster. The rest of the messages, like messages sent from Natalie to Anna, 
will be exchanged through the main memory of each worker.

Next, let’s see what happens if you do not leave the placement of vertices to fate by flipping a coin, but 
rather decide in a more intelligent and informed manner. In particular, you will try to ensure that each vertex 
has most of its friends on the same worker. You are shown an alternative partitioning in Figure 9-4. You will 
assume, for now, that you have a way to instruct Giraph to place vertices however you want.

Figure 9-4.  An alternative partitioning across the two worker machines that causes less network traffic

It is obvious that this partitioning is more favorable when it comes to the network traffic incurred. 
There is only one graph edge crossing the two machine workers; therefore, this results in only two messages 
traversing the network: one from Peter to Anna and one from Anna to Peter.

Even though for such a small graph the different partitionings may not make a visible difference in 
terms of performance, when you start using real, large graphs, partitioning will matter. A large number of 
messages across machine workers can place a big burden on your network, potentially impacting scalability 
and increasing the processing time of your Giraph jobs.

Note that finding a good partitioning is a whole area of research in graph management and may 
depend on several factors, such as the type of graph and algorithm at hand. Studying different partitioning 
techniques is beyond the scope of this chapter. Instead, here you focus on the Giraph API, which allows you 
to plug different partitionings. That is, once you have found an appropriate technique for mapping vertices 
to partitions, you are provided an easy way to plug it into Giraph and enforce the mapping during execution. 
You see this in the following subsections.

http://dx.doi.org/10.1007/978-1-4842-1251-6_3
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Implementing Custom Partitioners
As you saw, the default hash partitioning technique that Giraph uses does not take into consideration the 
incurred network traffic, so you may want to replace it with a more intelligent partitioning. In general, you 
will be doing this by implementing an interface called WorkerGraphPartitioner that is responsible for 
assigning vertices to partitions.

To illustrate the use of the interface, you will use the example of the web graph and describe an 
alternative partitioning technique that is commonly used when processing web graphs like the one shown  
in Figure 9-5.

Figure 9-5.  An example web graph

Figure 9-6.  A hash-based partitioning of the web graph across two workers

Recall that a web graph describes how web pages are connected through links. In Chapter 3, you saw 
examples of algorithms that you may want to run on the web graph, such as PageRank. In this figure, vertices 
represent the web pages and edges represent links from one page to another. You use the web URL as the ID 
of a vertex in Giraph.

Assume for simplicity that our compute cluster again consists of two worker machines, A and B. As 
before, if you use the default hash partitioning, Giraph places the vertices randomly, and the partitioning 
would look like Figure 9-6, with several edges crossing the two machines.

http://dx.doi.org/10.1007/978-1-4842-1251-6_3
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In this web graph, you can use a better approach. Remember that in the example with the Twitter 
graph, the intelligent partitioning was based on the idea that you should do your best to place a vertex along 
with its neighbors on the same worker. In the small Twitter graph, this was simple, and you could easily do 
this assignment intuitively and just by looking at the graph. Here, you will use a more principled strategy 
of deciding where to place a vertex representing a web page. In particular, the strategy is based on the fact 
that most of the links on a web page are to other web pages that are usually located under the same domain 
name. For example, most of the links from cnn.com/index.html are to pages such as cnn.com/technology.html  
and cnn.com/economy.html, which are under the cnn.com domain. This must have already given you a 
hint as to how you are going to partition the graph. You are going to use a technique like hash partitioning, 
but instead of hashing the vertex ID, you are going to hash the domain prefix only; for instance the prefix 
cnn.com. This ensures that vertices with URLs that fall under the same domain are also placed on the same 
worker. This partitioning is illustrated in Figure 9-7.

Figure 9-7.  A partitioning of the same web graph based on the domain prefix of each web page

Next, you look at how you are going to implement the WorkerGraphPartitioner to apply this logic. But 
before getting to the core of the partitioner, let’s describe a few other auxiliary but necessary interfaces that 
you have to implement first.

First, you have to implement the GraphPartitionerFactory interface. A GraphPartitionerFactory 
object is responsible for creating the instances of the actual partitioner implementations. In particular, Giraph 
uses the GraphPartitionerFactory to instantiate a MasterGraphPartitioner and WorkerGraphPartitioner 
object to perform all the main operations. In Listing 9-9, you can see the only two methods of the interface 
that you have to implement.

Listing 9-9.  The GraphPartitionerFactory Interface

public interface GraphPartitionerFactory<I extends WritableComparable,
    V extends Writable, E extends Writable> extends
    ImmutableClassesGiraphConfigurable {
   
  MasterGraphPartitioner<I, V, E> createMasterGraphPartitioner();  #1
  WorkerGraphPartitioner<I, V, E> createWorkerGraphPartitioner();  #2
}
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#1 Instantiates and returns a MasterGraphPartitioner object

#2 Instantiates and returns a WorkerGraphPartitioner object

Before going into the particular implementations of these interfaces, we will first describe their role and 
show the individual methods that you have to implement. After this, you implement them, one by one, to 
realize the actual hash partitioning technique.

The first interface, the MasterGraphPartitioner, is mainly responsible for setting up and maintaining 
the necessary data structures that hold all the partitioning information. Its methods are shown in Listing 9-10. 
They are explained in detail through an example in a bit.

Listing 9-10.  The MasterGraphPartitioner interface

public interface MasterGraphPartitioner<I extends WritableComparable,
    V extends Writable, E extends Writable> {
 
  Collection<PartitionOwner> createInitialPartitionOwners(
      Collection<WorkerInfo> availableWorkerInfos, int maxWorkers); #1
 
  Collection<PartitionOwner> generateChangedPartitionOwners(
      Collection<PartitionStats> allPartitionStatsList,
      Collection<WorkerInfo> availableWorkers,
      int maxWorkers,
      long superstep);                                              #2
 
  Collection<PartitionOwner> getCurrentPartitionOwners();           #3
 
  PartitionStats createPartitionStats();                            #4
}

#1 Create PartitionOwner objects based on available workers

#2 Called at the beginning of each superstep, to potentially create new PartitionOwners

#3 Returns the current list of PartitionOwner objects

#4 Returns and object that will hold statistics about the partitions

The most important data structure here is that of the PartitionOwner. A PartitionOwner encapsulates 
information about the partition itself, but also about the worker machine that owns the partition; that is, 
the worker machine where the partition is located. As you see, a MasterGraphPartitioner is responsible 
for creating a collection of PartitionOwner objects that typically describe the current configuration of your 
scenario; that is, the set of workers that you are going to run a job on and the number of partitions that you 
want to split the graph into.

The PartitionOwner is actually an interface that can have different implementations, depending on the 
kind of metadata that you want to maintain about a partition owner. Here, you do not look into the details 
of the PartitionOwner interface; rather you use the BasicPartitionOwner, an implementation already 
provided by Giraph. The main information that a BasicPartitionOwner holds is the ID of the partition that it 
corresponds to and information about the worker where the partition is located. This implementation of the 
PartitionOwner should suffice for most scenarios.

But now let’s look at how you are actually going to use these to implement a hash-based partitioner. 
First, you implement the GraphPartitionerFactory interface. The implementation is quite simple; it’s 
shown in Listing 9-11.
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Listing 9-11.  An Example GraphPartitionerFactory Implementation

public class HashPartitionerFactory<I extends WritableComparable,
    V extends Writable, E extends Writable>
    implements GraphPartitionerFactory<I, V, E> {
   
  private ImmutableClassesGiraphConfiguration conf;                  #1
 
  @Override
  public MasterGraphPartitioner<I, V, E> createMasterGraphPartitioner() {
    return new HashMasterPartitioner<I, V, E>(getConf());            #2
  }
 
  @Override
  public WorkerGraphPartitioner<I, V, E> createWorkerGraphPartitioner() {
    return new HashWorkerPartitioner<I, V, E>();                       #3
  }
 
  @Override
  public ImmutableClassesGiraphConfiguration getConf() {
    return conf;                                                       #4
  }
 
  @Override
  public void setConf(ImmutableClassesGiraphConfiguration conf) {
    this.conf = conf;                                                  #5
  }
}

#1 Object holding the job configuration

#2 Returns an instance of the hash-based MasterGraphPartitioner implementation

#3 Returns an instance of the hash-based WorkerGraphPartitioner implementation

#4 Returns the configuration object

#5 Called upon initialization of the factory to set the configuration object

You see in this implementation that the factory simply instantiates two objects: of type 
MasterGraphPartitioner and WorkerGraphPartitioner. Next, let’s look at the implementation of the 
HashMasterPartitioner in more detail to understand the typical way of setting up the PartitionOwner data 
structures (see Listing 9-12).

Listing 9-12.  The Implementation of the HashMasterPartitioner

public class HashMasterPartitioner<I extends WritableComparable,
    V extends Writable, E extends Writable> implements
    MasterGraphPartitioner<I, V, E> {
 
  private ImmutableClassesGiraphConfiguration conf;                    #1
  private List<PartitionOwner> partitionOwnerList;                     #2
 
  public HashMasterPartitioner(ImmutableClassesGiraphConfiguration conf) {
    this.conf = conf;                                                  #3
  }
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  @Override
  public Collection<PartitionOwner> createInitialPartitionOwners(      #4
      Collection<WorkerInfo> availableWorkerInfos, int maxWorkers) {
    int partitionCount = PartitionUtils.computePartitionCount(         #5
        availableWorkerInfos, maxWorkers, conf);
    List<PartitionOwner> ownerList = new ArrayList<PartitionOwner>();
    Iterator<WorkerInfo> workerIt = availableWorkerInfos.iterator();
    for (int i = 0; i < partitionCount; ++i) {
      PartitionOwner owner =                                           #6
        new BasicPartitionOwner(i, workerIt.next());
      if (!workerIt.hasNext()) {                                       #7
        workerIt = availableWorkerInfos.iterator();
      }
      ownerList.add(owner);                                            #8
    }
    this.partitionOwnerList = ownerList;
    return ownerList;
  }
 
  @Override
  public Collection<PartitionOwner> getCurrentPartitionOwners() {
    return partitionOwnerList;
  }
 
  @Override
  public Collection<PartitionOwner> generateChangedPartitionOwners(
      Collection<PartitionStats> allPartitionStatsList,
      Collection<WorkerInfo> availableWorkerInfos,
      int maxWorkers,
      long superstep) {
    return PartitionBalancer.balancePartitionsAcrossWorkers(
        conf,
        partitionOwnerList,
        allPartitionStatsList,
        availableWorkerInfos);
  }
 
  @Override
  public PartitionStats createPartitionStats() {
    return new PartitionStats();
  }
}

#1 Holds the configuration

#2 Keeps the list of PartitionOwner objects

#3 When you construct a HashMasterPartitioner, you pass it the job configuration

#4 Called upon before execution, to create the initial set of PartitionOwner objects

#5 Get the number of partitions, usually a configuration option
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#6 For each partition, create a partition owner with the next available worker

#7 If you have assigned partitions to all workers, then start over

#8 Once created, add the PartitionOwner to the list you maintain

The most important method of the HashMasterPartitioner implementation is the 
createInitialPartitionOwners(). This method first calculates the number of partitions you want to have. 
This number is usually a configuration parameter and could depend on factors such as the total number of 
cores you have in your cluster. After this, it creates a PartitionOwner object for each partition and assigns 
to it an available worker in a round-robin fashion. Here, you could apply your own logic. For instance, 
if information about the load of each worker was available through some external service, you could 
incorporate it in your assignment of partitions to workers. At the end, the method simply returns the list of 
PartitionOwner objects created.

Then you need to implement the generateChangedPartitionOwners() method. Giraph calls this 
method after the execution of a superstep and gives you the opportunity to change the initial assignment of 
partitions to workers, if you wish. This could be, for instance, because you noticed that one of the workers 
crashed, in which case you need to assign its partitions to another one. Another possible scenario is that you 
notice that a particular worker ended up having more partitions than it can handle, in which case you may 
want to offload some of the processing to another one. In all of these cases, after the end of a superstep you 
have a chance to adjust the partitioning by choosing new locations for the partitions. Notice, though, that 
you are not allowed to change the assignment of vertices to partitions.

In this particular implementation, the decision to modify the partition owners is delegated to a special 
helper class that you call PartitionBalancer. In brief, the PartitionBalancer ensures that each worker 
is assigned pretty much the same amount of work, providing good cluster utilization. Discussion of the 
balancer and why it is important is deferred until the next section. There you will also see how to modify the 
partitioning through the generateChangedPartitionOwners() at runtime.

The createPartitionStats() method returns an object of type PartitionStats that holds useful 
statistics about the partition. Such statistics include the number of vertices and edges in a partition 
and the number of messages sent by vertices in this partition. Such statistics may be useful for applying 
sophisticated partitioning techniques that depend on runtime behavior. More specifically, you can use 
the information maintained in this class to decide how to update the partition owners when Giraph calls 
the generateChangedPartitionOwners() method. Giraph already provides a basic PartitionStats class 
that includes the most common statistics, and you will keep using this. You are free to extend this class to 
maintain more information if that suits your particular scenario.

Now that you have implemented all the auxiliary classes, you are ready to implement the main logic 
of the partitioner, which is defined by the WorkerGraphPartitioner interface. Once Giraph has used the 
partitioner factory and the HashMasterPartitioner to create the collection of PartitionOwner objects, it is 
ready to assign vertices to the constructed partition owners. This is the job of the WorkerGraphPartitioner. 
Its methods are illustrated in Listing 9-13.

Listing 9-13.  The WorkerGraphPartitioner Interface

public interface WorkerGraphPartitioner<I extends WritableComparable,
    V extends Writable, E extends Writable> {
 
  PartitionOwner createPartitionOwner();                         #1
 
  PartitionOwner getPartitionOwner(I vertexId);                  #2
   
  Collection<PartitionStats> finalizePartitionStats(             #3
      Collection<PartitionStats> workerPartitionStats,
      PartitionStore<I, V, E> partitionStore);
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  PartitionExchange updatePartitionOwners(                       #4
      WorkerInfo myWorkerInfo,
      Collection<? extends PartitionOwner> masterSetPartitionOwners,
      PartitionStore<I, V, E> partitionStore);
   
  Collection<? extends PartitionOwner> getPartitionOwners();     #5
}

#1 Creates and empty PartitionOwner object

#2 Maps a vertex ID to a PartitionOwner

#3 Called at the end of a superstep

#4 Determines which partitions must be sent from a specific worker

#5 Returns the current list of ParttionOwner objects

The most important method is the getPartitionOwner() method that takes a vertex ID as an input 
and returns the PartitionOwner that this vertex corresponds to. Giraph uses this method to decide where 
to place vertices. Next, all the methods of the GraphWorkerPartition interface are explained through the 
example implementation of the hash-based partitioner. Listing 9-14 shows the implemented methods.

Listing 9-14.  The HashWorkerPartitioner Implementation

public class HashWorkerPartitioner<I extends WritableComparable,
    V extends Writable, E extends Writable>
    implements WorkerGraphPartitioner<I, V, E> {
 
  protected List<PartitionOwner> partitionOwnerList =               #1
      Lists.newArrayList();
 
  @Override
  public PartitionOwner createPartitionOwner() {
    return new BasicPartitionOwner();                               #2
  }
 
  @Override
  public PartitionOwner getPartitionOwner(I vertexId) {
    URL url = new URL(vertexId.toString());                         #3
    String domain = url.getHost();                                  #3
    return partitionOwnerList.get(                                  #4
        Math.abs(domain.hashCode() % partitionOwnerList.size()));
  }
 
  @Override
  public Collection<PartitionStats> finalizePartitionStats(
      Collection<PartitionStats> workerPartitionStats,
      PartitionStore<I, V, E> partitionStore) {
    return workerPartitionStats;
  }
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  @Override
  public PartitionExchange updatePartitionOwners(
      WorkerInfo myWorkerInfo,
      Collection<? extends PartitionOwner> masterSetPartitionOwners,
      PartitionStore<I, V, E> partitionStore) {
    return PartitionBalancer.updatePartitionOwners(partitionOwnerList,
        myWorkerInfo, masterSetPartitionOwners, partitionStore);
  }
 
  @Override
  public Collection<? extends PartitionOwner> getPartitionOwners() {
    return partitionOwnerList;
  }
}

#1 Keep a list of the current PartitionOwner objects

#2 Creates an empty BasicPartitionOwner object

#3 Extract domain name from URL

#4 Applied the hash partitioning logic on the domain

The core of the hash-based partitioning logic is inside the getPartitionOwner() method. Given a 
vertex ID—that is, a web page URL—this method extracts the domain name from the URL. Then it computes 
the hash code of the domain and calculates the remainder of the division with the number of partitions. The 
result indicates the partition where the specified vertex should go. 

Note, in this case the partitioning logic is quite simple, but inside this method you could put arbitrary 
logic. You could even be connecting to some external service that is responsible for maintaining the 
partitioning of your graph.

Furthermore, you also need to implement the updatePartitionOwners() method. Giraph calls this 
method at the end of a superstep and uses it to determine whether and which partitions need to be sent 
from other workers. This decision is delegated to the PartitionBalancer as well, which you will see in a bit.

Finally, now that you have implemented all the necessary pieces of a custom partitioner, you may 
wonder how you actually instruct Giraph to use them. To enable the use of your custom partitioner, you 
only need to set the giraph.graphPartitionerFactoryClass parameter that takes the full class name of the 
partitioner factory as value. As usual, you can do this through the command line.

In this particular scenario, you need to add the –ca giraph.graphPartitionerFactoryClass=Hash 
PartitionerFactory option to the command line when you start your job. As always, Giraph takes care of 
the rest.

Partition Balancing
In the discussion on partitioning up until now, you only learned about how the partitioning affects the 
network traffic and eventually your application performance. There is another aspect of partitioning that can 
affect performance, called partition balancing. In general, a partitioning is balanced when all the workers 
contain pretty much the same number of vertices or edges. But first, let’s look at why balancing is important.

Consider the graph you saw previously and imagine a third alternative partitioning across the workers, 
like the one shown in Figure 9-8.
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This is a perfectly valid way to partition your graph, but it presents an issue. Notice that worker A 
contains many more vertices than worker B; in this case, double the number. Because the larger the number 
of vertices on a machine is, the larger its CPU load is as well; such an uneven distribution of the graph across 
the workers also causes imbalance in terms of the CPU load. As a result, some of your workers—in this case, 
worker B—are underutilized and you do not get the maximum performance out of your cluster.

On the contrary, distributing the workload evenly makes efficient use of your cluster resources 
and reduces the total processing time. The PartitionBalancer is a helper class with methods that 
find the right placement of the partitions, so that the partitioning is balanced. Essentially, it makes 
use of the ability the partitioning API gives you to modify the location of the partitions at runtime 
through the generateChangedPartitionOwners() method of the GraphMasterPartitioner and the 
updatePartitionOwners() method of the WorkerGraphPartitioner as you saw previously.

Importantly, the PartitionBalancer supports different types of balancing. The first type of balancing, 
called vertex balancing, ensures that every worker holds approximately the same number of vertices. Apart 
from this, it also supports edge balancing, which tries to ensure that all workers contain approximately the 
same number of edges. Which one is more appropriate depends on the type of algorithm that you want to run 
and whether the CPU load of each worker depends on the number of vertices or the number of edges it holds.

As an example, consider the PageRank algorithm that you saw in Chapter 4, used to rank web pages. 
In PageRank, every vertex receives messages from its neighbors with each message carrying a number. For 
every message it receives, the vertex performs an operation, adding the message to its local rank value. 
Therefore, the total amount of work that a vertex does depends mainly on how many neighbors, or edges, 
it has. Therefore, to distribute workload even across the workers, you would like that every worker has 
approximately the same number of edges.

In general, choosing between vertex and edge balancing requires some insight about the computation 
and communication pattern of your algorithm. Often, simply by comparing the computation and 
communication pattern of your algorithm to some other, say PageRank, you may be able to understand 
which type of balancing fits better. In any case, balancing your partition correctly can impact the 
performance of your algorithm and the utilization of your cluster resources positively.

Figure 9-8.  An example of unbalanced partitions

http://dx.doi.org/10.1007/978-1-4842-1251-6_4
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Summary
The core programming API of Giraph hides the details of how it parallelizes the processing of a graph. At the 
same time, by exposing this process to the user, you get a chance to write more efficient applications.

•	 The need to share data across vertices may arise in several application scenarios, and 
at first glance, breaks the vertex-centric computation model.

•	 The WorkerContext becomes very handy in these cases. It allows you to do 
computations on a per-worker basis and share a data structure across all vertices on 
the same worker. This can simplify your application but also improve performance.

•	 Do not forget that using the WorkerContext may raise thread-safety issues. Some 
application may be modifying the data held by the WorkerContext and this 
can happen concurrently by different threads. Be sure to declare methods as 
synchronized to avoid race conditions.

•	 Graph partitioning can have a significant impact on the scalability and performance 
of your application.

•	 By default, Giraph uses hash partitioning, a common approach that achieves even 
distribution of the graph across machine, but can result in high network traffic.

•	 Partitioning the graph in an intelligent manner is often dependent on the graph and 
application at hand.

•	 Once you have settled on the right partitioning scheme for you scenario, use the 
WorkerGraphPartitioner and all the related interfaces to implement a custom 
partitioner.

The last few chapters focused on the internals of Giraph and on the more advanced features. In the next 
chapter, you continue in the same spirit. You revisit reading and writing graphs from and to various storage 
systems, but this time you go over scenarios of more advanced storage systems, such as HBase that enable 
you to connect Giraph to any data source.
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Chapter 10

Advanced IO

This chapter covers

•	 Using Hive tables for IO

•	 Accessing data through Gora

In this chapter, you continue with the more advanced features of Giraph, focusing on ways to read 
input data and write output data. Recall that as your input graph is usually stored in some special format 
on a storage system, Giraph must be instructed on how to read data from your storage system and how 
to convert it to its own internal representation; that is, vertices and edges using the VertexInputFormat 
and EdgeInputFormat implementations. For example, in Chapter 7, you described the basics of reading 
and writing data from the Hadoop Distributed File System (HDFS) that are typically in text format, a very 
common scenario for storing graph data.

However, HDFS is not the only option. There is a variety of storage systems and different formats in 
which you might store your data. For instance, you might use a NoSQL type of storage systems, like Hive and 
HBase, to store your data in the form of semistructured tables. Accumulo is another distributed key-value 
store that allows you to store data in a table format and provides access control mechanisms to enable 
security-related policies. In-memory data stores, such as Redis, have also become popular because they 
allow low-latency data access.

To facilitate all of these different storage options, Giraph provides an API that makes it easy to extend to 
different formats and storage systems. Aside from this, it also provides implementations of these APIs for a 
variety of storage systems.

In this chapter, you look at two specific cases of storage systems: Hive and Gora. Note that the goal of 
this chapter is not to present an exhaustive list of systems or data formats. Rather, by the end of this chapter, 
you will know how to customize the existing API implementation or extend it to cover your particular 
application scenario.

Accessing Data in Hive
First, you will look at table-based formats— Hive, in particular. In general, table-based formats for storing 
data are quite common. Hive allows you to view your data as a semistructured table and to query data 
using an SQL-like query language. Hive runs on top of the Hadoop clusters. Hive tables are stored on HDFS, 
and Hive queries are executed as Hadoop jobs, providing a scalable platform for storing and querying 
semistructured table data. For these reasons, it is a popular storage system.

A Hive table stores data in rows, with each row consisting of a number of columns. In, Hive the 
number and the type of the data contained in the columns of a row is agreed in advance; this is  
the schema of the table.

http://dx.doi.org/10.1007/978-1-4842-1251-6_7
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Here, you see how a Hive table may store information representing an input graph. Now, just like with 
the text-based input formats that you saw in the early chapters, a Hive table might store data about the input 
graph in an edge-based format or a vertex-based format. In an edge-based format, a Hive row contains all 
the information required to construct an edge; that is, the identities of the two endpoints of the edge and 
its edge value. In a vertex-based format, a Hive row may contain all the information required to construct 
a vertex; that is, the vertex ID, its value, and information about all the edges of the vertex. For instance, in a 
vertex-based format, a single Hive column may contain a list of all the vertex edges.

Reading Input Data
Let’s assume that you are running a microblogging service where users can post articles and share them 
with other users. Typically, whenever somebody makes such a post, you want store it for further analysis; 
for instance, find which users post the most articles, which people interacted the most over the last week, 
what are the most common topics users post about, and other useful metrics. Table-based stores are a good 
choice for storing these data. Table 10-1 shows an example of how you might store data there.

Table 10-1.  A Table Storing Article Share Events from Our Example Service

user shared_with date article

George John 2015-03-01 www.cnn.com/big-data-economy.html

Mary Nick 2015-02-14 www.howto.com/analyze-graphs.html

Mark George 2015-04-29 www.techcrunch.com/monetize-data.html

John Maria 2015-03-02 www.cnn.com/big-data-economy.html

Maria Mark 2015-03-03 www.cnn.com/big-data-economy.html

… … … …

… … … …

Even though it might not be immediately obvious, the users that are active on your service form a 
type of network. Whenever user A shares an article with another user, this makes for a connection between 
two users. Now let’s assume that George is a popular and frequent user of your service and that you are 
interested in finding out how fast information that George posts can travel on your service. In other words, 
once George posts an article, how many times does it have to be shared between users before it reaches 
everybody?

This type of analysis may sound familiar; you essentially want to compute distances between users. In 
Chapter 4, you saw how to write a Giraph application that computes the shortest paths between users. This 
is exactly what you want here too. Since you have already seen how to compute this metric, in this chapter 
you will only look into how to form the input graph from the input table data.

Now, recall that Giraph provides two basic kinds of input formats: edge-based and vertex-based. 
In edge-based formats, your data contains information about the connections of vertices in the graph; 
whereas in vertex-based formats, the data contains information about the vertices themselves. If you look 
at Table 10-1, you see that it stores information about which user shares articles with a particular other 
user; that is, the connection among users.

As with text-based formats and HDFS, Giraph already abstracts most of the details of reading data 
from Hive tables and provides a simple interface that you need to implement. Implementing this interface 
essentially requires you to specify how to create an edge from a table row, like the ones you saw in 
Table 10-1. Recall that the constituents of an edge definition are its source vertex ID, its destination vertex 
ID, and its edge value. These are the pieces of information that you have to extract from a Hive table row. 

http://www.cnn.com/big-data-economy.html
http://www.howto.com/analyze-graphs.html
http://www.techcrunch.com/monetize-data.html
http://www.cnn.com/big-data-economy.html
http://www.cnn.com/big-data-economy.html
http://dx.doi.org/10.1007/978-1-4842-1251-6_4
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But let’s look at the exact methods that you need to implement. In a moment, you will see them in action 
with an example implementation for your particular scenario. Listing 10-1 shows the SimpleHiveToEdge 
abstract class that Giraph provides.

Listing 10-1.  The SimpleHiveToEdge Class for Converting Hive Rows to Edge Objects

public abstract class SimpleHiveToEdge<I extends WritableComparable,
    E extends Writable> extends AbstractHiveToEdge<I, E> {
 
  public abstract I getSourceVertexId(HiveReadableRecord hiveRecord);
 
  public abstract I getTargetVertexId(HiveReadableRecord hiveRecord);
 
  public abstract E getEdgeValue(HiveReadableRecord hiveRecord);
}

This is the simplest class that you may have to implement to read data from Hive. The first method that 
you have to implement, getSourceVertexId(), receives as input an object of type HiveReadableRecord, 
which is an abstraction of a Hive row. The role of the method is to construct the source vertex ID from the 
HiveReadableRecord. You will see how to do this in a moment. The second method, getTargetVertexId(), 
has a similar role, to extract the ID from the hive record. Finally, through the getEdgeValue() method, you 
are defining what the edge value is given an input Hive record. Notice that as with the input formats you saw 
in earlier chapters, this input format has parameters too: the type of the vertex ID (I), the type of the edge 
value (E).

Now, let’s see all of these methods in action. In this particular scenario, there are two columns in the 
Hive table that you are interested in: the “user” column that is going to be the source of an edge and the 
“shared_with” column that is going to be the target of an edge. The vertex IDs represent the name of the 
users, so in your implementation, they are of type Text. Listing 10-2 shows the implementation.

Listing 10-2.  An Example Implementation for Edges with IntWritable Vertex IDs and a NullWritable  
Edge Value

public class TextNullHiveRowToEdge
    extends SimpleHiveToEdge<Text, NullWritable> {
 
  @Override
  public NullWritable getEdgeValue(HiveReadableRecord hiveRecord) {
    return NullWritable.get();
  }
 
  @Override
  public Text getSourceVertexId(HiveReadableRecord hiveRecord) {
    return new Text(hiveRecord.getString(0));
  }
 
  @Override
  public Text getTargetVertexId(HiveReadableRecord hiveRecord) {
    return new Text(hiveRecord.getString(1));
  }
}
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First, notice that all the methods are passed as input an object of type HiveReadableRecord, which 
represents a Hive record, essentially a row in the table. In your implementation, you will use the methods of 
the HiveReadableRecord class to get access to the different columns of a Hive row.

Let’s look at the implementation of the methods one by one. The first method, getEdgeValue(), 
must return an object representing the edge value. In this particular scenario, you do not want to assign a 
particular value to an edge; rather it is of type NullWritable, so the method simply returns a NullWritable 
object through the static NullWritable.get() method.

Next, you must read the source and target IDs. You already know that the source ID of an edge is placed 
in the first column of a row and the target ID is placed in the second column. A HiveReadableRecord allows 
you to retrieve the data stored in a row by using the index of the column, with indices starting at column 0. 
Listing 10-3 shows all the methods of the HiveReadableRecord interface.

Listing 10-3.  Use the Methods of the HiveReadableRecord Interface to Access Data of Various Types from 
the Columns of a Hive Table Row

public interface HiveReadableRecord {
  int numColumns();
  int numPartitionValues();
  HiveType columnType(int index);
  Object get(int index, HiveType type);
  boolean getBoolean(int index);
  byte getByte(int index);
  short getShort(int index);
  int getInt(int index);
  long getLong(int index);
  float getFloat(int index);
  double getDouble(int index);
  String getString(int index);
  <K, V> Map<K, V> getMap(int index);
  <T> List<T> getList(int index);
  boolean isNull(int index);
}

Another aspect you must be aware of is the type of data that each column stores. Each column may store 
data of different types. For instance, usernames may be stored in a column as strings; whereas a date may 
be stored in a column in the form of a timestamp of type long. Depending on the data type of each column, 
you are going to use the right method of the HiveReadableRecord interface. In the previous listing, you see 
that the interface provides methods for accessing data of all basic types, such as integers, floats, strings, and 
structures such as lists and maps.

Going back to your implementation, you now see how you can implement the getSourceVertexId() 
and getTargetVertexId() methods. You use the getString() method of the HiveReadableRecord interface 
to retrieve the columns with indices 0 and 1 accordingly, as these are of type string and then put them inside 
a Text object. And you are done.

The only thing that is missing now is instructing Giraph to use this particular implementation of an 
input format, but also to tell it which Hive table to read data from. You are going to do this using the familiar 
–eif command line parameter when you start the Giraph job.

Note that the implementation of the actual computation was not discussed here. The important thing 
is that Giraph allows you to run the same computation on data stored in different storage systems with no 
changes. All you have to do is write an input format; the rest remains the same. In fact, in many cases, you 
may not even have to write your own implementation. The Giraph code base already includes a variety of 
input format implementations to read data from Hive tables. One of these may already suit your particular 
scenario.
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In this example, the input graph was stored in an edge-based format. As mentioned, it is possible to 
have vertex-based input formats in Hive too. Even though we do not go into the details, the concept of a 
vertex-based input format in Hive does not differ much from the text-based format that you saw in previous 
chapters. Giraph provides an interface to convert a single Hive row, just like with text lines in text-based 
formats, to a vertex. Listing 10-4 shows the interface that you would have to implement.

Listing 10-4.  The SimpleHiveToVertex Class for Converting Hive Rows to Vertex Objects

public abstract class SimpleHiveToVertex<I extends WritableComparable,
    V extends Writable, E extends Writable>
    extends AbstractHiveToVertex<I, V, E> {
   
  public abstract I getVertexId(Row record);
 
  public abstract V getVertexValue(Row record);
 
  public abstract Iterable<Edge<I, E>> getEdges(Row record);
}

Similar to vertex-based formats, in this case you have to specify how to extract the following 
information from a row: the ID of a vertex, the value of the vertex, and the edges of the vertex. Just like 
the edge-based format, you can access the columns of the Hive table using the methods provided by the 
HiveReadableRecord interface. As an exercise, we suggest that you implement a vertex-based input format 
that builds a graph from Table 10-2.

Table 10-2.  Example Input Hive Table in Vertex-Based Format

user shared_with

George {John, Mark}

Mary {Nick, Maria, Mark, George}

Mark {George}

John {Maria, Helen, George}

Maria {Mark, John, Nick, Helen}

… …

… …

This table contains similar information as the previous one; only in this case, all the information 
necessary to create a vertex: the vertex ID representing a user and the people who he or she shares with exist 
in the same row.

Writing Output Data
So far we talked about how to read input data from Hive, but naturally you may want the output of your 
application to be stored in a Hive table. This way you can query the results of your analysis in an easy way 
using the Hive Query Language. In this section, you see how to achieve this.

First, let’s decide what the output Hive table will look like. In this particular scenario, you compute every 
user’s distance from George. In the simplest form, the output table contains the computed distance for each 
user (see Table 10-3).



Chapter 10 ■ Advanced IO

246

Table 10-3.  Exampke Hive Output Table

user value

George 0

Mary 4

Mark 3

John 1

Maria 2

… …

… …

The output table contains one row per user. Each row has one column for the username, called “user”, 
that contains data of type string, and one column to store the computed distance, called “value”, that 
contains data of type double. Here, you assume that this table already exists and has this particular schema. 
If you want to learn more about how to create Hive tables, please refer to the Hive documentation.

Similar to input formats, Giraph abstracts most of the details and makes it easy for you to fill this table 
with output. In practice, you are performing the inverse actions; you are telling Giraph how to extract 
information from a vertex table and where to place it in a table row. Let’s go over the implementation shown 
in Listing 10-5.

Listing 10-5.  The SimpleVertexToHive Class for Converting Vertex Objects to Hive Rows

public abstract class SimpleVertexToHive<I extends WritableComparable,
    V extends Writable, E extends Writable> extends
    AbstractVertexToHive<I, V, E> {
 
  public abstract void fillRecord(Vertex<I, V, E> vertex,
      HiveWritableRecord record);
}

The only method that you need to implement here is the fillRecord() method, which passes as 
input a Vertex object and a HiveWritableRecord object. Giraph calls this method for every Vertex in your 
graph and passes the Vertex object as input to this method. It also passes as input a HiveWritableRecord 
object that represents an output Hive table row. Your responsibility is to specify how to fill that row with 
information extracted from the Vertex object.

Like the HiveReadableRecord, the HiveritableRecord interface provides a set of methods that make it easy 
for you to store information of different types in the columns of a Hive row. These are shown in Listing 10-6.

Listing 10-6.  The Methods for Modifying a Hive record

public interface HiveWritableRecord {
  void set(int index, Object value, HiveType type);
  void setBoolean(int index, boolean value);
  void setByte(int index, byte value);
  void setShort(int index, short value);
  void setInt(int index, int value);
  void setLong(int index, long value);
  void setFloat(int index, float value);
  void setDouble(int index, double value);
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  void setString(int index, String value);
  void setMap(int index, Map value);
  void setList(int index, List value);
  List<Object> getAllColumns();
}

Typically, you just need to specify the index of the column that you want to store information and the 
value that you want to store. Aside from this, you need to ensure that you use the right method, depending 
on the schema of the table; that is, the type of data stored in each column.

Now, let’s consider your particular scenario. The output table has two columns: one of type string, 
where you store the name of the user, and one of type double, where you store the computed distance for 
that user. Listing 10-7 shows the implementation.

Listing 10-7.  The Example Implementation That Writes a Vertex Object to a Hive Row

public class MyVertexToHiveRow extends
    SimpleVertexToHive<Text, DoubleWritable, NullWritable> {
 
  public void fillRecord(Vertex<Text, DoubleWritable, NullWritable> vertex,
      HiveWritableRecord record) {
    record.setString(0, vertex.getId().toString());
    record.setDouble(1, vertex.getValue().get());
  }
}

As with input tables, you use an index to identify which column you are referring to with column indices 
starting at 0. Keep in mind that you must be aware of the schema of the output table and write the correct 
values to the correct columns. In cases where you actually attempt to write a value to a column of a different 
type, this will raise an exception.

And this concludes the implementation of your output format. Now, similar to the input format, you 
need to instruct Giraph to use this particular implementation of the output format, and tell it what Hive table 
to write the data to. To do this, you are going to use the –of command-line parameter when you start the 
Giraph job.

Accessing Data in Gora
Next, let’s look at another type of storage system, specifically in-memory storage systems. In-memory 
storage systems are another popular class of systems because they provide fast access to data. This section 
discusses Apache Gora, a framework that provides an in-memory data model that also supports data 
persistence to different underlying storage systems: databases (like MySQL), column stores (like HBase and 
Cassandra), key-value stores (like Redis), and even simple files on HDFS. For a complete list of the supported 
storage systems, visit the Apache Gora site.

While Apache Gora provides persistence to such systems, it abstracts the details of how to persist 
objects, allowing the user to work with the in-memory representation of objects, making access and 
manipulation of objects much easier from a programming perspective. Typically, the Gora system is set up 
to map data in the underlying storage system; for instance, an HBase row to an in-memory Java object. From 
then on, a user may access data from Gora based on an object key, like an index.

In the remainder of this section, you will go over using the Giraph input formats to read data from Gora. 
Setting up Gora with an underlying persistent storage system is not covered, nor is how to define the mapping 
between the underlying storage system and the in-memory objects. Instead, you see how to access in-
memory Gora objects and convert them to Vertex and Edge objects that represent your graph inside Giraph.
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You will use the same application scenario that you used in the previous section. The input data 
represents a set of users that share articles with each other, forming a social network, and you want to 
compute the distance of all users from user George in this social network.

Reading Input Data
Let’s look at how you can read input data from the Gora in-memory storage system. First, recall that 
Gora provides an in-memory data model. This means that it presents data to applications in the form of 
Java objects. While underneath the hood data may persist in different storage systems, as a user you are 
manipulating the in-memory version of it. The conversion is left to the Gora system itself.

Let’s assume for a moment that the in-memory representation of a user in Gora is an object called 
GoraUser that has the form shown in Listing 10-8.

Listing 10-8.  The Example Representation of a User in the Gora in Memory Data Model

public class GoraUser {
  String name;
  Map<String, String> sharedArticles;
}

This object represents a user and contains information similar to what you saw in the previous section 
with data stored in Hive. Each user has a name that he or she is identified by and also a set of users with 
whom they share articles with. The sharedArticles map contains a mapping from a username to an article 
that was shared with that user. For simplicity, here you assume that a user can share only one article with 
another user.

As with input format in general, you have to decide whether you need to implement an edge-based 
or a vertex-based input format. In fact, the Giraph code contains both edge-based and vertex-based 
implementations for reading data from Gora. Now, you must have noticed that the representation of a user 
in memory contains all the necessary information to construct a vertex; therefore, a vertex-based input 
format is the natural choice here.

So let’s look at the interface that you have to implement to read vertex-based data from Gora. As 
expected, the Gora interface is implemented by extending the familiar VertexInputFormat class. Several 
of the details for setting up a GoraVertexInputFormat are already implemented. The remaining function, 
shown in Listing 10-9, requires you to essentially create a GoraVertexReader.

Listing 10-9.  The GoraVertexInputFormat for Converting In-Memory Objects to Vertex Objects

public abstract class GoraVertexInputFormat
  <I extends WritableComparable, E extends Writable>
  extends VertexInputFormat<I, E> {
 
  @Override
  public abstract GoraVertexReader createVertexReader(InputSplit split,
      TaskAttemptContext context) throws IOException;
}

As you saw in Chapter 7, a VertexReader is responsible for performing the bulk of the work when 
reading input data; that is, for converting input data to the Vertex objects that comprise the graph. A 
GoraVertexReader, in particular, is responsible for converting an in-memory Gora object to a Vertex.  
Listing 10-10 shows the single method that you have to implement to be able to read data from Gora.

http://dx.doi.org/10.1007/978-1-4842-1251-6_7
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Listing 10-10.  The GoraVertexReader API

protected abstract class GoraVertexReader extends VertexReader<I, V> {
   protected abstract Vertex<I, V> transformVertex(Object goraObject);
}

Notice that the API provided is quite flexible. It passes a generic Java object to you and expects you to 
transform it to a vertex. This object is nothing more than the in-memory representation of a user, which you 
saw earlier, and your implementation of the input format specifies how to translate this to a Giraph Vertex 
object. Let’s look at the implementation in Listing 10-11.

Before getting into the details, notice how this class takes the types of the vertex ID, vertex value, and 
the edge value as parameters. Similar to the application scenario in the previous section, you represent 
the ID as an object of type Text, the value of the vertex (that is, the computed distance) as an object of 
type DoubleWritable, and finally, since you do not care about the value of edges, you use objects of type 
NullWritable. The implementation is shown in Listing 10-11.

Listing 10-11.  Our Example Implementation for Transforming Gora Objects to Vertex Objects

public class GoraUserVertexInputFormat
  extends GoraVertexInputFormat<Text, DoubleWritable, NullWritable> {
 
  public GoraVertexReader createVertexReader(
      InputSplit split, TaskAttemptContext context) throws IOException {
    return new GoraGVertexVertexReader();
  }
 
  protected class GoraGVertexVertexReader extends GoraVertexReader {
 
    @Override
    protected Vertex<LongWritable, DoubleWritable, FloatWritable>
    transformVertex(Object goraObject) {
      Vertex<LongWritable, DoubleWritable, FloatWritable> vertex;
      vertex = getConf().createVertex();                                     #1
      GoraUser user = (GoraUser) goraObject;                                 #2
      Text vrtxId = new Text(user.getName())                                 #3
      DoubleWritable vrtxValue = new DoubleWritable(0);                      #4
      vertex.initialize(vrtxId, vrtxValue);                                  #5
      for (Map.Entry<String, String> entry : user.getSharedArticles()) {
          String userName = entry.getKey();                                  #6
          String article = entry.getValue();                                 #6
          Edge<Text, NullWritable> edge = EdgeFactory.create(
                new Text(userName), NullWritable.get());                     #7
           vertex.addEdge(edge);                                             #8
        }
      }
      return vertex;                                                         #9
    }
  }
}
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#1 Create an empty vertex object

#2 Cast the input generic object to the GoraUser specific type

#3 Extract the name and create a new vertex Id of type Text out of it

#4 The initial value of the vertex should be 0

#5 You initialize the empty vertex object with its id and value

#6 For every entry in the shared articles map for this user

#7 Create an edge with the key of the entry as the target id

#8 Each newly created edge, you add it to the vertex

#9 At this point you have created our vertex object and can return it

Now, let’s dive into the implementation of the API. The first action is to create an empty Vertex object 
that you fill with information from the Gora object. Recall that Giraph already provides some utility methods 
to instantiate objects, like edges and vertices. In this case, you can simply call getConf().createVertex() to 
create an empty, uninitialized Vertex object. Next, you will see how to fill it with the necessary information: 
its value and its edges.

Next, you need to extract the information for the in-memory object. Since the API input is a generic 
object, you first need to cast it to the internal representation that you expect it to have; in this case, the 
GoraUser class. If there is a disagreement between the type that you are trying to cast it to and the actual 
representation of the objects in memory, this naturally throws an exception at runtime.

First, you extract the ID of the vertex. For this, you are going to use the “name” field of the GoraUser 
object, assuming that the username uniquely identifies a user. As you have already seen, in Giraph you 
typically represent IDs of type string as Text objects. Similarly, out the string field, you create a new Text 
object to represent the vertex ID.

Then, you are going to set the value of the vertex. Recall that in the algorithm that computes distances, 
the initial value of a vertex is zero. All you have to do is create a DoubleWritable object set to 0. Now, that you 
have created the ID and the value of the vertex, you can call the Vertex.initialize() method to set these 
values in your newly created Vertex object.

Finally, you are going to extract the edges of the vertex. Here, you assume that each user object stores 
the articles that the user shares with others in a map. The vertex reader implementation iterates over all the 
map entries containing user-article pairs and creates an edge using the EdgeFactory utility class. Each edge 
created has the corresponding username as the target ID, which is the key of the map entry. In this scenario, 
you do not need an edge value, so you set it to NullWritable. Once you have created an Edge object, you can 
add it to the vertex using the familiar Vertex.addEdge() API.

Writing Output Data
Next, you learn how to output. In this case, you need to convert the Giraph representation of vertices and 
objects to the Gora in-memory model. Again, you are not going to worry about how Gora persists objects—
this is left to the underlying system, simplifying your job here. Giraph abstracts the details of this process by 
providing output format implementations—the GoraVertexOutputFormat and the GoraEdgeOutputFormat—
and requires you to implement a couple of methods, making the process easy.

Before getting into the details of the output format implementations, as always, you need to make a 
choice about whether you need a vertex-based or an edge-based output format. In this case, you want to 
output the per-vertex distances that the job calculates, so a vertex-based output format is the natural choice. 
Next, let’s look at the API that you have to implement.

Recall that VertexWriters are the way Giraph outputs a Vertex object to any storage system. This is not 
different here. Giraph abstracts the details into the GoraVertexWriter class, shown in Listing 10-12.



Chapter 10 ■ Advanced IO

251

Listing 10-12.  The GoraVertexWriter API

protected abstract class GoraVertexWriter  extends VertexWriter<I, V, E> {
  protected abstract Object getGoraKey(Vertex<I, V, E> vertex);
  protected abstract Persistent getGoraVertex(Vertex<I, V, E> vertex);
}

The interface is quite simple and requires you to implement only two methods. The first method, 
getGoraKey(), takes the Vertex object as input and returns a key. This is going to be used to uniquely 
identify this object in the in-memory storage. Normally, the Gora key coincides with the vertex ID, used to 
uniquely identify the vertex. You will see this in action in a bit.

The second method that you have to implement, getGoraVertex(), takes the Vertex object as input 
and returns an object that implements the Persistent interface of Gora. Even though you can have your 
own implementation of the Persistent interface for storing the output, Giraph already provides a generic 
implementation—called GVertexResult—that allows you to store any information you want about a vertex, 
such as its ID and value. In the following examples, you will see this put in use.

First, let’s take a look at the implementation of the input format shown in Listing 10-13. As mentioned, 
Giraph abstracts many of the details through the GoraVertexOutputFormat, an abstract class that you have 
to extend. Call your implementation the GoraUserVertexOutputFormat. As usual, you need to implement 
the createVertexWriter() method that returns an object implementing the VertexWriter interface 
that does the bulk of the work. Let’s call this GoraUserVertexWriter. Now let’s look at the VertexWriter 
implementation in more detail.

Listing 10-13.  Example Implementation for Saving Vertex Objects As Gora Objects

public class GoraUserVertexOutputFormat
  extends GoraVertexOutputFormat<Text, DoubleWritable,  NullWritable> {
 
  @Override
  public VertexWriter<Text, DoubleWritable, NullWritable>
  createVertexWriter(TaskAttemptContext context)
    throws IOException, InterruptedException {
    return new GoraUserVertexWriter();
  }
 
  protected class GoraUserVertexWriter extends GoraVertexWriter {
 
    @Override
    protected Object getGoraKey(
        Vertex<Text, DoubleWritable, NullWritable> vertex) {
      String goraKey = vertex.getId().toString();                          #1
      return goraKey;
    }
 
    @Override
    protected Persistent getGoraVertex(Vertex<Text, DoubleWritable, NullWritable> vertex) {
      GVertexResult userVertex = new GVertexResult();                      #2
      userVertex.setVertexId(vertex.getId().toString());                   #3
      userVertex.setVertexValue(vertex.getValue().get());                  #4
      return userVertex;
    }
 }
}
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#1 Exctract the vertex ID and return its string representation as the Gora key

#2 Create an empty GVertexResult object to hold the output for this vertex

#3 Set its vertex ID using the provided API

#4 Similarly, set its vertex value

First, let’s take a look at the implementation of the getGoraKey() method. This method should return 
an object used to uniquely identify the object in memory. Even though this is not necessary, using the vertex 
ID is a perfect candidate for this, as you already know that it uniquely identifies a vertex. For the Gora key, 
you do not need a Writable object, such as Text, so you can just extract the String representation of the key 
and return it.

Next, let’s look into the implementation of the getGoraVertex() method, which performs most of the 
work. In this method, you need to extract all the necessary information that you want to store in a Vertex 
object and encapsulate it in an object of a type that Gora understands; that is, an object that implements 
the Persistent interface. The Giraph source code contains a generic object—called GVertexResult—
that implements this interface and allows you to store information in it. We are not going to describe 
its implementation in detail here; the important aspect is that it abstracts the details of the Persistent 
interface and provides simple API calls, such as getting and setting the ID, value, and edges of a vertex. The 
implementation handles the details of converting those fields to the correct underlying representation.

Let’s now look at the body of the method implementation. The first action is to create a new object of 
type GVertexResult that is going to hold the output. Recall that in this particular scenario, the output you 
care about is the vertex ID and its value; that is, the computed distance. For this, you use the setVertexId() 
and setVertexValue() methods of the GVertexResult class. Even though you do not show it here, the 
internal implementations of these methods convert the string and double values into the expected formats 
of the GVertexResult.

Further, although this is not necessary in your particular scenario, the GVertexResult allows you to set 
the edges of the vertex as well. The data structure used to maintain information about the edges is essentially 
a map. The code fragment in Listing 10-14 shows how to use it.

Listing 10-14.  Setting the Edges of a GVertexResult

Iterator<Edge<Text, DoubleWritable>> it =  vertex.getEdges().iterator();  #1
 while (it.hasNext()) {
      Edge<Text, DoubleWritable> edge = it.next();
      userVertex.getEdges().put(                                          #2
          edge.getTargetVertexId().toString(),                            #3
          edge.getValue().toString()
   }

#1 Iterate of the edges of a vertex

#2 Access the edges data structure throught the getEdges() method

#3 Use the put() API to insert the target ID and edge value

This concludes accessing data from Gora. Although you didn’t learn it here, Giraph also provides an 
implementation of an edge-based output format for writing to Gora. Note also that even though the Giraph 
code base implementations of the output formats and interfaces, such as the GVertexResult, would cover 
most of your needs, you may still need to customize them. The existing implementations, though, serve as 
perfect guides to extending your own implementations.
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Summary
In previous chapters, you saw how to use HDFS as the basic storage for data input and output. Giraph, 
however, provides a flexible API that allows the extension to a variety of storage systems. In this chapter, you 
explored table-based and in-memory storage systems.

•	 Table-based storage systems have become quite popular because they allow the 
storage of and the query of semistructured data.

•	 Among other table-based storage systems, Giraph provides vertex-based and edge-
based APIs for accessing data in Hive tables. Typically, you are transforming a single 
Hive table row to a Vertex or an Edge object.

•	 In-memory storage systems are another popular class of systems that allow fast 
access to data. Apache Gora provides an in-memory data model that abstracts the 
details of the underlying storage and allows you to plug it into different storage 
systems for persistence.

•	 Giraph further hides many of the complexities of reading data from and writing 
data to the Gora in-memory model. You can use the GoraVertexInputFormat and 
GoreEdgeInputFormat APIs to convert generic Gora objects to and from Giraph 
Vertex and Edge objects.

By now you should be familiar with accessing data from a variety of data stores. Giraph provides 
interfaces to more systems than covered in this chapter. You should take a look at the code base and 
documentation for more information. You continue in the next chapter with more advanced features—in 
particular, tuning and performance.
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Chapter 11

Tuning Giraph

This chapter covers

•	 Key performance factors and bottlenecks in Giraph

•	 Optimal setups of the Hadoop cluster hosting Giraph

•	 Designing and implementing ad hoc data structures optimized for your algorithms

•	 Spilling excessing data to disk when necessary

•	 The different Giraph parameters and knobs

So far, you have seen how you can use Giraph to compute graph analytics on large graphs across 
hundreds of machines. You have been presented with Giraph’s architecture and the programming model 
that allows you to write programs that scale. It is neat to write programs with the vertex-centric programming 
model, without worrying about the headaches of programming a parallel and distributed system. You write 
a compute function, and Giraph takes care of executing it on vertices, exchanging messages, and performing 
all the functioning of the system across your machines. How all this machinery works is hidden from you so 
that you can focus on the semantics of your application.

There will be times, however, when you will want to obtain all the performance you can from your 
Giraph application that is running perhaps slower than expected. Or worse, there will be times when your 
application is too eager of resources to be able to run until completion; for example, running out of memory. 
In either case, you need an understanding of how Giraph works under the hood, and how to leverage the 
hooks and knobs that are available to you to pass these limits. You have already seen some of the pieces 
in the previous chapters. In this chapter, you will look back at them, this time with a particular focus on 
performance tuning, and you are introduced to a new set of knobs and classes that you can play with.

Performance tuning is a bit of “black magic.” It is a mixture of intuition, experience, and gut feeling. Still, 
it is not about luck. There are two things you need to master to tune the performance of a large system. First, 
you need a good knowledge of the principles behind the functioning of the system. That is, you have to do 
your homework learning the architecture and understanding how data and computation flow through all the 
different components. Second, you need the patience and the perseverance of trying out different solutions, 
and measure them.

A big misconception in computer systems, or even computer science in general, is that if you have an 
idea of the functioning of a system then you can decide the best tuning of the system on paper. Sure, you 
can make some assumptions and estimations, perform complexity analysis, but in the end the devil is in 
the details (or in the constants) and you have to test your assumptions and calculations against the clock. 
This means that in this chapter, you are given some ideas, and the principles behind the tuning knobs of 
Giraph are explained, but we cannot tell you how to improve your very own application. Only you can, with 
“educated” trial and error. Hopefully, it will be easier with the help of this chapter.
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Key Giraph Performance Factors
There are many ways of characterizing the performance of a computation (or a system, an application, etc.). 
One way of doing it is by putting the computation in one of the two following classes.

•	 Compute-intensive: A computation that devotes most of its time to computational 
effort, due to high complexity. In other words, a computation that spends most of its 
time executing instructions on a relatively small piece of data. Examples of compute-
intensive computations are the calculation of prime numbers, satisfiability solvers 
(SAT), simulations, and so forth.

•	 Data-intensive: A computation that processes large amounts of data, on which it 
does not perform particularly complex calculations, hence devoting most of its time 
to IO. In other words, a computation that spends most of its time going through data 
and moving it around. Examples of data-intensive computations are most of Hadoop 
computations, data filtering and aggregation, indexing, and so forth.

Intuitively, one way of deciding whether a computation is compute-intensive or data-intensive is to 
identify whether it would take advantage more of faster CPUs or of faster disks / network.

Many computations in the Hadoop world are data-intensive. For example, the majority of MapReduce 
applications spend most of their time reading through data files, filtering, chopping and sorting records, 
passing them between mappers and reducers, aggregating them, and writing them back to files. Many 
of these operations require reading and writing from and to disks and network. In fact, to speed up a 
MapReduce cluster you often want multiple disks on each machine, so that when a core performs IO on 
a disk, the other cores do not have to idle waiting for their turn to access that same disk. Ideally each core 
would read from a different “dedicated” disk. This is also why MapReduce jobs can take advantage of fast 
network, as a lot of data is just passed around in the shuffle and sort phase between the map and reduce 
phases.

After all, this is why it is called Big Data. Big Data is about leveraging small computations performed on 
many little pieces of information, and putting the result all together. This is pretty much the definition of a 
data-intensive computation. Graph algorithms are not different; in fact they are perfect examples of data-
intensive computations. As you have seen, information in a graph is contained in the connections across 
the vertices, and that is pretty much it. Graph algorithms navigate through these connections and vertices 
multiple times, and perform small computations on each of them. Think of PageRank. At every iteration, 
each vertex is computed by considering the incoming messages and outgoing edges. But what it does on 
each vertex is really just sum up the incoming PageRank values, dividing the sum by the number of outgoing 
edges, and pass the result along through the outgoing edges. These are not complex operations. The more 
data you have, hence edges and vertices, the longer the computation will last. And the same holds for the 
SSSP algorithm. Each vertex goes through its incoming messages and identifies the smallest one. If it finds 
one that is smaller than its current value, it passes it along. This is also pretty cheap computation and its cost 
depends pretty much only on the size of the data it works on.

■■ Note   Graph computations tend to be data-intensive, as they require visiting the data graph multiple times 
and performing few computations on each vertex or edge. Giraph computations are data-intensive, as most 
of the runtime is spent processing graph data. That is, executing the compute function on each vertex, its 
associated edges and values, and the messages sent to it, and to exchange the messages between workers.
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Now, in a Giraph computation there are two classes of data items that fill-up the workers memory:

•	 The graph: The vertices, each with their edges, are what fills up a large portions 
of the heap. By default Giraph stores the graph in memory during the whole 
computation, so the larger is the graph, the more memory you need.

•	 Computation state: The state in a Giraph computation comprises the vertex values 
(sometimes also the edge values if they change during the computation) and the 
messages that are transitioning. Often, the number of messages is proportional to the 
number of edges, which are the most frequent items in any reasonable graph.

In other words, graph and messages together occupy more or less all the used heap. Moreover, during 
each superstep, workers spend a lot of time “just” transmitting the messages over the network. That is why 
combiners and good partitioning can speed up the computation, sometimes even halve it, and drastically 
reduce memory usage: simply because they can drastically reduce the amount of data being stored and 
exchanged overt the network.

The bottom line of the this chapter is that to reduce the amount of memory and speed up your 
computation you’ll have to reduce the amount and size of the data stored in memory; that is, the vertex and 
edge values, and the amount and size of the data sent over the network, i.e. the messages. In the remainder 
of this chapter you’ll have a look at how to tackle these problems through “memory-tight” implementations 
of some of the data-structures used by Giraph. Unfortunately, there are other things that cannot be discussed 
in this chapter; for instance, there are a number of ways to implement each algorithm in the Giraph 
programming model. However, we are not able to discuss algorithmic-specific implementation problems, as 
they really depend on each specific algorithm.

Giraph’s Requirements for Hadoop
Giraph runs as a Hadoop application. As such, it can take advantage, or be penalized, by some decisions that 
regard the setup of the hosting Hadoop cluster, and the cluster-related job configuration parameters.

Hardware-related Choices
Often, you’ll be running Giraph on a cluster over which you do not have much control. You’ll be just a user 
without administrative power on the cluster. But, if you can discuss with your Hadoop administrators and 
ask for some changes, in this section you look at what you should be asking. Moreover, some organizations 
have specific clusters, or subsets of nodes, that they use for Giraph. If the number of workloads that you’ll 
be able to solve with Giraph will increase over time, it could make sense to make some Giraph-oriented 
decisions when your cluster is expanded.

The profile of machine that is more appropriate for Giraph is a machine with a lot of main memory; 
that is, RAM. Giraph does not need large amounts of disk storage, so disk are not something you want to 
focus on when you think about Giraph. As you will see later in this chapter, Giraph has the ability to store 
portions of graph and messages on local disk, but you should consider it as a plan B and not design for 
it. Traditionally, MapReduce jobs have not asked for much main memory, as data was directly streamed 
from and to disk and network. However, recently main memory has played a more important role even 
for MapReduce jobs, for example, to speed up the disk-based shuffle-and-sort phase and to execute some 
of the more memory-eager operators of computations like Hive and Pig. This means it’s likely that your 
machines already have a lot of memory nowadays, but if you plan to extend your cluster buying machines 
for Giraph, focus on memory.
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Second, as said, an important fraction of the time of a Giraph computation is spent exchanging 
messages between workers. The way to speed up this phase (apart from algorithmically reducing 
the size and number of messages) is by using a fast network. Compared to memory, you will probably 
have even less control on the network available to you. Still, it is worth considering bonding interfaces 
together, or utilizing machines on the same rack. Giraph is more traditional when it comes to scalability, 
and while it can scale horizontally, it prefers vertical scalability; that is, few beefy machines are better 
than many small ones. Hence, a solution could be to fit some beefy machines in a rack, and just use 
those with Giraph.

■■ Tip   Giraph prefers few beefy machines than many small machines. When you consider buying machines 
to extend your Hadoop cluster to accommodate Giraph, focus on memory rather than storage, and try to put the 
machines on the same rack.

This consideration about vertical scalability is important, so you will spend the rest of this section on 
it. Before you start, let’s be clear about what is considered vertical scalability here. In the Hadoop world, 
vertical scalability is often considered an expensive “old-fashioned” way of deploying infrastructure, which 
may be less reliable as it depends on few machines (and hence less redundancy). Here, you refer to the 
choice of using few machines but with more cores, to achieve the desired amount of cores in the cluster, 
while still remaining in the domain of “commodity machines.” The reason is explained next.

In Giraph, given the same algorithm and the same graph, the amount of data that is sent over the 
network increases as you add more machines/workers. Intuitively, when you add one machine/worker to 
your cluster, more messages than before need to be transmitted over the network, for the simple reason that 
vertices that were local before (as-in stored on the same machine) are now remote (some of those vertices is 
on the new machine/worker). A message between two vertices that used to be exchanged within the same 
worker (and hence not transmitted) now needs to be transmitted over the network. Needless to say, this is a 
slower operation than simply putting the message in the vertex inbox within the same worker (which, inside 
of the same JVM, is just putting an object in a map).

Now, increasing the number of workers also increases parallelism, hence adding more computing units 
to your computation is something you want to do in order to increase performance. However, you want to do 
it by increasing the number of cores instead of the number of machines, if possible. Increasing the number 
of cores without increasing the number of workers increases parallelism without increasing network usage. 
Concretely, it is preferable to have 10 machines with 8 cores each, than 80 machines with one core each. The 
total number of cores is still 80, but with fewer machines you obtain much more local vertices and hence less 
network usage. Note that while increasing the number of machines increases parallelism, it also increases 
the amount of data sent over the network. The is only so-much runtime improvement you can get by adding 
machines, and that is a trade-off you have to discover by running tests.

Job-related Choices
Per-worker parallelism with Giraph is achieved through compute threads. In Giraph, every worker has 
a number of partitions assigned to it, each partition with a number of vertices in it. The granularity of 
parallelism of Giraph is at partition level, meaning that each compute thread is assigned a number of 
partitions, and the thread is responsible to execute the compute function on each vertex belonging to those 
assigned partitions. Through compute threads, a worker can make use of all the cores available. Note that 
Giraph has also a number of other threads running during a computation, but that is discussed later. The 
relevant parameters are described later in this chapter.



Chapter 11 ■ Tuning Giraph

259

There are two ways of exploiting the cores available to a cluster. Imagine you have 10 machines with 
10 cores each. One way is to run 100 workers, assigning 10 workers to each machine, and using 1 compute 
thread in each worker. The other way is to run 10 workers, assigning 1 worker to each machine, and using  
10 compute threads in each worker. Although theoretically the end result is full usage of the 100 cores, the 
two main differences are as follows:

•	 By using 100 workers, you obtain less locality when compared to using 10 workers, 
hence more messages are transmitted over the network. You may say that as  
10 workers are on each machine, less of the network is used anyway; that is, between 
workers on the same machine. This is true. However, whereas two workers assigned to 
the same machine can communicate over the loopback, Giraph still has to treat them 
internally as remote communications (Giraph is not aware of this worker-worker per-
machine locality); for example, serializing and deserializing messages via the Netty-
based components, writing and reading data to and from sockets, and so forth.

•	 Memory is wasted on overhead. Having 100 workers means 100 Hadoop tasks and 
100 JVMs. All this redundancy results in wasted memory, as you can obtain the 
same results with 10 times fewer tasks and JVMs. Plus, many data structures within 
a Giraph worker occupy space proportionally to the number of workers used, hence 
utilizing more heap memory.

You may think this is obvious and even unnecessary to point out. Why would you use multiple workers 
per machine? As it turns out, it is not trivial to request Hadoop to run one task per machine, particularly 
on clusters that you have to share; for example, MapReduce jobs. The setting is often not decided by the 
cluster administrators (i.e., mapred.tasktracker.map.tasks.maximum) and cannot be overridden by the user 
submitting the job.

■■ Tip   Avoid using multiple workers per machine and try to run as many workers as the number of machines 
available to you. Achieve parallelism within each worker on each machine by using multiple compute threads instead.

On pre-YARN clusters, a Giraph computation runs as a single map-only MapReduce job, where each 
worker would be executed as a mapper task. Traditionally, each machine, or its TaskTracker, would be set 
up to accommodate multiple concurrent mapper and reducer tasks, usually proportionally to the number of 
cores or disks. In addition, the maximum heap size of each task would be proportional to the total memory 
size divided by the number of tasks accepted, to avoid overcommitting. This means that to obtain all the 
available resources in a machine, you have to request the total number of available mapper tasks to use 
as workers, resulting in the suboptimal scenario described earlier with multiple workers per machine. On 
older versions of Hadoop, this could be overcome by setting the maximum number of mapper tasks per 
TaskTracker to 1 on the client-side. However, this option was discontinued in the more recent versions.

With YARN, things have changed. YARN is designed around the concept of containers. Containers 
represent a collection of physical resources, such as memory, CPU cores, and disks. YARN does not have 
a fixed number of mapper and reducer tasks, but instead depends on the available resources and the 
requested resources. A container can be defined to be of minimum and maximum size, relatively to the 
available resources to the machine; for example, 80% of the total memory. When a container is assigned 
80% or 90% of the available memory in a machine, the ResourceManager will not claim more containers 
on that machine. When Giraph is running in YARN, each worker utilizes its own container. This means that 
you can obtain a setup of 1 worker per machine by requesting all the resources available to each machine 
for each worker/container; for example, memory. Here, we are assuming that all that memory is necessary 
and is used, and hence discussing a way to claim it to minimize redundancy. In practical terms, this can be 
obtained by submitting Giraph jobs with a heap size close to the size of the memory available to the machine 
(the smallest in the cluster, in case of heterogeneous clusters).
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■■ Tip   When using YARN, request for each container the amount of memory and CPUs available to a single 
machine. This allows a single worker to run on each machine.

This section concludes with a short discussion about homogenous and heterogeneous clusters. This 
discussion relates to both hardware- and job-related aspects of performance. Because of the synchronization 
barrier, a Giraph superstep last as long as it takes to the slowest or most loaded machine to compute 
its share. For this reason, you want to be able to use comparable machines, with similar computational 
resources, so that your faster machines do not have to idle at the synchronization barrier waiting for the 
slowest (or most loaded) to finish. Also, you want to make sure that each machine has the same load as the 
others. This is usually achieved through partitioning, by ensuring that vertices are partitioned in similar 
number across workers. Default hash-partitioning scheme usually guarantees that. Note that similar 
computational resources means similar CPU, memory, and network. All of these resources are as important. 
If a machine has a slower CPU, it takes more time to compute its part of the work. If it has less memory, it 
could fill-up its heap before the others, and run out of memory (note that your request for heap is global to 
all the workers). If it has a slower network, it takes more time to transmit its messages. In any case, it causes 
the other workers to wait idling at the barrier. At the same time, if a machine is assigned more workers, it is 
more loaded, and hence the workers assigned to it take more time to conclude their portion of the superstep. 
This has the same effects as having a machine with less computational resources.

■■ Tip   Giraph prefers homogenous clusters, composed of machines with similar computational resources 
such as CPU, main memory size, and network. The slowest machine defines the duration of each superstep, 
causing faster machines to idle waiting for it at the synchronization barrier.

Tuning Your Data Structures
Giraph is designed internally to minimize use of memory. Initial versions of Giraph used pure Java object for 
all edges, vertices and messages. With graphs comprising billions of edges and vertices, and more billions 
of messages created and consumed at each superstep, the JVM would experience substantial pressure on 
its memory-management components. For all objects created by an application, the JVM has to allocate 
internally additional memory for the accounting of those objects. Moreover, the JVM garbage collector 
constantly tracks objects being created and destroyed, and moves them around to avoid fragmentation of 
the heap. These are all CPU cycles that the JVM could be using to compute application code, namely Giraph 
and your code. For this reason, Giraph uses a number of non-orthodox tricks to minimize memory footprint 
and time spent performing garbage collection.

In a nutshell, Giraph does some memory management on its own. For instance, it stores some of the 
data, like edges, messages and vertex values, serialized inside of byte arrays that it allocates at the beginning 
of the computation. Still, it offers a pure Java object-oriented API. To achieve this abstraction, Giraph keeps 
a number of objects around, internally called representative objects, which it reinitializes with data coming 
from these binary arrays before passing them to the user, and which it serializes back to the arrays after the 
user is done with them. This mechanism is used, for example, for the Iterable containing the messages 
passed to the compute function, or the default implementation of the OutEdges interface where edges are 
stored for each vertex. To understand how this works, let’s have a look at the default implementation for 
these two classes.
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The OutEdges Interface
The edges of a vertex are contained in a class implementing the OutEdges interface. The OutEdges interface 
extends the Iterable<Edge<I, E>> interface with the ability to add and remove edges, and to count the 
number of edges stored. The interface is used to access the edges, each contained in an Edge<I, E> object. 
Intuitively, you would expect that the outgoing edges of a vertex would be stored, for example, either in a 
Map<I, E>, to allow efficient random access, or in List<Edge<I, E>>, to allow efficient iteration. Before 
getting into the details about the implementation, it is important to understand these two access patterns to 
the edges in Giraph computations.

For example, think of PageRank and SSSP. In both, the compute method iterates through the outgoing 
edges to send messages to the other endpoints and take into account the edge weights as needed during the 
iteration over the edges. As you never look up a specific edge by its vertex ID (or by the other endpoint ID), it 
is sufficient to store edges in a data structure that supports efficient iteration, like an array or a list. Note that 
storing edges in an array is faster to iterate, as data is stored in a continuous chunk of memory, and more 
space-efficient, as you do not need anything else than the array of pointers to the edges. If you consider Label 
Propagation Algorithm described in Chapter 4, on the other hand, you access edges based on the senders of 
the messages, to update the edge values with new labels. For this kind of access, storing the edges in a map 
allows faster lookup (the cost of searching for an element in an unsorted array is proportional to the size of 
the array), but incurs additional overhead due to the map implementation itself, like a tree or a hashmap. 
Moreover, a tree is typically slower to iterate than an array. Hence, depending on the access pattern to the 
edges dictated by your algorithm, you want to use the right implementation of the OutEdges interface.

In additional to the iteration-friendly API of the OutEdges interface, Giraph comes with an additional 
interface, the StrictRandomAccessOutEdges<I, E>. This interface extends the OutEdges interface with 
methods to get and set edge values through lookups of the edge target vertex ID. Giraph provides an 
implementation for such interface called HashMapEdges, which as the name suggests, is backed by a Java 
hashmap for random access to the edges. By default, Giraph uses a class called ByteArrayEdges, which 
stores the edges serialized in a byte array, and it does not support random access to the edges. You can 
choose which class to use to store outgoing edges through the giraph.outEdgesClass Giraph parameter, 
including your own implementation. Let’s have a look at why and how ByteArrayEdges makes use of byte 
arrays to minimize memory-footprint.

Iteration-Friendly OutEdges
As OutEdges extends the Iterable interface, ByteArrayEdges has to provide an implementation of 
Iterator<Edge<I, E>>. In other words, it has to be able to return an Edge<I, E> object at each call to the 
next() method of the iterator. This protocol is important as it allows the user to ignore of how things are 
functioning inside of any class implementing OutEdges. As mentioned earlier, a simple implementation 
would use a number of native Java objects—for example, one for each edge—and in turn, one for each edge 
value and target vertex ID associated to the edge. Having all of these objects around introduces additional 
memory overhead and pressure on the Garbage Collector(GC). Instead of creating and keeping these objects 
around, ByteArrayEdges stores them inside of a byte array via the methods provided by the Writable 
interface that these objects have to support for check-pointing. Storing the edge data serialized in byte arrays 
drastically reduces the number of objects, but you still need to provide Java objects to comply with the Giraph 
API. For this reason, ByteArrayEdges keeps a number of objects that it reinitializes based on the data in its 
byte array under the hood before returning them to the caller. Because internally these representative objects 
are constantly overwritten, the caller cannot keep a reference to them, but must make a copy if needed. This 
is fine, because the typical access pattern toward outgoing edges, like in the algorithms mentioned earlier, is 
just to iterate the edges and use their values locally at each step of the iteration. To ensure that the user knows 
this caveat, ByteArrayEdges implements the ReusableObjectsOutEdges interface, which precisely states this 
behavior. To have a better understanding of the mechanism, let’s have a look at the implementation of the 
Iterator<Edge<I, E>> implemented as an inner class of ByteArrayEdges in Listing 11-1.

http://dx.doi.org/10.1007/978-1-4842-1251-6_4
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Listing 11-1.  ByteArrayEdgeIterator

private class ByteArrayEdgeIterator
    extends UnmodifiableIterator<Edge<I, E>> {
  /** Input for processing the bytes */
  private ExtendedDataInput extendedDataInput =
      getConf().createExtendedDataInput(
          serializedEdges, 0, serializedEdgesBytesUsed); #1
  /** Representative edge object. */
  private ReusableEdge<I, E> representativeEdge =
      getConf().createReusableEdge(); #2
 
  @Override
  public boolean hasNext() {
    return serializedEdges != null && !extendedDataInput.endOfInput(); #3
  }
 
  @Override
  public Edge<I, E> next() {
    try {
      WritableUtils.readEdge(extendedDataInput, representativeEdge); #4
    } catch (IOException e) {
      throw new IllegalStateException("next: Failed on pos " +
          extendedDataInput.getPos() + " edge " + representativeEdge);
    }
    return representativeEdge; #4
  }
}

#1 Internally we encapsulate the byte array coming from the outer class into an ExtendedDataInput that we 
need to feed the Writable interface methods

#2 Create a reusable edge that we will return to the user

#3 Check whether edges exist and we haven’t consumed all of them

#4 Rewrite the representative edge with the next data available in the array and return it to the user

First, note that serializedEdges is a private field of type byte[] used to store the edges and it belongs 
to the outer class ByteArrayEdges. In the same way, serializedEdgesBytesUsed is a private field of type 
int that counts the number of bytes used in that array. At construction, the iterator wraps the byte array 
into a DataInput object, used by Writable to read data. Furthermore, you construct a representativeEdge 
object of type ReusableEdge. ReusableEdge is an interface used internally to Giraph and not exported to 
the user, which allows overwriting a target vertex ID in an edge when the representativeEdge is reused. 
Second, note how at every call of the next() method the representativeEdge object is reinitialized 
consuming the wrapped array. This technique allows you to save memory and keep a generic interface, 
as you rely on the Writable interface that edges have to implement. Keep in mind that this mechanism 
puts more pressure on the CPU, which has to constantly serialized and deserialize objects, but usually the 
advantage is worth the cost.
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Random Access-Friendly OutEdges
As mentioned earlier, HashMapEdges supports efficient lookup of edge values but to do so, it generates a 
number of objects for each edge. Supporting random lookups in a byte array would require additional 
complexity, such as sorting the edges and performing a binary search, or performing a linear search at each 
lookup. Moreover, the former approach would be feasible only assuming fixed-sized edge values, which is not 
always the case in a Giraph application. Another approach that is addressed in this section is using a hashmap 
of primitive types. Open source project fastutil1 provides fast and compact type-specific implementations 
for common Java Collections data structures, such as maps, sets, lists, etc. Differently from using native Java 
objects, these data structures are automatically generated through a preprocessor, and work for different 
combinations of Java primitive types. For example, it provides an Int2ByteMap interface that extends the 
Java Map<Integer, Byte> interface, but the provided Int2ByteOpenHashMap implementation underneath 
stores a key as an int and a value as a byte. While the interface is complaint to the Collections API from Java, 
namely the methods of the map accept and return objects of type Integer and Byte, underneath these 
objects are not used in favor of their primitive-type counterpart. It has been shown that the implementations 
in this package are often the fastest out there, and with smallest memory footprint. Now, with the help 
of these classes, you can play a similar trick to the one in ByteArrayEdges. Imagine you want to optimize 
the implementation of LPA. Imagine that the vertex IDs are integers, and so are the edge values. The 
StrictRandomAccessOutEdges<I, E> interface extends OutEdges<I, E> with two methods in which you 
are interested, namely E getEdgeValue(I targetVertexId) and void setEdgeValue(I targetVertexId, 
E edgeValue) that get and set an edge value respectively. You need these methods when you iterate over 
the labels contained in the messages to update the corresponding labels that you store in the edge values. 
Listing 11-2 shows the implementation of a class OpenHasMapEdges<IntWritable, IntWritable> based on 
fastutil. In the interest of space, the implementation of some unrelated methods have been omitted.

Listing 11-2.  OpenHashMapOutedges

public class OpenHashMapEdges extends
    ConfigurableOutEdges<IntWritable, IntWritable> implements
    StrictRandomAccessOutEdges<IntWritable, IntWritable>,
    ReuseObjectsOutEdges<IntWritable, IntWritable> {
  private Int2IntMap map; #1
  private IntWritable repValue = new IntWritable(); #2
 
  @Override
  public void initialize(Iterable<Edge<IntWritable, IntWritable>> edges) {
    EdgeIterables.initialize(this, edges);
  }
 
  @Override
  public void add(Edge<IntWritable, IntWritable> edge) { #3
    map.put(edge.getTargetVertexId().get(), edge.getValue().get()); #3
  }
 
  @Override
  public void remove(IntWritable targetVertexId) { #4
    map.remove(targetVertexId.get()); #4
  }
 

1http://fastutil.di.unimi.it/

http://fastutil.di.unimi.it/
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  @Override
  public int size() {
    return map.size();
  }
 
  @Override
  public Iterator<Edge<IntWritable, IntWritable>> iterator() {
    return new PrimitiveTypedIterator();
  }
 
  private class PrimitiveTypedIterator
      extends UnmodifiableIterator<Edge<IntWritable, IntWritable>>{
    private Iterator<Entry<Integer, Integer>> it = #5
      map.entrySet().iterator(); #5
    private ReusableEdge<IntWritable, IntWritable> repEdge = EdgeFactory #6
      .createReusable(new IntWritable(), new IntWritable()); #6
 
    @Override
    public boolean hasNext() { #7
      return it.hasNext(); #7
    }
 
    @Override
    public Edge<IntWritable, IntWritable> next() {
      Entry<Long, Short> entry = it.next(); #8
      repEdge.getTargetVertexId().set(entry.getKey()); #8
      repEdge.getValue().set(entry.getValue()); #8
      return repEdge; #8
    }
  }
  @Override
  public void readFields(DataInput in) throws IOException {
    int numEdges = in.readInt();
    initialize(numEdges);
    for (int i = 0; i < numEdges; i++) {
      int id = in.readInt();
      int v = in.readInt();
      map.put(id, v);
    }
  }
 
  @Override
  public void write(final DataOutput out) throws IOException {
    out.writeInt(map.size());
    for (Entry<Long, Short> e : map.entrySet()) {
      out.writeInt(e.getKey());
      out.writeInt(e.getValue());
    }
  }
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  @Override
  public IntWritable getEdgeValue(IntWritable targetVertexId) {
    int v = map.get(targetVertexId.get()); #9
    repValue.set(v); #9
    return repValue; #9
  }
 
  @Override
  public void setEdgeValue(IntWritable targetVertexId,
      IntWritable edgeValue) {
    map.put(targetVertexId.get(), edgeValue.get()); #10
  }
}

#1 We keep the values in a map based on primitive types

#2 Also we keep a representative object for edge values of the actual type

#3 Proxy a request to add an edge as a put in the map

#4 Proxy a request to remove an edge as a remove from the map

#5 We keep an iterator of the map that we will proxy

#6 We keep a representative Edge in the iterator to reinitialize with data coming from the map iterator

#7 Proxy the request to the internal iterator

#8 Reinitialize the representative object with data coming from the map

#9 Fetch the data from the map and return the update representative object

#10 Update the backing map with the new value

The class is very simple. You store internally a fastutil map of primitive types that correspond to the 
specific types the algorithm is expecting. In this sense, the approach is less general than ByteArrayEdges, 
which accepts Generic types. In fact, if you want to go through this road, you have to modify the given class 
with specific primitive types for each different algorithm. It may take some copy-pasting, but it is worth the 
effort. For the rest, the class proxies the calls to the internal map to get and put edge values coming from the 
user. Note that you can also proxy the calls for the iterator, by relying on the internal iterator that you proxy 
under the hood. This is pretty much all there is to know about tailoring OutEdges to your algorithms to save 
memory and increase speed.

The MessageStore Interface
Messages are the other data that fills the heap of the workers. Some algorithms produce a number of 
messages proportional to the number of edges, such as PageRank, other produce less and the number 
at each superstep depends on many factors as, for example, the topology of the graph. Moreover, certain 
algorithms generate very large messages, as, for example, the algorithm to compute clustering coefficients, 
which sends lists of neighbor IDs as messages to detect triangles. To minimize the impact of messages, 
Giraph stores messages through a technique similar to that presented in the previous section regarding 
edges. Similarly to the ReusableObjectsOutEdges interface, also the references to messages are valid 
only before the next call to the next() method of the iterator passed to the compute() method for each 
vertex. The reason is the following. Messages are stored in a serialized format inside of byte arrays, and 
what the iterator passes to the user is a representative message that is reinitialized with message data at 
each call. This trick is implemented by the ByteArrayMessagesPerVertexStore class, which is the default 
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implementation of the MessageStore interface. A MessageStore is the inbox where Giraph stores all 
messages sent to the vertices. Each worker has one of such stores, and within the store messages are grouped 
by destination vertex, which are themselves organized per partition. In other words, you can imagine a 
MessageStore as a nested map, with partitions as keys of the outer map, and vertex IDs as keys of the inner 
maps. One thing to notice is that combiners drastically reduce the number of message transiting the system. 
This can have particular impact on the runtime management of a store. In fact, Giraph uses a different 
default implementation when combiners are involved, as Giraph combines all incoming messages at the 
store-level as they arrive to the destination worker. In other words, Giraph only stores a single message, if 
any, in the store when a combiner is involved.

The question is then, how can you save more memory given that the default message stores provided by 
Giraph are already efficient? The idea is again similar to what you have seen in the previous section. You can 
use data structures tailored to the data types that you use in your application, through primitive types-based 
classes provided by fastutil. While compact and minimizing the number of objects, the original stores are 
still based on the original Java HashMap class, in order to be as general as possible to the vertex ID type and 
message value. But as you want to minimize the memory footprint of the store as much as you can, you can 
drop this requirement for generality and implement a store that is defined precisely around the data types. 
Let’s first have a look at how the default implementation in Giraph works, and then let’s have a look at how to 
write a message store for a vertex ID of type int and message value of type float. So, first you will look at the 
SimpleMessageStore abstract class, which implements some of the routines that are used by, for example, 
the OneMessagePerVertexStore class. Listing 11-3 presents a selection of methods from the class.

Listing 11-3.  SimpleMessageStore

public abstract class SimpleMessageStore<I extends WritableComparable,
    M extends Writable, T> implements MessageStore<I, M>  {
  /** Message class */
  protected final MessageValueFactory<M> messageValueFactory;
  /** Service worker */
  protected final CentralizedServiceWorker<I, ?, ?> service;
  /** Map from partition id to map from vertex id to messages for that vertex */
  protected final ConcurrentMap<Integer, ConcurrentMap<I, T>> map; #1
  /** Giraph configuration */
  protected final ImmutableClassesGiraphConfiguration<I, ?, ?> config;
 
  /**
   * Constructor
   *
   * @param messageValueFactory Message class held in the store
   * @param service Service worker
   * @param config Giraph configuration
   */
  public SimpleMessageStore(
      MessageValueFactory<M> messageValueFactory,
      CentralizedServiceWorker<I, ?, ?> service,
      ImmutableClassesGiraphConfiguration<I, ?, ?> config) {
    this.messageValueFactory = messageValueFactory;
    this.service = service;
    this.config = config;
    map = new MapMaker().concurrencyLevel(
        config.getNettyServerExecutionConcurrency()).makeMap(); #1
  }
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  /**
   * Get messages as an iterable from message storage
   *
   * @param messages Message storage
   * @return Messages as an iterable
   */
  protected abstract Iterable<M> getMessagesAsIterable(T messages); #2
 
  /**
   * If there is already a map of messages related to the partition id
   * return that map, otherwise create a new one, put it in global map and
   * return it.
   *
   * @param partitionId Id of partition
   * @return Message map for this partition
   */
  protected ConcurrentMap<I, T> getOrCreatePartitionMap(int partitionId) {
    ConcurrentMap<I, T> partitionMap = map.get(partitionId);
    if (partitionMap == null) {
      ConcurrentMap<I, T> tmpMap = new MapMaker().concurrencyLevel(
          config.getNettyServerExecutionConcurrency()).makeMap();
      partitionMap = map.putIfAbsent(partitionId, tmpMap); #3
      if (partitionMap == null) { #3
        partitionMap = tmpMap; #3
      }
    }
    return partitionMap;
  }
 
@Override
  public Iterable<M> getVertexMessages(I vertexId) throws IOException {
    ConcurrentMap<I, T> partitionMap = map.get(getPartitionId(vertexId));
    if (partitionMap == null) {
      return Collections.<M>emptyList();
    }
    T messages = partitionMap.get(vertexId);
    return (messages == null) ? Collections.<M>emptyList() : #4
        getMessagesAsIterable(messages); #4
  }
}

#1 Messages are organized per-partition, inside of 2-levels of nested maps

#2 The method to pack messages in an iterable is left abstract

#3 Partitions messages are returned or an empty map is created instead

#4 Vertex messages are fetched from the map and packed in an iterable object
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There are a couple of things to notice here. First, being abstract the class cannot be instanced, but it 
provides some basic functionality to manage the nested map mentioned before. In particular, note how the 
getVertexMessages() method first gets the inner per-partition map, then it fetches the vertex messages, 
and then it relies on the getMesssagesAsIterable() method to pack the messages in an iterable object 
that is passed to the compute method together with the vertex. Second, as you may have noticed, the 
implementation of getMesssagesAsIterable() is not provided. This is exactly because, depending on the 
store, for a given vertex, you may have either a list of messages serialized in a byte array, or a single message 
when a combiner is involved. You need to let the implementer handle this aspect further. Let’s have a look at 
this latter case. Listing 11-4 presents some of the implementation of OneMessagePerVertexStore, which, as 
mentioned, stores only one message per vertex through a combiner.

Listing 11-4.  OneMessagePerVertexStore

public class OneMessagePerVertexStore<I extends WritableComparable,
    M extends Writable> extends SimpleMessageStore<I, M, M> {
  /** MessageCombiner for messages */
  private final MessageCombiner<? super I, M> messageCombiner; #1
 
  /**
   * @param messageValueFactory Message class held in the store
   * @param service Service worker
   * @param messageCombiner MessageCombiner for messages
   * @param config Hadoop configuration
   */
  public OneMessagePerVertexStore(
      MessageValueFactory<M> messageValueFactory,
      CentralizedServiceWorker<I, ?, ?> service,
      MessageCombiner<? super I, M> messageCombiner,
      ImmutableClassesGiraphConfiguration<I, ?, ?> config) {
    super(messageValueFactory, service, config);
    this.messageCombiner = messageCombiner; #1
  }
 
  @Override
  public void addPartitionMessages(
      int partitionId,
      VertexIdMessages<I, M> messages) throws IOException {
    ConcurrentMap<I, M> partitionMap =
        getOrCreatePartitionMap(partitionId);
    VertexIdMessageIterator<I, M> vertexIdMessageIterator =
      messages.getVertexIdMessageIterator();
    // This loop is a little complicated as it is optimized to only create
    // the minimal amount of vertex id and message objects as possible.
    while (vertexIdMessageIterator.hasNext()) {
      vertexIdMessageIterator.next();
      I vertexId = vertexIdMessageIterator.getCurrentVertexId();
      M currentMessage =
          partitionMap.get(vertexIdMessageIterator.getCurrentVertexId());
      if (currentMessage == null) { #1
        M newMessage = messageCombiner.createInitialMessage(); #1
        currentMessage = partitionMap.putIfAbsent( #1
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            vertexIdMessageIterator.releaseCurrentVertexId(), newMessage); #1
        if (currentMessage == null) { #1
          currentMessage = newMessage; #1
        }
      }
      synchronized (currentMessage) {
        messageCombiner.combine(vertexId, currentMessage, #2
            vertexIdMessageIterator.getCurrentMessage()); #2
      }
    }
  }
 
  @Override
  protected Iterable<M> getMessagesAsIterable(M message) { #3
    return Collections.singleton(message); #3
  }
}

#1 We make sure we have a message for each vertex

#2 We update the message by combining the previous one with the new one

#3 We return an iterable implemented by a singleton

Here you can note how getMesssagesAsIterable() packs the only message in a singleton iterator. 
You can also notice the way addPartitionMessages() inserts messages in the store. Also, messages are put 
into the store in groups, as they are buffered upon reception. In particular, note how messages are combined 
one after the other with the message currently stored, if any, in the store.

You are now ready to look at a primitive type-based implementation of such a class. Listing 11-5 
presents the IntFloatMessageStore class, which as the name suggests, is a message store designed for 
algorithms where vertices IDs are of type int and messages are of type float. Also in this case, only the part 
of the implementation relevant to the discussion is presented.

Listing 11-5.  IntFloatMessageStore

public class IntFloatMessageStore
    implements MessageStore<IntWritable, FloatWritable> {
  /** Map from partition id to map from vertex id to message */
  private final Int2ObjectOpenHashMap<Int2FloatOpenHashMap> map;
  /** Message messageCombiner */
  private final
  MessageCombiner<? super IntWritable, FloatWritable> messageCombiner;
  /** Service worker */
  private final CentralizedServiceWorker<IntWritable, ?, ?> service;
 
  /**
   * Constructor
   *
   * @param service Service worker
   * @param messageCombiner Message messageCombiner
   */
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  public IntFloatMessageStore(
      CentralizedServiceWorker<IntWritable, Writable, Writable> service,
      MessageCombiner<? super IntWritable, FloatWritable> messageCombiner) {
    this.service = service;
    this.messageCombiner = messageCombiner;
 
    map = new Int2ObjectOpenHashMap<Int2FloatOpenHashMap>();
    for (int partitionId : service.getPartitionStore().getPartitionIds()) {
      PartitionStore<IntWritable, Writable, Writable> partitionStore =
        service.getPartitionStore();
      Partition<IntWritable, Writable, Writable> partition =
        partitionStore.getOrCreatePartition(partitionId);
      Int2FloatOpenHashMap partitionMap = #1
          new Int2FloatOpenHashMap((int) partition.getVertexCount()); #1
      map.put(partitionId, partitionMap); #1
      partitionStore.putPartition(partition); #1
    }
  }
 
  @Override
  public void addPartitionMessages(int partitionId,
      VertexIdMessages<IntWritable, FloatWritable> messages) throws
      IOException {
    IntWritable reusableVertexId = new IntWritable(); #2
    FloatWritable reusableMessage = new FloatWritable(); #2
    FloatWritable reusableCurrentMessage = new FloatWritable(); #2
 
    Int2FloatOpenHashMap partitionMap = map.get(partitionId);
    synchronized (partitionMap) {
      VertexIdMessageIterator<IntWritable, FloatWritable>
          iterator = messages.getVertexIdMessageIterator();
      while (iterator.hasNext()) {
        iterator.next();
        int vertexId = iterator.getCurrentVertexId().get();
        float message = iterator.getCurrentMessage().get();
        if (partitionMap.containsKey(vertexId)) {  #3
          reusableVertexId.set(vertexId); #3
          reusableMessage.set(message); #3
          reusableCurrentMessage.set(partitionMap.get(vertexId)); #3
          messageCombiner.combine(reusableVertexId, reusableCurrentMessage,
              reusableMessage); #4
          message = reusableCurrentMessage.get(); #4
        }
        partitionMap.put(vertexId, message); #4
      }
    }
  }
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  @Override
  public Iterable<FloatWritable> getVertexMessages(
      IntWritable vertexId) throws IOException {
    Int2FloatOpenHashMap partitionMap = getPartitionMap(vertexId);
    if (!partitionMap.containsKey(vertexId.get())) {
      return EmptyIterable.get();
    } else {
      return Collections.singleton(#5
          new FloatWritable(partitionMap.get(vertexId.get()))); #5
    }
  }
}

#1 We create all the partitions at construction for efficiency

#2 We use reusable objects that we reinitialized to save objects

#3 We reinitialized objects with primitive typed data

#4 We use the reusables to combine current and new message

#5 We return a single iterable containing an object created on-the-fly

This time the outer map is a fastutil Int2ObjectOpenHashMap class, as keys are the integer partition IDs 
and the values are the inner map objects, in this case Int2FloatOpenHashMap objects, that map vertex IDs to 
their message. The functioning of the class in both add PartitionMessages() and getVertexMessages() 
methods recalls what you have seen in the previous two classes. This time however it was not possible 
to reuse code coming from the SimpleMessageStore class because all the functionality is tailored to the 
specific primitive types. The last thing to mention is how to specify which class to use as a message store. As 
with other classes, the message store class is specified with a Giraph parameter. In particular, you must use 
the giraph.messageStoreFactoryClass parameter to specify a factory class that generates MessageStore 
implementations. Examples of factory classes come together with the message stores in the Giraph source 
code; the interested reader is directed to the source code for examples of factory implementations.

Going Out-of-Core
Many times this book has underlined how Giraph was designed to compute graph algorithms in memory, 
and that this is a key factor in allowing such fast computations on massive graphs. However, this can also be 
Giraph’s weakness, as sometimes data can be excessive and workers can run out of memory. In the previous 
sections you have seen how Giraph already implements some nice tricks to minimize memory footprint, 
and how you can tailor your data structures to minimize it even more. Yet, there will be times when all of 
these efforts won’t be enough. In those cases, you want to try the capability of Giraph to spill excessive data 
to disk. Keep in mind that this capability should be considered a last-resort option because it may degrade 
performance substantially if used excessively.

Giraph can store both messages and graph (both the topology, and the vertex and edge values) on local 
disks during the computation of each superstep. The fact that Giraph can make use of disks does not turn 
it into a database. Its access to disk should not be considered as a layer of persistence, but more of a swap 
partition in an operating system. It spills to disk the portion of the state and the graph that is excessive to 
keep in main memory to reach the conclusion of the computation. In other words, from the perspective of 
the user there is no difference to have Giraph running with or without the out-of-core capability activated, 
except maybe for performance. The only thing the user is asked to do is to choose whether to spill messages, 
graph, or both, and how much of them. This section briefly describes how the functionality works, so that 
you can make your choice and investigate what works best for your application.
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Out-of-Core Graph
Each worker stores the vertices assigned to it inside so-called partitions. Inside a partition are all the vertices, 
and their edges, assigned to that partition. During a superstep, a worker processes one partition after the 
other, or multiple partitions in parallel if multiple compute threads are used. Within partitions, one vertex is 
processed after the other. The out-of-core graph functionality (or OOCG) allows a worker to keep only a user-
defined number of partitions in memory, while the remaining ones are stored on local disk. When a worker 
is done processing all the partitions that are currently in memory, it spills a number of processed partitions 
to disk to load unprocessed ones from disk into memory. The worker will not start spilling or loading any 
vertex until the partition the vertex belongs to has been processed completely. This means that OOCG works 
at a partition-level granularity. No single vertex (or edge) is spilled or loaded from disk individually.

When OOCG is active by default Giraph keeps in memory N partitions, of which a number is considered 
sticky, typically defined as N – k (where N is the number of partitions to be kept in memory at all times, and 
k is the number of compute or input threads). Sticky partitions are partitions that are never swapped to disk. 
You want to keep at least k non sticky partitions when using k compute threads so that each compute thread 
can swap a partition to disk with an unprocessed one without having to wait. By default, which partitions 
are sticky is chosen at random at the beginning of the computation and it does not change. Because in most 
graph algorithms, all partitions need to be processed at each superstep (but not necessarily all vertices in 
them); keeping a number of sticky partitions in memory at all times minimizes the number of swaps.

However, your partitioning algorithm may allow to split the graph in such a way that only certain 
partitions contain active vertices to be processed, while other partitions can be ignored for some 
supersteps. For those cases, Giraph can also ignore stickiness and use a least-recently-used (LRU) 
policy when choosing which partition to swap to disk to make space for a new one. In this setting, 
the partition stores operate practically as a cache. You can activate OOCG with the Giraph giraph.
useOutOfCoreGraph parameter, you can define the number of partitions to keep in memory with the 
giraph.maxPartitionsInMemory parameter, and you can overwrite the automatic setting of sticky 
partitions with the giraph.stickyPartitions parameter.

The functioning of OOCG is simple. When stored on local disk, each partition is saved in two files, 
one for vertices and one for edges. The layout of the vertices file is, a part of a short header, a sequence of 
vertices serialized through the Writable interface one after the other. Similarly, the edges file is a sequence 
of edges, grouped by the source vertex. Spilling a partition to disk is IO-efficient, as it is a sequential write 
to a disk of the two files that does not involve read or seek operations, hence maximizing the use of IO disk 
bandwidth. In the same way, reading a partition from disk is also a sequential read of the two same files, 
which are parsed again through the methods defined by the Writable interface. The reason why vertices 
and edges are stored in two separate files is to minimize IO when possible. Many algorithms act on static 
graphs, as, for example, PageRank, SSSP, Connected Components, and so forth. Static graphs mean that the 
edges and vertices are not added or removed, and that edge values (e.g., weights) do not change. By this 
definition, Label Propagation Algorithm and Stochastic Gradient Descend (both described in Chapter 4) 
do not operate on static graphs as they mutate the edge values. Because only vertex values change during 
the computation, Giraph can spill to local disk both vertices and edges only the first time a partition is 
swapped to disk. The subsequent times, only the changing elements, the vertex values, need to be written 
to disk. When the partition is read back to memory, the first write of edges and the most recent write of the 
vertices are used. This saves substantial write IO, considering that edges are by far the largest portion of 
the graph. The user can specify whether its algorithm acts on a static view of the graph with the giraph.
isStaticGraph parameter.

Finally, you can specify the directories on local disk used to store out-of-core partitions with the 
giraph.partitionsDirectory parameter. The parameter accepts a comma-separated list of directories. If 
multiple disks are available, it is convenient to specify one directory on each disk. OOCG spreads partitions 
across disks, and as compute threads swap partitions from memory to disk, they parallelize IO for faster data 
transfer, maximizing throughput.

http://dx.doi.org/10.1007/978-1-4842-1251-6_4
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Out-of-Core Messages
You have seen that Giraph stores incoming messages inside of inboxes called message stores, one for each 
worker. If a message store is filled with more messages than the heap can manage, the worker will run out 
of memory. For this reason, Giraph allows you to set a threshold to the maximum number of messages that 
are stored in memory, before messages start being spilled to disk. Every time the message store reaches 
its maximum capacity, its content is spilled to disk in a file, and a new empty message store is created to 
accommodate new incoming messages.

More precisely, out-of-core messages (or OOCM) works as follows. First, when OOCM is active, vertices 
are processed by the compute threads in sorted order, as dictated by their ID. Second, when a message store 
is written to disk, after the given threshold is reached, messages are stored sorted by destination vertex ID, 
one message after the other. As a natural effect, messages are grouped together in the file by destination 
vertex ID, as all messages destined to the same vertex are written together as a result of the sorting. After the 
messages are sorted in memory, they are written very efficiently as a sequential operation. Third, because 
messages arrive at different times during a superstep, messages destined to a specific vertex are spread 
across multiple files. These three elements allow OOCM to serve messages from disk without indices or 
without seek operations inside of a file. In other words, they are scanned through sequential reads.

When a superstep begins and the message store is opened for reading, the store places a cursor at the 
beginning of each file. When the store is asked for the messages for a specific vertex, it looks at all its cursors 
and check whether they are pointing to messages destined to that vertex. If a cursor is indeed pointing to such 
messages, it is used to read the messages (actually literally streamed as they are consumed) from the file. Note 
that the cursor is advanced automatically, as a side-effect of the reads, to the next group of messages. If the 
messages pointed by the cursor are destined to a different vertex, the file can be skipped completely for this 
vertex. In fact, if the file contained messages for that vertex, they would be currently pointed by the cursor. This 
is a necessary condition due to the fact that messages are stored sorted in the same order they are processed 
during a superstep. Assuming vertices (and messages) are stored in ascending order, if a cursor is not pointing 
to messages for the given vertex, it must be pointing to messages destined to a vertex with a bigger ID that still 
needs to be processed. Note that the message store does the same operations with a cursor pointing to the 
messages currently stored sorted in-memory. The operations are transparent to where messages are stored, as 
long as they are sorted. Figure 11-1 shows the layout of OOCM when reading data for vertex v4.

Figure 11-1.  Out-of-core messages reading data for vertex v4
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This technique is very efficient, because it is based only on sequential writes and reads to disk, and it 
is hence very IO efficient. Yet, it needs to periodically sort (in-memory) portions of messages before they 
are written to disk, which is expensive if many messages need to be written to disk. Moreover, using a low 
threshold pushes Giraph to produce many small files. While reads are logically sequential within each file, 
the disk has to physically seek to different areas to read the content pointed by each cursor. For this reason, 
one should use OOCM with high thresholds, hence not in case of extremely low memory availability (in 
which case the more predictable OOCG should be used). OOCM is activated by means of the giraph.
useOutOfCoreMessages parameter, and the threshold is set via the giraph.maxMessagesInMemory parameter. 
The list of directories on local disk(s) used to store messages is set via the giraph.messagesDirectory 
parameter. As for OOCG, also OOCM can make use of multiple disks, to parallelize disk IO.

Giraph Parameters
Giraph is a large system, and as any large enough system it has an even larger number of parameters that 
influence its behavior and performance. It is difficult to define how certain parameters characterize precisely 
the behavior and the performance of a system for all applications. To complicate things up a bit, it’s even 
harder to characterize how multiple parameters interact with each other. The following is a list of parameters 
with explanations about what they do. Some of them are straightforward; others, like numbers of threads 
and size of buffers, depend on your application, graph, cluster, and setting. As said at the beginning of this 
chapter, you’ll have to measure yourself how different values impact your applications. Through this section, 
you should be guided in this exploration.

•	 giraph.useBigDataIOForMessages=[true|false], default false: BigDataIO is 
a set of classes that allows you to go beyond Java’s limitation of size of byte arrays, by 
wrapping together multiple ones. It can be used if certain vertices are expected to 
receive many messages.

•	 giraph.jmap.histo.enable=[true|false], default false: By enabling this 
parameter, you request the JVM to print histograms of objects in a worker, possibly 
also to a remote controller. It is handy to see where your memory is going (as in 
which objects use it and should be hence optimized).

•	 giraph.metrics.enable=[true|false], default false: By enabling this 
parameter you ask Giraph to print additional metrics information, as in where each 
worker is spending most time. For example, you can measure, per superstep and per 
worker, the time spent computing vertices, the time spending serving messages, and 
so forth.

•	 giraph.oneToAllMsgSending=[true|false], default false: If you activate 
this parameter you tell Giraph that each vertex sends the same message to all its 
neighbors. This is the case, for example, of PageRank, but not of weighted SSSP 
where the message depends on each edge weight. Once Giraph knows this, it can 
make certain optimizations that minimize the amount of messages it stores in 
memory.

•	 giraph.numInputThreads=integer, default 1: Input splits can be read 
concurrently to load the graph faster.

•	 giraph.numOutputThreads=integer, default 1: Multiple threads can go through 
vertices and output results at the end of the computation.
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•	 giraph.nettyClientThreads=integer, default 4: Client threads are responsible 
of sending data from workers to other workers. You want to increase the number 
of threads when you have a large number of workers. Having a too large number 
of threads increases overhead, while a too small number underuses network while 
buffers fill-up.

•	 giraph.nettyServerThreads=integer, default 16: Server threads are responsible 
of receiving data from other workers. You want to increase the number of threads 
when you have a large number of workers. Having a too large number of threads 
increases overhead, while a too small number underuses network while buffers fill-up.

•	 giraph.serverReceiveBufferSize=integer, default 524288: You want to 
increase the buffer size when your application sends a lot of data; for example, many 
and/or large messages. This avoids that the server is constantly moving little pieces 
of data around.

•	 giraph.clientSendBufferSize=integer, default 524288: Similar to server 
buffers, you want to increase the buffer size when your application sends a lot of 
data; for example, many and/or large messages. This avoids the server constantly 
moving little pieces of data around.

Some of these parameters play a joint role. In particular buffer sizes and number of threads are strongly 
connected. Increasing the buffer size makes sure that IO costs are amortized. Increasing the number 
of threads makes sure that data is not stalling in buffers. However, using large buffers for many threads 
increases the usage of heap with risks of going out of memory.

Summary
Giraph is a large-scale graph processing system that runs your code potentially on thousands of cores across 
hundreds of machines with little complexity. Its generality, although specific to graph algorithms, leaves 
some space to optimizations tailored to each use case. In particular, you have seen how:

•	 The amount of data stored in memory and sent over the network can produce 
bottlenecks or hinder the ability to conclude the computation

•	 While running on commodity machines, certain hardware and Hadoop cluster setup 
choices are more suitable to large-scale graph processing

•	 Giraph uses particular memory layouts to minimize the impact of the garbage 
collector in the JVM

•	 Depending on the access pattern to the edges, different edge stores can be more 
suitable

•	 The user can implement tailored data structures based on primitive types for both 
edges and messages to decrease memory footprint

•	 When necessary, Giraph can spill excessive data, graph and messages, to disk

A number of parameters can influence the behavior and performance of your applications depending 
on its usage of resources
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Chapter 12

Giraph in the Cloud 

This chapter contains

•	 A high-level architectural overview of cloud computing

•	 An analysis of specific requirements graph processing presents in the cloud

•	 A deep dive into using Giraph on a public cloud provided by Amazon

As you learned in previous chapters, Giraph leverages Hadoop clusters as its main execution framework 
and can fetch data from multiple different sources, not just HDFS. This makes Giraph applications ideally 
suited for running on a shared infrastructure provided by various public and private cloud computing 
platforms. Utilizing cloud computing services lets you focus on graph processing, while the vendors take 
care of things like deploying and operating scalable Hadoop clusters. This chapter begins by providing an 
overview of cloud computing services, outlining the ones ideally suited for making Giraph applications run 
as seamlessly as possible.

Since not all cloud computing vendors go all the way to providing Hadoop clusters as a service, we 
will briefly overview the more basic, but still useful infrastructure virtualization services. These types of 
services also come in handy in cases where precise control over the version of Hadoop available to Giraph 
is required.

Even though there are plenty of public cloud providers available today and the ecosystem of private 
cloud implementations is as robust as ever, this chapter mostly focuses on Amazon Web Services (AWS). We 
are focusing on AWS for two reasons. First of all, it is one of the most popular public clouds available. On top 
of that, having experience in running graph processing jobs on AWS is going to make using other public and 
private clouds a much more natural experience. Within AWS, we are going to focus on a set of APIs known as 
Elastic MapReduce, which lets you dynamically spin up an arbitrary number of virtual servers that appear 
to your Giraph application as a bona fide Hadoop cluster. Even though Giraph doesn’t come preinstalled, it 
is still the easiest way to get your application from a single node execution to as many nodes as you wish (or 
willing to pay for). All the complexities of installing, configuring, and managing Apache Hadoop are hidden 
from you.

A Quick Introduction to Cloud Computing
Consider for a moment the amount of effort involved in putting any graph processing application into 
production use at your company. At the very minimum, you would have to buy and install as much storage 
and computer hardware as required to accommodate your potential datasets and processing needs. Before 
you can turn that hardware into a fully functioning Hadoop cluster, you would have to spend time and 
money on managing power, cooling, and networking. And after that, you would still have to install and 
configure operating systems and Hadoop on every single node in your cluster. Only then could you start 
collecting data and running Giraph applications. Of course, to keep everything up and running, you must 
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monitor anything (be it hardware or software) that could go wrong and maintain your cluster accordingly. In 
short, it means a lot of upfront investment and not much scalability. In other words, when your requirements 
for the size of datasets change, you are still stuck with the same cluster.

One way to avoid this initial investment and complexity is to run your Giraph applications in a cloud 
computing environment where someone else is taking care of setting up and managing all the infrastructure.

Simply put, cloud computing is a set of services built around the idea of providing various computing, 
software, and informational resources in a scalable and elastic fashion over the network. Another key 
aspect of cloud computing is the concept of self-service: something that allows any customer to request 
as many resources as an application requires without any human intervention. No longer do you have to 
wait for IT personnel procurement and deployment of physical hardware in company datacenters: you can 
simply request resources online via well-defined API calls. A few API calls, for example, can give you a fully 
functioning Hadoop cluster accessible over the network.

WHAT KIND OF SERVICES CAN I EXPECT OUT  
OF CLOUD COMPUTING?

All the services provided by cloud computing vendors fall into three broad categories, each of which 
builds off the previous one:

•	 Infrastructure as a Service (IaaS): A set of services delivering virtualized instances 
of the physical infrastructure, such as servers, storage, load balancers, network 
equipment, and so forth.

•	 Platform as a Service (PaaS): A set of services delivering fundamental APIs on which 
applications can be built. Examples include execution runtimes, database instances, 
web and application servers, and so forth.

•	 Software as a Service (SaaS): A set of services delivering end-user software 
applications over the network. The range of applications could be as vast as what is 
available on a desktop, but the most common examples are e-mail, communications, 
games, and virtual desktops.

Most cloud providers give you a combination of services from all three categories. For example, Amazon 
Web Services (AWS) can be utilized either as an IaaS, letting you create virtual datacenters of any size, 
or as a PaaS, giving you not just the bare servers, but things like scalable databases or Hadoop clusters. 
Running Giraph in the cloud requires IaaS capabilities, but not necessarily PaaS or SaaS. However, the 
presence of either PaaS or SaaS capabilities may provide additional sources of data to be analyzed by 
Giraph.

Cloud computing is typically associated with public clouds: services available to anybody over 
the public Internet. However, the agility and self-service nature of cloud computing makes it appear in 
enterprise companies’ private datacenters at a rapid pace. It used to be that an enterprise datacenter was 
considered as racks of servers running various operating systems. Today, chances are that it is considered a 
cloud computing service providing at least IaaS-level APIs. This is what is known as a private cloud.

It may be tempting to think that the APIs offered by different cloud computing solutions are compatible, 
and anything that you do on one cloud you could do on a different one. The good news is that conceptually 
this is more or less the case (and this is why this chapter only focuses on AWS). The bad news is that the set 
of APIs needed to achieve the same goal differs between clouds. Every cloud computing solution (public or 
private) typically comes with software libraries and tools that let you create and manage various resources.
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Giraph on the Amazon Web Services Cloud
One of the primary services that the Amazon Web Services (AWS) cloud provides is the Elastic Compute 
Cloud (EC2). EC2 lets anyone instantiate any number of virtual servers from static virtual machine (VM) 
images; it can be considered the fundamental building block of the AWS IaaS layer. The VM images are 
called Amazon Machine Image (AMI). You can instantiate any number of virtual servers from a single AMI 
by associating virtual resources (CPU, memory, I/O bandwidth, etc.) with an AMI. Those servers are self-
contained, virtualized operating systems that run somewhere in one of the AWS datacenters. They are called 
instances. Your account is charged based on the number of instances that are running each hour and the 
amount of resources (CPU, memory, local storage, network bandwidth, etc.) that each instance utilizes. The 
only way to interact with these instances is over the Internet. For example, you can decide to log in to them 
directly using SSH or run any kind of networked service on them, such as HTTP and so forth. All you need to 
know is the public IP address of each instance.

EC2 is a very simple, but at the same time an extremely scalable service that you can use for deploying 
Hadoop clusters in the cloud manually. After all, once EC2 returns a set of IP addresses corresponding to 
each of the instances you created, you can deploy a Hadoop cluster on them exactly the same way you would 
do with physical hosts (refer to the Appendix for Hadoop deployment tips). In fact, when AWS first came out 
in 2006, doing it yourself was the only way of organizing instances into any kind of compute cluster.

Things changed when Amazon introduced a higher-level service called Elastic MapReduce (EMR) into 
its portfolio of AWS services. EMR was one of the first services that operated more like PaaS, rather than an 
IaaS-level service. With EMR, the details of managing individual hosts and configuring them into a Hadoop 
cluster are hidden from you. Still, an EMR cluster is comprised of one or more instances and thus can be 
considered an IaaS-level offering. Instances that are part of an EMR cluster are derived from specific AMIs 
maintained by Amazon. Think of it as Amazon’s own Hadoop distribution packaged in a form of AMIs. There 
are multiple versions of that distribution (built on top of different versions of Hadoop) available for use. The 
entire cluster is instantiated and destroyed as a single action, without the need to track and manage all the 
nodes. In fact, you can even add nodes to the cluster on the fly to speed up computation or take advantage of 
Amazon’s pricing model.

Before you try to spin up the first EMR cluster, however, you need to do a bit of upfront configuration of 
the environment that would let you interact with AWS.

Before You Begin
Interacting with AWS requires that you set up an account with Amazon. Detailed instructions on how to do 
that are available from Amazon in their “Getting Started with AWS” tutorial. Once you have your account 
set up, you are able to log in to the AWS management console (a web application), use the command-line 
tools, and start making direct AWS API calls from within your business applications. The AWS management 
console is the easiest way to get started, since it offers an intuitive Web UI for common operations. That said, 
once you start running more and more jobs in the Amazon cloud, you find yourself asking for an increased 
degree of automation and programmatic control. One option allows you to opt out of a language-specific 
SDK to embed AWS cluster and infrastructure management logic directly into your business application. 
This offers the most precise level of control over cloud infrastructure usage, but comes at the price of 
investing in orchestrating all the interactions with AWS. The command-line (CLI) tools provide a convenient 
middle ground between the ad hoc nature of Web UI and a precise control of a language-specific SDK. Even 
though there are a few different versions of CLI tools available, for the remainder of this chapter, you are 
using Amazon AWS CLI implementation.

All programmatic interactions with AWS require user authentication. This is done by providing two 
pieces of information: access key ID (a string of characters similar to IDAKIAIOSFODNN7EXAMPLE) and 
a secret access key (a string of characters similar to wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY). 
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Both of these can be requested from the Amazon AWS web console during (or after) the registration process. 
You can provide both of these to the AWS CLI tools either via environment variables or by running the aws 
configure command and entering the required information at the prompt.

If you haven’t installed AWS CLI tools on your desktop, make sure to read and follow the instructions 
provided at http://docs.aws.amazon.com/cli/latest/userguide/. Keep in mind that, unlike everything 
else in this book, AWS CLI is implemented in the Python programming language, which may require you to set 
up a Python environment. The Amazon user guide provides instructions on how to do that. Once the Python 
environment is available, installing AWS CLI boils down to a few steps, which are outlined in Listing 12-1.

Listing 12-1.  Setting up AWS CLI Tools on Linux or Mac OS

$ wget https://s3.amazonaws.com/aws-cli/awscli-bundle.zip  # downloading the bundle
$ unzip awscli-bundle.zip                                         # unzipping the bundle
$ ./awscli-bundle/install -b ~/bin/aws    # installing AWS CLI into user’s home directory
$ PATH=~/bin:$PATH                           # making sure aws CLI is available on the PATH
$ aws configure                                  # configuring AWS CLI with user credentials
AWS Access Key ID [None]: IDAKIAIOSFODNN7EXAMPLE
AWS Secret Access Key [None]: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
Default region name [None]: us-east-1
Default output format [None]: json
$ aws ec2 describe-regions   # run simplest EC2 request to make sure everything is working

After telling aws configure your access and secret keys, and setting the default AWS datacenter to US 
EAST, you’ll have almost everything set up and configured to instantiate your first cluster on the Amazon 
cloud. However, to remotely log in to individual nodes of the cluster, you have to set up a Secure Shell (SSH) 
key pair. This is the last bit of authentication information that you need to set up. Think of it this way: while 
access key ID and secret access keys are used to request services from AWS, once those services instantiate 
virtual infrastructure for you, an SSH key pair is needed to remotely log in to that infrastructure. SSH key 
pairs need unique names. You will call this one giraph-keys. If you have an SSH key pair by than name 
already, you can skip the steps in Listing 12-2.

Listing 12-2.  Setting up a Giraph-Keys SSH Key Pair

$ aws ec2 create-key-pair  --key-name giraph-keys --query 'KeyMaterial' \
     --output text > ~/giraph-keys.pem
$ chmod 500 ~/giraph-keys.pem
$ aws emr create-default-roles

The first command in Listing 11-2 requests creation of the SSH key pair and outputs the private key 
material into the file called giraph-keys.pem in the user’s home directory. The second command is required 
to make sure that the permissions on the file only allow reading for the user and no one else on the system. 
These are the default permissions that SSH expects. Finally, the last command makes sure that the user has 
rights to work with EMR; this needs to be executed only once for each user account.

One thing that you have probably already noticed is the common pattern of how AWS CLI tools are 
executed from the command line. First, you specify the subset of Amazon cloud APIs that you would like to 
operate on (e.g., EC2, EMR, etc.). That becomes your main command. Then you select an action (verb) that 
you need to perform on that subsystem (e.g., creating a key pair or listing the regions). That becomes your 
subcommand. Finally, you can specify flags that would affect the semantics of the action via -–flag options 
(e.g., give your key pair a name). The result of this command-line invocation is always one or a few AWS API 
calls that AWS CLI makes on your behalf and gives you the JSON response back. There is no magic in how 
AWS CLI calls the APIs; your own application can issue the very same API calls by using various language-
specific SDKs.

http://docs.aws.amazon.com/cli/latest/userguide/
https://s3.amazonaws.com/aws-cli/awscli-bundle.zip
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With that in mind, let’s proceed with creating your very first functional Hadoop cluster on the Amazon 
cloud. Amazingly enough, all it takes is a single execution of the AWS CLI tools. 

Creating Your First Cluster on the Amazon Cloud
Most of the actions required to manipulate Hadoop clusters on the Amazon cloud are provided by the emr 
command. You can run aws emr help to see which subcommands are available. You are using quite a few 
of them in the following sections, but for now, let’s create the most basic Hadoop cluster using the create-
cluster subcommand, as shown in Listing 12-3. Note that, once again, you are using backslash characters to 
break lengthy single command lines for readability purposes.

Listing 12-3.  Creating Your First Cluster on the Amazon Cloud

$ aws emr create-cluster   \
  --ami-version 2.4.11         \
  --instance-groups             \
    InstanceGroupType=MASTER,InstanceCount=1,InstanceType=m3.xlarge       \
    InstanceGroupType=CORE,InstanceCount=2,InstanceType=m3.xlarge            \
  --no-auto-terminate                                                                    \
  --ec2-attributes KeyName=giraph-keys
{
    "ClusterId": "j-DEADBEEF"
}

Congratulations! You have just instantiated your first cluster on the Amazon cloud. The cluster consist 
of one MASTER node and two CORE nodes (three nodes total); it is capable of running MapReduce jobs. 
The invocation you used to create the cluster is long, but pretty self-explanatory. You had to invoke the emr 
subcommand of aws and give it a verb asking to create a cluster: create-cluster. That action required you 
to specify the version of Hadoop that you wanted to use (--ami-version 2.4.11), and then the topology of 
your cluster (--instance-groups), describing the role of each node, the overall number of nodes assigned 
to a given role, and an AWS instance type associated with each node. You also asked not to terminate the 
cluster immediately (--no-auto-terminate) and provided a key pair so that you can log in to the cluster 
later on (--ec2-attributes KeyName=giraph-keys). This is the minimum amount of information that 
you need to give to AWS EMR to create a cluster. The result of running this command was a cluster ID 
(j-DEADBEAF) output formatted as JSON. Keep an eye on that cluster ID. You are using it for a few other 
things in the chapter.

Now that the Hadoop cluster is up and running in the Amazon cloud, what can you do with it? It would 
be awesome if at this point you could run Giraph applications without doing much else. Unfortunately, 
Amazon EMR clusters don’t come with Giraph bits preinstalled the same way that they bundle Apache Hive, 
Pig, and some of the other Hadoop ecosystem projects. Before proceeding to making Giraph available on the 
cluster, let’s first make sure that you can at least run a simple MapReduce job on it.

The way you are going to launch your test MapReduce job on the freshly minted cluster is simply 
by logging into its gateway node and using a preinstalled hadoop command-line utility to launch a Pi job 
(Hadoop’s answer to HelloWorld in MapReduce), as shown in Listing 12-4. Note that setting up a cluster can 
take quite a bit of time. Hence, the first command may not give you a login on the cluster for several minutes 
while waiting for the cluster to be fully online.



Chapter 12 ■ Giraph in the Cloud 

282

Listing 12-4.  Logging into the Gateway Node of the EMR Cluster and Running a Pi MapReduce Job

$ aws emr ssh                                    \
  --cluster-id j-DEADBEEF                  \
  --key-pair-file ~/giraph-keys.pem
Waiting for the cluster to start.
ssh -i ~/giraph-keys.pem hadoop@ec2-54-82-189-117.compute-1.amazonaws.com
 
% hostname    # printing the hostname to make sure we are really in the cloud now
ip-172-31-51-237.ec2.internal
% hadoop jar hadoop-*examples.jar pi 10 100   # lets run a test job
...
Estimated value of Pi is 3.14800000000000000000
% exit # exiting a cluster back to our workstation

What you have done here is used the ssh action from the EMR collection of APIs. You have supplied the 
cluster ID (--cluster-id) from the output given in Listing 12-3, and also the same key pair that you used 
to create the cluster in the first place (--key-pair-file). The result of running this command is a regular 
SSH session that gives you a shell on the gateway node of the cluster. All the commands prefixed with % are 
at that point executing on the remote gateway node. The first command you ran on the gateway printed its 
hostname to make sure that you’re really in the cloud. After that, you used the hadoop command-line utility 
to run the Pi calculation job, and you received an expected (if somewhat imprecise) result. The cluster 
definitely looks and feels like a real Hadoop cluster. The last thing you did was exit (exit command) the 
gateway node back to your workstation.

Please keep in mind that at this point, you have three nodes running on the Amazon cloud. Even though 
they are not doing any useful work, Amazon still charges you for them. Once you are done experimenting, make 
sure to destroy your cluster(s) and check that there are no leftover nodes running, as shown in Listing 12-5. 

Listing 12-5.  Finding Leftover Cluster(s) and Terminating Them

$ aws emr list-clusters
$ aws emr terminate-clusters --cluster-id j-DEADBEAF

The first command gives you a very detailed JSON output that describes all the clusters that Amazon is 
or has been maintaining on your behalf. You need to look for the ones that are not listed as TERMINATED 
and terminate them with the terminate-clusters action. 

The Building Blocks of an EMR Cluster
Most of the actions that happen on the Amazon cloud can be decomposed into operations on virtual servers. 
Those virtual servers are called instances, and to a user of the Amazon cloud, they are indistinguishable 
from racks of real servers. Just like any real server, instances have a copy of an operating system running, and 
you can either get a remote shell into that operating system (via SSH) or interact with other software services 
(such as a web or a database service) running on these virtual servers. Unlike real servers, though, you can 
create as many instances as you are willing to pay for.

Each instance running on the Amazon cloud is defined by

•	 An image of a fully configured operating system. This is known as Amazon Machine 
Image (AMI) and essentially consists of the content of a disk drive from which an 
operating system boots.

•	 The amount of physical resources (e.g., the number of CPUs, RAM, and disk size).



Chapter 12 ■ Giraph in the Cloud 

283

There are thousands of AMIs with all sorts of operating systems available on the Amazon cloud today. 
Some are maintained by operating system vendors and some are maintained by volunteers. Some are free 
(like the ones based on Linux) and some cost money to use (like the ones based on Microsoft Windows). 
And if you don’t find an AMI that works for you, Amazon gives you all the tools to maintain your own AMIs. 
If you are looking for your favorite operating system image, a good place to do it is on the Cloud Market web 
site at http://thecloudmarket.com. Keep in mind that the decision on which AMI to run is orthogonal to 
the amount of resources given to it.

While the Amazon cloud doesn’t allow you to specify an arbitrary number of resources to give to an 
instance, you can choose from a preselected set of templates. These templates are called instance types. 
Amazon provides a detailed overview of the different types of resources assigned to each instance type at 
http://aws.amazon.com/ec2/instance-types/. This is also a good place to visit if you want to understand 
the billing implications of running different instance types.

In order to facilitate management operations, instances can be grouped into chunks called reservations 
(or instance groups). All instances in a group are identical in terms of what image they use (AMI 
specification) and the number of resources given to each instance in a group (instance type). This makes it 
easy to tell the Amazon cloud to always maintain a number of identical servers. Regardless of whether you 
ask for one instance in a reservation or a hundred, you’re still creating a group.

These are the basic building blocks that Amazon’s IaaS layer provides you. By using them, you can opt 
out of rolling your own Hadoop cluster or you can ask Amazon services to do it for you.

The Composition of an EMR Cluster: Instance Groups
Building off the fundamental notion of an instance group, an Amazon EMR cluster consists of a number of 
nodes belonging to three different instance groups.

•	 The MASTER instance group. This instance group always contains just one node 
that is configured to run all the centralized services of a Hadoop cluster: HDFS 
NameNode, YARN ResourceManager, or MapReduce JobTracker. It is configured 
as a gateway so that you can manually launch ad hoc MapReduce or YARN jobs by 
logging into it using the aws emr ssh action. Amazon also makes sure that client-
side bundled software such as Hive, Pig, and so forth, are available by default. 
Unfortunately, Giraph is not part of this list and needs to be installed on this node 
separately. If you are running a cluster with a single node, that node must belong to 
this group. It will also run all the services from a CORE instance group.

•	 The CORE instance group. This instance group contains one or more nodes that 
function as Hadoop slave nodes. The two fundamental services that each node in 
this group runs are HDFS DataNode (for storing data) and YARN NodeManager/
MapReduce TaskTracker. The nodes in this group do all the data processing. 
Whenever you want to speed up your computation, you can dynamically add nodes 
to this group, but you cannot dynamically remove them.

•	 The TASK instance group. This instance group is optional and contains nodes 
that function almost exactly as the nodes in the CORE instance group, with one 
exception: they do not run HDFS DataNode services and thus are not capable 
of processing data locally (the data always needs to be fetched from an external 
location). Because the nodes in this instance group are completely ephemeral (they 
don’t store HDFS blocks), you can increase and decrease the number of nodes in this 
group. This instance group is convenient when processing data that tends to reside 
in external repositories, such as Amazon’s Simple Storage Service (S3), or when you 
want to use spot instances to reduce operational costs.

Putting it all together, you can now make sense of the first two options given to the aws emr create-
cluster subcommands (repeated here in Listing 12-6).

http://thecloudmarket.com/
http://aws.amazon.com/ec2/instance-types/
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Listing 12-6.  Creating Your First Cluster on the Amazon Cloud

$ aws emr create-cluster
  --ami-version 2.4.11
  --instance-groups
    InstanceGroupType=MASTER,InstanceCount=1,InstanceType=m3.xlarge
    InstanceGroupType=CORE,InstanceCount=2,InstanceType=m3.xlarge
           

The first option  (--ami-version) specifies which AMI to use for spinning up instances in all three 
groups. This is an indirect specification, since instead of referring to an AMI ID you are actually referring 
to the version of the EMR stack maintained by Amazon. Think of it as any other Hadoop distribution: you 
can only select the version of the distribution itself. You don’t get to choose versions of Apache Hadoop 
and its ecosystem components within the distribution. If you are curious about which versions of Amazon 
EMR stack map to which components, you can visit the web page at http://docs.aws.amazon.com/
ElasticMapReduce/latest/DeveloperGuide/ami-versions-supported.html. The version that you used in 
the example corresponds to the Hadoop 1.0.x based stack. It must be noted that there is absolutely nothing 
mysterious about the AMI that Amazon maintains for you as part of a given Hadoop stack. You can create an 
instance of that AMI the same way you can create an instance of any other AMI with an arbitrary OS.

The second option that you are giving to the create-cluster command (--instance-groups) is an 
exact specification of each instance group’s size and type. It consists of one, two, or three lists of key value 
pairs describing each of the three instance groups that you’re adding to the cluster (MASTER is the only 
mandatory group). The following keys are required.

•	 InstanceGroupType defines the instance group. The values here are MASTER, CORE, 
or TASK.

•	 InstanceCount defines the number of instances (nodes) in the group.

•	 InstanceType specifies the instance type (the amount of resources each node is 
given) that every node in the group gets. The values here are any valid instance type 
specification recognizable by AWS.

The graphical representation of the cluster that you created is shown in Figure 12-1.

Figure 12-1.  Cluster composed of two instance groups and three nodes

http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/ami-versions-supported.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/ami-versions-supported.html
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The white box in Figure 12-1 represents an AMI template from which actual instances are derived 
and placed into requested instance groups: one into a MASTER instance group and two into a CORE 
instance group.

Deploying Giraph Applications onto an EMR Cluster
As mentioned, Amazon doesn’t bundle Giraph as part of its Hadoop stack. It would be nice if that changes 
in the future (Amazon is known to listen to its customers’ requests), but given that Giraph is primarily a 
framework, rather than an application, it is not that big of a deal.

From a Hadoop cluster’s point of view, any graph processing application built on top of Giraph looks 
like a custom MapReduce or YARN job. With that in mind, let’s create a jar that contains one of the example 
applications from Chapter 5 and also bundles Giraph and all of its dependencies. This is pretty easy to do 
with Maven. All you need to do is tell Maven to create a jar-with-dependencies assembly, as outlined in 
Listing 12-7  (just make sure to go back to the folder you created for the example application in Listing 5-4).

Listing 12-7.  Deploying a Giraph Application to an EMR Cluster

$ mvn clean compile assembly:assembly -DdescriptorId=jar-with-dependencies
$ aws emr put --cluster-id j-DEADBEEF --key-pair-file ~/giraph-keys.pem  \
  --src target/*jar-with-dependencies.jar

Your first command instructed Maven to build a self-contained JAR file that you then copied to 
the gateway node of the EMR cluster using the put action. As usual, you had to specify the cluster ID 
(--cluster-id) and key pair (--key-pair-file) to allow access to a given cluster. An extra argument that 
you had to give to the put action was the location of the JAR file to copy (--src).

At this point, you could have logged into the EMR cluster using the aws emr ssh command and 
executed the graph processing example the same way you executed the Pi estimation job in Listing 11-3. 
Instead, you will look into scheduling it remotely as one of the steps in EMR cluster processing specification. 

EMR Cluster Data Processing Steps
The most common use case for EMR clusters is to create them on demand, keep them running for as long 
as there are data processing steps to be executed, and then let the Amazon cloud tear the cluster down. 
Of course, you can request the cluster to stick around and wait for an explicit tear-down API call. This is 
exactly what you did with the --no-auto-terminate option. Having a cluster available for interactive use 
is convenient for exploring EMR. However, once you start moving more into full automation of your data 
pipelines, it becomes more natural to let the Amazon cloud manage the cluster life cycle.

If you want to rely on the Amazon cloud for end-to-end cluster life cycle management, there are a few 
additional bits of information you need to communicate to AWS when creating your cluster:

•	 The set of additional applications to be installed on an EMR cluster. Currently, you 
can install Hive, Pig, HBase, Ganglia, Impala, and MapR distribution that way.

•	 The set of bootstrapping actions you would like to perform after the instances are 
created but before the cluster gets started. This could include things like installing 
additional software, tweaking clusters, and operating system configuration. Very 
simply put, bootstrap actions are scripts that reside on externally visible storage  
(S3, HTTP, etc.) and are run on the cluster nodes.

http://dx.doi.org/10.1007/978-1-4842-1251-6_5
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•	 The set of data processing steps you would like to perform once the cluster is up and 
running. Currently these steps can include the following:

•	 Running a custom MapReduce or YARN job from a self-container jar

•	 Running a custom script on the MASTER node

•	 Running a Hadoop streaming job

•	 Running a Hive, Pig, or Impala query

Using both bootstrapping and data processing actions follows a very similar pattern. Since you don’t 
need any special tweaks on the cluster, we will hold off showing example bootstrapping actions until later 
and will focus on data processing steps for now. An interesting side note is that while it is not possible to 
request additional bootstrapping actions for a cluster that is already up and running, it is possible to request 
additional data processing steps.

When using AWS CLI tools, both bootstrapping actions and data processing steps need to be 
communicated to the aws emr create-cluster command via either JSON specification or a shorthand 
notation. Listing 12-8 uses JSON specification to add a Giraph data processing step to an already running 
cluster.

Listing 12-8.  Running a Giraph Data Processing Step

$ aws emr add-steps --cluster-id j-DEADBEAF
  --steps '[{
"Type":"CUSTOM_JAR",
"Name":"GiraphApp",
"MainClass":"org.apache.giraph.GiraphRunner",
"ActionOnFailure":"CONTINUE",
"Jar":"file:///home/hadoop/book-examples-1.0.0-jar-with-dependencies.jar",
"Args":["GiraphHelloWorld",
        "-vip", "input",
        "-vif", "org.apache.giraph.io.formats.IntIntNullTextInputFormat",
        "-w", "1"]}]'
 
{ "StepIds": ["s-STEPID"]}

The preceding command added a processing step for immediate execution on an already available 
cluster identified by --cluster-id. The description of processing steps is a well-formatted JSON array with 
one entry per processing step that you wish to run on the cluster. Each entry consists of the following key-
value pairs: 

•	 Type: Defines a type of a processing step. In this case, you requested a custom jar 
execution via Java. There are other types of steps available, including the execution 
of Pig or Hive scripts, streaming jobs, and other actions. CUSTOM_JAR type is the 
most flexible.

•	 Name: A symbolic name identifying the processing step in all future outputs; it can be 
any string.

•	 MainClass: For a CUSTOM_JAR type of a step; identifies the name of the entry  
point class.

•	 ActionOnFailure: Specifies what to do if the step fails. Valid values include 
CONTINUE, TERMINATE_CLUSTER, and CANCEL_AND_WAIT.
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•	 Jar: For a CUSTOM_JAR type of a step; specifies location of the JAR file.

•	 Args: For a CUSTOM_JAR type of a step; specifies arguments to be given to the  
main method.

The output of the command gives you a step ID to refer to if you want to find out more about the step(s) 
status or result. Finally, if you are wondering whether you could’ve avoided the lengthy JSON specification 
types on the command line, the answer is yes. The –-steps flag can read JSON from files, provided you give 
it a file URL instead of an actual JSON like this: --steps file://./step.json.

In general, adding data processing steps to an EMR cluster is pretty trivial. In fact, you can specify 
a bunch of steps when you request the cluster to be created by providing the very same –-steps JSON 
specification to the create-cluster action. That way, you can have the Amazon cloud spin up a cluster, run 
a series of data processing steps, and at the end, tear down the cluster, thus minimizing the amount of time 
you have to pay for EC2 resources. You will try that later in this chapter, but for now, let’s see whether your 
processing step was successful or not. You can do it by running the query command shown in Listing 12-9 
and looking for the State key in the JSON output.

Listing 12-9.  Running Giraph Data Processing Step

$ aws emr describe-step --cluster-id j-DEADBEEF --step-id s-STEPID
{
    "Step": {
        "Status": {
            "Timeline": {
                "EndDateTime": 1440475780.643,
                "CreationDateTime": 1440475759.648,
                "StartDateTime": 1440475780.635
            },
            "State": "FAILED",
            "StateChangeReason": {}
        },
....

Believe it or not, the data processing step failed. You now have to find out why this happened. 

When Things Go Wrong: Debugging EMR Clusters
When anything goes wrong with your EMR cluster or a job that it was supposed to process, you need to be 
able to track what went wrong. Typically, your best option is to analyze the log files and try to deduce the 
source of failure. There are two sources of log files available for EMR clusters: aggregated logs on S3 and local 
log files on cluster nodes. On a cluster that is still up and running, you can ssh into a gateway node and go 
directly to the log files collected under /mnt/var/log/. For example, to figure out why the data processing 
step from the previous section failed, let’s take a look at /mnt/var/log/hadoop/steps. That folder contains 
subfolders corresponding to each data processing step submitted to a cluster. Underneath these subfolders, 
you see three log files:

•	 controller: A log file containing the exact invocation of a data processing step. In 
this case, it has a custom jar Hadoop invocation command.

•	 stdout: A log file with the output of whatever controller command was produced on 
its standard output stream.

•	 stderr: A log file with the output of whatever controller command was produced on 
its error output stream.
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First, let’s take a look at what the controller invoked when you submitted the Giraph data processing 
step via a custom JAR. You see something very similar to Listing 12-10.

Listing 12-10.  Contents of /mnt/var/log/hadoop/steps/s-STEPID/controller

2014-07-14T19:36:33.251Z INFO startExec 'hadoop jar /home/hadoop/book-examples-1.0.0-jar-
with-dependencies.jar org.apache.giraph.GiraphRunner GiraphHelloWorld -vip inputt -vif org.
apache.giraph.io.formats.IntIntNullTextInputFormat -w 1 -ca giraph.SplitMasterWorker=false'
...

This looks like exactly the same command that you would’ve submitted manually to run a Giraph 
workflow via the 'hadoop jar ...' command. Perhaps if you take a look at the error execution that command 
produced, you would have a clue as to why it failed. What you see there is very similar to Listing 12-11. 

Listing 12-11.  Contents of /mnt/var/log/hadoop/steps/s-STEPID/stderr

Exception in thread "main" java.lang.IllegalArgumentException: Invalid vertex input path 
(-vip): input
at org.apache.giraph.utils.ConfigurationUtils.populateGiraphConfiguration(ConfigurationUti
ls.java:406)
at org.apache.giraph.utils.ConfigurationUtils.parseArgs(ConfigurationUtils.java:207)
      at org.apache.giraph.GiraphRunner.run(GiraphRunner.java:74)

Of course, this makes sense—you tried running a Giraph application on a nonexistent input data set. 
How to make datasets available to the EMR clusters and get the results is the subject of the next section. 

Where’s My Stuff? Data Migration to and from EMR Clusters
EMR clusters are an ephemeral collection of nodes. They are created on demand to accomplish a certain 
sequence of data processing steps; they are typically destroyed immediately afterward. This is a convenient, 
cloud-friendly model of utilizing resources, but it does require that the initial dataset comes from some 
permanent storage location and a resulting dataset is somehow captured before the cluster and its HDFS 
storage layer are gone.

In general, the Amazon cloud relies on S3 as its permanent storage layer. Almost all AWS services 
support S3 as a data source or data sink. For example, AMI are stored in S3; it can also be used as a target 
for logging most AWS services. S3 stores all of its objects in buckets. You can think of buckets as top-level 
file system folders that you manage under your AWS account. Once you create a bucket, you can use it to 
create file-like objects holding any kind of data. An arbitrary, unique key that is no more than 1024 bytes 
long references each object. It is convenient (but in no way enforced) to name your objects as though 
they were files in a filesystem with a traditional Unix path name convention of folders delimited by the / 
character. Following this convention makes it natural to reference S3 objects using either S3 or HTTP URIs. 
For example, if you create a bucket with the name giraph.examples and put an object named datasets/1/
data.txt in it, you can then reference it as either s3://giraph.examples/datasets/1/data.txt or 
https://s3.amazonaws.com/giraph.examples/datasets/1/data.txt.

Keep in mind that bucket names share a global namespace on AWS. This means that you may need to 
get creative. Chances are, any simple name like mybucket is already taken. With that in mind, the first steps 
of suppling the Giraph application with data are to create a unique bucket and copy the example input data 
you used in Chapter 5 under it, as shown in Listing 12-12.

http://dx.doi.org/10.1007/978-1-4842-1251-6_5
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Listing 12-12.  Putting Input Data into S3

$ aws s3 mb s3://unique.bucket
$ aws s3 cp src/main/resources/1/graph.txt s3://unique.bucket/datasets/1/graph.txt

Now that the example graph description is available in S3, you are half way to making it available 
for Giraph processing. Amazon EMR conveniently offers a custom JAR file that implements efficient data 
transfer from S3 buckets into HDFS, where Giraph can pick it up. The way that you’re going to trigger this 
transfer is by adding yet another step to the cluster, as shown in Listing 12-13. Note that this time you’re 
using a shorthand notation to specify all the required key-value pairs instead of using a properly formatted 
JSON object. Either way of doing it is fine.

Listing 12-13.  Transferring Data from S3 to HDFS via Custom JAR Step

$ aws emr add-steps --cluster-id j-DEADBEAF                                                \
       --steps Type=CUSTOM_JAR,Name=UploadInputData,                                       \
          Jar=/home/hadoop/lib/emr-s3distcp-1.0.jar,        \
          Args=--src,s3://unique.bucket/datasets/1/,      \
                    --dest,hdfs:///user/hadoop/input

The arguments that you are giving to the custom JAR specify the source S3 bucket via --src and 
destination in HDFS via --dest. Of course, this step can work in the other direction as well. If you have any 
datasets that you need to capture after the cluster is destroyed, you can simply add a step that copies a bunch 
of files from HDFS into an S3 bucket.

A word of caution: S3 is expensive and it holds your data until you explicitly delete it; use it only for final 
results. Any data that remains in S3 is charged to your account on a monthly basis based on its size.

At this point you could just rerun the graph processing step from Listing 12-8 to see that this time it runs 
to completion with an exist status being COMPLETED. Instead of doing this, however, let’s tie it all together to 
see how a true ephemeral cluster can be used for data processing. 

Putting It All Together: Ephemeral Graph Processing EMR Clusters
At this point, you have everything you need to consider a graph processing job running on the Amazon cloud 
that is as close as possible to what you would actually use in production. You are sticking with your good, 
old friend the “Hello World” graph processing example, but you will make sure that the data and custom 
JAR file are uploaded to the ephemeral EMR cluster from S3 and the resulting data set is recorded in one of 
the S3 buckets. You will also make sure that all the logs are transferred to S3, in case you need to do any kind 
of diagnostics after the cluster disappears. Given what you need to do, the definition of the data processing 
steps gets to be pretty long. Instead of specifying it all on the command line, you’re going to use a JSON file, 
as shown in Listing 12-14.

Listing 12-14.  steps.json a JSON Definition of Data Processing Steps

[{"Type"            : "CUSTOM_JAR",
  "Name"            : "UploadInputData",
  "ActionOnFailure" : "CANCEL_AND_WAIT",
     "Jar"             : "/home/hadoop/lib/emr-s3distcp-1.0.jar",
     "Args"            : [ "--src", "s3://unique.bucket/datasets/1/",
                        "--dest","hdfs:///user/hadoop/input"]},
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 {"Type"            : "CUSTOM_JAR",
  "Name"            : "GiraphJob",
  "MainClass"       : "org.apache.giraph.GiraphRunner",
  "ActionOnFailure" : "CANCEL_AND_WAIT",
  "Jar"             : "s3://unique.bucket/jars/giraph-hello.jar",
  "Args"            : [ "GiraphHelloWorld",
          "-vip", "input",
          "-op", "output",
          "-vif", "org.apache.giraph.io.formats.IntIntNullTextInputFormat",
          "-vof", "org.apache.giraph.io.formats.GraphvizOutputFormat",
          "-w", "1",
          "-ca", "giraph.SplitMasterWorker=false"]},
 
 {"Type"            : "CUSTOM_JAR",
  "Name"            : "DownloadOutputData",
     "ActionOnFailure" : "CANCEL_AND_WAIT",
  "Jar"             : "/home/hadoop/lib/emr-s3distcp-1.0.jar",
  "Args"            : [ "--src", "hdfs:///user/hadoop/output",
                        "--dest","s3://unique.bucket/output/"]}
   ] 

An interesting side note is that since EMR clusters allow custom jars to come from S3, you don’t actually 
need to invoke an extra put action. All you need to do is to make the GiraphHelloWorld JAR available in S3, 
as shown in Listing 12-15.

Listing 12-15.  Copying GiraphHelloWorld JAR to S3 Bucket

$ aws s3 cp target/*-jar-with-dependencies.jar s3://unique.bucket/jars/giraph-hello.jar

Now that you have all the required files available to you in S3, the only thing left to do is start up an 
ephemeral EMR cluster and make it run through the data processing steps specified in steps.json, as shown 
in Listing 12-16 and using the familiar steps. But you also need to add a location for where to store logs 
(--log-uri) and request to terminate the cluster once the processing steps are done (--auto-terminate).

Listing 12-16.  Starting an Ephemeral Graph Processing Job on EMR

$ aws emr create-cluster --ami-version 2.4.11     \
   --instance-groups                                               \
     InstanceGroupType=MASTER,InstanceCount=1,InstanceType=m3.xlarge   \
   --log-uri s3://unique.bucket/logs/ --auto-terminate                                     \
   --steps file://./steps.json
{
    "ClusterId": "j-DEADBEEF2"
}

As before, the command outputs the cluster ID and you need to wait for this cluster to exit before 
you can inspect the overall execution logs. It is convenient to monitor the status of the cluster using the 
command shown in Listing 12-17. This commands prints the status of the cluster based on the JSON output 
of the describe-cluster action processed by a custom JSON query request, specified via the --query flag. 
This is a convenient way to cut down on the amount of JSON output you are getting. Refer to aws help for 
information on how JSON queries can be specified.
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Listing 12-17.  Monitoring Status of the Cluster 

$ aws emr describe-cluster --cluster-id j-DEADBEEF2
   --query Cluster.Status.State
"TERMINATED"

Once the cluster is terminated, all that you need to do is inspect the logs left in S3, make sure that 
the processing steps were completed successfully, and that you get the final output of the job. This can 
be done by a series of s3 commands, as shown in Listing 12-18. The first command copies the output of 
the Giraph application run to your workstation, under the file name output.txt, and the second is an 
example of how you can list the contents of a part of the bucket (as though it was a folder) looking for log 
files that may be of interest.

Listing 12-18.  Inspecting Logs and the Output After the Cluster Is Terminated 

$ aws s3 cp s3://unique.bucket/output/part-m-00000 output.txt
$ aws s3 ls s3://unique.bucket/logs/j-DEADBEEF2/
                        PRE daemons/
                        PRE jobs/

At this point, all of your output data (including the logs) is available to you in S3. This is great for 
centralized storage, but it could end up being quite expensive if you don’t purge the logs that you no longer 
need and prune the output datasets.

Reducing cost while running on EMR is one of the top concerns, and storage costs can contribute 
greatly to the final bill. Amazon offers various attractive pricing models that make the usage of its EMR 
clusters cost-effective, however. One such model, Spot Instances, is reviewed in the next section.

Getting the Most Bang for the Buck: Amazon EMR Spot Instances
The pricing model of the Amazon cloud that you have seen so far assumed a fixed billing rate associated with 
every instance type. It is not, however, the only model. A different way to pay for using compute resources 
is to bid a certain amount of money on unused capacity within the Amazon cloud. This is applicable to all 
instance types, and the price per hour typically ends up being less than a flat billing rate of an instance type 
of the same kind. The downside to spot instances is that Amazon shuts them down when demand increases, 
and your bidding price falls below the going rate. This is not a big deal for traditional MapReduce workloads 
(after all, Hadoop was built to withstand node failures) and it gives you a very convenient way to utilize 
cheap compute resources to speed up data processing.

A typical use for spot instances with EMR clusters is to use them as part of the TASK instance group so 
that nodes can be added (and removed) at any time without disrupting the cluster operations. In order to 
indicate that an instance group needs to have a spot instance billing enabled, all you need to do is add the 
BidPrice property to the instance group specification, as shown in Listing 12-19.

Listing 12-19.  Creating a Cluster with a Spot Instance TASK Instance Group

$ aws emr create-cluster --ami-version 2.4.11      \
   --instance-groups                                              \
InstanceGroupType=MASTER,InstanceCount=1,InstanceType=m3.xlarge           \
InstanceGroupType=CORE,InstanceCount=2,InstanceType=m3.xlarge                \
InstanceGroupType=TASK,InstanceCount=3,InstanceType=m3.xlarge,BidPrice=0.10 \
   --log-uri s3://giraph.examples/logs/ --auto-terminate    \
   --steps file://./steps.json
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If you run the preceding command, the Amazon cloud immediately creates three nodes for you: one 
in the MASTER instance group and two in the CORE instance group. These nodes are used to manage 
storage (HDFS) on the cluster and provide a minimum guaranteed amount of compute resources available 
to the graph processing application. You may also expect an additional three nodes from the TASK instance 
group to be added to your cluster at any time (and also taken away from you at any time). For a traditional 
MapReduce application, these additional nodes give a temporary performance advantage. Giraph 
applications, however, present a slight complication to this model.

Most traditional MapReduce workloads don’t have hard requirements on the overall number of 
compute nodes available to mappers. If some of the nodes fail, most likely, it will result in a slower overall 
execution, but your job will finish anyway. Giraph uses mappers as parallel workers and expects a certain 
number of them (the value specified via the –-w option) to be available at all times. If a node fails, Giraph 
expects Hadoop to reschedule a mapper on a different node, which is only possible if the overall number 
of compute resources available to a Giraph application is more than the number of workers it expects. This 
complicates spot instance usage with Giraph applications. After all, the whole point of spot instances is to 
provide a temporary boost to the performance of your cluster when the price is right and to scale back when 
the price increases. 

Using spot instances with Giraph is considered an experimental feature; it is only recommended 
to advanced users. If you are interested in playing with it, make sure to pay attention to the following 
configuration properties that you would have to explicitly specify in your configuration (either via the –-ca 
command-line option or giraph-site.xml). 

•	 giraph.maxWorkers: The total number of workers that Giraph can utilize on a cluster. 
Experiment with setting it according to the maximum number of nodes you expect 
Amazon to give your cluster (CORE + TASK).

•	 giraph.minWorkers: The minimum number of workers that Giraph needs to proceed 
to the next superstep. Experiment with setting it according to the guaranteed 
number of nodes you expect Amazon to give to your cluster (CORE).

•	 giraph.minPercentResponded: The minimum percentage of healthy workers needed 
to proceed to the next superstep. Experiment with setting it to about 100 × giraph.
minWorkers ÷ giraph.maxWorkers.

•	 giraph.checkpointFrequency: The number of consecutive supersteps between 
checkpoints of the worker state. Experiment with setting it to 1 and increasing 
according to the performance characteristics of your application.

At this point, you have seen all the different ways to run vanilla EMR clusters. But what if you need to 
optimize price, performance, or both to best suit your graph processing application?

One Size Doesn’t Fit All: Fine-Tuning Your EMR Clusters
So far you have been using a vanilla configuration of an EMR cluster without paying too much attention 
to how well it is optimized to run your graph processing jobs. This is a fine first step (and these simple 
examples don’t require much else anyway), but for any real workload, some level of tuning is required. There 
are two related reasons why you want to tune your EMR cluster: performance and cost.

Every Giraph application is different, but given its flexible architecture, any application utilizing Giraph 
can stress all the three basic resources: CPU, memory, and I/O. All the performance tuning advice that 
you saw in the previous chapter still applies to running Giraph in the cloud. Of course, you need to view it 
through the lens of actually being charged for all resources usage. Thus, identifying the minimum number of 
resources that still gives you adequate performance becomes the key.
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The most rewarding choice you can make on EMR is the right instance size for your job. As mentioned, 
EMR offers dozens of different instance sizes, and guessing the right one can be intimidating. The best 
advice here is to start on the small side, deploy performance monitoring tools such as Ganglia, and then 
experiment with different instance sizes to find the best trade-off of cost vs. performance. Keep the instance 
type reference table at http://aws.amazon.com/ec2/instance-types/ handy and do a few experiments to 
see whether you’re on the right track.

Some workloads exhibit the best performance when run on instances with a lot of RAM. If you fall in 
that category, make sure to tell EMR to configure your cluster for such an environment. In general, any kind 
of cluster-specific tweaks can be achieved as part of the bootstrapping actions for the cluster. Bootstrapping 
actions are nothing but scripts that are executed as part of the cluster bring up and affect Hadoop 
configuration files. For example, the easiest way to configure Hadoop for a memory-intensive workload is to 
add a bootstrap action referencing Amazon’s own script, as shown in Listing 12-20.

Listing 12-20.  Configuring Hadoop for Memory-Intensive Workloads

$ aws emr create-cluster -- bootstrap-actions                                     \
     Path=s3n://elasticmapreduce/bootstrap-actions/configurations/latest/memory-intensive, \
     Name=mem-config                                                       \
     Args=string1,string2                                                     \
  --ami-version 2.4.6 ...

Since bootstrapping actions are the main tool for tweaking Hadoop configuration, it is recommended 
that you download the memory-intensive script mentioned in Listing 2-20 and use it as a reference for 
creating your own bootstrapping actions.

Another fundamental variable you need to consider is the number of instances in CORE and TASK 
instance groups. Once again, EMR makes it easy to start small and dynamically adjust the size of the TASK 
instance group to see if it helps speed up the processing.

Finally, when working with any AWS service, make sure that everything that you do is confined to the 
same AWS region; and better yet, the same availability zone. Cross-region data transfers are costly and 
provide much less bandwidth compared to the I/O within the same region. The best-case scenario is for all 
the elements of your data processing cluster to be part of the same availability zone.

Summary
Running Giraph in the cloud provides a scalable, elastic, and easy-to-use way of executing graph processing 
applications, without worrying about managing the infrastructure. All the cluster configuration is done for 
you, yet leaving enough flexibility to do all the needed tweaks. Not all clouds are created equal. While this 
chapter only talked about the Amazon cloud, the same core principles are applicable to other public and 
private clouds. If your cloud provider is not Amazon, at least you now know what services to look for.

http://aws.amazon.com/ec2/instance-types/
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Appendix A

Install and Configure Giraph and 
Hadoop

This chapter covers

•	 System requirements for running Giraph and Hadoop

•	 Installation methods for Giraph and Hadoop

•	 Different modes for running Hadoop for Giraph applications

•	 Configuring Hadoop for all three different running modes

Throughout this book, it was assumed that you had a working Hadoop installation available to run 
examples and experiment with Giraph. Since Giraph runs on top of Hadoop, having a working Hadoop 
environment is a fundamental prerequisite. This appendix begins by looking into system dependencies 
for Hadoop and Giraph deployments. It proceeds to describe various methods of installing Hadoop and 
Giraph, showing their relative strengths and weaknesses. Next, it looks into the different types of Hadoop 
deployments and how Giraph deals with the different versions of Hadoop ecosystem projects that it needs 
to leverage. Finally, this appendix outlines the basics of configuration management for both Hadoop and 
Giraph and discusses which Hadoop configuration is required for running it in different execution modes.

System Requirements
Both Giraph and Hadoop are implemented in the Java programming language and can run on Unix-based, 
Max OS X, and Windows systems. Giraph requires Oracle JDK version 7 or higher. Since Giraph jobs are 
executed by the same JVM that runs the Hadoop framework, this puts a lower bound on the JDK version that 
can be used for Hadoop deployment. What this means is that if you have an existing Hadoop cluster that you 
need to use for running Giraph applications, you have to make sure that it was deployed using JDK 7 or above.

You also need JDK installed on the host where Giraph applications will be launched and on the host 
that is going to be used for Giraph application development. Both Giraph and Hadoop have been wildly 
tested on Oracle’s JDK, with OpenJDK (an open source, community-driven version of Oracle’s JDK) a close 
second choice for deployment. If you don’t have JDK installed and you want to use Oracle’s version, go to 
www.java.com/jdk and follow the installation procedures for your operating system. If, on the other hand, 
you decide to go the OpenJDK route, you may find it bundled for you operating system by a vendor.

Regardless of how you install JDK, make sure that the location of installation tree is available to all your 
applications via environment variable JAVA_HOME. If you want that location to also supply the binaries for 
all Java command-line utilities (including launching JMV itself), you may want to update your PATH with 
that setting. On Unix platforms, it is often convenient to set up those values in a global shell startup file such 
as /etc/profile, ~/.bashrc or ~/.bash_profile, similar to what is shown in Listing A-1.

http://www.java.com/jdk
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Listing A-1.  Setting up JAVA_HOME and Adding Java Binaries to Your PATH

JAVA_HOME=/usr/lib/jvm/default-java
export JAVA_HOME
 
PATH=$JAVA_HOME/bin:$PATH 

■■ Note   When it comes to the operating systems, various flavors of Linux are the most widely tested 
deployment platforms. While it is possible to run Giraph and Hadoop on Mac OS X and even Windows, these 
platforms are mostly used for development.

Hadoop Installation
Unless you already have a Hadoop cluster available to run Giraph applications on (either on-premises or 
as a cloud-based service offering), your first step is to decide which major version of Hadoop you would 
like to use. Currently, there are two major versions available: Hadoop 1.x and Hadoop 2.x. Both of these 
are considered stable and can be safely used in production. The difference between the two boils down 
to Hadoop 1.x slowly transitioning into a maintenance mode with very little development activity going 
on. In contrast to that, Hadoop 2.x development activity remains very high, with bug fixes and new feature 
development progressing at a brisk pace. Another fundamental difference between these two versions 
is the architecture of the MapReduce framework. While Hadoop 1.x offers a faithful implementation of 
MapReduce framework as it is described in the original Google paper, Hadoop 2.x takes it one step further, 
essentially providing a MapReduce v2 implementation as an application sitting on top of a general-purpose 
resource scheduler called YARN.

What was wrong with MapReduce v1? T he original implementation of MapReduce (now known as 
MapReduce v1) made an architectural decision of conflating MapReduce-specific logic with lower-level cluster 
resource management and scheduling. While this provided the fastest route to a functional implementation 
(and paved the way for Hadoop’s world domination), it also suffered from a number of technical limitations: 
scalability concerns, failure tolerance, and difficulty in running non-MapReduce frameworks on the same 
clusters among the top issues. Indeed, as you saw in Chapter 6, Giraph implementation has to trick MapReduce 
v1 into thinking that it is running as a generic map-reduce application, while in reality, Giraph applications don’t 
map at all into the generic MapReduce model.

Hadoop 2.x tries to fix these limitations by providing low-level cluster resource management and scheduling 
capabilities as an independent layer called YARN (Yet Another Resource Negotiator) and running the MapReduce 
framework on top of YARN. This architecture makes it possible for other distributed frameworks to run side by 
side with MapReduce applications, without the need to pretend to map into the MapReduce model. It is worth 
repeating that this is purely an implementation change; all of the existing MapReduce v1 applications remain 
compatible with MapReduce v2 APIs. Even though MapReduce workloads still dominate Hadoop 2.x clusters 
today, there’s a robust interest in porting other distributed computation frameworks to run on top of YARN: 
Giraph, Apache Spark (in-memory engine for data processing), and Hamster (OpenMPI) are just a few examples.

http://dx.doi.org/10.1007/978-1-4842-1251-6_6
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Throughout this book, you used Hadoop 1.x implementation to run examples via map-only MapReduce 
jobs. The very same workflow still applies to running on top of Hadoop 2.x MapReduce implementation. 
Even though you haven’t explored running on YARN (since it is still considered somewhat experimental), 
if you decide on the Hadoop 2.x installation, you can experiment with Giraph as a YARN client in addition 
to running Giraph via MapReduce. Regardless of which version of Hadoop you choose, your next step is 
installing the binary Hadoop distribution on your host(s).

Unless you have to worry about installing Hadoop on a large cluster of Linux hosts, the easiest way to 
get the binary distribution of Hadoop is to download the stable release packaged as a gzipped tar file from 
the Apache Software Foundation Hadoop release page at http://hadoop.apache.org/releases.html.

Unpack the resulting file in a subdirectory somewhere in your filesystem (you will use that same 
subdirectory later for installing Giraph), as shown in Listing A-2.

Listing A-2.  Installing Hadoop 1.2.1 on a Unix or Max OS X Workstation

$ mkdir ~/dist
$ cd ~/dist
$ tar xzf hadoop-1.2.1.tar.gz

At this point, you have a binary installation of Hadoop and you need to expose the location of that 
installation to all the other command-line utilities that you are going to run. This is achieved by setting a few 
environment variables, as shown in Listing A-3 (don’t forget that you can add them to your profile files the 
same way you could have added JAVA_HOME earlier).

Listing A-3.  Setting up an Environment to Run Hadoop Applications

$ HADOOP_HOME=~/dist/hadoop-1.2.1
$ export HADOOP_HOME
$ PATH=$HADOOP_HOME/bin:$PATH
$ hadoop version
Hadoop 1.2.1
Subversion https://svn.apache.org/repos/asf/hadoop/common/branches/branch-1.2
Compiled by mattf on Mon Jul 22 15:23:09 PDT 2013
From source with checksum 6923c86528809c4e7e6f493b6b413a9a
This command was run using /Users/shapor/dist/hadoop-1.2.1/hadoop-core-1.2.1.jar

The last command in Listing A-3 proves that the Hadoop installation was successful by running the 
hadoop command-line utility and seeing the expected output. This is the easiest way to make sure that your 
Hadoop was installed correctly and can find Java on your system.

■■ Note   Install Hadoop as described on all machines in the cluster.

Even though the preceding method of installing Hadoop is extremely easy and it should work on most 
operating systems, you may want to install from a binary distribution using a package manager. Doing so will 
guarantee that both Giraph and Hadoop binaries are coming from the same distribution and that they were 
integrated and tested together to work side by side. The following sections provide additional information on 
what it takes to go this route.

http://hadoop.apache.org/releases.html
https://svn.apache.org/repos/asf/hadoop/common/branches/branch-1.2
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Giraph Installation
Now that you’ve completed your Hadoop installation, it may be tempting to think that installing Giraph on 
your systems should be even simpler. The good news is that since Giraph happens to be a client-side-only 
application, it doesn’t need to be installed on all the hosts of your cluster. It is sufficient to make Giraph 
installation available on a machine in a cluster from which MapReduce or YARN jobs are typically submitted 
(these machines are known as gateway or edge nodes). The bad news is that unlike with Hadoop, choosing 
the ready-made Giraph binary distribution that is compatible with the rest of the Hadoop ecosystem 
deployed on your cluster may be non-trivial.

The thorny issue here is dependencies. At the very minimum, Giraph has a fundamental dependency 
on Hadoop; but realistically, its set of dependencies is at least as big as the number of Hadoop ecosystem 
projects Giraph I/O formats have to interface with. Apache Hadoop ecosystem projects are fortunate enough 
to have many contributions to their code base from different stakeholders in the open source and business 
communities. The high pace of project development resulted in quite a few major refactoring cycles of the 
code base and also produced quite a few commercial offerings based on different points in the Hadoop 
evolution history.

In general, the Hadoop ecosystem development community needs to be praised for paying a lot of 
attention to backward compatibility at the public API level. Just like the Linux kernel made it taboo to break 
user-land application by introducing changes to the public APIs, Hadoop has had a good track record in 
not overly upsetting the writers of the applications. Modulo bugs, a MapReduce application written against 
Hadoop 1.x (and not using any private or evolving APIs) should be able to run on Hadoop 2.x unmodified. 
The catch, however, is that it requires a recompilation of application Java code.

What this means for binary releases of Giraph is that at build-time they need to target the exact same 
version of Hadoop (and Hadoop ecosystem projects) that will be deployed on the cluster at runtime. At the 
very minimum, Giraph has to publish two binary releases: one built against Hadoop 1.x and another build 
against Hadoop 2.x. That, however, still doesn’t account for differences in other dependencies, such as Hive, 
HBase, and so forth.

This particular issue is not specific to Giraph; it is known as combinatorial explosion of dependencies: 
the number of permutations of various versions of dependencies grow exponentially with the number of 
dependencies.

So far, the software engineering community has developed two different strategies for dealing with the 
combinatorial explosion of dependencies:

•	 Building binaries from source code as part of the software installation process

•	 Releasing complete stacks (or binary software distributions) of tightly integrated 
components instead of providing independent binary artifacts of individual 
components and expecting any combination of versions to work with each other

Before you deep-dive into the detailed descriptions of these strategies, let’s consider the fact that the 
first strategy is really a subset of the second one. The decision of building your Giraph installation from 
source effectively means that you’re embarking on a mission of producing your own binary software 
distribution with exact versions of components deployed to your cluster.

Software projects vs. software stacks I t is interesting to note that, in general, Apache Software Foundation 
tries to stay away from binary distributions of its projects, leaving this responsibility to downstream packagers. 
For the established projects (e.g., Apache HTTP server), these packagers are typically distributors of the various 
operating systems (Linux, etc.). OS distributors make sure that all of the various ASF software projects that end 
up in their particular version of an OS distribution work smoothly with each other. Hadoop and its ecosystem 
projects, however, haven’t been on the agenda of operating system packagers.
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To fill this void, various commercial vendors of Hadoop distributions began offering fully integrated sets 
of packages that don’t require recompilation and are known to work well with each other. Most of these 
commercial distributions are based on the work done at Apache Bigtop: a 100% open source, community-
driven Big Data management distribution of Apache Hadoop. For most of the users of Hadoop and its ecosystem 
projects, installing a fully integrated distribution from either Apache Bigtop or a commercial vendor is the 
easiest way to get started. For those with existing clusters, compiling Giraph from source code to match the 
exact versions of dependencies deployed on the cluster may be the only option.

Installing the Binary Release of Giraph
As mentioned, installing a binary release is the easiest option, but also the most limiting one. If you decide to 
go this route, you are essentially making the Giraph binary release dictate which versions of Hadoop and the 
Hadoop ecosystem components you’ll be using. While it is unlikely to be useful for practical work—outside 
of quickly setting up an environment for running examples in this book, it is simple and very similar to the 
Hadoop installation process described at the beginning of this appendix.

As with Hadoop, there are two binary releases of Giraph available: one built against the latest version of 
Hadoop 1.x and the other against the latest version of Hadoop 2.x. And just like a binary release of Hadoop, 
binary releases of Giraph are packaged as gzipped tar files. Each released version of Giraph includes two 
binary artifacts: a Giraph binary release that is targeting Hadoop 1.x (available for download as giraph-
dist-X.Y.Z-bin.tar.gz) and a Giraph binary release targeting Hadoop 2.x (available for download as 
giraph-dist-X.Y.Z-hadoop2-bin.tar.gz). Both of these gzipped tar files are available for download from 
the Giraph project website at http://giraph.apache.org/releases.html.

Because this book has been using examples of Giraph 1.1.0 running on Hadoop 1.2.1, the binary you 
need to grab is giraph-dist-1.1.0-bin.tar.gz. Once you download the binary, make sure to unpack it 
on the same workstation that you previously installed Hadoop. Note how the top-level folder that is created 
after you unpack the archive has an exact version of Hadoop 1.x embedded in its name, which looks like 
giraph-1.1.0-for-hadoop-1.2.1. Also, remember that on a real cluster, this is a gateway node. If you don’t 
know where your gateway node is, ask your Hadoop administrator. Regardless of whether you are installing 
on your laptop or a gateway node, you have to go through the series of steps shown in Listing A-4.

Listing A-4.  Installing Giraph 1.1.0 Built to Run on Hadoop 1.2.1

$ cd ~/dist
$ tar xzf giraph-dist-1.1.0-bin.tar.gz
$ GIRAPH_HOME=~/dist/giraph-1.1.0-for-hadoop-1.2.1
$ export GIRAPH_HOME
$ PATH=$GIRAPH_HOME/bin:$PATH
$ giraph
   Usage: giraph [-D<Hadoop property>] <jar containing vertex>
                 <parameters to jar>
   At a minimum one must provide a path to the jar containing the vertex to be executed.

As you can see, Listing A-4 is very similar to what you have done with Hadoop (see Listing A-3), and as 
with Hadoop, the last line in the listing proves that Giraph is installed and ready to go.

http://giraph.apache.org/releases.html
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Installing Giraph As Part of a Packaged Hadoop Distribution
Almost all real-world deployments of Hadoop clusters happen on the Linux OS in a form of native Linux 
packages (DEB or RPM) that come from a binary software distribution of Hadoop. There are two sources 
for those packages: commercial vendors of Hadoop distributions and Apache Bigtop. Given that almost all 
commercial Hadoop distributions are derived from Apache Bigtop, you will focus on it in this section. The 
difference between Bigtop and commercial distributions boils down to support (you cannot buy support 
for Bigtop) and how quickly new versions of Hadoop ecosystem components are incorporated into the 
packaging (Bigtop tends to run ahead of the commercial distributions).

Installing Hadoop and its ecosystem projects as part of a packaged Hadoop distribution on Linux 
guarantees that every component has been integrated and is known to work with every other component 
coming from the same distribution. Not only that, but the packages are also guaranteed to be well-integrated 
with the underlying Linux OS by following the packaging guidelines of a given flavor of Linux. The end result 
is that working with Hadoop installed this way is no different from working with any piece of system software 
that came bundled with the Linux OS. The only downside to this method of installation is the fact that it is 
limited to Linux (although the Max OS X brew port is in the works) and that it requires elevated superuser 
privileges. Make sure to talk to your system administrator (or consult your Linux OS documentation) so that 
your account can run commands under elevated privileges using sudo(8).

The first step in enabling Hadoop installation from Apache Bigtop distribution consists of telling your Linux 
repository manager the URL where the packages can be found. Navigate to http://archive.apache.org/
dist/bigtop/stable/repos/. Make sure that you find the folder corresponding to your Linux OS flavor 
and download the repository definition file named bigtop.XXX (where XXX is an extension specific to the 
Linux flavor that you are using). Once you get the file, make sure to copy it to the location where repository 
manager of your Linux OS looks for definitions of external repositories (don’t forget to use sudo(8) so that 
you can copy into the system location). Table A-1 summarizes the location of repository definition files for 
various Linux flavors.

Table A-1.  Locations of Repository Definitions

Linux Flavor Folder Where Repo File Needs to Be Copied

Debian and Ubuntu /etc/apt/sources.list.d

CentOS, RHEL and Fedora /etc/yum/repos.d

SUSE and OpenSUSE /etc/zypp/repos.d

Once you add the Bigtop repository definition file to one of the folders listed in Table A-1, the next step 
is to import a repository key. Importing the key allows the package manager to make sure it is installing 
genuine packages. Since the repository key establishes trust, always make sure to download it from the 
secure https://dist.apache.org/repos/dist/release/bigtop/KEYS and store it in the current directory. 
Once that is done, all that is left is adding the key and refreshing the repository definition cached locally. 
After that, you can install Hadoop and Giraph using the usual means of package installation on Linux. The 
required steps are summarized in the Table A-2, with the rows again corresponding to different flavors of 
Linux.

http://archive.apache.org/dist/bigtop/stable/repos/
http://archive.apache.org/dist/bigtop/stable/repos/
https://dist.apache.org/repos/dist/release/bigtop/KEYS


Appendix A ■ Install and Configure Giraph and Hadoop

301

An interesting side effect of running that last command is that the dependency between Giraph and Hadoop 
is properly recognized and the right Hadoop package is implicitly installed on your system. In a way, once 
you decide to install Giraph via Linux packages, your best (and easiest!) option for installing Hadoop is to 
install it in a packaged form as well. In fact, you don’t even have to execute that step explicitly: the correct 
package of Hadoop is fetched.

In case you are wondering what you need to do to set environment variables HADOOP_HOME and GIRAPH_
HOME to after installing Giraph via Linux packages, the good news is that you don’t have to worry about those 
anymore. You can simply run the hadoop and giraph command-line utilities the same way you would run 
any executable on your Linux system: just type its name.

There is no denying that installing from Linux packages is by far the easiest way to install both Giraph 
and Hadoop. If you choose one of the commercial vendors, you can sign up for professional support. The 
downside, however, is that by installing the prepackaged bits, you are giving up your right to have a precise 
combination of Giraph and Hadoop versions that are unique to your environment. If you find yourself 
needing to match Giraph to the custom versions of Hadoop and Hadoop ecosystems components, installing 
Giraph by building from source code may be your only option.

Installing Giraph by Building from Source Code
The source code of Giraph is packaged as a gzipped tar file and available for at the same project web site that 
you used for downloading binaries: http://giraph.apache.org/releases.html. For the Giraph version 
1.1.0, get the file named giraph-dist-1.1.0-src.tar.gz and unpack it somewhere on your development 
workstation.

The Giraph build infrastructure is managed by Apache Maven. If you decide to install Giraph by 
building it from the source code, you have to make sure that Maven version 3 or higher is available in your 
environment. If you don’t have Maven available, make sure to follow installation instructions provided by 
the project’s web site at http://maven.apache.org. The rest of this appendix assumes that you have set up 
Maven and that you can successfully run the mvn command-line utility.

■■ Note   You will install Giraph by building it from source code in situations where you have a preexisting 
Hadoop cluster with the versions of dependencies (including Hadoop itself) not matching those of packaged 
Giraph binaries. Although building Giraph against arbitrary versions of dependencies is possible, be warned that 
it may very well be that such a combination has never been tested.

Giraph’s build infrastructure provides a convenient way for specifying exact version of dependencies 
that Giraph needs to be built for. You don’t need to download any of these dependencies or otherwise make 
them available in your environment—Maven does it for you. You are expected to use Maven build profiles for 
specifying the major version of Hadoop and when you want to build Giraph as a YARN client rather than a 
map-only MapReduce application. The most commonly used build profiles are summarized in Table A-3.

Table A-2.  Installing Giraph via Linux Binary Packages

Debian and Ubuntu CentOS, RHEL and Fedora SUSE and OpenSUSE

$ sudo apt-key add < KEYS
$ sudo apt-get update
$ sudo apt-get install giraph

$ sudo rpm --import KEYS
$ sudo yum clean metadata
$ sudo yum install giraph

$ sudo rpm --import KEYS
$ sudo zypper update
$ sudo install giraph

http://giraph.apache.org/releases.html
http://maven.apache.org/
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Using a Maven build profile lets you preset the majority of properties to the desired values, while still 
allowing surgical overrides to match minor and micro versions of dependencies. Whereas there are dozens 
of properties that you can tweak while building Giraph from source code, the most commonly used ones are 
summarized in Table A-4.

Starting with specifying a profile and then all the desired version properties allows you to have very  
fine-grained control over the resulting Giraph binary. For example, suppose your cluster was running 
Hadoop 2.7.1 and HBase 0.98. The way to build YARN-aware Giraph compatible with your cluster 
dependencies is outlined in Listing A-5. Before running this command, however, keep in mind that a 
particular set of dependencies that you are requesting may not have been tested. The implications of this 
could range from build failure, unit test failures, or runtime failures. Once you deviate from the beaten path, 
you are on your own, although it may just work. Thus, don’t be dismayed if unit tests fail. Some of those unit 
tests happen to be sensitive to the versions of dependencies they have been developed against; they can be 
turned off by passing –DskipTests to the Maven build.

Listing A-5.  An Example of Building Giraph Targeting Hadoop 2.7.1 and HBase 0.98

$ mvn –Phadoop_yarn –Dhadoop.version=2.7.1 –Ddep.hbase.version=0.98 -DskipTests

After the build is done, you find the binary artifact very similar to the one you downloaded in previous 
chapters under the giraph-dist/target folder. Look for the gzipped tar file there and follow the steps 
described in the previous section to untar and install that custom version of Giraph on your gateway node. 
Don’t forget to set up GIRAPH_HOME and to add Giraph binaries to your $PATH variable the same way that you 
did in Listing A-4.

As you have seen, so far there are a number of different ways to install Hadoop and Giraph on a system. 
Of course, after you install them, you then have to configure them. You can’t really use the bits for much of 
anything before you configure. This is the subject of the next section.

Table A-3.  Commonly Used Maven Build Profiles

Profile Name Profile Effect

hadoop_1 Produces a build that is compatible with Hadoop 1.x

hadoop_2 Produces a build that is compatible with Hadoop 2.x

hadoop_yarn Produces a YARN-based Giraph build (assumes Hadoop 2.x)

Table A-4.  Commonly Used Properties for Specifying Exact Versions of Giraph Dependencies

Property Name Property Effect

hadoop.version Used for specifying the exact version of Hadoop dependency

dep.accumulo.version Used for specifying the exact version of Accumulo dependency

dep.hbase.version Used for specifying the exact version of HBase dependency

dep.hcatalog.version Used for specifying the exact version of HCatalog dependency

dep.hive.version Used for specifying the exact version of Hive dependency

dep.zookeeper.version Used for specifying the exact version of ZooKeeper dependency
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Fundamentals of Hadoop and Hadoop Ecosystem  
Projects Configuration
Almost all members of the Hadoop ecosystem (including Hadoop itself) share the common configuration 
management system that is based on flat XML files encoding a set of key-value property settings. The  
folders where these configuration files are located happen to be project and installation method specific.  
For any project installed via Linux packages (DEB or RPM), the location of configuration files is under  
/etc/<project name>/conf. If, however, the installation was manual, the same configuration files are located 
under the project’s HOME folder in the conf subfolder. Where you will find configuration files for Hadoop and 
Giraph depend on the installation method, which is summarized in Table A-5.

Inside of these folders you will find one or more XML files, similar to the example outlined in Listing A-6. 
Note that whereas Giraph requires just a single configuration file called giraph-site.xml, Hadoop  
spreads its configuration over at least three different files—core-site.xml, hdfs-site.xml, and  
mapred-site.xml—with yarn-site.xml being an additional file for configuring YARN as part of Hadoop 2.x.

Listing A-6.  Example Hadoop Configuration File

<configuration>
   <property>
    <name>prop.name</name>
    <value>prop.value</value>
    <description>Free form description of what this property does</description>
  </property>
</configuration>

Configuring Giraph
Strictly speaking, by default, Giraph doesn’t actually require any settings in its XML configuration file. 
Anything that may be a required configuration option (such as specifying the number of workers) can be 
passed to Giraph via its command-line utility. Pretty soon, though, constantly typing all of the required 
options on the command line gets frustrating, at which point you can start leveraging giraph-site.xml to 
store the ones specific to your environment (just make sure to put it in the folder listed in Table A-5). For 
example, if you find yourself running Giraph applications on top of Hadoop configured in local mode, you 
may find it useful to have a Giraph configuration file similar to the one in Listing A-7.

Listing A-7.  Example Giraph Configuration File giraph-site.xml

<configuration>
   <property>
      <name>giraph.SplitMasterWorker</name>
      <value>false</value>
      <description>This lets Giraph app run in a single task</description>
   </property>
</configuration>

Table A-5.  Location of Configuration Files by Installation Method

Installation Method Hadoop Configuration Folder Giraph Configuration Folder

Linux packages /etc/hadoop/conf /etc/giraph/conf

Manual $HADOOP_HOME/conf $GIRAPH_HOME/conf
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Even though Giraph has its own configuration file, it still depends on the Hadoop client to be correctly 
configured via Hadoop-specific configuration files. Configuring Hadoop and matching the Hadoop client is 
the subject of the next section.

Configuring Hadoop
Fundamentally, Hadoop jobs can run in one of three modes:

•	 On a fully distributed Hadoop cluster with a client configured on the gateway node

•	 On a pseudo-distributed Hadoop cluster with a client co-located

•	 In a local Hadoop configuration with the client mocking the cluster-specific Hadoop 
machinery

The vast majority of examples in this book assumed you were running the Giraph application on top 
of Hadoop configured in local mode. Local mode is the simplest one to set up. It doesn’t require any active 
processes running anywhere and it makes sure that the Giraph job runs within a single JVM with everything 
else. Instead of using HDFS, local mode reads and writes files to a local filesystem, which makes it even 
easier to use. You don’t even have to configure anything to enable local mode, since it also happens to be the 
default (thus no XML configuration files or empty files would enable it).

Local mode is great for development and debugging your Giraph application, but it also has a few 
limitations. First of all, it can only run one task at a time, which requires you to limit the number of Giraph 
workers to one, and to combine master and worker into the same task. Perhaps an even bigger limitation 
is that local mode execution doesn’t hit the same code path that is normally triggered when running on a 
real Hadoop cluster. Keep this in mind when debugging Giraph applications—you may see differences in 
behavior. Finally, even though local mode is supposed to be the fastest (at least on tiny datasets), there’s 
still quite a bit of work that Hadoop has to do to bootstrap the MapReduce framework. This can lead up to a 
20-second delay before Giraph code starts to execute.

The total opposite of a local mode is, of course, a fully distributed Hadoop cluster. This is the usual way 
of running a Giraph application in production; it assumes that a fully distributed Hadoop cluster is available. 
Giraph acts as a pure client and you need to submit Giraph jobs from a cluster gateway node. The Hadoop 
configuration available on a gateway node needs to match the configuration that is being used by Hadoop 
running on all the other nodes of the cluster. This is typically done by a Hadoop cluster administrator; it 
doesn’t require any explicit configuration by the users of the cluster. All the administrator needs to make 
sure of is that the contents of the Hadoop configuration folder is kept in sync on all the nodes in the cluster, 
including the gateway node.

Configuring Hadoop in Pseudo-Distributed Mode
A really nice compromise between a somewhat limiting local mode and a heavyweight, fully distributed 
mode requiring a lot of setup is Hadoop’s pseudo-distributed configuration. In this mode, you can run 
your jobs in an environment as close to the real cluster as possible, but without the hassle of setting up a 
multinode cluster (although as you’ve seen in Chapter 12, that hassle can be mitigated by using Hadoop 
cloud services). Pseudo-distributed mode runs all the processes (daemons) that a real cluster would have 
on the same host. These processes run in different JVMs and communicate over the loopback network 
interface. Other than that, the configuration is identical to what you would see on a real cluster. Pseudo-
distributed mode is a nice middle ground between local and fully distributed modes.

The easiest way to enable a pseudo-distributed mode is by installing Hadoop on Linux from packages. 
There is a special package called hadoop-conf-pseudo that pulls all the right dependencies and presets the 
configuration parameters needed for pseudo distributed mode in /etc/hadoop/conf. Simply installing that 
package is all that is needed.

http://dx.doi.org/10.1007/978-1-4842-1251-6_12
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In the situations where installing Hadoop from Linux packages is not an option, an alternative is to 
manually install the Hadoop binary under the $HADOOP_HOME folder (the way that it was described earlier 
in this appendix), and make sure that the properties summarized in Table A-6 are set in the appropriate 
configuration files.

Since pseudo-distributed mode required a few processes to run, the final step after configuration is to 
launch the necessary services and initialize their state. First, you need to start HDFS. Use the instructions 
provided in Table A-7, depending on whether you installed from Linux packages or from a binary gzipped tar 
file. Of course, if you didn’t install Hadoop from packages, don’t forget to add $HADOOP_HOME to your $PATH, 
as was shown in Listing A-3. 

Table A-6.  Hadoop Configuration Required for Pseudo-Distributed Mode

Configuration File Property Name Property Value Property Effect

core-site.xml fs.default.name hdfs://localhost/ Sets up a URL for the pseudo-
distributed HDFS filesystem

hdfs-site.xml dfs.replication 1 Sets up a replication factor of 
1, since in pseudo-distributed 
mode, you only have a single 
data node

mapred-site.xml mapred.job.tracker localhost:8021 Sets up a URL for the pseudo-
distributed Job Tracker

yarn-site.xml yarn.nodemanager. 
aux-services

mapreduce_shuffle Makes YARN aware of an 
extra service required by the 
MapReduce framework

yarn-site.xml yarn.nodemanager. 
aux-services. 
mapreduce_shuffle. 
class

org.apache. hadoop.
mapred. ShuffleHandler

Specifies the name of the class 
implementing the mapreduce_
shuffle service

Table A-7.  Starting HDFS in Pseudo-Distributed Mode

Hadoop Installed from Linux Packages Hadoop Installed from Binary gzipped tar File

$ sudo service hadoop-hdfs-namenode format
$ sudo service hadoop-hdfs-namenode start
$ sudo service hadoop-hdfs-datanode start
$ sudo –u hdfs hadoop fs –chmod 777 /

$ hadoop namenode –format
$ hadoop-daemon.sh start namenode
$ hadoop-daemon.sh start datanode
$ hadoop fs –chmod 777 /

■■ Note   The last command makes the root subdirectory of HDFS readable and writable by anyone. This would 
be a huge security issue on a real, fully distributed, multitenant cluster. On a pseudo-distributed setup, however, 
it allows you to shortcut a few setup steps without compromising the functionality of HDFS.
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At this point, you should have a fully functional HDFS. You can verify that it is up and running by issuing 
the commands shown in Listing A-8.

Listing A-8.  Verifying That You Can Copy Files into and out of Pseudo-Distributed HDFS

$ hadoop fs –put /etc/hosts /test.file
$ hadoop fs –cat /test.file
$ hadoop fs –rm /test.file

As long as all the commands ran without an error, you can be sure your pseudo-distributed HDFS  
setup is fine. The final step in setting up your pseudo-distributed Hadoop cluster is starting MapReduce 
services (for Hadoop 1.x) or YARN services (for Hadoop 2.x). The commands needed are summarized in 
Tables A-8 and A-9, respectively. 

Regardless of whether you are setting up Hadoop 1.x or Hadoop 2.x, once you are done with these 
commands, make sure to run a test MapReduce job while you are still located in the current working 
directory (where the last cd command put you). If the command shown in Listing A-9 runs successfully 
to completion, it means your pseudo-distributed Hadoop cluster is fully set and ready for your Giraph 
applications.

Listing A-9.  Verifying That You Run MapReduce Jobs on Pseudo-Distributed Hadoop Cluster

$ hadoop jar *examples*jar pi 10 1000
....
Job Finished in 35.513 seconds
Estimated value of Pi is 3.14080000000000000000

Table A-8.  Starting MapReduce in Pseudo-Distributed Mode

Hadoop Installed from Linux packages Hadoop Installed from Binary gzipped tar File

$ sudo service hadoop-mapred-jobtracker start
$ sudo service hadoop-mapred-tasktracker start
$ cd /usr/lib/hadoop

$ hadoop-daemon.sh start jobtracker
$ hadoop-daemon.sh start tasktracker
$ cd $HADOOP_HOME

Table A-9.  Starting YARN in Pseudo-Distributed Mode

Hadoop Installed from Linux Packages Hadoop Installed from Binary gzipped tar File

$ sudo service hadoop-yarn-resourcemanager start
$ sudo service hadoop-yarn-nodemanager start
$ cd /usr/lib/hadoop-mapreduce

$ hadoop-daemon.sh start resourcemanager
$ hadoop-daemon.sh start nodemanager
$ cd $HADOOP_HOME/share/hadoop/mapreduce
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Summary
You can install Hadoop and Giraph in a number of different ways. The key issue to keep in mind is that 
whichever version of Hadoop you install, it has to match the version Giraph binary that you will be using. If 
you plan to use I/O formats connecting Giraph to other members of the Hadoop ecosystem (such as Hive, 
HBase, etc.), those versions have to match as well. After installation is done, the last step is to configure both. 
Giraph doesn’t require any configuration by default. Hadoop has to be configured to run in one of the three 
modes: local, fully distributed, or pseudo-distributed. In this appendix you looked at the following topics:

•	 System requirements for running Hadoop and Giraph: JDK 7+ on Linux or Mac OS X

•	 The steps involved in installing Hadoop using two main methods: a binary gzipped 
tar file or Linux binary packages

•	 The steps involved in installing Giraph using three different methods of installation: 
a binary gzipped tar file, Linux binary packages, or building from source code

•	 Configuring Hadoop and Giraph using local flat XML configuration files

•	 Executing simple command lines to make sure that your Giraph and Hadoop 
deployments are functioning correctly

Although this appendix offered a number of alternative options for accomplishing two basic tasks— 
installation and configuration, if you’re installing everything from scratch, you can simply choose whichever 
is the easiest for your environment. If, however, you are dealing with existing Hadoop clusters, you may find 
some of the alternative methods helpful.
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direct mutations, 189–190
requests

addEdgeRequest( ) method, 192–193
algorithm implementation, 191
computation interface, 193
properties, 191
removeVertexRequest( )  

method, 192–193
users connected from different  

countries, 190–191
resolving conflicts

default vertex resolver, 197
VertexChanges interface, 197
VertexResolver interface, 196–198

through messages
number of followership between  

countries, 194
relationship among countries, 193–194

�       � N
Natural language processing (NLP), 5
Node failure

Giraph master failure, 159
Giraph worker failure, 160
ZooKeeper service failure, 160

�       � O
Out-of-core graph (OOCG), 272
Out-of-core messages (OOCM), 273

�       � P, Q
Parallelism, Giraph

auxiliary classes, 235
createPartitionStats( ) method, 235
generateChangedPartitionOwners( )  

method, 235
GraphPartitionerFactory  

implementation, 232
GraphPartitionerFactory interface, 231–232
HashMasterPartitioner, 233
HashWorkerPartitioner  

implementation, 236–237
MasterGraphPartitioner interface, 232
PartitionBalancer, 235
partitioning strategy

hash code, 229
mapping vertices, 229

per-worker performance statistics  
(see Per-worker computations)

six-node social graph, 229
thread safety, 227–228
web graph, 230–231
WorkerGraphPartitioner  

interface, 230, 235–236
Partition balancing, Giraph

PageRank algorithm, 238
PartitionBalancer, 238
vertex balancing, 238

Per-worker computations, Giraph
aggregate statistics, 223
counters, Hadoop, 226
Hadoop mapper, 225
performance metrics, 223–224
performance statistics, 226
runtime performance, 223
WorkerContext, 223

Platform as a Service (PaaS), 278

�       � R
Redis, in-memory data store, 241

�       � S
Sentiment analysis, 5
Single-source shortest paths (SSSP), 74
Software as a Service (SaaS), 278
Stochastic gradient descent (SGD), 88, 91
storeCheckpoint( ) method, 152

�       � T, U
Table-based storage systems, 253
Tuning Giraph

data structures (see Data structures)
OOCG, 272
OOCM, 273
parameters, 274
performance factors

big data, 256
computation state, 257
compute-intensive computation, 256
data-intensive computation, 256
graph algorithms, 256
graph computation, 257

requirements
hardware-related choices, 257
job-related choices, 258

vertex-centric programming model, 255
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�       � V
vclose( ) method, 182
Vertex-based input formats

abstract class, 167
checkInputSpecs( ), 168
getCurrentVertex( ) method, 171
getSplits( ), 168
implementation, 168
text-based VertexReader, 170–171
text file, 167
VertexReader abstract class, 169

Vertex-based output formats
abstract class, 179
checkOutputSpecs( ), 180
initialize( ) method, 181
output committer, 182
text-based VertexOutputFormat, 179
text-based VertexWriter, 181
VertexOutputFormat, 180
VertexReader objects, 180
VertexWriter abstract class, 180
VertexWriter objects, 180
writeVertex( ) method, 181

Vertex-based representation, 164
Vertex-centric programming  

model, 9, 76, 255
Vertex coordination. See MasterCompute

�       � W, X, Y
Weakly connected components (WCC), 80
Writing modular applications

composable API
adding reverse edges, 210
MasterCompute, 211–212
propagating vertex ID to neighbors, 210
step-by-step process, 211

connected components algorithm, 207–209
converting directed graph to  

undirected, 206–207
logics, 209

�       � Z
znode, 154
ZooKeeper ensemble, 140
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