
Practical 
MongoDB

Architecting, Developing, 
and Administering MongoDB
—
Shakuntala Gupta Edward
Navin Sabharwal

E XPER T ’S  VOICE  IN  OPEN SOURCE

www.allitebooks.com

http://www.allitebooks.org


  Practical MongoDB 

 Architecting, Developing, and 
Administering MongoDB  

Shakuntala Gupta Edward

 Navin Sabharwal
  

www.allitebooks.com

http://www.allitebooks.org


Practical MongoDB: Architecting, Developing, and Administering MongoDB

Shakuntala Gupta Edward   Navin Sabharwal 
Ghaziabad, Uttar Pradesh, India  New Delhi, Delhi, India

ISBN-13 (pbk): 978-1-4842-0648-5  ISBN-13 (electronic): 978-1-4842-0647-8
DOI 10.1007/978-1-4842-0647-8

Library of Congress Control Number: 2015959699

Copyright © 2015 by Shakuntala Gupta Edward and Navin Sabharwal

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material 
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, 
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, 
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter 
developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly 
analysis or material supplied specifically for the purpose of being entered and executed on a computer system, 
for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only 
under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use 
must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright 
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every 
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion 
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified 
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither 
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may 
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Acquisitions Editor:  Celestin Suresh John
Developmental Editor: Douglas Pundick
Technical Reviewer: Gopala Manchukunda
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan, 

James DeWolf, Jonathan Gennick, Robert Hutchinson, Celestin Suresh John, Michelle Lowman, 
James Markham, Susan McDermott, Matthew Moodie, Jeffrey Pepper, Douglas Pundick, 
Ben Renow-Clarke, Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Rita Fernando
Copy Editor: Mary Behr
Compositor: SPi Global
Indexer: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, 
or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer 
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.  

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. 
eBook versions and licenses are also available for most titles. For more information, reference our Special Bulk 
Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers at 
www.apress.com. For detailed information about how to locate your book’s source code, go to www.apress.com/
source-code/.

Printed on acid-free paper  

www.allitebooks.com

http://www.allitebooks.org


  Dedicated to people who made my life worth living and carved me into an individual 
I am today and to God who shades every step of my life. 

—Shakuntala Gupta Edward  

  Dedicated to the people I love and the God I trust. 

—Navin Sabharwal  

www.allitebooks.com

http://www.allitebooks.org


v

Contents at a Glance

About the Authors ....................................................................................................xv

About the Technical Reviewers .............................................................................xvii

Acknowledgments ..................................................................................................xix

Preface ...................................................................................................................xxi

 ■Chapter 1: Big Data................................................................................................ 1

 ■Chapter 2: NoSQL ................................................................................................. 13

 ■Chapter 3: Introducing MongoDB ........................................................................ 25

 ■Chapter 4: The MongoDB Data Model .................................................................. 29

 ■Chapter 5: MongoDB - Installation and Confi guration ......................................... 35

 ■Chapter 6: Using MongoDB Shell ......................................................................... 53

 ■Chapter 7: MongoDB Architecture ....................................................................... 95

 ■Chapter 8: MongoDB Explained ......................................................................... 159

 ■Chapter 9: Administering MongoDB .................................................................. 191

 ■Chapter 10: MongoDB Use Cases ....................................................................... 213

 ■Chapter 11: MongoDB Limitations ..................................................................... 227

 ■Chapter 12: MongoDB Best Practices ................................................................ 233

Index ..................................................................................................................... 243

www.allitebooks.com

http://www.allitebooks.org


vii

Contents

About the Authors ....................................................................................................xv

About the Technical Reviewers .............................................................................xvii

Acknowledgments ..................................................................................................xix

Preface ...................................................................................................................xxi

 ■Chapter 1: Big Data................................................................................................ 1

Getting Started ................................................................................................................. 1

Big Data ............................................................................................................................ 3

Facts About Big Data .............................................................................................................................. 3

Big Data Sources .............................................................................................................. 4

Three Vs of Big Data ......................................................................................................... 6

Volume .................................................................................................................................................... 7

Variety ..................................................................................................................................................... 8

Velocity ................................................................................................................................................... 8

Usage of Big Data ............................................................................................................. 9

Visibility .................................................................................................................................................. 9

Discover and Analyze Information .......................................................................................................... 9

Segmentation and Customizations ......................................................................................................... 9

Aiding Decision Making .......................................................................................................................... 9

Innovation ............................................................................................................................................... 9

Big Data Challenges ....................................................................................................... 10

Policies and Procedures ....................................................................................................................... 10

Access to Data ...................................................................................................................................... 10

Technology and Techniques .................................................................................................................. 10

www.allitebooks.com

http://www.allitebooks.org


 ■ CONTENTS

viii

Legacy Systems and Big Data ........................................................................................ 10

Structure of Big Data ............................................................................................................................ 10

Data Storage ......................................................................................................................................... 11

Data Processing .................................................................................................................................... 11

Big Data Technologies .................................................................................................... 11

Summary ........................................................................................................................ 12

 ■Chapter 2: NoSQL ................................................................................................. 13

SQL ................................................................................................................................. 13

NoSQL ............................................................................................................................. 13

Defi nition .............................................................................................................................................. 14

A Brief History of NoSQL ....................................................................................................................... 15

ACID vs. BASE ................................................................................................................. 15

CAP Theorem (Brewer’s Theorem) ........................................................................................................ 15

The BASE .............................................................................................................................................. 16

NoSQL Advantages and Disadvantages .......................................................................... 17

Advantages of NoSQL ........................................................................................................................... 17

Disadvantages of NoSQL ...................................................................................................................... 18

SQL vs. NoSQL Databases .............................................................................................. 18

Categories of NoSQL Databases ..................................................................................... 22

Summary ........................................................................................................................ 23

 ■Chapter 3: Introducing MongoDB ........................................................................ 25

History ............................................................................................................................ 25

MongoDB Design Philosophy.......................................................................................... 26

Speed, Scalability, and Agility ............................................................................................................... 26

Non-Relational Approach ...................................................................................................................... 26

JSON-Based Document Store ............................................................................................................... 26

Performance vs. Features .................................................................................................................... 27

Running the Database Anywhere.......................................................................................................... 27

SQL Comparison ............................................................................................................. 27

Summary ........................................................................................................................ 28

www.allitebooks.com

http://www.allitebooks.org


 ■ CONTENTS

ix

 ■Chapter 4: The MongoDB Data Model .................................................................. 29

The Data Model .............................................................................................................. 29

JSON and BSON .................................................................................................................................... 31

The Identifi er (_id) ................................................................................................................................ 32

Capped Collection ................................................................................................................................. 32

Polymorphic Schemas .................................................................................................... 32

Object-Oriented Programming .............................................................................................................. 32

Schema Evolution ................................................................................................................................. 33

Summary ........................................................................................................................ 34

 ■Chapter 5: MongoDB - Installation and Confi guration ......................................... 35

Select Your Version ......................................................................................................... 35

Installing MongoDB on Linux .......................................................................................... 36

Installing Using Repositories ................................................................................................................ 36

Installing Manually ............................................................................................................................... 36

Installing MongoDB on Windows .................................................................................... 37

Running MongoDB .......................................................................................................... 37

Preconditions ........................................................................................................................................ 37

Starting the Service .............................................................................................................................. 38

Verifying the Installation ................................................................................................. 38

MongoDB Shell ............................................................................................................... 38

Securing the Deployment ............................................................................................... 39

Using Authentication and Authorization ................................................................................................ 39

Controlling Access to a Network ........................................................................................................... 44

Provisioning Using MongoDB Cloud Manager ................................................................ 47

Summary ........................................................................................................................ 52

 ■Chapter 6: Using MongoDB Shell ......................................................................... 53

Basic Querying ............................................................................................................... 53

Create and Insert .................................................................................................................................. 58

Explicitly Creating Collections .............................................................................................................. 60

Inserting Documents Using Loop .......................................................................................................... 60

www.allitebooks.com

http://www.allitebooks.org


 ■ CONTENTS

x

Inserting by Explicitly Specifying _id .................................................................................................... 60

Update .................................................................................................................................................. 61

Delete ................................................................................................................................................... 62

Read ..................................................................................................................................................... 63

Using Indexes ....................................................................................................................................... 69

Stepping Beyond the Basics ........................................................................................... 78

Using Conditional Operators ................................................................................................................. 79

Regular Expressions ............................................................................................................................. 81

MapReduce ........................................................................................................................................... 82

aggregate( ) ........................................................................................................................................... 83

Designing an Application’s Data Model .......................................................................... 84

Relational Data Modeling and Normalization ....................................................................................... 84

MongoDB Document Data Model Approach .......................................................................................... 86

Summary ........................................................................................................................ 93

 ■Chapter 7: MongoDB Architecture ....................................................................... 95

Core Processes ............................................................................................................... 95

mongod ................................................................................................................................................. 95

mongo ................................................................................................................................................... 96

mongos ................................................................................................................................................. 96

MongoDB Tools ............................................................................................................... 96

Standalone Deployment ................................................................................................. 96

Replication ..................................................................................................................... 97

Master/Slave Replication ...................................................................................................................... 97

Replica Set ........................................................................................................................................... 98

Implementing Advanced Clustering with Replica Sets ....................................................................... 115

Sharding ....................................................................................................................... 124

Sharding Components ........................................................................................................................ 125

Data Distribution Process ................................................................................................................... 127

Data Balancing Process ...................................................................................................................... 130

www.allitebooks.com

http://www.allitebooks.org


 ■ CONTENTS

xi

Operations .......................................................................................................................................... 133

Implementing Sharding ...................................................................................................................... 134

Controlling Collection Distribution (Tag-Based Sharding) ................................................................... 142

Points to Remember When Importing Data in a ShardedEnvironment ............................................... 151

Monitoring for Sharding ...................................................................................................................... 152

Monitoring the Confi g Servers ............................................................................................................ 152

Production Cluster Architecture ................................................................................... 152

Scenario 1 .......................................................................................................................................... 153

Scenario 2 .......................................................................................................................................... 154

Scenario 3 .......................................................................................................................................... 155

Scenario 4 .......................................................................................................................................... 156

Summary ...................................................................................................................... 157

 ■Chapter 8: MongoDB Explained ......................................................................... 159

Data Storage Engine ..................................................................................................... 159

Data File (Relevant for MMAPv1) .................................................................................. 161

Namespace (.ns File) .......................................................................................................................... 162

Data File (Relevant for WiredTiger) ............................................................................... 170

Reads and Writes ......................................................................................................... 172

How Data Is Written Using Journaling .......................................................................... 174

GridFS – The MongoDB File System ............................................................................. 178

The Rationale of GridFS ...................................................................................................................... 178

GridFSunder the Hood ........................................................................................................................ 179

Using GridFS ....................................................................................................................................... 180

Indexing ........................................................................................................................ 183

Types of Indexes ................................................................................................................................. 184

Behaviors and Limitations .................................................................................................................. 190

Summary ...................................................................................................................... 190

www.allitebooks.com

http://www.allitebooks.org


 ■ CONTENTS

xii

 ■Chapter 9: Administering MongoDB .................................................................. 191

Administration Tools ..................................................................................................... 191

mongo ................................................................................................................................................. 191

Third-Party Administration Tools......................................................................................................... 191

Backup and Recovery ................................................................................................... 192

Data File Backup ................................................................................................................................. 192

mongodump and mongorestore ......................................................................................................... 192

fsync and Lock.................................................................................................................................... 196

Slave Backups .................................................................................................................................... 197

Importing and Exporting ............................................................................................... 197

mongoimport ...................................................................................................................................... 198

mongoexport....................................................................................................................................... 198

Managing the Server .................................................................................................... 199

Starting a Server ................................................................................................................................ 199

Stopping a Server ............................................................................................................................... 200

Viewing Log Files ................................................................................................................................ 200

Server Status ...................................................................................................................................... 200

Identifying and Repairing MongoDB ................................................................................................... 202

Identifying and Repairing Collection Level Data ................................................................................. 203

Monitoring MongoDB .................................................................................................... 204

mongostat ........................................................................................................................................... 204

mongod Web Interface ........................................................................................................................ 205

Third-Party Plug-Ins ........................................................................................................................... 205

MongoDB Cloud Manager ................................................................................................................... 206

Summary ...................................................................................................................... 212

 ■Chapter 10: MongoDB Use Cases ....................................................................... 213

Use Case 1 - Performance Monitoring ......................................................................... 213

Schema Design ................................................................................................................................... 213

Operations .......................................................................................................................................... 214

Sharding ............................................................................................................................................. 218

Managing the Data ............................................................................................................................. 219



 ■ CONTENTS

xiii

Use Case 2 – Social Networking .................................................................................. 220

Schema Design ................................................................................................................................... 220

Operations .......................................................................................................................................... 222

Sharding ............................................................................................................................................. 225

Summary ...................................................................................................................... 225

 ■Chapter 11: MongoDB Limitations ..................................................................... 227

MongoDB Space Is Too Large (Applicable for MMAPv1) ............................................... 227

Memory Issues (Applicable for Storage Engine MMAPv1) ........................................... 228

32-bit vs. 64-bit ............................................................................................................ 228

BSON Documents ......................................................................................................... 228

Namespaces Limits ...................................................................................................... 229

Indexes Limit ................................................................................................................ 229

Capped Collections Limit - Maximum Number of Documents in a 
Capped Collection ........................................................................................................ 229

Sharding Limitations .................................................................................................... 230

Shard Early to Avoid Any Issues .......................................................................................................... 230

Shard Key Can’t Be Updated ............................................................................................................... 230

Shard Collection Limit ........................................................................................................................ 230

Select the Correct Shard Key .............................................................................................................. 230

Security Limitations ..................................................................................................... 230

No Authentication by Default .............................................................................................................. 230

Traffi c to and from MongoDB Isn’t Encrypted ..................................................................................... 231

Write and Read Limitations .......................................................................................... 231

Case-Sensitive Queries....................................................................................................................... 231

Type-Sensitive Fields .......................................................................................................................... 231

No JOIN ............................................................................................................................................... 231

Transactions ....................................................................................................................................... 231

MongoDB Not Applicable Range ................................................................................... 232

Summary ...................................................................................................................... 232



 ■ CONTENTS

xiv

 ■Chapter 12: MongoDB Best Practices ................................................................ 233

Deployment .................................................................................................................. 233

Hardware Suggestions from the MongoDB Site ................................................................................. 235

Few Points to be Noted....................................................................................................................... 235

Coding .......................................................................................................................... 236

Application Response Time Optimization ..................................................................... 238

Data Safety ................................................................................................................... 239

Administration .............................................................................................................. 240

Replication Lag ............................................................................................................. 240

Sharding ....................................................................................................................... 241

Monitoring .................................................................................................................... 241

Summary ...................................................................................................................... 242

Index ..................................................................................................................... 243



xv

                  About the Authors 

     Shakuntala   Gupta   Edward       has been working with database technologies since 10 years. Her experience 
ranges from SQL Server, Oracle Databases, Analytics platforms and Big Data technologies like MongoDB, 
Cassandra and SAP HANA. 

 Shakuntala is an accomplished architect with experience in leveraging diverse database technologies to 
create products and solutions in various business domains. 

 Shakuntala has been involved in developing products and solutions leveraging big data technologies 
MongoDB and Cassandra. Shakuntala holds a Master’s Degree in Computer Applications.     

     Navin   Sabharwal       is an innovator, thought leader, author, and consultant in the areas Reporting and 
Analytics, RDBMS Technologies including SQL Server, Oracle, MySQL Big Data Technologies, Hadoop, 
MongoDB and SAP HANA. Navin has been using big data technologies in creating products and services in 
the areas of IT service management, product development, cloud computing, cloud lifecycle management, 
and social network product development. 

 Navin has created niche award-winning products and solutions and has filed numerous patents in 
diverse fields such as IT services, assessment engines, ranking algorithms, capacity planning engines, and 
knowledge management. 

 Navin has authored the following books:  Cloud Computing First Steps  (CreateSpace, 
ISBN#: 978-1478130086),  Apache Cloudstack Cloud Computing  (Packt Publishing, ISBN#: 978-1782160106), 
 Cloud Capacity Management  (Apress, ISBN #: 978-1430249238). Navin holds a Masters in Information 
Technology and is a Certified Project Management Professional. 

 The authors can be reached at   architectbigdata@gmail.com    .     

mailto:architectbigdata@gmail.com


xvii

   About the Technical Reviewers 

     Prasoon   Kumar       is a seasoned technology professional and trainer with 
more than 18 years of strong experience in building world-class software 
products. He topped IIT-JEE in 1993, among 100 thousand applicants, 
arguably the most challenging and competitive exam in the world. 

 He is based out of Bangalore now having worked with companies like 
MongoDB, Justdial, Avaya etc both in India and Silicon Valley, USA. He has 
used mysql, MongoDB, HBase, Apache Solr, Elasticsearch, PHP, Node.JS to 
build scalable backends for complex applications. 

 He takes up the role of evangelising polyglot persistence and NoSQL 
solutions for scale-out datastore. He has worked with large eCommerce, 
FSI, healthcare and publishing companies of India for their scalability 
needs of document management, high-traffic portal. He has done 
tuning, optimisation, backup, recovery, migration and upgrades for 
datastores of TB’s of sizes. He blogs on technology, business, hackathons 
and entrepreneurship at    http://prasoonk.wordpress.comText     . 

                 Sundar   Rajan   Raman       is a Big Data Architect currently working in Bank Of 
America. He holds Bachelor Of Technology degree from National Institute 
of Technology, Silcha, India. Being a seasoned Java and J2EE programmer 
from the base he has worked companies such as AT&T, Singtel, Deutsche 
Bank. He is a Messaging platform specialist with vast experience on Sonic 
MQ, Websphere MQ, TIBCO with respective certifications. His current 
focus is on Big Data technologies. He is currently working with Hadoop 
and its echo systems such as Pig, HIVE, Oozie and Storm, Spark etc. He 
has Architected an analytical engine based on Mongo DB for AT&T. More 
information is available on    https://in.linkedin.com/pub/
sundar-rajan-raman/7/905/488     . 

       

            

http://prasoonk.wordpress.comtext/
https://in.linkedin.com/pub/sundar-rajan-raman/7/905/488
https://in.linkedin.com/pub/sundar-rajan-raman/7/905/488


xix

  Acknowledgments  

 Special thanks go out to the people who have helped in creation of this book Rajeev Pratap Singh and 
Amit Agrawal for helping with the code snippets and Dheeraj Raghav for the creative inputs in the design 
of this book. 

 A ton of thanks go out to Stuti Awasthi for being the initiator and inspiration for this book. 
 The authors will like to acknowledge the creators of big data technologies and the open source 

community for providing such powerful tools and technologies to code with and enable products and 
solutions which solve real business problems easily and quickly.  



xxi

  Pref ace 

   Data warehousing as an industry has been around for quite a number of years now. Relational databases 
have been used to store data for decades while SQL has been the de-facto language to interact with RDBMS. 
With the emergence of Social Networking, Internet of Things and huge volumes of unstructured data on the 
internet the needs of data storage, processing and analytics just exploded. Traditional RDBMS systems and 
storage technologies were not designed to handle such vast variety and volumes of data. 

 Thus was born the Big Data technologies which now power various internet scale companies and their 
huge amounts of data. Companies like Facebook, Twitter, Google and yahoo are leveraging the big data 
technologies to provide products and services at internet scale which support millions of users. 

 This book will help our readers to appreciate the big data technologies, their emergence, need and then 
we will provide a deep dive technical perspective on architecting solutions using MongoDB. The book will 
enable our readers to understand the key use cases where big data technologies fit in and also provide them 
pointers on where Big Data technologies should be used carefully or combined with traditional RDBMS 
technologies to provide a feasible solution. 

 Along with the architecture the book aims to provide a step by step guide on learning MongoDB and 
creating applications and solutions using MongoDB. 

 We sincerely hope our readers will enjoy reading the book as much as we have enjoyed writing it. 

   About this Book 
 This book:

•    Acts as a guide that helps the reader in grasping the various buzz words in Big Data 
technologies and getting a grip over various aspects of Big Data.  

•   Acts as a guide for people in order to understand about NoSQL and Document based 
database and how they are different from the traditional relational database.  

•   Provides insight into architecting solutions using MongoDB, it also provides 
information on the limitations of MongoDB as a tool.  

•   Methodically covers architecture, development, administration and data model of 
MongoDB.  

•   Cites examples in order to make the users comfortable in getting started with the 
technology.     



 ■ PREFACE

xxii

   What you need for this book 
 MongoDB supports the most popular platforms. 

 Download the latest stable production release of MongoDB from the   MongoDB downloads page     
(   http://www.mongodb.org/downloads/     ). 

 In this book we have focused on using MongoDB on a 64-bit Windows platform and at places have cited 
references on how to work with MongoDB running on Linux. 

 We will be using 64-bit Windows 2008 R2 and LINUX for examples of the installation process.  

   Who this book is for 
 This book would be of interest to Programmers, Big Data Architects, Application Architects, Technology 
Enthusiasts, Students, Solution Experts and those wishing to choose the right big data products for 
their needs. 

 The book covers aspects on Big Data, NOSQL and details on architecture and development 
on MongoDB. Thus it serves the use cases of developers, architects and operations teams who work on 
MongoDB.   

■  

xxii

http://d/OldTill5thSep2013/Shakuntala14022013/BigData_NavinSir/writeups/MongoDB downloads page
http://www.mongodb.org/downloads/


1© Shakuntala Gupta Edward, Navin Sabharwal 2015 
S.G. Edward and N. Sabharwal, Practical MongoDB, DOI 10.1007/978-1-4842-0647-8_1

    CHAPTER 1   

 Big Data           

    “Big data is a term used to describe data that has massive volume, comes in a variety 
of structures, and is generated at high velocity. This kind of data poses challenges to the 
traditional RDBMS systems used for storing and processing data. Bid data is paving way 
for newer approaches of processing and storing data.”    

 In this chapter, we will talk about big data basics, sources, and challenges. We will introduce you to the three 
Vs (volume, velocity, and variety) of big data and the limitations that traditional technologies face when it 
comes to handling big data. 

     Getting Started 
  Big data , along with  cloud ,  social ,  analytics , and  mobility , are buzz words today in the information 
technology world. The availability of the Internet and electronic devices for the masses is increasing every 
day. Specifically, smartphones, social networking sites, and other data-generating devices such as tablets 
and sensors are creating an explosion of data. Data is generated from various sources in various formats 
such as video, text, speech, log files, and images. A single second of a high-definition (HD) video generates 
2,000 times more bytes than that of a single page of text. 

 Consider the following  statistics   about Facebook, as reported on the company’s web site:

    1.    There were 968 million daily active users on average for June of 2015. There were 
844 million mobile daily active users on average for June of 2015.  

    2.    There were 1.49 billion monthly active users as of June 30, 2015. There were 
1.31 billion mobile monthly active users as of June 30, 2015.  

    3.    There were 4.5 billion likes generated daily as of May 2013, which is a 67 percent 
increase from August 2012.     

 Figure  1-1  depicts the statistics of  Twitter  .  



CHAPTER 1 ■ BIG DATA

2

 Here’s another example: consider the amount of data that a simple event like going to a movie can 
generate. You start by searching for a movie on movie review sites, reading reviews about that movie, and 
posting queries. You may tweet about the movie or post photographs of going to the movie on Facebook. 
While travelling to the theater, your GPS system tracks your course and generates data. 

 You get the picture: smartphones, social networking sites, and other media are creating flood of data 
for companies to process and store. When the size  of   data poses challenges to the ability of typical software 
tools to capture, process, store, and manage data, then we have big data in hand. Figure  1-2  graphically 
defines big data.   

  Figure 1-1.    If you printed Twitter…       

 

www.allitebooks.com

http://www.allitebooks.org


CHAPTER 1 ■ BIG DATA

3

     Big Data 
 Big data is data that has high volume, is generated at high velocity, and has multiple varieties. Let’s look at 
few facts and figures of big data. 

     Facts About Big Data 
 Various research  teams   around the world have done analysis on the amount of data being generated. For 
example, IDC’s analysis revealed that the amount of digital data generated in a single year (2007) is larger 
than the world’s total capacity to store it, which means there is no way in which to store all of the data that 
is being generated. Also, the rate at which data is getting generated will soon outgrow the rate at which data 
storage capacity is expanding. 

 The following sections cover insights from the MGI (McKinsey Global Institute) report (   www.mckinsey.com/
insights/business_technology/big_data_the_next_frontier_for_innovation )that     was published in 
May 2011. The study makes the case that the business and economic possibilities of big data and its wider 
implications are important issues that business leaders and policy makers must tackle. 

   The  Size of   Big Data Varies Across Sectors 
 The growth of big data is a phenomenon that is observed in every sector.MGI estimates that enterprises 
around the world used more than 7 exabytes of incremental disk drive data storage capacity in 2010; 
what’s interesting is that nearly 80 percent of that total seemed to duplicate data that was stored elsewhere. 

  Figure 1-2.     Definition   of Big Data       

 

http://www.mckinsey.com/insights/business_technology/big_data_the_next_frontier_for_innovation)that
http://www.mckinsey.com/insights/business_technology/big_data_the_next_frontier_for_innovation)that


CHAPTER 1 ■ BIG DATA

4

MGI also estimated that, by 2009, nearly all sectors in the US economy had at least an average of 200 terabytes 
of stored data per company and that many sectors had more than 1 petabyte in mean stored data per 
company. 

 Some sectors exhibited far higher levels of data intensity than others; in this case, data intensity refers 
to the average amount of data getting accumulated across companies/firms of that sector, implying that they 
have more potential to capture value from big data. 

 Financial services sectors, including banking, investment, and securities services, are highly 
transaction-oriented; they are also required by regulations to store data. The analysis shows that they have 
the most digital data stored per firm on average. 

 Communications and media firms, utilities, and government also have significant digital data stored 
per enterprise or organization, which appears to reflect the fact that such entities have a high volume of 
operations and multimedia data. 

 Discrete and process manufacturing have the highest aggregate data stored in bytes. However, these 
sectors rank much lower in intensity terms, since they are fragmented into a large number of firms.  

   The Big Data  Type   Varies Across Sectors 
 The MGI research also shows that the type of data stored also varies by sector. For instance, retail and 
wholesale, administrative parts of government, and financial services all generate significant amounts of 
text and numerical data including customer data, transaction information, and mathematical modeling and 
simulations.  Sectors   such as manufacturing, health care, media and communications are responsible for 
higher percentages of multimedia data. And image data in the form of X-rays, CT, and other scans dominate 
data storage volumes in health care. 

 In terms of geographic spread of big data, North America and Europe have 70% of the global total 
currently. Thanks to cloud computing, data generated in one region can be stored in another country’s 
datacenter. As a result, countries with significant cloud and hosting provider offerings tend to have high 
storage of data.    

     Big Data  Sources   
 In this section, we will cover the major factors that are contributing to the ever increasing size of data. 
Figure  1-3  depicts the major contributing sources.  



CHAPTER 1 ■ BIG DATA

5

 As highlighted in the MGI report, the major sources of this data are

•    Enterprises, which are collecting data with more granularities now, attaching more 
details with every transaction in order to understand consumer behavior.  

•   Increase in multimedia usage across industries such as health care, product 
companies, etc.  

•   Increased popularity of social media sites such as Facebook, Twitter, etc.  

•   Rapid adoption of smartphones, which enable users to actively use social media sites 
and other Internet applications.  

•   Increased usage of sensors and devices in the day-to-day world, which are 
connected by networks to computing resources.    

 The MGI report also projects that the number of machine-to-machine devices such as sensors 
(which are also referred as the Internet of Things, or IoT) will grow at a rate exceeding 30 percent annually 
over the next five years. 

 Thus, the rate of growth of data is increasing and so is the diversity. Also, the model of data generation 
has changed from few companies generating data and others consuming it to everyone generating data and 
everyone consuming it. This is due to the penetration of consumer IT and internet technologies along with 
trends like social media. Figure  1-4  depicts the change in the data generation model.   

  Figure 1-3.    Sources of data       

 



CHAPTER 1 ■ BIG DATA

6

     Three  Vs   of Big Data 
 We have defined big data as data with three Vs: volume  , velocity, and variety, as shown in Figure  1-5 . Let’s 
look at the three Vs. It is imperative that organizations and IT leaders focus on these aspects.  

  Figure 1-4.        Data model         

  Figure 1-5.          The three Vs of big data. The “big” isn’t just the volume       

 

 



CHAPTER 1 ■ BIG DATA

7

      Volume 
  Volume   in big data means the size of the data. As discussed in the previous sections, various factors 
contribute to the size of big data: as businesses are becoming more transaction-oriented, we see ever 
increasing numbers of transactions; more devices are getting connected to the Internet, which is adding to 
the volume; there is an increased usage of the Internet; and there is an increase in the digitization of content. 
Figure  1-6  depicts the growth in digital universe since 2009.  

 In today’s scenario, data is not just generated from within the enterprise; it’s also generated based on 
transactions with the extended enterprise and customers. This requires extensive maintenance of customer 
data by the enterprises. A petabyte scale is becoming commonplace these days. Figure  1-7  depicts the data 
growth rate.  

  Figure 1-6.        Digital universe size         

  Figure 1-7.       Growth rate       

 This huge volume of data is the biggest challenge for big data technologies. The storage and processing 
power needed to store, process, and make accessible the data in a timely and cost effective manner is 
massive.   

 

 



CHAPTER 1 ■ BIG DATA

8

      Variety   
 The data generated from various devices and sources follows no fixed format or structure. Compared to text, 
CSV or RDBMS data varies from text files, log files, streaming videos, photos, meter readings, stock ticker 
data, PDFs, audio, and various other unstructured formats. 

 There is no control over the structure of the data these days. New sources and structures of data are 
being created at a rapid pace. So the onus is on technology to find a solution to analyze and visualize the 
huge variety of data that is out there. As an example, to provide alternate routes for commuters, a traffic 
analysis application needs data feeds from millions of smartphones and sensors to provide accurate 
analytics on traffic conditions and alternate routes.  

        Velocity 
 Velocity in big data is the  speed   at which data is created and the speed at which it is required to be 
processed. If data cannot be processed at the required speed, it loses its significance. Due to data streaming 
in from social media sites, sensors, tickers, metering, and monitoring, it is important for the organizations to 
speedily process data both when it is on move and when it is static (see Figure  1-8 ). Reacting and processing 
quickly enough to deal with the velocity of data is one more challenge for big data technology.  

  Figure 1-8.    The three aspects of data          

 Real-time insight is essential in many big data use cases. For example, an algorithmic trading system 
takes real-time feeds from the market and social media sites like Twitter to make decisions on stock trading. 
Any delay in processing this data can mean millions of dollars in lost opportunities on a stock trade. 

 There is a fourth V that is talked about whenever big data is discussed. The fourth V is veracity, which 
means not all the data out there is important, so it’s essential to identify what will provide meaningful 
insight, and what should be ignored.   

 



CHAPTER 1 ■ BIG DATA

9

     Usage of Big Data 
 This section will focus on ways of  using   big data for creating value for organizations. Before we delve into 
how big data can be made usable to the organizations, let’s first look at why big data is important. 

 Big data is a completely new source of data; it’s data that is generated when you post on a blog, like a 
product, or travel. Previously, such minutely available information was not captured. Now it is and organizations 
that embrace such data can pursue innovations, improve their agility, and increase their profitability. 

 Big data can create value for any organization in a variety of ways. As listed in the MGI report, this can 
be broadly categorized into five ways of usage of big data. 

      Visibility   
 Accessibility to data in a timely fashion to relevant stakeholders generates a tremendous amount of value. 
Let’s understand this with an example. Consider a manufacturing company that has R&D, engineering, and 
manufacturing departments dispersed geographically. If the data is accessible across all these departments 
and can be readily integrated, it can not only reduce the search and processing time but will also help in 
improving the product quality according to the present needs.  

     Discover and Analyze Information 
 Most of the value of big data comes from when the data collected from outside sources can be merged with 
the organization’s internal data. Organizations are capturing detailed data on inventories, employees, and 
customers. Using all of this data, they can discover and analyze new information and patterns; as a result, 
this  information and knowledge   can be used to improve processes and performance.  

     Segmentation and  Customizations   
 Big data enables organizations to create tailor-made products and services to meet specific segment needs. 
This can also be used in the social sector to accurately segment populations and target benefit schemes 
for specific needs.  Segmentation   of customers based on various parameters can aid in targeted marketing 
campaigns and tailoring of products to suit the needs of customers.  

     Aiding Decision Making 
 Big data can substantially minimize risks, improve  decision making  , and uncover valuable insights. 
Automated fraud alert systems in credit card processing and automatic fine-tuning of inventory are 
examples of systems that aid or automate decision-making based on big data analytics.  

     Innovation 
 Big data enables  innovation   of new ideas in the form of products and services. It enables innovation in the 
existing ones in order to reach out to large segments of people. Using data gathered for actual products, 
the manufacturers can not only innovate to create the next generation product but they can also innovate 
sales offerings. 

 As an example, real-time data from machines and vehicles can be analyzed to provide insight into 
maintenance schedules; wear and tear on machines can be monitored to make more resilient machines; 
fuel consumption monitoring can lead to higher efficiency engines. Real-time traffic information is already 
making life easier for commuters by providing them options to take alternate routes. 



CHAPTER 1 ■ BIG DATA

10

 Thus, big data is not just the volume of data. It’s the opportunities in finding meaningful insights from 
the ever-increasing pool of data. It’s helping organizations make more informed decisions, which makes 
them more agile. It not only provides the opportunity for organizations to strengthen existing business by 
making informed decisions, it also helps in identifying new opportunities.   

     Big Data Challenges 
 Big data also poses some challenges. In this section, we will highlight a few of them. 

      Policies and Procedures   
 As more and more data is gathered, digitized, and moved around the globe, the policy and compliance 
issues become increasingly important. Data privacy, security, intellectual property, and protection are of 
immense importance to organizations. 

 Compliance with various statutory and legal requirements poses a challenge in data handling. Issues 
around ownership and liabilities around data are important legal aspects that need to be dealt with in cases 
of big data. 

 Moreover, many big data projects leverage the scalability features of public cloud computing providers. 
This poses a challenge for compliance. 

 Policy questions on who owns the data, what is defined as fair use of data, and who is responsible for 
accuracy and confidentiality of data also need to be answered.  

     Access to Data 
  Accessing data   for consumption is a challenge for big data projects. Some of the data may be available to 
third parties, and gaining access can be a legal, contractual challenge. 

 Data about a product or service is available on Facebook, Twitter feeds, reviews, and blogs, so how does 
the product owner access this data from various sources owned by various providers? 

 Likewise, contractual clauses and economic incentives for accessing big data need to be tied in to 
enable the availability of data by the consumer.  

      Technology and Techniques   
 New tools and technologies built specifically to address the needs of big data must be leveraged, rather than 
trying to address the aforementioned issues through legacy systems. The inadequacy of legacy systems to 
deal with big data on one hand and the lack of experienced resources in newer technologies is a challenge 
that any big data project has to manage.   

     Legacy Systems and Big Data 
 In this section, we will discuss the challenges that organizations are facing when managing big data using 
 legacy systems     . 

     Structure of Big Data 
 Legacy systems are designed to work with structured data where tables with columns are defined. The 
format of the data held in the columns is also known. 



CHAPTER 1 ■ BIG DATA

11

 However, big data is data with many structures. It’s basically unstructured data such as images, videos, 
logs, etc. 

 Since big data can be unstructured, legacy systems created to perform fast queries and analysis through 
techniques like indexing based on particular data types held in various columns cannot be used to hold or 
process big data.  

      Data Storage   
 Legacy systems use big servers and NAS and SAN systems to store the data. As the data increases, the server 
size and the backend storage size has to be increased. Traditional legacy systems typically work in a scale-
up model where more and more compute, memory, and storage needs to be added to a server to meet the 
increased data needs. Hence the processing time increases exponentially, which defeats the other important 
requirement of big data, which is velocity.  

      Data Processing   
 The algorithms in legacy system are designed to work with structured data such as strings and integers. 
They are also limited by the size of data. Thus, legacy systems are not capable of handling the processing 
of unstructured data, huge volumes of such data, and the speed at which the processing needs to be 
performed. 

 As a result, to capture value from big data, we need to deploy newer technologies in the field of storing, 
computing, and retrieving, and we need new techniques for analyzing the data.   

     Big Data  Technologies   
 You have seen what big data is. In this section we will briefly look at what technologies can handle this 
humongous source of data. The technologies in discussion need to efficiently accept and process different 
types of data. 

 The recent technology advancements that enable organizations to make the most of its big data are the 
following:

    1.    New storage and processing technologies designed specifically for large 
unstructured data  

    2.    Parallel processing  

    3.    Clustering  

    4.    Large grid environments  

    5.    High connectivity and high throughput  

    6.    Cloud computing and scale-out architectures     

 There are a growing number of technologies that are making use of these technological advancements. 
In this book, we will be discussing MongoDB, one of the technologies that can be used to store and process 
big data.  



CHAPTER 1 ■ BIG DATA

12

     Summary 
 In this chapter you learned about big data. You looked into the various sources that are generating big data, 
and the usage and challenges posed by big data. You also looked why newer technologies are needed to 
store and process big data. 

 In the following chapters, you will look into a few of the technologies that help organizations manage 
big data and enable them to get meaningful insights from big data.     

www.allitebooks.com

http://www.allitebooks.org


13© Shakuntala Gupta Edward, Navin Sabharwal 2015 
S.G. Edward and N. Sabharwal, Practical MongoDB, DOI 10.1007/978-1-4842-0647-8_2

    CHAPTER 2   

 NoSQL           

    “NoSQL is a new way of designing Internet-scale database solutions. It is not a product or 
technology but a term that defines a set of database technologies that are not based on the 
traditional RDBMS principles.”    

 In this chapter, we will cover the definition and basics of NoSQL. We will introduce you to the CAP theorem 
and will talk about the NRW notations. We will compare the ACID and BASE approaches and finally 
conclude the chapter by comparing NoSQL and SQL database technologies. 

      SQL   
 The idea of RDBMS was borne from E.F. Codd’s 1970 whitepaper titled “A relational model of data for large 
shared data banks.” The language used to query RDBMS systems is SQL (Sequel Query  Language  ). 

 RDBMS systems are well suited for structured data held in columns and rows, which can be queried 
using SQL. The RDBMS systems are based on the concept of ACID transactions. ACID stands for Atomic, 
Consistent, Isolated, and Durable, where

•     Atomic  implies either all changes of a transaction are applied completely or not 
applied at all.  

•    Consistent  means the data is in a consistent state after the transaction is applied. 
This means after a transaction is committed, the queries fetching a particular data 
will see the same result.  

•    Isolated  means the transactions that are applied to the same set of data are 
independent of each other. Thus, one transaction will not interfere with another 
transaction.  

•    Durable  means the changes are permanent in the system and will not be lost in case 
of any failures.     

     NoSQL 
 NoSQL is a term used to refer to  non-relational databases  . Thus, it encompasses majority of the data stores 
that are not based on the conventional RDBMS principles and are used for handling large data sets on an 
Internet scale. 

 Big data, as discussed in the previous chapter, is posing challenges to the traditional ways of storing 
and processing data, such as the RDBMS systems. As a result, we see the rise of NoSQL databases, which are 
designed to process this huge amount and variety of data within time and cost constraints. 



CHAPTER 2 ■ NOSQL

14

 Thus NoSQL databases evolved from the need to handle big data; traditional RDBMS technologies 
could not provide adequate solutions. Figure  2-1  shows the rise of un/semi-structured data over the years as 
compared to structured  data  .  

 Some examples of big data use cases that are a good fit for NoSQL databases are the following:

•     Social Network Graph : Who is connected to whom? Whose post should be visible 
on the user’s wall or homepage on a social network site?  

•    Search and Retrieve : Search all relevant pages with a particular keyword ranked by 
the number of times a keyword appears on a page.    

     Definition 
 NoSQL doesn’t have a formal  definition  . It represents a form of persistence/data storage mechanism that is 
fundamentally different from RDBMS. But if pushed to define NoSQL, here it is: NoSQL is an umbrella term 
for data stores that don’t follow the RDBMS principles. 

 ■   Note   The term was used initially to mean “do not use SQL if you want to scale.” Later this was redefined 
to “not only SQL,” which means that in addition to SQL other complimentary database solutions exist .    

  Figure 2-1.     Structured vs. un/Semi-Structured data            

 



CHAPTER 2 ■ NOSQL

15

     A Brief  History   of NoSQL 
 In 1998, Carlo Strozzi coined the term  NoSQL . He used this term to identify his database because the 
database didn’t have a SQL interface. The term resurfaced in early 2009 when Eric Evans (a Rackspace 
employee) used this term in an event on open source distributed databases to refer to distributed databases 
that were non-relational and did not follow the ACID features of relational databases.   

       ACID vs. BASE   
 In the introduction, we mentioned that the traditional RDBMS applications have focused on  ACID 
transactions  . Howsoever essential these qualities may seem, they are quite incompatible with availability 
and performance requirements for applications of a Web scale. 

 Let’s say, for example, that you have a company like OLX, which sells products such as unused household 
goods (old furniture, vehicles, etc.) and uses RDBMS as its database. Let’s consider two scenarios. 

 First scenario: Let’s look at an  e-commerce shopping site   where a user is buying a product. During the 
transaction, the user locks a part of database, the inventory, and every other user must wait until the user who 
has put the lock completes the transaction. 

 Second scenario: The application might end up using  cached data or even unlocked records  , resulting in 
inconsistency. In this case, two users might end up buying the product when the inventory actually was zero. 

 The system may become slow, impacting scalability and user experience. 

 In contrary to the ACID approach of traditional RDBMS systems, NoSQL solves the problem using an 
approach popularly called as BASE. Before explaining BASE, let’s explore the concept of the CAP theorem. 

     CAP Theorem ( Brewer’s Theorem  ) 
 Eric Brewer outlined the  CAP theorem      in 2000. This is an important concept that needs to be well 
understood by developers and architects dealing with distributed databases. The theorem states that when 
designing an application in a distributed environment there are three basic requirements that exist, namely 
consistency, availability, and partition tolerance.

•     Consistency  means that the data remains consistent after any operation is 
performed that changes the data, and that all users or clients accessing the 
application see the same updated data.  

•    Availability  means that the system is always available.  

•    Partition Tolerance  means that the system will continue to function even if it 
is partitioned into groups of servers that are not able to communicate with one 
another.    

 The CAP theorem states that at any point in time a distributed system can fulfil only two of the above 
three guarantees (Figure  2-2 ).   



CHAPTER 2 ■ NOSQL

16

      The BASE 
 Eric Brewer coined the  BASE acronym  .  BASE   can be explained as

•     Basically Available  means the system will be available in terms of the CAP theorem.  

•    Soft state  indicates that even if no input is provided to the system, the state will 
change over time. This is in accordance to eventual consistency.  

•    Eventual consistency  means the system will attain consistency in the long run, 
provided no input is sent to the system during that time.    

 Hence BASE is in contrast with the RDBMS ACID transactions. 
 You have seen that  NoSQL databases   are eventually consistent but the eventual consistency 

implementation may vary across different NoSQL databases. 
  NRW   is the notation used to describe how the eventual consistency model is implemented across 

NoSQL databases where

•     N  is the number of data copies that the database has maintained.  

•    R  is the number of copies that an application needs to refer to before returning a 
read request’s output.  

•    W  is the number of data copies that need to be written to before a write operation is 
marked as completed successfully.    

 Using these  notation configurations  , the databases implement the model of eventual consistency. 

  Figure 2-2.     CAP Theorem            

 



CHAPTER 2 ■ NOSQL

17

 Consistency can be implemented at both read and write operation levels.

     Write Operations     

  N=W implies that the write operation will update all data copies before returning 
the control to the client and marking the write operation as successful. This 
is similar to how the traditional RDBMS databases work when implementing 
synchronous replication. This setting will slow down the write performance.  

  If write performance is a concern, which means you want the writes to be 
happening fast, you can set W=1, R=N. This implies that the write will just update 
any one copy and mark the write as successful, but whenever the user issues a 
read request, it will read all the copies to return the result. If either of the copies 
is not updated, it will ensure the same is updated, and then only the read will be 
successful. This implementation will slow down the read performance.  

  Hence most NoSQL implementations use N>W>1. This implies that greater than 
one node needs to be updated successfully; however, not all nodes need to be 
updated at the same time.  

    Read Operations     

  If R is set to 1, the read operation will read any data copy, which can be outdated. 
If R>1, more than one copy is read, and it will read most recent value. However, 
this can slow down the read operation.  

  Using N<W+R always ensures that a read operation retrieves the latest value. This 
is because the number of written copies and read copies are always greater than 
the actual number of copies, ensuring that at least one read copy has the latest 
version. This is  quorum assembly .    

 Table  2-1  compares ACID vs. BASE.      

   Table 2-1.     ACID vs. BASE     

 ACID  BASE 

 Atomicity  Basically Available 

 Consistency  Eventually Consistency 

 Isolation  Soft State 

 Durable 

     NoSQL Advantages and Disadvantages 
 In this section, you will look at the advantages and disadvantages of NoSQL databases. 

     Advantages of NoSQL 
 Let’s talk about the  advantages   of NoSQL databases.

•     High scalability : This scaling up approach fails when the transaction rates and 
fast response requirements increase. In contrast to this, the new generation of 
NoSQL databases is designed to scale out (i.e. to expand horizontally using low-end 
commodity servers).  



CHAPTER 2 ■ NOSQL

18

•    Manageability and administration : NoSQL databases are designed to mostly work 
with automated repairs, distributed data, and simpler data models, leading to low 
manageability and administration.  

•    Low cost : NoSQL databases are typically designed to work with a cluster of cheap 
commodity servers, enabling the users to store and process more data at a low cost.  

•    Flexible data models : NoSQL databases have a very flexible data model, enabling 
them to work with any type of data; they don’t comply with the rigid RDBMS data 
models. As a result, any application changes that involve updating the database 
schema can be easily implemented.     

      Disadvantages   of NoSQL 
 In addition to the above mentioned advantages, there are many impediments that you need to be aware of 
before you start developing applications using these platforms.

•     Maturity : Most NoSQL databases are pre-production versions with key features that 
are still to be implemented. Thus, when deciding on a NoSQL database, you should 
analyze the product properly to ensure the features are fully implemented and not 
still on the To-do  list  .  

•    Support : Support is one limitation that you need to consider. Most NoSQL databases 
are from start-ups which were open sourced. As a result, support is very minimal as 
compared to the enterprise software companies and may not have global reach or 
support resources.  

•    Limited Query Capabilities : Since NoSQL databases are generally developed to 
meet the scaling requirement of the web-scale applications, they provide limited 
querying capabilities. A simple querying requirement may involve significant 
programming expertise.  

•    Administration : Although NoSQL is designed to provide a no-admin solution, it still 
requires skill and effort for installing and maintaining the solution.  

•    Expertise : Since NoSQL is an evolving area, expertise on the technology is limited in 
the developer and administrator community.    

 Although NoSQL is becoming an important part of the database landscape, you need to be aware of the 
limitations and advantages of the products to make the correct choice of the NoSQL database platform.   

     SQL vs. NoSQL Databases 
 Now you know the details regarding NoSQL databases. Although NoSQL is increasingly getting adopted as 
a database solution, it’s not here to replace  SQL   or  RDBMS databases  . In this section, you will look at the 
differences between SQL and NoSQL databases. 

 Let’s do a quick recap of the RDBMS system. RDBMS systems have prevailed for about 30 years, and 
even now they are the default choice of the solution architect for data storage for an application. If we 
will list a few of the good points of RDBMS system, first and the foremost is the use of SQL, which is a rich 
declarative query language used for data processing. It is well understood by users. In addition, the RDBMS 
system offers ACID support for transactions, which is a must in many sectors, such as banking applications. 



CHAPTER 2 ■ NOSQL

19

 However, the biggest drawbacks of the RDBMS system are its difficulty in handling schema changes 
and scaling issues as data increases. As data increases, the read read/write performance degrades. You face 
scaling issues with RDBMS systems because they are mostly designed to scale up and not scale out. 

 In contrast to the SQL RDBMS databases, NoSQL promotes the data stores, which break away from the 
RDBMS paradigm. 

 Let’s talk about  technical scenarios   and how they compare in  RDBMS vs. NoSQL  :

•      Schema flexibility    :  This is a must for easy future enhancements and integration with 
external applications (outbound or inbound). 

 RDBMS are quite inflexible in their design. Adding a column is an absolute no-no, 
especially if the table has some data. The reasons range from default value, indexes, 
and performance implications. More often than not, you end up creating new tables, 
and increasing the complexity by introducing relationships across tables.  

•    Complex    queries    :  The traditional designing of the tables leads to developers writing 
complex JOIN queries, which are not only difficult to implement and maintain but 
also take substantial database resources to execute.  

•     Data update    :  Updating data across tables is probably one of the more complex 
scenarios, especially if they are a part of the transaction. Note that keeping the 
transaction open for a long duration hampers the performance. You also have to plan 
for propagating the updates to multiple nodes across the system. And if the system 
does not support multiple masters or writing to multiple nodes simultaneously, 
there is a risk of node failure and the entire application moving to read-only mode.  

•     Scalability    :  Often the only scalability that may be required is for read operations. 
However, several factors impact this speed as operations grow. Some of the key 
questions to ask are:

•    What is the time taken to synchronize the data across physical database 
instances?  

•   What is the time taken to synchronize the data across datacenters?  

•   What is the bandwidth requirement to synchronize data?  

•   Is the data exchanged optimized?  

•   What is the latency when any update is synchronized across servers? Typically, 
the records will be locked during an update.    

 NoSQL-based solutions provide answers to most of the challenges listed above. 

 Let’s now see what NoSQL has to offer against each technical question mentioned 
above.  

•     Schema flexibility    :  Column-oriented databases store data as columns as opposed 
to rows in RDBMS. This allows the flexibility of adding one or more columns as 
required, on the fly. Similarly, document stores that allow storing semi-structured 
data are also good options.  



CHAPTER 2 ■ NOSQL

20

•    Complex    queries    :  NoSQL databases do not have support for relationships or foreign 
keys. There are no complex queries. There are no JOIN statements. 

 Is that a drawback? How does one query across tables? 

 It is a functional drawback, definitely. To query across tables, multiple queries 
must be executed. A database is a shared resource, used across application servers 
and must not be released from use as quickly as possible. The options involve a 
combination of simplifying the queries to be executed, caching data, and performing 
complex operations in the application tier. A lot of databases provide in-built entity-
level caching. This means that when a record is accessed, it may be automatically 
cached transparently by the database. The cache may be in-memory distributed 
cache for performance and scale.  

•     Data update    :  Data updating and synchronization across physical instances are 
difficult engineering problems to solve. Synchronization across nodes within a 
datacenter has a different set of requirements compared to synchronizing across 
multiple datacenters. One would want the latency within a couple of milliseconds or 
tens of milliseconds at the best. NoSQL solutions offer great synchronization options. 

 MongoDB, for example, allows concurrent updates across nodes, synchronization 
with conflict resolution, and eventually, consistency across the datacenters within 
an acceptable time that would run in few milliseconds. As such, MongoDB has 
no concept of isolation. Note that now because the complexity of managing the 
transaction may be moved out of the database, the application will have to do some 
hard work. 

 An example of this is a two-phase commit while implementing transactions 
(   http://docs.mongodb.org/manual/tutorial/perform-two-phase-commits/     ). 

 A plethora of databases offer multiversion concurrency control (MCC) to achieve 
transactional consistency. 

 Well, as Dan Pritchett (   www.addsimplicity.com/     ), Technical Fellow at eBay puts it, 
eBay.com does not use transactions. Note that PayPal does use transactions.  

•     Scalability    :  NoSQL solutions provider greater scalability for obvious reasons. A lot 
of the complexity that is required for transaction-oriented RDBMS does not exist 
in ACID non-compliant NoSQL databases. Interestingly, since NoSQL does not 
provide cross-table references and there are no JOIN queries possible, and because 
you can’t write a single query to collate data across multiple tables, one simple and 
logical solution is to—at times—duplicate the data across tables. In some scenarios, 
embedding the information within the primary entity—especially in one-to-one 
mapping cases—may be a great idea.    

 Table  2-2  compares SQL and NoSQL technologies.   

http://docs.mongodb.org/manual/tutorial/perform-two-phase-commits/
http://www.addsimplicity.com/


CHAPTER 2 ■ NOSQL

21

   Table 2-2.     SQL vs. NoSQL     

 SQL Databases  NoSQL Databases 

 Types  All types support SQL standard.  Multiple types exists, such as document 
stores, key value stores, column 
databases,     etc. 

 Development History  Developed in 1970.  Developed in 2000s. 

 Examples  SQL Server, Oracle, MySQL.  MongoDB, HBase, Cassandra. 

 Data Storage Model  Data is stored in rows and columns 
in a table, where each column is of a 
specific type. 
 The tables generally are created on 
principles of normalization. 
 Joins are used to retrieve data from 
multiple tables. 

 The data model depends on the database 
type. Say data is stored as a key-value 
pair for key-value stores. In document-
based databases, the data is stored as 
documents. 
 The data model is flexible, in contrast to 
the rigid table model of the RDBMS. 

 Schemas  Fixed structure and schema, so any 
change to schema involves altering 
the database. 

 Dynamic schema, new data types, or 
structures can be accommodated by 
expanding or altering the current schema. 
New fields can be added dynamically. 

 Scalability  Scale up approach is used; this 
means as the load increases, bigger, 
expensive servers are bought to 
accommodate the data. 

 Scale out approach is used; this means 
distributing the data load across 
inexpensive commodity servers. 

 Supports Transactions  Supports ACID and transactions.  Supports partitioning and availability, 
and compromises on transactions. 
Transactions exist at certain level, such as 
the database level or document level. 

 Consistency  Strong consistency.  Dependent on the product. Few chose to 
provide strong consistency whereas few 
provide eventual consistency. 

 Support  High level of enterprise support is 
provided. 

 Open source model. Support through third 
parties or companies building the open 
source products. 

 Maturity  Have been around for a long time.  Some of them are mature; others are 
evolving. 

 Querying Capabilities  Available through easy-to-use GUI 
interfaces. 

 Querying may require programming 
expertise and knowledge. Rather than 
an UI, focus is on functionality and 
programming interfaces. 

 Expertise  Large community of developers 
who have been leveraging the SQL 
language and RDBMS concepts to 
architect and develop applications. 

 Small community of developers working 
on these open source tools.     



CHAPTER 2 ■ NOSQL

22

     Categories of NoSQL Databases 
 In this section, you will quickly explore the NoSQL landscape. You will look at the emerging categories of 
NoSQL databases. Table  2-3  shows a few of the projects in the NoSQL landscape, with the types and the 
players in each category.  

 The NoSQL databases are categorized on the basis of how the data is stored. NoSQL mostly follows 
a horizontal structure because of the need to provide curated information from large volumes, generally 
in near real-time. They are optimized for insert and retrieve operations on a large scale with built-in 
capabilities for replication and clustering. 

 Table  2-4  briefly provides a feature comparison between the various categories of NoSQL databases.      

   Table 2-4.    Feature Comparison   

 Feature  Column-Oriented  Document Store  Key-Value Store  Graph 

 Table-like schema support 
(columns) 

 Yes  No  No  Yes 

 Complete update/fetch  Yes  Yes  Yes  Yes 

 Partial update/fetch  Yes  Yes  Yes  No 

 Query/filter on value  Yes  Yes  No  Yes 

 Aggregate across rows  Yes  No  No  No 

 Relationship between entities  No  No  No  Yes 

 Cross-entity view support  No  Yes  No  No 

 Batch fetch  Yes  Yes  Yes  Yes 

 Batch update  Yes  Yes  Yes  No 

   Table 2-3.    NoSQL  Categories     

 Category  Brief Description  For E.g. 

 Document-based  Data is stored in form of documents. 
 For instance, 
 {Name=“Test User”, Address=“Address1”, Age:8} 

 MongoDB 

 XML database  XML is used for storing data.  MarkLogic 

 Graph databases  Data is stored as node collections. The nodes are 
connected via edges. A node is comparable to an 
object in a programming language. 

 GraphDB 

 Key-value store  Stores data as key-value pairs.  Cassandra, Redis, memcached 



CHAPTER 2 ■ NOSQL

23

 The important thing when considering a NoSQL project is the feature set you are interested in. When deciding 
on a NoSQL product, first you need to understand the problem requirements very carefully, and then you should 
look at other people who have already used the NoSQL product to solve similar problems. Remember that 
NoSQL is still maturing, so this will enable you to learn from peers and previous deployments, and make 
better  choi  ces. 

 In addition, you also need to consider the following questions.

  •    How big is the data that needs to be handled?  

  •   What throughput is acceptable for read and write?  

  •   How is consistency is achieved in the system?  

  •   Does the system need to support high write performance or high read performance?  

  •   How easy is the maintainability and administration?  

  •   What needs to be queried?  

  •   What is the benefit of using NoSQL?    

 We recommend that you start small but significant, and consider a hybrid approach wherever  possi  ble.  

     Summary 
 In this chapter, you learned about NoSQL. You should now understand what NoSQL is and how it is different 
from SQL. You also looked into the various categories of NoSQL. 

 In the following chapters, you will look into MongoDB, which is a document-based NoSQL database.     



25© Shakuntala Gupta Edward, Navin Sabharwal 2015 
S.G. Edward and N. Sabharwal, Practical MongoDB, DOI 10.1007/978-1-4842-0647-8_3

    CHAPTER 3   

 Introducing MongoDB           

    “MongoDB is one of the leading NoSQL document store databases. Itenables organizations 
to handle and gain meaningful insights from Big Data.”    

 Some leading enterprises and consumer IT companies have leveraged the capabilities of MongoDB in 
their products and solutions. The MongoDB 3.0 release introduced a pluggable storage engine and the Ops 
Manager, which has extended the set of applications that are best suited for MongoDB. 

 MongoDB derives its name from the word “humungous.”Like other NoSQL databases, MongoDB also 
doesn’t comply with the RDBMS principles. It doesn’t have the concepts of tables, rows, and columns. Also, 
it doesn’t provide features of ACID compliance, JOINS, foreign keys, etc. 

 MongoDB stores data as  Binary JSON documents   (also known as BSON). The documents can have 
different schemas, which means that the schema can change as the application evolves. MongoDB is built 
for scalability, performance, and high availability. 

 In this chapter, we will talk a bit about MongoDB’s creation and the design decisions. We will look at the 
key features, components, and architecture of MongoDB in the following chapters. 

      History   
 In the later part of 2007, Dwight Merriman, Eliot Horowitz, and their team decided to develop an online 
service. The intent of the service was to provide a platform for developing, hosting, and auto-scaling web 
applications, much in line with products such as the Google App Engine or Microsoft Azure. Soon they 
realized that no open source database platform suited the requirements of the service. 

 “We felt like a lot of existing databases didn’t really have the ‘cloud computing’ principles you want 
them to have: elasticity, scalability, and … easy administration, but also ease of use for developers and 
operators,” Merriman said. “[MySQL] doesn’t have all those properties.” 1  So they decided to build a database 
that would not comply with the RDBMS model. 

 A year later, the database for the service was ready to use. The service itself was never released but the 
team decided in 2009 to open source the database as MongoDB. In March of 2010,the release of 
MongoDB 1.4.0 was considered production-ready. The latest production release is 3.0and it was released 
in March 2015.MongoDB was built under the sponsorship of 10gen, a New York–based startup.  

   1  The Register, Cade Metz, “MongoDB daddy: My baby beats Google BigTable”, 
    www.theregister.co.uk/2011/05/25/the_once_and_future_mongodb/     ), May 25, 2011.  

http://www.theregister.co.uk/2011/05/25/the_once_and_future_mongodb/


CHAPTER 3 ■ INTRODUCING MONGODB

26

     MongoDB Design Philosophy 
 In one of his talks, Eliot Horowitz mentioned that MongoDB wasn’t designed in a lab and is instead built 
from the experiences of building large scale, high availability, and robust systems. In this section, we will 
briefly look at some of the  design decisions   that led to what MongoDB is today. 

      Speed, Scalability, and Agility   
 The design team’s goal when designing MongoDB was to create a database that was fast, massively scalable, 
and easy to use. To achieve speed and horizontal scalability in a partitioned database, as explained in the 
CAP theorem, the consistency and transactional support have to be compromised. Thus, per this theorem, 
MongoDB provides high availability, scalability, and partitioning at the cost of consistency and transactional 
support. In practical terms, this means that instead of tables and rows, MongoDB uses documents to make it 
flexible, scalable, and fast.  

      Non-Relational Approach      
 Traditional RDBMS platforms provide scalability using a scale-up approach, which requires a faster server 
to increase performance. The following issues in RDBMS systems led to why MongoDB and other NoSQL 
databases were designed the way they are designed:

•    In order to scale out, the RDBMS database needs to link the data available in two 
or more systems in order to report back the result. This is difficult to achieve in 
RDBMS systems since they are designed to work when all the data is available for 
computation together. Thus the data has to be available for processing at a single 
location.  

•   In case of multiple Active-Active servers, when both are getting updated from 
multiple sources there is a challenge in determining which update is correct.  

•   When an application tries to read data from the second server, and the information 
has been updated on the first server but has yet to be synchronized with the second 
server, the information returned may be stale.    

 The MongoDB team decided to take a non-relational approach to solving these problems. As 
mentioned, MongoDB stores its data in BSON documents where all the related data is placed together, 
which means everything is in one place. The queries in MongoDB are based on keys in the document, so the 
documents can be spread across multiple servers. Querying each server means it will check its own set of 
documents and return the result. This enables linear scalability and improved performance. 

 MongoDB has a primary-secondary replication where the primary accepts the write requests. If the 
write performance needs to be improved, then sharding can be used; this splits the data across multiple 
machines and enables these multiple machines to update different parts of the datasets. Sharding is 
automatic in MongoDB; as more machines are added, data is distributed automatically.  

     JSON-Based Document Store 
 MongoDB uses a JSON-based (JavaScript Object Notation) document  store      for the data. JSON/BSON offers 
a schema-less model, which provides flexibility in terms of database design. Unlike in RDBMSs, changes can 
be done to the schema seamlessly. 

 This design also makes for high performance by providing for grouping of relevant data together 
internally and making it easily searchable.        



CHAPTER 3 ■ INTRODUCING MONGODB

27

 A JSON document contains the actual data and is comparable to a row in SQL. However, in contrast to 
RDBMS rows, documents can have dynamic schema. This means documents within a collection can have 
different fields or structure, or common fields can have different type of data. 

 A document contains data in form of key-value pairs. Let’s understand this with an example: 

  {  
  "Name": "ABC",  
  "Phone": ["1111111",  
  ........"222222"  
  ........],  
  "Fax":..  
  }  

 As mentioned, keys and values come in pairs. The value of a key in a document can be left blank. 
In the above example, the document has three keys, namely “Name,” ”Phone,” and “Fax.” The “Fax” key has 
no value.  

      Performance vs. Features      
 In order to make MongoDB high performance and fast, certain features commonly available in RDBMS 
systems are not available in MongoDB. MongoDB is a document-oriented DBMS where data is stored as 
documents. It does not support JOINs, and it does not have fully generalized transactions. However, it does 
provide support for secondary indexes, it enables users to query using query documents, and it provides 
support for atomic updates at a per document level. It provides a replica set, which is a form of master-slave 
replication with automated failover, and it has built-in horizontal scaling.  

     Running the Database Anywhere 
 One of the main design decisions was the ability to run the  database   from anywhere, which means it should 
be able to run on servers, VMs, or even on the cloud using the pay-for-what-you-use service. The language 
used for implementing MongoDB is C++, which enables MongoDB to achieve this goal. The 10gen site 
provides binaries for different OS platforms, enabling MongoDB to run on almost any type of machine.   

     SQL  Comparison      
 The following are the ways in which MongoDB is different from SQL.

    1.    MongoDB uses documents for storing its data, which offer a flexible schema 
(documents in same collection can have different fields). This enables the users 
to store nested or multi-value fields such as arrays, hashes, etc. In contrast, 
RDBMS systems offer a fixed schema where a column’s value should have a 
similar data type. Also, it’s not possible to store arrays or nested values in a cell.  

    2.    MongoDB doesn’t provide support for JOIN operations, like in SQL. However, it 
enables the user to store all relevant data together in a single document, avoiding 
at the periphery the usage of JOINs. It has a workaround to overcome this issue. 
We will be discussing this in more detail in a later chapter.  



CHAPTER 3 ■ INTRODUCING MONGODB

28

    3.    MongoDB doesn’t provide support for transactions in the same way as SQL. 
However, it guarantees atomicity at the document level. Also, it uses an isolation 
operator to isolate write operations that affect multiple documents, but it does 
not provide “all-or-nothing” atomicity for multi-document write operations.      

     Summary 
 In this chapter, you got to know MongoDB, its history, and brief details on design of the MongoDB system. 
In the next chapters, you will learn more about MongoDB’s data model.      



29© Shakuntala Gupta Edward, Navin Sabharwal 2015 
S.G. Edward and N. Sabharwal, Practical MongoDB, DOI 10.1007/978-1-4842-0647-8_4

    CHAPTER 4   

 The MongoDB Data Model           

    “MongoDB is designed to work with documents without any need of predefined columns 
or data types (unlike relational databases), making the data model extremely flexible.”    

 In this chapter, you will learn about the MongoDB data model. You will also learn what flexible schema 
(polymorphic schema) means and why it’s a significant contemplation of  MongoDB   data model. 

     The Data Model 
 In the previous chapter, you saw that MongoDB is a document-based database system where the documents 
can have a flexible schema. This means that documents within a collection can have different (or same) sets 
of fields. This affords you more flexibility when dealing with data. 

 In this chapter, you will explore MongoDB’s flexible data model. Wherever required, we will 
demonstrate the difference in the approach compared to RDBMS systems. 

 A MongoDB deployment can have many databases. Each database is a set of collections. Collections 
are similar to the concept of tables in SQL; however, they are schemaless. Each collection can have multiple 
documents. Think of a document as a row in SQL. Figure  4-1  depicts the MongoDB  database model  .  



CHAPTER 4 ■ THE MONGODB DATA MODEL

30

 In an RDBMS system, since the table structures and the data types for each column are fixed, you can 
only add data of a particular data type in a column. In MongoDB, a collection is a collection of documents 
where data is stored as key-value pairs. 

 Let’s understand with an example how data is stored in a document. The following document holds the 
name and phone numbers of the users: 

  {"Name": "ABC", "Phone": ["1111111",      "222222" ] }  

  Dynamic schema   means that documents within the same collection can have the same or different sets 
of fields or structure, and even common fields can store different types of values across documents. There’s 
no rigidness in the way data is stored in the documents of a collection. 

  Figure 4-1.    MongoDB  database model         

 



CHAPTER 4 ■ THE MONGODB DATA MODEL

31

 Let’s see an example of a Region collection: 

  { "R_ID" : "REG001",  "Name" : "United States" }  
  { "R_ID" :1234,  "Name" : "New York" , "Country" : "United States" }  

 In this code, you have two  documents   in the Region collection. Although both documents are part of a 
single collection, they have different structures: the second collection has an additional field of information, 
which is country. In fact, if you look at the “R_ID” field, it stores a STRING value in the first document 
whereas it’s a number in the second document. 

 Thus a collection’s documents can have entirely different schemas. It falls to the application to store the 
documents in a particular collection together or to have multiple collections. 

     JSON and BSON 
 MongoDB is a document-based database. It uses Binary  JSON   for storing its data. 

 In this section, you will learn about JSON and  Binary-JSON (BSON)  . JSON stands for JavaScript Object 
Notation. It’s a standard used for data interchange in today’s modern Web (along with XML). The format is 
human and machine readable. It is not only a great way to exchange data but also a nice way to store data. 

 All the basic data types (such as strings, numbers, Boolean values, and arrays) are supported by JSON. 
 The following code shows what a JSON document looks like: 

  {  
  "_id" : 1,  
  "name" : { "first" : "John", "last" : "Doe" },  
  "publications" : [  
             {  
               "title" : "First Book",  
               "year" : 1989,  
               "publisher" : "publisher1"  
             },  
             { "title" : "Second Book",  
               "year" : 1999,  
               "publisher" : "publisher2"  
             }  
  ]  
  }  

 JSON lets you keep all the related pieces of information together in one place, which provides excellent 
performance. It also enables the updating of a document to be independent. It is schemaless. 

    Binary JSON (BSON)      
 MongoDB stores the JSON document in a binary-encoded format. This is termed as BSON. The BSON data 
model is an extended form of the JSON data model. 

 MongoDB’s implementation of a BSON document is fast, highly traversable, and lightweight. It supports 
embedding of arrays and objects within other arrays, and also enables MongoDB to reach inside the objects 
to build indexes and match objects against queried expressions, both on top-level and nested BSON keys.   



CHAPTER 4 ■ THE MONGODB DATA MODEL

32

     The  Identifier (_id)      
 You have seen that MongoDB stores data in documents. Documents are made up of key-value pairs. 
Although a document can be compared to a row in RDBMS, unlike a row, documents have flexible schema. 
A key, which is nothing but a label, can be roughly compared to the column name in RDBMS. A key is used 
for querying data from the documents. Hence, like a RDBMS primary key (used to uniquely identify each 
row), you need to have a key that uniquely identifies each document within a collection. This is referred to 
as _id in MongoDB. 

 If you have not explicitly specified any value for a key, a unique value will be automatically generated 
and assigned to it by MongoDB. This key value is immutable and can be of any data type except arrays.  

      Capped Collection      
 You are now well versed with collections and documents. Let’s talk about a special type of collection called a 
capped collection. 

 MongoDB has a concept of capping the collection. This means it stores the documents in the collection 
in the inserted order. As the collection reaches its limit, the documents will be removed from the collection 
in FIFO (first in, first out) order. This means that the least recently inserted documents will be removed first. 

 This is good for use cases where the order of insertion is required to be maintained automatically, 
and deletion of records after a fixed size is required. One such use cases is log files that get automatically 
truncated after a certain size. 

 ■   Note   MongoDB itself uses capped collections for maintaining its replication logs. Capped collection 
guarantees preservation of the data in insertion order, so queries retrieving data in the insertion order return 
results quickly and don’t need an index. Updates that change the document size are not allowed.    

      Polymorphic Schemas   
 As you are already conversant with the schemaless nature of MongoDB data structure, let’s now explore 
polymorphic schemas and use cases. 

 A polymorphic schema is a schema where a collection has documents of different types or schemas. 
A good example of this schema is a collection named Users. Some user documents might have an extra fax 
number or email address, while others might have only phone numbers, yet all these documents coexist 
within the same Users collection. This schema is generally referred to as a polymorphic schema. 

 In this part of the chapter, you’ll explore the various reasons for using a  polymorphic schema  . 

        Object-Oriented Programming      
 Object-oriented programming enables you to have classes share data and behaviors using inheritance. 
It also lets you define functions in the parent class that can be overridden in the child class and thus will 
function differently in a different context. In other words, you can use the same function name to manipulate 
the child as well as the parent class, although under the hood the implementations might be different. This 
feature is referred to as polymorphism. 

 The requirement in this case is the ability to have a schema wherein all of the related sets of objects or 
objects within a hierarchy can fit in together and can also be retrieved identically. 



CHAPTER 4 ■ THE MONGODB DATA MODEL

33

 Let’s consider an example. Suppose you have an application that lets the user upload and share 
different content types such as HTML pages, documents, images, videos, etc. Although many of the fields 
are common across all of the above-mentioned content types (such as Name, ID, Author, Upload Date, and 
Time), not all fields are identical. For example, in the case of images, you have a binary field that holds the 
image content, whereas an HTML page has a large text field to hold the HTML content. 

 In this scenario, the MongoDB polymorphic schema can be used wherein all of the content node types 
are stored in the same collection, such as LoadContent, and each document has relevant fields only. 

  // "Document collections" - "HTMLPage" document  
  {  
  _id: 1,  
  title: "Hello",  
  type: "HTMLpage",  
  text: "<html>Hi..Welcome to my world</html>"  
  }  
  ...  
  // Document collection also has a "Picture" document  
  {  
  _id: 3,  
  title: "Family Photo",  
  type: "JPEG",  
  sizeInMB: 10,........  
  }  

 This schema not only enables you to store related data with different structures together in a same 
collection, it also simplifies the querying. The same collection can be used to perform queries on common 
fields such as fetching all content uploaded on a particular date and time as well as queries on specific fields 
such as finding images with a size greater than X MB. 

 Thus object-oriented programming is one of the use cases where having a polymorphic schema 
makes sense.    

       Schema Evolution   
 When you are working with databases, one of the most important considerations that you need to account 
for is the schema evolution (i.e. the change in the schema’s impact on the running application). The design 
should be done in a way as to have minimal or no impact on the application, meaning no or minimal 
downtime, no or very minimal code changes, etc. 

 Typically, schema evolution happens by executing a migration script that upgrades the database 
schema from the old version to the new one. If the database is not in production, the script can be simple 
drop and recreation of the database. However, if the database is in a production environment and contains 
live data, the migration script will be complex because the data will need to be preserved. The script should 
take this into consideration. Although MongoDB offers an Update option that can be used to update all the 
documents’ structure within a collection if there’s a new addition of a field, imagine the impact of doing 
this if you have thousands of documents in the collection. It would be very slow and would have a negative 
impact on the underlying application’s performance. One of the ways of doing this is to include the new 
structure to the new documents being added to the collection and then gradually migrating the collection 
in the background while the application is still running. This is one of the many use cases where having a 
polymorphic schema will be advantageous. 

www.allitebooks.com

http://www.allitebooks.org


CHAPTER 4 ■ THE MONGODB DATA MODEL

34

 For example, say you are working with a Tickets collection where you have documents with ticket 
details, like so: 

  // "Ticket1" document (stored in "Tickets" collection")  
  {  
  _id: 1,  
  Priority: "High",  
  type: "Incident",  
  text: "Printer not working"  
  }...........  

 At some point, the application team decides to introduce a “short description” field in the ticket 
document structure, so the best alternative is to introduce this new field in the new ticket documents. 
Within the application, you embed a piece of code that will handle retrieving both “old style” documents 
(without a short description field) and “new style” documents (with a short description field). Gradually the old 
style documents can be migrated to the new style documents. Once the migration is completed, if required 
the code can be updated to remove the piece of code that was embedded to handle the missing field.    

     Summary 
 In this chapter, you learned about the MongoDB data model. You also looked at identifiers and capped 
collections. You concluded the chapter with an understanding of how the flexible schema helps. 

 In the following chapter, you will get started with MongoDB. You will perform the installation and 
configuration of MongoDB.     



35© Shakuntala Gupta Edward, Navin Sabharwal 2015 
S.G. Edward and N. Sabharwal, Practical MongoDB, DOI 10.1007/978-1-4842-0647-8_5

    CHAPTER 5   

 MongoDB - Installation and 
Configuration           

    “MongoDB is a cross-platform database.”    

 In this chapter, you will go over the process of installing MongoDB on Windows and Linux. 

     Select Your Version 
  MongoDB   runs on most platforms. A list of all the available packages is available on the MongoDB 
downloads page at    www.mongodb.org/downloads     . 

 The correct version for your environment will depend on your server’s operating system and the kind of 
processor. MongoDB supports both 32-bit and 64-bit architecture but it’s recommended to use 64-bit in your 
production environment. 

 ■    32-bit limitation     This is due to the usage of memory mapped files in MongoDB. This limits the 32-bit 
builds to around 2GB of data. It’s recommended to use a 64-bit build for a production environment for 
performance reasons.  

 The latest MongoDB production release is 3.0.4 at the time of writing this book. Downloads for 
MongoDB are available for Linux, Windows, Solaris, and Mac OS X. 

 The MongoDB download page is divided in the following  sections  :

•    Current Stable Release (3.0.4) – 6/16/2015  

•   Previous Releases (stable)  

•   Development Releases (unstable)    

 The current release is the most stable recent version available, which at time of writing of the book is 
3.0.4. When a new version is released, the prior stable release is moved to the Previous Releases section. 

 The development releases, as the name suggests, are the versions that are still under development and 
hence are tagged as unstable. These versions can have additional features but they may not be stable since 
they are still in the development phase. You can use the development versions to try out new features and 
provide feedback to 10gen regarding the features and issues faced.  

http://www.mongodb.org/downloads


CHAPTER 5 ■ MONGODB - INSTALLATION AND CONFIGURATION

36

     Installing MongoDB on Linux 
 This section covers installing MongoDB on a  LINUX system  . For the following demonstration, we will be 
using an Ubuntu Linux distribution. You can install MongoDB either manually or via repositories. We will 
walk you through both options. 

     Installing Using Repositories 
 In LINUX, repositories are the online directories that contain software. Aptitude is the program used to install 
software on Ubuntu. Although MongoDB might be present in the default repositories, there is the possibility 
of an out-of-date version, so the first step is to configure Aptitude to look at the  custom repository  .

    1.    Issue the following to import the  public.GPG  key for MongoDB: 

  sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv 7F0CEB10   

    2.    Next, use the following command to create the  /etc/apt/sources.list.d/
mongodb-org-3.0.list  file: 

  echo "deb     http://repo.mongodb.org/apt/ubuntu       "$(lsb_release -sc)"/
mongodb-org/3.0 multiverse" | sudo tee /etc/apt/sources.list.d/
mongodb-org-3.0.list   

    3.    Finally, use the following command to reload the repository: 

  sudo apt-get update  

 Now Aptitude is aware of the manually added repository.      

    4.    Next, you need to install the software. The following command should be issued 
in the shell to install MongoDB’s current stable version: 

  sudo apt-get install -y mongodb-org      

 You’ve successfully installed MongoDB, and that’s all there is to it.  

     Installing Manually 
 In this section, you will see how MongoDB can be installed manually. This knowledge is important in the 
following cases:

•    When the Linux distribution doesn’t use Aptitude.  

•   When the version you require is not available through repositories or is not part of 
the repository.  

•   When you need to run multiple MongoDB versions simultaneously.    

http://repo.mongodb.org/apt/ubuntu


CHAPTER 5 ■ MONGODB - INSTALLATION AND CONFIGURATION

37

 The first step in a manual  installation   is to decide on the version of MongoDB to use and then download 
from the site. Next, the package needs to be extracted using the following command: 

  $ tar -xvf mongodb-linux-x86_64-3.0.4.tgz  
  mongodb-linux-i686-3.0.4/THIRD-PARTY-NOTICES  
  mongodb-linux-i686-3.0.4/GNU-AGPL-3.0  
  mongodb-linux-i686-3.0.4/bin/mongodump  
  ............  
  mongodb-linux-i686-3.0.4/bin/mongosniff  
  mongodb-linux-i686-3.0.4/bin/mongod  
  mongodb-linux-i686-3.0.4/bin/mongos  
  mongodb-linux-i686-3.0.4/bin/mongo  

 This extracts the package content to a new directory, namely  mongodb-linux-x86_64-3.0.4  (which 
is located under your current directory). The directory contains many subdirectories and files. The main 
executable files are under the subdirectory  bin . 

 This completes the MongoDB installation successfully.   

     Installing MongoDB on Windows 
 Installing MongoDB on  Windows      is a simple matter of downloading the msi file for the selected build of 
Windows and running the installer. 

 The installer will guide you through installation of MongoDB. 
 Following the wizard, you will reach the Choose Setup Type screen. There are two setup types available 

wherein you can customize your installation. In this example, select the setup type as Custom. 
 An installation directory needs to be specified when selecting Custom, so specify the directory to 

 C:\PracticalMongoDB . 
 Note that MongoDB can be run from any folder selected by the user because it is self-contained and has 

no dependency on the system. If the setup type of Complete is selected, the default folder selected 
is  C:\Program Files\MongoDB . 

 Clicking Next will take you to the Ready to installation screen. Click Install. 
 This will start the installation and will show the progress on a screen. Once the installation is complete, 

the wizard will take you to the completion screen. 
 Clicking Finish completes the setup. After successful completion of the above steps, you have a directory 

called  C:\PracticalMongoDB  with all the relevant applications in the  bin  folder. That’s all there is to it.  

     Running MongoDB 
 Let’s see how to start running and using MongoDB. 

      Preconditions   
 A data folder is required for storing the files. This by default is  C:\data\db  in Windows and  /data/db  in 
LINUX systems. 

 These data directories are not created by MongoDB, so before starting MongoDB the data directory 
needs to be manually created and you need to ensure that proper permissions are set (such as that 
MongoDB has read, write, and directory creation permissions). 

 If the MongoDB is started before you create the folder, it will throw an error message and will fail to run.  



CHAPTER 5 ■ MONGODB - INSTALLATION AND CONFIGURATION

38

     Starting the Service 
 Once the  directories   are created and permissions are in place, execute the mongod application (placed 
under the   bin  directory  ) to start the MongoDB core database service. 

 In continuation of the above installation, the same can be started by opening the command prompt in 
Windows (which needs to be run as administrator) and executing the following: 

  c:\>  c:\practicalmongodb\bin\mongod.exe  

 In case of Linux, the mongod process is started in the shell. 
 This will start the MongoDB database on the localhost interface. It will listen for connections from the 

mongo shell on port 27017. 
 As mentioned, the folder path needs to be created before starting the database, which by default is 

 c:\data\db . An alternative path can also be provided when starting the database service by using 
the  –dbpath  parameter. 

  C  :\>  C:\  practicalmongodb  \bin\mongod.exe --dbpath  
  C:\NewDBPath\DBContents    

     Verifying the Installation 
 The relevant executable will be present under the subdirectory  bin . The following can be checked under the 
 bin  directory in order to vet the success of the  installation step  :

•    Mongod: the core database server  

•   Mongo: The database shell  

•   Mongos: The auto-sharding process  

•   Mongoexport: The export utility  

•   Mongoimport: The import utility    

 Apart from the above, there are other applications available in the  bin  folder. 
 The mongo application launches the mongo shell, which supplies access to the database contents and 

lets you fire selective queries or execute aggregation against the data in MongoDB. 
 The mongod application, as you saw above, is used to start the database service, or daemon. 
 Multiple flags can be set when launching the applications. For example,  –dbpath  can be used to specify 

an alternative path for where the database files should be stored. To get the list of all available options, 
include the  --help  flag when launching the service.  

     MongoDB Shell 
 The mongo  shell   comes as part of the standard distribution of MongoDB. The shell provides a full database 
interface for MongoDB, enabling you play around with the data stored in MongoDB using a JavaScript 
environment, which has complete access to the language and all the standard functions. 

 Once database services have started, you can fire up the mongo shell and start using MongoDB. This 
can be done using Shell in Linux or the command prompt in Windows (run as administrator). 

 You must refer to the exact location of the executable, such as in the  C:\practicalmongodb\bin\  folder 
in a Windows environment. 



CHAPTER 5 ■ MONGODB - INSTALLATION AND CONFIGURATION

39

 Open the command prompt (run as administrator) and type  mongo.exe . Press the Enter key. This will 
start the mongo shell. 

  C:\>  C:\practicalmongodb\bin\mongo.exe  
  MongoDB shell version: 3.0.4  
  connecting to: test  
  >  

 If no parameters are specified when starting the service, it connects to the default database named  test  
on the localhost instance. 

 The database will be created automatically when connected to it. MongoDB offers this feature of 
automatically creating a database if an attempt is made to access a one that is not there. 

 The next chapter offers more information on working with the mongo shell.  

     Securing the  Deployment   
 You know how to install and start using MongoDB via the default configurations. Next, you need to ensure 
that the data that is stored within the database is secure in all aspects. 

 In this section, you will look at how to secure your data. You will change the configuration of the default 
installation to ensure that your database is more secure. 

     Using Authentication and  Authorization   
 Authentication verifies the user’s identity, and authorization determines the level of actions that the user can 
perform on the authenticated database. 

 This means the users will be able to access the database only if they log in using the credentials 
that have access on the database. This disables anonymous access to the database. After the user is 
authenticated, authorization can be used to ensure that the user has only the required amount of access 
needed to accomplish the tasks at hand. 

 Both authentication and  authorization   exist at a per-database level. The users exist in the context of a 
single logical database. 

 The information on the users is maintained in a collection named  system.users , which exists in the 
admin database. This collection maintains the credentials needed for authenticating the user wherein 
it stores the user id, password, and the database against which it is created, plus privileges needed for 
authorizing the user. 

 MongoDB uses a  role-based approach   for authorization (the roles of read, readWrite, 
readAnyDatabase, etc.). If needed, the user administrator can create custom roles. 

 A privilege document within the  system.users  collection is used for storing each user roles. The same 
document maintains the credentials for authenticated users. 

 An example of a document in the   system.users  collection   is as follows: 

  {  
  _id : "practicaldb.Shaks",  
  user : "Shaks",  
  db : "practicaldb",  
  credentials : {.......},  
  roles : [  
  { role: "read", db: "practicaldb" },  
  { role: "readWrite", db: "MyDB" }  
  ],  
  ......  
  }  



CHAPTER 5 ■ MONGODB - INSTALLATION AND CONFIGURATION

40

 This document tells us that the user Shaks is associated with database  practicaldb  and it has read 
roles in the   practicaldb  database   and a readWrite role in the  MyDB  database. Note that a user name and 
the associated database uniquely identifies a user within MongoDB, so if you have two users with the same 
name, but they are associated with different databases, then they are considered as two unique users. Thus a 
user can have multiple roles with different authorization  levels   on different databases. 

 The available roles are

•    read: This provides a read-only access of all the collections for the specified 
database.  

•   readWrite: This provides a read-write access to any collection within the specified 
database.  

•   dbAdmin: This enables the user to perform administrative actions within the 
specified database such as index management using ensureIndex, dropIndexes, 
reIndex, indexStats, renaming collections, creating collections, etc.  

•   userAdmin: This enables the user to perform readWrite operations on the 
 system.users  collection of the specified database. It also enables altering permissions 
of existing users or creating new users. This is effectively the SuperUser role for the 
specified database.  

•   clusterAdmin: This role enables the user to grant access to administrative operations 
that alter or display information about the complete system. clusterAdmin is 
applicable only on the admin database.  

•   readAnyDatabase: This role enables user to read from any database in the MongoDB 
environment.  

•   readWriteAnyDatabase: This role is similar to readWrite except it is for all databases.  

•   userAdminAnyDatabase: This role is similar to the userAdmin role except it applies 
to all databases.  

•   dbAdminAnyDatabase: This role is the same as dbAdmin, except it applies to all 
databases.  

•   Starting from version 2.6, a user admin can also create user-defined roles to adhere 
to the policy of least privilege by providing access at collection level and command 
level. A user-defined role is scoped to the database in which it’s created and is 
uniquely identified by the combination of the database and the role name. All the 
user defined roles are stored in the  system.roles  collection.    

     Enabling Authentication   
 Authentication is disabled by default, so use  --auth  to enable authentication. While starting mongod, use 
 mongod --auth . Before enabling authentication, you need to have at least one admin user. As you saw above, 
an admin user is a user who is responsible for creating and managing other users. 

 It is recommended that in production deployments such users are created solely for managing users and should 
not be used for any other roles. In a MongoDB deployment, this user is the first user that needs to be created; 
other users of the system can be created by this user. 



CHAPTER 5 ■ MONGODB - INSTALLATION AND CONFIGURATION

41

 The admin user can be created either way: before enabling the authentication or after enabling the 
authentication. 

 In this example, you will first create the admin user and then enable the auth settings. The below steps 
should be executed on the Windows platform. 

 Start the mongod with default settings: 

  C:\>C:\practicalmongodb\bin\mongod.exe  
  C:\practicalmongodb\bin\mongod.exe --help for help and startup options  
   
  2015-07-03T23:11:10.716-0700 I CONTROL  Hotfix KB2731284 or later update is installed, no 
need to zero out data files  
  2015-07-03T23:11:10.716-0700 I JOURNAL  [initandlisten] journal dir=C:\data\db\journal  
   
  ...................................................  
   
  2015-07-03T23:11:10.763-0700 I CONTROL  [initandlisten] MongoDB starting : pid=2776 
port=27017 dbpath=C:\data\db\ 64-bit host=ANOC9  
  2015-07-03T23:11:10.763-0700 I CONTROL  [initandlisten] targetMinOS: Windows 7/W  
  indows Server 2008 R2  
  2015-07-03T23:11:10.763-0700 I CONTROL  [initandlisten] db version v3.0.4  
  2015-07-03T23:11:10.764-0700 I CONTROL  [initandlisten] OpenSSL version: OpenSSL 
1.0.1j-fips 19 Mar 2015  
  2015-07-03T23:11:10.764-0700 I CONTROL  [initandlisten] build info: windows sys. 
getwindowsversion(major=6, minor=1, build=7601, platform=2, service_pack='Service Pack 1') 
BOOST_LIB_VERSION=1_49  
  2015-07-03T23:11:10.771-0700 I NETWORK  [initandlisten] waiting for connections  
  on port 27017    

    Creating the  Admin User   
 Run another instance of command prompt by running it as an administrator and execute the mongo 
application: 

  C:\>  C:\practicalmongodb\bin\mongo.exe  
  MongoDB shell version: 3.0.4  
  connecting to: test  
  >  

   Switching to the  Admin Database   

  Note   that admin db is a privileged database that the user needs access to in order to execute certain 
administrative commands such as creating an admin user. 

  >  db = db.getSiblingDB('admin')    



CHAPTER 5 ■ MONGODB - INSTALLATION AND CONFIGURATION

42

    Admin   

 The user needs to be created with either of the roles: userAdminAnyDatabase or userAdmin: 

  >db.createUser({user: "AdminUser", pwd: "password", roles:["userAdminAnyDatabase"]})  
  Successfully added user: { "user" : "AdminUser", "roles" : [ "userAdminAnyDatabase" ] }  

 Next, authenticate using this user. Restart the mongod with  auth  settings: 

  C:\>  C:\practicalmongodb\bin\mongod.exe -auth  
  C:\practicalmongodb\bin\mongod.exe --help for help and startup options  
  2015-07-03T23:11:10.716-0700 I CONTROL  Hotfix KB2731284 or later update is installed, no 
need to zero out data files  
  2015-07-03T23:11:10.716-0700 I JOURNAL  [initandlisten] journal dir=C:\data\db\journal  
  ...................................................  
  2015-07-03T23:11:10.763-0700 I CONTROL  [initandlisten] MongoDB starting : pid=2776 
port=27017 dbpath=C:\data\db\ 64-bit host=ANOC9  
  2015-07-03T23:11:10.763-0700 I CONTROL  [initandlisten] targetMinOS: Windows 7/W  
  indows Server 2008 R2  
  2015-07-03T23:11:10.763-0700 I CONTROL  [initandlisten] db version v3.0.4  
  2015-07-03T23:11:10.764-0700 I CONTROL  [initandlisten] OpenSSL version: OpenSSL 
1.0.1j-fips 19 Mar 2015  
  2015-07-03T23:11:10.764-0700 I CONTROL  [initandlisten] build info: windows sys. 
getwindowsversion(major=6, minor=1, build=7601, platform=2, service_pack='Service Pack 1') 
BOOST_LIB_VERSION=1_49  
  2015-07-03T23:11:10.771-0700 I NETWORK  [initandlisten] waiting for connections  
  on port 27017  

 Start the mongo console and authenticate against the admin database using the AdminUser user 
created above: 

  C:\>c:\practicalmongodb\bin\mongo.exe  
  MongoDB shell version: 3.0.4  
  connecting to: test  
  >use admin  
  switched to db admin  
  >db.auth("AdminUser", "password")  
  1  
  >     

    Creating a User and Enabling Authorization 
 In this section, you will create a user and  assign   a role to the newly created user. You have already 
authenticated using the admin user, as shown: 

  C:\>c:\practicalmongodb\bin\mongo.exe  
  MongoDB shell version: 3.0.4  
  connecting to: test  
  >use admin  
  switched to db admin  
  >db.auth("AdminUser", "password")  
  1  
  >  



CHAPTER 5 ■ MONGODB - INSTALLATION AND CONFIGURATION

43

 Switch to the   Product  database   and create user Alice and assign read access on the product database, 
like so: 

  >  use product  
  switched to db product  
  >db.createUser({user: "Alice"  
  ... , pwd:"Moon1234"  
  ... , roles: ["read"]  
  ... }  
  ... )  
  Successfully added user: { "user" : "Alice", "roles" : [ "read" ] }  

 Next, validate that the user has read-only access on the database: 

  >db  
  product  
  >show users  
  {  
          "_id" : "product.Alice",  
          "user" : "Alice",  
          "db" : "product",  
          "roles" : [  
                  {  
                          "role" : "read",  
                  "db" : "product"  
                  }  
          ]  
  }  

 Next, connect to a new mongo console and log in as Alice to the   Products  database   to issue read-only 
commands: 

  C:\>  c:\practicalmongodb\bin\mongo.exe -u Alice -p Moon1234 product  
  2015-07-03T23:11:10.716-0700 I CONTROL  Hotfix KB2731284 or later update is installed, no 
need to zero-out data files  
  MongoDB shell version: 3.0.4  
  connecting to: products  
   
  Post successful authentication the following entry will be seen on the mongod console.  
   
  2015-07-03T23:11:26.742-0700 I ACCESS   [conn2] Successfully authenticated as principal 
Alice on product     



CHAPTER 5 ■ MONGODB - INSTALLATION AND CONFIGURATION

44

      Controlling Access to a Network 
 By default, mongod and mongos bind to all the available IP addresses on a system. In this section, you will 
look at configuration options for restricting  network exposure  . The code below is executed on the  Windows 
platform  : 

  C:\>  c:\practicalmongodb\bin\mongod.exe --bind_ip 127.0.0.1 --port 27017 --rest  
  2015-07-03T00:33:49.929-0700 I CONTROL  Hotfix KB2731284 or later update is installed, no 
need to zero out data files  
  2015-07-03T00:33:49.946-0700 I JOURNAL  [initandlisten] journal dir=C:\data\db\journal  
  2015-07-03T00:33:49.980-0700 I CONTROL  [initandlisten] MongoDB starting : pid=1144 
port=27017 dbpath=C:\data\db\ 64-bit host=ANOC9  
  2015-07-03T00:33:49.980-0700 I CONTROL  [initandlisten] targetMinOS: Windows 7/Windows 
Server 2008 R2  
  2015-07-03T00:33:49.980-0700 I CONTROL  [initandlisten] db version v3.0.4  
  2015-07-03T00:33:49.980-0700 I CONTROL  [initandlisten] OpenSSL version: OpenSSL1.0.1j-fips 
19 Mar 2015  
  2015-07-03T00:33:49.980-0700 I CONTROL  [initandlisten] build info: windows 
sys.getwindowsversion(major=6, minor=1, build=7601, platform=2, service_pack='Service Pack 1') 
BOOST_LIB_VERSION=1_49  
  2015-07-03T00:33:49.981-0700 I CONTROL  [initandlisten] allocator: system  
  2015-07-03T00:33:49.981-0700 I CONTROL  [initandlisten] options: { net: { bindIp: 
"127.0.0.1", http: { RESTInterfaceEnabled: true, enabled: true }, port: 27017} }  
  2015-07-03T00:33:49.990-0700 I NETWORK  [initandlisten] waiting for connections on port 
27017  
  2015-07-03T00:33:49.990-0700 I NETWORK  [websvr] admin web console waiting for connections 
on port 28017  
  2015-07-03T00:34:22.277-0700 I NETWORK  [initandlisten] connection accepted from 
127.0.0.1:49164 #1 (1 connection now open)  

 You have started the server with  bind_ip , which has one value set as 127.0.0.1, which is the localhost 
interface. 

 The   bind_ip  limits   the network interfaces of the incoming connections for which the program will 
listen. Comma-separated IP addresses can be specified. In your case, you have restricted the mongod to 
listen to only the localhost interface. 

 When the mongod instance is started, by default it waits for any incoming connection on port 27017. 
You can change this using  –port . 

 Just changing the port does not reduce the risk much. In order to completely secure the environment, you need 
to allow only trusted clients to connect to the port using firewall settings. 

 Changing this port also changes the HTTP status interface port, which by default is 28017. This port is 
available on a port that is X+1000, where X represents the connection port. 

 This web page exposes  diagnostic and monitoring information  , which includes operational data, 
a variety of logs, and status reports regarding the database instances. It provides management-level 
statistics that can be used for administration purpose. This page is by default read-only; to make it fully 
interactive, you will use the REST settings. This configuration makes the page fully interactive, helping the 
administrators troubleshoot any performance issues. Only trusted client access should be allowed on this 
port using firewalls. 



CHAPTER 5 ■ MONGODB - INSTALLATION AND CONFIGURATION

45

 It is recommended to disable the  HTTP Status page   as well as the REST configuration in the production 
environment. 

   Use Firewalls 
  Firewalls   are used to control access within a network. They can be used to allow access from a specific IP 
address to specific IP ports, or to stop any access from any untrusted hosts. They can be used to create 
a trusted environment for your mongod instance where you can specify what IP addresses or hosts can 
connect to which ports or interfaces of the mongod. 

 On the Windows platform, use  netsh  to configure the incoming traffic for port 27017: 

  C:\>  netsh advfirewall firewall add rule name="Open mongod port 27017" dir=in action=allow 
protocol=TCP localport=27017  
  Ok.  
  C:\>  

 This code says that all of the incoming traffic is allowed on port 27017, so any application servers can 
connect to the mongod.  

    Encrypting Data   
 You have seen that MongoDB stores all its data in a data directory that in Windows defaults to  C:\data\db  
and  /data/db  in Linux. The files are stored unencrypted in the directory because there’s no provisioning of 
methods for automatically encrypting the files in Mongo. Any attacker with file system access can read the 
data stored in the files. It’s the application’s responsibility to ensure that sensitive information is encrypted 
before it’s written to the database. 

 Additionally, operating system-level mechanisms such as file system-level encryption and permissions 
should be implemented in order to prevent unauthorized access to the files.  

    Encrypting  Communication   
 It’s often a requirement that communication between the mongod and the client (mongo shell, for instance) 
is encrypted. In this setup, you will see how to add one more level of security to the above installation by 
configuring SSL, so that the communication between the mongod and mongo shell (client) happens using a 
SSL certificate and key. 

 It is recommended to use SSL for communication between the server and the client. 

 Starting from Version 3.0, most of the MongoDB distributions now have support included for SSL. The 
below commands are executed on a Windows platform. 

 The first step is to generate the  .pem  file that will contain the public key certificate and the private key. 
MongoDB can use either a self-signed certificate or any valid certificate issued by a certificate authority. 



CHAPTER 5 ■ MONGODB - INSTALLATION AND CONFIGURATION

46

 In this book, you will use the following commands to generate a self-signed certificate and private key.

    1.    Install OpenSSL and Microsoft Visual C++ 2008 redistributable as per the 
MongoDB distribution and the Windows platform. In this book, you have 
installed the 64-bit version.  

    2.    Run the following command to create a public key certificate and a private key: 

  C:\> cd c:\OpenSSL-Win64\bin  
  C:\OpenSSL-Win64\bin\>openssl  

 This opens the  OpenSSL shell   where you need to enter the following command: 

  OpenSSL>req -new -x509 -days 365 -nodes -out C:\practicalmongodb\
mongodb-cert.crt -keyout C:\practicalmongodb\mongodb-cert.key  

 The above step generates a certificate key named  mongodb-cert.key  and places it in 
the  C:\practicalmongodb  folder.  

    3.    Next, you need to concatenate the certificate and the private key to the  .pem  file. 
In order to achieve this, run the following commands at the command prompt: 

  C:\> more C:\practicalmongodb\mongodb-cert.key > temp  
  C:\> copy \b temp C:\practicalmongodb\mongodb-cert.crt > C:\practicalmongodb\
mongodb.pem      

 Now you have a  .pem  file. Use the following runtime options when starting the mongod: 

  C:\> C:\practicalmongodb\bin\mongod –sslMode requireSSL --sslPEMKeyFile C:\practicalmongodb\
mongodb.pem  
   
  2015-07-03T03:45:33.248-0700 I CONTROL  Hotfix KB2731284 or later update is installed, no 
need to zero-out data files  
  2015-07-03T02:54:30.630-0700 I JOURNAL  [initandlisten] journal dir=C:\data\db\journal  
  2015-07-03T02:54:30.670-0700 I CONTROL  [initandlisten] MongoDB starting : pid=2  
  816 port=27017 dbpath=C:\data\db\ 64-bit host=ANOC9  
  2015-07-03T02:54:30.670-0700 I CONTROL  [initandlisten] targetMinOS: Windows 7/Windows 
Server 2008 R2  
  2015-07-03T02:54:30.670-0700 I CONTROL  [initandlisten] db version v3.0.4  
  2015-07-03T02:54:30.670-0700 I CONTROL  [initandlisten] OpenSSL version: OpenSSL1.0.1j-fips 
19 Mar 2015  
  2015-07-03T02:54:30.670-0700 I CONTROL  [initandlisten] build info: windows sys. 
getwindowsversion(major=6, minor=1, build=7601, platform=2, service_pack='Service Pack 1') 
BOOST_LIB_VERSION=1_49  
  2015-07-03T02:54:30.671-0700 I CONTROL  [initandlisten] allocator: system  
  2015-07-03T02:54:30.671-0700 I CONTROL  [initandlisten] options: { net: { ssl: {  
   PEMKeyFile: "c:\practicalmongodb\mongodb.pem", mode: "requireSSL" } } }  
  2015-07-03T02:54:30.680-0700 I NETWORK  [initandlisten] waiting for connections  
  on port 27017 ssl  
  2015-07-03T03:33:43.708-0700 I NETWORK  [initandlisten] connection accepted from  
   127.0.0.1:49194 #2 (1 connection now open)  



CHAPTER 5 ■ MONGODB - INSTALLATION AND CONFIGURATION

47

 ■   Note   Using a self-signed certificate is not recommended in a production environment unless it’s a trusted 
network because it will leave you vulnerable to man-in-the-middle attacks.  

 You will next connect to the above mongod using the mongo shell. When you run mongo with a 
 –ssl  option, you need to either specify  –sslAllowInvalidCertificates  or  –sslCAFile . Let’s use 
 –sslAllowInvalidCertificates . 

 Open a terminal window and enter the following: 

  C:\>  C:\practicalmongodb\bin>mongo --ssl --sslAllowInvalidCertificates  
  2015-07-03T02:30:10.774-0700 I CONTROL  Hotfix KB2731284 or later update is installed, no 
need to zero-out data files  
  MongoDB shell version: 3.0.4  
  connecting to: test       

     Provisioning Using MongoDB Cloud Manager 
 In the starting of the chapter, you learned how to install and configure MongoDB using Windows and Linux. 
In this part of the chapter, you will look at how to use MongoDB  Cloud Manager  . 

 Mongo DBCloud Manager is a  monitoring solution   built in by the developer of the database. Prior to 
version 2.6, MongoDB Cloud Manager (formerly known as MongoDB Monitoring Service or  MMS  ) was used 
for monitoring and administering MongoDB only. Starting from version 2.6, major enhancements have 
been introduced to MongoDB Cloud Manager including backup, point-in-time recovery, and an automation 
feature, making the task of operating MongoDB simpler than before. The automation feature provides power 
capabilities to administrators to quickly create, upgrade, scale, or shut down MongoDB instances in few clicks. 

 In this part of the book, you will see how to get started with MongoDB Cloud Manager. You will deploy a 
standalone MongoDB instance on AWS using MongoDB Cloud Manager. 

 When you start with MongoDB Cloud Manager, it asks to install an automation agent on each server, 
which is then used by the MongoDB Cloud Manager for communicating with the server. 

 In order to start provisioning, you first need to create your profile on MongoDB Cloud Manager. 
 Enter the following URL:    https://cloud.mongodb.com     . Click the Login or Sign up for Free button, 

based on whether you have an account or not. 
  Since you are starting for the first time, clicked the Sign up for Free button. This sends you to the page 

depicted in Figure  5-1 .   

https://cloud.mongodb.com/


CHAPTER 5 ■ MONGODB - INSTALLATION AND CONFIGURATION

48

 You will be creating a new profile. However, MongoDB provides an option for joining as existing Cloud 
Manager group. 

  Enter all the relevant details, as shown in Figure  5-1 , and click Continue. This sends you to the page for 
providing company information. Once you complete the profile and company information, accept the terms 
and click the Create Account button. This completes the profile creation. The next step is to create a group 
(Figure  5-2 ).   

  Figure 5-1.     Account Profile         

 



CHAPTER 5 ■ MONGODB - INSTALLATION AND CONFIGURATION

49

 Provide a unique name for the group, and click Create Group. Next is the deployment selection 
page shown in Figure  5-3 , where you have the option to build a new deployment or manage an existing 
deployment.  

 Select to build a new deployment. Next, you’ll be prompted for the location of where to build the 
deployment (i.e. Local, AWS, or other remote environment). In this example, select AWS. Clicking the Deploy 
in AWS option leads you to choose between provision on your own and using Cloud Manager to provision. 

 Select the “I will Provision” option, which means you will be using a machine that is already provisioned 
to you on AWS. 

  Figure 5-2.    Create  Group         

  Figure 5-3.     Deployment         

 

 



CHAPTER 5 ■ MONGODB - INSTALLATION AND CONFIGURATION

50

  Provide the instance name and data directory prefix, and click Continue. Next is the screen shown in 
Figure  5-5 , which prompts you to install an automation agent on each server   

  Figure 5-4.    Details for a  standalone instance         

  Figure 5-5.    Installing an  automation agent         

 The next screen provides options for the deployment type (i.e. standalone, replica set, or sharded cluster). 
You are doing a standalone deployment, so click the Create Standalone box. This sends you to the screen 
shown in Figure  5-4 .  

 

 



CHAPTER 5 ■ MONGODB - INSTALLATION AND CONFIGURATION

51

 This screen has an option for specifying the number of servers. In this example, you specify 1. 
  Next, you need to specify the platform. Choose Ubuntu. Then the screen in Figure  5-6  appears.   

 Follow the steps. 

 Before you implement the step where you start the agent, you need to ensure that all the relevant ports are 
open (443, 4949, 27000 to 27018). 

  Once all the steps are completed, click the Verify Agent button. Post verification, if everything is working 
as needed, you’ll see a Continue button. 

 When you click Continue, you will go to the Review and Deploy page shown in Figure  5-7  where you can 
see all of the processes that are going to get deployed. Here an automation agent downloads and installs the 
monitoring and backup agent.  

  Figure 5-6.    Automation agent  installation instructions         

 



CHAPTER 5 ■ MONGODB - INSTALLATION AND CONFIGURATION

52

 Clicking the Deploy button takes you to the deployment page with the deploying changes status as 
“In progress.” When the installation is complete, the deployment status will change to “Goal State” and the 
provisioned server will appear in the toplogy view. 

 If your deployment supports SSL or using any authentication mechanism, you need to download and install a 
monitoring agent manually. 

 In order to vet whether all the agents are working properly or not, you can click the Administration tab 
on the console. 

 The Cloud Manager can deploy MongoDB replica sets, sharded clusters, and standalones on any 
Internet-connected server. The servers need only be able to make outbound TCP connections to the Cloud 
Manager.   

     Summary 
 In this chapter, you learned how to install MongoDB on the Windows and Linux platforms. You also looked 
at some important configurations that are necessary to ensure secure and safe usage of the database. You 
concluded the chapter by provisioning using MongoDB Cloud Manager. 

 In the following chapter, you will get started with MongoDB Shell.     

  Figure 5-7.    Review and  deploy         

 



53© Shakuntala Gupta Edward, Navin Sabharwal 2015 
S.G. Edward and N. Sabharwal, Practical MongoDB, DOI 10.1007/978-1-4842-0647-8_6

    CHAPTER 6   

 Using MongoDB Shell           

    “mongo shell comes with the standard distribution of MongoDB. It offers a JavaScript 
environment with complete access to the language and the standard functions. It provides 
a full interface for the MongoDB database.”    

 In this chapter, you learn the basics of the mongo shell and how to use it to manage MongoDB documents. 
Before you delve into creating applications that interact with the database, it is important to understand how 
the MongoDB shell works. 

 There’s no better way to get a feel for a MongoDB database than to get started with the MongoDB shell. 
The MongoDB shell introduction has been divided into three parts in order to make it easier for the readers 
to grasp and practice the concepts. 

 The first section covers the basic features of the database, including the basic CRUD operators. The 
next section covers advanced querying. The last section of the chapter explains the two ways of storing and 
retrieving data: embedding and referencing. 

     Basic Querying 
 This section will briefly discuss the  CRUD operations      (Create, Read, Update, and Delete). Using basic 
examples and exercises, you will learn how these operations are performed in MongoDB. Also, you will 
understand how queries are executed in MongoDB. 

 In contrast to traditional SQL, which is used for querying, MongoDB uses its own JSON-like query 
language to retrieve information from the stored data. 

 After the successful installation of MongoDB, as explained in Chapter   5    , you will navigate to the 
directory  C:\practicalmongodb\bin\ . This folder has all of the executables for running MongoDB. 

 The MongoDB  shell   can be started by executing the mongo executable. 
 The first step is always to start the database server. Open the  command prompt   (by running it as 

administrator) and issue the command  CD \ . 
 Next, run the command  C:\practicalmongodb\bin\mongod.exe . (If the installation is in some 

other folder, the path will change accordingly. For the examples in this chapter, the installation is in the 
 C:\practicalmongodb  folder.) This will start the  database server  . 

  C:\>c:\practicalmongodb\bin\mongod.exe  
  2015-07-06T02:29:24.501-0700 I CONTROL  Hotfix KB2731284 or later update is insalled, no 
need to zero-out data files  
  2015-07-06T02:29:24.522-0700 I JOURNAL  [initandlisten] journal dir=c:\data\db\ournal  
  ....................................................  
  2015-07-06T02:29:24.575-0700 I CONTROL  [initandlisten] MongoDB starting : pid=384 
port=27017 dbpath=c:\data\db\ 64-bit host=ANC09  

http://dx.doi.org/10.1007/978-1-4842-0647-8_5


CHAPTER 6 ■ USING MONGODB SHELL

54

  2015-07-06T02:29:24.575-0700 I CONTROL  [initandlisten] targetMinOS: Windows 7/windows 
Server 2008 R2  
  2015-07-06T02:29:24.575-0700 I CONTROL  [initandlisten] db version v3.0.4  
  2015-07-06T02:29:24.575-0700 I CONTROL  [initandlisten] OpenSSL version: OpenSSL1.0.1j-fips 
19 Mar 2015  
  2015-07-06T02:29:24.575-0700 I CONTROL  [initandlisten] build info: windows sys 
getwindowsversion(major=6, minor=1, build=7601, platform=2, service_pack='Service Pack 1') 
BOOST_LIB_VERSION=1_49  
  2015-07-06T02:29:24.575-0700 I CONTROL  [initandlisten] allocator: system  
  2015-07-06T02:29:24.575-0700 I CONTROL  [initandlisten] options: {}  
  2015-07-06T02:29:24.584-0700 I NETWORK  [initandlisten] waiting for connections on port 27017  

 MongoDB by default listens for any incoming connections on port 27017 of the localhost interface. 
 Now that the database server is started, you can start issuing commands to the server using the 

mongo shell. 
 Before you look at the mongo shell, let’s briefly look at how to use the import/export tool to import and 

export data in and out of the MongoDB database. 
 First, create a CSV file to hold the records of students with the following structure: 

  Name, Gender, Class, Score, Age.  

 Sample data of the CSV is shown in Figure  6-1 .  

 Next, import the data from the MongoDB database to a new collection in order to look at how the 
import tool works. 

  Figure 6-1.    Sample  CSV file         

 



CHAPTER 6 ■ USING MONGODB SHELL

55

 Open the command prompt by  running it as an administrator . The following command is used to get 
help on the   import  command  : 

  C:\>c:\practicalmongodb\bin\mongoimport.exe --help  
  Import CSV, TSV or JSON data into MongoDB.  
  When importing JSON documents, each document must be a separate line of the input file.  
  Example:  
    mongoimport --host myhost --db my_cms --collection docs < mydocfile.json  
  ....  
  C:\>  

 Issue the following command to import the data from the file  exporteg.csv  to a new collection called 
 importeg  in the   MyDB  database  : 

  C:\>c:\practicalmongodb\bin\mongoimport.exe --host localhost --db mydb --collection 
importeg --type csv --file c:\exporteg.csv --headerline  
  2015-07-06T01:53:23.537-0700    connected to: localhost  
  2015-07-06T01:53:23.608-0700    imported 15 documents  

 In order to validate whether the collection is created and the data is imported, you connect to the 
database (which is  localhost  in this case) using mongo shell, and you issue commands to validate whether 
the collection exists or not. 

 To start the mongo shell, run command prompt as administrator and issue the command 
 C:\PracticalMongoDB\bin\mongo.exe  (the path will vary based on the installation folder; in this example, 
the folder is  C:\PracticalMongoDB\ ), and press Enter. 

 This by default connects to the  localhost   database   server which is listening on port 27017. 

  C:\>c:\practicalmongodb\bin\mongo.exe  
  MongoDB shell version: 3.0.4  
  connecting to: test  
  > use mydb  
  switched to db mydb  
  > show collections  
  importeg  
  system.indexes  
  > db.importeg.find()  
  { "_id" : ObjectId("5450af58c770b7161eefd31d"), "Name" : "S1", "Gender" : "M", 
"Class" : "C1", "Score" : 95, "Age" : 25 }  
  .......  
   
  { "_id" : ObjectId("5450af59c770b7161eefd31e"), "Name" : "S2", "Gender" : "M", 
"Class" : "C1", "Score" : 85, "Age" : 18 }  
  >  

 In brief, what you are doing here is

    1.    Connecting to the mongo shell  

    2.    Switching to your database, which is  MyDB  in this case  

    3.    Checking for the collections that exist in the  MyDB  database using 
 show collections .  



CHAPTER 6 ■ USING MONGODB SHELL

56

    4.    Checking the count of the collection that you imported using the import tool.  

    5.    Finally, executing the  find()  command to check for the data in the new collection.     

  To connect to different hosts and ports,   –host   and   –port   can be used along with the command.  
 As you can see in Figure  6-1 , by default the database  test  is used for context. 
 At any point in time, executing the   db  command   will show the current database to which the shell is 

connected: 

  > db  
  test  
  >  

 To display all the database names, you can run the  show dbs  command. Executing this command will 
list all of the databases for the connected server. 

  > show dbs  

 At any point, help can be accesses using the   help()  command     . 

  > help  
          db.help()                    help on db methods  
          db.mycoll.help()             help on collection methods  
          sh.help()                    sharding helpers  
          rs.help()                    replica set helpers  
          help admin                   administrative help  
          help connect                 connecting to a db help  
          help keys                    key shortcuts  
          help misc                    misc things to know  
          help mr                      mapreduce  
          show dbs                     show database names  
          show collections             show collections in current database  
          show users                   show users in current database  
  .............  
          exit                         quit the mongo shell  

 As shown above, if you need help on any of the methods of  db  or  collection , you can use  db.help()  or 
 db.<CollectionName>.help()  .  For example, if you need help on the  db  command, execute  db.help() . 

  > db.help()  
  DB methods:  
          db.addUser(userDocument)  
  ...  
          db.shutdownServer()  
          db.stats()  
          db.version() current version of the server  
  >  

 Until now you have been using the default  test  db. The command  use <newdbname>  can be used to 
switch to a new database. 

  > use mydb  
  switched to db mydb  



CHAPTER 6 ■ USING MONGODB SHELL

57

 Before you start your exploration, let’s first briefly look at MongoDB terminology and concepts 
corresponding to  SQL terminology and concepts  . This is summarized in Table  6-1 .  

   Table 6-1.    SQL and MongoDB Terminology   

 SQL  MongoDB 

 Database  Database 

 Table  Collection 

 Row  Document 

 Column  Field 

 Index  Index 

 Joins within table  Embedding and referencing 

 Primary Key: A column or set of 
columns can be specified 

 Primary Key: Automatically set 
to _id field 

 Let’s start your exploration of the options for querying in MongoDB. Switch to the   MYDBPOC  database  . 

  > use mydbpoc  
  switched to db mydbpoc  
  >  

 This switches the context from  test  to  MYDBPOC . The same can be confirmed using the  db  command. 

  > db  
  mydbpoc  
  >  

 Although the context is switched to  MYDBPOC , the database name will not appear if the  show dbs  command is 
issued because MongoDB doesn’t create a database until data is inserted into the database. This is in keeping 
with MongoDB’s dynamic approach to data facilitating, dynamic namespace allocation, and a simplified and 
accelerated development process. If you issue the  show dbs  command at this point, it will not list the   MYDBPOC  
database   in the list of databases because the database is not created until data is inserted into the database. 

 The following example assumes a polymorphic collection named  users  which contains documents of the 
following two prototypes: 

  {  
  _id: ObjectID(),  
  FName: "First Name",  
  LName: "Last Name",  
  Age: 30, Gender: "M",  
  Country: "Country"  
  }  
  and  



CHAPTER 6 ■ USING MONGODB SHELL

58

  {  
  _id: ObjectID(),  
  Name: "Full Name",  
  Age: 30,  
  Gender: "M",  
  Country: "Country"  
  }  
  and  
  {  
  _id: ObjectID(), Name: "Full Name", Age: 30 }  

     Create and  Insert   
 You will now look at how databases and collections are created. As explained earlier, the documents in 
MongoDB are in the JSON format. 

 First, by issuing the  db  command you will confirm that the context is the  mydbpoc  database. 

  > db  
  mydbpoc  
  >  

 Now you’ll see how to create documents. 
 The first document complies with the first prototype whereas the  second   document complies with the 

second prototype. You have created two documents named  user1  and  user2 . 

  > user1 = {FName: "Test", LName: "User", Age:30, Gender: "M", Country: "US"}  
  {  
          "FName" : "Test",  
          "LName" : "User",  
          "Age" : 30,  
          "Gender" : "M",  
          "Country" : "US"  
  }  
  > user2 = {Name: "Test User", Age:45, Gender: "F", Country: "US"}  
  { "Name" : "Test User", "Age" : 45, "Gender" : "F", "Country" : "US" }  
  >  

 You will next add both these documents ( user1  and  user2)  to the  users  collection in the following order 
of operations: 

  > db.users.insert(user1)  
  > db.users.insert(user2)  
  >  

 The above operation will not only insert the two documents to the  users  collection but it will also create 
the collection as well as the database. The same can be verified using the  show collections  and  show dbs  
commands. 



CHAPTER 6 ■ USING MONGODB SHELL

59

 As mentioned,  show dbs  will display the list of databases. 

  > show dbs  
  admin     0.078GB  
  local     0.078GB  
  mydb      0.078GB  
  mydbproc  0.078GB  

 And  show collections  will display the list of collection in the current database. 

  > show collections  
  system.indexes  
  users  
  >  

 Along with the collection  users , the  system.indexes  collection also gets displayed. This  system.
indexes  collection is created by default when the database is created. It manages the information of all the 
indexes of all collections within the database. 

 Executing the command  db.users.find()  will display the documents in the  users  collection. 

  > db.users.find()  
  { "_id" : ObjectId("5450c048199484c9a4d26b0a"), "FName" : "Test", "LName" : "User", 
"Age" : 30, "Gender": "M", "Country" : "US" }  
  { "_id" : ObjectId("5450c05d199484c9a4d26b0b"), "Name" : "Test", User", "Age" : 45,
"Gender" : "F", "Country" : "US" }  
   
  >  

 You can see that the two documents you created are displayed. In addition to the fields you added to the 
 docu  ment, there’s an additional  _id  field that is generated for all of the documents. 

 All documents must have a unique_ _id  field. If not explicitly specified by you, the same will be auto-assigned 
as a unique object ID by MongoDB, as shown in the example above. 

 You didn’t explicitly insert an  _id  field but when you use the   find()  command      to display the documents you 
can see an  _id  field associated with each document. 

 The reason behind this is by default an index is created on the _ _id  field, which can be validated by issuing the 
 find  command on the  system.indexes  collection. 

  >db.system.indexes.find()  
  { "v" : 1, "key" : { "_id" : 1 }, "ns" : "mydbpoc.users", "name" : "_id_" }  
  >  

 New indexes can be added or removed from the collection using the  ensureIndex()  and  dropIndex()  
commands. We will cover this later in this chapter. By default, an index is created on the  _id  field of all 
collections.  This default index cannot be dropped.   



CHAPTER 6 ■ USING MONGODB SHELL

60

     Explicitly Creating Collections 
 In the above example, the  first   insert operation implicitly created the collection. However, the user can also 
explicitly create a collection before executing the insert statement. 

  db.createCollection("users")   

     Inserting Documents Using  Loop   
 Documents can also be added to the collection using a  for  loop. The following code inserts users using  for . 

  > for(var i=1; i<=20; i++) db.users.insert({"Name" : "Test User" + i, "Age": 10+i, 
"Gender" : "F", "Country" : "India"})  
  >  

 In order to verify that the insert is successful, run the  find  command on the collection. 

  > db.users.find()  
  { "_id" : ObjectId("52f48cf474f8fdcfcae84f79"), "FName" : "Test", "LName" : "User", 
"Age" : 30, "Gender" : "M", "Country" : "US" }  
  { "_id" : ObjectId("52f48cfb74f8fdcfcae84f7a"), "Name" : "Test User", "Age" : 45  
  , "Gender" : "F", "Country" : "US" }  
  ................  
  { "_id" : ObjectId("52f48eeb74f8fdcfcae84f8c"), "Name" : "Test User18", "Age" :  
  28, "Gender" : "F", "Country" : "India" }  
  Type "it" for more  
  >  

 Users appear in the collection. Before you go any further, let’s understand the “ Type “it” for more ” 
statement. 

 The  find  command returns a cursor to the result set. Instead of displaying all documents(which can be 
thousands or millions of results) in one go on the screen, the cursor displays first 20 documents and waits for 
the request to iterate ( it ) to display the next 20 and so on until all of the result set is displayed. 

 The resulting cursor can also be assigned to a variable and then programmatically it can be iterated over 
using a  while  loop. The cursor object can also be manipulated as an array. 

 In your case, if you type  “it”  and press Enter, the following will appear: 

  >   it  
  { "_id" : ObjectId("52f48eeb74f8fdcfcae84f8d"), "Name" : "Test User19", "Age" :  
  29, "Gender" : "F", "Country" : "India" }  
  { "_id" : ObjectId("52f48eeb74f8fdcfcae84f8e"), "Name" : "Test User20", "Age" :  
  30, "Gender" : "F", "Country" : "India" }  
  >  

 Since only two documents were remaining, it displays the remaining two documents.  

     Inserting by Explicitly Specifying _id 
 In the previous examples of insert, the  _id  field was not specified, so it was implicitly added. In the following 
example, you will see how to explicitly specify the  _id  field when inserting the documents within a collection. 

 While explicitly specifying the  _id  field, you have to keep in mind the uniqueness of the field; otherwise 
the  insert   will fail. 



CHAPTER 6 ■ USING MONGODB SHELL

61

 The following command explicitly specifies the  _id  field: 

  > db.users.insert({"_id":10, "Name": "explicit id"})  

 The insert operation creates the following document in the  users  collection: 

  { "_id" : 10, "Name" : "explicit id" }  

 This can be confirmed by issuing the following command: 

  >db.users.find()   

      Update   
 In this section, you will explore the  update()  command, which is used to update the documents in a collection. 

 The  update()  method updates a single document by default. If you need to update all documents that 
match the selection criteria, you can do so by setting the  multi  option as true. 

 Let’s begin by updating the values of existing columns. The  $set  operator will be used for updating 
the records. 

 The following command updates the country to UK for all female users: 

  > db.users.update({"Gender":"F"}, {$set:{"Country":"UK"}})  

 To check whether the update has happened, issue a  find  command to check all the female users. 

  > db.users.find({"Gender":"F"})  
  { "_id" : ObjectId("52f48cfb74f8fdcfcae84f7a"), "Name" : "Test User", "Age" : 45  
  , "Gender" : "F", "Country" : "UK" }  
  { "_id" : ObjectId("52f48eeb74f8fdcfcae84f7b"), "Name" : "Test User1", "Age" : 11, 
"Gender" : "F", "Country" : "India" }  
  { "_id" : ObjectId("52f48eeb74f8fdcfcae84f7c"), "Name" : "Test User2", "Age" : 12, 
"Gender" : "F", "Country" : "India" }  
  ...................  
  Type "it" for more  
  >  

 If you check the output, you will see that only the first document record is updated, which is the default 
behavior of update since no  multi  option was specified. 

 Now let’s change the  update   command   and include the  multi  option: 

  >db.users.update({"Gender":"F"},{$set:{"Country":"UK"}},{multi:true})  
  >  

 Issue the  find  command again to check whether the country has been updated for all the female 
employees or not. Issuing the  find  command will return the following output: 

  > db.users.find({"Gender":"F"})  
  { "_id" : ObjectId("52f48cfb74f8fdcfcae84f7a"), "Name" : "Test User", "Age" : 45, 
"Gender" : "F", "Country" : "UK" }  
  ..............  
  Type "it" for more  
  >  



CHAPTER 6 ■ USING MONGODB SHELL

62

 As you can see, the country is updated to UK for all records that matched the criteria. 
 When working in a real-world application, you may come across a schema evolution where you might 

end up adding or removing fields from the documents. Let’s see how to perform these alterations in the 
MongoDB database. 

 The  update()  operations can be used at the document level, which helps in updating either a single 
document or set of documents within a collection. 

 Next, let’s look at how to add new fields to the documents. In order to add fields to the document, use 
the  update()  command with the  $set  operator and the  multi  option. 

 If you use a field name with  $set  ,  which is non-existent, then the field will be added to the documents. 
The following command will add the field  company  to all the documents: 

  > db.users.update({},{$set:{"Company":"TestComp"}},{multi:true})  
  >  

 Issuing  find  command against the user’s collection, you will find the new field added to all documents. 

  > db.users.find()  
  { "Age" : 30, "Company" : "TestComp", "Country" : "US", "FName" : "Test", "Gender" : "M", 
"LName" : "User", "_id" : ObjectId("52f48cf474f8fdcfcae84f79") }  
  { "Age" : 45, "Company" : "TestComp", "Country" : "UK", "Gender" : "F", "Name" : "Test 
User", "_id" : ObjectId("52f48cfb74f8fdcfcae84f7a") }  
  { "Age" : 11, "Company" : "TestComp", "Country" : "UK", "Gender" : "F", ....................  
  Type "it" for more  
  >  

 If you execute the  update()  command with fields existing in the document, it will update the field’s 
value; however, if the field is not present in the document, then the field will be added to the documents. 

 You will next see how to use the same  update()  command with the  $unset  operator to remove fields 
from the documents. 

 The following command will remove the field  Company  from all the documents: 

  > db.users.update({},{$unset:{"Company":""}},{multi:true})  
  >  

 This can be checked by issuing the  find()  command against the  Users  collection. You can see that the 
 Company  field has been deleted from the documents. 

  > db.users.find()  
  { "Age" : 30, "Country" : "US", "FName" : "Test", "Gender" : "M", "LName" : "User", "_id" : 
ObjectId("52f48cf474f8fdcfcae84f79") }  
  .............  
  Type "it" for more   

      Delete   
 To delete documents in a collection, use the   remove ()  method  . If you specify a selection criterion, only 
the documents meeting the criteria will be deleted. If no criteria is specified, all of the documents 
will be deleted. 



CHAPTER 6 ■ USING MONGODB SHELL

63

 The following command will delete the documents where  Gender = ‘M’ : 

  > db.users.remove({"Gender":"M"})  
  >  

 The same can be verified by issuing the   find()  command   on  Users  :  

  > db.users.find({"Gender":"M"})  
  >  

 No documents are returned. 
 The following command will delete all documents: 

  > db.users.remove({})  
  > db.users.find()     
  >  

 As you can see, no documents are returned. 
 Finally, if you want to drop the collection, the following command will drop the collection: 

  > db.users.drop()  
  true  
  >  

 In order to validate whether the collection is dropped or not, issue the  show collections  command. 

  > show collections  
  system.indexes  
  >  

 As you can see, the collection name is not displayed, confirming that the collection has been removed 
from the database. 

 Having covered the basic Create, Update, and Delete operations, the next section will show you how to 
perform Read operations.  

      Read   
 In this part of the chapter, you will look at various examples illustrating the querying functionality available 
as part of MongoDB that enables you to read the stored data from the database. 

 In order to start with basic querying, first create the  users  collection and insert data following the 
 insert  command. 

  >  user1 = {FName: "Test", LName: "User", Age:30, Gender: "M", Country: "US"}  
  {  
          "FName" : "Test",  
          "LName" : "User",  
          "Age" : 30,  
          "Gender" : "M",  
          "Country" : "US"  
  }  



CHAPTER 6 ■ USING MONGODB SHELL

64

  > user2 = {Name: "Test User", Age:45, Gender: "F", Country: "US"}  
  { "Name" : "Test User", "Age" : 45, "Gender" : "F", "Country" : "US" }  
  > db.users.insert(user1)  
  > db.users.insert(user2)  
  > for(var i=1; i<=20; i++) db.users.insert({"Name" : "Test User" + i, "Age": 10+i, 
"Gender" : "F", "Country" : "India"})  

 Now let’s start with basic querying. The  find()  command is used to retrieve data from the database. 
 Firing a  find()  command returns all the documents  wi  thin the collection. 

  > db.users.find()  
  { "_id" : ObjectId("52f4a823958073ea07e15070"), "FName" : "Test", "LName" : "User", 
"Age" : 30, "Gender" : "M", "Country" : "US" }  
  { "_id" : ObjectId("52f4a826958073ea07e15071"), "Name" : "Test User", "Age" : 45, 
"Gender" : "F", "Country" : "US" }  
  ......  
  { "_id" : ObjectId("52f4a83f958073ea07e15083"), "Name" : "Test User18", "Age" :28, 
"Gender" : "F", "Country" : "India" }  
  Type "it" for more  
  >  

   Query Documents 
 A rich query system is provided by MongoDB.    Query documents can be passed as a parameter to the  find()  
method to filter documents within a collection. 

 A query document is specified within open “{” and closed “}” curly braces. A query document is 
matched against all of the documents in the collection before returning the result set. 

 Using the  find()  command without any query document or an empty query document such as 
 find({})  returns all the documents within the collection. 

 A query document can contain selectors and projectors. 
 A selector is like a where condition in SQL or a filter that is used to filter out the results. 
 A projector is like the select condition or the selection list that is used to display the data fields.  

    Selector   
 You will now see how to use the selector. The following command will return all the female users: 

  > db.users.find({"Gender":"F"})  
  { "_id" : ObjectId("52f4a826958073ea07e15071"), "Name" : "Test User", "Age" : 45, 
"Gender" : "F", "Country" : "US" }  
  .............  
  { "_id" : ObjectId("52f4a83f958073ea07e15084"), "Name" : "Test User19", "Age" :29, 
"Gender" : "F", "Country" : "India" }  
  Type "it" for more  
  >  

 Let’s step it up a notch. MongoDB also supports operators that merge different conditions together in 
order to refine your search on the basis of your requirements.     



CHAPTER 6 ■ USING MONGODB SHELL

65

 Let’s refine the above query to now look for female users from India. The following command will 
return the same: 

  > db.users.find({"Gender":"F", $or: [{"Country":"India"}]})  
  { "_id" : ObjectId("52f4a83f958073ea07e15072"), "Name" : "Test User1", "Age" : 11, 
"Gender" : "F", "Country" : "India" }  
  ...........  
  { "_id" : ObjectId("52f4a83f958073ea07e15085"), "Name" : "Test User20", "Age" :30, 
"Gender" : "F", "Country" : "India" }  
  >  

 Next, if you want to find all female users who belong to either India or US, execute the following command: 

  >db.users.find({"Gender":"F",$or:[{"Country":"India"},{"Country":"US"}]})  
  { "_id" : ObjectId("52f4a826958073ea07e15071"), "Name" : "Test User", "Age" : 45, 
"Gender" : "F", "Country" : "US" }  
  ..............  
  { "_id" : ObjectId("52f4a83f958073ea07e15084"), "Name" : "Test User19", "Age" :29, 
"Gender" : "F", "Country" : "India" }  
  Type "it" for more  

 For aggregation requirements, the aggregate functions need to be used. Next, you’ll learn how to use the 
 count()  function for aggregation. 

 In the above example, instead of displaying the documents, you want to find out a count of female users 
who stay in either India or the US. So execute the following command: 

  >db.users.find({"Gender":"F",$or:[{"Country":"India"}, {"Country":"US"}]}).count()  
  21  
  >  

 If you want to find a count of users irrespective of any selectors, execute the following command: 

  > db.users.find().count()  
  22  
  >   

   Projector 
 You have seen how to use selectors to filter out documents within the collection. In the above example, the 
 find()  command returns all fields of the documents matching the selector.     

 Let’s add a projector to the query document where, in addition to the selector, you will also mention 
specific details or fields that need to be displayed. 

 Suppose you want to display the first name and age of all female employees. In this case, along with the 
selector, a projector is also used. 

 Execute the following command to return the desired result set: 

  > db.users.find({"Gender":"F"}, {"Name":1,"Age":1})  
  { "_id" : ObjectId("52f4a826958073ea07e15071"), "Name" : "Test User", "Age" : 45 }  
  ..........  
  Type "it" for more  
  >   



CHAPTER 6 ■ USING MONGODB SHELL

66

   sort( ) 
 In MongoDB, the sort order is specified as follows: 1 for ascending and -1 for descending sort.     

 If in the above example you want to sort the records by ascending order of  age , you execute the 
following command: 

  >db.users.find({"Gender":"F"}, {"Name":1,"Age":1}).sort({"Age":1})  
  { "_id" : ObjectId("52f4a83f958073ea07e15072"), "Name" : "Test User1", "Age" : 11 }  
  { "_id" : ObjectId("52f4a83f958073ea07e15073"), "Name" : "Test User2", "Age" : 12 }  
  { "_id" : ObjectId("52f4a83f958073ea07e15074"), "Name" : "Test User3", "Age" : 13 }  
  ..............  
  { "_id" : ObjectId("52f4a83f958073ea07e15085"), "Name" : "Test User20", "Age" :30 }  
  Type "it" for more  

 If you want to display the records in descending order by  name  and ascending order by  age , you execute 
the following command: 

  >db.users.find({"Gender":"F"},{"Name":1,"Age":1}).sort({"Name":-1,"Age":1})  
  { "_id" : ObjectId("52f4a83f958073ea07e1507a"), "Name" : "Test User9", "Age" : 19 }  
  ............  
  { "_id" : ObjectId("52f4a83f958073ea07e15072"), "Name" : "Test User1", "Age" : 11 }  
  Type "it" for more   

    limit( )   
 You will now look at how you can limit the records in your result set. For example, in huge collections with 
thousands of documents, if you want to return only five matching documents, the  limit  command is used, 
which enables you to do exactly that. 

 Returning to your previous query of female users who live in either India or US, say you want to limit the 
result set and return only two users. The following command needs to be executed: 

  >db.users.find({"Gender":"F",$or:[{"Country":"India"},{"Country":"US"}]}).limit(2)  
  { "_id" : ObjectId("52f4a826958073ea07e15071"), "Name" : "Test User", "Age" : 45, 
"Gender" : "F", "Country" : "US" }  
  { "_id" : ObjectId("52f4a83f958073ea07e15072"), "Name" : "Test User1", "Age" : 11, 
"Gender" : "F", "Country" : "India" }      

    skip( )   
 If the requirement is to skip the first two records and return the third and fourth user, the  skip  command is 
used. The following command needs to be executed: 

  >db.users.find({"Gender":"F",$or:[{"Country":"India"}, {"Country":"US"}]}).limit(2).skip(2)  
  { "_id" : ObjectId("52f4a83f958073ea07e15073"), "Name" : "Test User2", "Age" : 12, 
"Gender" : "F", "Country" : "India" }  
  { "_id" : ObjectId("52f4a83f958073ea07e15074"), "Name" : "Test User3", "Age" : 13, 
"Gender" : "F", "Country" : "India" }  
  >   



CHAPTER 6 ■ USING MONGODB SHELL

67

   findOne( )    
 Similar to  find()  is the  findOne()  command. The   findOne()  method   can take the same parameters as 
 find() , but rather then returning a cursor, it returns a single document. Say you want to return one female 
user who stays in either India or US. This can be achieved using the following command: 

  > db.users.findOne({"Gender":"F"}, {"Name":1,"Age":1})  
  {  
          "_id" : ObjectId("52f4a826958073ea07e15071"),  
          "Name" : "Test User",  
          "Age" : 45  
  }  
  >  

 Similarly, if you want to return the first record irrespective of any selector in that case, you can use 
 findOne()  and it will return the first document in the collection. 

  > db.users.findOne()  
  {  
          "_id" : ObjectId("52f4a823958073ea07e15070"),  
          "FName" : "Test",  
          "LName" : "User",  
          "Age" : 30,  
          "Gender" : "M",  
          "Country" : "US"}   

   Using Cursor 
 When the  find()  method is used, MongoDB returns the results of the query as a cursor object. In order to 
display the result, the mongo shell iterates over the returned cursor.     

 MongoDB enables the users to work with the Cursor object of the  find  method. In the next example, 
you will see how to store the cursor object in a variable and manipulate it using a  while  loop. 

 Say you want to return all the users in the US. In order to do so, you created a variable, assigned the 
output of  find()  to the variable, which is a cursor, and then using the  while  loop you iterate and print 
the output. 

 The code snippet is as follows: 

  > var c = db.users.find({"Country":"US"})  
  > while(c.hasNext()) printjson(c.next())  
  {  
          "_id" : ObjectId("52f4a823958073ea07e15070"),  
          "FName" : "Test",  
          "LName" : "User",  
          "Age" : 30,  
          "Gender" : "M",  
          "Country" : "US"  
  }  



CHAPTER 6 ■ USING MONGODB SHELL

68

  {  
          "_id" : ObjectId("52f4a826958073ea07e15071"),  
          "Name" : "Test User",  
          "Age" : 45,  
          "Gender" : "F",  
          "Country" : "US"  
  }  
  >  

 The   next()  function      returns the next document. The   hasNext()  function      returns true if a document 
exists, and   printjson()       renders the output in JSON format. 

 The variable to which the cursor object is assigned can also be manipulated as an array. If, instead of looping 
through the variable, you want to display the document at array index 1, you can run the following command: 

  > var c = db.users.find({"Country":"US"})  
  > printjson(c[1])  
  {  
          "_id" : ObjectId("52f4a826958073ea07e15071"),  
          "Name" : "Test User",  
  ....     "Gender" : "F",  
         "Country" : "US"}  
  >   

   explain( ) 
 The   explain()  function      can be used to see what steps the MongoDB database is running while executing 
a query. Starting from version 3.0, the output format of the function and the parameter that is passed to the 
function have changed. It takes an optional parameter called  verbose , which determines what the explain 
output should look like. The following are the verbosity modes:  allPlansExecution ,  executionStats  ,  and 
 queryPlanner . The default verbosity mode is  queryPlanner  ,  which means if nothing is specified, it defaults 
to  queryPlanner . 

 The following code covers the steps executed when filtering on the  username  field: 

  > db.users.find({"Name":"Test User"}).explain("allPlansExecution")  
   
  "queryPlanner" : {  
          "plannerVersion" : 1,  
          "namespace" : "mydbproc.users",  
          "indexFilterSet" : false,  
          "parsedQuery" : {  
                  "$and" : [ ]  
          },  
          "winningPlan" : {  
                  "stage" : "COLLSCAN",  
                  "filter" : {  
                          "$and" : [ ]  
                  },  
                  "direction" : "forward"  
          },  
          "rejectedPlans" : [ ]  
  },  



CHAPTER 6 ■ USING MONGODB SHELL

69

  "executionStats" : {  
          "executionSuccess" : true,  
          "nReturned" : 20,  
          "executionTimeMillis" : 0,  
          "totalKeysExamined" : 0,  
          "totalDocsExamined" : 20,  
          "executionStages" : {  
                  "stage" : "COLLSCAN",  
                  "filter" : {  
                          "$and" : [ ]  
                  },  
                  "nReturned" : 20,  
                  "executionTimeMillisEstimate" : 0,  
                  "works" : 22,  
                  "advanced" : 20,  
                  "needTime" : 1,  
                  "needFetch" : 0,  
                  "saveState" : 0,  
                  "restoreState" : 0,  
                  "isEOF" : 1,  
                  "invalidates" : 0,  
                  "direction" : "forward",  
                  "docsExamined" : 20  
          },  
          "allPlansExecution" : [ ]  
  },  
  "serverInfo" : {  
          "host" : " ANOC9",  
          "port" : 27017,  
          "version" : "3.0.4",  
          "gitVersion" : "534b5a3f9d10f00cd27737fbcd951032248b5952"  
  },  
  "ok" : 1  

 As you can see, the  explain()  output returns information regarding  queryPlanner ,  executionStats  ,  
and  serverInfo . As highlighted above, the information the output returns depends on the verbosity mode 
selected. 

 You have seen how to perform basic querying, sorting, limiting, etc. You also saw how to manipulate the 
result set using a  while  loop or as an array. In the next section, you will take a look at indexes and how you 
can use them in your queries.   

     Using  Indexes   
  Indexes   are used to provide high performance read operations for queries that are used frequently. By 
default, whenever a collection is created and documents are added to it, an index is created on the  _id  field 
of the document. 

 In this section, you will look at how different types of indexes can be created. Let’s begin by inserting 
1 million documents using  for  loop in a new collection called  testindx . 

  >for(i=0;i<1000000;i++){db.testindx.insert({"Name":"user"+i,"Age":Math.floor(Math.
random()*120)})}  



CHAPTER 6 ■ USING MONGODB SHELL

70

 Next, issue the  find()  command to fetch a  Name  with value of  user101 . Run the   explain()  command   
to check what steps MongoDB is executing in order to return the result set. 

  > db.testindx.find({"Name":"user101"}).explain("allPlansExecution")  
   
  {  
          "queryPlanner" : {  
                  "plannerVersion" : 1,      
                  "namespace" : "mydbproc.testindx",  
                  "indexFilterSet" : false,  
                  "parsedQuery" : {  
                          "Name" : {  
                                  "$eq" : "user101"  
                          }  
                  },  
                  "winningPlan" : {  
                          "stage" : "COLLSCAN",  
                          "filter" : {  
                                  "Name" : {  
                                          "$eq" : "user101"  
                                  }  
                          },  
                          "direction" : "forward"  
                  },  
                  "rejectedPlans" : [ ]  
          },  
          "executionStats" : {  
                  "executionSuccess" : true,  
                  "nReturned" : 1,  
                  "executionTimeMillis" : 645,  
                  "totalKeysExamined" : 0,  
                  "totalDocsExamined" : 1000000,  
                  "executionStages" : {  
                          "stage" : "COLLSCAN",  
                          "filter" : {  
                                  "Name" : {  
                                          "$eq" : "user101"  
                                  }  
                          },  
                          "nReturned" : 1,  
                          "executionTimeMillisEstimate" : 20,  
                          "works" : 1000002,  
                          "advanced" : 1,  
                          "needTime" : 1000000,  
                          "needFetch" : 0,  
                          "saveState" : 7812,  
                          "restoreState" : 7812,  
                          "isEOF" : 1,  
                          "invalidates" : 0,  



CHAPTER 6 ■ USING MONGODB SHELL

71

                          "direction" : "forward",  
                          "docsExamined" : 1000000  
                  },  
                  "allPlansExecution" : [ ]  
          },  
          "serverInfo" : {  
                  "host" : " ANOC9",  
                  "port" : 27017,  
                  "version" : "3.0.4",  
                  "gitVersion" : "534b5a3f9d10f00cd27737fbcd951032248b5952"  
          },  
          "ok" : 1  

 As you can see, the database scanned the entire table. This has a significant performance impact and it 
is happening because there are no indexes. 

    Single Key Index   
 Let’s create an index on the  Name  field of the document. Use  ensureIndex()        to create the index. 

  > db.testindx.ensureIndex({"Name":1})  

 The index creation will take few minutes depending on the server and the collection size. 
 Let’s run the same query that you ran earlier with  explain()  to check what the steps the database is 

executing post index creation. Check the  n  ,   nscanned  ,  and  millis  fields in the output. 

  >db.testindx.find({"Name":"user101"}).explain("allPathsExecution")  
   
  {  
          "queryPlanner" : {  
                  "plannerVersion" : 1,  
                  "namespace" : "mydbproc.testindx",  
                  "indexFilterSet" : false,  
                  "parsedQuery" : {  
                          "Name" : {  
                                  "$eq" : "user101"  
                          }  
                  },  
                  "winningPlan" : {  
                          "stage" : "FETCH",  
                          "inputStage" : {  
                                  "stage" : "IXSCAN",  
                                  "keyPattern" : {  
                                          "Name" : 1  
                                  },  
                                  "indexName" : "Name_1",  
                                  "isMultiKey" : false,  
                                  "direction" : "forward",  



CHAPTER 6 ■ USING MONGODB SHELL

72

                                  "indexBounds" : {  
                                          "Name" : [  
                                                  "[\"user101\", \"user101\"]"  
                                          ]  
                                  }  
                          }  
                  },  
                  "rejectedPlans" : [ ]  
          },  
          "executionStats" : {  
                  "executionSuccess" : true,  
                  "nReturned" : 1,  
                  "executionTimeMillis" : 0,  
                  "totalKeysExamined" : 1,  
                  "totalDocsExamined" : 1,  
                  "executionStages" : {  
                          "stage" : "FETCH",  
                          "nReturned" : 1,  
                          "executionTimeMillisEstimate" : 0,  
                          "works" : 2,  
                          "advanced" : 1,  
                          "needTime" : 0,  
                          "needFetch" : 0,      
                          "saveState" : 0,  
                          "restoreState" : 0,  
                          "isEOF" : 1,  
                          "invalidates" : 0,  
                          "docsExamined" : 1,  
                          "alreadyHasObj" : 0,  
                          "inputStage" : {  
                                  "stage" : "IXSCAN",  
                                  "nReturned" : 1,  
                                  "executionTimeMillisEstimate" : 0,  
                                  "works" : 2,  
                                  "advanced" : 1,  
                                  "needTime" : 0,  
                                  "needFetch" : 0,  
                                  "saveState" : 0,  
                                  "restoreState" : 0,  
                                  "isEOF" : 1,  
                                  "invalidates" : 0,  
                                  "keyPattern" : {  
                                          "Name" : 1  
                                  },  
                                  "indexName" : "Name_1",  
                                  "isMultiKey" : false,  
                                  "direction" : "forward",  
                                  "indexBounds" : {  
                                          "Name" : [  
                                                  "[\"user101\", \"user101\"]"  
                                          ]  
                                  },  



CHAPTER 6 ■ USING MONGODB SHELL

73

                                  "keysExamined" : 1,  
                                  "dupsTested" : 0,  
                                  "dupsDropped" : 0,  
                                  "seenInvalidated" : 0,  
                                  "matchTested" : 0  
                          }  
                  },  
                  "allPlansExecution" : [ ]  
          },  
          "serverInfo" : {  
                  "host" : "ANOC9",  
                  "port" : 27017,  
                  "version" : "3.0.4",  
                  "gitVersion" : "534b5a3f9d10f00cd27737fbcd951032248b5952"  
          },  
          "ok" : 1  
  }  
  >     

 As you can see in the results, there is no table scan. The index creation makes a significant difference in 
the query execution time.  

    Compound Index   
 When creating an index, you should keep in mind that the index covers most of your queries. If you 
sometimes query only the  Name  field and at times you query both the  Name  and the  Age  field, creating a 
compound index on the  Name  and  Age  fields will be more beneficial than an index that is created on either of 
the fields because the compound index will cover both queries. 

 The following command creates a compound index on fields  Name  and  Age  of the collection  testindx . 

  > db.testindx.ensureIndex({"Name":1, "Age": 1})  

 Compound indexes help MongoDB execute queries with multiple clauses more efficiently. When 
creating a compound index, it is also very important to keep in mind that the fields that will be used for exact 
matches (e.g.  Name  :   "S1"  )  come first, followed by fields that are used in ranges (e.g.  Age  :   {"$gt":20} ). 

 Hence the above index will be beneficial for the following query: 

  >db.testindx.find({"Name": "user5","Age":{"$gt":25}}).explain("allPlansExecution")  
   
  {  
          "queryPlanner" : {  
                  "plannerVersion" : 1,  
                  "namespace" : "mydbproc.testindx",  
                  "indexFilterSet" : false,  
                  "parsedQuery" : {  
                          "$and" : [  
                                  {  
                                          "Name" : {  
                                                  "$eq" : "user5"  
                                          }  
                                  },  

www.allitebooks.com

http://www.allitebooks.org


CHAPTER 6 ■ USING MONGODB SHELL

74

                                  {  
                                          "Age" : {  
                                                  "$gt" : 25  
                                          }  
                                  }  
                          ]  
                  },  
                  "winningPlan" : {  
                          "stage" : "KEEP_MUTATIONS",  
                          "inputStage" : {  
                                  "stage" : "FETCH",  
                                  "filter" : {  
                                          "Age" : {  
                                                  "$gt" : 25  
                                          }     
                                  },  
                                  ............................  
                                          "indexBounds" : {  
                                                  "Name" : [  
                                                          "[\"user5\", \"user5\"  
                 },  
                  "rejectedPlans" : [  
                          {  
                                  "stage" : "FETCH",  
  ......................................................  
                                          "indexName" : "Name_1_Age_1",  
                                          "isMultiKey" : false,  
                                          "direction" : "forward",  
  .....................................................  
          "executionStats" : {  
                  "executionSuccess" : true,  
                  "nReturned" : 1,  
                  "executionTimeMillis" : 0,  
                  "totalKeysExamined" : 1,  
                  "totalDocsExamined" : 1,  
  .....................................................  
                          "inputStage" : {  
                                  "stage" : "FETCH",  
                                  "filter" : {  
                                          "Age" : {  
                                                  "$gt" : 25  
                                          }  
                                  },  
                                  "nReturned" : 1,  
                                  "executionTimeMillisEstimate" : 0,  
                                  "works" : 2,  
                                  "advanced" : 1,  
                  "allPlansExecution" : [  
                          {  
                                  "nReturned" : 1,  
                                  "executionTimeMillisEstimate" : 0,  



CHAPTER 6 ■ USING MONGODB SHELL

75

                                  "totalKeysExamined" : 1,  
                                  "totalDocsExamined" : 1,  
                                  "executionStages" : {  
  .............................................................  
          "serverInfo" : {  
                  "host" : " ANOC9",  
                  "port" : 27017,  
                  "version" : "3.0.4",  
                  "gitVersion" : "534b5a3f9d10f00cd27737fbcd951032248b5952"  
          },  
          "ok" : 1  
  }     
  >   

   Support for sort Operations 
 In MongoDB, a sort operation that uses an indexed field to sort documents provides the greatest performance.     

 As in other databases, indexes in MongoDB have an order due to this. If an index is used to access 
documents, it returns results in the same order as the index. 

 A compound index needs to be created when sorting on multiple fields. In a compound index, the 
output can be in the sorted order of either an index prefix or the full index. 

 The index prefix is a subset of the compound index, which contains one or more fields from the start of 
the index. 

 For example, the following are the index prefix of the compound index:  { x:1, y: 1, z: 1} . 
 The sort operation can be on any of the combinations of index prefix like  {x: 1}, {x: 1, y: 1} . 
 A compound index can only help with sorting if it is a prefix of the sort. 
 For example, a compound index on  Age  ,   Name , and  Class,  like 

  > db.testindx.ensureIndex({"Age": 1, "Name": 1, "Class": 1})  

 will be useful for the following queries: 

  > db.testindx.find().sort({"Age":1})  
  > db.testindx.find().sort({"Age":1,"Name":1})  
  > db.testindx.find().sort({"Age":1,"Name":1, "Class":1})  

 The above index won’t be of much help in the following query: 

  > db.testindx.find().sort({"Gender":1, "Age":1, "Name": 1})  

 You can diagnose how MongoDB is processing a query by using the  explain()  command.  

    Unique Index   
 Creating index on a field doesn’t ensure uniqueness, so if an index is created on the  Name  field, then two or 
more documents can have the same names. However, if uniqueness is one of the constraints that needs to be 
enabled, the  unique  property needs to be set to  true  when creating the index. 

 First, let’s drop the existing indexes. 

  >db.testindx.dropIndexes()  



CHAPTER 6 ■ USING MONGODB SHELL

76

 The following command will create a unique index on the  Name  field of the  testindx  collection: 

  > db.testindx.ensureIndex({"Name":1},{"unique":true})  

 Now if you try to insert duplicate names in the collection as shown below, MongoDB returns an error 
and does not allow insertion of duplicate records: 

  > db.testindx.insert({"Name":"uniquename"})  
  > db.testindx.insert({"Name":"uniquename"})  
  "E11000 duplicate key error index: mydbpoc.testindx.$Name_1 dup key: { : "uniquename" }"  

 If you check the collection, you’ll see that only the first  uniquename  was stored. 

  > db.testindx.find({"Name":"uniquename"})  
  { "_id" : ObjectId("52f4b3c3958073ea07f092ca"), "Name" : "uniquename" }  
  >  

 Uniqueness can be enabled for compound indexes also, which means that although individual fields 
can have duplicate values, the combination will always be unique. 

 For example, if you have a unique index on  {"name":1, "age":1} , 

  > db.testindx.ensureIndex({"Name":1, "Age":1},{"unique":true})  
  >  

 then the following inserts will be permissible: 

  > db.testindx.insert({"Name":"usercit"})  
  > db.testindx.insert({"Name":"usercit", "Age":30})  

 However, if you execute 

  > db.testindx.insert({"Name":"usercit", "Age":30})  

 it’ll throw an error like 

  E11000 duplicate key error index: mydbpoc.testindx.$Name_1_Age_1 
dup key: { : "usercit", : 30.0 }  

 You may create the collection and insert the documents first and then create an index on the collection. 
If you create a unique index on the collection that might have duplicate values in the fields on which the 
index is being created, the index creation will fail.     

 To cater to this scenario, MongoDB provides a  dropDups  option. The  dropDups  option saves the first 
document found and remove any subsequent documents with duplicate values. 

 The following command will create a unique index on the  name  field and will delete any duplicate 
documents: 

  >db.testindx.ensureIndex({"Name":1},{"unique":true, "dropDups":true})  
  >   



CHAPTER 6 ■ USING MONGODB SHELL

77

   system.indexes 
 Whenever you create a database, by default a  system.indexes  collection is created. All of the information 
about a database’s indexes is stored in the  system.indexes  collection. This is a reserved collection, so 
you cannot modify its documents or remove documents from it. You can manipulate it only through 
 ensureIndex  and the  dropIndexes  database commands.     

 Whenever an index is created, its meta information can be seen in  system.indexes . The following 
command can be used to fetch all the index information about the mentioned collection: 

  db.collectionName.getIndexes()  

 For example, the following command will return all indexes created on the  testindx  collection: 

  > db.testindx.getIndexes()   

   dropIndex 
 The   dropIndex  command      is used to remove the index. 

 The following command will remove the  Name  field index from the  testindx  collection: 

  > db.testindx.dropIndex({"Name":1})  
  { "nIndexesWas" : 3, "ok" : 1 }  
  >   

   reIndex 
 When you have performed a number of insertions and deletions on the collection, you may have to rebuild 
the indexes so that the index can be used optimally. The   reIndex  command      is used to rebuild the indexes. 

 The following command rebuilds all the indexes of a collection. It will first drop the indexes, including 
the default index on the  _id  field, and then it will rebuild the indexes. 

  db.collectionname.reIndex()  

 The following command rebuilds the indexes of the  testindx  collection: 

  > db.testindx.reIndex()  
  {  
          "nIndexesWas" : 2,  
          "msg" : "indexes dropped for collection",  
          "nIndexes" : 2,  
          ..............  
          "ok" : 1  
  }  
  >  

 We will be discussing in detail the different types of indexes available in MongoDB in the next chapter.  



CHAPTER 6 ■ USING MONGODB SHELL

78

   How Indexing Works 
 MongoDB stores indexes in a   BTree  structure  , so range queries are automatically supported. 

 If multiple selection criteria are used in a query, MongoDB tries to find the best single index to select a 
candidate set. After that, it sequentially iterates through the set to evaluate the other criteria. 

 When the query is executed for the first time, MongoDB creates multiple execution plans for each index 
that is available for the query. It lets the plans execute within certain number of ticks in turns, until the plan 
that executes the fastest finishes. The result is then returned to the system, which remembers the index that 
was used by the fastest execution plan. 

 For subsequent queries, the remembered index will be used until some certain number of updates has 
happened within the collection. After the updating limit is crossed, the system will again follow the process 
to find out the best index that is applicable at that time. 

 The reevaluation of the query plans will happen when either of the following  events   has occurred:

•    The collection receives 1,000 write operations.  

•   An index is added or dropped.  

•   A restart of the mongod process happens.  

•   A reindexing for rebuilding the index happens.    

 If you want to override MongoDB’s default index selection, the same can be done using the   hint()  method     . 

 The index filter is introduced in version 2.6. It is made of indexes that an optimizer will evaluate for a query, 
including the query, projections, and the sorting. MongoDB will use the index as provided by the index filter and 
will ignore the  hint() . 

 Before version 2.6, at any point in time MongoDB uses only one index, so you need to ensure that 
composite indexes exist to match your queries better. This can be done by checking the sort and search 
criteria of the queries. 

 Index  intersection   is introduced in version 2.6. It enables intersection of indexes for fulfilling queries 
with compound conditions where part of condition is fulfilled by one index and the other part is fulfilled by 
the other index. 

 In general, an index intersection is made up of two indexes; however, multiple index intersections can 
be used for resolving a query. This capability provides better optimization. 

 As in other databases, index maintenance has a cost attached. Every operation that changes the 
collection (such as creation, updating, or deletion) has an overhead because the indexes also need to be 
updated. To maintain an optimal balance, you need to periodically check the effectiveness of having an 
index that can be measured by the ratio of reads and writes you are doing on the system. Identify the less-
used indexes and delete them.    

     Stepping Beyond the Basics 
 This section will cover advanced querying using conditional operators and regular expressions in the 
selector part. Each of these operators and regular expressions provides you with more control over the 
queries you write and consequently over the information you can fetch from the MongoDB database. 



CHAPTER 6 ■ USING MONGODB SHELL

79

     Using Conditional Operators 
  Conditional operators   enable you to have more control over the data you are trying to extract from the database. 
In this section, you will be focusing on the following operators:  $lt  ,   $lte  ,   $gt  ,   $gte  ,   $in  ,   $nin  ,  and  $not  .  

 The following example assumes a collection named  Students  that contains the following types of documents:     

  {  
  _id: ObjectID(),  
  Name: "Full Name",  
  Age: 30,  
  Gender: "M",  
  Class: "C1",  
  Score: 95  

  }  

 You will first create the collection and insert few sample documents. 

  >db.students.insert({Name:"S1",Age:25,Gender:"M",Class:"C1",Score:95})  
  >db.students.insert({Name:"S2",Age:18,Gender:"M",Class:"C1",Score:85})  
  >db.students.insert({Name:"S3",Age:18,Gender:"F",Class:"C1",Score:85})  
  >db.students.insert({Name:"S4",Age:18,Gender:"F",Class:"C1",Score:75})  
  >db.students.insert({Name:"S5",Age:18,Gender:"F",Class:"C2",Score:75})  
  >db.students.insert({Name:"S6",Age:21,Gender:"M",Class:"C2",Score:100})  
  >db.students.insert({Name:"S7",Age:21,Gender:"M",Class:"C2",Score:100})  
  >db.students.insert({Name:"S8",Age:25,Gender:"F",Class:"C2",Score:100})  
  >db.students.insert({Name:"S9",Age:25,Gender:"F",Class:"C2",Score:90})  
  >db.students.insert({Name:"S10",Age:28,Gender:"F",Class:"C3",Score:90})  
  > db.students.find()  
  { "_id" : ObjectId("52f874faa13cd6a65998734d"), "Name" : "S1", "Age" : 25, "Gender" : "M", 
"Class" : "C1", "Score" : 95 }  
  .......................  
  { "_id" : ObjectId("52f8758da13cd6a659987356"), "Name" : "S10", "Age" : 28, "Gender" : "F", 
"Class" : "C3", "Score" : 90 }  
  >  

   $lt and $lte 
 Let’s start with the   $lt  and  $lte  operators     . They stand for “ less than ” and “ less than or equal to, ” respectively. 

 If you want to find  all students who are younger than 25  (Age < 25), you can execute the following  find  
with a selector: 

  > db.students.find({"Age":{"$lt":25}})  
  { "_id" : ObjectId("52f8750ca13cd6a65998734e"), "Name" : "S2", "Age" : 18, "Gender" : "M", 
"Class" : "C1", "Score" : 85 }  
  .............................  
  { "_id" : ObjectId("52f87556a13cd6a659987353"), "Name" : "S7", "Age" : 21, "Gender" : "M", 
"Class" : "C2", "Score" : 100 }  
  >        



CHAPTER 6 ■ USING MONGODB SHELL

80

 If you want to find out  all students who are older than 25  (Age <= 25), execute the following: 

  > db.students.find({"Age":{"$lte":25}})  
  { "_id" : ObjectId("52f874faa13cd6a65998734d"), "Name" : "S1", "Age" : 25, "Gender" : "M", 
"Class" : "C1", "Score" : 95 }  
  ....................  
  { "_id" : ObjectId("52f87578a13cd6a659987355"), "Name" : "S9", "Age" : 25, "Gender" : "F", 
"Class" : "C2", "Score" : 90 }  
  >   

   $gt and $gte 
 The   $gt  and  $gte  operators      stand for “ greater than ” and “ greater than or equal to, ” respectively. 

 Let’s find out  all of the students with Age > 25 . This can be achieved by executing the following command: 

  > db.students.find({"Age":{"$gt":25}})  
  { "_id" : ObjectId("52f8758da13cd6a659987356"), "Name" : "S10", "Age" : 28, "Gender" : "F", 
"Class" : "C3", "Score" : 90 }  
  >  

 If you change the above example to return  students with Age >= 25 , then the command is 

  > db.students.find({"Age":{"$gte":25}})  
  { "_id" : ObjectId("52f874faa13cd6a65998734d"), "Name" : "S1", "Age" : 25, "Gender" : "M", 
"Class" : "C1", "Score" : 95 }  
  ......................................  
  { "_id" : ObjectId("52f8758da13cd6a659987356"), "Name" : "S10", "Age" : 28, "Gender" : "F", 
"Class" : "C3", "Score" : 90 }  
  >   

    $in and $nin      
 Let’s find  all students who belong to either class C1 or C2 . The command for the same is 

  > db.students.find({"Class":{"$in":["C1","C2"]}})  
  { "_id" : ObjectId("52f874faa13cd6a65998734d"), "Name" : "S1", "Age" : 25, "Gender" : "M", 
"Class" : "C1", "Score" : 95 }  
  ................................  
  { "_id" : ObjectId("52f87578a13cd6a659987355"), "Name" : "S9", "Age" : 25, "Gender" : "F", 
"Class" : "C2", "Score" : 90 }  
  >  

 The inverse of this can be returned by using  $nin . 
 Let’s next find  students who don’t belong to class C1 or C2 . The command is 

  > db.students.find({"Class":{"$nin":["C1","C2"]}})  
  { "_id" : ObjectId("52f8758da13cd6a659987356"), "Name" : "S10", "Age" : 28, "Gender" : "F", 
"Class" : "C3", "Score" : 90 }  
  >  



CHAPTER 6 ■ USING MONGODB SHELL

81

 Let’s next see how you can combine all of the above operators and write a query.       Say you want to  find 
out all students whose gender is either “M” or they belong to class “C1” or ‘C2” and whose age is greater than or 
equal to 25 . This can be achieved by executing the following command: 

  >db.students.find({$or:[{"Gender":"M","Class":{"$in":["C1","C2"]}}], "Age":{"$gte":25}})  
  { "_id" : ObjectId("52f874faa13cd6a65998734d"), "Name" : "S1", "Age" : 25, "Gender" : "M", 
"Class" : "C1", "Score" : 95 }  
  >    

      Regular Expressions   
 In this section, you will look at how to use regular expressions. Regular expressions are useful in scenarios 
where you want to  find students with name starting with “A” . 

 In order to understand this, let’s add three or four more students with different names. 

  > db.students.insert({Name:"Student1", Age:30, Gender:"M", Class: "Biology", Score:90})  
  > db.students.insert({Name:"Student2", Age:30, Gender:"M", Class: "Chemistry", Score:90})  
  > db.students.insert({Name:"Test1", Age:30, Gender:"M", Class: "Chemistry", Score:90})  
  > db.students.insert({Name:"Test2", Age:30, Gender:"M", Class: "Chemistry", Score:90})  
  > db.students.insert({Name:"Test3", Age:30, Gender:"M", Class: "Chemistry", Score:90})  
  >  

 Say you want to  find all students with names starting with “St” or “Te” and whose class begins with “Che”.  
The same can be filtered using regular expressions, like so: 

  > db.students.find({"Name":/(St|Te)*/i, "Class":/(Che)/i})  
  { "_id" : ObjectId("52f89ecae451bb7a56e59086"), "Name" : "Student2", "Age" : 30, 
"Gender" : "M", "Class" : "Chemistry", "Score" : 90 }  
  .........................  
  { "_id" : ObjectId("52f89f06e451bb7a56e59089"), "Name" : "Test3", "Age" : 30, 
"Gender" : "M", "Class" : "Chemistry", "Score" : 90 }  
  >  

 In order to understand how the regular expression works, let’s take the query  "Name":/(St|Te)*/i .    

    //i  indicates that the regex is case insensitive.  

   (St|Te)*  means the Name string must start with either “St” or “Te”.  

  The  *  at the end means it will match anything after that.    

 When you put everything together, you are doing a case insensitive match of names that have either “St” 
or “Te” at the beginning of them. In the regex for the  Class  also the same Regex is issued. 

 Next, let’s complicate the query a bit. Let’s combine it with the operators covered above. 
  Fetch Students with names as student1, student2 and who are male students with age >=25.  The 

command for this is as follows: 

  >db.students.find({"Name":/(student*)/i,"Age":{"$gte":25},"Gender":"M"})  
  { "_id" : ObjectId("52f89eb1e451bb7a56e59085"), "Name" : "Student1", "Age" : 30,  
   "Gender" : "M", "Class" : "Biology", "Score" : 90 }  
  { "_id" : ObjectId("52f89ecae451bb7a56e59086"), "Name" : "Student2", "Age" : 30,  
   "Gender" : "M", "Class" : "Chemistry", "Score" : 90 }   



CHAPTER 6 ■ USING MONGODB SHELL

82

     MapReduce 
 The  MapReduce framework      enables division of the task, which in this case is data aggregation across a cluster of 
computers in order to reduce the time it takes to aggregate the data set. It consists of two parts: Map and Reduce. 

 Here’s a more specific description: MapReduce is a framework that is used to process problems that are 
highly distributable across enormous datasets and are run using multiple nodes. If all the nodes have the same 
hardware, these nodes are collectively referred as a cluster; otherwise, it’s referred as a grid. This processing 
can occur on structured data (data stored in a database) and unstructured data (data stored in a file system).

•    “Map”: In this step, the node that is acting as the master takes the input parameter and 
divides the big problem into multiple small sub-problems. These sub-problems are then 
distributed across the worker nodes. The worker nodes might further divide the problem 
into sub-problems. This leads to a multi-level tree structure. The worker nodes will then 
work on the sub-problems within them and return the answer back to the master node.  

•   “Reduce”: In this step, all the sub-problems’ answers are available with the master 
node, which then combines all the answers and produce the final output, which is 
the answer to the big problem you were trying to solve.    

 In order to understand how it works, let’s consider a small example where you will  find out the number 
of male and female students  in your collection. 

 This involves the following steps: first you create the  map  and  reduce  functions and then you call the 
 mapReduce  function and pass the necessary arguments. 

 Let’s start by defining the  map  function: 

  > var map = function(){emit(this.Gender,1);};  
  >  

 This step takes as input the document and based on the  Gender  field it emits documents of the type 
 {"F", 1}  or  {"M", 1}  .  

 Next, you create the  reduce  function: 

  > var reduce = function(key, value){return Array.sum(value);};  
  >  

 This will group the documents emitted by the  map  function on the key field, which in your example is 
 Gender , and will return the sum of values, which in the above example is emitted as “1”. The output of the 
reduce function defined above is a  gender-wise count . 

 Finally, you put them together using the  mapReduce  function, like so: 

  > db.students.mapReduce(map, reduce, {out: "mapreducecount1"})  
  {  
          "result" : "mapreducecount1",  
          "timeMillis" : 29,  
          "counts" : {  
                  "input" : 15,  
                  "emit" : 15,  
                  "reduce" : 2,  
                  "output" : 2  
          },  
          "ok" : 1,  
  }  
  >  



CHAPTER 6 ■ USING MONGODB SHELL

83

 This actually is applying the  map  ,   reduce  function, which you defined on the  students  collection. 
The final result is stored in a new collection called  mapreducecount1 . 

 In order to vet it, run the  find()  command on the  mapreducecount1  collection, as shown: 

  > db.mapreducecount1.find()  
  { "_id" : "F", "value" : 6 }  
  { "_id" : "M", "value" : 9 }  
  >        

 Here’s one more example to explain the workings of  MapReduce . Let’s use  MapReduce  to  find out a 
class-wise average score . As you saw in the above example, you need to first create the  map  function and then 
the  reduce  function and finally you combine them to store the output in a collection in your database. The 
code snippet is 

  > var map_1 = function(){emit(this.Class,this.Score);};  
  > var reduce_1 = function(key, value){return Array.avg(value);};  
  >db.students.mapReduce(map_1,reduce_1, {out:"MR_ClassAvg_1"})  
  {  
          "result" : "MR_ClassAvg_1",  
          "timeMillis" : 4,  
          "counts" : {  
                  "input" : 15,  "emit" : 15,  
                  "reduce" : 3 ,  "output" : 5  
          },  
          "ok" : 1,  
  }  
   
  > db.MR_ClassAvg_1.find()  
  { "_id" : "Biology", "value" : 90 }  
  { "_id" : "C1", "value" : 85 }  
  { "_id" : "C2", "value" : 93 }  
  { "_id" : "C3", "value" : 90 }  
  { "_id" : "Chemistry", "value" : 90 }  
  >  

 The first step is to define the  map  function, which loops through the collection documents and returns 
output as  {"Class": Score},  for example  {"C1":95} . The second step does a grouping on the class 
and computes the average of the scores for that class. The third step combines the results; it defines the 
collection to which the  map ,  reduce  function needs to be applied and finally it defines where to store the 
output, which in this case is a new collection called  MR_ClassAvg_1 . 

 In the last step, you use  find  in order to check the resulting output.  

     aggregate()       
 The previous section introduced the  MapReduce  function. In this section, you will get a glimpse of the 
aggregation framework of MongoDB. 

 The aggregation framework enables you find out the aggregate value without using the  MapReduce  
function. Performance-wise, the aggregation framework is faster than the  MapReduce  function. You always 
need to keep in mind that  MapReduce  is meant for batch approach and not for real-time analysis. 



CHAPTER 6 ■ USING MONGODB SHELL

84

 You will next depict the above two discussed outputs using the  aggregate  function. First, the output was 
to  find the count of male and female students . This can be achieved by executing the following command: 

  > db.students.aggregate({$group:{_id:"$Gender", totalStudent: {$sum: 1}}})  
  { "_id" : "F", "totalStudent" : 6 }  
  { "_id" : "M", "totalStudent" : 9 }  
  >  

 Similarly, in order to  find out the class-wise average score , the following command can be executed: 

  > db.students.aggregate({$group:{_id:"$Class", AvgScore: {$avg: "$Score"}}})  
  { "_id" : "Biology", "AvgScore" : 90 }  
  { "_id" : "C3", "AvgScore" : 90 }  
  { "_id" : "Chemistry", "AvgScore" : 90 }  
  { "_id" : "C2", "AvgScore" : 93 }  
  { "_id" : "C1", "AvgScore" : 85 }  
  >    

     Designing an Application’s Data Model 
 In this section, you will look at how to design the data  model   for an application. The MongoDB database 
provides two options for designing a data model: the user can either embed related objects within one 
another, or it can reference each other using ID. In this section, you will explore these options. 

 In order to understand these options, you will design a  blogging application   and demonstrate the usage 
of the two options. 

 A typical  blog application   consists of the following scenarios: 

 You have people posting blogs on different subjects. In addition to the subject categorization, different tags can 
also be used. As an example, if the category is politics and the post talks about a politician, then that politician’s 
name can be added as a tag to the post. This helps users find posts related to their interests quickly and also 
lets them link related posts together. 

 The people viewing the blog can comment on the blog posts. 

     Relational Data Modeling and Normalization 
 Before jumping into MongoDB’s approach, let’s take a little detour into how you would model this in a 
 relational database   such as SQL. 

 In relational databases, the data modelling typically progresses by defining the tables and gradually 
removing data redundancy to achieve a normal form. 

   What Is a Normal Form? 
 In  relational databases  , a  normal form   typically begins by creating tables as per the application requirement 
and then gradually removing redundancy to achieve the highest normal form, which is also termed the third 
normal form or 3NF.In order to understand this better, let’s put the blogging application data in tabular form. 
The initial data is shown in Figure  6-2 .  



CHAPTER 6 ■ USING MONGODB SHELL

85

 This data is actually in the first normal form. You will have lots of redundancy because you can have 
multiple comments against the posts and multiple tags can be associated with the post. The problem with 
redundancy, of course, is that it introduces the possibility of inconsistency, where various copies of the 
same data may have different values. To remove this redundancy, you need to further normalize the data by 
splitting it into multiple tables. As part of this step, you must identify a  key  column that uniquely identifies 
each row in the table so that you can create links between the tables. The above scenarios when modeled 
using the 3NF normal forms will look like the RDBMs diagram shown in Figure  6-3 .      

Author Posts Category Tag Comments Commenter

  Figure 6-2.    Blogging application initial  data            

  Figure 6-3.     RDBMS diagram         

 

 



CHAPTER 6 ■ USING MONGODB SHELL

86

 In this case,  you   have a data model that is free of redundancy, allowing you to update it without having 
to worry about updating multiple rows. In particular, you no longer need to worry about  inconsistency  in the 
data model.  

   The Problem with Normal Forms 
 As mentioned, the nice thing about normalization is that it allows for easy updating without any redundancy 
(i.e. it helps keep the data consistent). Updating a user name means updating the name in the  Users  table. 

 However, a problem arises when you try to get the data back  out . For instance, to find all tags and 
comments associated with posts by a specific user, the relational database programmer uses a JOIN. By 
using a JOIN, the database returns all data as per the application screen design, but the real  problem   is what 
operation the database performs to get that result set. 

 Generally, any RDBMS reads from a disk and does a seek, which takes well over 99% of the time 
spent reading a row. When it comes to  disk   access, random seeks are the enemy. The reason why this is so 
important in this context is because JOINs typically require random seeks. The JOIN operation is one of the 
most expensive operations within a relational database. Additionally, if you end up needing to scale your 
database to multiple servers, you introduce the problem of generating a  distributed join , a complex and 
generally slow operation.       

      MongoDB Document   Data Model Approach 
 As you know, in MongoDB, data is stored in  documents . Fortunately for us as application designers, this 
opens up some new possibilities in schema design. Unfortunately for us, it also complicates our schema 
design process. Now when faced with a schema design problem there’s no longer a fixed path of normalized 
database design, as there is with relational databases. In MongoDB, the schema design depends on the 
problem you are trying to solve. 

 If you have to model the above using the MongoDB document model, you might store the blog data in a 
document as follows: 

  {  
                  "_id" : ObjectId("509d27069cc1ae293b36928d"),  
                  "title" : "Sample title",  
                  "body" : "Sample text.",  
                  "tags" : [  
                          "Tag1",  
                          "Tag2",  
                          "Tag3",  
                          "Tag4"  
                  ],  
                  "created_date" : ISODate("2015-07-06T12:41:39.110Z"),  
                  "author" : "Author 1",  
                  "category_id" : ObjectId("509d29709cc1ae293b369295"),  
                  "comments" : [  
                          {  
                                  "subject" : "Sample comment",  
                                  "body" : "Comment Body",  
                                  "author " : "author 2",  
                                  "created_date":ISODate("2015-07-06T13:34:23.929Z")  
                          }  
                  ]}  



CHAPTER 6 ■ USING MONGODB SHELL

87

 As you can see, you have embedded the comments and tags within a single document only. 
Alternatively, you could “normalize” the model a bit by referencing the comments and tags by the  _id  field: 

  // Authors document:  
  {  
  "_id": ObjectId("509d280e9cc1ae293b36928e "),  
  "name": "Author 1",}  
  // Tags document:  
  {  
  "_id": ObjectId("509d35349cc1ae293b369299"),  
  "TagName": "Tag1",.....}  
  // Comments document:  
  {  
  "_id": ObjectId("509d359a9cc1ae293b3692a0"),  
  "Author": ObjectId("508d27069cc1ae293b36928d"),  
  .......     
  "created_date" : ISODate("2015-07-06T13:34:59.336Z")  
  }  
  //Category Document  
  {  
  "_id": ObjectId("509d29709cc1ae293b369295"),  
  "Category": "Catgeory1"......  
  }  
  //Posts Document  
          {  
                  "_id" : ObjectId("509d27069cc1ae293b36928d"),  
                  "title" : "Sample title","body" : "Sample text.",  
                  "tags" : [      ObjectId("509d35349cc1ae293b369299"),  
                          ObjectId("509d35349cc1ae293b36929c")  
                  ],  
                  "created_date" : ISODate("2015-07-06T13:41:39.110Z"),  
                  "author_id" : ObjectId("509d280e9cc1ae293b36928e"),  
                  "category_id" : ObjectId("509d29709cc1ae293b369295"),  
                  "comments" : [  
                          ObjectId("509d359a9cc1ae293b3692a0"),  
                                  ]}  

 The remainder of this chapter is devoted to identifying which solution will work in your context (i.e. 
whether to use referencing or whether to embed). 

   Embedding 
 In this section, you will see if  embedding   will have a positive impact on the performance. Embedding can 
be useful when you want to fetch some set of data and display it on the screen, such as a page that displays 
comments associated with the blog; in this case the comments can be embedded in the  Blogs  document. 

 The benefit of this approach is that since MongoDB stores the documents contiguously on disk, all the 
related data can be fetched in a single seek. 



CHAPTER 6 ■ USING MONGODB SHELL

88

 Apart from this, since JOINs are not supported and you used referencing in this case, the application 
might do something like the following to fetch the comments data associated with the blog.

    1.    Fetch the associated  comments _id  from the  blogs  document.  

    2.    Fetch the  comments  document based on the  comments_id  found in the first step.         

 If you take this approach, which is referencing, not only does the database have to do multiple seeks to 
find your data, but additional latency is introduced into the lookup since it now takes  two  round trips to the 
database to retrieve your data. 

 If the application frequently accesses the comments data along with the blogs, then almost certainly 
embedding the comments within the  blog  documents will have a positive impact on the performance. 

 Another concern that weighs in favor of  embedding   is the desire for  atomicity  and  isolation  in writing 
data. MongoDB is designed without multi-documents transactions. In MongoDB, the atomicity of the 
operation is provided only at a single document level so data that needs to be updated together atomically 
needs to be placed together in a single document. 

 When you update data in your database, you must ensure that your update either succeeds or fails 
entirely, never having a “partial success,” and that no other database reader ever sees an incomplete write 
operation.  

    Referencing   
 You have seen that embedding is the approach that will provide the best performance in many cases; it also 
provides data consistency guarantees. However, in some cases, a more normalized model works better in 
MongoDB. 

 One reason for having multiple collections and adding  references   is the increased flexibility it gives 
when querying the data. Let’s understand this with the blogging example mentioned above. 

 You saw how to use embedded schema, which will work very well when displaying all the data together 
on a single page (i.e. the page that displays the blog post followed by all of the associated comments). 

 Now suppose you have a requirement to search for the comments posted by a particular user. The query 
(using this embedded schema) would be as follows: 

  db.posts.find({'comments.author': 'author2'},{'comments': 1})  

 The result of this query, then, would be documents of the following form: 
  {  

                  "_id" : ObjectId("509d27069cc1ae293b36928d"),  
                  "comments" : [        {  
                                  "subject" : "Sample Comment 1 ",  
                                  "body" : "Comment1 Body.",  
                                  "author_id" : "author2",  
                                  "created_date" : ISODate("2015-07-06T13:34:23.929Z")}...]  
          }     
                  "_id" : ObjectId("509d27069cc1ae293b36928d"),  
                  "comments" : [  
                          {  
                                  "subject" : "Sample Comment 2",  
                                  "body" : "Comments Body.",  
                                     "author_id" : "author2",  
                                  "created_date" : ISODate("2015-07-06T13:34:23.929Z")  
                          }...]}  



CHAPTER 6 ■ USING MONGODB SHELL

89

 The major drawback to this approach is that you get back  much  more data than you actually need. In 
particular, you can’t ask for just author2’s comments; you have to ask for posts that author2 has commented 
on, which includes all of the other comments on those posts as well. This data will require further filtering 
within the application code. 

 On the other hand, suppose you decide to use a normalized schema. In this case you will have three 
documents: “Authors,” “Posts,” and “Comments.” 

 The “Authors” document will have Author-specific content such as Name, Age, Gender, etc., and the 
“Posts” document will have posts-specific details such as post creation time, author of the post, actual 
content, and the subject of the post. 

 The “Comments” document will have the post’s comments such as CommentedOn date time, created 
by author, and the text of the comment. This is depicted as follows: 

  // Authors document:  
  {  
  "_id": ObjectId("508d280e9cc1ae293b36928e "),  
  "name": "Jenny",  
  ..........  
  }  
  //Posts Document  
          {  
                  "_id" : ObjectId("508d27069cc1ae293b36928d"),....................  
          }  
  // Comments document:  
  {  
  "_id": ObjectId("508d359a9cc1ae293b3692a0"),  
  "Author": ObjectId("508d27069cc1ae293b36928d"),  
   "created_date" : ISODate("2015-07-06T13:34:59.336Z"),  
  "Post_id": ObjectId("508d27069cc1ae293b36928d"),  
  ..........  
  }  

 In this scenario, the query to find the comments by “author2” can be fulfilled by a simple  find()   on the 
comments collection : 

  db.comments.find({"author": "author2"})  

 In general, if your application’s query pattern is well known, and data tends to be accessed in only  one 
  way, an embedded approach works well. Alternatively, if your application may query data in many different 
ways, or you are not able to anticipate the patterns in which data may be queried, a more “normalized” 
approach may be better. 

 For instance, in the above schema, you will be able to sort the comments or return a more restricted set 
of comments using the  limit, skip  operators. In the embedded case, you’re stuck retrieving all the comments 
in the same order in which they are stored in the post. 

 Another factor that may weigh in favor of using document references is when you have one-to-many 
relationships. 



CHAPTER 6 ■ USING MONGODB SHELL

90

 For instance, a popular blog with a large amount of reader engagement may have hundreds or even 
thousands of comments for a given post. In this case, embedding carries significant penalties with it:    

•     Effect on read performance : As the document size increases, it will occupy more 
memory. The problem with memory is that a MongoDB database caches frequently 
accessed documents in memory, and the larger the documents become, the lesser 
the probability of them fitting into memory. This will lead to more page faults while 
retrieving the documents, which will lead to random disk I/O, which will further slow 
down the performance.  

•    Effect on update performance : As the size increases and an update operation is 
performed on such documents to append data, eventually MongoDB is going to 
need to move the document to an area with more space available. This movement, 
when it happens,  significantly  slows update performance.    

 Apart from this, MongoDB documents have a hard size limit of 16MB. Although this is something to be 
aware of, you will usually run into problems due to memory pressure and document copying well before you 
reach the 16MB size limit. 

 One final factor that weighs in favor of using document references is the case of many-to-many or M:N 
relationships. 

 For instance, in the above example, there are tags. Each blog can have multiple tags and each tag can be 
associated to multiple blog entries. 

 One approach to implement the blogs-tags M:N relationship is to have the following three collections:    

•    The  Tags  collection, which will store the tags details  

•   The  Blogs  collection, which will have blogs details  

•   A third collection, called  Tag-To-Blog Mapping , which will map between the tags 
and the blogs    

 This approach is similar to the one in relational databases, but this will negatively impact the 
application’s performance because the queries will end up doing a lot of application-level “joins.” 

 Alternatively, you can use the embedding model where you embed the tags within the blogs document, 
but this will lead to data duplication. Although this will simplify the read operation a bit, it will increase the 
complexity of the update operation, because while updating a tag detail, the user needs to ensure that the 
updated tag is updated at each and every place where it has been embedded in other blog documents. 

 Hence for many-to-many joins, a compromise approach is often best, embedding a list of  _id  values 
rather than the full document: 

  // Tags document:  
  {  
  "_id": ObjectId("508d35349cc1ae293b369299"),  
  "TagName": "Tag1",  
  ..........  
  }  
  // Posts document with Tag IDs added as References  
  //Posts Document  
          {                "_id" : ObjectId("508d27069cc1ae293b36928d"),  
                  "tags" : [  
                          ObjectId("509d35349cc1ae293b369299"),  
                          ObjectId("509d35349cc1ae293b36929a"),  
                          ObjectId("509d35349cc1ae293b36929b"),  
                          ObjectId("509d35349cc1ae293b36929c")  
                  ],....................................  
          }  



CHAPTER 6 ■ USING MONGODB SHELL

91

 Although querying will be a bit complicated, you no longer need to worry about updating a tag 
everywhere. 

 In summary, schema design in MongoDB is one of the very early decisions that you need to make, and 
it is dependent on the application requirements and queries. 

 As you have seen, when you need to access the data together or you need to make atomic updates, 
embedding will have a positive impact. However, if you need more flexibility while querying or if you have a 
many-to-many relationships, using references is a good choice. 

 Ultimately, the decision depends on the access patterns of your application, and there are no hard-and-
fast rules in MongoDB. In the next section, you will learn about various data modelling considerations.         

   Decisions of Data  Modelling      
 This involves deciding how to structure the documents so that the data is modeled effectively. An important 
point to decide is whether you need to embed the data or use references to the data (i.e. whether to use 
embedding or referencing). 

 This point is best demonstrated with an example. Suppose you have a book review site which has authors and 
books as well as reviews with threaded comments. 

 Now the question is how to structure the collections. The decision depends on the number of 
comments expected on per book and how frequently the read vs. write operations will be performed.  

   Operational Considerations 
 In addition to the way the elements interact with each other (i.e. whether to store the documents in an 
embedded manner or use references), a number of other  operational factors   are important when designing 
a data model for the application. These factors are covered in the following sections. 

    Data Lifecycle Management   

 This feature needs to be used if your application has datasets that need to be persisted in the database only 
for a limited time period. 

 Say you need to retain  the   data related to the review and comments for a month. This feature can be taken into 
consideration. 

 This is implemented by using the Time to Live (TTL) feature of the collection. The TTL feature of the 
collection ensures that the documents are expired after a period of time. 

 Additionally, if the application requirement is to work with only the recently inserted documents, using 
capped collections will help optimize  the   performance.  



CHAPTER 6 ■ USING MONGODB SHELL

92

    Indexes   

 Indexes can be created to support commonly used queries to increase the performance. By default, an index 
is created by MongoDB on the  _id  field. 

 The following are a few points to consider when creating indexes:

•    At least 8KB of data space is required by each index.  

•   For write operations, an index addition has some negative performance impact. 
Hence for collections with heavy writes, indexes might be expensive because for 
each insert, the keys must be added to all the indexes.  

•   Indexes are beneficial for collections with heavy read operations such as where the 
proportion of read-to-write operations is high. The un-indexed read operations are 
not affected by an index.     

    Sharding   

 One of the important factors when designing the application model is whether to partition the data or not. 
This is implemented using sharding in MongoDB. 

 Sharding is also referred as partitioning of data. In MongoDB, a collection is partitioned with its 
documents distributed across cluster of machines, which are referred as shards. This can have a significant 
impact on the performance. We will discuss sharding more in Chapter tk.  

   A Large Number of Collections 

 The design considerations for having  multiple collections vs. storing data      in a single collection are the 
following:

•    There is no performance penalty in choosing multiple collections for storing data.  

•   Having distinct collections for different types of data can have performance 
improvements in high-throughput batch processing applications.    

 When you are designing models that have a large number of collections, you need to take into 
consideration the following behaviors:

•    A certain minimum overhead of few kilobytes is associated with each collection.  

•   At least 8KB of data space is required by each index, including the  _id  index.        

 You know by now that the metadata for each database is stored in the  <database>.ns  file. Each 
collection and index has its own entry in the namespace file, so you need to consider the limits_on_the_size_
of_namespace files when deciding to implement a large number of collections.  

   Growth of the  Document   

 Few updates, such as pushing an element to an array, adding new fields, etc., can lead to an increase in 
the document size, which can lead to the movement of the document from one slot to another in order to 
fit in the document. This process of document relocation is both resource and time consuming. Although 
MongoDB provides padding to minimize the relocation occurrences, you may need to handle the document 
growth manually.     



CHAPTER 6 ■ USING MONGODB SHELL

93

     Summary 
 In this chapter you learned the basic CRUD operations plus advanced querying capabilities. You also 
examined the two ways of storing and retrieving data: embedding and referencing. 

 In the following chapter, you will learn about the MongoDB architecture, its core components, and 
features.     



95© Shakuntala Gupta Edward, Navin Sabharwal 2015 
S.G. Edward and N. Sabharwal, Practical MongoDB, DOI 10.1007/978-1-4842-0647-8_7

    CHAPTER 7   

 MongoDB Architecture           

    “MongoDB architecture covers the deep-dive architectural concepts of MongoDB.”    

 In this chapter, you will learn about the MongoDB architecture, especially core processes and tools, 
standalone deployment, sharding concepts, replication concepts, and production deployment. 

      Core Processes   
 The core components in the MongoDB package are

•     mongod , which is the core database process  

•    mongos , which is the controller and query router for sharded clusters  

•    mongo , which is the interactive MongoDB shell    

 These components are available as applications under the bin folder. Let’s discuss these components 
in detail. 

     mongod 
 The primary daemon in a MongoDB system is known as  mongod  . This daemon handles all the data 
requests, manages the data format, and performs operations for background management. 

 When a mongod is run without any arguments, it connects to the default data directory, which is 
 C:\data\db  or  /data/db , and default port 27017, where it listens for socket connections. 

 It’s important to ensure that the data directory exists and you have write permissions to the directory 
before the mongod process is started. 

 If the directory doesn’t exist or you don’t have write permissions on the directory, the start of this 
process will fail. If the default port 27017 is not available, the server will fail to start. 

 mongod also has a HTTP server which listens on a port 1000 higher than the default port, so if you 
started the mongod with the default port 27017, in this case the HTTP server will be on port 28017 and will 
be accessible using the URL    http://localhost:28017     . This basic HTTP server provides administrative 
information about the database.  

http://localhost:28017/


CHAPTER 7 ■ MONGODB ARCHITECTURE

96

      mongo   
 mongo provides an interactive JavaScript interface for the developer to test queries and operations directly 
on the database and for the system administrators to manage the database. This is all done via the command 
line. When the mongo shell is started, it will connect to the default database called  test . This database 
connection value is assigned to global variable  db  .  

 As a developer or administrator you need to change the database from  test  to your database post the 
first connection is made. You can do this by using  <databasename>.   

      mongos   
 mongos is used in MongoDB sharding. It acts as a routing service that processes queries from the application 
layer and determines where in the sharded cluster the requested data is located. 

 We will discuss mongos in more detail in the sharding section. Right now you can think of mongos as 
the process that routes the queries to the correct server holding the data.   

     MongoDB  Tools   
 Apart from the core services, there are various tools that are available as part of the MongoDB installation:

•     mongodump : This utility is used as part of an effective backup strategy. It creates a 
binary export of the database contents.  

•    mongorestore : The binary database dump created by the mongodump utility is 
imported to a new or an existing database using the mongorestore utility.      

•    bsondump : This utility converts the BSON files into human-readable formats 
such as JSON and CSV. For example, this utility can be used to read the output file 
generated by mongodump.  

•    mongoimport ,  mongoexport : mongoimport provides a method for taking data in 
  JSON    ,   CSV    , or   TSV     formats and importing it into a mongod instance. mongoexport 
provides a method to export data from a mongod instance into JSON, CSV, or TSV 
formats.  

•    mongostat ,  mongotop ,  mongosniff  :  These utilities provide diagnostic information 
related to the current operation of a mongod instance.     

     Standalone Deployment 
  Standalone deployment   is used for development purpose; it doesn’t ensure any redundancy of data and 
it doesn’t ensure recovery in case of failures. So it’s not recommended for use in production environment. 
Standalone deployment has the following components: a single mongod and a client connecting to the 
mongod, as shown in Figure  7-1 .  

http://docs.mongodb.org/manual/reference/glossary/#term-json
http://docs.mongodb.org/manual/reference/glossary/#term-csv
http://docs.mongodb.org/manual/reference/glossary/#term-tsv


CHAPTER 7 ■ MONGODB ARCHITECTURE

97

 MongoDB uses sharding and replication to provide a highly available system by distributing and duplicating 
the data. In the coming sections, you will look at sharding and replication. Following that you’ll look at the 
recommended production deployment architecture.  

     Replication 
 In a standalone deployment, if the mongod is not available, you risk losing all the data, which is not 
acceptable in a production environment. Replication is used to offer safety against such kind of data loss. 

  Replication   provides for data redundancy by replicating data on different nodes, thereby providing 
protection of data in case of node failure. Replication provides high availability in a MongoDB deployment. 

 Replication also simplifies certain administrative tasks where the routine tasks such as backups can be 
offloaded to the replica copies, freeing the main copy to handle the important application requests. 

 In some scenarios, it can also help in scaling the reads by enabling the client to read from the different 
copies of data. 

 In this section, you will learn how replication works in MongoDB and its various components. There are 
two types of replication supported in MongoDB: traditional master/slave replication and replica set. 

     Master/Slave Replication 
 In MongoDB, the traditional  master/slave replication   is available but it is recommended only for more than 
50 node replications. The preferred replication approach is replica sets, which we will explain later. In this 
type of replication, there is one master and a number of slaves that replicate the data from the master. The 
only advantage with this type of replication is that there’s no restriction on the number of slaves within a 
cluster. However, thousands of slaves will overburden the master node, so in practical scenarios it’s better to 
have less than dozen slaves. In addition, this type of replication doesn’t automate failover and provides less 
redundancy. 

 In a basic  master/slave setup  , you have two types of mongod instances: one instance is in the master 
mode and the remaining are in the slave mode, as shown in Figure  7-2 . Since the slaves are replicating from 
the master, all slaves need to be aware of the master’s address.  

  Figure 7-1.    Standalone deployment       

 



CHAPTER 7 ■ MONGODB ARCHITECTURE

98

 The master node maintains a capped collection (oplog) that stores an ordered history of logical writes 
to the database.     

 The slaves replicate the data using this oplog collection. Since the oplog is a capped collection, if 
the slave’s state is far behind the master’s state, the slave may become out of sync. In that scenario, the 
replication will stop and manual intervention will be needed to re-establish the replication. 

 There are two main reasons behind a slave becoming out of sync:

•    The slave shuts down or stops and restarts later. During this time, the oplog may have 
deleted the log of operations required to be applied on the slave.  

•   The slave is slow in executing the updates that are available from the master.     

     Replica Set 
 The  replica set   is a sophisticated form of the traditional master-slave replication and is a recommended 
method in MongoDB deployments. 

 Replica sets are basically a type of  master-slave replication   but they provide automatic failover. A replica 
set has one master, which is termed as primary, and multiple slaves, which are termed as secondary in the 
replica set context; however, unlike master-slave replication, there’s no one node that is fixed to be primary 
in the replica set. 

  Figure 7-2.     Master/slave replication         

 



CHAPTER 7 ■ MONGODB ARCHITECTURE

99

 If a master goes down in replica set, automatically one of the slave nodes is promoted to the master. 
The clients start connecting to the new master, and both data and application will remain available. In a 
replica set, this failover happens in an automated fashion. We will explain the details of how this process 
happens later. 

 The  primary node   is selected through an election mechanism. If the primary goes down, the selected 
node will be chosen as the primary node. 

 Figure  7-3  shows how a two-member replica set failover happens. Let’s discuss the various steps that 
happen for a two-member replica set in  failover  . 

    1.    The primary goes down, and the secondary is promoted as primary.  

    2.    The original primary comes up, it acts as slave, and becomes the secondary node.     

 The  points   to be noted are

•    A replica set is a mongod’s cluster, which replicates among one another and ensures 
automatic failover.  

•   In the replica set, one mongod will be the primary member and the others will be 
secondary members.  

•   The primary member is elected by the members of the replica set. All writes are 
directed to the primary member whereas the secondary members replicate from the 
primary asynchronously using oplog.  

•   The secondary’s data sets reflect the primary data sets, enabling them to be 
promoted to primary in case of unavailability of the current primary.    

  Figure 7-3.    Two-member replica set failover       

 



CHAPTER 7 ■ MONGODB ARCHITECTURE

100

 Replica set replication has a  limitation   on the number of members. Prior to version 3.0, the limit was 
12 but this has been changed to 50 in version 3.0. So now replica set replication can have maximum of 50 
members only, and at any given point of time in a 50-member replica set, only 7 can participate in a vote. 
We will explain the voting concept in a replica set in detail. 

 Starting from Version 3.0, replica set members can use different storage engines. For example, the WiredTiger 
storage engine might be used by the secondary members whereas the MMAPv1 engine could be used by the 
primary. In the coming sections, you will look at the different storage engines available with MongoDB. 

   Primary and Secondary Members 
 Before you move ahead and look at how the replica set functions, let’s look at the type of members that a 
replica set can have. There are two types of members: primary members and secondary  members  .

•     Primary member : A replica set can have only one primary, which is elected by the 
voting nodes in the replica set. Any node with associated priority as 1 can be elected 
as a primary. The client redirects all the write operations to the primary member, 
which is then later replicated to the secondary members.  

•    Secondary member:  A normal secondary member holds the copy of the data. The 
secondary member can vote and also can be a candidate for being promoted to 
primary in case of failover of the current primary.    

 In addition to this, a replica set can have other types of secondary members.  

    Types of Secondary Members   
  Priority 0 members  are secondary members that maintain the primary’s data copy but can never become a 
primary in case of a failover. Apart from that, they function as a normal secondary node, and they can participate 
in voting and can accept read requests. The Priority 0 members are created by setting the priority to 0. 

 Such types of members are specifically useful for the following reasons:

    1.    They can serve as a cold standby.  

    2.    In replica sets with varied hardware or geographic distribution, this configuration 
ensures that only the qualified members get elected as primary.  

    3.    In a replica set that spans multiple data centers across network partitioning, this 
configuration can help ensure that the main data center has the eligible primary. 
This is used to ensure that the failover is quick.     

   Hidden members    are 0-priority members that are hidden from the client applications. Like the 
0-priority members, this member also maintains a copy of the primary’s data, cannot become the primary, 
and can participate in the voting, but unlike 0-priotiy members, it can’t serve any read requests or receive 
any traffic beyond what replication requires. A node can be set as hidden member by setting the hidden 
property to true. In a replica set, these members can be dedicated for reporting needs or backups. 

   Delayed members    are secondary members that replicate data with a delay from the primary’s oplog. 
This helps to recover from human errors, such as accidentally dropped databases or errors that were caused 
by unsuccessful application upgrades. 



CHAPTER 7 ■ MONGODB ARCHITECTURE

101

 When deciding on the delay time, consider your maintenance period and the size of the oplog. The 
delay time should be either equal to or greater than the maintenance window and the oplog size should be 
set in a manner to ensure that no operations are lost while replicating. 

 Note that since the delayed members will not have up-to-date data as the primary node, the priority 
should be set to 0 so that they cannot become primary. Also, the hidden property should be true in order to 
avoid any read requests. 

   Arbiters    are secondary members that do not hold a copy of the primary’s data, so they can never 
become the primary. They are solely used as member for participating in   voting    . This enables the replica 
set to have an uneven number of nodes without incurring any replication cost which arises with data 
replication. 

   Non-voting members    hold the primary’s data copy, they can accept client read operations, and they 
can also become the primary, but they cannot vote in an election. 

 The voting ability of a member can be disabled by setting its votes to 0. By default every member has 
one vote. Say you have a replica set with seven members. Using the following commands in mongo shell, the 
votes for fourth, fifth, and sixth member are set to 0: 

  cfg_1 = rs.conf()  
  cfg_1.members[3].votes = 0  
  cfg_1.members[4].votes = 0  
  cfg_1.members[5].votes = 0  
  rs.reconfig(cfg_1)  

 Although this setting allows the fourth, fifth, and sixth members to be elected as primary, when voting 
their votes will not be counted. They become non-voting members, which means they can stand for election 
but cannot vote themselves. 

 You will see how the members can be configured later in this chapter.  

    Elections   
 In this section, you will look at the process of election for selecting a primary member. In order to get 
elected, a server need to not just have the majority but needs to have majority of the total votes. 

 If there are X servers with each server having 1 vote, then a server can become primary only when it has 
at least [(X/2) + 1] votes. 

 If a server gets the required number of votes or more, then it will become primary. 
 The primary that went down still remains part of the set; when it is up, it will act as a secondary server 

until the time it gets a majority of votes again. 
 The complication with this type of voting system is that you cannot have just two nodes acting as master 

and slave. In this scenario, you will have total of two votes, and to become a master, a node will need the 
majority of votes, which will be both of the votes in this case. If one of the servers goes down, the other server 
will end up having one vote out of two, and it will never be promoted as master, so it will remain a slave. 

 In case of network partitioning, the master will lose the majority of votes since it will have only its 
own one vote and it’ll be demoted to slave and the node that is acting as slave will also remain a slave in 
the absence of the majority of the votes. You will end up having two slaves until both servers reach each 
other again. 

 A replica set has number of ways to avoid such situations. The simplest way is to use an arbiter to help 
resolve such conflicts. It’s very lightweight and is just a voter, so it can run on either of the servers itself. 

 Let’s now see how the above scenario will change with the use of an arbiter. Let’s first consider the 
network partitioning scenario. If you have a master, a slave, and an arbiter, each has one vote, totalling three 
votes. If a network partition occurs with the master and arbiter in one data center and the slave in another 
data center, the master will remain master since it will still have the majority of votes. 

http://docs.mongodb.org/manual/core/replication/#replica-set-elections


CHAPTER 7 ■ MONGODB ARCHITECTURE

102

 If the master fails with no network partitioning, the slave can be promoted to master because it will have 
two votes (slave + arbiter). 

 This three-server setup provides a robust failover deployment. 

   Example - Working of Election Process in More Details 

 This section will explain how the election happens. 
 Let’s assume you have a replica set with the following three members: A1, B1, and C1. Each member 

exchanges a heartbeat request with the other members every few seconds. The members respond with their 
current situation information to such requests. A1 sends out heartbeat request to B1 and C1. B1 and C1 
respond with their current situation information, such as the state they are in (primary or secondary), their 
current clock time, their eligibility to be promoted as primary, and so on. A1 receives all this information’s 
and updates its “map” of the set, which maintains information such as the members changed state, 
members that have gone down or come up, and the round trip time. 

 While updating the A1’s map changes, it will check a few things depending on its state:

•    If A1 is primary and one of the members has gone down, then it will ensure that it’s 
still able to reach the majority of the set. If it’s not able to do so, it will demote itself to 
secondary state.       

    Demotions : There’s a problem when A1 undergoes a demotion. By default in 
MongoDB writes are fire-and-forget (i.e. the client issues the writes but doesn’t 
wait for a response). If an application is doing the default writes when the 
primary is stepping down, it will never realize that the writes are actually not 
happening and might end up losing data. Hence it’s recommended to use safe 
writes. In this scenario, when the primary is stepping down, it closes all its client 
connections, which will result in socket errors to the clients. The client libraries 
then need to recheck who the new primary is and will be saved from losing their 
write operations data.   

•    If A1 is a secondary and if the map has not changed, it will occasionally check 
whether it should elect itself.   

   The first task A1 will do is run a sanity check where it will check answers to few 
question such as, Does A1 think it’s already primary? Does another member think its 
primary? Is A1 not eligible for election? If it can’t answer any of the basic questions, 
A1 will continue idling as is; otherwise, it will proceed with the election process:

•    A1 sends a message to the other members of the set, which in this case are B1 
and C1, saying “I am planning to become a primary. Please suggest”  

•   When B1 and C1 receive the message, they will check the view around them. 
They will run through a big list of sanity checks, such as, Is there any other 
node that can be primary? Does A1 have the most recent data or is there any 
other node that has the most recent data? If all the checks seem ok, they send 
a “go-ahead” message; however, if any of the checks fail, a “stop election” 
message is sent.  

•   If any of the members send a “stop election” reply, the election is cancelled and 
A1 remains a secondary member.      

•   If the “go-ahead” is received from all, A1 goes to the election process 
final phase.     



CHAPTER 7 ■ MONGODB ARCHITECTURE

103

  In the second (final) phase,

•    A1 resends a message declaring its candidacy for the election to the remaining 
members.  

•   Members B1 and C1 do a final check to ensure that all the answers still hold true 
as before.  

•   If yes, A1 is allowed to take its election lock, which prevents its voting 
capabilities for 30 seconds and sends back a vote.  

•   If any of the checks fail to hold true, a veto is sent.  

•   If any veto is received, the election stops.  

•   If no one vetoes and A1 gets a majority of the votes, it becomes a primary.       

 The election is affected by the priority settings. A 0 priority member can never become a primary.   

    Data Replication Process   
 Let’s look at how the data replication works. The members of a replica set replicate data continuously. Every 
member, including the primary member, maintains an oplog. An oplog is a capped collection where the 
members maintain a record of all the operations that are performed on the data set. 

 The secondary members copy the primary member’s oplog and apply all the operations in an 
asynchronous manner. 

   Oplog 

 Oplog stands for the operation  log  . An oplog is a capped collection where all the operations that modify the 
data are recorded. 

 The oplog is maintained in a special database, namely  local  in the collection  oplog.$main . Every 
operation is maintained as a document, where each document corresponds to one operation that is 
performed on the master server. The document contains various keys, including the following  keys  :

•     ts : This stores the timestamp when the operations are performed. It’s an internal 
type and is composed of a 4-byte timestamp and a 4-byte incrementing counter.  

•    op : This stores information about the type of operation performed. The value is 
stored as 1-byte code (e.g. it will store an “I” for an insert operation).  

•    ns : This key stores the collection namespace on which the operation was performed.  

•    o : This key specifies the operation that is performed. In case of an insert, this will 
store the document to insert.    

 Only operations that change the data are maintained in the oplog because it’s a mechanism for 
ensuring that the secondary node data is in sync with the primary node data. 

 The operations that are stored in the oplog are transformed so that they remain idempotent, which 
means that even if it’s applied multiple times on the secondary, the secondary node data will remain 
consistent. Since the oplog is a capped collection, with every new addition of an operation, the oldest 
operations are automatically moved out. This is done to ensure that it does not grow beyond a pre-set 
bound, which is the oplog size. 



CHAPTER 7 ■ MONGODB ARCHITECTURE

104

 Depending on the OS, whenever the replica set member first starts up, the oplog is created of a default 
size by MongoDB. 

 By default in MongoDB, available free space or 5% is used for the oplog on Windows and 64-bit Linux 
instances. If the size is lower than 1GB, then 1GB of space is allocated by MongoDB. 

 Although the default size is sufficient in most cases, you can use the  –oplogsize  option to specify the 
oplog size in MB when starting the server. 

 If you have the following workload, there might be a  requirement   of reconsidering the oplog size:

•     Updates to multiple documents simultaneously:  Since the operations need to be 
translated into operations that are idempotent, this scenario might end up requiring 
great deal of oplog size.  

•    Deletes and insertions happening at the same rate involving same amount of 
data:  In this scenario, although the database size will not increase, the operations 
translation into an idempotent operation can lead to a bigger oplog.  

•    Large number of in-place updates:  Although these updates will not change the 
database size, the recording of updates as idempotent operations in the oplog can 
lead to a bigger oplog.     

   Initial  Sync and Replication   

 Initial sync is done when the member is in either of the following two cases:

    1.    The node has started for the first time (i.e. it’s a new node and has no data).  

    2.    The node has become stale, where the primary has overwritten the oplog and the 
node has not replicated the data. In this case, the data will be removed.     

 In both cases, the initial sync involves the following steps:

    1.    First, all databases are cloned.  

    2.    Using oplog of the source node, the changes are applied to its dataset.  

    3.    Finally, the indexes are built on all the collections.     

 Post the initial sync, the replica set members continuously replicate the changes in order to be up-to-date. 
 Most of the synchronization happens from the primary, but chained replication can be enabled where 

the sync happens from a secondary only (i.e. the sync targets are changed based on the ping time and state 
of other member’s replication).  

   Syncing –  Normal Operation   

 In normal operations, the secondary chooses a member from where it will sync its data, and then the 
operations are pulled from the chosen source’s oplog collection ( local.oplog.rs ). 

 Once the operation (op) is get, the secondary does the following:

    1.    It first applies the op to its data copy.  

    2.    Then it writes the op to its local oplog.  

    3.    Once the op is written to the oplog, it requests the next op.     

 Suppose it crashes between step 1 and step 2, and then it comes back again. In this scenario, it’ll assume 
the operation has not been performed and will re-apply it. 



CHAPTER 7 ■ MONGODB ARCHITECTURE

105

 Since oplog ops are idempotent, the same operation can be applied any number of times, and every 
time the result document will be same.

   If you have the following doc  

  {I:11}  

  an increment operation is performed on the same, such as  

  {$inc:{I:1}} on the primary  

  In this case the following will be stored in the primary oplog:  

  {I:12}.    

 This will be replicated by the secondaries. So the value remains the same even if the log is applied 
multiple times.  

   Starting Up 

 When a node is started, it checks its local collection to find out the  lastOpTimeWritten . This is the time of 
the latest op that was applied on the secondary. 

 The following shell helper can be used to find the latest op in the shell: 

  > rs.debug.getLastOpWritten()  

 The output returns a field named  ts , which depicts the last op time. 
 If a  member starts up   and finds the  ts  entry, it starts by choosing a target to sync from and it will start 

syncing as in a normal operation. However, if no entry is found, the node will begin the initial sync process.  

   Whom to Sync From? 

 In this section, you will look at how the source is chosen to  sync from  . As of 2.0, based on the average ping 
time servers automatically sync from the “nearest” node. 

 When you bring up a new node, it sends heartbeats to all nodes and monitors the response time. Based 
on the data received, it then decides the member to sync from using the following algorithm: 

  for each healthy member Loop:  
      if state is Primary  
          add the member to possible sync target set  
      if member’s lastOpTimeWritten is greater then the local lastOpTime Written  
  add the member to possible sync target set  
  Set sync_from  = MIN (PING TIME to members of sync target set)  
   
  Note: A “healthy member” can be thought of as a “normal” primary or secondary member.  

 In version 2.0, the slave’s delayed nodes were debatably included in “healthy” nodes. Starting from 
version 2.2, delayed nodes and hidden nodes are excluded from the “healthy” nodes. 

 Running the following command will show the server that is chosen as the source for syncing: 

  db.adminCommand({replSetGetStatus:1})  

 The output field of  syncingTo  is present only on secondary nodes and provides information on the 
node from which it is syncing.  



CHAPTER 7 ■ MONGODB ARCHITECTURE

106

   Making Writes Work with Chaining Slaves 

 You have seen that the above algorithm for choosing a source to sync from implies that slave chaining is 
semi-automatic. When a server is started, it’ll most probably choose a server within the same data center to 
sync from, thus reducing the WAN traffic. 

 However, this will never lead to a loop because the nodes will sync only from a secondary that has a latest 
value of  lastOpTimeWritten  which is greater than its own. You will never end up in a scenario where N1 is 
syncing from N2  and  N2 is syncing from N1. It will always be either N1 is syncing from N2  or  N2 is syncing 
from N1. 

 In this section, you will see how w ( write operation  ) works with  slave chaining  . If N1 is syncing from N2, 
which is further syncing from N3, in this case how N3 will know that until which point N1 is synced to. 

 When N1 starts its sync from N2, a special “handshake” message is sent, which intimates to N2 that 
N1 will be syncing from its oplog. Since N2 is not primary, it will forward the message to the node it is 
syncing from (i.e. it opens a connection to N3 pretending to be N1). By the end of the above step, N2 has two 
connections that are opened with N3: one connection for itself and the other for N1. 

 Whenever an op request is made by N1 to N2, the op is sent by N2 from its oplog and a dummy request 
is forwarded on the link of N1 to N3, as shown in Figure  7-4 .  

  Figure 7-4.    Writes via chaining  slaves         

 Although this minimizes network traffic, it increases the absolute time for the write to reach to all of 
the members.   

   Failover 
 In this section, you will look at how primary and secondary member  failovers   are handled in replica sets. 
All members of a replica set are connected to each other. As shown in Figure  7-5 , they exchange a heartbeat 
message amongst each other.  

 



CHAPTER 7 ■ MONGODB ARCHITECTURE

107

 Hence a node with missing heartbeat is considered as crashed. 

   If the Node Is a Secondary Node 

 If the node is a  secondary node  , it will be removed from the membership of the replica set. In the future, 
when it recovers, it can re-join. Once it re-joins, it needs to update the latest changes.

    1.    If the down period is small, it connects to the primary and catches up with the 
latest updates.  

    2.    However, if the down period is lengthy, the secondary server will need to resync with 
primary where it deletes all its data and does an initial sync as if it’s a new server.          

   If the Node Is the  Primary Node   

 If the node is a primary node, in this scenario if the majority of the members of the original replica sets are 
able to connect to each other, a new primary will be elected by these nodes, which is in accordance with the 
automatic failover capability of the replica set. 

 The election process will be initiated by any node that cannot reach the primary. 
 The new primary is elected by majority of the replica set nodes. Arbiters can be used to break ties in 

scenarios such as when network partitioning splits the participating nodes into two halves and the majority 
cannot be reached. 

 The node with the highest priority will be the new primary. If you have more than one node with same 
priority, the data freshness can be used for breaking ties. 

 The primary node uses a heartbeat to track how many nodes are visible to it. If the number of visible 
nodes falls below the majority, the primary automatically falls back to the secondary state. This scenario 
prevents the primary from functioning when it’s separated by a network partition.   

  Figure 7-5.     Heartbeat message exchange         

 



CHAPTER 7 ■ MONGODB ARCHITECTURE

108

    Rollbacks   
 In scenario of a primary node change, the data on the new primary is assumed to be the latest data in the 
system. When the former primary joins back, any operation that is applied on it will also be rolled back. 
Then it will be synced with the new primary. 

 The rollback operation reverts all the write operations that were not replicated across the replica set. 
This is done in order to maintain database consistency across the replica set. 

 When connecting to the new primary, all nodes go through a resync process to ensure the rollback is 
accomplished. The nodes look through the operation that is not there on the new primary, and then they 
query the new primary to return an updated copy of the documents that were affected by the operations. 
The nodes are in the process of resyncing and are said to be recovering; until the process is complete, they 
will not be eligible for primary election. 

 This happens very rarely, and if it happens, it is often due to network partition with replication lag 
where the secondaries cannot keep up with the operation’s throughput on the former primary. 

 It needs to be noted that if the write operations replicate to other members before the primary steps down, 
and those members are accessible to majority of the nodes of the replica set, the rollback does not occur. 

 The rollback data is written to a   BSON     file with filenames such as  <database>.<collection>.
<timestamp>.bson  in the database’s    dbpath      directory .  

 The administrator can decide to either ignore or apply the rollback data. Applying the rollback data can 
only begin when all the nodes are in sync with the new primary and have rolled back  to   a consistent state. 

 The content of the rollback files can be read using  Bsondump , which then need to be manually applied to 
the new primary using mongorestore. 

 There is no method to handle rollback situations automatically for MongoDB. Therefore manual 
intervention is required to apply rollback data. While applying the rollback, it’s vital to ensure that these are 
replicated to either all or at least some of the members in the set so that in case of any failover rollbacks can 
be avoided.  

    Consistency   
 You have seen that the replica set members keep on replicating data among each other by reading the oplog. 
How is the consistency of data maintained? In this section, you will look at how MongoDB ensures that you 
always access consistent data. 

 In MongoDB, although the reads can be routed to the secondaries, the writes are always routed to the 
primary, eradicating the scenario where two nodes are simultaneously trying to update the same data set. 
The data set on the primary node is always consistent. 

 If the read requests are routed to the primary node, it will always see the up-to-date changes, which 
means the read operations are always consistent with the last write operations. 

 However, if the application has changed the read preference to read from secondaries, there might be 
a probability of user not seeing the latest changes or seeing previous states. This is because the writes are 
replicated asynchronously on the secondaries. 

 This behavior is characterized as eventual consistency, which means that although the secondary’s state is not 
consistent with the primary node state, it will eventually become consistent over time. 

 There is no way that reads from the secondary can be guaranteed to be consistent, except by issuing 
write concerns to ensure that writes succeed on all members before the operation is actually marked 
successful. We will be discussing write concerns in a while.  

http://docs.mongodb.org/manual/reference/glossary/#term-bson
http://docs.mongodb.org/manual/reference/configuration-options/#dbpath#dbpath


CHAPTER 7 ■ MONGODB ARCHITECTURE

109

   Possible Replication Deployment 
 The architecture you chose to deploy a replica set affects its capability and capacity. In this section, you 
will look at few strategies that you need to be aware of while deciding on the architecture. We will also be 
discussing the  deployment architecture  .

    1.     Odd number of members : This should be done in order to ensure that there is 
no tie when electing a primary. If the number of nodes is even, then an arbiter 
can be used to ensure that the total nodes participating in election is odd, as 
shown in Figure  7-6 .   

  Figure 7-6.     Members   replica set with primary, secondary, and arbiter       

   Table 7-1.    Replica Set  Fault Tolerance     

 Number of Members  Majority Required for Electing a Primary  Fault Tolerance 

 3  2  1 

 4  3  1 

 5  3  2 

 6  4  2 

    2.     Replica set fault tolerance  is the count of members, which can go down but 
still the replica set has enough members to elect a primary in case of any failure. 
Table  7-1  indicates the relationship between the member count in the replica set 
and its fault tolerance. Fault tolerance should be considered when deciding on 
the number of members.   

    3.    If the application has  specific dedicated requirements ,    such as for reporting 
or backups, then delayed or hidden members can be considered as part of the 
replica set, as shown in Figure  7-7 .   

 



CHAPTER 7 ■ MONGODB ARCHITECTURE

110

  Figure 7-8.    Members replica set with primary, secondary, and a priority 0 member distributed across the 
 data center         

  Figure 7-7.    Members replica set with primary, secondary, and  hidden members         

    4.    If the  application is read-heavy , the read can be distributed across secondaries. 
As the requirement increases, more nodes can be added to increase the data 
duplication; this can have a positive impact on the read throughput.  

    5.    The  members should be distributed geographically  in order to cater to 
main data center failure. As shown in Figure  7-8 , the members that are kept at 
a geographically different location other than the main data center can have 
priority set as 0, so that they cannot be elected as primary and can act as a 
standby only.   

 

 



CHAPTER 7 ■ MONGODB ARCHITECTURE

111

    6.    When  replica set members are distributed  across data centers, network 
partitioning can prevent data centers from communicating with each other. In 
order to ensure a majority in the case of network partitioning, it keeps a majority 
of the members in one location.      

    Scaling Reads   
 Although the primary purpose of the secondaries is to ensure data availability in case of downtime of the 
primary node, there are other valid use cases for secondaries. They can be used dedicatedly to perform 
backup operations or data processing jobs or to scale out reads. One of the ways to scale reads is to issue the 
read queries against the secondary nodes; by doing so the workload on the master is reduced. 

 One important point that you need to consider when using secondaries for scaling read operations 
is that in MongoDB the replication is asynchronous, which means if any write or update operation is 
performed on the master’s data, the secondary data will be momentarily out-of-date. If the application in 
question is read-heavy and is accessed over a network and does not need up-to-date data, the secondaries 
can be used to scale out the read in order to provide a good read throughput. Although by default the read 
requests are routed to the primary node, the requests can be distributed over secondary nodes by specifying 
the  read preferences . Figure  7-9  depicts the default read preference.  

  Figure 7-9.    Default read preference       

 



CHAPTER 7 ■ MONGODB ARCHITECTURE

112

    2.    If the application always requires up-to-date data, it uses the option 
 primaryPreferred , which in normal circumstances will always read from the 
primary node, but in case of emergency will route the read to secondaries. This is 
useful during failovers. See Figure  7-11 .   

  Figure 7-10.    Read Preference – Nearest       

 The following are ideal use cases whereby routing the reads on secondary node can help gain a 
significant improvement in the read throughput and can also help reduce the latency:

    1.     Applications that are geographically distributed : In such cases, you can have 
a replica set that is distributed across geographies. The read preferences should 
be set to read from the  nearest  secondary node. This helps in reducing the 
latency that is caused when reading over network and this improves the read 
performance. See Figure  7-10 .   

 



CHAPTER 7 ■ MONGODB ARCHITECTURE

113

    3.    If you have an application that supports two types of operations, the first 
operation is the main workload that involves reading and doing some processing 
on the data, whereas the second operation generates reports using the data. In 
such a scenario, you can have the reporting reads directed to the secondaries.     

 MongoDB supports the following read preference modes:

•     primary : This is the default mode. All the read requests are routed to the
 primary node.  

•    primaryPreferred : In normal circumstances the reads will be from primary 
but in an emergency such as a primary not available, reads will be from the 
secondary nodes.  

•    secondary : Reads from the secondary members.  

•    secondaryPreferred : Reads from secondary members. If secondaries are 
unavailable, then read from the primary.  

•    nearest : Reads from the nearest replica set member.    

 In addition to scaling reads, the second ideal use case for using secondaries is to offload intensive 
processing, aggregating, and administration tasks in order to avoid degrading the primary’s performance. 
Blocking operations can be performed on the secondary without ever affecting the primary node’s 
performance.  

  Figure 7-11.    Read Preference – primaryPreferred       

 



CHAPTER 7 ■ MONGODB ARCHITECTURE

114

    Application Write Concerns      
 When the client application interacts with MongoDB, it is generally not aware whether the database is on 
standalone deployment or is deployed as a replica set. However, when dealing with replica sets, the client 
should be aware of  write concern  and  read concern . 

 Since a replica set duplicates the data and stores it across multiple nodes, these two concerns give a 
client application the flexibility to enforce data consistency across nodes while performing read or write 
operations. 

 Using a write concern enables the application to get a success or failure response from MongoDB. 
 When used in a replica set  deployment   of MongoDB, the write concern sends a confirmation from the 

server to the application that the write has succeeded on the primary node. However, this can be configured so 
that the write concern returns success only when the write is replicated to all the nodes maintaining the data. 

 In practical scenario, this isn’t feasible because it will reduce the write performance. Ideally the client 
can ensure, using a write concern, that the data is replicated to one more node in addition to the primary, so 
that the data is not lost even if the primary steps down. 

 The write concern returns an object that indicates either error or no error. 
 The  w  option ensures that the write has been replicated to the specified number of members. Either a 

number or a majority can be specified as the value of the   w  option  . 
 If a number is specified, the write replicates to that many number of nodes before returning success. If a 

majority is specified, the write is replicated  to   a majority of members before returning the result. 
 Figure  7-12  shows how a write happens with w: 2.  

  Figure 7-12.     writeConcern         

 



CHAPTER 7 ■ MONGODB ARCHITECTURE

115

 If while specifying number the number is greater than the nodes that actually hold the data, the command will 
keep on waiting until the members are available. In order to avoid this indefinite wait time,  wtimeout  should 
also be used along with  w , which will ensure that it will wait for the specified time period, and if the write has 
not succeeded by that time, it will time out. 

   How Writes Happen with Write Concern 

 In order to ensure that the written data is present on say at least two members, issue the following  command  : 

  >db.testprod.insert({i:”test”, q: 50, t: “B”}, {writeConcern: {w:2}})  

 In order to understand how this command will be executed, say you have two members, one named 
primary and the other named secondary, and it is syncing its data from the primary. 

 But how will the primary know the point at which the secondary is synced? Since the primary’s oplog is 
queried by the secondary for op results to be applied, if the secondary requests an op written at say  t  time, it 
implies to the primary that the secondary has replicated all ops written before  t . 

 The following are the steps that a write  concern   takes.

    1.    The write operation is directed to the primary.  

    2.    The operation is written to the oplog of primary with  ts  depicting the time of 
operation.  

    3.    A  w: 2  is issued, so the write operation needs to be written to one more server 
before it’s marked successful.  

    4.    The secondary queries the primary’s oplog for the op, and it applies the op.  

    5.    Next, the secondary sends a request to the primary requesting for ops with  ts  
greater than t.  

    6.    At this point, the primary sends an update that the operation until t has been 
applied by the secondary as it’s requesting for ops with  {ts: {$gt: t}} .  

    7.    The writeConcern finds that a write has occurred on both the primary and 
secondary, satisfying the  w: 2  criteria, and the command returns success.        

     Implementing Advanced  Clustering   with  Replica Sets   
 Having learned the architecture and inner workings of replica sets, you will now focus on  administration 
and usage   of replica sets. You will be focusing on the following:

    1.    Setting up a replica set.  

    2.    Removing a server.  

    3.    Adding a server.  

    4.    Adding an arbiter.  

    5.    Inspecting the status.  

    6.    Forcing a new election of a primary.  

    7.    Using the web interface to inspect the status of the replica set.     



CHAPTER 7 ■ MONGODB ARCHITECTURE

116

 The following examples assume a replica set named  testset  that has the  configuration   shown in Table  7-2 .  

   Table 7-2.    Replica Set Configuration   

 Member  Daemon  Host:Port  Data File Path 

 Active_Member_1  Mongod  [hostname]:27021  C:\db1\active1\data 

 Active_Member_2  Mongod  [hostname]:27022  C:\db1\active2\data 

 Passive_Member_1  Mongod  [hostname]:27023  C:\db1\passive1\data 

 The hostname used in the above table can be found out using the following  command  : 

   C:\>hostname  
   ANOC9  
   C:\>  

 In the following examples, the [ hostname ] need to be substituted with the value that the  hostname  command 
returns on your system. In our case, the value returned is ANOC9, which is used in the following examples. 

 Use the default (MMAPv1) storage engine in the following implementation. 

   Setting Up a Replica Set 
 In order to get the replica  set up and running  , you need to make all the active members up and running. 

 The first step is to start the first active member. Open a terminal window and create the   data  directory  : 

  C:\>mkdir C:\db1\active1\data  
  C:\>  

 Connect to the mongod: 

  c:\practicalmongodb\bin>mongod --dbpath C:\db1\active1\data --port 27021 --replSet 
testset/ANOC9:27021 –rest  
   
  2015-07-13T23:48:40.543-0700 I CONTROL  ** WARNING: --rest is specified without --httpinterface,  
  2015-07-13T23:48:40.543-0700 I CONTROL  **  enabling http interface  
  2015-07-13T23:48:40.543-0700 I CONTROL   Hotfix KB2731284 or later update is installed, no 

need to zero-out data files  
  2015-07-13T23:48:40.563-0700 I JOURNAL  [initandlisten] journal dir=C:\db1\active1\data\journal  
  2015-07-13T23:48:40.564-0700 I JOURNAL  [initandlisten] recover :  no journal files present, 

no recovery needed  
  .....................................    port=27021 dbpath=C:\db1\active1\data 64-bit 

host=ANOC9  
  2015-07-13T23:48:40.614-0700 I CONTROL      [initandlisten] targetMinOS:  Windows 7/Windows 

Server 2008 R2  
  2015-07-13T23:48:40.615-0700 I CONTROL  [initandlisten] db version v3.0.4  



CHAPTER 7 ■ MONGODB ARCHITECTURE

117

 As you can see, the   –replSet  option   specifies the name of the replica set the instance is joining and the 
name of one more member of the set, which in the above example is Active_Member_2. 

 Although you have only specified one member in the above example, multiple members can be 
provided by specifying comma-separated addresses like so: 

  mongod –dbpath C:\db1\active1\data –port 27021 –replset 
testset/[hostname]:27022,[hostname]:27023 --rest  

 In the next step, you get the second active member up and running. Create the  data  directory for the 
second active member in a new terminal window. 

  C:\>mkdir C:\db1\active2\data  
  C:\>  

 Connect to mongod: 

  c:\ practicalmongodb \bin>mongod --dbpath C:\db1\active2\data --port 27022 –replSet 
testset/ANOC9:27021 –rest  
  2015-07-13T00:39:11.599-0700 I CONTROL  ** WARNING: --rest is specified without --httpinterface,  
  2015-07-13T00:39:11.599-0700 I CONTROL  **          enabling http interface  
  2015-07-13T00:39:11.604-0700 I CONTROL   Hotfix KB2731284 or later update is installed, no 

need to zero-out data files  
  2015-07-13T00:39:11.615-0700 I JOURNAL  [initandlisten] journal dir=C:\db1\active2\data\journal  
  2015-07-13T00:39:11.615-0700 I JOURNAL  [initandlisten] recover :  no journal files present, 

no recovery needed  
  2015-07-13T00:39:11.664-0700 I JOURNAL  [durability] Durability thread started  
  2015-07-13T00:39:11.664-0700 I JOURNAL   [journal writer] Journal writer thread started 

rs.initiate() in the shell -- if that is not already done  

 Finally, you need to start the passive member. Open a separate window and create the   data  directory   for 
the passive member. 

  C:\>mkdir C:\db1\passive1\data  
  C:\>  

 Connect to mongod: 

  c:\ practicalmongodb \bin>mongod --dbpath C:\db1\passive1\data --port 27023 --replSet 
testset/ ANOC9:27021 –rest  
  2015-07-13T05:11:43.746-0700 I CONTROL   Hotfix KB2731284 or later update is installed, no 

need to zero-out data files  
  2015-07-13T05:11:43.757-0700 I JOURNAL  [initandlisten] journal dir=C:\db1\passive1\data\journal  
  2015-07-13T05:11:43.808-0700 I CONTROL   [initandlisten] MongoDB starting : pid=620 port=27019 

dbpath=C:\db1\passive1\data 64-bit host= ANOC9  
  ......................................................................................  
  2015-07-13T05:11:43.812-0700 I CONTROL  [initandlisten] options: { net: { http:  
  { RESTInterfaceEnabled: true, enabled: true }, port: 27019 }, replication: { re  
  lSet: "testset/ ANOC9:27017" }, storage: { dbPath: "C:\db1\passive1\data" }  



CHAPTER 7 ■ MONGODB ARCHITECTURE

118

 In the preceding examples, the   --rest  option   is used to activate a REST interface on port +1000. 
Activating REST enables you to inspect the replica set status using web interface. 

 By the end of the above steps, you have three servers that are up and running and are communicating 
with each other; however the replica set is still not initialized. In the next step, you initialize the replica set 
and instruct each member about their responsibilities and roles. 

 In order to initialize the replica set, you connect to one of the servers. In this example, it is the first 
server, which is running on port 27021. 

 Open a new command prompt and connect to the  mongo interface   for the first server: 

  C:\>cd c:\practicalmongodb\bin  
  c:\practicalmongodb\bin>mongo ANOC9 --port 27021  
  MongoDB shell version: 3.0.4  
  connecting to: ANOC9:27021/test  
  >  

 Next, switch to the  admin  database. 

  > use admin  
  switched to db admin  
  >  

 Next, a  configuration data structure   is set up, which mentions server wise roles: 

  >cfg = {  
  ... _id: 'testset',  
  ... members: [  
  ... {_id:0, host: 'ANOC9:27021'},  
  ... {_id:1, host: 'ANOC9:27022'},  
  ... {_id:2, host: 'ANOC9:27023', priority:0}  
  ... ]  
  ... }  
  {        "_id" : "testset",  
          "members" : [  
                  {  
                          "_id" : 0,  
                          "host" : "ANOC9:27021"  
                  },  
  ..........  
                  {  
                          "_id" : 2,  
                          "host" : "ANOC9:27023",  
                          "priority" : 0  
                  }  ]}>  

 With this step the replicas set structure is configured. 
 You have used 0 priority when defining the role for the passive member. This means that the member 

cannot be promoted to primary. 
 The next command initiates the replica set: 

  > rs.initiate(cfg)  
  { "ok" : 1}  



CHAPTER 7 ■ MONGODB ARCHITECTURE

119

 Let’s now view the replica set status in order to vet that it’s set up correctly: 

  testset:PRIMARY> rs.status()  
  {  
       "set" : "testset",  
  "date" : ISODate("2015-07-13T04:32:46.222Z")  
       "myState" : 1,  
  "members" : [  
          {  
                  "_id" : 0,  
  ...........................  
  testset:PRIMARY>  

 The  output   indicates that all is OK. The replica set is now successfully configured and initialized. 
 Let’s see how you can determine the primary node. In order to do so, connect to any of the members 

and issue the following and verify the primary: 

  testset:PRIMARY> db.isMaster()  
  {  
          "setName" : "testset",  
          "setVersion" : 1,  
          "ismaster" : true,  
          "primary" : " ANOC9:27021",  
          "me" : "ANOC9:27021",  
          ...........................................  
         "localTime" : ISODate("2015-07-13T04:36:52.365Z"),  
          .........................................................  
          "ok" : 1  
  }testset:PRIMARY>   

    Removing   a Server 
 In this example, you will remove the secondary active member from the set. Let’s connect to the secondary 
member mongo instance. Open a new command prompt, like so: 

  C:\>cd c:\practicalmongodb\bin  
  c:\practicalmongodb\bin>mongo ANOC9 --port 27022  
  MongoDB shell version: 3.0.4  
  connecting to: 127.0.0.1:27022/ANOC9  
  testset:SECONDARY>  
   
  Issue the following command to shut down the instance:  
  testset:SECONDARY> use admin  
  switched to db admin  
  testset:SECONDARY> db.shutdownServer()  
  2015-07-13T21:48:59.009-0700 I NETWORK  DBClientCursor::init call() failed server should be down...  



CHAPTER 7 ■ MONGODB ARCHITECTURE

120

 Next, you need to connect to the primary member mongo console and execute the following to remove 
the member: 

  testset:PRIMARY> use admin  
  switched to db admin  
  testset:PRIMARY> rs.remove("ANOC9:27022")  
  { "ok" : 1 }  
  testset:PRIMARY>  

 In order to vet whether the member is removed or not you can issue the   rs.status()  command  .  

   Adding a Server 
 You will next  add   a new active member to the replica set. As with other members, you begin by opening a 
new command prompt and creating the  data  directory first: 

  C:\>mkdir C:\db1\active3\data  
  C:\>  

 Next, you start the mongod using the following command: 

  c:\practicalmongodb\bin>mongod --dbpath C:\db1\active3\data --port 27024 --replSet testset/
ANOC9:27021 --rest  
  ..........  

 You have the new mongod running, so now you need to add this to the replica set. For this you connect 
to the primary’s mongo console: 

  C:\>c:\practicalmongodb\bin\mongo.exe --port 27021  
  MongoDB shell version: 3.0.4  
  connecting to: 127.0.0.1:27021/test  
  testset:PRIMARY>  

 Next, you switch to  admin  db: 

  testset:PRIMARY> use admin  
  switched to db admin  
  testset:PRIMARY>  

 Finally, the following command needs to be issued to add the new mongod to the replica set: 

  testset:PRIMARY> rs.add("ANOC9:27024")  
  { "ok" : 1 }  

 The replica set status can be checked to vet whether the new active member is added or not using 
 rs.status() .  



CHAPTER 7 ■ MONGODB ARCHITECTURE

121

   Adding an Arbiter to a Replica Set 
 In this example, you will add an  arbiter member   to the set. As with the other members, you begin by creating 
the  data  directory for the MongoDB instance: 

  C:\>mkdir c:\db1\arbiter\data  
  C:\>  

 You next start the mongod using the following command: 

  c:\practicalmongodb\bin>mongod --dbpath c:\db1\arbiter\data --port 30000 --replSet testset/
ANOC9:27021 --rest  
  2015-07-13T22:05:10.205-0700 I CONTROL  [initandlisten] MongoDB starting : pid=3700 
port=30000 dbpath=c:\db1\arbiter\data 64-bit host=ANOC9  
  ..........................................................  

 Connect to the primary’s mongo console, switch to the  admin  db, and add the newly created mongod as 
an arbiter to the replica set: 

  C:\>c:\practicalmongodb\bin\mongo.exe --port 27021  
  MongoDB shell version: 3.0.4  
  connecting to: 127.0.0.1:27021/test  
  testset:PRIMARY> use admin  
  switched to db admin  
   
  testset:PRIMARY> rs.addArb("ANOC9:30000")  
  { "ok" : 1 }  
  testset:PRIMARY>  

 Whether the step is successful or not can be verified using  rs.status().   

   Inspecting the Status Using  rs.status()      
 We have been referring to  rs.status()  throughout the examples above to check the replica set status. In this 
section, you will learn what this command is all about. 

 It enables you to check the status of the member whose console they are connected to and also enables 
them to view its role within the replica set. 

 The following command is issued from the primary’s mongo console: 

  testset:PRIMARY> rs.status()  
  {  
       "set" : "testset",  
  "date" : ISODate("2015-07-13T22:15:46.222Z")  
       "myState" : 1,  
  "members" : [  
          {  
                  "_id" : 0,  
  ...........................  
          "ok" : 1  
  testset:PRIMARY>        



CHAPTER 7 ■ MONGODB ARCHITECTURE

122

 The  myState  field’s value indicates the status of the member and it can have the values shown in Table  7-3 .  

   Table 7-3.    Replica Set  Status     

 myState  Description 

 0  Phase 1, starting up 

 1  Primary member 

 2  Secondary member 

 3  Recovering state 

 4  Fatal error state 

 5  Phase 2, Starting up 

 6  Unknown state 

 7  Arbiter member 

 8  Down or unreachable 

 9  This state is reached when a write operation is rolled back by the secondary after 
transitioning from primary. 

 10  Members enter this state when removed from the replica set. 

 Hence the above command returns myState value as 1, which indicates that this is the primary member.  

   Forcing a New Election 
 The current primary server can be forced to step down using the  rs.stepDown ()  command. This force 
starts the  election   for a new primary. 

 This command is useful in the following  scenarios  :

    1.    When you are simulating the impact of a primary failure, forcing the cluster to 
fail over. This lets you test how your application responds in such a scenario.  

    2.    When the primary server needs to be offline. This is done for either a 
maintenance activity or for upgrading or to investigating the server.  

    3.    When a diagnostic process need to be run against the data structures.     

 The following is the output of the command when run against the  testset replica set  : 

  testset:PRIMARY> rs.stepDown()  
  2015-07-13T22:52:32.000-0700 I NETWORK  DBClientCursor::init call() failed  
  2015-07-13T22:52:32.005-0700 E QUERY    Error: error doing query: failed  
  2015-07-13T22:52:32.009-0700 I NETWORK  trying reconnect to 127.0.0.1:27021 (127.0.0.1) failed  
  2015-07-13T22:52:32.011-0700 I NETWORK   reconnect 127.0.0.1:27021 (127.0.0.1) ok 

testset:SECONDARY>  

 After execution of the command the prompt changed from testset:PRIMARY to testset:SECONDARY. 
  rs.status()  can be used to check whether the  stepDown ()  is successful or not. 
 Please note the myState value it returns is 2 now, which means the “Member is operating as secondary.”  



CHAPTER 7 ■ MONGODB ARCHITECTURE

123

  Figure 7-13.     Web interface         

  Figure 7-14.    Replica set  status report         

   Inspecting Status of the Replica Set Using a  Web Interface   
 A web-based console is maintained by MongoDB for viewing the system status. In your example, the console 
can be accessed via    http://localhost:28021     . 

 By default the web interface port number is set to X+1000 where X is the mongod instance port number. 
In this chapter’s example, since the primary instance is on 27021, the web interface is on port 28021. 

 Figure  7-13  shows a link to the replica set status. Clicking the link takes you to the replica set dashboard 
shown in Figure  7-14 .      

 

 

http://localhost:28021/


CHAPTER 7 ■ MONGODB ARCHITECTURE

124

     Sharding 
 You saw in the previous section how replica sets in MongoDB are used to duplicate the data in order to 
protect against any adversity and to distribute the read load in order to increase the read efficiency. 

 MongoDB uses memory extensively for low latency database operations. When you compare the speed of 
reading data from  memory   to reading data from disk, reading from memory is approximately 100,000 times 
faster than reading from the disk. 

 In MongoDB, ideally the working set should fit in memory. The working set consists of the most 
frequently accessed data and indexes. 

 A page fault happens when data which is not there in memory is accessed by MongoDB. If there’s free memory 
available, the OS will directly load the requested page into memory; however, in the absence of free memory, 
the page in memory is written to the disk and then the requested page is loaded in the memory, slowing down 
the process. Few operations accidentally purge large portion of the working set from the memory, leading to 
an adverse effect on the performance. One example is a query scanning through all documents of a database 
where the size exceeds the server memory. This leads to loading of the documents in memory and moving the 
working set out to disk. 

 Ensuring you have defined the appropriate index coverage for your queries during the schema design phase 
of the project will minimize the risk of this happening. The MongoDB explain operation can be used to provide 
information on your query plan and the indexes used. 

 MongoDB’s   serverStatus  command   returns a workingSet document that provides an estimate of the 
instance’s working set size. The Operations team can track how many pages the instance accessed over a 
given period of time and the elapsed time between the working set’s oldest and newest document. Tracking all 
these metrics, it’s possible to detect when the working set will be hitting the current memory limit, so proactive 
actions can be taken to ensure the system is scaled well enough to handle that. 

 In MongoDB, the scaling is handled by scaling out the data horizontally (i.e. partitioning the data across 
multiple commodity servers), which is also called sharding (horizontal scaling). 

 Sharding addresses the challenges of scaling to support large data sets and high throughput by 
horizontally dividing the datasets across servers where each server is responsible for handling its part of data 
and no one server is burdened. These  servers   are also called shards. 

 Every shard is an independent database. All the shards collectively make up a  single logical database  . 
 Sharding reduces the operations count handled by each shard. For example, when data is inserted, only 

the shards responsible for storing those records need to be accessed. 
 The processes that need to be handled by each shard reduce as the cluster grows because the subset of 

data that the shard holds reduces. This leads to an increase in the throughput and capacity horizontally. 
 Let’s assume you have a database that is 1TB in size. If the number of shards is 4, you will have 

approximately 265GB of data handled by each shard, whereas if the number of shards is increased to 40, only 
25GB of data will be held on each shard. 

 Figure  7-15     depicts how a collection that is sharded will appear when distributed across three shards.  



CHAPTER 7 ■ MONGODB ARCHITECTURE

125

  Figure 7-15.    Sharded  collection across   three shards       

 Although sharding is a compelling and powerful feature, it has significant infrastructure requirements 
and it increases the complexity of the overall deployment. So you need to understand the  scenarios   where 
you might consider using sharding. 

 Use sharding in the following instances:

•    The size of the dataset is huge and it has started challenging the capacity of a 
single system.  

•   Since memory is used by MongoDB for quickly fetching data, it becomes 
important to scale out when the active work set limits are set to reach.  

•   If the application is write-intensive, sharding can be used to spread the writes 
across multiple servers.    

     Sharding Components 
 You will next look at the components that enable sharding in MongoDB. Sharding is enabled in MongoDB 
via sharded clusters. 

 The following are the  components   of a sharded cluster:

•    Shards  

•   mongos  

•   Config servers    

 



CHAPTER 7 ■ MONGODB ARCHITECTURE

126

 The shard is the component where the actual data is stored. For the sharded cluster, it holds a subset 
of data and can either be a mongod or a replica set. All shard’s data combined together forms the complete 
dataset for the sharded cluster. 

 Sharding is enabled per collection basis, so there might be collections that are not sharded. In every 
sharded cluster there’s a primary shard where all the unsharded collections are placed in addition to the 
sharded collection data. 

 When deploying a sharded cluster, by default the first shard becomes the primary shard although it’s 
configurable. See Figure  7-16 .  

  Figure 7-16.     Primary shard         

 Config servers are special mongods that hold the sharded cluster’s metadata. This metadata depicts the 
sharded system state and organization. 

 The config server stores data for a single sharded cluster. The config servers should be available for the 
proper functioning of the cluster. 

 One config server can lead to a cluster’s single point of failure. For production deployment it’s 
recommended to have at least three config servers, so that the cluster keeps functioning even if one config 
server is not accessible. 

 A config server stores the data in the config database, which enables routing of the client requests to the 
respective data. This database should not be updated. 

 MongoDB writes data to the config server only when the data distribution has changed for balancing 
the cluster. 

 The mongos act as the routers. They are responsible for routing the read and write request from the 
application to the shards. 

 An application interacting with a mongo database need not worry about how the data is stored 
internally on the shards. For them, it’s transparent because it’s only the mongos they interact with. The 
mongos, in turn, route the reads and writes to the shards. 

 The mongos cache the metadata from config server so that for every read and write request they don’t 
overburden the config server. 

 However, in the following cases, the data is read from the  config server  :

•    Either an existing mongos has restarted or a new mongos has started for the first time.  

•   Migration of chunks. We will explain chunk migration in detail later.     

 



CHAPTER 7 ■ MONGODB ARCHITECTURE

127

      Data Distribution Process   
 You will next look at how the data is distributed among the shards for the collections where sharding is 
enabled. In MongoDB, the data is sharded or distributed at the collection level. The collection is partitioned 
by the shard key. 

    Shard Key   
 Any indexed single/compound field that exists within all documents of the collection can be a shard 
key. You specify that this is the field basis which the documents of the collection need to be distributed. 
Internally, MongoDB divides the documents based on the value of the field into chunks and distributes 
them across the shards. 

 There are two ways MongoDB enables distribution of the data: range-based partitioning and hash-
based partitioning. 

   Range-Based Partitioning 

 In  range-based partitioning  , the shard key values are divided into ranges. Say you consider a  timestamp  
field as the shard key. In this way of partitioning, the values are considered as a straight line starting from a 
Min value to Max value where Min is the starting period (say, 01/01/1970) and Max is the end period (say, 
12/31/9999). Every document in the collection will have timestamp value within this range only, and it will 
represent some point on the line. 

 Based on the number of shards available, the line will be divided into ranges, and documents will be 
distributed based on them. 

 In this scheme of partitioning, shown in Figure  7-17 , the documents where the values of the shard 
key are nearby are likely to fall on the same shard. This can significantly improve the performance of the 
range queries.  

  Figure 7-17.    Range-based  partitioning         

 



CHAPTER 7 ■ MONGODB ARCHITECTURE

128

 However, the disadvantage is that it can lead to uneven distribution of data, overloading one of the 
shards, which may end up receiving majority of the requests, whereas the other shards remain underloaded, 
so the system will not scale properly.  

   Hash-Based Partitioning 

 In  hash-based partitioning     , the data is distributed on the basis of the hash value of the shard field. If 
selected, this will lead to a more random distribution compared to range-based partitioning. 

 It’s unlikely that the documents with close shard key will be part of the same chunk. For example, for 
ranges based on the hash of the  _id  field, there will be a straight line of hash values, which will again be 
partitioned on basis of the number of shards. On the basis of the hash values, the documents will lie in either 
of the shards. See Figure  7-18 .  

  Figure 7-18.    Hash-based partitioning       

 In contrast to range-based partitioning, this ensures that the data is evenly distributed, but it happens at 
the cost of efficient range queries.  

   Chunks 

 The data is moved between the shards in form of chunks. The shard key range is further partitioned into sub-
ranges, which are also termed as chunks. See Figure  7-19 .         

 



CHAPTER 7 ■ MONGODB ARCHITECTURE

129

  Figure 7-19.     Chunks            

 For a sharded cluster, 64MB is the default chunk size. In most situations, this is an apt size for chunk 
slitting and migration. 

 Let’s discuss the execution of sharding and chunks with an example. Say you have a blog posts 
collection which is sharded on the field  date . This implies that the collection will be split up on the basis 
of the  date  field values. Let’s assume further that you have three shards. In this scenario the data might be 
distributed across shards as follows:

   Shard #1: Beginning of time up to July 2009  

  Shard #2: August 2009 to December 2009  

  Shard #3: January 2010 to through the end of time    

 In order to retrieve documents from January 1, 2010 until today, the query is sent to mongos. 
 In this scenario,

    1.    The client queries mongos.  

    2.    The mongos know which shards have the data, so mongos sends the queries to Shard #3.  

    3.    Shard #3 executes the query and returns the results to mongos.  

    4.    Mongos combines the data received from various shards, which in this case is 
Shard #3 only, and returns the final result back to the client.     

 The application doesn’t need to be sharding-aware. It can query the mongos as though it’s a normal mongod. 

 Let’s consider another scenario where you insert a new document. The new document has today’s date. 
The sequences of events are as follows:

    1.    The document is sent to the mongos.  

    2.    Mongos checks the date and on basis of that, sends the document to Shard #3.  

    3.    Shard #3 inserts the document.     

 



CHAPTER 7 ■ MONGODB ARCHITECTURE

130

 From a client’s point of view, this is again identical to a single server setup.  

   Role of  ConfigServers      in the Above Scenario 

 Consider a scenario where you start getting insert requests for millions of documents with the date of 
September 2009. In this case, Shard #2 begins to get overloaded. 

 The config server steps in once it realizes that Shard #2 is becoming too big. It will split the data on the 
shard and start migrating it to other shards. After the migration is completed, it sends the updated status to 
the mongos. So now Shard #2 has data from August 2009 until September 18, 2009 and Shard #3 contains 
data from September 19, 2009 until the end of time. 

 When a new shard is added to the cluster, it’s the config server’s responsibility to figure out what to do 
with it. The data may need to be immediately migrated to the new shard, or the new shard may need to be in 
reserve for some time. In summary, the config servers are the brains. Whenever any data is moved around, 
the config servers let the mongos know about the final configuration so that the mongos can continue doing 
proper routing.    

     Data  Balancing Process   
 You will next look at how the cluster is kept balanced (i.e. how MongoDB ensures that all the shards are 
equally loaded). 

 The addition of new data or modification of existing data, or the addition or removal of servers, can 
lead to imbalance in the data distribution, which means either one shard is overloaded with more chunks 
and the other shards have less number of chunks, or it can lead to an increase in the chunk size, which is 
significantly greater than the other chunks. 

 MongoDB ensures balance with the following background processes:

•    Chunk splitting  

•   Balancer    

    Chunk Splitting      
 Chunk splitting is one of the processes that ensures the chunks are of the specified size. As you have seen, 
a shard key is chosen and it is used to identify how the documents will be distributed across the shards. 
The documents are further grouped into chunks of 64MB (default and is configurable) and are stored in the 
shards based on the range it is hosting. 

 If the size of the chunk changes due to an insert or update operation, and exceeds the default chunk 
size, then the chunk is split into two smaller chunks by the mongos. See Figure  7-20 .  



CHAPTER 7 ■ MONGODB ARCHITECTURE

131

  Figure 7-20.    Chunk splitting       

   Table 7-4.    Migration Threshold   

 Number of Chunks  Migration Threshold 

 < 20  2 

 21-80  4 

 >80  8 

 This process keeps the chunks within a shard of the specified size or lesser than that (i.e. it ensures that 
the chunks are of the configured size). 

 Insert and update operations trigger splits. The split operation leads to modification of the data in the 
config server as the metadata is modified. Although splits don’t lead to migration of data, this operation can 
lead to an unbalance of the cluster with one shard having more chunks compared to another.  

   Balancer 
  Balancer   is the background process that is used to ensure that all of the shards are equally loaded or are in a 
balanced state. This process manages chunk migrations. 

 Splitting of the chunk can cause imbalance. The addition or removal of documents can also lead to a 
cluster imbalance. In a cluster imbalance, balancer is used, which is the process of distributing data evenly. 

 When you have a shard with more chunks as compared to other shards, then the chunks balancing is 
done automatically by MongoDB across the shards .  This process is transparent to the application and to you. 

 Any of the mongos within the cluster can initiate the balancer process. They do so by acquiring a lock 
on the config database of the config server, as balancer involves migration of chunks from one shard to 
another, which can lead to a change in the metadata, which will lead to change in the config server database. 
The balancer process can have huge impact on the database performance, so it can either

    1.    Be configured to start the migration only when the migration threshold has 
reached. The migration threshold is the difference in the number of maximum 
and minimum chunks on the shards. Threshold is shown in Table  7-4 .   

    2.    Or it can be scheduled to run in a time period that will not impact the production traffic.     

 



CHAPTER 7 ■ MONGODB ARCHITECTURE

132

 The  balancer   migrates one chunk at a time (see Figure  7-21 ) and follows these steps:

    1.    The  moveChunk  command is sent to the source shard.  

    2.    An internal   moveChunk  command      is started on the source where it creates the 
copy of the documents within the chunk and queues it. In the meantime, any 
operations for that chunk are routed to the source by the mongos because the 
config database is not yet changed and the source will be responsible for serving 
any read/write request on that chunk.  

    3.    The destination shard starts receiving the copy of the data from the source.  

    4.    Once all of the documents in the chunks have been received by the destination 
shard, the synchronization process is initiated to ensure that all changes that 
have happened to the data while migration are updated at the destination shard.  

    5.    Once the synchronization is completed, the next step is to update the metadata 
with the chunk’s new location in the config database. This activity is done by 
the destination shard that connects to the config database and carries out the 
necessary updates.  

    6.    Post  successful   completion of all the above, the document copy that is 
maintained at the source shard is deleted.      

  Figure 7-21.    Chunk  migration         

 



CHAPTER 7 ■ MONGODB ARCHITECTURE

133

 If in the meanwhile the balancer needs additional chunk migration from the source shard, it can start 
with the new migration without even waiting for the deletion step to finish for the current migration. 

 In case of any error during the migration process, the process is aborted by the balancer, leaving the 
chunks on the original shard. On successful completion of the process, the chunk data is removed from the 
original shard by MongoDB. 

 Addition or removal of shards can also lead to cluster imbalance. When a new shard is added, data 
migration to the shard is started immediately. However, it takes time for the cluster to be balanced. 

 When a shard is removed, the balancer ensures that the data is migrated to the other shards and the 
metadata information is updated. Post completion of the two activities, the shard is removed safely.   

      Operations   
 You will next look at how the read and write operations are performed on the sharded cluster. As mentioned, 
the config servers maintain the cluster metadata. This data is stored in the config database. This data of the 
config database is used by the mongos to service the application read and write requests. 

 The data is cached by the mongos instances, which is then used for routing write and read operations to 
the shards. This way the config servers are not overburdened.     

 The mongos will only read from the config servers in the following scenarios:

•    The mongos has started for first time or  

•   An existing mongos has restarted or  

•   After chunk migration when the mongos needs to update its cached metadata with 
the new cluster metadata.    

 Whenever any operation is issued, the first step that the mongos need to do is to identify the shards that 
will be serving the request. Since the shard key is used to distribute data across the sharded cluster, if the 
operation is using the shard key field, then based on that specific shards can be targeted. 

 If the shard key is  employeeid , the following things can happen:

    1.    If the  find  query contains the  employeeid  field, then to satiate the query, only 
specific shards will be targeted by the mongos.  

    2.    If a single update operation uses  employeeid  for updating the document, the 
request will be routed to the shard holding that employee data.     

 However, if the operation is not using the shard key, then the request is broadcast to all the shards. 
Generally a multi-update or remove operation is targeted across the cluster. 

 While querying the data, there might be scenarios where in addition to identifying the shards and 
getting the data from them, the mongos might need to work on the data returned from various shards before 
sending the final output to the client. 

 Say an application has issued a  find()  request with  sort() . In this scenario, the mongos will pass the 
 $orderby  option to the shards. The shards will fetch the data from their data set and will send the result in an 
ordered manner. Once the mongos has all the shard’s sorted data, it will perform an incremental merge sort 
on the entire data and then return the final output to the client. 

 Similar to sort are the aggregation functions such as  limit() ,  skip(),  etc., which require mongos to 
perform operations post receiving the data from the shards and before returning the final result set to the client. 

 The mongos consumes minimal system resources and has no persistent state. So if the application requirement 
is a simple  find ()  queries that can be solely met by the shards and needs no manipulation at the mongos 
level, you can run the mongos on the same system where your application servers are running.  



CHAPTER 7 ■ MONGODB ARCHITECTURE

134

      Implementing   Sharding 
 In this section, you will learn to configure sharding in one machine on a Windows platform. 

 You will keep the example simple by using only two shards. In this configuration, you will be using the services 
listed in Table 7-5.  

  Table 7-5.    Sharding Cluster  Configuration     

 Component  Type  Port  Datafile path 

 Shard Controller  Mongos  27021  - 

 Config Server  Mongod  27022  C:\db1\config\data 

 Shard0  Mongod  27023  C:\db1\shard1\data 

 Shard1  Mongod  27024  C:\db1\shard2\data 

 You will be focusing on the following:

    1.    Setting up a sharded cluster.  

    2.    Creating a database and collection, and enable sharding on the collection.  

    3.    Using the import command to load data in the sharded collection.  

    4.    Distributed data amongst the shards.  

    5.    Adding and removing shards from the cluster and checking how data is 
distributed automatically.     

   Setting the Shard Cluster 
 In order to set up the  cluster  , the first step is to set up the configuration server. Enter the following code in a 
new terminal window to create the  data  directory for the config server and start the mongod: 

  C:\> mkdir C:\db1\config\data  
  C:\>CD C:\practicalmongodb\bin  
  C:\ practicalmongodb\bin>mongod --port 27022 --dbpath C:\db1\config\data --configsvr  

  2015-07-13T23:02:41.982-0700 I JOURNAL  [journal writer] Journal writer thread started  
  2015-07-13T23:02:41.984-0700 I CONTROL  [initandlisten] MongoDB starting : pid=3084 
port=27022 dbpath=C:\db1\config\data master=1 64-bit host=ANOC9  
  ......................................  
  2015-07-13T23:02:42.066-0700 I REPL     [initandlisten] ******  
  2015-07-13T03:02:42.067-0700 I NETWORK  [initandlisten] waiting for connections on port 27022  

www.allitebooks.com

http://www.allitebooks.org


CHAPTER 7 ■ MONGODB ARCHITECTURE

135

 Next, start the mongos. Type the following in a new  terminal window  : 

  C:\>cd c:\practicalmongodb\bin  
  c:\practicalmongodb\bin>mongos --configdb localhost:27022 --port 27021 --chunkSize 1  
  2015-07-13T23:06:07.246-0700 W SHARDING running with 1 config server should be done only for 
testing purposes and is not recommended for production  
  ...............................................................  
  2015-07-13T23:09:07.464-0700 I SHARDING [Balancer] distributed lock 'balancer/ 
ANOC9:27021:1429783567:41' unlocked  

 You now have the shard controller (i.e. the mongos) up and running. 
 If you switch to the window where the config server has been started, you will find a registration of the 

shard server to the config server. 
 In this example you have used chunk size of 1MB. Note that this is not ideal in a real-life scenario since 

the size is less than 4MB (a document’s maximum size). However, this is just for demonstration purpose 
since this creates the necessary amount of chunks without loading a large amount of data. The chunkSize is 
128MB by default unless otherwise specified. 

 Next, bring up the shard servers, Shard0 and Shard1. 
 Open a fresh terminal window. Create the  data  directory for the first shard and start the mongod: 

  C:\>mkdir C:\db1\shard0\data  
  C:\>cd c:\practicalmongodb\bin  
  c:\practicalmongodb\bin>mongod --port 27023 --dbpath c:\db1\shard0\data –shardsvr  
  2015-07-13T23:14:58.076-0700 I CONTROL  [initandlisten] MongoDB starting : pid=1996 
port=27023 dbpath=c:\db1\shard0\data 64-bit host=ANOC9  
  .................................................................  
  2015-07-13T23:14:58.158-0700 I NETWORK  [initandlisten] waiting for connections on port 27023  

 Open fresh terminal window. Create the   data  directory   for the second shard and start the mongod: 

  C:\>mkdir c:\db1\shard1\data  
  C:\>cd c:\practicalmongodb\bin  
  c:\practicalmongodb\bin>mongod --port 27024 --dbpath C:\db1\shard1\data --shardsvr  
  2015-07-13T23:17:01.704-0700 I CONTROL  [initandlisten] MongoDB starting : pid=3672 
port=27024 dbpath=C:\db1\shard1\data 64-bit host=ANOC9  
  2015-07-13T23:17:01.704-0700 I NETWORK  [initandlisten] waiting for connections on port 27024  

 All the servers relevant for the setup are up and running by the end of the above step. The next step is to 
add the shards information to the shard controller. 

 The mongos appears as a complete MongoDB instance to the application in spite of actually not being a full 
instance. The mongo shell can be used to connect to the mongos to perform any operation on it. 

 Open the mongos mongo console: 

  C:\>cd c:\practicalmongodb\bin  
  c:\ practicalmongodb\bin>mongo localhost:27021  
  MongoDB shell version: 3.0.4  
  connecting to: localhost:27021/test  
  mongos>  



CHAPTER 7 ■ MONGODB ARCHITECTURE

136

 Switch to the  admin  database: 

  mongos> use admin  
  switched to db admin  
  mongos>  

 Add the shards information by running the following  commands  : 

  mongos> db.runCommand({addshard:"localhost:27023",allowLocal:true})  
  { "shardAdded" : "shard0000", "ok" : 1 }  
  mongos> db.runCommand({addshard:"localhost:27024",allowLocal:true})  
  { "shardAdded" : "shard0001", "ok" : 1 }  
  mongos>  

 This activates the two shard servers. 
 The next command checks the shards: 

  mongos> db.runCommand({listshards:1})  
  {  
          "shards" : [  
                  {  
                          "_id" : "shard0000",  
                          "host" : "localhost:27023"  
                  },                {  
                          "_id" : "shard0001",  
                          "host" : "localhost:27024"  
                  }  
          ],        "ok" : 1}   

   Creating a Database and Shard  Collection   
 In order to continue further with the example, you will create a database named  testdb  and a collection 
named  testcollection , which you will be sharding on the key  testkey . 

 Connect to the mongos console and issue the following command to get the database: 

  mongos> testdb=db.getSisterDB("testdb")  
  testdb  

 Next, enabling sharding at database level for  testdb : 

  mongos> db.runCommand({enableSharding system: "testdb"})  
  { "ok" : 1 }  
  mongos>  

 Next, specify the collection that needs to be sharded and the key on which the collection will be sharded: 

  mongos> db.runCommand({shardcollection: "testdb.testcollection", key: {testkey:1}})  
  { "collectionsharded" : "testdb.testcollection", "ok" : 1 }  
  mongos>  

 With the completion of the above steps you now have a sharded cluster set up with all components up 
and running. You have also created a database and enabled sharding on the collection. 

 Next, import data into the collection so that you can check the data distribution on the shards.     



CHAPTER 7 ■ MONGODB ARCHITECTURE

137

 You will be using the import command to load data in the  testcollection . Connect to a new terminal 
window and execute the following: 

  C:\>cd C:\practicalmongodb\bin  
  C:\practicalmongodb\bin>mongoimport --host ANOC9 --port 27021 --db testdb --collection 
testcollection --type csv --file c:\mongoimport.csv –-headerline  
  2015-07-13T23:17:39.101-0700    connected to: ANOC9:27021  
  2015-07-13T23:17:42.298-0700    [##############..........] testdb.testcollection 1.1 MB/1.9 MB (59.6%)  
  2015-07-13T23:17:44.781-0700    imported 100000 documents  

 The  mongoimport.csv  consists of two fields. The first is the  testkey , which is a randomly generated 
number. The second field is a text field; it is used to ensure that the documents occupy a sufficient number of 
chunks, making it feasible to use the sharding mechanism. 

 This inserts 100,000 objects in the collection. 
 In order to vet whether the records are inserted or not, connect to the mongo console of the mongos 

and issue the following command: 

  C:\Windows\system32>cd c:\practicalmongodb\bin  
  c:\practicalmongodb\bin>mongo localhost:27021  
  MongoDB shell version: 3.0.4  
  connecting to: localhost:27021/test  
  mongos> use testdb  
  switched to db testdb  
  mongos> db.testcollection.count()  
  100000  
  mongos>  

 Next, connect to the consoles of the two shards (Shard0 and Shard1) and look at how the data is 
distributed. Open a new terminal window and connect to Shard0’s console: 

  C:\>cd C:\practicalmongodb\bin  
  C:\ practicalmongodb\bin>mongo localhost:27023  
  MongoDB shell version: 3.0.4  
  connecting to: localhost:27023/test  

 Switch to  testdb  and issue the   count()  command   to check number of documents on the shard: 

  > use testdb  
  switched to db testdb  
  > db.testcollection.count()  
  57998  

 Next, open a new terminal window, connect to Shard1’s console, and follow the steps as above 
(i.e. switch to  testdb  and check the count of  testcollection  collection):     

  C:\>cd c:\practicalmongodb\bin  
  c:\practicalmongodb\bin>mongo localhost:27024  
  MongoDB shell version: 3.0.4  
  connecting to: localhost:27024/test  
  > use testdb  
  switched to db testdb  
  > db.testcollection.count()  
  42002  
  >  



CHAPTER 7 ■ MONGODB ARCHITECTURE

138

 You might see a difference in the document’s number in each shard when you run the above command for 
some time. When the documents are loaded, all of the chunks are placed on one shard by the mongos. In time 
the shard set is rebalanced by distributing the chunks evenly across all the shards.  

   Adding a New Shard 
 You have a sharded cluster set up and you also have sharded a collection and looked at how the data is distributed 
amongst the shards. Next, you’ll  add   a new shard to the cluster so that the load is spread out a little more. 

 You will be repeating the steps mentioned above. Begin by creating a data directory for the new shard in 
a new terminal window: 

  c:\>mkdir c:\db1\shard2\data  

 Next, start the mongod at port 27025: 

  c:\>cd c:\practicalmongodb\bin  
  c:\ practicalmongodb\bin>mongod --port 27025 --dbpath C:\db1\shard2\data --shardsvr  
  2015-07-13T23:25:49.103-0700 I CONTROL  [initandlisten] MongoDB starting : pid=3744 
port=27025 dbpath=C:\db1\shard2\data 64-bit host=ANOC9  
  ................................  
  2015-07-13T23:25:49.183-0700 I NETWORK  [initandlisten] waiting for connections on port 27025  

 Next, the new shard server will be added to the shard cluster. In order to configure it, open the mongos 
mongo console in a new terminal window: 

  C:\>cd c:\practicalmongodb\bin  
  c:\practicalmongodb\bin>mongo localhost:27021  
  MongoDB shell version: 3.0.4  
  connecting to: localhost:27021/test  
  mongos>  

 Switch to the  admin  database and run the   addshard  command  . This command adds the shard server to 
the sharded cluster. 

  mongos> use admin  
  switched to db admin  
  mongos> db.runCommand({addshard: "localhost:27025", allowlocal: true})  
  { "shardAdded" : "shard0002", "ok" : 1 }  
  mongos>  

 In order to vet whether the addition is successful or not, run the   listshards  command  : 

  mongos> db.runCommand({listshards:1})  
  {  
          "shards" : [  
                  {  
                          "_id" : "shard0000",  
                          "host" : "localhost:27023"  
                  },  



CHAPTER 7 ■ MONGODB ARCHITECTURE

139

                  {  
                          "_id" : "shard0001",  
                          "host" : "localhost:27024"  
                  },  
                  {  
                          "_id" : "shard0002",  
                          "host" : "localhost:27025"  
                  }  
          ],  
          "ok" : 1  
  }  

 Next, check how the  testcollection  data is distributed. Connect to the new shard’s console in a new 
terminal window: 

  C:\>cd c:\practicalmongodb\bin  
  c:\practicalmongodb\bin>mongo localhost:27025  
  MongoDB shell version: 3.0.4  
  connecting to: localhost:27025/test  

 Switch to  testdb  and check the collections listed on the shard: 

  > use testdb  
  switched to db testdb  
  > show collections  
  system.indexes  
  testcollection  

 Issue a   testcollection.count  command   three times: 

  > db.testcollection.count()  
  6928  
  > db.testcollection.count()  
  12928  
  > db.testcollection.count()  
  16928  

 Interestingly, the number of items in the collection is slowly going up. The mongos is rebalancing 
the cluster. 

 With time, the chunks will be migrated from the shard servers Shard0 and Shard1 to the newly added 
shard server, Shard2, so that the data is evenly distributed across all the servers. Post completion of this 
process the config server metadata is updated. This is an automatic process and it happens even if there’s 
no new data addition in the testcollection. This is one of the important factors you need to consider when 
deciding on the chunk size. 

 If the value of  chunkSize  is very large, you will end up having less even data distribution. The data is 
more evenly distributed when the  chunkSize  is smaller.  



CHAPTER 7 ■ MONGODB ARCHITECTURE

140

    Removing   a Shard 
 In the following example, you will see how to remove a shard server. For this example, you will be removing 
the server you added in the above example. 

 In order to initiate the process, you need to log on to the mongos console, switch to the  admin  db, and 
execute the following command to remove the shard from the shard cluster: 

  C:\>cd c:\practicalmongodb\bin  
  c:\practicalmongodb\bin>mongo localhost:27021  
  MongoDB shell version: 3.0.4  
  connecting to: localhost:27021/test  
  mongos> use admin  
  switched to db admin  
  mongos> db.runCommand({removeShard: "localhost:27025"})  
  {  
          "msg" : "draining started successfully",  
          "state" : "started",  
          "shard" : "shard0002",  
          "ok" : 1  
  }  
  mongos>  

 As you can see, the  removeShard  command returns a message. One of the message fields is  state , 
which indicates the process state. The message also states that the draining process has started. This is 
indicated by the field  msg . 

 You can reissue the  removeShard  command to check the progress: 

  mongos> db.runCommand({removeShard: "localhost:27025"})  
  {  
          "msg" : "draining ongoing",  
          "state" : "ongoing",  
          "remaining" : {  
                  "chunks" : NumberLong(2),  
                  "dbs" : NumberLong(0)  
          },  
          "ok" : 1  
  }  
  mongos>     

 The response tells you the number of chunks and databases that still need to be drained from the server. 
If you reissue the command and the process is terminated, the output of the command will depict the same. 

  mongos> db.runCommand({removeShard: "localhost:27025"})  
  {  
          "msg" : "removeshard completed successfully",  
          "state" : "completed",  
          "shard" : "shard0002",  
          "ok" : 1  
  }  
  mongos>  



CHAPTER 7 ■ MONGODB ARCHITECTURE

141

 You can use the  listshards  to vet whether  removeShard  was successful or not. 
 As you can see, the data is successfully migrated to the other shards, so you can delete the storage files 

and terminate the Shard2 mongod process. 

 This ability to modify the shard cluster without going offline is one of the critical components of MongoDB, 
which enables it to support highly available, highly scalable, large capacity data stores.  

   Listing the Sharded Cluster Status 
 The  printShardingStatus()  command gives lots of insight into the sharding system internals.     

  mongos> db.printShardingStatus()  
  --- Sharding Status ---  
    sharding version: {  
          "_id" : 1,  
          "version" : 3,  
          "minCompatibleVersion" : 5,  
          "currentVersion" : 6,  
          "clusterId" : ObjectId("52fb7a8647e47c5884749a1a")  
  }  
    shards:  
          {  "_id" : "shard0000",  "host" : "localhost:27023" }  
          {  "_id" : "shard0001",  "host" : "localhost:27024" }  
  balancer:  
         Currently enabled:  yes  
         Currently running:  no  
         Failed balancer rounds in last 5 attempts:  0  
         Migration Results for the last 24 hours:  
                 17 : Success  
   databases:      
         {  "_id" : "admin",  "partitioned" : false,  "primary" : "config" }  
         {  "_id" : "testdb",  "partitioned" : true,  "primary" : "shard0000" }  
      ...............  

 The output lists the following:

•    All of the shard servers of the shard cluster  

•   The configurations of each sharded database/collection  

•   All of the chunks of the sharded dataset    

 Important information that can be obtained from the above command is the sharding keys range, which is 
associated with each chunk. This also shows where specific chunks are stored (on which shard server). 
The output can be used to analyse the shard server’s keys and chunks distribution.   



CHAPTER 7 ■ MONGODB ARCHITECTURE

142

     Controlling Collection Distribution (Tag-Based Sharding) 
 In the previous section, you saw how data distribution happens. In this section, you will learn about 
 tag-based sharding  . This feature was introduced in version 2.2.0. 

 Tagging gives operators control over which  collections   go to which shard. 
 In order to understand tag-based sharding, let’s set up a sharded cluster. You will be using the shard 

cluster created above. For this example, you need three shards, so you will add Shard2 again to the cluster. 

    Prerequisite   
 You will start the cluster first. Just to reiterate, follow these steps.

    1.    Start the config server. Enter the following command in a new terminal window 
(if it’s not already running): 

  C:\> mkdir C:\db1\config\data  
  C:\>cd c:\practicalmongodb\bin  
  C:\practicalmongodb\bin>mongod --port 27022 --dbpath C:\db\config\data --configsvr   

    2.    Start the mongos. Enter the following command in a new terminal window (if it’s 
not already running): 

  C:\>cd c:\practicalmongodb\bin  
  c:\practicalmongodb\bin>mongos --configdb localhost:27022 --port 27021   

    3.    You will start the shard servers next.     

 Start Shard0. Enter the following command in a new terminal window (if it’s not already running): 

  C:\>cd c:\practicalmongodb\bin  
  c:\practicalmongodb\bin>mongod --port 27023 --dbpath c:\db1\shard0\data --shardsvr  

 Start Shard1. Enter the following command in a new terminal window (if it’s not already running): 

  C:\>cd c:\practicalmongodb\bin  
  C:\practicalmongodb\bin>mongod --port 27024 --dbpath c:\db1\shard1\data –shardsvr  

 Start Shard2. Enter the following command in a new terminal window (if it’s not already running): 

  C:\>cd c:\practicalmongodb\bin  
  c:\practicalmongodb\bin>mongod --port 27025 --dbpath c:\db1\shard2\data –shardsvr  

 Since you have removed Shard2 from the sharded cluster in the earlier example, you must add Shard2 
to the sharded cluster because for this example you need three shards. 

 In order to do so, you need to connect to the mongos. Enter the following commands: 

  C:\Windows\system32>cd c:\practicalmongodb\bin  
  c:\practicalmongodb\bin>mongo localhost:27021  
  MongoDB shell version: 3.0.   4    
  connecting to: localhost:27021/test  
  mongos>  



CHAPTER 7 ■ MONGODB ARCHITECTURE

143

 Before the shard is added to the cluster you need to delete the  testdb  database: 

  mongos> use testdb  
  switched to db testdb  
  mongos> db.dropDatabase()  
  { "dropped" : "testdb", "ok" : 1 }  
  mongos>  

 Next, add the Shard2 shard using the following steps: 

  mongos> use admin  
  switched to db admin  
  mongos> db.runCommand({addshard: "localhost:27025", allowlocal: true})  
  { "shardAdded" : "shard0002", "ok" : 1 }  
  mongos>  

 If you try adding the removed shard without removing the  testdb  database, it will give the following error: 

  mongos>db.runCommand({addshard: "localhost:27025", allowlocal: true})  
  {  
          "ok" : 0,  
           "errmsg" : "can't add shard localhost:27025 because a local database 'testdb' exists 

in another shard0000:localhost:27023"}  

 In order to ensure that all the three shards are present in the cluster, run the following command: 

  mongos> db.runCommand({listshards:1})  
  {  
          "shards" : [  
                  {  
                          "_id" : "shard0000",  
                          "host" : "localhost:27023"  
                  },     {  
                          "_id" : "shard0001",  
                          "host" : "localhost:27024"  
                  },    {  
                          "_id" : "shard0002",  
                          "host" : "localhost:27025"  
                  }     
          ],     "ok" : 1}   



CHAPTER 7 ■ MONGODB ARCHITECTURE

144

    Tagging   
 By the end of the above steps you have your sharded cluster with a config server, three shards, and a mongos 
up and running. Next, connect to the mongos at 30999 port and configdb at 27022 in a new terminal window: 

  C:\ >cd c:\practicalmongodb\bin  
  c:\ practicalmongodb\bin>mongos --port 30999 --configdb localhost:27022  
  2015-07-13T23:24:39.674-0700 W SHARDING running with 1 config server should be done only for 
testing purposes and is not recommended for production  
  ...................................  
  2015-07-13T23:24:39.931-0700 I SHARDING [Balancer] distributed lock 'balancer /ANOC9:30999: 
1429851279:41' unlocked..  

 Next, start a new terminal window, connect to the mongos, and enable sharding on the collections: 

  C:\ >cd c:\practicalmongodb\bin  
  c:\practicalmongodb\bin>mongo localhost:27021  
  MongoDB shell version: 3.0.4  
  connecting to: localhost:27021/test  
  mongos> show dbs  
  admin   (empty)  
  config  0.016GB  
  testdb  0.078GB  
  mongos> conn=new Mongo("localhost:30999")  
  connection to localhost:30999  
  mongos> db=conn.getDB("movies")  
  movies  
  mongos> sh.enableSharding("movies")  
  { "ok" : 1 }  
  mongos> sh.shardCollection("movies.drama", {originality:1})  
  { "collectionsharded" : "movies.hindi", "ok" : 1 }  
  mongos> sh.shardCollection("movies.action", {distribution:1})  
  { "collectionsharded" : "movies.action", "ok" : 1 }  
  mongos> sh.shardCollection("movies.comedy", {collections:1})  
  { "collectionsharded" : "movies.comedy", "ok" : 1 }  
  mongos>  

 The steps are as follows:

    1.    Connect to the mongos console.  

    2.    View the running databases connected to the mongos instance running at port 30999.  

    3.    Get reference to the database  movies .  

    4.    Enable sharding of the database  movies .  

    5.    Shard the collection  movies.drama  by shard key  originality .  

    6.    Shard the collection  movies.action  by shard key  distribution .  

    7.    Shard the collection  movies.comedy  by shard key  collections .     



CHAPTER 7 ■ MONGODB ARCHITECTURE

145

 Next, insert some data in the collections, using the following sequence of commands:     

  mongos>for(var i=0;i<100000;i++){db.drama.insert({originality:Math.random(), count:i, 
time:new Date()});}  
  mongos>for(var i=0;i<100000;i++){db.action.insert({distribution:Math.random(),  
  count:i, time:new Date()});}  
  mongos>for(var i=0;i<100000;i++) {db.comedy.insert({collections:Math.random(), count:i, 
time:new Date()});}  
  mongos>  

 By the end of the above step you have three shards and three collections with sharding enabled on the 
collections. Next you will see how data is distributed across the shards. 

 Switch to configdb: 

  mongos> use config  
  switched to db config  
  mongos>  

 You can use  chunks.find  to look at how the chunks are distributed: 

  mongos> db.chunks.find({ns:"movies.drama"}, {shard:1, _id:0}).sort({shard:1})  
  { "shard" : "shard0000" }  
  { "shard" : "shard0000" }  
  { "shard" : "shard0000" }  
  { "shard" : "shard0000" }  
  { "shard" : "shard0001" }  
  { "shard" : "shard0001" }  
  { "shard" : "shard0001" }  
  { "shard" : "shard0002" }  
  { "shard" : "shard0002" }  
  { "shard" : "shard0002" }  
  mongos> db.chunks.find({ns:"movies.action"}, {shard:1, _id:0}).sort({shard:1})  
  { "shard" : "shard0000" }  
  { "shard" : "shard0000" }  
  { "shard" : "shard0000" }  
  { "shard" : "shard0000" }  
  { "shard" : "shard0000" }  
  { "shard" : "shard0001" }  
  { "shard" : "shard0001" }  
  { "shard" : "shard0001" }  
  { "shard" : "shard0001" }  
  { "shard" : "shard0002" }  
  { "shard" : "shard0002" }  
  { "shard" : "shard0002" }  
  { "shard" : "shard0002" }  
  mongos> db.chunks.find({ns:"movies.comedy"}, {shard:1, _id:0}).sort({shard:1})  
  { "shard" : "shard0000" }  
  { "shard" : "shard0000" }  
  { "shard" : "shard0000" }  
  { "shard" : "shard0000" }  
  { "shard" : "shard0001" }  



CHAPTER 7 ■ MONGODB ARCHITECTURE

146

  { "shard" : "shard0001" }  
  { "shard" : "shard0001" }  
  { "shard" : "shard0002" }  
  { "shard" : "shard0002" }  
  { "shard" : "shard0002" }  
  mongos>     

 As you can see, the chunks are pretty evenly spread out amongst the shards. See Figure  7-22 .  

  Figure 7-22.    Distribution without  tagging         

 Next, you will use tags to separate the collections. The intent of this is to have one collection per shard 
(i.e. your goal is to have the chunk distribution shown in Table  7-6 ).  

   Table 7-6.     Chunk Distribution     

 Collection Chunks  On Shard 

 movies.drama  Shard0000 

 movies.action  Shard0001 

 movies.comedy  Shard0002 

 A  tag  describes the shard’s property, which can be anything. Hence you might tag a shard as “slow” or “fast” or 
“rack space” or “west coast.” 

 



CHAPTER 7 ■ MONGODB ARCHITECTURE

147

 In the following example, you will tag the shards as belonging to each of the collection:     

  mongos> sh.addShardTag("shard0000", "dramas")  
  mongos> sh.addShardTag("shard0001", "actions")  
  mongos> sh.addShardTag("shard0002", "comedies")  
  mongos>  

 This signifies the following:

•    Put the chunks tagged “dramas” on shard0000.  

•   Put the chunks tagged “actions” on shard0001.  

•   And put the chunks tagged “comedies” on shard0002.    

 Next, you will create rules to tag the collections chunk accordingly. 
 Rule 1: All chunks created in the  movies.drama  collection will be tagged as “dramas:” 

  mongos> sh.addTagRange("movies.drama", {originality:MinKey}, {originality:MaxKey}, "dramas")  
  mongos>  

 The rule uses MinKey, which means negative infinity, and MaxKey, which means positive infinity. 
Hence the above rule means mark all of the chunks of the collection  movies.drama  with the tag “dramas.” 

 Similar to this you will make rules for the other two collections. 
 Rule 2: All chunks created in the  movies.action  collection will be tagged as “actions.” 

  mongos> sh.addTagRange("movies.action", {distribution:MinKey}, {distribution:MaxKey}, "actions")  
  mongos>  

 Rule 3: All chunks created in the  movies.comedy  collection will be tagged as “comedies.” 

  mongos> sh.addTagRange("movies.comedy", {collection:MinKey}, {collection:MaxKey}, "comedies")  
  mongos>     

 You need to wait for the cluster to rebalance so that the chunks are distributed based on the tags and 
rules defined above. As mentioned, the chunk distribution is an automatic process, so after some time the 
chunks will automatically be redistributed to implement the changes you have made.     

 Next, issue  chunks.find  to vet the chunks organization: 

  mongos> use config  
  switched to db config  
  mongos> db.chunks.find({ns:"movies.drama"}, {shard:1, _id:0}).sort({shard:1})  
  { "shard" : "shard0000" }  
  { "shard" : "shard0000" }  
  { "shard" : "shard0000" }  
  { "shard" : "shard0000" }  
  { "shard" : "shard0000" }  
  { "shard" : "shard0000" }  
  { "shard" : "shard0000" }  
  { "shard" : "shard0000" }  
  { "shard" : "shard0000" }  
  { "shard" : "shard0000" }  
  mongos> db.chunks.find({ns:"movies.action"}, {shard:1, _id:0}).sort({shard:1})  



CHAPTER 7 ■ MONGODB ARCHITECTURE

148

  { "shard" : "shard0001" }  
  { "shard" : "shard0001" }  
  { "shard" : "shard0001" }  
  { "shard" : "shard0001" }  
  { "shard" : "shard0001" }  
  { "shard" : "shard0001" }  
  { "shard" : "shard0001" }  
  { "shard" : "shard0001" }  
  { "shard" : "shard0001" }  
  { "shard" : "shard0001" }  
  { "shard" : "shard0001" }  
  { "shard" : "shard0001" }  
  { "shard" : "shard0001" }  
  mongos> db.chunks.find({ns:"movies.comedy"}, {shard:1, _id:0}).sort({shard:1})  
  { "shard" : "shard0002" }  
  { "shard" : "shard0002" }  
  { "shard" : "shard0002" }  
  { "shard" : "shard0002" }  
  { "shard" : "shard0002" }  
  { "shard" : "shard0002" }  
  { "shard" : "shard0002" }     
  { "shard" : "shard0002" }  
  { "shard" : "shard0002" }  
  { "shard" : "shard0002" }  
  mongos>  

 Thus the collection chunks have been redistributed based on the tags and rules defined (Figure  7-23 ).   

  Figure 7-23.     Distribution   with tagging       

 



CHAPTER 7 ■ MONGODB ARCHITECTURE

149

   Scaling with Tagging 
 Next, you will look at how to  scale with tagging  . Let’s change the scenario. Let’s assume the collection 
 movies.action  needs two servers for its data. Since you have only three shards, this means the other two 
collection’s data need to be moved to one shard. 

 In this scenario, you will change the tagging of the shards. You will add the tag “comedies” to Shard0 
and remove the tag from Shard2, and further add the tag “actions” to Shard2. 

 This means that the chunks tagged “comedies” will be moved to Shard0 and chunks tagged “actions” 
will be spread to Shard2. 

 You first move the collection  movies.comedy  chunk to Shard0 and remove the same from Shard2:     

  mongos> sh.addShardTag("shard0000","comedies")  
  mongos> sh.removeShardTag("shard0002","comedies")  

 Next, you add the tag “actions” to Shard2, so that  movies.action  chunks are spread across Shard2 also: 

  mongos> sh.addShardTag("shard0002","actions")  

 Re-issuing the find command after some time will show the following results: 

  mongos> db.chunks.find({ns:"movies.drama"}, {shard:1, _id:0}).sort({shard:1})  
  { "shard" : "shard0000" }  
  { "shard" : "shard0000" }  
  { "shard" : "shard0000" }  
  { "shard" : "shard0000" }  
  { "shard" : "shard0000" }  
  { "shard" : "shard0000" }  
  { "shard" : "shard0000" }  
  { "shard" : "shard0000" }  
  { "shard" : "shard0000" }  
  { "shard" : "shard0000" }  
  mongos> db.chunks.find({ns:"movies.action"}, {shard:1, _id:0}).sort({shard:1})  
  { "shard" : "shard0001" }  
  { "shard" : "shard0001" }  
  { "shard" : "shard0001" }  
  { "shard" : "shard0001" }  
  { "shard" : "shard0001" }  
  { "shard" : "shard0001" }  
  { "shard" : "shard0001" }  
  { "shard" : "shard0002" }  
  { "shard" : "shard0002" }  
  { "shard" : "shard0002" }  
  { "shard" : "shard0002" }  
  { "shard" : "shard0002" }  
  { "shard" : "shard0002" }  
  mongos> db.chunks.find({ns:"movies.comedy"}, {shard:1, _id:0}).sort({shard:1})  
  { "shard" : "shard0000" }  
  { "shard" : "shard0000" }  
  { "shard" : "shard0000" }  
  { "shard" : "shard0000" }  
  { "shard" : "shard0000" }  



CHAPTER 7 ■ MONGODB ARCHITECTURE

150

  { "shard" : "shard0000" }  
  { "shard" : "shard0000" }  
  { "shard" : "shard0000" }  
  { "shard" : "shard0000" }  
  { "shard" : "shard0000" }  
  mongos>  

 The chunks have been redistributed reflecting the changes made (Figure  7-24 ).   

  Figure 7-24.    Tagging with  scaling         

   Multiple Tags 
 You can have multiple tags associated with the shards. Let’s add two different tags to the shards.     

 Say you want to distribute the writes based on the disk. You have one shard that has a spinning disk and 
the other has a SSD (solid state drive). You want to redirect 50% of the writes to the shard with SSD and the 
remaining to the one with the spinning disk. 

 First, tag the shards based on these properties: 

  mongos> sh.addShardTag("shard0001", "spinning")  
  mongos> sh.addShardTag("shard0002", "ssd")  
  mongos>  

 



CHAPTER 7 ■ MONGODB ARCHITECTURE

151

 Let’s further assume you have a  distribution  field of the  movies.action  collection that you will be using 
as the shard key. The  distribution  field value is between 0 and 1. Next, you want to say, “If distribution < .5, 
send this to the spinning disk. If distribution >= .5, send to the SSD.” So you define the rules as follows: 

  mongos>sh.addTagRange("movies.action", {distribution:MinKey} ,{distribution:.5} ,"spinning")  
  mongos>sh.addTagRange("movies.action" ,{distribution:.5} ,{distribution:MaxKey},"ssd")  
  mongos>  

 Now documents with distribution < .5 will be written to the spinning shard and the others will be 
written to the SSD disk shard. 

 With tagging you can control the type of load that each newly added server will get.       

     Points to Remember When Importing Data in a  ShardedEnvironment   
 Here are some points to keep in mind when importing data. 

    Pre-Splitting   of the Data 
 Instead of leaving the choice of chunks creation with MongoDB, you can tell MongoDB how to do so using 
the following command: 

  db.runCommand( { split : "practicalmongodb.mycollection" , middle : { shardkey : value } } );  

 Post this you can also let MongoDB know which chunks goes to which node. 
 For all this you will need knowledge of the data you will be imported to the database. And this also 

depends on the use case you are aiming to solve and how the data is being read by your application. When 
deciding where to place the chunk, keep things like data locality in mind.  

   Deciding on the Chunk Size 
 You need to keep the following points in mind when deciding on the  chunk size  :

    1.    If the size is too small, the data will be distributed evenly but it will end up having 
more frequent migrations, which will be an expensive operation at the mongos 
layer.  

    2.    If the size is large, it will lead to less migration, reducing the expense at the 
mongos layer, but you will end up with uneven data distribution.      

   Choosing a Good Shard Key 
 It’s very essential to pick a good  shard   key for good distribution of data among nodes of the shard  cluster  .   



CHAPTER 7 ■ MONGODB ARCHITECTURE

152

     Monitoring for Sharding 
 In addition to the normal  monitoring and analysis   that is done for other MongoDB instances, the sharding 
cluster requires an additional monitoring to ensure that all its operations are functioning appropriately and 
the data is distributed effectively among the nodes. In this section, you will see what monitoring you should 
do for the proper functioning of the sharding cluster.  

   Monitoring the  Config Servers   
 The config server, as you know by now, stores the metadata of the sharded cluster. The mongos caches the 
data and routes the request to the respective shards. If the config server goes down but there’s a running 
mongos instance, there’s no immediate impact on the shard cluster and it will remain available for a while. 
However, you won’t be able to perform operations like chunk migration or restart a new mongos. In the long 
run, the unavailability of the config server can severely impact the availability of the cluster. To ensure that 
the cluster remains balanced and available, you should monitor the config servers. 

   Monitoring the Shard Status Balancing and Chunk Distribution 
 For a most effective  sharded cluster deployment  , it’s required that the chunks be distributed evenly among 
the shards. As you know by now, this is done automatically by MongoDB using a background process. You 
need to monitor the shard status to ensure that the process is working effectively. For this, you can use 
the  db.printShardingStatus()  or  sh.status()  command in the mongos mongo shell to ensure that the 
process is working effectively.  

   Monitoring the  Lock Status   
 In almost all cases the balancer releases its locks automatically after completing its process, but you need to 
check the lock status of the database in order to ensure there’s no long lasting lock because this can block 
future balancing, which will affect the availability of the cluster. Issue the following from mongos mongo to 
check the lock status: 

  use config  
  db.locks.find()     

      Production Cluster Architecture   
 In this section, you will look at the production cluster architecture. In order to understand it, let’s consider a 
very generic use case of a social networking application where the user can create a circle of friends and can 
share their comments or pictures across the group. The user can also comment or like her friend’s comments 
or pictures. The users are geographically distributed. 

 The application requirement is immediate availability across geographies of all the comments; data 
should be redundant so that the user’s comments, posts and pictures are not lost; and it should be highly 
available. So the application’s production cluster should have the following  components  :

    1.    At least two   mongos     instance, but you can have more as per need.  

    2.    Three   config servers    , each on a separate system.  

    3.    Two or more   replica sets     serving as   shards    . The replica sets are distributed across 
geographies with read concern set to nearest. See Figure  7-25 .      

http://docs.mongodb.org/manual/reference/mongos/#mongos#mongos
http://docs.mongodb.org/manual/administration/sharded-clusters/#sharding-config-server
http://docs.mongodb.org/manual/reference/glossary/#term-replica-set
http://docs.mongodb.org/manual/reference/glossary/#term-shard


CHAPTER 7 ■ MONGODB ARCHITECTURE

153

  Figure 7-25.    Production cluster  architecture         

 Now let’s look at the possible failure scenarios in MongoDB production deployment and its impact on 
the environment. 

     Scenario 1 
  Mongos become unavailable:  The application server where mongos has gone down will not be able to 
communicate with the cluster but it will not lead to any data loss since the mongos don’t maintain any data 
of its own. The mongos can restart, and while restarting, it can sync up with the config servers to cache the 
cluster metadata, and the application can normally start its operations (Figure  7-26 ).   

 



CHAPTER 7 ■ MONGODB ARCHITECTURE

154

     Scenario 2 
  One of the mongod of the replica set becomes unavailable in a shard:  Since you used replica sets to 
provide high availability, there is no data loss. If a primary node is down, a new primary is chosen, whereas if 
it’s a secondary node, then it is disconnected and the functioning continues normally (Figure  7-27 ).  

  Figure 7-26.    Mongos become  unavailable         

 



CHAPTER 7 ■ MONGODB ARCHITECTURE

155

 The only difference is that the duplication of the data is reduced, making the system little weak, so you 
should in parallel check if the mongod is recoverable. If it is, it should be recovered and restarted whereas if 
it’s non-recoverable, you need to create a new replica set and replace it as soon as possible.  

     Scenario 3 
  If one of the shard becomes unavailable:  In this scenario, the data on the shard will be unavailable, but the 
other shards will be available, so it won’t stop the application. The application can continue with its read/
write operations; however, the partial results must be dealt with within the application. In parallel, the shard 
should attempt to recover as soon as possible (Figure  7-28 ).   

  Figure 7-27.    One of the mongod of replica  set   is unavailable       

 



CHAPTER 7 ■ MONGODB ARCHITECTURE

156

     Scenario 4 
  Only one config server is available out of three:  In this scenario, although the cluster will become read-
only, it will not serve any operations that might lead to changes in the cluster structure, thereby leading to a 
change of metadata such as chunk migration or chunk splitting. The config servers should be replaced ASAP 
because if all config servers become unavailable, this will lead to an inoperable cluster (Figure  7-29 ).    

  Figure 7-28.     Shard unavailable         

 



CHAPTER 7 ■ MONGODB ARCHITECTURE

157

  Figure 7-29.    Only one  config server available         

     Summary 
 In this chapter you covered the core processes and tools, standalone deployment, sharding concepts, 
replication concepts, and production deployment. You also looked at how HA can be achieved. 

 In the following chapter, you will see how data is stored under the hood, how writes happens using 
journaling, what is GridFS used for, and the different types of indexes available in MongoDB.     

 



159© Shakuntala Gupta Edward, Navin Sabharwal 2015 
S.G. Edward and N. Sabharwal, Practical MongoDB, DOI 10.1007/978-1-4842-0647-8_8

    CHAPTER 8   

 MongoDB Explained           

    “MongoDB explained covers deep-dive concepts of what happens under the hood in 
MongoDB.”    

 In this chapter, you will learn how data is stored in MongoDB and how writes happen using journaling. 
Finally, you will learn about GridFS and the different types of indexes available in MongoDB. 

     Data Storage Engine 
 In the previous chapter, you looked at the core services that are deployed as part of MongoDB; you also 
looked at replica sets and sharding. In this section, we will talk about the  data storage engine  . 

 MongoDB uses MMAP as its default storage engine. This engine works with  memory-mapped files  . 
Memory-mapped files are data files that are placed by the operating system in memory using the  mmap()     
system call. mmap is a feature of OS that maps a file on the disk into virtual memory. 

  Virtual memory   is not equivalent to physical memory. Virtual memory is space on the computer’s hard 
disk that is used in conjunction with physical RAM. 

 MongoDB uses memory-mapped files for any data interaction or data management activity. As and 
when the documents are accessed, the data files are memory mapped to the memory. MongoDB allows 
the OS to control the memory mapping and allocate the maximum amount of RAM. Doing this results in 
minimal effort and coding at MongoDB level. The caching is done based on LRU behavior wherein the 
least recently used files are moved out to disk from the working set, making space for the new recently and 
frequently used pages. 

 However, this method comes with its own drawbacks. For instance, MongoDB has no control over what 
data to keep in memory and what to remove. So every server restart will lead to a page fault because every 
page that is accessed will not be available in the working set, leading to a long data retrieval time. 

 MongoDB also has no control over prioritizing the content of the memory. Given an evacuation 
situation, it can mention what content needs to be maintained in the cache and what can be removed. 
For example, if a read is fired on a large collection that is not indexed, it might result in loading the entire 
collection to memory, which might lead to evacuation of the RAM contents including removal of indexes 
of other collections that might be very important. This lack of control might also result in shrinking the 
cache assigned to MongoDB when any external process outside MongoDB tries to access a large portion of 
memory; this eventually will lead to slowness in the MongoDB response. 

 With the release of version 3.0, MongoDB comes along with a pluggable storage engine API wherein it 
enables you to select between the storage engines based on the workload, application need, and available 
infrastructure. 

 The vision behind the pluggable storage engine layer is to have one data model, one querying language, 
and one set of operational concerns, but under the hood many storage engine options optimized for 
different use cases, as shown in Figure  8-1 .  



CHAPTER 8 ■ MONGODB EXPLAINED

160

 The pluggable storage engine feature also provides flexibility in terms of deployments wherein multiple 
types of storage engines can coexist in the same deployment. 

 MongoDB version 3.0 ships with two storage engines. 
 The default, MMAPv1, is an improved version of the MMAP engine used in the prior versions. The 

updated MongoDB MMAPv1 storage engine implements collection-level concurrency control. This storage 
engine excels at workloads with high volume reads, inserts, and in-place updates. 

 The new WiredTiger storage engine was developed by the architects of Berkeley DB, the most widely 
deployed embedded data management software in the world. WiredTiger scales on modern multi-CPU 
architectures. It is designed to take advantage of modern hardware with multi-core CPUs and more RAM. 

 WIredTiger stores  d  ata in compressed fomat on the disk. Compression reduces the data size by up 
to 70% (disk only) and index size by up to 50% (disk and memory both) depending on the compression 
algorithm used. In addition to reduced storage space, compression enables much higher I/O scalability 
as fewer bits are read from disk. It provides significant benefits in the areas of greater hardware utilization, 
lower storage costs, and more predictable performance. 

 The following  compression algorithms   are available to choose from:

•    Snappy is the default, which is used for documents and journals. It provides a 
good compression ratio with little CPU overhead. Depending on data types, the 
compression ratio is somewhere around 70%.  

•   zlib provides extremely good compression but at the expense of extra CPU overhead.  

•   Prefix compression is the default used for indexes, reducing the in-memory footprint 
of index storage by around 50% (workload dependent) and freeing up more of the 
working set for frequently accessed documents.    

 Administrators can modify the default compression settings for all collections and indexes. Compression 
is also configurable on a per-collection and per-index basis during collection and index creation. 

 WiredTiger also provides granular document-level concurrency. Writes are no longer blocked by other 
writes unless they are accessing the same document. Thus it supports concurrent access by readers and 
writers to the documents in a collection. Clients can read documents while write operations are in progress, 
and multiple threads can modify different documents in a collection at the same time. Thus it excels for 
write-intensive workloads (7-10X improvement in write performance). 

  Figure 8-1.    Pluggable storage engine  API         

 



CHAPTER 8 ■ MONGODB EXPLAINED

161

 Higher concurrency also drives infrastructure simplification. Applications can fully utilize available server 
resources, simplifying the architecture needed to meet performance SLAs. With the more coarse grained 
database-level locking of previous MongoDB generations, users often had to implement sharding in order to 
scale workloads stalled by a single write lock to the database, even when sufficient memory, I/O bandwidth, 
and disk capacity was still available in the host system. Greater system utilization enabled by fine-grained 
concurrency reduces this overhead, eliminating unnecessary cost and management load. 

 This storage engine provides control to you per collection per index level to decide on what to compress 
and what not to compress. 

 The WiredTiger storage engine is only available with 64-bit MongoDB. 

 WiredTiger manages data through its cache. The WiredTiger  storage   engine gives more control of 
memory by allowing you to configure how much RAM to allocate to the WiredTiger cache, defaulting to 
either 1GB or 50% of available memory, whichever is larger. 

 You will next briefly look at how the data is stored on the disk.  

      Data File   (Relevant for MMAPv1) 
 First, let’s examine the data file. As you have seen, under the core services the default data directory used by 
mongod is  /data/db/ . 

 Under this directory there are separate files for every database. Each database has a single  .ns  file and 
multiple data files with monotonically increasing numeric extensions. 

 For example, if you create a database called  mydbpoc , it will be stored in the following files:  mydb.ns , 
 mydb.1 ,  mydb.2 , and so on, as shown in Figure  8-2 .  



CHAPTER 8 ■ MONGODB EXPLAINED

162

 For each new numeric data file for a database, the size will be double the size of the previous number 
data file. The limit of the file size is 2GB. If the file size has reached 2GB, all subsequent numbered files will 
remain 2GB in size. This behavior is by design.  This behavior ensures that small databases do not waste too 
much space on disk, and large databases are mostly kept in contiguous regions on the disk.  

 Note that in order to ensure consistent performance, MongoDB preallocates data files. The 
preallocation happens in the background and is initiated every time a data file is filled. This means that 
the MongoDB server always attempts to keep an extra, empty data file for every database in order to avoid 
blocking on file allocation. 

 If multiple small databases exist on disk, using the   storage.mmapv1.smallFiles  option   will reduce the 
size of these files. 

 Next, you will see how the data is actually stored under the hood. Doubly linked lists are the key data 
structure used for storing the data. 

     Namespace (.ns File) 
 Within the data files you have data space divided into  namespaces  , where the namespace can correspond to 
either a collection or an index. 

 The metadata of these namespaces are stored in the  .ns  file. If you check your data directory, you will 
find a file named  [dbname].ns . 

 The size of the  .ns  file that is used for storing the metadata is 16MB. This file can be thought of as a big 
hash table that is partitioned into small buckets, which are approximately 1KB in size. 

 Each bucket stores metadata specific to a namespace (Figure  8-3 ).  

  Figure 8-2.     Data files         

 



CHAPTER 8 ■ MONGODB EXPLAINED

163

    Collection Namespace   
 As shown in Figure  8-4 , the collection  namespace   bucket contains metadata such as

•    Name of the collection  

•   A few statistics on the collection such as count, size, etc. (This is why whenever 
a count is issued against the collection it returns quick response.)  

•   Index details, so it can maintain links to each index created  

•   A deleted list  

•   A doubly linked list storing  the   extent details (it stores pointer to the first and 
the last extent)     

  Figure 8-3.    Namespace  data structure         

  Figure 8-4.    Collection namespace  details         

 

 



CHAPTER 8 ■ MONGODB EXPLAINED

164

   Extent 

 Extent refers to a group of data records within a data file, so a group of extents forms the complete data for 
a namespace. An extent uses disk locations to refer to the location on the disk where the data is actually 
residing. It consists of two parts: file number and offset.     

 The file number specifies the data file it’s pointing to (0, 1, etc.). 
 Offset is the position within the file (how deep within the file you need to look for the data). The offset 

size is 4KB. Hence the offset’s maximum value can be up to 2 31 -1, which is the maximum file size the data 
files can grow to (2048MB or 2 GB). 

 As shown in Figure  8-5 , an extent data structure consists of the following things:

•    Location on the disk, which is the file number it is pointing to.  

•   Since an extent is stored as a doubly linked list element, it has a pointer to the next 
and the previous extent.  

•   Once it has the file number it’s referring to, the group of the data records within 
the file it’s pointing to are further stored as doubly linked list. Hence it maintains a 
pointer to the first data record and the last data record of the data block it’s pointing 
to, which are nothing but the offsets within the file (how deep within the file the 
data is stored).      

   Data Record 

 Next you will look at the  data record structure  . The data structure consists of the following details:

•    Since the data record structure is an element of the extent’s doubly linked list, it 
stores information of the previous and the next record.  

•   It has length with headers.  

•   The data block.    

  Figure 8-5.     Extent         

 



CHAPTER 8 ■ MONGODB EXPLAINED

165

 The data block can have either a BTree Bucket (in case of an index namespace) or a BSON object. You 
will be looking into the BTree structure in a while. 

 The BSON object corresponds to the actual data for the collection. The size of the BSON object need 
not be same as the data block. Power of 2-sized allocation is used by default so that every document is stored 
in a space that contains the document plus extra space or padding. This design decision is useful to avoid 
movement of an object from one block to another whenever an update leads to a change in the object size. 

 MongoDB supports multiple allocation strategies, which determine how to add padding to a document 
(Figure  8-6 ). As in-place updates are more efficient than relocations, all padding strategies trade extra 
space for increased efficiency and decreased fragmentation. Different workloads are supported by different 
strategies. For instance, exact fit allocation is ideal for collections with insert-only workloads where the size 
is fixed and never varies, whereas power of 2 allocations are efficient for insert/update/delete workloads.   

   Deleted List 

 The  deleted list   stores details of the extent whose data has been deleted or moved (movement whenever an 
update has caused change in size, leading to non-fitment of data in the allocated space). 

 The size of the record determines the bucket in which the free extent needs to be placed. Basically these 
are bucketed single linked lists. When a new extent is required for fitting the data for the namespace, it will 
first search the free list to check whether any appropriate size extent is available.  

    In Summary   

 Hence you can assume the data files (files with numeric extensions) to be divided across different collection 
namespaces where extents of the namespace specify the range of data from the data file belonging to that 
respective collection. 

 Having understood how the data is stored, now let’s see how  db.users.find()  works.     
 It will first check the  mydbpoc.ns  file to reach the  users ’ namespace and find out the first extent it’s 

pointing to. It’ll follow the first extent link to the first record, and following the next record pointer, it will read 
the data records of the first extent until the last record is reached. Then it will follow the next extent pointer to 
read its data records in a similar fashion. This pattern is followed until the last extent data records are read.   

  Figure 8-6.     Record data structure         

 



CHAPTER 8 ■ MONGODB EXPLAINED

166

   $freelist 
 The  .ns  file has a special namespace called   $freelist    for extents.  $freelist  keeps track of the extents that 
are no longer used, such as extents of a dropped index or collection.  

     Indexes BTree   
 Now let’s look at how the indexes are stored. The BTree  structure   is used for storing the indexes. A BTree is 
shown in Figure  8-7 .  

 In a  standard implementation   of BTree, whenever a new key is inserted in a BTree, the default behavior 
is as shown in Figure  8-8 .  

  Figure 8-7.    BTree       

 



CHAPTER 8 ■ MONGODB EXPLAINED

167

  Figure 8-8.    B-Tree standard implementation       

 



CHAPTER 8 ■ MONGODB EXPLAINED

168

 Figure  8-10  shows the bucket structure. Each bucket of the BTree is of 8KB.      

  Figure 8-9.    MongoDB’s B-Tree 90/10 split       

 There’s a slight variation in the way MongoDB implements the BTree. 
  In the above scenario, if you have keys such as Timestamp, ObjectID, or an incrementing number, then 

the buckets will always be half full, leading to lots of wasted space. 
 In order to overcome this, MongoDB has modified this slightly. Whenever it identifies that the index key 

is an incrementing key, rather than doing a 50/50 split, it does a  90/10 split   as shown in Figure  8-9 .   

 



CHAPTER 8 ■ MONGODB EXPLAINED

169

  Figure 8-10.    BTree  bucket data structure         

 



CHAPTER 8 ■ MONGODB EXPLAINED

170

 The bucket consists of the following:

•    Pointer to the parent  

•   Pointer to the right child  

•   Pointer to key nodes  

•   A list of key objects (these objects are of varying size and are stored in an unsorted 
manner; these objects are actually the value of the index keys)    

   Key Nodes 

  Key nodes   are nodes of a fixed size and are stored in a sorted manner. They enable easy split and movement 
of the elements between different nodes of the BTree. 

 A key node contains the following:

•    A pointer to the left child  

•   The data record the index key belongs to  

•   A key offset (the offset of the key objects, which basically tells where in the bucket the 
key’s value is stored)         

     Data File (Relevant for WiredTiger) 
 In this section, you will look at the content of data directory when the mongod is started with the  WiredTiger 
storage engine     . 

 When the storage option selected is WiredTiger, data, journals, and indexes are compressed on disk. 
The compression is done based on the compression algorithm specified when starting the mongod. 

 Snappy is the default compression option. 
 Under the data directory, there are separate compressed wt files corresponding to each collection and 

indexes. Journals have their own folder under the data directory. 
 The compressed files are actually created when data is inserted in the collection (the files are allocated 

at write time, no preallocation). 
 For example, if you create collection called  users , it will be stored in  collection-0—2259994602858926461  

files and the associated index will be stored in  index-1—2259994602858926461 ,  index-2—2259994602858926461 , 
and so on. 

 In addition to the collection and index compressed files, there is a  _mdb_catalog  file that stores 
metadata mapping collection and indexes to the files in the data directory. In the above example it will store 
mapping of collection users to the wt file  collection-0—2259994602858926461 . See Figure  8-11 .  



CHAPTER 8 ■ MONGODB EXPLAINED

171

 Separate volumes can be specified for storing indexes. 

 When specifying the DBPath you need to ensure that the directory corresponds to the storage engine, which 
is specified using the  –storageEngine  option when starting the mongod. The mongod will fail to start if the 
dbpath contains files created by a storage engine other than the one specified using the  –storageEngine  
option. So if MMAPv1 files are found in DBPath, then WT will fail to start. 

 Internally, WiredTiger uses the traditional B+ tree structure for storing and managing data but that’s 
where the similarity ends. Unlike B+ tree, it doesn’t support in-place updates.        

 WiredTiger cache is used for any read/write operations on the data. The trees in cache are optimized for 
in-memory access.  

  Figure 8-11.    WiredTiger Data  folder            

 



CHAPTER 8 ■ MONGODB EXPLAINED

172

      Reads and  Writes   
 You will briefly look at how the reads and writes happen. As mentioned, when MongoDB updates and reads 
from the DB, it is actually reading and writing to memory. 

 If a  modification operation   in the MongoDB MMAPv1 storage engine increases the record size bigger 
then the space allocated for it, then the entire record will be moved to a much bigger space with extra 
padding bytes. By default, MongoDB uses power of 2-sized allocations so that every document in MongoDB 
is stored in a record that contains the document itself and extra space (padding). Padding allows the 
document to grow as the result of updates while minimizing the likelihood of reallocations. Once the record 
is moved, the space that was originally occupied is freed up and will be tracked as free lists of different size. 
As mentioned, it’s the  $freelist  namespace in the  .ns  file. 

 In the MMAPv1 storage engine, as objects are deleted, modified, or created, fragmentation will occur over time, 
which will affect the performance. The   compact  command   should be executed to move the fragmented data 
into contiguous spaces. 

 Every 60 seconds the files in RAM are flushed to disk. To prevent data loss in the event of a power 
failure, the default is to run with journaling switched on. The behavior of journal is dependent on the 
configured storage engine. 

 The MMAPv1 journal file is flushed to disk every 100ms, and if there is power loss, it is used to bring the 
database back to a consistent state. 

 In WiredTiger, the data in the cache is stored in a B+ tree structure which is optimized for in-memory. 
The cache maintains an on-disk page image in association with an  index  , which is used to identify where the 
data being asked for actually resides within the page (see Figure  8-12 ).  

  Figure 8-12.     WiredTiger cache         

 The  write operation      in WiredTiger never updates in-place. 
 Whenever an operation is issued to WiredTiger, internally it’s broken into multiple transactions wherein 

each transaction works within the context of an in-memory snapshot. The snapshot is of the committed 
version before the transactions started. Writers can create new versions concurrent with the readers. 

 



CHAPTER 8 ■ MONGODB EXPLAINED

173

 The write operations do not change the page; instead the updates are layered on top of the page. 
A skipList data structure is used to maintain all the updates, where the most recent update is on the top. 
Thus, whenever a user reads/writes the data, the index checks whether a skiplist exists. If a skiplist is not 
there, it returns data from the on-disk page image. If skiplist exists, the data at the head of the list is returned 
to the threads, which then update the data. Once a commit is performed, the updated data is added to 
the head of the list and the pointers are adjusted accordingly. This way multiple users can access data 
concurrently without any conflict. The conflict occurs only when multiple threads are trying to update the 
same record. In that case, one update wins and the other concurrent update needs to retry. 

 Any changes to the tree structure due to the update, such as splitting the data if the page sizes increase, 
relocation, etc., are later reconciled by a background process. This accounts for the fast write operations of 
the  WiredTiger   engine; the task of data arrangement is left to the background process. See Figure  8-13 .  

  Figure 8-13.     SkipList         

 WiredTiger uses the MVCC approach to ensure concurrency control wherein multiple versions of 
the data are maintained. It also ensures that every thread that is trying to access the data sees the most 
consistent version of the data. As you have seen, the writes are not in place; instead they are appended on 
top of the data in a skipList data structure with the most recent update on the top. Threads accessing the 
data get the latest copy, and they continue to work with that copy uninterrupted until the time they commit. 
Once they commit, the update is appended at the top of the list and thereafter any thread accessing the data 
will see that latest update. 

 This enables multiple threads to access the same data concurrently without any locking or contention. 
This also enables the writers to create new versions concurrently with the readers. The conflict occurs only 
when multiple threads are trying to update the same record. In that case, one update wins and the other 
concurrent update needs to retry. 

 



CHAPTER 8 ■ MONGODB EXPLAINED

174

 Figure  8-14  depicts the MVCC in  action  .  

 The WiredTiger journal ensures that writes are persisted to disk between checkpoints. WiredTiger uses 
checkpoints to flush data to disk by default every 60 seconds or after 2GB of data has been written. Thus, by 
default, WiredTiger can lose up to 60 seconds of writes if running without journaling, although the risk of 
this loss will typically be much less if using replication for durability. The WiredTiger transaction log is not 
necessary to keep the data files in a consistent state in the event of an unclean shutdown, and so it is safe 
to run without journaling enabled, although to ensure durability the “replica safe” write concern should be 
configured. Another feature of the WiredTiger storage engine is the ability to compress the journal on disk, 
thereby reducing storage space.   

     How Data Is Written Using Journaling 
 In this section you will briefly look at how write operations are performed using journaling. 

 MongoDB disk writes are lazy, which means if there are 1,000 increments in one second, it will only be 
written once. The physical writes occurs a few seconds after the operation. 

 You will now see how an update actually happens in mongod. 
 As you know, in the MongoDB system, mongod is the primary daemon process. So the disk has the data 

files and the  journal files     . See Figure  8-15 .  

  Figure 8-14.    Update  in   action       

  Figure 8-15.     mongod         

 

 



CHAPTER 8 ■ MONGODB EXPLAINED

175

 When the mongod is started, the data files are mapped to a shared view. In other words,    the data file is 
mapped to a virtual address space. See Figure  8-16 .  

 Basically, the OS recognizes that your data file is 2000 bytes on disk, so it maps this to memory address 
1,000,000 – 1,002,000. Note that the data will not be actually loaded until accessed; the OS just maps it and 
keeps it. 

 Until now you still had files backing up the memory. Thus any change in memory will be flushed to the 
underlying files by the OS. 

 This is how the mongod works when journaling is not enabled. Every 60 seconds the in-memory 
changes are flushed by the OS. 

 In this scenario, let’s look at writes with journaling enabled. When journaling is enabled, a second 
mapping is made to a private view by the mongod.     

 That’s why the virtual memory amount used by mongod doubles when the journaling is enabled. 
See Figure  8-17 .  

 You can see in Figure  8-17  how the data file is not directly connected to the private view, so the changes 
will not be flushed from the private view to the disk by the OS. 

  Figure 8-16.    maps to  shared view         

  Figure 8-17.    maps to  private view         

 

 



CHAPTER 8 ■ MONGODB EXPLAINED

176

 Let’s see what sequence of events happens when a write operation is initiated. When a write operation 
is initiated it, first it writes to the private view (Figure  8-18 ).      

 Next, the changes are written to the journal file, appending a brief description of what’s changed in the 
files (Figure  8-19 ).          

 The journal keeps appending the change description as and when it gets the change. If the mongod fails 
at this point, the journal can replay all the changes even if the data file is not yet modified, making the write 
safe at this point. 

  Figure 8-18.    Initiated  write operation         

  Figure 8-19.    Updating the journal file       

 

 



CHAPTER 8 ■ MONGODB EXPLAINED

177

 The journal will now replay the logged changes on the shared view (Figure  8-20 ).      

 Finally, with a very fast speed the changes are written to the disk. By default, the OS is requested to do 
this every 60 seconds by the mongod (Figure  8-21 ).      

 In the last step, the shared view is  remapped   to the private view by the mongod. This is done to prevent 
the private view from getting too dirty (Figure  8-22 ).   

  Figure 8-20.    Updating the  shared view         

  Figure 8-21.    Updating the  data file         

 

 



CHAPTER 8 ■ MONGODB EXPLAINED

178

     GridFS – The MongoDB File System 
 You looked at what happens under the hood. You saw that MongoDB stores data in BSON documents. BSON 
documents have a document size limit of 16MB. 

  GridFS   is MongoDB’s specification for handling large files that exceed BSON’s document size limit. This 
section will briefly cover GridFS. 

 Here “specification” means that it is not a MongoDB feature by itself, so there is no code in MongoDB that 
implements it. It just specifies how large files need to be handled. The language drivers such as PHP, Python, 
etc. implement this specification and expose an API to the user of that driver, enabling them to store/retrieve 
large files in MongoDB. 

     The  Rationale   of GridFS 
 By design, a MongoDB document (i.e. a BSON object) cannot be larger than 16MB. This is to keep 
performance at an optimum level, and the size is well suited for our needs. For example, 4MB of space might 
be sufficient for storing a sound clip or a profile picture. However, if the requirement is to store high quality 
audio or movie clips, or even files that are more than several hundred megabytes in size, MongoDB has you 
covered by using GridFS. 

 GridFS specifies a mechanism for dividing a large file among multiple documents. The language driver that 
implements it, for example, the PHP driver, takes care of the splitting of the stored files (or merging the split 
chunks when files are to be retrieved) under the hood. The developer using the driver does not need to know of 
such internal details. This way GridFS allows the developer to store and manipulate files in a transparent and 
efficient  way  . 

  Figure 8-22.     Remapping            

 



CHAPTER 8 ■ MONGODB EXPLAINED

179

 GridFS uses two collections for storing the file. One collection maintains the metadata of the file and 
the other collection stores the file’s data by breaking it into small pieces called chunks. This means the file is 
divided into smaller chunks and each chunk is stored as a separate document. By default the chunk size is 
limited to 255KB. 

 This approach not only makes the storing of data scalable and easy but also makes the range queries 
easier to use when a specific part of files are retrieved. 

 Whenver a file is queried in GridFS, the chunks are reassembled as required by the client. This also 
provides the user with the capability to access arbitrary sections of the files. For example, the user can 
directly move to the middle of a video file. 

 The GridFS specification is useful in cases where the file size exceeds the default 16MB limitation of 
MongoDB BSON document. It’s also used for storing files that you need to access without loading the entire 
file in memory.  

     GridFSunder the Hood 
 GridFS is a lightweight specification used for  storing files.    

 There’s no “special case” handling done at the MongoDB server for the GridFS requests. All the work is done at 
the client side. 

 GridFS enables you to store large files by splitting them up into smaller chunks and storing each of the 
chunks as separate documents. In addition to these chunks, there’s one more document that contains the 
metadata about the file. Using this metadata information, the chunks are grouped together, forming the 
complete file. 

 The storage overhead for the chunks can be kept to a minimum, as MongoDB supports storing binary 
data in documents. 

 The two collections that are used by GridFS for storing of large files are by default named as  fs.files  
and  fs.chunks , although a different bucket name can be chosen than  fs . 

 The chunks are stored by default in the  fs.chunks  collection. If required, this can be overridden. Hence 
all of the data is contained in the  fs.chunks  collection. 

 The  structure of   the individual documents in the chunks collection is pretty simple: 

  {  
  "_id" : ObjectId("..."),"n" : 0,"data" : BinData("..."),  
  "files_id" : ObjectId("...")  
  }  

 The  chunk document   has the following important keys.

•     "_id" : This is the unique identifier.  

•    "files_id" : This is unique identifier of the document that contains the metadata 
related to the chunk.  

•    "n" : This is basically depicting the position of the chunk in the original file.  

•    "data" : This is the actual binary data that constitutes this chunk.    



CHAPTER 8 ■ MONGODB EXPLAINED

180

 The  fs.files  collection  stores   the metadata for each file. Each document within this collection 
represents a single file in GridFS. In addition to the general metadata information, each document of the 
collection can contain custom metadata specific to the file it’s representing. 

 The following are the keys that are mandated by the GridFS  specification  :

•     _id : This is the unique identifier of the file.  

•    Length : This depicts the total bytes that make up the complete content of the file.  

•    chunkSize : This is the file’s chunk size, in bytes. By default it’s 255KB, but if needed 
this can be adjusted.  

•    uploadDate : This is the timestamp when the file was stored in GridFS.  

•    md5 : This is generated on the server side and is the md5 checksum of the files 
contents. MongoDB server generates its value by using the  filemd5  command, 
which computes the md5 checksum of the uploaded chunks. This implies that the 
user can check this value to ensure that the file is uploaded correctly.    

 A typical   fs.files  document   looks as follows (see also Figure  8-23 )   :  

  {  
    "_id" : ObjectId("..."),  "length" : data_number,  
    "chunkSize" : data_number,  
    "uploadDate" : data_date,  
    "md5" : data_string  
  }   

  Figure 8-23.    GridFS       

     Using GridFS 
 In this section, you will be using the  PyMongo driver   to see how you can start using GridFS. 

 Add Reference to the Filesystem 
 The first thing that is needed is a reference to the GridFS  filesystem  : 

  >>> import pymongo  
  >>> import gridfs  
  >>>myconn=pymongo.Connection()  
  >>>mydb=myconn.gridfstest  
  >>>myfs=gridfs.GridFS(db)  

 



CHAPTER 8 ■ MONGODB EXPLAINED

181

  write( )        
 Next you will execute a basic write: 

  >>> with myfs.new_file() as myfp:  
          myfp.write('This is my new sample file. It is just grand!')  

  find( )        
 Using the mongo shell let’s see what the underlying collections holds: 

  >>> list(mydb.myfs.files.find())  
  [{u'length': 38, u'_id': ObjectId('52fdd6189cd2fd08288d5f5c'), u'uploadDate': datetime.
datetime(2014, 11, 04, 4, 20, 41, 800000), u'md5': u'332de5ca08b73218a8777da69293576a', 
u'chunkSize': 262144}]  
  >>> list(mydb.myfs.chunks.find())  
  [{u'files_id': ObjectId('52fdd6189cd2fd08288d5f5c'), u'_id': ObjectId('52fdd6189cd2fd08288d5
f5d'), u'data': Binary('This is my new sample file. It is just grand!', 0), u'n': 0}]  

  Force Split the File  
 Let’s force split the file. This is done by specifying a small chunkSize while file creation, like so: 

  >>> with myfs.new_file(chunkSize=10) as myfp:  
  myfp.write('This is second file. I am assuming it will be split into various chunks')  
  >>>  
  >>>myfp  
  <gridfs.grid_file.GridIn object at 0x0000000002AC79B0>  
  >>>myfp._id  
  ObjectId('52fdd76e9cd2fd08288d5f5e')  
  >>> list(mydb.myfs.chunks.find(dict(files_id=myfp._id)))  
  .................  
  ObjectId('52fdd76e9cd2fd08288d5f65'), u'data': Binary('s', 0), u'n': 6}]  

  read( )        
 You now know how the file is actually stored in the database. Next, using the client driver, you will now read 
the file: 

  >>> with myfs.get(myfp._id) as myfp_read:  
          print myfp_read.read()  

  “This is second file. I am assuming it will be split into various chunks.”  

 The user need not be aware of the chunks at all. You need to use the APIs exposed by the client to read 
and write files from GridFS. 



CHAPTER 8 ■ MONGODB EXPLAINED

182

   Treating GridFS More Like a  File System   
   new_file( ) - Create a new file in GridFS    
 You can pass any number of keywords as arguments to the  new_file() . This will be added in the 
 fs.files  document: 

  >>> with myfs.new_file(     
          filename='practicalfile.txt',  
          content_type='text/plain',  
          my_other_attribute=42) as myfp:  
                  myfp.write('My New file')  
  >>>myfp  
  <gridfs.grid_file.GridIn object at 0x0000000002AC7AC8>  
  >>> db.myfs.files.find_one(dict(_id=myfp._id))  
  {u'contentType': u'text/plain', u'chunkSize': 262144, u'my_other_attribute': 42, 
u'filename': u'practicalfile.txt', u'length': 8, u'uploadDate': datetime.datetime(2014, 11, 
04, 9, 01, 32, 800000), u'_id': ObjectId('52fdd8db9cd2fd08288d5f66'), u'md5': 
u'681e10aecbafd7dd385fa51798ca0fd6'}  
  >>>  

 A file can be overwritten using filenames. Since  _id  is used for indexing files in GridFS, the old file is not 
removed. Just a file version is maintained. 

  >>> with myfs.new_file(filename='practicalfile.txt', content_type='text/plain') as myfp:  
          myfp.write('Overwriting the "My New file"')  

   get_version( )/get_last_version( )    
 In the above case,  get_version  or  get_last_version  can be used to retrieve the file with the filename. 

  >>>myfs.get_last_version('practicalfile.txt').read()  
  'Overwriting the "My New file"'  
  >>>myfs.get_version('practicalfile.txt',0).read()  
  'My New file'  

 You can also list the files in GridFS: 

  >>>myfs.list()  
   [u'practicalfile.txt', u'practicalfile2.txt']  

   delete( )    
 Files can also be removed: 

  >>>myfp=myfs.get_last_version('practicalfile.txt')  
  >>>myfs.delete(myfp._id)  
  >>>myfs.list()  
  [u'practicalfile.txt', u'practicalfile2.txt']  
  >>>myfs.get_last_version('practicalfile.txt').read()  
  'My New file'  
  >>>  



CHAPTER 8 ■ MONGODB EXPLAINED

183

 Note that only one version of  practicalfile.txt  was removed. You still have a file named 
 practicalfile.txt  in the filesystem. 

   exists( ) and put( )    
 Next, you will use  exists()  to check if a file exists and  put()  to quickly write a short file into GridFS: 

  >>>myfs.exists(myfp._id)  
  False  
  >>>myfs.exists(filename='practicalfile.txt')  
  True  
  >>>myfs.exists({'filename':'practicalfile.txt'}) # equivalent to above  
  True  
  >>>myfs.put('The red fish', filename='typingtest.txt')  
  ObjectId('52fddbc69cd2fd08288d5f6a')  
  >>>myfs.get_last_version('typingtest.txt').read()  
  'The red fish'  
  >>>     

      Indexing   
 In this part of the book, you will briefly examine what an index is in the MongoDB context. Following that, 
we will highlight the various types of indexes available in MongoDB, concluding the section by highlighting 
the behavior and limitations. 

 An index is a data structure that speeds up the read operations. In layman terms, it is comparable to a 
book index where you can reach any chapter by looking in the index for the chapter and jumping directly to 
the page number rather than scanning the entire book to reach to the chapter, which would be the case if no 
index existed. 

 Similarly, an index is defined on fields, which can help in searching for information in a better and 
efficient manner. 

 As in other databases, in MongoDB also it’s perceived in a similar fashion (it’s used for speeding up 
the   find ()  operation  ). The type of queries you run help to create efficient indexes for the databases. For 
example, if most of the queries use a Date field, it would be beneficial to create an index on the Date field. It 
can be tricky to figure out which index is optimal for your query, but it’s worth a try because the queries that 
otherwise take minutes will return results instantaneously if a proper index is in place. 

 In MongoDB, an index can be created on any field or sub-field of a document. Before you look at the 
various types of indexes that can be created in MongoDB, let’s list a few core  features   of the indexes:

•    The indexes are defined at the per-collection level. For each collection, there are 
different  sets   of indexes.  

•   Like SQL indexes, a MongoDB index can also be created either on a single field or set 
of fields.  

•   In SQL, although indexes enhance the query performance, you incur overhead for 
every write operation. So before creating any index, consider the type of queries, 
frequency, the size of the workload, and the insert load along with application 
requirements.  

•   A BTree data structure is used by all MongoDB indexes.  

•   Every query using the update operations uses only one index, which is decided by 
the query optimizer. This can be overridden by using a hint.  



CHAPTER 8 ■ MONGODB EXPLAINED

184

•   A query is said to be covered by an index if all fields are part of the index, irrespective 
of whether it’s used for querying or for projecting.  

•   A covering index maximizes the MongoDB performance and throughput because 
the query can be satiated using an index only, without loading the full documents in 
memory.  

•   An index will only be updated when the fields on which the index has been created 
are changed. Not all update operations on a document cause the index to be 
changed. It will only be changed if the associated fields are impacted.    

     Types of Indexes 
 In this section, you will look at the different  types of   indexes that are available in MongoDB. 

    _id index   
 This is the default index that is created on the  _id  field. This index cannot be deleted.  

    Secondary Indexes   
 All indexes that are user created using   ensureIndex()    in MongoDB are termed as  secondary indexes  .

    1.    These indexes can be created on any field in the document or the sub document.     
Let’s consider the following document: 

  {"_id": ObjectId(...),  "name": "Practical User", "address": 
{"zipcode": 201301, "state": "UP"}}  

 In this document, an index can be created on the  name  field as well as the  state  field.      

    2.    These indexes can be created on a field that is holding a sub-document. 

 If you consider the above document where  address  is holding a sub-document, in 
that case an index can be created on the  address  field as well.  

    3.    These indexes can either be created on a single field or a set of fields. When 
created with set of fields, it’s also termed a  compound index . 

 To explain it a bit further, let’s consider a products collection that holds documents of the 
following format: 

  { "_id": ObjectId(...),"category": ["food", "grocery"], "item": "Apple", 
"location": "16   th    Floor Store",  "arrival": Date(...)}  

 If the maximum of the queries use the fields  Item  and  Location , then the following 
compound index can be created: 

  db.products.ensureIndex ({"item": 1, "location": 1})  

 In addition to the query that is referring to all the fields of the compound index, the 
above compound index can also support queries that are using any of the index 
prefixes (i.e. it can also support queries that are using only the  item  field).  



CHAPTER 8 ■ MONGODB EXPLAINED

185

    4.    If the index is created on a field that holds an array as its value, then a multikey 
index is used for indexing each value of the array separately. 

 Consider the following document: 

  { "_id" : ObjectId("..."),"tags" : [ "food", "hot", "pizza", "may" ] }  

 An index on  tags  is a multikey index, and it will have the following entries: 

  { tags: "food" }  
  { tags: "hot" }  
  { tags: "pizza" }  
  { tags: "may" }   

    5.     Multikey compound   indexes can also be created. However, at any point, only one 
field of the compound index can be of the array type.     

 If you create a compound index of  {a1: 1, b1: 1} , the permissible documents are 
as follows: 

  {a1: [1, 2], b1: 1}  
  {a1: 1, b1: [1, 2]}  

 The following document is not permissible; in fact, MongoDB won’t be even able to 
insert this document: 

  {a1: [21, 22], b1: [11, 12]}  

 If an attempt is made to insert such a document, the insertion will be rejected and 
the following error results will be produced: “cannot index parallel arrays”.     

 You will next look at the various options/properties that might be useful while creating indexes. 

  Indexes with    Keys Ordering    
 MongoDB  indexes   maintain references to the fields. The refernces are maintained in either an ascending 
order or descending order. This is done by specifying a number with the key when creating an index. This 
number indicates the index direction. Possible options are 1 and -1, where 1 stands for ascending and 
-1 stands for descending. 

 In a single key index, it might not be too important; however, the direction is very important in 
compound indexes. 

 Consider an  Events  collection that includes both  username  and  timestamp . Your query is to return 
events ordered by  username  first and then with the most recent event first. The following index will be used: 

  db.events.ensureIndex({ "username" : 1, "timestamp" : -1 })  

 This index contains references to the documents that are sorted in the following manner:

    1.    First by the  username  field in ascending order.  

    2.    Then for each  username  sorted by the  timestamp  field in the descending order.     



CHAPTER 8 ■ MONGODB EXPLAINED

186

   Unique Indexes       
 When you create an index, you need to ensure uniqueness of the values being stored in the indexed field. 
In such cases, you can create indexes with the  Unique  property set to true (by default it’s false). 

 Say you want a  unique_index  on the field  userid . The following command can be run to create the 
unique index: 

  db.payroll.ensureIndex( { "userid": 1 }, { unique: true } )  

 This command ensures that you have unique values in the  user_id  field. A few points that you need to 
note for the uniqueness constraint are

•    If the unique constraint is used on a compound index in that scenario, uniqueness is 
enforced on the combination of values.  

•   A null value is stored in case there’s no value specified for the field of a unique index.  

•   At any point only one document is permitted without a unique value.        

   dropDups       
 If you are creating a unique index on a collection that already has documents, the creation might fail 
because you may have some documents that contain duplicate values in the indexed field. In such scenarios, 
the  dropDups  options can be used for force creation of the unique index. This works by keeping the first 
occurrence of the key value and deleting all the subsequent values. By default  dropDups  is false. 

   Sparse Indexes    
 A  sparse index   is an index that holds entries of the documents within a collection that has the fields on 
which the index is created. If you want to create a sparse index on the  LastName  field of the  User  collection, 
the following command can be issued: 

  db.User.ensureIndex( { "LastName": 1 }, { sparse: true } )  

 This index will contain documents such as 

  {FirstName: Test, LastName: User}  
  or  
  {FirstName: Test2, LastName: }  

 However, the following document will not be part of the sparse index: 

  {FirstName: Test1}  

 The index is said to be sparse because this only contains documents with the indexes field and miss the 
documents when the fields are missing. Due to this nature, sparse indexes provide a significant space saving. 

 In contrast, the non-sparse index includes all documents irrespective of whether the indexed field is 
available in the document or not. Null value is stored in case the fields are missing. 



CHAPTER 8 ■ MONGODB EXPLAINED

187

  TTL Indexes (Time To    Live    )     
 A new index property was introduced in version 2.2 that enables you to remove documents from the 
collection automatically after the specified time period is elapsed. This property is ideal for scenarios such as 
logs, session information, and machine-generated event data, where the data needs to be persistent only for 
a limited period. 

 If you want to set the TTL of one hour on collection  logs , the following command can be used:     

  db.Logs.ensureIndex( { "Sample_Time": 1 }, { expireAfterSeconds: 3600} )  

 However, you need to note the following limitations:

•    The field on which the index is created must be of the date type only. In the above 
example, the field  sample_time  must hold date values.  

•   It does not support compound indexes.  

•   If the field that is indexed contains an array with multiple dates, the document 
expires when the smallest date in the array matches the expiration threshold.  

•   It cannot be created on the field which already has an index created.  

•   This index cannot be created on capped collections.  

•   TTL indexes expire data using a background task, which is run every minute, to 
remove the expired documents. So you cannot guarantee that the expired document 
no longer exists in the collection.    

   Geospatial Indexes    
 With the rise of the smartphone, it’s becoming very common to query for things near a current location. In 
order to support such location-based queries, MongoDB provides  geospatial indexes  . 

 To create a geospatial index, a coordinate pair in the following forms must exist in the documents:

•    Either an array with two elements  

•   Or an embedded document with two keys (the key names can  be   anything).    

 The following are valid examples: 

  { "userloc" : [ 0, 90 ] }  
  { "loc" : { "x" : 30, "y" : -30 } }  
  { "loc" : { "latitude" : -30, "longitude" : 180 } }  
  {"loc" : {"a1" : 0, "b1" : 1}}.  

 The following can be used to create a geospatial index on the  userloc  field: 

  db.userplaces.ensureIndex( { userloc : "2d" } )  

 A geospatial index assumes that the values will range from -180 to 180 by default. If this needs to be 
changed, it can be specified along with  ensureIndex  as follows: 

  db.userplaces.ensureIndex({"userloc" : "2d"}, {"min" : -1000, "max" : 1000})  



CHAPTER 8 ■ MONGODB EXPLAINED

188

 Any documents with values beyond the maximum and the minimum values will be rejected. You can 
also create compound geospatial indexes. 

 Let’s understand with an example how this index works. Say you have documents that are of the 
following type:     

  {"loc":[0,100], "desc":"coffeeshop"}  
  {"loc":[0,1], "desc":"pizzashop"}  

 If the query of a user is to find all coffee shops near her location, the following compound index 
can help: 

  db.ensureIndex({"userloc" : "2d", "desc" : 1})  

  Geohaystack Indexes  
  Geohaystack indexes      are bucket-based geospatial indexes (also called  geospatial haystack indexes ). They 
are useful for queries that need to find out locations in a small area and also need to be filtered along another 
dimension, such as finding documents with coordinates within 10 miles and a type field value as  restaurant . 

 While defining the index, it’s mandatory to specify the  bucketSize  parameter as it determines the 
haystack index granularity. For example, 

  db.userplaces.ensureIndex({ userpos : "geoHaystack", type : 1 }, { bucketSize : 1 })  

 This example creates an index wherein keys within 1 unit of latitude or longitude are stored together in 
the same bucket. You can also include an additional category in the index, which means that information 
will be looked up at the same time as finding the  location   details. 

 If your use case typically searches for "nearby" locations (i.e. "restaurants within 25 miles"), a haystack 
index can be more efficient. 

 The matches for the additional indexed field (e.g. category) can be found and counted within each bucket. 
 If, instead, you are searching for "nearest restaurant" and would like to return results regardless of 

distance, a normal 2d index will be more efficient. 
 There are currently (as of MongoDB 2.2.0) a few limitations on haystack indexes:

•    Only one additional field can be included in the haystack index.  

•   The additional index field has to be a single value, not an array.  

•   Null long/lat values are not supported.    

 In addition to the above mentioned types, there is a new type of index introduced in version 2.4 that 
supports text search on a collection.     

 Previously in beta, in the 2.6 release, text search is a built-in feature. It includes options such as 
searching in 15 languages and an aggregation option that can be used to set up faceted navigation by 
product or color, for example, on an e-commerce website.  

   Index Intersection 
 Index intersection is introduced in version 2.6 wherein multiple indexes can be intersected to satiate a 
query.    To explain it a bit further, let’s consider a products collection that holds documents of the following 
format 

  { "_id": ObjectId(...),"category": ["food", "grocery"],  "item": "Apple", "location": "16   th   
 Floor Store",  "arrival": Date(...)}.  



CHAPTER 8 ■ MONGODB EXPLAINED

189

 Let’s further assume that this collection has the following two indexes: 

  { "item": 1 }.  
  { "location": 1 }.  

 Intersection of the above two indexes can be used for the following query: 

  db.products.find ({"item": "xyz", "location": "abc"})  

 You can run  explain()  to determine if index intersection is used for the above query. The explain 
output will include either of the following stages: AND_SORTED or AND_HASH. When doing index 
intersection, either the entire index or only the index prefix can be used. 

 You next need to understand how this index intersection feature impacts the compound index creation. 
 While creating a compound index, both the order in which the keys are listed in the index and the sort 

order (ascending and descending) matters. Thus a compound index may not support a query that does not 
have the index prefix or has keys with different sort order. 

 To explain it a bit further, let’s consider a products collection that has the following compound index: 

  db.products.ensureIndex ({"item": 1, "location": 1})     

 In addition to the query, which is referring to all the fields of the compound index, the above compound 
index can also support queries that are using any of the index prefix (it can also support queries that are 
using only the item field). But it won’t be able to support queries that are using either only the location field 
or are using the item key with a different sort order. 

 Instead, if you create two separate indexes, one on the item and the other on the location, these two 
indexes can either individually or though intersections support the four queries mentioned above. Thus, the 
choice between whether to create a compound index or to rely on intersection of indexes depends on the 
system’s needs. 

 Note that index intersection will not apply when the   sort()  operation   needs an index that is completely 
separate from the query predicate. 

 For example, let’s assume for the products collection you have the following indexes: 

  { "item": 1 }.  
  { "location": 1 }.  
  { "location": 1, "arrival_date":-1 }.  
  { "arrival_date": -1 }.  

 Index intersection will not be used for the following query: 

  db.products.find( { item: "xyz"} ).sort( { location: 1 } )  

 That is, MongoDBwill not use the  { item: 1 }  index for the query, and the separate  { location: 1 }  
or the  { location: 1, arrival_date: -1 }  index for the sort. 

 However, index intersection can be used for the following query since the index  {location: 1,
arrival_date: -1 }  can fulfil part of the query predicate: 

  db.products.find( { item: { "xyz"} , location: "A" } ).sort( { arrival_date: -1 } )    



CHAPTER 8 ■ MONGODB EXPLAINED

190

     Behaviors and Limitations 
 Finally, the following are a few  behaviors and limitations   that you need to be aware of:

•    More than   64 indexes     may not be allowed in a collection.  

•   Index keys cannot be larger than   1024 bytes    .  

•   A document cannot be indexed if its fields’ values are greater than this size.  

•   The following command can be used to query documents that are too large to index:    

  db.practicalCollection.find({<key>: <too large to index>}).hint({$natural: 1})  

•     An index name (including the   namespace    ) must be less than   128 characters    .  

•   The insert/update speeds are impacted to some extent by an index.  

•   Do not maintain indexes that are not used or will not be used.  

•   Since each clause of an    $or      query executes in parallel, each can use a different index.  

•   The queries that use the    sort      ()  method and the    $or      operator will not be able to use 
the indexes on the    $or      fields.  

•   Queries that use the  $or  operator are not supported by the second   geospatial query    .      

     Summary 
 In this chapter, you covered how data is stored under the hood and how writes happen using journaling. 
You also looked at GridFS and the different types of indexes available in MongoDB. 

 In the following chapter, you will look at MongoDB from administration perspective.     

http://docs.mongodb.org/manual/reference/limits/#limit-number-of-indexes-per-collection
http://docs.mongodb.org/manual/reference/limits/#limit-index-size
http://docs.mongodb.org/manual/reference/glossary/#term-namespace
http://docs.mongodb.org/manual/reference/limits/#limit-index-name-length
http://docs.mongodb.org/manual/reference/operator/or/#_S_or#$or
http://docs.mongodb.org/manual/reference/method/cursor.sort/#cursor.sort#cursor.sort
http://docs.mongodb.org/manual/reference/operator/or/#_S_or#$or
http://docs.mongodb.org/manual/reference/operator/or/#_S_or#$or
http://docs.mongodb.org/manual/core/geospatial-indexes/


191© Shakuntala Gupta Edward, Navin Sabharwal 2015 
S.G. Edward and N. Sabharwal, Practical MongoDB, DOI 10.1007/978-1-4842-0647-8_9

    CHAPTER 9   

 Administering MongoDB           

    “Administering MongoDB is not like administering traditional RDBMS databases. 
Although most of the administrative tasks are not required or are done automatically by 
the system, still there are few tasks that need manual intervention.”    

 In this chapter, you will go over the process of basic administrative operations for backups and restoration, 
importing and exporting data, managing the server, and monitoring the database instances. 

      Administration Tools   
 Before you dive into the administration tasks, here’s a quick overview of the tools. Since MongoDB does not 
have a GUI-style administrative interface, most of the administrative tasks are done using the command line 
mongo shell. However, some UIs are available as separate community projects. 

     mongo 
 The  mongo shell   is part of the MongoDB distribution. It’s an interactive JavaScript shell for the MongoDB 
database. It provides a powerful interface for administrators as well as developers to test queries and 
operations directly with the database. 

 In previous chapters, you covered development using the shell. In this chapter, you will go through the 
system administration tasks using the shell.  

     Third-Party Administration Tools 
 A number of  third party tools   are available for MongoDB. Most of the tools are web-based. 

 A list of all of the third party administration tools that support MongoDB is maintained by 10gen on the 
MongoDB web site at    https://docs.mongodb.org/ecosystem/tools/administration-interfaces/     .   

https://docs.mongodb.org/ecosystem/tools/administration-interfaces/


CHAPTER 9 ■ ADMINISTERING MONGODB

192

     Backup and Recovery 
 Backup is one of the most important administrative tasks. It ensures that the data is safe and in case of any 
emergency can be restored back. 

 If the data cannot be restored back, the backup is useless. So, after taking a backup, the administrator 
needs to ensure that it’s in a usable format and has captured the data in a consistent state. 

 The first skill an administrator needs to learn is how to take backups and restore it back. 

      Data File Backup   
 The easiest way to back up the database is to copy the data into the data directory folder. 

 All of the MongoDB data is stored in a data directory, which by default is  C:\data\db  (in Windows) or  /data/db  
(in LINUX). The default path can be changed to a different directory using the  –dbpath  option when starting 
the mongod. 

 The data  directory   content is a complete picture of the data that is stored in the MongoDB database. 
Hence taking a MongoDB backup is simply copying the entire contents of the data directory folder. 

 Generally, it is not safe to copy the data directory content when MongoDB is running. One option is to 
shut down the MongoDB server before copying the data directory content. 

 If the server is shut down properly, the content of the data directory represents a safe snapshot of the 
MongoDB data, so it can be copied before the server is restarted again. 

 Although this is a safe and effective way of taking backups, it’s not an ideal way, because it requires 
downtime. 

 Next, you will discuss techniques of taking backups that do not require downtime.  

      mongodump and mongorestore   
 mongodump is the MongoDB  backup utility   that is supplied as part of the MongoDB distribution. It works as 
a regular client by querying a MongoDB instance and writing all the read documents to the disk. 

 Let’s perform a backup and then restore it to validate that the backup is in usable and consistent format. 
 The following code snippets are from running the utilities on a Windows platform. The MongoDB 

server is running on the localhost instance. 
 Open a  terminal window   and enter the following command: 

  C:\>  cd c:\practicalmongodb\bin  
  c:\practicalmongodb\bin>  mongod --rest  
  2015-07-15T22:26:47.288-0700 I CONTROL  [initandlisten] MongoDB starting : pid=3820 
port=27017 dbpath=c:\data\db\ 64-bit host=ANOC9  
  .....................................................................................  

  2015-07-15T22:28:23.563-0700 I NETWORK  [websvr] admin web console waiting for connections 
on port 28017  



CHAPTER 9 ■ ADMINISTERING MONGODB

193

 In order to run mongodump, execute the following in a new terminal window: 

  C:\>  cd c:\practicalmongodb\bin  
  c:\practicalmongodb\bin>  mongodump  
  2015-07-15T22:29:41.538-0700 writing admin.system.indexes to dump\admin\system.indexes.bson  
  ................................  
  2015-07-14T22:29:46.720-0700    writing mydbproc.users to dump\mydbproc\users.bson  
  c:\practicalmongodb\bin>  

 This dumps the  entire   database under the  dump  folder in the  bin  folder directory itself, as shown 
in Figure  9-1 .  

  Figure 9-1.    The  dump folder         

 



CHAPTER 9 ■ ADMINISTERING MONGODB

194

 The mongodump utility by default connects to the localhost interface of the database on the default port. 
 Next, it pulls and stores each database and collection’s associated data files into a predefined folder 

structure, which defaults to  ./dump/[databasename]/[collectionname].bson . 
 The data is saved in  .bson  format, which is similar to the format used by MongoDB for storing its 

data internally. 
 If content is already in the directory, it will remain untouched unless the dump contains same file. 

For example, if the dump contains the files  c1.bson  and  c2.bson , and the output directory has files  c3.bson  
and  c1.bson , then mongodump will replace the  c1.bson  file of the folder with its  c1.bson  file, and will copy 
the  c2.bson  file, but it won’t remove or change the  c3.bson  file. 

 You should make sure that the directory is empty before using it for mongodump unless you have a 
requirement of overlaying the data in your backups. 

    Single Database Backup      
 In the above example, you executed mongodump with the default setting, which dumps all of the databases 
on the MongoDB database server. 

 In a real-life scenario, you will have multiple application databases running on a single server, each 
having a different requirement of backup strategies. 

 Specifying the  –d  parameter in the mongodump utility will let you take the backup’s database wise. 

  c:\practicalmongodb\bin>  mongodump -d mydbpoc  
  2015-07-14T22:37:49.088-0700     writing mydbproc.mapreducecount1 to dump\mydbproc\ 

mapreducecount1.bson  
  ......................  
  2015-07-14T22:37:54.217-0700     writing mydbproc.users metadata to dump\mydbproc\

users.metadata.json  
  2015-07-14T22:37:54.218-0700    done dumping mydbproc.users  
  c:\practicalmongodb\bin>     

 As of MongoDB-2.6, database administrator  must have access to admin database in order to backup users 
and user-defined roles for given database as MongoDB stores these information in admin database only.  

    Collection Level Backup      
 There are two types of data in every database: data that changes rarely, such as configuration data where 
you maintain the users, their roles, and any application-related configurations, and then you have data that 
changes frequently such as the events data (in case of a monitoring application), posts data (in case of blog 
application), and so on. 

 As a result, the backup requirements are different. For instance, the complete database can be backed 
up once a week whereas the rapidly changing collection needs to be backed up every hour. 

 Specifying the  –c  parameter in the mongodump utility enables the user to implement backups for a 
specified collection individually. 

  c:\practicalmongodb\bin>  mongodump -d mydbpoc -c users  
  2015-07-14T22:41:19.850-0700    writing mydbproc.users to dump\mydbproc\users.bson  
  2015-07-14T22:41:30.710-0700     writing mydbproc.users metadata to dump\mydbproc\

users.metadata.json  
  ...........................................................  
  2015-07-14T22:41:30.712-0700    done dumping mydbproc.users  
  c:\practicalmongodb\bin>  



CHAPTER 9 ■ ADMINISTERING MONGODB

195

 If the folder where the data needs to be dumped is not specified, by default it dumps the data in a directory 
named  dump  in the current working directory, which in this case is  c:\practicalmongodb\bin .  

   mongodump – Help   
 You have covered the basics of executing mongodump. Apart from the options mentioned above, 
mongodump provides other options that let you tailor the backups as per requirements. As with all other 
utilities, executing the utility with the  –help  option will provide the list of all available options.  

    mongorestore   
 As mentioned, it is mandatory for the administrators to ensure that the backups are happening in a consistent 
and usable format. So the next step is to restore the data dump back using mongorestore. 

 This utility will restore the database back to the state when the dump was taken. Prior to version 3.0, it 
was allowed to run the command without even starting the mongod/mongos. Starting from version 3.0, if 
the command is executed before starting the mongod/mongos the following error(s) will show: 

  c:\>  cd   c:\practicalmongodb\bin  
  c:\ practicalmongodb\bin>  mongorestore  
   
  2015-07-15T22:43:07.365-0700    using default 'dump' directory  
  2015-07-15T22:43:17.545-0700    Failed: error connecting to db server: no reachable servers  

 You must run the mongod/mongos instance prior to running the  mongorestore  command. 

  c:\>  cd   c:\practicalmongodb\bin  
  c:\ practicalmongodb\bin>  mongod --rest  
  2015-07-15T22:43:25.765-0700 I CONTROL   [initandlisten] MongoDB starting : pid=3820 

port=27017 dbpath=c:\data\db\ 64-bit host=ANOC9  
  .....................................................................................  
  2015-07-15T22:43:25.865-0700 I NETWORK   [websvr] admin web console waiting for connections 

on port 28017  
  c:\ practicalmongodb\bin>  mongorestore  
  2015-07-15T22:44:09.786-0700    using default 'dump' directory  
  2015-07-15T22:44:09.792-0700    building a list of dbs and collections to restore from dump dir  
  ...................................  
  2015-07-15T22:44:09.732-0700    restoring indexes for collection mydbproc.users from metadata  
  2015-07-15T22:44:09.864-0700    finished restoring mydbproc.users  
  c:\practicalmongodb\bin>  

 This force appends the data to the back of the existing data. 
 To override the default behavior,  –drop  should be used in the above snippet. 
 The   –drop  command   indicates to the mongorestore utility that it needs to delete all the collections and 

data within the aforementioned database and then restore the dump data back to the database. 
 If  –drop  is not used, the command appends the data to the end of the existing data. 
 Note that starting from version 3.0, the   mongorestore    command can also accept input from standard input.  



CHAPTER 9 ■ ADMINISTERING MONGODB

196

   Restoring a Single Database 
 As you saw in the backup section, the backup strategies can be specified at individual database level. You 
can run  mongodump  to take a backup of a single  database   by using the  –d  option. 

 Similarly, you can specify the  –d  option to  mongorestore  to restore individual databases. 

  c:\ practicalmongodb\bin>  mongorestore  -d mydbpocc:\practicalmongodb\bin\dump\mydbproc  -drop  
  2015-07-14T22:47:01.155-0700    building a list of collections to restore from 
C :\practicalmongodb\bin\dump\mydbproc dir  
  2015-07-14T22:47:01.156-0700 reading metadata file from 
C :\practicalmongodb\bin\dump\mydbproc \users.metadata.json  
  ..........................................................................  
  2015-07-14T22:50:09.732-0700    restoring indexes for collection mydbproc.users from metadata  
  2015-07-14T22:50:09.864-0700    finished restoring mydbproc.users  
  c:\practicalmongodb\bin>   

   Restoring a Single Collection 
 As with mongodump where you can use  –c  option to specify collection-level backups, you can also restore 
individual collections by using the  –c  option with  the   mongorestore utility. 

  c:\ practicalmongodb\bin>  mongorestore -d mydbpoc -c users 
C:\ practicalmongodb\bin\dum\mydb\user.bson -drop  
   
  2015-07-14T22:52:14.732-0700    restoring indexes for collection mydbproc.users from metadata  
  2015-07-14T22:52:14.864-0700    finished restoring mydbproc.users  
  c:\practicalmongodb\bin>   

   Mongorestore – Help   
 The mongorestore also has multiple options, which can be viewed using the  –help  option. Consult the 
following web site also:    http://docs.mongodb.org/manual/core/backups/     .   

     fsync and  Lock   
 Although the above two methods (mongodump and mongorestore) enable you take a database backup 
without any downtime, they don’t provide the ability to get a point-in-time data view. 

 You saw how to copy the data files to take the backups, but this requires shutting down the server before 
copying the data, which is not feasible in a production environment. 

 MongoDB’s  fsync  command lets you copy content of the data directory by running MongoDB without 
changing any data. 

 The  fsync  command forces all pending writes to be flushed to the disk. Optionally, it holds a lock in 
order to prevent further writes until the server is unlocked. This lock only makes the  fsync  command usable 
for backups. 

 To run the command from the shell, connect to the mongo console in a new terminal window. 

  c:\practicalmongodb\bin>  mongo  
  MongoDB shell version: 3.0.4  
  connecting to: test  
  >  

http://docs.mongodb.org/manual/core/backups/


CHAPTER 9 ■ ADMINISTERING MONGODB

197

 Next, switch to admin and issue the  runCommand  to  fsync : 

  >  use admin  
  switched to db admin  
  >  db.runCommand({"fsync":1, "lock":1})  
  {  
          "info" : "now locked against writes, use db.fsyncUnlock() to unlock",  
          "seeAlso" : "    http://dochub.mongodb.org/core/fsynccommand      ",  
          "ok" : 1  
  }  
  >  

 At this point, the server is locked for any writes, ensuring that the data directory is representing a 
consistent, point-in-time snapshot of the data. The data directory contents can be safely copied to be used as 
the database backup.     

 You must unlock the database post the completion of the backup activity. In order to do so, issue the 
following command: 

  >  db.$cmd.sys.unlock.findOne()  
  { "ok" : 1, "info" : "unlock completed" }  
  >  

 The  currentOp  command can be used to check whether the database lock has been released or not. 

  >  db.currentOp()  
  { "inprog" : [ ] }  
   (It may take a moment after the unlock is first requested.)  

 The  fsync  command lets you take a backup without downtime and without sacrificing the backup’s 
point-in-time nature. However, there is a momentary blocking of the writes (also called a momentary write 
downtime). 

 Starting from version 3.0, when using WiredTiger,  fsync  cannot guarantee that the data files will not 
change. So it cannot be used to ensure consistency for creating backups. 

 Next, you’ll learn about slave backup. This is the only backup technique that enables taking a point-in-time 
snapshot without any kind of downtime.  

      Slave Backups   
 Slave backups are the recommended way for data backups in MongoDB. The slave always stores a data copy 
that is nearly in sync with the master, and the slave availability or performance is not much of an issue. You 
can apply any of the techniques discussed earlier on the slave rather than the master: shutting down,  fsync  
with lock, or dump and restore.   

     Importing and Exporting 
 When you are trying to migrate your application from one environment to another, you often need to import 
data or export  data  . 

http://dochub.mongodb.org/core/fsynccommand


CHAPTER 9 ■ ADMINISTERING MONGODB

198

      mongoimport   
 MongoDB provides the mongoimport utility that lets you bulk load data directly into a collection of the 
database. It reads from a file and bulk loads the data into a collection. 

 These methods are not suitable for production environment. 

 The following three file formats are supported by mongoimport:

•    JSON: In this format you have JSON blocks per line, which represent a document.  

•   CSV: This is a comma-separated file.  

•   TSV: TSV files are same as CSV files; the only difference is it uses a tab as the 
separator.    

 Using  –help  with  mongoimport  will provide all the options available with the utility. 
 mongoimport is very simple. Most of the time you will end up using the following options:

•     -h   or   –host  :  This specifies the mongod hostname where the data need to be 
restored. If the option is not specified, the command will connect to the mongod 
running on localhost at port 27017 by default. Optionally, a port number can be 
specified to connect to mongod running on a different port.  

•    -d   or   –db  :  Specifies the database where the data needs to be imported.  

•    -c   or   –collection  :  Specifies the collection where data need to be uploaded.  

•    --type  :  This is the file type (i.e. CSV, TSV or JSON).  

•    --file  :  This is the file path from where the data need to be imported.  

•    --drop  :  If this option is set, it will drop the collection and recreate the collection from 
the imported data. Otherwise, the data is appended at the end of the collection.  

•    --headerLine  :  This is used for CSV or TSV files only, and is used to indicate that the 
first line is a header line.    

 The following command imports the data from a CSV file to the  testimport  collection on the localhost:     

  c:\practicalmongodb\bin>  mongoimport --host localhost --db mydbpoc --collection testimport 
--type csv –file c:\exporteg.csv –-headerline  
  2015-07-14T22:54:08.407-0700    connected to: localhost  
  2015-07-14T22:54:08.483-0700    imported 15 documents  
  c:\ practicalmongodb\bin>   

     mongoexport 
 Similar to the mongoimport utility, MongoDB provides a mongoexport utility that lets you export data 
from the MongoDB database. As the name suggests, this utility exports files from the existing MongoDB 
collections.     



CHAPTER 9 ■ ADMINISTERING MONGODB

199

 Using  –help  shows available options with the mongoexport utility. The following options are the ones 
you will end up using most:

•     -q  :  This is used to specify the query that will return as output the records that need 
to be exported. This is similar to what you specify in the  db.CollectionName.find()  
function when you have to retrieve records matching the selection criteria. If no 
query is specified, all the documents are exported.  

•    -f  :  This is used to specify the fields that you need to export from the selected 
documents.    

 The following command exports the data from  Users  collection to a CSV file: 

  c:\practicalmongodb\bin>  mongoexport -d mydbpoc -c myusers -f _id,Age –type=csv > myusers.csv  
  2015-07-14T22:54:48.604-0700 connected to: 127.0.0.1  
  2015-07-14T22:54:48.604-0700 exported 22 records  
  c:\practicalmongodb\bin>    

     Managing the Server 
 In this section, you will look at the various options that you need to be aware of as an administrator of 
the system. 

     Starting a  Server   
 This section covers how to start the server. Previously, you used the mongo shell to start the server by 
running  mongod.exe . 

 The MongoDB server can be started manually by opening a command prompt (run as administrator) 
in Windows or a terminal window on Linux systems and typing the following command: 

  C:\>cd c:\practicalmongodb\bin  
  c:\ practicalmongodb\bin>mongod  
  mongod --help for help and startup options  
  .........................................  

 This window will display all the connections that are being made to the mongod. It also displays 
information that can be used to monitor the server. 

 If no configuration is specified, MongoDB starts up with the default database path of  C:\data\db  on 
Windows and  /data/db  on Linux and binds to the localhost using default ports 27017 and 27018. 

 Typing  ̂ C  will shut down the server cleanly. 
 MongoDB provides two methods for specifying configuration parameters for starting up the server. 
 The first is to specify using command-line options (refer to Chapter tk). 
 The second method is to load a configuration file. The server configuration can be changed by editing 

the file and then restarting the server.  



CHAPTER 9 ■ ADMINISTERING MONGODB

200

      Stopping   a Server 
 The server can be shut down pressing CTRL+C in the mongod console itself. Otherwise, you can use the 
 shutdownServer  command from the mongo console. 

 Open a terminal window, and connect to the mongo console. 

  C:\>  cd c:\practicalmongodb\bin  
  c:\practicalmongodb\bin>  mongo  
  MongoDB shell version: 3.0.4  
  connecting to: test  
  >  

 Switch to admin db and issue the  shutdownServer  command: 

  >  use admin  
  switched to db admin  
  >  db.shutdownServer()  
  2015-07-14T22:57:20.413-0700 I NETWORK DBClientCursor::init call() failed server should be down...  
  2015-07-14T22:57:20.418-0700 I NETWORK trying reconnect to 127.0.0.1:27017  
  2015-07-14T22:57:21.413-0700 I NETWORK 127.0.0.1:27017 failed couldn't connect to server 127.0.0.1:27017  
  >  

 If you check the mongod console where you started the server in the previous step, you will see that the 
server has been shut down successfully. 

  .......................  
  2015-07-14T22:57:30.259-0700 I COMMAND  [conn1] terminating, shutdown command received  
  2015-07-14T22:57:30.260-0700 I CONTROL  [conn1] now exiting  
  .................................................  
  2015-07-14T22:57:30.380-0700 I STORAGE  [conn1] shutdown: removing fs lock...  
  2015-07-14T22:57:30.380-0700 I CONTROL  [conn1] dbexit:  rc: 0   

     Viewing Log Files 
 By default the entire log output of MongoDB is written to  stdout  but this can be changed by specifying the 
logpath option in the configuration when starting the server to redirect the output to a file. 

 The log file contents can be used to identify problems such as exceptions, which may indicate some 
data problem or connection issues.  

     Server  Status   
   db.ServerStatus()    is a simple method provided by MongoDB for checking the server status, such as 
number of connections, uptime, and so on. The output of the server status command depends upon the 
operating system platform, MongoDB version, storage engine used, and type of configuration 
(like standalone, replica set, and sharded cluster). 

 Starting from version 3.0, the following sections are removed from the output: workingSet, indexCounters, and 
recordStats. 



CHAPTER 9 ■ ADMINISTERING MONGODB

201

 In order to check the status of a server using the MMAPv1 storage engine, connect to the mongo console, 
switch to admin db, and issue the   db.serverStatus()  command  . 

  c:\practicalmongodb\bin>  mongo  
  MongoDB shell version: 3.0.4  
  connecting to: test  
  >  use admin  
  switched to db admin  
  >  db.serverStatus()  
  host" : "ANOC9",  
   "version" : "3.0.4",  
   "process" : "mongod",  
   "pid" : NumberLong(1748),  
   "uptime" : 14,  
   "uptimeMillis" : NumberLong(14395),  
  "uptimeEstimate" : 13,  
   "localTime" : ISODate("2015-07-14T22:58:44.532Z"),  
  "asserts" : {  
  "regular" : 0,  
          "warning" : 0,  
          "msg" : 0,  
          "user" : 1,  
          "rollovers" : 0  
  },  
  .........................................................  

 The above  serverStatus  output will also have a “backgroundflushing” section, which displays reports 
corresponding to the process used by MongoDB to flush data to disk using MMAPv1 as the storage engine. 

 The "opcounters" and "asserts" sections provide useful information that can be analyzed to classify any 
problem. 

 The “opcounters” section shows the number of operations of each type. In order to find out if there’s any 
problem, you should have a baseline of these operations. If the counters start deviating from the baseline, 
this indicates a problem and will require taking action to bring it back to the normal state. 

 The “asserts” section depicts the number of client and server warnings or exceptions that have 
occurred. If you find a rise in such exceptions and warnings, you need to take a good look at the logfiles to 
identify if a problem is developing. A rise in the number of asserts may also indicate a problem with the data, 
and in such scenarios MongoDB validate functions should be used to check that the data is undamaged. 

 Next, let’s start the server using the WiredTiger storage engine and see the serverStatus output. 

  c:\practicalmongodb\bin>  mongod –storageEngine wiredTiger  
  2015-07-14T22:51:05.965-0700 I CONTROL  Hotfix KB2731284 or later update is installed, no 
need to zero-out data files  
  2015-07-29T22:51:05.965-0700 I STORAGE  [initandlisten] wiredtiger_open config: 
create,cache_size=1G,session_max=20000,eviction=(threads_max=4),statistics=(fast),log=(enabl
ed=true,archive=true,path=journal,compressor=snappy),file_manager=(close_idle_time=100000),
checkpoint=(wait=60,log_size=2GB),statistics_log=(wait=0)  
  ..................................................  



CHAPTER 9 ■ ADMINISTERING MONGODB

202

 In order to check the server  status  , connect to the mongo console, switch to admin db, and issue the 
  db.serverStatus()  command  . 

  c:\practicalmongodb\bin>  mongo  
  MongoDB shell version: 3.0.4  
  connecting to: test  
  >  use admin  
  switched to db admin  
  >  db.serverStatus()  
   
  "wiredTiger" : {  
  "uri" : "statistics:",  
  "LSM" : {  
  "...........................................................,  
  "tree maintenance operations scheduled":0,  
  ............................................................,  
  },  
   "async" : {  
           "number of allocation state races":0,  
           "number of operation slots viewed for allocation":0,  
           "current work queue length" : 0,  
           "number of flush calls" : 0,  
           "number of times operation allocation failed":0,  
           "maximum work queue length" : 0,  
  ............................................................,  
   },  
   "block-manager" : {  
           "mapped bytes read" : 0,  
           "bytes read" : 966656,  
           "bytes written" : 253952,  
             ...................................,  
           "blocks written" : 45  
   },  
  ............................................................,  

 As you can see, the server status output has a new section known as wiredTiger statistics when started 
with storage engine WiredTiger.  

     Identifying and Repairing MongoDB 
 In this section, you will look at how you can repair a  corrupt database  . 

 If you are getting errors like

•    Database server refuses to start, stating data files are corrupt  

•   Asserts are seen in the log files or  db.serverStatus()  command  

•   Strange or unexpected queries results    

 this means the database is corrupt and a repair must be run in order to recover the database. 
 The first thing you need to do before you can start the repair is to take the server offline if it’s not 

already. You can use either option mentioned above. In this example, type  ̂ C  in the mongod console. This 
will shut down the server. 



CHAPTER 9 ■ ADMINISTERING MONGODB

203

 Next, start the mongod using the  –repair  option, as shown: 

  c:\practicalmongodb\bin>  mongod --repair  
  2015-07-14T22:58:31.171-0700 I CONTROL   Hotfix KB2731284 or later update is installed, 

no need to zero-out data files  
  2015-07-14T22:58:31.173-0700 I CONTROL   [initandlisten] MongoDB starting : pid=3996 

port=27017 dbpath=c:\data\db\ 64-bit host=ANOC9  
  2015-07-14T22:58:31.174-0700 I CONTROL  [initandlisten] db version v3.0.4  
  .....................................  
  2015-07-14T22:58:31.447-0700 I STORAGE  [initandlisten] shutdown: removing fs lock...  
  2015-07-14T22:58:31.449-0700 I CONTROL  [initandlisten] dbexit:  rc: 0  
  c:\ practicalmongodb\bin>  

 This will repair mongod. If you look at the output, you’ll find various discrepancies that the utility is 
repairing. Once the repair process is over, it exits. 

 After completion of the repair process, the server can be started as normal and then the latest database 
backups can be used to restore missing data. 

 At times, you may notice that the drive is running out of disk space when a large database is under 
repair. This is due to the fact that the MongoDB needs to create a temporary copy of the files on the same 
drive as the data files. To overcome this issue, while repairing a database you should use the  –repairpath  
parameter to specify the drive where the temporary files can be created during the repair process.  

     Identifying and Repairing Collection Level Data 
 Sometimes you might want to validate that the  collection   holds valid data and had valid indexes. For such 
cases, MongoDB provides a  validate()  method that validates the content of the specified collection. 

 The following example validates the data of the  Users  collection: 

  c:\practicalmongodb\bin>  mongo  
  MongoDB shell version: 3.0.4  
  connecting to: test  
  >  use mydbpoc  
  switched to db mydbpoc  
  >  db.myusers.validate()  
  {  
          "ns" : "mydbpoc.myusers",  
          "firstExtent" : "1:4322000 ns:mydbpoc.myusers",  
          "lastExtent" : "1:4322000 ns:mydbpoc.myusers",  
          "...............  
          "valid" : true,  
          "errors" : [ ],  
          "warning" : "Some checks omitted for speed. use {full:true} option to do  
   more thorough scan.",  
          "ok" : 1  
  }  

 Both the data files and the associated indexes are checked by default by the   validate()  option  . 
The collection statistics are provided to help in identifying if there’s any problem with the data files or 
the indexes. 



CHAPTER 9 ■ ADMINISTERING MONGODB

204

 If running  validate()  indicates that the indexes are damaged, in that case  reIndex  can be used to 
re-index the indexes of the collection. This drops and rebuilds all the indexes of the collection. 

 The following command reindexes the  Users  collection’s indexes: 

  >  use mydbpoc  
  switched to db mydbpoc  
  >  db.myusers.reIndex()  
  {  
          "nIndexesWas" : 1,  
          "msg" : "indexes dropped for collection",  
          "nIndexes" : 1,  
          "indexes" : [  
                  {  
                          "key" : {  
                                  "_id" : 1  
                          },  
                          "ns" : "mydbpoc.myusers",  
                          "name" : "_id_"  
                  }  
          ],  
          "ok" : 1  
  }  
  >  

 If the collection’s data files are corrupt, then running the  –repair  option is the best way to repair all of 
the data files.   

     Monitoring MongoDB 
 As a MongoDB server administrator, it’s important to monitor the system’s performance and health. In this 
section, you will learn ways of  monitoring   the system. 

     mongostat 
 mongostat comes as part of the MongoDB distribution. This tool provides simple stats on the server; 
although it’s not extensive, it provides a good overview. The following shows the statistics of the localhost. 
Open a terminal window and execute the following: 

  c:\>  cd c:\practicalmongodb\bin  
  c:\practicalmongodb\bin>  mongostat  

 The first six columns show the rate at which various operations are handled by the mongod server. 
Apart from these columns, the following column is also worth mentioning and can be of use when 
 diagnosing problems  :

   Conn: This is an indicator of the number of connections to the mongod instance. 
A high value here can indicate a possibility that the connections are not 
getting released or closed from the application, which means that although the 
application is issuing an open connection, it’s not closing the connection after 
completion of the operation.    



CHAPTER 9 ■ ADMINISTERING MONGODB

205

 Starting from version 3.0, mongostat can also return its response in json format using option  –json . 

  c:\>  cd c:\practicalmongodb\bin  
  c:\practicalmongodb\bin>  mongostat –json  
   
  {"ANOC9":{"ar|aw":"0|0","command":"1|0","conn":"1","delete":"*0","faults":"1","flushes":"0",
"getmore":"0","host":"ANOC9","insert":"*0","locked":"" ,"mapped":"560.0M","netIn":"79b",
"netOut":"10k","non mapped":"","qr|qw":"0|0","query":"*0","res":"153.0M","time":"05:16:17",
"update":"*0","vsize":"1.2G"}}   

      mongod Web Interface      
 Whenever a mongod is started up, it creates a web port by default, which is 1000 higher than the port 
number mongod uses to listen for a connection. By default the HTTP port is 28017. 

 This mongod web interface is accessed via your web browser, and it displays most of the statistical 
information. If the mongod is running on localhost and is listening for the connections on port 27017, then 
the HTTP status page can be accessed using the following URL:    http://localhost:28017     . The page looks 
like Figure  9-2 .   

  Figure 9-2.     Web interface         

     Third-Party Plug-Ins 
 In addition to this tool, there are various  third-party   adapters available for MongoDB which let you use 
common open source or commercial monitoring systems such as cacti, Ganglia, etc. On its website, 10gen 
maintains a page that shares the latest information about available MongoDB monitoring interfaces. 

 To get an up-to-date list of third-party plug-ins, go to    www.mongodb.org/display/DOCS/Monitoring+and+
Diagnostics     .  

 

http://localhost:28017/
http://www.mongodb.org/display/DOCS/Monitoring+and+Diagnostics
http://www.mongodb.org/display/DOCS/Monitoring+and+Diagnostics


CHAPTER 9 ■ ADMINISTERING MONGODB

206

      MongoDB Cloud Manager   
 In addition to the tools and techniques discussed above for monitoring and backup purposes, there is the 
MongoDB Cloud Manager (formerly known as MMS – MongoDB Monitoring Services). It’s developed by 
the team who developed MongoDB and is free to use (30-day trial license). In contrast to the techniques 
discussed above, MongoDB Cloud Manager provides user interface as well as logs and performance details 
in the form of graphs and charts. 

 MongoDB Cloud Manager charts are interactive, enabling the user to set a custom date range, as 
depicted in Figure  9-3 .  

  Figure 9-4.     Email and text alerts            

  Figure 9-3.    Setting a  custom date range         

 Another neat feature of the  Cloud   Manager is the ability to use email and text alerts in case of different 
events. This is depicted in Figure  9-4 .  

 

 



CHAPTER 9 ■ ADMINISTERING MONGODB

207

 Not only does Cloud Manager provides graphs and alerts, it also lets you view the slower queries 
ordered by response time. You can easily see how your queries are performing all at one place. Figure  9-5  
shows the graph that charts query performance.  

  Figure 9-5.     Query response time         

 Cloud Manager lets you do the  following  :

•    Automate your MongoDB deployment (the configuration of MongoDB nodes, 
clusters, and upgrading of the existing deployment)  

•   Protect your data with continuous backup  

•   Provide any topology with AWS integration  

•   Monitor the performance in your dashboard  

•   Perform operational tasks such as adding capacity    

 For  AWS   users, it offers direct integration so the MongoDB can be launched on AWS without ever 
leaving Cloud Manager. You saw how to provision with AWS in Chapter tk. 

 Cloud Manager also helps you discover inefficiencies in your system and make corrections for smooth 
operation. 

 It collects and reports metrics using the agent you install. Cloud Manager provides a quick glance of the 
MongoDB system health and helps you identify the root causes of performance issues. 

 Next, you will look at the key metrics that should be used for any performance investigation. Along the 
way, you will also look at what the combination of the metric indicates. 

 



CHAPTER 9 ■ ADMINISTERING MONGODB

208

    Metrics   
 You will be primarily focusing on the following key  metrics  ; these metrics play a key role when investigating 
a performance problem issue. They provide an immediate glance of what’s happening inside the MongoDB 
system and which of the system resources (i.e. CPU, RAM, or disk) are the bottlenecks.

•    Page Fault  

•   Opcounters  

•   Lock percent  

•   Queues  

•   CPU time (IOWait and Users)    

 To view the below mentioned chart, you can click the Deployment link under Deployment Section. Select the 
MongoDB instance that has been configured to be monitored by Cloud Manager. Next, select required graphs/
charts from the Manage Charts section. 

  Page fault   shows the average number of page faults per second happening in the system. Figure  9-6  
shows the page faults graph.  

  Figure 9-6.     Page faults         

 OpCounters shows average number of  operations   per second being performed on the system. 
 See   Figure  9-7 .  

 



CHAPTER 9 ■ ADMINISTERING MONGODB

209

 In the Page Fault to Opcounters ratio, the page faults depend on the operations being performed on the 
system and what’s currently in memory. Hence a ratio of page faults per second to that of opcounters per 
second can provide a fair picture of the disk I/O requirement. See Figure  9-8 .  

  Figure 9-8.    Page fault to Opcounters  ratio         

  Figure 9-7.     OpCounters         

 If the ratio  is   

•    < 1, this classifies as low disk I/O.  

•   Near 1, this classifies as regular disk I/O.  

•   > 1, this classifies as high disk I/O.    

 The  Queues graph   displays the operations count waiting for a lock to be released at any given time. 
See Figure  9-9 .  

 

 



CHAPTER 9 ■ ADMINISTERING MONGODB

210

 The CPU Time (IOWaits and User) graph shows how the CPU cores are spending their cycles. 
See Figure  9-10 .      

  Figure 9-10.     CPU Time         

  Figure 9-9.     Queues         

 

 



CHAPTER 9 ■ ADMINISTERING MONGODB

211

 IOWait indicates the time the CPU spends waiting for the other resources, such as disks or the network. 
See Figure  9-11 .  

  Figure 9-12.     User time         

  Figure 9-11.     IOWait         

 User time indicates the time spent performing computations such as documents updating, updating 
and rebalancing indexes, selecting or ordering query results, or running aggregation framework commands, 
   Map/Reduce, or server-side JavaScripts. See Figure  9-12 .      

 

 



CHAPTER 9 ■ ADMINISTERING MONGODB

212

 To view the CPU Time graphs you need to install munin. 

 These key metrics and their combinations should be used to investigate any  performance   problems.    

     Summary 
 In this chapter you looked at how various utilities that are packaged as part of the MongoDB distribution can 
be used to manage and maintain the system. 

 You learned about the main operations that as an administrator you must be aware of for a detailed 
understanding of the utilities. Please read through the references. In the next chapter, you will examine 
MongoDB’s use cases and you will also look at the cases where MongoDB is not a good choice.     



213© Shakuntala Gupta Edward, Navin Sabharwal 2015 
S.G. Edward and N. Sabharwal, Practical MongoDB, DOI 10.1007/978-1-4842-0647-8_10

    CHAPTER 10   

 MongoDB Use Cases           

    “MongoDB: Is it useful for me or not?”    

 In this chapter, we will provide the much needed connection between the features of MongoDB and the 
business problems that it is suited to solve. We will be using two use cases for sharing the techniques and 
patterns used for addressing such problems. 

     Use Case 1 - Performance  Monitoring   
 In this section, you will explore how to use MongoDB to store and retrieve performance data. You’ll focus 
on the data model that you will be using for storing the data. Retrieving will consist of simply reading from 
the respective collection. You will also be looking at how you can apply sharding and replication for better 
performance and data safety. 

 We assume a monitoring tool that is collecting server-defined parameter data in  CSV format  . In general, the 
monitoring tools either store the data as text files in a designated folder on the server or they redirect their 
output to any reporting database server. In this  use case  , there’s a scheduler that will be reading this shared 
folder path and importing the data within MongoDB database. 

      Schema Design   
 The first step in designing a solution is to decide on the schema. The schema depends on the format of the 
data that the monitoring tool is capturing. 

 A line from the log files may resemble Table  10-1 .  

   Table 10-1.    Log File   

 Node UUID  IP Address  Node Name  MIB  Time Stamp (ms)  Metric Ve 

 3beb1a8b-040d-4b46-
932a-2d31bd353186 

 10.161.1.73  corp_xyz_sardar  IFU  1369221223384  0.2 



CHAPTER 10 ■ MONGODB USE CASES

214

 The following is the simplest way to store each line as text: 

  {  
  _id: ObjectId(...),  
  line: '10.161.1.73 - corp_xyz_sardar [15/July/2015:13:55:36 -0700] "Interface Util" ...  
  }  

 Although this captures the data, it makes no sense to the user, so if you want to find out events are from 
a particular server, you need to use regular expressions, which will lead to full scan of the collection, which is 
very inefficient. 

 Instead, you can extract the data from the log file and store it as meaningful fields in MongoDB 
documents. 

 Note that when designing the structure, it’s very important to use the correct data type. This not only 
saves space but also has a significant impact on the performance. 

 For example, if you store the date and time field of the log as a string, it’ll not only use more bytes 
but it’ll also be difficult to fire date range queries. Instead of using strings, if you store the date as a UTC 
timestamp, it will take 8 bytes as opposed to 28 bytes for a string, so it’ll be easier to execute date range 
queries. As you can see, using proper types for the data increases querying flexibility. 

 You will be using the following document for storing your monitoring data: 

  {  
  _id: ObjectID(...),  
  Host:,  
  Time:ISODate(‘’),  
  ParameterName:’aa’,  
  Value:10.23  
  }  

 ■   Note    The actual log data might have extra fields; if you capture it all, it’ll lead to a large document, which 
is an inefficient use of storage and memory. When designing the schema, you should omit the details that are 
not required. It’s very important to identify which fields you must capture in order to meet your requirements.  

 In your scenario, the most important information that meets your reporting application  requirements   is 
the following:

    1.    Host  

    2.    Timestamp  

    3.    Parameter  

    4.    Value      

     Operations 
 Having designed the document structure, next you will look at the various  operations   that you need to 
perform on the system. 



CHAPTER 10 ■ MONGODB USE CASES

215

   Inserting Data 
 The method used for  inserting data   depends on your application write concerns.

    1.    If you are looking for fast insertion speed and can compromise on the data safety, 
then the following command can be used: 

  >  db.perfpoc.insert({Host:"Host1", GeneratedOn: new ISODate("2015-07-15T12:02Z"),
ParameterName:"CPU",Value:13.13},w=0)  
  >  

 Although this command is the fastest option available, since it doesn’t wait for 
any acknowledgment of whether the operation was successful or not, you risk 
losing data.  

    2.    If you want just an acknowledgment that at least the data is getting saved, you 
can issue the following command: 

  >  db.perfpoc.insert({Host:"Host1", GeneratedOn: new ISODate("2015-07-15T12:07Z"),
ParameterName:"CPU",Value:13.23},w=1)  
  >  

 Although this command acknowledges that the data is saved, it will not provide 
safety against any data loss because it is not journaled.  

    3.    If your primary focus is to trade off increased insertion speed for data safety 
guarantees, you can issue the following command: 

  >  db.perfpoc.insert({Host:"Host1", GeneratedOn: new ISODate("2015-07-15T12:09Z"),
ParameterName:"CPU",Value:30.01},j=true,w=2)  
  >      

 In this code, you are not only ensuring that the data is getting replicated, you are also enabling 
journaling. In addition to the replication acknowledgment, it also waits for a successful journal commit. 

 ■   Note    Although this is the safest option, it has a severe impact on the insert performance, so it is the 
slowest operation.   

   Bulk Insert 
 Inserting  events   in bulk is always beneficial when using stringent write concerns, as in your case, because 
this enables MongoDB to distribute the incurred performance penalty across a group of insert. 

 If possible, bulk inserts should be used for inserting the monitoring data because the data will be 
huge and will be generated in seconds. Grouping them together as a group and inserting will have better 
impact, because in the same wait time, multiple events will be getting saved. So for this use case, you will be 
grouping multiple events using a bulk insert.  



CHAPTER 10 ■ MONGODB USE CASES

216

    Querying Performance Data 
 You have seen how to insert the event data. The value of maintaining data comes when you are able to 
respond to specific queries by querying the data. 

 For example, you may want to view all the performance data associated with a specific field, say  Host . 
 You will look at few  query patterns   for fetching the data and then you will look at how to optimize these 

operations. 

   Query1:  Fetching the Performance Data of a Particular Host 

  >   db.perfpoc.find({Host:"Host1"})  
  { "_id" : ObjectId("553dc64009cb76075f6711f3"), "Host" : "Host1", "GeneratedOn": 
ISODate("2015-07-18T12:02:00Z"), "ParameterName" : "CPU", "Value" : 13.13 }  
  { "_id" : ObjectId("553dc6cb4fd5989a8aa91b2d"), "Host" : "Host1", "GeneratedOn": 
ISODate("2015-07-18T12:07:00Z"), "ParameterName" : "CPU", "Value" : 13.23 }  
  { "_id" : ObjectId("553dc7504fd5989a8aa91b2e"), "Host" : "Host1", "GeneratedOn": 
ISODate("2015-07-18T12:09:00Z"), "ParameterName" : "CPU", "Value" : 30.01 }  
  >   

 This can be used if the requirement is to analyze the performance of a host. 
 Creating an index on  Host  will optimize the performance of the above queries: 

  >  db.perfpoc.ensureIndex({Host:1})  
  >  

   Query2:  Fetching Data Within a Date Range from July 10, 2015 to July 20, 2015 

  >  db.perfpoc.find({GeneratedOn:{"$gte": ISODate("2015-07-10"), "$lte": ISODate("2015-07-20")}})  
  { "_id" : ObjectId("5302fec509904770f56bd7ab"), "Host" : "Host1", "GeneratedOn"  
  ...............  
  >   

 This is important if you want to consider and analyze the data collected for a specific date range. In this 
case, an index on “time” will have a positive impact on the performance. 

  >  db.perfpoc.ensureIndex({GeneratedOn:1})  
  >  

   Query3:  Fetching Data Within a Date Range from July 10, 2015 to July 20, 2015 for a Specific Host 

  >  db.perfpoc.find({GeneratedOn:{"$gte": ISODate("2015-07-10"), "$lte": ISODate("2015-07-20")},
Host: "Host1"})  
  { "_id" : ObjectId("5302fec509904770f56bd7ab"), "Host" : "Host1", "GeneratedOn"  
  .................  
  >   

 This is useful if you want to look at the performance data of a host for a specific time period. 
 In such queries where multiple fields are involved, the indexes that are used have a significant impact 

on the performance. For example, for the above query, creating a compound index will be beneficial. 



CHAPTER 10 ■ MONGODB USE CASES

217

 Also note that the field’s order within the compound index has an impact. Let’s understand the 
difference with an example. Let’s create a compound index as follows: 

  >  db.perfpoc.ensureIndex({"GeneratedOn":1,"Host":1})  
  >  

 Next, do an explain of this: 

  >  db.perfpoc.find({GeneratedOn:{"$gte": ISODate("2015-07-10"), "$lte": 
ISODate("2015-07-20")}, Host: "Host1"}).explain(“allPlansExecution”)  
  .......................................................................  
  "allPlansExecution" : [  
           {  
                   "nReturned" : 4,  
                   "executionTimeMillisEstimate" : 0,  
                   "totalKeysExamined" : 4,  
                   "totalDocsExamined" : 4  
                   "indexName" : "GeneratedOn_1_Ho  
  .......................................................................  
                                   "isMultiKey" : false,  
                                   "direction" : "forward",  
         }]  
  .......................................................................  

 Drop the compound index, like so: 

  >  db.perfpoc.dropIndexes()  
  {  
          "nIndexesWas" : 2,  
          "msg" : "non-_id indexes dropped for collection",  
          "ok" : 1  
  }  

 Alternatively, create the compound index with the fields reversed: 

  >  db.perfpoc.ensureIndex({"Host":1,"GeneratedOn":1})  
  >  

 Do an explain: 

  >  db.perfpoc.find({GeneratedOn:{"$gte": ISODate("2015-07-10"), "$lte": 
ISODate("2015-07-20")}, Host: "Host1"}).explain("allPlansExecution")  
  {  
          .............................................  
          "executionStats" : {  
          "executionSuccess" : true,  
          "nReturned" : 4,  
          "executionTimeMillis" : 0,  
          "totalKeysExamined" : 4,  
          "totalDocsExamined" : 4,  
  ......................................................  
  "allPlansExecution" : [ ]  
  ....................................................  
  }  
  >  



CHAPTER 10 ■ MONGODB USE CASES

218

 You can see the difference in the explain command’s output. 
 Using  explain()    , you can figure out the impact of indexes and accordingly decide on the indexes based 

on your application usage. 
 It’s also recommended to have a single compound indexes covering maximum queries rather than 

having multiple single key indexes. 
 Based on you application usage and the results of the explain statistics, you will use only one compound 

index on  {'GeneratedOn':1, 'Host': 1}  to cover all the above mentioned queries. 

   Query4:  Fetching Count of Performance Data by Host and Day     

 Listing the data is good, but most often queries on performance data are performed to find out 
the count, average, sum, or other aggregate operation during analysis. Here you will see how to use the 
 aggregate   command   to select, process, and aggregate the results to fulfil the need of the powerful ad-hoc 
queries. 

 In order to explain this further, let’s write a query that will count the data per month: 

  >  db.perfpoc.aggregate(  
  ... [  
  ... {$project: {month_joined: {$month: "$GeneratedOn"}}},  
  ... {$group: {_id: {month_joined: "$month_joined"}, number: {$sum:1}}},  
  ... {$sort: {"_id.month_joined":1}}  
  ... ]  
  ... )  
  { "_id" : { "month_joined" : 7 }, "number" : 4 }  
  >  

 In order to optimize the performance, you need to ensure that the filter field has an index. You have 
already created an index that covers the same, so for this scenario you need not create any additional index.    

       Sharding 
 The performance monitoring data set is humongous, so sooner or later it will exceed the capacity of a single 
server. As a result, you should consider using a  shard cluster     . 

 In this section, you will look at which shard key suits your use case of performance data properly so that 
the load is distributed across the cluster and no one server is overloaded. 

 The shard key controls how data is distributed and the resulting system’s capacity for queries and 
writes. Ideally, the shard key should have the following two characteristics:

•    Insertions are balanced across the shard cluster.  

•   Most queries can be routed to a subset of shards to be satisfied.    

 Let’s see which fields can be used for sharding.

    1.     Time field : In choosing this option, although the data will be distributed evenly 
among the shards, neither the inserts nor the reads will be balanced. 

 As in the case of performance data, the time field is in an upward direction, so all 
the inserts will end up going to a single shard and the write throughput will end 
up being same as in a standalone instance. 

 Most reads will also end up on the same shard, assuming you are interested in 
viewing the most recent data frequently.  



CHAPTER 10 ■ MONGODB USE CASES

219

    2.     Hashes : You can also consider using a random value to cater to the above 
situations; a hash of the  _id  field can be considered the shard key. 

 Although this will cater to the write situation of the above (that is, the writes 
will be distributed), it will affect querying. In this case, the queries must be 
broadcasted to all the shards and will not be routable.  

    3.    Use the key, which is evenly distributed, such as  Host . 

 This has following advantages: if the query selects the host field, the reads will be 
selective and local to a single shard, and the writes will be balanced. 

 However, the biggest potential drawback is that all data collected for a single host 
must go to the same chunk since all the documents in it have the same shard key. 
This will not be a problem if the data is getting collected across all the hosts, but 
if the monitoring collects a disproportionate amount of data for one host, you 
can end up with a large chunk that will be completely unsplittable, causing an 
unbalanced load on one shard.  

    4.    Combining the best of options 2 and 3, you can have a compound shard key, 
such as  {host:1, ssk: 1}  where  host  is the host field of the document and  ssk  is _id 
field’s hash value. 

 In this case, the data is distributed largely by the host field making queries, 
accessing the host field local to either one shard or group of shards. At the same 
time, using ssk ensures that data is distributed evenly across the cluster. 

 In most of the cases, such keys not only ensure ideal distribution of writes across 
the cluster but also ensure that queries access only the number of shards that are 
specific to them.     

 Nevertheless, the best way is to analyze the application’s actual querying and insertions, and then select 
an appropriate shard key.    

     Managing the  Data   
 Since the performance data is humongous and it continues to grow, you can define a data retention policy 
which states that you will be maintaining the data for a specified period (say 6 months). 

 So how do you remove the old data? You can use the following patterns:

•     Use a capped collection:  Although capped collections can be used to store the 
performance data, it is not possible to shard capped collections.  

•    Use a TTL collection:  This pattern creates a collection similar to capped collection, 
but it can be sharded.   

   In this case, a time-to-live index is defined on the collection, which enables 
MongoDB to periodically  remove()  old documents from the collection. However, 
this does not possess the performance advantage of the capped collection; in 
addition, the  remove()  may lead to data fragmentation.   

    1.     Multiple collections to store the data:  The third pattern is to have a day-wise 
collection created, which contains documents that store that day’s performance 
data. This way you will end up having multiple collections within a database. 
Although this will complicate the querying (in order to fetch two days’ worth of 
data, you might need to read from two collections), dropping a collection is fast, 
and the space can be reused effectively without any data fragmentation. In your 
use case, you are using this pattern for managing the data.       



CHAPTER 10 ■ MONGODB USE CASES

220

     Use Case 2 –  Social Networking   
 In this section, you will explore how to use MongoDB to store and retrieve data of a social networking site. 

 This use case is basically a friendly social networking site that allows users to share their statuses and photos. 
The  solution   provided for this use case assumes the following:

   1.    A user can choose whether or not to follow another user.  

   2.     A user can decide on the circle of users with whom he wants to share updates. 
The circle options are Friends, Friends of Friends, and Public.  

   3.    The updates allowed are status updates and photos.  

   4.    A user profile displays interests, gender, age, and relationship status.     

       Schema Design   
 The solution you are providing is aimed at minimizing the number of documents that must be loaded in 
order to display any given page. The application in question has two main pages: a first page that displays 
the user’s wall (which is intended to display posts created by or directed to a particular user), and a social 
news page where all the notifications and activities of all the people who are following the user or whom the 
user is following are displayed. 

 In addition to these two pages, there is a user profile page that displays the user’s profile-related details, 
with information on his friend group (those who are following him or whom he is following). In order to 
cater to this requirement, the schema for this use case consists of the following collections. 

 The first collection is  user.profile , which stores the user’s profile-related data: 

  {  
  _id: "User Defined unique identifier",  
  UserName: "user name"  
  ProfilDetaile:  
               {Age:.., Place:.., Interests: ...etc},  
  FollowerDetails: {  
                  "User_ID":{name:..., circles: [circle1, circle2]}, ....  
                 },  
   CirclesUserList: {  
                  "Circle1":  
                          {"User_Id":{name: "username"}, ......  
                          }, .......  
                 }        ,  
        ListBlockedUserIDs: ["user1",...]  
  }  

•     In this case, you are manually specifying the  _id  field.  

•    Follower  lists the users who are following this user.  

•    CirclesUserList  consists of the circles this user is following.  

•    Blocked  consist of users whom the user has blocked from viewing his/her updates.    



CHAPTER 10 ■ MONGODB USE CASES

221

 The second collection is the  user.posts  collection, with the following schema: 

  {  
  _id: ObjectId(...),  
  by: {id: "user id", name: "user name"},  
  VisibleTocircles: [],  
  PostType: "post type",  
  ts: ISODate(),  
  Postdetail: {text: "",  
  Comments_Doc:  
   [  
  {Commentedby: {id: "user_id", name: "user name"}, ts: ISODate(), 
Commenttext: "comment text"}, .....  
  ]  
  }  

•     This collection is basically for displaying all of the user’s activities.  by  provides 
information on the user who posted the post.  Circles  controls the visibility of 
the post to other users.  Type  is used to identify the content of the post.  ts  is the 
datetime when post was created.  detail  contains the post text and it has comments 
embedded within it.  

•   A  comment  document consists of the following details:  by  provides details of the user 
id and name who commented on the post,  ts  is the time of comment, and  text  is the 
actual comment posted by the user.    

 The third collection is  user.wall , which is used for rendering the user’s wall page in a fraction of a 
second. This collection fetches data from the second collection and stores it in a summarized format for fast 
rendering of the wall page. 

 The collection has the following format: 

  {  
  _id: ObjectId(...),  
  User_id: "user id"  
  PostMonth: "201507",  
  PostDetails: [  
  {  
  _id: ObjectId(..), ts: ISODate(), by: {_id: .., Name:.. }, circles: [..], type: ....  
  , detail: {text: "..."}, comments_shown: 3  
  ,comments: [  
  {by: {_id:., Name:....}, ts: ISODate(), text:""}, ......]  
  },....]}  

•     As you can see, you are maintaining this document per user per month. The number 
of comments that will be visible the first time is limited (for this example, it’s 3); 
if more comments need to be displayed for that particular post, the second collection 
needs to be queried.  

•   In other words, it’s kind of a summarized view for quick loading of the user’s 
wall page.    



CHAPTER 10 ■ MONGODB USE CASES

222

 The forth collection is  social.posts  ,  which is used for quick rendering of the social news screen. 
This is the screen where all posts get displayed. 

 Like the third collection, the fourth collection is also a dependent collection .  It includes much of the 
same information as the  user.wall  information, so this document has been abbreviated for clarity: 

  {  
  _id: ObjectId(...),  
  user_id: "user id",  
  postmonth: '2015_07',  
  postlists: [ ... ]  
  }    

      Operations   
 These schemas are optimized for read performance. 

    Viewing  Posts   
 Since the  social.posts  and  user.wall  collections are optimized for rendering the news feed or wall posts 
in a fraction of a second, the query is fairly straightforward. 

 Both of the collections have similar schema, so the fetch operation can be supported by the same code. 
Below is the pseudo code for the same. The function takes as parameters the following:

•    The collection that needs to be queried.  

•   The user whose data needs to be viewed.  

•   The month is an optional parameter; if specified, it should list all the posts of the 
date less than or equal to the month specified.    

  Function Fetch_Post_Details  
  (Parameters: CollectionName, View_User_ID, Month)  
  SET QueryDocument to {"User_id": View_User_ID}  
  IF Month IS NOT NULL  
  APPEND Month Filter ["Month":{"$lte":Month}] to QueryDocument  
  Set O_Cursor = (resultset of the collection after applying the QueryDocument filter)  
  Set Cur = (sort O_Cursor by "month" in reverse order)  
  while records are present in Cur  
                  Print record  
  End while  
  End Function  

 The above function retrieves all the posts on the given user’s wall or news feed in 
reverse-chronological order. 

 When rendering posts, there are certain checks that you need to apply. The following are a few 
of them. 



CHAPTER 10 ■ MONGODB USE CASES

223

 First, when the user is viewing his or her page, while rendering posts on the wall you need to check 
whether the same can be displayed on their own wall. A user wall contains the posts that he has posted or 
the posts of the users they are following. The following function takes two parameters: the user to whom the 
wall belongs and the post that is being rendered: 

  function Check_VisibleOnOwnWall  
  (Parameters: user, post)  
  While Loop_User IN user.Circles List  
                  If post by = Loop_User  
  return true  
                  else  
  return false  
  end while  
  end function  

 The above loop goes through the circles specified in the  user.profile  collection, and if the mentioned 
post is posted by a user on the list, it returns true. 

 In addition, you also need to take care of the users on the blocked list of the user: 

  function ReturnBlockedOrNot(user, post)  
          if post by user id not in user blocked list  
                  return true  
          else  
                  return false  
  endfunction  

 You also need to take care of the permission checks when the user is viewing another user’s wall: 

  Function visibleposts(parameter user, post)  
  if post circles is public  
                  return true  
  If post circles is public to all followed users  
          Return true  
  set listofcircles = followers circle whose user_id is the post's by id.  
   
  if listofcircles in post's circles  
          return true  
  return false  
   
  end function  

 This function first checks whether the post’s circle is public. If it’s public, the post will be displayed to 
all users. 

 If the post’s circle is not set to public, it will be displayed to the user if he/she is following the user. 
If neither is true, it goes to the circle of all the users who are following the logged-in user. If the list of circle is 
in posts circle list, this implies that the user is in a circle receiving the post, so the post will be visible. 
If neither condition is met, the post will not be visible to the user. 

 In order to have better performance, you need an index on  user_id  and  month  in both the 
 social.posts  and  user.wall  collections.   



CHAPTER 10 ■ MONGODB USE CASES

224

    Creating Comments 
 To create a  comment   by a user on a given post containing the given text, you need to execute code similar to 
the following: 

  Function postcomment(  
  Parameters: commentedby, commentedonpostid, commenttext)  
  Set commentedon to current datetime  
  Set month to month of commentedon  
  Set comment document as {"by": {id: commentedby[id], "Name": commentedby["name"]}, 
"ts": commentedon, "text": commenttext}  
  Update user.posts collection. Push comment document.  
  Update user.walls collection. Push the comment document.  
  Increment the comments_shown in user.walls collection by 1.  
  Update social.posts collection.  Push the comment document.  
  Increment the comments_shown counter in social.posts collection by 1.  
  End function  

 Since you are displaying a maximum of three comments in both dependent collections (the  user.wall  
and  social.posts  collections), you need to run the following update statement periodically: 

  Function MaintainComments  
  SET MaximumComments = 3  
  Loop through social.posts  
          If posts.comments_shown > MaximumComments  
                  Pop the comment which was inserted first  
                  Decrement comments_shown by 1  
          End if  
  Loop through user.wall  
          If posts.comments_shown > MaximumComments  
                  Pop the comment which was inserted first  
                  Decrement comments_shown by 1  
          End if  
   
  End loop  
  End Function  

 To quickly execute these updates, you need to create indexes on  posts.id  and  posts.comments_shown . 

   Creating New Post 

 The basic  sequence   of operations in this code is as follows:

    1.    The post is first saved into the “system of record,” the  user.posts  collection.  

    2.    Next, the  user.wall  collection is updated with the post.  

    3.    Finally, the  social.posts  collection of everyone who is circled in the post is 
updated with the post.     



CHAPTER 10 ■ MONGODB USE CASES

225

  Function createnewpost  
  (parameter createdby, posttype, postdetail, circles)  
  Set ts = current timestamp.  
  Set month = month of ts  
  Set post_document = {"ts": ts, "by":{id:createdby[id], name: createdby[name]}, 
"circles":circles, "type":posttype, "details":postdetails}  
  Insert post_document into users.post collection  
  Append post_document into user.walls collection  
  Set userlist = all users who’s circled in the post based on the posts circle and the posted user id  
  While users in userlist  
  Append post_document to users social.posts collection  
  End while  
  End function      

     Sharding 
 Scaling can be achieved by  sharding   the four collections mentioned above. Since  user.profile ,  user.wall , 
and  social.posts  contain user-specific documents,  user_id  is the perfect shard key for these collections. 
 _id  is the best shard key for the  users.post  collection.   

     Summary 
 In this chapter, you used two use cases to look at how MongoDB can be used to solve certain problems. 
In the next chapter, we will list MongoDB’s limitations and the use cases where it’s not a good fit.     



227© Shakuntala Gupta Edward, Navin Sabharwal 2015 
S.G. Edward and N. Sabharwal, Practical MongoDB, DOI 10.1007/978-1-4842-0647-8_11

    CHAPTER 11   

 MongoDB Limitations           

    “When starting with a new database, you should also be aware of its limitations to better 
use the database.”    

 In this chapter, we will list MongoDB’s  limitations   and the use cases where it’s not a good fit. 

     MongoDB Space Is Too Large (Applicable for MMAPv1) 
 Let’s start with the issue of disk space. MongoDB (with storage engine  MMAPv1     ) space is too large; in other 
words, the data directory files are larger than the database’s actual data. 

 This is because of preallocated data files. This is by design in order to prevent file system fragmentation. 
 The files in the data directory are named as <dbname>.0, <dbname>.1 and so on. The size of the first file 

as allocated by the mongod is 64MB; all subsequent file sizes increase by factor of 2, so the second file will 
128MB, the third file will be 256MB, and so on until it reaches 2GB, post which all files will be 2GB in size. 
Though the space is allocated to the data files while creation, there might be files that are 90% empty. This 
unused allocated space is mostly small for larger databases.

•    This option can be disabled by using the  -- noprealloc  option. However, it’s not 
recommended to use this on a production environment, and it’s supposed to be used 
only for testing and with small data sets where drop databases are called frequently.  

•    Oplog : If mongod is a Replica set member, then there will be a file named  oplog.rs  
in the data directory. This file is present in the local database and is a preallocated 
capped collection. On a 64-bit installation, the allocation for this file defaults to 
approximately 5% of disk space.  

•    Journal : The journal files are also contained in the data directory that stores the 
writes on the disk before the same can be applied to the databases by MongoDB.  

•   MongoDB pre-allocates  3GB  of data for journaling, which is over and above the 
actual database size(s), making it not fit for small installations. The workaround 
available for this is to use  –smallflags  in your command line flags or  /etc/mongod.
conf  files until you are running in an environment where you have the required disk 
space. But this feature makes it not fit for small installations.  

•    Empty Records : When the documents or collections are deleted, the space is never 
returned back to the operating system; instead, MongoDB maintains a list of these 
empty records, which can be reused.    

 To reclaim this deleted space, either the  compact  or  repairDatabase  option can 
be used but be aware that both options require additional disk space to run. 



CHAPTER 11 ■ MONGODB LIMITATIONS

228

 ■   Note   No such limitation exists with the WiredTiger storage engine. Instead, storage size reduces by 50% 
due to compression of data files. Also, once the collection is dropped, disk space is automatically reclaimed, 
which is unlike the MMAPv1 storage engine mentioned above.   

      Memory Issues   (Applicable for Storage Engine MMAPv1) 
 In MongoDB, memory is managed by memory mapping the entire data set. It allows the OS to control the 
memory mapping and allocate the maximum amount of RAM. The result is that the performance is 
non-optimal and the memory usage cannot be effectively reasoned about.

    1.    Indexes are memory-heavy; in other words, indexes take up lot of RAM. Since 
these are B-tree indexes, defining many indexes can lead to faster consumption 
of system resources.  

    2.    A consequence of this is that memory is allocated automatically when required. 
In a shared environment, it’s trickier to run the database. In general, as with all 
database servers, it’s best to run MongoDB on a dedicated server.      

      32-bit vs. 64-bit      
 MongoDB comes with two versions, 32-bit and 64-bit. 

 Since MongoDB uses memory mapped files, the 32-bit versions are limited to storing only about 2GB of 
data. If you need more data to be stored, you should use the 64-bit build. 

 Starting from version 3.0, commercial support for 32-bit versions is no longer provided by MongoDB. 
Also, the 32-bit version of MongoDB does not support the WiredTiger storage engine.  

     BSON Documents 
 This section covers the limitations of  BSON documents  .

•     Size limits : As with other databases, there’s a limit to what can be stored in the 
document. The current versions support documents up to 16MB in size. This 
maximum size ensures that a document cannot not use excessive RAM or excessive 
bandwidth while in transmission.  

•    Nested depth limit : In MongoDB, no more than 100 levels of nesting are supported 
for BSON documents.  

•    Field names : If you store 1,000 documents with the key “col1”, the key is stored 
that many times in the data set. Although arbitrary documents are supported in 
MongoDB, in practice most of the field names are the same. Keeping short field 
names is considered a good practice for optimizing the usage of space.     



CHAPTER 11 ■ MONGODB LIMITATIONS

229

     Namespaces Limits 
 Be aware of the following limitations from the  namespace      perspective.

•     Length of a namespace : The length of each namespace including collection and 
database name must be smaller than 123 bytes.  

•    Namespace file size  (applicable for the MMAPv1 storage engine): A namespace file 
size cannot be greater than 2047MB. The default size is 16MB;  however     , this can be 
configured using the  nssize  option. 

•   Number of namespaces (applicable for the MMAPv1 storage engine): Number of 
namespace = (namespace file size/628). A namespace file of 16MB will support 
approximately 24,000 namespaces.    

 ■   Note   No such limitations exist for the WiredTiger storage engine.   

     Indexes Limit 
 This section covers the limitations of  indexing      in MongoDB.

•     Index size : Indexed items cannot be greater than 1024 bytes.  

•    Number of indexes per collection : At the most 64 indexes are allowed per 
collection.  

•    Index name length : By default the index name is made up of the field names and the 
index directions. The index name including the namespace (which is the database 
and the collection name) cannot be greater than 128 bytes. 

 If the default index name is becoming too long, you can explicitly specify an 
index name to the  ensureIndex()  helper.  

•    Unique indexes in sharded collections : Only when the full shard key is contained 
as a prefix of the unique index is it supported across shards; otherwise, the unique 
index is not supported across shards. In this case, the uniqueness is enforced across 
the full key and not a single field.  

•    Number of indexed fields in a compound index : This can’t be more than 31 fields.     

     Capped Collections Limit - Maximum Number of Documents 
in a  Capped Collection      
 If the max parameter is used for specifying the maximum number of documents in a capped collection, it 
can’t be more than 232 documents. However, if no such parameter is used, there’s no limit on the number of 
documents.  



CHAPTER 11 ■ MONGODB LIMITATIONS

230

     Sharding Limitations 
  Sharding      is the mechanism of splitting data across shards. The following sections talk about the limitations 
that you need to be aware of when dealing with sharding. 

     Shard Early to Avoid Any  Issues   
 Using the shard key, the data is split into chunks, which are then automatically distributed amongst the 
shards. However, if sharding is implemented late, it can cause slowdowns of the servers because the splitting 
and migration of chunks takes time and resources. 

 A simple solution is to monitor your MongoDB instance capacity using tools such as MongoDB Cloud 
Manager (flush time, lock percentages, queue lengths, and faults are good measures) and shard before 
reaching 80% of the estimated capacity.  

     Shard Key Can’t Be  Updated   
 The shard key can’t be updated once the document is inserted in the collection because MongoDB uses 
shard keys to determine to which shard the document should be routed. If you want to change the shard 
key of a document, the suggested solution is to remove the document and reinsert the document when he 
change has been made.  

     Shard  Collection Limit   
 The collection should be sharded before it reaches 256GB.  

     Select the  Correct Shard Key   
 It’s very important to choose a correct shard key because once the key is chosen it’s not easy to correct it. 

 ■   Note   What’s considered a wrong shard key depends completely on the application. Say the application is 
a news feed; choosing a timestamp field as a shard key would be a wrong shard key because this will end up 
inserting, querying, and migrating data from one shard only, and not from the complete cluster. If you need to 
correct the shard key, the process that is commonly used is to dump and restore the collection.    

     Security  Limitations      
 Security is an important matter when it comes to databases. Let’s look at MongoDB limitations from security 
perspective. 

     No Authentication by Default 
 Although  authentication   is not enabled by default, it’s fully supported and can be enabled easily.  



CHAPTER 11 ■ MONGODB LIMITATIONS

231

     Traffic to and from MongoDB Isn’t  Encrypted   
 By default the connections to and from MongoDB are not encrypted. When running on a public network, 
consider encrypting the communication; otherwise it can pose a threat to your data. Communications on 
a public network can be encrypted using the SSL-supported build of MongoDB, which is available in the 
64-bit version only.   

      Write and Read Limitations   
 The following sections cover important limitations. 

      Case-Sensitive Queries   
 By default MongoDB is case sensitive. 

 For example, the following two commands will return different results:  db.books.find({name: 
'PracticalMongoDB'})  and  db.books.find({name: 'practicalmongodb'}) . You should ensure that you 
know in which case the data is stored. Although regex searches like  db.books.find({name: 
/practicalmongodb/i})  can be used, they aren’t ideal because they are relatively slow.  

     Type- Sensitive Fields   
 Since there’s no enforced schema for documents in MongoDB, it can’t know you are making a mistake. 
You must make sure that the correct type is used for the data.  

     No  JOIN   
 Joins are not supported in MongoDB. If you need to retrieve data from more than one collection, you must 
do more than one query. However, you can redesign the schema to keep the related data together so that the 
information can be retrieved in a single query.  

      Transactions   
 MongoDB only supports single document atomicity. Since a write operation can modify multiple 
documents, this operation is not atomic. However, you can isolate write operations that affect multiple 
documents using the isolation operator. 

    Replica Set Limitations   - Number of Replica Set Members 
 A replica set is used to ensure data redundancy in MongoDB. One member acts as a primary member and 
the rest act as secondary members. Due to the way voting works with MongoDB, you must use an odd 
number of members. 



CHAPTER 11 ■ MONGODB LIMITATIONS

232

 This is because a node needs majority of votes to become primary. If you use an even number of nodes, 
you will end up in a tie with no primary being chosen because no one member will have the majority of vote. 
In this scenario, the replica set will become read only. 

 You can use arbiters to break such ties. They can help support failover and save on cost. To learn more 
about replica set functioning, please refer to Chapter   7    .    

     MongoDB Not Applicable  Range   
 MongoDB is not suitable for the following:

•    Highly transactional systems such as accounting or banking systems. Traditional 
RDBMS are still more suitable for such applications, which require a large number of 
atomic complex matters.  

•   Traditional business intelligence applications, where an issue-specific BI database 
would generate highly optimized queries. For such applications, the data warehouse 
may be a more appropriate choice.  

•   Applications requiring complex SQL queries.  

•   MongoDB does not support transactional operations, so a banking system certainly 
cannot use it.     

     Summary 
 In this chapter, you learned about MongoDB’s limitations and the use cases where it’s not a good fit. 

 In the next chapter we will cover the How To’s of MongoDB.     

http://dx.doi.org/10.1007/978-1-4842-0647-8_7


233© Shakuntala Gupta Edward, Navin Sabharwal 2015 
S.G. Edward and N. Sabharwal, Practical MongoDB, DOI 10.1007/978-1-4842-0647-8_12

    CHAPTER 12   

 MongoDB Best Practices           

    “Getting started with MongoDB is easy, but once you start developing applications 
you will come across scenarios where you may need best practices to achieve particular 
use cases.”    

 In the previous chapters, you became acquainted with MongoDB. The intent of this chapter is outline 
well-known issues using other user’s experiences but also to provide various How To’s that can help your 
journey with MongoDB be a smooth ride. 

 As you know, MongoDB works with documents, uses RAM for storing data to enhance performance, 
and uses replication and sharding to further provide data safety and scalability. 

 This chapter will cover tips that you should be aware of, from the deployment strategy to enhancing 
querying to data safety and consistency to monitoring. 

     Deployment 
 While deciding on the  deployment strategy  , keep the following tips in mind so that the hardware sizing is 
done appropriately. These tips will also help you decide whether to use  sharding   and  replication  .

•     Data set size : The most important thing is to determine the current and anticipated 
data set size. This not only lets you choose resources for individual physical nodes, 
but it also helps when planning your sharding plans (if any).  

•    Data importance : The second most important thing is to determine data 
importance, to determine how important the data is and how tolerant you can be to 
any data loss or data lagging (especially in case of replication)   .         

•    Memory sizing : The next step is to identify  memory   needs and accordingly take care 
of the RAM. 

 Like other data-oriented applications, MongoDB also works best when the entire 
data set can reside in memory, thereby avoiding any kind of disk I/O. 

 Page faults indicate that you may exceed the available deployment’s memory and 
should consider increasing it. Page fault is a metric that can be measured using 
monitoring tools like MongoDB Cloud Manager. 

 If possible, you should always select a platform that has memory greater than 
your working set size. 

 If the size exceeds the single node’s memory, you should consider using sharding 
so that the amount of available memory can be increased. This maximizes the 
overall deployment’s performance.  



CHAPTER 12 ■ MONGODB BEST PRACTICES

234

•     Disk Type   : If speed is not a primary concern or if the data set is larger than what any 
in-memory strategy can support, it’s very important to select a proper disk type. IOPS 
(input/output operations per second) is the key for selecting a disk type; the higher 
the IOPS, the better the MongoDB performance. If possible, local disks should be 
used because network storage can cause poor performance and high latency. It is 
also advised to use RAID 10 when creating disk arrays (wherever possible).  

•     CPU   : If you anticipate using map reducing, then the clock speed and the available 
processors become important considerations. Clock speed can also have a major 
impact on the overall performance when you are running a mongod with the 
majority of data in memory. In circumstances where you want to maximize the 
operations per second, you must consider including a CPU with a high clock/bus 
speed in your deployment strategy.  

•     Replication    is used if high availability is one of the requirements. In any MongoDB 
deployment it should be standard to set up a replica set with at least three nodes. 

 A 2x1 deployment is the most common configuration for replication with three 
nodes, where there are two nodes in one data center and a backup node in a 
secondary data center, as depicted in Figure  12-1 .     

  Figure 12-1.     MongoDB 2*1   deployment       

 



CHAPTER 12 ■ MONGODB BEST PRACTICES

235

     Hardware Suggestions from the MongoDB Site 
 The following are only intended to provide high-level guidance for a MongoDB deployment. The actual 
hardware configuration depends on your data, availability requirement, queries, performance criteria, and 
the selected  hardware components  ’ capabilities.

•     Memory : Since memory is used extensively by MongoDB for a better performance, 
the more memory, the better the performance.  

•    Storage : MongoDB can use SSDs (solid state  drives  ) or local attached storage. Since 
MongoDB’s disk access patterns don’t have  sequential   properties, SSDs usage can 
enable customers to experience substantial performance gains. Another benefit 
of using a SSD is if the working set no longer fits in memory, they provide a gentle 
degradation of performance. 

 Most MongoDB deployments should use RAID-10. 

 When using the WiredTiger storage engine, the use of a XFS file system is highly 
recommended due to performance issues. 

 Also, do not use  huge pages  because MongoDB performs better with default 
virtual memory pages.  

•    CPU : Since MongoDB with a MMAPv1 storage engine rarely encounters workloads 
needing a large number of cores, it’s preferable to use servers with a faster clock 
speed than the ones with multiple cores but slower clock speed. However, the 
WiredTiger storage engine is CPU bound, so using a server with multiple cores will 
offer a significant performance improvement.     

     Few Points to be Noted 
 To summarize this section, when choosing hardware for MongoDB, consider the following important  points  :

    1.    A faster CPU clock speed and more RAM are important for productivity.  

    2.    Since MongoDB doesn’t perform high amounts of computation, increasing the 
number of cores helps but does not provide a high level of marginal return when 
using the MMAPv1 storage engine.  

    3.    Using SATA SSD and PCI (Peripheral Component Interconnect) provides good 
price/performance and good results.  

    4.    It’s more effective to spend on commodity SATA spinning drives.  

    5.    MongoDB on  NUMA Hardware  : This point is only applicable for mongod 
running in Linux and not for instances that run on Windows or other Unix-like 
systems. NUMA (non-uniform memory access) and MongoDB don’t work well 
together, so when running MongoDB on NUMA hardware, you need to disable 
NUMA for MongoDB and run with an interleave memory policy because NUMA 
causes a number of operational problems for MongoDB, including performance 
slowness for periods of time or high processor usage.       



CHAPTER 12 ■ MONGODB BEST PRACTICES

236

     Coding 
 Once  the   hardware is acquired, consider the following tips when coding with the database:

•    The first  point   is to think of the data model to be used for the given application 
requirement and to decide on embedding or referencing or a mix of both. For more 
on this, please look at Chapter tk. There’s a trade-off between fast performance and 
guaranteed immediate consistency, so decide based on your application.  

•   Avoid application patterns that lead to unbounded growth of document size. In 
MongoDB, the maximum size for a BSON document is 16MB. Application patterns 
that make the documents grow in an unbounded way should be avoided. 

 For instance, an application should not update documents a way that leads 
them to grow significantly. When the document size exceeds the allocated size, 
MongoDB will relocate the document. This process is not only time consuming, 
but is also resource intensive and can unnecessarily slow down other database 
operations. In addition, it can lead to inefficient use of storage. 

 Note that the above mentioned limitation applies to the MMAPv1 storage engine. 
When using WiredTiger, the document is rewritten with every update.    

 For example, let’s consider a  blogging application  . In this application, it’s difficult to estimate how many 
responses a blog post will receive. The application is set to only display a subset of comments to the user, 
say the most recent comment or the first 10 comments. In this case, rather than creating an embedded 
model where the blog post and the user responses are maintained as a single document, you should create a 
referencing model where each response or group of responses are maintained as separate documents and then 
add a reference to the blog post in the documents. In this way, the unbound growth of the documents can be 
controlled, which will happen if you follow the first model of embedding the data.

•    You can also design documents for the future. Although MongoDB provides the 
option of appending new fields within the documents as and when required, it has 
a drawback. When new fields are introduced, there might be a scenario where the 
document might not fit in the current space available, leading to MongoDB finding 
a new space for the document and moving it there, which might take time. So it is 
always efficient to create all the fields at the start if you are aware of the structure, 
irrespective of whether you have data available at that time or not. As highlighted 
above, the space will be allotted to the document and whenever value is there only 
needs to be updated. In doing so, MongoDB will not have to look for space; it merely 
updates the values entered, which is much faster.      

•   You can also create documents with the anticipated size wherever applicable. This 
point is also to ensure that enough space is allotted to the document and any further 
growth doesn’t lead to hopping here and there for space. 



CHAPTER 12 ■ MONGODB BEST PRACTICES

237

 This can be achieved by using a garbage field, which contains a string of the 
anticipated size while initially inserting the document and then immediately 
unsetting that field: 

  > mydbcol.insert({"_id" : ObjectID(..),......, "tempField" : 
stringOfAnticipatedSize})  
  > mydbcol.update({"_id" : ...}, {"$unset" : {"tempField" : 1}})   

•   Subdocuments should always be used in a scenario when you know and will always 
know the names of the fields that you are accessing. Otherwise, use arrays.  

•   If you want to query for information that must be computed and is not explicitly 
present in the document, the best choice is to make the information explicit in the 
document. As MongoDB is designed to just store and retrieve the data, it does no 
computation. Any trivial computation is pushed to the client, leading to performance 
issues.  

•   Also, avoid  $Where  as much as possible because it’s an extremely time- and resource-
intensive operation.  

•   Use the correct data types while designing documents. For example, a number 
should be stored as a number data type only and not as a string data type. Using 
strings takes more space to store data and has an impact on the operations that can 
be performed on the data.  

•   Another thing to note is that strings in MongoDB are case sensitive. Hence a search 
for “practicalMongoDB” will not find “Practicalmongodb”. 

 Hence when doing a string search, you can do one of the following:

•    Store data in a normalized case format.  

•   Use a regular expression with  /I  while searching.  

•   Use  $toUpper  or  $   toLower    in the aggregation framework.     

•   Using your own unique key as an  _id  will save a bit of space and will be useful if you 
are planning to index on the key. However, you need to keep the following things in 
mind when deciding to use your own key as  _id :

•    You must ensure the uniqueness of the key.  

•   Also, consider the insertion order for your key because the insertion order will 
identify how much RAM will be used to maintain this index.     

•   Retrieve fields as needed. When hundreds or thousands of requests are fulfilled per 
second, it’s certainly advantageous to fetch only fields that are needed.  

•   Use GridFS only for storing data that is larger than what can fit in a single document 
or is too big to load at once on the client, such as videos. Anything that will be 
streamed to a client is a good candidate for GridFS.  



CHAPTER 12 ■ MONGODB BEST PRACTICES

238

•   Use TTL to delete documents. If documents in a collection need to be deleted after 
a pre-defined time period, the TTL feature can be used to automatically delete the 
document after it reaches the predefined age.    

 Say you have a collection that maintains documents containing details of the user and the system interaction. 
The documents have a date field called  lastActivity , which tracks the user and the system interaction. Let’s say 
you have a requirement that says that you need to maintain the user session only for an hour. In this scenario, 
you can set the TTL to 3600 seconds for the field  lastActivity . A background thread will run automatically 
and will check and delete documents that are idle for more than 3600 seconds.

•    Use capped collections if you require high throughput based on insertion orders. In 
some scenarios, based on data size you need to maintain a rolling window of data 
in the system. For example, a capped collection can be used to store a high-volume 
system’s log information to  quickly   retrieve the most recent log entries.  

•   Note that MongoDB’s flexible schema can lead to inconsistent data if care is not 
taken. For example, the ability to duplicate data (embedded documents) if not 
updated properly can lead to data inconsistency, and so on. So it’s very important to 
check for data consistency.  

•   Although MongoDB handles seamless failover, per good coding practice, the 
application should be well written to handle any exception and to gracefully handle 
such a situation.     

     Application Response Time Optimization 
 Once you start developing the application, one of the most important requirements is to have an acceptable 
response time. In other words, the application should respond instantly. You can use the following tips for 
 optimization   purposes:

•    Avoid disk access and page faults as much as possible. Proactively figure out the data 
set size the application will be expected to deal with and add more memory in order 
to avoid page faults and disk read. Also, program your application in such a way that 
it mostly access data available in memory so page faults will happen infrequently.  

•   Create an index on the queried fields. If you create an index on the filter that you 
executing, the way the index is stored in memory will lead to less consumption of 
memory and hence will have a positive effect on the queries.      

•   Create covering indexes if the application involves queries that return a few fields as 
compared to the complete document structure.  

•   Having one compound index that can be used by maximum queries will also save 
on memory because instead of loading multiple indexes in memory, one index will 
suffice.  

•   Use trailing wildcards in regular expressions to reap the benefits from the associated 
index.  



CHAPTER 12 ■ MONGODB BEST PRACTICES

239

•   Try to create indexes that reduce the possible documents to select from radically. 
An index on field “Gender” will not be as beneficial as an index on field 
“Phone Number.”  

•   Indexing is not always good. You need to maintain an optimal balances of indexes 
used. Although you should create indexes for supporting your queries, you should 
also remember to delete indexes that are no longer used because every index has a 
cost associated for insert/update operations. If an index is not used but still it exists, 
it can have an adverse effect on the overall database capacity. This is especially 
important for insert-heavy workloads.  

•   Documents should be designed in a hierarchical fashion where related things are 
grouped together and are depicted as hierarchy wherever applicable. This will enable 
MongoDB to find the desired information without scanning the entire document.  

•   When applying an AND operator, you should always query from small resultset to a 
larger resultset because this will lead to querying a small number of documents. If 
you are aware of the most restrictive condition, that condition should go first.  

•   When querying with OR, you should move from a larger resultset to a smaller 
resultset because this will limit the search space for subsequent queries.  

•   The working set should fit in memory.  

•   Use the WiredTiger storage engine for write-heavy and I/O intensive applications 
due to its support of compression at the block as well as the index level.         

     Data Safety 
 You learned what you need to keep in mind when deciding on your deployment; you also learned a few 
important tips for good performance. Now let’s look at some tips for  data safety and consistency  :

•    Replication and journaling are two approaches that are provided for data safety. 
Generally it’s recommended to run the production setup using replication rather 
than running it using a single server. And you should have at least one of the servers 
journaled. When it is not possible to have replication enabled and you are running 
on a single server, journaling provides data safety. Chapter tk explains how writes 
work when journaling is enabled.  

•   A repair should be the last resort for recovering data in the case of a server crash. 
Although the database might not be corrupted after running a repair, it will not 
contain all of the data.  

•   In a replicated environment, set  W  to the majority of safe writes. This is to ensure that 
the write is replicated to the majority of the members of the replica set. Although this 
will slow down the write operations, the write will be safe.  

•   Always specify  wtimeout  along with  w  when issuing the command in order to avoid 
the infinite waiting time.  

•   MongoDB should always be run in a trusted environment with rules to prevent 
access from all unknown systems, machines, or networks.     



CHAPTER 12 ■ MONGODB BEST PRACTICES

240

      Administration   
 The following are some administration tips:

•    Take instant-in-time backups of durable servers. To take a backup of a database with 
journaling enabled, you can take a file system snapshot or do a normal fsync+lock 
and then dump. Note that you can’t just copy all of the files without fsync and locking 
because copying is not an instantaneous operation.      

•   Repair should be used to compact databases because it basically does a mongodump 
and then a mongorestore, making a clean copy of your data and, in the process, 
removing any empty “holes” in your data files.  

•   Database Profiler is provided by MongoDB. It logs fine-grained information on all 
the database operations. It can be enabled to either log information of all events or 
only events with durations exceeding a configurable threshold, which defaults to 
100ms.    

 ■   Note   The profiler data is stored in a capped collection. As compared to parsing the log files, it may be 
easier to query this collection.  

•     An explain plan can be used to see how a query is being resolved. This involves 
information such as which index is used, how many documents are returned, 
whether the index is covering the query, how many index entries were scanned, and 
the time the query took to return results in milliseconds. When a query is resolved in 
less than 1ms, the explain plan shows 0. When you make a call to the explain plan, it 
discards the old plan and initiates the process of testing available indexes to ensure 
that the best possible plan is used.     

      Replication Lag   
 Replication lag is the primary administrative concern behind monitoring replica sets. Replication lag for 
a given secondary is the difference in time when an operation is written in primary and the time when the 
same was replicated on the secondary. Often, the replication lag remedies itself and is transient. However, 
if it remains high and continues to rise, there might be a problem with the system. You might end up 
either shutting down the system until the problem is resolved, or it might require manual intervention for 
reconciling the mismatch, or you might even end up running the system with outdated data. 

 The following command can be used to determine the current replication lag of the replica set: 

  testset:PRIMARY>  rs.printSlaveReplicationInfo()  

 Further, you can use the  rs.printReplicationInfo()  command to fill in the missing piece: 

  testset:PRIMARY>  rs.printReplicationInfo()  

 MongoDB Cloud Manager can also be used to view recent and historical replication lag information. 
The repl lag graph is available from the Status tab of each SECONDARY node. 



CHAPTER 12 ■ MONGODB BEST PRACTICES

241

 Here are some tips to help reduce this time:    

•    In scenarios with a heavy write load, you should have a secondary as powerful as the 
primary node so that it can keep up with the primary and the writes can be applied 
on the secondary at the same rate. Also, you should have enough network bandwidth 
so that the ops can be retrieved from the primary at the same rate at which they are 
getting created.  

•   Adjust the application write concern.  

•   If the secondary is used for index builds, this can be planned to be done when there 
are low write activities on the primary.  

•   If the secondary is used for taking backups, consider taking backups without 
blocking.  

•   Check for replication errors. Run  rs.status()  and check the  errmsg  field. 
Additionally, the secondary’s log files can be checked for any existing error messages.     

     Sharding 
 When the data no longer fits on one node,  sharding   can be used to ensure that the data is distributed evenly 
across the cluster and the operations are not affected due to resource constraints.

•    Select a good shard key.  

•   You must use three config servers in production deployments to provide 
redundancy.  

•   Shard collections before they reach 256GB.     

     Monitoring 
 MongoDB system should be proactively monitored to detect unusual behaviors so that necessary actions 
can be taken to resolve issues. Several tools are available for monitoring the MongoDB deployment. 

 A free hosted  monitoring service   named MongoDB Cloud Manager is provided by MongoDB 
developers. MongoDB Cloud Manager offers a dashboard view of the entire cluster metrics. Alternatively, 
you can use nagios, SNMP, or munin to build your own tool. 

 MongoDB also provides several tools such as mongostat and mongotop to gain insights into the 
performance. When using monitoring services, the following should be watched closely:

•     Op counters : Includes inserts, delete, reads, updates and cursor usage.  

•    Resident memory : An eye should always be kept on the allocated memory. This 
counter value should always be lower than the physical memory. If you run out of 
memory, you will experience slowness in the performance due to page faults and 
index misses.  

•    Working set size : The active working set should fit into memory for a good 
performance, so a close eye needs to be kept on the working set. You can either 
optimize the queries so that the working set fits inside the memory or increase the 
memory when the working set is expected to increase.  



CHAPTER 12 ■ MONGODB BEST PRACTICES

242

•    Queues : Prior to the release of MongoDB 3.0, a reader-writer lock was used for 
simultaneous reads and exclusive access was used for writes. In such scenario, you 
might end up with queues behind a single writer, which may contain read/write 
queries. Queue metrics need to be monitored along with the lock percentage. If the 
queues and the lock percentage are trending upwards, that implies that you have 
contention within the database. Changing the operation to batch mode or changing 
the data model can have a significant, positive impact on the concurrency. Starting 
from Version 3.0, collection level locking (in the MMAPv1 storage engine) and 
document level locking (in the WiredTiger storage engine) have been introduced. 
This leads to an improvement in concurrency wherein no write lock with exclusive 
access will be required at the database level. So starting from this version you just 
need to measure the Queue metric.  

•   Whenever there’s a hiccup in the application, the CRUD behavior, indexing patterns, 
and indexes can help you better understand the application’s flow.  

•   It’s recommended to run the entire performance test against a full-size database, 
such as the production database copy, because performance characteristic are often 
highlighted when dealing with the actual data. This also lets you to avoid unpleasant 
surprises that might crop up when dealing with the actual performance database.         

     Summary 
 In this chapter we provided various How To’s to help you on journey with MongoDB.     



243© Shakuntala Gupta Edward, Navin Sabharwal 2015 
S.G. Edward and N. Sabharwal, Practical MongoDB, DOI 10.1007/978-1-4842-0647-8

   A 
  ACID transactions 

 ACID  vs.  BASE , 17  
 BASE acronym , 16  
 cached data/even unlocked records , 15  
 CAP theorem , 15–16  
 e-commerce shopping site , 15  
 requirements , 15   

  Administration tools 
 mongo shell , 191  
 MongoDB , 240  
 overview , 191  
 third party tools , 191   

  aggregate() operation , 83, 218   
  Application write concerns 

 command , 115  
 deployment , 114  
 steps , 115  
 w option , 114  
 writeConcern , 114    

   B 
  BASE 

 NoSQL databases , 16  
 notation confi gurations , 16  
 NRW , 16  
 RDBMS ACID transactions , 16  
 read and write operations , 17   

  Big data 
 accessing data , 10  
 customizations , 9  
 data model , 6  
 decision making , 9  
 defi nition , 2–3  
 IDC’s analysis , 3  
 information and knowledge , 9  
 innovation , 9  
 legacy systems , 10  

 policies and procedures , 10  
 sectors , 4  
 segmentation , 9  
 size of , 3  
 sources , 4  
 statistics , 1  
 technology and techniques , 10–11  
 Twitter , 1  
 type , 4  
 use of , 9  
 visibility , 9  
 3Vs    (see  Volume, variety and velocity (3 Vs) )   

  Binary JSON (BSON) , 31   
  32-bit  vs.  64-bit , 228   
  Blogging application , 84, 236   
  Brewer’stheorem   . See  CAP theorem  
  BTree 

 bucket data structure , 168–169  
 key nodes , 170  
 MongoDB 90/10 split , 168  
 standard implementation , 166  
 structure , 166    

   C 
  Capped collection , 32, 229   
  CAP theorem , 15–16   
  Case-sensitive queries , 231   
  Chunks , 128–129   
  Chunk splitting , 130   
  Cloud Manager 

 account profi le , 48  
 automation agent , 50  
 deployment , 49  
 group creation , 49  
 installation instructions , 51  
 MMS , 47  
 monitoring solution , 47  
 review and deploy button , 52  
 standalone instance , 50   

            Index 



■ INDEX

244

  Clustering 
 add server , 120  
 administration and usage , 115  
 arbiter member , 121  
 confi guration data structure , 118, 134  
 data directory , 116–117  
 election , 122  
 host command , 116  
 myState replica set , 122  
 mongo interface , 118  
 output , 119  
 remove , 119  
 replica set confi guration , 116  
 –replSet option , 117  
 --rest option , 118  
 rs.status() , 121  
 scenarios , 122  
 sharding cluster confi guration , 134  
 set up and running , 116  
 status , 122  
 web interface , 123   

  Coding , 236–238   
  Collection level backup , 194   
  Collection namespace 

 data fi les (summary) , 165  
 data record structure , 164  
 deleted list , 165  
 details , 163  
 extent , 164  
 metadata , 163  
 record data structure , 165   

  Conditional operators 
 aggregate() , 83  
 database , 79  
 $gt and $gte operators , 80  
 $in and $nin operator , 80–81  
 $lt and $lte operators , 79  
 MapReduce framework , 82–83  
 regular expressions , 81   

  Confi gServers , 130   
  Core processes 

 components , 95  
 mongo , 96  
 mongod , 95  
 mongos , 96   

  CRUD operations , 53    

   D 
  Data fi le 

 journal fi les , 174–178  
 MMAPv1 , 161  
 mydbpoc data fi les , 162  
 namespaces (MMAPv1)    

(see  Namespace (.ns File) )  

 storage.mmapv1.smallFiles option , 162  
 WiredTiger storage engine , 170–171   

  Data fi le backup , 192   
  Data lifecycle management , 91   
  Data model application 

 blog application , 84  
 decisions , 91  
 growth document , 92  
 MongoDB document , 86–88, 90–92  
 multiple collections  vs.  storing data , 92  
 operational factors , 91  
 references , 88–91  
 relational database , 84   

  Data modeling , 91   
  Data model of MongoDB 

 Binary JSON (BSON) , 31  
 capped collection , 32  
 database model , 29–30  
 documents , 31  
 dynamic schema , 30  
 identifi er (_id) , 32  
 JSON , 31  
 polymorphic schemas , 32   

  Data replication process 
 keys , 103  
 member starts up , 105  
 normal operation , 104  
 operation log (oplog) , 103  
 requirement , 104  
 slave chaining , 106  
 sync and replication , 104  
 sync from , 105  
 write operation , 106  
 writes via chaining slaves , 106   

  Data safety and consistency , 239   
  Data storage engine 

 API , 160  
 compression algorithms , 160  
 memory-mapped fi les , 159  
 virtual memory , 159  
 WiredTiger storage data , 160–161   

  db.serverStatus() command , 201–202   
  Deployment strategy 

 CPU , 234  
 data importance , 233  
 disk type , 234  
 hardware components , 235  
 memory , 233  
 MongoDB 2*1 , 234  
 NUMA hardware , 235  
 points , 235  
 sharding and 

replication , 233–234   
  dropDups , 186   
  dropIndex command , 77    



■ INDEX

245

   E 
  Embedding , 87–88   
  ensureIndex() function , 71   
  explain() command , 68, 218    

   F 
  File system 

 delete() , 182  
 exists() and put() , 183  
 get_version()/get_last_version() , 182  
 new_fi le() , 182   

  fi nd() command , 59, 63, 181   
  fi ndOne() method , 67   
  fsync and lock command , 196–197    

   G 
  Geohaystack indexes , 188   
  Geospatial indexes , 187   
  GridFS 

 API , 180  
 chunk document , 179  
 fi le system , 180, 182  
 fi nd() command , 181  
 fs.fi les document , 180  
 PyMongo driver , 180  
 rationale , 178  
 read() command , 181  
 specifi cation , 178, 180  
 storing fi les , 179  
 structure of , 179  
 write() command , 181   

  $gt and $gte operators , 80    

   H 
  Hash-based partitioning , 128   
  hasNext() function , 68   
  help() command , 56   
  hint() method , 78    

   I 
  Identifi er (_id) , 32   
  Import and export data 

 mongoexport , 198  
 mongoimport , 197–198   

  $in and $nin , 80–81   
  Indexing 

 behaviors and limitations , 190  
 BTree structure , 78  
 compound index , 73–75  
 data structure , 183  

 dropIndex command , 77  
 ensureIndex() , 71, 184  
 events , 78  
 explain() command , 70  
 features , 183  
 fi nd () operation , 183  
 hint() method , 78  
 _id index , 184  
 intersection , 78, 188–189  
 limitation , 229  
 read operation , 69  
 reIndex command , 77  
 relational databases , 92  
 secondary indexes , 184–188  
 single key index , 71–73  
 sort operations , 75  
 system.indexes , 77  
 types of , 184  
 unique index , 75–76   

  $lt and $lte operators , 79    

   J, K 
  JavaScript Object Notation (JSON) , 26   
  JOIN , 231   
  Journal fi les 

 data fi le , 177  
 mongod , 174  
 private view , 175  
 remapping view , 177–178  
 shared view , 175, 177  
 updates , 176  
 write operation , 176    

   L 
  Legacy systems (Big data) 

 data processing , 11  
 data storage , 11  
 structure , 10–11   

  LINUX system 
 installation , 37–38  
 repository , 36–37    

   M 
  MapReduce framework , 82–83   
  Master/slave replication , 97–98   
  Metrics 

 CPU time , 210  
 IOWait , 211  
 OpCounters , 208–209  
 page faults , 208  
 queues graph , 209–210  
 ratio (page fault-Opcounters) , 209  



■ INDEX

246

 system resources , 208  
 user time , 211   

  mmap() command , 159   
  MMAPv1 , 227   
  MongoDB 

 bin directory , 38  
 binary JSON documents , 25  
 32-bit limitation , 35  
 32-bit  vs.  64-bit , 228  
 BSON documents , 228  
 capped collection , 229  
 cloudmanager    (see  Cloud Manager )  
 database running , 27  
 datamodel    (see  Data model of MongoDB )  
 design decisions , 26  
 directories creation , 38  
 history , 25  
 indexing , 229  
 installation step , 38  
 JSON-based document store , 26  
 limitations , 227  
 LINUX    (see  LINUX system )  
 memory issues , 228  
 MMAPv1 , 227  
 namespace , 229  
 non-relational approach , 26  
 performance  vs.  features , 27  
 platform database , 35  
 preconditions , 37  
 range , 232  
 sections , 35  
 secure deployment , 39  
 security limitations , 230  
 sharding , 230  
 shell ,38     ( see also   Query processing )  
 speed, scalability and agility , 26  
 SQL comparison , 27  
 tools , 96  
 Windows , 37  
 write and read limitations , 231   

  MongoDB cloud manager 
 custom date range , 206  
 Email and text alerts , 206  
 metrics , 208  
 query response time , 207  
 steps , 207   

  mongodump and mongorestore 
 backup utility , 192  
 collection level backup , 194  
 collection restoring database , 196  
 –drop command , 195  
 dump folder , 193  
 –help option , 195–196  

 mongorestore , 195  
 restoring database , 196  
 single database backup , 194  
 terminal window , 192   

  mongod web interface , 205   
  mongo import command , 198   
  Monitoring and analysis 

 confi g servers , 152  
 lock status , 152  
 service , 241–242  
 shard status balancing 

and chunk distribution , 152  
 system 

 diagnosing problems , 204  
 MongoDB cloud manager , 206–212  
 mongod web interface , 205  
 mongostat , 204  
 third-party , 205  

 tools 
 bulk inserting events , 215  
 CSV format , 213  
 data management , 219  
 inserting data , 215  
 operations , 214  
 query patterns , 216  
 schema design , 213–214  
 shard cluster , 218  
 use case , 213   

  moveChunk command , 132   
  Multiple collections  vs.  storing data , 92    

   N 
  Namespace (.ns File) 

 collection bucket , 163  
 data structure , 163  
 $freelist , 166  
 limitation , 229  
 indexes BTree , 166   

  Network controlling access 
 bind_ip limits , 44  
 communication , 45  
 diagnostic and monitoring information , 44  
 encrypting data , 45  
 fi rewalls , 45  
 HTTP status page , 45  
 OpenSSL shell , 46  
 Windows platform , 44   

  next() function , 68   
  Non-relational approach , 26   
  Normal form 

 blogging application , 84–85  
 problem , 86  
 RDBMS diagram , 85   

Metrics (cont.)



■ INDEX

247

  NoSQL 
 ACID  vs.  BASE , 15  
 advantages , 17  
 categories , 22–23  
 defi nition , 14  
 disadvantages , 18  
 history , 15  
 non-relational databases , 13  
 SQL , 13  
 SQL ,13     ( see also   Sequel Query Language (SQL) )  
 structured  vs.  un/semi-structured data , 14    

   O 
  Object-oriented programming , 32    

   P 
  Performance  vs.  features , 27   
  Polymorphic schema 

 object-oriented programming , 32–33  
 schema evolution , 33–34   

  printjson() function , 68   
  Production cluster architecture 

 architecture , 153  
 components , 152  
 confi g server available , 157  
 mongos unavailable , 154  
 replica set unavailable , 155  
 shard unavailable , 156    

   Q 
  Query processing 

 collection creation , 60  
 command prompt , 53  
 create and insert options , 58–59  
 CRUD operations , 53  
 CSV fi le , 54  
 cursor object , 67  
 database server , 53  
 db command , 56  
 delete , 62–63  
 explain() function , 68  
 fi ndOne() method , 67  
 for loop , 60  
 hasNext() function , 68  
 help() command , 56  
 _id fi eld insertion , 60  
 import command , 55  
 indexes    (see  Indexing )  
 limit() , 66  
 localhost database server , 55  
 MyDB database , 55  
 MYDBPOC database , 57  

 next() function , 68  
 printjson() , 68  
 projector , 65  
 query documents , 64  
 read , 63–64  
 selector , 64  
 skip() , 66  
 sort() , 66  
 SQL terminology and concepts , 57  
 update() command , 61    

   R 
  Range-based partitioning , 127   
  RDBMS  vs.  NoSQL , 19   
  read() command , 181   
  Reads and writes MongoDB , 172  

 compact command , 172  
 modifi cation operation , 172  
 SkipList , 173  
 update action , 174  
 WiredTiger cache , 172  
 write operation , 172   

  Referencing model , 88   
  reIndex command , 77   
  Relational databases 

 MongoDB document , 90  
 normal form 

 blogging application , 84–85  
 problem , 86  
 RDBMS diagram , 85–86   

  remove () method , 62   
  Replica sets 

 arbiters , 101  
 clustering ,115     ( see also   Clustering )  
 consistency , 108  
 data center , 110  
 data replication process , 103  
 delayed members , 100  
 deployment architecture , 109  
 elections , 101–102  
 failovers , 99, 106  
 fault tolerance , 109  
 heartbeat message exchange , 107  
 hidden members , 100–110  
 limitation , 100, 231  
 master-slave replication , 98  
 members , 109  
 non-voting members , 101  
 points , 99  
 primary node , 99–100, 107  
 read and write concerns , 114  
 rollbacks , 108  
 scaling reads , 111  
 secondary node , 100, 107  



■ INDEX

248

 status report , 123  
 types of secondary members , 100   

  Replication 
 data redundancy , 97  
 master/slave setup , 97–98  
 lag , 233, 240–241  
 replicaset    (see  Replica sets )   

  rs.status() command , 120–121    

   S 
  Secondary indexes 

 dropDups , 186  
 geohaystack indexes , 188  
 geospatial indexes , 187  
 keys ordering , 185  
 MongoDB , 184  
 multikey compound , 185  
 sparse index , 186  
 TTL (Time To Live) , 187  
 unique indexes , 186   

  Secure application deployment 
 admin database and user , 41–42  
 authentication , 39  
 authorization , 39  
 enabling authentication , 40  
 levels , 40  
 network exposure , 44  
 practicaldb database , 40  
 product database , 43  
 role-based approach , 39  
 system.users collection , 39  
 user and enabling authorization , 42   

  Security 
 authentication , 230  
 encrypted , 231  
 limitations , 230   

  Sensitive fi elds , 231   
  Sequel Query Language (SQL) 

 ACID transactions , 13  
 comparison , 27  
 data update , 19–20  
 queries , 19–20  
 RDBMS databases , 18  
 scalability , 19–20  
 schema fl exibility , 19  
 SQL  vs.  NoSQL , 21  
 technical scenarios , 19   

  Server management 
 collection level data , 203  
 corrupt database , 202  
 db.ServerStatus() , 200  
 start command , 199  

 status , 200, 202  
 stop command , 200   

  ShardedEnvironment 
 chunk size , 151  
 pre-splitting , 151  
 shard key , 151   

  Sharding 
 cluster , 218  
 collection limit , 230  
 correct shard key , 230  
 issues , 230  
 limitation , 230  
 MongoDB , 233  
 operations , 241  
 relational databases , 92  
 update , 230  
 system 

 add shard command , 138  
 balancer , 131–132  
 balancing process , 130  
 chunks , 128–130  
 collection across , 124–125  
 commands , 136  
 components , 125  
 Confi gServers , 126, 130  
 count() command , 137  
 data directory , 135  
 database and collection , 136–137  
 data distribution process , 127  
 hash-based partitioning , 128  
 implementation , 134  
 listshards command , 138  
 memory , 124  
 migration , 132  
 monitoring and analysis , 152  
 moveChunk command , 132  
 operations , 133  
 primary shard , 126  
 printShardingStatus() command , 141  
 range-based partitioning , 127  
 removing cluster , 140  
 scenarios , 125  
 servers , 124  
 serverStatus command , 124  
 set up cluster , 134  
 ShardedEnvironment , 151  
 shard key , 127  
 single logical database , 124  
 tag-basedsharding    

(see  Tag-based sharding )  
 terminal window , 135  
 testcollection.count command , 139   

  Single database backup , 194   
  Slave backups , 197   

Replica sets (cont.)



■ INDEX

249

  Social networking 
 comment creation , 224  
 operations , 222  
 posts view , 222–223  
 schema design , 220–222  
 sequence creation , 224–225  
 sharding , 225  
 solution , 220   

  Solid state drives (SSD) , 235   
  sort() operation , 189   
  Sparse indexes , 186   
  Standalone deployment , 96   
  Structured  vs.  un/

semi-structured data , 14    

   T 
  Tag-based sharding 

 chunk distribution , 146  
 collections , 142  
 distribution , 146–148  
 multiple tags , 150–151  
 prerequisite , 142–143  
 scale with tagging , 149–150  
 tagging , 144–148   

  Time optimization , 238–239   
  Time To Live (TTL) index , 187   
  Transactions , 231    

   U 
  Unique indexes , 186    

   V 
  validate() option , 203   
  Volume, variety and velocity (3 Vs) 

 aspects and big data , 6  
 digital universe size , 7  
 variety , 8  
 velocity , 8  
 volume , 7    

   W, X, Y, Z 
  Web interface , 205   
  Windows installation , 37   
  WiredTiger storage engine , 170–171   
  write() command , 181   
  Write operation , 172          


	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewers
	Acknowledgments
	Preface
	About this Book
	What you need for this book
	Who this book is for

	Chapter 1: Big Data
	Getting Started
	Big Data
	Facts About Big Data
	The Size of Big Data Varies Across Sectors
	The Big Data Type Varies Across Sectors


	Big Data Sources
	Three Vs of Big Data
	Volume
	Variety
	Velocity

	Usage of Big Data
	Visibility
	Discover and Analyze Information
	Segmentation and Customizations
	Aiding Decision Making
	Innovation

	Big Data Challenges
	Policies and Procedures
	Access to Data
	Technology and Techniques

	Legacy Systems and Big Data
	Structure of Big Data
	Data Storage
	Data Processing

	Big Data Technologies
	Summary

	Chapter 2: NoSQL
	SQL
	NoSQL
	Definition
	A Brief History of NoSQL

	ACID vs. BASE
	CAP Theorem (Brewer’s Theorem)
	The BASE

	NoSQL Advantages and Disadvantages
	Advantages of NoSQL
	Disadvantages of NoSQL

	SQL vs. NoSQL Databases
	Categories of NoSQL Databases
	Summary

	Chapter 3: Introducing MongoDB
	History
	MongoDB Design Philosophy
	Speed, Scalability, and Agility
	Non-Relational Approach
	JSON-Based Document Store
	Performance vs. Features
	Running the Database Anywhere

	SQL Comparison
	Summary

	Chapter 4: The MongoDB Data Model
	The Data Model
	JSON and BSON
	Binary JSON (BSON)

	The Identifier (_id)
	Capped Collection

	Polymorphic Schemas
	Object-Oriented Programming
	Schema Evolution

	Summary

	Chapter 5: MongoDB - Installation and Configuration
	Select Your Version
	Installing MongoDB on Linux
	Installing Using Repositories
	Installing Manually

	Installing MongoDB on Windows
	Running MongoDB
	Preconditions
	Starting the Service

	Verifying the Installation
	MongoDB Shell
	Securing the Deployment
	Using Authentication and Authorization
	Enabling Authentication
	Creating the Admin User
	Switching to the Admin Database
	Admin

	Creating a User and Enabling Authorization

	Controlling Access to a Network
	Use Firewalls
	Encrypting Data
	Encrypting Communication


	Provisioning Using MongoDB Cloud Manager
	Summary

	Chapter 6: Using MongoDB Shell
	Basic Querying
	Create and Insert
	Explicitly Creating Collections
	Inserting Documents Using Loop
	Inserting by Explicitly Specifying _id
	Update
	Delete
	Read
	Query Documents
	Selector
	Projector
	sort()
	limit()
	skip()
	findOne()
	Using Cursor
	explain()

	Using Indexes
	Single Key Index
	Compound Index
	Support for sort Operations
	Unique Index
	system.indexes
	dropIndex
	reIndex
	How Indexing Works


	Stepping Beyond the Basics
	Using Conditional Operators
	$lt and $lte
	$gt and $gte
	$in and $nin

	Regular Expressions
	MapReduce
	aggregate()

	Designing an Application’s Data Model
	Relational Data Modeling and Normalization
	What Is a Normal Form?
	The Problem with Normal Forms

	MongoDB Document Data Model Approach
	Embedding
	Referencing
	Decisions of Data Modelling
	Operational Considerations
	Data Lifecycle Management
	Indexes
	Sharding
	A Large Number of Collections
	Growth of the Document



	Summary

	Chapter 7: MongoDB Architecture
	Core Processes
	mongod
	mongo
	mongos

	MongoDB Tools
	Standalone Deployment
	Replication
	Master/Slave Replication
	Replica Set
	Primary and Secondary Members
	Types of Secondary Members
	Elections
	Example - Working of Election Process in More Details

	Data Replication Process
	Oplog
	Initial Sync and Replication
	Syncing – Normal Operation
	Starting Up
	Whom to Sync From?
	Making Writes Work with Chaining Slaves

	Failover
	If the Node Is a Secondary Node
	If the Node Is the Primary Node

	Rollbacks
	Consistency
	Possible Replication Deployment
	Scaling Reads
	Application Write Concerns
	How Writes Happen with Write Concern


	Implementing Advanced Clustering with Replica Sets
	Setting Up a Replica Set
	Removing a Server
	Adding a Server
	Adding an Arbiter to a Replica Set
	Inspecting the Status Using rs.status()
	Forcing a New Election
	Inspecting Status of the Replica Set Using a Web Interface


	Sharding
	Sharding Components
	Data Distribution Process
	Shard Key
	Range-Based Partitioning
	Hash-Based Partitioning
	Chunks
	Role of ConfigServers in the Above Scenario


	Data Balancing Process
	Chunk Splitting
	Balancer

	Operations
	Implementing Sharding
	Setting the Shard Cluster
	Creating a Database and Shard Collection
	Adding a New Shard
	Removing a Shard
	Listing the Sharded Cluster Status

	Controlling Collection Distribution (Tag-Based Sharding)
	Prerequisite
	Tagging
	Scaling with Tagging
	Multiple Tags

	Points to Remember When Importing Data in a ShardedEnvironment
	Pre-Splitting of the Data
	Deciding on the Chunk Size
	Choosing a Good Shard Key

	Monitoring for Sharding
	Monitoring the Config Servers
	Monitoring the Shard Status Balancing and Chunk Distribution
	Monitoring the Lock Status


	Production Cluster Architecture
	Scenario 1
	Scenario 2
	Scenario 3
	Scenario 4

	Summary

	Chapter 8: MongoDB Explained
	Data Storage Engine
	Data File (Relevant for MMAPv1)
	Namespace (.ns File)
	Collection Namespace
	Extent
	Data Record
	Deleted List
	In Summary

	$freelist
	Indexes BTree
	Key Nodes



	Data File (Relevant for WiredTiger)
	Reads and Writes
	How Data Is Written Using Journaling
	GridFS – The MongoDB File System
	The Rationale of GridFS
	GridFSunder the Hood
	Using GridFS
	Treating GridFS More Like a File System


	Indexing
	Types of Indexes
	_id index
	Secondary Indexes
	Index Intersection

	Behaviors and Limitations

	Summary

	Chapter 9: Administering MongoDB
	Administration Tools
	mongo
	Third-Party Administration Tools

	Backup and Recovery
	Data File Backup
	mongodump and mongorestore
	Single Database Backup
	Collection Level Backup
	mongodump –Help
	mongorestore
	Restoring a Single Database
	Restoring a Single Collection
	Mongorestore –Help

	fsync and Lock
	Slave Backups

	Importing and Exporting
	mongoimport
	mongoexport

	Managing the Server
	Starting a Server
	Stopping a Server
	Viewing Log Files
	Server Status
	Identifying and Repairing MongoDB
	Identifying and Repairing Collection Level Data

	Monitoring MongoDB
	mongostat
	mongod Web Interface
	Third-Party Plug-Ins
	MongoDB Cloud Manager
	Metrics


	Summary

	Chapter 10: MongoDB Use Cases
	Use Case 1 - Performance Monitoring
	Schema Design
	Operations
	Inserting Data
	Bulk Insert
	Querying Performance Data

	Sharding
	Managing the Data

	Use Case 2 – Social Networking
	Schema Design
	Operations
	Viewing Posts
	Creating Comments
	Creating New Post


	Sharding

	Summary

	Chapter 11: MongoDB Limitations
	MongoDB Space Is Too Large (Applicable for MMAPv1)
	Memory Issues (Applicable for Storage Engine MMAPv1)
	32-bit vs. 64-bit
	BSON Documents
	Namespaces Limits
	Indexes Limit
	Capped Collections Limit - Maximum Number of Documents in a Capped Collection
	Sharding Limitations
	Shard Early to Avoid Any Issues
	Shard Key Can’t Be Updated
	Shard Collection Limit
	Select the Correct Shard Key

	Security Limitations
	No Authentication by Default
	Traffic to and from MongoDB Isn’t Encrypted

	Write and Read Limitations
	Case-Sensitive Queries
	Type-Sensitive Fields
	No JOIN
	Transactions
	Replica Set Limitations - Number of Replica Set Members


	MongoDB Not Applicable Range
	Summary

	Chapter 12: MongoDB Best Practices
	Deployment
	Hardware Suggestions from the MongoDB Site
	Few Points to be Noted

	Coding
	Application Response Time Optimization
	Data Safety
	Administration
	Replication Lag
	Sharding
	Monitoring
	Summary

	Index

