
Pro .NET
Benchmarking

The Art of Performance Measurement
—
Andrey Akinshin

www.allitebooks.com

http://www.allitebooks.org

Pro .NET Benchmarking
The Art of Performance Measurement

Andrey Akinshin

www.allitebooks.com

http://www.allitebooks.org

Pro .NET Benchmarking

ISBN-13 (pbk): 978-1-4842-4940-6 ISBN-13 (electronic): 978-1-4842-4941-3
https://doi.org/10.1007/978-1-4842-4941-3

Copyright © 2019 by Andrey Akinshin

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Joan Murray
Development Editor: Laura Berendson
Coordinating Editor: Nancy Chen

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484249406. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Andrey Akinshin
Saint Petersburg, Russia

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-4941-3
http://www.allitebooks.org

iii

About the Author ���xv

About the Technical Reviewers ���xvii

Acknowledgments ��xix

Introduction ��xxi

Table of Contents

Chapter 1: Introducing Benchmarking ��� 1

Planning a Performance Investigation �� 2

Define Problems and Goals ��� 3

Pick Metrics ��� 4

Select Approaches and Tools ��� 7

Perform an Experiment to Get the Results �� 9

Complete the Analysis and Draw Conclusions��� 10

Benchmarking Goals ��� 10

Performance Analysis �� 11

Benchmarks as a Marketing Tool �� 12

Scientific Interest �� 14

Benchmarking for Fun ��� 14

Benchmark Requirements �� 15

Repeatability �� 15

Verifiability and Portability ��� 16

Non-Invading Principle �� 16

Acceptable Level of Precision ��� 17

Honesty �� 18

www.allitebooks.com

http://www.allitebooks.org

iv

Performance Spaces ��� 18

Basics �� 18

Performance Model ��� 20

Source Code �� 20

Environment �� 21

Input Data �� 22

Distribution �� 23

The Space �� 25

Analysis ��� 25

The Bad, the Ugly and the Good �� 26

Find Your Bottleneck �� 27

Statistics �� 28

Summary��� 29

Chapter 2: Common Benchmarking Pitfalls �� 31

General Pitfalls �� 32

Inaccurate Timestamping �� 32

Executing a Benchmark in the Wrong Way �� 36

Natural Noise ��� 41

Tricky Distributions �� 46

Measuring Cold Start Instead of Warmed Steady State ��� 48

Insufficient Number of Invocations �� 51

Infrastructure Overhead �� 54

Unequal Iterations ��� 56

�NET-Specific Pitfalls ��� 60

Loop Unrolling ��� 61

Dead Code Elimination �� 65

Constant Folding �� 69

Bound Check Elimination ��� 73

Inlining ��� 76

Table of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

v

Conditional Jitting�� 80

Interface Method Dispatching ��� 84

Summary��� 87

Chapter 3: How Environment Affects Performance �� 91

Runtime ��� 95

� NET Framework �� 96

�NET Core ��� 99

Mono �� 106

Case Study 1: StringBuilder and CLR Versions �� 111

Case Study 2: Dictionary and Randomized String Hashing ��� 114

Case Study 3: IList�Count and Unexpected Performance Degradation �������������������������������� 117

Case Study 4: Build Time and GetLastWriteTime Resolution ��� 121

Summing Up �� 123

Compilation ��� 123

IL Generation ��� 124

Just-In-Time (JIT) Compilation �� 130

Ahead-Of-Time (AOT) Compilation ��� 133

Case Study 1: Switch and C# Compiler Versions ��� 137

Case Study 2: Params and Memory Allocations �� 141

Case Study 3: Swap and Unobvious IL��� 143

Case Study 4: Huge Methods and Jitting ��� 146

Summing Up �� 149

External Environment �� 150

Operating System �� 150

Hardware ��� 158

The Physical World �� 162

Case Study 1: Windows Updates and Changes in �NET Framework ������������������������������������ 166

Case Study 2: Meltdown, Spectre, and Critical Patches �� 168

Table of ConTenTs

vi

Case Study 3: MSBuild and Windows Defender��� 169

Case Study 4: Pause Latency and Intel Skylake �� 171

Summing Up �� 173

Summary��� 174

References �� 176

Chapter 4: Statistics for Performance Engineers ��� 181

Descriptive Statistics �� 183

Basic Sample Plots �� 183

Sample Size ��� 187

Minimum, Maximum, and Range ��� 188

Mean �� 189

Median ��� 189

Quantiles, Quartiles, and Percentiles ��� 190

Outliers �� 192

Box Plots �� 194

Frequency Trails��� 196

Modes �� 197

Variance and Standard Deviation �� 201

Normal Distribution ��� 203

Skewness �� 204

Kurtosis ��� 206

Standard Error and Confidence Intervals��� 208

The Central Limit Theorem �� 211

Summing Up �� 212

Performance Analysis ��� 215

Distribution Comparison �� 216

Regression Models �� 227

Optional Stopping �� 235

Pilot Experiments��� 240

Summing Up �� 242

Table of ConTenTs

vii

How to Lie with Benchmarking ��� 244

Lie with Small Samples ��� 245

Lie with Percents ��� 247

Lie with Ratios ��� 248

Lie with Plots ��� 250

Lie with Data Dredging �� 254

Summing Up �� 256

Summary��� 257

References �� 259

Chapter 5: Performance Analysis and Performance Testing �������������������������������� 261

Performance Testing Goals ��� 265

Goal 1: Prevent Performance Degradations ��� 265

Goal 2: Detect Not-Prevented Degradations �� 267

Goal 3: Detect Other Kinds of Performance Anomalies ��� 268

Goal 4: Reduce Type I Error Rate ��� 268

Goal 5: Reduce Type II Error Rate �� 268

Goal 6: Automate Everything ��� 269

Summing Up �� 272

Kinds of Benchmarks and Performance Tests �� 272

Cold Start Tests �� 273

Warmed Up Tests ��� 276

Asymptotic Tests�� 282

Latency and Throughput Tests ��� 283

Unit and Integration Tests �� 286

Monitoring and Telemetry �� 292

Tests with External Dependencies ��� 294

Other Kinds of Performance Tests ��� 296

Summing Up �� 298

Performance Anomalies �� 299

Degradation ��� 300

Acceleration ��� 302

Table of ConTenTs

viii

Temporal Clustering��� 304

Spatial Clustering �� 308

Huge Duration �� 310

Huge Variance�� 312

Huge Outliers ��� 313

Multimodal Distributions ��� 314

False Anomalies �� 316

Underlying Problems and Recommendations �� 321

Summing Up �� 326

Strategies of Defense �� 327

Pre-Commit Tests �� 328

Daily Tests ��� 329

Retrospective Analysis �� 330

Checkpoints Testing��� 330

Pre-Release Testing ��� 331

Manual Testing �� 332

Post-Release Telemetry and Monitoring �� 333

Summing Up �� 334

Performance Subpaces ��� 335

Metric Subspace �� 335

Iteration Subspace ��� 337

Test Subspace ��� 338

Environment Subspace �� 339

Parameter Subspace ��� 340

History Subspace��� 342

Summing Up �� 343

Performance Asserts and Alarms �� 343

Absolute Threshold �� 345

Relative Threshold ��� 347

Adaptive Threshold �� 348

Manual Threshold �� 349

Summing Up �� 350

Table of ConTenTs

ix

Performance-Driven Development (PDD) �� 351

Define a Task and Performance Goals ��� 351

Write a Performance Test �� 352

Change the Code ��� 355

Check the New Performance Space �� 355

Summing Up �� 356

Performance Culture ��� 356

Shared Performance Goals �� 357

Reliable Performance Testing Infrastructure ��� 358

Performance Cleanness �� 359

Personal Responsibility ��� 360

Summing Up �� 361

Summary��� 361

References �� 363

Chapter 6: Diagnostic Tools �� 365

BenchmarkDotNet ��� 367

Visual Studio Tools �� 373

Embedded Profilers ��� 374

Disassembly View �� 375

JetBrains Tools �� 376

dotPeek ��� 376

dotTrace and dotMemory ��� 377

ReSharper �� 381

Rider �� 381

Windows Sysinternals ��� 382

RAMMap �� 383

VMMap �� 384

Process Monitor��� 385

Other Useful Tools ��� 386

ildasm and ilasm ��� 387

monodis ��� 389

Table of ConTenTs

x

ILSpy �� 389

dnSpy��� 390

WinDbg �� 391

Asm-Dude �� 392

Mono Console Tools ��� 393

PerfView �� 394

perfcollect ��� 395

Process Hacker �� 395

Intel VTune Amplifier �� 396

Summary��� 397

References �� 398

Chapter 7: CPU-Bound Benchmarks ��� 401

Registers and Stack �� 403

Case Study 1: Struct Promotion ��� 403

Case Study 2: Local Variables �� 407

Case Study 3: Try-Catch ��� 412

Case Study 4: Number of Calls �� 416

Summing Up �� 418

Inlining �� 419

Case Study 1: Call Overhead �� 421

Case Study 2: Register Allocation �� 426

Case Study 3: Cooperative Optimizations �� 430

Case Study 4: The “starg” IL Instruction �� 434

Summing Up �� 438

Instruction-Level Parallelism �� 440

Case Study 1: Parallel Execution ��� 442

Case Study 2: Data Dependencies ��� 446

Case Study 3: Dependency Graph �� 449

Case Study 4: Extremely Short Loops �� 452

Summing Up �� 457

Table of ConTenTs

xi

Branch Prediction �� 458

Case Study 1: Sorted and Unsorted Data ��� 459

Case Study 2: Number of Conditions ��� 465

Case Study 3: Minimum ��� 470

Case Study 4: Patterns �� 476

Summing Up �� 479

Arithmetic ��� 480

Case Study 1: Denormalized Numbers �� 484

Case Study 2: Math�Abs ��� 490

Case Study 3: double�ToString ��� 494

Case Study 4: Integer Division ��� 496

Summing Up �� 502

Intrinsics ��� 503

Case Study 1: Math�Round �� 503

Case Study 2: Rotate Bits �� 507

Case Study 3: Vectorization ��� 509

Case Study 4: System�Runtime�Intrinsics �� 514

Summing Up �� 519

Summary��� 520

References �� 522

Chapter 8: Memory-Bound Benchmarks �� 525

CPU Cache ��� 526

Case Study 1: Memory Access Patterns �� 527

Case Study 2: Cache Levels ��� 530

Case Study 3: Cache Associativity ��� 533

Case Study 4: False Sharing �� 537

Summing Up �� 540

Table of ConTenTs

xii

Memory Layout ��� 541

Case Study 1: Struct Alignment ��� 541

Case Study 2: Cache Bank Conflicts �� 545

Case Study 3: Cache Line Splits �� 547

Case Study 4: 4K Aliasing �� 550

Summing Up �� 556

Garbage Collector ��� 557

Case Study 1: GC Modes �� 557

Case Study 2: Nursery Size in Mono �� 561

Case Study 3: Large Object Heaps ��� 565

Case Study 4: Finalization ��� 568

Summing Up �� 570

Summary��� 571

References �� 572

Chapter 9: Hardware and Software Timers �� 575

Terminology �� 576

Time Units �� 577

Frequency Units ��� 579

Main Components of a Hardware Timer �� 581

Ticks and Quantizing Errors ��� 584

Basic Timer Characteristics ��� 585

Summing Up �� 590

Hardware Timers ��� 592

TSC �� 592

HPET and ACPI PM ��� 600

History of Magic Numbers ��� 602

Summing Up �� 606

Table of ConTenTs

xiii

OS Timestamping API �� 607

Timestamping API on Windows: System Timer �� 608

Timestamping API on Windows: QPC ��� 616

Timestamping API on Unix ��� 621

Summing Up �� 625

�NET Timestamping API ��� 626

DateTime�UtcNow �� 626

Environment�TickCount�� 631

Stopwatch�GetTimestamp ��� 633

Summing Up �� 637

Timestamping Pitfalls ��� 637

Small Resolution �� 638

Counter Overflow ��� 638

Time Components and Total Properties ��� 639

Changes in Current Time ��� 640

Sequential Reads ��� 642

Summing Up �� 646

Summary��� 647

References �� 648

Index ��� 651

Table of ConTenTs

xv

Andrey Akinshin is a senior developer at JetBrains, where

he works on Rider (a cross-platform .NET IDE based on

the IntelliJ platform and ReSharper). His favorite topics

are performance and micro-optimizations, and he is the

maintainer of BenchmarkDotNet (a powerful .NET library

for benchmarking supported by the .NET Foundation).

Andrey is a frequent speaker at various events for

developers, and he is the program director of the DotNext

conference. Andrey is also a PhD in computer science, a

Microsoft .NET MVP, and a silver medalist of ACM ICPC. In his free time, he likes to

study science (his primary research interests are mathematical biology and bifurcation

theory). Previously, he worked as a postdoctoral research fellow in the Weizmann

Institute of Science and as a research scientist in the Sobolev Institute of Mathematics

SB RAS.

About the Author

xvii

John Garland is the Vice President of Learning Services at

Wintellect and has been developing software professionally

since the 1990s. His consulting clients range from small

businesses to Fortune 500 companies. His work has been

featured at Microsoft conference keynotes and sessions, and

he has presented at conferences in North America, South

America, and Europe. John lives in Cumming, GA, with his

wife and daughter and is a graduate of the University of

Florida with a Bachelor’s Degree in Computer Engineering.

He is the author of Windows Store Apps Succinctly and coauthor of Programming the

Windows Runtime by Example. John is currently a Microsoft Azure Cloud Solution

Architect, a member of the Microsoft Azure Insiders, a Microsoft Azure MVP, a Microsoft

Certified Trainer, and a Microsoft Certified Azure Developer Associate.

Sasha Goldshtein is a Software Engineer at Google

Research. He works on applying machine learning solutions

to various Google products around conversation and

dialogue, text classification, recommendation systems, and

more. Before joining Google, Sasha spent more than ten

years specializing in production debugging and performance

optimization, taught courses around the world, and spoke at

numerous international conferences. He is also the author of

Pro .NET Performance (Apress, 2012).

About the Technical Reviewers

xix

I started to collect content for this book five years ago. The writing stage took about

2.5 years. I spent thousands of hours on it, but it would still have been impossible to

finish all the chapters on my own. The book was created with the help of many talented

developers.

First of all, I want to thank Ivan Pashchenko. He is the person who inspired me to

share my knowledge and who reviewed not only this book but also dozens of my early

blog posts. He supported me for many years, and he helped me to understand so many

things that are essential for writing a good technical book. Thank you, Ivan!

Secondly, I want to thank all my unofficial reviewers: Irina Ananeva, Mikhail

Filippov, Igor Lukanin, Adam Sitnik, Karlen Simonyan, Stephen Toub, Alina Smirnova,

Federico Andres Lois, Konrad Kokosa, and Vance Morrison. They spent a lot of time

reading raw drafts and found tons of mistakes and typos in the early stages of writing.

Also, they gave a lot of good advice that helped me to make this book much better.

Thirdly, I want to thank the Apress team: John Garland and Sasha Goldshtein

(official technical reviewers), Joan Murray (acquisitions editor), Laura Berendson

(development editor), Nancy Chen (coordinating editor), Gwenan Spearing (original

acquisitions editor), and all other team members who helped to publish this book. Sorry

for all the failed deadlines and thanks for your patience. They make it possible to create

a real book from my raw drafts and notes. They helped to structure the content, present

my ideas in an understandable form, and fix my grammatical errors.

Next, I want to thank all BenchmarkDotNet contributors and users. It’s so nice to see

how this project not only helps developers to measure performance and analyze results,

but also promotes good benchmarking practices and provokes in-depth discussions

about benchmarking and performance. Especially, I want to thank Adam Sitnik for his

tremendous contribution: the library wouldn’t be so good without him.

Also, I want to thank everyone with whom I spoke about benchmarking and

performance and everyone who writes and speaks about these topics. I learned a lot

from private and public conversations, blog posts, GitHub discussions, Twitter threads,

and StackOverflow questions (you will find a lot of links in the footnotes and in the

reference list at the end of the book). Especially, I want to thank Matt Warren, Brendan

Acknowledgments

xx

Gregg, Daniel Lakens, Jon Skeet, Andy Ayers, Agner Fog, Raymond Chen, Bruce Dawson,

Denis Bakhvalov, Aleksey Shipilev, Alexandre Mutel, Ben Adams, and hundreds of

other developers who share their knowledge and contribute to open-source projects.

This book contains a lot of great case studies that exist thanks to the people from the

community who are passionate about performance.

Finally, I want to thank my family and all my friends and colleagues who believed in

me, supported me, and kept asking “When will the book finally be published?”

aCknowledgmenTs

xxi

You should take the approach that you’re wrong. Your goal is to be less
wrong.

— Elon Musk

I wrote my first C# benchmark in 2004. This was a long time ago, so I don’t remember

exactly what I measured, but I guess that the source code looked like this:

var start = DateTime.Now;

// Some stuff

var finish = DateTime.Now;

Console.WriteLine(finish - start);

I remember my feelings about this code: I thought that now I know everything about

time measurements.

After many years of performance engineering, I have learned a lot of new stuff. It

turned out that time measurement is not a simple thing. There are too many factors that

can affect our measurements. In this book, I want to take you on a fascinating journey

into the wonderful world of benchmarking, where we learn how to conduct accurate

performance measurements and avoid hundreds of possible mistakes.

In the modern world, it is very important to make your software fast. Good speed

could be a reason why customers will use your product instead of a competitor’s

product. Poor speed could be a reason why users will stop using your product. But what

does “fast” mean? When can we say that one program works “faster” than another? What

should we do to be sure that our code will work “fast enough” everywhere?

If we want to make our application fast, the first thing we should learn is how to

measure it. And one of the great ways to do it is benchmarking. According to the New

Oxford American Dictionary, a benchmark is “a problem designed to evaluate the

performance of a computer system.” Here, you should ask further questions. What does

“performance” mean? How can we “evaluate” it? Someone may say that these are very

simple questions. However, they are so complicated that I decided to write an entire

book about them.

Introduction

xxii

 About Content
This book contains nine chapters:

• Chapter 1 “Introducing Benchmarking”

This chapter contains some basic information about

benchmarking and other performance investigations, including

benchmarking goals and requirements. We will also discuss

performance spaces and why it’s so important to analyze

benchmark results.

• Chapter 2 “Common Benchmarking Pitfalls”

This chapter contains 15 examples of common mistakes that

developers usually make during benchmarking. Each example is

pretty small (so, you can easily understand what’s going on), but

all of them demonstrate important problems and explain how to

resolve them.

• Chapter 3 “How Environment Affects Performance”

This chapter explains why the environment is so important and

introduces a lot of terms that will be used in subsequent chapters.

You will find 12 case studies that demonstrate how minor

changes in the environment may significantly affect application

performance.

• Chapter 4 “Statistics for Performance Engineers”

This chapter contains the essential knowledge about statistics

that you need during performance analysis. For each term,

you will find practical recommendations that will help you use

statistical metrics during your performance investigations. It also

contains some statistical approaches that are really useful for

benchmarking. At the end of this chapter, you will find different

ways to lie with benchmarking: this knowledge will protect you

from incorrect result interpretation.

InTroduCTIon

xxiii

• Chapter 5 “Performance Analysis and Performance Testing”

This chapter covers topics that you need to know if you want to

control the performance level in a large product automatically.

You will learn different kinds of performance tests, performance

anomalies that you can observe, and how to protect yourself

from these anomalies. At the end of this chapter, you will find a

description of performance-driven development (an approach

for writing performance tests) and a general discussion about

performance culture.

• Chapter 6 “Diagnostic Tools”

This chapter contains a brief overview of different tools that can

be useful during performance investigations.

• Chapter 7 “CPU-Bound Benchmarks”

This chapter contains 24 case studies that show different pitfalls

in CPU-bound benchmarks. We will discuss some runtime-

specific features like register allocation, inlining, and intrinsics;

and hardware-specific features like instruction-level parallelism,

branch prediction, and arithmetics (including IEEE 754).

• Chapter 8 “Memory-Bound Benchmarks”

This chapter contains 12 case studies that show different pitfalls

in memory-bound benchmarks. We will discuss some runtime-

specific features about garbage collection and its settings; and

hardware- specific features like CPU cache and physical memory

layout.

• Chapter 9 “Hardware and Software Timers”

This chapter contains all you need to know about timers. We will

discuss basic terminology, different kinds of hardware timers,

corresponding timestamping APIs on different operating systems,

and the most common pitfalls of using these APIs. This chapter

also contains a lot of “extra” content that you don’t actually need

for benchmarking, but it may be interesting for people who want

to learn more about timers.

InTroduCTIon

xxiv

The order of these chapters matters (e.g., Chapter 3 introduces a lot of terms used in

later chapters), but I tried to make them as independent as possible. If you are interested

in specific topics, you can read only the corresponding chapters: the essential part of the

content should be understandable even if you skip the first chapters.

This book will provide a basic understanding of the core concepts and it will teach

you how to use them for performance measurements. Technologies are changing—we

get new versions of hardware, operating systems, and .NET runtime every year—but the

basic concepts remain the same. If you learn them, you can easily adapt them to new

technology stacks.

 About examples
It’s hard to learn benchmarking without examples. In this book, you will find a lot of

them! Some of these examples are small synthetic programs that illustrate theoretical

concepts. However, you will also find a lot of examples from real life.

Most of them are based on my own performance testing experience at JetBrains.1

Thus, you will see some real-world problems (and possible solutions) that are related

to JetBrains products like IntelliJ IDEA2 (Java IDE), ReSharper3 (Visual Studio plug-in),

and Rider4 (a cross-platform .NET IDE based on both IntelliJ IDEA and ReSharper). All

products are very huge (Rider source code base contains about 20 million lines of code)

and include a lot of performance-critical components. Many developers make hundreds

of commits to these products every day, so keeping the performance level decent is not

an easy task. I hope that you find these examples and techniques useful and find a way to

use them in your own products.

Another source of experience for me is BenchmarkDotNet. I started it in 2013 as a

small pet project. Today, it has become a highly adopted open-source library. During

maintaining the project, I was involved in hundreds of pretty interesting discussions

about performance. Some of the examples in this book may look too artificial, but almost

all of them came from real life.

1 https://www.jetbrains.com/
2 https://www.jetbrains.com/idea/
3 https://www.jetbrains.com/resharper/
4 https://www.jetbrains.com/rider/

InTroduCTIon

https://www.jetbrains.com/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/resharper/
https://www.jetbrains.com/rider/

xxv

 About expectations
We will talk a lot about performance, but we will not cover all kinds of performance

topics. You will not learn the following things:

• How to write fast code

• How to optimize slow code

• How to profile applications

• How to find hotspots in applications

• And many other performance-related “how-tos”

There are many excellent books and papers on these topics; you can find some of

them in the reference list at the end of the book. Note that this book is focused only on
benchmarking. You will learn the following:

• How to design a good benchmark

• How to choose relevant metrics

• How to avoid common benchmarking pitfalls

• How to analyze benchmark results

• And many other benchmarking-related “how-tos”

Also, you should keep in mind that benchmarks don’t fit all situations. You will not

be a good performance engineer if your only skill is benchmarking. However, it’s one of

the most important skills. If you learn it, you will become a better software developer

who is able to conduct very complex performance investigations.

InTroduCTIon

1
© Andrey Akinshin 2019
A. Akinshin, Pro .NET Benchmarking, https://doi.org/10.1007/978-1-4842-4941-3_1

CHAPTER 1

Introducing
Benchmarking

It is easier to optimize correct code than to correct optimized code.

— Bill Harlan, 1997

In this chapter, we will discuss the concept of benchmarking, the difference between

benchmarking and other kinds of performance investigations, what kind of problems

can be solved with benchmarking, what a good benchmark should look like, how to

design a benchmark, and how to analyze its results. In particular, the following topics

will be covered:

• Performance investigations

What does good performance investigation look like? Why is

it important to define your goals and problems? What kind of

metrics, tools, and approaches should you choose? What should

you do with the performance metrics we get?

• Benchmarking goals

When is benchmarking useful? How can it be used in performance

analysis or marketing? How could we use it for improvement of

our technical expertise or for fun?

• Benchmarking requirements

What are the basic benchmarking requirements? Why is it

important to write repeatable, noninvasive, verifiable, portable,

and honest benchmarks with an acceptable level of precision?

2

• Performance spaces

Why should we work with multidimensional performance spaces

(and what is it)? Why is it important to build a good performance

model? How can input data and environment affect performance?

• Analysis

Why is it important to analyze benchmark results? How are they

interpreted? What is the bottleneck and why do we need to find it?

Why should we know statistics for benchmarking?

In this chapter, we’ll cover basic theoretical concepts using practical examples. If you

already know how to benchmark, feel free to skip this chapter and move on to Chapter 2.

Step 1 in learning how to do benchmarking or any other kind of performance

investigation is creating a good plan.

 Planning a Performance Investigation
Do you want your code to work quickly? Of course you do. However, it’s not always

easy to maintain excellent levels of performance. The application life cycle involves

complicated business processes that are not always focused on performance. When you

suddenly notice that a feature works too slowly, it is not always possible to dive in and

accelerate your code. It’s not always obvious how to write code in the present for a fast

program in the future.

It’s OK that you want to improve performance but have no idea what you should do.

Everything you need is just a good performance investigation away.

Any thorough investigation requires a good plan with several important steps:

 1. Define problems and goals

 2. Pick metrics

 3. Select approaches and tools

 4. Perform an experiment to get the results

 5. Complete the analysis and draw conclusions

Chapter 1 IntroduCIng BenChmarkIng

3

Of course, this plan is just an example. You may customize your own with 20 steps

or skip some because they are obvious to you. The most important takeaway is that a

complete performance investigation includes (explicitly or implicitly) all these steps at a

minimum. Let’s discuss each of them in detail.

 Define Problems and Goals
This step seems obvious, but a lot of people skip it to immediately begin measuring or

optimizing something. It’s very important to ask yourself some important questions:

What is wrong with the current level of performance? What do I want to achieve? And,

how fast should my code work?

If you just start to randomly optimize your program, it will be just a waste of time. It’s

better to define the problems and goals first. I even recommend writing your problems

and goals on a piece of paper, putting it next to your workplace, and keeping an eye on it

during the performance investigation. This is a great visual reminder.

Here are some problem and goal statements for consideration:

• Problem: We need a library that supports JSON serialization, but
we don’t know which one will be fast enough.

Goal: Compare two libraries (performance analysis).

We found two good JSON libraries, both of which have all required

features. It’s important to choose the fastest library, but it’s hard

to compare them in the general case. So, we want to check which

library is faster on our typical use cases.

• Problem: Our customers use our competitor’s software because
they think it works faster.

Goal: Our customers should know that we are faster than the
competition (marketing).

In fact, the current level of performance is good enough, but we

need to communicate to customers that we are faster.

Chapter 1 IntroduCIng BenChmarkIng

4

• Problem: We don’t know which design pattern is most efficient in
terms of performance.

Goal: Improve technical expertise of our developers (scientific
interest).

Developers do not always know how to write code effectively.

Sometimes it makes sense to spend time on research and come

up with good practices and design patterns which are optimal for

performance-critical places.

• Problem: Developers are tired of implementing boring business
logic.

Goal: Change the working context and solve a few interesting
problems (fun).

Organize a performance competition to improve code base

performance between developers. The team that achieves the best

level of performance wins.

Such challenges do not necessarily have to solve some of

your business problems, but it can improve morale in your

organization and increase developer productivity after the event.

As you can see, the problem definition can be an abstract sentence that describes

a high-level goal. The next step is to make it more specific by adding the details. These

details can be expressed with the help of metrics.

 Pick Metrics
Let’s say you are not happy with the performance of a piece of your code and you want to

increase its speed twofold.1 What increasing speed means to you may not be the same to

another developer on the team. You can’t work with abstracts. If you want clear problem

statements and goals, you need concise well-defined metrics that correspond to the

1 Of course, it’s not a good problem definition. If you are going to make some optimizations, you
need better reasons than just “unhappiness.” Now we are talking about metrics, so let’s say we
have some well-defined performance requirements and our software doesn’t satisfy our business
goals (in this subsection, it doesn’t matter what kind of goals we have).

Chapter 1 IntroduCIng BenChmarkIng

5

goals. It’s not always apparent which metric to enlist, so let’s discuss some questions that

will help you decide.

• What do I want to improve?

Maybe you want to improve the latency of a single invocation

(a time interval between start and finish) or you want to improve

the throughput of this method (how many times we can call it

per second). People often think that these are interrelated values

and it doesn’t matter which metric is chosen because all of them

correlate to the application performance the same way. However,

that’s not always true. For example, changes in the source code

can improve the latency and reduce the throughput. Examples of

other metrics might be cache misses rate, CPU utilization, the size

of the large object heap (LOH), cold start time, and many others.

Don’t worry if the terms are not familiar; we will cover them in

future chapters.

• Am I sure that I know exactly what I want to improve?

Usually, “No.” You should be flexible and ready to change your

goals after obtaining results. A performance investigation is an

iterative process. On each iteration, you can choose new metrics.

For example, you start with a simple operation latency. After the

first iteration, you discover that the program spends too much

time garbage collecting. Next, you start another metric: memory

traffic (allocated bytes per second). After the second iteration, it

turns out that you allocate a lot of int[] instances with a short

lifetime. The next metric could be an amount of created int

arrays. After some optimizations (e.g., you implement an array

pool and reuse array instances between operations), you may

want to measure the same metric again. Of course, you could use

only the first metric (the operation latency). However, in this case,

you look only at the consequences instead of the original problem.

The overall performance is complicated and depends on many

factors. It can be hard to track how changes in one place affect the

duration of some method. Generally it is easier to track specific

properties of the whole system.

Chapter 1 IntroduCIng BenChmarkIng

6

• What are the target conditions?

Let’s say the chosen metric is the throughput: you want to

handle 10000 operations per second. What kind of throughput is

important for you? Do you want to improve the throughput under

average load or under peak load? Is it a single- or multithreaded

application? What level of concurrency is appropriate for your

situation? How much RAM do you have on the target machine? Is

it important to improve performance in all target environments or

do you want to work under specific conditions?

It’s not always obvious how to choose the right target conditions

and how these conditions affect the performance. Carefully

think about relevant restrictions for your metrics. We will discuss

different restrictions later in this book.

• How should results be interpreted?

A good performance engineer always collects the same metric

several times. On the one hand, it is good because we can check

statistical properties of the metrics. On the other hand, it is bad

because now we have to check these properties. How should we

summarize them? Should we always choose mean? Or median?

Maybe we want to be sure that 95% of our requests can be handled

faster than N milliseconds; in this case, the 95th percentile is

our friend. We will talk a lot about statistics and the importance

of understanding that they are not just about result analysis but

also about desired metrics. Always think about the summarizing

strategy that will be relevant to the original problem.

To sum it up, we can work with different kinds of basic metrics (from latency and

throughput to cache miss rate and CPU utilization) and different conditions (e.g.,

average load vs. under peak load), and summarize them in different ways (e.g., take

mean, median, or 95th percentile). If you are unsure of which to use, just look at the

piece of paper with your problem; the selected metrics should complement your goal

and specify low-level details of the problem. You should have an understanding that if

you improve selected metrics, it will solve your problem and make you, your boss, and

the customers happy.

Once you are satisfied with the metrics, the next step is choosing how to collect them.

Chapter 1 IntroduCIng BenChmarkIng

7

 Select Approaches and Tools
In the modern world, there are many tools, approaches, and methods that provide

performance metrics. Choose the performance analysis that is suitable for your situation

and make sure that the tool you select has the required characteristics: precision of

measurements, portability, the simplicity of use, and so on.

To decide, try to pick the best match to your problem and metrics, weighing some

options to help you decide. So, let’s talk about some of the most popular methods and

corresponding tools.

• Looking at your code

A senior developer with good experience can say a lot about

performance even without measurements. Check the asymptotic

complexity of an algorithm, think about how expensive the API

is, or note an apparently ineffective piece of code. Of course, you

can’t know for sure without measurements, but often you can

solve simple performance puzzles just by looking at your code

with the help of thoughtful analysis. Be careful though, to keep

in mind that personal feelings and intuition can easily deceive

you and even the most experienced developers can get things

wrong. Also keep in mind that technologies change, completely

invalidating previous assumptions. For example, some method

XYZ is superslow, and thus you avoid it for years. Then one day

XYZ is fixed and superfast, but unless you’re made aware of that

somehow, you’re going to continue avoiding it, and be less likely

to discover the fix.

• Profiling

What if you want to optimize your application? Where should

you start? Some programmers start at the first place that looks

“suboptimal”: “I know how to optimize this piece of code, and

I will do it right now!” Usually, such an approach does not work

well. Optimization in a random method may not affect the

performance of the whole application. If this method takes 0.01%

of the total time, you probably will never observe any optimization

effects. Or worse, you can do more harm than good. Trying to

Chapter 1 IntroduCIng BenChmarkIng

8

write “too smart” or fast code can increase code complexity,

introduce new bugs, and just waste time.

To really make a difference, find a place where the application

spends a significant part of its time. The best way to do it is

profiling. Some people add measurements directly in the

application and get some numbers, but that is not profiling.

“Profiling” means that you should take a profiler, attach it to the

application, take a snapshot, and look at the profile. There are

many tools for profiling: we will discuss them in Chapter 6.

The primary requirement here is that it must show the hot

methods (methods that are called frequently) and bottlenecks

of your application and should help you to locate where to start

optimizing your code.

• Monitoring

Sometimes, it is impossible to profile an application on your

local computer; for example, when a performance phenomenon

occurs only in the production environment or only rarely. In this

case, monitoring can help you to find a method with performance

problems. There are different approaches, but most commonly

developers use built-in monitoring logic (e.g., they log important

events with timestamps) or external tools (e.g., based on ETW

[Event Tracing for Windows]). All of these approaches yield

performance data to analyze. Once you have some performance

troubles, you can take this data and try to find the source of this

problem.

• Performance tests

Imagine that you performed some amazing optimizations. Your

application is superfast and you want to maintain that level of

performance. But then somebody (probably you) accidentally

makes some changes that spoil this beautiful situation. It’s a

common practice to write unit tests that ensure the business logic

works fine after any changes in your code base. However, it is

not enough to check only the business logic after your amazing

optimizations. Sometimes it’s a good idea to write special tests

Chapter 1 IntroduCIng BenChmarkIng

9

(so-called performance tests) which check that you have the same

level of performance before and after changes. The performance

tests can be executed on a build server, as part of a continuous

integration (CI) pipeline.

It is not easy to write such tests, as it usually requires the

same server environment (hardware + software) for all the

benchmarking configurations. If the performance is very

important for you, it makes sense to invest some time on the

infrastructure setup and development of performance tests.

We will discuss how to do it correctly in Chapter 5.

• Benchmarking

Ask five different people what a benchmark is and you will get

five different answers. For our purposes, it’s a program that

measures some performance properties of another program or

piece of code. Consider a benchmark as a scientific experiment: it

should provide some results that allow access to new information

about our program, a .NET runtime, an operating system,

modern hardware, and the world around us. Ideally, results of

such an experiment should be repeatable and sharable with our

colleagues, and they should also allow us to make a decision

based on the new information.

 Perform an Experiment to Get the Results
Now it’s time for an experiment. At the end of the experiment (or a series of

experiments), you will obtain results in the form of numbers, formulas, tables, plots,

snapshots, and so on. A simple experiment may use one approach, while more

complicated cases may call for more. Here is an example. You start with monitoring,

which helps you find a slow user scenario. The profiling will help you to localize hot

methods, and from there you compose several benchmarks to find the fastest way to

implement the feature. Performance tests will help keep the performance on the same

level in the future. As you can see, there is no silver bullet; all of the approaches have

a purpose and use. The trick is to always keep the problems and metrics front in mind

when you do this investigation.

Chapter 1 IntroduCIng BenChmarkIng

10

 Complete the Analysis and Draw Conclusions
Analysis is the most important part of any performance investigation. Once you get

the numbers, you have to explain them, and be sure that your explanation is correct.

A common mistake would be to say something like the following: “Profiler shows that

method A is faster than method B. Let’s use A everywhere instead of B!” Here is a better

version of the conclusion: “Profiler shows that method A is faster than method B. We

have an explanation for this fact: method A is optimized for the input data patterns that

we used in the experiment. Thus, we understand why we got such results in the profiler

sessions. However, we should continue the research and check other data patterns

before we decide which method should be used in the production code. Probably,

method A can be dramatically slower than method B in some corner cases.”

A lot of performance phenomena are caused by mistakes in the measurement

methodology. Always strive for a credible theory that explains each number from the

obtained results. Without such theory, you can make a wrong decision and spoil the

performance. A conclusion should be drawn only after careful analysis.

 Benchmarking Goals
So now that we’ve covered the basic plan of a performance investigation, let’s turn the

focus to benchmarking and learn the important aspects of benchmarking step by step.

Let’s start from the beginning with benchmarking goals (and corresponding problems).

Do you remember the first thing to do at the beginning of any performance

investigation? You should define a problem. Understand your goal and why it’s

important to solve this problem.

Benchmarking is not a universal approach that is useful in any performance

investigation. Benchmarks will not optimize your code for you, nor do they solve all your

performance problems. They just produce a set of numbers.

So before you begin, be sure that you need these numbers and understand why you

need them. Lots and lots of people just start to benchmark something without an idea

how to make conclusions based on the obtained data. Benchmarking is a very powerful

approach, but only if you understand when and why you should apply it.

So moving on, let’s learn about some of common benchmarking goals.

Chapter 1 IntroduCIng BenChmarkIng

11

 Performance Analysis
One of the most popular benchmarking goals is performance analysis. It is critical if you

care about the speed of your software and can help you with the following problems and

scenarios:

• Comparing libraries/frameworks/algorithms

It’s common to want to use existing solutions for your problem,

selecting the fastest one (if it satisfies your basic requirements).

Sometimes it makes sense to check carefully which one works

the fastest and say something like “I did a few dry runs and it

seems that the second library is the fastest one.” However, it’s

never enough to make only a few measurements. If choosing the

fastest solution is critical, then you must do the legwork and write

benchmarks that fairly compare alternatives in various states and

conditions and provide a complete performance picture. Good

measurements always provide a strong argument to convince your

colleagues, an added bonus!

• Tuning parameters

Programs contain many hardcoded constants, including some

that can affect your performance, such as the size of a cache or the

degree of parallelism. It’s hard to know in advance which values

are best for your application, but benchmarking can fine-tune such

parameters in order to achieve the best possible performance.

• Checking capabilities

Imagine looking for a suitable server for your web application.

You want it to be as cheap as possible, but it also should able to

process N requests per second (RPS). It would be useful to have a

program that can measure the maximum RPS of your application

on different hardware.

• Checking impact of a change

You implemented a great feature that should make users happy,

but it’s time-consuming, and you are worried about how it affects

the overall performance of the application. In order to find out,

Chapter 1 IntroduCIng BenChmarkIng

12

you will need to measure some performance metrics before and

after the feature was included in the product.

• Proof-of-concept

You have a brilliant idea to implement, but it requires a lot of

changes, and you are unsure of how it will impact the level of

performance. In this case, you can try to implement the idea in the

“quick and dirty” style using measurements.

• Regression analysis

You want to monitor how the performance of a feature is changing

from change to change, so if you hear complaints like “It worked

much faster in the previous release,” you will be able to check

if that’s true or not. Regression analysis can be implemented

via performance tests, but benchmarking is also an acceptable

approach here.

Thus, performance analysis is a useful approach that allows solving a lot of different

problems. However, it’s not the only possible benchmarking goal.

 Benchmarks as a Marketing Tool
Marketing, sales, and others really like to publish articles or blog posts that promote how

fast a product is, and a good performance investigation report can do just that. While we

programmers hyperfocus on source code and the technical aspects of the development

process, we should be open to the idea that marketing is a legitimate and important

goal. Writing performance reports based on benchmark results can be a useful activity

in new product development. Unlike your benchmarking goals, when you write a

performance report for others, you are summarizing all your performance experiments.

You draw plots, make tables, and vet every aspect of your benchmark. You think about

questions people might ask about your research, trying to answer them in advance, and

you think about important facts to share. When we are talking about performance to

marketing, there is no such thing as “too many measurements.” A good performance

report can make your marketing department look good, making everyone happy. It is

also necessary to say a few words about black marketing, the situation when somebody

Chapter 1 IntroduCIng BenChmarkIng

13

presents benchmark results that are known (to the presenter) to be false. It’s not ethical

to do such things, but worth knowing about. There are several kinds of “black marketing”

benchmarking:

• Yellow headers

Taking some measurements and making unfounded claims, e.g.

“our library is the fastest tool.” A lot of people still believe that if

something was posted on the Internet, it’s obviously true, even

without any actual measurements.

• Unreproducible research

Adding some highly nonreproducible technical details with

source code, tables, and plots. But no one can build the source,

run your tools, or find the specified hardware because it’s hard,

and key implementation details are missing in the description.

• Selected measurements

Picking and choosing measurements. For example, you can

perform 1000 performance measurements for your software and

the same for your competitor’s software. But then you select the

best results for your software and the worst for your competitors.

Technically, you are presenting real results, which can be

reproduced, but you are providing only a small subset of the true

performance picture.

• Specific environment

Finding a set of parameters that benefits you. For example, if you

know that the competitor’s software works fast only on computers

with high amounts of RAM and an SSD, then you pick a machine

with little RAM and an HDD. If you know that your software shows

good results only on Linux (and poor results on Windows), then

you choose the Linux environment. It’s also usually possible to

find a particular input data that will be profitable only for you.

Such results will be correct, and it will be 100% reproducible, but it

is biased.

Chapter 1 IntroduCIng BenChmarkIng

14

• Selected scenarios

Presenting only selected scenarios of benchmarking. You might do

honest benchmarking comparing your solution to a competitor’s

in five different scenarios. Imagine that your solution is better only

in one of these scenarios. In this case, you can present only this

scenario and say that your solution is always faster.

In summary, I think we all can agree that black marketing practices are unethical

and, worse, promote bad benchmarking practices. Meanwhile, “white” marketing

is a good tool to share your performance results. If you want to distinguish between

good and bad performance research, you need to understand it. We will discuss some

important techniques in Chapters 4 and 5.

 Scientific Interest
Benchmarks can help you improve your developer skills and get in-depth knowledge

of software internals. It helps you to understand the layers of your program, including

central organization principles of modern runtimes, databases, I/O storages, CPUs,

and so on. When you read abstract theory about how hardware is organized, it’s hard

to understand all the information and context. In this book, we will mainly discuss

academic benchmarks, small pieces of code which show something important. While

not useful on their own, if you want to benchmark big complex systems, first you must

learn how to benchmark at the granular level.

 Benchmarking for Fun
Many of my friends like puzzle games with riddles to solve. My favorite puzzles are

benchmarks. If you do a lot of benchmarking, you will often meet measurement results

that you can’t explain from the first attempt. You then have to locate the bottleneck

and benchmark again. On occasion, I have spent months trying to explain tricky code,

making it especially sweet when I find a solution.

Perhaps you’ve heard of “performance golf.”2 You are given a simple problem that

is easily solved, but you have to implement the fastest and the most efficient solution.

2 For example, see https://mattwarren.org/2016/05/16/adventures-in-benchmarking-
performance-golf/

Chapter 1 IntroduCIng BenChmarkIng

https://mattwarren.org/2016/05/16/adventures-in-benchmarking-performance-golf/
https://mattwarren.org/2016/05/16/adventures-in-benchmarking-performance-golf/

15

If your solution is faster by a few nanoseconds than a friend’s, you need benchmarking

to show the difference. Note that it’s important to know how to competently play with

input data and environments (your solution could be the fastest only under specific

conditions). Benchmarking for fun is a great way to unwind after a week of routine.

Now that you are familiar with the most common benchmarking goals, let’s take a

look at the benchmark requirements that will help us to achieve those goals.

 Benchmark Requirements
Generally, any program that measures the duration of an operation can be a benchmark.

However, a good benchmark should satisfy certain conditions. While there’s no official

list of benchmark requirements, the following is a list of useful recommendations.

 Repeatability
Repeatability is probably the most important requirement. If you run a benchmark twice,

you should get the same results. If you run a benchmark thrice, you should get the same

results. If you run a benchmark 1000 times, you should get the same results. Of course, it

is impossible to get the exactly same result each time, there is always a difference between

measurements. But this difference should not be significant; all measurements should

be close enough.

Note that the same code can work for various periods of time because of its nature

(especially if it involves some I/O or network operations). A good benchmark is more

than just a single experiment or a single number; it’s a distribution of numbers. You

can have a complicated measurement distribution with several local maximums as a

benchmark output.

Even if the measured code is fixed and you cannot change it, you still have control

over how to run it vis-à-vis multiple iterations, initializing the environment, or preparing

specific input data. You can design a benchmark in multiple ways, but it must have

repeatable output as a result.

Sometimes, it is impossible to attain repeatability, but that is the goal. In this book,

we will delve into practices and approaches that will help you to stabilize your results.

Even if your benchmark is consistently repeatable, it doesn’t mean that everything is

perfect. There are other requirements to be satisfied.

Chapter 1 IntroduCIng BenChmarkIng

16

 Verifiability and Portability
Good performance research does not happen in a vacuum. If you want to share your

performance results with others, make sure that they will be able to run it in their own

environment. Enlist your friends, colleagues, or people from the community to help

you to improve your results; just be sure to prepare the corresponding source code and

ensure that the benchmark is verifiable in another environment.

Non-Invading Principle
During benchmarking, you can often get the observer effect, that is, the mere act of

observation can affect an outcome. Here are two popular examples from physics, from

which the term came:

• Electric circuit

When you want to measure voltage in an electric circuit, you

connect a voltmeter to the circuit, but then you’ve made some

changes in the circuit that can affect the original voltage. Usually,

the voltage delta is less than the measurement error, so it’s not a

problem.

• Mercury-in-glass thermometer

When you are using a classic mercury-in-glass thermometer,

it absorbs some thermal energy. In a perfect scenario, the

absorption, which affects the temperature of the body, would also

be measured.

We have pretty similar examples in the world of performance measurements:

• Looking for a hot method

You want to know why a program is slow or where to find a

hotspot, but you don’t have an access to a profiler or other

measurement tools. So you decide to add logging and print to the

current timestamp to a log file at the beginning and at the end

of each suspicious method. Unfortunately, the cost of the I/O

operation is high, and your small logging logic can easily cause

a bottleneck. It’s impossible to find the original hotspot now

because you spent 90% of the time writing logs.

Chapter 1 IntroduCIng BenChmarkIng

17

• Using a profiler

Use of a profiler can impact a situation. When you work with

another process, you make it slower. In some profiler modes, the

impact can be small (e.g., in the sampling mode), but in others, it

can be huge. For example, tracing can easily double the original

time. We will discuss sampling, tracing, and other profiler modes

in Chapter 6.

The takeaway here is that when you measure software performance, the observer

effect is usually present, so do keep it in mind.

 Acceptable Level of Precision
Once I investigated a strange performance degradation. After some changes in Rider,

a test that covers the “Find Usages,” the feature went from 10 seconds to 20. We did

not make any significant changes, so it looked like a simple bug. It was easy to find a

superslow method in my first profiling session. A piece of thoughtlessly copy-pasted

code was the culprit. The bug is fixed, right? But before pushing it to a remote repository,

I wanted to make sure that the feature works fast again. What measurement tool do

you think I used? I used a stopwatch! Not the System.Diagnostics.Stopwatch class,

but a simple stopwatch embedded in my old-school Casio 3298/F-105 wristwatch. This

tool has a really poor precision. It showed ~10 seconds, but it could be 9 or 11 seconds.

However, the accuracy of my stopwatch was enough to detect the difference between 10

and 20 seconds.

For every situation, there are tools that will solve problems, but none are good

enough for all kinds of situations. My watch solved the problem because the measured

operation took about 10 seconds and I did not care about a 1-second error. When

an operation takes 100 milliseconds, it would obviously be hard to measure it with

a physical stopwatch; we need a timestamping API. When an operation takes 100

microseconds, we need a high-resolution timestamping API. When an operation takes

100 nanoseconds, even high-resolution timestamping API is not enough; additional

actions (like repeating the operation several times) are needed to achieve a good

precision level.

Remember that operation duration is not a fixed number. If you measure an

operation 10 times, you will get 10 different numbers. In modern software/hardware,

noise sources can spoil the measurements, increase the variance, and ultimately affect

final accuracy.

Chapter 1 IntroduCIng BenChmarkIng

18

Unfortunately, there is no such thing as the perfect accuracy: you will always have

measurement errors. The important thing here is to know your precision level and to be

able to verify that the level achieved is enough for solving your original problem.

 Honesty
In a perfect world, every benchmark should be honest. I always encourage developers

to present full actual data. In the benchmarking world, it is easy to fool yourself

accidentally. If you get some strange numbers, there is no need to hide them. Share them

and confess that you don’t know why. We can’t help each other improve our benchmarks

if all our reports contain only “perfect” results.

 Performance Spaces
When we talk about performance, we are not talking about a single number. A single

measured time interval is usually not enough to draw a meaningful conclusion. In any

performance investigation, we are working with a multidimensional performance space.

It is important to remember that our subject of study is a space with any number of

dimensions, dependent on many variables.

 Basics
What do we mean by the “multidimensional performance space” term? Let’s start

with an example. We will write a web site for a bookshop. In particular, we are going

to implement a page which shows all books in a category (e.g., all fantasy books). For

simplification, we say that processing of a single book takes 10 milliseconds (10 ms) and

all other things (like networking, working with a database, HTML rendering, etc.) are

negligibly fast. How much time does it take to show this page? Obviously, it depends

on the number of books in the category. We need 150 ms for 15 books and 420 ms

for 42 books. In the general case, we need 10*N ms for N books This is a very simple

one-dimensional space that can be expressed by a linear model. The only dimension

here is the number of books N. In each point of this one-dimensional space, we have

a performance number: how much time it takes to show the page. This space can be

presented as a two-dimensional plot (see Figure 1-1).

Chapter 1 IntroduCIng BenChmarkIng

19

Now let’s say that processing a single book takes X milliseconds (instead of constant

10 ms). Thus, our space becomes two-dimensional. The dimensions are the number of

books N and the book processing time X. The total time can be calculated with a simple

formula: Time = N ∗ X (the plot is shown in Figure 1-2).

Figure 1-1. Example 1 of a simple performance space

Figure 1-2. Example 2 of a simple performance space

Chapter 1 IntroduCIng BenChmarkIng

20

Of course, in real life, the total time is not a constant even if all parameters are

known. For example, we can implement a caching strategy for our page: sometimes,

the page is already in the cache, and it always takes a constant time (e.g., 5 ms); other

times, it’s not in the cache, so it takes N ∗ X milliseconds. Thus, in each point of our two-

dimensional space, we have several performance values instead of a single one.

This was a simple example. However, I hope that you understand the concept

of “multidimensional performance space.” In real life, we have hundreds (or even

thousands) of dimensions. It’s really hard to work with such performance spaces, so we

need a performance model that describes the kind of factors we want to consider.

 Performance Model
It’s always hard to speak about “performance” and “speed” of programs, because

different people understand these words in different ways. Sometimes, I see blog posts

with titles like “Why C++ is faster than C#” or “Why C# is faster than C++.” What do you

think: which title is correct? The answer: both titles are wrong because a programming

language does not have properties like rapidity, quickness, performance, and so on.

However, in everyday speech, you could say to your colleague something like “I think

that we should use ‘X’ language instead of ‘Y’ language for this project because it will be

faster.” It’s fine if you both understand the inner meaning of this phrase, and you are talking

about specific language toolchains (particular version of runtimes/compilers/etc.), a

specific environment (like operating system and hardware), and a specific goal (to develop

a specific project with known requirements). However, this phrase is wrong in general

because a programming language is an abstraction; there is no performance of language.

Thus, we need a performance model. This is a model that includes all the factors

important for performance: source code, environment, input data, and the performance

distribution.

 Source Code
The source code is the first thing that you should consider; it is a start point of your

performance investigation. Also, at this point, you could start to talk about performance.

For example, you could perform asymptotic analysis and describe the complexity of your

algorithm with the help of the big O notation.3

3 We will discuss asymptotic analysis and the big O notation in Chapter 4.

Chapter 1 IntroduCIng BenChmarkIng

21

Let’s say that you have two algorithms with complexities O(N) and O(N^2).

Sometimes, it will be enough to choose the first algorithm without additional

performance measurements. However, you should keep in mind that the O(N) algorithm

is not always faster than O(N^2): there are many cases when you have the opposite

situations for small values of N. You should understand that this notation describes only

the limiting behavior and usually works fine only for large values.

Sometimes it is hard to calculate the computational complexity of an algorithm

(especially if it is not a traditional academic algorithm) even with the help of the

amortized analysis (which we also will discuss later). For example, if an algorithm

(which is written in C#) allocates many objects, there will be an implicit performance

degradation because of the garbage collector (GC).

Also, the classic asymptotic analysis is an academic and fundamental activity; it

does not respect features of modern hardware. For example, you could have CPU cache–

friendly and –unfriendly algorithms with the same complexity but with entirely different

performance characteristics.

All of the preceding doesn’t mean that you should not try to analyze performance only

based on source code. An experienced developer often can make many correct performance

assumptions at a quick glance at the code. However, remember that source code is still

an abstraction. Strictly speaking, we cannot discuss the speed of raw source code without

knowledge of how we are going to run it. The next thing that we need is an environment.

 Environment
Environment is the set of external conditions that affect the program execution.

Let’s say we wrote some C# code. What’s next? Further, we compile it with a

C# compiler and run it on a .NET runtime that uses a JIT compiler to translate the

Intermediate Language (IL) code to native instructions of a processor architecture.4 It will

be executed on a hardware with some amount of RAM and some networking throughput.

Did you notice how many unknown factors there are here? In real life, your program

always runs in a particular environment. You can use the x86 platform, the x64 platform,

or the ARM platform. You can use the LegacyJIT or the new modern RyuJIT. You can use

different target .NET frameworks or Common Language Runtime (CLR) versions. You

can run your benchmark with .NET Framework, .NET Core, or Mono.

4 We will discuss all these terms in Chapter 3.

Chapter 1 IntroduCIng BenChmarkIng

22

Don’t extrapolate benchmark results of a single environment to the general case.

For example, if you switch LegacyJIT to RyuJIT, it could significantly affect the results.

LegacyJIT and RyuJIT use different logic for performing the most optimizations (it is

hard to say that one is better than another; they are just different). If you developed a

.NET application for Windows and .NET Framework and suddenly decided to make it

cross-platform and run it on Linux with the help of Mono or .NET Core, many surprises

are waiting for you!

Of course, it is impossible to check all the possible environments. Usually, you

are working with a single environment which is the default for your computer. When

users find a bug, you might hear, “it works on my machine.” When users complain

that software works slowly, you might hear “it works fast on my machine.” Sometimes

you check to see how it works on a few other environments (e.g., check x86 vs. x64 or

check different operating systems). However, there are many, many configurations that

will never be checked. Only a deep understanding of modern software and hardware

internals can help you to guess how it will work in different production environments.

We will discuss environments in detail in Chapter 3.

It’s great if you are able to check how the program works in all the target

environments. However, there is one more thing which affects performance: input data.

 Input Data
Input data is the set of variables that is processed by the program. (it may be user input,

the content of a text file, method arguments, and so on).

Let’s say we wrote some C# code and chose our target environment. Can we talk

about performance now or compare two different algorithms to check which one is

faster? The answer is no because we can observe different algorithm speeds for various

input data.

For example, we want to compare two regular expression engines. How can we do

it? We might search something in a text with the help of a regular expression. However,

which text and expression should we use? Moreover, how many text-expression pairs

should we use? If we check only one pair and it shows that engine A is faster than engine

B, it does not mean that it is true in the general case. If there are two implementations, it

is a typical situation when one implementation works faster on one kind of input data,

Chapter 1 IntroduCIng BenChmarkIng

23

and another implementation is faster on another kind. It is nice to have a reference input

set that allows comparing algorithms. However, it is difficult to create such a set: you

should check different typical kinds of inputs and corner cases.

If you want to create a good reference set, you need to understand what’s going on

under the hood of your code. If you are working with a data structure, check different

memory access patterns such as sequential reads/writes, random reads/writes, and

some regular patterns. If you have a branch inside your algorithms (just an if operator),

check different patterns for branch condition values: condition is always true, condition

is random, condition values alternate, and so on (branch predictors on modern

hardware do internal magic that could significantly affect your performance).

 Distribution
Performance distribution is the set of all measured metrics during benchmarking.

Let’s say we wrote some C# code, chose the target environment, and defined

a reference input set. Could we now compare two algorithms and state, “The first

algorithm is five times faster than the second one”? The answer is still no. If we run the

same code in the same environment on the same data twice, we won’t observe the same

performance numbers. There is always a difference between measurements. Sometimes

it is minor, and we overlook it. However, in real life, we cannot describe performance

with a single number: it is always a distribution. In a simple case, the distribution looks

like a normal one, and we can use only average values to compare our algorithms.

However, you could also have many “features” that complicate the analysis. For example,

the variance could be colossal, or your distribution could have several local maximums

(a typical situation for big computer systems). It is really hard to compare algorithms in

such cases and make useful conclusions.

For example, look at the six distributions in Figure 1-3. All of them have the same

mean value: 100.

Chapter 1 IntroduCIng BenChmarkIng

24

You may note that

• (a) and (d) are uniform distributions

• (b) and (e) are normal distributions

• (d) and (e) have much bigger variance than (a) and (b)

• (c) has two local maximums (50 and 150) and doesn’t contain any

values equal to 100

• (f) has three local maximums (50, 100, and 150) and contains many

values equal to 100

It’s very important to distinguish between different kinds of distributions because if

you only look at the average value, you may not notice the difference between them.

When you are working with complex logic, it’s typical to have several local

maximums and big standard deviation. Fortunately, in simple cases you can usually

ignore the distributions because the average of all measurements is enough for basic

Figure 1-3. Six different distributions with the same mean

Chapter 1 IntroduCIng BenChmarkIng

25

performance analysis. However, it does not hurt to occasionally check the statistical

properties of your distributions.

Now that we have discussed the important parts of a performance model, it’s time to

put them together.

 The Space
Finally, we can talk about the performance space, which helps combine source

code, environment, and input data, and analyze how it affects the performance

distribution. Mathematically speaking, we have a function from the Cartesian product of

<SourceCode>, <Environment>, and <InputData> to <Distribution>:

SourceCode Environment InputData Distribution´ ´ .

It means that for each situation when we execute the source code in an

environment on the input data, we get a distribution of measurements and a function

(in a mathematical sense) with three arguments (<SourceCode>, <Environment>,

<InputData>) that returns a single value (<Distribution>). We say that such a function

defines a performance space. When we do a performance investigation, we try to

understand the internal structure of a space based on a limited set of benchmarks. In

this book, we will discuss which factors affect performance, how they do it, and what you

need to keep in mind while benchmarking.

Even if you build such functions and they yield a huge number of performance

measurements, you still have to analyze them. So, let’s talk about the performance

analysis.

 Analysis
The analysis is the most important step in any performance investigation because

experiment results without analysis is just a set of useless raw numbers. Let’s talk about

what to do to in order get the maximum profit from raw performance data.

Chapter 1 IntroduCIng BenChmarkIng

26

The Bad, the Ugly and the Good
I sometimes refer to benchmarks as “bad” but honestly, they cannot be good or bad

(but they can be ugly). However, since we use these words in everyday life and

understand the implications, let’s discuss them in those terms.

The Bad. A bad benchmark has unreliable, unclear results. If you write a program

that prints some performance numbers, they always mean something, but perhaps not

what you expect. A few examples:

• You want to measure the performance of your hard drive, but your

benchmark measures performance of a file system.

• You want to measure how much time it takes to render a web page,

but your benchmark measures performance of a database.

• You want to measure how fast a CPU can process arithmetical

expressions, but your benchmark measures how effectively your

compiler optimizes these expressions.

It is bad when benchmarks don’t give you reliable information about the

performance space. If you wrote “an awful benchmark,” you’re still able to analyze it the

right way and explain why you have such numbers. If you wrote “the best benchmark

in the world,” you’re still able to make a mistake in analysis. If you are using a super-

reliable benchmarking framework, it does not mean that you will come up with the right

conclusions. If you wrote a poor benchmark in ten lines based on a simple loop with the

help of DateTime.Now, it does not mean that your results are wrong: if you understand

extremely well what’s going on under the hood of your program, you can get much useful

information from the obtained data.

The Ugly. An ugly benchmark gives results that are hard to verify. It is not an

indication of right or wrong, it just means that we may not be able to trust it. If you ignore

important good practices of benchmarking, you can’t be sure of getting correct results.

For example, imagine a poorly written piece of code. No one understands how

it works, but it does, and it solves a problem. You can ruminate all day about terrible

formatting, confusing variable names, and inconsistent style, but the program still

works properly. The same holds true in the benchmark world: a really ugly benchmark

can produce correct results if you can analyze it the right way. So while you can’t tell

someone that their results are wrong because his/her benchmark is awful, skips the

warm-up stage, does an insufficient number of iterations, and so on, you can call out

results as unreliable and request further analysis.

Chapter 1 IntroduCIng BenChmarkIng

27

The Good. A good benchmark is a benchmark meets the following criteria:

• The source code looks trustable. It follows common benchmarking

practices and avoids common pitfalls that can easily spoil results.

• The results are correct. It measures precisely what it is designed to

measure.

• Conclusions are presented. It explains context for the results and

provides new knowledge about the performance space (in lieu of raw

performance numbers).

• The results are explained and verified. Supportive information about

the results and why they can be trusted is offered.

Good performance investigation always includes analysis. Raw measurement

numbers are not enough. The main result is a conclusion drawn based on analysis of the

numbers.

On the Internet, you can find Stopwatch-based code snippets containing sample of

output without comments. (“Look at this awesome benchmark” does not count.) If you

have performance numbers, you have to interpret them and explain why you have these

exact numbers. You should explain why we can extrapolate our conclusions and use it in

other programs (remember how complicated the performance spaces could be).

Of course, that’s not enough. A benchmark should always include the verification

stage when trying to prove that results are correct.

 Find Your Bottleneck
When you analyze benchmark results, always ask why a benchmark doesn’t work faster.

A benchmark usually has a limiting factor or a “bottleneck” that is important to identify

for the following reasons:

• If you aren’t aware of the bottleneck, it is challenging to explain the

benchmark result.

• Only knowledge of the limiting factor allows verification of the set

of metrics. Are you sure that your metrics fit your problem? This is

a typical situation when a developer is trying to measure the total

execution time, but it’s better to measure specific things like a cache-

miss count or memory traffic.

Chapter 1 IntroduCIng BenChmarkIng

28

• Understanding the bottleneck will allow you to design a better

benchmark and explore the performance space in the right direction.

• A lot of developers use benchmarking as a first stage trying to

optimize something, but if you don’t know the limiting factor, you

won’t know how to optimize.

The Pareto Principle (also called the 80/20 Rule) describes uneven distribution. For

example, 20% of a given effort produces 80% of the results, 20% of the hazards causes 80%

of the injuries, 20% of the bugs cause 80% of the crashes, and so on. We can apply the

Pareto Principle to the bottlenecks (let’s call it The Bottlenecks Rule5) and say that 20% of the

code consumes 80% of the resource. If we go deeper and try to find the problem using this

20%, we can apply the Pareto Principle again and get the second- order Pareto Principle

(or just Pareto2). In this case, we are talking about 4% of the code (4% = 20% · 20%) and

64% of the resource (64% = 80% · 80%). In huge applications with a complex multilevel

architecture, we can go even deeper and formulate the third-order Pareto Principle (or just

Pareto3). In this case, we get 0.8% of the code (0.8% = 20% · 20% · 20%) and 51.2% of the

resource (51.2% = 80% · 80% · 80%). To summarize:

The Bottlenecks Rule:

• Pareto1: 20% of the code consumes 80% of the resource

• Pareto2: 4% of the code consumes 64% of the resource

• Pareto3: 0.8% of the code consumes 51.2% of the resource

Here we use “the resource” as an abstract term, but it’s important to know what

kind of resources limit performance and how they correspond to the different kinds

of bottlenecks. In the book, we will learn that each kind has its own set of pitfalls and

limiting factors to keep in mind (see Chapters 7 and 8). Understanding that allows you to

focus on more important things for your particular situation.

 Statistics
I wish that each benchmark could print the same number each time, but reality is that

performance measurements have crazy and scary distributions. Of course, it depends on

5 The Bottlenecks Rule was introduced by Federico Lois. You can watch his great talk about it and
other performance topics on YouTube: www.youtube.com/watch?v=7GTpwgsmHgU

Chapter 1 IntroduCIng BenChmarkIng

https://www.youtube.com/watch?v=7GTpwgsHgU

29

what kind of metric you choose, but you should be ready to get a distribution of a strange

form (especially if you measure wall clock time). If you want to analyze benchmark

results properly, you have to know basic concepts of statistics such as the difference

between mean and median, along with the meaning of words like “outlier,” “standard

error,” and “percentile.” It’s also good to know about the Central Limit Theorem and

multimodal distributions. Big bonus points if you know how to do significance tests,

feel comfortable when someone says “Null hypothesis,” and can draw beautiful and

incomprehensible statistical plots. Don’t worry if you don’t know all this stuff; we will

discuss all of it in Chapter 4.

I hope now you understand why it’s so important to spend some time on analysis.

Now let’s summarize what we have learned in this chapter.

 Summary
In this chapter, you were briefly introduced to the main topics that are important for any

developer who wants to write benchmarks, including the following:

• Good performance investigation and the steps it entails.

• Typical benchmarking goals and how can they help us make better

software and improve our skills.

• Common benchmarking requirements and the difference between

good and bad benchmarks.

• Performance spaces and why it’s important to look at the source

code, environments, and input data.

• Why the analysis is so important and how to make good conclusions.

In the subsequent chapters, we will dive into these topics in detail.

Chapter 1 IntroduCIng BenChmarkIng

31
© Andrey Akinshin 2019
A. Akinshin, Pro .NET Benchmarking, https://doi.org/10.1007/978-1-4842-4941-3_2

CHAPTER 2

Common Benchmarking
Pitfalls

If you have spent less than a week studying a benchmark result, it is
probably wrong.

— Brendan Gregg, author of Systems Performance:
Enterprise and the Cloud, Prentice Hall, 2013

In this chapter, we will discuss the most common mistakes that people make when they

try to measure performance. If you want to write benchmarks, you have to accept the fact

that most of the time you will be wrong. Unfortunately, there is no universally reliable

way to verify that you get the performance metrics you wanted to get. There are many

pitfalls on different levels: C# compiler, .NET runtime, CPU, and so on. We will also learn

some approaches and techniques to help you to write reliable and correct benchmarks.

Most pitfalls are especially painful for microbenchmarks with very short durations

(such methods can take milliseconds, microseconds, or even nanoseconds). The pitfalls

that we are going to discuss are relevant not only to microbenchmarks, but also to all

other kinds of benchmarks. However, we will focus mainly on microbenchmarks for the

following reasons:

 1. The simplest microbenchmarks contain only a few lines of code.

It usually takes less than one minute to understand what’s going

on in each example. However, simplicity is deceptive. You will see

how hard it is to benchmark even very simple pieces of code.

 2. Microbenchmarks are usually the first step in the world of

benchmarking that developers usually take. If you want to write

good real-world benchmarks, you should learn how to write

32

microbenchmarks. The basic benchmarking routine is the

same for both cases, and it is much easier to learn it on smaller

examples.

In this chapter, we will look at some of the most common mistakes that people

usually make during microbenchmarking. In each example, you will find “A bad

benchmark” subsection. This will describe a benchmark that looks fine to some

developers (especially to people who don’t have any benchmarking experience) but

produces wrong results. After that, “A better benchmark” will be presented. It’s usually

still not a perfect benchmark, and it still has some issues, but it shows the right way to

improve your benchmarks. We can say that if “a bad benchmark” contains N mistakes,

“a better benchmark” contains at most N-1 mistakes. I hope it will be a nice illustration

of how to fix one of these mistakes.

One more thing: if you want to get not only knowledge but also some benchmarking

skills, you should not mindlessly flip through examples. Try each example on your own

computer. Play with it: check different environments or change something in the code.

Look at the results and try to explain them yourself before you read the explanation in

the book. You get benchmarking skills only if you get enough benchmarking experience.

 General Pitfalls
We will start with the “General Pitfalls.” All the examples will be presented in C#, but

corresponding pitfalls are common not only for .NET, but for all languages and runtimes.

 Inaccurate Timestamping
Before we start learning the pitfalls, let’s talk about benchmarking basics. The first thing

that you should learn here is timestamping.

How is the time of an operation measured? This question may seem obvious. We

should take a timestamp before the operation (it’s like asking the computer “What time is

it now?”), execute the operation, and take another timestamp. Then, we subtract the first

timestamp from the second one, and we get the elapsed time! The pseudocode may

look like this (we use var here because the timestamp type depends on the used API):

Chapter 2 Common BenChmarking pitfalls

33

var startTimestamp = GetTimestamp();

// Do something

var endTimestamp = GetTimestamp();

var totalTime = endTimestamp - startTimestamp;

But how exactly should we take these timestamps? The .NET Framework provides

several APIs for timestamping. A lot of developers who are just starting to write

benchmarks use DateTime.Now:

DateTime start = DateTime.Now;

// Do something

DateTime end = DateTime.Now;

TimeSpan elapsed = end - start;

And it works fine for some scenarios. However, DateTime.Now has many drawbacks:

• There are a lot of time-related surprises that can spoil your

benchmark. For example, the current time can be suddenly changed

because of daylight saving time. A possible solution is using

DateTime.UtcNow instead of DateTime.Now. Also, DateTime.UtcNow

has lower overhead because it doesn’t have to do any calculations

with time zones.

• The current time can be accidentally synchronized with the Internet.

The synchronization happens pretty often and may easily introduce a

few-second error.

• The accuracy of DateTime.Now and DateTime.UtcNow is poor. If your

benchmark takes minutes or hours, it could be OK, but it’s absolutely

unacceptable if your method takes less than 1 millisecond.

There are many other time-related problems; we will discuss them in Chapter 9.

Fortunately, we have another API called System.Diagnostics.Stopwatch. This class

is designed to measure elapsed time with the best possible resolution. This is the best

solution if we are talking about managed API in the .NET Framework. A usage example:

Stopwatch stopwatch = Stopwatch.StartNew();

// Do something

stopwatch.Stop();

TimeSpan elapsedTime = stopwatch.Elapsed;

Chapter 2 Common BenChmarking pitfalls

34

Using the StartNew() and Stop() methods is the most convenient way to use

Stopwatch. It’s also good to know that there is no magic under the hood: these methods

just call Stopwatch.GetTimestamp() twice and calculate the difference. GetTimestamp()

returns the current number of ticks (tick is an abstract time unit used by Stopwatch

and other timestamping APIs), which can be converted to real time with the help of the

Stopwatch.Frequency field.1 Usually, you don’t need to use this, but the raw tick values

can be useful when you do microbenchmarking (read more about it in Chapter 9).

A usage example:

long startTicks = Stopwatch.GetTimestamp();

// Do something

long endTicks = Stopwatch.GetTimestamp();

double elapsedSeconds = (endTicks - startTicks)

 * 1.0 / Stopwatch.Frequency;

There are also some troubles with Stopwatch (especially on old hardware), but it’s

still the best available timestamping API. When you are writing a microbenchmark,

it’s nice to know how it works internally. You should be able to answer the following

questions:

• What is the accuracy/precision/resolution of the chosen API?

• What are the possible values for the difference between two

sequential timestamps? Could it be equal to zero? Could it be much

bigger than the resolution? Could it be less than zero?

• What is the timestamping latency on your operating system? (How

much time does it take to get a single timestamp?)

All of these topics and many implementation details are covered in Chapter 9. It’s OK

if you don’t remember some tricky facts about Stopwatch internals, but you should be

able to answer the preceding questions for your target environment.

OK, now it’s time for examples!

1 We should divide the tick delta by frequency to get the number of seconds. Both values are
integer numbers, but the result should be a fractional number. So we have to convert the delta
to double before performing the division operation. My favorite way to do this is multiplying the
numerator by 1.0.

Chapter 2 Common BenChmarking pitfalls

35

 A bad benchmark

Let’s say we want to measure how much it takes to sort a list with 10000 elements. Here is

a bad DateTime-based benchmark:

var list = Enumerable.Range(0, 10000).ToList();

DateTime start = DateTime.Now;

list.Sort();

DateTime end = DateTime.Now;

TimeSpan elapsedTime = end - start;

Console.WriteLine(elapsedTime.TotalMilliseconds);

This is an awful benchmark: it has a lot of problems, and we just can’t trust it. We

will learn why it’s so bad and how to fix all the problems later; now we are looking only at

timestamping resolution.

Let’s do some calculations. On Windows 10, the default frequency of DateTime

updates is 64 Hertz. It means that we get a new value once per 15.625 milliseconds. Some

applications (like a browser or a music player) can increase this frequency up to 2000

Hertz (0.5 milliseconds). Sorting 10000 elements is a pretty quick operation that typically

works faster than 0.5 milliseconds on modern computers. So, if you use Windows and

you close all nonsystem applications, the benchmark will print 0 milliseconds or
~15.625 milliseconds (depends on how lucky you are). Obviously, such a benchmark is

useless; we can’t use these numbers for evaluating the performance of List.Sort().

 A better benchmark

We can rewrite our example with the help of Stopwatch:

var list = Enumerable.Range(0, 10000).ToList();

var stopwatch = Stopwatch.StartNew();

list.Sort();

stopwatch.Stop();

TimeSpan elapsedTime = stopwatch.Elapsed;

Console.WriteLine(elapsedTime.TotalMilliseconds);

This is still a bad benchmark, and it’s still unstable (if you run it several times,

the difference between measurements will be huge), but for now we have a good

timestamping resolution. The typical Stopwatch resolution on Windows is about

Chapter 2 Common BenChmarking pitfalls

36

300–500ns. This code prints about 0.05–0.5 milliseconds (depends on hardware and

runtime), which is closer to the actual sorting time.

 Advice: prefer Stopwatch over DateTime

In 99% of cases, Stopwatch should be your primary tool for timestamping. Of course,

there are some corner cases, when you need something else (and we will talk about

it later), but you don’t need anything more in simple cases. This advice is simple and

doesn’t require additional lines of code. DateTime can be useful only if you actually need

to know the current time (and you probably would want to do monitoring in this case

instead of benchmarking). If you don’t need the actual current time, use the right API:

use Stopwatch.

Now we know how to write a simple benchmark with the help of Stopwatch. It’s time

to learn how to run it.

 Executing a Benchmark in the Wrong Way
Now you know how to write a simple small benchmark. You also should know how

to execute a benchmark. It may seem very obvious, but many developers suffer from

incorrect benchmark results that were spoiled because the program was run the wrong

way.

 A bad benchmark

Open your favorite IDE, create a new project, and write the following simple program:

var stopwatch = Stopwatch.StartNew();

for (int i = 0; i < 100000000; i++)

{

}

stopwatch.Stop();

Console.WriteLine(stopwatch.ElapsedMilliseconds);

It doesn’t measure anything useful, just a simple empty loop. The results have no

practical importance; we will use it just for demonstration.

Chapter 2 Common BenChmarking pitfalls

37

Let’s run it. On my laptop, it prints values around 400 milliseconds (Windows,

.NET Framework 4.6).2 So, what’s the main problem here? By default, each new project

uses the Debug configuration. This is a configuration for debugging, but not for

benchmarking. Many people forget to change it, measure the performance of the debug

assemblies, and get wrong results.

 A better benchmark

Let’s switch to the Release mode and run this code again. On my laptop, it shows ~40

milliseconds in Release. The difference is about 10 times!

Now it’s your turn. Run this empty loop in both configurations on your machine and

compare the results.

 Advice: use Release without attached debugger in sterile
environment

In fact, here I have a series of small tips. Let’s discuss all the good practices that you

should follow if you want to get reliable results.

• Use Release instead of Debug

When you create a new project, you typically have two

configurations: Debug and Release. The release mode means

that you have <Optimize>true</Optimize> in your csproj file or

use /optimize for csc.

Sometimes (especially in the case of microbenchmarks), the

debug version of the target method can run 100 times slower!

Never use the Debug build for benchmarking. Never.

Sometimes I see performance reports on the Internet that contain

separated results for both modes. Don’t do it! Debug results don’t

show anything useful. Roslyn compiler injects a lot of additional

IL opcodes into the compiled assembly with only one goal: to

simplify the debugging. Just-In-Time (JIT) optimizations are also

2 .NET Framework 4.6 honestly performs this loop, but be careful: in the future, some additional
JIT optimizations could be implemented and this loop could be thrown away because it doesn’t
do anything useful (thus, the benchmark will print 0 milliseconds).

Chapter 2 Common BenChmarking pitfalls

38

disabled in Debug. The performance of the debug build can be

interesting for you only if you are developing some debugging

tools. Otherwise, always use the Release mode.

• Don’t use attached debugger or profiler

Also, you never should use an attached debugger (e.g., embedded

IDE debugger or external debugger like WinDbg or gdb) during

the benchmarking. A debugger usually adds some performance

overhead. It’s not ten times overhead like the Debug build overhead,

but it also can significantly spoil the results. By the way, if you use

Visual Studio debugger (pressing F5), it disables JIT optimization by

default even in the Release mode (you can turn off this feature, but

it’s enabled by default). The best way is to build a benchmark in the

Release mode and run it in a terminal (e.g., cmd for Windows).

If you use other kinds of attached applications (like performance

or memory profilers), they also can easily spoil the performance

picture. In the case of attached profiler, the overhead depends

on the profiling kind (e.g., tracing adds bigger overhead than

sampling), but it’s always significant.

Sometimes, you can use the internal diagnostic tools

of the runtime. For example, if you run mono with the

--profile=log:sample arguments, it produces a .mlpd file with

information about the application performance profile. It can

be useful for analysis of relative performance (hunting for hot

methods), but the absolute performance will be affected by the

mono profiler.

It’s OK to use the Debug build with an attached debugger or

profiler only if you debug or profile the code. Don’t use it for

collecting final performance measurements, which should be

analyzed.

• Turn off other applications

Turn off all of the applications except the benchmark process and

the standard OS processes. If you run a benchmark and work in

an IDE at the same time, it can negatively affect the benchmark

Chapter 2 Common BenChmarking pitfalls

39

results. Someone may say that in real life our application works

side by side with other applications, so we should measure

performance in realistic conditions. Here is the problem with

such conditions: their influence is unpredictable. If you want to

work in realistic conditions, you should carefully check how these

applications can affect your performance, which is not easy (we

will discuss many useful tools in Chapter 6). And it’s much better

to check the performance in a sterile condition when you are not

bothered by other applications.

When you design a benchmark, it’s OK to perform dry runs

directly from your favorite IDE. When you collect the final results,

it’s better to turn off the IDE and run it from the terminal.

Some benchmarks can take hours to finish. Waiting is boring,

and so many developers like to do something else during the

benchmarking: play some games, draw funny pictures in Photoshop,

or develop another feature for a pet project. Of course, it’s not a good

idea. It can be OK if you clearly understand what kind of results you

want to get and how they can be affected. For example, if you are

checking a hypothesis that one method takes 1000 times more time

than another method, it will be hard to spoil the conclusion by

third-party applications. However, if you do microbenchmarking in

order to check a 5%-difference hypothesis, it’s unexpected to have

heavy background processes: the experiment is not sterile anymore,

and the results can’t be trusted. Of course, you can be lucky and get

correct results. But how can you be sure?

Be careful. Even if you shut down all the applications that can

be terminated, an operating system still can run some CPU-

consuming services. A typical example is Windows Defender,

which can decide to do some heavy operations at any moment.

In Figure 2-1, you can observe typical CPU noise on Windows.3

3 It’s a screenshot of ProcessHacker (a cool replacement for default Task Manager). The x axis
denotes time, and the y axis denotes CPU usage. ProcessHacker uses two different colors for
kernel CPU usage (red) and all CPU usage (green). Print readers: see the color copy of this figure
in the download package for this book.

Chapter 2 Common BenChmarking pitfalls

40

Usually, there are no heavy processes which could spoil a

benchmark, but be prepared for the fact that some of the

measurements could be much larger than others because of the

CPU noise.

In order to avoid such situations, you should run a benchmark

many times and aggregate the results. The CPU noise is random,

so it typically spoils only some measurements, but not all of

them. Also, you can verify that the environment is sterile with

additional tools that monitor resource usage. In some cases, such

tools also can affect the results, so you still have to perform sterile

benchmark runs and use runs with monitoring for additional

checks.

• Use high-performance power mode

If you use a laptop for benchmarking, keep it plugged in and

use the maximum performance mode. Let’s play again with our

empty loop benchmark. Plug out your laptop, choose the “Power

saver” mode, and wait until 10% of battery energy remains.

Run the benchmark. Then plug in the laptop, choose the “High

performance” mode, and run the benchmark again. Compare the

results. On my laptop, I have a performance improvement from

~140 milliseconds to ~40 milliseconds. We have a similar situation

not only for microbenchmarks but also for any other applications.

Try to play with your favorite programs and check how much

it takes to finish different long-running operations. I hope that

you will not run benchmarks on an unplugged laptop after this

experiment.

Unfortunately, if you run a benchmark correctly, it doesn’t mean

that you always get “good” results. Let’s continue to look at

different microbenchmark pitfalls.

Chapter 2 Common BenChmarking pitfalls

41

 Natural Noise
Even if you create a supersterile environment and run your benchmark according to the

rules, natural noise still will be presented. If you run a benchmark twice, you will almost

never get two identical results. Why? Well, there are a lot of noise sources:

• There are always other processes which compete for computer
resources

Even if you turn off all user processes, there are still a lot of OS

processes (each of them has its own priority) that can’t be turned

off. And you always share resources with them. Since you can’t

predict what’s happening in other processes, you also can’t

predict how it affects your benchmark.

• Resource scheduling is nondeterministic

The operating system always controls the execution of your

program. Since we always work in a multiprocessing and

multithreading environment, it’s also impossible to say how OS

Figure 2-1. Typical CPU noise on Windows

Chapter 2 Common BenChmarking pitfalls

42

will schedule and when and how each program will be executed.

These resources include CPU, GPU, networking, disks, and so on.

The number of process context switches is also unpredictable, and

each context switch is painful for your measurements.

• Memory layout and address space layout randomization (ASLR)

Whenever you run your program, you will get a new fragment of

the global address space. The .NET runtime can allocate memory

in different places with different distances between the same

objects. It can affect performance on different levels: aligned data

access has a different performance cost from unaligned; different

data locality patterns produce different situations in the CPU

cache, which also affects total time; the CPU can use physical

object offsets as factors in some low-level optimization heuristics;

and so on.

Another interesting security feature of modern OS is ASLR; It

protects you from malicious programs that try to exploit buffer

overflows. It’s a good feature, but it also adds some unpredictable

numbers to the total wall clock time.4

• CPU frequency scaling and boosting

A modern CPU can change the internal frequency dynamically,

depending on the current workload. Unfortunately, it’s another

nondeterministic process; you can’t predict when and how the

frequency will be changed.

• External environment matters

I’m not talking about the version of .NET Framework or your

OS. I’m talking about real external environmental factors like

temperature. Once, I had cooler problems on my laptop. The

cooler was almost broken, and the CPU temperature was high all

the time. When I was in my room, the laptop made loud noises

4 You can find an example in the following article: de Oliveira, Augusto Born, Jean-Christophe
Petkovich, and Sebastian Fischmeister. How much does memory layout impact performance?
A wide study. Intl. Workshop Reproducible Research Methodologies, 2014.

Chapter 2 Common BenChmarking pitfalls

43

and turned down after 10 minutes because the CPU temperature

was too high. Fortunately, it was winter, so I opened a window,

sat on the windowsill, and worked in a jacket, hat, and gloves.

Should I tell you about performance? Well, it was superslow. And

the most important thing: slowness was unpredictable. It was

impossible to run any benchmarks because the variance was too

high as well.

Of course, this was an extreme situation; you typically don’t have

such awful conditions. Here is another example which you can

meet in real life: running benchmarks in the cloud. It’s a perfectly

valid case if you care about performance in the real environment.

The data center environment of your cloud provider is important.

There are so many external factors: environmental temperature,

mechanical vibrations, and so on. We will discuss these factors in

detail in Chapter 3.

Thus, it’s OK to have a difference between similar measurements, but you always

have to keep in mind how big the errors are. In this section, we will look at an example

when natural noise matters.

 A bad benchmark

Let’s say we want to check if a number is prime. We are going to implement several ways

to do it and compare performance. For now, we have only one IsPrime implementation,

and we want to have the benchmarking infrastructure right now. So, we compare the

performance of two identical calls (just to check that the benchmarking stuff works

correctly):

// It's not the fastest algorithm,

// but we will optimize it later.

static bool IsPrime(int n)

{

 for (int i = 2; i <= n - 1; i++)

 if (n % i == 0)

 return false;

 return true;

}

Chapter 2 Common BenChmarking pitfalls

44

static void Main()

{

 var stopwatch1 = Stopwatch.StartNew();

 IsPrime(2147483647);

 stopwatch1.Stop();

 var stopwatch2 = Stopwatch.StartNew();

 IsPrime(2147483647);

 stopwatch2.Stop();

 Console.WriteLine(stopwatch1.ElapsedMilliseconds + " vs. " +

 stopwatch2.ElapsedMilliseconds);

 if (stopwatch1.ElapsedMilliseconds < stopwatch2.ElapsedMilliseconds)

 Console.WriteLine("The first method is faster");

 else

 Console.WriteLine("The second method is faster");

}

Try this snippet on your own computer and run it several times.

I already checked how it works on my laptop:

5609 vs. 5667

The first method is faster

And run it once again:

5573 vs. 5490

The second method is faster

Thus, we have two performance results for the same program with different

conclusions. Our main mistake: we forget about the errors! If there is a difference

between two measurements, it doesn’t mean that one method works faster than another.

We should check if the difference is bigger than the natural errors. Unfortunately, it’s

hard to evaluate the size of such errors. It’s also hard to minimize these errors (you

will find a lot of useful examples in this book). Usually, it’s about 5–20% for a naive

benchmark, but sometimes it can be 200–500%! So, be careful when you compare the

performance of two methods!

Now it’s time to improve the IsPrime benchmark.

Chapter 2 Common BenChmarking pitfalls

45

 A better benchmark

Thus, we want the following things:

 1. Results should be stable; we should get the same conclusion each

time.

 2. If the methods take approximately the same time, we should get a

corresponding message.

How can it be implemented? We can introduce a “maximum acceptable error” (let’s

say 20%5 of the average of two measurements) and use it during comparison:

var error = ((stopwatch1.ElapsedMilliseconds +

 stopwatch2.ElapsedMilliseconds) / 2) * 0.20;

if (Math.Abs(stopwatch1.ElapsedMilliseconds -

 stopwatch2.ElapsedMilliseconds) < error)

 Console.WriteLine("There is no significant difference between methods");

else if (stopwatch1.ElapsedMilliseconds < stopwatch2.ElapsedMilliseconds)

 Console.WriteLine("The first method is faster");

else

 Console.WriteLine("The second method is faster");

Fix it in your snippet and try it. Here is my result:

542 vs. 523

There is no significant difference between methods

Hooray, we got the correct result!

Once again, however: this is not a perfect solution. You can’t detect 5–10%

performance deviation with such code: if one method actually works 7% longer than

another, you don’t notice it. But it can be OK if the performance difference is about two

to three times (and it’s obvious which method is faster). Be careful: it’s not always OK;

the natural performance noise can be really huge sometimes.

5 20% is an example; this number depends on your benchmarking goals and business
requirements. Also, it’s a good idea to measure each case many times and check the difference
between the minimal and maximal elapsed time: it provides the first approximation of the
natural noise order. Thus, you get some initial rough value, which can be used as a maximum
acceptable error. In the next chapters, we will discuss the standard deviation of the performance
distributions and we will learn how to use this value for comparing different methods.

Chapter 2 Common BenChmarking pitfalls

46

 Advice: always analyze random errors

We can’t prevent natural noise and random errors, so the best thing that we can do is

the correct analysis. Perform many iterations of your benchmark, look at the variance,

and keep in mind the order of these random errors. If you get two different performance

numbers for two different methods (in our cruel world, you always get different

numbers), compare the difference with the order of natural noise for each method

before making any conclusions as to which method is faster (do we have significant

difference between methods or not). We will discuss statistical methods for distribution

comparison in Chapter 4.

In the next section, we will discuss other “surprises” we can observe in a distribution

of measurements.

 Tricky Distributions
In the previous sections, we discussed how to achieve the stable benchmark result.

Unfortunately, you can’t always describe a code performance with a single number.

 A bad benchmark

Consider the following I/O benchmark:

byte[] data = new byte[64 * 1024 * 1024];

var stopwatch = Stopwatch.StartNew();

var fileName = Path.GetTempFileName();

File.WriteAllBytes(fileName, data);

File.Delete(fileName);

stopwatch.Stop();

Console.WriteLine(stopwatch.ElapsedMilliseconds);

Here we do a simple thing: create a new temp file, write 64MB data, and delete the

file. What is the problem with this benchmark? We do only one iteration here! Are we

sure that all I/O operations are equal?

Chapter 2 Common BenChmarking pitfalls

47

 A better benchmark

Now let’s do several iterations and make some basic statistics:

int N = 1000;

byte[] data = new byte[64 * 1024 * 1024];

var measurements = new long[N];

for (int i = 0; i < N; i++)

{

 var stopwatch = Stopwatch.StartNew();

 var fileName = Path.GetTempFileName();

 File.WriteAllBytes(fileName, data);

 File.Delete(fileName);

 stopwatch.Stop();

 measurements[i] = stopwatch.ElapsedMilliseconds;

 Console.WriteLine(measurements[i]);

}

Console.WriteLine("Minimum = " + measurements.Min());

Console.WriteLine("Maximum = " + measurements.Max());

Console.WriteLine("Average = " + measurements.Average());

On my SSD (SanDisk SD8SNAT128G1002) + Windows (10.0.17134.285), I have the

following values:

334 304 266 333 575 371 269 488 377 472 374 266, , , , , , , , , , , , , ,2488 1336 115827,¼

And here is the program output:

Minimum = 265

Maximum = 19029

Average = 531.176

You can see that most values are about 250–500, but we also have some outliers

(from 600 to 19000). If we increase the number of iterations, we will see that it was not a

few accidental big values: we can consistently observe extremely high values from time

to time (see Figure 2-2).

Chapter 2 Common BenChmarking pitfalls

48

Benchmarking of I/O operations is very hard, and it’s a normal situation when it’s

impossible to describe the performance by one average number.

 Advice: always look at your distribution

Fortunately, in many simple cases, we can just take the average value and work with

it. But how can we be sure? But if we want to be sure that everything is OK, we always

should check the distribution first. In Chapter 4, we will discuss in detail how to correctly

analyze distributions.

In the next section, we will talk about the difference between the first measurement

and the subsequent measurements (and why we can observe such effects).

 Measuring Cold Start Instead of Warmed Steady State
If you execute some code for the first time (after the application was started), it is called

the cold start. It includes a large amount of third-party logic (basically on the runtime

and CPU levels): jitting of target methods, loading of assemblies, CPU cache warm-up,

Figure 2-2. I/O-bound method measurements

Chapter 2 Common BenChmarking pitfalls

49

and so on. It also can include some user logic: initialization of business objects, running

constructors of static classes, filling user caches, and so on. All of that can increase the

work time and spoil the benchmark results.

Measuring the cold start is a rare task: developers typically do it only in situations

when they are optimizing the startup time. In all other cases, it’s a huge mistake if

you include the initialization overhead in the final results. Thus, you should perform

a warm-up: run the benchmark method several times in the idle mode (without

measurements). “Warming up” means that we are waiting for a moment when all

initialization and transitional processes are finished, and we will be in a steady state.

“Steady state” means that all benchmark iterations do the exact same amount of work

and there are no side effects. In other words, we should strive to a situation when we

have the same state of the program before and after each iteration.

You should decide for yourself which state you want to measure: cold or warmed. For

example, if you are working on the startup time of an application, you are interested only

in the first benchmark iteration (subsequent iterations will be warmed). So, if you want

to make several measurements of the cold start, you should restart the whole application

each time.

However, most benchmarks work with the warmed program. Typically, you should

warm up the program and only then perform target runs and measure its time.

How can we check that we are in the steady state? A short answer: we can’t. Huge

applications from real life with smart caching strategies and tricky multithreading

scheduling can request tens or hundreds of warm-up iterations. Fortunately, for simple

benchmarks, it’s usually enough to do four or five iterations (run ten iterations to be sure).

If each iteration works faster than the previous one, you probably are still not warmed

(typically, you should observe some fluctuation around a single value at the steady state).

Now let’s make sure that it’s important to distinguish between cold and warmed states.

 A bad benchmark

Consider the following benchmark:

int[] x = new int[100000000];

var stopwatch = Stopwatch.StartNew();

for (int i = 0; i < x.Length; i++)

 x[i]++;

stopwatch.Stop();

Console.WriteLine(stopwatch.ElapsedMilliseconds);

Chapter 2 Common BenChmarking pitfalls

50

Here we have an int array with 100000000 elements, and we increment each

element. What’s wrong with this benchmark? We make a lot of memory reads/writes

in the loop. Modern CPUs have a complicated hierarchical structure with a multilevel

cache. When we run this code for the first time, this cache is unwarmed. Access to the

main memory is too expensive, and this code will take a lot of time. Thus, the result will

describe the cold state. Probably, that’s not what we want.

 A better benchmark

Let’s do five iterations and measure the time for each of them:

int[] x = new int[100000000];

for (int iter = 0; iter < 5; iter++)

{

 var stopwatch = Stopwatch.StartNew();

 for (int i = 0; i < x.Length; i++)

 x[i]++;

 stopwatch.Stop();

 Console.WriteLine(stopwatch.ElapsedMilliseconds);

}

The typical output on my laptop (check how it works on your computer):

180

80

67

71

68

As you can see, the first iteration took about 180 milliseconds. That’s our cold start

time. After a few iterations, we can observe that measures are fluctuating around 70

milliseconds. Here we already achieved the steady state; that’s our warmed time. The

cold start benchmarking is too tricky, so such measurements should be handled in a

special way. When we are talking about benchmarking in general, usually we assume a

warmed state.

Chapter 2 Common BenChmarking pitfalls

51

Here is an exercise for you: take some code from your work or pet project, and

run it several times at the beginning of the Main method (with Stopwatch-based

measurements). Compare the first measurement and subsequent measurements.

Make conclusions about how many iterations do you need before you get a steady

state.

 Advice: use different approaches for cold and warm states

Before actual benchmarking, you always should decide: do you want to measure the

cold start or the warmed steady state? If you are interested in the cold start, you typically

should restart the whole program (or restart a computer in some cases) before each

iteration. Otherwise, you should make some warm-up iterations and get to the steady

state before you start to collect target performance numbers.

In the next section, we discuss how many iterations we should do.

 Insufficient Number of Invocations
When you make some micro-optimizations, it can be useful to measure a time of

really small methods that take nanoseconds. If you are working with a hot method and

you invoke it a million times per second, even a 10–20% performance boost can be

important. However, it’s hard to measure such methods.

Let’s say we have a method that takes about 100 nanoseconds and we are trying to

measure it with the help of Stopwatch:

var stopwatch = Stopwatch.StartNew();

Foo(); // 100ns

stopwatch.Stop();

// Print ElapsedTime

As we already know, the typical Stopwatch resolution on Windows is about

300–500ns. That’s not enough to measure such a small method: the result most likely

will be zero or the Stopwatch resolution. Even if a method takes microseconds, we still

have natural noise, which spoils the repeatability of the benchmark. This problem can

be solved if we invoke the method many times between measurements and divide the

result into the number of invocations. Let’s see how it works in an example.

Chapter 2 Common BenChmarking pitfalls

52

 A bad benchmark

We want to know how many divisors are there for the number 100000 (spoiler: 36). Let’s

solve this simple problem, measure it, and repeat the benchmark ten times (as usual, try

this code on your computer):

const int N = 100000;

for (int iter = 0; iter < 10; iter++)

{

 var stopwatch = Stopwatch.StartNew();

 int counter = 0;

 for (int i = 1; i <= N; i++)

 if (N % i == 0)

 counter++;

 stopwatch.Stop();

 var elapsedMs = stopwatch.Elapsed.TotalMilliseconds;

 Console.WriteLine(elapsedMs + " ms");

}

Here is a typical output:

0.410468973641887 ms

0.475654133074913 ms

0.531752876344543 ms

0.308148026410656 ms

0.364641831252615 ms

0.460246731754378 ms

0.346864060498149 ms

0.308148026410656 ms

0.371752939554394 ms

0.274567792763341 ms

As you can see, the variance is huge: we have values from 0.27 to 0.53 milliseconds.

The whole benchmark takes a small amount of time, so the random noise significantly

affects measurements, and we get a new random error each time. It’s hard to work with

such measurements. If we make some optimizations and run the benchmark again, we

can miss the difference, because the original measurement values may differ twofold.

Chapter 2 Common BenChmarking pitfalls

53

 A better benchmark

Let’s repeat the measured code block 3000 times! Of course, we should divide the

elapsed time by 3000 to get the actual time.

const int N = 100000;

const int Invocations = 3000;

for (int iter = 0; iter < 10; iter++)

{

 var stopwatch = Stopwatch.StartNew();

 for (int rep = 0; rep < Invocations; rep++)

 {

 int counter = 0;

 for (int i = 1; i <= N; i++)

 if (N % i == 0)

 counter++;

 }

 stopwatch.Stop();

 var elapsedMs = stopwatch.Elapsed.TotalMilliseconds

 / Invocations;

 Console.WriteLine(elapsedMs + " ms");

}

The output:

0.356982772550016 ms

0.358534890455352 ms

0.358426564572221 ms

0.356142476585688 ms

0.358213231323168 ms

0.356969735518129 ms

0.356878397282608 ms

0.357596382184145 ms

0.358787255787751 ms

0.359197546588624 ms

Now it looks much more stable! Our result is about 0.356–0.359 milliseconds!

Chapter 2 Common BenChmarking pitfalls

54

 Advice: do many invocations

Well, sometimes it’s hard to decide how many invocations you need. You should make

at least enough invocations for preventing problems that you aware of. A general

recommendation: when you are doing microbenchmarking, repeat the measurable

code for at least 1 second. If you are in a hurry, 100ms can be acceptable in most cases.

When you are working with a 10ms-loop, it’s already easy to make mistakes because the

benchmark precision is low, and the measurement variance is huge.

Now we know that an additional loop can help us to stabilize the results. However,

such changes in the source code can bring additional problems. In the next section, we

will discuss these problems and how to fix them.

 Infrastructure Overhead
As you can see, a benchmark is more than just a code that you want to measure.

A benchmark includes an infrastructure: additional code that helps you to measure

time correctly and get reliable results. However, this infrastructure has overhead: any

changes in a program can affect the measurements. Let’s look at another example

which illustrates the overhead.

 A bad benchmark

We want to measure the conversion of 0.0 from double to int via Convert.ToInt32.

We also know that such a microbenchmark should be wrapped into a loop (because the

conversion duration is less than the Stopwatch resolution). Let’s measure it:

var stopwatch = Stopwatch.StartNew();

for (int i = 0; i < 100000001; i++)

 Convert.ToInt32(0.0);

stopwatch.Stop();

Console.WriteLine(stopwatch.ElapsedMilliseconds);

Here you have the observer effect (we discussed it in Chapter 1): the loop is required

for such micro-operations, but it also adds some performance costs. We don’t measure

only our target operation; we measure it together with the loop. There are many

complicated cases when a loop can produce an additional unexpected performance

effect (read more in Chapter 7). In simple cases, you always should keep in mind that

Chapter 2 Common BenChmarking pitfalls

55

the benchmark infrastructure (basically, it’s all the code you wrote for performing

measurements) always adds some overhead (and probably other performance effects).

 A better benchmark

One of the possible solutions for “normalizing” results is just to measure benchmarking

infrastructure (the loop in our case) for empty code (so called “overhead” or “idle”

iterations), and subtract “empty” measurements from the “target” measurements.

We can write something like this:

var stopwatchOverhead = Stopwatch.StartNew();

for (int i = 0; i < 100000001; i++)

{

}

stopwatchOverhead.Stop();

var stopwatchTarget = Stopwatch.StartNew();

for (int i = 0; i < 100000001; i++)

 Convert.ToInt32(0.0);

stopwatchTarget.Stop();q

var resultOverhead =

 stopwatchTarget.ElapsedMilliseconds -

 stopwatchOverhead.ElapsedMilliseconds

Console.WriteLine(resultOverhead);

You can find an example of results for RyuJIT-x64 on .NET Framework 4.6 in Table 2- 1.

Table 2-1. An Empty Loop vs.

a Loop with ToInt32() Call

Method Time

overhead ~34ms

target ~295ms

result ~261ms

As you can see, the overhead takes more than 10% of the target measurements.

Of course, it’s a naive implementation; correct overhead evaluating may require more

efforts in complicated benchmarks.

Chapter 2 Common BenChmarking pitfalls

56

 Advice: always calculate your infrastructure overhead

Remember that you always have the observer effect. Any additional time measurements

always affect the performance of your code. In some cases, this overhead can be

negligible, and in others, it can be significant. Anyway, it’s a good thing to evaluate and

get the knowledge of the part of the total measured time that you spend during basic

benchmarking stuff.

Now we know how to get honest and repeatable results without included overhead.

In the next section, we will talk about another important problem that can make

distributions difficult to analyze.

 Unequal Iterations
The lives of performance engineers would have been easier if each method had a fixed

performance. Unfortunately, method performance might depend not only on the

environment but also on the current program state. When you repeat a method a lot of

times, be sure that each method invocation has the same performance cost and doesn’t

have side effects. Otherwise, you can’t average it.

 A bad benchmark

Let’s say we want to measure the performance of List.Add. Write the following

benchmark:

void Measure(int n)

{

 var list = new List<int>();

 var stopwatch = Stopwatch.StartNew();

 for (int i = 0; i < n; i++)

 list.Add(0);

 stopwatch.Stop();

 Console.Write("Capacity: " + list.Capacity + ", Time = ");

 Console.WriteLine("{0:0.00} ns",

 stopwatch.ElapsedMilliseconds * 1000000.0 / n);

}

Chapter 2 Common BenChmarking pitfalls

57

It adds an element to a listn times and prints the total time and the result list

capacity. Usually, when we do a lot of iterations, it does not matter exactly how many

iterations we do; this number should just be sufficiently large. So, let’s run this method

for n = 16777216 and n = 16777217:

Measure(16777216);

Measure(16777217);

You can see an example of possible results in Table 2-2.

Table 2-2. Performance of List.Add

n Capacity Average Time

16777216 16777216 ~6.62ns

16777217 33554432 ~8.87ns

How is this possible? Why do we have a significant difference between

measurements? The answer is simple: the Add method has two different run cases. In the

first one, list.Capacity > list.Count, addition of a new element is cheap (because we

have already the reserved memory for it). In the second case, list.Capacity == list.

Count, we have to resize the internal array, which takes a lot of time.

16777216 is not a random number; it’s 224. We can observe such effect for each power

of two. You can see a plot with a series of Measure outputs for different N in Figure 2-3.

Chapter 2 Common BenChmarking pitfalls

58

Here are some of the List<T> implementation details with comments:

public void Add(T item)

{

 if (size == items.Length)

 EnsureCapacity(size + 1); // Here the list can be resized

 items[size++] = item;

 version++;

}

private void EnsureCapacity(int min)

{

 if (items.Length < min)

 {

 int newCapacity = items.Length == 0

 ? defaultCapacity : items.Length * 2;

Figure 2-3. “Average” duration of List.Add depending on the number of
iterations

Chapter 2 Common BenChmarking pitfalls

59

 if ((uint)newCapacity > Array.MaxArrayLength)

 newCapacity = Array.MaxArrayLength;

 if (newCapacity < min)

 newCapacity = min;

 Capacity = newCapacity; // Calling the setter of the 'Capacity'

property

 }

}

public int Capacity

{

 get { return items.Length; }

 set

 {

 if (value != items.Length)

 {

 if (value > 0)

 {

 // Setting new capacity has a side effect:

 // it can create a new internal array

 T[] newItems = new T[value];

 if (size > 0)

 // Copying items to the new array

 Array.Copy(items, 0, newItems, 0, size);

 items = newItems;

 }

 else

 {

 items = emptyArray;

 }

 }

 }

}

Chapter 2 Common BenChmarking pitfalls

60

Thus, the performance of the Add method depends on the current list Count and

Capacity. It’s wrong to calculate the average time of different Add calls (we may have

many cheap calls and several expensive calls).

 A better benchmark

There are several possible strategies that can solve this problem. For example:

• Measure pair Add/Remove together. In this case, each iteration doesn’t

change the list state and it doesn’t have a side effect. It makes sense

when you start and finish with an empty list: such a benchmark

allows an evaluation of the performance cost of each element that

should be added/removed.

• Allocate a list with huge capacity at the beginning of a benchmark

(new List<int>(MaxCapacity)). Make sure that the program does

not exceed this capacity. In this case, all the Add calls will be cheap.

 Advice: measure methods that have a steady state

In the general case, the most important question is not “How to measure it?” but “Why

do we want to measure it?” The best strategy always depends on what we want to

achieve.

A recommendation: you should check that your average results don’t depend on

the number of iterations. If you run a benchmark with N iterations, also try 2*N, 5*N,

12.3456*N iterations. Make sure that each experiment has the same distribution and that

there is no significant difference between them.

Now we know some of the commonest general pitfalls that are valid for many different

languages and runtimes. It’s time to learn some pitfalls that are specific for .NET.

 .NET-Specific Pitfalls
.NET is a great platform. Each .NET runtime has many awesome optimizations that make

your applications fast. When you want to write a superfast program, these optimizations

are your best friends. When you want to design a benchmark, they are your worst

enemies. A .NET runtime doesn’t know that you want to measure performance; it tries to

execute a program as fast as possible.

Chapter 2 Common BenChmarking pitfalls

61

In the next sections, we will learn different runtime optimizations that can spoil our

measurements. Let’s start with a problem that affects loops in the benchmarks.

 Loop Unrolling
We already know that fast methods should be wrapped in a loop for benchmarking. Do

you know what happens with such loops on the assembly level?

Consider the following simple loop:

for (int i = 0; i < 10000; i++)

 Foo();

If we build it in Release and look at the assembly code for LegacyJIT-x86,6 we will

get something like this:

LOOP:

call dword ptr ds:[5B0884h] ; Foo();

inc esi ; i++

cmp esi,2710h ; if (i < 10000)

jl LOOP ; Go to LOOP

This listing looks pretty obvious. Now let’s look at the assembly code for

LegacyJIT-x64:

LOOP:

call 00007FFC39DB0FA8 ; Foo();

call 00007FFC39DB0FA8 ; Foo();

call 00007FFC39DB0FA8 ; Foo();

call 00007FFC39DB0FA8 ; Foo();

add ebx,4 ; i += 4

cmp ebx,2710h ; if (i < 10000)

jl 00007FFC39DB4787 ; Go to LOOP

6 Don’t worry if you don’t know anything about LegacyJIT-x86 and LegacyJIT-x64. We will
discuss different JIT compilers later in the next chapter. Right now, you should know that we are
talking about .NET Framework on Windows and comparing x86 and x64 versions of the same
program. On modern versions of .NET Framework, you usually work with RyuJIT for x64, but
LegacyJIT is still pretty popular.

Chapter 2 Common BenChmarking pitfalls

62

What happened here? Our loop was unrolled! LegacyJIT-x64 performed loop
unrolling and transformed the code to the following:

for (int i = 0; i < 10000; i += 4)

{

 Foo();

 Foo();

 Foo();

 Foo();

}

You can read more about different tricky JIT optimizations in Chapter 7. Right

now, you should just know that you can’t control which loops will be unrolled. In .NET

Framework 4.6, LegacyJIT-x86 and RyuJIT-x64 can’t do it. Only LegacyJIT-x64 knows

how to do unrolling. It can unroll a loop only if the number of iterations is a constant

(it is known in advance) and if it is divisible by 2, 3, or 4 (LegacyJIT-x64 tries to select

the maximum divisor). However, it’s not the best idea to use specific knowledge about

JIT compiler optimization: it can be changed at any moment. The best possible solution

is to keep the number of iterations at an auxiliary field so the JIT compiler will not be

able to apply the optimization.

Do we really need to worry about this? Let’s check it!

 A bad benchmark

For example, we want to know how much time it takes to execute an empty loop with

1000000001 and 1000000002 iterations. This is another absolutely useless experiment,

but it’s a minimal reproduction case for the discussed problem. (For some reason, a lot

of developers like to benchmark empty loops.)

var stopwatch1 = Stopwatch.StartNew();

for (int i = 0; i < 1000000001; i++)

{

}

stopwatch1.Stop();

var stopwatch2 = Stopwatch.StartNew();

for (int i = 0; i < 1000000002; i++)

{

Chapter 2 Common BenChmarking pitfalls

63

}

stopwatch2.Stop();

Console.WriteLine(stopwatch1.ElapsedMilliseconds + " vs. " +

 stopwatch2.ElapsedMilliseconds);

You can find an example of approximated results for LegacyJIT-x86 and

LegacyJIT-x64 in Table 2-3.

Table 2-3. Results for Empty Loops with Constants

Iterations LegacyJIT-x86 LegacyJIT-x64

1000000001 ~360ms ~360ms

1000000002 ~360ms ~120ms

How is it possible? The most interesting part: why do 1000000002 iterations work

three times faster than 1000000001 iterations on LegacyJIT-x64? It’s all about unrolling!

1000000001 is not divisible by or 2, 3, 4. So, LegacyJIT-x64 can’t do unrolling here. But

it’s possible to unroll the second loop with 1000000002 iterations because this number is

divisible by 3! It’s also divisible by 2; the JIT compiler chooses the maximum divisor for

the loop unrolling. Here are assembly listings for both loops:

; 1000000001 iterations

LOOP:

inc eax ; i++

cmp eax,3B9ACA01h ; if (i < 1000000001)

jl LOOP ; Go to LOOP

; 1000000002 iterations

LOOP:

add eax,3 ; i += 3

cmp eax,3B9ACA02h ; if (i < 1000000002)

jl LOOP ; Go to LOOP

In the second case, we can see the add eax,3 instruction, which increments the

counter by 3: we can see the loop unrolling in action! Now it’s pretty obvious why the

second loop works three times faster.

Chapter 2 Common BenChmarking pitfalls

64

 A better benchmark

We can be smarter than JIT and keep the number of iterations in fields. Be careful:

it should be exactly the fields, not the constants!

private int N1 = 1000000001, N2 = 1000000002;

public void Measure()

{

 var stopwatch1 = Stopwatch.StartNew();

 for (int i = 0; i < N1; i++)

 {

 }

 stopwatch1.Stop();

 var stopwatch2 = Stopwatch.StartNew();

 for (int i = 0; i < N2; i++)

 {

 }

 stopwatch2.Stop();

}

So, the JIT compiler can’t apply unrolling because he doesn’t know a number of

iterations. Furthermore, these values can be changed by someone in another thread,

and it’s too risky to do such optimization. Now we have the same results for all the

configurations (see Table 2-4).

Table 2-4. Results for Empty Loops with Variables

Iterations LegacyJIT-x86 LegacyJIT-x64

1000000001 ~360ms ~360ms

1000000002 ~360ms ~360ms

Yeah, the LegacyJIT-x64/1000000002 configuration is not so fast as in the first case.

But now it’s a fair comparison: we are not trying to get the maximum performance here,

we are trying to compare the performance of two pieces of code.

Chapter 2 Common BenChmarking pitfalls

65

 Advice: use variables instead of constants in loops

You want to compare two different implementations of an algorithm: the loop is

just a way to get meaningful results for pretty quick operations; it’s not a real part of

measured logic. Of course, we don’t want to get different impacts from the loops on

total performance. Thus, it’s better to make N1 and N2 variables instead of constants.

If you continue to read this chapter carefully, you may notice that we still use constants

in loops. We do it only for simplification and use constants that are not divisible by 2 or 3.

(LegacyJIT-x64, you can’t unroll it!) All of these examples are not real benchmarks;

they are just illustrations of benchmarking pitfalls. So, it’s OK to use constants for such

demonstrations, but please don’t do it in real benchmarks.

Now we know how to how to prevent loop unrolling, but that’s not the only

runtime optimization. In the next section, we will learn how to prevent elimination of

the loop body.

 Dead Code Elimination
Modern compilers are very smart. In most cases, they are even smarter than developers

who try to benchmark something. A typical benchmark contains some “fake”

operations that are not actually used, because we don’t care about the results, we care

only about the duration of these operations. If the measured code doesn’t produce any

observable effects, the compiler can throw this code away. This optimization is called

dead code elimination (DCE). Let’s look at an example which shows this optimization

in action.

 A bad benchmark

Let’s calculate square roots of all numbers from 0 to 100000000:

double x = 0;

for (int i = 0; i < 100000001; i++)

 Math.Sqrt(x);

Chapter 2 Common BenChmarking pitfalls

66

Now let’s measure the duration of this code. We know that the loop can add some

overhead, so let’s measure it as well and subtract overhead from the target measurements:

double x = 0;

var stopwatch = Stopwatch.StartNew();

for (int i = 0; i < 100000001; i++)

 Math.Sqrt(x);

stopwatch.Stop();

var stopwatch2 = Stopwatch.StartNew();

for (int i = 0; i < 100000001; i++);

stopwatch2.Stop();

var target = stopwatch.ElapsedMilliseconds;

var overhead = stopwatch2.ElapsedMilliseconds;

var result = target - overhead;

Console.WriteLine("Target = " + target + "ms");

Console.WriteLine("Overhead = " + overhead + "ms");

Console.WriteLine("Result = " + result + "ms");

The output example (Windows, .NET Framework, RyuJIT-x64, Release mode):

Target = 37ms

Overhead = 37ms

Result = 0ms

Hooray, it seems that Math.Sqrt works instantly! We can execute Math.Sqrt as many

times as we want without any performance cost! Let’s run it again:

Target = 36ms

Overhead = 37ms

Result = -1ms

Hooray, it seems that additional calls of Math.Sqrt can improve our performance!

Although… Does it look believable? Not for a good performance engineer. Let’s look at

the assembly code for our target loop:

; for (int i = 0; i < 100000001; i++)

; Math.Sqrt(x);

Chapter 2 Common BenChmarking pitfalls

67

LOOP:

inc eax ; i++

cmp eax,2710h ; if (i < 10000)

jl LOOP ; Go to LOOP

Aha! JIT compiler has applied magic optimizations here! You may notice that we

don’t use the result of Math.Sqrt in any way. This code can be safely removed and this

optimization spoils our benchmark. In both cases, we measure an empty loop. Because

of the natural noise, we have variance in measurements, so it’s a normal situation when

we get a negative result (it just means that one measurement is bigger than another).

We still want to measure the performance cost of Math.Sqrt. How can we improve

our benchmark?

 A better benchmark

A typical workaround is to use the result somehow (let’s rewrite the first part of the bad

benchmark):

double x = 0, y = 0;

var stopwatch = Stopwatch.StartNew();

for (int i = 0; i < 100000001; i++)

 y += Math.Sqrt(x);

stopwatch.Stop();

Console.WriteLine(y);

Now the Math.Sqrt calls can’t be removed because we need the result for printing

the sum of square roots. Of course, we also add little overhead for the y += operation,

which is a part of benchmarking infrastructure cost. Let’s check how it works:

Target = 327ms

Overhead = 37ms

Result = 290ms

Now the Result is a positive number (290ms), which makes more sense.

Chapter 2 Common BenChmarking pitfalls

68

 Advice: always use results of your calculations

The modern compilers are smart, but we should be smarter! Our benchmarks shouldn’t

contain the code, which can be thrown away. The only way to do it is to use all results

somehow. Roslyn and JIT compiler shouldn’t know that we don’t actually need this

result. The simplest way here is to accumulate all calculated values and save it to a field.

If you use a local variable, you should use it somehow after the measurements (Console.

WriteLine is OK if you don’t care about extra lines in the program output).

Be careful: any code which prevents DCE is also a part of your benchmark

infrastructure; it increases the total time. You should be sure that this overhead is small

and doesn’t affect measurements significantly. Imagine that you get a string as a result.

How can we use it? For example, we can add it to a global string accumulator like this:

string StringOperation() { /* ... */ }

// The benchmark

var stopwatch = Stopwatch.StartNew();

string acc = "";

for (int i = 0; i < N; i++)

 acc += StringOperation();

stopwatch.Stop();

Is it a good way to keep benchmark results? No, because the overhead of string

concatenation is huge. Moreover, the overhead depends on the number of iterations:

each iteration takes more time than the previous one because the length of the string acc

grows. We need allocate more memory and copy more characters. How can we improve

this benchmark? For example, we can accumulate string lengths:

string StringOperation() { /* ... */ }

// The benchmark

var stopwatch = Stopwatch.StartNew();

int acc = 0;

for (int i = 0; i < N; i++)

 acc += StringOperation().Length;

stopwatch.Stop();

Chapter 2 Common BenChmarking pitfalls

69

This is much better because integer addition and getting the string lengths usually

work much faster than any string operations. In most cases, we will not observe any

significant performance overhead for this trick, but it perfectly solves the “DCE preventing”

task: the compiler can’t throw away StringOperation() calls because we use the result!

The DCE is not the only optimization that can eliminate some logic from our code.

In the next section, we will talk about another cool optimization that also can reduce a

program.

 Constant Folding
Let’s say we want to benchmark the following multiplication operation:

int Mul() => 2 * 3;

Does it look like a good method for multiplication benchmarking? Let’s compile it

(with optimizations) and look at the IL code:

ldc.i4.6

ret

ldc.i4.6 means “Push 6 onto the stack as int32.” ret means “Return from method,

possibly with a value.” (We take the value from the stack.)

Here you can see the multiplication result (6), which is hardcoded inside the

program. The C# compiler is smart enough to precalculate such expressions at the

compile time. The name of this optimization is constant folding. This optimization

works for all kinds of constants including strings (e.g., "a" + "b" will be compiled to

"ab"). It is great for performance, but not so great for benchmarking. We should be sure

that it’s impossible for the compiler to do any calculations in advance (if we want to

measure these calculations). For example, we can keep our arguments in separate fields:

private int a = 2, b = 3;

public int Mul() => a * b;

Now, we can observe an honest mul opcode on the IL level:

ldarg.0

ldfld a

ldarg.0

Chapter 2 Common BenChmarking pitfalls

70

ldfld b

mul

ret

ldarg.0 means “Load argument 0 onto the stack.” The argument 0 here is this.

ldfld <field>, which means “Push the value of field of object (or value type) onto the

stack.” mul means “Multiply values.” Thus, in this code, we load this.a onto the stack,

then load this.b onto the stack, then take the last two values from the stack, multiply

them, push the result onto the stack, and return it.

The constant folding may look like a simple and predictable optimization, but this is

not always true. Let’s consider another interesting example.

 A bad benchmark

Here is another question for you: which method is faster on RyuJIT-x64 (.NET

Framework 4.6 without updates)?

public double Sqrt13()

{

 return

 Math.Sqrt(1) + Math.Sqrt(2) + Math.Sqrt(3) +

 Math.Sqrt(4) + Math.Sqrt(5) + Math.Sqrt(6) +

 Math.Sqrt(7) + Math.Sqrt(8) + Math.Sqrt(9) +

 Math.Sqrt(10) + Math.Sqrt(11) + Math.Sqrt(12) +

 Math.Sqrt(13);

}

public double Sqrt14()

{

 return

 Math.Sqrt(1) + Math.Sqrt(2) + Math.Sqrt(3) +

 Math.Sqrt(4) + Math.Sqrt(5) + Math.Sqrt(6) +

 Math.Sqrt(7) + Math.Sqrt(8) + Math.Sqrt(9) +

 Math.Sqrt(10) + Math.Sqrt(11) + Math.Sqrt(12) +

 Math.Sqrt(13) + Math.Sqrt(14);

}

If we carefully benchmark each method, we will get a result like in Table 2-5.

Chapter 2 Common BenChmarking pitfalls

71

It looks very strange. We added an additional square root operation, and it improved

the performance of our code. Not just improved, it made it instant! How is this possible?

It’s time to look at the assembly code for each method:

; Sqrt13

vsqrtsd xmm0,xmm0,mmword ptr [7FF94F9E4D28h]

vsqrtsd xmm1,xmm0,mmword ptr [7FF94F9E4D30h]

vaddsd xmm0,xmm0,xmm1

vsqrtsd xmm1,xmm0,mmword ptr [7FF94F9E4D38h]

vaddsd xmm0,xmm0,xmm1

vsqrtsd xmm1,xmm0,mmword ptr [7FF94F9E4D40h]

vaddsd xmm0,xmm0,xmm1

vsqrtsd xmm1,xmm0,mmword ptr [7FF94F9E4D48h]

vaddsd xmm0,xmm0,xmm1

vsqrtsd xmm1,xmm0,mmword ptr [7FF94F9E4D50h]

vaddsd xmm0,xmm0,xmm1

vsqrtsd xmm1,xmm0,mmword ptr [7FF94F9E4D58h]

vaddsd xmm0,xmm0,xmm1

vsqrtsd xmm1,xmm0,mmword ptr [7FF94F9E4D60h]

vaddsd xmm0,xmm0,xmm1

vsqrtsd xmm1,xmm0,mmword ptr [7FF94F9E4D68h]

vaddsd xmm0,xmm0,xmm1

vsqrtsd xmm1,xmm0,mmword ptr [7FF94F9E4D70h]

vaddsd xmm0,xmm0,xmm1

vsqrtsd xmm1,xmm0,mmword ptr [7FF94F9E4D78h]

vaddsd xmm0,xmm0,xmm1

vsqrtsd xmm1,xmm0,mmword ptr [7FF94F9E4D80h]

vaddsd xmm0,xmm0,xmm1

Table 2-5. Results for Sqrt13

and Sqrt14 on RyuJIT-x64

Method Time

sqrt13 ~91 ns

sqrt14 0 ns

Chapter 2 Common BenChmarking pitfalls

72

vsqrtsd xmm1,xmm0,mmword ptr [7FF94F9E4D88h]

vaddsd xmm0,xmm0,xmm1

ret

; Sqrt14

vmovsd xmm0,qword ptr [7FF94F9C4C80h]

ret

vsqrtsd computes the square root of a floating-point value, vaddsd adds one

floating-point value to another, and vmovsd moves a floating-point value. Thus, Sqrt13

calculates the whole sum each time, while Sqrt14 just returns a constant.

Aha! It seems that RyuJIT-x64 applied the constant folding optimization for Sqrt14.

But why doesn’t this work for Sqrt13?

Well, it’s really hard to be a JIT compiler. You know a lot of awesome optimizations,

and you don’t have a huge amount of time to apply them (no one wants to have

performance problems because of the JIT compilation). So, we need a trade-off between

the time of JIT compilation and the number of applied optimizations. RyuJIT-x64 has

a set of heuristics that help to make such decisions. In particular, if we are working with

a small method, we can skip some optimizations because it probably should be fast

enough. If a method is a big one, we can spend more time in the JIT compilation stage to

improve performance. In our example, adding the Math.Sqrt(14) is a moment when we

reach a heuristic threshold: from this point, RyuJIT applies additional optimization.

You should know that such things are possible, but it’s not a good idea to use such

knowledge in production code. If you want to improve the performance of an application

by adding an additional Math.Sqrt here and there, please don’t. The JIT implementation

details can be changed at any moment. For example, the preceding issue was reported7

and resolved,8 so it can’t be reproduced on .NET Framework 4.7+ (both Sqrt13 and

Sqrt14 will take 0 nanoseconds because of the constant folding).

Let’s fix the benchmark.

7 https://github.com/dotnet/coreclr/issues/978
8 https://github.com/dotnet/coreclr/issues/987

Chapter 2 Common BenChmarking pitfalls

https://github.com/dotnet/coreclr/issues/978
https://github.com/dotnet/coreclr/issues/987

73

 A better benchmark

The best way to avoid the constant folding is simple: don’t use constants. For example,

we can rewrite our code by introducing additional variables that keep our values:

public double x1 = 1, x2 = 2, x3 = 3, x4 = 4, x5 = 5, x6 = 6,

 x7 = 7, x8 = 8, x9 = 9, x10 = 10, x11 = 11,

 x12 = 12, x13 = 13, x14 = 14;

public double Sqrt14()

{

 return

 Math.Sqrt(x1) + Math.Sqrt(x2) + Math.Sqrt(x3) +

 Math.Sqrt(x4) + Math.Sqrt(x5) + Math.Sqrt(x6) +

 Math.Sqrt(x7) + Math.Sqrt(x8) + Math.Sqrt(x9) +

 Math.Sqrt(x10) + Math.Sqrt(x11) + Math.Sqrt(x12) +

 Math.Sqrt(x13) + Math.Sqrt(x14);

}

RyuJIT can’t apply the constant folding here because there are no constants in the

method.

 Advice: don’t use constants in your benchmarks

It’s simple: if you don’t have constants, the constant folding can’t be applied. If you have

any parameters that you want to pass to the target methods, introduce fields for these

parameters. Such approach also provokes good benchmark design. It’s typical to get

different performance metrics from different input data. If you use parameters instead of

hardcoded values, it will be easier to check different input values in the future.

.NET has many ways to eliminate different parts of your code. In the next section, we

will discuss another one.

 Bound Check Elimination
.NET is a great platform, and it allows you to write safe code. For example, if you try

to get an element of array A with a nonexistent index (e.g. A[-1]), the runtime throws

IndexOutOfRangeException. On the one hand, it is a good thing: the runtime protects

us from writing incorrect code, as it’s impossible to take a value from someone else’s

memory. On the other hand, it adds additional performance overhead.

Chapter 2 Common BenChmarking pitfalls

74

Fortunately, the JIT compiler is smart enough to eliminate bound check sometimes.

The name of this optimization is bound check elimination (BCE). The keyword here is

sometimes; we can’t control when the BCE is performed. Such optimizations are good for

performance, but they are not so good for people who write benchmarks.

 A bad benchmark

Let’s say we have a big array with a constant length and we want to increment each

element of this array. How should we design the benchmark loop? We can set the upper

loop limit as a constant or as an array length. We get the same number of iterations in

each case, and there is no difference in result. But is there a difference in performance?

const int N = 1000001;

int[] a = new int[N];

var stopwatch1 = Stopwatch.StartNew();

for (int iteration = 0; iteration < 101; iteration++)

 for (int i = 0; i < N; i++)

 a[i]++;

stopwatch1.Stop();

var stopwatch2 = Stopwatch.StartNew();

for (int iteration = 0; iteration < 101; iteration++)

 for (int i = 0; i < a.Length; i++)

 a[i]++;

stopwatch2.Stop();

Console.WriteLine(stopwatch1.ElapsedMilliseconds + " vs. " +

 stopwatch2.ElapsedMilliseconds);

You can find an example of results (Windows, .NET Framework 4.6, RyuJIT-x64) in

Table 2-6.

Chapter 2 Common BenChmarking pitfalls

75

The reason of the performance difference is the BCE. The JIT compiler can skip

bound checks when the upper limit is a.Length, but it can’t do it when the upper limit

is constant. It’s not recommended to actively exploit such JIT compiler “features” during

benchmarking: they depend on the runtime and its version. But we should know about

it and design benchmarks in such a way that our results are not spoiled by different JIT

decisions about the BCE.

 A better benchmark

The main rule against BCE: use a consistent loop style for all your benchmarks. If you

use a constant in one loop, use it everywhere (results for the same environment are in

Table 2-7).

const int N = 1000001;

int[] a = new int[N];

var stopwatch1 = Stopwatch.StartNew();

for (int iteration = 0; iteration < 101; iteration++)

for (int i = 0; i < N; i++)

 a[i]++;

stopwatch1.Stop();

var stopwatch2 = Stopwatch.StartNew();

for (int iteration = 0; iteration < 101; iteration++)

for (int i = 0; i < N; i++)

 a[i]++;

stopwatch2.Stop();

Console.WriteLine(stopwatch1.ElapsedMilliseconds + " vs. " +

 stopwatch2.ElapsedMilliseconds);

Table 2-6. Performance of Array Modification

Loop with Different Upper Bound Styles

Experiment Loop upper bound Duration

1 n ~175ms

2 a.length ~65ms

Chapter 2 Common BenChmarking pitfalls

76

Now the results look much better.

 Advice: use consistent loop style

If you want to use benchmark result for optimizing your software, use the same loop style

as your production code. Of course, the preceding benchmark is a toy; real benchmarks

are more complicated and can involve a lot of calls to the array indexer. You always

have to keep in mind that the bound check has an additional performance cost, but

sometimes the JIT compiler can eliminate it.

In the next section, we will learn how .NET can eliminate method calls.

 Inlining
If you want to make your code readable, supportable, and beautiful, you probably don’t

like huge methods. Books about good code teach us that methods should be small; each

method should solve its own small problem. If you have a 100-line method, it’s usually

possible to introduce additional small methods that are responsible for small subtasks.

Someone may say: “Introducing additional methods adds a performance overhead

because of additional calls.” A general recommendation: usually you shouldn’t care

about it. The JIT compiler is the one who should care. Just write nice readable code and

let the JIT compiler do all the dirty work. Besides, the call absence is not always good for

performance. Sometimes, when you simplify a huge method by introducing additional

calls, the JIT compiler will be able to optimize this simplified method well, which

noticeably improves the performance (calls overhead will be negligibly small compared

to these improvements).

However, this is only a general recommendation. The JIT compiler is not always

as smart as we would like. Also, it’s possible to disable inlining for a method, but it’s

impossible to make sure that a method will be inlined.

Table 2-7. Performance of Array Modification

Loop with the Same Upper Bound Styles

Experiment Loop upper bound Time

1 n ~175ms

2 n ~175ms

Chapter 2 Common BenChmarking pitfalls

77

Consider the following method:

void Run1()

{

 for (int i = 0; i < N; i++)

 {

 // huge complicated logic

 }

}

If we do a lot of iterations of some huge complex logic, it makes sense to introduce

a method for it. And we will keep the loop (and other benchmarking stuff) in the main

method.

void Logic() =>// huge complicated logic

void Run2()

{

 for (int i = 0; i < N; i++)

 Logic();

}

The code looks perfect: each layer of abstraction has its own method. Steve

McConnell9 would be proud of us! However, such refactoring could affect performance.

It’s especially important in case of microbenchmarking.

 A bad benchmark

In the next example, we will have two methods A and B. Both of them have a single

double argument x. The A method just calculates x ∗ x. The B method also calculates x ∗ x,

but it throws ArgumentOutOfRangeException for negative arguments.

double A(double x)

{

 return x * x;

}

double B(double x)

9 Author of Code Complete (Microsoft Press, 2016).

Chapter 2 Common BenChmarking pitfalls

78

{

 if (x < 0)

 throw new ArgumentOutOfRangeException("x");

 return x * x;

}

public void Measurements()

{

 double sum = 0;

 var stopwatchA = Stopwatch.StartNew();

 for (int i = 0; i < 1000000001; i++)

 sum += A(i);

 stopwatchA.Stop();

 var stopwatchB = Stopwatch.StartNew();

 for (int i = 0; i < 1000000001; i++)

 sum += B(i);

 stopwatchB.Stop();

 Console.WriteLine(

 stopwatchA.ElapsedMilliseconds + " vs. " +

 stopwatchB.ElapsedMilliseconds);

}

Check how it works on your computer. My results (Windows, .NET Framework 4.6,

RyuJIT-x64) are in Table 2-8.

Table 2-8. Performance of Different

Strategies for Handling Invalid Values

Method Time

a ~2125ns

B ~2466ns

Chapter 2 Common BenChmarking pitfalls

79

Why does the B method work so slowly? It contains only one additional check, but

the difference in measurements between A and B looks too huge. The reason is simple:

the A method was inlined because it’s small and simple. The JIT compiler decided to not

inline B because it’s not so small.10 Thus, we measure inlined A (without call overhead)

and noninlined B (with call overhead), which is not fair. We need justice!

 A better benchmark

The best available solution is to disable inlining with the help of the [MethodImpl]

attribute:

[MethodImpl(MethodImplOptions.NoInlining)]

double A(double x)

{

 return x * x;

}

[MethodImpl(MethodImplOptions.NoInlining)]

double B(double x)

{

 if (x < 0)

 throw new ArgumentOutOfRangeException("x");

 return x * x;

}

New results:

Method Time

a ~2125ms

B ~2466ms

Now we have the performance of method body + call overhead in both cases. We still

observe the difference in measurements (because B has additional logic), but it’s not so

dramatic.

10 Remember that we are talking about .NET Framework 4.6 only. You will observe another result
with future versions of .NET Framework or .NET Core.

Chapter 2 Common BenChmarking pitfalls

80

 Advice: control inlining of the benchmarked methods

You should be sure that all benchmarked methods have the same inlining strategy. Since

it’s impossible to always force inlining (MethodImplOptions.AggressiveInlining is just

a recommendation; the JIT compiler can ignore it), it’s better to always disable inlining.

[MethodImpl(MethodImplOptions.NoInlining)] is one of the simplest ways to do it (the

JIT compiler can’t ignore it).

If you don’t want to write MethodImplOptions.NoInlining all the time and looking

for a general approach, the delegates are your friends. Currently, JIT compilers can’t

inline them,11 so you can wrap all benchmarked methods in delegates and pass them to

your generic measurement logic.

JIT compilation has many smart optimizations, but it can apply them in different

ways. We will discuss inlining in details in Chapter 7.

In the next section, we will discuss a situation when the final assembly code depends

on additional conditions.

 Conditional Jitting
Usually you will get identical assembly codes for the same method, regardless of how

and when we call it. However, an executed code can sometimes affect how other

methods will be jitted. Because of that, it may be dangerous to run several benchmarks

in one program. The easiest way to explain this is with another example.

 A bad benchmark

Consider the following code:

static string Measure1()

{

 double sum = 1, inc = 1;

 var stopwatch = Stopwatch.StartNew();

 for (int i = 0; i < 1000000001; i++)

 sum = sum + inc;

11 It’s true for .NET Framework 4.7.1, .NET Core 2.0, Mono 5.6. Who knows how smart .NET will be
in the future…

Chapter 2 Common BenChmarking pitfalls

81

 return $"Result = {sum}, Time = {stopwatch.ElapsedMilliseconds}";

}

static string Measure2()

{

 double sum = 1, inc = 1;

 var stopwatch = Stopwatch.StartNew();

 for (int i = 0; i < 1000000001; i++)

 sum = sum + inc;

 return $"Result = {sum}, Time = {stopwatch.ElapsedMilliseconds}";

}

static void Main()

{

 Console.WriteLine(Measure1());

 Console.WriteLine(Measure2());

}

Here we have two identical methods that measure the summation of double

variables. Each method returns the final value of sum and the elapsed time. The source

code looks clumsy, but it’s a good small repro of one interesting effect. Let’s run this

program on LegacyJIT-x86 (Windows, .NET Framework 4.6):

Result = 1000000002, Time = 3362

Result = 1000000002, Time = 1119

You probably expected to have the same result for both methods (because they are

identical). However, there is a threefold difference between measurements. Why? Let’s

look at the assembly code of the loop bodies for each method:

; Measure1

fld1

fadd qword ptr [ebp-14h]

fstp qword ptr [ebp-14h]

; Measure2

fld1

faddp st(1),st

Chapter 2 Common BenChmarking pitfalls

82

It turned out that the first method keeps the sum value on the stack, and the second

method keeps it in an FPU register. It’s very important in such a short loop, so we have

a significant performance difference. But why do we have different assembly codes for

these methods?

The JIT compiler has a lot of different heuristics based on different factors. One

such factor in LegacyJIT-x86 is the number of call sites. When we run the first method,

the static constructor of the Stopwatch class wasn’t executed. So, the JIT compiler has

to add a few additional assembly instructions that check whether we need to call this

static constructor or not. This call will be performed only once, but these assembly

instructions will be inside the method forever. When we run the second method, the

Stopwatch static constructor has already been executed. So, we don’t need an additional

check, and we can skip the described assembly instructions.

This check doesn’t have any performance impact. But it increases the number of call

sites. The floating-point registration logic for the LegacyJIT-x86 uses the number of call

sites as a factor for choosing whether or not to register floating-point locals. Thus, we

have different assembly listings and different performance.

There are two important lessons here:

• Execution of one benchmark can affect the performance of other

benchmarks. So, it’s recommended not to run several measurements

in the same program because we can get different results depending

on the benchmark order.

• If you remove the Stopwatch logic from methods, both of them

will work fast. Thus, we made the first method slow by adding

measurements logic. This is another example of the observer effect:

when we add some measurement logic, we start to measure modified

code instead of the original. Additional Stopwatch calls can spoil

some optimizations in very short methods.

 A better benchmark

It’s better to run each benchmark in its own program. Just don’t mix them and you will

avoid some of these problems.

Another approach is to move the Stopwatch logic out from the method body:

[MethodImpl(MethodImplOptions.NoInlining)]

publicstatic double Measure1()

Chapter 2 Common BenChmarking pitfalls

83

{

 double sum = 1, inc = 1;

 for (int i = 0; i < 1000000001; i++)

 sum = sum + inc;

 return sum;

}

[MethodImpl(MethodImplOptions.NoInlining)]

publicstatic double Measure2()

{

 double sum = 1, inc = 1;

 for (int i = 0; i < 1000000001; i++)

 sum = sum + inc;

 return sum;

}

public static void Main()

{

 var stopwatch1 = Stopwatch.StartNew();

 Measure1();

 stopwatch1.Stop();

 var stopwatch2 = Stopwatch.StartNew();

 Measure2();

 stopwatch2.Stop();

 Console.WriteLine(stopwatch1.ElapsedMilliseconds + " vs. " +

 stopwatch2.ElapsedMilliseconds);

}

The result:

1119 vs. 1117

The second approach works for this particular case, but it’s not a good solution in

general. You can’t control conditional jitting and you never know when it will spoil the

measurements.

Chapter 2 Common BenChmarking pitfalls

84

 Advice: use own process for each benchmarked method

If you create an own process for each method, they can’t affect each other. Yes, it’s hard

to do it manually each time, but it’s a good practice which can prevent many problems.

If you don’t want to think about low-level JIT “features,” it’s always better to run each

benchmark in isolation. Are you still not convinced of this? Then check out the next

section, where we look at another benchmark isolation example.

 Interface Method Dispatching
Conditional jitting is not the only reason why it’s a good idea to isolate each benchmark

in a separate process. In most cases, once the JIT compiler generates assembly code for a

method, it will not be changed. However, there are exceptions.12

One such exception is interface method dispatching. When you call an interface

method, the runtime should check the actual object type and find the corresponding

method table. For this purpose, it generates a stub method which is called when you

are trying to execute an interface method. This stub method depends on your current

profile and can be regenerated. In other words, the performance cost of the interface

method call can be implicitly changed by these calls. The important fact here is that one

benchmark could affect the results of another benchmark.

Let’s look at an example.

 A bad benchmark

Let’s say we have a simple interface, IIncrementer, which knows how to increment an

int value. And we have two identical implementations of this interface. We also have a

benchmark method, Measure, which takes an instance of the interface and run the Inc

method in a loop:

interface IIncrementer

{

 int Inc(int x);

}

12 For example, in .NET Core 2.x, the tiered jitting is introduced. If this feature is enabled, JIT can
quickly generate a simple native code for the first invocation of a method. If this implementation
is slow and the method is hot (you call it too many times), JIT can update the native code by a
smarter and faster implementation.

Chapter 2 Common BenChmarking pitfalls

85

class Incrementer1 : IIncrementer

{

 public int Inc(int x) => x + 1;

}

class Incrementer2 : IIncrementer

{

 public int Inc(int x) => x + 1;

}

static void Measure(IIncrementer incrementer)

{

 for (int i = 0; i < 100000001; i++)

 incrementer.Inc(0);

}

static void Main()

{

 var stopwatch1 = Stopwatch.StartNew();

 Measure(new Incrementer1());

 stopwatch1.Stop();

 var stopwatch2 = Stopwatch.StartNew();

 Measure(new Incrementer2());

 stopwatch2.Stop();

 Console.WriteLine(stopwatch1.ElapsedMilliseconds + " vs. " +

 stopwatch2.ElapsedMilliseconds);

}

In the Main method, we measure the loop performance for the first interface

implementation, and then for the second one. Someone who doesn’t know about

interface method dispatching can expect to get the same result. But we know how the

runtime works, so unequal measurements will not be a surprise for us. The following are

typical results on Windows, .NET Framework 4.6, and LegacyJIT-x64:

241 vs. 328

As you can see, the second case is much slower than the first one. In the first case,

there is a single implementation of IIncrementer in the memory. So, the JIT compiler

can generate a fast and simple stub that “knows” that there is only one possible method

Chapter 2 Common BenChmarking pitfalls

86

table for this call. In the second case, there are two implementations of IIncrementer,

and the JIT compiler has to regenerate our stub. Now it’s not so fast because it has to

choose between two method tables. Of course, this is a simplification; the full algorithm

is much more complicated, but I hope that you get the idea.

 A better benchmark

Thus, the best choice for benchmarking is to run each target method in its own process.

Mixing benchmarks in one program can lead to spoiled results.

Here our first program:

// Program1.cs

static void Main()

{

 var stopwatch1 = Stopwatch.StartNew();

 Measure(new Incrementer1());

 stopwatch1.Stop();

 Console.WriteLine(stopwatch1.ElapsedMilliseconds);

}

Here is our second program:

// Program2.cs

static void Main()

{

 var stopwatch2 = Stopwatch.StartNew();

 Measure(new Incrementer2());

 stopwatch2.Stop();

 Console.WriteLine(stopwatch2.ElapsedMilliseconds);

}

Now we can get the equal results:

// Program1

243

// Program2

242

It looks much better.

Chapter 2 Common BenChmarking pitfalls

87

 Advice: use a unique process for each benchmarked method

Isolating is always a good thing for benchmarks. Someone can say that we have to

measure real performance in a real environment, so such isolation is wrong because

we miss important runtime “features.” And this makes sense, but now we are talking

about how to design good benchmarks. Good benchmarks should provide repeatable,

stable results regardless of the order. If you want to take effects like method interface

dispatching into account, you have to design a proper set of benchmarks.

It is worth mentioning that such problems are not frequent. Usually, you will not

suffer from conditional jitting or method interface dispatching. But you can’t know about

it in advance. It’s also possible to have the order problem because of high-level logic like

caching (the first benchmark initializes a cache and the second one works on a warmed

cache). So it’s a good idea, in general, to isolate each benchmark in a separate program.

This is the last benchmarking pitfall to be discussed in this chapter (but it’s far from

the last in this book). Let’s summarize what we have learned.

 Summary
In this chapter, we discussed some common pitfalls typical for people who have just

started to write benchmarks. Some of them are general and can be applied to different

languages and runtimes:

• Inaccurate timestamping

DateTime-based benchmarks have many problems like pure

resolution, so it’s better to use Stopwatch for time measurements.

We will discuss all .NET timestamping APIs and their

characteristics in Chapter 9.

• Executing a benchmark in the wrong way

Benchmarks should always be executed with enabled

optimization (Release mode) without an attached debugger in a

sterile environment.

• Natural noise

Each benchmark iteration has random errors because of the

natural noise.

Chapter 2 Common BenChmarking pitfalls

88

• Tricky distributions

Performance distributions often have a tricky form: they may have

huge variance or include extremely high values. Such distribution

should be carefully analyzed; we will discuss how to do this in

Chapter 4.

• Measuring cold start instead of warmed steady state

The first benchmark iterations are “cold” and can take much more

time than subsequent “warm” iterations.

• Insufficient number of invocations

In the case of microbenchmarks, the measured code should be

repeated many times. Otherwise, errors will be huge because

timestamping is limited on the hardware level and can’t correctly

measure high-speed operations.

• Infrastructure overhead

Each benchmark includes an “infrastructure” part that helps you

to get reliable and repeatable results. This infrastructure can affect

results and spoil the measurements. Thus, the overhead should be

calculated and removed from the final results.

• Unequal iterations

If you repeat a code several times, you should be sure that all

repetitions take the same amount of time.

We also have other kinds of pitfalls because of optimizations in .NET runtimes:

• Loop unrolling

If you use a constant as the upper loop limit, the loop can be

unrolled by different factors depending on the dividers of this

constant.

• Dead code elimination (DCE)

If you don’t use the results of your code, the code can be

completely removed.

Chapter 2 Common BenChmarking pitfalls

89

• Constant folding

If you use constants in expressions, these expressions can be

precalculated at the compilation stage.

• Bound check elimination (BCE)

If you manipulate array elements, the runtime can check the array

bounds or skip these checks.

• Inlining

Sometimes, the runtime can inline method calls, which can be

pretty important for microbenchmarks. We will discuss inlining

and similar optimizations in Chapter 7.

• Conditional jitting

The final assembly code for a method can depend on the previous

methods that were executed. So, it’s a good idea to isolate

benchmarks and run each benchmark in its own process.

• Interface method dispatching

If you call an interface method, the performance of this call

depends on loaded interface implementation. That’s another

reason why the benchmark isolation is a good idea.

I hope that now you understand why benchmarking can be difficult. Benchmarking

(and especially microbenchmarking) requires in-depth knowledge of the target .NET

runtime, modern operation systems, and modern hardware.

Of course, you shouldn’t create own benchmarking infrastructure and solve all

these problems each time you want to measure something. In Chapter 6, we will discuss

BenchmarkDotNet, a library that can protect you from most pitfalls and help you to

conduct a qualitative performance investigation.

However, BenchmarkDotNet is not a silver bullet: you still have to know how to

design a benchmark correctly and what kind of runtime optimizations can spoil your

results. It’s not easy because you don’t know in advance which optimizations will be

applied to your program. It depends on your runtime (e.g., .NET Framework, .NET

Core, or Mono), a specific version of C# compiler, a particular version of JIT compiler

(e.g., LegacyJIT-x86 or RyuJIT-x64), and so on. In the next chapter, we will talk about

different environments and how application performance depends on it.

Chapter 2 Common BenChmarking pitfalls

91
© Andrey Akinshin 2019
A. Akinshin, Pro .NET Benchmarking, https://doi.org/10.1007/978-1-4842-4941-3_3

CHAPTER 3

How Environment Affects
Performance

The environment is everything that isn’t me.

— Albert Einstein

In Chapter 1, we discussed performance spaces. The main components of a

performance space are source code, environment, and input data. The source code is

a mathematical abstraction; it doesn’t have the “performance” characteristic. If you

want to talk about how fast your program is, you should put it in a real environment.

In each environment, the source code will have a long journey before we can discuss

performance (see Figure 3-1).

Figure 3-1. Source code journey

92

In this chapter, we will discuss different factors affecting performance during this

journey:

• Runtime

Runtime is probably one of the most important parts of your

environment. Today, .NET is more than just Windows-only .NET

Framework; there are three different popular runtimes, and you

should understand the differences between them. For example,

you can get utterly different performance pictures if you run the

same program on .NET Core and Mono. Another important thing is

the version of your runtime. Even a small minor update can change

the performance. We will discuss a brief history of each runtime,

check out the most important versions, and learn some interesting

“features.” In the scope of this book, we will discuss the three most

popular runtimes: .NET Framework, .NET Core, and Mono.

• Compilation

It’s a long way from the source code to executable binary files.

It usually includes several stages:

 – IL generation

The first typical stage is the transformation of our source code

(in C#, VB.NET, or another language) to IL. We are going to

discuss the main components of this transformation: build

systems (like MSBuild or XBuild), compilers (like legacy

Microsoft C# compiler, Mono Compiler, or Roslyn), and their

versions.

 – JIT compilation

After the IL generation, we have a set of binary assemblies, but

it’s not the final point of our trip. Next, we should transform it

into the native code. When I say “we,” I mean the JIT compiler.

It produces the native code from your IL on the fly (during the

execution). As usual, we have different JIT compilers (we will

talk about LegacyJIT, RyuJIT, and MonoJIT). The target platform

is essential, so we will also discuss x86 and x64 compilers.

Chapter 3 how environment affeCts performanCe

93

 – Ahead-Of-Time (AOT) compilation

JIT compilation is not the only way to get the native code:

we can compile IL AOT (before the execution). The AOT

compilation is also a very important scenario that changes

the performance space. And of course, we have different AOT

compilers (e.g., NGen [Native Image Generator], Mono AOT,

.NET Native, and CoreRT). A good benchmark report usually

includes what kind of compilation you use (JIT or AOT),

the compiler type, its version, the target platform, and its

parameters.

• External environment

The last section is about the environment of the runtime: there

are many factors beyond the .NET ecosystem that also affect

performance.

 – Operating systems

The classic .NET Framework is Windows only, but we live in

times of cross-platform .NET applications. You can run your

C# programs on Windows, Linux, and macOS (and also on Sun

Solaris, FreeBSD, or tvOS if you want). Each operating system

has a lot of unique performance “features.” We will recall a

brief OS history, discuss each OS and its versions, and compare

the performance of the same programs on different operating

systems.

 – Hardware

There are too many hardware configurations. We will talk about

CPU, RAM, disks, networks, and other hardware components.

The most important thing is that it’s too hard to compare

performance on different machines. There are a lot of low-

level details that can affect the program. In this section, we will

just briefly look at a variety of hardware and discuss the most

important configuration parameters.

Chapter 3 how environment affeCts performanCe

94

 – The physical world

The hardware always exists in real physical conditions. The

performance can be affected by many physical factors like

temperature, vibrations, humidity, and others.

This chapter has three purposes:

 1. Introduce important codenames, titles, captions, and so on.

In this chapter, you will learn some new terms (e.g., Rotor, CoreFx,

mcs, SGen, Roslyn, RyuJIT, Darwin, or Sandy Bridge), so if you skip

this chapter and jump to a more interesting one, you can always

come back to this one for a description of different environments,

for short explanations of “what’s what,” and to understand why we

should care about it.

 2. Provide ways to get information about the current
environment.

If you write your own tools to analyze performance, it’s pretty

important to add logic for collecting information about the

current environment. It’s not obvious how to get the exact version

of installed .NET Framework or .NET Core or determine the JIT

engine (e.g., LegacyJIT or RyuJIT). In this chapter, you will learn

how to collect detailed information about the environment of a

.NET program.

 3. Explain why it’s so important to care about your environment.

We will learn how minor differences between environments can

significantly affect your results.

Each section in this chapter has the same structure. We start with an overview:

history, versions, technology codenames, and so on. After that, you can read four

different stories about how each technology can affect your benchmarks. These case

studies are not random stories; each of them is presented for a reason. Each case

contains a “Conclusions” part at the end that highlights things that you should learn

from the corresponding story. Also, it contains an “Exercise” part. If you want, you

can skip the exercises because some of them require special setup (e.g., hardware or

operating systems) and a huge amount of time. However, if you decide to solve these

Chapter 3 how environment affeCts performanCe

95

problems, you will get skills that can be useful in real performance investigations. Some

stories are based on my own developer experience, some of them are based on other

people’s research, and others are just pretty interesting code snippets.

Of course, in the scope of this book, we will not discuss all possible environments. We

will not cover in detail Windows Servers, ARM processors, Mono LLVM (low-level virtual

machine), GPU, and so on. We will briefly talk about many versions of each environment

component, but we will not learn each version separately. It’s just not necessary. You will

never learn all versions of all technologies: there are too many of them, and we get a lot

of new stuff every day. But it’s important to have a general perspective (what kinds of

environments do we have) and understand which components of the environment can

affect performance (and how they can do it). In this case, you will be able to check all the

important things during benchmarking.

Let’s start with the most important part: .NET runtimes. Of course, you can work

with only one runtime and know it very well, but you can’t discuss “.NET performance”

in general until you understand what’s going on with other runtimes.

 Runtime
Today, there are three popular .NET runtimes: .NET Framework, .NET Core, and Mono.

Technically, all of them are more than just runtimes because they also include class

libraries. However, people often call them runtimes because there is no better term

(“framework” will be more correct, but it can be easily confused with .NET Framework).

Thus, when you see the “runtime” term, it usually means “runtime and corresponding

class libraries.”

To be honest, .NET Framework, .NET Core, and Mono are not the only available

.NET runtimes. There were many attempts to create other alternative .NET runtimes

like Silverlight, Moonlight, .NET Micro Framework, and others. There are also many

approaches to run C# code in a browser: Blazor (an experimental .NET web framework

using C#/Razor and HTML that runs in the browser via WebAssembly), Script#, Bridge.

NET, and so on. All of them are valid environments for .NET applications, but they are not

as popular as .NET Framework, .NET Core, and Mono, so we are not going to discuss them

in this book. You can find a nice overview of different .NET runtimes in [Warren 2018a].

All three runtimes that we are going to discuss are mature and widely adopted.

In this section, we will briefly talk about each of them: we will discuss different topics

like the history, available versions (and how to get these versions), and performance

Chapter 3 how environment affeCts performanCe

96

changes. In the end, you will find several case studies that demonstrate why it’s so

important to know the exact version of your runtime.

 .NET Framework
.NET Framework is the first implementation of .NET created by Microsoft. To avoid

misunderstanding between .NET Framework as a runtime and the ecosystem behind

.NET, let’s agree that .NET Framework as a runtime consists of two main parts: CLR

(or Desktop CLR) and Framework Class Library (FCL). To clearly distinguish .NET

Framework from other .NET implementations, people often use other titles like Full

.NET Framework (or .NET Full Framework), Microsoft .NET Framework, or Desktop .NET

Framework. In this book, when we say “.NET Framework,” we mean the classic Windows-

only .NET Framework by Microsoft.

Let’s start from the beginning and remember the history of .NET Framework. It was

created by Microsoft; the first version was released in 2002 (but the development was

started in the late 1990s). In Table 3-1, you can see the list of .NET Framework versions.1

Table 3-1. .NET Framework Release History

Framework version CLR version Release date Support ended

1.0 1.0 2002-02-13 2009-07-14

1.1 1.1 2003-04-24 2015-06-14

2.0 2.0 2004-11-07 2011-07-12

3.0 2.0 2006-11-06 2011-07-12

3.5 2.0 2007-11-19 2028-10-10

4.0 4.0 2010-04-12 2016-01-12

4.5 4.0 2012-08-15 2016-01-12

1 .NET Framework 4.8 was announced in [Lander 2018b], but it wasn’t released at the moment
of book writing. You can find the actual list of all versions here: https://docs.microsoft.com/
en-us/dotnet/framework/migration-guide/versions-and-dependencies

(continued)

Chapter 3 how environment affeCts performanCe

https://docs.microsoft.com/en-us/dotnet/framework/migration-guide/versions-and-dependencies
https://docs.microsoft.com/en-us/dotnet/framework/migration-guide/versions-and-dependencies

97

Some important facts that are good to know:

• Versions 1.0-3.0 of .NET Framework are obsolete and not supported

by Microsoft anymore.

• Some legacy projects still use .NET Framework 3.5 because it’s tough

to upgrade the runtime. There are many significant changes between

CLR 2 (used by .NET Framework 3.5) and CLR 4 (used by .NET

Framework 4.0+).

• All .NET Framework 4.x versions are in-place updates for old 4.x

versions (it includes CLR and FCL), and they use the same installation

folder: C:\Windows\.NET Framework\V4.0.30319. Thus, if you install

.NET Framework 4.5 and 4.7, all applications will use 4.7. You can’t use

two different 4.x versions of the .NET Framework on the machine at

the same time. The CLR version for all 4.x versions is the same (CLR 4),

but this doesn’t mean that the same CLR implementation is used for

execution: it gets updates with each .NET Framework update.

An example

You work on a Windows machine with .NET Framework 4.6.1

installed and develop a .NET Framework 4.0 application. If you

execute it on this machine, 4.6.1 will be used. If you execute it on

Framework version CLR version Release date Support ended

4.5.1 4.0 2013-10-17 2016-01-12

4.5.2 4.0 2014-05-05 not announced

4.6 4.0 2015-07-20 not announced

4.6.1 4.0 2015-11-30 not announced

4.6.2 4.0 2016-08-02 not announced

4.7 4.0 2017-04-05 not announced

4.7.1 4.0 2017-10-17 not announced

4.7.2 4.0 2018-04-30 not announced

4.8 4.0 2019-04-18 not announced

Table 3-1. (continued)

Chapter 3 how environment affeCts performanCe

98

the computer of a friend who installed .NET Framework 4.7, 4.7

will be used. In this case, “4.0” in the properties of your project

means that you can’t use API from .NET Framework 4.5+ and that

you can run this application on a machine with installed .NET

Framework 4.0+. But it doesn’t require a specific version of .NET

Framework to be used for execution.

There are many essential changes between versions of the .NET Framework; you can

get different performance metric values for the same code on different .NET Framework

versions. Thus, it’s important to know how to determine versions of the installed

.NET Framework. You can do it via special keys in Windows Registry. For example, for

.NET Framework 4.5+, you should look at the value of HKLM\SOFTWARE\Microsoft\

NET Framework Setup\NDP\v4\Full\Release. This is an internal number that can be

mapped to the .NET Framework versions. The same version of the .NET Framework

can have different internals numbers (depends on the Windows version and installed

updates). You can find the minimum values of the Release value in Table 3-2.2

Table 3-2. .NET Framework Registry Release Values

Framework version Minimum release value

4.5 378389

4.5.1 378675

4.5.2 379893

4.6 393295

4.6.1 394254

4.6.2 394802

4.7 460798

4.7.1 461308

4.7.2 461808

2 The full actual manual can be found here: https://docs.microsoft.com/en-us/dotnet/
framework/migration-guide/how-to-determine-which-versions-are-installed

Chapter 3 how environment affeCts performanCe

https://docs.microsoft.com/en-us/dotnet/framework/migration-guide/how-to-determine-which-versions-are-installed
https://docs.microsoft.com/en-us/dotnet/framework/migration-guide/how-to-determine-which-versions-are-installed

99

It’s important to say a few words about the .NET Framework source code. The old

versions of .NET Framework are known as closed source. However, we have access to the

source code of some of these versions. Shared Source Common Language Infrastructure

(SSCLI, codename “Rotor”) is Microsoft’s shared source implementation of the main

parts of .NET Framework. The first version was released in 2002, and the second version

(and the last one) of SSCLI was released in 20063; it contains the essential parts of .NET

Framework 2.0. You can find a good overview of the source code in [SSCLI Internals].

Unfortunately, there are no updates of SSCLI for .NET Framework 3.0, 3.5, 4.0, or 4.5.

Later, Microsoft opened the source code of .NET Framework 4.5.1+ in a read-only mode.

You can find it on the Microsoft Reference Source website.4

Today, .NET Framework is still a Windows-only runtime, which is a severe limitation

for many developers. Fortunately, Microsoft has decided to create a free open source,

cross-platform version: .NET Core.

 .NET Core
.NET Core is an alternative implementation of .NET Framework. Originally, .NET Core

was started as a fork of a .NET Framework subset, but it has become a mature full-

featured independent platform.

.NET Core has been a free and open source project from the beginning (it uses

the MIT License). The .NET Core Runtime is called CoreCLR5 (instead of CLR in .NET

Framework); it contains GC, JIT compiler, System.Private.CoreLib (a replacement for

mscorlib), and some basic runtime-specific classes. The set of .NET Core foundation

libraries is called CoreFX6 (instead of FCL in .NET Framework); it contains all basic

classes like collections, I/O, globalization, and so on. Another important project in the

3 Unfortunately, official Microsoft links to the SSCLI download page are outdated and don’t work
anymore. Fortunately, the Internet remembers everything: you can find the source code here:
https://github.com/AndreyAkinshin/shared-source-cli-2.0

4 You can browse the source of the latest version of .NET Framework here: https://
referencesource.microsoft.com. Old versions are available as .zip files in the Download
section. The source code is also available on GitHub: https://github.com/Microsoft/
referencesource.

5 https://github.com/dotnet/coreclr
6 https://github.com/dotnet/corefx

Chapter 3 how environment affeCts performanCe

https://github.com/AndreyAkinshin/shared-source-cli-2.0
https://referencesource.microsoft.com
https://referencesource.microsoft.com
https://github.com/Microsoft/referencesource
https://github.com/Microsoft/referencesource
https://github.com/dotnet/coreclr
https://github.com/dotnet/corefx

100

.NET Core ecosystem is .NET Core SDK,7 which includes .NET Core, project templates,

.NET Core command-line interface (CLI),8 MSBuild, NuGet tools, and other components

that help to develop .NET Core applications.

.NET Core is a cross-platform runtime (.NET Framework works only on Windows).

Thus, there are a lot of .NET Framework components that can’t be included in .NET Core

because of the deep integration with Windows. However, some of them can be executed

with .NET Core on Windows with the help of the Windows Compatibility Pack (see

[Landwerth 2017b]). Since .NET Core 3.0, it has even been possible to develop Windows-

only WPF and WinForms applications on .NET Core (see [Lander 2018a]).

Internally, the core part of the code base is the same for both .NET Core and .NET

Framework. However, there are a lot of differences. Platforms have different release

cycles: it can be hard to distinguish between versions of .NET Framework that contain

particular changes from .NET Core. .NET Core includes a lot of cross-platform logic that

is required for Linux and macOS. Meanwhile, .NET Framework has many backward

compatibility hacks for Windows. There are a lot of commonalities between these

runtimes, but we will talk about them independently.

Let’s recall the brief history of .NET Core. .NET Core 1.0 was released on 27 June

2016. Since then, many versions have been released; you can see some of them in

Table 3-3.9

Table 3-3. .NET Core Release History

Runtime SDK version Release date

1.0.0 1.0.0-preview2-003121 2016-06-27

1.0.1 1.0.0-preview2-003131 2016-09-13

1.0.2 1.0.0-preview2-003148 2016-10-17

1.1.0 1.0.0-preview2.1-003177 2016-11-16

7 https://github.com/dotnet/core-sdk
8 https://github.com/dotnet/cli
9 You can find full actual release history here: https://github.com/dotnet/core/blob/master/
release-notes/releases.csv

(continued)

Chapter 3 how environment affeCts performanCe

https://github.com/dotnet/core-sdk
https://github.com/dotnet/cli
https://github.com/dotnet/core/blob/master/release-notes/releases.csv
https://github.com/dotnet/core/blob/master/release-notes/releases.csv

101

(continued)

Runtime SDK version Release date

1.0.3 1.0.0-preview2-003156 2016-12-13

1.1.1 1.0.1 2017-03-07

1.0.4 1.0.1 2017-03-07

1.1.2 1.0.4 2017-05-09

1.0.5 1.0.4 2017-05-09

2.0.0 2.0.0 2017-08-14

1.0.7 1.1.4 2017-09-21

1.1.4 1.1.4 2017-09-21

1.0.8 1.1.5 2017-11-14

1.1.5 1.1.5 2017-11-14

2.0.3 2.0.3 2017-11-14

2.0.3 2.1.2 2017-12-04

2.0.5 2.1.4 2017-12-04

1.0.10 1.1.8 2018-03-13

1.1.7 1.1.8 2018-03-13

2.0.6 2.1.101 2018-03-13

1.0.11 1.1.9 2018-04-17

1.1.8 1.1.9 2018-04-17

2.0.7 2.1.105 2018-04-17

2.0.7 2.1.200 2018-05-08

2.0.7 2.1.201 2018-05-21

2.1.0 2.1.300 2018-05-30

2.1.1 2.1.301 2018-06-19

1.0.12 1.1.10 2018-07-10

1.1.9 1.1.10 2018-07-10

2.0.9 2.1.202 2018-07-10

Table 3-3. (continued)

Chapter 3 how environment affeCts performanCe

102

There are some important facts that we should learn from this table:

• The first stable version of the runtime was released with a preview

version of the SDK. If you try to play with early versions of SDK, you

will have to work with .xproj+project.json files instead of the usual

.csproj files. Many developers were unhappy about these changes,

so it was decided to drop project.json-based projects and resurrect

the *.csproj files to keep the backward compatibility with the old

versions of MSBuild. However, if you want to check something on the

old versions of the runtime, you don’t need the old versions of SDK:

newer SDK builds support old versions of the runtime.

• The same version of the runtime can be used with different SDK

versions.

With .NET Core SDK and MSBuild 15+, Microsoft introduced an “improved” version

of the .csproj format. It looks like this:

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>

 <TargetFrameworks>net46;netcoreapp2.1</TargetFrameworks>

 </PropertyGroup>

</Project>

Runtime SDK version Release date

2.1.2 2.1.302 2018-07-10

2.1.2 2.1.400 2018-08-14

2.1.3 2.1.401 2018-08-14

2.1.4 2.1.402 2018-09-11

2.1.5 2.1.403 2018-10-02

1.0.13 1.1.11 2018-10-09

1.1.10 1.1.11 2018-10-09

2.1.6 2.1.500 2018-11-13

2.2.0 2.2.100 2018-12-04

Table 3-3. (continued)

Chapter 3 how environment affeCts performanCe

103

We will call it SDK-style projects. If a project uses the “original” format (with a huge

number of lines in a .csproj file), we will call it just classic projects. SDK-style projects

were introduced with .NET Core SDK, but that doesn’t mean that you can use it only

with .NET Core. In the preceding example, a project targets .NET Framework 4.6 (net46)

and .NET Core 2.1 (netcoreapp2.1). If you develop a library that should be compatible

with any target framework,10 you can list all of them in each project, but it’s not very

convenient. This problem was solved with the help of .NET Standard. Here is the official

definition of .NET Standard from Microsoft documentation11:

The .NET Standard is a formal specification of .NET APIs that

are intended to be available on all .NET implementations. The

motivation behind the .NET Standard is establishing greater

uniformity in the .NET ecosystem. ECMA 335 continues to

establish uniformity for .NET implementation behavior, but there

is no similar spec for the .NET Base Class Libraries (BCL) for .NET

library implementations.

In Table 3-4, you can see mapping between .NET Standard and different .NET

platforms.12

10 There are a lot of them. You can find the full list here: https://docs.microsoft.com/en-us/
dotnet/standard/frameworks

11 https://docs.microsoft.com/en-us/dotnet/standard/net-standard
12 It’s not a full table. You can find the actual full version of this table here: https://docs.
microsoft.com/en-us/dotnet/standard/net-standard. Moreover, actual mapping also
depends on the version of .NET Core SDK. For example, .NET Standard 1.5 corresponds to .NET
Framework 4.6.2 if you use .NET Core SDK 1.x and .NET Framework 4.6.1 if you use .NET Core
SDK 2.x. If you are not sure that you correctly understand the concept of .NET Standard, it’s
recommended to watch [Landwerth 2017a].

Chapter 3 how environment affeCts performanCe

https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/standard/net-standard
https://docs.microsoft.com/en-us/dotnet/standard/net-standard
https://docs.microsoft.com/en-us/dotnet/standard/net-standard

104

Let’s say that we have a library targeting .NET Standard 2.0. This means that we can

use it with .NET Core 2.0, .NET Framework 4.6.1, or Mono 5.4. Here is the main thing that

you should understand in the context of benchmarking: .NET Standard is not a runtime;

it’s a set of APIs. You can’t run an application or unit tests13 on .NET Standard. Thus, we

can’t discuss the performance of .NET Standard 2.0, but we can discuss the performance

of .NET Core 2.0, .NET Framework 4.6.1, and Mono 5.4. And it doesn’t make any sense to

say something like “.NET Standard 1.3 works faster than .NET Standard 1.2.”

It’s very important to know the runtime version when we discuss performance. Let’s

learn how to detect the current version of .NET Core. Unfortunately, there is no public

API which allows getting the current version of .NET Core at runtime. However, if we

really want to know this version, we can use the following hack. The typical location

of the runtime libraries in .NET Core SDK looks like this: dotnet/shared/Microsoft.

NETCore.App/2.1.0/. As we can see, the full path includes the runtime version. Thus,

we can take the location of an assembly that contains one of the base types (e.g.,

GCSettings), and find a part of the path with the exact version:

public static string GetNetCoreVersion()

{

 var assembly = typeof(System.Runtime.GCSettings).GetTypeInfo().Assembly;

 var assemblyPath = assembly.CodeBase.Split(new[] { '/', '\\' },

 StringSplitOptions.RemoveEmptyEntries);

 int netCoreAppIndex = Array.IndexOf(assemblyPath, "Microsoft.NETCore.App");

Table 3-4. .NET Standard Compatibility Matrix

.net standard 1.0 1.1 1.2 1.3 1.4 1.5 1.6 2.0

.net Core 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0

.net framework 4.5 4.5 4.5.1 4.6 4.6.1 4.6.1 4.6.1 4.6.1

mono 4.6 4.6 4.6 4.6 4.6 4.6 4.6 5.4

Xamarin.ios 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.14

Xamarin.mac 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.8

Xamarin.android 7.0 7.0 7.0 7.0 7.0 7.0 7.0 8.0

13 https://xunit.github.io/docs/why-no-netstandard

Chapter 3 how environment affeCts performanCe

https://xunit.github.io/docs/why-no-netstandard

105

 if (netCoreAppIndex > 0 && netCoreAppIndex < assemblyPath.Length - 2)

 return assemblyPath[netCoreAppIndex + 1];

 return null;

}

It works for regular .NET Core installation, but it doesn’t work for special

environments like Docker containers.14 In the case of Docker, you can get the runtime

version from environment variables like DOTNET_VERSION and ASPNETCORE_VERSION (see

[Hanselman 2018] for details).

For diagnostics, it can be also good to know the exact internal version of CoreCLR

and CoreFX:

var coreclrAssemblyInfo = FileVersionInfo.GetVersionInfo(

 typeof(object).GetTypeInfo().Assembly.Location).FileVersion;

var corefxAssemblyInfo = FileVersionInfo.GetVersionInfo(

 typeof(Regex).GetTypeInfo().Assembly.Location).FileVersion;

Here is an example of possible values:

.NET Core 3.0.0-preview-27122-01

CoreCLR 4.6.27121.03

CoreFX 4.7.18.57103

As you can see, they do not match each other. The internal versions of CoreCLR and

CoreFX are especially important when you are working on changes in .NET Core itself.

Each version of .NET Core has tons of performance improvements (see [Toub 2017],

[Toub 2018]). If you care about the speed of your application, it’s recommended to use

the latest available version. However, the set of old .NET Core versions is an excellent

guinea pig for benchmarking exercises.

The last thing that you should know is .NET Core Configuration Knobs.15 Knobs are

configuration parameters that help you to tune the runtime. You can enable a knob

with the help of COMPlus_* environment variables. For example, if you want to enable

14 https://github.com/dotnet/BenchmarkDotNet/issues/788
15 You can find the full list of all knobs in .NET Core 2.2.0 on GitHub: https://github.com/
dotnet/coreclr/blob/v2.2.0/Documentation/project-docs/clr-configuration-knobs.md

Chapter 3 how environment affeCts performanCe

https://github.com/dotnet/BenchmarkDotNet/issues/788
https://github.com/dotnet/coreclr/blob/v2.2.0/Documentation/project-docs/clr-configuration-knobs.md
https://github.com/dotnet/coreclr/blob/v2.2.0/Documentation/project-docs/clr-configuration-knobs.md

106

JitAggressiveInlining (we will discuss JIT later in this chapter), you should set

COMPlus_JitAggressiveInlining=1.

.NET Core was born in 2016, but it wasn’t the first cross-platform .NET

implementation. Developers were able to use .NET on Linux and macOS for years with

the help of another .NET runtime: Mono.

 Mono
Microsoft announced .NET Framework in 2000. It looked like a great runtime, but it was

Windows only. Miguel de Icaza from Ximian decided to create his own open source

version of .NET that works on Linux. It was a pretty successful attempt. After three years

of development, Mono 1.0 was born. The first versions had many problems, bugs, and

performance issues. However, the runtime evolved rapidly, and Mono became a good

Linux/macOS alternative for .NET developers. Ximian was acquired by Novell in 2003.

In 2011, Miguel de Icaza and Nat Friedman founded Xamarin, the new company that

continued to develop Mono. In 2016, Xamarin was acquired by Microsoft. Since then,

Mono has been a part of .NET Foundation.16 While .NET Core is a good option for cross-

platform applications in terms of reliability and performance, Mono is still widely used

(mainly for mobile applications17 and Unity applications18).

After the first Mono release in 2004, dozens of major and minor Mono versions

were released. Each version has a huge list of changes; you can find all the details in

the official release notes.19 I want to highlight only some specific performance-related

changes:

• Mono 1.0 (2004-01-30): The first official Mono release.

• Mono 1.2 (2006-11-02): Many common optimizations (inlining, DCE,

constant folding, and so on), AOT compilation, Boehm GC.

• Mono 2.0 (2008-10-01): Improved performance of operations on

decimals and locking, reduced memory usage for generics.

16 https://dotnetfoundation.org/
17 https://visualstudio.microsoft.com/xamarin/
18 https://unity3d.com/
19 www.mono-project.com/docs/about-mono/releases/

Chapter 3 how environment affeCts performanCe

https://dotnetfoundation.org/
https://visualstudio.microsoft.com/xamarin/
https://unity3d.com/
https://www.mono-project.com/docs/about-mono/releases/

107

• Mono 2.2 (2009-01-09): New code generation engine with advanced

optimizations, improved AOT, improved regex interpreter.

• Mono 2.4 (2009-03-13): SIMD (Single Instruction Multiple Data)

support, optimized XPath and resource loading.

• Mono 2.6 (2009-12-14): LLVM support.

• Mono 2.8 (2010-10-05): New GC engine support: SGen (the

difference between Boehm and SGen is shown in Figure 3-220; the

lower straight line corresponds to SGen, the upper curved line

corresponds to Boehm).

• Mono 2.10 (2011-02-15): Significant SGen improvements like

concurrent mark and sweeping.

• Mono 3.0 (2012-10-19) A new task management system in SGen,

low-level intrinstics for ThreadLocal<T>, List<T> optimizations.

• Mono 3.2 (2013-07-24): LLVM 3.2 with better optimizations, SGen

become the default GC, important AOT and LINQ optimizations,

faster large object cloning and boxing, optimized Marhshal.Read and

Marshal.Write.

• Mono 3.4 (2014-03-31): Miscellaneous minor performance

improvements.

• Mono 3.6 (2014-08-12): New GC modes, improved lock performance,

optimized EqualityComparer.

• Mono 3.8 (2014-09-04) JIT improvements like better handling long

remainders by the power of two, faster code for delegates that are

only invoked once

• Mono 3.10 (2014-10-04): Remove unnecessary locking from core

metadata parsing functions, avoid cache thrashing of locals array

when looping over enumerator.

20 The picture was taken from the official release notes: www.mono-project.com/docs/
about-mono/releases/2.8.0/

Chapter 3 how environment affeCts performanCe

https://www.mono-project.com/docs/about-mono/releases/2.8.0/
https://www.mono-project.com/docs/about-mono/releases/2.8.0/

108

• Mono 3.12 (2015-01-13): Major performance and memory consumption

improvements on SGen, pushless code generations for x86.

• Mono 4.0 (2015-04-29): Adoption of Microsoft’s open source code

(significant perf changes in many BCL classes like System.Decimal),

floating-point optimizations, SGen tuning, many improvements in

different places like Interlocked, Thread.MemoryBarrier, Enum.

HasFlag, and so on.

• Mono 4.2 (2015-08-25): More adoption of Microsoft’s open source

code (and more perf changes in BCL), updated delegate internals.

• Mono 4.4 (2016-06-08) Unmanaged thin locks (10x perf

improvements for locking in some cases), cooperative GC Mode.

• Mono 4.6 (2016-09-13): Improved GC on Android, miscellaneous

performance improvements.

• Mono 4.8 (2017-02-22): Initial concurrent SGen support, further MS

Reference Source Adoption.

• Mono 5.0 (2017-05-10): Shipping Roslyn C# compiler (performance

surprise for everyone who used old mcs), SIMD acceleration support

enabling concurrent SGen GC by default, CoreFx + Reference Source

Adoption, lazy array interfaces, reduced runtime memory usage,

SIMD register scanning.

• Mono 5.2 (2017-08-14): Experimental default interface methods

support, optimized array stores, class initialization improvements,

reduced minor collection pause times.

• Mono 5.4 (2017-10-05): Concurrent method compilation, array

element store optimization, load scalability improvements,

ValueType write barrier optimization, Intrisificy Marshal.

PtrToStruct for blitable types.

• Mono 5.8 (2018-02-01): Modes for the SGen GC (balanced,

throughput, pause).

• Mono 5.10 (2018-02-26): ARM memory barriers, AOT size reduction

via code deduplication.

Chapter 3 how environment affeCts performanCe

109

• Mono 5.12 (2018-05-08): jemalloc support.

• Mono 5.14 (2018-08-07): better generic sharing, memory

optimization for handles, LLVM inlining improvements, GC handling

of very large objects.

• Mono 5.16 (2018-1008): hybrid GC suspend, improved 32-bit

floating-point math, intrinsics for Span<T> and ReadOnlySpan<T>.

Figure 3-2. Difference between Boehm and SGen in Mono 2.8

As you can see from the changelog, each major release has important performance

improvements. When you benchmark your code, it’s very important to specify which

version of Mono you are using. The changes affect the main Mono component: the JIT

compiler, the implementation of base classes, and the GC. Speaking of GC, the runtime

Chapter 3 how environment affeCts performanCe

110

has two of them: Boehm and SGen. Boehm is a legacy one, SGen has been the default GC

since Mono 3.2. It provides better performance and has many nice features. SGen has

many possibilities for tuning, which will be covered in Chapter 8.

Mono is a cross-platform runtime. In this book, we usually discuss Windows, Linux,

and macOS, but you can also use Mono 5.12+ on iOS, tvOS, watchOS, Sun Solaris,

different flavors of BSD, Sony PlayStation 4, XboxOne, and so on.21

From the beginning, Mono was designed as an alternative runtime for existing

.NET Framework programs. It doesn’t have its own target framework. If you have an

application that targets net47 and netcoreapp2.0, the net47 profile can be executed on

both .NET Framework and Mono; netcoreapp2.0 can be executed only on .NET Core.

If you want to check if the current runtime is Mono, you should check the existence of

the Mono.Runtime type22:

bool isMono = Type.GetType("Mono.Runtime") != null;

To get the installed version of Mono, you should run mono --version in the

command line. This command will also print additional useful information about your

Mono build like the architecture or default GC. Here is an example of output:

$ mono --version

Mono JIT compiler version 5.16.0.220

(2018-06/bb3ae37d71a Fri Nov 16 17:12:11 EST 2018)

Copyright (C) 2002-2014 Novell, Inc, Xamarin Inc and Contributors.

www.mono-project.com

 TLS: normal

 SIGSEGV: altstack

 Notification: kqueue

 Architecture: amd64

 Disabled: none

 Misc: softdebug

 Interpreter: yes

 LLVM: yes(3.6.0svn-mono-release_60/0b3cb8ac12c)

 GC: sgen (concurrent by default)

21 You can find the full list of supported platforms and architectures in the official documentation:
www.mono-project.com/docs/about-mono/supported-platforms/

22 www.mono-project.com/docs/faq/technical/#how-can-i-detect-if-am-running-in-mono

Chapter 3 how environment affeCts performanCe

https://www.mono-project.com/docs/about-mono/supported-platforms/
http://www.mono-project.com/docs/faq/technical/#how-can-i-detect-if-am-running-in-mono

111

There are two builds of Mono for Windows: x86 and x64 (we will discuss different

processor architectures later in this chapter). On Linux and macOS, only the x64 version

of Mono is available.

Now it’s time for a few exciting performance stories about different versions of

different .NET runtimes.

 Case Study 1: StringBuilder and CLR Versions
In .NET, string is an immutable type. It means that each operation like “concatenation”

or “replace” creates a new instance of string. If you are working with huge strings, such

operations allocate a lot of memory and take a significant amount of time. Fortunately,

we have the StringBuilder23 class, which was introduced in .NET Framework 1.1. It

represents a mutable string and allows performing effective string operations without

unnecessary memory allocations.

It looks very simple, but the internal implementation of StringBuilder is not

so simple. Moreover, different versions of .NET Framework use different underlying

algorithms.

Let’s say that we want to implement a logging method Log(string s) that should

collect all strings and join them into one huge string. Here is a naive implementation

based on usual strings:

private string buffer = "";

public void Log(string s)

{

 buffer += s;

}

This is not an effective implementation because each call of Log will create a new

instance of string, copy the content of buffer to this instance, copy the content of s to

this instance, and save the instance back to the buffer field. As a result, we have many

23 https://docs.microsoft.com/en-us/dotnet/api/system.text.stringbuilder

Chapter 3 how environment affeCts performanCe

https://docs.microsoft.com/en-us/dotnet/api/system.text.stringbuilder

112

allocations, and we should spend a lot of time copying the same data between strings.

Let’s rewrite it with the help of StringBuilder:

private StringBuilder buffer = new StringBuilder();

public void Log(string s)

{

 buffer.Append(s);

}

How effective is this code? It depends.

In .NET Framework 1.1-3.5 (CLR2), the implementation was pretty simple.24

StringBuilder has an internal string field that represents the current value. In this

context, we consider it as a mutable string because we can modify it via unsafe code.

The initial capacity (length of this internal field) of StringBuilder by default is 16. When

we call the Append method, StringBuilder checks if the capacity is big enough to keep

additional characters. If everything is OK, it just adds new characters. Otherwise, it

creates a new string with doubled capacity,25 copies the old content to the new instance,

and then appends target characters.

In .NET Framework 4.x (CLR4), Microsoft made a lot of significant changes.26 The

most important change is about the internal representation: it’s not a single string

instance anymore. Now it’s a linked list of chunks that contain char arrays for parts of the

represented string. It allows optimizing many operations. For example, Append doesn’t

allocate a huge string when we don’t have enough space: we can create new chunks

and keep the chunks that contain the beginning of the string! The new implementation

of the Append method is much better in CLR4. However, we don’t have performance

improvements for all methods. For example, ToString() works slower because we have

to construct the final string from chunks (in CLR2, we had a ready string in the internal

field). The indexer also works slower because we have to find the target chunk in the

24 You can find the full source code for .NET Framework 2.0 here: https://github.com/
AndreyAkinshin/shared-source-cli-2.0/blob/master/clr/src/bcl/system/text/
stringbuilder.cs

25 https://github.com/AndreyAkinshin/shared-source-cli-2.0/blob/master/clr/src/bcl/
system/text/stringbuilder.cs#L604

26 You can find the full source code for the latest version of .NET Framework here:
https://referencesource.microsoft.com/#mscorlib/system/text/stringbuilder.cs

Chapter 3 how environment affeCts performanCe

https://github.com/AndreyAkinshin/shared-source-cli-2.0/blob/master/clr/src/bcl/system/text/stringbuilder.cs
https://github.com/AndreyAkinshin/shared-source-cli-2.0/blob/master/clr/src/bcl/system/text/stringbuilder.cs
https://github.com/AndreyAkinshin/shared-source-cli-2.0/blob/master/clr/src/bcl/system/text/stringbuilder.cs
https://github.com/AndreyAkinshin/shared-source-cli-2.0/blob/master/clr/src/bcl/system/text/stringbuilder.cs#L604
https://github.com/AndreyAkinshin/shared-source-cli-2.0/blob/master/clr/src/bcl/system/text/stringbuilder.cs#L604
https://referencesource.microsoft.com/#mscorlib/system/text/stringbuilder.cs

113

linked list (in CLR2, we could instantly get the target character because we had only one

instance of a string). However, it’s probably a good trade-off because a making a vast

number of the Append calls is the most popular use case of StringBuilder. You can find

more information about differences in StringBuilder implementations between CLR2

and CLR4 in [Guev 2017].

This is not the only change in StringBuilder that affects its performance; there

are many other exciting stories. A few examples (we are not going to discuss all

StringBuilder-related issues in this book, so it’s recommended to read these GitHub

discussions yourself):

• corefx#463227: “StringBuilder creates unnecessary strings with

Append methods”

• corefx#2992128: “ValueStringBuilder is slower at appending short

strings than StringBuilder”

• corefx#2580429: “Iterating over a string builder by index becomes

~exponentially slow for large builders”

• coreclr#1753030: “Adding GetChunks which allow efficient scanning

of a StringBuilder”

• msbuild#159331: “Performance issue in ReusableStringBuilder.cs with

large string and many appends”

Conclusions:

• .NET Framework version matters.

Most modern .NET Framework applications are based on .NET

Framework 4.x+ (CLR4). However, there are still many huge legacy

projects that use .NET Framework 3.5 (CLR2). There are so many

differences between 3.5 and 4.0. If you work with a legacy .NET

27 https://github.com/dotnet/corefx/issues/4632
28 https://github.com/dotnet/corefx/issues/29921
29 https://github.com/dotnet/corefx/issues/25804
30 https://github.com/dotnet/coreclr/pull/17530
31 https://github.com/Microsoft/msbuild/issues/1593

Chapter 3 how environment affeCts performanCe

https://github.com/dotnet/corefx/issues/4632
https://github.com/dotnet/corefx/issues/29921
https://github.com/dotnet/corefx/issues/25804
https://github.com/dotnet/coreclr/pull/17530
https://github.com/Microsoft/msbuild/issues/1593

114

Framework 3.5 project, you can’t use measurements on .NET

Framework 4.0 to make any conclusions about the performance of

your application.

• Major runtime updates can contain significant changes in basic
algorithms.

Performance updates are not only about some advanced API or

corner cases. Sometimes, you can get significant changes even for

basic classes like StringBuilder.

• Some updates change trade-offs.

When you read about performance changes in a changelog, it

doesn’t mean that you get better performance in the new runtime

version for all possible use cases. Some updates can just change

trade-offs: it can improve the performance of the most popular use

cases and slow down some less popular scenarios. If you have some

tricky logic, you can get a performance regression after an update.

AN EXERCISE

write two programs that use StringBuilder.Insert and StringBuilder.Remove.

one program should be much faster on .net framework 3.5 than on .net framework 4.0+.

another program should be much faster on .net framework 4.0+ than on .net framework

3.5. it’s one of my favorite kinds of exercises because of the many developers who like to

confidently say something like “.net framework 4.0+ is always faster than .net framework

3.5.” this exercise should help you to understand that in-depth knowledge of runtime internals

often allows writing a benchmark that demonstrates that one runtime is “faster” than another

(no matter which runtime should be “faster”).

 Case Study 2: Dictionary and Randomized String Hashing
In old versions of .NET Framework, the String class had a well-known hash function

that is the same between different application domains. It allowed performing a hash

table attack on classes like Dictionary and HashSet: we can find a vast number of

Chapter 3 how environment affeCts performanCe

115

strings with equal hash codes in advance and put them in a dictionary. As a result, the

algorithmic complexity of dictionary lookup will be O(N) instead of O(1).

In .NET Framework 4.5, it was decided to introduce randomized string hashing

to prevent such attacks. Because of the backward compatibility,32 a new hashing

algorithm can’t be enabled by default; it can break old code that is exploiting knowledge

about legacy algorithms. However, if we are already under attack, we don’t care about

backward compatibility anymore and switch the hashing algorithm from legacy to

randomized. Here is a fragment33 of Dictionary source code (the Insert method, .NET

Framework 4.7.2):

#if FEATURE_RANDOMIZED_STRING_HASHING

#if FEATURE_CORECLR

 // In case we hit the collision threshold

 // we'll need to switch to the comparer, which is

 // using randomized string hashing

 // in this case will be EqualityComparer<string>.Default.

 // Note, randomized string hashing is turned on

 // by default on coreclr so EqualityComparer<string>.Default will

 // be using randomized string hashing

 if (collisionCount > HashHelpers.HashCollisionThreshold &&

 comparer == NonRandomizedStringEqualityComparer.Default)

 {

 comparer = (IEqualityComparer<TKey>) EqualityComparer<string>.Default;

 Resize(entries.Length, true);

 }

#else

 if (collisionCount > HashHelpers.HashCollisionThreshold &&

 HashHelpers.IsWellKnownEqualityComparer(comparer))

 {

 comparer = (IEqualityComparer<TKey>)

 HashHelpers.GetRandomizedEqualityComparer(comparer);

32 https://github.com/dotnet/corefx/issues/1534#issuecomment-143086216
33 https://referencesource.microsoft.com/#mscorlib/system/collections/generic/
dictionary.cs

Chapter 3 how environment affeCts performanCe

https://github.com/dotnet/corefx/issues/1534#issuecomment-143086216
https://referencesource.microsoft.com/#mscorlib/system/collections/generic/dictionary.cs
https://referencesource.microsoft.com/#mscorlib/system/collections/generic/dictionary.cs

116

 Resize(entries.Length, true);

 }

#endif// FEATURE_CORECLR

#endif

As you can see, if collisionCount is bigger than HashHelpers.

HashCollisionThreshold (it equals 100 in .NET Framework 4.7.2) and the legacy

IEqualityComparer is used, we change the comparer.

You can control this behavior via the UseRandomizedStringHashAlgorithm34

property in app.config. An example:

<?xml version ="1.0"?>

<configuration>

 <runtime>

 <UseRandomizedStringHashAlgorithm enabled="1" />

 </runtime>

</configuration>

In .NET Core, there are no problems with backward compatibility, so the randomized

string hashing is enabled by default. You can find more details about it in [Lock 2018].

Conclusions:

• Performance of a method can be changed in the middle of a
program.

In Chapter 2, we discussed that warm-up is important for

benchmarking: the first call of a method can take much more time

than subsequent calls. However, this is not the only case when

a method performance can be changed. .NET Framework has a

set of heuristics that can switch the internal implementation in

special situations. If we want to design a good benchmark, we

should be aware of such switches and cover different API use

cases.

34 https://docs.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/
runtime/userandomizedstringhashalgorithm-element

Chapter 3 how environment affeCts performanCe

https://docs.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/runtime/userandomizedstringhashalgorithm-element
https://docs.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/runtime/userandomizedstringhashalgorithm-element

117

• Internal algorithms can be tuned by app.config settings.

We already know that different .NET Framework versions

could have performance differences because of changes in

the implementation. However, we can manually switch some

algorithms by values in app.config or via environment variables.

• .NET Framework and .NET Core can have different algorithms for
the same API.

.NET Framework and .NET Core share the main part of their

code bases. Typically, we will get the same performance levels

for the same base classes (it’s not always easy to match .NET

Framework and .NET Core versions, but you can check the source

code for each version of each runtime). However, the behavior of

some classes can be different even for the same versions: .NET

Framework contains a lot of backward compatibility hacks that

were removed in .NET Core.

AN EXERCISE

try to implement a hash function attack on HashSet or Dictionary with disabled

FEATURE_RANDOMIZED_STRING_HASHING (you should find over 100 different strings with

the same hash codes). write a benchmark that demonstrates performance difference between

legacy and modern hashing behavior. this exercise should help you to learn how to exploit

internal implementation details, find “corner cases,” and demonstrate pure performance for

common apis, which usually work fast.

 Case Study 3: IList.Count and Unexpected Performance
Degradation
This story is about the development of JetBrains Rider. When Rider 2017.1 was released,

it used Mono 4.9. Then, we started to upgrade it to Mono 5.2. Unfortunately, after the

upgrade, some of the performance tests were red. Primarily, we had problems with

the Solution-Wide Error Analysis (SWEA). On Mono 4.9, one of the tests took around

3 minutes (we are trying to find all errors and warnings in huge solutions; it takes

Chapter 3 how environment affeCts performanCe

118

some time). After the upgrade, this test failed with 5 minutes timeout. It was tough to

investigate this issue because Mono 4.9/5.2 had poor abilities for profiling (advanced

profiling was introduced only in Mono 5.6). If we run this test under profiling (mono

--profile) with enough sampling frequency, it took about 30 minutes and the snapshot

is about 50 GB (which is almost impossible to open). After a few weeks of unsuccessful

profiling attempts, we decided to find other tests with the same problem and small

total execution times. However, it turned out that the duration of almost all our tests

were the same in both versions of Mono. So, we sorted all our tests by the performance

difference between 4.9 and 5.2. In the top, we observed two kinds of tests: SWEA and

code completion! A completion test looks like this: we open a file, move the caret to a

specific place, press Ctrl+Space, wait for a completion list, press Enter, complete the

statement. One such test took 4 seconds on Mono 4.9 and 18 seconds on Mono 5.2! The

difference is huge, but it’s pretty small in terms of profiling: it’s much easier to make a

performance snapshot for an 18-second session than for a 5-minute session. Of course,

we didn’t find the problem on the first attempt. Mono sampling showed an approximate

place with the performance degradation. Next, we started to add Stopwatches here and

there (it’s 4->18 perf degradation; it should be easy to find it, right?) After another few

days of investigating, we finally found the line that was responsible for the degradation.

It contained just a Count call for an IList<> object. At first, I didn’t believe that I found

it correctly, so I created a minimal reproduction case and wrote a microbenchmark with

the help of BenchmarkDotNet:

private readonly IList<object> array = new string[0];

[Benchmark]

public int CountProblem() => array.Count;

Here are the results on Linux:

BenchmarkDotNet=v0.10.9, OS=ubuntu 16.04

Processor=Intel Core i7-7700K CPU 4.20GHz (Kaby Lake), ProcessorCount=8

 Mono49 : Mono 4.9.0 (mono-49/f58eb9e642b Tue), 64bit

 Mono52 : Mono 5.2.0 (mono-52/da80840ea55 Tue), 64bit

 Runtime | Mean | Error | StdDev |

-------- |-------------:|-----------:|-----------:|

 Mono49 | 5.038 ns | 0.2869 ns | 0.8459 ns |

 Mono52 | 1,471.963 ns | 19.8555 ns | 58.5445 ns |

Chapter 3 how environment affeCts performanCe

119

And here are the results on macOS:

BenchmarkDotNet=v0.10.9, OS=Mac OS X 10.12

Processor=Intel Core i7-4870HQ CPU 2.50GHz (Haswell), ProcessorCount=8

 Mono49 : Mono 4.9.0 (mono-49/f58eb9e642b Tue), 64bit

 Mono52 : Mono 5.2.0 (mono-52/da80840ea55 Tue), 64bit

Runtime | Mean | Error | StdDev |

-------- |-------------:|-----------:|------------:|

 Mono49 | 5.548 ns | 0.0631 ns | 0.1859 ns |

 Mono52 | 2,443.500 ns | 44.6687 ns | 131.7068 ns |

As you can see, the Count invocation takes about 5 nanoseconds on Linux/

macOS+Mono 4.9, about 1500 nanoseconds on Linux+Mono 5.2, and about 2500

nanoseconds on macOS+Mono 5.2. It significantly affects Rider in some different

places like completion and SWEA. It’s probably not a good idea to cast string[] to

IList<object>, but we had such a “pattern” deep inside of different Rider subsystems

and it’s not easy to detect and refactor all of them.

OK, why do we have such a degradation here? If you read about Mono performance

changes carefully, you probably noticed a remark about “Lazy array interfaces” in Mono

5.0. Here’s a fragment from the official release notes35:

Lazy array interfaces One curious aspect of C# is that arrays

implement invariant interfaces as if they were covariant. This

happens for IList<T>, ICollection<T> and IEnumerable<T>

which means, for example, that string[] implements both

IList<string> and IList<object>.

Mono traditionally implemented this by creating the runtime-

side metadata for all of those interfaces and that came with an

extraordinary memory cost of creating a lot of interfaces that

never ended up being referenced by C# code.

With Mono 5.0 we now treat those interfaces as magic/special and

use a different casting code-path. This allows them to be lazily

35 www.mono-project.com/docs/about-mono/releases/5.0.0/#lazy-array-interfaces

Chapter 3 how environment affeCts performanCe

http://www.mono-project.com/docs/about-mono/releases/5.0.0/#lazy-array-interfaces

120

implemented in arrays, which can save a lot of memory in LINQ-

heavy workloads. As part of this work we refactored the casting

code in the JIT to be simpler and more maintainable.

Unfortunately, there was a bug in the interface method dispatch implementation.

We are in touch with developers from Mono, so this bug was quickly fixed36 (Thank you

guys!). We have patched Mono 5.2 with this fix and released Rider 2017.2 without any

performance degradation (and some improvements).

Conclusions:

• Runtime updates can unpredictably affect any parts of your code.

It’s a good practice to read changelogs when you upgrade a

runtime or third-party libraries. It can help you to find some

serious problems in advance. However, you never know how these

changes will affect your application. Don’t trust your intuition and

carefully measure performance before the update.

• The implementation of simple API can be performance-critical for
special cases.

Before this story, I didn’t believe that would be possible to get

serious performance problems because of the IList<>.Count

implementation. When looking at such calls, you would usually

think that you shouldn’t care about its performance because it

should always work superfast. However, even the simplest API

calls could have a significant performance impact, especially if

you call it too often, if you meet some corner cases, or if there are

some bugs inside.

AN EXERCISE

try to reproduce this issue locally. if you want to investigate performance changes at runtime,

you should learn how to install (or build from source) different versions of runtime (e.g., mono)

and run a benchmark on each of them.

36 https://github.com/mono/mono/pull/5486

Chapter 3 how environment affeCts performanCe

https://github.com/mono/mono/pull/5486

121

 Case Study 4: Build Time and GetLastWriteTime
Resolution
The next story is also about Rider update. In Rider 2018.2, we decided to update Mono

from 5.10 to 5.12. After the previous case study, we already know that it’s a good practice

to read changelogs carefully. Here is a short note from the Mono 5.12 release notes37:

Added support for nanosecond resolution in file information

on platforms where the information is available. This means the

return value of APIs like FileInfo.GetLastWriteTime () is now

more precise.

Let’s look at this change38 in detail. Here are the values of File.

GetLastWriteTime(filename).Ticks for the same file on Mono 5.10 and Mono 5.12

(1 tick = 100 nanoseconds):

 InternalTicks

Mono 5.10: 636616298110000000

Mono 5.12: 636616298114479590

As you can see, the old versions of Mono have information only about seconds

(10000000 ticks is exactly 1 second). In the new versions of Mono, we have information

about milliseconds and microseconds. This is definitely a good improvement, but it’s

also a breaking change. However, it sounds like a small harmless change that wouldn’t

affect performance. In fact, it can. As usual, we decided to check that there are no

performance regressions in the new version of Mono. And we found a lot of tests with

increased duration. How is it possible? Let’s figure it out!

Rider has a neat feature called the solution builder. As you can guess, it builds your

solutions. Obviously, if a solution has already been built before, and a user asks to build

it again, we shouldn’t rebuild projects without any changes. The solution builder has a

set of smart heuristics that help to detect such projects. One of the basic heuristics uses

the last modification file time to find files without changes.

37 www.mono-project.com/docs/about-mono/releases/5.12.0/
38 https://github.com/mono/mono/pull/6307

Chapter 3 how environment affeCts performanCe

https://www.mono-project.com/docs/about-mono/releases/5.12.0/
https://github.com/mono/mono/pull/6307

122

The solution builder contains two parts. The first part is placed inside Rider host

process, which uses the bundled version of Mono (this version is fixed for each Rider

release). Here we save information about the last modification timestamps in a cache.

The second part is placed inside an MSBuild39 task, which uses the installed version of

Mono (this version depends on the user environment). Here we check for the last actual

modification timestamps. Next, we compare two timestamps (cached and actual) and

decide whether to build a project or not.

Imagine a situation when Rider uses Mono 5.12 and a user has installed Mono 5.10.

It means that the cached timestamp values have the milliseconds/microseconds data

and the actual values don’t have it. In the preceding example, these values are equal to

636616298114479590 and 636616298110000000. Thus, the probability that these two

values are equal is very low. As a result, the solution builder rebuilds all the projects all

the time; the feature is broken. Of course, we covered the solution builder by many tests,

but these tests were executed only on Windows (for some historical reasons), where we

use .NET Framework. On Linux/macOS, we didn’t have such tests in Rider 2018.1, so the

build was green. However, we discovered serious performance degradations for some

tests because Rider executed extra builds. The bug was quickly found and fixed.

There was not a long performance investigation here, but this story still can teach us.

Conclusion:

• Minor harmless changes can significantly affect performance.

This case study once again reminds us that it’s very hard to predict

how changes can affect the performance of a huge application.

Don’t forget to measure things and don’t trust your intuition.

AN EXERCISE

as usual, try to reproduce the described change in mono locally: download mono 5.10 and

5.12, and then call File.GetLastWriteTime(filename).Ticks on a random file. try to

call it on .net framework and .net Core.

39 We will discuss it in the “Compilation” section.

Chapter 3 how environment affeCts performanCe

123

 Summing Up
In this section, we discuss the three most popular .NET runtimes: .NET Framework,

.NET Core, and Mono. .NET Framework is a proprietary Windows-only runtime, while

.NET Core and Mono are free and cross-platform runtimes. Now we know a short history

of these runtimes and how to get the exact version of each of them.

Whichever runtime you use, don’t forget that even minor changes in runtime

updates can unpredictably affect performance in the most unexpected places. Don’t

forget to always measure all the performance-critical application use cases.

If you got some interesting benchmarking results on a single runtime, don’t

extrapolate your results on .NET in general. Remember that there are many .NET

runtimes: each of them has its own implementation.

In the next section, we are going to talk about the transformation of the original

source to native code.

 Compilation
If you want to execute your C#40 program, you should compile it first. After the compilation,

we get a binary file that is based on the IL. When this file is executed by the runtime, we

have another stage of compilation: runtime transforms it into native code. This process is

known as JIT compilation. There are also a lot of tools that can do this transformation in

advance (before the start of the application). This is known as AOT compilation. To avoid

misunderstanding, we will call the first compilation stage IL generation.

In this section, we will discuss different topics about these three kinds of

compilations:

• What kind of compiler we have and the differences between them.

• How to get the exact version of each compiler.

• How we can affect the compilation process.

Let’s start with the first compilation stage: IL generation.

40 Many languages can be used with the .NET platform. In addition to C#, we also have two pretty
popular languages (Visual Basic .NET, F#), and many less popular languages like Managed C++
or Q#. Here and in the following, we will discuss C#, but almost all the facts are also valid for
other .NET languages.

Chapter 3 how environment affeCts performanCe

124

 IL Generation
In this subsection, we will discuss tools that help us to compile and build the source

code.

 Compiling

If we want to compile a C# program, we need a C# compiler, which translates your C#

code into IL.41 Let’s discuss the most popular compilers:

• Legacy C#/VB compilers

In the epoch of C# 1..C# 5, we had C# and VB compilers as a part

of .NET Framework. They were written in C++.

• Roslyn

Roslyn is the modern open source42 C# and Visual Basic compiler.

It was pretty hard to maintain the legacy C#/VB compilers and

introduce new features. So Microsoft decided to rewrite it in C#.

Thus, Roslyn was born. The first Community Technology Preview

(CTP) was presented in October 2011 and distributed as a part

of Visual Studio 2010 SP1 (see [Osenkov 2011]). The first version

of the compiler was released in July 2015 (see [Lander 2015])

with .NET Framework 4.6 and Visual Studio 2015. This version

included the C# 6 and VB 14 support. All the subsequent releases

of C# and VB are also based on Roslyn. The last version of C#

supported by the legacy compiler is C# 5. Roslyn is distributed

independently from .NET Framework; you can download a

specific version of Roslyn via the Microsoft.Net.Compilers43 NuGet

package. You can find the full story of Roslyn in [Torgersen 2018].

41 IL is also known as CIL (Common Intermediate Language) or MSIL (Microsoft Intermediate
Language).

42 https://github.com/dotnet/roslyn
43 www.nuget.org/packages/Microsoft.Net.Compilers/

Chapter 3 how environment affeCts performanCe

https://github.com/dotnet/roslyn
https://www.nuget.org/packages/Microsoft.Net.Compilers/

125

• Mono C# Compiler

Historically, Mono had its own compiler: Mono C# Compiler.44 It

was developed as a cross-platform open source replacement of

the Microsoft C# compiler. Initially, there were several different

versions of the compiler (gmcs, smcs, dmcs).45 Starting with Mono

2.11, there is a universal compiler version: mcs. Starting with Mono

5.0, the default compiler was changed from mcs to Roslyn, which

is now shipped with Mono. However, mcs is still continuing to get

updates in new versions of Mono.

If you have installed .NET Framework 4.x, you can find the legacy C# compiler in

C:\Windows\Microsoft.NET\Framework\v4.0.30319\Csc.exe. If you run it, you will see

a prompt message like this:

Microsoft (R) Visual C# Compiler version 4.7.3056.0 for C# 5

Copyright (C) Microsoft Corporation. All rights reserved.

This compiler is provided as part of the Microsoft (R) .NET Framework,

but only supports language versions up to C# 5,

which is no longer the latest version.

For compilers that support newer versions of the C# programming language,

see http://go.microsoft.com/fwlink/?LinkID=533240

The Roslyn compiler is not a part of the .NET Framework, so you should install it

separately. One of the typical installation paths on Windows looks like this: C:\Program

Files (x86)\Microsoft Visual Studio\2017\Community\MSBuild\15.0\Bin\Roslyn\

csc.exe (this path is valid for Visual Studio Community 2019). If you launch it, the

prompt message will look like this:

Microsoft (R) Visual C# Compiler version 2.9.0.63208 (958f2354)

Copyright (C) Microsoft Corporation. All rights reserved.

Note that the title of both compilers is the same (Visual C# Compiler), but Roslyn

has the lower version (2.9 instead of 4.7). This doesn’t mean that it’s an older version of

44 It was renamed “Mono Turbo C# Compiler” in Mono 5.8: https://github.com/mono/mono/comm
it/7d68dc8e71623ba76b16c5c5aa597a2fc7783f16

45 https://stackoverflow.com/q/3882590

Chapter 3 how environment affeCts performanCe

https://github.com/mono/mono/commit/7d68dc8e71623ba76b16c5c5aa597a2fc7783f16
https://github.com/mono/mono/commit/7d68dc8e71623ba76b16c5c5aa597a2fc7783f16
https://stackoverflow.com/q/3882590

126

the C# compiler. When Roslyn was created, Microsoft started the versioning from 1.0.

You can quickly detect the legacy compiler by the "for C# 5" suffix.

 Building

If you have a huge solution with tons of files, it’s pretty hard to manually specify all

arguments that should be passed to the compiler. Fortunately, we can use a build system

that orchestrates the compilation process: it controls not only how we compile separate

files with source code, but how to build an entire solution with many projects and what

kind of additional steps we need. There are several tools that can build .NET projects and

solutions:

• MSBuild

MSBuild is the most popular build tool in the .NET ecosystem.

Initially, it was also a Windows-only closed source project

distributed as a part of .NET Framework. Today, MSBuild is

an open source and cross-platform project.46 There are many

ways to install it. For example, you can get it with Visual Studio,

Build Tools for Visual Studio47 or build it from sources. The latest

versions of MSBuild ship Roslyn for compiling C# and VB files.

• .NET Core CLI

CLI (command-line tool) allows performing all basic development

operations: building, testing, deployment, and so on.48 Internally,

it has its own version of MSBuild.

• XBuild

XBuild is a classic build tool for Mono. In the old days, it was the

only way to build projects on Linux and macOS. Since Mono 5.0,

XBuild has been deprecated because Mono ships MSBuild as the

default build system.

46 https://github.com/Microsoft/msbuild
47 https://visualstudio.microsoft.com/downloads/#build-tools-for-visual-studio-2017
48 You can download it here: www.microsoft.com/net/download

Chapter 3 how environment affeCts performanCe

https://github.com/Microsoft/msbuild
https://visualstudio.microsoft.com/downloads/#build-tools-for-visual-studio-2017
https://www.microsoft.com/net/download

127

• Other build systems

Many developers don’t like pure MSBuild and try to use different

build systems on top of it. Basically, they provide you a DSL

(domain-specific language), which simplifies configuring your

build process. Popular build systems include Fake, Cake, and

Nuke.49

Today, the most popular toolset is MSBuild+Roslyn. However, some projects still

may use the legacy C# compiler or XBuild. We discuss these technologies because they

provide many good examples that demonstrate how changes in a compiler can affect the

performance of your applications.

When MSBuild and the C# compiler were a part of .NET Framework, there were only

a few widely used versions of the compiler. With the new Visual Studio 2017 Release

Rhythm,50 we get compiler updates all the time.

 Build configurations

When you create a new solution in Visual Studio, you get two default build configuration:

Debug and Release. If we open a csproj file for a classic application, we will find lines

like this (some lines were removed for simplification):

<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|AnyCPU'">

 <DebugSymbols>true</DebugSymbols>

 <DebugType>full</DebugType>

 <Optimize>false</Optimize>

 <OutputPath>bin\Debug\</OutputPath>

</PropertyGroup>

<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|AnyCPU'">

 <DebugType>pdbonly</DebugType>

 <Optimize>true</Optimize>

 <OutputPath>bin\Release\</OutputPath>

</PropertyGroup>

49 https://fake.build/, https://cakebuild.net/, https://nuke.build/
50 www.visualstudio.com/en-us/productinfo/vs2017-release-rhythm

Chapter 3 how environment affeCts performanCe

https://fake.build/
https://cakebuild.net/
https://nuke.build/
https://www.visualstudio.com/en-us/productinfo/vs2017-release-rhythm

128

The most important element for us is <Optimize>; this value is passed to the

compiler and controls the optimization mode. By default, optimizations are disabled,

but we can explicitly call compiler with enabled optimizations with the help of /

optimize flag:

csc /optimize Program.cs

In a csproj file, we can define our own build configuration with custom rules

for <Optimize>. We can even enable optimizations in Debug and disable it in

Release. However, it’s not a typical configuration. In this book, we will use the most

common notation: Release means <Optimize>true</Optimize> and Debug means

<Optimize>false</Optimize>. You can control the target configuration for MSBuild

with the help of /p:Configuration:

msbuild /p:Configuration=Release Project.csproj

If you are using .NET Core SDK, you need --configuration or just -c:

dotnet build -c Release Project.csproj

Be careful: Debug (build configuration with disabled optimizations) is always the

default option. It’s great for debugging, but not so great for benchmarking.

 Language version vs. compiler version

Sometimes, developers confuse C# version and C# compiler version. C# version is a

specification. C# compiler version is a version of a program that translates C# source code

to IL. Let’s see what the difference is with the help of the legacy C# compiler. Consider

the following program:

var numbers = new int[] { 1, 2, 3 };

var actions = new List<Action>();

foreach (var number in numbers)

 actions.Add(() => Console.WriteLine(number));

foreach (var action in actions)

 action();

There are two possible outcomes: 3 3 3 and 1 2 3. Old versions of the C# compiler

created a single field for number, which was reused in all lambda expressions. After the

end of the loop, the value of number is 3. Since all lambda expressions reference the

Chapter 3 how environment affeCts performanCe

129

same field, all of them will print 3 (you can find an explanation with more details in

[Lippert 2009]). It was pretty confusing behavior for many developers, so the compiler

team decided to make a breaking change in the compiler. Now, the compiler introduces

a separate field per each loop iteration. Thus, we get 1 2 3 as the output because each

lambda expression has its own field.

The breaking change was made in the compiler, not in the language version. Let’s

look at some possible compiling configurations in Table 3-5.

Table 3-5. Closures on Different Versions of the Legacy C# Compiler

Compiler version Command line Output

3.5.30729.7903 (C#3) v3.5/csc.exe 3 3 3

4.0.30319.1 (C#4) v4.0.30319/csc.exe 3 3 3

4.0.30319.33440 (C#5) v4.0.30319/csc.exe 1 2 3

4.0.30319.33440 (C#5) v4.0.30319/csc.exe /langversion:4 1 2 3

Let’s discuss these in detail.

• 3.5.30729.7903 This is a compiler version that supports C# 3.

• 4.0.30319.1 This is a compiler version that supports C# 4.

• 4.0.30319.33440 This is a compiler version that supports C# 5.

• 4.0.30319.33440 with langversion:4 This is a compiler version that

supports C# 5 and targets C# 4. We can specify the target language

version for a C# compiler via the /langversion argument. Thus, we

can run C# compiler 4.0.30319.33440 against C# 4 instead of C# 5.

Basically, this means that we will not use C#5 language features like

asynchronous methods. And it doesn’t mean that we get the same IL

code as in the “C# 4 compiler” (4.0.30319.1). As you can see, with

/langversion:4, we still have 1 2 3 in output. The breaking change

is still here.

The C# compiler produces IL code instead of native code. In the next section, we

will discuss the next compilation stage: the JIT compilation. Sometimes, we will denote

the compiler from this subsection as IL generator, “regular” compiler, or C# compiler

to avoid confusion with the JIT compiler. To be short, we will also call it Roslyn because

Chapter 3 how environment affeCts performanCe

130

it’s the most popular .NET compiler, but most of the conclusions can also be applied to

the legacy C# compiler or other IL generators (for example, F# has its own compiler; this

language is not supported by Roslyn).

Just-In-Time (JIT) Compilation
JIT compilation is a great technology that transforms IL code to native code (we will also

call it assembly code or just ASM code). Here are some of the main advantages of the JIT

compilation:

• IL code is hardware independent, so we can reuse the same binary

file on different platforms.

• The JIT compiler compiles only methods that you really need.

• The generated code can be optimized for current usage profile.

• Some methods can be regenerated in order to achieve better

performance.

In this section, we will discuss different JIT compilers in the .NET ecosystem.

The first versions of .NET Framework have two JIT compilers: JIT32 and JIT64 (for

32-bit and 64-bin versions of the runtime). Both compilers have independent code bases

and different sets of optimizations. After years of development, it became very difficult

to maintain and improve them, so it was decided to write a next-generation JIT compiler

called RyuJIT.51 Initially, JIT32 and JIT64 didn’t have codenames (because .NET had only

one JIT compiler for each platform). To avoid misunderstandings, we will use the terms

LegacyJIT-x86 and LegacyJIT-x64 in this book.

The .NET team started to design RyuJIT in 2009, the development process was

started in 2011, the first preview version was announced in September 2013 (see [RyuJIT

2013]), and it was finally released in 2015 (x64 only): RyuJIT became the default x64-

JIT since .NET Framework 4.6. Thus, if you have a .NET 4.0 64-bit application, it will be

automatically use RyuJIT after .NET Framework 4.6+ installation.

Early versions of RyuJIT had a lot of problems (especially on the CTP stage). Some

of them are performance-related (RyuJIT produced slow code in comparison with

LegacyJIT). Some of them are critical bugs that were the cause of huge problems in

51 Here you can find a short story about origin of this name: https://github.com/dotnet/
coreclr/blob/master/Documentation/botr/ryujit-tutorial.md#why-ryujit

Chapter 3 how environment affeCts performanCe

https://github.com/dotnet/coreclr/blob/master/Documentation/botr/ryujit-tutorial.md#why-ryujit
https://github.com/dotnet/coreclr/blob/master/Documentation/botr/ryujit-tutorial.md#why-ryujit

131

some production systems.52 However, now RyuJIT is a pretty stable, reliable, and fast

JIT compiler. The development way was thorny, but eventually, we got a cool new

JIT. Another interesting fact: the original source code of RyuJIT-x64 was based on

LegacyJIT-x86, so you can find a lot of similar optimizations between these two JIT

compilers.

If you want to switch back to LegacyJIT-x64 in .NET Framework, there are several

ways. You can set <useLegacyJit enabled="1" /> in the configuration/runtime

section of your app.config, define the COMPLUS_useLegacyJit=1 environment

variable, or add a 32-bit DWORD Value useLegacyJit=1 in the HKEY_LOCAL_MACHINE\

SOFTWARE\Microsoft\.NETFramework and HKEY_CURRENT_USER\SOFTWARE\Microsoft\.

NETFramework Windows Registry subkeys. You can find the full actual instructions about

disabling RyuJIT in [MSDOCS RyuJIT].

Let’s start to understand what kind of JIT compiler (LegacyJIT or RyuJIT) is used for

an x64-program. I want to tell you about one of my favorite hacks, which I used for years.

Consider the following method:

int bar;

bool Foo(int step = 1)

{

 var value = 0;

 for (int i = 0; i < step; i++)

 {

 bar = i + 10;

 for (int j = 0; j < 2 * step; j += step)

 value = j + 10;

 }

 return value == 20 + step;

}

If you call this method on LegacyJIT-x64 with enabled optimization, Foo will return

true: value will be equal to 21 instead of 11. You can find a detailed description of this

bug with corresponding assembly listings in [Akinshin 2015]. A bug report was reported

52 There is a famous post by Nick Craver from StackOverflow: [Craver 2015]. It’s an intriguing story
about bug advisory problems on StackOverflow production servers after upgrading .NET up to
4.6. It worth reading it and checking out all the links.

Chapter 3 how environment affeCts performanCe

132

on Microsoft Connect,53 but it was closed with status “Closed as Won’t Fix. Due to several

factors, the product team decided to focus its efforts on other items.” Thus, if you run this

code as an x64 application on .NET Framework and Foo returns true, LegacyJIT-x64 is

used. Otherwise, the runtime uses RyuJIT-x64.

Another approach is based on the list of jit modules that is loaded into the current

process. You can print this list as follows:

var modules = Process.GetCurrentProcess().Modules

 .OfType<ProcessModule>()

 .Where(module => module.ModuleName.Contains("jit"));

foreach (var module in modules)

 Console.WriteLine(

 Path.GetFileNameWithoutExtension(module.FileName) + " " +

 module.FileVersionInfo.ProductVersion);

In CLR2, you will see mscorjit. It always means LegacyJIT because it’s the only JIT

available in CLR2. In CLR4, RyuJIT-x64 has only one module: clrjit (formerly known

as protojit). LegacyJIT-x64 has two modules: clrjit and compatjit. Thus, if you

see compatjit in your module list, it means that LegacyJIT is used. RyuJIT-x86 is not

available for .NET Framework; LegacyJIT-x86 is the only option for x86 programs.

Now let’s talk about JIT compilers in .NET Core. .NET Core 1.x uses RyuJIT-x64 for

x64 and LegacyJIT-x86 for x86 (the x86 version is available only for Windows). In .NET

Core 2.0, LegacyJIT-x86 was replaced by RyuJIT-x86.54 Eventually, all LegacyJIT-x86-

related code was removed from the .NET Core source code.55 .NET Framework and .NET

Core share the same RyuJIT-x64 code base.56

In Mono, there is no well-known name for the JIT compiler, so we will call it

MonoJIT. It’s a part of the Mono runtime, so MonoJIT has improvements in each Mono

update. In addition to the default JIT compiler, we also have a Mono LLVM option for JIT

53 This page is not available anymore because the service has been retired.
54 https://github.com/dotnet/announcements/issues/10
55 https://github.com/dotnet/coreclr/pull/18064
56 You can find some interesting technical details in this GitHub issue: https://github.com/
dotnet/coreclr/issues/14250

Chapter 3 how environment affeCts performanCe

https://github.com/dotnet/announcements/issues/10
https://github.com/dotnet/coreclr/pull/18064
https://github.com/dotnet/coreclr/issues/14250
https://github.com/dotnet/coreclr/issues/14250

133

compilation, which uses LLVM57 for generating assembly code (available since Mono

2.6). You can control it via the --nollvm or --llvm arguments.

In Table 3-6, you can see a compatibility matrix between different JIT compilers and

.NET runtimes.

Table 3-6. Compatibility of JIT Compilers

JIT .NET Framework .NET Core Mono

LegacyJit-x86 1.0+ 1.x —

LegacyJit-x64 2.0+ — —

ryuJit-x86 — 2.0+ —

ryuJit-x64 4.6+ 1.0+ —

monoJit — — 1.0+

monoLLvm — — 2.6+

In the next subsection, we will discuss another approach for generating native code.

Ahead-Of-Time (AOT) Compilation
JIT compiler generates the native code for a method when you want to call this method.

This is the default strategy for most of the .NET applications, but it’s not the only one.

You can also compile your code AOT, generate native code for all methods, and produce

binaries that don’t need JIT compiler. AOT compilation has some advantages and

disadvantages compared to JIT compilation: in some cases, it can provide significant

performance improvements, but it can also do more harm than good.

Advantages (compared to JIT):

• Better startup time

JIT compiler can take a lot of time during initial assembly loading

and slow down the startup time. In the case of an AOT compiler,

we don’t have such problems.

57 LLVM is a popular cross-platform solution for generating native code on different platforms
based on own intermediate representation. You can find more information on the official site:
https://llvm.org/

Chapter 3 how environment affeCts performanCe

https://llvm.org/

134

• Lower memory usage

If several applications use the same assembly, the native image of

the assembly can be shared between them. Thus, the total amount

of used memory can be reduced.

• Better optimizations

JIT compiler should work fast, and it doesn’t have enough time

for all “smart” optimizations. AOT compiler is not limited by

compilation time, so it has an opportunity to “think well” about

the best way to optimize your code.

Disadvantages (compared to JIT):

• Optimizations are not always better

AOT compilation doesn’t guarantee that all optimizations will

be better. JIT compiler has knowledge about the current runtime

session, so it can produce better assembly code. Also, it can

generate better memory layout for generated code (e.g., if you

have a call chain of methods, JIT compiler can put them near to

each other).

• API limitations

It’s not always possible to use all .NET APIs with an AOT toolchain

because you can’t always compile everything AOT. For example,

you can have problems with dynamic assembly loading, dynamic

code execution, reflection, generic classes and interfaces, and

other “advanced” APIs.

• JIT/AOT binding overhead

If you have an interaction between AOT and JIT compiled

methods, it can have noticeable performance overhead because of

the expensive method address bindings.

Chapter 3 how environment affeCts performanCe

135

• Build process complication

AOT build usually takes much more time and you have to generate

separate native binaries for all target platforms.

• Huge size of binary files

JIT compiler can produce native code only for a method that you

actually call. AOT compiler has to generate native code for all

classes and methods because you don’t know in advance which

method will be called. JIT compiler can eliminate some branches

based on the runtime information like values of static read-only

values (e.g., IsSupported). AOT compiler has to generate code for

all branches because it doesn’t have values that will be computed

in runtime.

Thus, the AOT compiler can be not a good option for all kinds of applications, but it

can be pretty useful in some cases. Several engines provide AOT features for .NET:

• NGen

NGen58 is the classic and most famous AOT tool for .NET

Framework. It can create native images (.ni.dll or .ni.exe) of

the managed assemblies and install them into the native image

cache. One of the interesting NGen features is MPGO59 (Managed

Profile Guided Optimization): it allows tracing your code during

runtime, building “profile” data, and using it for better native code

generation. MPGO works great when real-world usage scenarios

are similar to these profiles.

• CrossGen

CrossGen60 is analogue of NGen (which is .NET Framework-

specific) for .NET Core. It also generates native images for

58 https://docs.microsoft.com/en-us/dotnet/framework/tools/
ngen-exe-native-image-generator

59 https://docs.microsoft.com/en-us/dotnet/framework/tools/
mpgo-exe-managed-profile-guided-optimization-tool

60 https://github.com/dotnet/coreclr/blob/v2.2.0/Documentation/building/crossgen.md

Chapter 3 how environment affeCts performanCe

https://docs.microsoft.com/en-us/dotnet/framework/tools/ngen-exe-native-image-generator
https://docs.microsoft.com/en-us/dotnet/framework/tools/ngen-exe-native-image-generator
https://docs.microsoft.com/en-us/dotnet/framework/tools/mpgo-exe-managed-profile-guided-optimization-tool
https://docs.microsoft.com/en-us/dotnet/framework/tools/mpgo-exe-managed-profile-guided-optimization-tool
https://github.com/dotnet/coreclr/blob/v2.2.0/Documentation/building/crossgen.md

136

managed assemblies, but it’s cross-platform: you can use it on

Windows, Linux, or macOS. MPGO is also available for .NET Core

(see [Le Roy 2017]).

• Mono AOT

Mono also provides a tool for AOT compilation61 that can be

used by the --aot runtime arguments. It generates native images

(with the extension .so on Linux; .dylib on macOS) that will be

automatically used when the assembly is executed. Mono AOT

has a huge number of options. For example, with --aot=full, you

can enable the full AOT. This mode is designed for platforms that

don’t allow dynamic code generation: all of the target methods

should be compiled AOT. Next, you can run the application with

mono --full-aot (it’s not an equivalent of mono --aot=full, it’s

another command!), which means that the JIT engine (and all

the dynamic features) will be disabled. You can also use AOT on

Xamarin.Android and Xamarin.iOS.62

• .NET Native

If we are talking about UWP (Universal Windows Platform)

applications, there is another interesting technology called .NET

Native.63 Many UWP applications are designed for mobile devices

and have high requirements for startup time, execution time,

memory usage, and power consumption. .NET Native uses C++

compiler on the back end; it is optimized for static precompilation

and links the required parts of the .NET Framework directly

in the app. When a user downloads an app, the precompiled

native image is used. Thus, the startup time is much faster, and

we don’t have to spend the energy of a mobile device on the JIT

compilation.

61 www.mono-project.com/docs/advanced/runtime/docs/aot/
62 https://xamarinhelp.com/xamarin-android-aot-works/, https://docs.microsoft.com/
en-us/xamarin/ios/internals/architecture#aot

63 https://docs.microsoft.com/en-us/dotnet/framework/net-native/

Chapter 3 how environment affeCts performanCe

https://www.mono-project.com/docs/advanced/runtime/docs/aot/
https://xamarinhelp.com/xamarin-android-aot-works/
https://docs.microsoft.com/en-us/xamarin/ios/internals/architecture#aot
https://docs.microsoft.com/en-us/xamarin/ios/internals/architecture#aot
https://docs.microsoft.com/en-us/dotnet/framework/net-native/

137

• CoreRT

CoreRT64 is a .NET Core runtime optimized for AOT compilation.

It’s cross-platform, which means that you can create native

applications for Windows, Linux, and macOS. You can learn a lot

about CoreRT internals in [Warren 2018b].

• RuntimeHelpers

Unlike the preceding AOT approaches, RuntimeHelpers is a

managed static class with handy methods that you can use

for AOT compilation during runtime. Imagine that you have a

method requiring “heavy” JIT compilation, but you don’t want to

wait on the first method call and you can’t warm it up by calling

it in advance because each invocation produces side effects. In

this case, you can get the method handle via reflection and ask

JIT compiler to generate native code in advance with the help of

RuntimeHelpers.PrepareMethod.

Now let’s discuss a few case studies about different kinds of compilation.

 Case Study 1: Switch and C# Compiler Versions
switch is one of the basic C# keywords. Do you know how it works internally? Actually, it

depends on the version of your C# compiler. Consider the following code with switch:

string Capitalize(string x)

{

 switch (x)

 {

 case "a":

 return "A";

 case "b":

 return "B";

 case "c":

 return "C";

64 https://github.com/dotnet/corert

Chapter 3 how environment affeCts performanCe

https://github.com/dotnet/corert

138

 case "d":

 return "D";

 case "e":

 return "E";

 case "f":

 return "F";

 case "g":

 return "G";

 }

 return "";

}

The legacy C# compiler 4.0.30319.33440 generates the following code:

; Phase 0: Dictionary<string, string>

IL_000d: volatile.

IL_000f: ldsfld class Dictionary<string, int32>

IL_0014: brtrue.s IL_0077

IL_0016: ldc.i4.7

IL_0017: newobj instance void class Dictionary<string, int32>::.ctor

IL_001c: dup

IL_001d: ldstr "a"

IL_0022: ldc.i4.0

IL_0023: call instance void class Dictionary<string, int32>::Add

IL_0028: dup

IL_0029: ldstr "b"

IL_002e: ldc.i4.1

IL_0023: call instance void class Dictionary<string, int32>::Add

IL_0034: dup

IL_0035: ldstr "c"

; ...

; Phase 1:

IL_0088: ldloc.1

IL_0089: switch (

 IL_00ac, IL_00b2, IL_00b8,

 IL_00be, IL_00c4, IL_00ca, IL_00d0)

Chapter 3 how environment affeCts performanCe

139

IL_00aa: br.s IL_00d6

; Phase 2: cases

IL_00ac: ldstr "A"

IL_00b1: ret

IL_00b2: ldstr "B"

IL_00b7: ret

IL_00b8: ldstr "C"

IL_00bd: ret

IL_00be: ldstr "D"

IL_00c3: ret

IL_00c4: ldstr "E"

IL_00c9: ret

IL_00ca: ldstr "F"

IL_00cf: ret

IL_00d0: ldstr "G"

IL_00d5: ret

IL_00d6: ldstr ""

IL_00db: ret

It allocates an internal static instance of Dictionary<string, int> and puts all

values in this dictionary. This code is executed only once on the first call of the method.

Roslyn generates a smarter version for switch from the first version:

// Phase 1: ComputeStringHash

uint num = ComputeStringHash(x);

// Phase 2: Binary search

if (num <= 3792446982u) {

 if (num != 3758891744u) {

 if (num != 3775669363u) {

 if (num == 3792446982u) {

 if (x == "g") { return "G"; }

 }

 }

 else if (x == "d") { return "D"; }

 }

 else if (x == "e") { return "E"; }

}

Chapter 3 how environment affeCts performanCe

140

else if (num <= 3826002220u) {

 if (num != 3809224601u) {

 if (num == 3826002220u) {

 if (x == "a") { return "A"; }

 }

 }

 else if (x == "f") { return "F"; }

}

else if (num != 3859557458u) {

 if (num == 3876335077u) {

 if (x == "b") { return "B"; }

 }

}

else if (x == "c") { return "C"; }

return "";

As you can see, there is not an additional dictionary anymore. We calculate a hash

code for the given string and do a binary search. We need a runtime-independent value,

so we use additional method instead of string.GetHashCode:

internal static uint ComputeStringHash(string s)

{

 uint num = default(uint);

 if (s != null)

 {

 num = 2166136261u;

 for (int i = 0; i < s.Length; i++)

 num = (s[i] ^ num) * 16777619;

 }

 return num;

}

Since all switch keys should be constants and known on the compilation stage, we

can precalculate hash codes for all of them in advance. Next, we can sort the hash codes

and implement a simple binary search by known values. It’s pretty effective in terms of

performance and memory.

Chapter 3 how environment affeCts performanCe

141

Conclusion:

• Performance can depend on the version of C# compiler.

The main part of the optimizations is the responsibility of JIT and

AOT compilers. C# compiler just produces IL code from your

source code. In most cases, it doesn’t apply smart optimizations.

However, some “advanced” language construction like switch

can be translated to IL in different ways. When we discuss a new

version of a compiler, we usually discuss new language features,

but we also should be aware of changes in the existing features.

AN EXERCISE

write a program with a huge switch statement. try to write a benchmark that shows the

performance difference between the legacy C# compiler and roslyn.

 Case Study 2: Params and Memory Allocations
C# has a lot of syntax sugar that allows writing laconic and understandable code.

However, developers don’t always think about the performance cost of this sugar. There

is the params keyword, which helps us to create methods with a variable number of

arguments:

void Foo(params int[] x)

{

// ...

}

It is a good approach in some cases. However, it may hide implicit object allocations

from the developers. For example, what happens if you call such a method without

arguments:

Foo();

Chapter 3 how environment affeCts performanCe

142

The correct answer: it depends. If the project targets .NET Framework 4.5, Roslyn

produces the following code:

IL_0000: ldc.i4.0

IL_0001: newarr System.Int32

IL_0006: call Foo(int32[])

IL_000b: ret

As you can see, a new empty array was created. It means that the runtime allocates a

new object per method invocation without arguments.

In .NET Framework 4.6, Microsoft introduced a new API, Array.Empty<T>65: it

returns an empty array instance. An implementation is pretty simple:

public class Array

{

 private static class EmptyArray<T>

 {

 internal static readonly T[] Value = new T[0];

 }

 public static T[] Empty<T>()

 {

 return EmptyArray<T>.Value;

 }

}

For each type T, we get at most one array instance which will be reused. Roslyn

knows about this API. If a project targets .NET Framework 4.6+, Roslyn will generate an

optimized version of the IL code:

IL_0000: call !!0[] System.Array::Empty<int32>()

IL_0005: call void ConsoleApp7.Program::Foo(int32[])

IL_000a: ret

In this case, the static Array.Empty<T> instance is used. This means that you

shouldn’t worry about unwanted memory allocation.

65 https://docs.microsoft.com/en-gb/dotnet/api/system.array.empty

Chapter 3 how environment affeCts performanCe

https://docs.microsoft.com/en-gb/dotnet/api/system.array.empty

143

Conclusion:

• Generated IL code can depend on project properties.

The compiler version is not the only factor that can affect

generated code. The same version of the compiler can produce

different IL code for the same language construction based on the

target .NET Framework version and available API.

AN EXERCISE

take a look at what iL code the legacy C# compiler generates for the preceding example on

.net framework 4.5 and 4.6.66

 Case Study 3: Swap and Unobvious IL
Consider a simple method that takes two integer values, swaps them, and divides the

swapped variables (it doesn’t look like a useful method, but it’s a small example with

pretty exciting properties). There are many ways to implement this logic, and here is one

of the most obvious solutions:

public int SwapAndDiv1(int a, int b)

{

 var temp = a;

 a = b;

 b = temp;

 return a / b;

}

Here we swap the variables with the help of an additional variable, temp. It works, but

it looks too wordy: we need three lines of code and an additional variable. Fortunately,

C# 7.0 introduces the tuple syntax, which allows rewriting this method as follows:

public int SwapAndDiv2(int a, int b)

{

 (a, b) = (b, a);

 return a / b;

}

66 We will discuss how to get the generated IL code in Chapter 6.

Chapter 3 how environment affeCts performanCe

144

Now we can swap the values by one line of code without additional variables.

This code is easier to read, and it looks more expressive. Now it’s time for a puzzle:

which method will get a more optimized IL representation? Someone can propose

the following hypothesis: “The second method can swap variables without additional

variables, so it should have a better IL representation.” It may sound logical, but this

hypothesis is based on what we have on the C# level. Let’s check the hypothesis,

compile the code with Roslyn 2.6.0.62309 (d3f6b8e7), and look at the IL listing. Here is

the first method:

.method public hidebysig

 instance int32 SwapAndDiv1 (

 int32 a,

 int32 b

) cil managed

{

 ; Header Size: 1 byte

 ; Code Size: 10 (0xA) bytes

 .maxstack 8

 ; Swap

 IL_0000: ldarg.1 ; Loads 'a' onto the stack

 IL_0001: ldarg.2 ; Loads 'b' onto the stack

 IL_0002: starg.s a ; Pops the stack top value ('b') in the 'a' argument

slot

 IL_0004: starg.s b ; Pops the stack top value ('a') in the 'b' argument

slot

 ; Division

 IL_0006: ldarg.1

 IL_0007: ldarg.2

 IL_0008: div

 IL_0009: ret

}

Chapter 3 how environment affeCts performanCe

145

As you can see, we have an additional variable on the C# level, but we don’t have it

on the IL level: Roslyn loads both variables onto the stack and stores them back in the

reverse order. Here is the IL listing for the second method:

.method public hidebysig

 instance int32 SwapAndDiv2 (

 int32 a,

 int32 b

) cil managed

{

 ; Header Size: 12 bytes

 ; Code Size: 12 (0xC) bytes

 ; LocalVarSig Token: 0x11000002 RID: 2

 .maxstack 2

 .locals init (

 [0] int32 ; an additional variable 'temp'

)

 IL_0000: ldarg.2 ; Loads 'b' onto the stack

 IL_0001: ldarg.1 ; Loads 'a' onto the stack

 IL_0002: stloc.0 ; Pops the stack top value ('a') in the local

variable 'temp'

 IL_0003: starg.s a ; Pops the stack top value ('b') in the 'a' argument

slot

 IL_0005: ldloc.0 ; Loads the local variable 'temp' onto the stack

 IL_0006: starg.s b ; Pops the stack top value ('temp') in the 'b'

argument slot

 ; Division

 IL_0008: ldarg.1

 IL_0009: ldarg.2

 IL_000A: div

 IL_000B: ret

}

Here you see a reversed situation: we don’t have an additional variable on the C# level,

but we have one on the IL level. This doesn’t mean that we will get better performance in the

first case, but it makes the situation easier for the next stages of the code source journey.

Chapter 3 how environment affeCts performanCe

146

Conclusion:

• Don’t trust your intuition about compiler output.

Many developers try to guess the generated IL code, the native code, and

the application performance based on what we have in the C# source

code. Even if you have rich experience, your intuition is not your best

friend here. You shouldn’t make any conclusions based on your guesses;

always check the generated code and carefully measure performance.

AN EXERCISE

what do you think: do we get any performance difference between SwapAndDiv1 and

SwapAndDiv2? try to write a small benchmark and measure both methods. Check out the

generated assembly code with different Jit compilers and compare it for both cases.67 You can

also implement your own methods that use different ways to swap two variables.

 Case Study 4: Huge Methods and Jitting
A friend of mine told me a story about his project. He had some serious performance

problems (current performance level did not satisfy business requirements). He tried

many different approaches without luck. Eventually, he decided to try code generation.

The idea was simple: native IL provides many constructions which are not available

in pure C#. My friend tried to rewrite the hotspot in IL. He also decided to reduce the

number of calls and inline everything into one huge method. After the first benchmark,

it turned out that the generated method takes significantly more time than the original

C# method. After quick research, the problem was found: the runtime spends 95% of

the time during the JIT phase! The method was so big that it requires several seconds for

generating native code. However, the second call of this method was superfast.

We will not reproduce this situation with all details, but we will write a small example

that demonstrates this effect. Let’s say we want to calculate the value of the following

expression:

 0 1 2 3 4 5 999999 1000000- + - + - + ××× - +

67 We will discuss how to get the generated native code in Chapter 6.

Chapter 3 how environment affeCts performanCe

147

Of course, we can do it via a simple for loop:

var result = 0;

for (var i = 1; i <= 1000000; i++)

 result += (i % 2 == 0 ? 1 : -1) * i;

Instead, we will try to generate this expression in IL without any loops:

// Regular code generation routine

var assemblyName = new AssemblyName {Name = "MyAssembly"};

var assembly = AppDomain.CurrentDomain

 .DefineDynamicAssembly(assemblyName, AssemblyBuilderAccess.RunAndSave);

var module = assembly.DefineDynamicModule("Module");

var typeBuilder = module.DefineType("Type", TypeAttributes.Public);

var methodBuilder = typeBuilder.DefineMethod(

 "Calc", MethodAttributes.Public | MethodAttributes.Static,

 typeof(int), new Type[0]);

// Generate the target method

var generator = methodBuilder.GetILGenerator();

generator.Emit(OpCodes.Ldc_I4, 0); // Put 0 on stack

for (var i = 1; i <= 1000000; i++)

{

 generator.Emit(OpCodes.Ldc_I4, i); // Put i on stack

 generator.Emit(i % 2 == 0 // Apply '+' or '-' on two top stack values

 ? OpCodes.Add : OpCodes.Sub);

}

generator.Emit(OpCodes.Ret); // Return the top value from stack

// Build the target type

var type = typeBuilder.CreateType();

// Lambda which call this method via reflection

Func<int> calc = () => (int) type.InvokeMember("Calc",

 BindingFlags.InvokeMethod | BindingFlags.Public |

 BindingFlags.Static, null, null, null);

Chapter 3 how environment affeCts performanCe

148

// Measure duration of the 1st and 2nd calls

var stopwatch1 = Stopwatch.StartNew();

calc(); // 1st call (cold start)

stopwatch1.Stop();

var stopwatch2 = Stopwatch.StartNew();

var result = calc(); // 2nd call (warmed state)

stopwatch2.Stop();

// Print results

Console.WriteLine($"Result : {result}");

Console.WriteLine($"1st call : {stopwatch1.ElapsedMilliseconds} ms");

Console.WriteLine($"2nd call : {stopwatch2.ElapsedMilliseconds} ms");

Here is an example of possible results:

Result : 500000

1st call : 612 ms

2nd call : 0 ms

If you try to run it on your machine, you can get other absolute numbers for the first call,

but the conclusion will be the same: the first call takes a huge amount of time.

Conclusions:

• Jitting of a single method can take a lot of time.

The JIT compiler can significantly slow down not only the startup

time, but also the first call of a single method. Such a problem can

be easily found if you profile the application.

• Some optimization changes the trade-off between cold and warm
start.

When you have two approaches, it’s not always possible to say

which one is faster. Like in the “The Tortoise and The Hare” story,

some solutions can be slow on start and still come out ahead.

Chapter 3 how environment affeCts performanCe

149

AN EXERCISE

replace 1000000 in the code snippet with code generation with parameter n. take

measurements for different values of n and draw a plot that demonstrates the duration of the

first call for each n. try several Jit compilers (LegacyJit, ryuJit, monoJit) and compare plots.

find the value of n when each Jit starts to take more than 100ms on jitting. try to write your

own algorithms on pure iL and repeat the measurements. the exercise should give you the

basic feeling of how expensive Jit compiler can be depending on the method body.

This was the last case study in this section. Let’s summarize what have we learned.

 Summing Up
In this section, we discussed different kinds of compilation:

• IL Generation

When we create a new program on our favorite .NET-compatible

language (e.g., C#, VB.NET, F#, Managed C++, or Q#), a compiler

transforms it to IL. A build system orchestrates the compilation

process and helps us to build projects and solutions. The

most popular toolset is MSBuild+Roslyn, but there are other

technologies like XBuild and the legacy C# compiler that are still

used in the industry. By default, our programs will be compiled in

the Debug mode (with disabled optimizations), which is great for

debugging but not a good option for benchmarking. If we want to

benchmark anything, we should switch to the Release mode (with

enabled optimizations).

• JIT Compilation

The IL code can be transformed to native code by the JIT compiler.

It’s happening in runtime on demand: runtime generates native

code on the first method call. .NET Framework has three available

JIT compilers: LegacyJIT-x86 (the only option for x86), RyuJIT-x64

(the default option since .NET Framework 4.6), and LegacyJIT-x64

(the default option before .NET Framework 4.6; can be manually

Chapter 3 how environment affeCts performanCe

150

enabled in the latest versions). .NET Core 2.0+ uses RyuJIT for

both x86 and x64 architectures. Mono uses its own independent

JIT compiler (MonoJIT), which can be switched to the LLVM back

end (MonoLLVM).

• AOT Compilation

The native code can be generated in advance with additional

tools like NGen, CrossGen, Mono AOT, .NET Native, CoreRT, or

RuntimeHelpers.PrepareMethod. Such an approach can reduce

the application startup time and provide better optimizations, but

it has some limitations (e.g., dynamic code execution, reflection,

generics, and so on).

Now we know the most popular compiling and build tools in the .NET ecosystem. It’s

time to the discuss external environments that surround our runtimes.

 External Environment
The environment of a program is a runtime. However, a runtime also has an

environment. We use runtime on a specific operating system that is running on some

hardware that exists in the physical world. In this section, we will discuss all these

“external environments”: why they matter and how they can affect performance.

 Operating System
In the modern world, .NET is cross-platform. From the user’s point of view, it’s good

because now you can run a .NET application on different operating systems. From the

performance engineer’s point of view, it’s bad because now you should worry about

performance on each operating system as well.

The duration of the same method call may vary depending on the operating system.

Let’s consider an example. In Figure 3-3, you can see a plot that demonstrates the duration

of a single integration test in Rider 2018.2. The test shows completely different results on

different OS. In June, we can observe around 9–16 seconds on Windows, around 58–77

seconds on Linux, and around 87–120 seconds on macOS. It doesn’t mean that Windows

is always fast and macOS is always slow: we also have tests where macOS is the champion

and Windows is the slowest operating system, and in other tests, all three operating

Chapter 3 how environment affeCts performanCe

151

systems show the same result. If you look closely at the chart and compare May and

August, you can notice a significant performance degradation on Linux and macOS (on

Windows, the duration of the test has not changed). It seems that we had some destructive

changes that randomly slowed down the cleanup on Linux and macOS.

Figure 3-3. Duration of a cleanup test in Rider 2018.2 on different OS

In this subsection, we briefly recall the history of Windows, Linux, and macOS, look

at the important operating system versions, and learn how to get these versions from the

command line and managed code.

Windows is the only operating system that supports all three .NET runtimes because

.NET Framework works only on Windows. On Unix-like operating systems (Linux and

macOS), we can use only .NET Core and Mono. There are some other operating systems

which can also be used for running .NET programs. For example, you can build .NET

Core on FreeBSD as well. Mono supports different mobile OS (like Android, iOS, tvOS,

and watchOS) and game consoles (like PlayStation 3, Xbox 360, and Wii). However, these

operating systems are out of this book’s scope, so we are going to discuss only Windows,

Linux, and macOS.

Let’s talk about each operating system in detail.

Chapter 3 how environment affeCts performanCe

152

 Windows

Windows is the homeland for .NET because .NET Framework was designed for this

OS. Internally, many of the .NET Framework subsystems (like WPF) are tightly integrated

with the Windows API and can be used only on Windows.

Let’s briefly recall some important versions of Windows. You can find some major

desktop and server editions in Table 3-7.

Table 3-7. Some Windows Versions

Edition Version Kernel version Release date

Desktop 95 4.00 1995-08-24

Desktop 98 4.10 1998-06-25

Desktop me 4.90 2000-09-14

Desktop 2000 nt 5.0 2000-02-17

Desktop Xp nt 5.1 2001-10-25

Desktop vista nt 6.0 2007-01-30

Desktop 7 nt 6.1 2009-10-22

Desktop 8 nt 6.2 2012-10-26

Desktop 8.1 nt 6.3 2013-10-17

Desktop 10 nt 10.0 2015-07-29

server 2000 nt 5.0 2000-02-17

server 2003 nt 5.2 2003-04-24

server 2003 r2 nt 5.2 2005-12-06

server 2008 nt 6.0 2008-02-27

server 2008 r2 nt 6.1 2009-10-22

server 2012 nt 6.2 2012-09-04

server 2012 r2 nt 6.3 2013-10-18

server 2016 nt 10.0 2016-10-12

server 2019 nt 10.0 2018-10-02

Chapter 3 how environment affeCts performanCe

153

In the scope of the book, we will discuss mainly Windows 10 (desktop) because it’s

the most recent version of Windows and the end of mainstream support for Windows 8.1

was on January 9, 2018. .NET Framework 3.5+ supports Windows XP+68 (and Windows

Server 2003+), so sometimes we will discuss Windows XP, Vista, 7, 8, and 8.1 as well.

Other Windows versions (like 1.01 or NT 3.1) are out of the scope of this book.

Since Windows 10 is the most interesting OS for us, it good to know the major

updates for it; you can find them in Table 3-8.

It’s also good to know how to check the exact version of it. In particular, we are

interested in the full four-number versions like 10.0.15063.674. On Windows, there are

several ways to get the current operating system versions. For example, in Figure 3-4, you

can see screenshots of the following programs:

Table 3-8. Major Windows 10 Builds

Version Build Marketing name Codename Release date

1507 10240 rtm threshold 1 2015-07-29

1511 10586 november Update threshold 2 2015-11-10

1607 14393 anniversary Update redstone 1 2016-08-02

1703 15063 Creators Update redstone 2 2017-04-05

1709 16299 fall Creators Update redstone 3 2017-10-17

1803 17134 april 2018 Update redstone 4 2018-04-30

1809 17763 october 2018 Update redstone 5 2018-11-13

68 .NET Framework 1.0, 1.1., and 2.0 can be used on Windows 98/ME/2000.

Chapter 3 how environment affeCts performanCe

154

• ver in the command line, which returns Microsoft Windows [Version

10.0.15063]. Now we know the main part of the version (build 15063

corresponds to 1703 “Creators Update”), but we don’t know the

revision version. ver prints the revisions only since 10.0.16299+.

• regedit (Registry Editor) with opened HKEY_LOCAL_MACHINE\

SOFTWARE\Microsoft\Windows NT\CurrentVersion\UBR. As you can

see, the UBR (Update Build Revision) value is 674, which means that

the full Windows version is 10.0.15063.674.

• winver, which provides a more user-friendly way to get the complete

Windows version.

 Linux

.NET Framework doesn’t work on Linux, but we can use Mono and .NET Core for our

.NET applications. There is a huge number of Linux distributions,69 and of course, we

can’t discuss them all in this book. The main idea of checking different versions of

Linux is to show how it can affect your performance. You should understand that it’s not

Figure 3-4. Screenshots of different programs with Windows version

69 You can find the list of the most popular Linux distributions here: www.distrowatch.com

Chapter 3 how environment affeCts performanCe

https://www.distrowatch.com

155

enough to say that you are working on Linux; it’s also worth mentioning the title of the

Linux distribution and its full version.

The main operating systems that are officially supported in the latest versions of

Mono are Ubuntu, Debian, Raspbian, and CentOS. However, you can also use it on other

distributions like openSUSE, Fedora, Linux Mint, and so on.

.NET Core supports several Linux distributions70: Red Hat Enterprise Linux, CentOS,

Oracle Linux, Fedora, Debian, Ubuntu, Linux Mint, openSUSE, SUSE Enterprise Linux

(SLES), and Alpine Linux.

In the scope of this book, we usually discuss only popular Debian-based

distributions (e.g., Ubuntu), but the main parts of the explanations are applicable for

other Linux distributions as well.

One of the best ways to check the distribution version in the command line is lsb_

release -a.

Typical output for Ubuntu:

Distributor ID: Ubuntu

Description: Ubuntu 16.04.3 LTS

Release: 16.04

Codename: xenial

 macOS

macOS is another operating system developed by Apple. In Table 3-9, you can see the

list of major versions with their codenames and kernel versions (the macOS kernel is

known as Darwin). Previously, macOS was known as “Mac OS X” (10.0–10.7) and “OS X”

(10.8–10.11), but it was renamed to macOS in 10.12 to be consistent with other operating

systems by Apple like iOS, watchOS, and tvOS.

70 Different versions of .NET Core support different distributions.

Chapter 3 how environment affeCts performanCe

156

There are several ways to check your Mac version from the command line. The first one

is to run sw_vers, which will give you output like this:

ProductName: Mac OS X

ProductVersion: 10.14.2

BuildVersion: 18C54

If you need only the version number, you can run sw_vers -productVersion (it

returns 10.14.2 in this case). If you need extended information (including the kernel

version), run system_profiler SPSoftwareDataType. here are some typical lines in the

output:

System Version: macOS 10.14.2 (18C54)

Kernel Version: Darwin 18.2.0

Table 3-9. List of Major Mac OS X / OS X / macOS Versions

Title Version Codename Darwin Release date

mac os X 10.0 Cheetah 1.3.1 2001-03-24

mac os X 10.1 puma 1.4.1 2001-09-25

mac os X 10.2 Jaguar 6 2002-08-24

mac os X 10.3 panther 7 2003-10-24

mac os X 10.4 tiger 8 2005-04-29

mac os X 10.5 Leopard 9 2007-10-26

mac os X 10.6 snow Leopard 10 2009-08-28

mac os X 10.7 Lion 11 2011-07-20

os X 10.8 mountain Lion 12 2012-07-25

os X 10.9 mavericks 13 2013-22-10

os X 10.10 Yosemite 14 2014-10-16

os X 10.11 el Capitan 15 2015-09-30

macos 10.12 sierra 16 2016-09-20

macos 10.13 high sierra 17 2017-09-25

macos 10.14 mojave 18 2018-09-24

Chapter 3 how environment affeCts performanCe

157

Now let’s check which values we get from C# code on Mono and CoreCLR:

Environment.OSVersion = "Unix 18.2.0.0"

macOS is based on Unix, so macOS and Linux have much in common.

Unfortunately, it’s not possible to distinguish Linux and macOS via Environment.

OSVersion because it returns "Unix" for modern versions of both operating systems.

If you want to check what kind of OS you have without additional dependencies, you

can do the following hack based on uname from libc:

[DllImport("libc", SetLastError = true)]

private static extern int uname(IntPtr buf);

private static string GetSysnameFromUname()

{

 var buf = IntPtr.Zero;

 try

 {

 buf = Marshal.AllocHGlobal(8192);

 // This is a hacktastic way of getting sysname from uname ()

 int rc = uname(buf);

 if (rc != 0)

 {

 throw new Exception("uname from libc returned " + rc);

 }

 string os = Marshal.PtrToStringAnsi(buf);

 return os;

 }

 finally

 {

 if (buf != IntPtr.Zero)

 Marshal.FreeHGlobal(buf);

 }

}

The GetSysnameFromUname() returns "Linux" for Linux and "Darwin" for macOS.

Chapter 3 how environment affeCts performanCe

158

There is another way to get full info about the current OS version: you can install

the Microsoft.DotNet.PlatformAbstractions NuGet packages (which require .NET

Framework 4.5.1+ or .NET Standard 1.3+) and use the RuntimeEnvironment class from

the Microsoft.DotNet.PlatformAbstractions namespace. Here is an example of the

RuntimeEnvironment properties on macOS:

RuntimeEnvironment.OperatingSystem = "Mac OS X"

RuntimeEnvironment.OperatingSystemPlatform = "Darwin"

RuntimeEnvironment.OperatingSystemVersion = "10.14"

If you target .NET Core, you can also use System.Runtime.InteropServices.

RuntimeInformation.71 RuntimeInformation.OSDescription will return a string like

this:

Darwin 18.2.0 Darwin Kernel Version 18.2.0: Mon Nov 12 20:24:46 PST 2018;

root:xnu-4903.231.4~2/RELEASE_X86_64

This API is also available for .NET Framework 4.7.1+, but it returns “Unix 18.2.0.0” on

Mono.

Mono 5.18+ supports OS X 10.9 and later.72 .NET Core 1.0 supports macOS 10.11,

10.12; .NET Core 2.0 supports macOS 10.12+. In this book, we will discuss macOS

10.12+.

In the next subsection, we will talk about the hardware environment for the

operating system.

 Hardware
In the modern world, there are an enormous number of different devices. If you

open technical specification for your computer or mobile phone, you will find many

characteristics that are important for performance. It’s pretty hard to compare different

71 https://docs.microsoft.com/en-us/dotnet/api/system.runtime.interopservices.
runtimeinformation

72 Previously, Mono supported Mac OS X 10.7+, but the requirement was updated because of the
limitations in the TLS stack. See https://github.com/mono/mono/issues/9581

Chapter 3 how environment affeCts performanCe

https://docs.microsoft.com/en-us/dotnet/api/system.runtime.interopservices.runtimeinformation
https://docs.microsoft.com/en-us/dotnet/api/system.runtime.interopservices.runtimeinformation
https://github.com/mono/mono/issues/9581

159

hardware; it’s not always possible to say which device is faster because different devices

can be optimized for specific use cases and be better only in specific situations.73

In this subsection, we are going to briefly discuss the main hardware components:

CPU, RAM, disks, network hardware, and others.

The CPU is the heart of any computer. It’s an electronic circuitry which performs all

the basic operations like arithmetic, logical, and I/O (input/output). There many different

companies that produce CPU chips: the most famous and popular are Intel, AMD, and

VIA Technologies. Each CPU has an architecture that defines an instruction set. One of

the most popular architectures is x86, with a 32-bit instruction set developed by Intel.

There is a 64-bit version of this architecture called x64 (also known as x86_64, AMD64, or

Intel 64). Initially, Intel tried to create another 64-bit architecture called Itanium, but

it wasn’t popular because it didn’t support existing x86-based programs. Meanwhile,

AMD developed its own instruction set, AMD64, which was backward compatible with

x86. It became very popular, so Intel also decided to adopt it. While x86 and x64 are

very popular on server and desktop machines, there is another architecture called ARM,

which is widely used on mobile and embedded devices because it was designed for low

power consumption. There are 32-bit and 64-bit versions of ARM: ARM32 and ARM64 .NET

Core 2.1+ supports ARM32,74 so you can run it even on Raspberry Pi.75 Meanwhile, Mono

supports many other architectures like MIPS, PowerPC, SPARC (32 bits), s390x (64 bits),

and others.76 There are a huge number of different processor architectures by different

manufacturers, but in the scope of this book, we will be focused on x86 and x64.

If you create a classic .NET application from a template, you can find the following

line in the corresponding csproj file:

<PlatformTarget>AnyCPU</PlatformTarget>

This means that your application can target any platform, no special requirements

are specified. If you want to run the application only on a specific platform, you can

change this value (e.g., you can specify x86 or x64).

73 If you really want to compare two hardware configurations, you can use www.userbenchmark.
com to get the basic device characteristics. It doesn’t mean that you will know which hardware is
better “in general,” but you will get some expectation about it.

74 https://github.com/dotnet/announcements/issues/29
75 https://github.com/dotnet/core/blob/v2.1.3/samples/RaspberryPiInstructions.md
76 www.mono-project.com/docs/about-mono/supported-platforms/

Chapter 3 how environment affeCts performanCe

https://github.com/dotnet/announcements/issues/29
https://github.com/dotnet/core/blob/v2.1.3/samples/RaspberryPiInstructions.md
https://www.mono-project.com/docs/about-mono/supported-platforms/

160

There is another interesting option that can you meet in csproj files:

<Prefer32bit>false</Prefer32bit>

The default value of Prefer32bit is true. This means that if you create a new classic

.NET Framework project on Windows-x64 (which supports both x86 and x64 programs),

it will be executed using x86 instruction set. If you want to run it on x64, you should set

PlatformTarget=x64 or Prefer32bit=false. The “AnyCPU with Prefer32bit” mode has

a special feature: it will correctly work on ARM-based Windows while an x86 program

will fail on ARM (you can find more details in [Goldshtein 2012]). If you compile C#

files directly via a compiler, you can specify the platform via the /platform: argument

(possible values: x86, x64, Itanium, arm, anycpu32bitpreferred, anycpu).

We are not going to discuss all kinds of CPU, but it’s still pretty important to show

how performance depends on CPU internals. In the scope of this book, we will focus

on Intel Core iX processors. This lineup includes Core i3, Core i5, Core i7, and Core

i9 (i5 is superior to i3, i7 is superior to i5, i9 is superior to i7). Each model has several

different generations of microarchitectures (Micro-arch); you can find some of them in

Table 3-10. Usually, you can guess the microarchitecture by a processor number. The full

specification can be found on Intel’s official website.77

Table 3-10. List of Recent Intel Core iX Processors

Gen Process Micro-arch Codename Release date

1 45nm nehalem nehalem 2008-11-17

1 32nm nehalem westmere 2010-01-04

2 32nm sandy Bridge sandy Bridge 2011-01-09

3 22nm sandy Bridge ivy Bridge 2012-04-29

4 22nm haswell haswell 2013-06-02

5 14nm haswell Broadwell 2014-09-05

6 14nm skylake skylake 2015-08-05

7 14nm skylake Kaby Lake 2017-01-03

8 14nm skylake Coffee Lake 2017-10-05

77 www.intel.com/content/www/us/en/processors/processor-numbers.html

Chapter 3 how environment affeCts performanCe

https://www.intel.com/content/www/us/en/processors/processor-numbers.html

161

A CPU can have several physical cores; each core can process instruction

independently. A technology called Hyperthreading allows emulating two logical cores

on a single physical core. One of the basic CPU characteristics is CPU frequency (or CPU

clock rate). It defines the number of clock cycles per second. Each assembly instruction

takes one or several CPU cycles. If you open the technical specifications of your CPU,

you can find a single value that describes the primary CPU frequency. However, it’s not

a constant: the frequency can be dynamically or permanently changed with the help of

overclocking, underclocking, CPU throttling, or other techniques. CPU has many other

characteristics which are important for performance: a number of CPU cache levels

and their size, supported sets of instructions (like SSE or AVX), advanced supported

technologies (like Power reduction technology), and so on.

CPU is not the only hardware component “responsible” for performance. There are

many others:

• RAM

Each program operates with RAM all the time. In terms of

performance, the kind of RAM we have (e.g., DDR2, DDR3,

DDR3L, DDR4), its latency, frequency, and the total memory size

(bad things may happen if you don’t have enough memory) are all

important.

• Disks

Programs also require different memory storage devices to

save data permanently. Again, we have so many options to save

our data: HDD, SSD, SSHD, RAID, different kinds of storage

virtualization, and so on.

• Network hardware

Modern applications actively interact with the Internet or the

local network. Network bandwidth also becomes a bottleneck

for the application performance. If you want to send data from

one computer to another, the “data transportation process” may

involve a huge number of different network devices with different

types of commutation.

Chapter 3 how environment affeCts performanCe

162

• Other hardware components

Depending on the application use cases, other hardware

components also may be pretty important. If the application

mines cryptocurrency, the GPU model can be pretty important.

Advanced rendering 3D engines are also sensitive to the GPU’s

capabilities, but its performance can also depend on the screen

resolution. Other components like the battery and cooler are also

important.

During my performance investigations at JetBrains, I have six different physical

computers on my desks: three equivalent Mac mini with installed macOS, Windows, and

Linux; a MacBook Pro, a Linux desktop, and a Windows laptop. The three equivalent Mac

mini allow comparing performance on different operating systems without concerns

about different hardware. I also have three different monitors: two with 4K resolution

and one without the 4K support. Such a setup is not a luxury; it’s my primary tool which

significantly simplifies my performance investigations. Of course, we also have a huge

pool of remote machines, but these can’t be used for all of our tasks because our main

products like Rider and IntelliJ IDEA are desktop applications. It’s pretty important to

check performance under conditions that are similar to the user environment. Some

of the tricky problems are HiDPI-specific, so a physical monitor is required; many UI

benchmarks can’t be executed correctly via a remote session.

Everything depends on your use cases. However, there are some “main” components

that can be bottlenecks for most applications: CPU, memory, disks, network. We will

discuss CPU and memory in detail in Chapters 7 and 8. And now we have the last part of

the environment to discuss: the physical world.

 The Physical World
The hardware always exists in some real physical conditions. These conditions can

also affect the performance of your applications. In this section, we are going to

briefly discuss some of the physical factors that have an influence on performance:

temperature, vibrations, physical location, and humidity.

Chapter 3 how environment affeCts performanCe

163

 Temperature

Temperature is one of the most important physical characteristics in terms of

performance and reliability. Companies that have their own data centers spend a huge

amount of money and effort on thermal control. Handling cooling issues is a serious

challenge, there are many technologies and approaches that try to solve them. For

example, Microsoft even decided to create data centers under the sea (see [Roach 2018]).

Cooling is important not only for data centers but also for desktop computers and

laptops. There are several ways to save your CPU from overheating. One of the most

obvious approaches is to use an external cooler. It’s not always enough, so we have

another option to reduce the temperature. Most modern processors have a cool feature

called CPU throttling. It allows dynamically changing the CPU frequency depending on

external factors. Thus, if heavy calculations cause too-high temperatures that can’t be

handled by a cooler, we can slow down the CPU and reduce the amount of generated

heat. This is also called thermal throttling.

There are many interesting stories about performance problems and CPU

throttling, but I’m going to tell you my favorite one. In July 2018, Apple started to sell

a new generation of MacBook Pro, which included a model with six-core Intel Core i9

processors. It was supposed to be a high-performance device, but there was a bug in the

thermal management system: when you started to do a lot of CPU-bound calculations,

the temperature rose and the thermal throttling significantly slowed down the CPU clock

rate. As a result, it worked slower than the cheaper MacBook of the same generation

with the less advanced Core i7 processor. Some users complained (see [Lee 2018]) that

it could outperform i7 only if you put the MacBook in a freezer. The bug was fixed by a

software update in the macOS High Sierra 10.13.6 Supplemental Update.

Thermal throttling is not a rare event; I observe it all the time on different laptops.

In general, it’s a good technology because it protects your computers from damage.

However, it’s a serious problem for benchmarking: a sudden throttling can completely

distort your performance measurements.

 Vibrations

While temperature is important for CPU-bound programs, vibrations can affect disk-

bound operations if you are using an HDD. It has mechanical parts, so any vibrations

may affect its performance or reliability.

Chapter 3 how environment affeCts performanCe

164

There is a famous video by Brendan Gregg called “Shouting in the Datacenter” (see

[Gregg 2008]). In this video, Brendan screams at hard disk drives and shows real-time

latency charts with peaks at the moments of screaming. This experiment demonstrates

that even “scream” vibrations can significantly increase the latency of I/O operations.

There are some other interesting effects based on the sensitivity of HDD to

vibrations. For example, in the kscope78 project, Alfredo Ortega demonstrates how HDD

can be used as a microphone: he measures the latency of disk operations and calculates

the HDD frequency. He also uses this technique for another program called hdd-killer: if

we play a sound with the current HDD frequency, it will resonate with the hardware and

can seriously damage the hardware (in addition to causing changes in performance).

In [Shahrad 2017], scientists from Princeton University present an another attack

based on acoustic resonance. They show how an attacker can disable a closed-circuit

television (CCTV) system by targeting its digital video recorder (DVR) device. The same

attack can also target a personal computer, causing a failure of an operating system.

Another interesting HDD “feature” is the active hard-drive protection. When the

internal accelerometer detects excess acceleration or vibration, the hard drive unloads its

heads to prevent damage. Thus, if you accidentally drop your laptop with an HDD during

disk-bound benchmarking, you may observe performance regression at this moment.

As you can see, vibration is a serious issue for HDD performance. During

benchmarking, you can get performance perturbations because of vibration, which can be

incorrectly interpreted if you don’t know about such phenomena. If you are using an SSD,

you can ignore vibration because such disks have no moving parts. However, hard disk

drives are still widely used, so it’s good to know about possible performance problems.

 Physical location

In the modern world, many people actively use different mobile applications on

phones and tablets. The network becomes the bottleneck for most of such applications:

performance depends on the signal strength. You have probably experienced a poor

signal in the country or on a picnic in the woods: a browser and all the applications work

superslow. Typical operations that are usually performed instantly may take many seconds

or even minutes. Unfortunately, developers often forget about this during the development

of their own mobile applications and run target benchmarks only with a good signal. This

is probably not the best strategy if you want to make all of your users happy.

78 https://github.com/ortegaalfredo/kscope/

Chapter 3 how environment affeCts performanCe

https://github.com/ortegaalfredo/kscope/

165

Thus, developers who care about performance in all possible locations try to handle

cases with poor signal. Some of the approaches look pretty interesting. For example, in

[Colwell 2018], Brien Colwell speaks about a “distributed node device lab.” Basically, it’s

a box with many Android and iOS devices. Such boxes were deployed in different cities

to different locations: secure office buildings, base station, retail stores, data centers,

moving cars/buses, and so on. With this approach, his team was able to detect places

with poor signal, collect relevant metrics, make a recording of tests with performance

problems, debug these tests, and fix them.

Some companies are trying to emulate poor connection in the office.79 For example,

in Facebook, there is a practice called “2G Tuesdays” (see [McCormick 2015]): they

simulate a superslow Internet connection for an hour. It helps developers to get the same

experience that other people with 2G Internet have. With this simple exercise, they can

find features that are not optimized for a slow connection.

 Humidity

Physical location is not the only factor that affects the signal strength. In [Luomala 2015],

researchers from the University of Jyvaskyla investigated how temperature and humidity

affect radio signal strength in outdoor wireless sensor networks. They conducted many

experiments during different seasons (winter/summer) and times of day (day/night) in

different weather conditions. They showed the relationship between the weather and

radio signal strength. We already discussed that temperature may affect performance,

but we talked about the hardware temperature and CPU-bound operations. According

to the research, the outdoor temperature (and humidity) may affect network-bound

operations. Thus, we can get different performance metrics in the same location

depending on the weather.

The physical conditions are very important for any hardware. External factors like

temperature, vibrations, physical location, humidity, and others have an influence

on the application performance.80 Hardware does not exist in a vacuum; don’t forget

about the physical world. If you know which external factors are important for a specific

79 There are a lot of different ways to emulate low network connectivity. Here is a pretty interesting
way to do it: https://stackoverflow.com/a/8630401

80 External conditions can have pretty strange effects on hardware. Here is an interesting Twitter
thread where John Hyphen explains why he was late: https://twitter.com/JohnHyphen/
status/971405857446645761. His clock shows incorrect time because of the unbalanced
frequency in the electricity grid.

Chapter 3 how environment affeCts performanCe

https://stackoverflow.com/a/8630401
https://twitter.com/JohnHyphen/status/971405857446645761
https://twitter.com/JohnHyphen/status/971405857446645761

166

benchmark (CPU-bound, disk-bound, and network-bound benchmarks are sensitive to

different factors), you can predict possible problems that can spoil the measurements,

and then you can stabilize the result by controlling external conditions.

Now let’s discuss a few interesting stories about external environmental factors that

can significantly affect performance.

 Case Study 1: Windows Updates and Changes in .NET
Framework
Developers usually care about the runtime versions and don’t care about the OS version.

However, the OS version can also be pretty important. For example, minor Windows

updates can change the installed versions of the .NET Framework.

There was a bug known as coreclr#1157481 in RyuJIT optimizations that affected .NET

Framework 4.7. Consider the following code from the issue:

using System;

class Program

{

 static byte[] s_arr2;

 static byte[] s_arr3;

 static void Init()

 {

 s_arr2 = new byte[] { 0x11, 0x12, 0x13 };

 s_arr3 = new byte[] { 0x21, 0x22, 0x33 };

 }

 static void Main(string[] args)

 {

 Init();

 byte[] arr1 = new byte[] { 2 };

 byte[] arr2 = s_arr2;

 byte[] arr3 = s_arr3;

81 https://github.com/dotnet/coreclr/issues/11574

Chapter 3 how environment affeCts performanCe

https://github.com/dotnet/coreclr/issues/11574

167

 int len = arr1.Length + arr2.Length + arr3.Length;

 int cur = 0;

 Console.WriteLine("1: cur = {0}", cur);

 cur += arr1.Length;

 Console.WriteLine("2: cur += {0}, now {1}", arr1.Length, cur);

 cur += arr2.Length;

 Console.WriteLine("3: cur += {0}, now {1}", arr2.Length, cur);

 cur += arr3.Length;

 Console.WriteLine("4: cur += {0}, now {1}", arr3.Length, cur);

 Console.WriteLine("5: len is {0}", len);

 }

}

Because of the bug, this code snippet printed the following output:

1: cur = 0

2: cur += 1, now 1

3: cur += 3, now 6

4: cur += 3, now 7

5: len is 7

In the 3: cur += 3, now 6 line, we can see that the cur value is miscalculated: we

got 6 instead of 4. The bug was fixed in .NET Framework September 2017 Security and

Quality Rollup.

Let’s say you have Windows 10 1703 installed (10.0.15063). The bug fix for this

version was included in KB403878882 (a part of the .NET Framework September

2017 Security and Quality Rollup83), which corresponds to Windows 10.0.15063.608

(September 12, 2017). If you have an earlier version of 1703 (10.0.15063.x where x is

0, 13, 138, 250, 296, 297, 332, 413, 414, 447, 483, 502, or 540), you have this bug. If you

have the update (10.0.15063.x where x is 608 or higher), you don’t have the bug. .NET

Framework versions are the same, and the main parts of Windows version (major.minor.

build) are the same, but the logic of RyuJIT optimizations depends on the Windows

revision number.

82 https://support.microsoft.com/en-us/help/4038788/windows-10-update-kb4038788
83 https://blogs.msdn.microsoft.com/dotnet/2017/09/12/
net-framework-september-2017-security-and-quality-rollup/

Chapter 3 how environment affeCts performanCe

https://support.microsoft.com/en-us/help/4038788/windows-10-update-kb4038788
https://blogs.msdn.microsoft.com/dotnet/2017/09/12/net-framework-september-2017-security-and-quality-rollup/
https://blogs.msdn.microsoft.com/dotnet/2017/09/12/net-framework-september-2017-security-and-quality-rollup/

168

If you share some performance results for .NET Framework, it’s recommended to

share also the full version of your Windows (include the revision number).

Conclusion:

• Windows revision number matters.

The full versions of the installed .NET Framework may be not enough

to fully describe the behavior of your applications. Windows updates

can contain some important fixes for existing versions of the runtime.

AN EXERCISE

Check out other .net framework security and Quality rollups (you can find it in the microsoft

.net Blog84) and try to find other Jit-specific changes.

 Case Study 2: Meltdown, Spectre, and Critical Patches
Meltdown and Spectre are probably the biggest known CPU security vulnerabilities

of the 21st century. They were disclosed on January 3, 2018, and it was huge news.

Long story short: these vulnerabilities allow you to read data from OS kernels or other

processes without permissions. It affects almost all modern CPUs (Intel, AMD, ARM)

manufactured since 1995 (with some limitations). We will skip detailed descriptions of

these vulnerabilities (because it’s out of the scope of this book), but you can read more in

[Meltdown] and [Spectre].85

This sounds impressive, but these vulnerabilities are security issues. Why should

we care about performance here? Some of the most important security holes were fixed

by OS patches (without hardware updates). These patches for most popular operating

systems were published almost immediately. The only drawback was performance

reduction of up to 30% (for some use cases). You can easily google many other reports

about performance problems that occurred as a result of the vulnerability fixes. One of

my favorite blog posts is [Gregg 2018] by Brendan Gregg.

84 https://blogs.msdn.microsoft.com/dotnet/
85 If you like stories about interesting vulnerabilities, it’s also recommended to read [Foreshadow].

Chapter 3 how environment affeCts performanCe

https://blogs.msdn.microsoft.com/dotnet/

169

An important fact: we are talking about minor OS updates. Well, these performance

updates contain huge changes and huge performance impacts, even though they are

minor.

Conclusions:

• The operating system versions matter.

Not only the major part, even the build and revision number

matter a lot. And it’s not only about .NET Framework; it’s about

the overall OS performance for all kinds of software.

• Security fixes can slow down your applications.

If an update changelog doesn’t include information about

performance changes, it doesn’t mean that you will not get a

performance drop. It’s a common situation when security patches

fix vulnerabilities by sacrificing performance.

AN EXERCISE

take hardware that is affected by meltdown and do your own performance research. You

should write some benchmarks and show the performance problems that were introduced

by the security fixes. You may use old and new versions of your favorite os or find a way to

disable the meltdown patches. it’s not a quick and easy exercise, but it will help you to learn

some important skills.

 Case Study 3: MSBuild and Windows Defender
This is another story about Rider. Once, we bought new physical machines for our

performance agent pool. We deployed Windows, Linux, and macOS images on them

and started to run a specific part of our test suite several times per day. We checked

the current level of performance; everything was fine. After a few days, we noticed a

serious performance degradation for some tests on Windows. We tried to revert the latest

commits, but it didn’t help: these tests still took a tremendous amount of time. After an

investigation, it turned out that the culprit was Windows Defender!86 The biggest part

86 www.microsoft.com/en-us/windows/windows-defender/

Chapter 3 how environment affeCts performanCe

https://www.microsoft.com/en-un/windows-defender/

170

of the degraded test involved a solution build, which produced many I/O operations.

Windows Defender87 can slow down such operations, especially if a process creates

many exe and dll files. Unfortunately, it’s not so trivial to disable Windows Defender:

if you just turn it off in the settings, it will be enabled again after reboot. This is what

happened on the day of degradation. There is a way to disable it permanently, but

this approach wasn’t applied to our updated Windows images because of a mistake.

In Figure 3-5, you can see the performance plot for one of such tests: we had about 28

seconds with enabled Windows Defender and 4 seconds after this environment fix.

There are a lot of OS processes that can slow down your benchmarks. For example,

after another update of our macOS agents, we got a 300% performance degradation.

After a short investigation, it turned out that the only problem was about the screen saver

Figure 3-5. Performance plot of Rider SimpleBuildTest

87 You can find it in the process explorer by looking for msmpeng.exe process.

Chapter 3 how environment affeCts performanCe

171

process, which was accidentally enabled during the update. This is a common problem

for macOS VMs; you can find more details in [Albrechtslund 2013].

Conclusion:

• Some OS features can significantly slow down your program.

As you can see, Windows Defender has a significant impact on

some workloads with a huge number of I/O operations. If you

want to get better performance with local projects, it makes

sense to add your work directory to the list of Windows Defender

exclusions. During benchmarking, you can monitor the process

explorer and check for any processes which do CPU, disk, or

network operations. This sanity check will help you to verify that

performance measurements are not spoiled by other processes.

AN EXERCISE

if you are working on windows, check if windows Defender is enabled and does it have your

work directory in the exclusions list. try to rebuild your project with enabled and disabled

windows Defender. if you are lucky enough and the build process of the project is simple, you

will not observe any different for these configurations. in another case, you may also discover

some interesting performance impacts.

 Case Study 4: Pause Latency and Intel Skylake
Now let’s talk about different CPU models. People often don’t expect serious

performance changes during an upgrade on the next CPU microarchitecture. If you

ask your colleagues “What is the difference between fifth and sixth Intel Core iX

generations?”, you probably get an answer like “The sixth generation is better, it should

work faster,” but most developers can’t explain why it works “faster” and what “better”

means. In fact, next-generation CPUs are not always faster; some workloads can be even

slower. Let’s look at an example.

Chapter 3 how environment affeCts performanCe

172

In the x86 instruction set, there is the pause instruction. It’s used by Thread.

SpinWait88 for spin-wait loops. This method may help to improve performance in

multithreaded applications because threads can acquire locks without expensive context

switching. In [Intel OptManual], section 8.4.7, we can find interesting information about

the pause latency:

The latency of PAUSE instruction in prior generation

microarchitecture is about 10 cycles, whereas on Skylake

microarchitecture it has been extended to as many as 140 cycles.

…

As the PAUSE latency has been increased significantly, workloads

that are sensitive to PAUSE latency will suffer some performance

loss.

140 CPU cycles may sound like a small value. For example, on a CPU with a 2.0GHz

frequency, it takes about 140 · 1 sec /(2 · 109) or 70 nanoseconds. Should we really worry

about it? With the original idea, the increased pause latency should have a positive

performance impact on highly threaded applications. However, everything depends on

the implementation. It turned out that this change affected many .NET applications. For

example, Alois Kraus reported about a 50% performance drop in some cases in [Kraus

2018]. The described situation is pretty typical for heavily multithreaded applications.

Imagine many threads that try to acquire a lock on the same object. To avoid heavy

context switches, each thread tries to do spin wait first. In .NET Core 2.0/.NET

Framework 4.7.2, the locking implementation contained many iterations with Thread.

SpinWait(PlatformHelper.ProcessorCount * (4 << i)) calls, where i is the index of

an iteration. Such calls became pretty expensive with the 140 as the pause latency on the

big values of i: each thread continues to be alive, spending more and more CPU time on

each iteration. The corresponding .NET Core issue was reported in coreclr#13388.89

It was actively discussed on GitHub; you can find many interesting details there. The issue

was fixed in coreclr#1355690 by replacing these expensive calls with Thread.SpinWait

(4 << i): this small edit solved the original problem. The fix is available in .NET Core

88 https://docs.microsoft.com/en-us/dotnet/standard/threading/spinwait
89 https://github.com/dotnet/coreclr/issues/13388
90 https://github.com/dotnet/coreclr/pull/13556

Chapter 3 how environment affeCts performanCe

https://docs.microsoft.com/en-us/dotnet/standard/threading/spinwait
https://github.com/dotnet/coreclr/issues/13388
https://github.com/dotnet/coreclr/pull/13556

173

2.1.0 and .NET Framework 4.8 Preview.91 Later, the implementation was significantly

improved (see coreclr#1367092 and coreclr#2998993).

Conclusions:

• Processor model matters.

Typically, people don’t care about the CPU model generations

(especially when the frequency is the same). However, on

some workloads, different CPU models can show a significant

performance difference.

• Some instructions can have performance regression in new
versions of processors.

Most developers expect small performance improvements with

hardware updates and don’t expect any serious regression. But

this is not always the case; performance is often about trade-offs.

Engineers from Intel have decided to change the pause latency

to optimize some workloads by sacrificing performance of other

workloads.

AN EXERCISE

read the Github discussion about this problem and [Kraus 2018]. write your own

multithreaded benchmark that shows the difference between .net Core 2.0.0 and 2.1.0 (you

will need a proper CpU).

 Summing Up
When people say “program environment,” they often mean a specific version of a particular

runtime. However, any runtime has its own external environment: it’s running on an

operating system (like Windows, Linux, or macOS). An OS also has an external environment,

91 https://github.com/Microsoft/dotnet-framework-early-access/blob/master/release-
notes/NET48/dotnet-48-changes.md

92 https://github.com/dotnet/coreclr/pull/13670
93 https://github.com/dotnet/corefx/pull/29989

Chapter 3 how environment affeCts performanCe

https://github.com/Microsoft/dotnet-framework-early-access/blob/master/release-notes/NET48/dotnet-48-changes.md
https://github.com/Microsoft/dotnet-framework-early-access/blob/master/release-notes/NET48/dotnet-48-changes.md
https://github.com/dotnet/coreclr/pull/13670
https://github.com/dotnet/corefx/pull/29989

174

namely, hardware, which includes CPU (with a specific architecture like x86 or x64), RAM,

disks, network hardware, and other components. And the hardware also has its own external

environment: the physical world with variable temperature, vibrations, and humidity.

Benchmarking requires an understanding of these environmental factors and how

they can affect performance. In this section, we briefly discussed each of them and

introduced some terms and technologies. We will use them in subsequent chapters

to illustrate some theoretical concepts. You won’t be able to know each aspect of each

environment component (and we are not going to discuss even a fraction of them).

It’s enough to understand which factors may be important for specific performance

measurements. This knowledge will help you to design benchmark experiments and

make correct conclusions.

 Summary
The only thing that you should learn from this chapter is simple: environment matters.

You can’t discuss the performance of abstract source code in general case.

In this chapter, we covered the following environment-specific topics:

• Runtime

 – .NET Framework

The original version of .NET platform by Microsoft. Initially,

it was closed source. The source code of some core runtimes

parts was open for reading (Rotor). Currently, the source code

for the basic class library for .NET Framework 4.5.1+ is also

available. Works only on Windows.

 – .NET Core

An alternative implementation of .NET Framework by

Microsoft. It’s a cross-platform and open source project

(available on GitHub).

 – Mono

Another alternative implementation of the .NET platform. The

first versions were maintained by Xamarin, but now the project

belongs to .NET Foundation. It’s a cross-platform and open

source project (available on GitHub).

Chapter 3 how environment affeCts performanCe

175

• Compilation

 – IL generation

C# compiler translates your C# code into IL. There were two

generations of C# compilers by Microsoft: the legacy compiler

(C# 1 .. C# 5) and Roslyn (since C# 6). Mono had its own

implementation of C# compiler (msc) but it was replaced

by Roslyn in Mono 5.0.0. Another important component of

the .NET infrastructure is a build system. The most popular

build system, which was a part of .NET Framework from the

beginning, is MSBuild. Mono had its own build system (XBuild)

but it was replaced by MSBuild in Mono 5.0.0. There are some

build toolchains on top of MSBuild like .NET Core SDK (the

primary way to build and run SDK-style projects), Cake, Fake,

Nuke, and so on.

 – JIT compilation

JIT compiler translates your IL code into native code during

runtime. The original JIT in .NET Framework is LegacyJIT.

Since .NET Framework 4.6, it has been replaced by RyuJIT for

x64 (you can still switch to LegacyJIT if you want). .NET Core

has used RyuJIT from the beginning. Mono has its own JIT

implementation (MonoJIT).

 – AOT compilation

Besides JIT compilation, we have different AOT toolchains.

AOT means that we create native code in advance (before

the program execution is started). There are several ways to

perform AOT, like NGen, Crossgen, Mono AOT, .NET Native, or

CoreRT.

• External environment

 – Operating system

There are many different operating systems. In this book, we

will usually discuss Windows, Linux, and macOS.

Chapter 3 how environment affeCts performanCe

176

 – Hardware

The most important hardware components are CPU, RAM,

disks, and network hardware. In this book, Chapters 7 and 8

demonstrate how hardware capabilities affect performance.

 – The physical world

Many physical characteristics and external conditions like

temperature, vibrations, and humidity are also important in

terms of performance.

The environment is one of the key components of your performance space. Even

minor changes in the environment could significantly affect benchmarks. If you want to

share some performance results, it’s a good practice to share as much information about

your environment as possible.

Of course, you don’t need all this information in all kinds of benchmarks. It’s also

good to think about possible bottlenecks and what component of the environment is

important for your case. For example, in a CPU-bound benchmark, the most important

environment factor is the processor model. In a disk-bound benchmark, it’s worth it

to check the disk model. If you are not sure which environment properties you need,

it’s better to write down more details than fewer details. Any of these answers could

be very helpful for people who work with your benchmarks. Always think about your

environment and don’t forget to share it with performance results.

 References
[Akinshin 2015] Akinshin, Andrey. 2015. “A Bug Story About JIT-X64.” February 27.

https://aakinshin.net/blog/post/subexpression-elimination-bug-in-jit-x64/.

[Albrechtslund 2013] Albrechtslund, Mads Fog. 2013. “Save CPU Time, Disable Screen

Saver on Mac OS X VMs.” https://hazenet.dk/2013/06/01/save-cpu-time-disable-

screen-saver-on-mac-os-x-vms/.

[Colwell 2018] “Mobile Performance Testing in Real User Conditions.” 2018. Presented

at the Performance @Scale 2018, March 13. https://atscaleconference.com/videos/

mobile-performance-testing-in-real-user-conditions/.

[Craver 2015] Craver, Nick. 2015. “Why You Should Wait on Upgrading to .Net 4.6.”

July 27. https://nickcraver.com/blog/2015/07/27/why-you-should-wait-on-

dotnet-46/.

Chapter 3 how environment affeCts performanCe

https://aakinshin.net/blog/post/subexpression-elimination-bug-in-jit-x64/
https://hazenet.dk/2013/06/01/save-cpu-time-disable-screen-saver-on-mac-os-x-vms/
https://hazenet.dk/2013/06/01/save-cpu-time-disable-screen-saver-on-mac-os-x-vms/
https://atscaleconference.com/videos/mobile-performance-testing-in-real-user-conditions/
https://atscaleconference.com/videos/mobile-performance-testing-in-real-user-conditions/
https://nickcraver.com/blog/2015/07/27/why-you-should-wait-on-dotnet-46/
https://nickcraver.com/blog/2015/07/27/why-you-should-wait-on-dotnet-46/

177

[Foreshadow] Weisse, Ofir, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris Kasikci,

Frank Piessens, Mark Silberstein, Raoul Strackx, Thomas F. Wenisch, and Yuval Yarom.

2018. “Foreshadow-Ng: Breaking the Virtual Memory Abstraction with Transient Out-of-

Order Execution.” Technical report. https://foreshadowattack.eu/foreshadow-NG.pdf.

[Goldshtein 2012] Goldshtein, Sasha. 2012. “What AnyCPU Really Means as of .NET 4.5

and Visual Studio 11.” April 4. http://blogs.microsoft.co.il/sasha/2012/04/04/

what-anycpu-really-means-as-of-net-45-and-visual-studio-11/.

[Gregg 2008] “Shouting in the Datacenter.” 2008. December 31. www.youtube.com/

watch?v=tDacjrSCeq4.

[Gregg 2018] Gregg, Brendan. 2018. “KPTI/KAISER Meltdown Initial Performance

Regressions.” February 9. www.brendangregg.com/blog/2018-02-09/kpti-kaiser-

meltdown-performance.html.

[Guev 2017] Guev, Timur. 2017. “StringBuilder: The Past and the Future.” February 13.

http://codingsight.com/stringbuilder-the-past-and-the-future/.

[Hanselman 2018] Hanselman, Scott. 2018. “Detecting That a .NET Core App Is Running

in a Docker Container and SkippableFacts in XUnit.” June 29. www.hanselman.

com/blog/DetectingThatANETCoreAppIsRunningInADockerContainerAndSkippable

FactsInXUnit.aspx.

[Intel OptManual] Intel® 64 and IA-32 Architectures Optimization Reference Manual

(248966-033). 2016. www.intel.com/content/dam/www/public/us/en/documents/

manuals/64-ia-32-architectures-optimization-manual.pdf.

[Kraus 2018] Kraus, Alois. 2018. “Why Skylake CPUs Are Sometimes 50% Slower –

How Intel Has Broken Existing Code.” June 16. https://aloiskraus.wordpress.

com/2018/06/16/why-skylakex-cpus-are-sometimes-50-slower-how-intel-has-

broken-existing-code/.

[Lander 2015] Lander, Rich. 2015. “Announcing .NET Framework 4.6.” Microsoft .NET

Blog. July 20. https://blogs.msdn.microsoft.com/dotnet/2015/07/20/announcing-

net-framework-4-6/.

[Lander 2018a] Lander, Rich. 2018. “Announcing .NET Core 3 Preview 1 and Open

Sourcing Windows Desktop Frameworks.” Microsoft .NET Blog. December 4. https://

blogs.msdn.microsoft.com/dotnet/2018/12/04/announcing-net-core-3-preview-1-

and-open-sourcing-windows-desktop-frameworks/.

Chapter 3 how environment affeCts performanCe

https://foreshadowattack.eu/foreshadow-NG.pdf
http://blogs.microsoft.co.il/sasha/2012/04/04/what-anycpu-really-means-as-of-net-45-and-visual-studio-11/
http://blogs.microsoft.co.il/sasha/2012/04/04/what-anycpu-really-means-as-of-net-45-and-visual-studio-11/
https://www.youtube.com/watch?v=tDacjrSCeq4
https://www.youtube.com/watch?v=tDacjrSCeq4
http://www.brendangregg.com/blog/2018-02-09/kpti-kaiser-meltdown-performance.html
http://www.brendangregg.com/blog/2018-02-09/kpti-kaiser-meltdown-performance.html
http://codingsight.com/stringbuilder-the-past-and-the-future/
https://www.hanselman.com/blog/DetectingThatANETCoreAppIsRunningInADockerContainerAndSkippableFactsInXUnit.aspx
https://www.hanselman.com/blog/DetectingThatANETCoreAppIsRunningInADockerContainerAndSkippableFactsInXUnit.aspx
https://www.hanselman.com/blog/DetectingThatANETCoreAppIsRunningInADockerContainerAndSkippableFactsInXUnit.aspx
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://aloiskraus.wordpress.com/2018/06/16/why-skylakex-cpus-are-sometimes-50-slower-how-intel-has-broken-existing-code/
https://aloiskraus.wordpress.com/2018/06/16/why-skylakex-cpus-are-sometimes-50-slower-how-intel-has-broken-existing-code/
https://aloiskraus.wordpress.com/2018/06/16/why-skylakex-cpus-are-sometimes-50-slower-how-intel-has-broken-existing-code/
https://blogs.msdn.microsoft.com/dotnet/2015/07/20/announcing-net-framework-4-6/
https://blogs.msdn.microsoft.com/dotnet/2015/07/20/announcing-net-framework-4-6/
https://blogs.msdn.microsoft.com/dotnet/2018/12/04/announcing-net-core-3-preview-1-and-open-sourcing-windows-desktop-frameworks/
https://blogs.msdn.microsoft.com/dotnet/2018/12/04/announcing-net-core-3-preview-1-and-open-sourcing-windows-desktop-frameworks/
https://blogs.msdn.microsoft.com/dotnet/2018/12/04/announcing-net-core-3-preview-1-and-open-sourcing-windows-desktop-frameworks/

178

[Lander 2018b] Lander, Rich. 2018. “NET Core 3 and Support for Windows Desktop

Applications.” Microsoft .NET Blog. May 7. https://blogs.msdn.microsoft.com/

dotnet/2018/05/07/net-core-3-and-support-for-windows-desktop-applications/.

[Landwerth 2017a] Landwerth, Immo. 2017. “Explaining .NET Standard Versioning in

Front of My Fire Place.” October 6. www.youtube.com/watch?v=vMRSlQ5modg.

[Landwerth 2017b] Landwerth, Immo. 2017. “Announcing the Windows Compatibility

Pack for .NET Core.” Microsoft .NET Blog. November 16. https://blogs.msdn.

microsoft.com/dotnet/2017/11/16/announcing-the-windows-compatibility-pack-

for-net-core/.

[Lee 2018] Lee, Dave. 2018. “MacBook Pro 15 (2018) - Beware the Core I9.” July 17. www.

youtube.com/watch?v=Dx8J125s4cg.

[Le Roy 2017] Le Roy, Bertrand, and Daniel Podder. 2017. “Profile-Guided Optimization

in .NET Core 2.0.” July 20. https://blogs.msdn.microsoft.com/dotnet/2017/07/20/

profile-guided-optimization-in-net-core-2-0/.

[Lippert 2009] Lippert, Eric. 2009. “Closing over the Loop Variable Considered Harmful.”

November 12. https://blogs.msdn.microsoft.com/ericlippert/2009/11/12/

closing-over-the-loop-variable-considered-harmful/.

[Lock 2018] Lock, Andrew. 2018. “Why Is string.GetHashCode() Different Each

Time I Run My Program in .NET Core?” https://andrewlock.net/why-is-string-

gethashcode-different-each-time-i-run-my-program-in-net-core/.

[Luomala 2015] Luomala, Jari, and Ismo Hakala. 2015. “Effects of Temperature and

Humidity on Radio Signal Strength in Outdoor Wireless Sensor Networks.” In Computer

Science and Information Systems (Fedcsis), 2015 Federated Conference, 1247–55. IEEE.

doi:https://doi.org/10.15439/2015F241.

[McCormick 2015] McCormick, Rich. 2015. “Facebook’s ‘2G Tuesdays’ Simulate

Super Slow Internet in the Developing World.” The Verge. October 28. www.theverge.

com/2015/10/28/9625062/facebook-2g-tuesdays-slow-internet-developing-world.

[Meltdown] Lipp, Moritz, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner

Haas, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg.

2018. “Meltdown.” arXiv Preprint arXiv:1801.01207, January. https://meltdownattack.

com/meltdown.pdf.

[MSDOCS RyuJIT] “.NET Framework - Troubleshooting RyuJIT.” n.d. Microsoft Docs.

https://github.com/Microsoft/dotnet/blob/master/Documentation/testing-with-

ryujit.md.

Chapter 3 how environment affeCts performanCe

https://blogs.msdn.microsoft.com/dotnet/2018/05/07/net-core-3-and-support-for-windows-desktop-applications/
https://blogs.msdn.microsoft.com/dotnet/2018/05/07/net-core-3-and-support-for-windows-desktop-applications/
https://www.youtube.com/watch?v=vMRSlQ5modg
https://blogs.msdn.microsoft.com/dotnet/2017/11/16/announcing-the-windows-compatibility-pack-for-net-core/
https://blogs.msdn.microsoft.com/dotnet/2017/11/16/announcing-the-windows-compatibility-pack-for-net-core/
https://blogs.msdn.microsoft.com/dotnet/2017/11/16/announcing-the-windows-compatibility-pack-for-net-core/
https://www.youtube.com/watch?v=Dx8J125s4cg
https://www.youtube.com/watch?v=Dx8J125s4cg
https://blogs.msdn.microsoft.com/dotnet/2017/07/20/profile-guided-optimization-in-net-core-2-0/
https://blogs.msdn.microsoft.com/dotnet/2017/07/20/profile-guided-optimization-in-net-core-2-0/
https://blogs.msdn.microsoft.com/ericlippert/2009/11/12/closing-over-the-loop-variable-considered-harmful/
https://blogs.msdn.microsoft.com/ericlippert/2009/11/12/closing-over-the-loop-variable-considered-harmful/
https://andrewlock.net/why-is-string-gethashcode-different-each-time-i-run-my-program-in-net-core/
https://andrewlock.net/why-is-string-gethashcode-different-each-time-i-run-my-program-in-net-core/
https://doi.org/10.15439/2015F241
https://www.theverge.com/2015/10/28/9625062/facebook-2g-tuesdays-slow-internet-developing-world
https://www.theverge.com/2015/10/28/9625062/facebook-2g-tuesdays-slow-internet-developing-world
https://meltdownattack.com/meltdown.pdf
https://meltdownattack.com/meltdown.pdf
https://github.com/Microsoft/dotnet/blob/master/Documentation/testing-with-ryujit.md
https://github.com/Microsoft/dotnet/blob/master/Documentation/testing-with-ryujit.md

179

[Osenkov 2011] Osenkov, Kirill. 2011. “Introducing the Microsoft ‘Roslyn’ CTP.”

The Visual Studio Blog. October 19. https://blogs.msdn.microsoft.com/

visualstudio/2011/10/19/introducing-the-microsoft-roslyn-ctp/.

[Roach 2018] Roach, John. 2018. “Under the Sea, Microsoft Tests a Datacenter That’s

Quick to Deploy, Could Provide Internet Connectivity for Years.” Microsoft News.

June 5. https://news.microsoft.com/features/under-the-sea-microsoft-tests-a-

datacenter-thats-quick-to-deploy-could-provide-internet-connectivity-for-

years/.

[RyuJIT 2013] “RyuJIT: The Next-Generation JIT Compiler for .NET.” Microsoft .NET Blog.

September 30. https://blogs.msdn.microsoft.com/dotnet/2013/09/30/ryujit-the-

next-generation-jit-compiler-for-net/.

[Shahrad 2017] Shahrad, Mohammad, Arsalan Mosenia, Liwei Song, Mung Chiang,

David Wentzlaff, and Prateek Mittal. 2017. “Acoustic Denial of Service Attacks on Hdds.”

arXiv Preprint arXiv:1712.07816, December. https://arxiv.org/abs/1712.07816v1.

[SSCLI Internals] Pobar, Joel, Ted Neward, D. Stutz, and G. Shilling. 2008. “Shared Source

Cli 2.0 Internals.”

[Spectre] Kocher, Paul, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg,

Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval

Yarom. 2018. “Spectre Attacks: Exploiting Speculative Execution.” arXiv Preprint

arXiv:1801.01203, January. https://spectreattack.com/spectre.pdf.

[Torgersen 2018] Torgersen, Mads. 2018. “How Microsoft Rewrote Its C# Compiler in

C# and Made It Open Source.” September 26. https://medium.com/microsoft-open-

source-stories/how-microsoft-rewrote-its-c-compiler-in-c-and-made-it-open-

source-4ebed5646f98.

[Toub 2017] Toub, Stephen. 2017. “Performance Improvements in .NET Core.” Microsoft

.NET Blog. June 7. https://blogs.msdn.microsoft.com/dotnet/2017/06/07/

performance-improvements-in-net-core/.

[Toub 2018] Toub, Stephen. 2018. “Performance Improvements in .NET Core

2.1.” Microsoft .NET Blog. April 18. https://blogs.msdn.microsoft.com/

dotnet/2018/04/18/performance-improvements-in-net-core-2-1/.

[Warren 2018a] Warren, Matt. 2018. “A History of .NET Runtimes.” October 2.

http://mattwarren.org/2018/10/02/A-History-of-.NET-Runtimes/.

[Warren 2018b] Warren, Matt. 2018. “CoreRT - A .NET Runtime for AOT.” June 7.

https://mattwarren.org/2018/06/07/CoreRT-.NET-Runtime-for-AOT/.

Chapter 3 how environment affeCts performanCe

https://blogs.msdn.microsoft.com/visualstudio/2011/10/19/introducing-the-microsoft-roslyn-ctp/
https://blogs.msdn.microsoft.com/visualstudio/2011/10/19/introducing-the-microsoft-roslyn-ctp/
https://news.microsoft.com/features/under-the-sea-microsoft-tests-a-datacenter-thats-quick-to-deploy-could-provide-internet-connectivity-for-years/
https://news.microsoft.com/features/under-the-sea-microsoft-tests-a-datacenter-thats-quick-to-deploy-could-provide-internet-connectivity-for-years/
https://news.microsoft.com/features/under-the-sea-microsoft-tests-a-datacenter-thats-quick-to-deploy-could-provide-internet-connectivity-for-years/
https://blogs.msdn.microsoft.com/dotnet/2013/09/30/ryujit-the-next-generation-jit-compiler-for-net/
https://blogs.msdn.microsoft.com/dotnet/2013/09/30/ryujit-the-next-generation-jit-compiler-for-net/
https://arxiv.org/abs/1712.07816v1
https://spectreattack.com/spectre.pdf
https://medium.com/microsoft-open-source-stories/how-microsoft-rewrote-its-c-compiler-in-c-and-made-it-open-source-4ebed5646f98
https://medium.com/microsoft-open-source-stories/how-microsoft-rewrote-its-c-compiler-in-c-and-made-it-open-source-4ebed5646f98
https://medium.com/microsoft-open-source-stories/how-microsoft-rewrote-its-c-compiler-in-c-and-made-it-open-source-4ebed5646f98
https://blogs.msdn.microsoft.com/dotnet/2017/06/07/performance-improvements-in-net-core/
https://blogs.msdn.microsoft.com/dotnet/2017/06/07/performance-improvements-in-net-core/
https://blogs.msdn.microsoft.com/dotnet/2018/04/18/performance-improvements-in-net-core-2-1/
https://blogs.msdn.microsoft.com/dotnet/2018/04/18/performance-improvements-in-net-core-2-1/
http://mattwarren.org/2018/10/02/A-History-of-.NET-Runtimes/
https://mattwarren.org/2018/06/07/CoreRT-.NET-Runtime-for-AOT/

181
© Andrey Akinshin 2019
A. Akinshin, Pro .NET Benchmarking, https://doi.org/10.1007/978-1-4842-4941-3_4

CHAPTER 4

Statistics for Performance
Engineers

Without data you’re just another person with an opinion.

— W. Edwards Deming, a data scientist

In this chapter, we are going to discuss statistics and how to apply it to benchmarking.

You will learn many useful approaches and techniques to help you improve your

benchmark design and analyze the results.

There are many excellent books about statistics. For me as an author, it would be

easy to name a few books and say: “Read them if you want to analyze benchmark results.”

However, there are several problems with this idea. First of all, most developers don’t

want to read books about statistics. And this is understandable: such books typically

contain a lot of information that is irrelevant for your current task. Thus, most developers

just don’t find them useful and interesting enough. Even if you read some good books

about statistics, the human mind has a nasty “feature”: it quickly forgets information that

it’s not using. If you had statistics lessons in the past and don’t have statistics experience

in the present, you probably can’t reproduce all the important formulas and approaches.

Even if you perfectly remember everything, it’s often unclear how to apply statistics

in the real world for performance distributions. “Performance distribution” means that

we got this distribution from real performance measurements. Such distributions have

many properties that may be nontypical for other data sources. Unfortunately, many

classic academic approaches just don’t work when you try to apply them to performance

distributions. In this chapter, you will find many practical recommendations about how

to use different metrics in real life. Here you will not find any classic examples about

balls in a box or presidential elections. We will focus only on how to use statistics in

182

benchmarking. Some of these recommendations can’t be applied for statistical research

in general. Also, they can be invalid for some specific performance investigations.

However, they contain empirical rules that work in most cases and help you make initial

hypotheses about your data.

In this chapter, we are going to cover the following topics:

• Descriptive statistics

A set of measurements forms a distribution, which can be

described by special statistical metrics: minimum, maximum,

median, mean, percentiles, quartiles, variance, standard error,

and others. We will discuss how to calculate all these values and

correctly interpret them. Sometimes it’s hard to work with raw

numbers, so we will learn several ways to visualize data.

• Performance analysis

How can two distributions be compared? How can a relationship

between a method’s performance and its parameters be

detected? How can the parameters that have the most impact on

performance be found? We are going to answer all these questions

and cover important concepts like the null and alternative

hypotheses, Type I and Type II errors, and p-values. Statistics

can be useful not only after a performance experiment, but also

during this experiment. You can adaptively choose the best

number of iterations and other experiment options instead of

choosing magic numbers in advance.

• How to lie with benchmarking

It’s pretty easy to fool yourself or others with the help of

statistics. For self-defense, you need to know the most popular

ways to lie with benchmarking. We will learn many deceiving

techniques based on small samples, percentages, ratios, plots,

and data dredging.

We are not going to cover the internal implementations of the statistical algorithms.

In practice, it’s almost always better to take an existing implementation and consider

such algorithms as black boxes. The most important skills are related to the correct

interpretation of statistical metrics rather than how they are calculated (only the

Chapter 4 StatiStiCS for performanCe engineerS

183

simplest formulas will be presented). Some of the statements about statistics are not

mathematically strict: this is to simplify the explanations and skip many footnotes about

corner cases that you shouldn’t worry about. In benchmarking, you don’t need an

in-depth knowledge of statistics: it’s enough to know the main concepts and how they

should be used.

We assume that we already have well-designed benchmarks that were executed in

the right environment without any mistakes. The output of these benchmarks is not a

single number; it’s a set of different numbers that form a distribution (even if we are

executing benchmarking in the same environment). Let’s start with the basics and learn

how to describe typical performance distributions.

 Descriptive Statistics
In this section, we are going to discuss essential statistical metrics and visualizations that

help to explore a single distribution.

Let’s say that we have a benchmark that produces a single performance metrics

in the output (e.g., the operation duration). If we run this benchmark n times, we will

get a new number for each iteration. We will denote them as x1, x2, … , xn. This set of

measurements is known as a sample x, and n is the sample size. It would be simpler if

all these numbers were equal. Unfortunately, that’s not the case: these measurements

form a distribution that should be analyzed. Let’s learn some approaches to help

aggregate and analyze such samples. We will discuss such topics as basic sample

plots (timeline plot, rug plot, histograms, density plots, waterfall plots), sample size,

minimum, maximum, range, mean, median, quantiles, quartiles, percentiles, five-

number summary, interquartile range (IQR), outliers, box plots, frequency trails, modes,

standard deviation, variance, normal distribution, skewness, kurtosis, standard error,

confidence intervals, and the central limit theorem.

 Basic Sample Plots
Analyzing tons of raw numbers is hard. You can simplify this analysis with the help

of good visualizations. A picture is worth a thousand numbers: you can instantly

understand distribution properties with a good chart, but it’s not always possible if you

Chapter 4 StatiStiCS for performanCe engineerS

184

just look at numbers. There are several ways to draw a distribution. Here are some of the

most popular ways:

• Timeline plot

You can see an example of a timeline plot in Figure 4-1 (the

central part with dots). It’s the most direct way to display the

measurements. For each iteration i (x axis), we draw a point that

corresponds to the duration xi (y axis) of this iteration.

• Rug plot

You can see an example of a rug plot in Figure 4-1 (the right part

with horizontal dashes). It’s a one-dimensional plot with all

measurements. It contains all xi values on a single axis. You can

imagine it as a “compressed” version of the timeline plot where

the information about the iteration indexes is omitted.

• Histogram

You can see an example of a histogram in Figure 4-2 (A).

A histogram shows the shape of your distribution. It’s a bar

chart where each bar (also known as bin) shows how many

measurements we have in the corresponding interval. If one bar is

twice as high as another bar, it contains twice as many values from

the sample. Usually, all bins have the same width, but you can

choose your own binning functions (e.g., logarithmic). If you want

to use the fixed width size, there are many different approaches to

choosing this size.1

• Density plot

You can see an example of a density plot in Figure 4-2 (B).

A density plot is a “smooth version” of a histogram. It shows the

distribution shape with the help of a smooth curve instead of a

set of bins. If you don’t care about specific bin heights and just

want to know what the distribution looks like, the density plot

is preferred because it has less visual noise. A histogram and a

1 For example, Scott’s normal reference rule, Rice rule, Freedman–Diaconis’ choice, Doane’s
formula, square-root choice, Sturges’ formula, and others.

Chapter 4 StatiStiCS for performanCe engineerS

185

density plot can be combined into one picture as presented in

Figure 4-2 (C).

• Density waterfall plots

If you have many distributions for the same benchmark, it may be

hard to analyze them one by one. A waterfall plot combines many

images and displays them on the same picture one under the

other. A plot overlapping helps to make it compact. You can see an

example of a density waterfall plot in Figure 4-2 (D).

Figure 4-1. Timeline and rug plots

Chapter 4 StatiStiCS for performanCe engineerS

186

Figure 4-2. Different distribution visualizations

Chapter 4 StatiStiCS for performanCe engineerS

187

Plotting is an excellent way of representing data, but it has one serious disadvantage:

it’s hard to analyze plots automatically. You can instantly understand the distribution

shape when you look at a single image, but if there are hundreds of distributions, you

can’t look at all of them at the same time. A waterfall plot may solve this problem for

a single benchmark, but it’s still an issue when you are working with many different

methods and performance metrics. If you have a continuous benchmarking (you run

a huge benchmark suite on a server each day), you probably don’t want to examine all

generated plots every day; you need only those plots with issues. So, it’s important to

have a way to detect “suspicious” distributions, which is hard if you only have a set of

images: you need numeric metrics.

 PRACTICAL RECOMMENDATIONS

it’s always worth looking at a histogram or a density plot. however, a typical performance

investigation includes dozens of experiments, and continuous plot monitoring may be time-

consuming. it’s recommended to look at the plots at the special moments of the investigation

lifetime: e.g., after the first benchmark run (to get an idea about the distribution form), after

the last benchmark run (to verify that your hypothesis is correct before making conclusions),

and after a benchmark run with “suspicious” statistical metrics (to check the distribution for

anomalies).

 Sample Size
The sample size is the number n of measurements in a sample. The histograms and

density plots show the distribution shape, but they don’t contain information about the

sample size. Thus, if you have three density plots for samples with n = 5, n = 100, and

n = 10000, it’s not always possible to say where the plot is for each sample. Meanwhile,

the sample size is a very important characteristic: it’s responsible for the accuracy.

If you take many different samples with n = 5 for the same benchmark, you will get

absolutely different density plots and values of the basic statistical metrics. If you take

many samples with n = 10000, the results will be similar to each other. A big sample size

helps to improve the result repeatability. However, extremely huge sample sizes are not

optimal in terms of the total research duration: you may have to wait too much time for

benchmark results. Thus, it makes sense to choose the minimal possible sample size that

provides the required level of accuracy and repeatability.

Chapter 4 StatiStiCS for performanCe engineerS

188

 PRACTICAL RECOMMENDATIONS

for the first benchmark run, it’s recommended to take the sample size from 15 to 30. 15 is

the value when the essential statistical characteristics (which we are going to discuss soon)

usually start to show trustworthy values. 30 is the value when most statistical tests start to

work and show believable results. of course, 15 and 30 are just initial approximations: you

can get good metrics estimation with 10 iterations or completely incorrect statistical test

results with 40 iterations. if you make changes in the source code and rerun the benchmark

trying to detect significant improvements like 5× speedup, you can try to do a few iterations

(or even a single iteration). a single measurement doesn’t provide any statistical metrics, but

it helps to evaluate the magnitude of measurements roughly. Sometimes it’s enough to say

that a benchmark takes several milliseconds or several minutes. Benchmarks with complex

distributions may require hundreds or even thousands of runs to get the correct metric values.

it’s recommended to make a lot of runs for final checks before making any conclusions.

 Minimum, Maximum, and Range
The simplest distribution characteristics that we can calculate are the minimum and the

maximum (or min and max). Together they form the range.

The minimum and the maximum values correspond to the best-case and worst-case

performance or the fastest and the slowest measurements that we observe. The range

provides us an idea what kind of values can we get for this benchmark.

 PRACTICAL RECOMMENDATIONS

if you run a simple benchmark in a sterile environment, you may get a narrow range like

(15.181ms, 15.226ms). if you don’t care about better accuracy and you just want to compare

two distributions, you may take any number from the interval (e.g., 15.2ms) and work with it:

no other statistical characteristics are required. a benchmark with the (15.181ms, 15.226ms)

range is most likely faster than a benchmark with the (629.4ms, 653.2ms) range. if the range

is wide (there is a significant difference between the minimum and the maximum), you need

more distribution metrics.

Chapter 4 StatiStiCS for performanCe engineerS

189

 Mean
The mean or the arithmetical average is the most straightforward way to aggregate

numbers: we should just sum up all numbers and divide the result by the number of

elements. It’s usually denoted as x or μ.

Mean x
x x x

n
n: =

+ +¼+1 2

The mean is one of the most popular statistical metrics. Many developers use only

the mean during performance investigations. What is the easiest way to compare the

performance of the two methods? We can measure the duration of each method several

times, calculate the mean for each method, and compare the means! In most simple

cases it works fine. For example, the mean values of {99, 104, 105, 108, 114} and {503, 765,

653, 741, 593} are 106 and 651: the first method is obviously faster.

However, you never know in advance that it’s OK. There are many problems with

the mean. One of the most typical problems is a complex shape of distributions and

extremely high values. For example, the mean of {95, 101, 304, 97, 295, 314} is 201 and

the mean of {150, 125, 110, 5000, 115} is 1100, which may be pretty confusing because the

mean values are far away from the measurements that we have in the distributions. Let’s

learn another metric that will help us to solve this problem.

 PRACTICAL RECOMMENDATIONS

the mean value is a good starting point for distribution exploration. in simple cases (especially

if the range is narrow), it may be enough just to check out the mean. however, it can be

misleading in some cases: there are some distribution “features” that makes the mean value

useless. in many simple cases when the difference between distributions is noticeable, the

“relationship” between distributions and the mean values is the same. it creates a false sense

of confidence that it’s enough just to compare the mean values. however, you should never

use only the mean value for analysis if you don’t know the shape of the data.

 Median
The median is another way to describe the “average” value of the sample. To find it,

you have to sort all values and take the middle element. If the sample size is even, the

median is the arithmetical average of two middle elements. For example, the median of

Chapter 4 StatiStiCS for performanCe engineerS

190

{1, 4, 7, 15, 20} is 7 and the median of {1, 4, 7, 8, 15, 20} is (7 + 8)/2 = 7.5. Thus, the median

separates the lower half and the higher half of the measurement set.

The median solves the problem of extremely high and extremely low values that

spoil the mean value. Imagine that a benchmark downloads a file from the Internet. All

iterations finished fine except for one, which was terminated by timeout. Thus, we have

the following sample: x : {150,125,110,5000,115}. The mean is 1100, but this number

doesn’t help to describe the data. The median is 125, which is much closer to actual

“average” download time. By the way, some people use the “average” term to describe

median or other “averaged” values like mean. To avoid misunderstanding, we will always

use the terms “mean” and “median” instead of “average.”

 PRACTICAL RECOMMENDATIONS

Which metric should we use for describing the measurements set: the median or the mean?

fortunately, in most simple cases, these values are close to each other, and you can choose

either of them. if there is a significant distance between them, additional analysis is required:

you can’t choose only one value, you need the median, the mean, and other metrics. even

if the values are close, we still don’t know anything about the shape of the data and we still

can’t describe the distribution by a single number.

 Quantiles, Quartiles, and Percentiles
The q-quantiles are cut points that divide the sample into q equal intervals.

We are already familiar with the 2-quantile: it’s the median that splits the sample

into two parts. For example, the 2-quantile of {1, 2, 3, 4, 5, 6, 7, 8, 9} is 5.

Another widely used kind of quantile is the 4-quantile or quartile. The quartiles are

three values Q1, Q2, Q3 that split the sample into four equal parts. The second quartile Q2

equals to the median. For example, the 4-quantiles of {1, 2, 3, 4, 5, 6, 7, 8, 9} are 3, 5, and 7.

The range with the quartiles form the five-number summary: {Min, Q1, Median, Q3,

Max}. These five values are commonly used as a short form of distribution representation:

it doesn’t describe the shape of the data, but it provides a general impression of the

distribution. For example, the five-number summary of {1, 2, 3, 4, 5, 6, 7, 8, 9} is {1, 3, 5, 7, 9}.

Chapter 4 StatiStiCS for performanCe engineerS

191

The difference between upper quartile Q3 and lower quartile Q1 is known as the

Interquartile Range (IQR):

IQR = -Q Q3 1

The percentiles are 100-quantiles: the kth percentile pk is the value that separates the

lower k% of the measurement set from higher elements. The median and the quartiles

can be expressed via percentiles:

p Q p Q x p Q25 1 50 2 75 3= = = =, ,

Sometimes the granularity of percentiles is not enough, and we need 1000-quantiles

or permilles. The “permille” term is not usually used: people use percentiles instead. For

example, the 99.9th percentile corresponds to the 999th permille. We can continue to increase

the granularity: the 99.95th percentile is used for denoting the 9995th 10000-quantile.

The number of q-quantiles is (q − 1). However, sometimes people introduce

two additional fake quantiles: 0th and qth, which are equal to the minimum and the

maximum. Thus, the five-number summary can be expressed in percentiles like this:

p0, p25, p50, p75, p100. Technically, this is wrong (there are no 0th and 100th percentiles), but

such notation is used in many articles and blog posts because it looks consistent.

Percentile values like p80, p95, p99, and p99.9 are often used during performance analysis

of web applications. Many people think that values like p99 affect users very rarely and

we shouldn’t care about them. Now imagine a web page which makes 300 requests to

additional resources like images, css, and javascript files. The probability that the latency

of each request is less than the 99th percentile is 1 − 0.99300 ≈ 0.95. Thus, we have 95%

probability that the total page loading time will be affected by the 99th percentile. If we

consider the 99.9th percentile, this value will be 1 − 0.99300 ≈ 0.26. The 26% probability is 3.7

times better than 95%, but it’s still a huge number. Here is a simple exercise: open a popular

web site like facebook.com or amazon.com, check out how many requests are processed, and

calculate the probability of getting p90, p95, p99, p99.9, p99.99 for one of the requests.

 PRACTICAL RECOMMENDATIONS

the five-number summary (the range with the quartiles) is a common way to describe the

distribution. if the range is wide and we are care about huge values, we may need a better

granularity, which can be achieved with the help of percentiles. for example, this is a popular

way of describing web request latencies.

Chapter 4 StatiStiCS for performanCe engineerS

192

 Outliers
The outliers are very high or low values compared to other measurements. We will call

them upper and lower outliers accordingly.

A typical performance distribution is presented in Figure 4-3. It shows the distribution

of 1000 local runs of the Rider NuGetTest.uninstallOk (this test checks that we can

correctly uninstall a NuGet package). This test includes some disk operations, so we are

expecting to get some outliers. The mean value is 4.938 sec, but sometimes the test takes

up to 26.930 sec. You can find many other real-life examples of outliers in [Gregg 2014b].

There are many different ways to define which values are too high or low. One of the

most popular approaches is the Tukey’s fences2:

Lower Fence Q Upper Fence Q IQR IQR: . ; : .1 31 5 1 5- × + ×

2 It’s not the only outlier test; there are many other approaches: 6 sigma test, Chauvenet’s criterion,
Grubbs’ test, Dixon’s Q test, Peirce’s criterion, and others.

Figure 4-3. Distribution with outliers

Chapter 4 StatiStiCS for performanCe engineerS

193

All values that are smaller than the lower fence are the lower outliers. All values that

are bigger than the upper fence are the upper outliers. In this formulas, 1.5 is the most

popular factor for IQR, but you can use another value if you want to set another level of

“sensitivity” to outliers.

It’s important to understand why we have the outliers. There are two kinds of upper

outliers:

• Random noise (unwanted outliers)

In Chapter 2, we have already discussed that the performance

measurements are noisy. We have many random errors because of

different reasons: from other user and kernel processes that work

in parallel with a benchmark to hardware timer quantizing errors

(more about this in Chapter 9). We can’t completely remove this

noise, but we can clear the data and remove the unwanted outliers

because they don’t provide useful information and prevent us

from getting accurate performance distribution.

• True effects (wanted outliers)

In some benchmarks, there are outliers that we expect. Typically,

you can observe extremely high values during I/O operations,

network requests, database quires, and so on. Knowledge about

such outliers is important because we will get them in production.

It’s a major part of real performance space that should be

analyzed. We care about these outliers and we want to know the

full list of them.

In most cases, the performance distributions have only upper outliers. However, the

lower outliers also can be observed. Here are two examples:

• Errors

Imagine that you are making a web request, but the network

is accidentally not available. Such a request will be finished

instantly; it produces an unusually low duration. These errors

should also be handled and analyzed: it’s a part of many

performance and reliability analysis like the Utilization
Saturation and Errors (USE) Method (see [Gregg 2017]). If you

have a retry policy, such values can be transformed into regular

Chapter 4 StatiStiCS for performanCe engineerS

194

values or upper outliers, so we can miss important information if

we don’t analyze errors separately.

• Fast paths

Many software systems have different caching strategies. It’s

great for the application performance because we can process

the repeated requests faster. But it’s not so great if we want to

benchmark the request processing time without caching. If it’s

impossible to disable caching or do cache invalidation3 after each

iteration, we should randomize our requests to avoid getting

cached results. In this case, the lower outliers may notify us that

we hit “fast paths” and skipped actual calculations.

 PRACTICAL RECOMMENDATIONS

it’s recommended to split your data into two groups: outliers and everything else. next, you

can analyze the original sample with included outliers, the modified sample with excluded

outliers, and the full outlier list. for example, values like p95, p99, p99.9 require a sample with

included outliers. When you use a sample with excluded outliers, many statistical distribution

characteristics like the mean value will become more stable and reliable metrics. analysis of

wanted outliers (which can be explained by true effects) is very important; it’s a part of the

performance space. You should make a decision about which piece of the data to use (with or

without outliers) based on the selected metrics and business goals.

 Box Plots
The box plot (also known as the whisker plot) is a compact way to display the

minimum, Q1, Q2, Q3, the maximum, the lower and upper fences, and the outliers at the

same time.

3 http://thecodelesscode.com/case/220

Chapter 4 StatiStiCS for performanCe engineerS

http://thecodelesscode.com/case/220

195

One of the most popular kinds of box plot is the Tukey box plot; you can see an

example of it in Figure 4-4 (A). The box shows the positions of Q1 and Q3. The band

inside the box shows the median. The box is extended by lines (also known as whiskers)

that indicate the lower and upper fences. The outliers are presented as dots outside the

whiskers.

The box plot has many variations. Usually, the box with the band always describes

Q1, Q2, Q3, but the rule for the whiskers can be different; it depends on the outlier

detection algorithm used. The whiskers are often reduced to the nearest value from the

sample (e.g., if we don’t have a value that exactly equals Q1 − 1.5 · IQR, we finish to draw

the lower whisker on the smallest value that is higher than the lower fence). That’s why

the whisker lengths in Figure 4-4 are not equal and the positions of the lower fence and

the upper fence don’t match the Tukey formula. If we don’t have any values between

Q3 and the lowest upper outlier, the upper whisker can be completely removed. Also,

Figure 4-4. Examples of box plots

Chapter 4 StatiStiCS for performanCe engineerS

196

there are many different kinds of visual variations4 (you can find explanations with

illustrations of different box plot kinds in [Wickham 2011] and [Ribecca 2017]).

 PRACTICAL RECOMMENDATIONS

the box plots are very efficient when you want to compare many different distributions at the

same time, as shown in figure 4-4 (B). You will not get the exact model of each distribution:

the final conclusions about specific pairs require additional analysis. however, you will get

some initial ideas about five-number summaries for each distribution and will be able to

create the first hypothesis about the data (which should be checked later). there are different

variations of the box plots, so pay attention to the convention used.

 Frequency Trails
The frequency trail is an excellent kind of visualization introduced by Brendan Gregg

in [Gregg 2014a]. Basically, it’s a combination of a density plot and a rug plot. The classic

density plot has one serious disadvantage: it doesn’t show outliers. If you have a few

extremely high values, they can become invisible. The rug plot part of the frequency

trail plot solves this problem: it highlights the full list of outliers, which is very important

for the distribution analysis. If we have many different distributions, it makes sense

to combine several frequency trails into a waterfall plot by displaying them on the

same image. You can see examples of frequency trail waterfall plots in Figure 4-5. The

color palette can be arbitrary, but an inverted black-white palette is especially popular

because it looks similar to the cover of the “Unknown Pleasures” album by Joy Division.

 PRACTICAL RECOMMENDATIONS

the frequency trail is a good alternative to density plots when you want to look at the

distribution shape and the list of outliers at the same time.

4 For example, the classic box plot can be improved by additional information and transformed
to the variable width box plot, the notched box plot, the vase plot, the bean plot, the bee swarm
box plot, the highest density region box plot, the box-percentile plot, the letter-value box plot, or
other kinds of box plot.

Chapter 4 StatiStiCS for performanCe engineerS

197

 Modes
Typically, density plots are not flat; they contain “low” and “high” areas. A local

maximum of a density plot is known as mode; it’s a point that contains a lot of

measurements around it. On a histogram, such point will be presented by a bin that is

higher than its neighbors.

If the density plot has a single local maximum, the distribution is called unimodal;
you can see an example in Figure 4-6 (A). If the density plot has two local maximums,

the distribution is called bimodal; an example is presented in Figure 4-6 (B). We say

that the distribution is multimodal when the number of local maximums is more than

one (the bimodal distribution is a special case of the multimodal distribution).

Figure 4-5. Frequency trail waterfall plots

Chapter 4 StatiStiCS for performanCe engineerS

198

In real life, many performance distributions look like combinations of a multimodal

distribution, random noise, and a set of outliers (you can see an example in Figure 4-6 (C)).

Thus, it’s not always possible to say how many modes we have. However, it’s usually

possible to distinguish “simple” unimodal distributions and “complex” multimodal

distributions. Let’s discuss how to detect multimodal distributions. If you are not

interested in a particular implementation, you can skip the rest of this subsection.

There are many different algorithms for multimodal distribution detection.

Unfortunately, most classic academic algorithms don’t work well on real data. The

situation becomes worse when the sample size is small (less than 30–40 measurements).

After many experiments, I finally found an approach that works acceptably. One

approach that works really well with performance distributions is described in [Gregg

2015] by Brendan Gregg and based on the modal values (mvalues). If we have a

histogram h with k bins h1, h2, … , hk (the ith bin contains hi measurements), the modal

value hm is defined as follows:

Modal Value h
h h h h h h

h h hm
k k

k

, , ,

:
ax

=
- + - +¼+ -

¼()
-2 1 3 2 1

1 2M

Figure 4-6. Unimodal, bimodal, and performance distributions

Chapter 4 StatiStiCS for performanCe engineerS

199

In this formula, we summarize all elevations between neighboring bins and divide

by the number of measurements in the highest bin. The minimal possible modal value is

2, which corresponds to the unimodal distribution. A modal value of a perfect bimodal

distribution is 4.

The modal values and many other multimodality detection methods are very

sensitive to given histograms. In Figure 4-7 (A), you can see a bimodal distribution with

a histogram. If you look only at the histogram, you can easily say that the distribution

is bimodal because the centers of the second and the fourth bins match the local

maximums of the density plot. In Figure 4-7 (B), you can see the same distribution with

another histogram. The bin size for both histograms are the same, but the first bin offsets

are different. As a result, the second histogram looks unimodal: each bin contains the

same number of values from the sample because of another histogram offset.

Figure 4-7. Different histograms for bimodal distribution

It’s very important to build a good histogram. After a series of unsuccessful attempts,

I finally came up with an algorithm for histogram building, which has been used in

BenchmarkDotNet since v0.10.14.5 It follows the following scheme (the particular

implementation includes many additional corner case checks):

5 See https://github.com/dotnet/BenchmarkDotNet/blob/v0.11.3/src/BenchmarkDotNet/
Mathematics/Histograms/AdaptiveHistogramBuilder.cs

Chapter 4 StatiStiCS for performanCe engineerS

https://github.com/dotnet/BenchmarkDotNet/blob/v0.11.3/src/BenchmarkDotNet/Mathematics/Histograms/AdaptiveHistogramBuilder.cs
https://github.com/dotnet/BenchmarkDotNet/blob/v0.11.3/src/BenchmarkDotNet/Mathematics/Histograms/AdaptiveHistogramBuilder.cs

200

 1. Remove outliers based on the Tukey’s fences.

 2. Choose a value for the desired bin width w. It’s recommended to

use the Scott’s normal reference rule and divide it by 2:

Desired BinWidth modified Scott s rule w
s

n
 ’ :

.
.() =

3 5

2 3

 3. Start with a histogram that contains a single bin with all values.

 4. Find a bin that is bigger than w. If there are no such bins, the

histogram is ready; go to step 6.

 5. In the selected bin, find an interval of width w that contains the

maximum number of measurements. Calculate the arithmetical

average c of the left and the right point positions; it will be the

center of the new bin. If the c − w and c + w positions are inside

the original bin, add a new cutting point at the histogram.

Otherwise, move the new bin to the inside area of the original bin

and add a single cutting point, which is not equal to the borders of

the original bin. Next, go to step 4.

 6. Calculate the modal value and compare it with thresholds. If the

modal value is less than 2.8, the distribution is probably unimodal.

If the modal value is in the interval [2.8; 3.2], the distribution

may be unimodal or bimodal. The interval [3.2; 4.2] describes a

situation in which the distribution is most likely bimodal, but it

can have more modes. If the modal value is bigger than 4.2, the

distribution most likely has several modes. The threshold values

(2.8, 3.2, 4.2) are initial approximations that can be used for first

experiments. In case of modifications in the desired bin width

formula, the threshold values should be adjusted.

The idea behind the algorithm is pretty simple. The modal values don’t work

correctly when we have a mode on the border between two bins like in Figure 4-7 (B).

Thus, we are trying to find the “best” local maximum (step 4) and introduce a bin with

the center equaling to the mode. Now, this mode is “protected” from being “split” and

we are trying to find the next “best” local maximum.

Chapter 4 StatiStiCS for performanCe engineerS

201

It’s not a classic kind of histogram and it doesn’t have a special name. The approach

doesn’t have a formal proof, but it was tested on thousands of BenchmarkDotNet runs

with different performance distributions. It turned out that it works really well on the real

data, unlike some classic academic algorithms.

 PRACTICAL RECOMMENDATIONS

one of the first things that you should check for in a distribution is multimodality. if a

distribution is multimodal, many statistical metrics like the mean don’t work as designed,

and you can’t use these values for meaningful conclusions. meanwhile, you can still use the

percentile analysis without any modifications.

the modal values provide a powerful approach for detecting multimodal distributions. it helps

to identify “suspicious” distributions that probably can’t be compared with “usual” metrics like

the mean or the median.

 Variance and Standard Deviation
The measurements vary from iteration to iteration. We can evaluate how huge the value

spread is with the help of variance:

Biased Variance s
x x x x x x

n
n() =

-() + -() +¼+ -()
: 2 1

2

2

2 2

Here we just subtract the mean value x from each value xi, summarize squares of

x xi -() , and divide the sum by the sample size n.

In practice, the standard deviation is usually used instead. It’s just a square root

from variance:

Biased Standard Deviation s
x x x x x x

n
n() =

-() + -() +¼+ -()
 : 1

2

2

2 2

We denote the standard deviation as s, but you may also meet the σ symbol in many

texts. Common short forms of the standard deviation in the source code are StdDev and SD.

You may notice the “(Biased)” prefix in the preceding formulas. These formulas

would be correct if you collect all measurements. However, it’s not possible to collect all

of them because we can continue to take measurements without limitations. Thus, we

Chapter 4 StatiStiCS for performanCe engineerS

202

have to evaluate the variance and the standard deviation with the help of a small sample.

That’s why we have a small error (bias). The error can be fixed with the help of Bessel’s

correction, which just replaces n in the divider by n − 1:

Unbiased Variance s
x x x x x x

n
n() =

-() + -() +¼+ -()
-

: 2 1

2

2

2 2

1

Unbiased Standard Deviation s
x x x x x x

n
n() =

-() + -() +¼+ -()
-

 : 1

2

2

2 2

11

Bessel’s correction is the source of confusion and misunderstanding. Which divider

should we use: n or n − 1? In theory, n − 1 is better. From the practical point of view,

it usually doesn’t matter. When the number of observations n is low (less than five or

ten), the errors are huge, and the evaluated values are rough approximations of the real

variance and standard deviation. When the number of observations n is big enough

(more than ten or fifteen), the difference between 1/n and 1/(n − 1) becomes less than

the accuracy that you care about. Bessel’s correction exists for a reason, and it may be

pretty important in some statistics applications. However, usually you do not have to

worry about it during real performance investigations.

 PRACTICAL RECOMMENDATIONS

the standard deviation can be used as a measure of “instability.” it shows how big the

difference between measurements can be. a low value shows that most of the measurements

are close to the mean value, while a high value indicates that measurements can be far from

the mean.

When you are comparing two distributions, a huge standard deviation may notify you that you

can’t compare the mean values. for example, if arithmetical averagesr of two distributions are

50 seconds and 52 seconds, but the standard deviation is about 15 seconds for each of them,

you can’t make any conclusions about which method is faster. in the next subsection, we will

learn how to interpret the absolute value of the standard deviation.

phrases like “the variance is big” are “the standard deviation is big” mean the same, but the

first form is more popular because it’s shorter. meanwhile, the standard deviation is more often

used in practice because it is expressed in the same units as the measurements and it’s used

in many useful formulas (some of them will be covered in the next subsections).

Chapter 4 StatiStiCS for performanCe engineerS

203

the mean and the standard deviation values are important metrics, but they still don’t describe

the distribution shape. in [matejka 2017], you can find pictures of completely different

distributions with the same values of x and s.

the standard deviation can be spoiled by outliers. if you calculate the standard deviation

of a sample without outliers, you will get a more repeatable value, but you may lose some

important information about the spread. Usually, it’s a good practice to exclude outliers before

the calculation but still look at them.

 Normal Distribution
The normal distribution is one of the most famous and classic distributions that is

important to know. You can see its bell-shaped density plot in Figure 4-8.

Figure 4-8. Normal distribution

The normal distribution has some important properties:

• The distribution is symmetric and unimodal.

• The mean equals to the median.

Chapter 4 StatiStiCS for performanCe engineerS

204

• The interval x s x s- +[]1 1; contains ≈68% of values.

• The interval x s x s- +[]2 2; contains ≈95% of values.

• The interval x s x s- +[]3 3; contains ≈99.7% of values.

The last property is known as the three-sigma rules. It states that almost all values

(≈99.7%) in the normal distribution lie within three standard deviations of the mean.

 PRACTICAL RECOMMENDATIONS

the normal distribution is a good mental model for the intuitive understanding of different

metrics like the mean and the standard deviation in case of unimodal distributions. for

example, if we have two samples x and y that are described by normal distributions, we can

say that the samples are almost not overlapped if x y s sx y- < +3 3 (the ranges with 99.7%

of the distribution values are not overlapped). on the other hand, if x y s sx y- > + (the

ranges with 68% of the distribution values are overlapped), the intersection of distribution is

significant. the real performance distributions are not typically normal, but you still can use

these formulas to get initial ideas about the distribution relationship in the unimodal case. if

the distributions are multimodal, additional analysis of density plots is required.

 Skewness
The skewness is the measure of asymmetry. It can be calculated as follows:

Skewness
x x x x x x n

s

n
:

/
g =

-() + -() +¼+ -()()1

3

2

3 3

3

The skewness absolute value shows how asymmetric the distribution is. The

skewness sign shows the asymmetry kind and makes it possible to distinguish left-

skewed and right-skewed distributions. There are other formulas for skewness that can

be interpreted in the same way. One of the simplest formulas is the Pearson median
skewness:

Pearson Median Skewness
x Q

s
 median: g =

-()3 2

Chapter 4 StatiStiCS for performanCe engineerS

205

From this formula, it’s obvious that the skewness sign can be easily evaluated by

comparing the mean x and the median Q2:

• If the mean is less than the median, the distribution is skewed left

and Skewness < 0

• If the mean is equal to the median, the distribution is symmetrical

and Skewness = 0

• If the mean is more than the median, the distribution is skewed right

and Skewness > 0

You can see the corresponding density plots and box plots in Figure 4-9.

Figure 4-9. Distribution with different skewness values

The skewness of the normal distribution is zero because it’s symmetrical. Note that

Skewness = 0 doesn’t always mean that the distribution is perfectly symmetrical. Most of

the real performance distributions are right-skewed (the skewness is positive).

Chapter 4 StatiStiCS for performanCe engineerS

206

 PRACTICAL RECOMMENDATIONS

the skewness provides the idea about the distribution symmetry without a direct look at

the density plots. a combination of the negative skewness and huge standard deviation is

unusual for performance distributions and may notify us that additional analysis is required.

outliers can distort the skewness values, so they should be excluded before the calculations.

Skewness is unreliable on small sample sizes (n < 15) and multimodal distributions.

 Kurtosis
The kurtosis is the measure of “peakedness.” It can be calculated as follows:

Kurtosis
x x x x x x n

s

n
:

/
k =

-() + -() +¼+ -()()1

4

2

4 4

4

A high kurtosis value means that the distribution peak is sharp. A small kurtosis

value means that the distribution peak is flat. The kurtosis of the normal distribution is 3.

The normal distribution is often used as the base for comparing with other distributions,

but 3 is not a good reference value. Thus, it was decided to introduce the excess kurtosis:

Excess Kurtosis
x x x x x x n

s

n
 excess:

/
k =

-() + -() +¼+ -()()
-

1

4

2

4 4

4
3

The excess kurtosis of the normal distribution is 0, which is very convenient. The

difference between the kurtosis and the excess kurtosis is another popular topic for

confusion. In many articles, books, blog posts, and programs, the excess kurtosis is

denoted as just the kurtosis. Thus, if you see a phrase like “the kurtosis of the normal

distribution,” it’s not possible to say the corresponding value in advance: it can be zero or

three depending on the author’s preferences.

Chapter 4 StatiStiCS for performanCe engineerS

207

Figure 4-10 should provide better “feeling” of the distribution form for different

values of the excess kurtosis. The kurtosis describes the central peak of the distribution: a

high kurtosis value corresponds to a sharper peak, and a low kurtosis value corresponds

to a flat peak.

 PRACTICAL RECOMMENDATIONS

the kurtosis is another number that helps us to imagine a distribution without charts. When

you see the kurtosis value somewhere, check the local naming convention: it may be the

excess kurtosis. outliers can distort the kurtosis values, so they should be excluded before

the calculations. Kurtosis is unreliable on small sample sizes (n < 15) and multimodal

distributions.

Figure 4-10. Distribution with different excess kurtosis values

Chapter 4 StatiStiCS for performanCe engineerS

208

 Standard Error and Confidence Intervals
When we talk about the mean value, we calculate the mean value of the sample, but

not the “true” mean value of the distribution. In fact, there is not a fixed value for the

true mean because the whole measurement set is endless: we can produce as many

measurements as we want. However, we may assume that the true mean exists and it

corresponds to the mean value of an unimaginably large measurement set.

Let’s learn how to calculate the error between the sample and true mean values. We

will do it with the help of the standard error, which is the rate between the standard

deviation and the square root of the sample size:

Standard Error
s

n
 :

You can interpret the standard error as a measure of accuracy: a smaller standard

error means that you have a better estimation of the true mean. As you can see from

the formula, the standard error depends on the standard deviation and the sample size.

If the standard deviation is huge, it becomes hard to detect the true mean correctly

because measurements are too varied. A higher sample size would yield a lower

standard error. While the standard deviation shows the spread between different

values in the distribution, the standard error shows the spread between mean values

in different samples. Thus, it’s also a measure of repeatability: if we run the whole

experiment many times and get different distributions for the same benchmark, the

difference between obtained values correlates with the standard error.

Now we can calculate the margin of error, which is the standard error multiplied by

a critical value t∗:

Margin of Error t
s

n
 : *

The critical value t∗ is a “magic” constant that depends on the sample size and the

confidence level (expressed in percentages). In Table 4-1, you can see the critical values

for the most popular confidence intervals on different sample sizes.

Chapter 4 StatiStiCS for performanCe engineerS

209

Table 4-1. Critical Values for Confidence Intervals

n 80% 90% 95% 98% 99% 99.9%

2 3.078 6.314 12.706 31.821 63.657 636.619

3 1.886 2.920 4.303 6.965 9.925 31.599

4 1.638 2.353 3.182 4.541 5.841 12.924

5 1.533 2.132 2.776 3.747 4.604 8.610

6 1.476 2.015 2.571 3.365 4.032 6.869

7 1.440 1.943 2.447 3.143 3.707 5.959

8 1.415 1.895 2.365 2.998 3.499 5.408

9 1.397 1.860 2.306 2.896 3.355 5.041

10 1.383 1.833 2.262 2.821 3.250 4.781

11 1.372 1.812 2.228 2.764 3.169 4.587

12 1.363 1.796 2.201 2.718 3.106 4.437

13 1.356 1.782 2.179 2.681 3.055 4.318

14 1.350 1.771 2.160 2.650 3.012 4.221

15 1.345 1.761 2.145 2.624 2.977 4.140

16 1.341 1.753 2.131 2.602 2.947 4.073

17 1.337 1.746 2.120 2.583 2.921 4.015

18 1.333 1.740 2.110 2.567 2.898 3.965

19 1.330 1.734 2.101 2.552 2.878 3.922

20 1.328 1.729 2.093 2.539 2.861 3.883

100 1.290 1.660 1.984 2.365 2.626 3.392

1000 1.282 1.646 1.962 2.330 2.581 3.300

10000 1.282 1.645 1.960 2.327 2.576 3.292

Chapter 4 StatiStiCS for performanCe engineerS

210

The confidence interval of the mean is an interval around the mean with the

margin of error as the radius. This means that the difference between any point from the

interval and the mean is less than or equal to the margin of error:

Confidence Interval x t
s

n
x t

s

n
 ;: - +é

ëê
ù

ûú
* *

By definition, 99% of all confidence intervals with confidence level=99% include the

true mean. The confidence intervals are often incorrectly interpreted, which leads to

wrong conclusions. Here is the most common pitfall:

• Not true: “the true mean is most likely in the confidence interval, but

if it’s not in the interval, it should be close to it.” In fact, the true mean

can be far away from a confidence interval of a particular sample.

The 99% confidence level says that such situations are unusual, but

it doesn’t say anything about the distance between the confidence

interval and the true mean.

For performance distributions, the standard definition of the confidence interval

doesn’t work “as is.” If a distribution is very skewed and has extremely high outliers, it’s

pretty hard to define the true mean. In practice, you can easily get a situation in which

80% of 99.9% confidence intervals don’t have any common points. The situation can

become better if we significantly increase the sample size, but it may be impractical:

it significantly increases the whole experiment time without tangible benefits. It’s

much more efficient just to exclude the outliers from the sample and describe them

independently. In simple cases, a 99.9% confidence level usually provides a pretty good

accuracy that can be used for analysis.

The standard error helps you understand the influence of the sample size on the

accuracy. Many people think that if we increase the sample size twice, the accuracy will

also be increased twice, but this is a wrong assumption. Let’s say that we change the

sample size from 100 to 400. If the standard deviation is the same for both samples, the

standard error will be changed from s s/ /100 10= to s s/ /400 20= : Thus, increasing

the sample size four times reduces the standard error twice. While all 100 iteration

batches take the same amount of the experiment time, they contribute differently to the

accuracy. The 100 → 200 sample size change reduces the error by ≈41%, but the

5100 → 5200 sample size change reduces the error only by ≈1%.

Chapter 4 StatiStiCS for performanCe engineerS

211

 PRACTICAL RECOMMENDATIONS

the standard error is a measure of accuracy and repeatability for benchmark results. in the

case of performance distributions, the confidence intervals don’t work as designed, but it’s still

a good metric for the initial estimation between the sample and true mean values.

in practice, the 99.9% confidence level is recommended. for n > 30, you may use t ∗ ≈ 3.6

as an approximation for the critical value.if you want to take another confidence interval,

you can use choose a value from table 4-1 (you can easily google an extended version of it).

Usually, you shouldn’t worry about the accurate value for t ∗ because it’s enough to work with

a rough approximation of the confidence interval. if you want to calculate the exact value, it’s

recommended to reuse an existing implementation (e.g., BenchmarkDotnet has api for it that

is based on approximations from [aCm209] and [aCm395]).

the standard error also helps to choose the optimal sample size. When you change the sample size

from n1 to n2, the standard error will be reduced by n n2 1/ . When n is small, each additional

iteration noticeably improves the accuracy. at some point, it becomes meaningless to “pay” for the

accuracy by our waiting time, because the accuracy impact of additional iterations is too small.

 The Central Limit Theorem
The central limit theorem states that if we take many samples and calculate the mean

for each sample, these mean values will form an approximately normal distribution. This

theorem works only if the sample size in each case is big enough.

The most wonderful fact about the central limit theorem is that it works even on non-

normal distributions. Your original data set can have many outliers and a complicated

distribution shape, but the central limit theorem will work anyway.

People often make wrong conclusions based on the central limit theorem. Let’s

discuss a few common pitfalls:

• The central limit theorem doesn’t work correctly when the sample

sizes are small. For example, if you make a single measurement in

each sample, the distribution based on the mean values will have the

same shape with the original distribution.

• If we take a small number of samples (n < 100), we will not see a

normal distribution on the density plot for mean values.

Chapter 4 StatiStiCS for performanCe engineerS

212

• If we do many iterations, the original distribution will not become

normal, and we can’t interpret the mean, the variance, the skewness,

and the kurtosis as in the case of normal distribution.

• The range of the mean values across all samples is not always narrow;

we still can have a huge difference between the mean values in

different samples. The normal distribution based on the mean values

has its own standard deviation, which depends on the sample size

and can be expressed via the standard error.

You can find another beautiful explanation of the central limit theorem in

[Minitab 2013].

 PRACTICAL RECOMMENDATIONS

We know that a good benchmark should be repeatable, but it’s not always easy to achieve

repeatability if a distribution has a huge variance. the central limit theorem states that if we

use a proper sample size, the mean values from different samples are distributed normally.

Usually, we need at least 30 iterations in each sample. if we have huge outliers, the minimal

sample size requirement should be increased.

thus, you can evaluate the expected difference between the different experiments. imagine

that you want to compare performance between two methods, but the difference between the

mean values of these methods in a single experiment is less than the difference between the

mean values of the same method in different experiments. You can make the situation better

by increasing the sample size in each experiment.

 Summing Up
Descriptive statistics provides a rich set of metrics and approaches for distribution

exploration:

• Mean, standard deviation, skewness, and kurtosis

These values help you to get the first impression of the sample.

The mean is the simplest way to aggregate your data. In many

cases, it can be misleading, but usually, it’s a good point to start.

The variance (or the standard deviation, which is the square root

Chapter 4 StatiStiCS for performanCe engineerS

213

of variance) shows the data spread. The skewness and the kurtosis

are measures of the distribution asymmetry and peakedness.

These values can be easily spoiled by outliers (extremely high or

low values). One of the most popular ways to detect outliers is the

Tukey’s fences, but there are many alternative approaches (e.g.,

in [Gregg 2014b], the six-sigma test is described). The normal

distribution is a good mental model for these values.

• Quantiles

The quantiles divide the range (an interval between the minimum

and the maximum) into equal parts. The most popular kinds of

quantiles are the median (separate the data into two parts), the

quartiles (separate the data into four parts), and the percentiles

(separate the data into 100 parts). A distribution can be described

by the five-number summary: Min, Q1, Median, Q3, Max or p0,

p25, p50, p75, p100 (technically, the 0th and 100th percentiles do not

exist, but people often use them for consistency instead of the

minimum and the maximum values).

• Accuracy

The sample size is critical for good accuracy; you can’t make

reliable conclusions about the distribution based on a few

measurements. It’s recommended to choose the initial sample

size between 15 and 30, and make adjustments based on the

results received. The standard error can be used as a measure of

accuracy: it’s directly proportional to the standard deviation (it’s

hard to achieve good accuracy with a huge spread) and inversely

proportional to the sample size (the accuracy is better when we

have many measurements). The confidence interval of the mean

is a good estimation for the true mean. If it’s too wide, the sample

mean value can’t be trusted.

• Modes

In real life, many performance distributions are multimodal.

This means that the distribution has several local maximums.

In this case, typical metrics like the mean are not very useful.

Chapter 4 StatiStiCS for performanCe engineerS

214

It’s very important to detect such distributions and handle them

individually. One of the most powerful detection techniques is

using modal values.

• Visualization

Visualization is a powerful technique that helps you to understand

the shape of your data instantly. The timeline plot is the most

direct way to present the sample; it just shows the sample value

for each iteration. The rug plot is a “compressed” version of the

timeline plot: it’s a one-dimensional plot with all measurements.

The histogram is a bar chart that demonstrates the shape of data;

it consists of bins that show the relative number of measurements

in each small interval. The density plot is a “smooth version” of a

histogram that shows the distribution shape with less visual noise.

The frequency trail is a combination of a density plot and a rug

plot; it’s efficient when we want to highlight outliers on the density

plot. The waterfall plot is a combination of many overlapped

plots on the same image; it’s efficient when we want to explore

many density plots and frequency trails for the same benchmark.

The box plot shows the minimum, Q1, Q2, Q3, the maximum, the

lower and upper fences, and the outliers at the same time; it’s very

efficient when we want to compare many distributions of different

benchmarks at the same time. There are also many other different

kinds of plots that also can be very useful.

 PRACTICAL RECOMMENDATIONS

it’s pretty time-consuming to check all possible statistical characteristics each time for each

benchmark. thus, it makes sense to check out only the most important metrics (which are

chosen according to your gaols). first of all, it’s recommended to check the distribution for

multimodality and look at the outlier list. in the case of multimodal distributions, it makes

sense to look at the density plot. if the distribution is unimodal, we can remove outliers and

look at three values: the mean, the standard deviation, and the standard error. the mean

provides the initial estimation of the “average” performance, the standard deviation helps

to understand the “spread” of the values, and the standard error shows the “accuracy.”

Chapter 4 StatiStiCS for performanCe engineerS

215

if we want to compare many distributions at the same time, we can check out the box plot or

compare five-number summaries. the best way to explore the distribution is by looking at a

histogram or a density plot. in the case of many outliers, it’s better to look at a frequency trail

plot. if we care about the worst cases and we have too many outliers or a huge variance, it

makes sense to check out the percentiles (p95, p99, p99.9). to make any conclusions based on

the confidence interval, we need a proper sample size: it should be at least 30 (larger sample

size is required if the distribution is very skewed or there are many outliers).

the statistical inference (the process of understanding distribution properties based on the

descriptive statistics) is largely based on experience. after conducting a series of statistical

research, you will understand how to select the most important metrics for your current

investigation quickly. You can even build your own set of empirical rules that help you to

interpret these metrics correctly and come up with relevant conclusions.

Working with a single distribution is an important skill for our next topic: the analysis.

 Performance Analysis
We already know how to analyze a single distribution and calculate the basic statistical

characteristics like the mean, the standard deviation, and the quartiles. It’s time to learn

how to use it for analysis of several distributions and optimization of the benchmarking

process. In this section, we are going to discuss the following important topics:

• Distribution comparison

We will learn how to compare two distributions with the help of

different heuristics and statistical tests like Welch’s t-test and the

Mann–Whitney U test. We will cover many important concepts

like the null and alternative hypotheses, Type I and Type II errors,

and p-values.

• Regression models

We will learn how to understand the relationship between the

input data and the method performance. It requires knowledge

of statistical approaches like polynomial regression models and

curve fitting. We will also discuss how to analyze algorithmic

Chapter 4 StatiStiCS for performanCe engineerS

216

complexity and how to work with complex dependencies.

Performance depends not only on the input data but also on the

environment. We will learn basic ways to work with categorical

variables and to find the factors that affect performance.

• Optional stopping

Statistics is a powerful tool when you want to analyze existing

data. However, we can also use statistics during benchmarking.

For example, instead of fixing the number of iterations in advance,

we can stop the iteration process when the desired distribution

characteristics are achieved.

• Pilot experiments

Instead of guessing the perfect number of method invocations

inside each iteration, we can perform a series of pilot iterations

before actual measurements and find the best number of

invocations.

The performance analysis is an essential skill for benchmarking. Without it, the

benchmark results are just numbers that can’t be used for any conclusions. Moreover,

approaches like optional stopping and pilot experiments help to minimize the whole

experiment duration and get acceptable accuracy. Let’s start with the most common

problem: comparing two distributions.

 Distribution Comparison
Let’s say you have two methods and you want to know which method is faster. During

benchmarking, we can collect performance samples x and y for both methods. After that,

we have to compare two sets of numbers. The distribution comparison is one of the basic

tasks in the performance analysis, but it’s not an easy task. In Figure 4-11, you can see

density plots for three different methods. Can you tell which method is fastest?

Chapter 4 StatiStiCS for performanCe engineerS

217

Performance is often about trade-offs. Sometimes, one method can be faster than

another one, but we can get an opposite situation in another sample. Multimodality and

outliers are the most common problems that prevent us from comparing distributions.

However, even if we have unimodal distributions without outliers, the comparison task

can be difficult because of the huge variance and overlapped ranges. Let’s learn how

statistics can help us to solve these problems and automate distribution comparison.

When we compare two performance samples x and y, there are four possible

outcomes:

 1. x is faster than y .

In fact, it doesn’t mean the first method is always faster than the

second one. But it means that we probably should prefer the first

method if we want to have better performance.

 2. y is faster than x.

We have the same situation here: we can pretend that the

second method is actually faster than the first one, and use this

information for business decisions, but it doesn’t mean that it’s

always true.

Figure 4-11. Distributions that are difficult to compare

Chapter 4 StatiStiCS for performanCe engineerS

218

 3. There is no statistically significant difference between x and y

This conclusion doesn’t mean that both methods have equal

performance characteristics; it means that we just can’t say that

one method is definitely faster than another.

 4. The sample sizes are too small to make a reliable conclusion.

This doesn’t mean that it’s not possible to find the fastest method;

it means that we need more data to decide. Some statistical

methods just can’t be applied to small samples.

The fourth case is not really interesting, because it just requires larger samples. The

most interesting thing is how to distinguish the first two cases from the third one. Thus,

the main question that we want to answer is the following: “Do we have a statistically

significant difference between two distributions?” Based on this question, we can put

forward two hypotheses:

• Null hypothesis H0: there is no statistically significant difference

• Alternative hypothesis H1: there is a statistically significant

difference

For software developers, it’s often hard to remember how to choose each hypothesis.

Personally, I like to use other kinds of titles based on the searching results:

• Negative hypothesis: no, we didn’t find a difference

• Positive hypothesis: hooray, we found a difference

Unfortunately, nobody uses them; almost all articles and blog posts contain the

terms “null” and “alternative,” so you should remember them. Here are a few mnemonics

which can help you:

• Letter rule:

Null hypothesis: there is Nothing interesting

Alternative hypothesis: there Actually is something interesting

• Do we have a statistically significant difference?

Null hypothesis: No, we don’t

Alternative hypothesis: YeAh, we do

Chapter 4 StatiStiCS for performanCe engineerS

219

Any conclusions that we make describe the collected data, but not our theory.

It’s impossible to prove that H0 or H1 for distributions is correct based on samples of

measurements. However, we should make a business decision based on the collected

samples (e.g., which algorithm should be used to get the best possible performance).

Thus, we can act like H0 or H1 is true, but we should understand that some of our

conclusions may be wrong.

The tests that we are going to cover allows rejecting the null hypothesis. Depending

on the result (H0 is rejected or H0 is not rejected), there are two kinds of errors:

• Type I error: H0 is true, but is rejected

• Type II error: H0 is false, but is not rejected

Personally, I don’t like the “Type I/Type II” notation; I prefer to use the terms “false

positive” and “false negative”:

• Type I error = False positive

Our conclusion that we have a positive result is false

We made an error when decided that the positive hypothesis is

correct

There is no difference, but we think that there is a difference

• Type II error = False negative

Our conclusion that we have a negative result is false

We made an error when decided that the negative hypothesis is

correct

There is a difference, but we think that there is no difference

Unfortunately, the “Type I/Type II” notation is used widely, so it’s nice to remember

which is which. Here are a few other mnemonics:

• The number of vertical lines6:

Type I is a false Positive; P has one vertical line

Type II is a false Negative; N has two vertical lines

6 https://stats.stackexchange.com/a/1620

Chapter 4 StatiStiCS for performanCe engineerS

https://stats.stackexchange.com/a/1620

220

• The village boy and the wolf 7:

The first error the villagers made (when they believed the boy) was

a Type I error

The second error the villagers made (when they didn’t believe the

boy) was a Type II error

• The importance rule:

Type I: higher importance (we can make a wrong decision)

Type II: lower importance (we can miss an opportunity to make a

right decision)

You can see the classic form of all possible experimental outcomes in Table 4-2.

This representation may confuse some developers. Let’s try to simplify this table. In

statistics, we always work with H0 because that’s how mathematics works: we can only

reject or not reject H0, but we can’t make conclusions about H1. Thus, “H0 is not rejected”

is a common conclusion in statistics. It’s strict, but it doesn’t sound understandable for

everyone. When we need to interpret the result, we mentally translate it into “we think

that H0 is true,” which is a negative result; we don’t have anything interesting. By analogy,

we can translate “H0 is rejected” to “we think that H0 is false” or “we think that H1 is true,”

which is a positive result; we found a difference between x and y. With this notation,

Table 4-2 can be translated to Table 4-3.

7 https://stats.stackexchange.com/a/17399

Table 4-2. Error Types

H0 is true H0 is false

H0 is not rejected no errors type ii error

H0 is rejected type i error no errors

Chapter 4 StatiStiCS for performanCe engineerS

https://stats.stackexchange.com/a/17399

221

It’s not as strict as Table 4-2, but it looks more understandable and consistent. Now

we are familiar with the basic “hypothesis and error” notation, it’s time to make some

conclusions!

In most simple cases (especially when one method is several times faster than

another), the difference between the two distributions is obvious. However, if we want

to automate distribution comparison, we need some formulas. Here are a few possible

heuristic tests that we can apply to check that x is faster than y:

• Range test: xmax < ymin

In many simple cases, the distribution tests are not overlapped

at all. In such situations, we can just compare the maximum of

the first distribution and the minimum of the second one. If the

samples are large enough (it doesn’t work well for n ≤ 5), it’s most

likely that the first method is faster then the second one.

• Tukey test: Q3(x) + 1.5 · IQRx < Q1(y) − 1.5 · IQRy

The range test can be easily spoiled by outliers. If x contains a

single extremely high value that is inside the y range, the ranges

are overlapped. This problem can be resolved if we exclude the

outliers. No need here to actually find all outliers; we can just

compare the upper Tukey fence for the first distribution and the

lower Tukey fence for the second one.

• Three-sigma test: x s y sx y+ < -3 3

We know that 99.7% of values in the normal distribution are

inside the ±3s interval around the mean. Thus, we can compare

the upper interval bound for the first distribution and the lower

Table 4-3. Error Types (Alternative Version)

Negative hypothesis is true Positive hypothesis is true

We think that

h-Negative is true True negative False negative

We think that

h-Positive is true False positive True positive

Chapter 4 StatiStiCS for performanCe engineerS

222

bound for the second one. This test works great for distributions

that are close to normal, but it doesn’t work well for more complex

distributions (e.g., multimodal).

These simple tests have a very small Type I (false positive) error rate: when we think

that there is a statistically significant difference (H0 is false, H1 is true), we are most likely

right. However, the Type II (false negative) error rate is huge: when the distribution

ranges are overlapped, we most likely will fail to detect which method is faster even if

there is a statistically significant difference. It’s a typical situation when we work with

small performance improvements (e.g., 1%–10%). Thus, we need an advanced statistical

tool for such cases.

There are many different statistical tests that can help us in different kinds of

situations. In benchmarking, there are two tests that provide the most reliable results:

• Welch’s t-test

This test helps us to compare mean values of x and y. In theory,

this test can be applied to only normal distributions. In practice,

it often gives reliable results for unimodal distributions when the

sample sizes are large enough. Usually, you need at least 30–40

measurements in each sample to get reliable results.

• Mann–Whitney U test

This test helps to check that a random measurement from one

sample is larger than a random measurement from another

sample. This test doesn’t require normality, so it can be applied

to all kinds of performance distributions. You can even use it with

multimodal distributions of different shapes. It doesn’t work at all

for extremely small samples; you need at least five measurements

in each sample.

Such tests don’t give us a binary result; they provide a value between 0 and 1 called

the p-value. You can interpret a statistical test like a function of two samples:

double StatisticalTest(double[] x, double[] y)

{

 // Some calculations

 return pValue;

}

Chapter 4 StatiStiCS for performanCe engineerS

223

For such tests, it’s recommended to use a threshold for comparison: instead of

checking that “the first method is faster than the second method,” we will check that

“the performance difference between the two methods is larger than a given value.” The

threshold can be relative (e.g., 1% of the baseline) or absolute (e.g., 15ms). The threshold

approach allows reducing the Type I (false positive) error rate because it’s more robust

against the natural noise. Thus, we have to modify the signature of our method:

double StatisticalTest(double[] x, double[] y, double threshold = 0.0)

{

 // Some calculations

 return pValue;

}

These tests have different variations. When we check that the difference x − y is not

zero (or other fixed value), we are talking about a two-sided test. When we check that

the difference x − y is larger than a threshold, we are talking about a one-sided test.

When we check that the absolute difference ∣x − y∣ is larger than a threshold, we are

talking about an equivalence test. If we already know how to perform a one-sided test,

an equivalence test can be implemented based on the two-one-sided tests (TOST)

approach: we can perform two one-sided tests and check that x − y is larger than a

threshold or y − x is larger than a threshold.

The returned magic p-value number is a classic source of confusion and

misunderstanding. The general rule that is used in a lot of research looks as follows:

“If the p-value is less than 0.05, we can reject H0.” Here are a few facts to help you

understand p-values better:

• p-value<0.05 doesn’t mean that H1 is true.

It means that we observe “unusual” results. Even if we don’t have

a statistically significant difference, we still can observe small

p-values; it’s a normal situation.

• p-value>0.05 doesn’t mean that H1is true.

It means that we can’t reject H0 based on the given samples. If you

have p-value=0.20, you can’t make any conclusions about H0 and

H1; you need more experiments for that.

Chapter 4 StatiStiCS for performanCe engineerS

224

• 0.05 is not a mandatory value.

It’s just the historical p-value threshold, but you don’t have to use

this particular number. It’s not recommended to increase it, but

you may consider using smaller numbers. Typically, you can use

0.01 or even 0.001 in benchmarking.

• p-values work correctly only in a series of experiments.

It’s not enough to have a single experiment with p-value < 0.05 to

reject H0. You have to collect other samples, repeat the statistical

test, and get many small p-values in a row to be sure the H0 is false.

It’s also important to understand the distribution of p-values. Imagine two normal

distributions x and y where the true difference between means is d = 7 and the standard

deviation for both distributions is s = 10. Let’s consider different threshold values from

0 to 14 and repeat the following experiment 1000 times for each value: we will take

samples from each distribution (n = 20) and check that the difference x − y is larger

than a threshold t with the help of one-sided Welch’s t-test. Thus, the null hypothesis H0

is d ≤ t, and the alternative hypothesis H1 is d > t. You can see histograms that present

distributions of p-values for different thresholds in Figure 4-12.

Chapter 4 StatiStiCS for performanCe engineerS

225

Let’s discuss some plots from this figure in detail:

• t = 0, H0 is false because d > 1, the distribution is right skewed.

When the threshold is significantly less than the true difference

between means, most p-values are close to zero. However, there

are still many p-values that are not small. Even when the threshold

is zero, about 30% of the p-values are actually higher than 0.05.

Thus, we can reject H0 and say that the true difference between

means is larger than zero only if we do several experiments.

• t = 7, H0 is true because d = t, the distribution is uniform.

When the threshold equals the true difference between means,

the p-values are distributed uniformly. Thus, we can observe 0.05

and 0.95 p-values with the same probability.

Figure 4-12. p-value distributions for different thresholds

Chapter 4 StatiStiCS for performanCe engineerS

226

• t = 14, H0 is true because d < t, the distribution is left skewed.

When the threshold is significantly larger than the true difference

between means, most p-values are close to 1. About 70% of the

p-values are higher than 0.95.

It’s pretty hard to verify the statistical hypotheses in this case because the standard

deviation is huge (it’s larger than the true difference between means) and the sample

sizes are too small. In simple cases, you will most likely observe values that are pretty

close 0.000 or 1.000, which allows easily choosing the correct hypothesis.

The magic 0.05 p-value threshold is known as α (the alpha-level or the significance

level). Now we know how to interpret it another way. Since the p-values are distributed

uniformly when the true difference equals the threshold (H0 is true), the probability of

getting p-value <α is α. Such a situation is a Type I (false positive) error: H1 is false, but

we think that it’s true. Thus, α is the probability of getting a Type I error in this case. By

decreasing α, you can reduce the Type I error rate.

When you work with p-value-based statistical tests, there are two primary

recommendations:

• Always run the statistical test several times on different samples. You

can make a reliable conclusion only based on getting the same results

several times in a row.

• If you have too many p-values between 0.01 and 0.99, the sample size

is probably not enough to make a statistically significant conclusion.

Try to increase it.

• When you are sure that there is a tangible difference between x and y

and want to prove it, you can use very small α like 0.001: it should be

enough to detect a statistically significant difference with low Type

I (false positive) error rate. When the difference between x and y is

small (e.g., less than 1%) and the standard deviation is huge, it can

be hard to prove that the difference is significant with a low α-level.

However, if you did it, there is only a small chance that you did it

wrong because α is responsible for the Type I (false positive) error

rate. For example, in the Higgs boson experiment, α = 3 · 10−7 was

used, which means that the probability of getting incorrectly positive

results is really small.

Chapter 4 StatiStiCS for performanCe engineerS

227

Now we know how to handle the fundamental task in the performance analysis:

comparing two distributions. It’s time to learn how to analyze several distributions.

 Regression Models
Another important question in performance analysis is how the method performance

depends on input parameters and environment. In statistics, there is an approach called

regression analysis, which helps to answer this question.

In software development, the term “regression” has a negative meaning: it describes

a situation when a feature worked fine before, but now it doesn’t work (or it works

incorrectly). “Performance regression” means that something worked fast before, but

now it works slowly. In statistics, the term “regression” has another meaning. Originally,

it was introduced by Francis Galton. One of his most famous researches describes a

phenomenon when tall parents, on average, have children with a smaller height. The

name of this effect is “regression toward the mean” (this concept is also well-covered

in [Kahneman 2013]), which has a biological meaning. Later, the term “regression”

was adopted by statisticians; it’s used for describing a relationship between different

variables (for example, the input data and the method performance).

In performance analysis, the regression models help to explore the performance

space. With a regression model built on several samples, we can understand how

the input data affects the performance and extrapolate this result for prediction of

performance in real-life situations. One of the most popular usages of regression models

in computer science is the asymptotic analysis. Consider the following three methods:

public int GetLength(int[] a)

{

 return a.Length;

}

public int ArraySum(int[] a)

{

 int n = a.Length;

 int sum = 0;

 for (int i = 0; i < n; i++)

 sum += a[i];

 return sum;

}

Chapter 4 StatiStiCS for performanCe engineerS

228

public void BubbleSort(int[] a)

{

 int n = a.Length;

 for (int i = 0; i < n; i++)

 for (int j = 0; j < n - i; j++)

 if (a[j] > a[j + 1])

 {

 var temp = a[j];

 a[j] = a[j + 1];

 a[j + 1] = temp;

 }

}

The first one returns the length of an array, the second calculates the sum of

elements in an array, and the third sorts numbers in an array with the help of the bubble

sort. In the asymptotic analysis, we can describe the performance of this method by the

big O notation. We can say that the algorithmic complexities of these methods are as

follows:

• GetLength: O(1) (constant time complexity)

• ArraySum: O(n) (linear time complexity)

• BubbleSort: O(n2) (quadratic time complexity)

Such dependencies can be visualized with the help of scatter plots. In the two-

dimensional case, this plot has the performance metric on one axis and the target input

variable on the other axis. In Figure 4-13, we can see the values of O(1), O(n), and O(n2)

for different values of n.

Chapter 4 StatiStiCS for performanCe engineerS

229

The algorithmic complexity is often incorrectly interpreted, so let’s discuss a few

common pitfalls:

• The algorithmic complexity is not the method duration

It just specifies the upper bound for the algorithm duration,

which works even for huge n values. For example, O(n2) means

that there is constant C such that the method duration is less

than C · n2 for any n. In practice, it’s useful to know how fast the

duration will increase when n is increased. The constant C can

have a pretty high value. For example, we can set =100 , which

means that ArraySum will take less than 100n seconds. It may

sound obvious that it takes less than 100 seconds for n = 1, but

the most important fact here is that this condition will be valid

for huge n values. The BubbleSort complexity is (n2) , which

means that 100n can’t be used for the upper bound duration.

Of course, BubbleSort takes less than 100 seconds for n = 1 and

Figure 4-13. Algorithmic complexity scatter plots

Chapter 4 StatiStiCS for performanCe engineerS

230

less than 200 seconds for n = 2, but there are huge n values such

that BubbleSort will take more than 100n seconds.

• If an algorithm has O(n) algorithmic complexities, it doesn’t
mean that it always works faster on small n than on bigger n

The complexity helps to understand how the algorithm works on

huge values of n, but it doesn’t state anything about performance

for small n values. Thus, if an algorithm is optimized for cases

when n = 2k, it may work slower for n = 255 than for n = 256.

• If two algorithms have O(n) and O(n2) algorithmic complexities, it
doesn’t mean that the first algorithm is always faster

It means that the second algorithm will be slower on huge values

of n, but we can’t say anything for sure about small values. For

example, if the first algorithm takes 50 · n milliseconds and the

second takes 1 · n2 milliseconds, the first one will work slower for

n < 50.

In real life, the relationship between the method duration and the input data may

be complicated. Let’s say that we have the following expression for an array: array.

OrderBy(x => x).Take(1). What is the algorithmic complexity of this method? In .NET

Core 2.1, the internal implementation uses the quickselect algorithm. It has the O(n)

best-case and average-case complexity. But the worst-case complexity is O(n2). This

means that if the number in the array follows a special pattern (like 2 4 6 8 10 5 3 7

1 9), the performance will be much worse than on the average case. In Table 4-4, you

can see corresponding measurements for two cases: Equal (all numbers are zeros) and

QsWorst (the worst case for the quickselect algorithm).

Table 4-4. Quickselect Performance

n Case Mean StdDev

1000 equal 42.16 μs 0.1068 μs

1000 QsWorst 8,853.04 μs 84.8771 μs

10000 equal 415.93 μs 0.9477 μs

10000 QsWorst 876,433.01 μs 4,960.2892 μs

Chapter 4 StatiStiCS for performanCe engineerS

231

As you can see, when we increase n 10 times (1000 → 10000), the duration of Equal

increases 10 times, but the duration of QsWorst increases 100 times, which can be

explained by O(n) and O(n2) complexity. The behavior was improved8 and now it always

has O(n) complexity because it just calculates the minimum element (the fix is available

in .NET Core 3.0). Thus, the actual performance depends not only on the number of

elements in an array, but also on the array content and the runtime version.

However, in simple cases, it’s often possible to build a regression model and explain

how performance depends on the input data. A regression model provides more useful

information about method performance than the algorithmic complexity does: instead

of the determining the upper bound, it allows building a function that returns an

estimation for method performance based on its parameters.

The simplest regression model is the linear regression model. It’s useful when

you are sure that you have a linear dependency between the parameters and the

performance. Such a model is expressed by the following equation:

Linear regression n Duration: = +a a0 1

where α0 and α1 are some constants.

It can be a good prediction model when the dependency is really linear. However,

sometimes it can be quadratic.9 In this case, we can use the quadratic regression
model:

Quadratic regression n n Duration: = + +a a a0 1 2
2

A cool fact about the linear regression model: it’s a special case of the quadratic

regression. This means that if we are not sure if the algorithm is linear or quadratic, we

can build a quadratic model and check α2. If this value is close to zero, the algorithm is

most likely linear. If this value is far from zero, the algorithm is not linear, but we don’t

know its degree. Fortunately, we can build the polynomial regression model:

Polynomial regression n n n n Duration: = + + + + +¼a a a a a0 1 2
2

3
3

4
4

8 https://github.com/dotnet/corefx/pull/32389
9 There is an interesting blog called “Accidentally Quadratic” with stories about situations
when an algorithm has the quadratic complexity, but it wasn’t obvious: https://
accidentallyquadratic.tumblr.com/

Chapter 4 StatiStiCS for performanCe engineerS

https://github.com/dotnet/corefx/pull/32389
https://accidentallyquadratic.tumblr.com/
https://accidentallyquadratic.tumblr.com/

232

If the coefficients α3, α4, … are close to zero, the model is most likely quadratic. Such

equations can be built with the help of the method of least squares.10 The regression

is not always polynomial; it can be expressed by any kind of function. The problem of

finding this function is known as curve fitting.11 You may come up with an idea of this

curve from a scatter plot, make a hypothesis about the regression kind (e.g., O(n log n) or

O n()), and build the corresponding model.

A common problem that often arises in regression analysis is overfitting. It relates

to the situation when the built curve perfectly fits the data we have, but doesn’t show

the true dependency between the method performance and its parameters. The risk

of overfitting is high when the sample size is small. For example, it’s always possible to

build a perfect linear model when you have only two points (you should just connect

them by a line). If you have three points, it’s always possible to build a perfect quadratic

model even if the true model is logarithmic or cubic. In fact, any k points allow building

a perfect polynomial model of degree k − 1. Thus, if we have 1000 points, we can build a

polynomial model of degree 999, but it’s unlikely a correct model. To avoid overfitting,

you always have to check how the model works on data that is not used for the

construction of the regression model. This approach is known as cross-validation.

Another important kind of performance analysis tries to answer how the

performance depends on the environment. Here we usually work with categorical
variables. You can interpret it as a value from an enum (a predefined set of non-numeric

values). For example, you can consider a JIT kind (LegacyJIT or RyuJIT), a runtime (.NET

Framework, .NET Core, or Mono), or an operating system (Windows, Linux, or macOS).

In the simplest case, you already know the environment factor that you want to check.

For example, in JetBrains Rider, a typical factor that is important for performance is the

operating system. In Figure 4-14, you can see performance measurements for a test that

expands an ASP.NET template and performs some operations on it.

10 You can find an implementation of this method and other similar algorithms in the MathNet.
Numerics NuGet package: see https://numerics.mathdotnet.com/

11 You can find the most truthful explanation of how curve fitting works in real life here: https://
xkcd.com/2048/

Chapter 4 StatiStiCS for performanCe engineerS

https://numerics.mathdotnet.com/
https://xkcd.com/2048/
https://xkcd.com/2048/

233

Different operating systems are denoted by different shapes and colors. As you can

see, we obviously have clustering here: the test works much faster on Linux than on

Windows or macOS. A good visualization may provide some initial hypothesis about

factors affecting performance. Next, you can perform a statistical test against samples

from a different OS. For example, we can apply one-sided Mann–Whitney U test,

which checks that the difference between the macOS sample and the Linux sample is

statistically significant with a 60-second threshold.

However, we don’t always know which environment factors really affect

performance. Imagine that we have hundreds of characteristics for each measurement,

but we don’t know which of them are important. In this case, we can do the following:

 1. Find the cluster in one performance measurements. Since we

have one-dimensional data, we don’t need “advanced” cluster

detection algorithms. It’s recommended to use a simple method

like Jenks natural breaks optimization. After that, you should get

several samples with statistically significant differences between

them.

Figure 4-14. Performance clustering by OS

Chapter 4 StatiStiCS for performanCe engineerS

234

 2. Enumerate all the values for each environmental characteristic.

If different values of the same characteristic are presented in the

same sample, we can exclude the corresponding characteristic

from the analysis: it’s not responsible for clustering. Don’t forget

about possible outliers: we need many occurrences of the values

in a sample to say that the value is presented in it. If a specific

value is presented in all samples, such characteristics can also be

excluded.

 3. After that, we should get a small list of “suspicious” characteristics.

Next, we can “forget” about initial clustering and perform

statistical tests for values of the remaining characteristics against

each other.

 4. Now we have a list of “suspicious” factors that are probably

responsible for performance. We should verify each factor by

performing additional measurements in the target environment

and repeating the statistical test.

Such a method has a pretty high Type II (false negative) error rate and may miss

some cluster effects. However, it also has very small Type I (false positive) error rate, so

we will not be disturbed by a false alarm. Meanwhile, if we have an obvious clustering,

we will probably find it. You can come up with your own checks based on your business

goals and the environment part of the performance space. You can even use some

machine learning–based approaches, but simple checks and heuristics may be much

more effective in real life. In huge software products, you typically don’t need all existing

clustering effects: you need only the most major effects, which are superobvious when

you are looking at a scatter plot. Such effects can be easily detected with very simple

checks that can be quickly implemented without complicated mathematics.

The use of regression models is a very powerful technique that helps you to

understand your performance space better. It allows you to determine dependencies

between the input data, the environment, and the performance. When you know how to

use them, you can make a prediction about the duration of your methods under different

conditions.

Chapter 4 StatiStiCS for performanCe engineerS

235

 Optional Stopping
A typical benchmark includes many magic numbers, including the hardcoded number

of iterations. The process of benchmarking has a unique “feature”: we can do as many

measurements as we want. On one hand, this is good because if we don’t have enough

performance data, we always can do additional iterations. On the other hand, it’s bad

because we can’t collect all measurements. Here the problems begin. Since we have

an endless set of measurements, how many iterations should we do? Is it enough to

take ten measurements? Or do we need ten thousand of them? Usually developers set

the number of iterations based on the amount of time that they are ready to wait. If

an iteration takes 10 milliseconds, we can do hundreds of them. If an iteration takes 5

minutes, it can be the only iteration. Most developers don’t want to wait too long, and

the endless set transforms into a pretty small collection of numbers.

Usually, developers pick them at random: “Let’s make 100 iterations; I guess that

should be enough.” This isn’t the best strategy because most likely a random number

is less than necessary (accuracy is poor) or more than necessary (we are waiting for

results too long). There is a solution to this problem: we can choose the magic numbers

adaptively during the run. In statistics, this approach is known as the sequential
analysis.

Let’s consider a part of a hypothetical performance investigation log:

• We are going to run the benchmark 5 times.

• It seems that 5 is not enough because the variance is too huge. Let’s

try to run the benchmark 100 times.

• Now the variance is OK, but it takes too long run the benchmark 100

times. Let’s try 20 iterations.

• Now the variance is still OK, and all runs takes an acceptable amount

of time.

This investigation has one major problem: the goals are poorly chosen. Here are the

described goals:

• We want to run the benchmark 5 times.

• We want to run the benchmark 100 times.

• We want to run the benchmark 20 times.

Chapter 4 StatiStiCS for performanCe engineerS

236

However, it would be better to set the following goal:

• We want to get a low standard error (less than 2.5 seconds); the

number of iterations should be as minimal as possible.

Thus, you will use magic numbers anyway. However, it’s very important which

numbers to choose. Instead of asking “How many iterations should I choose?”, you

should ask yourself “What kind of distribution characteristics I want?” The benchmark

design should include the desired metric values of the future distributions. Once these

conditions are achieved, we can stop the iteration process.

The optional stopping requires collecting cumulative metrics. These are

intermediate statistical characteristics that are recalculated after each iteration.

In Figure 4-15, you can see an example of a timeline plot that includes cumulative

means and confidence intervals. Such plots can help you understand the relationship

between the sample size and the final metrics. As you can see, if we stop the iteration

process after a few iterations, the confidence interval will be huge; it can’t be used

for reliable conclusions. After the first 10 iterations, the confidence interval becomes

smaller, but it’s still pretty big (it equals to [36.53; 47.97] while the cumulative mean

is 42.25). After 30 iterations, the confidence interval equals [35.98; 42.19] while the

cumulative mean is 39.08.

Figure 4-15. Timeline plot with cumulative means and confidence intervals

Chapter 4 StatiStiCS for performanCe engineerS

237

Once you have the cumulative metrics, you can formulate the stopping criteria

based on that. Here are a few options:

• Stopping criteria for warm-up iterations may be based on

fluctuations. We know that the first iteration can be heavy. Usually,

the second iteration takes less time than the first one because it’s

performed in a warmed-up state. However, one iteration may be not

enough for full warm-up. The third iteration may be faster than the

second one because it’s performed in a more warmed state. While

each iteration takes less time than the previous one, the warm-up is

in progress. Once fluctuations are started, we can assume that the

warm-up is finished (it’s not true in the general case). Thus, we can

wait for fluctuations before we terminate the warm-up process.

• Stopping criteria for actual iterations (which we use in the final

results) may be based on the standard error. For example, we can

specify an absolute or relative threshold for the standard error and

wait until we reach it. Since the standard error is s n/ , it decreases

when we increase the sample size.12 Thus, it’s almost always possible

to find the sample size with a standard error less than a given value.

• Stopping criteria for any kind of iteration may be a logical formula

that includes several conditions. For example, it’s recommended

to set the upper limit for the number of iterations. If you didn’t

achieve your requirements after 100 iterations, it’s most likely that

a few dozen additional iterations will not help: it’s better to stop the

experiment and look at the distribution and statistical metrics. After

that, you can understand that it’s impossible to reach the desired

distribution characteristics in a reasonable amount of time or that

you need special stopping criteria for this particular benchmark.

You can use the preceding criteria or create your own based on the business goals.

However, the metric that you use in the stopping criteria has an important requirement:

the cumulative metrics should form a convergent series. For example, you shouldn’t use

12 We assume that the standard deviation is not changing significantly with additional iterations.
The only exception from this rule supposes that new iterations take more time than the
previous. In this case, the benchmark doesn’t have a steady state, and it doesn’t make sense to
discuss its distribution.

Chapter 4 StatiStiCS for performanCe engineerS

238

the desired results of statistical tests: if you use stopping criteria based on p-values, it

may significantly increase the Type I (false positive) error rate.

In Figure 4-16 (A), you can see cumulative p-value plot (based on the Welch’s t-test)

for 20 experiments when H0 is true (we don’t have a statistically significant difference).

The picture resembles random noise because such p-values are uniformly distributed.

In Figure 4-16 (B), you can see the same experiments, but the plot is scaled to the [0.00,

0.10] p-values range. Sometimes, a cumulative p-value function “dives” under the 0.5

threshold and “emerges” from under it. If the sample size is fixed from the beginning,

we will get uniformly distributed p-values as a result. However, if we stop the iteration

process once p-value <0.05 is observed, we will get too many small p-values, which leads

to the false H0 rejecting. In Figure 4-16 (C), a histogram of such p-values is presented. As

you can see, the [0.00, 0.05] interval contains left-skewed distribution, which is untypical

for p-values obtained from correct experiments. Knowledge of the expected p-value

distribution helps to verify your own results and check someone else’s research. You can

find an example of such verification in [Lakens 2014a].

In Figure 4-16 (D,E,F), you can see the same experiment, but H0 is false (we have

a statistically significant difference). In this case, once a cumulative p-value function

“dives” under the 0.5 threshold, it remains under it. This experiment has a pretty small

difference between means, so sometimes we need many measurements to get a reliable

result, but we eventually achieve p-value <0.05, which helps to reject H0 correctly.

Chapter 4 StatiStiCS for performanCe engineerS

239

Figure 4-16. Cumulative p-values

Chapter 4 StatiStiCS for performanCe engineerS

240

Optional stopping is a powerful technique that helps to minimize the experiment

time and get reliable results. However, it can also increase the Type I (false positive) error

rate if you use it incorrectly.

 Pilot Experiments
In Chapter 2, we discussed that it’s very hard to measure the performance of very fast

methods. A typical solution for such cases is making many method invocations inside

each iteration. But how should we choose the number of invocations? The rule of thumb

says that an iteration should take at least 100 milliseconds for acceptable results (or

1 second if you want better repeatability). If a method takes a few microseconds, we

need millions of invocations; if a method takes several minutes, one invocation may be

enough. When we don’t have any initial estimates for the duration of a single invocation,

we can try to guess it. Probably, it will take several attempts before you find a proper

number of invocations. Such guessing is a boring and routine job that can be automated.

The tuning of benchmark parameters before actual measurements is known as the pilot

experiment.

There are many strategies to find the perfect number of invocations. For example,

we can start with a single invocation and try to measure its duration. If this invocation

takes less than the specified minimum iteration time, we can try two invocations.

If the duration of the two invocations is still too small, we can try four invocations,

eight invocations, and so on until we get the desired duration. We can’t just divide the

minimum iteration time by the duration of a single invocation to get the number of

invocations: the error for very fast methods can be huge, which spoils that calculation

(we can easily get a 1000-nanosecond estimate for a 10-nanosecond operation).

Here is a simplified log of a typical microbenchmark in BenchmarkDotNet:

Jitting 1: 1 op, 248000 ns, 248.00 µs/op

Jitting 2: 16 op, 521000 ns, 32.56 µs/op

Pilot 1: 16 op, 7000 ns, 437.50 ns/op

Pilot 2: 32 op, 10000 ns, 312.50 ns/op

Pilot 3: 64 op, 16000 ns, 250.00 ns/op

Pilot 4: 128 op, 31000 ns, 242.18 ns/op

Pilot 5: 256 op, 63000 ns, 246.09 ns/op

Pilot 6: 512 op, 128000 ns, 250.00 ns/op

Pilot 7: 1024 op, 305000 ns, 297.85 ns/op

Chapter 4 StatiStiCS for performanCe engineerS

241

Pilot 8: 2048 op, 500000 ns, 244.14 ns/op

Pilot 9: 4096 op, 998000 ns, 243.65 ns/op

Pilot 10: 8192 op, 2189000 ns, 267.21 ns/op

...

Pilot 18: 2097152 op, 523762000 ns, 249.74 ns/op

Let’s discuss it in detail.

• Jitting 1: this is the first iteration of the jitting phase. During this

iteration, the JIT compiler generates the native code for the method.

BenchmarkDotNet runs a single invocation of the given method and

measures its duration. In this example, 1 op means “1 operation,”

which equals to one invocation by default. As you can see, a single

iteration takes 248,000 nanoseconds.

• Jitting 2: this is the second iteration of the jitting phase. We already

know that the given method is pretty fast, so we are switching to

another benchmark mode where we have 16 consecutive method

invocations inside a loop body. This manual loop unrolling helps us

to achieve better accuracy in nanobenchmarks. During this iteration,

the JIT compiler generates the native code for the described loop. The

16 invocations of a method take 521000 nanoseconds, which means

that a single invocation takes approximately 32.56 μs (microseconds).

• Pilot 1: Now it’s time for the pilot stage. First of all, we try to repeat an

iteration with 16 invocations. It takes 7000 nanoseconds instead of

521,000! The first jitting call had a huge overhead, but now we have

a better estimation of the approximated average invocation time:

437.50 nanoseconds.

• Pilot 2: 7000 nanoseconds is not enough to get reliable results. Let’s

increase the number of invocations twice and measure the duration

of 32 operations. It takes 10000 nanoseconds. It doesn’t equal to

2∗7000 nanoseconds because the previous iteration was spoiled by

natural noise. The increased number of invocations reduces the noise

influence and allows getting a better approximation for the average

invocation duration: 312.50 nanoseconds. Let’s continue to increase

Chapter 4 StatiStiCS for performanCe engineerS

242

the number of invocations until the total iteration time reaches an

acceptable value.

• Pilot 18: After 18 pilot iterations, the iteration duration becomes

523,762,000 nanoseconds (0.52 seconds). Thus, the average

invocation time is 249.74 nanoseconds. It is significantly better than

our first approximation, which is 248,000 nanoseconds. It doesn’t

make sense to continue increasing the number of invocations

because it doesn’t improve the accuracy: we achieved a reliable and

repeatable estimation for a single invocation duration. If we use

a larger number of invocations, the total experiment time will be

increased without any benefits in terms of accuracy. Thus, we can

continue to do 2,097,152 invocations per iteration during warm-up

and actual stage when we collect the measurements that form our

final performance distribution.

Of course, you can use other strategies for the pilot experiment. For example, you

can invoke the method in a while loop until the minimum iteration time is achieved.

Don’t use this approach for actual measurements: iteration with an unequal number of

invocations also can spoil the results. Such a while loop also requires a separate warm-

up stage: the first experiment can be spoiled by cold start effects like assembly loading or

jitting.

The pilot experiment is a powerful technique that helps to find the best benchmark

parameters and achieve a better trade-off between the accuracy and the total

benchmarking time.

 Summing Up
In this section, we covered two important approaches to analyzing a group of

distributions:

• Distribution comparison

When we want to compare two distributions, we work with

two hypotheses: H0 (there is no difference) and H1 (there is a

difference). The conclusions may include errors of two kinds:

Type I (false positive: there is no difference, but we think that there

is a difference) and Type II (false negative: there is a difference, but

Chapter 4 StatiStiCS for performanCe engineerS

243

we think that there is no difference). In most simple cases, we can

apply simple heuristics (range test, Tukey test, or three-sigma test)

or honest statistical tests: Welch’s t-test (works only for unimodal

distributions that are close to normal), Mann–Whitney U test

(works for any kind of distribution). Such tests provide a p-value

that should be compared with α-level threshold (typical value

is 0.05). If we get many small p-values (less than α) in a series of

experiments, H1 is most likely true (we have a difference between

distributions). When H0 is true, p-values are distributed uniformly,

which means that α is the Type I (false positive) error rate.

• Regression models

Regression models help to detect relationships between the input

data, the environment, and the performance. Asymptotic analysis

helps to express the algorithmic complexity by the big O notation

(e.g., O(n2) or O(n log n)). In many cases, we can use polynomial

models (e.g., linear model or quadratic model), but other cases

require advanced curve fitting. When we want to understand

how the environment affects performance, we should work with

categorical variables (e.g., OS: Windows/Linux/macOS). We can

find the most important environment factors with the help of

clustering and check that they really affect performance with the

help of statistical tests.

Also, we discussed two approaches of adaptive benchmarking:

• Optional stopping

Instead of guessing the perfect number of iterations, we can define

a stopping criteria: the iteration process should perform until the

desired distribution properties are achieved. You shouldn’t use

p-values for it because it can significantly increase the Type I (false

positive) error rate.

• Pilot experiments

Some experimental parameters (like the number of invocations

inside each iteration) can be determined in advance. In the pilot

experiment (which is performed before the actual experiment),

Chapter 4 StatiStiCS for performanCe engineerS

244

we can run a series of iterations with different characteristics

in order to determine the best benchmark parameters for our

accuracy requirements.

Adaptive benchmarking helps you to design the benchmark correctly, achieve the

desired accuracy, and minimize the total benchmark duration. These approaches have

been successfully used in BenchmarkDotNet for years. Even with BenchmarkDotNet,

you should still understand the concept of adaptive benchmarking; the library will not

design a benchmark for you. BenchmarkDotNet provides some default values for the

target distribution requirements, but it works fine only in simple cases. In complicated

cases, you have to tune these numbers or even define your own statistics criteria.

However, knowledge of all analysis techniques doesn’t protect you from mistakes

and wrong conclusions. Let’s learn how statistics may deceive you and force you into

wrong business decisions.

 How to Lie with Benchmarking
The title of this section is inspired by a great book by Darrell Huff, How to Lie with

Statistics (see [Huff 1993]). This book contains many examples that demonstrate how

easily people can be fooled with the help of special ways of presenting the data. When we

are talking about benchmarking, this topic becomes pretty important because it’s very

easy to make incorrect conclusions based on benchmark results even if nobody tries to

deceive you.

This section has two goals:

• Self-defense from others

Many performance reports that you can find in articles, blog posts,

StackOverflow answers, and GitHub discussions often contain

misleading numbers and plots that may push you to a wrong

decision. It’s good to know how to detect different deceptive

techniques.

• Self-defense from yourself

Even when you are working with your own set of benchmarks,

it’s pretty easy to interpret results incorrectly and fool yourself. If

Chapter 4 StatiStiCS for performanCe engineerS

245

you want to prevent such a situation, you should learn the most

common mistakes that developers usually make.

If you think that the knowledge of statistics is sufficient protection, I highly

recommended you to read [Kahneman 2013], which demonstrates how bad human

intuition handles pretty simple statistics tasks. One of the main book ideas is the

following: the human mind has two “systems”: “System 1” (fast but not so smart) and

“System 2” (slow but smart). The first ideas that we have about something are provided

by “System 1”: we get them instantly, but they are often wrong. If we carefully think about

the subject, “System 2” will provide more accurate and correct answer, but it can take

some time. Unfortunately, people don’t always carefully think when they make decisions

and use answers coming from System 1. This may lead to incorrect conclusions about

the benchmark results.

In this section, we will try to activate our “System 2” and learn how to use it in

benchmarking. We are going to cover the most common ways to lie with benchmarking

and what you need to pay attention to in order to recognize a lie.

 Lie with Small Samples
When you are analyzing raw data, intuition is your worst enemy. It tries to find patterns

everywhere, and it finds it (even if there are no patterns). Here is an exercise: based on

the following measurements, which method is faster?

A: 58 ms 62 ms 57 ms 60 ms 66 ms

B: 61 ms 67 ms 70 ms 77 ms 73 ms

If you think like most people, you say “A faster than B” because in each column, the

“A” value is less than the “B” value.

I have to confess: I generated all ten numbers based on the same benchmark with

the following source code:

static long Measure()

{

 var data = new byte[64 * 1024 * 1024];

 var stopwatch = Stopwatch.StartNew();

 var fileName = Path.GetTempFileName();

 File.WriteAllBytes(fileName, data);

 File.Delete(fileName);

Chapter 4 StatiStiCS for performanCe engineerS

246

 stopwatch.Stop();

 return stopwatch.ElapsedMilliseconds;

}

It’s one of my favorite guinea pigs for such experiments: it creates a file with 64 MB of

data and removes it. Now we can generate ten numbers as we get in the preceding:

Console.Write("A: ");

for (int i = 0; i < 5; i++)

 Console.Write(Measure() + " ms ");

Console.WriteLine();

Console.Write("B: ");

for (int i = 0; i < 5; i++)

 Console.Write(Measure() + " ms ");

It still may seem that the probability of getting such results is pretty low. Let’s do

some math. The chance that one measurement will be less than another is about 50%

(the I/O operations don’t produce stable performance values, so it’s pretty unlikely

to have equal measurements). The chance that each number from the “A” row will be

less than the corresponding number from the “B” row is (1/2)5 or 3.125%. That’s not a

small number. Let’s say that 22 readers of this book decide to try this code snippet. The

probability that no one gets such a strange result is (1 − 0.03125)22 or 49.7%. This means

that there is a 50.3% chance that at least one of them will get a result that looks like “A

faster than B.” It’s pretty similar to the Birthday Paradox, which states that there is a 50%

chance that in a room of 23 people, 2 of them will have the same birthday (read more

about it in [Azad 2007]).

It’s a common situation when a small sample contains insidious data anomalies

that look like patterns. If you often do benchmarking, you will often get “extraordinary”

results in small samples because of the random noise. You may be tempted to make

conclusions based on that, which may lead to wrong business decisions. Knowledge of

statistics will help you to protect yourself from such situations and correctly verify all

your performance hypotheses.

When the sample size is small, most of the statistical metrics are unreliable

because you can’t calculate the correct values for the true distribution based on a few

measurements. You can’t understand if the distribution is multimodal or unimodal,

you can miss possible outliers, you can’t get a proper value of the standard deviation,

and so on. A small sample size may be used for getting a first impression about the

Chapter 4 StatiStiCS for performanCe engineerS

247

measurements, such as “the method takes several seconds” or “the method takes

several microseconds.” But it’s not enough to make a meaningful conclusion about the

distribution. For example, when the difference between the two methods is 10–20%, you

can’t detect it correctly if n = 5.

Lie with Percents
Let’s say that you made a performance improvement: a method which took 200ms

before now takes 100ms. How do you describe this change with percentages? It depends

on your baseline. If the baseline is 200ms, we have (200 − 100)/200 ∗ 100% = 50%

improvement. If the baseline is 100ms, we have (200 − 100)/100 ∗ 100% = 100%

improvement. The ratio is the same, but the result is different: 50% vs. 100%.

Someone may say that it’s cheating and the baseline should always be the original

value (the “before” state). Here we have another hack: we can let readers choose the

baseline themselves. Usually, people don’t like to do complicated math in their minds,

so they try to choose the simplest baseline for calculations. Let’s say that you made a 2.5×

performance improvement. Compare the following two sentences:

A method which took 250 seconds before, now takes 100 seconds.

and

A method which took 100 seconds before, now takes 40 seconds.

In both cases, we have a 2.5× speedup. However, many people mentally translate it to

150% in the first case and 60% in the second case. It’s much easier to use 100 seconds as

a baseline because it’s the most natural divider when we are talking about percentages.

Of course, if you spend several seconds thinking, you will understand that your first

intuitive guess was wrong. Kahneman’s System 1 and System 2 in action! Usually, people

don’t like to apply math everywhere: they just quickly scan a text. Thus, for many people,

the 250 → 100 improvement makes more impression than the 100 → 40 improvement.

Operations with percentages are a frequent source of wrong conclusions. Let’s say

that our project had a good level of performance in May. The metric used is RPS. In June,

we had a 40% degradation in terms of RPS. In July, we made some improvements and got

a 50% speedup compared to June. Thus, we have the following picture:

May : Baseline

June : -40%

July : +50%

Chapter 4 StatiStiCS for performanCe engineerS

248

The question: what can you say about performance changes between May and July?

Probably, the first idea that appeared in your head was “Performance in July was better

because the 50% speedup beat the 40% degradation.” Now, let’s do some calculations. If

a method performed around 100 RPS in May, the 40% degradation means that we had

100 · (1 − 0.40) = 60 RPS in June. The 50% speedup means that we had 60 · (1 + 0.50) = 90

RPS in July:

May : Baseline | 100 RPS

June : -40% | 60 RPS

July : +50% | 90 RPS

As you can see, we still have a degradation comparing to May.

Here is another performance quiz for you (try to answer as fast as you can). Let’s say

that we decided to optimize a method and we have two alternative improvements. After

benchmarking, it turns out that the first optimization reduces the method duration by

98%, and the second one reduces it by 99%. By how much is the second implementation

faster than the first one?

Typically, the first number that arises in mind is 1%, but the correct answer is “two

times.” Probably, you solved this quiz correctly because you were waiting for a trick.

However, many people often incorrectly interpret such situations when they try to read

benchmark results quickly and don’t expect any tricks.

Many performance reports use such tricks to create a feeling that the situation is

better or worse than in reality. While such reports do not contain deliberately false data,

the described manipulations may force you to think out wrong conclusions.

 Lie with Ratios
If you determined that one method is faster than another, the next logical question is

“how many times faster?” The typical approach is to divide the mean value of the first

method sample by the mean value of the second method sample. However, this doesn’t

work well in general, because it’s another kind of situation where we can’t describe the

answer with a single number. The correct approach is to build the ratio distribution z:

z
x

y
z

x

y
z

x

yn
n

n
1

1

1
2

2

2

= = ¼ =, , ,

Chapter 4 StatiStiCS for performanCe engineerS

249

This is a paired method, which means that you need samples of equal size. As a

result, you have another distribution that has its own statistical metrics: mean, variance,

and so on.

Consider the following two samples:

x y={ } ={ }200 200 200 200 200 100 100 100 100 10000, , , , , , , , ,

The x sample is superstable: all its elements equal to 200. The y sample also is pretty

stable (almost all its elements equal to 100), but it has a single huge outlier. Now let’s

build the ratio distribution:

z ={ }2 2 2 2 0 02, , , , .

How much faster is x than y? Let’s consider two ways to calculate it: the ratio of the

means and the mean of the ratio:

x

y
z» »0 1 1 6. , .

The first answer says that x is 10 times faster than y, but the second answer says that x

is 1.6 times slower than y. Which answer is better? In fact, both answers are bad because

we can’t describe the answer by a single number in this case. The best answer contains

information about the ratio distribution. For example, we can present it as follows:

min . , max , , . , . ,z z Q z z s nz z() = () = () = » » =0 02 2 2 1 6 0 89 52

After a quick analysis, we can understand that in most cases y is faster than x, but

sometimes x may be significantly faster. We also know that the ratio sample size is five,

which is not enough for meaningful conclusions; you probably need more data.

In most real-life benchmarks, x y/ and z have close values and the z range

is narrow, so people often use phrases like “10 times improvement.” It’s OK to say

something like that if you have already checked the ratio distribution and know that

the difference between zmin and zmax is small. It’s not a good idea to provide too many

metrics in each performance report: it’s hard to read and understand such reports. You

should highlight only the important metrics and provide a way to check out the full list

of statistics characteristics. Unfortunately, developers quickly get used to narrow ranges

and forget to check the ratio distribution before making their final conclusions.

Chapter 4 StatiStiCS for performanCe engineerS

250

We can also not provide the scaled result and suggest to a reader to evaluate it

himself. Look at the following table and try to quickly compare the performance of

methods A and B:

 Mean Skewness Kurtosis StdDev

A 523ms 0.34 2.64 752ms

B 929ms 0.39 2.31 983ms

Probably, the first impression was something like “A works two times faster than B”

because of the Mean column. The Skewness and Kurtosis columns don’t provide useful

information for this problem, but they “hide” the standard deviation column: a reader

can stop to read the table because of the “boring” columns. Meanwhile, the standard

deviation column contains very important information: it has very huge values. The

sample sizes and the standard errors are not presented, so we don’t have enough data

for any meaningful conclusions about A and B. The difference between means (406

ms) can be easily explained by “bad” samples: it’s very easy to get such a value when

the variance is huge and the sample sizes are small. We can’t say that A is faster than

B without a proper statistical test or a density plot based on larger samples. However,

many developers finish analyzing the results after the Mean column and reach unreliable

conclusions.

 Lie with Plots
Plotting is a great way to visualize your data and quickly understand the form of the

distribution. However, it can also be a dangerous weapon that forces you to make wrong

conclusions.

Chapter 4 StatiStiCS for performanCe engineerS

251
Figure 4-17. Lie with plots

Chapter 4 StatiStiCS for performanCe engineerS

252

Let’s discuss a few popular ways to lie with plots:

• Playing with scales

In Figure 4-17 (A), you can see two plots with different scales

for the same data. Here we measure the RPS metric for two web

servers for several months. One server is much faster than the

other from the beginning, and both servers improve the metric

each month. The first plot (A.1) creates the wrong impression:

it seems that the slower server almost “caught up” to the faster

server and that it will reach the same metric value in the next

month. This impression is explained by the logarithmic scale.

This scale is useful in different performance plots, but not in this

case. It’s better to use the usual linear scale, which is presented in

(A.2). Now we can see that the slower server is at the beginning of

its optimization journey. Impressive 10× speedups are explained

by extremely poor performance in January (0.1 RPS). From the

second plot, it’s obvious that the performance improvements in

February, March, and April are ridiculously small compared with

the faster server. In May, the slower server is still 10 times worse

than the faster server, and it will be pretty hard to make another

10× speedup in the next month.

• Highlighting the data

Let’s say that we want to compare the performance of the two

methods. We performed six different experiments and drew

six box plots, as presented in Figure 4-17 (B). One of the box

plots is highlighted and painted large; the other experiments

have small plots. This is a common technique when we have

too many plots, but we don’t have enough space to draw all of

them on a large scale. Thus, we can draw only a single plot on a

large scale, and present the rest of the plots on a small scale. In

this case, you should carefully think about which plot should be

highlighted. After a glance at Figure 4-17 (B), you may think that

the experiments that correspond to the upper box plot take more

time because the corresponding plot is highlighted. However, if

you spend some time looking at all the box plots, you will figure

Chapter 4 StatiStiCS for performanCe engineerS

253

out that it’s impossible to say which method is faster: we have

opposite results in different experiments.

• Hiding the data

Sometimes, we have unwanted data that we don’t want to

highlight. In this case, we can choose a special visualization form.

For example, if we have too many outliers that we don’t want to

present, we can choose a density plot over a frequency trail plot. A

density plot is a popular kind of visualization, and it’s OK to use it.

However, we know about one of its features: it “hides” outliers. It’s

still an honest way to present the data, but it doesn’t show all the

data. If the distribution is multimodal, but we don’t want to tell

anyone about it, we can choose a box plot over a density plot. In

this case, we also use a popular and honest kind of visualization,

but we choose it because it hides information that we don’t want

to share with others. Each plot kind shows only specific properties

of a distribution: there is no compact and accurate way to present

all possible distribution characteristics (especially if we have

many distributions). Thus, we will always hide some information.

Usually, when we finish the analysis, we are trying to find a

visualization approach that highlights the most interesting parts of

the performance space. However, it’s also possible to intentionally

choose a plot that hides it.

There are many different ways to lie with plots (you can find other interesting

examples of deceiving plots in [Wainer 1984]). A good visualization is a complicated

task that usually takes much time and effort. It’s a common situation when a researcher

doesn’t have enough time and just picks a random plot. Another typical situation: a

researcher knows how to draw only one kind of plot and uses it everywhere instead of

looking for the best visualization for each specific case. In such a situation, there is a high

risk that a deceiving plot will be drawn unintentionally. When you read reports by other

people, always pay attention to how the visualization is presented and why a specific plot

kind is used.

Chapter 4 StatiStiCS for performanCe engineerS

254

 Lie with Data Dredging
Imagine that we made some minor performance improvements and we really want to

demonstrate a positive impact of it in real-world scenarios. We set up a benchmark,

collect 100 pairs of samples, perform statistical tests, and calculate p-values.

Unfortunately, only two of them have p-values <0.05, which is not enough to say that

we have a statistically significant difference. We know that it’s OK to have a few small

p-values when H0 is true because they are distributed uniformly. We didn’t show all

the experiment results to anyone yet, and we still want to prove that our performance

improvements matter. How can we convince others of this? Maybe we can show only

pairs of samples with p-values <0.05?…

The described technique is known as p-hacking. It’s not a good practice, but

unfortunately, it’s highly abused in many types of scientific research. We already

discussed another example of it in the “Optional Stopping” section: terminating of the

iteration process after achieving small p-value is a reliable way to support H1 and show

that we really have a significant effect even when H1 is false.

While many people use p-hacking intentionally (they know that H1 is false, but

want to show that it’s true), the p-hacking effect can accidentally spoil your conclusions

even if you don’t want it to. Unintentional p-hacking happens when you have a strong

temptation to accept H1 based on a few small p-values without additional checks.13

Several different approaches can save you from unintentional p-hacking. One of my

favorites is the Holm–Bonferroni correction. The idea is simple: when we get a set of

p-values from different experiments, we should sort them in descending order, and rank

the sorted array. After that, we should multiply each p-value by its rank. You can see an

example of such correction in Table 4-5. The original p-value set has two values that are

less than 0.05: 0.009 and 0.015. After correction, they become 0.063 and 0.090, which are

larger than our 0.05 α-level. Some values may become more than 1.0, but you shouldn’t

worry about it while you are comparing it with α.

13 In [Lakens 2014b], Daniel Lakens describes an interesting effect called “bi-polar p-value
disorder.”

Chapter 4 StatiStiCS for performanCe engineerS

255

p-hacking is an example of data dredging. All such techniques are based on a

simple idea. Let’s say that we don’t have a statistically significant effect, but we want to

demonstrate that we have it. In this case, it’s almost impossible to achieve the zero Type I

(false positive) error rate. If we perform a huge number of statistical experiments, we will

typically get a few “untypical” results. Including only such experiments in the final report

makes it possible to convince other people of incorrect results.

Data dredging has many variations. Another popular example relates to the multiple
comparison problem in clustering. There is a saying: “He who seeks will always find.”

This perfectly describes this approach. Imagine that we have a set of performance

samples in different environments. Each environment is described by hundreds of

characteristics, from the RyuJIT version to the SSD model. If we split the samples by

each characteristic and perform statistical tests against different subsamples, we will

probably get several characteristics with low p-values. This may lead to an incorrect

conclusion that these characteristics affect performance. Fortunately, such a hypothesis

can be easily checked: you should perform additional experiments in two environments

(splitted by the selected characteristic) and repeat the statistical test on the new samples.

Data dredging is an unethical approach that helps lead to incorrect conclusions

based on the real data. If you don’t trust a researcher, you always try to repeat the

described experiment and check whether it’s possible to reproduce the results or

not (a decent performance investigation should include enough information for

reproduction). If you have the full raw data set, you can also analyze it yourself and check

the distribution of p-values: you already know how it looks with and without the data

dredging.

Table 4-5. Holm–Bonferroni Correction

p-value Rank Corrected p-value

0.962 1 0.962

0.673 2 1.346

0.313 3 0.939

0.120 4 0.480

0.042 5 0.210

0.015 6 0.090

0.009 7 0.063

Chapter 4 StatiStiCS for performanCe engineerS

256

 Summing Up
In this section, we discussed several techniques that allow lying with benchmarking:

• Small samples

When the sample size is small, the chance to get “extraordinary”

results is high. With small sizes, you can easily miss outliers or

incorrectly calculate the standard deviation. Typically, statistical

tests can’t be applied to small samples.

• Percentages

If we want to calculate performance difference in terms of

percentages correctly, we need a proper baseline (typically, it’s the

“before” state). It’s incorrect to sum or subtract percentages from

different experiments: the results don’t provide any meaningful

numbers.

• Ratios

The ratio of two distributions can’t be described by a single

number in general; we have to work with the distribution of

ratios. In many simple cases, the ratio of mean values provides a

“correct” answer, but it’s untrustworthy without the distribution

analysis: it can be easily spoiled by outliers or a huge standard

deviation.

• Plots

Plots may provide a wrong impression of the data. For example,

you can use special scales to highlight or hide an important part of

the performance space.

• Data dredging

When the H0 is true, the Type I (false positive) error rate is

typically more than zero. If you perform enough experiments, you

will find samples with low p-values that support H1. Presenting

only such experiments may convince other people of wrong

results. This technique is known as p-hacking, but there are

other approaches based on looking for something “unusual” in

Chapter 4 StatiStiCS for performanCe engineerS

257

the performance space. For example, if you have hundreds of

environmental characteristics for a small set of experiments, you

will probably find a few that “supposedly” affect performance.

All of these described ways to lie don’t contain knowingly false data: on the contrary,

all of them are based on real measurements. There are two kinds of conclusions:

• Direct way

Here the report contains wrong conclusions. For example, you can

present incorrectly calculated metrics or try to prove H1 based on

p-hacked samples.

• Indirect way

Here the report doesn’t contain any conclusions, it just presents

the data in a “special way.” However, the presentation form forces

intuition to work against the reader, which can lead to wrong

conclusions. This approach is much more efficient because our

own conclusions are usually more trustable than conclusions of

other people.14

In this section, we didn’t cover all possible ways to lie with benchmarking, so stay

alert and always carefully analyze performance distributions before making conclusions.

Don’t trust your intuition and check everything twice.

 Summary
In this chapter, we covered the following topics:

• Descriptive statistics

We learned many metrics that can describe a single distribution:

from the mean and the standard deviation to the skewness

and the confidence interval. You don’t need to remember how

to calculate all these metrics, but you should remember how

to interpret them. We also learned many useful visualization

14 You can find more information about this effect in the following Wikipedia article:
https://en.wikipedia.org/wiki/Confirmation_bias

Chapter 4 StatiStiCS for performanCe engineerS

https://en.wikipedia.org/wiki/Confirmation_bias

258

techniques: from histograms and density plots to box plots and

frequency trails. A good visualization significantly simplifies the

investigation process.

• Performance analysis

We learned several approaches for the performance analysis. Two

distributions can be compared with the help of statistical tests,

and the regression models can help you understand how the

performance depends on the input data and the environment.

Adaptive techniques like optional stopping and pilot experiments

use statistics during benchmarking and help to optimize the

measurements in terms of the whole experiment duration and the

accuracy.

• How to lie with benchmarking

We also learned many deceptive techniques that may force us to

incorrect result interpretations. Since we know about them, we

can recognize them in performance research and avoid popular

mistakes in our own performance investigations.

This chapter is not a complete introduction to statistics. It’s a practical guide with

the most useful techniques for real-world performance distribution. However, we

didn’t discuss many statistical methods and approaches that also can be useful in

different kinds of investigations. If you want to improve your knowledge of statistics, it’s

recommended to read other books like [Downey 2014], [Freedman 2007], [Wasserman

2010], and [Boslaugh 2012].

Note that this chapter is not a classic statistics theory; it’s a guide for a practicing

performance engineer that should help him or her to analyze performance

measurements, correctly interpret the results, and optimize the benchmarking process.

Thus, some topics are not fully covered, and not all of the statements are mathematically

strict. However, this shouldn’t be a problem in real performance investigation. It’s much

more important just to be familiar with the main concepts and know how to work with

them.

Chapter 4 StatiStiCS for performanCe engineerS

259

 References
[ACM209] Ibbetson, D. 1963. “Algorithm 209: Gauss.” Magazine Communications of the

ACM 6 (10). ACM: 616. https://dl.acm.org/citation.cfm?id=367664.

[ACM395] Hill, Geoffrey W. 1970. “Algorithm 395: Student’s T-Distribution.” Magazine

Communications of the ACM 13 (10). ACM: 617–619. http://dl.acm.org/citation.

cfm?id=355599.

[Azad 2007] Azad, Kalid. 2007. “Understanding the Birthday Paradox.” April 26. https://

betterexplained.com/articles/understanding-the-birthday-paradox/.

[Boslaugh 2012] Boslaugh, Sarah. 2012. Statistics in a Nutshell: A Desktop Quick

Reference. 2nd ed. O’Reilly Media, Inc.

[Downey 2014] Downey, Allen B. 2014. Think Stats: Exploratory Data Analysis. 2nd ed.

O’Reilly Media, Inc. http://greenteapress.com/thinkstats/.

[Freedman 2007] Freedman, David, Robert Pisani, and Roger Purves. 2007. Statistics. 4th

ed. WW Norton & Company.

[Gregg 2014a] Gregg, Brendan. 2014. “Frequency Trails: Introduction.” February 2. www.

brendangregg.com/FrequencyTrails/intro.html.

[Gregg 2014b] Gregg, Brendan. 2014. “Frequency Trails: Detecting Outliers.” February 2.

www.brendangregg.com/FrequencyTrails/outliers.html.

[Gregg 2015] Gregg, Brendan. 2015. “Frequency Trails: Modes and Modality.” June 17.

www.brendangregg.com/FrequencyTrails/modes.html.

[Gregg 2017] Gregg, Brendan. 2017. “The USE Method.” August 24.

www.brendangregg.com/usemethod.html.

[Huff 1993] Huff, Darrell. 1993. How to Lie with Statistics. WW Norton & Company.

[Kahneman 2013] Kahneman, Daniel. 2013. Thinking, Fast and Slow. Farrar, Straus and

Giroux.

[Lakens 2014a] Lakens, Daniel. 2014. “What P-Hacking Really Looks Like: A Comment

on Masicampo & LaLande (2012).” September 30. http://daniellakens.blogspot.

com/2014/09/what-p-hacking-really-looks-like.html.

Chapter 4 StatiStiCS for performanCe engineerS

https://dl.acm.org/citation.cfm?id=367664
http://dl.acm.org/citation.cfm?id=355599
http://dl.acm.org/citation.cfm?id=355599
https://betterexplained.com/articles/understanding-the-birthday-paradox/
https://betterexplained.com/articles/understanding-the-birthday-paradox/
http://greenteapress.com/thinkstats/
http://www.brendangregg.com/FrequencyTrails/intro.html
http://www.brendangregg.com/FrequencyTrails/intro.html
http://www.brendangregg.com/FrequencyTrails/outliers.html
http://www.brendangregg.com/FrequencyTrails/modes.html
http://www.brendangregg.com/usemethod.html
http://daniellakens.blogspot.com/2014/09/what-p-hacking-really-looks-like.html
http://daniellakens.blogspot.com/2014/09/what-p-hacking-really-looks-like.html

260

[Lakens 2014b] Lakens, Daniel. 2014. “The Probability of P-Values as a Function of the

Statistical Power of a Test.” May 29. http://daniellakens.blogspot.com/2014/05/the-

probability-of-p-values-as-function.html.

[Matejka 2017] Matejka, Justin, and George Fitzmaurice. 2017. “Same Stats, Different

Graphs: Generating Datasets with Varied Appearance and Identical Statistics Through

Simulated Annealing.” In CHI 2017 Conference Proceedings: ACM SIGCHI Conference on

Human Factors in Computing Systems, 1290–1294. ACM. www.autodeskresearch.com/

publications/samestats.

[Minitab 2013] “Explaining the Central Limit Theorem with Bunnies & Dragons.” 2013.

The Minitab Blog. October 15. http://blog.minitab.com/blog/michelle-paret/

explaining-the-central-limit-theorem-with-bunnies-and-dragons-v2.

[Ribecca 2017] Ribecca, Severino. 2017. “Further Exploration #4: Box Plot Variations.”

September 27. http://datavizcatalogue.com/blog/box-plot-variations/.

[Wainer 1984] Wainer, Howard. 1984. “How to Display Data Badly.” American Statistician

38 (2): 137–147.

[Wasserman 2010] Wasserman, Larry. 2013. All of Statistics: A Concise Course in

Statistical Inference. Springer Science & Business Media.

[Wickham 2011] Wickham, Hadley, and Lisa Stryjewski. 2011. “40 Years of Boxplots.”

American Statistician, July. http://vita.had.co.nz/papers/boxplots.pdf.

Chapter 4 StatiStiCS for performanCe engineerS

http://daniellakens.blogspot.com/2014/05/the-probability-of-p-values-as-function.html
http://daniellakens.blogspot.com/2014/05/the-probability-of-p-values-as-function.html
https://www.autodeskresearch.com/publications/samestats
https://www.autodeskresearch.com/publications/samestats
http://blog.minitab.com/blog/michelle-paret/explaining-the-central-limit-theorem-with-bunnies-and-dragons-v2
http://blog.minitab.com/blog/michelle-paret/explaining-the-central-limit-theorem-with-bunnies-and-dragons-v2
http://datavizcatalogue.com/blog/box-plot-variations/
http://vita.had.co.nz/papers/boxplots.pdf

261
© Andrey Akinshin 2019
A. Akinshin, Pro .NET Benchmarking, https://doi.org/10.1007/978-1-4842-4941-3_5

CHAPTER 5

Performance Analysis
and Performance Testing

The first principle is that you must not fool yourself — and you are the easiest
person to fool.

— Richard Feynman, 1974

In most cases, benchmarking is a kind of performance investigation. Benchmarks allow

getting new knowledge about software and hardware. This knowledge can be used later

for different kinds of performance optimization.

Once you get the desired level of performance, you usually want to keep this

level. And you typically don’t want to have situations when someone from your team

accidentally spoils your performance improvements. How can we prevent such

situations? Well, how do we usually prevent situations when someone spoils our code

base? We write tests! If we don’t want to have any performance regressions, we need

performance tests! Such tests can be a part of your CI pipeline, so it will be impossible to

make any unnoticed performance degradations!1

So, it looks simple: we write performance tests and get profit! Sounds good, doesn’t

it? Unfortunately, it’s harder than it sounds. In performance tests, it’s not enough to just

measure performance metrics of your code; you also have to know how to process these

values. A benchmark without analysis is not a benchmark, it’s just a program that prints

some numbers. You always have to explain the benchmark results.

When you run a benchmark locally, you have all the relevant source code under your

hands: you can read it, you can play with it. You can do additional actions depending

on the current state of the investigation. You can look at the current data and make a

1 In theory.

262

decision about the next step. When a benchmark becomes a performance test, you

should automate this process. This is much harder because the automation logic should

handle future changes to the source code. You don’t know the future, you don’t know the

performance metrics that you will get tomorrow, you can’t look at the future distribution

plots, and you can’t make nonautomated decisions about future problems. Everything

should be automated! And this is a huge challenge: you have to predict possible

problems and write algorithms for analysis without knowledge of the data. You should

design not only a set of benchmarks, but also a set of performance asserts and alarms

that should notify you in case of any problems.

The title of this chapter is “Performance Analysis and Performance Testing” instead

of just “Performance Testing.” These topics are close to each other: performance testing

requires a deep understanding of performance analysis approaches. Meanwhile, you

can apply performance analysis techniques not only for performance testing but also

for regular benchmarks (which don’t include automatic asserts) and performance

investigations. All problems and solutions will be discussed in the context of

performance testing, but you should keep in mind that almost all of this can be used for

benchmarking in general. We are going to cover the following topics:

• Performance testing goals

What problems do we want to solve? What exactly do we want

when we are talking about performance tests? We should clearly

understand our goals before the start; we should understand what

we want to achieve.

• Kinds of benchmarks and performance tests

There are a lot of different kinds of performance tests. You should

decide what your test should look like and what exactly it should

measure. For example, it can be a stress test that checks what’s

going on with your web server under high load. Or it can be a

user interface test that checks that UI controls are responsive and

work without delays. Or it can be an asymptotic test that verifies

that the algorithmic complexity of a method is O(N). Or it can be

a functional test that measures the latency of a single operation.

Knowledge of these kinds allows you to choose how to write

performance tests in each situation.

Chapter 5 performanCe analysis and performanCe testing

263

• Performance anomalies

The duration of a test is not a single number; it’s always a

distribution. Sometimes, this distribution looks “strange.” For

example, it can be multimodal, or it can have an extremely

huge variance. We say that distributions of “unusual shape” are

performance anomalies. It’s not always a problem, but hunting

for performance anomalies can usually help you to find many

problems that you can’t find in another way.

• Strategies of defense

When should we run our performance tests: before or after the

merge into the main branch in a version control system? Should

we run performance tests per each commit or it will be enough

to run it once per day? How much time should we spend on

performance testing and what kind of degradation could we

detect in each case? Can we implement completely automatic

CI logic? Or do we always have to do things manually? What

can we do if a product with performance problems has already

been released? There are different strategies of defense from

performance degradations: each of them has advantages and

disadvantages, and each of them helps you to solve a specific set

of problems.

• Performance space

For each test, you can collect many metrics. You can measure

the total wall-clock time, and you can check out the hardware

counters or the number of GC collections. You can collect these

metrics only from a single branch or from several branches. There

are a lot of ways to get performance numbers, and you should

know about them because this knowledge will help you choose

which of them will work best for you.

• Performance asserts and alarms

Everything is simple with functional tests because they are

usually deterministic. If you don’t have tricky race conditions, a

test always have the same result. It’s clear when a test is green;

Chapter 5 performanCe analysis and performanCe testing

264

depending on your requirements, you can easily check it with a

series of assertions.

In the case of performance tests, everything is more complicated.

Remember that a test output is a series of numbers; you have

new numbers per run even on the same machine. Moreover, in

some cases, you have to compare data from different machines.

The standard deviation can be huge, so it can be hard or even

impossible to detect 5-10% degradation. It’s very important to

define your alarm criteria and answer a simple question: “When is

a test red?”

• Performance-driven development (PDD)

This approach is similar to test-driven development (TDD) with

one exception: instead of the usual functional tests, we write

performance tests. The idea is simple: you shouldn’t start to

optimize anything before you write corresponding performance

tests that are red. Indeed, it sounds simple, but it’s a very powerful

technique; it will help you to save a lot of time and nerves.

• Performance culture

Unfortunately, performance tests will not work well if members of

the team don’t care about performance. You need a special kind of

culture in your team and your company. Not only is performance

testing about technologies; it’s also about attitude.

There is no universal approach that allows getting a performance testing system

for free in any project. The best approach for you depends on your performance

requirements and on CI/human resources. In this chapter, we will learn basic

information about performance tests that will help you to understand which practices

can be helpful for your projects and your team.

Many examples in this chapter are based on development stories about IntelliJ IDEA,

ReSharper, and Rider. I will mention these projects without additional introductions.

Let’s start with performance testing goals!

Chapter 5 performanCe analysis and performanCe testing

265

 Performance Testing Goals
In the modern world, we often release new versions of our software. We are trying to fix

old bugs and implement excellent new features. Sometimes, though, these new features

do not work as well as expected. However, this is a normal situation: it’s tough to write

new code without introducing new problems. That’s just how it works. Hopefully, your

users understand this and will wait for a new version with fixes. However, in many

cases, it’s almost inexcusable when you’re breaking old features or make them slow. As

a performance engineer, the worst user feedback I ever get was like: “The new version

of your software works so slowly that I have to roll back to the previous version” or even

“I have to switch to the product of your competitors.” Sometimes we have performance

degradations—this is the problem that we are going to solve in this chapter. We have

defined the problem, and now it’s time to define the goals!

 Goal 1: Prevent Performance Degradations
This is our primary goal: prevent performance degradations. Some developers may

confuse this goal with “make software fast” or “make users happy with our performance.”

Be careful! When we say “prevent performance degradations,” this is not about the

overall level of performance or the happiness of our users. “Prevent performance

degradations” means that each version of our software should work as fast as or faster

than the previous one.

Remark 1. Programming is always about trade-offs; we can’t constantly improve

the performance of all features in our program. Sometimes we have to slow down one

part because we want to speed up another part (e.g., we spend time on loading caches

on startup, which allows fast request processing in the future). This trade-off can be a

conscious decision, and it’s completely OK. However, in most cases, developers slow

down features accidentally. In large programs, it’s tough to measure performance impact

on the whole product even for small changes. Thus, our goal actually sounds like this:

prevent accidental performance degradations.

Remark 2. In this book, there is no strict general definition of performance

degradation. You should define this term for yourself because it depends on your

business goals and requirements. If you are reading this chapter, you probably already

have some performance problems, or you expect them in the future. Try to formalize

Chapter 5 performanCe analysis and performanCe testing

266

the term “performance degradation” for your situation. Here are a few very simplified

examples of how the definition may depend on the context:

• Sometimes even 1% degradation can be a huge problem.

An example: Let’s say we have a web server that processes

requests. We host this server in the cloud, and we pay a cloud

provider for the time resources at a fixed rate. In our spherical

example in a vacuum, each request always takes 100 ms. 1%

degradation means that we will get 101 ms per request after

a deployment. If we have billions of such requests, the total

processing time will increase noticeably.2 The most important

thing is that our bills will also increase by 1%.

• Sometimes even 500% degradation can be not a problem.

An example: We have a server that displays statistics about

user activities. Let’s say that we don’t need real-time statistics;

it’s enough to refresh it daily. So, we have a console utility that

regenerates a statistic report and deploys it. With the help of cron,3

we run it every day at 02:00 AM. The utility takes 1 minute, so the

report is ready at 02:01 AM. A developer from your team decided

to implement additional “heavy” calculations: now the report

contains new useful information, but the total generation time

is 6 minutes; the report is ready at 02:06 AM. Is this a problem?

Probably not, because analytics will review the report only in the

morning. If the utility takes 10 hours, it can be a problem, but

nobody cares about five extra minutes in this case.

2 Very small changes in the hot paths can significantly affect performance. A friend of mine has a
nice example from a production system when a single .EndsWith('/') call caused a regression
of 20% in RPS: the metric was changed from around 55000 to around 38000. The problem was
solved with the help of a very simple optimization: the EndWith call was replaced by [variable.
Length-1] == '/'.

3 Cron is a time-based job scheduler in Unix-like computer operating systems.

Chapter 5 performanCe analysis and performanCe testing

267

• Sometimes it’s impossible to talk about degradations in terms of

percentages.

An example: Because of a complicated multilevel hierarchical

cache, 20% of requests take 100 ms, 35% of requests take 200 ms,

and 45% of requests take 300 ms. After some changes, 20% of

requests take 225 ms, 35% of requests take 180 ms, and 45% of

requests take 260 ms. Is this a good change or a bad change? Do

we have a performance regression in this case? (Try to calculate

the average processing time for both cases.) Well, this is another

trade-off problem: we can’t answer this question without business

requirements.

We will discuss different performance degradation criteria in the “Performance

Asserts and Alarms” section.

Remark 3. In large software products, it’s very hard to prevent all possible

performance degradations. “Prevent all performance degradations” sounds like

“prevent all bugs” or “prevent all security vulnerabilities.” Theoretically, it’s possible. In

practice, it requires too many resources and too much effort. You can write thousands

of performance tests, and you can buy hundreds of CI servers that run these tests all

the time. And it will help you to catch most problems in advance, but probably not all

of them. Also, some performance degradations may not affect the business goals, so

doesn’t always make sense to fix them. Thus, when we say “prevent all performance

problems,” we usually mean “prevent most of them that matter.”

 Goal 2: Detect Not-Prevented Degradations
Since it’s almost impossible to prevent all performance degradations, we have a second

goal: detect not-prevented degradations. In this case, we can fix them and recover the

original performance. Such problems can be detected on the same day, in the same

week, in the same month, and even one year later. We will discuss what kinds of problem

we can detect in different moments in the “Strategies of Defense” section. The most

important thing here is that we want to detect these problems before users/customers

find them and start to complain about them.

Chapter 5 performanCe analysis and performanCe testing

268

 Goal 3: Detect Other Kinds of Performance Anomalies
Degradation is not the only problem we can get. In this chapter, we will discuss so-called

“performance anomalies,” which include clustering, huge variance, and other kinds of

“strange” performance distributions. Usually (but not always) such anomalies help to

detect different kinds of problems in the business logic. If you implement a system for

performance analysis, it makes sense to check the performance space for these anomalies

as well. One cool thing about it: some anomalies can be detected in a single revision, so

you don’t have to analyze the whole performance history or compare commits.

 Goal 4: Reduce Type I Error Rate
If you skipped the chapter about statistics (Chapter 4), I will explain this goal in

simple terms. A Type I error (false positive result) means that there is no performance

degradation, but performance tests detect “fake” problems. Consequences: developers

spend some time on investigations in vain. This is not just a waste of our most precious

resource (time of developers), it’s also a substantial demotivating factor. Having a few

Type I errors per month is OK. Moreover, you should expect to have such errors; it’s too

hard to implement an excellent performance testing system with zero Type I error rate.

However, if you get several false positive results per day, developers will not care about it.

And it sounds reasonable: what’s the point to spend time on useless investigations each

day? You can have “real” problems among the “fake” problems, but you will miss them:

developers will ignore all alarms because they are likely false alarms. The whole idea is

destroyed: performance tests do not benefit and instead distract your team members.

Thus, you should monitor Type I errors. If you have too many of them, it makes sense

to reduce performance requirements and weaken the degradation criteria. It’s better to

miss a few real problems than to have a completely useless set of performance tests.

 Goal 5: Reduce Type II Error Rate
Type II error (false negative result) means that there is performance degradation, but

we failed to detect it. Consequences: serious performance problems can be delivered

to users with the next update. In this case, we didn’t solve our main problem; we didn’t

prevent degradation. Since it’s impossible to prevent all performance degradation, we

can try to keep the number of such situations low.

Chapter 5 performanCe analysis and performanCe testing

269

It sounds like a consequence of the first goal, but I decided to form it as a separate

goal because the Type II error rate is also a metric that describes our performance testing

system. It’s not enough to just write a bunch of performance tests and let them live their

lives. You should monitor how successful your performance framework is. For example,

you can form a monthly report like: “In January, we detected 20 performance problems

and fixed them before the release. Three problems were detected by performance tests

after the release, and two problems were reported in February by dissatisfied users.”

Such reports allow the following:

• Evaluation of the effectiveness of performance tests

• Detection of weaknesses and pieces of code that should be covered

by additional performance tests

• If you detected many problems in time, it will encourage the team to

write new performance tests

• If you didn’t have any significant issues (both detected and

nondetected), you probably don’t need performance tests for these

projects, and it doesn’t make sense to invest time into it in the future.

 Goal 6: Automate Everything
It’s not easy to formulate proper degradation criteria and get low Type I and Type II

error rates. Sometimes you may be tempted to monitor performance manually instead

of writing a reliable system for performance tests. For example, performance tests can

produce thousands of numbers that are aggregated and displayed in a monitoring

service. Next, you (or one of your colleagues) check performance reports every day,

manually look for problems, and notify the rest of the team of the results. This is not a

good approach because there are always many problems with the human factor: the

person who is responsible for monitoring can be sick, on vacation, or busy. In this case,

we will not get any alarms even if we have essential problems. In addition, he or she can

miss some dangerous problems due to inattentiveness.

Unfortunately, it’s hard to automate everything. In huge projects, it’s almost

impossible to implement a reliable and automated performance monitoring system with

low Type I and Type II error rates. Sometimes you have to analyze some data manually.

In this case, you can try to automate everything that can be automated. For example, let’s

Chapter 5 performanCe analysis and performanCe testing

270

say we have a huge integration test that typically takes 5 minutes. After some changes, it

takes 6 minutes, so the main analyst gets a notification. Now he or she should investigate

it. How can automation help? Here are a few ideas:

• Automatic reports

You can generate a full report about the problem automatically.

Such a report could include links to the commits (if you have

a web service that allows browsing your code base), a list of

authors of these changes, performance history of this test, links

to other tests from the same test suite with new performance

problems (they can be related), and so on. The main idea here is

that the analyst shouldn’t look for additional data; all necessary

information should be collected automatically. You can even

automatically create an issue in your issue tracker and easily track

all performance problems.

• Automatic bisecting

It’s not always possible to run all performance tests for each commit.

Imagine that one of your daily performance tests is red and there are

N=127 commits in this day by ten different people. How do you find

the commit that introduces the problem? It’s a good idea to start to

bisect these commits. Let’s check the commit 64 (for simplification,

assuming that we have a linear history without branches). If the

test is red, it means that the problem was introduced before this

commit, and we are going to check commit 32. If the test is green, it

means that the problem was introduced after this commit, and we

are going to check commit 96. If we continue this process, we can

find the commit with problem after log2(N) iterations (in the perfect

world without branches). Manual bisecting is a waste of developers’

time. This process can also be automated: the report should include

the specific commit and the author of this commit (this person

should start to investigate the issue).

Chapter 5 performanCe analysis and performanCe testing

271

• Automatic snapshots

One of the first steps in such investigations is profiling. Once we

get a slow test, we can automatically take a performance snapshot

before and after the change. In this case, the analyst can just

download both snapshots and compare them. It can allow finding

the problem even without the need to download the sources and

build it locally: many stupid mistakes can be found only with the

snapshots.

• Automatic step-by-step analysis

If you have a 1-minute degradation in a huge integration test,

you probably have a problem in a single subsystem instead of a

project-wide problem. In this case, you can measure separate

steps for both cases and compare them automatically. After that,

a notification (or an issue) can contain additional information like

“it seems that we have a problem with these two steps; the rest of

the steps doesn’t have noticeable degradation.”

• Automatic continuous profiling

If you have a pool of servers with services that sometimes suffer

from accidental performance drops, you can try to profile them

automatically. If the overhead of such profiling is too big, you can

randomly profile only a part of the pool. For example, pick 10%

of the servers and profile them for 30 seconds, then pick another

10%, and so on. You can play with the exact numbers and get a

profile snapshot at the moment the problem reproduced (maybe

it will not be on the first try). The randomized approach helps to

reduce the profiling overhead on your production system.

Try to come up with your ways to automate routine. You should manually do only

work that cannot be automated and requires creativity. If a series of performance

investigations has common parts, you should try to automate these parts. It allows saving

the time of developers and simplifying the investigation process for people who don’t

have distinctive performance skills.

Chapter 5 performanCe analysis and performanCe testing

272

 Summing Up
Let’s summarize. Our main problem: sometimes we have performance degradations.

If we understand what “performance degradation” means well, we can try to prevent

accidental performance degradations (Goal 1). Unfortunately, we can’t prevent all of

them, so we want to detect not-prevented degradations in time (Goal 2) and detect other

kinds of performance problems (Goal 3). We also want to reduce Type I error (false

positive: there are no degradations, but we detect “fake” problems) rate (Goal 4) and

Type II error (false negative: nondetected degradations) rate (Goal 5). Everything that

can be automated should be automated (Goal 6).

Now we know our problems and goals. It’s time to learn what kinds of performance

tests we can choose.

 Kinds of Benchmarks and Performance Tests
There are many kinds of approaches that can be used as performance tests. In this

section, we briefly discuss some of them:

• Cold start tests: situations when we care about startup time

• Warmed-up tests: situations when an application is already running

• Asymptotic tests: tests that try to determine the asymptotic

complexity (e.g., O(N) or O(N^2))

• Latency and throughput tests: instead of asking “How much time

does it take to process N requests?”, we ask “How many requests can

we process during a time interval?”

• Unit and integration tests: if you already have some usual tests

(which are not designed to be performance tests), you can use the

raw durations of these tests for performance analysis

• Monitoring and telemetry: looking at the production performance

in real time

• Tests with external dependencies: tests that involve some part of the

external world that we can’t control

Chapter 5 performanCe analysis and performanCe testing

273

• Other kinds of performance tests: stress/load tests, user interface

tests, fuzz tests, and so on

All of these kinds can be applied not only for performance testing but also for regular

benchmarking. Let’s start with the cold start tests.

 Cold Start Tests
There are different kinds of cold start test depending on which part of your software

environment is cold. Here is a list of some of the cold start levels:

• Method cold start

When you run a method for the first time, a lot of time-consuming

things may happen on different levels: from JIT compilation

and assembly loading on the runtime level to some first-time

calculations for static properties on the application logic level.

• Feature cold start

Difference between cold and warm time for a method can be

negligibly small. However, it can be noticeable when we are

talking about thousands of methods and many assemblies.

Because of that, a user can experience delays when he or she

launches a feature for the first time (especially if this feature

involves tons of methods that were not invoked before).

• Application cold start

Startup time is important for many kinds of applications. And

it’s definitely crucial for desktop and mobile applications. The

perfect situation is a situation when the user instantly gets a ready

application after a double-click on a shortcut (or launching it any

other way). Any delay can make him or her nervous. Imagine a

situation when you should quickly make a few edits in a file. You

open it in your favorite text editor and… . And you have to wait a

few seconds until the text editor is initialized. If you edit files often

and close the editor each time, these few seconds can be irritating.

Chapter 5 performanCe analysis and performanCe testing

274

For some people, startup time is critical; they might prefer a pure-

featured text editor that starts instantly over a full-featured text

editor that starts in a few seconds.

• OS cold start

If your benchmark interacts with different OS resources, a physical

restart can be required for a cold start test.

• Fresh OS image

Sometimes it’s not enough to reboot the operating system; we

may need a fresh image of the system. The old test runs can make

any changes on the disk that can be important for subsequent

launches. For example, Rider uses a pool of TeamCity agents

for running hundreds of build configurations with tests every

day. TeamCity refreshes the agent images once per several

days: then the fun begins. Sometimes, we have a significant

performance difference between the last (warmed) test run

on the old image and the first (cold) test run on the new image

(without any changes in the source code base). We don’t use a

fresh OS installation each time, because such approach has a

huge infrastructure overhead and the described problems are not

frequent.

Let’s try the following exercise. Take a machine with installed Windows and restart

it. Open a video file with your favorite movie in your favorite video player, watch the

movie, and close the player. Next, run the RAMMap4 utility (a part of the Sysinternals suite).

This utility allows performing advanced physical memory usage analysis and provides

many low-level details. Check out the “Standby” category for “MappedFile” on the “Use

Counts” tab (we will discuss all these categories in Chapter 8); the memory usage should

be huge. Next, open the “File Summary” tab and sort all files by the “Standby” column.

Now find the file with the movie on this tab. You should see a huge amount of “Standby”

memory for it (you can see my RAMMap instance in Figure 5-1).

4 https://docs.microsoft.com/en-us/sysinternals/downloads/rammap

Chapter 5 performanCe analysis and performanCe testing

https://docs.microsoft.com/en-us/sysinternals/downloads/rammap

275

How is this possible? We closed the player; there are no more applications that use

this file. Why do we see it in RAMMap? And what does “Standby” mean?

You can imagine the “Standby” category as a memory cache. After closing the player

(which loaded the whole movie file into main memory), there is no need to clear the

memory instantly. We can mark this memory as “free” (thus, you will not see it in the Task

Manager as a part of “usual” memory) and clear it later when another application asks for

additional memory allocation. However, if we decide to watch the movie again, the video

Figure 5-1. RAMMap shows huge “Standby” memory use for closed file

Chapter 5 performanCe analysis and performanCe testing

276

player can reuse the file from the “Standby” list. The startup will be faster because we

don’t have to load the file into memory again. On the one hand, it’s great: we have better

performance for all player launches except the first one. On the other hand, it’s harder

to write a performance test or a benchmark for the player cold start. In this specific case,

you can manually clear the “Standby” list.5 However, it’s hard to track all the resources

that can be reused in the general case and manually clear these resources each time. The

system reboot is a universal way to achieve a sterile environment for an honest cold start.

When you run a performance test (or a benchmark) for cold start, you should clearly

understand what exactly should be “cold.” In most cases, you have to restart the whole

application or even reboot OS before each iteration. This is not always an acceptable

way (because each iteration takes too much time), so programmers are looking for other

solutions that allow making the environment cold without “heavy” restarts. For example,

you can clear OS resources via native API instead of OS restarting or perform each

method invocation in a new AppDomain instead of restarting the application.

 Warmed Up Tests
It’s always hard to write cold start tests because it’s impossible to run several iterations

in a row: you have to restart the whole application (or even the operating system) before

each iteration. It’s much easier to write warmed-up tests, and it’s more popular because

in many applications (especially for web services), you usually don’t need to care how

long startup takes; the performance of a warmed application is more interesting.

However, correct warmed-up tests also require some preparation. The most

important thing is the absence of side effects: all iterations must start from the same

state. Unfortunately, most of the benchmarks spoil the environment, so the environment

has to be recovered. There are several common ways to achieve it.

State recovering in Setup/Cleanup methods Let’s say that we want to benchmark

the List<int>.Sort() method:

void ListSortBenchmark()

{

 list.Sort();

}

5 In the RAMMap utility, open the “Empty” menu and click on “Empty Standby List.” In this menu,
you can clear other memory lists as well.

Chapter 5 performanCe analysis and performanCe testing

277

Regardless of the initial state, the list will be sorted after the first iteration. It’s not

interesting to perform benchmarking of sorting of a sorted list. Thus, we have to choose

the “reference initial state” that should be recovered after each iteration. Let’s say that

the initial state is a reversed array. Here is an example of the setup method:

void IterationSetup()

{

 for (int i = 0; i < list.Count; i++)

 list[i] = list.Count - i;

}

It solves the “recovered state problem,” but now we have another problem: the

IterationSetup method should be invoked before each benchmark call; it can affect the

measurements. Usually, we write code like this with IterationCount iterations:

var stopwatch = Stopwatch.StartNew();

for (int i = 0; i < IterationCount; i++)

{

 ListSortBenchmark();

}

stopwatch.Stop();

long sum = stopwatch.ElapsedMilliseconds;

long average = sum / IterationCount;

Now we have to call IterationSetup() before each iteration. We can write it as

follows:

var stopwatch = Stopwatch.StartNew();

for (int i = 0; i < IterationCount; i++)

{

 IterationSetup(); // Setup inside measurements

 ListSortBenchmark();

}

stopwatch.Stop();

long sum = stopwatch.ElapsedMilliseconds;

long average = sum / IterationCount;

Chapter 5 performanCe analysis and performanCe testing

278

In this case, the duration of IterationSetup() will be included in

ElapsedMilliseconds and increase the average time (the setup method can be heavy

and take a lot of time). It’s better to exclude IterationSetup() from the measurements:

long sum = 0;

for (int i = 0; i < IterationCount; i++)

{

 IterationSetup(); // Setup outside measurements

 var stopwatch = Stopwatch.StartNew();

 ListSortBenchmark();

 stopwatch.Stop();

 sum += stopwatch.ElapsedMilliseconds;

}

long average = sum / IterationCount;

Such approach can be fine for macrobenchmarks (if we sort tons of elements),

but in the case of microbenchmarks (let’s say list.Count < 100), we can get big

errors because of these interrupts between stopwatch measurements. In Chapter 2,

we discussed that we should use many iterations for microbenchmarks because the

Stopwatch resolution is not enough to handle nanosecond operations: if we try to

measure the duration of a single ListSortBenchmark call, the ElapsedMilliseconds will

have an inaccurate value. In the preceding example, the loop multiplies the error instead

of reducing it! Moreover, IterationSetup calls between measurements can produce

additional side effects. For example, if this method allocates memory, it can cause a

sudden garbage collection during the measurements.

In such cases, it can be useful to evaluate the overhead separately. For example, we

can write something like this:

public void SetupRunCleanup()

{

 Setup();

 Run();

 Cleanup();

}

Chapter 5 performanCe analysis and performanCe testing

279

public void SetupCleanup()

{

 Setup();

 Cleanup();

}

Next, you can get Duration(Run) as Duration(SetupRunCleanup) -

Duration(SetupCleanup). This trick is not always successful (especially if Setup and

Cleanup allocate many objects and have complex performance distributions), but it

usually works for simple cases.

Another factor that can affect the benchmark is the CPU cache. The effect of this

cache on the program is simple: the recently read data can be read much faster than

data that hasn’t been read by anyone for a long time. In ListSortBenchmark, we should

choose the optimal strategy for the CPU cache state. When you sort the array for the

first time, CPU loads the list content (or a part of the list in the case of a huge list) into

the cache. Next iterations will be faster because we already have the elements (or some

of the elements) in the cache. Here we should choose between a cold and a warm state

for it. The decision depends on how you are going to use the Sort method in the real

application. If you work with elements before sorting, you get a warm list: everything

is OK with the benchmark because it also uses the warmed list. If you don’t touch

the elements before sorting, you get a cold list in real life. In this case, the benchmark

requires cache invalidation in the setup method as well (we will discuss how to do it in

Chapter 7).

Preparing many “initial” states in advance If we have enough memory and a

small number of iterations, we can prepare several instances of the benchmark input in

advance. Let’s say that we are going to run IterationCount iterations (it’s a constant)

with lists of equal size ListSize (it’s also a constant). In this case, we can create an array

of lists and fill all the list instances with the same data:

private List<int>[] lists = new List<int>[IterationCount];

public void GlobalSetup()

{

 for (int i = 0; i < IterationCount; i++)

 {

 lists[i] = new List<int>(ListSize); // All lists have the same size

Chapter 5 performanCe analysis and performanCe testing

280

 // And the same "reversed" elements:

 for (int j = 0; j < ListSize; j++)

 lists[i].Add(ListSize - j);

 }

}

Next, we take a new list for each iteration:

public void ListSortBenchmark()

{

 var stopwatch = Stopwatch.StartNew();

 for (int i = 0; i < IterationCount; i++)

 lists[i].Sort(); // We use lists[i] instead of the same list instance

 stopwatch.Stop();

 long sum = stopwatch.ElapsedMilliseconds;

 long average = sum / IterationCount;

}

The approach also has its own problems. Given how those lists are created, there is

a high tendency for those objects to live in approximate sequential memory; therefore

all the CPU cache pollution is not enough to not skew the results. A better approach

for that kind of test is to create all the lists and ensure that the amount of memory used

by those is higher by at least 10× the maximum size of the CPU total cache available.

Then we should create another list with a random uniform distribution of numbers and

iterate over that list to get the indexes. As you are always running the same sequence,

the memory effects would be reduced to the index list (therefore diminishing its impact

on the benchmark results) and at the same time ensuring a uniform distribution cache

pollution. We will discuss more details about this topic in Chapter 8.

State recovering inside a benchmark We already discussed a similar problem in

Chapter 2 (the “Unequal Iterations” section) when we tried to benchmark the List.

Add method. This method has a side effect: we have the different number of elements

before and after the List.Add invocation. When the list capacity is not enough for an

extra element, the next List.Add call will cause the internal array resizing, which takes

too much time and spoils the results. If we want to write a repeatable benchmark, all side

effects should be annihilated. One of the possible solutions is to benchmark the List.

Add/List.Remove pair:

Chapter 5 performanCe analysis and performanCe testing

281

public void AddRemoveBenchmark()

{

 list.Add(0);

 list.RemoveAt(list.Count - 1);

}

Is this a good solution? The answer depends on what you actually want to achieve.

Consider several possible goals:

• We want to know the duration of list.Add.

Actually, we want to gain knowledge of the list.Add duration and

use it for solving a real problem (e.g., writing a fast algorithm). The

solution of the problem is our “true” goal, but not the knowledge

itself. This is important because the correct way to benchmark

list.Add depends on how you are going to use it.

• We want to add many elements in a list and want to know how much

time does it take.

In this case, we probably have to benchmark the addition of N

elements instead of a single one. Remember that not all of the Add

calls are equal: some of them can produce resizing of the internal

array. You can play with the initial state, the initial capacity, the

number of elements, and so on. If you want to know the duration

of the adding of N elements, you should benchmark this. The

performance cost of a single Add is useless for you because you

can’t multiply it by N (in the general case) to get the result.

• We are going to make a few edits in the Add implementations and

check for performance improvements/degradations.

Any performance changes in the Add method will also affect

the performance of the Add/RemoveAt pair. It will be hard to say

something about how much the edits affect the Add method

(quantitative changes), but we can say is it better or worse

(qualitative changes). Also, we still have to check cases with the

resizing of the internal array carefully.

Chapter 5 performanCe analysis and performanCe testing

282

• We are going to use a list as a stack (with Push/Pop operations) with

the known maximum capacity and want to know the duration of the

“average” operation.

In this case, the Add/RemoveAt benchmark is a great solution

because there is no difference between Add and RemoveAt here: we

have to measure these methods together.

As you can see, everything depends on the goal. There are many ways to use quick

operations like list.Add, but the algorithm performance depends on how you use

it. Typically, you can’t get the “reference” operation duration, because this duration

depends on the use case. Always ask yourself: why do you want to get knowledge about

method performance? How are you going to use this method?6 If you answer these

questions first, it will help you to design a good benchmark and decide when you need a

cold start test and when you need a warmed-up test (or a combination of the two).

 Asymptotic Tests
Sometimes it’s impossible to run all tests on huge data sets. But we can run them on

several small data sets and extrapolate the results.

Let’s consider an example. In IntelliJ IDEA, there are a lot of code inspections (as in

any IDE). From the user’s point of view, an inspection is a logic that shows a problem

with your code (from compilation errors and potential memory leak to unused code and

spelling problems). From the developer point of view, an inspection is an algorithm that

should be applied to the source code. Different algorithms are independent and don’t

affect each other. When IntelliJ IDEA analyzes a file, it applies all inspections to each file.

Since there are so many inspections, they should be efficient. Even a single nonoptimal

inspection could be a reason for performance problems in the whole IDE.

Well, how should we choose which inspection is “nonoptimal”? There is a simple

rule: a proper inspection should have an O(N) complexity where N is the file length. If the

inspection complexity is (N^2), we will get a performance problem with huge files.

Thus, our metric here is not time; it’s the computational complexity. This approach

has a couple of important advantages:

6 If you have several possible use cases, you have to consider all of them.

Chapter 5 performanCe analysis and performanCe testing

283

• Portability

Results almost always don’t depend on hardware: we should get

the same result on slow and fast computers.

• Benchmarks take less time

The inspection performance impact can be noticeable only in

huge files. There are hundreds of inspection; we have to wait too

long until we benchmark each inspection on each huge file from

the test data. The asymptotic approach allows getting reliable

results in less time. We can apply an inspection to a few small

files, measure the analysis durations, and calculate the asymptotic

complexity. Thus, we can check that the the inspection works fast

enough without using huge files.

It also has two important disadvantages:

• Many iterations

We can’t build a regression model with one or two iterations. We

have to run many iterations if we want to build a reliable model

that produces correct results.

• Complicated implementation

It’s not easy to build a good regression model. If you are lucky

enough, your performance function is polynomial. If you are not

lucky, the performance function can’t be approximated by an

analytic function. Even if the function type is known (and you

have only to find the coefficient), it’s not always easy to build such

model with a small error.

Thus, asymptotic analysis is not a silver bullet for all kinds of benchmarks, but it

can be extremely useful when we want to get measurements for huge input data and we

don’t want to wait too long.

 Latency and Throughput Tests
There are many ways to benchmark the same code. The final conclusions depend on the

question we want to answer and the metric that we use. Let’s say that we process some

requests. It doesn’t matter what kind of requests we have and how we process them.

Chapter 5 performanCe analysis and performanCe testing

284

Consider a couple of questions (and corresponding metrics) that we can use in this

situation.

• (A) “How much time (T) do we need to process N requests?”

The metric here is the latency of processing of N requests (the time

interval between the start and end of processing).

• (B) “How many requests (N) can we process in the fixed time interval T?”

The metric here is the processing throughput. Such case is also

called capacity planning or scalability analysis.

These metrics may sound too abstract. Let’s look at a code sample that measures

each metric. The full infrastructure for measurements can be huge; we will look only at

small and simple benchmarks to illustrate the idea.

• (A) In the first case, N is fixed. Thus, we have to do N iterations and

measure the time between start and finish:

// Latency

var stopwatch = Stopwatch.StartNew();

for (int i = 0; i < N; i++)

 ProcessRequest();

stopwatch.Stop();

var result = stopwatch.ElapsedMilliseconds;

• (B) In the second case, T is fixed. We don’t know how many requests

can we process, so we will process requests until the time is over. In

real life, it’s typically complicated multithreaded code, but we can

write a very simple single-threaded benchmark:

// Throughput

var stopwatch = Stopwatch.StartNew();

int N = 0;

while (stopwatch.ElapsedMilliseconds < T) {

 N++;

 ProcessRequest();

}

var result = N;

Chapter 5 performanCe analysis and performanCe testing

285

If we have a linear dependency between N and T, there is no difference between

these approaches. However, the difference can be huge if the dependency is nonlinear.

Let’s say that we know the exact formula for T(N):

T N C N() = ()·log ,2

where C is a constant. The initial value for C was 2, but after a refactoring,

it has become 4. You can see the T values for both cases and different N

(32,64,128,256,512,1024) in Table 5-1.

Table 5-1. T = C · log2(N) Dependency for C=2 and C=4

N log2 (N) TC = 2 TC = 4

32 5 10 20

64 6 12 24

128 7 14 28

256 8 16 32

512 9 18 36

1024 10 20 40

Imagine that a manager asks you about the performance drop: “How much slower

does it work now”? Further, imagine that he or she is not a very good manager and

doesn’t want to hear anything about nonlinear dependencies and logarithms7; you

should provide a single number as an answer.

Let’s calculate the answer for both cases.

• (A) Let’s check how much time (T) it takes to process N = 1024

requests. When C = 2, T = 20sec. When C = 4, T = 40sec. The

performance drop is 40sec/20sec or 2x.

7 Of course, not all managers behave like this. Many of them are great people with strong
professional skills who are deeply involved in the development process. Unfortunately, our
hypothetical manager is not one of them.

Chapter 5 performanCe analysis and performanCe testing

286

• (B) Let’s check how many requests (N) we can process in T = 20

seconds. When C = 2, N = 1024. When C = 4, N = 32. Performance

drop is 1024/32 or 32x.

So, what’s the answer? 2x or 32x? Well, there is not one single correct generic answer.

If you want to describe a situation in a general case, you should provide the model

(T = C · log2(N) in our case) as an answer. If you want to describe a specific case, you

should clearly define the case.

Usually, the target metric depends on your business goals. If the business goal is

“Process N = 1024 requests as fast as possible,” you should use the “latency approach”

(A). If the business goal is “Process as many requests as possible in T = 20sec,” you

should use the “throughput approach” (B). If you have other business goals, you

should design a set of benchmarks or performance tests that correspond to your goals.

“Correspond” means that you measure the target case and use the correct set of metrics.

If you look at Table 5-1, you may think that capacity planning (the “throughput

approach”) is similar to asymptotic analysis. This is not always true. Asymptotic analysis

requires several measurements for building the performance model. Capacity planning

can be implemented with a single measurement. However, you can use asymptotic

analysis for capacity planning: the knowledge of T values for N = 32, … , 1024 allows

predicting T for huge N like 2048, 4096, 8192, and so on without actual measurements.

 Unit and Integration Tests
Some people are afraid of performance testing because it looks too complicated: they

should make a lot of preparation (especially for cold/warm/stress tests), choose correct

performance metrics, probably do some tricky math (especially for asymptotic analysis),

and so on. I have some good news: if you have “usual” integration tests, you can use

them as performance tests! There are many kinds of test classifications. In this book,

we will use the term “integration test” for all not-unit tests: functional tests, end-to-

end tests, component tests, acceptance tests, API tests, and so on. The main property

of such tests that is important for performance testing is duration: the integration tests

usually work much longer than instant unit tests. In fact, you can use any of your tests

(even “usual” unit tests), which takes a noticeable amount of time (let’s say more than

ten milliseconds). If a test takes several microseconds or nanoseconds, we can’t use it

“as is” because the natural errors are too big; we have to transform such tests into “true”

benchmarks. If a test takes more than ten milliseconds (or even several seconds or

Chapter 5 performanCe analysis and performanCe testing

287

minutes, it’s much better), we can try to use it as a performance test without additional

modifications.

It may sound strange because we don’t control accuracy for such tests, we don’t do

many iterations, we don’t calculate statistics, and we don’t do anything that we usually

do in benchmarking. These tests were designed to check the correctness of your program,

not performance. It seems that raw duration of unit and integration tests can’t be used in

performance analysis.

To me, it sounds strange to have so many performance data and don’t use it. Yes,

errors are huge, accuracy is poor, results are unstable, everything is terrible. But this

doesn’t mean that we can’t try to use it. In performance tests, every iteration is expensive

because it consumes the CI resources and increases our waiting time. From the

practical point of view, a good suite of performance tests is always a trade-off between

accuracy and the total elapsed time. The unit and integration tests will be executed

anyway because we have to check the correctness of the business logic. We will get the

duration of these tests anyway without additional effort. It’s also a performance data.

Moreover, it’s a performance data that we have for free. If it’s possible to get some useful

information from this data (somehow), we should definitely do it!

A few words about terminology for the rest of this section. We can’t use the term

“performance test” anymore because now we consider all tests as performance tests. In

the context, we introduce a few additional terms (they’re not official terms, but we will

use them for a while):

• Explicit performance tests

These tests were designed to evaluate performance. Explicit tests

may require special hardware and tricky execution logic (with

warm-up, many iterations, metrics calculation, and so on). The

result of such test is a conclusion about performance (like “the

test works two times slower than before” or “the variance is too

huge”).

• Implicit performance tests

These tests are “usual” tests that are designed to check logic. Each

run of such tests has a duration, its performance number, which

we get as a side effect. The result of such a test is a conclusion

about correctness (green status for correct logic and red status for

incorrect logic). “Implicit performance tests” means that these

Chapter 5 performanCe analysis and performanCe testing

288

tests are not designed as performance tests, but we still can use

them as such.

• “Mixed” performance tests

It may sound obvious, and we will not discuss such tests in detail,

but I still have to highlight this idea: you can check logic and

performance at the same time. For example, we can write a huge

integration stress test that covers the most performance-critical

pieces of our code. Such a test can check that everything works

correctly even under load (some race conditions can appear in

such situations) and that we don’t have a performance regression

in such a case.

Now we know that we can use both explicit performance tests (which are designed

to measure performance) and implicit performance tests (which are designed for

something else, but we can still use them as performance tests). However, there is a

huge difference between them. Let’s compare explicit and implicit performance tests by

several factors:

• Persistent CI agent

When we measure performance, it’s a good idea to run

performance tests on the same hardware each time. It’s very hard

(or sometimes impossible) to evaluate the performance impact

of your changes when you compare the “before” performance

data from one agent with the “after” data from another agent.

It’s always better to have persistent CI agent (or set of agents) for

explicit performance tests. This is not mandatory, but it’s highly

recommended. In case of implicit performance tests, there is no

such requirement8; they should work correctly on any agent.

8 Of course, there are exceptions to anything. Implicit performance tests may require some
special environment like a specific operating system, a specific amount of memory, a specific
drive (HDD or SSD), or even a specific processor model. With such tests, we can check many
statements like “The program shouldn’t crash if we have only 2GB of RAM” or “If a processor
doesn’t support SSE 4.1, we should use an old slow algorithm instead of our default fast
algorithm, which uses modern processor instructions.”

Chapter 5 performanCe analysis and performanCe testing

289

• Virtualization

Virtualization is a great invention that helps us to organize a

flexible cloud infrastructure. However, a virtual environment is a

poison for the accuracy of explicit performance tests. You never

know who else is running benchmarks on the same hardware

at the same time. Explicit performance tests usually require a

dedicated real (not virtual) agent. Implicit performance tests

should work correctly in any environment.9

• Number of iterations

Most explicit performance tests require several iterations.

Remember that performance of a method is not a single

number; it’s a distribution. We can’t evaluate errors and build a

confidence interval if we have only one iteration. And we can’t

compare two revisions if we don’t know errors and variance. Of

course, sometimes a test can be too expensive (it consumes too

much time), so you can’t afford to run it several times. Implicit

performance tests typically need only one iteration.10

9 This is not always true. An example: there are many paid desktop programs with a trial period.
This means that you can use a program for free at the beginning (let’s say for 30 days). After
that, you need to pay if you want to continue. Of course, smart rogues found a workaround: they
install the program on a virtual machine, use it for 30 days, and create a new virtual machine
with a new trial period. Developers often try to protect their programs from such exploits. The
obvious solution is to prohibit running the program on virtual machines. Thus, they should
implement a method that checks if the environment is virtual, and they should write tests for this
method. The only way to check this logic is to run these tests in different virtual environments or
without it.

10 This is also not true. A simple example: we have a race condition in a test which fails our test in
1% of the cases. If we run a test only once, it can pass; on the CI server, such a test will be flaky
because it can switch its status from green to red without any changes or reasons. A simple
solution: we can run such test (with potential race conditions) 100 times. If it’s a flaky test, it
should fail after 100 iterations with a good probability.

Chapter 5 performanCe analysis and performanCe testing

290

• Writing easiness

It’s easy to write implicit performance tests.11 I mean that every

method which somehow calls your code can be a test. Different

teams have different standards of coding, but most of them agree

that the source code should be covered by tests. Some good

development practices require writing tests (e.g., before writing

a bug fix, you should write a red test for this bug and make it

green with your fix). Typically, you get tests as an “artifact” of the

development process. You write tests because it will simplify your

life in the future and make you more confident in the quality of

your code. Most of the unit tests are deterministic: a test is red,

or a test is green. Moreover, it’s usually obvious when a test is

green. If you are writing a method Mul(x,y) that should multiply

two numbers, you know the expected output. Mul(2,3) should

be 6. Not 5, not 7; there is only one correct answer: 6. When we

are writing explicit performance tests and making performance

asserts, it’s always complicated. For example, yesterday Mul took

18 nanoseconds; today it takes 19 nanoseconds. Is it a regression

or not? How should we check it? How many iterations do we

need? How should we evaluate errors? And the most important

question: is the test red or green? If you have clear answers to

all questions about performance asserts, ask your teammates

about it. Are you sure that you have the same point of view? It’s so

hard to write performance tests because there are no strict rules

here. You should come up with your own performance asserts

that satisfy your performance goal. It’s hard because there is no

“absolute green status,” and there is no single “correct” way to

write “performance asserts.” There are only trade-offs.

11 I confess: There are many footnotes in this section in which I tried to deceive you. I just tried
to show that there are always exceptions. However, I’m not going to explain all exceptions for
each case, as there are too many of them. In this book, I’m trying to show only general ideas,
principles, and approaches. It’s tough to write about performance testing because for each
example, there are so many counterexamples. For each situation in which a particular fact works
well, there are hundreds of situations in which this same fact won’t work. If you see a sentence
and you don’t agree with it, imagine that there is a footnote with additional explanations.

Chapter 5 performanCe analysis and performanCe testing

291

• Time of execution

Speaking of trade-offs, the most interesting one is between

accuracy and the execution time. Performance tests wouldn’t be

so fun if we had unlimited amount of time. I wish I could perform

billions of iterations for each of my benchmark or performance

tests. Unfortunately, the world is cruel, and we don’t have such

opportunities. There is the natural upper limit for the total execution

time of a test suite. It can be 10 seconds, 10 minutes, 2 hours, or 5

days: it depends on your workflow. But you have this limit anyway;

you can’t spend months and years for a single suite run. It would

be great if you could run all of your performance tests during a

few hours. If the total time is limited and you have too many tests,

you can afford the only small number of iterations. It can be 100

iterations, or 10 iterations, or even a single iteration. And sometimes

you have to deal with this single iteration. Implicit performance tests

should be as fast as possible, there is no reason (typically) to repeat

the same thing over and over. In the case of the explicit performance

tests, each additional iteration can increase the accuracy. Of course,

there is a “desired” level of accuracy and a “recommended” number

of iterations. Usually, it doesn’t make sense to “pay” for additional

iterations by execution time after that point.

• Variance and errors

Since the explicit performance tests are designed to get reliable

performance results, we do everything to stabilize them: use real

dedicated hardware, make many iterations, and calculate statistics.

In case of the implicit performance tests, we (typically) don’t care

about variance and errors: we can run it inside a virtual machine,

we can choose a new CI agent each time, we can always do only one

iteration, and so on. Variance and errors are typically huge.

Well, does it make any sense to analyze the performance of “usual” tests (a.k.a. implicit

performance tests) if it’s so unstable? A general answer: it depends. A more specific answer:

you will never know if you don’t try. In the “Performance Anomalies” section later in this

chapter, we will discuss many approaches that can be easily applied to implicit performance

tests. When you work with a huge code base, it’s impossible to cover all methods by

Chapter 5 performanCe analysis and performanCe testing

292

performance tests: you don’t have enough time and resources. However, if someone made

a simple mistake (most of the mistakes are simple) and get a huge performance regression

(most of the regressions due to simple mistakes are huge), you can easily catch it with your

“usual” unit and integration tests (if you use them as implicit performance tests).

 Monitoring and Telemetry
In this subsection, we will talk about two additional and interesting techniques of

performance analysis:

• Monitoring

Monitoring is a typical solution for web servers: we can watch

for life indicators of the server with the help of special tools like

Zabbix12 or Nagios.13

• Telemetry

Telemetry is a widely used technology in software development14

that allows collecting information on the usage of user

applications. Such data is typically anonymous and doesn’t

include any sensitive information. However, it can include

important information about the performance of different

operations. While usual monitoring is a great approach for web

services, telemetry is our main “monitoring” tool for desktop

applications (however, it can also be useful for the client side of

web services). There is an existed API for telemetry by Microsoft,15

but we can implement our own set of tools.

For example, Mozilla Firefox collects data16 about memory usage

and operation latencies.

12 www.zabbix.com/
13 www.nagios.org/
14 In fact, telemetry has been used since the 19th century for many different applications including

meteorology, oil and gas industry, motor racing, transportation, agriculture, and so on. Check
out the Wikipedia page for interesting examples: https://en.wikipedia.org/wiki/Telemetry

15 https://docs.microsoft.com/en-us/azure/application-insights/
app-insights-windows-desktop

16 https://wiki.mozilla.org/Performance/Telemetry

Chapter 5 performanCe analysis and performanCe testing

https://www.zabbix.com/
https://www.nagios.org/
https://en.wikipedia.org/wiki/Telemetry
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-windows-desktop
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-windows-desktop
https://wiki.mozilla.org/Performance/Telemetry

293

Of course, telemetry can include only general usage data without

any performance statistics. For example, .NET Core CLI Tools

use17 telemetry for collecting information about .NET Core SDK

usage.18 The collected telemetry datasets are open and available

for everyone, but they don’t include any information about

performance.

Strictly speaking, monitoring and telemetry are not kinds of benchmarks or

performance tests. If you look at the list of benchmarking requirements from Chapter 1,

the first requirement (and one of the most important) is repeatability. Forget about it!

Each second you have a new situation; the external world is constantly changing. It’s hard

to write performance asserts for such data, but there are a few useful approaches:

• Common trends

It’s hard to perform a precise analysis, but you can track common

trends. For example, you can compare statistics (like average,

p90, p99, and so on) of a web page load duration on the previous

week (with the previous version of your web service) and the

current week (with an updated web service version). If you see a

statistically significant difference, it’s a reason for a performance

investigation.

• Thresholds

If you have a low latency requirement for some operations, you

can introduce thresholds and send telemetry data in cases of

failure. Imagine that you develop a desktop application and

you want to keep the startup time low. Let’s say that 1 second

on modern hardware (you can collect information about the

hardware as well) is your upper limit. Of course, a user can have

some heavy processes running at the same time, so let’s say that

the threshold is 2 seconds. If the startup time is more than 2

seconds, a telemetry alarm should be sent. Probably, you will get

a few such alarms every day because you can’t control the user

17 https://docs.microsoft.com/en-us/dotnet/core/tools/telemetry
18 This feature is enabled by default, but you can disable it with the DOTNET_CLI_TELEMETRY_
OPTOUT environment variable.

Chapter 5 performanCe analysis and performanCe testing

https://docs.microsoft.com/en-us/dotnet/core/tools/telemetry

294

environment. However, if you start getting dozens or hundreds

of such alarms after the publishing of a new version, you have an

issue for investigation.

• Manual watching

It’s hard to predict all the things that can go wrong. It’s even harder

to automate the analysis of performance plot and write a system

that automatically notifies us about all suspicious things. We will

talk about performance anomalies later in this chapter. Thus, it’s

a common practice when a special person (or a group of people)

are looking for performance charts. Popular services require

24/7 monitoring: in case of any problems (not only performance

problems but also availability and business logic issues), the

reaction must be immediate. Unfortunately, it’s almost impossible

to automate this process. But you can use dashboards and alarm

systems to make life easier.

 Tests with External Dependencies
Sometimes, we have a performance-critical scenario that involves something from

the external world. In this case, the final performance distribution is affected by it.

Unfortunately, we can’t control the external world. Let’s consider a couple of examples:

• External services

In Rider, we have some tests that cover NuGet features like install,

uninstall, or restore. The logic of the test is simple: we just check

that we can correctly perform these operations in small and huge

solutions. Most of the tests are using our local NuGet repository,

but some of them are using the nuget.org and myget.org servers.

The primary goal of these tests is checking that the logic is correct,

but we can also use it as performance tests. In Figure 5-2, you

can see a typical performance plot for one of our NuGet tests.

On March 22, 2018, nuget.org was down (see [Kofman 2018]).

On April 16, 2018, api.nuget.org was blacklisted in Russia.19 On

19 https://github.com/NuGet/NuGetGallery/issues/5806

Chapter 5 performanCe analysis and performanCe testing

http://nuget.org
http://myget.org
http://nuget.org
http://api.nuget.org
https://github.com/NuGet/NuGetGallery/issues/5806

295

May 6, 2018, there were some serious problems with search API

in the NuGet Gallery (see [Akinshin 2018]). We learn about these

incidents immediately because we are watching the performance

plots all the time. On the one hand, it’s hard to use such tests

for honest performance regression testing: we get false positive

results (a performance test is red, but there are no changes in the

code base). On the other hand, all these problems are relevant to

the behavior that users have in the product. It’s good to be notified

about it as soon as possible.

• External devices

Many years ago, I was involved in an interesting project. My

colleagues and I worked on a program that communicates with

OWEN TRM 138.20 This is an industrial measurement device with

eight channels that can measure different characteristics, such

as temperature, amperage, and voltage. If you connect it to eight

different points of a machine detail and measure the temperature

at these points, the program can extrapolate the data and build a

2D map of the temperature surface. Everything should work in real

time: if the user changes some connection points, the map should

be recalculated instantly. The real-time visualization was an

important feature, so we checked that the time intervals between

changes in the experimental setup and a new visualization.

Unfortunately, sometimes we experienced unpredictable delays:

OWEN TRM 138 provided data a few seconds late. Thus, it was

almost impossible to make reliable performance measurements

(because the delays were unpredictable). Eventually, we stopped

to measure the whole cycle and started to measure different

stages: fetching data, extrapolating, building an image, and so

on. It solved the problem because measurements of the device-

independent stages were pretty stable.

20 www.owen.ru/uploads/re_trm138.pdf (In Russian.)

Chapter 5 performanCe analysis and performanCe testing

https://www.owen.ru/uploads/re_trm138.pdf

296

The general advice: if you have some parts of the external world that affect your

performance and you can’t control it, try to isolate it. It’s still nice to see the whole picture

and get the performance distribution of the whole operations (monitoring/telemetry),

but you can’t build reliable performance tests on top of it. For such stages, you should

measure test stages that you can control (without any interaction with the external world).

 Other Kinds of Performance Tests
There is a huge number of different approaches that can be used for writing performance

tests. This section is just an overview of possible techniques; we are not going to cover

all of them. However, there are a few more performance test kinds that are worth

mentioning: stress/load tests, user interface tests, and fuzz tests.

• Stress/load tests

You should always know the limitations of your software product.

Usually, it’s a good idea to cover these limitations by performance

tests. When we are talking about performance stress tests, we usually

mean integration tests. Such testing is especially useful for web

Apr 22 Apr 29 May 06 May 13 May 20

Date

500

400

300

200

100

0

Du
ra

tio
n

(s
ec

)

nuget_NuGetTest_shouldUpgradeVersionForDotNetCore

OS
Windows
Linux
macOS

Figure 5-2. Performance plot of a NuGet test in Rider

Chapter 5 performanCe analysis and performanCe testing

297

services that handle a huge number of users at the same time. A

typical mistake for server application benchmarking is focusing only

on a situation without load (we send a single request to the server

and measure the response time). In real life, you have many users

who send requests at the same time. The most interesting thing

is that the way the server process these requests depends on the

volume of these requests. Fortunately, there are existing solutions

that can help to automate this process (e.g., Apache JMeter, Yandex.

Tank, Pandora, LoadRunner, Gatling).

• User interface tests

It’s not always easy to implement a correct infrastructure for user

interface tests, because you usually can’t run it a “headless” mode;

you need a “graphical environment” for such tests. For example, in

the IntelliJ IDEA code base, there are some user interface tests that

check whether the IDE interface is responsive. In the CI pipeline,

these tests are running on dedicated agents that are connected to

physical 4K monitors.

There are also many libraries and frameworks that can help you to

automate testing of the interface in your product (e.g., Selenium).

• Fuzz tests

We already know that the performance space is complicated and

a method duration can depend on many different factors. Let’s

say that there is an algorithm that processes a list of integers

and makes some calculations. We implemented a faster version

of this algorithm and now we want to verify that it really works

faster. How should we compare them? Obviously, we can create

a reference set of lists and benchmark both algorithms on each

list from the set. Even if the new algorithm shows great results

on all these pregenerated lists, we can’t be sure that it will always

be faster than the original algorithm. What if there is a corner

case that spoils the performance of the new implementation?

Unfortunately, we can’t enumerate all possible lists of integers

and check each of them. In such cases, we can try a technique

called fuzzing. The idea is simple: we should generate random

Chapter 5 performanCe analysis and performanCe testing

298

lists until we find input which causes problems.

A very simplified version may look as follows:

for (int i = 0; i < N; i++)

{

 var list = GenerateRandomList();

 var statistics = RunBenchmark(NewAlgorithm, list);

 if (HasPerformanceProblem(statistics))

 ReportAboutProblem(list);

}

Fuzzing is a powerful approach used in different areas of software engineering. It can

be applied even for searching for bugs in RyuJIT (see [Warren 2018] for details). If we can

discover bugs in a JIT compiler that were unnoticed by developers and passed all unit

tests, we definitely can try it in benchmarking.

Here is another situation: a user complains about performance problems, you know

that these problems most likely relate to specific parameter values, but you don’t know

the exact values that cause the problems, and it’s not possible to get information about

the user setup. If you are not able to try all possible setups, you can try to find it with the

help of fuzzing.

Fuzzing can be also a part of your continuous integration pipeline: you can generate

new input data each time and check for unusual performance phenomena.

However, fuzzing has one important drawback. It breaks one of the main benchmark

requirements: the repeatability. The fuzz benchmarks are a special kind with only one

goal: to catch undesirable results. However, you still should make each run of a fuzz

benchmark repeatable by saving the input data or a random seed that is used for data

generation.

 Summing Up
There are many kinds of benchmarks and performance tests. In this section, we

discussed only some of them. To be honest, all kinds of performance tests are not exactly

kinds. They are like concepts, ideas, or approaches that you can mix in any combination.

For example, you can use asymptotic analysis for capacity planning for a web server in

the warmed state under load. Of course, you shouldn’t implement all the discussed test

categories in each product: you can select only a few of them or invent your own kinds of

performance tests relevant to your problems. The main rule is simple: you should design

Chapter 5 performanCe analysis and performanCe testing

299

such tests that correspond to the business goals and take a reasonable amount of time. If

you write some benchmarks or performance tests, you should clearly understand what

kind of problems are you going to solve. Typically, figuring out the problem takes more

than half of the time that goes into finding the solution. Based on this understanding,

you can choose the best techniques (or combinations of them) that fit your situation.

 Performance Anomalies
In simple words, a performance anomaly is a situation when the performance space

looks “strange.” What does this mean? Well, you can choose your own definition. It’s a

situation when you look at a performance plot and say: “This plot seems unusual and

suspicious; we might have a problem with it. We should investigate it and understand

why we have such plot.”

An anomaly is not a problem that should be fixed; it is a characteristic of the

performance space that you should know. All anomalies can be divided into two groups:

temporal and spatial. A temporal anomaly assumes that you have a history (a set of

revisions or commits) that is analyzed. For example, you can find a problem that was

introduced by recent changes in the source code. A spatial anomaly can be detected in a

single revision. For example, it can be based on a difference between environments or a

strange performance distribution of a single test.

In this section, we discuss some of the more common performance anomalies:

• Degradation. Something worked quickly before, and now it works

slowly.

• Acceleration. Something worked slowly before, and now it works

quickly.

• Temporal clustering. Something suddenly changed for several tests

at the same time.

• Spatial clustering. Performance results depend on a parameter of

the test environment.

• Huge duration. A test takes too much time.

• Huge variance. The difference between subsequential

measurements without any changes is huge.

• Huge outliers. The distribution has too many extremely high values.

Chapter 5 performanCe analysis and performanCe testing

300

• Multimodal distributions. The distribution has several modes.

• False anomalies. A situation when the performance space looks

“strange,” but there’s nothing to worry about here.

Each anomaly subsection has a small example with a table that illustrates the

problem. After that, we discuss the anomaly in detail and why it’s so important to detect

it. Some of the subsections also contain a short classification of the anomaly kinds.

In the last two subsections, we will discuss problems that can be solved by hunting

for these anomalies and recommendations about what can you do with performance

anomalies.

Let’s start from one of most famous anomalies: the performance degradation.

 Degradation
Performance degradation is a situation when a test works slower than before. It’s a

temporal anomaly because you detect a degradation by comparing several revisions.

An example. You can see a performance test history of a single test in Table 5-2.

Compare the performance history before and since May 20.

Table 5-2. An Example of Degradation

Day May 17 May 18 May 19 May 20 May 21 May 22

time 504 ms 520 ms 513 ms 2437 ms 2542 ms 2496 ms

Performance degradation is one of the most common anomalies. When people

talk about performance testing, one of the typical goals is to prevent performance

degradation. Sometimes it’s the only goal (before people start to explore the

performance state and discover exciting things).

There are two main kinds of performance degradations:

• Cliff

A cliff degradation is a situation when you have a statistically

significant performance drop after a commit. You can see an

example of the cliff degradation in Figure 5-3.

Chapter 5 performanCe analysis and performanCe testing

301

• Incline

An incline degradation is a situation when you have a series of

small performance degradations. Each degradation can’t be

easily detected, but you can observe a performance drop when

you look at the history for a period. For example, your current

performance can be 2 times worse than a month ago, but you

can’t point to a commit that ruined everything because there are

too many commits with a small performance impact. You can see

an example of the incline degradation in Figure 5-4.

Figure 5-3. Performance anomaly: cliff

Chapter 5 performanCe analysis and performanCe testing

302

Of course, it’s not always easy to say whether you have a cliff degradation, an incline

degradation, a mix of them, or whether you have a degradation at all. However, the

difference between the cliff and the incline is important because it affects when and

how you are going to detect a degradation: the cliff can be detected on a specific commit

(even before a merge), and the incline can be detected during the retrospective analysis.

 Acceleration
Performance acceleration is a situation when a test works faster than before. It’s a

temporal anomaly because you detect acceleration by comparing several revisions.

An example. You can see a performance test history of a single test in Table 5-3.

Compare the performance history before and since April 08.

Figure 5-4. Performance anomaly: incline

Chapter 5 performanCe analysis and performanCe testing

303

It’s very important to distinguish expected and unexpected accelerations:

• Expected accelerations

An expected acceleration is a good anomaly. For example, you

make an optimization, commit it, and see that many tests work

much faster now. There’s nothing to worry about! However, it still

makes sense to track such anomalies because of the following

reasons:

 – Tracking optimization impact

Even if you are sure that the optimization works, it still makes

sense to verify it. Of course, you should perform local checks

first, but it’s better to have several verification stages: it reduces

the risk that a problem can go unnoticed. Also, you get a better

overview of the features that were improved.

 – Team morale

However, tracking such acceleration can be good for morale in

your team. When you implement a feature, you instantly see

the result of your work. When you fix performance problems

all the time, it can be demoralizing due to lack of feedback.21

People should see a positive impact of their work. A single

performance plot with significant performance improvements

can make a developer very happy.

• Unexpected accelerations

An unexpected acceleration is always suspicious. You can meet

a lot of developers who can say something like the following:

21 If something works slowly, users often complain about it all the time. Typically, if something
works fast enough, nobody tells you about it.

Table 5-3. An Example of Acceleration

Day Apr 05 Apr 06 Apr 07 Apr 08 Apr 09 Apr 10

time 954 ms 981 ms 941 ms 1 ms 2 ms 1 ms

Chapter 5 performanCe analysis and performanCe testing

304

“I didn’t change anything, but now the software works faster.

Hooray!” Unfortunately, an unexpected speedup can often

mean a bug. I had observed many situations when a developer

accidentally turned off a feature and got a performance

improvement. Such situations can pass all the tests, but you

can’t hide them from the performance plots! Investigations of

unexpected accelerations don’t help you with performance, but

they can help you to find some bugs.

 Temporal Clustering
Temporal clustering is a situation when several tests have significant performance

changes at the same time. It’s a temporal anomaly because you detect it by comparing

several revisions.

An example. You can see a performance test history of three tests in Table 5-4.

Compare October and November results for Test1 and Test2.

Table 5-4. An Example of Temporal Clustering

Day Oct 29 Oct 30 Oct 31 Nov 01 Nov 02

test1 1.4 sec 1.3 sec 1.4 sec 2.9 sec 2.8 sec

test2 4.3 sec 4.2 sec 4.4 sec 8.8 sec 8.7 sec

test3 5.3 sec 5.3 sec 5.4 sec 5.4 sec 5.3 sec

One of the performance testing goals is automation. A simple “you have a problem

somewhere here” is a good thing, but it’s not enough. You should provide all data that

can help to investigate the problem quickly and easily.

One of the ways to do it is by tracking the grouped changes. If you get 100 tests with

problems after a change, it doesn’t mean that you should create 100 issues in your bug

tracker and investigate them independently. It’s most likely that you have a few problems

(or only one problem) that affect many tests. Thus, you should find groups of the tests

that likely suffer from the same problem.

Chapter 5 performanCe analysis and performanCe testing

305

Let’s discuss a few possible group kinds.

• Suite degradation

Most of the projects have a test hierarchy. You can have several

projects in a solution, several test classes in a project, several test

methods in a class, and several input parameter sets for a method.

When you are looking for performance degradation or another

performance anomaly, you should try to highlight test suites22 that

share the same problem.

Let’s look at an example in Table 5-5. Here we have two suites:

A and B, three tests in each suite. We have some measurements

before and after some changes. We have different measurement

values for all tests, but some of them can be explained by natural

noise. You can note that performance delta in the B suite is not

significant: it’s about 1% (typical fluctuations for usual unit tests).

Meanwhile, we have a noticeable time increase for tests from

the A suite: around 10-18%. The fact that we got a performance

degradation for all tests of the suite at the same time is a reason to

assume that we have the same problem with the whole suite.

22 Different developers use different definitions for the term “suite.” In the context of a project or a
team, you can have a clear definition. For example, you can say that a suite is a test class that is
marked with the TestFixture attribute in a NUnit project. In this book, we use a higher level of
abstraction and say that a suite is a group of tests that have the same place in the test hierarchy.
For example, a suite can be a set of tests in a project or a single test with different sets of input
parameters (test cases).

Table 5-5. An Example of Suite Degradation

Suite Test Time (before) Time (after) Delta

a a1 731 ms 834 ms 103 ms

a a2 527 ms 623 ms 96 ms

a a3 812 ms 907 ms 95 ms

B B1 345 ms 349 ms 4 ms

B B2 972 ms 966 ms −6 ms

B B3 654 ms 657 ms 3 ms

Chapter 5 performanCe analysis and performanCe testing

306

• Paired degradation/acceleration

This is another kind of very common problem. In a suite,

you often have an initialization logic. It can be an explicit

setup or an implicit lazy initialization. In this case, you can

have a test that works slowly not because of the test logic, but

because it includes the initialization logic. Let’s look at an

example in Table 5-6. As you can see, before the change all test

methods take about 100 ms except Foo which takes 543 ms.

After the change, Foo takes 104 ms (acceleration), Bar takes

560 ms (degradation), and other tests don’t have statistically

significant changes. In such cases, we can assume that the

order of tests was changed: Foo was the first test in the suite

before the changes; after the changes, Bar is the first test.

This is not always true, but it’s a hypothesis which should be

checked. Why should we care about it? The initialization logic

should always move away from the tests to a separate method.

It’s not only a good practice, but it’s also important from the

performance point of view. A huge deviation from the setup

can hide real performance problems in the tests. Let’s do some

calculations with rounded example values. If a test takes 100

ms and a setup takes 400 ms, they take 500 ms together. If we

have a 30 ms degradation, this comprises 30% of the test time

(a significant change) and only 6% of the total time, which can

be ignored because of huge errors. If you have a setup logic

inside one of the tests, it’s not a bug, but it’s a design flaw.

Usually, it’s a good idea to get rid of it (if possible).

Chapter 5 performanCe analysis and performanCe testing

307

• Correlated changes in time series

If you can detect a correlation between two time series in your

tests, it can be interesting to check that you always have this

correlation. In Table 5-7, you can see an example of some latency

and throughput measurements. The latency is just a raw duration,

the throughput is a number of RPS. We run these tests on

different agents with different hardware, so we can’t apply “usual”

degradation analysis here. However, we can notice a pattern:

Throughput≈2 sec / Latency. For example, if Latency = 0.1

sec, we get Throughput = 2 sec / 0.1 sec = 20. This pattern

can be explained by parallelization: we have two threads on each

agent that process our requests. We can observe such patterns

on all agents except Agent4. So, we can assume that something

is wrong with parallelization here. Of course, we can detect this

problem in other ways. However, the correlation analysis helped

us to formulate a hypothesis for future investigation (something

is wrong with the Latency/Throughput) and get additional

important information (we have this problem only on Agent4).

Such facts can save a lot of investigator time because you can

collect all such suspicious patterns automatically. You can find

another example of such analysis in [AnomalyIo 2017].

Table 5-6. An Example of Suite Degradation

Test Time (before) Time (after) Delta

foo 543 ms 104 ms -439 ms

Bar 108 ms 560 ms 452 ms

Baz 94 ms 101 ms 7 ms

Qux 103 ms 105 ms 2 ms

Quux 102 ms 99 ms -3 ms

Quuz 98 ms 96 ms -2 ms

Chapter 5 performanCe analysis and performanCe testing

308

 Spatial Clustering
Spatial clustering is a situation when the performance of some tests significantly

depends on some test or environment parameters. It’s a spatial anomaly because you

detect it with a single revision.

An example. In Table 5-8, you can see average durations of three tests depend on an

operating system. Compare durations of Test1 and Test2 for Windows vs. Linux/macOS.

Table 5-7. An Example of Correlated Changes in Time Series

Day Agent Latency Throughput

Jan 12 agent1 100 ms 20.12 rps

Jan 13 agent1 105 ms 19.01 rps

Jan 14 agent2 210 ms 9.48 rps

Jan 15 agent2 220 ms 8.98 rps

Jan 16 agent3 154 ms 12.89 rps

Jan 17 agent3 162 ms 12.41 rps

Jan 18 Agent4 205 ms 4.95 RPS

Jan 19 Agent4 209 ms 5.02 RPS

Table 5-8. An Example of Spatial Clustering

Test1 Test2 Test3

Windows 5.2 sec 9.3 sec 1.2 sec

linux 0.4 sec 0.6 sec 1.4 sec

macos 0.4 sec 0.7 sec 1.2 sec

Sometimes, it’s obvious that test performance can depend on some properties of

the environment. Sometimes, it’s not obvious enough. Moreover, some external factors

can unexpectedly affect the performance only of a specific set of tests. If you check

your product on different machines with different environments, it’s a good idea to

check the difference between performance measurements for the same test in different

environments.

Chapter 5 performanCe analysis and performanCe testing

309

Let’s consider an example. The same version of ReSharper should work on different

versions of Visual Studio (VS). For example, ReSharper 2017.3 should work on VS 2010,

VS 2012, VS 2013, VS 2015, and VS 2017. The ReSharper team has a suite of integration

tests that are executed on all versions of Visual Studio. It’s not a rare situation when some

changes spoil performance only on a specific version of Visual Studio. Moreover, if we

work only with a single revision (without performance history), we can observe that

some tests work fast on VS 2010, VS 2012, VS 2013, and VS 2015 and work slowly on VS

2017. It’s a good practice to look for such situations and try to investigate them.

Another example is about Rider. Rider should work fast on all supported operating

systems. It uses .NET Framework on Windows and Mono on Linux/macOS. Most of the

tests have about the same duration on different operating systems, but some of them

demonstrate huge differences. In Figure 5-5, you can see performance measurements for

.NET Core ASP.NET MVC template (create a solution from the template, restore NuGet

packages, build it, run the analysis, and so on). As you can see in the figure, these tests

work faster on Windows than on Linux or macOS. Also, it has a huge variance, but we

will discuss it in the next subsection.

The clustering anomaly can be applied to a single revision instead of a set of

revisions. It doesn’t show problems which were introduced by recent changes, but it can

show problems that you have right now (and had for a long time).

Figure 5-5. Performance anomaly: spatial clustering

Chapter 5 performanCe analysis and performanCe testing

310

In Chapter 4, we discussed the multiple comparisons problem. This becomes a

very serious problem when we are talking about clustering. The more parameters we

consider, the more chances we have of finding a “pseudo” clustering. If you include too

many parameters in the parameter set (you can include anything from the GCCpuGroup

value and free disk space to times of day23 and the moon phase24), you will definitely find

a parameter that ostensibly affects the performance. In this case, you can try a popular

method of vector quantization from k-means clustering (e.g., see [AnomalyIo 2015]) to

neural models and machine learning (some of the cauterization methods were covered

in Chapter 4).

 Huge Duration
Huge duration is a situation when some tests take too much time. “Too much” can

be relative (much more than most of the tests) or absolute (seconds, minutes, or even

hours). It’s usually a spatial anomaly because you are looking for the slowest test per

revision.

An example. In Table 5-9, you can see examples from the top five slowest tests.

Compare the first test and the fifth test.

23 Times of day can be an essential parameter if we monitor the performance of a popular web
service.

24 In programmers’ folklore, the moon phase is the final reasonable explanation of an anomaly
when all other plausible hypotheses are rejected.

Table 5-9. Examples of Huge Duration

Place Test Time

1 test472 18.54 sec

2 test917 16.83 sec

3 test124 5.62 sec

4 test952 0.42 sec

5 test293 0.19 sec

Chapter 5 performanCe analysis and performanCe testing

311

First of all, try to answer the following questions:

• What is the maximum acceptable duration of a single test?

• What is the maximum acceptable duration of the whole test suite?

• Check out the durations of tests in your project. What is the typical

duration of the whole test suite? Find the slowest test (or a group of

the slowest tests). Is it possible to test the same thing in less time?

It’s always great when you can run all of your tests quickly. When we are talking

about usual unit tests, it’s a typical situation when thousands of tests take a few seconds.

However, the situation is worse with integration and performance tests. Sometimes, such

tests can take minutes and even hours.

If you are going to speed up the test suite, it doesn’t mean that you should implement

some crazy optimizations. There are many examples of success stories when people

significantly reduce the total test suite duration by a small change. In [Kondratyuk 2017],

a developer changed localhost to 127.0.0.1 and got a 18x speedup of a test suite. In

[Songkick 2012], the test suite time was reduced from 15 hours to 15 seconds by a series

of different improvements. In [Bragg 2017], the test suite time was reduced from 24 hours

to 20 seconds.

If the duration of the whole test suite is your pain point and affects the development

process, here are a couple of classic techniques that can minimize it:

• Run tests in parallel if possible

If you are care only about the total build time, you should try

to run tests in parallel. Be careful: in this case, you will not get

reliable performance results. Also, it’s not always possible to run

arbitrary tests in parallel because they can work with the same

static class or share resources (e.g., files on a disk).

• Replace integration tests by unit tests if possible

If you have a ready framework for integration tests, it’s usually

much simpler to write an integration test instead of a unit test.

Unit tests require some effort: you have to isolate a part of the

system correctly, mock other parts, generate synthetic data, and

so on. You typically shouldn’t do it in integration tests: the whole

system with real data is ready for your checks. However, if you

Chapter 5 performanCe analysis and performanCe testing

312

want to check only a single feature, a unit test is a recommended

way. If you run the unit tests before the integration tests, the

increased feature covering by additional unit tests can also

improve the build time: in case of failed unit tests, you can skip the

integration test phase.

 Huge Variance
Huge variance is a situation when some tests have too much variance. “Too much”

can be relative to other tests (much more than most of the tests), relative to the mean

value (e.g., mean = 50 sec, variance = 40 sec), or absolute (seconds, minutes, or even

hours). It can be a temporal anomaly (if you analyze a performance history) or a spatial
anomaly (if you analyze several iterations for the same revision).

An example. In Table 5-10, you can see durations of several invocations for the same

test and the same revision (no changes were made). Find the minimum and maximum

values.

Table 5-10. An Example of Huge Variance

InvocationIndex Time

1 2.34 sec

2 54.73 sec

3 5.15 sec

4 186.94 sec

5 25.70 sec

6 92.52 sec

7 144.41 sec

Another example from the IntelliJ IDEA test suite is presented in Figure 5-6. It’s a

stress test with a huge number of threads. It takes 100–1000 seconds on Linux/Windows

and 1000–4000 seconds on macOS.

Chapter 5 performanCe analysis and performanCe testing

313

 Huge Outliers
Huge outliers is a situation when the outliers values are too big (much bigger than the

mean value) or there are too many outlier values (e.g., significantly more than before). It

can be a temporal anomaly (if you analyze a performance history) or a spatial anomaly

(if you analyze several test iterations for the same revision).

An example. In Table 5-11, you can see durations of several invocations for the same

test and the same revision (no changes were made). Find the outlier.

Table 5-11. An Example of Huge Outliers

InvocationIndex Time

1 100 ms

2 105 ms

3 103 ms

4 1048 ms

5 102 ms

6 97 ms

Figure 5-6. Performance anomaly: variance

Chapter 5 performanCe analysis and performanCe testing

314

It’s a normal situation when you have some outlier values. However, there are

expected and unexpected outliers. To be more precise, there is the expected number

of outliers. For example, if you do a lot of I/O operations, you will definitely get

some outliers, but you will get them with the same rate for the same configurations.

Different configurations can have a different number of expected outliers. If you read

data from the disk, you will probably get different distributions for Windows+HDD

and Linux+SSD. But you usually have the same number for a fixed configuration (for

example, 10–15 outliers for 1000 iterations).

Checking the number of outlier values is a powerful technique that helps to

detect additional suspicious changes. It’s OK to have outliers, but you should always

understand why you have them.

There are several possible problems with outliers. Here are two of them:

• Too many outliers

Sometimes you make some changes (for example, change API for

reading data from the disk) and accidentally increase the number

of outliers (e.g., 40–50 instead of 10–15). In this case, the standard

deviation is also increased, so you have an additional way to

detect the problem.

• Extremely huge outliers

Outliers are always bigger than the mean value. It’s usually OK

if the difference between the maximum outlier and the mean

value is huge (e.g., mean = 300 ms, max = 2600 ms). However,

sometimes these values are extremely high (e.g., mean = 300 ms,

max = 650000 ms). Such a situation can be a sign of a serious bug

that can hurt your users.

 Multimodal Distributions
Multimodal distribution is a situation when the distribution has several modes (we

already covered this topic in Chapter 4). It can be a temporal anomaly (if you analyze a

performance history) or a spatial anomaly (if you analyze several iterations for the same

revision).

Chapter 5 performanCe analysis and performanCe testing

315

When you run some simple synthetic benchmarks, you usually don’t observe

such situations. However, it’s a pretty common situation in real-life performance

measurements. For example, in Figure 5-7, you can see measurements for the

OutputLineSplitterTest_testFlushing from the IntelliJ IDEA test suite. This test

takes about 0 sec or 10 sec. The test name (which contains testFlushing) helps us to

assume that we do output flushing only in some cases, but not every time. This is not

always a mistake; it can be a “by design” behavior. However, it’s very important to detect

such situations in advance because we can’t use the average value (which is around

5 sec for testFlushing) in case of a multimodal distribution. We already discussed

multimodal distribution and how to detect them in Chapter 4.

Table 5-12. An Example of Multimodal

Distribution

InvocationIndex Time

1 101 ms

2 502 ms

3 504 ms

4 105 ms

5 103 ms

6 510 ms

7 114 ms

An example. In Table 5-12, you can see durations of several invocations of the same

test. As you can see, the total time is around 100 ms or 500 ms.

Chapter 5 performanCe analysis and performanCe testing

316

 False Anomalies
False anomaly is a situation that looks like an anomaly but there are no problems

behind it. A false anomaly can be temporal (if you analyze a performance history) or

spatial (if you analyze only a single revision).

An example. Let’s say that we have a test that takes 100 ms:

public void MyTest() // 100 ms

{

 DoIt(); // 100 ms

}

We decided to add some heavy asserts (200 ms), which check that everything is OK:

public void MyTest() // 300 ms

{

 DoIt(); // 100 ms

 HeavyAsserts(); // 200 ms

}

On the performance plot, we will see something that looks like a performance

degradation (100 ms ->300 ms), but there is no performance problem here; it’s an

Figure 5-7. Performance anomaly: bimodal distribution

Chapter 5 performanCe analysis and performanCe testing

317

expected change of the test duration. If you have a recently introduced anomaly, it’s a

good practice to check the changes in the source code first. Found changes in a test body

at the beginning of an investigation can save hours of useless work. You can also use a

proactive approach and set an agreement in your team: each person who makes any

performance-sensitive changes on purpose should mark them somehow. For example,

a test can be marked with a special comment or an attribute. Or you can create common

storage (a database, a web service, or even a plain text file) that contains all information

about such changes. It doesn’t matter which way you choose if all the team members

know how to view the history of the intentional performance changes in each test.

If you have an anomaly, it doesn’t always mean that you have a problem. It’s a regular

situation to have an anomaly because of some natural reason. If you hunt for anomalies

all the time and investigate each of them, it’s important to be aware of “false anomalies”

that don’t have any actual problems behind them.

Let’s discuss some frequent reasons for such anomalies.

• Changes in tests

This is one of the most common false anomalies. If you make any

changes in a test (add or remove some logic), it’s obvious that the

test duration can be changed. Thus, if you have a performance

anomaly like degradation in a test, the first thing that you should

check is if there are any changes in the test. The second thing for

checking is any changes that spoil the performance on purpose

(e.g., you can sacrifice performance for the sake of correctness).

• Changes in the test order

The test order can be changed at any moment; there can be

several reasons for this, including test renaming. It can be painful

if the first test of the suite includes a heavy initialization logic.

Let’s say we have five tests in a test fixture with the following

order (revision A): Test01, Test02, Test03, Test04, Test05. Our

test framework uses lexicographical order to execute tests. In

revision B, we rename Test05 to Test00. You can see possible

consequences of such renaming in Table 5-13. It’s most likely that

we have an example of the “Paired degradation/acceleration”

anomaly: now we have a new slow test, Test00, instead of the old

slow Test01. We have already discussed that it’s a good idea to

Chapter 5 performanCe analysis and performanCe testing

318

move the initialization logic to a separate setup method, but it’s

not always possible. If we know about such a “first test effect” and

we can’t do anything about it, we will still get a notification about

an anomaly here.

Table 5-13. Example of Changes in the Test Order

Revision Index Name Time

a 1 Test01 100ms

a 2 test02 20ms

a 3 test03 30ms

a 4 test04 35ms

a 5 Test05 25ms

B 1 Test00 105ms

B 2 Test01 20ms

B 3 test02 20ms

B 4 test03 30ms

B 5 test04 35ms

• Changes in CI agent hardware

It’s great if you can run performance tests on the same CI agent

(a physical machine) all the time. However, the agent can break

down, and it can be hard to find an identical replacement. Any

changes in the environment can affect performance: from a minor

change in the processor model number to the RAM memory

size. It’s always hard to compare measurements from different

machines because the actual changes are unpredictable. If you

want to perform nanobenchmarks, you typically need a set of

identical physical CI agents.

Chapter 5 performanCe analysis and performanCe testing

319

• Changes in CI agent software

You can get some trouble with the same agent without hardware

replacement. It’s a common practice when admins install

operating system updates from time to time. They can be minor

security updates or major OS updates (e.g., Ubuntu 16.04 →

Ubuntu 18.04). Any environment change can affect performance.

This leads to a situation when you see a suspicious degradation

or acceleration on performance plots without any changes in the

source code.

• Changes in CI agent pool

Only the luckiest have an ability to run tests on a CI agent pool

with dedicated identical machines. A much more frequent

situation is a dynamic pool of CI agents: you can’t predict which

hardware/software environment will be used for the next test

suite run. Something is constantly changing in such a pool: some

machines are turned off, some machines are put into operation,

some machines get updates, some machines are occupied by

developers who do performance investigations, and so on. Such

a situation means increased variance (because of the constant

jumping between) and performance anomalies based on the

changes in the pool. In Figure 5-8, you can see a performance

anomaly for MonoCecil test in Rider for macOS agents around

October 20. Nothing was changed in the source code; the

degradation was caused by a planned update of all macOS agents.

The updating process consumes CPU and disk resources and

affects the performance of tests (it wasn’t a special performance

test; it was a regular test that runs on regular agents from the

pool). As soon as the update finished, the performance returned

to the “normal level” (if you can say “normal” for a test with such

variance).

Chapter 5 performanCe analysis and performanCe testing

320

• Changes in the external world

If you have any external dependencies, they can be a persistent

source of performance anomalies. Unfortunately, it’s not always

possible to get rid of these dependencies. Once a dependency

becomes a part of your tested logic, you start to share the

performance space with it. The classic example of such a

dependency is an external web service. You can download

something from the web or test an authentication method. For

example, I had such a problem with NuGet Restore tests in Rider.

These tests checked that we could restore packages correctly and

fast. The first version of these tests used nuget.org as a source

feed for all NuGet packages. Unfortunately, these tests were very

unstable. Once a day, there was such a situation in which one of

the tests was failing because of slow nuget.org responses. On the

next iteration, we created a mirror of nuget.org and deployed it

on our local server. We (almost) didn’t have fails any more, but

the variance was still huge for these tests. On the final iteration,

we started to use a local package source (all the packages were

downloaded on the disk before the test suite is started). We got

Figure 5-8. False performance anomaly: agent problems

Chapter 5 performanCe analysis and performanCe testing

http://nuget.org
http://nuget.org
http://nuget.org

321

(almost) stable tests with low variance. It should be noted that

it’s not an honest test refactoring. We sacrificed a part of the logic

(downloading packages from a remote server) for the sake of the

false anomaly rate.

• Any other changes

Our world is constantly changing. Anything can happen at any

minute. You should always be ready to meet false performance

anomalies. A performance engineer who is responsible for the

processing of the anomalies should know what kinds of false

anomalies are frequent for the project infrastructure. Checking

if an anomaly is false should be the first thing that you should

do before a performance investigation. This simple check helps

to save time and prevent a situation in which a false anomaly

becomes a Type I (false positive) error.

 Underlying Problems and Recommendations
Usually, performance anomalies notify us about different problems in a project. Here are

some of them:

• Performance degradation

It may sound obvious, but the biggest problem with this anomaly

is the degradation of the performance. Usually, people start to do

performance testing because they want to prevent degradations.

• Hidden bugs

Missed asserts are bugs in tests, but you can have similar bugs

in the production code. If a test has a huge variance, the first

thing that you should ask is the following: “why do we have such

variance here?” In most cases, you have a nondeterministic bug

behind it. For example, it can be a race condition or a deadlock

(with termination on timeout but without assert).

• Slow build process

You have to wait too long before all tests are passed on a CI server.

It’s a typical requirement that all tests should pass before an

Chapter 5 performanCe analysis and performanCe testing

322

installer will be available, or a web service will be deployed. When

the whole test suite takes 30 minutes or even 1 hour to run, it’s

acceptable. However, if it takes many hours, it slows down your

development process.

• Slow development process

If a test is red and you are trying to fix it, you have to run the test

locally again and again after each fix attempt. If a test takes 1 hour,

you have only eight attempts with a standard 8-hour working

day. Moreover, it doesn’t make any sense to wait for the test

result without any actions, so developers often switch to another

problem. The developer context switch is always painful. Also,

the huge test duration implies huge errors. When a test takes 1

hour, you are usually OK with an error of a few minutes. In such a

situation, it’s hard to set up strict performance asserts (we will talk

about this later).

• Unpredictably huge duration

We already talked about a huge test duration: this is not a good

thing. When you have an unpredictably huge test duration, it’s

much worse. In such case, it’s hard to work on the performance

of such tests. If you have timeouts (which are popular solutions

because tests may hang), the test can be flaky because the total

duration can sometimes exceed the timeout.

• It’s hard to specify performance asserts

Let’s look again at Figure 5-6. You can see a performance history

plot of a concurrency test from the IntelliJ IDEA test suite. Some

of the runs can take 100 seconds (especially on Windows), and

others can take 4000 seconds (especially on macOS). We can

observe both kinds of values on the same revision without any

changes. Imagine that you introduce a performance degradation.

How do you catch it? Even if you have a performance degradation

of 1000 seconds, you can miss it because the variance is too huge.

Chapter 5 performanCe analysis and performanCe testing

323

• Missed asserts

Many times, I have seen tests with green performance history as

follows: 12.6 sec, 15.4 sec, 300.0 sec, 14.3 sec, 300.0 sec,

16.1 sec, … . A typical example: we send a request and wait for

a response. The waiting timeout is 5 minutes, but there is no

assert that we got the response. After 5 minutes, we just terminate

waiting and finish the test with the green status. It may sound like

a stupid bug, but there are a lot of such bugs in real life. Such tests

can be easily detected if we look for the tests with extremely high

outliers.

• Surprising delays in production

Have you ever had a situation when you do an operation that is

usually performed instantly, but it hangs an application for a few

seconds? Such situations are always annoying users. There are

many different reasons for such behavior. Usually, it’s hard to fix

them because you typically don’t have a stable repro. However,

some of them can also be a cause of outliers on your performance

plot. If you systematically have outliers on a CI server, you can add

some logs, find the problem, and fix it.

• Hacks in test logic

Have you ever had flaky tests with race conditions? What is the

best way to fix such tests? There is an incorrect but popular

hotfix: putting Thread.Sleep here and there. Usually, it fixes the

flakiness; the test is always green again. However, it fixes only

symptoms of a problem, but not the problem. Once such fix is

committed, it’s hard to reproduce this problem again. And it’s

hard to find tests with such “smart fixes.”25 Fortunately, such hacks

can be seen with the naked eye on the performance plots. Any

Thread.Sleep calls or other hacks that prevent race conditions

25 Of course, there are some ways. For example, I like to find all Thread.Sleep usages in our code
base. If I find such a call in our test base, I remove it and see what will happen. Usually, some
tests become red or flaky. After that, I’ll try to fix bugs that were revealed.

Chapter 5 performanCe analysis and performanCe testing

324

or similar problems can’t be hidden from a good performance

engineer.

• False anomalies

The main problem with a false anomaly is obvious: you spend

time on investigations, but you do not get a useful result.

There are several general recommendations for handling performance anomalies:

• Systematic monitoring

This is the most important recommendation: you should monitor

performance anomalies all the time. Since, a real application

can have hundreds of them, you can use the dashboard-

oriented approach: for each anomaly, we can sort all tests by the

corresponding metrics and look at the top. Look at the tests with

the highest duration, the highest variance, the highest outliers,

the highest modal values, and so on. Try to understand why you

have these anomalies. Do you have any problems behind them?

Could you fix these problems? You can look at such a dashboard

one time at month, but it will be much better if you will do it every

day: in this case you can track new anomalies as soon as they are

introduced.

• Serious anomalies should be investigated

If you systematically track anomalies, you can find a lot of serious

problems in your code. Sometimes, you can find performance

problems that are not covered by performance tests. Sometimes,

you can find problems in business logic that are not covered by

functional or unit tests. Sometimes, it turns out that there are not

any problems: an anomaly can be a false anomaly or a natural

anomaly (which is caused by “natural” factors you can’t control

like network performance). If you don’t know why you have a

particular anomaly, it’s a good practice to investigate it. If you

can’t do it right now, you can create an issue in your bug tracker

or add the anomaly to a “performance investigation list.” If you

ignore found anomalies, you can miss some serious problems,

which will be discovered only in the production stage.

Chapter 5 performanCe analysis and performanCe testing

325

• Beware of high false anomaly rates

If the Type I (false positive) error rate is huge, the anomaly

tracking system becomes untrustable and valueless. It’s better

to miss a few real issues and increase the Type II (false negative)

error rate than overload the team with false alarms, which can

undo all your performance efforts. If you see a performance

anomaly, the first thing that you should do is check for natural

reasons. Typically, these checks don’t take too much time, but

they can protect you from useless investigations. Here are a few

check examples:

 – Check for changes in test

If somebody changed the source code of the test in a

corresponding revision, check these changes.

 – Check for changes in test order

Just compare test orders for the current revision and for the

previous one.

 – Check the CI agent history

Did you use the same agent for the current and previous

results? Did you make any changes in the agent hardware/

software?

 – Check typical sources of false anomalies

If you are looking for performance anomalies all the time, you

probably know the most common causes of false anomalies.

Let’s say you download content from an external server with

95% uptime. If the server is down, you are doing retries until the

server is up again. Such behavior can be a frequent source of

outliers without any changes. If you know that a group of tests

suffer from such phenomena, the first thing that you should

check is log messages about retries.

Chapter 5 performanCe analysis and performanCe testing

326

• Beware of alert fatigue

It’s great when you can track down all your performance

problems. However, you should understand how many issues

can be handled by your team. If there are too many performance

anomalies in the queue, the investigation process becomes an

endless and boring activity. You can’t fix performance issues all

the time: you also have to develop new features and fix bugs.

 Summing Up
There are too many kinds of performance anomalies to fully discuss here. Most of them

can be easily detected with the help of very simple checks. You don’t typically need

advanced techniques because the basic anomaly checkers catch most of the problems.

In Rider, we usually look only at the “Huge variance” and “Clustering” anomalies. The

first implementation of our "performance analyzer" took about 4 hours: it was a C#

program that downloads data from a TeamCity server with an R script, which aggregates

this data and draws a performance plot for the most suspicious tests. In those days,

I created a few dozen performance investigation issues for different people. Many of

them were real problems that were hidden among thousands of unit tests. And to this

day, we continue to find important problems every week. We also have many advanced

analyzers that look for tricky performance issues. However, basic “Huge variance” and

“Clustering” supply us with a huge list of problems to be investigated.

I believe that checking for performance anomalies is a healthy thing for any huge

project that requires performance tests. It helps to detect critical problems in time

before users start to suffer after the next software update. Each project is unique, with

its own set of performance anomalies. Everything depends on your domain area. You

can find many interesting examples of different projects on the Internet. I recommend

that you read about flow anomalies in distributed systems (see [Chua 2014]), anomalies

in correlated time series (see [AnomalyIo 2017]), and other methods of performance

anomaly analysis in different cases (see [Ibidunmoye 2016], [Dimopoulos 2017],

[Peiris 2014]).

There is no universal way to write analyzers that will work great for every project.

Knowledge of the main performance anomalies allows you to check the performance

history of your test suite and write analyzers that will work great for your program.

Chapter 5 performanCe analysis and performanCe testing

327

 Strategies of Defense
There are several ways to prevent or detect performance degradation. In this section, we

talk about some common ways to do this.

Here is a list of discussed approaches:

• Precommit tests: looking for performance problems before a merge

into the master branch.

• Daily tests: looking for performance problems in the recent history.

• Retrospective analysis: looking for performance problems in the

whole history.

• Checkpoint testing: looking for performance problems in special

moments of the development life cycle.

• Prerelease testing: looking for performance problems just before a

release.

• Manual testing: looking for performance problems manually.

• Postrelease telemetry and monitoring: looking for performance

problems after a release.

I call these approaches “Strategies of defense against performance problems,” but

this not a well-known term, and other terms may also be used. For example, Joe Duffy

calls them “test rings” in [Duffy 2016].

For each approach, we will cover the following characteristics:

• Detection time: when can a performance degradation be detected?

• Analysis duration: how much time does it take to detect a problem?

• Degree of degradation: what kind of degradation can be detected?

Is it huge (50-100% or more), medium (5-10%), or small (less

than 1%)?26

• Process: automatic, semiautomatic, or manual? What should the

developers do in each case and how can it be automated?

26 Of course, these are very rough estimates; they’re just some examples. The exact estimation
depends on your business requirements and the performance space. In some cases, 1% can be a
huge degradation or 200% can be a small one.

Chapter 5 performanCe analysis and performanCe testing

328

 Pre-Commit Tests
We use this approach at the JetBrains .NET team. The idea is simple: you can’t commit

directly to master.27 Instead, you have to create a feature branch and run a build

configuration that should merge it into master. This build configuration runs all the tests

and merges it only if all the tests are green. Thus, it’s impossible to get stable28 red tests

in the master. This mechanism can be used not only for a functional test but also for

performance tests. There are many variations of this approach, but the idea is always the

same: we check all the changes for any performance degradation automatically before

we have these changes in the master branch.

• Detection time: on time.

The best thing about this approach is simple: we detect all

performance degradations in advance automatically. There is no

need to solve any new performance problems because we don’t

have any of those (in theory, of course).

• Analysis duration: short.

Since we won’t wait too long before our changes will be merged,

the precommit tests should work quickly. It’s great if a typical

precommit test suite run doesn’t take more than a few hours.

• Degree of degradation: huge.

Of course, there are some limitations. We don’t have any

possibility of doing a lot of iterations (because we have to run all

the tests very quickly). Thus, we can catch only huge degradations

(e.g., 50% or 100%); it’s almost impossible to detect small

degradations (e.g., 5% or 10%). If we try to do this, it will increase

the total run duration or Type I (false positive) error rate.

27 Here we mean the main branch; in your repository, it can have another name like “default,”
“trunk,” “release,” “dev,” or something else.

28 This doesn’t solve all the problems. For example, we still can merge flaky tests (tests that are
sometimes red).

Chapter 5 performanCe analysis and performanCe testing

329

• Process: automatic.

I just want to repeat one of my favorite parts about this way:

it’s completely automatic, meaning that no human actions are

required.

 Daily Tests
Unfortunately, we can’t always run all the tests per each commit or merge. The reason

is simple: some tests (especially integration tests or smart performance tests) take too

much time. The common solution for such case is daily tests. These are a special set of

tests that are checked one time per day.29 Of course, you can choose any interval of time:

for example, you can run once-weekly or even once-monthly tests.

• Detection time: 1 day late.

With daily tests, we detect performance degradations when they

are already in master.

• Analysis duration: up to 1 day.

Daily tests don’t have “a few hours run” limitation; we can use up

to 24 hours. If that’s not enough, we can try weekly tests and spend

up to 7 days per a test suit.

• Degree of degradation: medium.

Since we have a lot of time, we can do many iterations and detect

medium performance degradation (like 5% or 10%).

• Process: semiautomatic.

Daily tests should be a part of your CI pipeline; the build server

should run them every day automatically. However, if some tests

are red (we have a performance degradation), the incident should

be investigated manually. Typically there are a few team members

who monitor the status of daily tests all the time and notify a team

in case of any trouble.

29 Some teams call them nightly tests because they usually run them at night when there is some
free time on CI agents.

Chapter 5 performanCe analysis and performanCe testing

330

 Retrospective Analysis
This is one of my favorite approaches. The idea: we take all historical data for all tests

and analyze it.

• Detection time: late.

Unfortunately, some degradations will be detected late (probably

after a week or after a month). However, it’s better to detect such

cases after a month inside the team than to let customers detect

them after a few months.

• Analysis duration: it depends.

We don’t have any duration limitations; we can spend as much

time as we want. If we don’t have enough historical data, we can

even take specific commits, build them, and run some additional

iterations. Everything is possible in the retrospective analysis!

• Degree of degradation: small.

We can detect any kind of performance degradations (even less

than 1%)! In fact, the main limitation here is how much we are

ready to allocate in terms of resources.

• Process: semiautomatic.

The same situation as in the case of daily tests: we can run

retrospective analysis automatically, but all issues found should

be investigated manually.

Checkpoints Testing
Sometimes you know that your changes are dangerous. For example, you do a big

refactoring, you rewrite a performance-critical algorithm, or you upgrade your runtime

version (e.g., Mono or .NET Core). If you are not sure that there are no performance

degradations in your changes, you can run performance tests in the master branch and

in your branch. After that, you can compare results. Thus, we have a checkpoint (a huge

change that should be checked) and we want to reduce risks.

Chapter 5 performanCe analysis and performanCe testing

331

• Detection time: on time.

This approach allows preventing performance degradations

before they will be merged into master.

• Analysis duration: it depends.

In fact, the merge deadline is our only limitation. We can do as

many tests as we want before we are sure that it’s safe to merge it.

• Degree of degradation: small.

Since we have a lot of time, we also can do a ridiculous number of

iterations, and find even very small degradations.

• Process: almost completely manual.

It’s the developer’s responsibility to check dangerous changes;

it’s not possible to automate this. If you suspect that you can have

some performance problems in your branch, you should run tests

manually. If you find any problems, you should investigate them

manually. There is no automation here (except for running tests

and branch comparison).

 Pre-Release Testing
There is a special kind of checkpoint: the release. Your customers will be unhappy if,

after the software update, they get performance problems. So, each release should be

carefully checked before it’s published. For some projects, the full test suite can take

several days. In this case, you don’t have an opportunity to run these tests every day or

for each dangerous branch. But you can run such suite once per release candidate to be

sure that you didn’t skip any really serious problems.

• Detection time: very late.

Usually, developers run prerelease performance tests before the

release. And they hope that there are not any problems; it’s an

additional check just to be sure. However, if you discover a serious

performance problem a few days before the release, it can be a

huge problem (especially if you have strict deadlines).

Chapter 5 performanCe analysis and performanCe testing

332

• Analysis duration: it depends.

Well, it’s up to you: it depends on your release cycle. How much

time do you typically have between the release candidate and the

actual release? Some teams spend only a few days for the final

stage of testing, while others spend months. You should find an

acceptable trade-off between how fast you want to deliver your

product and how critical performance degradation can be.

• Degree of degradation: it depends.

It depends on the duration of analysis. The rule is simple: the

more time you spend, the more minor degradations can be found.

• Process: almost completely manual.

The same situation as in the usual checkpoint case. You should

manually run tests before release, and you should manually check

the report and investigate all the issues.

 Manual Testing
Of course, your QA team can test the software manually. Usually, this is not the best

way because it requires a lot of man-hours, but it can help to find some performance

problems that you didn’t cover in your tests. It’s a good practice to write new

performance tests as soon as you find a new performance problem manually.

• Detection time: late.

This approach allows checking changes that are already merged.

Typically, the manual testing is a part of your workflow: you can

check your daily builds,30 you can check some internal milestone

builds, you can check “checkpoints,” you can check preview

versions, and you have to check the release candidate.

• Analysis duration: it depends.

It always takes too much time. The exact number of spent hours

depends on the target product quality and capabilities of the QA team.

30 Or nightly builds; there is no difference between these terms.

Chapter 5 performanCe analysis and performanCe testing

333

• Degree of degradation: huge.

Usually, manual testing allows detecting only huge performance

degradations because it’s hard to detect a small performance

regression with the human eye.

• Process: completely manual.

You start to test software manually, you test it manually, and you

investigate it manually. There is no automation here.

 Post-Release Telemetry and Monitoring
Many people think that their performance adventure ends after a release. In fact, it’s just

starting. It’s impossible to fix all bugs or to resolve all performance issues in advance.

Some of them can be detected immediately after the release. Other problems may

show up after a prolonged period of time: you can’t detect them with other strategies of

defense, because they might take multiple releases to become statistically significant.

• Detection time: too late for the current release, but not too late for the

next one.

It’s never too late to fix performance problems. It’s bad if you

missed some problems in the current release, but it’s much worse

if you do nothing about it. You will always get “it works too slowly”

feedback from your users or customers. It’s very important to

collect all performance issues from each release. There are several

ways to do it:

 – Monitoring

In case of a web service, you can monitor performance metrics

of your servers in real time. You can manually compare them

with expected metrics or set up automatic alarms about

performance problems.

 – Telemetry

If you can’t monitor your software (desktop programs, mobile

applications, embedded systems, the client side of a web page,

and so on), you can collect telemetry data and regularly process it.

Chapter 5 performanCe analysis and performanCe testing

334

 – Issue tracker

If you have an issue tracker, group all performance-related

issues with the help of tags or issue fields.

 – New tests

It’s almost impossible to cover all use cases by performance

tests. Never stop writing tests! If you continue to write new tests,

you probably will discover new problems.

• Analysis duration, Degree of degradation, Process: it depends.

It’s up to you how you collect, analyze, and process performance

issues after a release.

 Summing Up
You can see the overview of all strategies in Table 5-14 (“T&M” means “telemetry and

monitoring”; “DoD” means “Degree of degradation”).

Table 5-14. Overview of Strategies of Defense

Strategy Detection time Analysis duration DoD Process

precommit tests on time short huge automatic

daily tests 1 day late Up to 1 day medium semiautomatic

retrospective analysis late it depends small semiautomatic

Checkpoint testing on time it depends small almost completely manual

prerelease testing Very late it depends it depends almost completely manual

manual testing late it depends huge Completely manual

postrelease t&m too late it depends it depends it depends

Each approach has its advantages and disadvantages. It’s up to you how to test your

software. If you care about performance a lot, it makes sense to use several approaches

(or all of them) or their combination. Of course, we didn’t cover all possible options for

performance testing; we just discussed some main directions. You can come up with an

approach that will be the best for your own situationr.

Chapter 5 performanCe analysis and performanCe testing

335

 Performance Subpaces
In Chapter 1, we discussed performance spaces. It’s time to learn about performance

subspaces. They are covered by different factors that can affect performance. Knowledge

about these factors can help you to complete your performance investigation. In this

section, we will talk about the most important subspaces:

• Metric subspace: what do we measure: wall-clock time, asymptotic

complexity, hardware counter values, or something else?

• Iteration subspace: how many iterations do we do?

• Test subspace: how many tests do we analyze in the same suite?

• Environment subspace: how many different environments do we

use?

• Parameter subspace: what parameter values do we use?

• History subspace: are we working with a single branch or looking at

the whole repository?

Let’s discuss each subspace in detail.

 Metric Subspace
When we analyze performance reports, we are always working with some metrics.

Different metrics can provide different performance pictures. For example, two tests

can have the same value in one metric and different values in another. Relevant metrics

should be chosen based on your business goals. If you don’t know which metrics are

more important for you, you can try several options and check out which metrics are

useful for your investigations. Here are a few possible metrics for you:

• Wall-clock time

This is an honest test duration. It can be measured via Stopwatch

or be fetched from a CI server.

• Throughput

How many operations can we process per second?

Chapter 5 performanCe analysis and performanCe testing

336

• Asymptotic complexity

What is the asymptotic complexity of your algorithm? O(N)?

O(N*log(N))? O(N^3)?

• Hardware counters

There are plenty of them. You can use “general” counters for

all cases (e.g., “Retired Instructions”) or “specific” counters for

specific tests (e.g., “Branch mispredict rate” or “L2 Cache Misses”).

We will talk about hardware counters in detail in Chapter 7.

• I/O metrics

You can collect all the metrics provided by OS for network and

disk operations. It often helps to locate a real bottleneck correctly.

• GC.CollectionCount

This is one of my favorite metrics. One of the main problems with

“time” and “counter” metrics is variance. You can’t control OS

and how it schedules the execution time for different processes. If

you run a test ten times, you will probably get ten different results.

With GC.CollectionCount, you should get a stable value. Let’s

consider an example:

var gcBefore = GC.CollectionCount(0);

var stopwatch = Stopwatch.StartNew();

// Dummy code with huge number of allocations

int count = 0;

for (int i = 0; i < 10000000; i++)

 count += new byte[1000].Length;

Console.WriteLine(count);

stopwatch.Stop();

var gcAfter = GC.CollectionCount(0);

Console.WriteLine($"Time: {stopwatch.ElapsedMilliseconds}ms");

Console.WriteLine($"GC0: {gcAfter - gcBefore}");

Run it several times and write down the values of Time and GC0. You can see an

example of the result in Table 5-15. Despite the fact that the Time value varies, the

Chapter 5 performanCe analysis and performanCe testing

337

GC0 value (the number of collections in Generation 0) is the same for all runs. We will

discuss GC metrics in detail in Chapter 8.

Remark. Of course, GC.CollectionCount has limitations. If you are working with

a nondeterministic multithreaded algorithm, you can get different values even for GC.

CollectionCount. But this value will be still more “stable” than the pure wall-clock time.

If an algorithm is allocation-free, this metric is useless because it’s always zero.31

 Iteration Subspace
When you run a test, you can always choose the number of iterations. Let’s discuss cases

when you do a single iteration or a set of iterations.

• Single iteration

This is the most popular and simple case: we always do exactly

one iteration of a test. On the one hand, it’s great because it’s

a very simple situation: we have only one measurement per

revision. Performance history looks simple as well; it’s just a

function from a commit to a single number (for each metric).

On the other hand, we have limited data: we don’t know any

information about the performance distribution for the test.

Imagine that you have the following measurements for two

subsequential commits: 50 ms and 60 ms. Do we have a problem?

You can’t say anything about it because you don’t know the

distribution.

31 Unless you want to keep it allocation-free, and therefore know that even 1 byte should be
considered a regression.

Table 5-15. Wall-Clock Time and GC.CollectionCount Metrics

Run 1 2 3 4 5

time 6590ms 6509ms 6241ms 7312ms 6835ms

gC0 16263 16263 16263 16263 16263

Chapter 5 performanCe analysis and performanCe testing

338

• Many iterations

If you do many iterations, you have much more data! On the one

hand, that’s great because you can run many cool analyses. On the

other hand, now you kind of have to do these analyses. Additional

iterations are not free: you pay for them with time and machine

resources. If you decide to do many iterations, you should

understand how you are going to use this data (it also helps you

to choose the best number of iterations). For example, it allows

comparing commits. If you have a (50ms) vs. (60ms) situation, you

can’t say for sure that there is a performance degradation here. If

you have a (50ms;51ms;49ms;50ms;52ms) vs. (60ms;63ms;61ms;49ms;

61ms) situation, you can say that it’s most likely a degradation. If

you have a (50ms;65ms;56ms;61ms;58ms) vs. (60ms;48ms;64ms;53ms;5

0ms) situation, you can say that most likely nothing is changed.

 Test Subspace
A single test is not always the only source of the metrics. You can take smaller or bigger

units. For example, you can take a small test part or group several tests. Thus, we have

the following option:

• Whole test

This is probably the most common way. You write a test that

measures only one target case. Such testing may require a

preparation (e.g., you should set an initial state up and warm the

target logic up), but one test measures only one thing.

• Test stage

In some cases, an honest test separation can be expensive.

Imagine that you have a huge desktop application and you

want to measure the “shutdown” time: the interval between a

moment when a user clicks the close button and the moment

when the application process is finished. Such tests require a

lot of preparatory work. For example, you can spend 5 minutes

for initialization (emulation of active work in the application)

and only 1.5 seconds on the shutdown logic. If we perform 12

Chapter 5 performanCe analysis and performanCe testing

339

iterations inside the test, the whole test will take more than 1 hour.

A whole hour of testing for a single test that takes 1.5 seconds!

That looks like a waste of our time and machine resources.

Unfortunately, we can’t significantly improve the situation for

the shutdown test. However, we can something else: we can use

these 5 initialization minutes to our advantage! In fact, we have

an integration test that takes a lot of time and performs a lot of

different operations. Let’s introduce “test stages” and measure

each test separately. We can measure the application load time

and duration of some typical operations in the same tests. On the

one hand, this move looks dirty and breaks the rules of classic

unit testing: instead of measuring each feature in a separate test,

we measure all kinds of different stuff in the same test. On the

other hand, we have no choice (don’t hate the player; hate the

game!). Tests should be fast. In the case of performance tests, it’s

impossible to run them really fast, but the whole performance

testing suite should take a reasonable amount of time. Test stage is

a powerful technique that can save you a lot of time.

• Test suite

When we analyze many tests together, we can do a lot of

additional analysis. It’s very important to perform a correlation

analysis. For example, if you have a performance degradation after

some changes, it’s useful to find the whole scope of tests that have

this degradation.

 Environment Subspace
A huge part of this book is about different environments. There are so many important

details: hardware, operating systems, build toolchain, runtime, JIT, and so on. If you have

a huge project with many tests and run them all the time, you probably have several CI

agents. The same test can be executed on different build agents. Even if the configuration

(hardware+software) is the same for all agents, you still can get different results between

them. If you don’t have a huge pool of agents, you can manually check test suites in

different environments. You can’t be sure how a particular change affects performance

Chapter 5 performanCe analysis and performanCe testing

340

until you check it in many different environments. The environment subspace can be

used during analysis of the following anomalies:

• Spatial clustering

When you have metrics for the same test from several agent,

you can try to find factors that affect performance. It can be the

operating system, the processor model, or any other parameter of

your environment.

• Temporal anomalies

If you are investigating the performance history of a single test, it

can be useful to compare durations of the test runs on different

CI agents. If a performance degradation or another anomaly

appeared at that moment when the CI agent was changed, the first

thing that you should check is the difference between the CI agent

environments.

 Parameter Subspace
The same test can be executed on different sets of input parameters. You can get different

durations depending on the parameters. Here are a few things that you can check:

• Nontrivial dependencies

Let’s say that we have a test that processes many requests. The

requests can be processed in several threads. How does the

performance depend on the degree of parallelization? You may

get a 2x performance boost when a single-thread implementation

is replaced by a two-thread solution. However, switching from

four threads to eight may slow down the benchmark because of

inefficient and heavy locking. You can find the best parallelization

degree only if you check several possible values.

• Asymptotic complexity

Let’s say that we have a test that checks whether a given string of

length M is contained in a text of length N. The time complexity

depends on the underlying algorithm. For example, it can be

Chapter 5 performanCe analysis and performanCe testing

341

O(N · M) for a trivial implementation or O(N + M) for a smarter

algorithm. You can easily miss some important degradation if

the test works only for short search patterns and doesn’t check

the larger cases. The knowledge of the complexity allows you to

extrapolate results on huge inputs without actually having to test

them.

• Corner cases

Let’s say that we have a test with the quicksort algorithm. In

the best and average case, the complexity is O(N · log N), but it

becomes O(N2) in the worst case. The knowledge of the worst-case

performance also may be very important (especially if we have a

risk on a performance attack on the program). The worst possible

performance is another valuable metric that we can collect during

testing.

• Duration range

Let’s say that we have a test that parses text with a regular

expression. In this case, the test duration may vary in a huge range

depending on the expression complexity and the text. It’s not

enough to just check a few input cases to get reliable performance

metrics. Good performance coverage for such a test requires

hundreds of inputs that correspond to different real-life situations

and corner cases. Speaking of corner cases: there are regular

expression denial of service (ReDoS) attacks that can significantly

slow down your code. One of the most famous .NET Framework

4.5 ReDoS exploits against MVC web applications is described in

[Malerisch 2015]: the EmailAddressAttribute, PhoneAttribute,

UrlAttribute classes contained regular expressions that can be

forced to calculate an exponential number of states on special

inputs. The vulnerability was fixed in Microsoft Security Bulletin

MS15-101.32 As you can see, the subspaces can be analyzed

together: here we have an interesting performance issue that

involves the environment and performance subspaces.

32 https://docs.microsoft.com/en-us/security-updates/SecurityBulletins/2015/ms15-101

Chapter 5 performanCe analysis and performanCe testing

https://docs.microsoft.com/en-us/security-updates/SecurityBulletins/2015/ms15-101

342

The parameter subspace analysis is very complex because you usually can’t

check all possible inputs. However, you still should try to cover different cases for the

same method. The benchmark metrics for a single test of input parameters can’t be

extrapolated to the method performance in general.

 History Subspace
When we are talking about performance testing, one of the most important subspaces

is the history subspace. The source code is changing all the time. Some popular

repositories have dozens or even hundreds of commits (revisions) per day. In each

situation, you are looking at a set of commits; applicable analysis depends on this set.

Let’s discuss the main types of such commit sets.

• History moment (single revision)

If you only have a single revision, you can look for spatial

anomalies: there are plenty of them. You can’t find any

performance degradations here, but you still can find a lot of

problems that can be critical for your production environment.

• Linear history (single branch)

If you have several revisions, you can look for spatial anomalies

like degradation/acceleration. If you find a problem that is

introduced in the latest release, you can bisect the history and find

a commit with relevant changes.

• Treelike history (selected branches or whole repository)

Sometimes, it makes sense to analyze several branches or even

the whole repository. The number of performance measurements

are always limited. If you are looking for anomalies like “Huge

variance” or “Huge outliers,” you can join performance history

of the master branch and all feature branches. Analysis of this

“mixed” history can produce a lot of false positive results, but

it usually easily finds serious problems that are hard to detect

based on a single branch because you don’t have enough

measurements.

Chapter 5 performanCe analysis and performanCe testing

343

 Summing Up
The performance space contains many subspaces like the metric subspace, the iteration

subspace, the test subspace, the environment subspace, the parameter subspace, the

history subspace, and others. Each of these subspaces or their combination can have

a significant impact on performance. The knowledge of the situation in a few points of

the whole space doesn’t allow extrapolating these results in general. Understanding the

performance space helps you to perform high-quality performance investigation: you

can discover more anomalies and find the factors that affect performance. Of course,

it’s not possible to carefully check the whole space: there are just too many possible

combinations. The rich investigation experience will help you to guess factors that

most likely affect the performance. You may also find interesting ideas in other people’s

stories: they increase your erudition and improve your performance intuition.

 Performance Asserts and Alarms
One of the biggest challenges in performance testing is automated problem detection.

When you do a regular local performance investigation, it’s not always easy to say if you

have a performance problem or not. The performance space can be really complicated,

and it takes time to collect all relevant metrics and analyze them. In the world of

performance testing, you have to automate this decision. There are two main kinds of

such decisions, which can be expressed as performance asserts and performance alarms.

When a performance assert is triggered, we’re sure that something is wrong with the

performance. Asserts can be effectively applied to processes with 100% automation like

the precommit testing. If a performance assert fails, it means that the corresponding

test is red. Thus, it should have a low Type I (false positive) error rate. Unfortunately,

it’s almost impossible to get rid of errors completely, but the errors should be quite rare

(otherwise, we get flaky tests).

When a performance alarm is triggered, we are not sure that something is wrong;

the situation requires a manual investigation. Alarms can be effectively applied to

situations when a performance plot looks “suspicious.” Such alarms can be aggregated

into a single dashboard, which is processed by developers on a regular basis. It’s a typical

situation when you have several false alarms per day because this doesn’t interfere

with the development process. Usually, it doesn’t take a lot of time to check out such

alarms and make a decision that we have nothing to worry about. Meanwhile, some

Chapter 5 performanCe analysis and performanCe testing

344

serious problems can be detected in time with this approach, which reduces Type II

(false negative) errors. Alarms work well for anomalies like clustering or huge variance:

in these cases, we can’t afford to have a red test for all such anomalies. Moreover, if a

test has a huge variance, it’s hard to write a strict performance degradation assert with a

small false positive rate. An alarm can solve this problem: you can get a few notifications

per week for no good reason,33 but you will also be notified when someone spoils the

performance for real. The alarm approach is also useful for trade-off situations when

we sacrifice performance in one place for some benefits in other areas. In such cases,

developers definitely should be notified about it (in many cases, changes are made

unintentionally), but the situation should be resolved manually.

Asserts and alarms usually have similar implementations (the only difference is

how we report the results). In general, the logic looks very simple: we calculate some

statistics (average test duration, variance, minimum/maximum time, P99, and so on)

and compare it with a threshold. And this is the trickiest part: how should we choose the

correct threshold value? In this section, we will discuss four different approaches (with

an overview of the most important advantages and disadvantages):

• Absolute threshold: a hardcoded value in the source code (like 2

seconds or 5 minutes)

• Relative threshold: a hardcoded ratio to a reference value (like 2

times faster than another method)

• Adaptive threshold: comparing current performance with the

history without hardcoded values (like it shouldn’t be slower than

yesterday)

• Manual threshold: a special developer who watches the

performance plots all the time and who is looking for problems

Let’s discuss each kind of threshold in detail.

33 However, I think that we have a good reason for that: huge variance is almost always a bad thing.
If you get false alarms about such tests all the time, you will be tempted to reduce the variance.

Chapter 5 performanCe analysis and performanCe testing

345

 Absolute Threshold
Probably, this is the most popular kind of threshold because it has the simplest

implementation. Typically, it looks as follows:

const int TimeoutMs = 2000; // 2 seconds

[Fact] // xUnit test

public void MyTest()

{

 var stopwatch = Stopwatch.StartNew();

 DoTest(); // Target logic

 stopwatch.Stop();

 Assert.True(stopwatch.ElapsedMilliseconds < TimeoutMs);

}

The implementation depends on the unit test framework:

• NUnit, MSTest: both frameworks provide [Timeout] attributes,

which all allow you to set timeout in milliseconds.

• xUnit: As of xUnit 2.0 (and in subsequent versions like 2.1, 2.2, 2.3),

the framework doesn’t support timeouts34 because it’s pretty hard

to achieve stable time measurements with parallelization enabled

by default in xUnit 2.x. Thus, you have to implement the timeouts

manually like in the preceding example. In this case, it’s highly

recommended to disable parallelization.

However, you can always set a timeout in the code with the help of stopwatch. Also,

you have to implement it manually when you are looking for performance anomalies.

For example, you can do 20 iterations, calculate the standard deviation, and compare it

with the threshold.

• Simple implementation

You can implement it with a few lines of code. In case of NUnit or

MSTest, a single [Timeout] attribute is usually enough. In case of

xUnit or a complicated check, you need two lines with Stopwatch

(Start/Stop) and a single line with assert.

34 https://xunit.github.io/releases/2.0

Chapter 5 performanCe analysis and performanCe testing

https://xunit.github.io/releases/2.0

346

Although the implementation is quite simple, this approach has some important

problems.

• Portability

Not all computers are equally fast. A test can satisfy a 2000ms

timeout on your machine in 100% runs, but it can fail on a slow

machine of your colleague or in a virtual environment on a CI

server.

• Flakiness

When a timeout is close to actual test duration, the test can be red

sometimes depending on the duration variance and other resource-

consuming processes in OS, which can slow down this test.

• Maintainability

When I see a test with a hardcoded absolute timeout, I always

look at the test history. Typically, it looks like in Table 5-16. You

can see that developers change the hardcoded value in the source

code all the time. This is not a healthy thing. If such commits are

a common practice in your team, it’s always easier to increase the

timeout of a red test instead of doing an investigation in case of

real performance problems.

Table 5-16. Example of Absolute Timeout History

Revision Timeout Comment

n 5000 increased timeout because test works too slow on my machine

n-1 3000 test timeout adjustments

n-2 7000 some new Ci agents are too slow; increase timeouts

n-3 4562 decrease timeouts to minimum possible values

n-4 5000 test is flaky, it’s red in 3% cases on Ci; increase timeout

… … …

Chapter 5 performanCe analysis and performanCe testing

347

Meanwhile, absolute thresholds can be the last line of defense against test hanging.

If a test typically takes a few seconds, you can safely set a rough timeout like 1 minute.

In this case, if a test is red because of the timeout, it’s definitely a good thing because it

notifies us about serious problems like the following:

• Test is hanged because of a deadlock. The timeout helped us to save

time on a CI agent.

• Test takes 1.5 minutes instead of a few seconds because of a

bug. Hooray, performance asserts helped to find a performance

degradation.

• The variance is huge, a test takes from 1 second to 5 minutes

(probably because of the moon phase). Typically, this means

a serious bug in the source code; such anomalies should be

investigated.

If you want to use accurate absolute timeouts (like 5 seconds in our example),

you probably should use alarms instead of asserts. For example, you can manually

check all tests that have several alarms per week. This isn’t a perfect solution, but the

implementation is really simple (if you already have an “alarm infrastructure”).

If you don’t like the idea of absolute timeouts, there are other ways to implement

performance tests. Let’s talk about relative thresholds.

 Relative Threshold
Relative thresholds try to solve the portability problem. The idea is simple: we write a

reference (Baseline) method (or a set of reference methods) and evaluate its “average”

performance. There are several kinds of relative thresholds:

• Relative method performance

You can introduce a Baseline and measure the relative

performance of all methods to the baseline. When you are

marking changes in the source code, you can calculate relative

performance against the baseline instead of analyzing the

absolute numbers.

Chapter 5 performanCe analysis and performanCe testing

348

• Relative machine or environment performance

The baseline approach can also be used for comparing

performance between different machines.35 The same trick can be

used to compare performance between several runtimes on the

same hardware. For example, Mono and .NET Core have different

startup time overheads. In theory, the relative threshold is not a

correct approach because the performance ratio between different

methods can be different for each machine/environment. In

practice, this approach usually works for most simple cases.

• Handling portability issues

You should understand that this is not the perfect solution, but it

usually works pretty well for simple cases.

• Flakiness

The same as in the absolute threshold case: sometimes you will

get false alarms.

• Maintainability

Relative thresholds are still hardcoded; you should manually

change it in case of important changes like changes in the test.

 Adaptive Threshold
Probably, this is the most powerful and the most complicated kind of alarm. Here you

don’t have any hardcoded thresholds, you only have the performance history of the

test. This history can include any metrics that you want to collect. At the moment of

performance testing, you compare the current state with the whole history.

• No hardcoded values

You shouldn’t keep many magic numbers in the source code

anymore. You even shouldn’t think about how fast the code

35 Such an approach is used for some performance tests in IntelliJ IDEA: https://github.
com/JetBrains/intellij-community/blob/181.5451/platform/testFramework/src/com/
intellij/testFramework/CpuTimings.java

Chapter 5 performanCe analysis and performanCe testing

https://github.com/JetBrains/intellij-community/blob/181.5451/platform/testFramework/src/com/intellij/testFramework/CpuTimings.java
https://github.com/JetBrains/intellij-community/blob/181.5451/platform/testFramework/src/com/intellij/testFramework/CpuTimings.java
https://github.com/JetBrains/intellij-community/blob/181.5451/platform/testFramework/src/com/intellij/testFramework/CpuTimings.java

349

should be. An algorithm will check automatically that you don’t

have any performance degradations or other anomalies.

• Slow reaction to changes in the test

If you change the logic of the test (for example, add a few heavy

asserts), you should retrain your algorithm and wait while the

algorithm “learns” the new baseline. Meanwhile, you will get

false alerts. Of course, you can introduce a way to mark a test as

“changed” or clear the performance history, but it’s usually not as

simple as changing a hardcoded threshold.

• Smart algorithm is required

You should manually implement an algorithm that compares

the performance history and the current state. Unfortunately, no

universal algorithm solves this problem in general or works for all

projects. There are some ready solutions, but you should check

which one works for you. Don’t forget about possible pitfalls like

the optional stopping problem (which we discussed in Chapter 4).

 Manual Threshold
When we discussed the strategies of defense against performance anomalies, the last

one was the manual testing. If we can’t cover tests by performance asserts, we always can

generate performance alarms. It’s not easy to detect all “suspicious” tests because this

requires a threshold. However, you can easily generate “worst of the worst” tests.

For example, let’s imagine that we are looking for tests with huge variance but

we can’t say when the variance is huge. Let’s calculate the variance for each test and

sort the results. We can generate the “Top 10” tests with the biggest variances each

day. Performance plots for these ten worst tests should be checked manually, and a

developer should decide the following for each test: do we have a problem here or not? I

call this the “dashboard-oriented approach.”

Another example: we are looking for performance degradation but we can’t say

when we really have a degradation. Let’s calculate the difference between average

performances from this week and the previous week. Yes, I know that the average is an

awful metric and the distribution can be too complicated. But if something really bad

happens with the test, you typically will see it in the “worst of the worst” tests. We call it

Chapter 5 performanCe analysis and performanCe testing

350

“manual threshold” because a developer should manually check a test in order to say “It

doesn’t look like a normal test to me.”

This approach is not accurate, and it requires manual checking of these reports every

day. However, it can help discover some performance anomalies that were not caught

by performance asserts. Since we don’t have real performance asserts here, the final

Type I (false positive) error rate is zero. The Type II (false negative) error rate is reduced

because you can find some missed problems. Of course, the reduction is not free; you

pay for it with the working time of your team members.

It’s not recommended to use only this approach for performance testing because it’s

time-consuming and you can’t manually check out all your tests every day. But it can be

a good addition to your automated performance testing infrastructure because it helps

to find some tricky problems that can’t be automated because corresponding checks

usually have a huge false positive rate.

• Handle even supertricky cases

You can detect very tricky problems that are almost impossible to

cover by a smart algorithm. Typically, an experienced developer

can instantly say if you have a performance problem or not with a

quick glance at the performance plot.

• Complete lack of automation

You should manually check most suspicious tests every day.

 Summing Up
If you want to implement a reliable system that helps you to handle all kinds of

performance problems, you need both performance asserts and alarms. Asserts helps

you to automatically prevent degradations before the changes are merged with a high

confidence. Alarms help you to monitor the whole test suite and notify you about

problems that cannot be detected with a low false positive rate.

You can use different kinds of thresholds in both cases. Absolute thresholds are

the simplest way to implement it, which is good for a start, but it’s not a reliable way

in the longer term: this approach has a lot of issues with portability, flakiness, and

maintainability. Relative threshold is better: it solves some of the issues, but not all of

them. Adaptive thresholds are great, but it’s not easy to implement them, and you should

carefully handle cases when you change the test performance on purpose. Manual

Chapter 5 performanCe analysis and performanCe testing

351

threshold is also an effective technique that helps you to find problems not currently

covered by automatic thresholds, but it requires a special performance engineer who

systematically monitors performance charts.

There is no single universal approach that will be great for all kinds of projects.

However, combinations of different approaches for performance asserts and alarms can

protect you even from very tricky and nonobvious performance problems.

Performance-Driven Development (PDD)
You are probably familiar with TDD (Test-Driven Development). PDD (Performance-

Driven Development) is a similar technique with one important difference: it uses

performance tests instead of the usual functional and integration tests. Usually, it looks

as follows:

• Define a task and performance goals

• Write a performance test

• Change the code

• Check the new performance space

In this section, we discuss this approach in detail: how it should be used and how

useful it can be in daily performance routine. The PDD is not a solution for all kinds

of situations, but this concept can be useful when you want to minimize the risk of

introducing performance issues.

 Define a Task and Performance Goals
As we already know, any performance-related work should start with defining goals.

PDD is a technique that is suitable only for a specific set of goals. You should use it only

if it fits your current task. There are three primary kinds of tasks/goals that can be solved

via PDD. Each kind (I will provide codenames for future reference) should be started

with a performance test.

• Codename: “Optimizations”

Task: Optimize ineffective code

Goal: We should achieve “better” performance

Chapter 5 performanCe analysis and performanCe testing

352

It’s not a good idea to blindly optimize different parts of your

code. A performance test can help you to verify that you actually

optimized something and evaluate the performance boost.

• Codename: “Feature”

Task: Implement a new feature

Goal: The feature should be fast

When a feature is already implemented, there is always a

temptation to say something like “It seems that it works fast

enough.” A proper performance test helps to set your business

requirements in advance. This case is pretty similar to a situation

in classic TDD.

• Codename: “Refactoring”

Task: Refactoring in performance-sensitive code

Goal: We should keep the same level of performance (or make
it better)

It’s pretty hard to say that you didn’t introduce any performance

degradations if you don’t have a baseline. A baseline helps you to

verify that everything is OK.

In each case, the task should correspond to your business goals. “Better

performance,” “fast feature,” and “same level of performance” are abstract, ineffective

terms. The PDD forces you to formalize the goal and specify the required metric values.

 Write a Performance Test
This is the most important part of PDD. You shouldn’t do anything before you get a

reliable performance test (or a test suite). “Optimizations” and “Feature” should be

started with a red test; “Refactoring” should be started with a green test that can be easily

transformed to a red one.

If you can’t write a performance test, something is going wrong. Usually, it means

that you have problems with performance goals. For example, you want to optimize a

method because it “looks ineffective.” In this case, you should prove that it’s ineffective

by a red performance test. Your performance requirements should be strictly defined.

Chapter 5 performanCe analysis and performanCe testing

353

If you can’t write a red test that corresponds to performance requirements, you probably

don’t need optimizations because you can’t demonstrate that the method is ineffective.

Keep in mind that the test should be green at the end. If you made your

optimizations, but the test is still red, you may be tempted to change performance

asserts. Be careful: it’s a slippery slope! Indeed, sometimes you collect new information,

and you have to change something in the test. In this case, you also have to check that

the test is still red before the optimizations. PDD assumes that an optimization is always

a transition from a red performance test to a green one. There are many cases when you

can’t achieve such transition. And it’s the coolest “feature” of PDD: it protects you from

premature or wrong optimizations!

Now it’s time to discuss five typical steps of writing such tests.

• Step 1: Write target method

Just write a method that covers the target case. Imagine that you

are writing a functional test that covers your code. As in the case

of ordinary tests, you should try to isolate logic and measure only

logic that matters to you. In the “Optimizations” case, you should

cover only logic that you are going to optimize and nothing else.

In the “Feature” case, you should cover the feature (and only

the feature) in advance (as you usually do in typical TDD). In

the “Refactoring” case, you should cover only the performance-

critical part of the architecture that you are going to refactor. It’s

always better to have several performance tests. If you came up

only with a single one, try to parametrize it. If you read a file, try

files with different sizes. If you process a dataset, try different

datasets.

• Step 2: Collect metrics

As a minimum, you have to measure raw test duration. However,

it’s better to collect some additional metrics like hardware

counters, GC collections, and so on. Do many iterations,

accumulate them, and calculate statistics numbers. Run tests not

only on your developer machine but also on machines of your

colleagues and on a server.

Chapter 5 performanCe analysis and performanCe testing

354

• Step 3: Look at the performance space

It’s not enough to just collect raw metrics; you should carefully

look at them. Check out how the distribution looks. Does it have

one mode or several modes? What about the variance? How

does the performance depend on the test parameters? Is the

dependency linear or not? What’s the maximum parameter value

that produces a reasonable duration for the performance test? If

you practice PDD on a regular basis, you will come up with your

own checklist soon. Looking at the performance space doesn’t

require too much time (especially if it’s not your first time), but it

can save a lot of time later. Knowledge about some “features” of

the test performance space will help you to find tricky places in

your source code that you should be aware of.

• Step 4: Write performance asserts

Now it’s time to transform your business goals into performance

asserts. Remember that the test should be red for “Optimizations”

cases. Many developers skip this step. You may be tempted to

say: “OK, I know how much time it takes now. I can optimize

my code and check how much it takes after that. Next, I will

write performance asserts.” This is a bad practice: it can destroy

your business goal. If you want to optimize a method twice,

write a corresponding assert. If you discover new things during

optimizations (like “Hey, I can optimize it ten times!” or “It’s

just impossible to optimize more than 50%”), you always can

change the assert later. But you still have to express your original

intention in the form of performance asserts. I have seen many

times when developers say something like “After these crazy

hacks I get 5% speedup, now I’m going to commit it” (whereas 5%

speedup doesn’t have business value and crazy hacks mutilate the

code and move it to the “impossible to maintain” state). Original

performance asserts don’t protect you from all such cases, but

they will make you think twice before committing code that

doesn’t solve the original problem.

Chapter 5 performanCe analysis and performanCe testing

355

• Step 5: Play with the test status

Next, you should check that you wrote good performance asserts.

In the “Optimizations” case, try to transform the red test to a

green one by commenting the “heaviest” part of your code. In the

“Refactoring” case, try to add a few Thread.Sleep calls here and

there and make sure that the test is red now. In the “Feature” case,

check empty and Thread.Sleep implementations. You should be

sure that you wrote performance asserts correctly (at the end, tests

should be green in case of success or red in case of failure).

Once you have a good performance test with correct performance asserts and you

learned what the performance space looks like, it will be time to write some real code!

 Change the Code
Now it’s time to remember your original goals and optimize the product, implement new

features, or perform refactoring. You can be completely focused on your task without

fearing to introduce a performance problem.

The classic TDD approach assumes that you should write a code that makes your test

red. It can be useful for PDD as well. For example, if you are developing a feature, you

can write a naive implementation first. Such implementation should work correctly, but

it can be slow. You should get a situation with green functional/integration/unit tests

and red performance tests. After that, you can start to optimize the code until you reach

your original performance goals. It should be very easy to verify it with one click because

you have the performance tests.

 Check the New Performance Space
Remember that it’s not always possible to cover all possible problems by automatic

performance asserts. So, it’s nice to check the part of the performance space that can be

affected by your changes.

Here is another example from my personal experience. Rider on Unix uses Mono as

a runtime for the ReSharper process. Each version of Rider is based on a fixed bundled

version of the Mono runtime. Sometimes, we have to upgrade Mono to the next stable

release. We never know how this upgrade can affect the Rider performance. We have

a lot of tests, but it’s almost impossible to cover all cases in a huge product that can be

Chapter 5 performanCe analysis and performanCe testing

356

affected by changes in the runtime. So, we create two revisions with the same Rider

code base and different versions of Mono. After that, we do several dozen runs of the

whole test suite on the same hardware and different operating systems (Windows, Linux,

macOS). Next, we build dashboards for different metrics that have the biggest differences

between revisions. Next, I start to manually check the top tests in these dashboards and

look at their performance plots. My favorite metric is variance: we have found plenty of

problems by looking at tests that have huge differences between variance for old and

new versions of Mono. Unfortunately, it’s almost impossible to automate this process

because the high Type I (false positive) error rate. However, sometimes, in perhaps 1 test

out of 100, we find very serious problems that actually affect the product.

 Summing Up
PDD is a powerful technique that provides a reliable way to do performance-sensitive

tasks. It allows you to control performance of your code during development and

prevent many bugs and degradations in advance. Also, it forces you to formalize your

performance goals and write many performance tests.

However, this approach also has one important disadvantage: it creates an immense

amount of work, most of which is likely extraneous for most projects and most types

of code. While TDD can be used on daily basis, it’s not recommended to use PDD all

the time. You should be sure that the benefits from PDD (decreased risk of introduced

performance problems) are worth the time and resources that you spend on writing

performance tests in advance.

 Performance Culture
Performance testing is a discipline that consists of two components. The first one is

the technical part, which we discussed in previous sections. It answers the question of

how the performance testing should be implemented. The second one is performance

culture (this term was taken from an awesome blog post by Joe Duffy, see [Duffy 2016]).

It answers the question of how to make performance testing work. You can implement

an awesome performance testing toolkit with excellent anomaly detection algorithms

and smart performance alarms/asserts. However, it will not work if there is not much

performance culture in your team. Performance testing is not only about technologies;

Chapter 5 performanCe analysis and performanCe testing

357

it’s also about attitude. In this section, we will discuss some core principles of the

performance culture:

• Shared performance goals: all team members should have the same

performance goals.

• Reliable performance testing infrastructure: infrastructure should

work great, and developers should trust it.

• Performance cleanness: you shouldn’t be tolerant to performance

problems and your list of unexamined performance anomalies

should be empty.

• Personal responsibility: each developer is responsible for the

performance of his or her code.

As usual, let’s start with the performance goals.

 Shared Performance Goals
All team members should share common performance goals. They should clearly

understand it. It doesn’t matter what kind of goals do you have.

It’s OK if you don’t care about performance at all if all team members don’t care

about performance. It can be applied not only to performance but to every business goal.

It’s hard to work with the same team on the same product with people who don’t share

goals with you. Such situations produce many communication problems and spoil the

business process.

If a decent performance level is your business goal, it should be obvious for all

developers in the team. Remember that when we say “good performance,” this isn’t

the best wording. The target performance level should be formalized and expressed

with some metric. In this book, there are many chapters that explain again and again

why it’s so important to formalize your goals. There is a reason for that. There are many

situations when a performance engineer speaks with another team member and says

something like “We have a performance degradation after your recent changes: could

you please fix it?” If he or she gets an answer like “I’m too busy, I am not going to fix it, it

works fast enough,” we can’t say whether it make sense to fix the problem or not because

we don’t know the performance goals of this team. Moreover, there are no unified

business goals in the team that are clear for everyone.

Chapter 5 performanCe analysis and performanCe testing

358

If such a situation exists, you have to formalize goals. For example, you can say that a

web server should process at least 1000 RPS. Or you can say that any operation on the UI

thread shouldn’t take more than 200 ms.

It’s worth noting that some teams can live without strict formalized performance

goals. I have seen many cases in which a team has an empirical understanding of the

goals. If you can work without conflict over performance and still achieve your goals,

that’s great; keep up the good work!36

It doesn’t matter what kind of goals you have and how you express them, as long as

all team members agree with them.

In [Duffy 2016] (see the “Management: More Carrots, Fewer Sticks” section therein),

Joe Duffy said: “In every team with a poor performance culture, it’s management’s fault.

Period. End of conversation.” That’s a controversial statement, but it seems to be true

for most teams. Originally, performance culture was an approach to help you achieve

performance goals. However, if you really care about performance, the performance

culture should become one of the goals for management. It’s not something that you can

get for free: a performance culture requires hard work and many conversations with your

team members. All of them should have common values and views, and management

should make some investment in it. Here is another quote from the post: “Magical things

happen when the whole team is obsessed about performance.”

 Reliable Performance Testing Infrastructure
If developers don’t trust performance tests, these tests are useless. Here are the three

most important requirements:

• All tests should be green

If you constantly have some red or flaky tests, nobody will care

about “one more test” with some performance problems.

36 Here is a quote from Federico Andres Lois about his development experience in RavenDB:
“RavenDB team behaves like that. Our goal is to be the fastest database out there, everybody
understands that even if there is no formal goal. So everybody does their part, and when in
doubt they ask the resident performance expert on their timezone of convenience. Having said
that, almost never would performance improvements trump a new feature or correctness. We
flag that feature, and then an expert would look into how to make it blazing fast as soon as it is
stabilized.”

Chapter 5 performanCe analysis and performanCe testing

359

• Type I (false positive) error rate should be low

If you get false alarms about performance problems all the time,

you will probably start to ignore them because you will spend your

time on the investigation without any benefits from it.

• It should be easy to write a performance test

Writing performance tests is usually an optional task. If such tests

require complicated routine work, developers will be tempted to

skip it.

If you want to force developers to use a tool (e.g., a performance testing

infrastructure), it should be reliable and easy to use. The developers should trust the tool

and enjoy using it. Otherwise, it will not work.

 Performance Cleanness
There is a well-known criminological theory called “the Broken Windows theory” (see

[Wilson 1982]). Here is the key rule from the original article:

If a window in a building is broken and is left unrepaired, all the rest of the
windows will soon be broken.

This rule can also be applied to software development. If you have many

performance problems here and there, or if you have a lot of tests with suspicious

anomalies without an assignee, you will get new performance problems all the time.

Once you get performance cleanness, there are two important rules to save it:

• Zero tolerance for performance problems

If you have a new performance problem, it should be investigated

on the spot. Try to forget about backlog lists and thoughts like

“I’m too busy right now, will take a look at the next week.” It

will be much harder to investigate the issue a week later: other

problems can be introduced and “the rest of the windows will

soon be broken.” Of course, it’s ideal when you instantly fix

any performance problems. In many cases, though, this can be

impossible because you have many other higher-priority issues

that can’t be postponed. But, in terms of zero tolerance for

Chapter 5 performanCe analysis and performanCe testing

360

performance problems, it doesn’t matter that you can’t always

achieve this ideal situation.37

• Regular checking of the performance anomaly list

I should say it again: it’s pretty hard to catch all problems

automatically. New problems that are not covered by performance

tests with strict asserts can be introduced at any moment. Thus,

it’s a very good practice to have some performance alarms and

dashboards and to check them regularly.

Of course, these rules are valid only for projects with corresponding business

goals. The performance cleanness can significantly simplify keeping a decent level of

performance. Once you achieve the cleanness, it’s much easier to support it than trying

to find the most important issues in the midst of “performance chaos.”

 Personal Responsibility
Performance cleanness is the responsibility of each developer. In many teams, there

are a few developers who know a lot about performance and everyone thinks that they

should handle all the performance problems. Why?

Let’s say you are going to commit a new feature. If you want to have clean code in

your repository, you are responsible for your code. Imagine that there is a developer who

is responsible for the clean code: you commit dirty code, and this developer will clean

this code for you: make basic formatting, choose proper names for variables, and so on.

But this sounds ridiculous, right? No developer will fix your code style for you.

Why is it a common practice to have a performance geek who should solve all the

performance problems? It’s good to have someone who knows a lot about performance

and optimization and can help you with a tricky situation. But he or she shouldn’t do all

tasks.

37 Here is another quote from Federico Andres Lois about RavenDB: “RavenDB took an entirely
different path back in 3.0 time frame. They hired a dedicated guy (they assigned me exclusively)
to investigate any potential venue to improve performance… . And while we did a lot of good
stuff, most of the work was actually uncovering the architectural deficiency issues that we would
need to fix for 4.0. The team started to pick up the theme of the usual optimizations and apply
the cookie cutter techniques rapidly, but because with Oren we did a general theme to post on
the internal and external channels, we got 3× here, 2× there, 30% there, etc. There was no week
without one of two of those, for like a year. So the culture shifted pretty fast.”

Chapter 5 performanCe analysis and performanCe testing

361

You should care about the performance of your code. You should care about

performance cleanness. It’s your personal responsibility.

 Summing Up
If I had to choose between a team of developers who have strong performance skills

and a team of developers who have strong performance culture, I would choose the

second team. If developers have the performance culture, they can read books and blog

posts about performance, optimizations, and runtime internals, they can learn how to

use tools for profiling and benchmarking, and they can adopt some good practices and

techniques. Without the performance culture, their performance skills will probably not

help to develop a product with a small number of performance problems.

The shared performance goals help you to communicate with each other. A reliable

performance testing infrastructure helps you to easily solve routine technical tasks. The

performance cleanness helps you maintain the product without any “broken windows.”

Personal responsibility helps to make the code of each developer better and faster. All

these things together help you to get the performance culture in your team and develop

awesome, fast, and reliable software.

 Summary
Performance analysis is an essential skill for every performance engineer. It helps

to do in-depth performance investigations and implement a reliable infrastructure

for performance testing. In this chapter, we discussed the most critical topics for

performance analysis:

• Performance testing goals

The basic goals are to prevent performance degradations, detect

not-prevented degradations, detect other kinds of performance

problems, reduce Type I (false positive) and Type II (false

negative) error rates, and automate everything. You can also have

your own goals, but you still have to remember these primary

goals, which are relevant for most projects.

Chapter 5 performanCe analysis and performanCe testing

362

• Kinds of benchmarks and performance tests

There are many of them like cold start tests, warmed-up tests,

asymptotic tests, latency and throughput tests, user interface

tests, unit and integration tests, monitoring and telemetry, tests

with external dependencies, stress/load tests, user interface tests,

fuzzing tests, and so on. A good performance test suite usually

includes a combination of these kinds.

• Performance anomalies

Degradation is not the only performance problem that you can

have. There are many other anomalies like acceleration; temporal

and spatial clustering; huge duration, variance, outliers; and

multimodal distributions. If you want to get rid of all performance

problems, you should systematically check out your test suite.

Probably, you will get many false anomalies, but it’s still worth it to

monitor your anomalies.

• Strategies of defense

There are many strategies of defense against performance

problems. Here are some of them: precommit tests, daily tests,

retrospective analysis, checkpoint testing, prerelease testing,

manual testing, postrelease telemetry and monitoring. As usual,

it makes sense to use a combination of some or all of these

approaches.

• Performance space

In most performance investigations, we work with a

multidimensional performance space that contains many

subspaces like metric subspace, iteration subspace, test subspace,

CI agent subspace, environment subspace, and history subspace.

Understanding these subspaces allows collecting more data for the

investigation and finding the factors that actually affect performance.

• Performance asserts and alarms

Performance asserts are automatic checks used in performance

tests with a low false positive rate. Performance alarms are

Chapter 5 performanCe analysis and performanCe testing

363

notifications about performance problems that can’t be used

directly as an assert because of a high false positive rate. Both

asserts and alarms can use different kinds of thresholds: absolute,

relative, adaptive, and manual.

• PDD

This technique is similar to classic TDD with performance

tests instead of the usual unit/functional/integration tests. It

helps you to optimize the product, implement new features, or

perform refactoring with confidence that you will not spoil the

performance (or that you will make it even better).

• Performance culture

Performance testing is not only about technologies, it’s also

about attitude. The key components of the performance culture

are shared performance goals, good management, reliable

performance testing infrastructure, performance cleanness, and

personal responsibility. The performance culture is required if you

want to make performance testing work.

Of course, it’s not possible to cover all aspects of performance testing in a single

chapter. However, we discussed some of the most important techniques and ideas that

will help you to improve your investigator skills and start to cover your product with

performance tests.

 References
[Akinshin 2018] Akinshin, Andrey. 2018. “A Story About Slow NuGet Package Browsing.”

May 8. https://aakinshin.net/blog/post/nuget-package-browsing/.

[AnomalyIo 2015] “Anomaly Detection Using K-Means Clustering.” 2015. Anomaly.io.

June 30. https://anomaly.io/anomaly-detection-clustering/.

[AnomalyIo 2017] “Detect Anomalies in Correlated Time Series.” 2017. Anomaly.io.

January 25. https://anomaly.io/detect-anomalies-in-correlated-time-series/.

[Bragg 2017] Bragg, Gareth. 2017. “How We Took Test Cycle Time from 24 Hours to 20

Minutes.” October 12. https://medium.com/ingeniouslysimple/how-we-took-test-

cycle-time-from-24-hours-to-20-minutes-e847677d471b.

Chapter 5 performanCe analysis and performanCe testing

https://aakinshin.net/blog/post/nuget-package-browsing/
https://anomaly.io/anomaly-detection-clustering/
https://anomaly.io/detect-anomalies-in-correlated-time-series/
https://medium.com/ingeniouslysimple/how-we-took-test-cycle-time-from-24-hours-to-20-minutes-e847677d471b
https://medium.com/ingeniouslysimple/how-we-took-test-cycle-time-from-24-hours-to-20-minutes-e847677d471b

364

[Chua 2014] Chong, Freddy, Tat Chua, Ee-Peng Lim, and Bernardo A. Huberman. 2014.

“Detecting Flow Anomalies in Distributed Systems.” In Data Mining (ICDM), 2014 Ieee

International Conference, 100–109. IEEE. https://arxiv.org/abs/1407.6064.

[Dimopoulos 2017] Dimopoulos, Giorgos, Pere Barlet-Ros, Constantine Dovrolis, and

Ilias Leontiadis. 2017. “Detecting Network Performance Anomalies with Contextual

Anomaly Detection.” In Measurement and Networking (M&N), 2017 IEEE International

Workshop, 1–6. IEEE. doi:https://doi.org/10.1109/IWMN.2017.8078404.

[Duffy 2016] Duffy, Joe. 2016. “Performance Culture.” April 10. http://joeduffyblog.

com/2016/04/10/performance-culture/.

[Ibidunmoye 2016] Ibidunmoye, Olumuyiwa, Thijs Metsch, and Erik Elmroth. 2016.

“Real-Time Detection of Performance Anomalies for Cloud Services.” In Quality of

Service (IWQoS), 2016 IEEE/ACM 24th International Symposium, 1–2. IEEE. doi:

https://doi.org/10.1109/IWQoS.2016.7590412.

[Kofman 2018] Kofman, Svetlana. 2018. “Incident Report - NuGet.org Downtime on

March 22, 2018.” March 22. https://blog.nuget.org/20180322/Incident-Report-

NuGet-org-downtime-March-22.html.

[Kondratyuk 2017] Kondratyuk, Dan. 2017. “How Changing ‘Localhost’ to ‘127.0.0.1’

Sped Up My Test Suite by 18x.” June 9. https://hackernoon.com/how-changing-

localhost-to-127-0-0-1-sped-up-my-test-suite-by-1-800-8143ce770736.

[Malerisch 2015] “Microsoft .NET MVC ReDoS (Denial of Service) Vulnerability - CVE-

2015-2526 (MS15-101).” 2015. Malerisch.net. September 10. http://blog.malerisch.

net/2015/09/net-mvc-redos-denial-of-service-vulnerability-cve-2015-2526.html.

[Peiris 2014] Peiris, Manjula, James H. Hill, Jorgen Thelin, Sergey Bykov, Gabriel Kliot,

and Christian Konig. 2014. “PAD: Performance Anomaly Detection in Multi-Server

Distributed Systems.” In Cloud Computing (Cloud), 2014 IEEE 7th International

Conference, 769–776. IEEE. doi: https://doi.org/10.1109/CLOUD.2014.107.

[Songkick 2012] “From 15 Hours to 15 Seconds: Reducing a Crushing Build Time.” 2012.

Songkick. July 16. https://devblog.songkick.com/from-15-hours-to-15-seconds-

reducing-a-crushing-build-time-4efac722fd33.

[Warren 2018] Warren, Matt. 2018. “Fuzzing the .NET JIT Compiler.” October 28. http://

mattwarren.org/2018/08/28/Fuzzing-the-.NET-JIT-Compiler/.

[Wilson 1982] Wilson, James Q., and George L. Kelling. 1982. “The Police and

Neighborhood Safety: Broken Windows.” Atlantic Monthly 127 (2): 29–38.

Chapter 5 performanCe analysis and performanCe testing

https://arxiv.org/abs/1407.6064
https://doi.org/10.1109/IWMN.2017.8078404
http://joeduffyblog.com/2016/04/10/performance-culture/
http://joeduffyblog.com/2016/04/10/performance-culture/
https://doi.org/10.1109/IWQoS.2016.7590412
https://blog.nuget.org/20180322/Incident-Report-NuGet-org-downtime-March-22.html
https://blog.nuget.org/20180322/Incident-Report-NuGet-org-downtime-March-22.html
https://hackernoon.com/how-changing-localhost-to-127-0-0-1-sped-up-my-test-suite-by-1-800-8143ce770736
https://hackernoon.com/how-changing-localhost-to-127-0-0-1-sped-up-my-test-suite-by-1-800-8143ce770736
http://malerisch.net
http://blog.malerisch.net/2015/09/net-mvc-redos-denial-of-service-vulnerability-cve-2015-2526.html
http://blog.malerisch.net/2015/09/net-mvc-redos-denial-of-service-vulnerability-cve-2015-2526.html
https://doi.org/10.1109/CLOUD.2014.107
https://devblog.songkick.com/from-15-hours-to-15-seconds-reducing-a-crushing-build-time-4efac722fd33
https://devblog.songkick.com/from-15-hours-to-15-seconds-reducing-a-crushing-build-time-4efac722fd33
http://mattwarren.org/2018/08/28/Fuzzing-the-.NET-JIT-Compiler/
http://mattwarren.org/2018/08/28/Fuzzing-the-.NET-JIT-Compiler/

365
© Andrey Akinshin 2019
A. Akinshin, Pro .NET Benchmarking, https://doi.org/10.1007/978-1-4842-4941-3_6

CHAPTER 6

Diagnostic Tools

If all you have is a hammer, everything looks like a nail.

— Abraham Maslow

Benchmarking is only one of the performance investigation steps. In this chapter, you

will find a brief overview of the some important diagnostic tools that can be useful for

the whole investigation. We will learn the following kinds of tools:

• Benchmarking harness

This tool automatically benchmarks the specified method and

displays corresponding metrics. It tells you how much time it

takes to perform this method, but it doesn’t always tell you why

you have such values.

• Performance profiler

This tool measures performance metrics for each called method

inside an application. It tells you where the performance

bottleneck of the application is and allows exploring performance

profiles with detailed information about consumed CPU resources

for each method.

• Memory profiler

This tool measures memory traffic for an application. It tells you

how many objects were allocated and allows exploring memory

snapshots with detailed information about the graph of alive and

dead objects of each class.

366

• C#/VB decompiler

This tool takes a .NET assembly and shows C#/VB code (even if

you don’t have original source code).

• IL decompiler

This tool takes a .NET assembly and shows IL code for requested

classes and methods.

• ASM Decompiler

This tool takes a .NET assembly or an existing .NET process and

shows the native code for requested classes and methods.

• Debuggers

This tool allows debugging .NET assemblies. The debugger is

especially useful when it can also show C#/IL/ASM disassembly

listings and debug external code (with or without symbols).

• System monitoring tool

This tool monitors all processes in the operating system and

shows performance, memory, and other metrics for the system in

general and for individual processes and their threads.

The tools will be presented in the following groups:

• BenchmarkDotNet

We will discuss the only one benchmarking harness:

BenchmarkDotNet. This is the most adopted library, used in many

popular open source and closed source projects.

• Visual Studio Tools

Visual Studio is an IDE, but it has some important embedded tools

that are useful for performance investigations. We will discuss the

embedded memory/performance profiler and debugging tools.

• JetBrains Tools

JetBrains has many different tools that provide advanced support

for performance/memory profiling and decompilation. We will

discuss dotPeek, dotTrace, dotMemory, ReSharper, and Rider.

Chapter 6 DiagnostiC tools

367

• Windows Sysinternals

This is a suite of independent tools for Windows that can simplify

different steps of performance investigations and collect system

metrics. We will discuss RAMMap, VMMap, and ProcessMonitor.

• Other Useful Tools

There are many other tools in the .NET ecosystem that can

also be useful in different scenarios. We will discuss ildasm,

monodis, ILSpy, dnSpy, WinDbg, PerfView, Mono Console Tools,

perfcollect, Process Hacker, and Intel VTune Amplifier.

The topic of diagnostic tools is huge, and it’s not possible to cover all of them in detail

in this chapter. The aim of this chapter is to provide an overview of some available tools.

However, you will not find step-by-step tutorials that teach you how to use them: you will

have to study them yourself. You are free to choose any tools you like: you can look for

them on the Internet or build your own software. In this chapter, we are going to briefly

discuss some features of some tools that can be used during performance investigations.

For each tool, you will find some useful information: the URL of the official website,

links to useful resources, the license, and the supported operating systems. The “free/

commercial” label means that the general license is commercial, but there are some free

options (e.g., for open source projects, for students and teachers, for small teams, and so

on). You can find the full information about the discounted and complimentary licenses

on the official websites.

 BenchmarkDotNet
BenchmarkDotNet is a powerful .NET library for benchmarking with tons of features

that help to design benchmarks, execute them, and analyze performance results. I’m

proud to say that I’m the project lead of this library. I started BenchmarkDotNet in 2013

as a small pet project. Today, it’s a highly adopted open source project supported by the

.NET Foundation. BenchmarkDotNet is used for performance experiments in the most

popular .NET projects including .NET Core. Here is a usage example:

using System;

using System.Security.Cryptography;

using BenchmarkDotNet.Attributes;

using BenchmarkDotNet.Running;

Chapter 6 DiagnostiC tools

368

namespace MyBenchmarks

{

 [ClrJob(baseline: true), CoreJob, MonoJob, CoreRtJob]

 public class Md5VsSha256

 {

 private SHA256 sha256 = SHA256.Create();

 private MD5 md5 = MD5.Create();

 private byte[] data;

 [Params(1000, 10000)]

 public int N;

 [GlobalSetup]

 public void Setup()

 {

 data = new byte[N];

 new Random(42).NextBytes(data);

 }

 [Benchmark]

 public byte[] Sha256() => sha256.ComputeHash(data);

 [Benchmark]

 public byte[] Md5() => md5.ComputeHash(data);

 }

 public class Program

 {

 public static void Main(string[] args)

 {

 var summary = BenchmarkRunner.Run<Md5VsSha256>();

 }

 }

}

This program will generate an output like this:

BenchmarkDotNet=v0.11.0, OS=Windows 10.0.16299.309 (1709/Redstone3)

Intel Xeon CPU E5-1650 v4 3.60GHz, 1 CPU, 12 logical and 6 physical cores

Chapter 6 DiagnostiC tools

369

Frequency=3507504 Hz, Resolution=285.1030 ns, Timer=TSC

.NET Core SDK=2.1.300-preview1-008174

 [Host] : .NET Core 2.1.0-preview1-26216-03

 (CoreCLR 4.6.26216.04, CoreFX 4.6.26216.02), 64bit RyuJIT

 Job-HKEEXO : .NET Framework 4.7.1

 (CLR 4.0.30319.42000), 64bit RyuJIT-v4.7.2633.0

 Core : .NET Core 2.1.0-preview1-26216-03

 (CoreCLR 4.6.26216.04, CoreFX 4.6.26216.02), 64bit RyuJIT

 CoreRT : .NET CoreRT 1.0.26414.01, 64bit AOT

 Mono : Mono 5.10.0 (Visual Studio), 64bit

| Method | Runtime | N | Mean | Error | StdDev | Ratio |

|------- |-------- |------ |-----------:|----------:|----------:|------:|

| Sha256 | Clr | 1000 | 8.009 us | 0.0370 us | 0.0346 us | 1.00 |

| Sha256 | Core | 1000 | 4.447 us | 0.0117 us | 0.0110 us | 0.56 |

| Sha256 | CoreRT | 1000 | 4.321 us | 0.0139 us | 0.0130 us | 0.54 |

| Sha256 | Mono | 1000 | 14.924 us | 0.0574 us | 0.0479 us | 1.86 |

| | | | | | | |

| Md5 | Clr | 1000 | 3.051 us | 0.0604 us | 0.0742 us | 1.00 |

| Md5 | Core | 1000 | 2.004 us | 0.0058 us | 0.0054 us | 0.66 |

| Md5 | CoreRT | 1000 | 1.892 us | 0.0087 us | 0.0077 us | 0.62 |

| Md5 | Mono | 1000 | 3.878 us | 0.0181 us | 0.0170 us | 1.27 |

| | | | | | | |

| Sha256 | Clr | 10000 | 75.780 us | 1.0445 us | 0.9771 us | 1.00 |

| Sha256 | Core | 10000 | 41.134 us | 0.2185 us | 0.1937 us | 0.54 |

| Sha256 | CoreRT | 10000 | 40.895 us | 0.0804 us | 0.0628 us | 0.54 |

| Sha256 | Mono | 10000 | 141.377 us | 0.5598 us | 0.5236 us | 1.87 |

| | | | | | | |

| Md5 | Clr | 10000 | 18.575 us | 0.0727 us | 0.0644 us | 1.00 |

| Md5 | Core | 10000 | 17.562 us | 0.0436 us | 0.0408 us | 0.95 |

| Md5 | CoreRT | 10000 | 17.447 us | 0.0293 us | 0.0244 us | 0.94 |

| Md5 | Mono | 10000 | 34.500 us | 0.1553 us | 0.1452 us | 1.86 |

You can find the full documentation for the latest version of BenchmarkDotNet

on GitHub, so I’m not going to describe how to use all the features. Instead, I want to

talk about the philosophy of tools for benchmarking. I think that a good benchmarking

library should satisfy the following requirements:

Chapter 6 DiagnostiC tools

370

• It should do all routine tasks for you

A typical benchmark includes a lot of boilerplate code. Users

shouldn’t write it each time when they want to measure

performance. A benchmarking tool should automatically run

several iterations, and each iteration should include several

method invocations. It should run several warm-up iterations

and remove them from the report. It should isolate benchmarks

from each other and run each benchmark in a separate process.

If you want to check several different environments, it should

automatically perform benchmarks in each environment and

aggregate the results. It should automatically evaluate its own

overhead and subtract it from the measured values. All the

dirty work should be done by the benchmarking library. During

benchmarking, users should be able to focus on the measured

logic instead of the benchmarking infrastructure.

• It should protect you from known pitfalls

It shouldn’t allow you to run benchmarks in the DEBUG mode

(without optimizations). It should control inlining and make sure

that all benchmarks use the same inlining policy. It should use the

best available timestamping API. The best benchmarking practices

(like warm-up and isolation) should be enabled by default.

• It should choose the best benchmarking mode for you

Approaches of adaptive benchmarking should be implemented.

Instead of asking the user about the number of iterations, it

can use optional stopping. Instead of asking the user about the

number of method invocations inside each iteration, it should

find the best value during the pilot experiment. By default, users

shouldn’t worry about infrastructure parameters: the library has

to find the best possible values by default.

• It should be highly configurable

Each benchmark experiment is unique, with its own

requirements. Users should be able to disable all the smart

features. For example, if they want to measure the cold start,

Chapter 6 DiagnostiC tools

371

it should pe possible to disable warm-up. If they know that

benchmarks don’t affect each other, they may want to disable the

process isolation to speed up the whole experiment. It’s nice when

somebody else chooses the number of iterations for you, but it

should also be possible to set it manually.

• It should have a user-friendly API

This requirement is valid for any library. The API should be

understandable and well documented. It should support different

approaches: some users like to configure benchmarks in the

command line, some users like to use attributes, some users like

to use fluent API. The library should provide different ways to

configure the benchmarking process.

• It should know statistics for you

The library should be able to calculate all the basic statistics

characteristics like the mean and the median, the standard

deviation and the confidence interval, the quartiles and the

percentiles, and the skewness and the kurtosis. It should know

how to detect outliers, how to perform statistical tests like Welch’s

t-test or the Mann–Whitney U test, and how to check distributions

for multimodality.

• It should help you to analyze results

If the library can calculate all possible statistical metrics, it doesn’t

mean that it should print all of them each time. The library should

highlight all the essential features of the calculated distribution.

We know that we can get a huge difference between the mean

and the median, but these values are often close to each other.

If the library will print both values each time, users will learn to

ignore one of them. It’s better to show only the mean by default

and present the median only when it’s important. We know that

it’s important to distinguish between unimodal and multimodal

distributions. However, most simple performance distributions

are unimodal. It doesn’t make sense to print “Everything is OK,

the distribution is unimodal” each time. It’s better to print a

warning in case the distribution is multimodal. It should tell you

Chapter 6 DiagnostiC tools

372

if the distribution is spoiled by outliers. The basic report should

contain only important data in the most compact form. It’s

great if it can calculate the mean value with the highest possible

precision, but does it really make sense to print 6.38319573993657

ms? The most users care only about the most significant digits, so

it will be enough to print just 6.383. The library can perform the

Mann–Whitney U test and print the p-value, but it will be better

to print a conclusion based on it (many users don’t remember

how to correctly interpret p-values). The library should tell you

when the results are unreliable because of the initial settings

(e.g., small sample size or insufficient iteration time). The final

summary table should be as small as possible but contain the

most important numbers and facts. Users should be able to read it

and quickly understand what’s going on with the data.

• It should collect information about environment

A good performance report should include the most important

information about the environment like OS version, processor

model, used runtime, JIT compiler kind, and so on.

• It should provide basic diagnostics data

A benchmarking library is not a profiler or a decompiler, but it can

perform some basic diagnostics logic and provide the minimal

diagnostics data. For example, it can measure the amount of

allocated memory, evaluate values of hardware counters, print

IL and native listings for the main methods, generate a trace file

based on ETW events, check runtime optimizations like inlining

or tail call optimizations, and so on. It should help users to

understand why they have such a performance report and what

kinds of additional tools they need.

• It should generate many reports and draw plots

The information about performed measurements should be

available in different formats like CSV, JSON, XML, HTML,

Markdown, AsciiDoc, and others. Developers often share

their performance results, so the library should support

different dialects of Markdown that can be posted to GitHub,

Chapter 6 DiagnostiC tools

373

StackOverflow, JIRA, or other services. The distribution should

be shown with the help of different plots like histograms, timeline

plots, density plots, bar plots, box plots, frequency trails, and so

on. The library should know how to generate any kinds of report

that can be useful during performance analysis.

BenchmarkDotNet has become popular because it tries to follow all these

requirements. Of course, the library is not perfect; it has some bugs and missed features.

 However, BenchmarkDotNet gets better with each version thanks to community

contributions.

You should understand that any benchmarking library (including

BenchmarkDotNet) is not a silver bullet. It will not write a benchmark for you. It will not

analyze benchmarking reports for you. It just helps to design and execute benchmarks.

Thus, you still have to know the benchmarking methodology, and you still have to know

about possible pitfalls. You still should know about JIT optimizations like DCE, BCE, and

constant folding. You still should know about natural noise and possible huge variance;

you should check the distribution manually, and you should know how to analyze it.

There is no magic library that solves all these problems for you: they are still your

responsibility. BenchmarkDotNet just allows you to skip the boilerplate part of a

benchmark and focus on the target code. It’s especially useful for beginners who don’t

know about the discussed problems (or for people who just don’t want to think about all

of that right then). The library does not guarantee that all your benchmarks are correct.

But at least you do not have to worry about common stupid benchmark bugs. It’s a

handy tool for bootstrapping benchmarks, so we will discuss it several times in this book.

URL: https://github.com/dotnet/benchmarkdotnet

Open source (MIT); free; cross-platform.

Resources: https://benchmarkdotnet.org/, [Sitnik 2017a], [Sitnik 2017b],

[Sitnik 2018].

 Visual Studio Tools
Visual Studio is the most popular IDE for .NET development. We are not going to discuss

Visual Studio as an IDE; we will talk only about a few features that can be useful during

performance investigations.

URL: https://visualstudio.microsoft.com/vs/

Closed source; free/commercial; Windows-only.

Chapter 6 DiagnostiC tools

https://github.com/dotnet/benchmarkdotnet
https://benchmarkdotnet.org/
https://visualstudio.microsoft.com/vs/

374

 Embedded Profilers
Visual Studio has many different profiling modes:

• CPU usage

• Memory usage

• Resource consumption for XAML

• Network usage for UWP Apps

• GPU usage for Direct3D

• Energy usage for UWP Apps

A screenshot is presented in Figure 6-1.

Figure 6-1. Performance and memory profilers in Visual StudioURL: https://
docs.microsoft.com/en-us/visualstudio/profiling

Chapter 6 DiagnostiC tools

https://docs.microsoft.com/en-us/visualstudio/profiling
https://docs.microsoft.com/en-us/visualstudio/profiling

375

 Disassembly View
Visual Studio has several tool windows for low-level debugging:

• Disassembly: a disassembly listing of a method.

• Registers: plain text information about all available register values. It

supports different groups of registers: CPU, CPU Segments, Floating

Point, MMX, 3DNow!, SSE, AVX, AVX-512, MPX, Neon, Neon Float,

Neon Double, and CPU flags.

• Memory: several tool windows that show a dump of a specified

segment of memory. It can interpret memory as 1/2/4/8-byte integers

or 32/64-bit floating-point numbers and display them in different

formats (hexadecimal, signed numbers, unsigned numbers).

All the tool windows can be found during debugging in the Debug→Windows menu.

By default, the debugger in Visual Studio suppresses some JIT optimizations to

provide better debugging experience. Unfortunately, it spoils the native code even in the

Release mode. If you want to get the real native code, you should disable the “Suppress

JIT optimization on module load” check box in the settings.1

A screenshot is presented in Figure 6-2.

1 You can find more information about it in the documentation: https://docs.microsoft.com/
en-us/visualstudio/debugger/jit-optimization-and-debugging

Chapter 6 DiagnostiC tools

https://docs.microsoft.com/en-us/visualstudio/debugger/jit-optimization-and-debugging
https://docs.microsoft.com/en-us/visualstudio/debugger/jit-optimization-and-debugging

376

 JetBrains Tools
JetBrains has a suite of tools for .NET development. In this section, we are going to

discuss some profiling, decompiling, and debugging features.

 dotPeek
dotPeek is a free .NET decompiler and assembly browser. Here are some of the useful

features:

• Decompilation to C# and IL

• Export decompiled code to Visual Studio projects and generation of

pdb files

• Find usages of any symbol

• Quick navigation to a type, symbol, or anything else

A screenshot is presented in Figure 6-3.

Figure 6-2. Disassembly view in Visual StudioURL: https://docs.microsoft.
com/en-us/visualstudio/debugger/how-to-use-the-disassembly-window

Chapter 6 DiagnostiC tools

https://docs.microsoft.com/en-us/visualstudio/debugger/how-to-use-the-disassembly-window
https://docs.microsoft.com/en-us/visualstudio/debugger/how-to-use-the-disassembly-window

377

 dotTrace and dotMemory
dotTrace and dotMemory are .NET performance and memory profilers. Here are some

of the useful features of both products:

• Support for various .NET applications

It supports different kinds of .NET Framework applications

(including desktop apps, IIS, IIS Express, Windows services, UWP,

and so on) and .NET Core applications.

• Rich visualizations

Both profilers have a lot of visualization views, which allows you

to investigate different kinds of issues. For example, dotMemory

has the timeline view with real-time data collection, sunburst

diagram, call tree chart, and many tree views that help to examine

relations between objects in a snapshot.

Figure 6-3. dotPeekURL: www.jetbrains.com/decompiler/Closed source; free;
Windows-only

Chapter 6 DiagnostiC tools

https://www.jetbrains.com/decompiler/

378

• Comparing snapshots

When you want to evaluate the impact of a particular change, you

can capture performance or memory snapshots before and after

the change and compare them. It’s useful when you want to verify

that the change fixes a performance problem (or that the change

doesn’t introduce performance degradations).

• Many execution options

You can use dotTrace as a stand-alone desktop application, via

command line, or via profiling API. You can attach to local or

remote applications (remote profiling is especially useful when

you have a problem in a web application on a server).

Here are some special features of dotTrace:

• Different profiling modes

dotTrace supports the following types of profiling:

 – Sampling. The idea of this approach is simple: the profiler at the call stacks

for all threads from time to time. With this information, it can find methods

that take too much time (because they will often appear in captured call

stacks). This approach has the lowest possible overhead, but it’s not

 accurate: it can miss some fast methods and it can’t calculate the number of

calls for each method. It’s useful when you want to find a performance

bottleneck without significant profiler overhead.

 – Tracing. In the tracing mode, the profiler gets special entry and exit events

for each method with the help of code instrumentation. As a result, it may

add some overhead to each call; the measured time can be distorted. It’s

useful when you want to know the exact number of calls for each method.

 – Line-by-line. This approach is similar to tracing, but it works with state-

ments instead of methods. It has bigger overhead than tracing. It’s useful

when you are looking for the slowest statement in a huge method.

 – Timeline. In the timeline mode, the profiler collects temporal information

about call stacks, thread state data, memory allocation, garbage collections,

and I/O operations. The results are presented with the help of the Timeline

Chapter 6 DiagnostiC tools

379

Viewer, which displays recorded events on a timeline diagram. It’s useful

when the chronological order of events does matter; it allows detecting UI

freezes, excessive GC and I/O operations, and lock contention.

• Support for advanced cases

dotTrace has a lot of additional features like profiling async calls,

analyzing slow HTTP requests, SQL queries, and file system

operations.

Here are some special features of dotMemory:

• Powerful automatic inspections

dotMemory automatically detects common memory issues in

your snapshots like string duplicates, sparse arrays, leaking event

handlers or WPF bindings, and others.

• Support for raw memory dumps

You can work with raw Windows memory dumps as regular

snapshots, explore them via standard view panes, and apply

inspections.

dotTrace 2018.3 and dotMemory 2018.3 are Windows-only applications, but future

versions should support .NET Core and Mono profiling on Linux and macOS.

Screenshots of dotTrace and dotMemory are presented in Figure 6-4 and Figure 6-5.

Chapter 6 DiagnostiC tools

380

Figure 6-5. dotMemoryURL: www.jetbrains.com/profiler/, www.jetbrains.
com/dotmemory/Closed source; free/commercial; Windows-only

Figure 6-4. dotTrace

Chapter 6 DiagnostiC tools

https://www.jetbrains.com/profiler/
https://www.jetbrains.com/dotmemory/
https://www.jetbrains.com/dotmemory/

381

 ReSharper
ReSharper is a Visual Studio extension for .NET developers. It has many useful features,

but I want to highlight only one: IL Viewer. It allows viewing IL code for the current file

in a separate tool window. Thus, you can check out the generated IL listing without

switching from Visual Studio to another program. ReSharper and dotPeek use the same

decompilation engine.

A screenshot is presented in Figure 6-6.

Figure 6-6. ReSharper IL ViewerURL: www.jetbrains.com/resharper/Closed
source; free/commercial; Windows-only.Resources: [Balliauw 2017a], www.
jetbrains.com/help/resharper/Viewing_Intermediate_Language.html

 Rider
Rider is a fast and powerful cross-platform .NET IDE. We are not going to discuss Rider

as an IDE. Instead, we will talk only about the following features:

• Embedded decompiler

With the help of the dotPeek engine, Rider is able to show decompiled

C# code for any third-party classes even without symbols.

Chapter 6 DiagnostiC tools

https://www.jetbrains.com/resharper/
https://www.jetbrains.com/help/resharper/Viewing_Intermediate_Language.html
https://www.jetbrains.com/help/resharper/Viewing_Intermediate_Language.html

382

• External code debug

Even if you are working with a simple console application, you

can attach to any .NET application and debug the decompiled

code of any class without original source code or symbols. You

can even set breakpoints in the decompiled sources and analyze

the execution of third-party assemblies. While most of the classic

.NET tools are Windows-only, Rider supports external debug for

Mono and .NET Core on Linux and macOS.

• Embedded profiler

Rider contains an embedded dotTrace engine, which allows

profiling your application from the IDE.

URL: www.jetbrains.com/rider/

Closed source; free/commercial; cross-platform.

Resources: [Balliauw 2017b], www.jetbrains.com/help/rider/

Debugging_External_Code.html

 Windows Sysinternals
Windows Sysinternals is a set of advanced system utilities for Windows. This suite

includes many different tools that form the following groups:

• File and Disk Utilities: tools that can obtain detailed information

about disks (e.g., resource permissions, disk usage, disk mapping,

information about encrypted files) and disk manipulation tools

(e.g., scheduling file operations for the next reboot, defragmentation,

working with symbolic links).

• Networking Utilities: tools that can work with Active Directory,

named pipes, sockets, and remote computers. It also includes PsPing,

which allows performing basic network latency and bandwidth

measurements.

Chapter 6 DiagnostiC tools

https://www.jetbrains.com/rider/
https://www.jetbrains.com/help/rider/Debugging_External_Code.html
https://www.jetbrains.com/help/rider/Debugging_External_Code.html

383

• Process Utilities: tools that can monitor and control processes, their

threads, and handles.

• Security Utilities: tools that can operate with users, their sessions

and permissions.

• System Information: tools that can collect different information

about the operating system, processes, memory, devices, and

hardware.

• Miscellaneous: other tools that help to work with registry, encodings,

screens, and desktops.

In this section, we are going to discuss a few tools that can be especially useful

during performance investigations: RAMMap, VMMap, and Process Monitor.

URL: https://docs.microsoft.com/en-us/sysinternals/

Closed source; free; Windows-only.

 RAMMap
RAMMap shows a detailed low-level view of all kinds of memory in the operating system.

It allows exploring different kinds of memory (Active, Standby, Modified, and so on)

for different usage types (Process Private, Mapped Files, Sharable, and so on). You can

analyze the memory of each process, physical memory pages, and ranges.

You can find more information about different kinds of memory in Windows in

[Russinovich 2017] and [Russinovich 2019].

A screenshot is presented in Figure 6-7.

Chapter 6 DiagnostiC tools

https://docs.microsoft.com/en-us/sysinternals/

384

 VMMap
VMMap shows a detailed low-level view of memory for a process. While RAMMap helps

to explore memory in the whole operating system, VMMap is always working with a

single process. It provides advanced data for all memory segments that are used by this

process.

A screenshot is presented in Figure 6-8.

Figure 6-7. RAMMapURL: https://docs.microsoft.com/en-us/sysinternals/
downloads/rammap

Chapter 6 DiagnostiC tools

https://docs.microsoft.com/en-us/sysinternals/downloads/rammap
https://docs.microsoft.com/en-us/sysinternals/downloads/rammap

385

 Process Monitor
Process Monitor is an advanced monitoring tool for Windows that shows real-time file

system, Registry, and process/thread activity. It allows viewing all kinds of low-level OS

events (e.g., CreateFile/OpenFile/CloseFile, LoadImage, RegQueryKey/RegCloseKey,

ThreadCreate/ThreadExit, and so on). It’s also possible to get all available metadata for

each event, including full thread stack traces with integrated symbol support for each

operation. Since Windows has a huge number of such events, Process Monitor allows

setting different kinds of complicated filters, which helps you to catch only the events

that you want to see.

A screenshot is presented in Figure 6-9.

Figure 6-8. VMMapURL: https://docs.microsoft.com/en-us/sysinternals/
downloads/vmmap

Chapter 6 DiagnostiC tools

https://docs.microsoft.com/en-us/sysinternals/downloads/vmmap
https://docs.microsoft.com/en-us/sysinternals/downloads/vmmap

386

 Other Useful Tools
In this section, we are going to discuss other useful tools from different vendors which

can also simplify performance investigations.

Figure 6-9. Process MonitorURL: https://docs.microsoft.com/en-us/
sysinternals/downloads/procmon

Chapter 6 DiagnostiC tools

https://docs.microsoft.com/en-us/sysinternals/downloads/procmon
https://docs.microsoft.com/en-us/sysinternals/downloads/procmon

387

 ildasm and ilasm
ildasm allows getting IL disassembly for a .NET assembly and dumping it into a text file.

It’s a companion tool to the ilasm, which builds a .NET assembly from the IL sources.

Thus, you can decompile an assembly to IL with ildasm, make a few changes, and create

a modified assembly with ilasm. Both tools are installed with Visual Studio and available

from the Developer command prompt. Typical installation paths of these tools look like

c:\Program Files (x86)\Microsoft SDKs\Windows\v10.0A\bin\NETFX 4.7.1 Tools\

ildasm.exe and c:\Windows\Microsoft.NET\Framework\v4.0.30319\ilasm.exe.

Let’s say that we have a Program.cs file with the following content:

using System;

namespace ConsoleApp

{

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("Hello World!");

 }

 }

}

Let’s compile it with the help of Roslyn:

csc Program.cs

Now we have the Program.exe assembly, which can be decompiled to IL:

ildasm.exe Program.exe /out:Program.il

This command creates Program.il with the full IL metadata of our assembly. In the

middle of this file, we can find the following lines:

.class private auto ansi beforefieldinit ConsoleApp.Program

 extends [mscorlib]System.Object

{

Chapter 6 DiagnostiC tools

388

 .method private hidebysig static void Main(string[] args) cil managed

 {

 .entrypoint

 // Code size 13 (0xd)

 .maxstack 8

 IL_0000: nop

 IL_0001: ldstr "Hello World!"

 IL_0006: call void [mscorlib]System.Console::WriteLine(string)

 IL_000b: nop

 IL_000c: ret

 } // end of method Program::Main

 .method public hidebysig specialname rtspecialname

 instance void .ctor() cil managed

 {

 // Code size 8 (0x8)

 .maxstack 8

 IL_0000: ldarg.0

 IL_0001: call instance void [mscorlib]System.Object::.ctor()

 IL_0006: nop

 IL_0007: ret

 } // end of method Program::.ctor

} // end of class ConsoleApp.Program

Let’s open this file in a text editor and change IL_0001: ldstr "Hello World!" to

IL_0001: ldstr "Modified" and compile it back to the executable file:

ilasm.exe Program.il

Now, if we execute Program.exe, we will get “Modified” instead of “Hello World!”.

This approach is especially powerful when you want to make a few changes in the

assembly without rebuilding the project in the command line.

URL: https://docs.microsoft.com/en-us/dotnet/framework/tools/ildasm-exe-

il-disassembler

Closed source; free; Windows-only

Chapter 6 DiagnostiC tools

https://docs.microsoft.com/en-us/dotnet/framework/tools/ildasm-exe-il-disassembler
https://docs.microsoft.com/en-us/dotnet/framework/tools/ildasm-exe-il-disassembler

389

 monodis
monodis is a Mono version of ildasm. It makes the preceding example with

modification of IL code cross- platform. monodis prints the IL listing to the output,

so we can rewrite ildasm.exe Program.exe /out:Program.il like this:

monodis Program.exe > Program.il

ilasm also exists in Mono (the title is the same).

URL: www.mono-project.com/docs/tools+libraries/tools/monodis/ Open

source; free; cross-platform

 ILSpy
ILSpy is a .NET assembly browser and decompiler. It’s a pretty simple decompiler,

without many UI features. However, it allows using its decompilation engine via the

ICSharpCode.Decompiler NuGet package. Thus, you can easily embed this decompiler

into your own tools.

Originally, ILSpy was a Windows-only application, but now we have a cross-platform

version based on Avalonia.2

A screenshot is presented in Figure 6-10.

2 https://github.com/AvaloniaUI/Avalonia

Chapter 6 DiagnostiC tools

http://www.mono-project.com/docs/tools+libraries/tools/monodis/
https://github.com/AvaloniaUI/Avalonia

390

 dnSpy
dnSpy is a debugger and .NET assembly editor. Here are some of its useful features:

• Decompilation to C#, VB, and IL

• Edit assemblies in C#/VB/IL and edit metadata

• Debug .NET Framework, .NET Core, and Unity assemblies without

source code

• Powerful IL code hex editor

The decompilation engine is based on ILSpy and the compilation engine is based on

Roslyn.

Figure 6-10. ILSpyURL: https://github.com/icsharpcode/ILSpy, https://
github.com/icsharpcode/AvaloniaILSpy Open source (MIT); free; cross-
platform

Chapter 6 DiagnostiC tools

https://github.com/icsharpcode/ILSpy
https://github.com/icsharpcode/AvaloniaILSpy
https://github.com/icsharpcode/AvaloniaILSpy

391

The most powerful feature of dnSpy is assembly editing: you can easily change any

IL instruction in a third-party assembly even without its source code. It significantly

simplifies experiments when you are trying to find a performance problem in one of

your project dependencies. Even when you are working with your own assembly, dnSpy

allows making minor code fixes without time-consuming solution recompilation.

A screenshot is presented in Figure 6-11.

Figure 6-11. dnSpyURL: https://github.com/0xd4d/dnSpy Open source
(GPLv3); free; Windows-only.

 WinDbg
WinDbg is the most powerful low-level debugger for Windows. It allows profiling

native and .NET Windows applications. A rich set of commands helps to get any kind of

information needed during debugging. The .loadby sos clr command loads a special

WinDbg extension called SOS (Son of Strike): it provides many additional commands

for .NET applications. With WinDbg, you can examine all runtime objects, threads,

call stacks, locks, and heaps; you can also explore managed and unmanaged memory,

registers, and disassembly listings.

Chapter 6 DiagnostiC tools

https://github.com/0xd4d/dnSpy

392

The classic version of WinDbg has a poor user interface, and it’s not easy to use it.

Fortunately, there is a modern version of WinDbg with reworked UI, which is available

via the Microsoft Store (see [Luhrs 2017]).

A screenshot of this modern version is presented in Figure 6-12.

Figure 6-12. WinDbgURL: https://docs.microsoft.com/en-us/windows-
hardware/drivers/debugger/debugger-download-tools Closed source; free;
Windows-only.Resources:[Goldshtein 2016b], https://docs.microsoft.com/en-
us/windows-hardware/drivers/debugger/debugging-using-windbg, http://
windbg.info/doc/1-common-cmds.html, https://theartofdev.com/windbg-
cheat- sheet/

 Asm-Dude
Asm-Dude is an extension for Visual Studio 2015+ that improves the disassembly

support. Here are some of the useful features:

• Enhanced disassembly tool window

The extension applies syntax highlighting in the disassembly

tool window and provides QuickInfo tooltips with detailed

information about each assembly instruction and its performance

characteristics.

Chapter 6 DiagnostiC tools

https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugging-using-windbg
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugging-using-windbg
http://windbg.info/doc/1-common-cmds.html
http://windbg.info/doc/1-common-cmds.html
https://theartofdev.com/windbg-cheat-sheet/
https://theartofdev.com/windbg-cheat-sheet/

393

• ASM language support

You can also get syntax highlighting, QuickInfo tooltips, code

completion, code folding, signature help, and label analysis in the

editor. It’s significantly simplifying the editing of assembly programs.

URL: https://github.com/HJLebbink/asm-dude

Open source (MIT), Free, Windows-only.

 Mono Console Tools
Mono has several embedded tools that can be useful during investigations.

For example, Mono allows viewing the generated native code for any method. Let’s

say we have the following program:

using System;

namespace MyApp

{

 class Program

 {

 static void Main()

 {

 int x = 3, y = 4;

 double z = Math.Sqrt(x ∗ x + y ∗ y);
 Console.WriteLine(z);

 }

 }

}

We can ask mono to compile this method without actual execution with the help of

the following command on Linux/macOS:

$ MONO_VERBOSE_METHOD=MyApp.Program:Main mono

 --compile MyApp.Program:Main Program.exe

Here is the Windows version:

> SET MONO_VERBOSE_METHOD=MyApp.Program:Main

> mono --compile MyApp.Program:Main Program.exe

Chapter 6 DiagnostiC tools

https://github.com/HJLebbink/asm-dude

394

At the end of the command output, we will find an assembly listing like this:

0000000000000000 subq 0x8, %rsp

0000000000000004 movl 0x19, %eax

0000000000000009 cvtsi2sdl eax, %xmm0

000000000000000d movsd xmm0, -0x8(%rsp)

0000000000000013 fldl 0x8(%rsp)

0000000000000017 fsqrt

0000000000000019 fstpl -0x8(%rsp)

000000000000001d movsd -0x8(%rsp), %xmm0

0000000000000023 nop

0000000000000026 movabsq $0x106f05fc8, %r11

0000000000000030 callq ∗%r11
0000000000000033 addq $0x8, %rsp

0000000000000037 retq

Also, mono allows running your program with the Mono log profiler:

$ mono --profile=log Program.exe

As a result, you will get the output.mlpd file, which can be opened via the mprof-

report or Xamarin Profiler.3 The mono profiler has a lot of different options, which you

can learn about in the official documentation.

URL: https://github.com/mono/mono/

Open source (MIT/BSD), free, cross-platform

Resources: www.mono-project.com/docs/, www.mono-project.com/docs/

debug+profile/profile/profiler/

 PerfView
PerfView is a free performance analysis tool. It can collect ETW events and explore

collected data. ETW is a built-in Windows mechanism (with special support for .NET

applications) with extremely low overhead, which makes PerfView very useful for

production system monitoring.

A screenshot is presented in Figure 6-13.

3 https://docs.microsoft.com/en-us/xamarin/tools/profiler

Chapter 6 DiagnostiC tools

https://github.com/mono/mono/
http://www.mono-project.com/docs/
https://www.mono-project.com/docs/debug+profile/profile/profiler/
https://www.mono-project.com/docs/debug+profile/profile/profiler/
https://docs.microsoft.com/en-us/xamarin/tools/profiler

395

 perfcollect
perfcollect is a bash script that automates performance measurements for .NET Core

applications on Linux. The collected traces can be viewed using PerfView on Windows.

URL: http://aka.ms/perfcollect

Open source (MIT), free, Linux-only

Resources: [Kokosa 2017], [Goldshtein 2017], https://github.com/dotnet/

coreclr/blob/master/Documentation/project-docs/linux-performance-tracing.md

 Process Hacker
Process Hacker is a free, powerful, multipurpose tool that helps you monitor system

resources, debug software, and detect malware. It’s an “advanced” version of the default

Windows task manager. There is also a similar tool from the Sysinternals suite called

Process Explorer.4

Process Hacker has a detailed view for each process with general statistics (CPU,

Memory, I/O usage), performance charts, dozens of .NET performance metrics (like GC

heap sizes, the number of jitted methods, the number of thrown exceptions, and so on),

4 https://docs.microsoft.com/en-us/sysinternals/downloads/process-explorer

Figure 6-13. PerfViewURL: http://aka.ms/perfview Open source (MIT); free;
Windows-only.Resources: [Goldshtein 2016a]

Chapter 6 DiagnostiC tools

http://aka.ms/perfcollect
https://github.com/dotnet/coreclr/blob/master/Documentation/project-docs/linux-performance-tracing.md
https://github.com/dotnet/coreclr/blob/master/Documentation/project-docs/linux-performance-tracing.md
https://docs.microsoft.com/en-us/sysinternals/downloads/process-explorer
http://aka.ms/perfview

396

loaded .NET assemblies, information about threads (with stack traces), environment

variables, tokens, modules, handles, and memory segments.

A screenshot is presented in Figure 6-14.

Figure 6-14. Process HackerURL: https://github.com/processhacker/
processhacker Open source (GPLv3); free; Windows-only

 Intel VTune Amplifier
Intel VTune Amplifier is an advanced general-purpose profiler. It knows about hundreds

of hardware counters that are supported by Intel CPUs. In especially complicated

performance investigations, it’s almost impossible to make any conclusions without

these counters.

VTune has a lot of different profiling modes for different use cases from four

groups: “Hotspots,” “Microarchitecture,” “Parallelism,” and “Platform Analysis.” Each

mode is highly configurable: the many different settings allow customizing your profile

session and getting only metrics that you really need. One of my favorite modes is

 “Microarchitecture Exploration”: it allows getting a lot of different hardware counters

that are not available in other profilers.

It has advanced support for different languages like C, C++, C#, Fortran, Java, Python,

Go, and Assembly. VTune 2019+ has advanced support for .NET Core applications.

A screenshot is presented in Figure 6-15.

Chapter 6 DiagnostiC tools

https://github.com/processhacker/processhacker
https://github.com/processhacker/processhacker

397

 Summary
In this chapter, we briefly discussed different diagnostic tools that can be useful during

performance investigations:

• Benchmarking harness: BenchmarkDotNet

• Performance profiler: Visual Studio embedded profiler, Rider

embedded profiler, dotTrace, Intel VTune Amplifier, Mono Console

Tools, perfcollect with PerfView

Figure 6-15. Intel VTune AmplifierURL: https://software.intel.com/en-us/
vtune Closed source; commercial; cross-platform.Resources: [Lander 2018]

Chapter 6 DiagnostiC tools

https://software.intel.com/en-us/vtune
https://software.intel.com/en-us/vtune

398

• Memory profiler: Visual Studio embedded profiler, dotMemory,

Intel VTune Amplifier, VMMap, Mono Console Tools

• C#/VB decompiler: ILSpy, dnSpy, dotPeek, Rider, ReSharper

• IL decompiler: ildasm, monodis, ILSpy, dnSpy, dotPeek, ReSharper

(via IL Viewer), Intel VTune Amplifier, BenchmarkDotNet (via

DisassemblyDiagnoser)

• ASM Decompiler: Visual Studio disassembly view (which is more

powerful with Asm-Dude), WinDbg, BenchmarkDotNet (via

DisassemblyDiagnoser), Mono Console Tools

• Debuggers: Visual Studio embedded debugger, Rider embedded

debugger, WinDbg

• System monitoring tool: Process Hacker, RAMMap, Process Monitor

A good benchmark answers questions like “How long does this method take?”, but it

doesn’t answer questions like “Why does this method take so long?”. A full performance

investigation often involves additional tools that help to diagnose applications and make

meaningful conclusions.

Of course, this not a complete list of available tools; you can easily find more of them

on the Internet. I described only those tools that I typically use. You are free to choose

any tools you like.

In this chapter, the following tool versions were used: BenchmarkDotNet v0.11.3

Visual Studio 2017 (15.9), dotPeek/dotTrace/dotMemory/ReSharper/Rider 2018.3,

RAMMap 1.51, VMMap 3.25, Process Monitor 3.50, ildasm 4.0.30319.0, ILSpy 4.0 Beta 2,

dnSPy 5.0.10, WinDbg Preview 1.0.1812.12001, PerfVew 2.0.26, Asm-Dude 1.9.5.3, Mono

5.16, ProcessHacker 3.0.1563, Intel VTune Amplifier 2019 Update 2. Updated versions of

these tools can include changes in the feature set and license policy.

 References
[Balliauw 2017a] Balliauw, Maarten. 2017. “Exploring Intermediate Language

(IL) with ReSharper and dotPeek.” January 19. https://blog.jetbrains.com/

dotnet/2017/01/19/exploring-intermediate-language-il-with-resharper-and-

dotpeek/.

Chapter 6 DiagnostiC tools

https://blog.jetbrains.com/dotnet/2017/01/19/exploring-intermediate-language-il-with-resharper-and-dotpeek/
https://blog.jetbrains.com/dotnet/2017/01/19/exploring-intermediate-language-il-with-resharper-and-dotpeek/
https://blog.jetbrains.com/dotnet/2017/01/19/exploring-intermediate-language-il-with-resharper-and-dotpeek/

399

[Balliauw 2017b] Balliauw, Maarten. 2017. “Debugging Third-Party Code with Rider.”

December 20. https://blog.jetbrains.com/dotnet/2017/12/20/debugging-third-

party-code-rider/.

[Goldshtein 2016a] Goldshtein, Sasha. 2016. “PerfView: Measure and Improve Your

App’s Performance for Free.” Presented at DotNext Piter 2016, June 3. www.youtube.com/

watch?v=eX644hod65s.

[Goldshtein 2016b] Goldshtein, Sasha. 2016. “WinDbg Superpowers for .NET

Developers.” Presented at DotNext Moscow 2016, December 9. www.youtube.com/

watch?v=8t1aTbnZ2CE.

[Goldshtein 2017] Goldshtein, Sasha. 2017. “Profiling a .NET Core Application on Linux.”

February 27. http://blogs.microsoft.co.il/sasha/2017/02/27/profiling- a- net-

core-application-on-linux/.

[Kokosa 2017] Kokosa, Konrad. 2017. “Analyzing Runtime CoreCLR Events from Linux –

Trace Compass.” August 7. http://tooslowexception.com/analyzing- runtime-

coreclr-events-from-linux-trace-compass/.

[Lander 2018] Lander, Rich. 2018.“NET Core Source Code Analysis with Intel® VTune™

Amplifier.” Microsoft .NET Blog. October 23. https://blogs.msdn.microsoft.

com/dotnet/2018/10/23/net-core-source-code-analysis-with-intel-vtune-

amplifier/.

[Luhrs 2017] Luhrs, Andy. 2017. “New WinDbg Available in Preview!” August 28.

https://blogs.msdn.microsoft.com/windbg/2017/08/28/new-windbg-available-in-

preview/.

[Russinovich 2017] Yosifovich, Pavel, Mark E. Russinovich, David A. Solomon, and Alex

Ionescu. 2017. Windows Internals, Part 1. 7th ed. Microsoft Press.

[Russinovich 2019] Russinovich, Mark E., David A. Solomon, Alex Ionescu, and Andrea

Allievi. 2019. Windows Internals, Part 2. 7th ed. Microsoft Press.

[Sitnik 2017a] Sitnik, Adam. 2017. “Collecting Hardware Performance Counters

with BenchmarkDotNet.” April 4. https://adamsitnik.com/Hardware-Counters-

Diagnoser/.

[Sitnik 2017b] Sitnik, Adam. 2017. “Disassembling .NET Code with BenchmarkDotNet.”

August 16. https://adamsitnik.com/Disassembly-Diagnoser/.

[Sitnik 2018] Sitnik, Adam. 2018. “Profiling .NET Code with BenchmarkDotNet.”

September 28. https://adamsitnik.com/ETW-Profiler/.

Chapter 6 DiagnostiC tools

https://blog.jetbrains.com/dotnet/2017/12/20/debugging-third-party-code-rider/
https://blog.jetbrains.com/dotnet/2017/12/20/debugging-third-party-code-rider/
https://www.youtube.com/watch?v=eX644hod65s
https://www.youtube.com/watch?v=eX644hod65s
https://www.youtube.com/watch?v=8t1aTbnZ2CE
https://www.youtube.com/watch?v=8t1aTbnZ2CE
http://blogs.microsoft.co.il/sasha/2017/02/27/profiling-a-net-core-application-on-linux/
http://blogs.microsoft.co.il/sasha/2017/02/27/profiling-a-net-core-application-on-linux/
http://tooslowexception.com/analyzing-runtime-coreclr-events-from-linux-trace-compass/
http://tooslowexception.com/analyzing-runtime-coreclr-events-from-linux-trace-compass/
https://blogs.msdn.microsoft.com/dotnet/2018/10/23/net-core-source-code-analysis-with-intel-vtune-amplifier/
https://blogs.msdn.microsoft.com/dotnet/2018/10/23/net-core-source-code-analysis-with-intel-vtune-amplifier/
https://blogs.msdn.microsoft.com/dotnet/2018/10/23/net-core-source-code-analysis-with-intel-vtune-amplifier/
https://blogs.msdn.microsoft.com/windbg/2017/08/28/new-windbg-available-in-preview/
https://blogs.msdn.microsoft.com/windbg/2017/08/28/new-windbg-available-in-preview/
https://adamsitnik.com/Hardware-Counters-Diagnoser/
https://adamsitnik.com/Hardware-Counters-Diagnoser/
https://adamsitnik.com/Disassembly-Diagnoser/
https://adamsitnik.com/ETW-Profiler/

401
© Andrey Akinshin 2019
A. Akinshin, Pro .NET Benchmarking, https://doi.org/10.1007/978-1-4842-4941-3_7

CHAPTER 7

CPU-Bound Benchmarks
Knock, knock.

Branch prediction.

Who’s there?

— A classic programming joke

One of the most common bottlenecks in many benchmarks is CPU. Proper design

and analysis of CPU-bound benchmarks require knowledge of different runtime

and hardware “features” that can affect performance. Each .NET runtime has a lot of

different optimizations that can improve (or spoil) performance of your code. Each CPU

microarchitecture has a lot of low-level mechanisms that also affect measurements.

If you are not aware of these optimizations and mechanisms, it’s hard to design some

benchmarks and interpret the measured metrics correctly. In this chapter, we are going

to cover the following topics:

• Registers and Stack

We will discuss when a JIT compiler keeps the intermediate values

in registers and when it uses the stack for it.

• Inlining

We will discuss when a JIT compiler can inline your methods and

why it’s important.

• Instruction-Level Parallelism (ILP)

We will discuss one of the most important hardware features, ILP,

which allows processing multiple instructions at the same time

inside a single thread.

402

• Branch Prediction

We will discuss the ability of modern CPUs to predict which

branches will be taken in your programs. Correct predictions help

to improve conditions for the ILP. It’s important in the context of

benchmarking because the input data can significantly affect the

method performance based on the correct prediction rate.

• Arithmetic

We will discuss what kind of problems we can get with

benchmarks that use arithmetic operations. We will talk about

hardware (floating-point numbers and IEEE 754) and runtime

(different environments and JIT optimizations) features.

• Intrinsics

We will discuss cases when a JIT compiler can generate a “smart”

native implementation for specific methods and statements.

The full explanation of each topic is pretty huge because it includes a lot of low-level

details about runtime and hardware internals. However, you don’t actually have to know

all the internals during benchmarking. In this chapter, we are going to cover only high-

level concepts that are good to know. In each section, you will find four case studies that

demonstrate how these concepts can affect even small and simple benchmarks. Each

case study contains four sections:

• Source code

A small set of benchmarks that demonstrate an interesting

performance effect. You can find the source code of all examples

in the attachment to this book.

• Results

Benchmark results in a specific environment. If you can’t

reproduce the result on your own machine, check out the versions

of your OS, .NET Core, .NET Core SDK, runtime, JIT compiler,

and the CPU model. The performance always depends on your

environment: anything can spoil the described performance

phenomena or introduce another one.

Chapter 7 CpU-BoUnd BenChmarks

403

• Explanation

A short description of the observed results. We will often look at

the generated IL and native code in order to understand what’s

going on in the corresponding example.

• Discussion

General recommendations about the discussed effects, additional

interesting information, links to GitHub issues, and other

references for further reading. Many case studies are based on

some great StackOverflow questions and answers: you will find

the corresponding links at the end of the subsection.

You will learn the commonest mistakes which developers usually make because

they are not aware of some benchmarking pitfall. This knowledge will help you to design

better CPU-bound benchmarks and correctly interpret their results.

 Registers and Stack
When we have a local variable, the JIT compiler can put it into registers or on the

stack. Operations with registers are usually much faster than operations with stack

values. Thus, the JIT compiler decision can have a significant impact on performance.

It’s impossible to keep all local variables in registers because the number of registers

is limited: the JIT compiler should use it wisely. Different CPU instruction sets have

different numbers of registers.

 Case Study 1: Struct Promotion
In most cases, when we use a struct value in local variables, the JIT compiler keeps its

fields on the stack. In some special cases, the fields can be saved into registers. Such

an approach is known as struct promotion or scalar replacement. It’s implemented in

RyuJIT, but you can’t manually enable or disable this feature for a particular method.

Let’s learn an example that demonstrates some limitations of struct promotion.

Chapter 7 CpU-BoUnd BenChmarks

404

 Source code

Consider the following BenchmarkDotNet-based benchmark:

public struct Struct3

{

 public byte X0, X1, X2;

}

public struct Struct8

{

 public byte X0, X1, X2, X3, X4, X5, X6, X7;

}

public class Benchmarks

{

 public const int Size = 256;

 private int[] sum = new int[Size];

 private Struct3[] struct3 = new Struct3[Size];

 private Struct8[] struct8 = new Struct8[Size];

 [Benchmark(OperationsPerInvoke = Size, Baseline = true)]

 public void Run3()

 {

 for (var i = 0; i < sum.Length; i++)

 {

 Struct3 s = struct3[i];

 sum[i] = s.X0 + s.X1;

 }

}

 [Benchmark(OperationsPerInvoke = Size)]

 public void Run8()

 {

 for (var i = 0; i < sum.Length; i++)

 {

Chapter 7 CpU-BoUnd BenChmarks

405

 Struct8 s = struct8[i];

 sum[i] = s.X0 + s.X1;

 }

 }

}

Here we have two structs: Struct3 with three byte fields and Struct8 with eight byte

fields. We also have two benchmarks: Run3 and Run8. In each benchmark, we calculate

the sum of the first two struct fields in a loop. The only difference between Run3 and Run8

is the used struct.

 Results

Here is an example of results (Windows 10.0.17763.195, Intel Core i7-6700HQ CPU

2.60GHz, .NET Core 2.1.5, RyuJIT-x64):

 Method | Mean | StdDev | Ratio |

--------- |---------:|----------:|------:|

 Run3 | 1.100 ns | 0.0091 ns | 1.00 |

 Run8 | 1.579 ns | 0.0115 ns | 1.44 |

As you can see, Run8 works much slower. Run8 uses Struct8, which is similar to

Struct3 but contains five additional fields. These fields are not actually used in the

benchmark, but we still have a ~30–50% performance drop.

 Explanation

Let’s look at the native code of the Run3 loop body:

; Run3

lea r8,[r8+r10+10h] ; r8 = &struct3[i]

movzx r10d,byte ptr [r8] ; r10d = X0

movzx r11d,byte ptr [r8+1] ; r11d = X1

movzx r8d,byte ptr [r8+2] ; r8d = X2

mov r8,rdx ; r8 = &sum

cmp eax,dword ptr [r8+8] ; if (i > sum.Length)

jae 00007ffe`e62a2b74 ; throw

add r10d,r11d ; r10d += r11d

mov dword ptr [r8+r9*4+10h],r10d ; sum[i] = r10d

Chapter 7 CpU-BoUnd BenChmarks

406

As you can see, we find the location of struct3[i] and load the three corresponding

fields X0, X1, and X2 into registers r10d, r11d, and r8d. This is the struct promotion in

action! We don’t actually need X2, but JIT loads all the fields by default. Next, we add

r11d to r10d and save the result to sum[i].

Now, let’s look at the native code of the Run8 loop body:

; Run8

mov rdx,qword ptr [rdx+r8*8+10h] ; rdx = struct8[i]

mov qword ptr [rsp+20h],rdx ; [rsp+20h] = struct8[i]

mov rdx,qword ptr [rcx+8] ; rdx = &sum

mov r9,rdx ; r9 = &sum

cmp eax,dword ptr [r9+8] ; if (i > sum.Length)

jae 00007ffe`e6272b7a ; throw

movzx r10d,byte ptr [rsp+20h] ; r10d = X0

movzx r11d,byte ptr [rsp+21h] ; r11d = X1

add r10d,r11d ; r10d += r11d

mov dword ptr [r9+r8*4+10h],r10d ; sum[i] = r10d

Here we load struct8[i] onto the stack first. After that, we load the first two fields

of struct8[i] from the stack to registers r10d and r11d. Next, we add r11d to r10d and

save the result to sum[i].

As you can see, RyuJIT was able to apply struct promotion in Run3, but not in Run8.

This result can be explained by a limitation of RyuJIT in .NET Core 2.1.5: it can’t promote

structs that have more than four fields.

 Discussion

In .NET Core 1.x/2.x, the implementation of scalar replacement has many different

limitations. For example, the promoted struct has to follow some rules1:

• It must have only primitive fields.

• It must not be an argument or a return value that is passed in

registers.

• It can’t be larger than 32 bytes.

• It can’t have more than 4 fields.

1 https://github.com/dotnet/coreclr/issues/6733#issuecomment-240623400

Chapter 7 CpU-BoUnd BenChmarks

https://github.com/dotnet/coreclr/issues/6733#issuecomment-240623400

407

In general, it’s not recommended to rely on these particular heuristics during

optimization because they might be changed in future versions of RyuJIT. Also, these

rules are not valid for other JIT compilers like LegacyJIT-x64 or MonoJIT. However, if you

really want to optimize some hot methods and the .NET Core version is fixed, you can

use this knowledge, but it makes sense to check such optimizations after each .NET Core

update (you can automate it with the help of performance tests).

We discussed this case study because the knowledge of the struct promotion

concept helps to interpret some benchmark results correctly. If you are designing a small

benchmark based on a real application, it’s not recommended to modify the used structs

even if some of its fields are not actually used in the benchmark. Any modifications in

the struct layout may introduce unpredictable performance changes.

This particular benchmark also has some interesting memory-alignment

performance issues. We will continue to discuss this in Chapter 8.

See also:

• coreclr#6839 “Promote (scalar replace) structs with more than 4

fields”2

• coreclr#6733 “Scalar replacement of aggregates”3

• CoreCLR design docs: “First Class Structs”4

This case study is based on StackOverflow question 38949304.5

 Case Study 2: Local Variables
“Introduce a local variable” is a popular refactoring that can improve the readability of

your code. This code modification doesn’t change the logic, so developers don’t expect

situations when this refactoring will have an impact on the application performance.

However, any changes in the source code may lead to performance changes.

2 https://github.com/dotnet/coreclr/issues/6839
3 https://github.com/dotnet/coreclr/issues/6733
4 https://github.com/dotnet/coreclr/blob/v2.2.0/Documentation/design-docs/first-
class-structs.md

5 https://stackoverflow.com/q/38949304

Chapter 7 CpU-BoUnd BenChmarks

https://github.com/dotnet/coreclr/issues/6839
https://github.com/dotnet/coreclr/issues/6733
https://github.com/dotnet/coreclr/blob/v2.2.0/Documentation/design-docs/first-class-structs.md
https://github.com/dotnet/coreclr/blob/v2.2.0/Documentation/design-docs/first-class-structs.md
https://stackoverflow.com/q/38949304

408

 Source code

Consider the following BenchmarkDotNet-based benchmarks:

public struct Struct

{

 public Struct(uint? someValue)

 {

 SomeValue = someValue;

 }

 public uint? SomeValue { get; }

}

public class Benchmarks

{

 [Benchmark(Baseline = true)]

 public uint? Foo()

 {

 return new Struct(100).SomeValue;

 }

 [Benchmark]

 public uint? Bar()

 {

 Struct s = new Struct(100);

 return s.SomeValue;

 }

}

Here we have two benchmarks: Foo and Bar. Both methods do the same thing: they

create an instance of Struct (which is a value type wrapper for the uint? type) and

return the only field of it. However, Bar differs from Foo: it saves the struct instance to a

local variable instead of using it in the return expression. The performed logic is identical

for both cases, but we have minor changes on the C# level. Typically, we don’t expect any

performance changes during simple code refactoring like this.

Chapter 7 CpU-BoUnd BenChmarks

409

 Results

Here is an example of results (Windows 10.0.17763.195, Intel Core i7-6700HQ CPU

2.60GHz, .NET Core SDK 2.1.403, .NET Core 2.1.5, RyuJIT-x64):

 Method | Mean | StdDev | Ratio |

------- |---------:|----------:|------:|

 Foo | 6.597 ns | 0.0433 ns | 1.00 |

 Bar | 4.975 ns | 0.0439 ns | 0.75 |

As you can see, Bar works ~20–30% faster than Foo. How is that possible?

 Explanation

Let’s look at the generated IL code (Roslyn 2.9.0.63127):

// Foo()

.maxstack 1

.locals init (

 [0] valuetype Struct V_0

)

IL_00: ldc.i4.s 100

IL_02: newobj System.Void System.Nullable`1::.ctor(!0)

IL_07: newobj System.Void Struct::.ctor(System.Nullable`1)

IL_0c: stloc.0 // V_0

IL_0d: ldloca.s V_0

IL_0f: call System.Nullable`1 Struct::get_SomeValue()

IL_14: ret

// Bar()

.maxstack 2

.locals /*11000001*/ init (

 [0] valuetype Struct s

)

IL_00: ldloca.s s

IL_02: ldc.i4.s 100

IL_04: newobj System.Void System.Nullable`1::.ctor(!0)

IL_09: call System.Void Struct::.ctor(System.Nullable`1)

Chapter 7 CpU-BoUnd BenChmarks

410

IL_0e: ldloca.s s

IL_10: call System.Nullable`1 Struct::get_SomeValue()

IL_15: ret

As you can see, there are some minor differences between these methods. Foo

creates Struct via newobj, loads the result to a local variable, and loads the address of

this variable. Meanwhile, Bar creates Struct via call (which saves the result to a local

variable) and instantly loads the address of this variable. Both implementations are

equivalent, but they use different IL instructions.

Now let’s look at the generated native code for Foo():

; Foo()

sub rsp,18h

xor eax,eax; ; Initialize Struct

mov qword ptr [rsp+10h],rax ; Store Struct into stack

mov eax,64h ; eax = 100

mov edx,1 ; edx = 1

xor ecx,ecx; ; Initialize SomeValue

mov qword ptr [rsp+8],rcx ; Store SomeValue into stack

lea rcx,[rsp+8] ; rcx = pointer to SomeValue

mov byte ptr [rcx],dl ; SomeValue.HasValue = 1

mov dword ptr [rcx+4],eax ; SomeValue.Value = 100

mov rax,qword ptr [rsp+8] ; rax = pointer to SomeValue

mov qword ptr [rsp+10h],rax ; Store SomeValue to a different location on

stack

mov rax,qword ptr [rsp+10h] ; rax = pointer to SomeValue

add rsp,18h

ret

As you can see, the stloc.0/ldloca.s pair forces RyuJIT to generate some

redundant mov instructions. And here is the native code for Bar:

; Bar()

push rax

xor eax,eax ; Initialize Struct

mov qword ptr [rsp],rax ; Store Struct into stack

Chapter 7 CpU-BoUnd BenChmarks

411

mov eax,64h ; eax = 100

mov edx,1 ; edx = 1

lea rcx,[rsp] ; rcx = pointer to SomeValue

mov byte ptr [rcx],dl ; SomeValue.HasValue = 1

mov dword ptr [rcx+4],eax ; SomeValue.Value = 100

mov rax,qword ptr [rsp] ; rax = pointer to SomeValue

add rsp,8

ret

It looks more efficient because it doesn’t have redundant instructions.

 Discussion

Any code refactorings that don’t change logic can change the generated IL code. Any

changes in the IL code can unpredictably affect the efficiency of the generated code.

When developers design benchmarks based on real-life scenarios, they often do some

small refactorings to improve the readability of the benchmark. Unfortunately, these

refactorings can introduce additional performance effects and spoil (or improve) the

performance. When you are refactoring an existing benchmark, it’s recommended to

verify that your code changes don’t have an impact on the results.

In such cases, the performance depends on the compiler version. The preceding

example is valid for Roslyn 2.9.0.63127 (which is bundled in .NET Core SDK 2.1.403), but

the behavior can be changed in future versions (see roslyn#302846 for details).

It’s a pretty common situation when minor changes in source code lead to

interesting performance effects. For example, in StackOverflow question 53452713,7

you can find a simple Java benchmark that becomes faster after replacing 2 * i * i by

2 * (i * i).

This case study is based on StackOverflow question 52565479.8

6 https://github.com/dotnet/roslyn/issues/30284
7 https://stackoverflow.com/q/53452713
8 https://stackoverflow.com/q/52565479

Chapter 7 CpU-BoUnd BenChmarks

https://github.com/dotnet/roslyn/issues/30284
https://stackoverflow.com/q/53452713
https://stackoverflow.com/q/52565479

412

 Case Study 3: Try-Catch
A proper exception handling is important if you want to develop stable .NET

applications. A lot of developers put try-catch blocks here and there “just in case.” They

don’t expect performance penalty because exceptions are considered as rare events. It

may seem that if the source code doesn’t throw any exceptions, the try-catch overhead

shouldn’t be noticeable. Unfortunately, this is not always true because the JIT compiler

can modify the generated native code when a try-catch block is added.

 Source code

Consider the following BenchmarkDotNet-based benchmarks:

public class Benchmarks

{

 private const int N = 93;

 [Benchmark(Baseline = true)]

 public long Fibonacci1()

 {

 long a = 0, b = 0, c = 1;

 for (int i = 1; i < N; i++)

 {

 a = b;

 b = c;

 c = a + b;

 }

 return c;

 }

 [Benchmark]

 public long Fibonacci2()

 {

 long a = 0, b = 0, c = 1;

 try

 {

Chapter 7 CpU-BoUnd BenChmarks

413

 for (int i = 1; i < N; i++)

 {

 a = b;

 b = c;

 c = a + b;

 }

 }

 catch {}

 return c;

 }

}

Here we have two methods, Fibonacci1 and Fibonacci2, which calculate the

93rd Fibonacci number.9 However, Fibonacci2 wraps the main loop in try-catch. This

code doesn’t throw any exceptions, so we probably shouldn’t expect any performance

overhead because of it, right?

 Results

Here is an example of results (Windows 10.0.17763.195, Intel Core i7-6700HQ CPU

2.60GHz, .NET Core 2.1.5, RyuJIT-x64):

 Method | Mean | StdDev | Ratio |

----------- |----------:|----------:|------:|

 Fibonacci1 | 41.07 ns | 0.1446 ns | 1.00 |

 Fibonacci2 | 102.93 ns | 0.3394 ns | 2.50 |

In this environment, Fibonacci2 works 2.5 slower than Fibonacci1.

 Explanation

Let’s look at the generated native code for Fibonacci1:

; Fibonacci1

xor eax,eax ; a = 0

mov edx,1 ; c = 1

9 It equals to 12,200,160,415,121,876,738. It’s the largest Fibonacci number that can be represented
using long.

Chapter 7 CpU-BoUnd BenChmarks

414

mov ecx,1 ; i = 1

LOOP:

mov r8,rdx ; b = c

lea rdx,[rax+r8] ; c = a + b

inc ecx ; i++

cmp ecx,5Dh ; if (i < 93)

mov rax,r8 ; a = b

jl LOOP ; goto LOOP

mov rax,rdx ; result = c

ret ; return result

This implementation is pretty simple. The a, b, and c variables are represented using

registers rax, r8, and rdx.

Now let’s look at the generated native code for Fibonacci2:

; Fibonacci2

sub esp,10h ; Reserve space

lea rbp,[rsp+10h] ; on stack

mov qword ptr [rbp-10h],rsp ;

xor eax,eax ; a = 0

mov qword ptr [rbp-8],1 ; c = 1

mov edx,1 ; i = 1

LOOP:

mov rcx,qword ptr [rbp-8] ; b = c

add rax,rcx ; a += b

mov qword ptr [rbp-8],rax ; c = a

inc edx ; i++

cmp edx,5Dh ; if (i < 93)

mov rax,rcx ; a = b

jl LOOP ; goto LOOP

mov rax,qword ptr [rbp-8] ; result = c

lea rsp,[rbp] ; Recover stack pointer

pop rbp ;

ret ; return result

Chapter 7 CpU-BoUnd BenChmarks

415

The a and b variables are still using registers rax and rcx. However, the c variable is

placed on the stack (qword ptr [rbp-8]) instead of registers. Fibonacci2 works much

slower than Fibonacci1 because the read/write operations with stack values take much

more time than operations with registers.

The only difference between Fibonacci1 and Fibonacci2 is a try-catch in

Fibonacci2. We don’t have any native instructions for exception handling because

Fibonacci2 doesn’t throw any exceptions. However, the existence of the try-catch block

forced RyuJIT to put the c variable on the stack, which spoiled the method performance.

 Discussion

This case study is based on StackOverflow question 8928403.10 In this question, the

author asks why a method with try-catch works faster than a method without exception

handling. But we have the opposite result with RyuJIT! Performance always depends on

the environment. The question was asked in 2012; the original measurements used .NET

Framework 2.0 with LegacyJIT-x86 and old versions of the C# compiler. Here is a quote

from the Jon Skeet’s answer11:

Possibly the try/catch block forces more registers to be saved

and restored, so the JIT uses those for the loop as well… which

happens to improve the performance overall. It’s not clear

whether it’s a reasonable decision for the JIT to not use as many

registers in the “normal” code.

The underlying problem is the same (the JIT compiler uses registers in one case and

the stack in another case), but the result is the opposite. That’s why it’s not a good idea

to use such knowledge during performance optimizations: different JIT compilers use

different algorithms that can be changed at any moment. However, this knowledge is

extremely useful during performance investigations when you are trying to explain some

interesting performance effects.

10 https://stackoverflow.com/q/8928403
11 https://stackoverflow.com/a/8928476

Chapter 7 CpU-BoUnd BenChmarks

https://stackoverflow.com/q/8928403
https://stackoverflow.com/a/8928476

416

 Case Study 4: Number of Calls
The number of calls in a method is an important factor for some JIT compiler heuristics.

The overhead of these calls can be small, but it can force the JIT compiler to change the

generated native code for other statements in the same method.

 Source code

Consider the following BenchmarkDotNet-based benchmarks:

public class X {}

[LegacyJitX86Job]

public class Benchmarks

{

 private const int N = 100001;

 [Benchmark(Baseline = true)]

 public double Foo()

 {

 double a = 1, b = 1;

 for (int i = 0; i < N; i++)

 a = a + b;

 return a;

 }

 [Benchmark]

 public double Bar()

 {

 double a = 1, b = 1;

 new X(); new X(); new X();

 for (int i = 0; i < N; i++)

 a = a + b;

 return a;

 }

}

Here we have two methods: Foo and Bar. Both methods add one double variable to

another one in a loop. However, the Bar method has three additional constructor calls.

Chapter 7 CpU-BoUnd BenChmarks

417

 Results

Here is an example of results (Windows 10.0.17763.195, Intel Core i7-6700HQ CPU

2.60GHz, .NET Framework 4.7.2, LegacyJIT-x86 v4.7.3260.0):

 Method | Mean | StdDev | Ratio |

------- |---------:|----------:|------:|

 Foo | 103.5 us | 0.4686 us | 1.00 |

 Bar | 309.7 us | 1.4324 us | 2.99 |

The Bar method works three times slower than the Foo method. The only difference

that we have is three additional constructor calls in Bar. These calls should be executed

almost instantly and they shouldn’t introduce a noticeable overhead. So, why do we have

these results?

 Explanation

Let’s look at the generated native code for Foo (only the main part is shown):

; Foo()

xor eax,eax ; i = 0

LOOP:

fld1 ; load 1 into st(0)

faddp st(1),st ; st(1) += st(0)

inc eax ; i++

cmp eax,186A1h ; if (i < 100001)

jl LOOP ; goto LOOP

Here we load 1 in the st(0) and add it to st(1). st(0) and st(1) are x87 FPU data

registers (see [FPUx87] for details). Now let’s look at the generated native code for Bar:

; Bar()

mov ecx,569952Ch

call 017130c8 ; new X();

mov ecx,569952Ch

call 017130c8 ; new X();

mov ecx,569952Ch

call 017130c8 ; new X();

xor eax,eax ; i = 0

Chapter 7 CpU-BoUnd BenChmarks

418

LOOP:

fld1 ; load 1 into st(0)

fadd qword ptr [esp] ; st(0) += [esp]

fstp qword ptr [esp] ; [esp] = st(0)

inc eax ; i++

cmp eax,186A1h ; if (i < 100001)

jl LOOP ; goto LOOP

Here we keep the result on the stack (qword ptr [esp]) and perform read/write

stack operations on each loop iteration. At the beginning of the method, we can see

three calls of the X constructor. These calls don’t have a noticeable overhead. However,

LegacyJIT- x86 decided to use the stack for the calculations instead of registers because it

uses the number of calls for this decision.

 Discussion

The described performance phenomena in the preceding example is valid only for

LegacyJIT-x86; you will not observe a performance drop for this case study with other

JIT compilers. However, the number of calls in a method still can be used by any JIT

compiler as a factor for different optimizations. In general, you shouldn’t try to optimize

methods by reducing the number of additional calls: this factor is important only in

some specific cases. When you get a situation when adding/removing an additional call

leads to unexpected performance changes (larger than the expected call duration), you

should check how these calls affect the generated native code of the whole method.

A similar example was already discussed in Chapter 2 (“Conditional Jitting” section).

This case study is based on StackOverflow question 32114308.12

 Summing Up
When we have local variables, the JIT compiler can store it into registers or on the

stack. When these local variables are primitive types or structs, this decision may have

a significant impact on performance. In this section, we covered several factors that are

important for this decision:

12 https://stackoverflow.com/q/32114308

Chapter 7 CpU-BoUnd BenChmarks

https://stackoverflow.com/q/32114308

419

• The number of fields in a struct definition.

• Explicitly introducing a local variable from an expression.

• Existence of a try-catch block that wraps the measured logic.

• The number of calls in a method.

When you design a small benchmark based on a real application, you can easily

introduce some conditions that are important for JIT heuristics. It’s good to have a

minimal benchmark that demonstrates an important performance effect. However,

any changes in the source code may lead to additional unexpected performance

changes. Be careful when you are prettifying your benchmarks! If you want to compare

two small benchmarks or if you want to apply benchmark results for optimization of

a real application, it’s a good practice to check how the JIT compiler handles the local

variables.

Of course, some benchmarks can be huge and involve hundreds of additional

methods. It’s almost impossible to check the native code for each invoked method in

each performance investigation. Fortunately, you shouldn’t worry about the “stack vs.
registers” problem in most cases: this problem actually affects performance in real-life

benchmarks only infrequently. Meanwhile, when you hit this problem and get results

you can’t explain, you have one more thing to check.

 Inlining
The topic of inlining has already been discussed in this book several times. When the

JIT compiler inlines a method, it means that a call of this method is replaced by its body.

It’s not easy to decide when we should use inlining because this optimization has some

advantages and disadvantages.

Advantages:

• Eliminated call overhead

When we call a method, we always have some overhead. For

example, we perform a couple of additional instructions (call,

ret). Sometimes, we have to save some register values before

the call and restore them after the call. Inlining eliminates this

overhead. It can be important for hot methods that should be

superfast.

Chapter 7 CpU-BoUnd BenChmarks

420

• Opportunity for other optimizations

Once a method is inlined, other optimizations like constant

folding or code elimination are possible.

• Better register allocation

In some cases, when a method is inlined, the JIT compiler can

use the registers better because it shouldn’t pass arguments to the

called method.

Disadvantages:

• Increasing code size

On the CPU level, we have an instruction cache, which helps to

load the executed code faster. Duplication of the inlined method

native code across its usages may hurt the instruction cache

performance. This effect is almost invisible on small programs,

but it can affect applications with a huge source code base.

• Preventing further inlining

Imagine three methods A, B, C where A calls B and B calls C. If the

JIT compiler inlines B into A, A may become too complicated,

which will prevent further inlining C into A. Meanwhile, the C→B

inlining can be more profitable than B→A inlining.

• Worse register allocation

You may think about a method as a scope for the JIT compiler

where it tries to use registers as best as possible. Since the number

of registers is limited, an inlined method may lead to worse

conditions for register usage. In the previous section, we already

discussed many cases when we have a performance drop because

some variables are placed on the stack instead of registers.

Thus, inlining can be a good optimization or a bad optimization. Usually, the JIT

compiler tries to make a decision that is best for performance. However, these decisions

are not always obvious, and they may lead to unexpected performance phenomena. Let’s

look at some case studies that help us to recognize situations when the knowledge about

inlining is important for performance investigations.

Chapter 7 CpU-BoUnd BenChmarks

421

 Case Study 1: Call Overhead
When we have a hot method, we want to make it as fast as possible. Typically, a call of a

simple method takes a few nanoseconds. If a method also takes a few nanoseconds, the

call overhead may increase its duration twice. This overhead can be eliminated with the

help of inlining. Unfortunately, it’s not always possible to inline a method. Let’s look at

an example that shows what kind of performance drop we could get when it’s impossible

to inline a hot method.

 Source code

Consider the following BenchmarkDotNet-based benchmarks:

public class Benchmarks

{

 private const int N = 1000;

 private int[] x = new int[N];

 private int[] y = new int[N];

 private int[] z = new int[N];

 [Benchmark(Baseline = true)]

 public void Foo()

 {

 for (int i = 0; i < z.Length; i++)

 z[i] = Sum(x[i], y[i]);

 }

 [Benchmark]

 public void Bar()

 {

 for (int i = 0; i < z.Length; i++)

 z[i] = VirtualSum(x[i], y[i]);

 }

 public int Sum(int a, int b) => a + b;

 public virtual int VirtualSum(int a, int b) => a + b;

}

Chapter 7 CpU-BoUnd BenChmarks

422

Here we have three int arrays of the same length: x, y, and z. In the declared

benchmarks Foo and Bar, we perform z[i] = x[i] + y[i] for all array elements.

Instead of the direct calculations, the sum operation is extracted to a separate method.

Foo uses Sum (a nonvirtual method), and Bar uses VirtualSum (a virtual method).

 Results

Here is an example of results (macOS 10.14.2, Intel Core i7-4870HQ CPU 2.50GHz, .NET

Core 2.1.3, RyuJIT-x64):

 Method | Mean | StdDev | Ratio |

------- |---------:|----------:|------:|

 Foo | 1.121 us | 0.0148 us | 1.00 |

 Bar | 2.311 us | 0.0196 us | 2.06 |

As you can see, Bar works two times slower than Foo.

 Explanation

VirtualSum can’t be inlined because it’s marked as a virtual method. According to the

set of RyuJIT heuristics in .NET Core 2.1.3, virtual methods can’t be inlined here. Sum can

be inlined because there are no factors that prevent inlining. Foo works two times faster

than Bar because it used the inlined version of the sum operation and it doesn’t have the

Sum call overhead.

 Discussion

Here are some conditions that typically prevent inlining:

• MethodImplOptions.NoInlining

We can annotate a method with

[MethodImpl(MethodImplOptions.NoInlining)], which notifies

the JIT compiler that this method shouldn’t be inlined. In this

case, inlining can’t be applied even if a method is empty.

• Big methods

When a method is “big” (it contains too many IL instructions), it

will not be inlined by default. There are no strict criteria for when

Chapter 7 CpU-BoUnd BenChmarks

423

a method is “big.” Different JIT compilers have different rules for

that. In some cases, we can ask the JIT compiler to inline a “big”

method with the help of [MethodImpl(MethodImplOptions.

AggressiveInlining)], but it still can decide to not inline it.

• Exception handling

If a method contains a try/catch block, it can’t be inlined

because such optimization will spoil the call stack during

exception handling.

• Virtual methods (in most cases)

The JIT compiler can’t inline virtual methods (in most cases)

because they can be overridden in a derived class. However, there

are some special cases when it’s possible to inline both virtual and

interface calls. Also, this behavior can be changed in the future

(see coreclr#990813 for details).

• Recursive methods

Recursive methods can’t be inlined because it’s impossible

to completely inline the whole recursive chain. However, it’s

potentially possible to inline the “first recursive step.”

The JIT compilers in .NET have a lot of different heuristics that are responsible for

the inlining policy. You can find some information about these heuristics in [Notario

2004], [Morrison 2008], and [Ayers 2016]. Inlining is a complicated topic because it’s

hard to predict how a particular rule affects the performance of a real application in

general (e.g., see [Amit 2018]).

Typically, you may rely on some specific rules that definitely prevent inlining and be

sure that a recursive method or a method with the [MethodImpl(MethodImplOptions.

NoInlining)] attribute can’t be inlined. However, you can’t be sure that a particular

method will always be inlined: different JIT compilers (or different versions of the same

JIT compiler) can have different inlining policies. To make the final decision, the JIT

compiler does a series of “observations” about each method.14 Next, it combines these

13 https://github.com/dotnet/coreclr/issues/9908
14 You can find some of these observations for RyuJIT here: https://github.com/dotnet/
coreclr/blob/v2.2.0/src/jit/inline.def

Chapter 7 CpU-BoUnd BenChmarks

https://github.com/dotnet/coreclr/issues/9908
https://github.com/dotnet/coreclr/blob/v2.2.0/src/jit/inline.def
https://github.com/dotnet/coreclr/blob/v2.2.0/src/jit/inline.def

424

observations with the help of very tricky rules. Here is my favorite method in the RyuJIT

implementation15:

// EstimateCodeSize: produce (various) code size estimates based on

// observations.

//

// The "Baseline" code size model used by the legacy policy is

// effectively

//

// 0.100 * m_CalleeNativeSizeEstimate +

// -0.100 * m_CallsiteNativeSizeEstimate

//

// On the inlines in CoreCLR's mscorlib, release windows x64, this

// yields scores of R=0.42, MSE=228, and MAE=7.25.

//

// This estimate can be improved slightly by refitting, resulting in

//

// -1.451 +

// 0.095 * m_CalleeNativeSizeEstimate +

// -0.104 * m_CallsiteNativeSizeEstimate

//

// With R=0.44, MSE=220, and MAE=6.93.

void DiscretionaryPolicy::EstimateCodeSize()

{

// Ensure we have this available.

 m_CalleeNativeSizeEstimate = DetermineNativeSizeEstimate();

// Size estimate based on GLMNET model.

// R=0.55, MSE=177, MAE=6.59

//

// Suspect it doesn't handle factors properly...

// clang-format off

 double sizeEstimate =

15 .NET Core 2.2.0 version is presented. You can find the full source code here: https://github.
com/dotnet/coreclr/blob/v2.2.0/src/jit/inlinepolicy.cpp

Chapter 7 CpU-BoUnd BenChmarks

https://github.com/dotnet/coreclr/blob/v2.2.0/src/jit/inlinepolicy.cpp
https://github.com/dotnet/coreclr/blob/v2.2.0/src/jit/inlinepolicy.cpp

425

 -13.532 +

 0.359 * (int) m_CallsiteFrequency +

 -0.015 * m_ArgCount +

 -1.553 * m_ArgSize[5] +

 2.326 * m_LocalCount +

 0.287 * m_ReturnSize +

 0.561 * m_IntConstantCount +

 1.932 * m_FloatConstantCount +

 -0.822 * m_SimpleMathCount +

 -7.591 * m_IntArrayLoadCount +

 4.784 * m_RefArrayLoadCount +

 12.778 * m_StructArrayLoadCount +

 1.452 * m_FieldLoadCount +

 8.811 * m_StaticFieldLoadCount +

 2.752 * m_StaticFieldStoreCount +

 -6.566 * m_ThrowCount +

 6.021 * m_CallCount +

 -0.238 * m_IsInstanceCtor +

 -5.357 * m_IsFromPromotableValueClass +

 -7.901 * (m_ConstantArgFeedsConstantTest > 0 ? 1 : 0) +

 0.065 * m_CalleeNativeSizeEstimate;

// clang-format on

// Scaled up and reported as an integer value.

 m_ModelCodeSizeEstimate = (int)(SIZE_SCALE * sizeEstimate);

}

As you can see, this method contains a lot of “magic” numbers that are involved in

the decision process. If you have a huge experience of reading generated native code for

C# methods, you can guess which method will be inlined in some cases for a particular

version of the JIT compiler. However, the inlining policy is evolving all the time, which

means that these assumptions can obsolete in future versions of the JIT compiler.

Chapter 7 CpU-BoUnd BenChmarks

426

 Case Study 2: Register Allocation
In the previous section, we covered many cases in which we have a performance drop

because the JIT compiler decides to use the stack instead of the register for some

variables. Let’s discuss one more case that involves inlining.

 Source code

Consider the following BenchmarkDotNet-based benchmarks:

public class Benchmarks

{

 private const int n = 100;

 private bool flag = false;

 [Benchmark(Baseline = true)]

 public int Foo()

 {

 int sum = 0;

 for (int i = 0; i < n; i++)

 for (int j = 0; j < n; j++)

 {

 if (flag)

 sum += InlinedLoop();

 sum += i * 3 + i * 4;

 }

 return sum;

 }

 [Benchmark]

 public int Bar()

 {

 int sum = 0;

 for (int i = 0; i < n; i++)

 for (int j = 0; j < n; j++)

 {

 if (flag)

 sum += NotInlinedLoop();

Chapter 7 CpU-BoUnd BenChmarks

427

 sum += i * 3 + i * 4;

 }

 return sum;

 }

 [MethodImpl(MethodImplOptions.AggressiveInlining)]

 public int InlinedLoop()

 {

 int sum = 0;

 for (int i = 0; i < 10; i++)

 sum += (i + 1) * (i + 2);

 return sum;

 }

 [MethodImpl(MethodImplOptions.NoInlining)]

 public int NotInlinedLoop()

 {

 int sum = 0;

 for (int i = 0; i < 10; i++)

 sum += (i + 1) * (i + 2);

 return sum;

 }

}

Here we have two benchmarks, Foo and Bar, which perform some calculations in a

loop. They don’t calculate anything useful, but they will help us to show an interesting

performance effect.

Both Foo and Bar have a call to another method with additional calculations.

Foo calls InlinedLoop, which is marked with AggressiveInlining; Bar calls

NotInlinedLoop, which is marked with NoInlining. The logic of InlinedLoop is identical

to that of NotInlinedLoop; the only difference between them is the inlining policy.

The InlinedLoop and NotInlinedLoop calls are conditional: they will be performed

only if flag == true. In our benchmarks, flag is always false, which means that we are

not going to actually perform these calls. Since we don’t actually call these methods, we

may think that we shouldn’t get any performance effects because of these calls. This is a

valid assumption for some JIT compilers, but it’s not always true.

Chapter 7 CpU-BoUnd BenChmarks

428

 Results

Here is an example of results (Windows 10.0.17763.195, Intel Core i7-6700HQ CPU

2.60GHz, .NET Framework 4.7.2, LegacyJIT-x86):

 Method | Mean | StdDev | Ratio |

------- |----------:|----------:|------:|

 Foo | 23.403 us | 0.2643 us | 1.00 |

 Bar | 8.495 us | 0.0560 us | 0.36 |

As you can see, Foo (with an AggressiveInlining call) works three times slower

than Bar (with a NoInlining call).

 Explanation

Let’s look at the generated native code for Foo (only the main part is presented):

; Foo

xor ebx,ebx ; sum = 0

xor ecx,ecx ; i = 0

LOOP1:

xor edx,edx ; edx = 0

mov dword ptr [ebp-10h],edx ; j = 0

mov eax,dword ptr [ebp-18h] ; eax = &this

movzx eax,byte ptr [eax+4] ; eax = flag

mov dword ptr [ebp-14h],eax ; [ebp-14h] = flag

LOOP2:

cmp dword ptr [ebp-14h],0 ; if (flag == false)

je AFTER_CALL ; goto AFTER_CALL

xor edi,edi ; <InlinedLoop Body>

xor esi,esi ; <InlinedLoop Body>

lea eax,[esi+1] ; <InlinedLoop Body>

lea edx,[esi+2] ; <InlinedLoop Body>

imul eax,edx ; <InlinedLoop Body>

add edi,eax ; <InlinedLoop Body>

inc esi ; <InlinedLoop Body>

Chapter 7 CpU-BoUnd BenChmarks

429

cmp esi,0Ah ; <InlinedLoop Body>

jl 014304A9 ; <InlinedLoop Body>

add ebx,edi ; sum += InlinedLoop();

AFTER_CALL:

lea eax,[ecx+ecx*2] ; eax = i * 3

add eax,ebx ; eax += sum

lea ebx,[eax+ecx*4] ; sum = eax + i * 4

inc dword ptr [ebp-10h] ; j++

cmp dword ptr [ebp-10h],64h ; if (j < 100)

jl LOOP2 ; goto LOOP2

inc ecx ; i++

cmp ecx,64h ; if (i < 100)

jl LOOP1 ; goto LOOP1

As you can see, InlinedLoop was actually inlined (we asked the JIT compiler to do

it via AggressiveInlining). The generated code for InlinedLoop is pretty efficient: it

performs all the calculations using registers only. Unfortunately, this inlined snippet

affected the rest of the method: the JIT compiler decided to keep the j loop counter on

the stack (dword ptr [ebp-10h]).

Now let’s look at the generated native code for Bar (only the main part is presented):

; Bar

xor esi,esi ; sum = 0

xor edi,edi ; i = 0

LOOP1:

xor ebx,ebx ; j = 0

LOOP2:

mov eax,dword ptr [ebp-10h] ; eax = &this

cmp byte ptr [eax+4],0 ; if (flag == false)

je 0143051A ; goto AFTER_CALL

mov ecx,dword ptr [ebp-10h] ; ecx = &this

call dword ptr ds:[1214D5Ch] ; call NotInlinedLoop

add esi,eax ; sum += NotInlinedLoop();

Chapter 7 CpU-BoUnd BenChmarks

430

AFTER_CALL:

lea eax,[edi+edi*2] ; eax = i * 3

add eax,esi ; eax += sum

lea esi,[eax+edi*4] ; sum = eax + i * 4

inc ebx ; j++

cmp ebx,64h ; if (j < 100)

jl 01430506 ; goto LOOP2

inc edi ; i++

cmp edi,64h ; if (i < 100)

jl 014304FE ; goto LOOP1

It looks pretty similar to Foo, with two important differences. The first one: we have

a direct call to NotInlinedLoop instead of the inlined body. The second one: both loop

counters i and j are using registers edi and ebx. That’s why it works faster than Foo:

operations with registers are usually more efficient.

 Discussion

If you remove the [MethodImpl(MethodImplOptions.AggressiveInlining)] attribute

from the InlinedLoop method, it will not be inlined, and we will get the same duration

for both methods. By default, LegacyJIT-x86 makes the right decision.

The preceding example looks too artificial because it doesn’t calculate anything

useful. We discussed it because it allows showing disadvantages of inlining with a small

number of lines. In real life, such a situation can arise in pretty complicated pieces

of code that are hard to analyze. In most simple examples, inlining usually improves

performance (or just doesn’t make it worse). It may create a false sense of confidence

that inlining is always a good optimization.

Applying of AggressiveInlining for hot methods can improve performance, but

you should be sure that it’s a good idea (such a decision requires careful measurements).

Mindless usage of AggressiveInlining on all methods can lead to serious performance

problems that are really hard to find.

 Case Study 3: Cooperative Optimizations
Inlining can be profitable for performance not only because of the call overhead

elimination, but also because it can create opportunities for other optimizations.

Chapter 7 CpU-BoUnd BenChmarks

431

 Source code

Consider the following BenchmarkDotNet-based benchmarks:

public class Benchmarks

{

 private double x1, x2;

 [Benchmark(Baseline = true)]

 public double Foo()

 {

 return Calc(true);

 }

 public double Calc(bool dry)

 {

 double res = 0;

 double sqrt1 = Math.Sqrt(x1);

 double sqrt2 = Math.Sqrt(x2);

 if (!dry)

 {

 res += sqrt1;

 res += sqrt2;

 }

 return res;

 }

 [Benchmark]

 public double Bar()

 {

 return CalcAggressive(true);

 }

 [MethodImpl(MethodImplOptions.AggressiveInlining)]

 public double CalcAggressive(bool dry)

 {

 double res = 0;

 double sqrt1 = Math.Sqrt(x1);

Chapter 7 CpU-BoUnd BenChmarks

432

 double sqrt2 = Math.Sqrt(x2);

 if (!dry)

 {

 res += sqrt1;

 res += sqrt2;

 }

 return res;

 }

}

Here we have the Calc method with a bool argument dry. When dry is true, this

method returns zero. When dry is false, it returns the sum of square roots of the x1 and

x2 fields. We also have the CalcAggressive method with the same implementation,

but it’s marked with [MethodImpl(MethodImplOptions.AggressiveInlining)].

Two benchmarks are presented: Foo, which calls Calc(true), and Bar, which calls

CalcAggressive(true).

 Results

Here is an example of results (Windows 10.0.17763.195, Intel Core i7-6700HQ CPU

2.60GHz, .NET Framework 4.7.2, LegacyJIT-x86):

 Method | Mean | StdDev |

------- |----------:|----------:|

 Foo | 1.5214 ns | 0.0972 ns |

 Bar | 0.0000 ns | 0.0127 ns |

As we can see, Foo takes ~1.5 nanoseconds and Bar works almost instantly. How is

that possible?

 Explanation

Let’s look at the native generated code for Foo:

; Foo

push ebp

mov ebp,esp

mov edx,1

call dword ptr ds:[0F94D50h] ; call Calc

Chapter 7 CpU-BoUnd BenChmarks

433

popebp

ret

; Calc

fldz ; load 0 into stack (res)

fld qword ptr [ecx+4] ; load x1 into registers

fsqrt ; sqrt(x1)

fld qword ptr [ecx+0Ch] ; load x2 into registers

fsqrt ; sqrt(x2)

and edx,0FFh ; if (!dry)

je 012C04BA ; goto SUM

fstp st(0) ; discard sqrt2

fstp st(0) ; discard sqrt1

jmp FINISH ; goto FINISH

SUM:

fxch st(1) ; swap FPU registers

faddp st(2),st ; res += sqrt1

faddp st(1),st ; res += sqrt2

FINISH:

ret ; return result

In the Foo method, we call Calc, which always calculates values of sqrt(x1) and

sqrt(x2). Only after that does it check the dry value: if it’s true, the calculated values

are discarded.16 In our benchmark, dry is always true, but the JIT compiler doesn’t

know about that. It will be better to move square root calculations inside the if

(!dry) { } scope, but LegacyJIT-x86 is not smart enough: the generated code is pretty

straightforward, and it exactly matches the original C# program.

Now let’s look at the native generated code for Bar:

; Bar

push ebp

mov ebp,esp

cmp byte ptr [ecx+4],al

fldz ; load 0 into stack (res)

16 If you are not fully understand how FPU data registers (st(0), st(1), st(2)) work, it’s
recommended to read [FPUx87].

Chapter 7 CpU-BoUnd BenChmarks

434

pop ebp

ret

Because of the [MethodImpl(MethodImplOptions.AggressiveInlining)] attribute,

LegacyJIT-x86 was able to inline CalcAggressive. After inlining, if (!dry) becomes

if (false) (because dry is true), and the JIT compiler was able to completely eliminate

this scope with res += sqrt1 and res += sqrt2 statements. After that, the sqrt1 and

sqrt2 become unused variables and LegacyJIT-x86 decided to eliminate square root

calculations as well. The final versions of the generated code (after all the optimizations)

just return zero without any additional calculation.

In the BenchmarkDotNet output, we can also find the following warning for Bar:

“The method duration is indistinguishable from the empty method duration.” According

to the BenchmarkDoNet approach, the duration of an empty method with matching

signature (like double Empty() { return 0; }) is considered zero. The Bar method

contains instructions that take some time, but these instructions are considered as the

call overhead, which is automatically subtracted from the actual measurements. That’s

why we have 0 ns in the summary table.

 Discussion

Cooperative optimizations are very powerful and they can significantly improve the

performance of your applications. Unfortunately, it’s not always easy to control them. In

the preceding example, AggressiveInlining helped to get performance benefits from

inlining and code elimination, which were working together on LegacyJIT-x86. However,

you can’t always predict how your current JIT compiler will process all usages of the

inlined method. You can optimize your code with the help of AggressiveInlining in

some specific cases, but you should be sure that it doesn’t spoil your performance in other

cases (like in the previous case study).

In the context of benchmarking, you should understand that cooperative

optimizations are very fragile: any changes in the source code can enable or disable

inlining policy for your methods and affect conditions for further optimizations.

 Case Study 4: The “starg” IL Instruction
We already know that inlining has some limitations. For example, virtual or recursive

methods can’t be inlined. However, some of the inlining limitations are not so obvious

(and, as usual, they can depend on the JIT compiler version).

Chapter 7 CpU-BoUnd BenChmarks

435

 Source code

Consider the following BenchmarkDotNet-based benchmarks:

public class Benchmarks

{

 [Benchmark]

 public int Calc()

 {

 return WithoutStarg(0x11) + WithStarg(0x12);

 }

 private static int WithoutStarg(int value)

 {

 return value;

 }

 private static int WithStarg(int value)

 {

 if (value < 0)

 value = -value;

 return value;

 }

}

In the Calc benchmark, we calculate the sum of two methods: WithoutStarg(0x11)

and WithStarg(0x12). The WithoutStarg method just returns its argument. The

WithStarg method also returns its argument, but it performs one additional check first:

if the value is less than zero, it assigns -value back to this argument.

 Results

Here is an example of results (Windows 10.0.17763.195, Intel Core i7-6700HQ CPU

2.60GHz, .NET Framework 4.7.2, LegacyJIT v4.7.3260.0):

 Job | Mean | StdDev |

-------------- |----------:|----------:|

 LegacyJIT-x64 | 0.0000 ns | 0.0000 ns |

 LegacyJIT-x86 | 1.7637 ns | 0.0180 ns |

Chapter 7 CpU-BoUnd BenChmarks

436

As you can see, Calc works instantly on LegacyJIT-x64, but it takes a few

nanoseconds on LegacyJIT-x86.

 Explanation

We can find a hint which will help us to understand these results in the source code of

the Decimal constructor from an integer value17:

public Decimal(int value) {

// JIT today can't inline methods that contains "starg" opcode.

// For more details, see DevDiv Bugs 81184: x86 JIT CQ:

// Removing the inline striction of "starg".

 int value_copy = value;

 if (value_copy >= 0) {

 flags = 0;

 }

 else {

 flags = SignMask;

 value_copy = -value_copy;

 }

 lo = value_copy;

 mid = 0;

 hi = 0;

}

Here we can see an interesting comment: it says that LegacyJIT-x86 can’t inline

methods that contain the starg opcode. It stores the value on top of the evaluation

stack in the argument slot at a specified index.18 The Decimal constructor is a small hot

method in some programs, so it would be nice to inline it where it’s possible. In order to

avoid LegacyJIT-x86 inlining limitations, we don’t have a value = -value assignment in

this constructor. Instead, we have the value_copy = -value_copy assignment, which is

performed on the value copy. This simple trick allows you to avoid the starg opcode on

the IL level and to unblock inlining on LegacyJIT-x86.

17 https://github.com/dotnet/coreclr/blob/v2.1.5/src/mscorlib/src/System/Decimal.
cs#L157

18 You can find more information in the official documentation: https://docs.microsoft.com/
en-us/dotnet/api/system.reflection.emit.opcodes.starg

Chapter 7 CpU-BoUnd BenChmarks

https://github.com/dotnet/coreclr/blob/v2.1.5/src/mscorlib/src/System/Decimal.cs#L157
https://github.com/dotnet/coreclr/blob/v2.1.5/src/mscorlib/src/System/Decimal.cs#L157
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.emit.opcodes.starg
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.emit.opcodes.starg

437

Now let’s look at the IL code of the WithStarg method:

IL_0000: ldarg.0 // 'value'

IL_0001: ldc.i4.0

IL_0002: bge.s IL_0008

IL_0004: ldarg.0 // 'value'

IL_0005: neg

IL_0006: starg.s 'value'

IL_0008: ldarg.0 // 'value'

IL_0009: ret

Here we have starg.s, which should block inlining of this method on LegacyJIT-x86.

Let’s check this hypothesis and look at the native code for this method:

; Calc/LegacyJIT-x86

push ebp

mov ebp,esp

mov ecx,12h ; ecx = 12h

call dword ptr ds:[11B4D74h] ; call WithStarg

add eax,11h ; eax += 11h

pop ebp

ret ; return eax

; WithStarg/LegacyJIT-x86

mov eax,ecx ; eax = 12h

test eax,eax ; if (eax >= 0)

jge FINISH ; goto FINISH

neg eax ; eax = -eax

FINISH:

ret ; return eax

As we can see, we pass 12h to the WithStarg method, get the returned value, add

11h to it, and return the sum. The WithoutStarg method was successfully inlined, so we

don’t see the corresponding call. The WithStarg method wasn’t inlined and we can see

its call overhead in the summary table (~1.8 ns).

Chapter 7 CpU-BoUnd BenChmarks

438

Now let’s look at the native code of this method on LegacyJIT-x64:

; Calc/LegacyJIT-x64

mov eax, 12h

add eax, 11h

ret

Both methods were inlined; Calc works almost instantly (we get the “method

duration is indistinguishable from the empty method duration” message in the

BenchmarkDotNet output).

 Discussion

Sometimes, the JIT compiler has nonobvious conditions that prevent inlining. Different

JIT compilers have their own sets of inlining heuristics, which can be changed after

runtime update. When a JIT compiler fails to inline a method, we have a corresponding

ETW event that contains the fail reason. You can get this information with the help of

the BenchmarkDotNet [InliningDiagnoser] attribute: it will notify you about all failed

inlining optimizations. For the preceding example, we will get the following message:

“Fail Reason: Inlinee writes to an argument.”

You can find more information about the discussed LegacyJIT-x86 limitation in

[Akinshin 2015].

This case study is based on StackOverflow question 26369163.19

 Summing Up
Inlining is a powerful optimization. Here are some facts about it that are good to know:

• Inlining is critical for hot methods that take a few nanoseconds.

When such a method is inlined, the method call overhead is

eliminated. This optimization may increase the throughput of such a

method noticeably.

• You can disable inlining of a specific method with the help of the

[MethodImpl(MethodImplOptions.NoInlining)] attribute. There

19 https://stackoverflow.com/q/26369163

Chapter 7 CpU-BoUnd BenChmarks

https://stackoverflow.com/q/26369163

439

are some other implicit factors that automatically disable inlining

(exception handling, recursion, virtual modifier, and others).

• You can’t force the JIT compiler to always inline a method,

but you can use the [MethodImpl(MethodImplOptions.

AggressiveInlining)] attribute to ask the JIT compiler to inline

some methods (if possible) that are not inlined by default. For

example, the JIT compiler doesn’t inline “huge” methods that contain

“too many” IL opcodes (the “too many” threshold value depends

on the specific JIT compiler implementation). In some cases, these

“huge” methods can be inlined if AggressiveInlining is enabled.

• It’s not recommended to mindlessly apply AggressiveInlining to

all methods. In general, the JIT compilers knows better when the

inlining will be profitable. In some cases, we can get performance

benefits with AggressiveInlining, but it may lead to performance

degradations in other cases.

• Inlining is more than just a call overhead elimination. It’s especially

profitable with other JIT compiler optimizations like constant folding

or DCE. It also affects the register allocation: after inlining, the JIT

compiler may get better or worse conditions for efficient register usage.

Knowledge about inlining is also important when you are writing handwritten

benchmarks (which don’t use BenchmarkDotNet or other benchmarking frameworks).

Consider the following code:

void Main()

{

 // Start timer1

 for (int i = 0; i < n; i++)

 Foo();

 // Stop timer1

 // Start timer2

 for (int i = 0; i < n; i++)

 Bar();

 // Stop timer2

}

Chapter 7 CpU-BoUnd BenChmarks

440

void Foo() { /* Benchmark body */ }

void Bar() { /* Benchmark body */ }

Here we want to compare the performance of Foo and Bar. Imagine that Foo was

inlined in the Main method and Bar wasn’t. Even if Foo is actually slower than Bar, we

can get the opposite result because of inlining. This particular case can be fixed with the

help of MethodImplOptions.NoInlining:

[MethodImpl(MethodImplOptions.NoInlining)]

void Foo() { /* Benchmark body */ }

[MethodImpl(MethodImplOptions.NoInlining)]

void Bar() { /* Benchmark body */ }

Now both methods will not be inlined, which means that competition conditions

are “fairer.” However, you can’t always control attributes for all methods (especially if

you want to benchmark methods from third-party assemblies). In this case, you can

benchmark a delegate that contains a reference to the benchmarked method.20

However, this doesn’t resolve all the issues. Imagine that a method is inlined in a

real application, but it’s not inlined in the corresponding benchmark because you did

some minor code changes that hit the JIT compiler inlining limitations. In this case,

the benchmark results are not relevant to the situation that we get in real life. If you are

using BenchmarkDotNet, you can get information about failed inlining with the help

of the [InliningDiagnoser] attribute. You can also manually get this information via

corresponding ETW events.

 Instruction-Level Parallelism
ILP is a powerful CPU technique that helps to improve the performance of your

applications significantly. In this chapter, we will not going to discuss all the details

of CPU internals: you don’t need this information for benchmarking. In practice, it’s

enough just to know the general concepts. This knowledge will help you to design

proper benchmarks and interpret the results correctly. If you want to know more about

this topic, it’s recommended to read [Hennessy 2011]. In this book, we are just going to

20 .NET Framework 4.7.2, .NET Core 2.2, and Mono 5.18 can’t inline delegates.

Chapter 7 CpU-BoUnd BenChmarks

441

discuss a series of case studies that demonstrate the performance effects of ILP on very

simple benchmarks.

Let’s discuss the main concept of the ILP. On the CPU level, we have different

execution units that are responsible for the processing of different instructions. While

one execution unit performs the current instruction, other units are usually idle. Since

this is not an efficient way to utilize your CPU, modern hardware allows execution

of several instructions in parallel. Here we are not talking about multithreading: the

parallelization is performed for a single thread on a single CPU core.

One of the key ILP mechanism is the out-of-order execution: the CPU can “look

forward” at the “future” instructions and process them in advance (at the same time as

the current instruction).

Another important ILP mechanism is instruction pipelining. When CPU is executing

an instruction, it’s performing several execution “stages” (e.g., instruction fetching,

instruction decoding, execution, writing results, and so on). When the first stages of the

current instruction are already performed, we can start to perform these stages for the

next instruction (we shouldn’t wait until the current instruction is completely finished).

If you open [Agner Instructions] (a list of CPU instruction performance

characteristics for different CPUs), you will see that typically we have two different

metrics: latency and reciprocal throughput expressed in CPU cycles. Some examples of

these values for Intel Skylake are presented in Table 7-1.

Table 7-1. Latencies and Reciprocal Throughputs of some Skylake Instructions

Instruction Operands Latency Reciprocal throughput

moV r8/r16,r8/r16 1 0.25

moVQ x,x 1 0.33

pop r 2 0.5

pUsh r 3 1

VmaskmoVps m128,x,x 13 1

dpps x,x,i 13 1.5

dIV r8 23 6

FBLd m80 46 22

Frstor m 175 175

Chapter 7 CpU-BoUnd BenChmarks

442

For example, the latency of MOVQ x,x is one. It means that the duration of a single

instruction (from start to end) takes one CPU cycle. The reciprocal throughput of this

instruction is 0.33. This means that if we have a series of 3000 such instructions, they

can be performed with 1000 CPU cycles (0.33 CPU cycles on average). However, it

doesn’t mean that we are able to perform a single instruction using 0.33 CPU cycles: it’s

impossible to execute any instruction faster than a single CPU cycle.

ILP allows getting better performance, but it makes it harder to measure individual

instructions because any instruction has several performance metrics. Everything

depends on how we use these instructions in our source code. In practice, the actual

“average” instruction duration is between the latency and the reciprocal throughput. In

some cases, it’s even impossible to measure the latency correctly because it’s impossible

to write such a program that performs a series of the same instructions without ILP effects.

In this section, we are going to discuss four case studies that demonstrate how ILP

may affect benchmark results.

 Case Study 1: Parallel Execution
ILP is a common problem during benchmarking that may lead to incorrect result

interpretation. Let’s discuss a very simple example where this problem occurs.

 Source code

Consider the following BenchmarkDotNet-based benchmarks:

public class Benchmarks

{

 private const int n = 10001;

 private int x = 3;

 [Benchmark(Baseline = true)]

 public int Div1()

 {

 int a = 1;

 for (int i = 0; i < n; i++)

 {

 a /= x;

 }

Chapter 7 CpU-BoUnd BenChmarks

443

 return a;

 }

 [Benchmark]

 public int Div2()

 {

 int a = 1, b = 2;

 for (int i = 0; i < n; i++)

 {

 a /= x;

 b /= x;

 }

 return a + b;

 }

 [Benchmark]

 public int Div3()

 {

 int a = 1, b = 2, c = 3;

 for (int i = 0; i < n; i++)

 {

 a /= x;

 b /= x;

 c /= x;

 }

 return a + b + c;

 }

 [Benchmark]

 public int Div4()

 {

 int a = 1, b = 2, c = 3, d = 4;

 for (int i = 0; i < n; i++)

 {

 a /= x;

 b /= x;

 c /= x;

Chapter 7 CpU-BoUnd BenChmarks

444

 d /= x;

 }

 return a + b + c + d;

 }

 [Benchmark]

 public int Div5()

 {

 int a = 1, b = 2, c = 3, d = 4, e = 5;

 for (int i = 0; i < n; i++)

 {

 a /= x;

 b /= x;

 c /= x;

 d /= x;

 e /= x;

 }

 return a + b + c + d + e;

 }

}

Here we have five benchmarks. In each of them, we perform integer division

operations in a loop. In Div1, all the divisions are performed with a single variable a. In

Div2, the loop body contains two division operations with two independent variables a and

b. In Div3, Div4, and Div5, we have three, four, and five operations on different variables.

 Results

Here is an example of results (Windows 10.0.17763.195, Intel Core i7-6700HQ CPU

2.60GHz, .NET Framework 4.7.2, LegacyJIT-x64 v4.7.3260.0):

 Method | Mean | StdDev | Ratio |

------- |---------:|----------:|------:|

 Div1 | 75.5 us | 0.2012 us | 1.00 |

 Div2 | 75.5 us | 0.2196 us | 1.00 |

 Div3 | 80.6 us | 0.3359 us | 1.07 |

 Div4 | 100.0 us | 0.3588 us | 1.33 |

 Div5 | 126.1 us | 0.4532 us | 1.67 |

Chapter 7 CpU-BoUnd BenChmarks

445

As you can see, Div1 and Div2 have very similar durations. It may look strange

because Div2 has two division operations instead of a single division in Div1. Div3 takes

a little bit more time than Div2 (5 microseconds). Div4 takes 20 microseconds longer

than Div3. Div5 takes 26 microseconds longer than Div5.

 Explanation

Let’s use Intel VTune Amplifier to get more metrics for our benchmarks. We write the

Main method of the program in the following way:

var b = new Benchmarks();

b.Div1();

b.Div2();

b.Div3();

b.Div4();

b.Div5();

Also, we increase n to 100,000,000 (which will help to get meaningful results). Next,

we profile this new program in the “Microarchitecture Exploration” mode. The results

are presented in Figure 7-1.

Figure 7-1. VTune report for the “Parallel Execution” case study

In this report, we can see three essential columns:

• Clockticks: how many CPU clock ticks were performed

• Instruction Retired: how many instructions were executed

• CPI Rate (cycles per instruction rate): how many CPU clock ticks

were performed per instruction on average

th
is

 fi
gu

re
 w

ill
 b

e
pr

in
te

d
in

 b
/w

Chapter 7 CpU-BoUnd BenChmarks

446

The most interesting methods in the summary table are Div1 and Div2, which have

very similar durations. We have this situation because the CPU was able to perform a

/= x and b /=x in parallel. Let’s look at the VTune report again. The numbers of clock

ticks for Div1 and Div2 are close to each other (they are not equal because the VTune

profile session of a console application is not so accurate as BenchmarkDotNet execution

toolchain). Meanwhile, the CPI Rate of Div2 is two times lower than the CPI Rate of Div1.

This means that we were able to execute two times more instructions at the same time.

Div3 takes a little bit longer than Div2 because we are too close to the parallelism

capacity. When we continue to add additional division operations in Div4 and Div5, the

total duration noticeably increases because we reach the ILP capacity: we can’t perform

additional divisions in parallel with existing operations. The CPI Rates for Div4 and Div5

are almost the same, which proves that we hit the parallelism limitations.

 Discussion

ILP helps to execute code faster, but it makes it harder to write proper benchmarks. Also,

we can’t extrapolate our conclusions to other benchmarks because of ILP. When we

add an additional division operation in Div1, it doesn’t increase the method duration.

This doesn’t mean that this operation is performed instantly. We can’t expect that

this additional division will not increase the duration of other methods. The actual

performance cost of a single instruction always depends on the execution context: the

kind of statements we have before and after this instruction is very important.

See also:

• StackOverflow question 5418873121

 Case Study 2: Data Dependencies
The capabilities of the ILP are limited by dependencies that we have in the code. Let’s

look at the following method:

int Calc(int a, int b, int c)

{

 int d = a + b;

21 https://stackoverflow.com/q/54188731

Chapter 7 CpU-BoUnd BenChmarks

https://stackoverflow.com/q/54188731

447

 int e = d * c;

 return e;

}

Here we can’t execute both arithmetic operations (a + b and d * c) in parallel

because the second operation depends on the result of the first operation. It’s a pretty

simple example of a data dependency. Let’s look at an example that shows how such

dependencies can affect benchmark results.

 Source code

Consider the following BenchmarkDotNet-based benchmarks:

public class Benchmarks

{

 private int n = 1000001;

 private double x0, x1, x2, x3, x4, x5, x6, x7;

 [Benchmark(Baseline = true)]

 public void WithoutDependencies()

 {

 for (int i = 0; i < n; i++)

 {

 x0++; x1++; x2++; x3++;

 x4++; x5++; x6++; x7++;

 }

 }

 [Benchmark]

 public void WithDependencies()

 {

 for (int i = 0; i < n; i++)

 {

 x0++; x0++; x0++; x0++;

 x0++; x0++; x0++; x0++;

 }

 }

}

Chapter 7 CpU-BoUnd BenChmarks

448

Here we have two methods: WithoutDependencies and WithDependencies. In

both cases, we are performing eight double increments in a loop. In the first case

(WithoutDependencies), we are incrementing eight different variables. In the second

case (WithDependencies), we are incrementing the same variable eight times.

 Results

Here is an example of results (macOS 10.14.2, Intel Core i7-4870HQ CPU 2.50GHz, .NET

Core 2.1.3):

 Method | Mean | StdDev | Ratio |

-------------------- |----------:|----------:|------:|

 WithoutDependencies | 3.503 ms | 0.0327 ms | 1.00 |

 WithDependencies | 10.560 ms | 0.1149 ms | 3.02 |

As you can see, WithoutDependencies works three times faster than

 WithDependencies.

 Explanation

The WithoutDependencies method works much faster because we don’t have any

dependencies between the increment statements and the ILP can improve the loop

performance. In the WithDependencies method, there is a dependency between the

subsequent increments: we should finish the previous statement before we start the next

one. Thus, we can’t improve the performance with the help of the ILP.

 Discussion

You may ask: “How do we have to evaluate the actual duration of the double increment?”

The right answer: there is no such thing as the actual duration of double increment. You

may ask: “Which benchmark is the correct one?” The right answer: both benchmarks are

correct, but they are measuring different things. The application performance depends

on how we use these increments in the source code. Any data dependencies may limit

the ILP and reduce the performance.

In the instruction tables (like [Agner Instructions]), we can find the latency and

reciprocal throughput of some instructions, but these values will not help us to guess the

performance metrics of a method without actual measurements (however, they can help

us to make a hypothesis that explains these measurements). These values correspond to

Chapter 7 CpU-BoUnd BenChmarks

449

the “corner cases,” which are not useful in performance investigations without the full

source code.

 Case Study 3: Dependency Graph
In the previous case study, it was obvious where we have data dependencies between

instructions. However, these dependencies are not always obvious at first sight. The

full data dependency graph may be pretty complicated, which makes it harder to guess

where the ILP can optimize our code.

 Source code

Consider the following BenchmarkDotNet-based benchmarks:

public class Benchmarks

{

 private double[] a = new double[100];

 [Benchmark]

 public double Loop()

 {

 double sum = 0;

 for (int i = 0; i < a.Length; i++)

 sum += a[i];

 return sum;

 }

 [Benchmark]

 public double UnrolledLoop()

 {

 double sum = 0;

 for (int i = 0; i < a.Length; i += 4)

 sum += a[i] + a[i + 1] + a[i + 2] + a[i + 3];

 return sum;

 }

}

Chapter 7 CpU-BoUnd BenChmarks

450

Here we have two benchmarks: Loop and UnrolledLoop. Both of them calculate the

sum of elements in a double array. However, in the UnrolledLoop method we have the

manual unrolling: instead of a single addition per loop iteration, we add four elements

to sum each time. For simplification, we use a constant that is divided by four as the array

length.

 Results

Here is an example of results (macOS 10.14.2, .NET Core 2.1.3, Intel Core i7-4870HQ

CPU 2.50GHz):

 Method | Mean | StdDev |

------------- |---------:|----------:|

 Loop | 82.04 ns | 1.3756 ns |

 UnrolledLoop | 51.69 ns | 0.6441 ns |

As you can see, UnrolledLoop works ~30–40% faster.

 Explanation

The addition of double values is not an associative operation. It means that (a + b) + c

is not always equal to a + (b + c) (we will discuss this fact in detail in the “Arithmetic”

section). Thus, the CPU is not allowed to reorder subsequent additions. It creates

implicit dependencies between operations. You can see the dependency graphs in

Figure 7-2 (the Loop graph is shown on the top half; the UnrolledLoop graph is shown on

the bottom half).

Chapter 7 CpU-BoUnd BenChmarks

451

In the Loop method, we have subsequent dependencies between all operations. On

the first iteration, we should perform sum += a[0]. Only after that, we can perform sum

+= a[1]. This operation requires the value of sum after the first iteration: these additions

can’t be executed in parallel. Only after the second operation, we can perform the third one.

There is no place for the ILP here: all the statements should be executed one after another.

The situation in the UnrolledLoop method is much better: the expressions a[0] +

a[1] + a[2] + a[3] and a[4] + a[5] + a[6] + a[7] are independent: there are no

dependencies between them. Thus, we can calculate the values of the a[i] + a[i + 1]

+ a[i + 2] + a[i + 3] expression from different iterations in parallel. Of course, we

can’t execute all of them in parallel because of the ILP limitations. However, the situation

is still better than in the Loop case. That’s why we have ~30–40% performance boost.

 Discussion

In the discussed case studies, the dependencies between statements were pretty

simple. In real applications, the dependency graph may be pretty complicated, which

complicates the analysis. In some cases, we don’t have dependencies on the C# level, but

they exist on the native code level.

Figure 7-2. visualization for the “Dependency Graph” case study

th
is

 fi
gu

re
 w

ill
 b

e
pr

in
te

d
in

 b
/w

Chapter 7 CpU-BoUnd BenChmarks

452

For example, in coreclr#993,22 a performance problem in RyuJIT was discovered (this

problem has already been fixed). In the example in this issue, RyuJIT generated native

code that used the same register for two different operations. The CPU was not able to

apply ILP there because the second operations should wait until this register will be

“free” for further calculations. Such situations are rare, but you should be ready to work

with such problems.

You can find another example of an unobvious data dependency in StackOverflow

question 25078285.23 The author got a 50% drop after replacing a 32-bit loop counter

with a 64-bit counter. The investigation uses a C++ example and contains a lot of native

code listings, but it worth reading it if you like interesting performance case studies.

It’s not always easy to analyze the full dependency graph and explain performance

measurements,24 but it’s usually possible using only general knowledge about the ILP

without low-level hardware details.

 Case Study 4: Extremely Short Loops
Modern hardware contains a lot of low-level “features” that can unpredictably affect

your benchmarks. Let’s discuss one more interesting example.

 Source code

Consider the following program:

public class Program

{

 private static int n = 10000000;

 private static int rep = 100;

 static void Main()

 {

 MeasureAll();

 MeasureAll();

 }

22 https://github.com/dotnet/coreclr/issues/993
23 https://stackoverflow.com/q/25078285
24 There are some tools that can do it for you. Here is a good example: https://godbolt.org/z/
baOZWy.

Chapter 7 CpU-BoUnd BenChmarks

https://github.com/dotnet/coreclr/issues/993
https://stackoverflow.com/q/25078285
https://godbolt.org/z/baOZWy
https://godbolt.org/z/baOZWy

453

 public static void MeasureAll()

 {

 Measure("Loop 00", () => Loop00());

 Measure("Loop 01", () => Loop01());

 Measure("Loop 02", () => Loop02());

 Measure("Loop 03", () => Loop03());

 Measure("Loop 04", () => Loop04());

 Measure("Loop 05", () => Loop05());

 Measure("Loop 06", () => Loop06());

 Measure("Loop 07", () => Loop07());

 }

 public static void Measure(string title, Action action)

 {

 var stopwatch = Stopwatch.StartNew();

 for (int i = 0; i < rep; i++)

 action();

 stopwatch.Stop();

 Console.WriteLine(title + ": " + stopwatch.ElapsedMilliseconds);

 }

 public static void Loop00()

 {

 for (int i = 0; i < n; i++) { }

 }

 public static void Loop01()

 {

 for (int i = 0; i < n; i++) { }

 }

 public static void Loop02()

 {

 for (int i = 0; i < n; i++) { }

 }

Chapter 7 CpU-BoUnd BenChmarks

454

 public static void Loop03()

 {

 for (int i = 0; i < n; i++) { }

 }

 public static void Loop04()

 {

 for (int i = 0; i < n; i++) { }

 }

 public static void Loop05()

 {

 for (int i = 0; i < n; i++) { }

 }

 public static void Loop06()

 {

 for (int i = 0; i < n; i++) { }

 }

 public static void Loop07()

 {

 for (int i = 0; i < n; i++) { }

 }

}

Here we have eight empty loops, which are measured with the help of a

Stopwatch instance. We purposefully aren’t using BenchmarkDotNet here, in order to

completely eliminate the possibility of hitting unknown BenchmarkDotNet bugs. The

performance effect that we are going to discuss is so noticeable that we can neglect good

benchmarking practices like warm-up and distribution analysis.

 Results

Here is an example of results (Windows 10.0.17763.195, Intel Core i7-6700HQ CPU

2.60GHz, .NET Framework 4.7.2, RyuJIT-x64):

Loop 00: 727

Loop 01: 352

Chapter 7 CpU-BoUnd BenChmarks

455

Loop 02: 371

Loop 03: 369

Loop 04: 752

Loop 05: 352

Loop 06: 348

Loop 07: 349

Loop 00: 692

Loop 01: 344

Loop 02: 351

Loop 03: 349

Loop 04: 702

Loop 05: 345

Loop 06: 347

Loop 07: 351

As you can see, Loop00 and Loop04 work two times slower than other loops.

 Explanation

I don’t have a proper explanation for these results. Unfortunately, Intel keeps many low-

level hardware features secret and doesn’t include them in the official manuals. Anyway,

this effect is pretty stable (I reproduced it on 30+ different computers), so it should be

discussed. Here I want to share some of my investigation notes.

Observation 1.

This effect is valid only for RyuJIT-x64; it’s not reproduced on LegacyJIT-x86,

LegacyJIT- x64, or MonoJIT. RyuJIT generates the following code for the empty loop:

LOOP:

inc eax

cmp eax,edx

jl LOOP

I also have a reproduction case on pure assembly that proves that it’s a CPU

microarchitecture phenomenon (it’s not affected by the .NET runtime). Also, it works the

same way on Windows, Linux, and macOS (it’s not affected by the operating system).

Chapter 7 CpU-BoUnd BenChmarks

456

Observation 2.

This effect is valid only for Intel Haswell and subsequent Intel Core processor

families like Broadwell, Skylake, and Kaby Lake. It’s not reproduced on older processors

like Sandy Bridge and Ivy Bridge.

Observation 3.

In the preceding example, we have “slow” and “fast” loops. The exact indexes of the

slow loops depend on the memory layout of the generated native code. Any changes in

the source code can change the layout and corresponding results. To be more specific,

a loop is slow when the cmp/jl pair is placed on the border of two 64-byte segments like

this:

00007FFEB1AF377C inc eax

00007FFEB1AF377E cmp eax,edx

00007FFEB1AF3780 jl 00007FFEB1AF377C

I checked a lot of different hypothesis including features of the instruction cache,

MacroFusion,25 and branch prediction,26 but all of them were rejected.

Observation 4.

The CPI Rate for the fast loop is 0.333, which means that CPU executes all three

instructions at one cycle. The CPI Rate for the slow loop is 0.666. That’s why it works two

times slower than the fast loops.

If you have any plausible explanations of this performance effect, please let me

know.

 Discussion

Despite the fact that I have no explanation for this effect, the effect does exist. It can

easily spoil your nanobenchmarks if you don’t know about it, because the actual

performance depends not only on your source code, but also on the memory layout of

the generated native code. Let’s say we want to compare the performance of the two

25 This kind of optimization can “join” the cmp and jl instruction into a single “macro instruction”
that can be performed in one CPU cycle. We have the following sentence in the [Intel Manual]
(section 2.3.2.1): “Macro fusion does not happen if the first instruction ends on byte 63 of a
cache line, and the second instruction is a conditional branch that starts at byte 0 of the next
cache line.” It looks similar to our situation, but it’s not the actual problem.

26 We will discuss this in the next section.

Chapter 7 CpU-BoUnd BenChmarks

457

methods, Foo and Bar, which take a few nanoseconds. In order to get reliable results, we

wrap them in loops as follows:

for (int i = 0; i < n; i++)

 Foo();

for (int j = 0; j < n; j++)

 Bar();

If one loop will hit the border of the 64-byte segment, and another loop will not, the

measurement will be spoiled by different ILP strategies. There is an approach to resolve

this problem called loop unrolling. For example, we can rewrite the loop for the Foo

method like this:

for (int i = 0; i < n / 16; i++)

{

 Foo(); Foo(); Foo(); Foo();

 Foo(); Foo(); Foo(); Foo();

 Foo(); Foo(); Foo(); Foo();

 Foo(); Foo(); Foo(); Foo();

}

In this case, we resolve the preceding ILP problem and reduce the loop overhead. This

trick is used in BenchmarkDotNet by default, which allows getting reliable results even for

nanobenchmarks. You can control the number of calls in the loop body with the help of

UnrollFactor property (check out the official documentation for details); the default value

is 16. If you are using your own short loops inside your benchmarks, BenchmarkDotNet will

not protect you from this problem or other problems that are specific for short loops (e.g.,

see StackOverflow question 5369596127). When you have a high-speed operation inside a

loop (which takes several nanoseconds), it’s always recommended to unroll it manually.

 Summing Up
The ILP is a common source of mistakes in benchmark result interpretation. The ability

to execute several instructions of the same thread in parallel on the same CPU core is

“hidden” from developers on the hardware level: you can’t control it, and it’s pretty hard

to analyze how it affects your code.

27 https://stackoverflow.com/q/53695961

Chapter 7 CpU-BoUnd BenChmarks

https://stackoverflow.com/q/53695961

458

In this section, we discussed four kinds of possible problems:

• We can observe no performance changes after adding a statement in

the source code because it can be executed in parallel with existing

instructions.

• The source code may contain dependencies between statements,

which prevents ILP. Thus, you can have two benchmarks that perform

the same number of native instructions but have different durations

because of these dependencies.

• The data dependency graph may be pretty complicated because

some of the dependencies can be implicit.

• The performance of a short loop can depend on the memory layout

of the native code (which you can’t control). Fortunately, it doesn’t

affect unrolled versions of this loops.28

You should understand that there are no incorrect benchmarks29; there are only

incorrect interpretations of the benchmark results. Each benchmark is a program that

prints some numbers. The task of a performance engineer is to combine these numbers

with knowledge about the environment (hardware, operating system, runtime, and so

on) and make correct conclusions about the measured code.

 Branch Prediction
Branch prediction is another CPU technique that helps to increase possibilities for

the ILP. We already know that the out-of-order execution helps to look at the further

instructions and execute them ahead of time if it’s possible. It works pretty well when we

have a linear program without any branches. But what if we have a program like this:

28 Here is a more correct version of this statement: “I had never observed situations when ILP
affected huge loops noticeably in simple benchmarks.” I’m sure that it’s possible to find a specific
case when it’s important. However, you probably shouldn’t worry about it because it’s hard to
hit such cases in real life. Meanwhile, the described problem with small loops actually affects
many simple nanobenchmarks.

29 Usually we say that a benchmark is incorrect when it doesn’t measure the metrics that it has to
measure.

Chapter 7 CpU-BoUnd BenChmarks

459

if (flag)

 Foo();

else

 Bar();

It’s impossible to actually perform Foo or Bar before we get the value of flag. Since a

typical program contains a lot of if conditions, ternary operators, switch statements, and

loops, it becomes pretty hard to get proper benefits from the out-of-order execution. The

situation becomes much better with the help of the branch predictor. This is a part of

the CPU that tries to guess which branch will be taken based on the previously evaluated

condition values. Internally, this is a very complicated piece of hardware. We are not

going to cover its internals because you don’t need low-level knowledge of branch

prediction algorithms in most cases. In practice, it’s enough just to understand the basic

concept. In this section, we will look at four case studies that show how the input data

may affect the performance of the same program. This will help you to design better

benchmarks based on the branches that you have in your code.

 Case Study 1: Sorted and Unsorted Data
When we want to measure the duration of a method, we typically focus on the source

code and the environment. However, there is one more performance space component

that we usually forget: the input data. Let’s look an example that shows how it can affect

the performance metrics.

 Source code

Consider the following BenchmarkDotNet-based benchmark:

public class Benchmarks

{

 private const int n = 100000;

 private byte[] sorted = new byte[n];

 private byte[] unsorted = new byte[n];

 [GlobalSetup]

 public void Setup()

 {

Chapter 7 CpU-BoUnd BenChmarks

460

 var random = new Random(42);

 for (int i = 0; i < n; i++)

 sorted[i] = unsorted[i] = (byte) random.Next(256);

 Array.Sort(sorted);

 }

 [Benchmark(Baseline = true)]

 public int SortedBranch()

 {

 int counter = 0;

 for (int i = 0; i < sorted.Length; i++)

 if (sorted[i] >= 128)

 counter++;

 return counter;

 }

 [Benchmark]

 public int UnsortedBranch()

 {

 int counter = 0;

 for (int i = 0; i < unsorted.Length; i++)

 if (unsorted[i] >= 128)

 counter++;

 return counter;

 }

 [Benchmark]

 public int SortedBranchless()

 {

 int counter = 0;

 for (int i = 0; i < sorted.Length; i++)

 counter += sorted[i] >> 7;

 return counter;

 }

 [Benchmark]

 public int UnsortedBranchless()

Chapter 7 CpU-BoUnd BenChmarks

461

 {

 int counter = 0;

 for (int i = 0; i < unsorted.Length; i++)

 counter += unsorted[i] >> 7;

 return counter;

 }

}

Here we have two byte arrays: sorted and unsorted. Both arrays contain the same

set of random elements in a different order: the sorted array contains sorted elements,

and the unsorted array contains randomly shuffled elements. In the SortedBranch and

UnsortedBranch benchmarks, we enumerate the corresponding arrays and calculate

the number of elements that are greater than or equal to 128 with the help of a simple

if statement like if (sorted[i] >= 128) counter++. In the SortedBranchless and

UnsortedBranchless benchmarks, we perform the same logic, but instead of the if

statement, we increment the counter by an expression like sorted[i] >> 7. When an

array element is greater than or equal to 128, this expression will be equal to 1, which

means that counter will be incremented by 1. When an array element is less than 128,

this expression will be equal to 0, which means that counter will not be changed. As you

can see, these algorithms are equivalent, but the last two benchmarks are branchless

(the loop bodies don’t contain any branches).

 Results

Here is an example of results (macOS 10.14.2, Intel Core i7-4870HQ CPU 2.50GHz, .NET

Core 2.1.3):

 Method | Mean | StdDev | Ratio |

------------------- |----------:|----------:|------:|

 SortedBranch | 65.75 us | 0.6622 us | 1.00 |

 UnsortedBranch | 424.04 us | 4.9999 us | 6.45 |

 SortedBranchless | 65.82 us | 0.4978 us | 1.00 |

 UnsortedBranchless | 65.03 us | 0.8578 us | 1.00 |

As you can see, SortedBranch works six to seven times faster than UnsortedBranch.

Meanwhile, SortedBranchless and UnsortedBranchless have approximately the same

duration.

Chapter 7 CpU-BoUnd BenChmarks

462

 Explanation

Let’s imagine that the branch predictor is a small creature who is living inside the

CPU. In our example, this creature will have a short memory: it will remember only

the last value of the condition that it’s trying to predict. It will always assume that the

condition will have the same value we observed last time. Let’s say it has to predict

values of the a[i] >= 128 expression for the following small array: a = {0, 32, 64,

96, 128, 160, 192, 224}. In this case, this creature will perform the following chain of

reasoning:

• a[0] >= 128 (it’s false because a[0] == 0)

“I don’t have a previous value of this condition. Probably, it’s false.”

The prediction is correct.

• a[1] >= 128 (it’s false because a[1] == 32)

“Last time this expression was false. Probably, it’s false again.”

The prediction is correct.

• a[2] >= 128 (it’s false because a[2] == 64)

“Last time this expression was false. Probably, it’s false again.”

The prediction is correct.

• a[3] >= 128 (it’s false because a[3] == 96)

“Last time this expression was false. Probably, it’s false again.”

The prediction is correct.

• a[4] >= 128 (it’s true because a[4] == 128)

“Last time this expression was false. Probably, it’s false again.”

The prediction is incorrect.

• a[5] >= 128 (it’s true because a[5] == 160)

“Last time this expression was true. Probably, it’s true again.”

The prediction is correct.

• a[6] >= 128 (it’s true because a[6] == 192)

Chapter 7 CpU-BoUnd BenChmarks

463

“Last time this expression was true. Probably, it’s true again.”

The prediction is correct.

• a[7] >= 128 (it’s true because a[7] == 224)

“Last time this expression was true. Probably, it’s true again.”

The prediction is correct.

Here we get seven of eight correct predictions. This is a pretty good result! Now let’s

do the same for another array which contains the same elements in another order: a =

{224, 0, 192, 32, 160, 64, 128, 96}.

• a[0] >= 128 (it’s true because a[0] == 224)

“I don’t have a previous value of this condition. Probably, it’s false.”

The prediction is incorrect.

• a[1] >= 128 (it’s false because a[1] == 0)

“Last time this expression was true. Probably, it’s true again.”

The prediction is incorrect.

• a[2] >= 128 (it’s true because a[2] == 192)

“Last time this expression was false. Probably, it’s false again.”

The prediction is incorrect.

• a[3] >= 128 (it’s false because a[3] == 32)

“Last time this expression was true. Probably, it’s true again.”

The prediction is incorrect.

• a[4] >= 128 (it’s true because a[4] == 160)

“Last time this expression was false. Probably, it’s false again.”

The prediction is incorrect.

• a[5] >= 128 (it’s false because a[5] == 64)

“Last time this expression was true. Probably, it’s true again.”

Chapter 7 CpU-BoUnd BenChmarks

464

The prediction is incorrect.

• a[6] >= 128 (it’s true because a[6] == 128)

“Last time this expression was false. Probably, it’s false again.”

The prediction is incorrect.

• a[7] >= 128 (it’s false because a[7] == 96)

“Last time this expression was true. Probably, it’s true again.”

The prediction is incorrect.

In this case, all eight predictions are incorrect.

Of course, the real branch predictors are much smarter than our imaginary creature

and they have much more memory for the condition value history. However, the general

idea is the same: they try to predict future values based on existing observations. When

these values follow a specific pattern (e.g., all of the values are equal), it’s much easier to

predict future values than when the values are completely random.

When the prediction is correct, we can evaluate the corresponding correct branch

out of order and get noticeable performance benefits.

When the prediction is incorrect, we evaluate the corresponding incorrect branch out

of order. When we get the actual value of the condition, we have to revert the evaluation

results and evaluate another branch. Such a situation is known as branch mispredict and

it has a huge performance penalty because we have to spend time on reverting existing

results and evaluating another branch without out-of-order benefits.

That’s why UnsortedBranch works so much slower than SortedBranch: when we

are working with the unsorted array, we have a huge branch mispredict rate. We don’t

see a difference between the SortedBranchless and UnsortedBranchless benchmarks

because both methods don’t contain conditions which involve the array elements. They

work as fast as SortedBranch because they don’t have a performance penalty because of

the branch mispredict.

 Discussion

Branch prediction is another technique that’s good for performance, but not so good for

benchmarking. When you have branches in the source code, it’s impossible to determine

its “actual” duration in a specific environment in general because this duration depends

on the input data. Proper benchmark design, in this case, requires checking different

input patterns that can give you different measurements.

Chapter 7 CpU-BoUnd BenChmarks

465

This case study is based on StackOverflow question 11227809.30 In the most

popular answer to this question, you can find another interesting branch prediction

interpretation based on trains and railroad junctions.

 Case Study 2: Number of Conditions
Let’s say that we have a simple if/else block:

if (/* Expression */)

{

 /* Statement1 */

}

else

{

 /* Statement2 */

}

When we are working with C# source code, we often consider such expression as

an atomic unit. On the C# level, we have exactly two possibilities: the expression is

true (Statement1 should be executed) or the expression is false (Statement2 should be

executed). This is a good mental model when we are thinking about the program logic.

However, when we are thinking about performance and branch prediction, we can have

more possibilities here in the case of a composite expression.

 Source code

Consider the following BenchmarkDotNet-based benchmarks:

public class Benchmarks

{

 private const int n = 100000;

 private int[] a = new int[n];

 private int[] b = new int[n];

 private int[] c = new int[n];

30 https://stackoverflow.com/q/11227809

Chapter 7 CpU-BoUnd BenChmarks

https://stackoverflow.com/q/11227809

466

 [Params(false, true)]

 public bool RandomData;

 [GlobalSetup]

 public void Setup()

 {

 if (RandomData)

 {

 var random = new Random(42);

 for (int i = 0; i < n; i++)

 {

 a[i] = random.Next(2);

 b[i] = random.Next(2);

 c[i] = random.Next(2);

 }

 }

 }

 [Benchmark(Baseline = true)]

 public int OneCondition()

 {

 int counter = 0;

 for (int i = 0; i < a.Length; i++)

 if (a[i] * b[i] * c[i] != 0)

 counter++;

 return counter;

 }

 [Benchmark]

 public int TwoConditions()

 {

 int counter = 0;

 for (int i = 0; i < a.Length; i++)

 if (a[i] * b[i] != 0 && c[i] != 0)

 counter++;

 return counter;

 }

Chapter 7 CpU-BoUnd BenChmarks

467

 [Benchmark]

 public int ThreeConditions()

 {

 int counter = 0;

 for (int i = 0; i < a.Length; i++)

 if (a[i] != 0 && b[i] != 0 && c[i] != 0)

 counter++;

 return counter;

 }

}

Here we have three int arrays, a, b, and c, and three benchmarks, OneCondition,

TwoConditions, and ThreeConditions. All the benchmarks calculate the number of

cases when a[i] != 0 && b[i] != 0 && c[i] != 0. In the ThreeConditions method,

we just use this expression without any modifications. In the TwoConditions method,

we replaced “a[i] != 0 && b[i] != 0” with “a[i] * b[i] != 0” (we assume that

the element values are small enough and the multiplication can be evaluated without

overflow). In the OneCondition method, we replaced the whole expression with “a[i] *

b[i] * c[i] != 0”.

Also, we have the RandomData parameter. When RandomData is true, we fill all arrays

by random numbers from 0 to 1. When RandomData is false, we don’t fill arrays, which

means that all elements are zeros.

 Results

Here is an example of results (macOS 10.14.2, Intel Core i7-4870HQ CPU 2.50GHz, .NET

Core 2.1.3, RyuJIT-x64):

 Method | RandomData | Mean | StdDev | Ratio |

---------------- |----------- |----------:|----------:|------:|

 OneCondition | False | 130.15 us | 1.9242 us | 1.00 |

 TwoConditions | False | 89.68 us | 1.5718 us | 0.69 |

 ThreeConditions | False | 58.51 us | 0.4505 us | 0.45 |

 | | | | |

 OneCondition | True | 227.79 us | 1.7919 us | 1.00 |

 TwoConditions | True | 419.46 us | 2.9244 us | 1.84 |

 ThreeConditions | True | 717.50 us | 6.7728 us | 3.15 |

Chapter 7 CpU-BoUnd BenChmarks

468

As you can see, when RandomData is false, OneCondition is the slowest benchmark,

and ThreeConditions is the fastest one. When RandomData is true, we have the opposite

situation: OneCondition is the fastest benchmark, and ThreeConditions is the slowest one.

 Explanation

When RandomData is false, OneCondition is the slowest benchmark because it performs

more operations than other benchmarks. The integer multiplication is a “heavy”

operation; it takes much more time than a comparison of an integer number with

zero or the && operation. OneCondition has two multiplications and one comparison;

TwoConditions has one multiplication, two comparisons, and one && operation;

ThreeConditions has three comparisons and two && operations. The methods with more

multiplication operations take more time.

When RandomData is true, the branch prediction is starting to affect performance

because we have a high branch mispredict rate. Instead of working with the whole

expression, the branch prediction is trying to predict individual comparisons separately.

Now let’s look at the ThreeConditions native code:

; ThreeConditions/RyuJIT-x64

sub rsp,28h ; Move stack pointer

xor eax,eax ; counter = 0

xor edx,edx ; i = 0

mov r8,qword ptr [rcx+8] ; r8 = &a

cmp dword ptr [r8+8],0 ; if (a.Length <= 0)

jle FINISH ; goto FINISH

START:

mov r9,r8 ; r9 = &a

cmp edx,dword ptr [r9+8] ; if (i >= a.Length)

jae OUT_OF_RANGE ; goto OUT_OF_RANGE

movsxd r10,edx ; r10 = i

cmp dword ptr [r9+r10*4+10h],0 ; if (a[i] == 0)

je CONTINUE ; goto CONTINUE

mov r9,qword ptr [rcx+10h] ; r9 = &b

cmp edx,dword ptr [r9+8] ; if (i >= b.Length)

jae OUT_OF_RANGE ; goto OUT_OF_RANGE

cmp dword ptr [r9+r10*4+10h],0 ; if (b[i] == 0)

Chapter 7 CpU-BoUnd BenChmarks

469

je CONTINUE ; goto CONTINUE

mov r9,qword ptr [rcx+18h] ; r9 = &c

cmp edx,dword ptr [r9+8] ; if (i >= c.Length)

jae OUT_OF_RANGE ; goto OUT_OF_RANGE

cmp dword ptr [r9+r10*4+10h],0 ; if (c[i] == 0)

je CONTINUE ; goto CONTINUE

inc eax ; counter++

CONTINUE:

inc edx ; i++

cmp dword ptr [r8+8],edx ; if (i < a.Length)

jg START ; goto START

FINISH:

add rsp,28h ; Restore stack pointer

ret ; return counter

OUT_OF_RANGE:

call IndexOutOfRangeException ; throw IndexOutOfRangeException

int 3 ;

As you can see, inside the a[i] != 0 && b[i] != 0 && c[i] != 0 expression, we

have six jump instructions! Three of them are range checks, which are always false in

the preceding example. The other three jumps correspond to the a[i] != 0, b[i] != 0,

and c[i] != 0 checks. First of all, the branch predictor should predict the value of a[i]

!= 0. If it is false, the whole expression is false. If it is true, the branch predictor should

predict the value of b[i] != 0. If it is false, the whole expression is false. If it is true, the

branch predictor should predict the value of c[i] != 0. Since all of the arrays contain

random data, we will suffer from branch mispredict three times.

The mispredict penalty in this case is much bigger than the duration of a

multiplication operation. That’s why ThreeConditions is the slowest method.

TwoConditions works faster because it suffers from mispredict two times. In the case of

the OneCondition method, there is at most one branch mispredict per iteration.

 Discussion

One of the most popular benchmarking goals is to determine which method is faster.

Even if we know the exact environment, performance may still depend on the input

data. As you can see, the OneCondition method can be the fastest one or the slowest one

depending on the content of the arrays.

Chapter 7 CpU-BoUnd BenChmarks

470

This case study is based on StackOverflow question 35531369.31

 Case Study 3: Minimum
In this case study, we will try to measure the performance of two simple methods

that calculate a minimum of two numbers. We will benchmark the two following

implementations:

int MinTernary(int x, int y)

{

 return x < y ? x : y;

}

int MinBitHacks(int x, int y)

{

 return x & ((x - y) >> 31) | y & (~(x - y) >> 31);

}

The first implementation looks obvious, but it has one significant problem: it could

suffer from branch mispredictions because of a condition in the expression. Fortunately,

it is possible to rewrite it without a branch with the help of bit hacks.

Here we calculate (x-y); the sign of this expression depends on which number is less.

Then, (x-y) >> 31 gives a bit mask that contains only zeros or ones. Next, we calculate

an inverted mask: ~(x - y) >> 31. Now we and our operands and the corresponding bit

masks (the minimum number get the 11...11 mask). That’s all: the or operator returns

the correct result. Here is an example for x=8 and y=3 (assuming 8-bit numbers):

Expression | Binary | Decimal

 x | 00001000 | 8

 y | 00000011 | 3

 x-y | 00000101 | 5

 (x-y)>>31 | 00000000 | 0

 ~(x-y)>>31 | 11111111 | -1

x&((x-y)>>31) | 00000000 | 0

y&(~(x-y)>>31) | 00000011 | 3

Result | 00000011 | 3

31 https://stackoverflow.com/q/35531369

Chapter 7 CpU-BoUnd BenChmarks

https://stackoverflow.com/q/35531369

471

As you can see, there is no branch here: we compute the minimum using only bit

operations.

 Source code

Consider the following BenchmarkDotNet-based benchmarks:

public class Benchmarks

{

 const int N = 100001;

 private int[] a = new int[N];

 private int[] b = new int[N];

 private int[] c = new int[N];

 [Params(false, true)]

 public bool RandomData;

 [GlobalSetup]

 public void Setup()

 {

 if (RandomData)

 {

 var random = new Random(42);

 for (int i = 0; i < N; i++)

 {

 a[i] = random.Next();

 b[i] = random.Next();

 }

 }

 }

 [Benchmark]

 public void Ternary()

 {

 for (int i = 0; i < N; i++)

 {

 int x = a[i], y = b[i];

Chapter 7 CpU-BoUnd BenChmarks

472

 c[i] = x < y ? x : y;

 }

 }

 [Benchmark]

 public void BitHacks()

 {

 for (int i = 0; i < N; i++)

 {

 int x = a[i], y = b[i];

 c[i] = x & ((x - y) >> 31) | y & (~(x - y) >> 31);

 }

 }

}

Here we have two benchmarks, Ternary and BitHacks, which put the minimum

value of a[i] and b[i] to c[i] in a loop. Each benchmark has its own way to calculate

the minimum: Ternary uses the ternary operations (with a branch), and BitHacks uses

bit hacks (without branches).

Also, we have the RandomData parameter. When RandomData is true, we fill the a and

b arrays with random numbers. When RandomData is false, we don’t fill arrays, which

means that all elements are zeros.

 Results

Here is an example of results (Windows 10.0.17763.195, Intel Core i7-6700HQ CPU

2.60GHz, .NET Framework 4.7.2 (JIT 4.7.3260.0); Mono x64 5.180.225):

 Method | Job | RandomData | Mean | StdDev |

--------- |------------- |----------- |---------:|----------:|

 Ternary | LegacyJitX64 | False | 136.0 us | 1.9197 us |

 BitHacks | LegacyJitX64 | False | 170.3 us | 1.1214 us |

 Ternary | LegacyJitX86 | False | 142.3 us | 1.2358 us |

 BitHacks | LegacyJitX86 | False | 177.6 us | 1.6017 us |

 Ternary | Mono | False | 157.8 us | 1.3883 us |

 BitHacks | Mono | False | 231.0 us | 4.5545 us |

 Ternary | RyuJitX64 | False | 126.0 us | 1.4962 us |

Chapter 7 CpU-BoUnd BenChmarks

473

 BitHacks | RyuJitX64 | False | 172.8 us | 1.9703 us |

 Ternary | LegacyJitX64 | True | 498.2 us | 4.3987 us |

 BitHacks | LegacyJitX64 | True | 171.4 us | 0.9027 us |

 Ternary | LegacyJitX86 | True | 577.1 us | 5.5484 us |

 BitHacks | LegacyJitX86 | True | 179.5 us | 1.4957 us |

 Ternary | Mono | True | 159.3 us | 1.2456 us |

 BitHacks | Mono | True | 229.0 us | 2.0781 us |

 Ternary | RyuJitX64 | True | 504.3 us | 5.2434 us |

 BitHacks | RyuJitX64 | True | 173.1 us | 1.0211 us |

And here are the mean values regrouped into a better summary table (without

information about the standard deviation):

 | RandomData=False | RandomData=True |

 | Ternary | BitHacks | Ternary | BitHacks |

------------- | -------- | -------- | -------- | -------- |

LegacyJIT-x86 | 142.3 us | 177.6 us | 577.1 us | 179.5 us |

LegacyJIT-x64 | 136.0 us | 170.3 us | 498.2 us | 171.4 us |

RyuJIT-x64 | 126.0 us | 172.8 us | 504.3 us | 173.1 us |

Mono | 157.8 us | 231.0 us | 159.3 us | 229.0 us |

When RandomData is false, the BitHacks method always works more slowly

than Ternary. When RandomData is true, the BitHacks method works faster on

LegacyJIT-x86, LegacyJIT-x64, RyuJIT-x64, but not on Mono.

 Explanation

First of all, let’s discuss the situation on .NET Framework (LegacyJIT-x86,

LegacyJIT- x64, RyuJIT-x64). When RandomData is false, BitHacks works more slowly

than Ternary because it contains more instructions. When RandomData is true, Ternary

gets a performance penalty because of the branch mispredicts. The BitHacks method

duration is not affected by the RandomData value because it doesn’t contain conditional

logic in the loop body.

Chapter 7 CpU-BoUnd BenChmarks

474

The situation becomes much more interesting on Mono. We can make a few

interesting observations about it:

• Ternary always works faster than BitHacks on Mono (even when

RandomData is true).

• Mono version of the Ternary method works much faster than the

same code on .NET Framework when RandomData is true.

• We get approximately the same duration for RandomData=False and

RandomData=True on Mono for both benchmarks.

Let’s look at the native code. For simplification, we will look at the generated code for

MinTernary and MinBitHacks methods. Here is the corresponding listing for RyuJIT-x64:

; MinTernary/RyuJIT-x64

cmp edx,r8d ; if (x < y)

jl LESS ; goto LESS

mov eax,r8d ; result = y

ret ; return y

LESS:

mov eax,edx ; result = x

ret ; return x

This looks very straightforward: we just compare x and y and return the minimum

value. Now let’s look at the same method on Mono:

; MinTernary/Mono5.180.225-x64

sub $0x18,%rsp ; move stack pointer

mov %rsi,(%rsp) ; save rsi on stack

mov %rdi,0x8(%rsp) ; save rdi on stack

mov %rdx,%rdi ; rdi = x

mov %r8,%rsi ; rsi = y

cmp %esi,%edi ; compare x and y

mov %rsi,%rax ; rax = rsi (y)

cmovl %rdi,%rax ; rax = rdi (x) if (x < y)

mov (%rsp),%rsi ; restore rsi from stack

mov 0x8(%rsp),%rdi ; restore rdi from stack

Chapter 7 CpU-BoUnd BenChmarks

475

add $0x18,%rsp ; restore stack pointer

retq ; return rax

Here Mono uses the Conditional move (the cmovl instruction). The cmovl %rdi,%rax

moves the value from %rdi to %rax only if the previous cmp instruction “decided” that x

< y. The execution of the cmovl instruction is not affected by the branch predictor. The

mono implementation of Ternary doesn’t have branch mispredict performance penalty

because there is no branch on the native code level (despite the fact that we have a

condition in the source C# code).

Now we can explain our observation. The RandomData value doesn’t have a

performance impact on the Ternary and BitHacks methods on Mono because neither

of them contain branches. The BitHacks method takes more time than the Ternary

method because it contains more “heavy” instructions. The Ternary method works

faster on Mono than on .NET Framework when RandomData is true because the Mono

implementation doesn’t actually have branches (.NET Framework implementation

contains the jmp instruction) and it doesn’t have the branch mispredict penalty.

 Discussion

All of the main performance space components (source code, environment, input data) are

important. In the preceding example, we can’t say which method (Ternary or BitHacks) is

faster: the performance depends on the environment and the input data at the same time.

Even if you see an if statement in a C# program, it doesn’t mean that you will get a real

branch on the native code level: everything depends on the C# and JIT compilers.

Branchless versions of different algorithms may look interesting because they are not

affected by branch mispredict. This makes it easier to analyze the performance of such

methods (we shouldn’t enumerate different input data sets).

There is a cool project called movfuscator32 that can transform a program into a

series of the mov instructions. Both programs (the original one and its movfuscated

version) are equivalent. From the academic point of view, it’s a very interesting project

because it allows making branchless versions of any program. Unfortunately, the

movfuscated programs are superslow, which makes them unusable.33

32 https://github.com/xoreaxeaxeax/movfuscator
33 You can try to play in the branchless DOOM; the source code can be found here: https://
github.com/xoreaxeaxeax/movfuscator/tree/master/validation/doom. It takes
approximately 7 hours to render a single frame.

Chapter 7 CpU-BoUnd BenChmarks

https://github.com/xoreaxeaxeax/movfuscator
https://github.com/xoreaxeaxeax/movfuscator/tree/master/validation/doom
https://github.com/xoreaxeaxeax/movfuscator/tree/master/validation/doom

476

See also:

• coreclr#2161534: “Branchless TextInfo.ToLowerAsciiInvariant /

ToUpperAsciiInvariant”

This case study is based on [Akinshin 2016a].

 Case Study 4: Patterns
In the first branch prediction case study (“Sorted and Unsorted Data”), we imagined

that the branch predictor is a creature who remembers only the latest evaluated value of

each condition. The real branch predictors are much smarter; they can perform correct

predictions even if the data follows a specific pattern.

 Source code

Consider the following BenchmarkDotNet-based benchmark:

public class Benchmarks

{

 private int[] a = new int[100001];

 [Params(

 "000000000000",

 "000000000001",

 "000001000001",

 "001001001001",

 "010101010101",

 "random"

)]

 public string Pattern;

 [GlobalSetup]

 public void Setup()

 {

 var rnd = new Random(42);

34 https://github.com/dotnet/coreclr/pull/21615

Chapter 7 CpU-BoUnd BenChmarks

https://github.com/dotnet/coreclr/pull/21615

477

 for (int i = 0; i < a.Length; i++)

 a[i] = Pattern == "random"

 ? rnd.Next(2)

 : Pattern[i % Pattern.Length] - '0';

 }

 [Benchmark(Baseline = true)]

 public int Run()

 {

 int counter = 0;

 for (int i = 0; i < a.Length; i++)

 if (a[i] == 0)

 counter++;

 else

 counter--;

 return counter;

 }

}

Here we have an int array that is filled by zeros and ones according to the specified

pattern. In the only benchmark, we compare each element of the array with zero: if it

equals to zero, we increment counter; otherwise, we decrement counter. Thus, the

numbers of instruction are the same for all kinds of patterns.

 Results

Here is an example of results (macOS 10.14.2, Intel Core i7-4870HQ CPU 2.50GHz, .NET

Core 2.1.3):

 Pattern | Mean | StdDev | Ratio |

------------- |----------:|----------:|------:|

 000000000000 | 86.30 us | 0.5490 us | 1.00 |

 000000000001 | 90.75 us | 0.5556 us | 1.05 |

 000001000001 | 95.63 us | 0.4887 us | 1.11 |

 001001001001 | 109.50 us | 0.5972 us | 1.27 |

 010101010101 | 141.40 us | 0.4198 us | 1.64 |

 random | 434.80 us | 3.5712 us | 5.04 |

Chapter 7 CpU-BoUnd BenChmarks

478

As you can see, the benchmark with the 000000000000 pattern is the fastest one, and

the benchmark with the random pattern is the slowest one.

 Explanation

The branch predictor provides the best performance when all of the condition values

are the same. In this case, we don’t have branch mispredict at all. When the pattern

is random, we have the highest branch mispredict rate (and the worst performance)

because it’s pretty hard to predict random values. We also have some “intermediate”

results between these two cases: the branch predictor is able to “recognize” some

specific patterns. In the preceding example, the worst pattern is 010101010101 because

the predicted value is changing on each iteration. However, the benchmark with this

pattern still works three times faster than the random case.

 Discussion

If you want to know more about branch prediction internals, it’s recommended to read

[Intel Manual], [Rohou 2015], [Edelkamp 2016], [Luu 2017], and [Mittal 2018]. The

branch predictor is a very complicated part of CPU; different CPU models have different

branch prediction algorithms. They may involve some unobvious factors; some parts of

these algorithms can be kept secret. Here is a quote from [Agner Microarch]:

3.8 Branch prediction in Intel Haswell, Broadwell and Skylake

The branch predictor appears to have been redesigned in the

Haswell, but very little is known about its construction.

The measured throughput for jumps and branches varies between

one branch per clock cycle and one branch per two clock cycles

for jumps and predicted taken branches. Predicted not taken

branches have an even higher throughput of up to two branches

per clock cycle.

The high throughput for taken branches of one per clock was

observed for up to 128 branches with no more than one branch

per 16 bytes of code. If there is more than one branch per 16 bytes

of code then the throughput is reduced to one jump per two

clock cycles. If there are more than 128 branches in the critical

part of the code, and if they are spaced by at least 16 bytes, then

Chapter 7 CpU-BoUnd BenChmarks

479

apparently the first 128 branches have the high throughput and

the remaining have the low throughput.

These observations may indicate that there are two branch

prediction methods: a fast method tied to the μop cache and the

instruction cache, and a slower method using a branch target

buffer.

As you can see, it’s pretty hard to learn all the details of branch predictor internals

on all existing CPUs. However, you usually don’t need this knowledge in practice: you

can design great benchmarks and analyze the results correctly with the help of the core

concept of branch prediction.

 Summing Up
Branch prediction increases the power of the ILP capabilities near branches. Here are

some conclusions based on the discussed case studies:

• Performance depends on the input data. Even if we perform the

same number of instructions each time, a method duration may be

different depending on the branch conditions.

• If we have a composite expression like “a && b && c” as a branch

condition, we can consider it as an atomic unit in the C# code flow.

On this level, we have only two options: the expression is true (and

we take the branch) or the expression is false (and we don’t take the

branch). However, it’s translated to three jump instructions on the

native code level. This, the branch predictor has to perform three

independent predictions. In the worst case, we can get three branch

mispredictions for this expression.

• Even if you have an explicit branch on the C# level (e.g., an if

statement or an expression with the ternary operator), some JIT

compilers can be smart enough to replace it with a branchless native

implementation. In this case, the code execution will not be affected

by random data because the branch predictor has nothing to predict.

• Usually, the best case for a branch predictor is a situation when the

branch condition has the same value all the time. The worst case is

Chapter 7 CpU-BoUnd BenChmarks

480

a situation when the branch condition values are random. However,

there are a lot of “intermediate” cases: modern branch predictors

are able to “recognize” some regular patterns and provide good

performance. It will be still worse than the best case, but it can be

much better than the worst case with random data.

When you are designing a benchmark with branches, you should carefully check

different input data patterns. Of course, you shouldn’t enumerate all kinds of patterns

for each condition in each benchmark. Usually, it’s enough to check the best case (all

condition values are the same), the worst case (all condition values are random), and

some real cases (with data from real-life scenarios). Typically, these cases provide

enough measurements for conclusions.

 Arithmetic
Arithmetic operations like addition and multiplication are very common in many kinds

of programs. It’s very easy to use them, but it’s not so easy to benchmark them (especially

when the calculations involve floating-point numbers).

Usually, we skip low-level explanations of different effects because you don’t actually

need them during benchmarking. In this section, we have to briefly discuss operations

with floating-point types like float, double, and decimal: it will help to understand

some performance results of benchmarks that involve arithmetic operations.

The float and double types follow the IEEE 754 standard, which states that a

floating- point number is represented by a sign S, an exponent E, and a mantissa M which

can be converted to the real value by the following rule:

V M
s E Ebias= -() × × -1 21.

After this formula, most developers stop reading texts about floating-point numbers

because things become too complicated and confusing. Instead of the classic theory, we

will use another approach, which was introduced in [Sanglard 2017] by Fabien Sanglard.

According to the Sanglard interpretation, a floating-point number is represented by

a sign, a window between two consecutive powers of two, and an offset within that

window. All numbers can be splitted into nonoverlapped intervals (windows): [0.125;

0.25), [0.25; 0.5), [0.5; 1), [1; 2), [2; 4), and so on. Each window also can be split into

nonoverlapped subintervals (buckets). If we want to convert a number to the IEEE 754

Chapter 7 CpU-BoUnd BenChmarks

481

notation, we should find the window that contains this number. The index of the window

is the exponent value. Next, we should find the bucket inside the window that contains

the number. The bucket index (offset) is the mantissa value. If the number is negative, we

should do the same for the absolute value of this number and put 1 in the sign bit.

Unfortunately, we can’t represent every real number in computer memory: the range

and the precision depends on the number of bits that we have. In Table 7-2, you can see

the main characteristics of the 32-bit, 64-bit, and 80-bit floating-point numbers.

Table 7-2. Characteristics of the Floating-Point Numbers

Sign Exponent Mantissa Digits Lower Upper Ebias

32bit 1 8 23 ≈7.2 1.2 ⋅ 10−38 3.4 ⋅ 10+38 127

64bit 1 11 52 ≈15.9 2.3 ⋅ 10−308 1.7 ⋅ 10+308 1023

80bit 1 15 64 ≈19.2 3.4 ⋅ 10−4932 1.1 ⋅ 10+4932 16383

For example, a 32-bit number contains 1 bit for the sign, 8 bits for the exponent, and

23 bits for the mantissa. It’s enough to represent numbers from 1.2 ⋅ 10−38 to 3.4 ⋅ 10+38,

but we can keep approximately 7.2 digits for each number.

Let’s do a simple exercise and calculate the real value of the following IEEE 754 32-bit

number35:

Sign Exponent Mantissa

 0 10011100 11011100110101100101001

• The sign S is zero, which means that the number is positive (1

denotes negative numbers).

• The exponent E is 100111002100111002 or 15610. In order to find

the window, we should subtract Ebias from it: this trick helps to

encode very small and very huge numbers using a non-negative

number as an exponent. For 32-bit numbers, Ebias = 127(see

Table 7-2), E − Ebias = 156 − 127 = 29. Thus, our window is [229; 230] or

[536,870,912; 1,073,741,824].

35 You can explore the details of this number here: https://float.exposed/0x4e6e6b29

Chapter 7 CpU-BoUnd BenChmarks

https://float.exposed/0x4e6e6b29

482

• The mantissa M is 1101110011010110010100121101110011010110

01010012 or 7,236,39310. Since we have 23 bits in the mantissa, the

window should be divided into 223 (8,388,608) buckets; the index of

our bucket (the offset within the window) is 7,236,393.

Our window is [536,870,912; 1,073,741,824]. If we split into 223 subintervals, we get 64

as the bucket size. Since we know the bucket index (the offset), we can easily calculate

the value:

 V = + × =536 870 912 64 7236393 1 000000064

The same value can be obtained with the classic formula. In this formula, we use 1.M

because the mantissa has the leading 1 by default; it helps to save one bit in memory.

The value of 1.M is 1.110111001101011001010012 or 15'625'00110 ⋅ 2−23. Thus, we get:

V = -() × ×() × = × =- -1 15 625 001 2 2 15 625 001 2 1 000 000 064

0 23 156 127 6

In .NET, we have only two native types that follow the IEEE 754 representation: float

(32-bit) and double (64-bit). .NET doesn’t have a type for 80-bit floating-point numbers,

but the runtime still can use such values for intermediate calculations. There is one

additional standard type that can handle real values: decimal (128-bit). However, this

is not a native type; it’s a struct. It has a custom implementation, based on four int

fields,36 which doesn’t follow the IEEE 754 standard. It was designed for financial and

monetary calculations. In C#, you can specify the type that you want to use with the help

of special postfix: 1.0f is float, 1.0d is double, 1.0m is decimal.

Each floating-point type has its own set of “features.” For example, if we convert

1,000,000,064 to float and print it in the 10-digit form (((float)1000000064).

ToString("G10")), we will get 1000000060 instead of 1000000064. Despite the fact that

1,000,000,064 is perfectly represented in IEEE 754, the runtime rounds it because the

float precision is not enough to handle 10-digit numbers. This number can be perfectly

represented in decimal. Another interesting fact: 1000000064.00m.ToString() will print

1000000064.00 because decimal keeps the knowledge about two zeros after the decimal

point. You can find more interesting facts about decimals in [Skeet 2008].37

36 You can find its source code here: https://referencesource.microsoft.com/#mscorlib/
system/decimal.cs

37 You can also find it here: http://csharpindepth.com/Articles/General/Decimal.aspx

Chapter 7 CpU-BoUnd BenChmarks

https://referencesource.microsoft.com/#mscorlib/system/decimal.cs
https://referencesource.microsoft.com/#mscorlib/system/decimal.cs
http://csharpindepth.com/Articles/General/Decimal.aspx

483

On the hardware level, there are several sets of instructions that can operate with

IEEE 754 numbers. The first x86-compatible instruction set that supports IEEE 754 is

x87: it was introduced in the first math coprocessor by Intel: Intel 8087. Later, Intel

designed other instruction sets like SSE and AVX, which also support IEEE 754 operations.

Different JIT compilers use different sets of instructions for float and double

operations. For example, LegacyJIT-x86 knows how to work only with x87. LegacyJIT-x64

is better; it knows how to work with SSE (if it’s available). RyuJIT is even better; it knows

how to work with AVX (if it’s available).

Most of the classic arithmetic rules don’t work with floating-point numbers. Here is

one of the most famous IEEE 754 equations38:

 0 1 0 2 0 3. . .d d d+ ¹

We have such situations because 0.1d, 0.2d, and 0.3d can’t be perfectly presented in

IEEE 754 notation:

0.1d ~ 0.100000000000000005551115123125783

+0.2d ~ 0.200000000000000011102230246251565

 0.300000000000000044408920985006262

 0.3d ~ 0.299999999999999988897769753748435

Many arithmetic rules don’t work with float and double in general:

(a + b) + c ≠ a + (b + c), (a ⋅ b) ⋅ c ≠ a ⋅ (b ⋅ c), (a + b) ⋅ c ≠ a ⋅ c + b ⋅ c, ax + y ≠ ax ⋅ ay, and so

on. Such behavior is not surprising for people who know IEEE 754. However, there is an

important fact about floating-point numbers in .NET that developers usually don’t know:

operations with float and double are nondeterministic. This means that the same

program can produce different floating-point results under different conditions.

Here is my favorite example from [Skeet 2008]39:

static float Sum(float a, float b) => a + b;

static float x;

static void Main()

{

38 See also: https://0.30000000000000004.com/
39 You can also find it here: http://csharpindepth.com/Articles/General/FloatingPoint.aspx

Chapter 7 CpU-BoUnd BenChmarks

https://0.30000000000000004.com/
http://csharpindepth.com/Articles/General/FloatingPoint.aspx

484

 x = Sum(0.1f, 0.2f);

 float y = Sum(0.1f, 0.2f);

 Console.WriteLine(x == y);

 // y = y + 1;

 // Console.WriteLine(y);

 // GC.KeepAlive(y);

}

It seems that this program should always print True. However, LegacyJIT-x86 will

prints True only in the DEBUG mode; in the RELEASE mode, we will get False. How is

that possible? We can find a clue in the specifications:

ECMA-335, I.12.1.3 “Handling of floating-point data types”

The nominal type of the variable or expression is either float32

or float64, but its value can be represented internally with
additional range and/or precision.

In the RELEASE mode, LegacyJIT-x86 uses an 80-bit floating-point number for

y. We don’t have the 80-bit floating-point type in .NET, but the runtime can use it for

intermediate calculations. If you uncomment one of the commented lines, it may force

LegacyJIT- x86 to use float for y, which changes the program output.

If you want to understand all nuances of using floating-point types, it’s

recommended to read [Goldberg 1991].

 Case Study 1: Denormalized Numbers
Let’s continue to talk about IEEE754. In Table 7-3, you can see the lower window bound,

the upper window bound, and the bucket size for different exponent values in the

context of 32-bit numbers.

Chapter 7 CpU-BoUnd BenChmarks

485

All the exponents follow the same rule except the last one (E=0). When the exponent

equals to zero, we get an additional window that covers numbers from zero to 2-126; the

bucket size is 2-149 (we have the same value in the E=1 case). These numbers (except zero)

are known as denormalized numbers. Typically, operations with denormalized numbers

have serious performance issues. Let’s learn how serious they can be by an example.

 Source code

Consider the following BenchmarkDotNet-based benchmark:

public class Benchmarks

{

 [Params(100000, 1000000)]

 public int N;

 [Benchmark]

 public double PowerA()

 {

 double res = 1.0;

 for (int i = 0; i < N; i++)

 res = res * 0.96;

 return res;

 }

Table 7-3. Windows for 32-Bit Floating-Point Numbers

E Lower Upper Bucket size

254 2127 = 1.7 ⋅ 1038 2128 = 3.4 ⋅ 1038 2104 = 2.0 ⋅ 1031

253 2126 = 8.5 ⋅ 1037 2127 = 1.7 ⋅ 1038 2103 = 1.0 ⋅ 1031

128 21 = 2 22 = 4 2−22 = 2.4 ⋅ 10−7

127 20 = 1 21 = 2 2−23 = 1.2 ⋅ 10−7

3 2−124 = 4.7 ⋅ 10−38 2−123 = 9.4 ⋅ 10−38 2−147 = 5.6 ⋅ 10−45

2 2−125 = 2.4 ⋅ 10−38 2−124 = 4.7 ⋅ 10−38 2−148 = 2.8 ⋅ 10−45

1 2−126 = 1.2 ⋅ 10−38 2−125 = 2.4 ⋅ 10−38 2−149 = 1.4 ⋅ 10−45

0 0 2−126 = 1.2 ⋅ 10−38 2−149 = 1.4 ⋅ 10−45

Chapter 7 CpU-BoUnd BenChmarks

486

 private double resB;

 [Benchmark]

 public double PowerB()

 {

 resB = 1.0;

 for (int i = 0; i < N; i++)

 resB = resB * 0.96;

 return resB;

 }

 [Benchmark]

 public double PowerC()

 {

 double res = 1.0;

 for (int i = 0; i < N; i++)

 res = res * 0.96 + 0.1 - 0.1;

 return res;

 }

}

Here we calculate 0.96N in three different ways. In PowerA, we just multiply a local

variable by 0.96 N times. In PowerB, we use a field for the multiplication results instead of

the local variable. In PowerC, we use a local variable, but we perform + 0.1 - 0.1 on it

after each iteration.

 Results

Here is an example of results (Windows 10.0.17763.195, Intel Core i7-6700HQ CPU

2.60GHz, .NET Framework 4.7.2, JIT 4.7.3260.0):

 Method | Jit | Platform | N | Mean | StdDev |

------- |---------- |--------- |-------- |-------------:|-------------:|

 PowerA | LegacyJit | X86 | 100000 | 151.5 us | 1.298 us |

 PowerB | LegacyJit | X86 | 100000 | 17,480.7 us | 99.446 us |

 PowerC | LegacyJit | X86 | 100000 | 330.7 us | 1.129 us |

 PowerA | RyuJit | X64 | 100000 | 3,547.9 us | 11.868 us |

 PowerB | RyuJit | X64 | 100000 | 3,783.8 us | 12.350 us |

Chapter 7 CpU-BoUnd BenChmarks

487

 PowerC | RyuJit | X64 | 100000 | 366.6 us | 1.383 us |

 PowerA | LegacyJit | X86 | 1000000 | 150,718.6 us | 3,663.819 us |

 PowerB | LegacyJit | X86 | 1000000 | 219,923.4 us | 6,075.390 us |

 PowerC | LegacyJit | X86 | 1000000 | 3,521.8 us | 82.629 us |

 PowerA | RyuJit | X64 | 1000000 | 43,119.9 us | 693.725 us |

 PowerB | RyuJit | X64 | 1000000 | 45,739.5 us | 771.414 us |

 PowerC | RyuJit | X64 | 1000000 | 3,755.5 us | 54.615 us |

And here are the mean values regrouped into a better summary table (without

information about the standard deviation):

 JIT | N | PowerA | PowerB | PowerC |

-------------:| -------:| ------------:| ------------:| ----------:|

LegacyJIT-x86 | 100000 | 151.5 us | 17,480.7 us | 330.7 us |

 RyuJIT-x64 | 100000 | 3,547.9 us | 3,783.8 us | 366.6 us |

LegacyJIT-x86 | 1000000 | 150,718.6 us | 219,923.4 us | 3,521.8 us |

 RyuJIT-x64 | 1000000 | 43,119.9 us | 45,739.5 us | 3,755.5 us |

Some of these results may look surprising. Here we can ask the following questions

about the summary table:

• Why does PowerC work so fast?

• Why are PowerA and PowerB so slow on LegacyJIT-x86 for N = 106?

• Why is PowerA much faster than PowerB and PowerC on

LegacyJIT-x86 for N = 105?

 Explanation

Let’s try to answer these questions. First of all, let’s compare PowerA and PowerC on

RyuJIT. To understand why PowerC is faster, we should look at Table 7-4, in which

the intermediate res values are presented in the real decimal form with internal

hexadecimal representation.

Chapter 7 CpU-BoUnd BenChmarks

488

Let’s learn what’s going on here step by step:

• The initial value of res is 1.0, which is 3FF0000000000000 in the IEEE

754 format.

• After the first iteration (i=1), res becomes 0.96 (3FEEB851EB851EB8)

in PowerA. In PowerC, res * 0.96 + 0.1 - 0.1 gives

0.96000000000000008 (3FEEB851EB851EB9). The difference between

PowerA and PowerC is in a single bit.

Table 7-4. RyuJIT-x64 Intermediate Results for Benchmark with

Denormalized Numbers

i PowerA PowerC

0 1.0 1.0

3FF0000000000000 3FF0000000000000

1 0.96 0.96000000000000008

3FeeB851eB851eB8 3FeeB851eB851eB9

885 2.0419318345555615E-16 1.8041124150158794E-16

3Cad6d6617566397 3CAA000000000000

886 1.9602545611733389E-16 1.6653345369377348E-16

3CaC4010166769d8 3CA8000000000000

887 1.8818443787264053E-16 1.6653345369377348E-16

3CaB1eC7C3967a17 3CA8000000000000

18171 6.42285339593621E- 323 1.6653345369377348E-16

000000000000000D 3Ca8000000000000

18172 5.92878775009496E- 323 1.6653345369377348E-16

000000000000000C 3Ca8000000000000

18173 5.92878775009496E- 323 1.6653345369377348E-16

000000000000000C 3Ca8000000000000

Chapter 7 CpU-BoUnd BenChmarks

489

• When i=886, we get 1.6653345369377348E-16 (3CA8000000000000)

in PowerC. This magic number is an invariant for res * 0.96 +

0.1 - 0.1: this operation doesn’t change this number. We can

continue to perform iterations, but res will not be changed.

• When i=18172, we get 5.92878775009496E-323 (000000000000000C)

in PowerA. This number is an invariant for res * 0.96: the res value

will not be changed anymore in either method.

Now we can see that PowerA performs most of the operations with

5.92878775009496E-323, which is a denormalized number: that’s why the performance

is so bad. In PowerC, the + 0.1 - 0.1 trick helps to keep the intermediate results

normalized. Since we don’t have any operation with denormalized numbers in PowerC,

this method works pretty fast.

Now let’s look what’s going on with LegacyJIT-x86. This JIT compiler uses x87

instruction. Here are disassembly listings for PowerA and PowerB:

; PowerA (N=10^5: ~167us N=10^6: ~152770us)

fld qword ptr ds:[14D2E28h] ; 0.96

fmulp st(1),st; In a register

; PowerB (N=10^5: ~19079us N=10^6: ~226219us)

fld qword ptr ds:[892E20h] ; 0.96

fmul qword ptr [ecx+4]

fstp qword ptr [ecx+4] ; In memory

As we can see, PowerA performs multiplication using a register; PowerB keeps the

intermediate result in memory (because it should dump the value to a field). The next

clue can be found in [Intel Manual]:

§8.2 X87 FPU Data Types

With the exception of the 80-bit double extended-precision

format, all data types exist in memory only. When they are loaded

into x87 FPU data registers, they are converted into double
extended-precision format and operated on in that format.

When a denormal number is used as a source operand, the x87

FPU automatically normalizes the number when it is converted

to double extended-precision format.

Chapter 7 CpU-BoUnd BenChmarks

490

Thus, PowerA actually uses 80-bit floating-point numbers for calculations. It doesn’t

hit the “denormalized zone” for N = 105, unlike PowerB, which uses 64-bit numbers.

That’s why PowerA is so fast for N = 105: it performs all calculations on normalized

numbers using a register. For N = 106, we have a lot of denormalized operations even for

80-bit numbers (try to calculate the exact iteration when we get the first denormalized

number and the iteration when we get the invariant value).

 Discussion

As you can see, the denormalized number can be a cause of serious performance

problems. Such numbers can also be used for timing side channel attacks (e.g., see

[Andrysco 2015]). The performance effect of denormalized numbers significantly

depends on the environment.

 Case Study 2: Math.Abs
Math.Abs is a widely used static method that returns the absolute value of a specified

number. Let’s check its performance on different versions of .NET Core.

 Source code

Consider the following BenchmarkDotNet-based benchmark:

public class Benchmarks

{

 private int positive = 1, negative = -1;

 [Benchmark]

 public int Positive()

 {

 return Math.Abs(positive);

 }

 [Benchmark]

 public int Negative()

 {

 return Math.Abs(negative);

 }

}

Chapter 7 CpU-BoUnd BenChmarks

491

Here we have two benchmarks: Positive (measures Math.Abs for +1) and Negative

(measures Math.Abs for -1).

 Results

Here is an example of results (Windows 10.0.17763.195, Intel Core i7-6700HQ CPU

2.60GHz, .NET Core 2.0.9 and .NET Core 2.1.5):

 Method | Job | Mean | StdDev |

--------- |----------- |----------:|----------:|

 Positive | .NETCore20 | 0.2797 ns | 0.0182 ns |

 Negative | .NETCore20 | 0.9145 ns | 0.0239 ns |

 Positive | .NETCore21 | 0.2744 ns | 0.0077 ns |

 Negative | .NETCore21 | 0.2762 ns | 0.0126 ns |

As you can see, the Negative benchmark on .NET Core 2.0 works three times slower

than other cases.

 Explanation

Let’s look at its implementation in .NET Core 2.0.040:

public static int Abs(int value)

{

 if (value >= 0)

 return value;

 else

 return AbsHelper(value);

}

private static int AbsHelper(int value)

{

 Contract.Requires(value < 0,

 "AbsHelper should only be called for negative values!" +

 "(workaround for JIT inlining)");

 if (value == Int32.MinValue)

40 https://github.com/dotnet/coreclr/blob/v2.0.0/src/mscorlib/src/System/Math.
cs#L268

Chapter 7 CpU-BoUnd BenChmarks

https://github.com/dotnet/coreclr/blob/v2.0.0/src/mscorlib/src/System/Math.cs#L268
https://github.com/dotnet/coreclr/blob/v2.0.0/src/mscorlib/src/System/Math.cs#L268

492

 throw new OverflowException(SR.Overflow_NegateTwosCompNum);

 Contract.EndContractBlock();

 return -value;

}

Here we can see that Math.Abs instantly returns value for positive input and

calls additional method AbsHelper for the negative case. Thus, we always have an

additional call for negative values. This call is not inlined, so we have a performance

penalty for such cases. The performance was improved in .NET Core 2.1, and now the

implementation looks as follows:

[MethodImpl(MethodImplOptions.AggressiveInlining)]

public static int Abs(int value)

{

 if (value < 0)

 {

 value = -value;

 if (value < 0)

 {

 ThrowAbsOverflow();

 }

 }

 return value;

}

[StackTraceHidden]

private static void ThrowAbsOverflow()

{

 throw new OverflowException(SR.Overflow_NegateTwosCompNum);

}

The updated implementation doesn’t have an additional call for negative numbers.

That’s why the Positive and Negative benchmarks have the same duration on .NET

Core 2.1.

Chapter 7 CpU-BoUnd BenChmarks

493

 Discussion

In the GitHub discussion, we can find a great explanation of this approach by Andy

Ayers41:

The general guidance is to separate out throws into helper

methods that do the work of creating the exception object and

any related data (eg formatted exception messages) and then

unconditionally throw. The jit’s inline performance heuristic

will then block inlining of the helper. This has a number of

performance benefits:

• overall code size savings when are multiple callers or callers with

multiple throw sites

• call sites to helper are considered “rare” and so moved into the

caller’s cold code region

• helper IL is only jitted if an exception about to be thrown, so

caller jits faster

• caller’s prolog/epilog may be simplified with fewer register saves/

restores

Native codegen for exception throws that use resource based

strings is surprisingly large.

There is no “correctness” reason preventing methods with throws

from being inlined, and methods that conditionally throw (like the

original AbsHelper in the preceding) may end up getting inlined,

as they might contain a mixture of hot and cold code. Methods

that unconditionally throw are much less likely to contain any hot

code.

Many developers think that operations with numbers are so fundamental that they

should have been written perfectly a long time ago and never changed since then. This

is not true: most base operations that we use all the time get performance improvements

all the time. For example, in [Icaza 2018], you can read a story about a 2× performance

improvement of 32-bit floating-point calculations.

41 https://github.com/dotnet/corefx/issues/26253#issuecomment-356736809

Chapter 7 CpU-BoUnd BenChmarks

https://github.com/dotnet/corefx/issues/26253#issuecomment-356736809

494

See also:

• corefx#2625342 “Math.Abs is slow”

• coreclr#1582343 “Improve performance for Math.Abs”

 Case Study 3: double.ToString
A conversion from double to string is another popular operation used in most .NET

applications. This conversion is pretty time-consuming. Let’s measure its performance

on .NET Core 2.0 and .NET Core 2.1

 Source code

Consider the following BenchmarkDotNet-based benchmark:

public class Benchmarks

{

 private double value = -8.98846567431158E+307;

 [Benchmark]

 public string ConvertToString()

 {

 return value.ToString(CultureInfo.InvariantCulture);

 }

}

Here we have the only benchmark that measures ToString conversion for

-8.98846567431158E+307.

 Results

Here is an example of results (Windows 10.0.17763.195, Intel Core i7-6700HQ CPU

2.60GHz, .NET Core 2.0.9 and .NET Core 2.1.5):

42 https://github.com/dotnet/corefx/issues/26253
43 https://github.com/dotnet/coreclr/pull/15823

Chapter 7 CpU-BoUnd BenChmarks

https://github.com/dotnet/corefx/issues/26253
https://github.com/dotnet/coreclr/pull/15823

495

 Job | Mean | StdDev |

----------- |-----------:|-----------:|

 .NETCore20 | 4,649.4 ns | 125.019 ns |

 .NETCore21 | 222.1 ns | 1.425 ns |

As you can see, double.ToString() works much faster for -8.98846567431158E+307

on .NET Core 2.1.

 Explanation

In coreclr#14646,44 the Grisu3 algorithm (read more about it in [Steele 1990] and

[Andrysco 2016]) was added in double.ToString() implementation. This improvement

was included in .NET Core 2.1 In the pull request comments, you can find benchmark

results for different inputs (a fragment is presented in Table 7-5).

 Discussion

The performance boost was noticed in some internal .NET Core benchmarks (see

coreclr#1662445 and coreclr#1662546).

44 https://github.com/dotnet/coreclr/pull/14646
45 https://github.com/dotnet/coreclr/issues/16624
46 https://github.com/dotnet/coreclr/issues/16625

Table 7-5. Grisu3 Performance Improvement for double.ToString

Number Arguments Before After

-1.79769313486232e+308 — 237.492 28.660

-8.98846567431158e+307 — 227.782 29.921

-1.79769313486232e+308 culture: “zh” 252.797 26.215

4.94065645841247e-324 format: “e” 222.350 40.334

-1.79769313486232e+308 format: “F50” 324.054 132.538

4.94065645841247e-324 format: “G” 213.085 39.974

-1.79769313486232e+308 format: “r” 443.718 45.578

4.94065645841247e-324 format: “r” 231.865 49.403

Chapter 7 CpU-BoUnd BenChmarks

https://github.com/dotnet/coreclr/pull/14646
https://github.com/dotnet/coreclr/issues/16624
https://github.com/dotnet/coreclr/issues/16625

496

Note that the old and new implementations may return different values in some

special cases. For example, consider the following lines:

var value = BitConverter.Int64BitsToDouble(-4585072949362425856);

Console.WriteLine(value);

It will print -122.194458007813 on .NET Core 2.0 and -122.194458007812 on .NET

Core 2.1. You can find the corresponding discussion in coreclr#17805.47

 Case Study 4: Integer Division
The integer division operation may be heavy when the divider is not a power of two.

There is an old bit hack that allows replacing the division by a multiplication and a bit

shift.48 The following two methods produce the same result:

uint Div3Simple(uint n) => n / 3;

uint Div3BitHacks(uint n) => (uint)((n * (ulong)0xAAAAAAAB) >> 33);

In theory, Div3BitHacks should work much faster because it doesn’t perform the

heavy division operation. Let’s check how it works in practice.

 Source code

Consider the following BenchmarkDotNet-based benchmark:

public class Benchmarks

{

 private uint x = 1, initialValue = uint.MaxValue;

 [Benchmark(OperationsPerInvoke = 16)]

 public void Simple()

 {

 x = initialValue;

 x = x / 3;

 x = x / 3;

47 https://github.com/dotnet/coreclr/issues/17805
48 You can find more details about it in [Lemire 2019] and [Tillaart 2007]. You can also find tons of

interesting bit hacks in https://graphics.stanford.edu/~seander/bithacks.html

Chapter 7 CpU-BoUnd BenChmarks

https://github.com/dotnet/coreclr/issues/17805
https://graphics.stanford.edu/~seander/bithacks.html

497

 x = x / 3;

 x = x / 3;

 x = x / 3;

 x = x / 3;

 x = x / 3;

 x = x / 3;

 x = x / 3;

 x = x / 3;

 x = x / 3;

 x = x / 3;

 x = x / 3;

 x = x / 3;

 x = x / 3;

 x = x / 3;

 }

 [Benchmark(OperationsPerInvoke = 16)]

 public void BitHacks()

 {

 x = initialValue;

 x = (uint) ((x * (ulong) 0xAAAAAAAB) >> 33);

 x = (uint) ((x * (ulong) 0xAAAAAAAB) >> 33);

 x = (uint) ((x * (ulong) 0xAAAAAAAB) >> 33);

 x = (uint) ((x * (ulong) 0xAAAAAAAB) >> 33);

 x = (uint) ((x * (ulong) 0xAAAAAAAB) >> 33);

 x = (uint) ((x * (ulong) 0xAAAAAAAB) >> 33);

 x = (uint) ((x * (ulong) 0xAAAAAAAB) >> 33);

 x = (uint) ((x * (ulong) 0xAAAAAAAB) >> 33);

 x = (uint) ((x * (ulong) 0xAAAAAAAB) >> 33);

 x = (uint) ((x * (ulong) 0xAAAAAAAB) >> 33);

 x = (uint) ((x * (ulong) 0xAAAAAAAB) >> 33);

 x = (uint) ((x * (ulong) 0xAAAAAAAB) >> 33);

 x = (uint) ((x * (ulong) 0xAAAAAAAB) >> 33);

 x = (uint) ((x * (ulong) 0xAAAAAAAB) >> 33);

Chapter 7 CpU-BoUnd BenChmarks

498

 x = (uint) ((x * (ulong) 0xAAAAAAAB) >> 33);

 x = (uint) ((x * (ulong) 0xAAAAAAAB) >> 33);

 }

}

Here we have two benchmarks: Simple and BitHacks. Both of them divide x by 3 (16

times). In order to avoid ILP, all of the division operations use the same field x.

 Results

Here is an example of results (Windows 10.0.17763.195, Intel Core i7-6700HQ CPU

2.60GHz, .NET Framework 4.7.2 with JIT 4.7.3260.0; Mono 5.18.0.225):

 Method | JIT | Mean | StdDev |

--------- |-------------- |-----------:|----------:|

 Simple | LegacyJIT-x86 | 5.6259 ns | 0.0217 ns |

 BitHacks | LegacyJIT-x86 | 1.3119 ns | 0.0123 ns |

 Simple | LegacyJIT-x64 | 1.2916 ns | 0.0065 ns |

 BitHacks | LegacyJIT-x64 | 0.8484 ns | 0.0039 ns |

 Simple | RyuJIT-x64 | 0.8491 ns | 0.0099 ns |

 BitHacks | RyuJIT-x64 | 0.7035 ns | 0.0081 ns |

 Simple | Mono-x86 | 3.5624 ns | 0.0111 ns |

 BitHacks | Mono-x86 | 13.4624 ns | 0.1121 ns |

 Simple | Mono-x64 | 1.1475 ns | 0.0117 ns |

 BitHacks | Mono-x64 | 1.4359 ns | 0.0074 ns |

And here are the mean values regrouped into a better summary table (without

information about the standard deviation):

| JIT | Simple | BitHacks |

| -------------:| ---------:| ----------:|

| LegacyJIT-x86 | 5.6259 ns | 1.3119 ns |

| LegacyJIT-x64 | 1.2916 ns | 0.8484 ns |

| RyuJIT-x64 | 0.8491 ns | 0.7035 ns |

| Mono-x86 | 3.5624 ns | 13.4624 ns |

| Mono-x64 | 1.1475 ns | 1.4359 ns |

Chapter 7 CpU-BoUnd BenChmarks

499

We can make the following observations about the summary table:

• The Simple benchmark works much faster on LegacyJIT-x64,

RyuJIT-x64, and Mono-x64 than on LegacyJIT-x86 and Mono-x86.

• The BitHacks benchmark works extremely slow on Mono-x86.

 Explanation

To understand what’s going on here, we should look at the generated native code

for all JIT compilers. Let’s start with LegacyJIT-x86 because it produces the most

straightforward native code:

; Simple/LegacyJIT-x86

mov eax,dword ptr [esi+4] ; eax = x

xor edx,edx ; edx = 0

div eax,ecx ; eax /= 3

mov dword ptr [esi+4],eax ; x = eax

; BitHacks/LegacyJIT-x86

mov eax,dword ptr [ecx+4] ; eax = x

mov edx,0AAAAAAABh ; edx = 0AAAAAAABh

mul eax,edx ; eax * edx (result in edx)

mov eax,edx ; eax = edx

shr eax,1 ; eax >>= 1

xor edx,edx ; edx = 0

mov dword ptr [ecx+4],eax ; x = eax

No magic here: LegacyJIT-x86 translated C# code to assembly in the most

straightforward way. At the beginning of each division operation, we load the x value

from the stack to a register, perform the division, and save the x value from the register

to the stack. The BitHacks benchmark works faster than Simple because it uses

multiplication instead of division.

Now let’s look at the LegacyJIT-x64 native code:

; Simple/LegacyJIT-x64

mov ecx,dword ptr [r8+8] ; ecx = x

mov eax,0AAAAAAABh ; eax = 0AAAAAAABh

mul eax,ecx ; aex * ecx (result in edx)

Chapter 7 CpU-BoUnd BenChmarks

500

shr edx,1 ; edx >>= 1

mov dword ptr [r8+8],edx ; x = edx

; BitHacks/LegacyJIT-x64

mov eax,dword ptr [rcx+8] ; eax = x

mov edx,0AAAAAAABh ; edx = 0AAAAAAABh

imul rax,rdx ; rax * rdx (result in rax)

shr rax,21h ; rax >>= 31

mov dword ptr [rcx+8],eax ; x = eax

LegacyJIT-x64 is smart enough to replace division by multiplication for the Simple

benchmark! That’s why the LegacyJIT-x64 version works faster than the LegacyJIT-x86

version.

Now let’s look at the RyuJIT-x64 native code:

; Simple/RyuJIT-x64

mov edx,0AAAAAAABh ; edx = 0AAAAAAABh

mul eax,edx ; eax * edx (result in edx)

mov eax,edx ; eax = edx

shr eax,1 ; eax >>= 1

mov dword ptr [rcx+8],eax ; x = eax

; BitHacks/RyuJIT-x64

moveax,eax; eax = eax

imul rax,rdx ; rax * rdx (result in rax)

shr rax,21h ; rax >>= 31

mov dword ptr [rcx+8],eax ; x = eax

RyuJIT-x64 is also smart enough to replace division by multiplication. It works a

little bit faster than LegacyJIT-x64 because it doesn’t load the x value from the stack to

the register at the beginning of the operation (the actual x value is already in the register

after the previous operation).

Now let’s look at the Mono-x86 native code:

; Simple/Mono-x86

movl $0x0,-0xc(%rbp) ; -0xc(%rbp) = 0

mov -0x10(%rbp),%eax ; eax = x

mov %eax,0x8(%rdi) ; 0x8(%rdi) = eax

Chapter 7 CpU-BoUnd BenChmarks

501

mov 0x8(%rdi),%eax ; eax = 0x8(%rdi)

mov $0xaaaaaaab,%ecx ; ecx = 0xaaaaaaab

mul %ecx ; eax * ecx (result in edx)

mov %edx,-0xc(%rbp) ; -0xc(%rbp) = edx

mov %eax,-0x10(%rbp) ; -0x10(%rbp) = eax

mov -0xc(%rbp),%eax ; eax = -0xc(%rbp) (mul result)

shr %eax ; eax >>= 1

mov %eax,-0x10(%rbp) ; x = eax

; BitHacks/Mono-x86

mov 0x8(%rdi),%eax ; %eax = x

movl $0x0,0xc(%rsp) ; 0xc(%rsp) = 0

movl $0xaaaaaaab,0x8(%rsp) ; 0x8(%rsp) = 0xaaaaaaab

movl $0x0,0x4(%rsp) ; 0x4(%rsp) = 0

mov %eax,(%rsp) ; (%rsp) = %eax

lea 0x0(%rbp),%ebp ; %epb = 0x0(%rbp)

callq fffffffffffffff4 ; Call external method

mov %edx,-0xc(%rbp) ; -0xc(%rbp) = %edx

mov %eax,-0x10(%rbp) ; -0x10(%rbp) = %eax

mov -0xc(%rbp),%eax ; %eax = -0xc(%rbp)

shr %eax ; %eax >>= 1

mov %eax,0x8(%rdi) ; x = eax

Mono-x86 doesn’t know how to handle our bit hacks with simple instructions: it

generates a complicated code with an external call. That’s why the BitHacks benchmark

on Mono-x86 is so slow.

Now let’s look at the Mono-x64 native code:

; Simple/Mono-x64

mov 0x10(%rsi),%eax ; eax = x

mov $0xaaaaaaab,%ecx ; ecx = 0xaaaaaaab

mov %eax,%eax ; eax = eax

imul %rcx,%rax ; rax * rcx (result in rax)

shr $0x21,%rax ; rax >>= 31

mov %eax,0x10(%rsi) ; x = eax

Chapter 7 CpU-BoUnd BenChmarks

502

; BitHacks/Mono-x64

mov 0x10(%rsi),%eax ; eax = x

mov %eax,%eax ; eax = eax

mov $0xaaaaaaab,%ecx ; ecx = 0xaaaaaaab

imul %rcx,%rax ; rax * rcx (result in rax)

shr $0x21,%rax ; rax >>= 31

shr $0x0,%eax ; eax >>= 0

mov %eax,0x10(%rsi) ; x = eax

Mono-x64 is also smart enough to replace division by multiplication. Moreover, the

optimized version of Simple is more efficient than BitHacks where we manually applied

the optimization. Also, it can generate native code for BitHacks using only simple

instructions (without external calls).

 Discussion

As you can see, the division performance significantly depends on the environment.

Some JIT compilers can apply the discussed optimization automatically. This automatic

optimization may get a more efficient native code for the Simple benchmark than the

native code for the BitHacks benchmark where we applied this optimization manually.

The preceding results are valid only for specified versions of runtimes; you never

know what kind of optimization you will get on future versions of .NET.

• coreclr#810649 “Move magic division optimization from morph to

lowering”

• [Akinshin 2016b]

• [Chen 2019]

 Summing Up
In the IEEE 754 standard, each floating-point number is represented by a sign,

an exponent, and a mantissa. Instead of the classic terms, we can use Sanglard’s

interpretation, which replaces the exponent with a window between two consecutive

powers of two (e.g., [1; 2] or [8; 16]) and the mantissa by an offset within that window

(each window is split by the fixed number of buckets). In .NET, float (32-bit) and double

49 https://github.com/dotnet/coreclr/pull/8106

Chapter 7 CpU-BoUnd BenChmarks

https://github.com/dotnet/coreclr/pull/8106

503

(64-bit) follow the IEEE 754 standard; decimal (128-bit) is a custom implemented

floating-point struct useful for financial and monetary calculations (it has high precision

but poor performance).

The same expression with floating-point numbers can return different results in

different cases. For example, LegacyJIT-x86 can use 80-bit numbers for intermediate

calculations even if you are using the float (32-bit) or double (64-bit) types in your

code.

In the context of benchmarking, it’s important to know about denormalized

numbers. The denormalized numbers are IEEE 754 numbers with zero exponent.

Usually, you don’t have them in real code because they are very small (less than

1.2 ⋅ 10−38 for float), but when you do, you can get a significant performance

degradation (e.g., 100 times). Such a performance effect can be used for timing side

channel attacks.

Almost all .NET applications use different operations with numbers. The

performance of these operations depends on the number values, the compiler version,

and the runtime version. It’s not always easy to benchmark even a single arithmetic

statement because there are too many different combinations of the input data and

environments. Thus, we can’t extrapolate results from a single environment to a general

case.

 Intrinsics
Intrinsic is a “smart” implementation of a specific method or a statement that the JIT

compiler can use in specific situations. In this subsection, we are going to discuss several

kinds of intrinsics that are available in different .NET JIT compilers.

 Case Study 1: Math.Round
Let’s discuss the Math.Round(double x) method: it rounds a value to the nearest

integer.50

In .NET Core 2.1, it has the following implementation51:

50 You can find more information about different overloads in the following documentation:
https://docs.microsoft.com/en-us/dotnet/api/system.math.round

51 See https://github.com/dotnet/coreclr/blob/v2.1.7/src/mscorlib/shared/System/Math.
cs#L647

Chapter 7 CpU-BoUnd BenChmarks

https://docs.microsoft.com/en-us/dotnet/api/system.math.round
https://github.com/dotnet/coreclr/blob/v2.1.7/src/mscorlib/shared/System/Math.cs#L647
https://github.com/dotnet/coreclr/blob/v2.1.7/src/mscorlib/shared/System/Math.cs#L647

504

[Intrinsic]

public static double Round(double a)

{

 // If the number has no fractional part do nothing

 // This shortcut is necessary to workaround precision loss

 // in borderline cases on some platforms

 if (a == (double)((long)a))

 {

 return a;

 }

 // We had a number that was equally close to 2 integers.

 // We need to return the even one.

 double flrTempVal = Floor(a + 0.5);

 if ((a == (Floor(a) + 0.5)) && (FMod(flrTempVal, 2.0) != 0))

 {

 flrTempVal -= 1.0;

 }

 return copysign(flrTempVal, a);

}

The [Intrinsic] attribute means that the JIT compiler can throw away this

implementation and replace the method call by more efficient native instructions.

 Source code

Consider the following BenchmarkDotNet-based benchmark:

public static class MyMath

{

 public static double Round(double a)

 {

 if (a == (double)((long)a))

 {

 return a;

 }

Chapter 7 CpU-BoUnd BenChmarks

505

 double flrTempVal = Math.Floor(a + 0.5);

 if ((a == (Math.Floor(a) + 0.5)) && (flrTempVal % 2.0 != 0))

 {

 flrTempVal -= 1.0;

 }

 return copysign(flrTempVal, a);

 }

 private static double copysign(double x, double y)

 {

 var xbits = BitConverter.DoubleToInt64Bits(x);

 var ybits = BitConverter.DoubleToInt64Bits(y);

 if (((xbits ^ ybits) >> 63) != 0)

 {

 return BitConverter.Int64BitsToDouble(xbits ^ long.MinValue);

 }

 return x;

 }

}

public class Benchmarks

{

 private double doubleValue = 1.3;

 [Benchmark]

 public double SystemRound()

 {

 return Math.Round(doubleValue);

 }

 [Benchmark]

 public double MyRound()

 {

 return MyMath.Round(doubleValue);

 }

}

Chapter 7 CpU-BoUnd BenChmarks

506

Here we have the MyMath.Round method, which is a copy-pasted implementation

of the system Math.Round method. We also have two benchmarks, SystemRound and

MyRound, which call the corresponding Round implementations.

 Results

Here is an example of results (Windows 10.0.17763.195, Intel Core i7-6700HQ CPU

2.60GHz, .NET Framework 4.7.2 with LegacyJIT 4.7.3260.0, .NET Core 2.1.5 with

RyuJIT- x64):

 Method | Job | Mean | StdDev |

------------ |------------- |---------- |----------:|

 SystemRound | LegacyJitX64 | 7.2785 ns | 0.2532 ns |

 MyRound | LegacyJitX64 | 7.1982 ns | 0.0876 ns |

 SystemRound | RyuJitX64 | 0.4929 ns | 0.0184 ns |

 MyRound | RyuJitX64 | 3.4426 ns | 0.0338 ns |

As you can see, SystemRound works much faster than MyRound on RyuJIT-x64. On

LegacyJIT-x64, both methods have the same duration.

 Explanation

The [Intrinsic] means that the JIT compiler has special knowledge about this

method and can replace the preceding implementation by a more efficient native code.

RyuJIT- x64 can generate a superefficient native code using the vroundsd AVX instruction:

; SystemRound/RyuJIT-x64

vzeroupper

vroundsd xmm0,xmm0,mmword ptr [rcx+8],4

ret

That’s why SystemRound works so fast on RyuJIT-x64 (it takes less than 1

nanosecond). The JIT compiler doesn’t have special knowledge about the MyMath.Round

method, so it generates a straightforward native code for the preceding implementation,

which works slower.

On LegacyJIT-x64, we have the same duration for both benchmarks because this JIT

compiler doesn’t have a special intrinsic for the Math.Round method. Thus, it works with

the same IL code in both cases.

Chapter 7 CpU-BoUnd BenChmarks

507

 Discussion

When we compare the performance of the same method on different JIT compilers, we

should keep in mind that these JIT compilers may have different sets of intrinsics that

can be applied to any system method.

See also:

• StackOverflow question 4046085052 “Significant drop in performance

of Math.Round on x64 platform”

• coreclr#805353 “A question about Math.Round intrinsic on x64”

 Case Study 2: Rotate Bits
The JIT compiler can generate intrinsic not only for the known methods but also for

statements of a specific form. Consider the following method, which implements the

classic bit rotation for ulong value:

public static ulong RotateRight64(ulong value, int count)

{

 return (value >> count) | (value << (64 - count));

}

Such expression is widely used in different cryptographic algorithms. This method

can be executed millions of times in a single method, so it would be nice to have a

 decent performance level here. Let’s check the performance of this method on different

JIT compilers.

 Source code

Consider the following BenchmarkDotNet-based benchmark:

public class Benchmarks

{

 public static ulong RotateRight64(ulong value, int count)

 {

52 https://stackoverflow.com/q/40460850
53 https://github.com/dotnet/coreclr/issues/8053

Chapter 7 CpU-BoUnd BenChmarks

https://stackoverflow.com/q/40460850
https://github.com/dotnet/coreclr/issues/8053

508

 return (value >> count) | (value << (64 - count));

 }

 private ulong a = 100;

 private int b = 2;

 [Benchmark]

 public ulong Foo()

 {

 return RotateRight64(a, b);

 }

}

Here we just apply the “Rotate Bit” operation for a private ulong field.

 Results

Here is an example of results (Windows 10.0.17763.195, Intel Core i7-6700HQ CPU

2.60GHz, .NET Framework 4.7.2 with LegacyJIT-x86 4.7.3260.0, .NET Core 2.1.5 with

RyuJIT-x64):

 Job | Mean | StdDev |

------------- |---------:|----------:|

 LegacyJitX86 | 4.676 ns | 0.1208 ns |

 RyuJitX64 | 1.217 ns | 0.0299 ns |

As you can see, this benchmark works much faster on .NET Core 2.1.5 with

RyuJIT- x64 than on .NET Framework 4.7.2 with LegacyJIT-x86.

 Explanation

RyuJIT is able to recognize the (value >> count) | (value << (64 - count)) pattern

and generate fast implementation for it.

ror rax,cl

LegacyJIT-x86 doesn’t support this heuristic and generates a straightforward native

code for the original expression. Of course, it works much slower than a single ror

instruction.

Chapter 7 CpU-BoUnd BenChmarks

509

 Discussion

We already discussed a similar intrinsic in the “Integer Division” case study, in which

some JIT compilers were able to replace a division operation by a multiplication

operation. Each JIT compiler has its own set of “code patterns” that can be optimized. It’s

pretty hard to control this kind of intrinsics: any changes in the source code can prevent

the JIT compiler from the optimization because it can recognize only some specific

forms of these patterns.

See also:

• coreclr#161954 “RyuJIT: “Understand the idiomatic rotate bits”

• coreclr#183055 “Generate efficient code for rotation patterns”

 Case Study 3: Vectorization
In the System.Numerics56 namespace, there are a lot of useful structs including

SIMD- enabled types: Vector2, Vector3, Vector4, Matrix3x2, Matrix4x4, Plane, and

Quaternion. RyuJIT has hardware acceleration support for these types via SIMD

intrinsics. The SIMD operations are another kind of parallelization on the hardware

level: with the help of special instruction sets like SSE or AVX, we can explicitly perform

an operation on multiple data at once. Other JIT compilers like LegacyJIT-x86 and

LegacyJIT-x64 have no advanced support for these types: they are using a fallback option

and perform the corresponding operations without smart intrinsics.

 Source code

Consider the following BenchmarkDotNet-based benchmark:

public struct MyVector4

{

 public float X, Y, Z, W;

 public MyVector4(float x, float y, float z, float w)

54 https://github.com/dotnet/coreclr/issues/1619
55 https://github.com/dotnet/coreclr/pull/1830
56 This has been available since .NET Framework 4.6 and .NET Core 1.0. See also: https://docs.
microsoft.com/en-us/dotnet/api/system.numerics

Chapter 7 CpU-BoUnd BenChmarks

https://github.com/dotnet/coreclr/issues/1619
https://github.com/dotnet/coreclr/pull/1830
https://docs.microsoft.com/en-us/dotnet/api/system.numerics
https://docs.microsoft.com/en-us/dotnet/api/system.numerics

510

 {

 X = x;

 Y = y;

 Z = z;

 W = w;

 }

 [MethodImpl(MethodImplOptions.AggressiveInlining)]

 public static MyVector4 operator *(MyVector4 left, MyVector4 right)

 => new MyVector4(

 left.X * right.X,

 left.Y * right.Y,

 left.Z * right.Z,

 left.W * right.W);

}

public class Benchmarks

{

 private Vector4 vectorA, vectorB, vectorC;

 private MyVector4 myVectorA, myVectorB, myVectorC;

 [Benchmark]

 public void MyMul() => myVectorC = myVectorA * myVectorB;

 [Benchmark]

 public void SystemMul() => vectorC = vectorA * vectorB;

}

Here we have two benchmarks: SystemMul and MyMyl. SystemMul multiplies two

Vector4 instances. MyMul also multiplies two vectors, but it operates with MyVector

instances. The MyVector type is a partial copy of the system Vector4 class.57 The

operator * method in the original method is marked with the [Intrinsic] attribute.

57 You can find the .NET Core 2.2.1 version of this class here: https://github.com/dotnet/
corefx/blob/v2.2.1/src/System.Numerics.Vectors/src/System/Numerics/Vector4_
Intrinsics.cs#L252

Chapter 7 CpU-BoUnd BenChmarks

https://github.com/dotnet/corefx/blob/v2.2.1/src/System.Numerics.Vectors/src/System/Numerics/Vector4_Intrinsics.cs#L252
https://github.com/dotnet/corefx/blob/v2.2.1/src/System.Numerics.Vectors/src/System/Numerics/Vector4_Intrinsics.cs#L252
https://github.com/dotnet/corefx/blob/v2.2.1/src/System.Numerics.Vectors/src/System/Numerics/Vector4_Intrinsics.cs#L252

511

 Results

Here is an example of results (Windows 10.0.17763.195, Intel Core i7-6700HQ CPU

2.60GHz, .NET Framework 4.7.2, LegacyJIT-x64/RyuJIT-x64 v4.7.3260.0):

 Method | Job | Mean | StdDev |

---------- |------------- |---------:|---------:|

 MyMul | LegacyJitX64 | 12.33 ns | 0.058 ns |

 SystemMul | LegacyJitX64 | 12.37 ns | 0.109 ns |

 MyMul | RyuJitX64 | 1.71 ns | 0.021 ns |

 SystemMul | RyuJitX64 | 0.00 ns | 0.009 ns |

As you can see, the SystemMul benchmark works instantly on RyuJIT-x64. The

MyMul benchmark works pretty fast on RyuJIT-x64, but not as fast as SystemMul. On

LegacyJIT- x64, both benchmarks take the same time, which is much bigger than the

corresponding result on RyuJIT-x64.

 Explanation

Let’s look at the native code of both methods on LegacyJIT-x64:

; SystemMul/MyMul, LegacyJIT-x64

mov eax,dword ptr [rcx+38h]

mov dword ptr [rsp+20h],eax

mov eax,dword ptr [rcx+3Ch]

mov dword ptr [rsp+24h],eax

mov eax,dword ptr [rcx+40h]

mov dword ptr [rsp+28h],eax

mov eax,dword ptr [rcx+44h]

mov dword ptr [rsp+2Ch],eax

mov eax,dword ptr [rcx+48h]

mov dword ptr [rsp+10h],eax

mov eax,dword ptr [rcx+4Ch]

mov dword ptr [rsp+14h],eax

mov eax,dword ptr [rcx+50h]

mov dword ptr [rsp+18h],eax

mov eax,dword ptr [rcx+54h]

mov dword ptr [rsp+1Ch],eax

Chapter 7 CpU-BoUnd BenChmarks

512

lea rdx,[rsp+20h]

mov rax,qword ptr [rdx]

mov qword ptr [rsp+40h],rax

mov rax,qword ptr [rdx+8]

mov qword ptr [rsp+48h],rax

lea rdx,[rsp+10h]

mov rax,qword ptr [rdx]

mov qword ptr [rsp+30h],rax

mov rax,qword ptr [rdx+8]

mov qword ptr [rsp+38h],rax

movss xmm3,dword ptr [rsp+40h]

mulss xmm3,dword ptr [rsp+30h]

movss xmm2,dword ptr [rsp+44h]

mulss xmm2,dword ptr [rsp+34h]

movss xmm1,dword ptr [rsp+48h]

mulss xmm1,dword ptr [rsp+38h]

movss xmm0,dword ptr [rsp+4Ch]

mulss xmm0,dword ptr [rsp+3Ch]

xor eax,eax

mov qword ptr [rsp],rax

mov qword ptr [rsp+8],rax

lea rax,[rsp]

movss dword ptr [rax],xmm3

movss dword ptr [rax+4],xmm2

movss dword ptr [rax+8],xmm1

movss dword ptr [rax+0Ch],xmm0

lea rdx,[rsp]

mov eax,dword ptr [rdx]

mov dword ptr [rcx+58h],eax

mov eax,dword ptr [rdx+4]

mov dword ptr [rcx+5Ch],eax

mov eax,dword ptr [rdx+8]

mov dword ptr [rcx+60h],eax

mov eax,dword ptr [rdx+0Ch]

mov dword ptr [rcx+64h],eax

Chapter 7 CpU-BoUnd BenChmarks

513

Both methods have the same implementation because they have the same IL

representation. The native code uses SSE instruction to perform the multiplication.

Now let’s look at the native code for MyMul on RyuJIT-x64:

; MyMul/RyuJIT-x64

lea rax,[rcx+38h]

vmovss xmm0,dword ptr [rax]

vmovss xmm1,dword ptr [rax+4]

vmovss xmm2,dword ptr [rax+8]

vmovss xmm3,dword ptr [rax+0Ch]

lea rax,[rcx+48h]

vmovss xmm4,dword ptr [rax]

vmovss xmm5,dword ptr [rax+4]

vmovss xmm6,dword ptr [rax+8]

vmovss xmm7,dword ptr [rax+0Ch]

vmulss xmm0,xmm0,xmm4

vmulss xmm1,xmm1,xmm5

vmulss xmm2,xmm2,xmm6

vmulss xmm3,xmm3,xmm7

lea rax,[rcx+58h]

vmovss dword ptr [rax],xmm0

vmovss dword ptr [rax+4],xmm1

vmovss dword ptr [rax+8],xmm2

vmovss dword ptr [rax+0Ch],xmm3

vmovaps xmm6,xmmword ptr [rsp+10h]

This version is much shorter and much smarter: it uses AVX instructions, which are

not available on LegacyJIT-x64.

Now let’s look at the native code for SystemMul on RyuJIT-x64:

; SystemMul/RyuJIT-x64

vmovupd xmm0,xmmword ptr [rcx+8]

vmovupd xmm1,xmmword ptr [rcx+18h]

vmulps xmm0,xmm0,xmm1

vmovupd xmmword ptr [rcx+28h],xmm0

Chapter 7 CpU-BoUnd BenChmarks

514

The operator * method is marked with the [Intrinsic] attribute. RyuJIT-x64

has special knowledge about it: it’s able to perform multiplication with a single AVX

instructions vmulps. BenchmarkDotNet reports 0 ns for it because of the ILP effects.

 Discussion

This example is pretty similar to the “Math.Round” case study. However, it deserves to be

discussed independently because System.Numerics APIs were designed for using such a

kind of intrinsics.

Sometimes, benchmarking of SSE/AVX instructions requires an advanced warm-up.

Here is a quote from [Agner Microarch]:

11.9 Execution unit

Warm-up period for YMM and ZMM vector instructions.

The processor turns off the upper parts of the vector execution

units when they are not used, in order to save power. Instructions

with 256-bit vectors have a throughput that is approximately 4.5

times slower than normal during an initial warm-up period of

approximately 56,000 clock cycles or 14 μs. A sequence of code

containing 256-bit vector operations will run at full speed after

this warm-up period. The processor returns to the mode of slow

256-bit execution 2.7 million clock cycles, or 675 μs, after the

last 256-bit instruction (these times were measured on a 4 GHz

processor). Similar times apply to 512-bit vectors.

 Case Study 4: System.Runtime.Intrinsics
In the previous case studies, we discussed implicit intrinsics. This means that some JIT

compilers may use advanced native instructions to generate efficient code. However, you

can’t control it: you should be ready to get “slow” native implementations in some cases.

Since .NET Core 3.0, we have System.Runtime.Intrinsics namespaces with various

APIs, which provide direct access to different native instructions. Here we are talking

about explicit intrinsics: we force the JIT compiler to use a specific instruction without

any other options.

Chapter 7 CpU-BoUnd BenChmarks

515

Let’s say that we want to calculate the number of set bits in an uint value. In the

SSE4, there is a native instruction for it called popcnt.58 However, it may be unavailable

on old hardware without SSE4 support. To handle this case correctly, we can write code

like this:

public uint MyPopCount(uint x)

{

 if (Popcnt.IsSupported)

 return Popcnt.PopCount(x);

 else

 {

 // Manual implementation

 }

}

The Popcnt.PopCount(x) call always uses the popcnt instruction; the JIT compiler

has no other options.

 Source code

Consider the following BenchmarkDotNet-based benchmark:

public static unsafe class CompareHelper

{

 // Assuming x.Length == y.Length

 public static bool NotEqualManual(int[] x, int[] y)

 {

 for (int i = 0; i < x.Length; i++)

 if (x[i] == y[i])

 return false;

 return true;

 }

 // Assuming x.Length == y.Length; x.Length % 4 == 0

 public static bool NotEqualSse41(int[] x, int[] y)

 {

58 https://www.felixcloutier.com/x86/popcnt

Chapter 7 CpU-BoUnd BenChmarks

https://www.felixcloutier.com/x86/popcnt

516

 fixed (int* xp = &x[0])

 fixed (int* yp = &y[0])

 {

 for (int i = 0; i < x.Length; i += 4)

 {

 Vector128<int> xVector = Sse2.LoadVector128(xp + i);

 Vector128<int> yVector = Sse2.LoadVector128(yp + i);

 Vector128<int> mask = Sse2.CompareEqual(xVector, yVector);

 if (!Sse41.TestAllZeros(mask, mask))

 return false;

 }

 }

 return true;

 }

 // Assuming x.Length == y.Length; x.Length % 8 == 0

 public static bool NotEqualAvx2(int[] x, int[] y)

 {

 fixed (int* xp = &x[0])

 fixed (int* yp = &y[0])

 {

 for (int i = 0; i < x.Length; i += 8)

 {

 Vector256<int> xVector = Avx.LoadVector256(xp + i);

 Vector256<int> yVector = Avx.LoadVector256(yp + i);

 Vector256<int> mask = Avx2.CompareEqual(xVector, yVector);

 if (!Avx.TestZ(mask, mask))

 return false;

 }

 }

 return true;

 }

}

Chapter 7 CpU-BoUnd BenChmarks

517

public class Benchmarks

{

 private const int n = 100000;

 private int[] x = new int[n];

 private int[] y = new int[n];

 [GlobalSetup]

 public void Setup()

 {

 Array.Fill(x, 1);

 Array.Fill(y, 2);

 }

 [Benchmark(Baseline = true)]

 public bool Manual() => CompareHelper.NotEqualManual(x, y);

 [Benchmark]

 public bool Sse41() => CompareHelper.NotEqualSse41(x, y);

 [Benchmark]

 public bool Avx2() => CompareHelper.NotEqualAvx2(x, y);

}

Here we have three benchmarks: Manual, See41, and Avx2. All of them check that

in the x and y arrays, there is no pair x[i]/y[i] where x[i] == y[i]. In the Manual

benchmark, we have a simple loop that checks this condition for each pair of elements.

In the Sse41 and Avx2 benchmarks, we do the same with the help of SSE4.1 and AVX2

instructions, which are called directly via System.Runtime.Intrinsics.

 Results

Here is an example of results (Windows 10.0.17763.195, Intel Core i7-6700HQ CPU

2.60GHz, .NET Core 3.0.0-preview-27122-01):

 Method | Mean | StdDev | Ratio |

------- |---------:|----------:|------:|

 Manual | 53.34 us | 0.5719 us | 1.00 |

 Sse41 | 40.45 us | 0.5451 us | 0.76 |

 Avx2 | 23.56 us | 0.1158 us | 0.44 |

Chapter 7 CpU-BoUnd BenChmarks

518

As you can see, Avx2 is the fastest benchmark, Sse41 works slowly, and Manual is the

slowest benchmark.

 Explanation

With the help of System.Runtime.Intrinsics APIs, we can explicitly call SSE/AVX

instructions that can process several array elements at once. That’s why it allows getting

better performance on hardware where these instructions are supported.

 Discussion

Explicit intrinsics allows implementing different algorithms inside the same method

based on the instruction availability. For example, if Avx.IsSupported is true, we can

execute a fast AVX-based algorithm; if Avx.IsSupported is false, we can fall back to a

slow algorithm without explicit intrinsics.

This is great for performance, but it’s not so great for benchmarking: it makes

harder to conduct “general” conclusions about method performance based on a

single benchmark session. Of course, we have this problem without System.Runtime.

Intrinsics usages: the JIT compiler is able to generate different native implementations

on different hardware. However, now we have to check not only the JIT compiler

“performance effects,” but also hardware-specific user code in the benchmark execution

paths.

See also:

• [Mijailovic 2018a], [Mijailovic 2018b], [Mijailovic 2018c], [Mijailovic

2018d]

• [Damageboy 2018a], [Damageboy 2018b], [Damageboy 2018c]

• [Lui 2018]

• https://github.com/EgorBo/IntrinsicsPlayground

Chapter 7 CpU-BoUnd BenChmarks

https://github.com/EgorBo/IntrinsicsPlayground

519

• dotnet/designs: .NET Platform Dependent Intrinsics59

• dotnet/machinelearning#129260: “Use FMA instruction in CpuMath

for .NET Core 3”

 Summing Up
In this section, we discussed several kinds of intrinsics:

• Some JIT compilers have special intrinsics for some standard

methods. For example, in RyuJIT-x64, we have an intrinsic for Math.

Round. Meanwhile, this method has an “honest” C# implementation,

which is used by other JIT compilers.

• Some JIT compilers can recognize some patterns in the source code

and generate a smart native code using special instructions. For

example, RyuJIT-x64 can transform idiomatic bit rotation ((value >>

count) | (value << (64 - count))) to a single ror instruction.

• In the System.Numerics namespace, we have SIMD-enabled

types like Vector4 or Matrix4x4. These types were designed to be

accelerated on the hardware level with the help of SIMD instructions.

JIT compilers without knowledge of these types have a fallback

option with slow implementation.

• Since .NET Core 3.0, we have had access to explicit intrinsics, which

allows calling specific native instructions from different instruction

sets. In the source code, we can also check which kinds of these sets

are supported on the current CPU.

The variety of intrinsics in different JIT compilers makes benchmarks more

hardware- specific. It’s pretty hard to make general conclusions about method

performance based on a single environment. If you change the runtime, the JIT version,

or the hardware, it may dramatically distort your results. Fortunately, now you know one

more thing that will help you to explain the difference in performance between different

environments.

59 https://github.com/dotnet/designs/blob/e55c517a1e7f8dc35b092397058029531209d610/
accepted/platform-intrinsics.md

60 https://github.com/dotnet/machinelearning/pull/1292

Chapter 7 CpU-BoUnd BenChmarks

https://github.com/dotnet/designs/blob/e55c517a1e7f8dc35b092397058029531209d610/accepted/platform-intrinsics.md
https://github.com/dotnet/designs/blob/e55c517a1e7f8dc35b092397058029531209d610/accepted/platform-intrinsics.md
https://github.com/dotnet/machinelearning/pull/1292

520

 Summary
CPU-bound benchmarks are pretty popular, but it’s not easy to design and analyze them

because there are a lot of hardware and runtime features that may spoil our performance

experiments. In this chapter, we discussed the following topics:

• Registers and Stack

When the JIT compiler generates the native code for a method,

it can put the local variable on the stack or in registers. Usually,

operations with registers work much faster than operations with

the stack. Unfortunately, you can’t control the JIT compiler: even

very small and harmless changes may affect its decisions.

• Inlining

When the JIT compiler inlines a method, it replaces a method

call by its body. Usually, this is a good optimization because

it eliminates the call overhead and opens possibilities for

other JIT compiler optimizations. However, it also can spoil

performance because it may lead to worse register allocation

or it can prevent further inlining that is more profitable. We

can disable inlining for a specific method with the help of the

[MethodImpl(MethodImplOptions.NoInlining)] attribute. There

are a lot of other factors that may prevent inlining like method

size, exception handling, virtual modifier, and recursion. Some

of these factors are not obvious, and they may be valid only for

specific JIT compilers (e.g., the starg IL instructions prevents

method inlining on LegacyJIT-x86). We can tell the JIT compiler

that we really want to inline a specific method with the help of

the [MethodImpl(MethodImplOptions.AggressiveInlining)]

attribute. However, we can’t force it, because inlining is not always

possible. AggressiveInlining may help to optimize some small

hot methods, but it can also increase the duration of some methods.

• ILP

ILP allows executing multiple instructions at the same time inside a

single thread. As usual, this is good for performance, but not so good

for benchmarking. For example, you can add some statements to

Chapter 7 CpU-BoUnd BenChmarks

521

the benchmark body without any performance changes because the

new statements will be executed in parallel with previously existing

code. The ILP capabilities depend on the dependency graph that

you have in your C# code or on the native code level. When you

have an extremely short loop, its performance may be significantly

affected because of the native code alignment. In order to prevent

such situations, it’s recommended to unroll such loops manually.

• Branch Prediction

When CPUs are able to predict taken branches correctly, it

significantly improves conditions for ILP. The branch predictor

uses the history of taken branches in your execution sessions. This

means that performance can be affected by changes in the input

data even if you execute the same number of native instructions.

• Arithmetic

Performance of even the simplest arithmetic operations

depends on the environment. The floating-point calculations are

nondeterministic, so the program result may also be different with

different runtimes and hardware. In the IEEE 754 standard,

we have denormalized numbers which can be a cause of extremely

slow calculations. Thus, the performance of float and double

calculations also depends on the operand values.

• Intrinsics

In C#, you have a lot of different implicit and explicit intrinsics,

which allows getting an efficient native code for the current

hardware. The implicit intrinsics are used by the JIT compiler to

optimize specific statements or system methods using the best

available hardware instructions. The explicit intrinsics are used

by you to manually optimize your algorithms using any hardware

instructions you want (if they are available).

All of these topics are important for benchmark design and analysis. The proper

benchmark design requires careful work with all the components of the performance

spaces. Changes in the source code can affect the native code generation for the local

variables (they can be put on the stack or in registers), the JIT compiler inlining policy,

Chapter 7 CpU-BoUnd BenChmarks

522

and conditions for the ILP. Changes in the environment (e.g., runtime version or

hardware) can affect generated native instructions and intrinsic availability. Changes

in the input data can affect branch mispredict rate. When you analyze the performance

distributions for a specific source code/environment/input data combination, you

should keep in mind that you can get dramatic performance changes under other

conditions. And now you know what can you check during performance investigations

in the case of such changes in a CPU-bound benchmark.

 References
[Agner Instructions] Fog, Agner. “Instruction Tables. Lists of Instruction Latencies,

Throughputs and Micro-Operation Breakdowns for Intel, AMD and VIA CPUs.” www.

agner.org/optimize/instruction_tables.pdf.

[Agner Microarch] Fog, Agner. “The Microarchitecture of Intel, AMD and VIA CPUs. An

Optimization Guide for Assembly Programmers and Compiler Makers.” www.agner.org/

optimize/microarchitecture.pdf.

[Akinshin 2015] Akinshin, Andrey. 2015. “A Story About JIT-X86 Inlining and Starg.”

February 26. https://aakinshin.net/posts/inlining-and-starg/.

[Akinshin 2016a] Akinshin, Andrey. 2016. “Performance Exercise: Minimum.” December

20. https://aakinshin.net/posts/perfex-min/.

[Akinshin 2016b] Akinshin, Andrey. 2016. “Performance Exercise: Division.” December

26. https://aakinshin.net/posts/perfex-div/.

[Amit 2018] Amit, Navad. 2018. “How New-Lines Affect the Linux Kernel Performance.”

https://sites.google.com/site/nadavamit/blog/linux-inline.

[Andrysco 2015] Andrysco, Marc, David Kohlbrenner, Keaton Mowery, Ranjit Jhala,

Sorin Lerner, and Hovav Shacham. 2015. “On Subnormal Floating Point and Abnormal

Timing.” In Security and Privacy (Sp), 2015 IEEE Symposium, 623–39. IEEE.

[Andrysco 2016] Andrysco, Marc, Ranjit Jhala, and Sorin Lerner. 2016. “Printing Floating-

Point Numbers: A Faster, Always Correct Method.” In ACM Sigplan Notices, 51:555–67. 1.

ACM.

[Ayers 2016] Ayers, Andy. 2016. “Some Notes on Using Machine Learning to Develop

Inlining Heuristics.” August. https://github.com/AndyAyersMS/PerformanceExplorer/

blob/master/notes/notes-aug-2016.md.

Chapter 7 CpU-BoUnd BenChmarks

http://www.agner.org/optimize/instruction_tables.pdf
http://www.agner.org/optimize/instruction_tables.pdf
https://www.agner.org/optimize/microarchitecture.pdf
https://www.agner.org/optimize/microarchitecture.pdf
https://aakinshin.net/posts/inlining-and-starg/
https://aakinshin.net/posts/perfex-min/
https://aakinshin.net/posts/perfex-div/
https://sites.google.com/site/nadavamit/blog/linux-inline
https://github.com/AndyAyersMS/PerformanceExplorer/blob/master/notes/notes-aug-2016.md
https://github.com/AndyAyersMS/PerformanceExplorer/blob/master/notes/notes-aug-2016.md

523

[Chen 2019] Chen, Raymond. 2019. “The Intel 80386, Part 4: Arithmetic.” January 24.

https://blogs.msdn.microsoft.com/oldnewthing/20190124-00/?p=100775.

[Damageboy 2018a] Damageboy. 2018. “NET Core 3.0 Intrinsics in Real Life - 1/3.”

August 18. https://bits.houmus.org/2018-08-18/netcoreapp3.0-instrinsics-in-

real-life-pt1.

[Damageboy 2018b] Damageboy. 2018. “NET Core 3.0 Intrinsics in Real Life - 2/3.”

August 19. https://bits.houmus.org/2018-08-19/netcoreapp3.0-instrinsics-in-

real-life-pt2.

[Damageboy 2018c] Damageboy. 2018. “NET Core 3.0 Intrinsics in Real Life - 3/3.”

August 20. https://bits.houmus.org/2018-08-20/netcoreapp3.0-intrinsics-in-

real-life-pt3.

[Edelkamp 2016] Edelkamp, Stefan, and Armin Weiß. 2016. “BlockQuicksort: How

Branch Mispredictions Don’t Affect QuickSort.” arXiv Preprint arXiv:1604.06697, June.

https://arxiv.org/abs/1604.06697v2.

[FPUx87] “Programming with the X87 Floating-Point Unit.” http://home.agh.edu.

pl/~amrozek/x87.pdf.

[Goldberg 1991] Goldberg, David. 1991. “What Every Computer Scientist Should Know

About Floating-Point Arithmetic.” ACM Computing Surveys (CSUR) 23 (1). ACM: 5–48.

[Hennessy 2011] Hennessy, John L., and David A. Patterson. 2011. Computer

Architecture: A Quantitative Approach. 5th ed. Morgan Kaufmann.

[Icaza 2018] Icaza, Miguel de. 2018. “How We Doubled Mono’s Float Speed.” April 11.

https://tirania.org/blog/archive/2018/Apr-11.html.

[Intel Manual] “Intel: Intel® 64 and IA-32 Architectures Software Developer’s Manual

(325462-061US).” 2016. www.intel.com/content/dam/www/public/us/en/documents/

manuals/64-ia-32-architectures-software-developer-manual-325462.pdf.

[Lemire 2019] Lemire, Daniel, Owen Kaser, and Nathan Kurz. 2019. “Faster Remainder

by Direct Computation: Applications to Compilers and Software Libraries.” arXiv

Preprint arXiv:1902.01961. https://arxiv.org/abs/1902.01961.

[Lui 2018] Lui, Brian. 2018. “Using .NET Hardware Intrinsics API to Accelerate

Machine Learning Scenarios.” October 10. https://blogs.msdn.microsoft.com/

dotnet/2018/10/10/using-net-hardware-intrinsics-api-to-accelerate-machine-

learning-scenarios/.

Chapter 7 CpU-BoUnd BenChmarks

https://blogs.msdn.microsoft.com/oldnewthing/20190124-00/?p=100775
https://bits.houmus.org/2018-08-18/netcoreapp3.0-instrinsics-in-real-life-pt1
https://bits.houmus.org/2018-08-18/netcoreapp3.0-instrinsics-in-real-life-pt1
https://bits.houmus.org/2018-08-19/netcoreapp3.0-instrinsics-in-real-life-pt2
https://bits.houmus.org/2018-08-19/netcoreapp3.0-instrinsics-in-real-life-pt2
https://bits.houmus.org/2018-08-20/netcoreapp3.0-intrinsics-in-real-life-pt3
https://bits.houmus.org/2018-08-20/netcoreapp3.0-intrinsics-in-real-life-pt3
https://arxiv.org/abs/1604.06697v2
http://home.agh.edu.pl/~amrozek/x87.pdf
http://home.agh.edu.pl/~amrozek/x87.pdf
https://tirania.org/blog/archive/2018/Apr-11.html
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
https://arxiv.org/abs/1902.01961
https://blogs.msdn.microsoft.com/dotnet/2018/10/10/using-net-hardware-intrinsics-api-to-accelerate-machine-learning-scenarios/
https://blogs.msdn.microsoft.com/dotnet/2018/10/10/using-net-hardware-intrinsics-api-to-accelerate-machine-learning-scenarios/
https://blogs.msdn.microsoft.com/dotnet/2018/10/10/using-net-hardware-intrinsics-api-to-accelerate-machine-learning-scenarios/

524

[Luu 2017] Luu, Dan. 2017. “Branch Prediction.” August. https://danluu.com/branch-

prediction/.

[Mijailovic 2018a] Mijailovic, Nemanja. 2018. “Exploring .NET Core Platform

Intrinsics: Part 1 - Accelerating SHA-256 on ARMv8.” June 6. https://mijailovic.

net/2018/06/06/sha256-armv8/.

[Mijailovic 2018b] Mijailovic, Nemanja. 2018. “Exploring .NET Core Platform Intrinsics:

Part 2 - Accelerating AES Encryption on ARMv8.” June 18. https://mijailovic.

net/2018/06/18/aes-armv8/.

[Mijailovic 2018c] Mijailovic, Nemanja. 2018. “Exploring .NET Core Platform Intrinsics:

Part 3 - Viewing the Code Generated by the JIT.” July 5. https://mijailovic.

net/2018/07/05/generated-code/.

[Mijailovic 2018d] Mijailovic, Nemanja. 2018. “Exploring .NET Core Platform Intrinsics:

Part 4 - Alignment and Pipelining.” July 20. https://mijailovic.net/2018/07/20/

alignment-and-pipelining/.

[Mittal 2018] Mittal, Sparsh. 2018. “A Survey of Techniques for Dynamic BranchPrediction.”

arXiv Preprint arXiv:1804.00261, April. https://arxiv.org/pdf/1804.00261.pdf.

[Morrison 2008] Morrison, Vance. 2008. “To Inline or Not to Inline: That Is the Question.”

August 19. https://blogs.msdn.microsoft.com/vancem/2008/08/19/to-inline- or-

not-to-inline-that-is-the-question/.

[Notario 2004] Notario, David. 2004. “Jit Optimizations: Inlining (II).” November 1.

https://blogs.msdn.microsoft.com/davidnotario/2004/11/01/jit-optimizations-

inlining-ii/.

[Rohou 2015] Rohou, Erven, Bharath Narasimha Swamy, and André Seznec. 2015.

“Branch Prediction and the Performance of Interpreters - Don’t Trust Folklore.”

https://hal.inria.fr/hal-01100647.

[Sanglard 2017] Sanglard, Fabien. 2017. Game Engine Black Book: Wolfenstein 3D.

CreateSpace Independent Publishing Platform.

[Skeet 2008] Skeet, Jon. 2008. C# in Depth. Manning.

[Steele 1990] Steele Jr., Guy L., and Jon L. White. 1990. “How to Print Floating-Point

Numbers Accurately.” In ACM Sigplan Notices, 25:112–126. 6. ACM.

[Tillaart 2007] Tillaart, Rob. 2007. “Optimizing Integer Divisions with Multiply Shift in

C#.” CodeProject. January 27. www.codeproject.com/Articles/17480/Optimizing-

integer- divisions-with-Multiply-Shift-i.

Chapter 7 CpU-BoUnd BenChmarks

https://danluu.com/branch-prediction/
https://danluu.com/branch-prediction/
https://mijailovic.net/2018/06/06/sha256-armv8/
https://mijailovic.net/2018/06/06/sha256-armv8/
https://mijailovic.net/2018/06/18/aes-armv8/
https://mijailovic.net/2018/06/18/aes-armv8/
https://mijailovic.net/2018/07/05/generated-code/
https://mijailovic.net/2018/07/05/generated-code/
https://mijailovic.net/2018/07/20/alignment-and-pipelining/
https://mijailovic.net/2018/07/20/alignment-and-pipelining/
https://arxiv.org/pdf/1804.00261.pdf
https://blogs.msdn.microsoft.com/vancem/2008/08/19/to-inline-or-not-to-inline-that-is-the-question/
https://blogs.msdn.microsoft.com/vancem/2008/08/19/to-inline-or-not-to-inline-that-is-the-question/
https://blogs.msdn.microsoft.com/davidnotario/2004/11/01/jit-optimizations-inlining-ii/
https://blogs.msdn.microsoft.com/davidnotario/2004/11/01/jit-optimizations-inlining-ii/
https://hal.inria.fr/hal-01100647
https://www.codeproject.com/Articles/17480/Optimizing-integer-divisions-with-Multiply-Shift-i
https://www.codeproject.com/Articles/17480/Optimizing-integer-divisions-with-Multiply-Shift-i

525
© Andrey Akinshin 2019
A. Akinshin, Pro .NET Benchmarking, https://doi.org/10.1007/978-1-4842-4941-3_8

CHAPTER 8

Memory-Bound
Benchmarks

Blaming perf issues on Garbage Collection is like blaming your hangover
on your liver…

Its the thing that’s saving you from your code.

— Ben Adams

It’s a common situation for memory to be a bottleneck in your code. In this case, it’s

very important to understand how memory works on different levels: from CPU to

.NET runtime. This knowledge allows designing good benchmarks. On the other hand,

if you don’t know some memory “features,”1 it’s very easy for you to design a wrong

benchmark: you can miss an important part of the performance space or measure the

performance of some memory-specific things instead of the performance of your code.

The memory management in .NET is a huge topic: it deserves its own book. And this

book has already been published: Pro .NET Memory Management ([Kokosa 2018a]). It

contains more than 1000 pages with a detailed overview of the most important aspects of

memory management.

If you want to know more low-level details about memory on the hardware level,

it’s recommended to read [Drepper 2007]. It’s a pretty old paper, but it explains pretty

fundamental concepts that are still valid for modern hardware.

When developers discuss program memory, they usually think about different kinds

of memory on the OS level like virtual memory, management memory, private set,

1 Some of these features are nonobvious if you don’t know about them. Here is a pretty interesting
example: [Majkowski 2018].

526

shared memory, resident memory, working set, and so on. In this section, we are not

going to talk about it.2

In this book, we don’t cover theoretical topics around memory management.

Instead, we are continuing to learn different case studies that demonstrate how different

pitfalls may affect memory-bound benchmarks. We will use the same structure used in

Chapter 7. Each case study contains four sections: Source code, Results, Explanation, and

Discussion.

This chapter will help you to design better memory-bound benchmarks and avoid

common mistakes. It’s still good to have knowledge about low-level topics, but it’s not

mandatory for most simple benchmarks. As usual, it’s enough just to understand general

concepts (and how to use it during benchmark design and analysis).

 CPU Cache
The read and write operations are very popular in any program. When we discuss the

algorithmic complexity of different algorithms, we often use O(1) as the complexity of

a single I/O operation. This is correct, but it doesn’t mean that all of the I/O operations

have the same duration: the actual performance depends on the area of memory that we

are working with.

For example, we can work with physical disks like HDD or SDD. The disks are great

when we need persistent storage for our data. In terms of performance, this storage is

not the best solution for algorithms that should process data because the disk access is

pretty slow.

The main memory (RAM) works much faster than disks. In our benchmarks, we

often operate with arrays and different data structures that exist in the RAM. The RAM

access works faster than the disk access, but it’s still not fast enough for many use cases.

That’s why we have the CPU cache: it’s pretty efficient storage for the hot data that is

placed on the CPU. When you perform I/O operations on the same data several times,

the CPU puts the corresponding memory chunks in the cache. It allows getting a very

good performance boost.

2 You can find some interesting information about different kinds of memory in [Goldshtein
2016] and [Gregg 2018]. In [Dawson 2018a] and [Dawson 2018b], you can also find relevant
performance case studies.

Chapter 8 MeMory-Bound BenChMarks

527

We also have the CPU registers, which work even faster than the CPU cache, but we

have only a few of them. It’s enough to provide fast access to several variables, but it’s not

enough to handle a huge array.

While we can work directly with CPU registers or main memory on the native code

level, we don’t have direct access to the CPU cache. That’s why the CPU cache topic

is so important for benchmarking: it can significantly change the performance of our

code without our direct involvement. Let’s discuss a few case studies that show the

corresponding performance effects.

 Case Study 1: Memory Access Patterns
The understanding of the CPU cache effects is also important when you choose the

memory access patterns in your benchmarks. Let’s learn a case study that demonstrates

why it’s so important.

 Source code

Consider the following BenchmarkDotNet-based benchmarks:

public class Benchmarks

{

 private int n = 512;

 private long[,] a;

 [GlobalSetup]

 public void Setup()

 {

 a = new long[n, n];

 }

 [Benchmark(Baseline = true)]

 public long SumIj()

 {

 long sum = 0;

 for (int i = 0; i < n; i++)

 for (int j = 0; j < n; j++)

 sum += a[i, j];

Chapter 8 MeMory-Bound BenChMarks

528

 return sum;

 }

 [Benchmark]

 public long SumJi()

 {

 long sum = 0;

 for (int i = 0; i < n; i++)

 for (int j = 0; j < n; j++)

 sum += a[j, i];

 return sum;

 }

}

Here we have a square array a. In the SumIj benchmark, you can see the most classic

way to calculate the sum of elements in this array. In the SumJi benchmark, you do the

same, but we use a[j, i] elements instead of a[i, j] on each iteration.

 Results

Here is an example of results (Windows 10.0.17763.195, Intel Core i7-6700HQ CPU

2.60GHz, .NET Core 2.1.5, RyuJIT-x64):

 Method | Mean | StdDev | Ratio |

-------- |---------:|----------:|------:|

 SumIj | 334.8 us | 6.466 us | 1.00 |

 SumJi | 692.0 us | 30.509 us | 2.13 |

As you can see, SumJi works much slower than SumIj.

 Explanation

In the SumIj benchmark, we enumerate all elements line by line. If we don’t have a[0, 0]

in the cache, we have a situation called cache miss. It means that we have to load this

value in the cache, which takes some time.

The atomic unit of the CPU cache is cache line. The typical cache line size is 64 bytes,

which means that it can handle eight long values. When we load a[0, 0] in the cache,

we actually load the whole cache line, which also contains a[0, 1], a[0, 2], a[0, 3],

a[0, 4], a[0, 5], a[0, 6], and a[0, 7] (assuming that the array is aligned in the

Chapter 8 MeMory-Bound BenChMarks

529

memory). Once we loaded this cache line, the access for the following seven elements

will be fast because these elements are already in the cache. On the a[0, 8], we will hit a

cache miss again, and load the next 64 bytes in the cache. This means that the next seven

read operations will be fast.

In the SumJi benchmark, we enumerate all elements column by column. When we

read a value of a[0, 0], we also have a cache miss with a corresponding performance

penalty. However, we don’t need the a[0, 1]..a[0, 7] elements (which are loaded in

the cache with a[0, 0]) right now. After the a[0, 0] element, we are reading the value

of a[1, 0]. And we hit another cache miss! The elements we load in the cache with

a[1, 0] (a[1, 1]..a[1, 7]) are not useful for us right now because the next used

element is a[2, 0].

Both SumIj and SumJi benchmarks perform the same number of instructions.

However, SumJi works much slower because it has more cache misses. The illustration of

the memory layout for this case study is presented in Figure 8-1 (each cache line has its

own color).

Figure 8-1. Square array and CPU cache lines

 Discussion

In real life, you can’t always control the memory access pattern, but you can control it

in your benchmarks. If you want to get a proper overview of the performance space, it’s

recommended to check different access patterns (if it’s possible): a sequential pattern

(which should be the fastest one), a pattern when you never hit the same cache line

twice (which should be the slowest one), a random pattern (which should be close to the

slowest one), and some patterns that match real-life scenarios.

Chapter 8 MeMory-Bound BenChMarks

530

When you compare different algorithms, you can get the opposite results on

different access patterns. In many cases, it’s impossible to say which data structure is

more efficient for your program, because one data structure may be faster in one kind of

benchmark and slower in another kind. For example, the insert operation works much

faster with a linked list than with a plain array, but the enumeration of the linked list may

be much slower because of the high case miss rate.

If you want to use knowledge about CPU cache during optimization, you may be

interested in the topic of cache-friendly algorithms and data structures (e.g., see [Hiroshi

2015] and [Kulukundis 2017]; “Data-Oriented Design” section in [Kokosa 2018a]). You

can also find more interesting case studies about CPU caches in [Douillet 2018].

 Case Study 2: Cache Levels
The core principles of the CPU cache are pretty similar on different hardware, but its

physical layout depends on the CPU model. Let’s consider the Intel Core i7-6700HQ CPU

2.60GHz.3 It has three cache levels: L1, L2, and L3. The size of L1 is 32 KB; it’s the fastest

cache level. The size of L2 is 256 KB; it’s still pretty fast, but it’s not as fast as L1. The size

of L3 is 6 MB; it’s the slowest cache level, but it still works much faster than the physical

main memory. Let’s look at an example that demonstrates the performance of different

cache levels.

 Source code

Consider the following BenchmarkDotNet-based benchmarks:

[HardwareCounters(HardwareCounter.CacheMisses)]

public class Benchmarks

{

 private const int N = 16 ∗ 1024 ∗ 1024;
 private byte[] data;

 [Params(1, 2, 4, 8, 16, 32, 64, 128, 256,

 512, 1024, 2048, 4096, 8192, 16384, 32768)]

 public int SizeKb;

3 https://ark.intel.com/products/88967/Intel-Core-i7-6700HQ-Processor-6M-Cache-up-
to-3-50-GHz-

Chapter 8 MeMory-Bound BenChMarks

https://ark.intel.com/products/88967/Intel-Core-i7-6700HQ-Processor-6M-Cache-up-to-3-50-GHz-
https://ark.intel.com/products/88967/Intel-Core-i7-6700HQ-Processor-6M-Cache-up-to-3-50-GHz-

531

 [GlobalSetup]

 public void Setup()

 {

 data = new byte[SizeKb ∗ 1024];
 }

 [Benchmark]

 public void Calc()

 {

 int mask = data.Length - 1;

 for (int i = 0; i < N; i++)

 data[(i ∗ 64) & mask]++;
 }

}

Here we have a byte array data. We also have the SizeKb parameter, which defines

the size of this array in kilobytes. In the only benchmark Calc, we increment elements of

this array with the 64B delta. This is not a random number: it’s the size of a single CPU

cache line—the minimum chunk size processed by the cache. The CPU cache can’t fetch

a single variable from the main memory because it always works with cache lines. The

number of increments in the benchmark is the same for all values of SizeKb. The [Har

dwareCounters(HardwareCounter.CacheMisses)] attribute asks BenchmarkDotNet to

measure the CPU cache misses via hardware counters.

 Results

Here is an example of results (Windows 10.0.17763.195, Intel Core i7-6700HQ CPU

2.60GHz, .NET Core 2.1.5, RyuJIT-x64):

 SizeKb | Mean | StdDev | CacheMisses/Op |

------- |---------:|----------:|---------------:|

 1 | 18.75 ms | 0.1259 ms | 1,044 |

 2 | 18.63 ms | 0.1602 ms | 1,058 |

 4 | 18.62 ms | 0.1656 ms | 1,348 |

 8 | 18.74 ms | 0.1555 ms | 1,065 |

 16 | 18.75 ms | 0.1675 ms | 1,292 |

 32 | 18.82 ms | 0.1431 ms | 1,841 |

Chapter 8 MeMory-Bound BenChMarks

532

 64 | 21.76 ms | 0.2145 ms | 2,743 |

 128 | 21.55 ms | 0.1594 ms | 3,702 |

 256 | 21.55 ms | 0.1367 ms | 3,076 |

 512 | 36.71 ms | 0.4937 ms | 2,791 |

 1024 | 36.31 ms | 0.2990 ms | 3,051 |

 2048 | 36.57 ms | 0.3610 ms | 49,448 |

 4096 | 40.92 ms | 0.4023 ms | 434,477 |

 8192 | 67.61 ms | 0.7010 ms | 3,162,028 |

 16384 | 85.49 ms | 0.7213 ms | 5,493,341 |

 32768 | 92.18 ms | 0.8848 ms | 6,240,472 |

As you can see, we have several groups of benchmark results. The SizeKb values

from 1 to 32 give approximately the same result. The SizeKb values from 64 to 256 form

another group of measurements that is two times slower than the first group. Next, we

have a group of SizeKb values from 512 to 4096 that have bigger duration. After the

SizeKb=8192, the duration becomes even bigger.

 Explanation

When the work memory size is less than 32 KB, the CPU is able to keep the whole array

in the L1 cache level. It’s pretty efficient, and we have good performance results. Starting

from 64 KB, the array can’t be saved in L1 because it’s too huge: the CPU has to use L2,

which works slower. Starting from 512 KB, the CPU has to use L3 because L2 is not big

enough: the performance becomes worse. Starting from 8192 KB, the array is too huge

for all CPU cache levels: the read/write operations are starting to work directly with the

main memory, which is even slower than L3.

The algorithmic complexity and the number of performed native instruction are the

same for all SizeKb values. However, the benchmark with 32768 KB working memory

works several times slower than the benchmark with 1 KB working memory.

 Discussion

The knowledge about CPU cache is very important when you are starting to design small

benchmarks based on real applications. In such applications, the working memory

(memory that is actually used in the application lifecycle) may be pretty huge (dozens of

Chapter 8 MeMory-Bound BenChMarks

533

megabytes or even gigabytes). Also, the CPU cache is typically cold: when we are working

with the memory segment for the first time, the data is not loaded to the CPU cache yet.

It means that memory access will be slow. In small artificial benchmarks, the CPU cache

is typically warm (because we are performing several warm-up iterations to get the

repeatable results), and the working memory is typically small (because we don’t have

gigabytes of memory, which are not necessary for this particular benchmark). Another

common benchmarking pitfall is applying results of such benchmarks for optimizing real

applications. Sometimes you can do it, but not always: the performance may be much

worse in a real application because we don’t have the benefits of the CPU cache that we

have in a small benchmark. A general recommendation is simple: if you are working with

arrays or other data structures, you should run your benchmarks on different sizes of the

working memory.

The CPU cache performance also depends on the CPU microarchitecture. For

example, there is a quote from [Intel OptManual], 2.1.3 “Cache and Memory Subsystem,”

about changes in Intel Skylake:

L3 write bandwidth increased from 4 cycles per line in previous generation
to 2 per line.

It’s not easy to design small benchmarks that demonstrate such effects, but it

may have a noticeable impact on application performance. It’s also not easy to detect

situations when we have performance changes between different CPUs because of the

CPU cache efficiency, but it’s one more factor that may affect the measurements.

 Case Study 3: Cache Associativity
Another important “feature” of the CPU cache is the associativity. This is a special

number used for matching main memory and cache lines. For example, in the Intel

Core i7-6700HQ CPU 2.60GHz, the L1 cache level is 8-way associative, the L2 cache level

is 4-way associative, and the L3 cache level is 12-way associative. Let’s learn another

example that will help us to understand how we should interpret these values during

performance measurements.

Chapter 8 MeMory-Bound BenChMarks

534

 Source code

Consider the following BenchmarkDotNet-based benchmarks:

public class Benchmarks

{

 private int[,] a;

 [Params(1023, 1024, 1025)]

 public int N;

 [GlobalSetup]

 public void Setup()

 {

 a = new int[N, N];

 }

 [Benchmark]

 public int Max()

 {

 int max = int.MinValue;

 for (int i = 0; i < N; i++)

 max = Math.Max(max, a[i, 0]);

 return max;

 }

}

Here we have a square array a. In the only benchmark, Max, we calculate the

maximum element of the first column in this array. The array size is a benchmark

parameter: we check 1023×1023, 1024×1024, and 1025×1025 arrays.

 Results

Here is an example of results (Windows 10.0.17763.195, Intel Core i7-6700HQ CPU

2.60GHz, .NET Core 2.1.5, RyuJIT-x64):

 N | Mean | StdDev |
----- |---------:|----------:|
 1023 | 2.026 us | 0.0694 us |
 1024 | 4.452 us | 0.2049 us |

 1025 | 2.012 us | 0.0117 us |

Chapter 8 MeMory-Bound BenChMarks

535

As we can see, the N=1023 and N=1025 cases have approximately the same duration.

However, N=1024 case works much slower.

 Explanation

Now it’s time to discuss the meaning of the cache associativity. In Figure 8-2, you can see

an illustration for a two-way associative cache.

Figure 8-2. Illustration of two-way associative cache

As we mentioned before, the atomic unit of the CPU cache is the cache line (which

is typically 64B). The “two-way” associativity means that for each 64B segment of the

main memory, there are exactly two cache lines that can keep this segment. The total

cache size is much lower than the main memory size, so it should reuse the same pair of

cache lines for different 64B segments. The difference between 64B segments of the main

memory that match the same set of cache lines is known as the critical stride. Its value

Chapter 8 MeMory-Bound BenChMarks

536

can be easily calculated by dividing the cache size by the associativity value. In Table 8-1,

you can see the critical stride values for different cache levels based on its associativity.

Table 8-1. Critical Stride Values for Different CPU Caches

Level Size Associativity Critical stride

L1 32 kB 8-way 4 kB

L2 256 kB 4-way 64 kB

L2 256 kB 8-way 32 kB

L3 6 MB 12-way 512 kB

In the preceding benchmark, L1 is big enough to handle all elements that we are

working with. Its associativity is eight-way, which means that the critical stride equals

4 KB (or 4096 B). The difference between subsequent elements in the first column is

4*N bytes (because the size of int is 4 bytes). When N=1024, this difference is exactly

4096 bytes; it equals the critical stride value. This means that all elements from the

first column match the same eight cache lines of L1. We don’t really have performance

benefits from the cache because we can’t use it efficiently: we have only 512 bytes

(8 cache lines * 64-byte cache line size) instead of the original 32 kilobytes. When we

iterate the first column in a loop, the corresponding elements pop each other from

the cache. When N=1023 and N=1025, we don’t have problems with the critical stride

anymore: all elements can be kept in the cache, which is much more efficient.

 Discussion

Developers like to use degrees of two in their benchmarks because it simplifies working

memory size calculation (and it also looks more “geeky”). Unfortunately, it increases

the probability of getting problems with the critical strides. You can easily get bad

performance metrics because of that. The general recommendation is the same: you

should check different sizes of the working memory in your performance experiments

(including sizes that are not the power of two).

The critical stride effects also depend on the hardware. Here is another quote

from [Intel OptManual], 2.1.3 “Cache and Memory Subsystem,” about changes in Intel

Skylake:

L2 associativity changed from 8 ways to 4 ways in Intel Skylake.

Chapter 8 MeMory-Bound BenChMarks

537

When you compare performance metrics in a memory-bound benchmark on two

different CPUs, you can get a difference because of the different values of the cache

associativity and the critical strides.

 Case Study 4: False Sharing
False sharing is an effect that can spoil multithreading benchmarks. Let’s look at an

example that demonstrates it.

 Source code

Consider the following BenchmarkDotNet-based benchmarks:

public class Benchmarks

{

 private static int[] x = new int[1024];

 private void Inc(int p)

 {

 for (int i = 0; i < 1000001; i++)

 {

 x[p]++; x[p]++; x[p]++; x[p]++;

 x[p]++; x[p]++; x[p]++; x[p]++;

 x[p]++; x[p]++; x[p]++; x[p]++;

 x[p]++; x[p]++; x[p]++; x[p]++;

 }

 }

 [Params(1, 256)]

 public int Step;

 [Benchmark]

 public void Run()

 {

 Task.WaitAll(

 Task.Factory.StartNew(() => Inc(0 ∗ Step)),
 Task.Factory.StartNew(() => Inc(1 ∗ Step)),

Chapter 8 MeMory-Bound BenChMarks

538

 Task.Factory.StartNew(() => Inc(2 ∗ Step)),
 Task.Factory.StartNew(() => Inc(3 ∗ Step)));
 }

}

Here we have the Inc method, which increments the same element of an array many

times. It uses manual loop unrolling to avoid effects of the ILP that were discussed in

Chapter 7. In the only Run benchmark, we start four tasks that are incrementing different

array elements (each task has its own element index). The benchmark has the Step

parameter, which defines the difference between indexes of the incremented elements.

When Step=1, we are incrementing x[0], x[1], x[2], and x[3]. When Step=256, we are

incrementing x[0], x[256], x[512], and x[768].

 Results

Here is an example of results (Windows 10.0.17763.195, Intel Core i7-6700HQ CPU

2.60GHz, .NET Core 2.1.5, RyuJIT-x64):

 Step | Mean | StdDev |

----- |----------:|---------:|

 1 | 215.66 ms | 8.953 ms |

 256 | 61.54 ms | 4.002 ms |

As you can see, the case with Step=256 works much faster than the case with Step=1.

 Explanation

Imagine a situation with two threads on two different CPU cores that perform read/write

operations on the same variable. On Intel Core i7-6700HQ, each core has its own L1

and L2 caches. This means that CPU has to synchronize the variable value between the

caches. Obviously, we will have a performance penalty because of this synchronization.

This situation is known as true sharing (Figure 8-3, left side).

Chapter 8 MeMory-Bound BenChMarks

539

Now imagine another situation: we still have two threads on two different CPU cores,

but these threads perform read/write operations on different variables. We can assume

that we will not have the synchronization performance penalty anymore because the

threads don’t share the same variable anymore. However, the CPU cache atomic unit

for synchronization is not a single variable; it’s a cache line! If these variables belong to

the same cache line, the CPU cache still has to synchronize this cache line! It doesn’t

matter that we work with different variables. If we have read/write operations with

the same cache line on two different cores, the CPU will synchronize it anyway (even

if we don’t actually share memory between threads). This situation is known as false

sharing (Figure 8-3, right side). And it also has the performance penalty because of the

synchronization.

 Discussion

The discussed problem is valid only for multithreading benchmarks. Moreover, it’s not

a stable problem: you can observe the false sharing effect only if the target variables

belong to the same cache line. Any changes in the source code or environment may

move the variables into two different cache lines (the first variable will be at the end of

one cache line; the second variable will be at the start of the next cache line). In this case,

the false sharing effect will not affect the results anymore for these two variables.

The general recommendation: if you are writing a multithreading benchmark, make

sure that the different variables which you use from different threads have a distance

between them which is more than 64 bytes. In the preceding example, we did it with

the help of Step=256: different tasks just use array elements that are pretty far from each

Figure 8-3. True and false sharing

Chapter 8 MeMory-Bound BenChMarks

540

other. If we are talking about individual fields, you can add eight unused long variables

between them.

You can find more examples of benchmarks with false sharing in [Mendola 2008],

[Jainam M. 2017], and [Wakart 2013].

 Summing Up
In this section, we discussed four topics that may be important for benchmarking

because of the modern CPU features:

• Memory Access Patterns

The sequential access to the data is always faster than the random

access because CPU cache operates with cache lines (the typical

size is 64 B) instead of the variables. Once you load a variable in

the cache, you also load the neighboring variables from the same

cache line. After that, you can access these variables without

additional cache miss penalty.

• Cache Levels

Typically, the CPU cache has three levels: L1, L2, and L3 (but you

can also find other CPU cache configurations with two or four

levels). The first level is the fastest one, but it’s also the smallest

one. The latest level is the biggest one, but it works much slower

than other levels. Operations with any level of the CPU cache work

faster than operations with data from the main memory, which is

not presented in the cache.

• Cache Associativity

Each byte of the main memory has a limited number of

positions in the CPU cache that can handle its value. Typically,

the associativity of the modern caches is between 4 and 24.

The minimum positive difference between data segments that

matches the same set of cache lines is known as the critical stride.

Chapter 8 MeMory-Bound BenChMarks

541

• False Sharing

In multithreading benchmarks, you can get a situation when two

different threads are performing read/write operations with two

different variables on two different CPU cores. If these variables

belong to the same cache line, we will get a situation called false

sharing: the CPU has to synchronize this cache line between

cores. As a result, we have a performance penalty for this kind of

situation.

If you want to design a good CPU-bound benchmark, it’s recommended to check the

different sizes of working memory. To reduce the number of these sizes, you can try the

sizes of L1, L2, L3, and the size that is much bigger than L3. In order to avoid problems

with critical strides, it makes sense also to check working sizes that are not powers

of two. It’s also recommended to check different access patterns (if possible) like the

sequential access and random access. Such corner cases are useful to get an overview

of the performance space because they typically provide the best-case and worse-case

measurements. However, it’s still important to check cases that are close to real-life

usage scenarios.

 Memory Layout
In this section, we are going to discuss how performance depends on the actual

addresses of the variables that we are working with. In .NET, we can’t always control the

alignment of our objects and structs, but there are still a lot of interesting performance

effects on the hardware level that may affect benchmark results.

In the previous section, we discussed typical problems with the CPU cache that affect

simple benchmarks pretty often. We will also continue to discuss the CPU cache effects

because this topic is closely related to the topic of the memory layout.

 Case Study 1: Struct Alignment
In .NET, you can manually control the struct alignment via the [StructLayout] and

[FieldOffset] attributes (you can read more about it in [Kalapos 2018]). However, most

developers don’t use these attributes and rely on default layout algorithms. Meanwhile,

different .NET runtimes have different layout policies that may produce a noticeable

impact on the application performance.

Chapter 8 MeMory-Bound BenChMarks

542

 Source code

Consider the following BenchmarkDotNet-based benchmarks:

public struct Struct7

{

 public byte X0, X1, X2, X3, X4, X5, X6;

}

public struct Struct8

{

 public byte X0, X1, X2, X3, X4, X5, X6, X7;

}

[LegacyJitX86Job, MonoJob]

public class Benchmarks

{

 public const int Size = 256;

 private int[] sum = new int[Size];

 private Struct7[] struct7 = new Struct7[Size];

 private Struct8[] struct8 = new Struct8[Size];

 [Benchmark(OperationsPerInvoke = Size, Baseline = true)]

 public void Run7()

 {

 for (var i = 0; i < sum.Length; i++)

 {

 Struct7 s = struct7[i];

 sum[i] = s.X0 + s.X1;

 }

 }

 [Benchmark(OperationsPerInvoke = Size)]

 public void Run8()

 {

 for (var i = 0; i < sum.Length; i++)

 {

Chapter 8 MeMory-Bound BenChMarks

543

 Struct8 s = struct8[i];

 sum[i] = s.X0 + s.X1;

 }

 }

}

We have already discussed a similar benchmark in the “Struct Promotion” case study

(Chapter 7). Here we have two structs: Struct7 with seven byte fields and Struct8 with

eight byte fields. We also have two benchmarks: Run7 and Run8. In each benchmark, we

calculate the sum of the first two struct fields in a loop. The only difference between Run7

and Run8 is the used struct.

 Results

Here is an example of results (Windows 10.0.17763.195, Intel Core i7-6700HQ CPU

2.60GHz, .NET Framework 4.7.2, LegacyJIT-x86 v4.7.3260.0; Mono-x64 v5.18.0):

 Method | Job | Mean | StdDev | Ratio |

------- |------------- |---------:|----------:|------:|

 Run7 | LegacyJitX86 | 7.331 ns | 0.0216 ns | 1.00 |

 Run8 | LegacyJitX86 | 2.409 ns | 0.0088 ns | 0.33 |

 Run7 | Mono | 3.643 ns | 0.0177 ns | 1.00 |

 Run8 | Mono | 3.716 ns | 0.0164 ns | 1.02 |

As you can see, Run8 works three times faster than Run7 on LegacyJIT-x86. On

Mono-x64, Run8 works a little bit slower than Run7.

 Explanation

When we have an array of structs, LegacyJIT-x86 tries to lay out its memory as

compactly as possible. You can find the layout of the first eight elements of Struct7[]

in the left side of Figure 8-4 (each struct instance has its own color). The elements

are placed in memory one after another without padding. As you can see, most of the

elements are unaligned. Access to the unaligned data usually works slower than access

to the aligned data. That’s why Run8 works much faster: all of its elements are naturally

aligned because each element contains exactly eight bytes.

Chapter 8 MeMory-Bound BenChMarks

544

In the right side of Figure 8-4, you can see the Struct7[] aligned on Mono: it uses

one-byte padding after each element to make all Struct7 instances aligned. On the one

hand, this is bad because such an alignment policy increases the total memory used for

keeping the array. On the other hand, it’s good because all the elements are properly

aligned and access operation may be performed much faster than for the unaligned case.

Discussion

When you want to achieve the best possible performance for operation with struct

arrays, it’s a good idea to control the alignment for the struct instances manually.

However, proper alignment may also increase the memory footprint because of the

paddings. Also, note that unaligned access performance effects significantly depend on

the used CPU model.

You can find more interesting information about memory alignment issues in

[Sumedh 2013], [Sandler 2008], and [Lemirer 2012].

This case study is based on the StackOverflow question 38949304.4

4 https://stackoverflow.com/q/38949304

Figure 8-4. Struct7 layout in LegacyJIT-x86 and Mono-x64

Chapter 8 MeMory-Bound BenChMarks

https://stackoverflow.com/q/38949304

545

 Case Study 2: Cache Bank Conflicts
In the context of the CPU caches, a cache bank is a small segment inside a CPU cache

line. When we match a byte from the main memory to the CPU cache line, we can

also uniquely identify the number of a cache bank that contains this byte. In the next

example, we will benchmark sequential operations with memory that works with the

same cache bank from different cache lines.

 Source code

Consider the following BenchmarkDotNet-based benchmark:

public unsafe class Benchmarks

{

 private readonly int[] data = new int[2 ∗ 1024 ∗ 1024];

 [Params(15, 16, 17)]

 public int Delta;

 [Benchmark]

 public bool Calc()

 {

 fixed (int∗ dataPtr = data)
 {

 int∗ ptr = dataPtr;
 int d = Delta;

 bool res = false;

 for (int i = 0; i < 1024 ∗ 1024; i++)
 {

 res |= (ptr[0] < ptr[d]);

 ptr++;

 }

 return res;

 }

 }

}

Chapter 8 MeMory-Bound BenChMarks

546

Here we have a data array and a parameter called Delta. In the benchmark, we are

enumerating the first 1024 * 1024 elements of this array. For each element data[i], we

compare it with data[i + Delta]. The algorithm is written with unsafe code to avoid

bound checks during array element access. This code doesn’t calculate anything useful;

it’s just another small example that demonstrates a pretty interesting CPU effect.

 Results

Here is an example of results on Skylake (Windows 10.0.17763.195, Intel Core i7-6700HQ

CPU 2.60GHz, .NET Framework 4.7.2, RyuJIT-x64 v4.7.3260):

 Delta | Mean | StdDev |

------ |---------:|----------:|

 15 | 0.957 ms | 0.0030 ms |

 16 | 0.955 ms | 0.0045 ms |

 17 | 0.956 ms | 0.0051 ms |

And here is an example of results on Ivy Bridge (Windows 10.0.15063.1387, Intel Core

i7-3615QM CPU 2.30GHz, .NET Framework 4.7.2, RyuJIT-x64 v4.7.3190):

 Delta | Mean | StdDev |

------ |---------:|----------:|

 15 | 1.040 ms | 0.0036 ms |

 16 | 1.243 ms | 0.0063 ms |

 17 | 1.039 ms | 0.0062 ms |

As you can see, we have approximately the same duration of all runs on Skylake.

However, on Ivy Bridge, the run with Delta=16 works 20% slower.

 Explanation

We can find an explanation for these results in [Intel OptManual], 3.6.1.3 “Handling L1D

Cache Bank Conflict”:

In Intel microarchitecture code name Sandy Bridge, the internal organiza-
tion of the L1D cache may manifest a situation when two load micro-ops
whose addresses have a bank conflict. When a bank conflict is present
between two load operations, the more recent one will be delayed until the
conflict is resolved. A bank conflict happens when two simultaneous load

Chapter 8 MeMory-Bound BenChMarks

547

operations have the same bit 2–5 of their linear address but they are not
from the same set in the cache (bits 6–12).

Bank conflicts should be handled only if the code is bound by load band-
width. Some bank conflicts do not cause any performance degradation
since they are hidden by other performance limiters. Eliminating such bank
conflicts does not improve performance.

With the Haswell microarchitecture, the L1 DCache bank conflict issue does
not apply.

Thus, each cache line can be split into 16 cache banks (this number also depends on

the CPU model). Two load operations may collide on Ivy Bridge if they target values from

different cache lines, but from cache banks with the same number.

Discussion

This problem is relevant only for old Intel processors (e.g., Ivy Bridge); you will not

observe the described effect on processors since Haswell. Even on Sandy/Ivy Bridge

processors, it’s not so easy to hit the problem in real benchmarks. However, it’s still good

to know about such effects because they can unpredictably change the performance

measurements. If you don’t know about it, you may easily come up with the wrong

conclusions.

 Case Study 3: Cache Line Splits
Let’s learn another case study about the CPU cache. This time, we will discuss it in the

context of the data alignment.

 Source code

Consider the following BenchmarkDotNet-based benchmarks:

[StructLayout(LayoutKind.Explicit, Pack = 8)]

public struct MyStruct

{

 [FieldOffset(0x04)] public ulong X0;

 [FieldOffset(0x0C)] public ulong X1;

 [FieldOffset(0x14)] public ulong X2;

 [FieldOffset(0x1C)] public ulong X3;

 [FieldOffset(0x24)] public ulong X4;

Chapter 8 MeMory-Bound BenChMarks

548

 [FieldOffset(0x2C)] public ulong X5;

 [FieldOffset(0x34)] public ulong X6;

 [FieldOffset(0x3C)] public ulong X7;

}

public unsafe class Benchmarks

{

 private int N = 1000;

 public void Run(int offset)

 {

 var myStruct = new MyStruct();

 if ((long) &myStruct.X0 % 64 == offset)

 {

 for (int i = 0; i < N; i++)

 myStruct.X0++;

 }

 else if ((long) &myStruct.X1 % 64 == offset)

 {

 for (int i = 0; i < N; i++)

 myStruct.X1++;

 }

 else if ((long) &myStruct.X2 % 64 == offset)

 {

 for (int i = 0; i < N; i++)

 myStruct.X2++;

 }

 else if ((long) &myStruct.X3 % 64 == offset)

 {

 for (int i = 0; i < N; i++)

 myStruct.X3++;

 }

 else if ((long) &myStruct.X4 % 64 == offset)

 {

 for (int i = 0; i < N; i++)

 myStruct.X4++;

 }

Chapter 8 MeMory-Bound BenChMarks

549

 else if ((long) &myStruct.X5 % 64 == offset)

 {

 for (int i = 0; i < N; i++)

 myStruct.X5++;

 }

 else if ((long) &myStruct.X6 % 64 == offset)

 {

 for (int i = 0; i < N; i++)

 myStruct.X6++;

 }

 else if ((long) &myStruct.X7 % 64 == offset)

 {

 for (int i = 0; i < N; i++)

 myStruct.X7++;

 }

 }

 [Benchmark(Baseline = true)]

 public void InsideCacheLine() => Run(4);

 [Benchmark]

 public void CacheSplit() => Run(60);

}

Here we have the MyStruct value type with the explicit layout. It contains eight ulong

fields with the following offsets: 0x04, 0x0C, 0x14, 0x1C, 0x24, 0x2C, 0x34, and 0x3C. In

this case, .NET Framework will align this struct by eight bytes, which means that exactly

one field will be placed on the boundary of two cache lines. The Run method takes

offset and finds the field with an address that satisfies the following condition: “the

remainder of dividing the address by 64 should be equal to offset.” Next, it increments

the corresponding field N times.

Also, we have two benchmarks: InsideCacheLine and CacheSplit. The

InsideCacheLine benchmark invokes Run(4), which means that it will increment the

field that is inside a cache line. The InsideCacheLine benchmark invokes Run(60),

which means that it will increment the field on the boundary of two cache lines: the

first four bytes of this field are located at the end of one cache line, and the last four are

located at the start of another cache line.

Chapter 8 MeMory-Bound BenChMarks

550

 Results

Here is an example of results on Skylake (Windows 10.0.17763.195, Intel Core i7-6700HQ

CPU 2.60GHz, .NET Framework 4.7.2, RyuJIT-x64 v4.7.3260):

 Method | Mean | StdDev | Ratio |

---------------- |---------:|----------:|------:|

 InsideCacheLine | 1.630 us | 0.0063 us | 1.00 |

 CacheSplit | 3.041 us | 0.0089 us | 1.87 |

As you can see, the CacheSplit benchmark works significantly slower than the

InsideCacheLine benchmark.

 Explanation

We can find an explanation in [Intel OptManual], 3.6.4 “Alignment”:

Misaligned data access can incur significant performance penalties. This is
particularly true for cache line splits. The size of a cache line is 64 bytes in
the Pentium 4 and other recent Intel processors, including processors based
on Intel Core microarchitecture.

An access to data unaligned on 64-byte boundary leads to two memory
accesses and requires several μops to be executed (instead of one). Accesses
that span 64-byte boundaries are likely to incur a large performance penalty,
the cost of each stall generally are greater on machines with longer pipelines.

 Discussion

Cache line split is another effect that can unpredictably affect application performance.

You will not get problems with it in most of the benchmarks because the data are

usually properly aligned by the .NET runtime. However, you should be careful when you

manually change the struct layout or when you are writing unsafe code.

You can find a lot of additional information about this topic in [Intel OptManual].

 Case Study 4: 4K Aliasing
4K aliasing is a pretty exciting phenomenon that can also affect your measurements. It

happens when we store a value to one memory location and load another value from a

different memory location with a 4096-byte offset between these locations. Let’s look at

an example that demonstrates such a situation.

Chapter 8 MeMory-Bound BenChMarks

551

 Source code

Consider the following BenchmarkDotNet-based benchmark:

public class Benchmarks

{

 private readonly byte[] data = new byte[32 ∗ 1024 ∗ 1024];
 private readonly int baseOffset;

 public Benchmarks()

 {

 GCHandle handle = GCHandle.Alloc(data, GCHandleType.Pinned);

 IntPtr addrOfPinnedObject = handle.AddrOfPinnedObject();

 long address = addrOfPinnedObject.ToInt64();

 const int align = 4 ∗ 1024; // 4 KB
 baseOffset = (int) (align - address % align);

 }

 [Params(0, 1)]

 public int SrcOffset;

 [Params(

 -65, -64, -63, -34, -33, -32, -31, -3, -2, -1,

 0, 1, 2, 30, 31, 32, 33, 34, 63, 64, 65, 66)]

 public int StrideOffset;

 [Benchmark]

 public void ArrayCopy() => Array.Copy(

 sourceArray: data,

 sourceIndex: baseOffset + SrcOffset,

 destinationArray: data,

 destinationIndex: baseOffset + SrcOffset +

 24 ∗ 1024 + // 24 KB
 StrideOffset,

 length: 16 ∗ 1024 // 16 KB
);

}

Chapter 8 MeMory-Bound BenChMarks

552

Here we have the benchmark ArrayCopy, which copies 16 kilobytes from one array

location to another. In the object constructor, we pin the array instance and prevent GC

from moving the array. Also, we calculate the array address and find the baseOffset

index, which is aligned by the 4 KB boundary. The SrcOffset parameter controls

the alignment of the source data (sourceIndex equals to baseOffset + SrcOffset).

The StrideOffset parameter controls the alignment of the destination address

(destinationIndex equals to baseOffset + SrcOffset + 24 * 1024 + StrideOffset,

which means that the difference between destinationIndex and sourceIndex equals to

24 * 1024 + StrideOffset).

 Results

Here is an example of results on Haswell (Windows 10.0.17134.523, Intel Core i7-

4702MQ CPU 2.20GHz, .NET Framework 4.7.2, RyuJIT-x64 v4.7.3260):

 SrcOffset | StrideOffset | Mean | StdDev |

---------- |------------- |-----------:|----------:|

 0 | -65 | 401.8 ns | 4.727 ns |

 0 | -64 | 335.2 ns | 32.741 ns |

 0 | -63 | 447.8 ns | 29.978 ns |

 0 | -34 | 502.1 ns | 35.900 ns |

 0 | -33 | 482.4 ns | 30.916 ns |

 0 | -32 | 369.1 ns | 18.939 ns |

 0 | -31 | 481.8 ns | 27.200 ns |

 0 | -3 | 487.4 ns | 21.360 ns |

 0 | -2 | 476.2 ns | 25.476 ns |

 0 | -1 | 496.1 ns | 21.471 ns |

 0 | 0 | 364.3 ns | 28.113 ns |

 0 | 1 | 1,184.3 ns | 2.415 ns |

 0 | 2 | 1,224.3 ns | 2.339 ns |

 0 | 30 | 2,079.1 ns | 5.735 ns |

 0 | 31 | 1,197.0 ns | 2.367 ns |

 0 | 32 | 315.5 ns | 3.046 ns |

 0 | 33 | 1,117.5 ns | 2.957 ns |

 0 | 34 | 1,150.7 ns | 2.149 ns |

 0 | 63 | 1,106.0 ns | 2.494 ns |

Chapter 8 MeMory-Bound BenChMarks

553

 0 | 64 | 317.4 ns | 3.952 ns |

 0 | 65 | 881.8 ns | 6.027 ns |

 0 | 66 | 856.9 ns | 2.421 ns |

 1 | -65 | 333.1 ns | 3.071 ns |

 1 | -64 | 434.8 ns | 5.049 ns |

 1 | -63 | 445.0 ns | 3.903 ns |

 1 | -34 | 436.0 ns | 3.135 ns |

 1 | -33 | 318.3 ns | 2.898 ns |

 1 | -32 | 444.9 ns | 2.463 ns |

 1 | -31 | 443.4 ns | 6.471 ns |

 1 | -3 | 417.3 ns | 2.362 ns |

 1 | -2 | 422.7 ns | 2.393 ns |

 1 | -1 | 357.7 ns | 9.241 ns |

 1 | 0 | 430.4 ns | 4.918 ns |

 1 | 1 | 1,020.1 ns | 2.329 ns |

 1 | 2 | 1,015.7 ns | 2.179 ns |

 1 | 30 | 1,021.5 ns | 2.753 ns |

 1 | 31 | 412.8 ns | 6.160 ns |

 1 | 32 | 834.7 ns | 3.752 ns |

 1 | 33 | 709.2 ns | 11.557 ns |

 1 | 34 | 708.8 ns | 1.318 ns |

 1 | 63 | 608.8 ns | 8.753 ns |

 1 | 64 | 663.9 ns | 1.496 ns |

 1 | 65 | 625.9 ns | 5.878 ns |

 1 | 66 | 648.8 ns | 7.477 ns |

This table is shown for all parameter values because it contains a lot of interesting

alignment-related performance effects: we have dozens of different performance

measurements for the same operations that just transfer 16 KB of memory. You can take

this table (or build the same table on your own hardware) and try to explain the results.

In the scope of this section, we will focus only on a small fragment of it:

 SrcOffset | StrideOffset | Mean | StdDev |

---------- |------------- |-----------:|----------:|

 0 | -1 | 496.1 ns | 21.471 ns |

 0 | 0 | 364.3 ns | 28.113 ns |

 0 | 1 | 1,184.3 ns | 2.415 ns |

Chapter 8 MeMory-Bound BenChMarks

554

 0 | 2 | 1,224.3 ns | 2.339 ns |

 0 | 30 | 2,079.1 ns | 5.735 ns |

 0 | 31 | 1,197.0 ns | 2.367 ns |

 0 | 32 | 315.5 ns | 3.046 ns |

As you can see, we have extremely high measurements for StrideOffset values from

1 to 31. In other fragments of the original table (e.g., for StrideOffset values from –31 to 1),

the measurements are not so high, which means that it’s not just unaligned memory

access: we observe a more significant performance effect.

 Explanation

When we perform read/write operations with memory, the CPU cache is used as an

intermediate data storage. However, there is one more layer between the registers and

the CPU, which is shown in Figure 8-5.

Figure 8-5. Store buffer, load buffer, and store forwarding

Chapter 8 MeMory-Bound BenChMarks

555

Imagine an instruction that moves data from the registers to the CPU cache. It

performs an action that takes some time: CPU can’t transfer data instantly. However,

it doesn’t make sense to wait until this transfer is finishing before CPU can start

performing the next instruction. Instead of it, the register value is placed in the special

store buffer. Next, it’s possible to start the next instruction while the CPU moves values

from the store buffer to the CPU cache.

The same approach is applied for getting data from the CPU cache: instead of waiting

for transferring data from the CPU cache to the CPU registers, we fetch data in advance

via the load buffer.

Now imagine the situation when we write a value to the memory and immediately

read it again. In this case, the store and load buffers can introduce a significant delay

because we should wait until the value is transferred from a register to the CPU cache

via store buffer; next, we should wait until the value is transferred from the CPU cache to

a register, and only after that can we use this value. Fortunately, this problem is already

solved with the help of the store forwarding. This mechanism allows moving values from

the store buffer to the load buffer bypassing the CPU cache!

To make the store forwarding efficient, the CPU has to understand very quickly that

the required value is in the store buffer. Since it’s not fast to enumerate the store buffer

each time, the CPU uses a small hash table for the buffer values where the hash is the

least significant 12 bits of the value address (it’s valid for Intel CPUs). What do you think

will happen in the case of a hash collision?

Now we are ready to read about 4K aliasing from [Intel OptManual], 11.8 “4K

Aliasing”:

4-KByte memory aliasing occurs when the code stores to one memory loca-
tion and shortly after that it loads from a different memory location with a
4-KByte offset between them. For example, a load to linear address 0x400020
follows a store to linear address 0x401020.

The load and store have the same value for bits 5–11 of their addresses and
the accessed byte offsets should have partial or complete overlap.

4K aliasing may have a five-cycle penalty on the load latency. This penalty
may be significant when 4K aliasing happens repeatedly and the loads are
on the critical path. If the load spans two cache lines it might be delayed
until the conflicting store is committed to the cache. Therefore 4K aliasing
that happens on repeated unaligned Intel AVX loads incurs a higher perfor-
mance penalty.

Chapter 8 MeMory-Bound BenChMarks

556

To detect 4K aliasing, use the LD_BLOCKS_PARTIAL.ADDRESS_ALIAS event
that counts the number of times Intel AVX loads were blocked due to 4K
aliasing.

To resolve 4K aliasing, try the following methods in the following order:

• Align data to 32 Bytes.

• Change offsets between input and output buffers if possible.

• Use 16-Byte memory accesses on memory which is not 32-Byte aligned.

The 4K aliasing explains the highlighted fragment of the summary table. The

difference between the source and destination addresses is 24 * 1024 + StrideOffset.

When the StrideOffset value belongs to the 1..31 interval, we have a situation that

exactly matches to the preceding quote from the Intel manual.

 Discussion

4K aliasing doesn’t affect most benchmarks, but this effect may be very important when

you copy chunks of bytes from one location to another.

You can find more interesting case studies about store forwarding and 4K aliasing in

[Lemirer 2018], [Wong 2014], [Bakhvalov 2018], and JDK-8150730.5

 Summing Up
In this section, we discussed several performance issues that are related to the data

alignment:

• Struct alignment

When we process an array of structs, performance depends on the

alignment and the size of each struct instance. The layout strategy

depends on the [StructLayout] and [FieldOffset] attributes

and runtime version.

5 https://bugs.openjdk.java.net/browse/JDK-8150730

Chapter 8 MeMory-Bound BenChMarks

https://bugs.openjdk.java.net/browse/JDK-8150730

557

• Cache bank conflicts

A bank conflict happens when two simultaneous load operations

have the same bit 2–5 of their linear address but they are not from

the same set in the cache (bits 6–12). This problem is actual for

Sandy Bridge and Ivy Bridge, but you shouldn’t worry about it with

Haswell and subsequent Intel CPU microarchitectures.

• Cache line splits

A cache line split happens when you perform read/write

operations on data that is unaligned on a 64-byte boundary.

• 4K aliasing

4K aliasing happens when the code stores to one memory location

and shortly after that it loads from a different memory location

with a 4-KByte offset between them.

You should remember about these effects when you work with structs, write unsafe

code, or copy huge chunks for bytes.

 Garbage Collector
Garbage collection is a huge and pretty interesting topic. If you want to learn it in detail,

it’s recommended to read [Jones 2016] and [Kokosa 2018a]. In this section, we are

going to cover only some aspects that can be useful in terms of benchmarking and show

corresponding effects with small case studies. You will also find a lot of useful links that

help you to learn more information about GC in different runtimes.

 Case Study 1: GC Modes
In .NET Framework and .NET Core, we have a few options to configure the GC behavior.

One of the most important option is switching between Server and Workstation modes.

Let’s check how this setting can affect our measurements.

Chapter 8 MeMory-Bound BenChMarks

558

 Source code

Consider the following BenchmarkDotNet-based benchmarks:

[Config(typeof(Config))]

[MemoryDiagnoser]

public class Benchmarks

{

 private class Config : ManualConfig

 {

 public Config()

 {

 Add(Job.Default.WithGcServer(true).WithId("Server"));

 Add(Job.Default.WithGcServer(false).WithId("Workstation"));

 }

 }

 [Benchmark]

 public byte[] Heap()

 {

 return new byte[10 ∗ 1024];
 }

 [Benchmark]

 public unsafe void Stackalloc()

 {

 var array = stackalloc byte[10 ∗ 1024];
 Consume(array);

 }

 [MethodImpl(MethodImplOptions.NoInlining)]

 private static unsafe void Consume(byte∗ input)
 {

 }

}

Here we have two benchmarks: Heap, which allocates 10 kilobytes in the

managed heap, and Stackalloc, which allocates 10 kilobytes on the stack. The

Chapter 8 MeMory-Bound BenChMarks

559

Stackalloc benchmark uses empty Consume method (which is marked with the

[MethodImpl(MethodImplOptions.NoInlining)] attribute) to prevent the DCE.

Also, we have two jobs, Server and Workstation, which are responsible for executing

these benchmarks with corresponding GC modes.

 Results

Here is an example of results (Windows 10.0.17763.195, Intel Core i7-6700HQ CPU

2.60GHz, .NET Framework 4.7.2, RyuJIT-x64 v4.7.3260):

 Method | Job | Mean | StdDev | Gen 0 |

----------- |------------ |-----------:|-----------:|-------:|

 Heap | Server | 745.193 ns | 22.7130 ns | 0.1917 |

 Stackalloc | Server | 4.531 ns | 0.0920 ns | - |

 Heap | Workstation | 480.974 ns | 7.3521 ns | 3.2673 |

 Stackalloc | Workstation | 4.425 ns | 0.0537 ns | - |

The Gen 0 column shows the number of GC Generation 0 collects per 1000

operations.

As you can see, the Heap benchmark works much slower in the Server GC mode

than in the Workstation GC mode. However, this setting doesn’t affect the Stackalloc

benchmark.

 Explanation

The Workstation GC mode is designed for interactive UI applications that should be

responsive. In this mode, we have a lot of small GC sessions: the runtime tries to avoid

long GC pauses that may lead to UI hangs.

The Server GC mode is designed for server applications that should have the

maximum throughput. In this mode, we have a small number of huge GC sessions: the

runtime doesn’t care about long GC pauses.

In the Heap benchmark, we have many more garbage collections of the Generation

0 in the Workstation mode. The GC pauses are pretty small, and they don’t hurt the

“average” performance as much as in the Server mode.

It worth noting that it’s not always easy to correctly measure the performance of

methods that allocate a lot of objects. You may think of these allocations as getting a

“performance loan”: the allocation itself is processed pretty fast, but you have to “pay”

Chapter 8 MeMory-Bound BenChMarks

560

for it in the future during garbage collection sessions. These “payments” significantly

depend on the selected runtime and GC settings.

A common problem in handwriting benchmarks is excluding the GC time for the

measurements. You can easily get such a situation if you stop the measurements before

the GC is starting to collect objects that you allocated during the benchmark. You should

not underestimate the duration of GC pauses. Some pauses can take 1 minute (see

[Lemarchand 2018]) or even 15 minutes (see [Kokosa 2018b])! The general advice here is

simple: if you have too many allocations in a benchmark, you should use more iterations!

In this case, the performance metrics will include the “average” GC impact. Meanwhile,

you can get better performance in real life because the garbage collection may happen

outside the method scope. It doesn’t mean that you shouldn’t worry about it because it

still affects performance. You still have to “repay the performance loan,” but you can do it

after the measured method is finished.

In the Heap benchmark, the actual duration of the object allocation is approximately

the same for both GC modes. We can see the difference in measurements because of

the garbage collections that occur during the benchmark. Meanwhile, the Stackalloc

benchmark doesn’t allocate anything in the managed heap (we have "-" in the Gen 0

column): that’s why it’s not affected by the GC mode.

 Discussion

Here is a list of the most popular settings that you can change:

• gcServer: specifies whether CLR runs server GC or client GC. The

default value is false for desktop applications and true for ASP.NET

applications.

• gcConcurrent: specifies whether the CLR runs GC on a separate

thread (or threads) concurrently with the application threads. The

default value is true.

• GCCpuGroup: specifies whether garbage collection supports

multiple CPU groups. When a computer has multiple CPU groups

and server garbage collection is enabled, enabling this element

extends garbage collection across all CPU groups and takes all cores

into account when creating and balancing heaps. The default value is

false.

Chapter 8 MeMory-Bound BenChMarks

561

• gcAllowVeryLargeObjects: on 64-bit platforms, enables arrays that

are greater than 2 GB in total size. The default value is false.

• GCHeapCount: the desired number of server GC heaps. The default

value is 0, which means “not specified.”

In .NET Framework applications, you can control all these settings via app.config.

A configuration example:

<configuration>

 <runtime>

 <gcServer enabled="true"/>

 <gcConcurrent enabled="true"/>

 <GCCpuGroup enabled="true"/>

 <gcAllowVeryLargeObjects enabled="true"/>

 <GCHeapCount enabled="6"/>

 </runtime>

</configuration>

In .NET Core, you can specify these values via runtimeconfig.json6 file or via

COMPLUS_* environment variables. Also, you can specify a lot of additional options like

the smallest Generation 0 size (GCgen0size) or the heap segment size (GCSegmentSize).7

You can find a lot of useful information about GC in .NET Framework and .NET Core

in [Kokosa 2018a] (see Chapter 11 therein) and [MSDOCS GC Fundamentals].

 Case Study 2: Nursery Size in Mono
Mono has its own GC implementation. The first versions of Mono used the Boehm

(Boehm–Demers–Weiser) GC. This is a classic conservative C/C++ GC. It wasn’t efficient

for .NET application, so it was decided to replace it with SGen (Generational GC), which

was introduced in Mono 2.8. SGen has been the default GC since Mono 3.2; you can find

a detailed description of it in [MONODOCS SGen].

The main thing that you should understand is that GC engines in .NET Framework/.

NET Core and Mono are completely different. Thus, you can’t apply observation from

one GC to the .NET platform in general. For example, SGen uses two primary GC

6 See https://github.com/dotnet/cli/blob/v2.2.104/Documentation/specs/runtime-
configuration-file.md

7 https://github.com/dotnet/coreclr/blob/v2.2.2/src/gc/gcconfig.h

Chapter 8 MeMory-Bound BenChMarks

https://doi.org/10.1007/978-1-4842-4941-3_11
https://github.com/dotnet/cli/blob/v2.2.104/Documentation/specs/runtime-configuration-file.md
https://github.com/dotnet/cli/blob/v2.2.104/Documentation/specs/runtime-configuration-file.md
https://github.com/dotnet/coreclr/blob/v2.2.2/src/gc/gcconfig.h

562

generations (instead of three in .NET Framework/.NET Core): Minor (Nursery) and

Major. It also has a lot of settings that you can configure. For example, you can tune the

size of the nursery generation. Let’s check how it can affect our measurements.

 Source code

Consider the following BenchmarkDotNet-based benchmark:

[Config(typeof(Config))]

[MemoryDiagnoser]

public class Benchmarks

{

 private class Config : ManualConfig

 {

 public Config()

 {

 Add(Job.Mono

 .With(new[] {new EnvironmentVariable(

 "MONO_GC_PARAMS", "nursery-size=1m")})

 .WithId("Nursery=1MB"));

 Add(Job.Mono

 .With(new[] {new EnvironmentVariable(

 "MONO_GC_PARAMS", "nursery-size=4m")})

 .WithId("Nursery=4MB"));

 }

 }

 [Benchmark]

 public byte[] Heap()

 {

 return new byte[10 ∗ 1024];
 }

}

Here we have only one benchmark which allocates 10 kilobytes in the managed

heap. Also, we have two jobs that execute this benchmark with different nursery sizes: 1

megabyte and 4 megabytes.

Chapter 8 MeMory-Bound BenChMarks

563

 Results

Here is an example of results (Windows 10.0.17763.195, Intel Core i7-6700HQ CPU

2.60GHz, Mono 5.18):

 Job | Mean | StdDev | Gen 0 |

------------ |---------:|----------:|-------:|

 Nursery=1MB | 6.058 us | 0.0321 us | 2.3193 |

 Nursery=4MB | 7.669 us | 0.0473 us | 0.5951 |

The Gen 0 column shows the number of GC Generation 0 collects per 1000

operations.

As you can see, Nursery=1MB works faster than Nursery=4MB.

 Explanation

If you change any of the GC settings, it is most likely that it affects measurements of

a benchmark that allocates object somehow. However, you can’t make any general

conclusions about “better” GC setting values for all kinds of applications.

The default size of the nursery generation in Mono 5.18 is 4 megabytes. As we can

see, 1 megabyte looks like a better value for our benchmark, which allocates just 10

kilobytes of memory. However, it doesn’t mean that 1 megabyte is a better value for other

applications. For example, in [Akinshin 2018], you can find a story about how I changed

it from 4 MB to 64 MB and increased the Rider startup time twice on Linux and macOS.

 Discussion

You can specify different parameters of SGen via MONO_GC_PARAMS environment variable

(all parameters are joined in a single string by commas). Here is a list of some SGen

parameters in Mono 5.18 (you can always get the actual list for your version of mono via

man mono):

• max-heap-size=size: Sets the maximum size of the heap.

• nursery-size=size: Sets the size of the nursery generation.

• major=collector: Specifies which major collector to use. Available

options: marksweep (Mark&Sweep collector), marksweep-conc

(concurrent Mark&Sweep), and marksweep-conc-par (parallel and

concurrent Mark&Sweep).

Chapter 8 MeMory-Bound BenChMarks

564

• mode=balanced|throughput|pause[:max-pause]: Specifies what

should be the GC’s target.

• soft-heap-limit=size: Once the heap size gets larger than this

size, ignore what the default major collection trigger metric says and

allow only four nursery sizes of major heap growth between major

collections.

• evacuation-threshold=threshold: Sets the evacuation threshold as

a percentage.

• (no-)lazy-sweep: Enables or disables lazy sweep for the

Mark&Sweep collector.

• (no-)concurrent-sweep: Enables or disables concurrent sweep for

the Mark&Sweep collector.

• stack-mark=mark-mode: Specifies how application threads should be

scanned; options are precise and conservative.

• save-target-ratio=ratio: Specifies the target save ratio for the

major collector.

• default-allowance-ratio=ratio: Specifies the default allocation

allowance when the calculated size is too small.

• minor=minor-collector: Specifies which minor collector to use.

• alloc-ratio=ratio: Specifies the ratio of memory from the nursery

to be used by the alloc space.

• promotion-age=age: Specifies the required age of an object must

reach inside the nursery before been promoted to the old generation.

• allow-synchronous-major: Forbids the major collector from

performing synchronous major collections.

The SGen implementation has a lot of pretty interesting features. For example, the

nursery generation consists of slots of fixed size. Here is the definition of predefined sizes

in Mono 5.188:

8 You can find the full source code here: https://github.com/mono/mono/blob/
mono-5.18.0.245/mono/sgen/sgen-internal.c#L38

Chapter 8 MeMory-Bound BenChMarks

https://github.com/mono/mono/blob/mono-5.18.0.245/mono/sgen/sgen-internal.c#L38
https://github.com/mono/mono/blob/mono-5.18.0.245/mono/sgen/sgen-internal.c#L38

565

#if SIZEOF_VOID_P == 4

static const int allocator_sizes [] = {

 8, 16, 24, 32, 40, 48, 64, 80,

 96, 124, 160, 192, 224, 252, 292, 340,

 408, 452, 508, 584, 680, 816, 1020,

 1364, 2044, 2728, 4092, 5460, 8188 };

#else

static const int allocator_sizes [] = {

 8, 16, 24, 32, 40, 48, 64, 80,

 96, 128, 160, 192, 224, 248, 288, 336,

 368, 448, 504, 584, 680, 816, 1016,

 1360, 2040, 2728, 4088, 5456, 8184 };

#endif

Thus, if we create an object which needs 2729 bytes on x64, a 4088-byte slot will be

used, because it’s the smallest possible slot that can handle such an object. If you want to

monitor and analyze memory traffic, you should know such details. Otherwise, you will

not be able to interpret measurements right way.

If you want to get performance metrics for different GC modes, you can run mono

with the -stats argument: it will print you a lot of useful GC statistics.

 Case Study 3: Large Object Heaps
In .NET Framework and .NET Core, there are two kinds of heaps:

• Small Object Heap (SOH): objects that are smaller than 85,000 bytes.

• Large Object Heap (LOH)9: objects that are equal or larger than

85,000 bytes.

When we are talking about GC generations, we usually mean SOH. However, we

shouldn’t forget about LOH, which has its own rules of memory management. Let’s look

at another example that shows the performance impact of working with LOH objects.

9 https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/
large-object-heap

Chapter 8 MeMory-Bound BenChMarks

https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/large-object-heap
https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/large-object-heap

566

 Source code

Consider the following BenchmarkDotNet-based benchmarks:

[MemoryDiagnoser]

public class Benchmarks

{

 [Benchmark]

 public byte[] Allocate84900()

 {

 return new byte[84900];

 }

 [Benchmark]

 public byte[] Allocate85000()

 {

 return new byte[85000];

 }

}

Here we have two benchmarks: Allocate84900, which allocates 84900 bytes, and

Allocate85000, which allocates 85000 bytes.

 Results

Here is an example of results (Windows 10.0.17763.195, Intel Core i7-6700HQ CPU

2.60GHz, .NET Framework 4.7.2, RyuJIT-x64 v4.7.3260):

 Method | Mean | StdDev | Gen 0 | Gen 1 | Gen 2 |

-------------- |---------:|----------:|-------:|-------:|-------:|

 Allocate84900 | 3.017 us | 0.0216 us | 26.313 | - | - |

 Allocate85000 | 4.511 us | 0.0362 us | 27.023 | 27.023 | 27.023 |

The Gen 0, Gen 1, and Gen 2 columns show the number of GC Generation 0/1/2

collects per 1000 operations. As you can see, Allocate85000 works 1.5 times slower than

Allocate84900. Also, Allocate85000 has collects in Generation 1 and Generation 2,

unlike Allocate84900.

Chapter 8 MeMory-Bound BenChMarks

567

 Explanation

The concept of LOH was introduced because moving objects during compacting

collection is a heavy operation. GC doesn’t compact LOH by default, which means that

it doesn’t move objects.10 This is a great decision for applications that operate with a

high number of huge arrays because it reduces the overhead of garbage collection in

complicated allocation scenarios. However, it also may spoil performance in some

simple scenarios like the preceding benchmark because it triggers advanced GC

techniques. Allocate84900 works fast because GC is able to collect all the allocated

objects in Generation 0. Allocate85000 doesn’t work so fast, because GC has to collect

higher generations (all the allocated objects are placed to LOH instead of Generation 0).

 Discussion

In general, it’s not recommended to use knowledge of such heuristics in practice.

However, the 85000 constant becomes so fundamental that it’s used for different

optimization heuristics in many applications. For example, you can find usages of this

magic constant even in the implementation of standard classes.11

The LOH has one pretty interesting exception: double arrays on the 32-bit runtime.

Here is a quote by Abhishek Mondal from [Bray 2011]:

In 32-bit architectures CLR’s execution engine attempts to place these arrays
> 1000 doubles on the LOH because of the performance benefit of accessing
aligned doubles. However there are no benefits of applying the same heuris-
tics on 64-bit architectures because doubles are already aligned on an
8-byte boundary. As such we have disabled this heuristics for 64-bit archi-
tectures in .NET 4.5.

On Mono, we also have the concept of the LOH, which is known as the large object

space. Its default threshold in Mono 5.18 is 8000 bytes.12

You can find more information about the LOH in [Kokosa 2018a] (see Chapter 5,

section “Size Partitioning,” therein), [Morter 2013], and [Goldshtein 2013].

10 Since .NET Framework 4.5.1 and .NET Core 1.0, it’s been possible to force GC to compact LOH
via GCSettings.LargeObjectHeapCompactionMode. You can find more information about it
in the official documentation: https://docs.microsoft.com/en-us/dotnet/api/system.
runtime.gcsettings.largeobjectheapcompactionmode.

11 For example, see https://github.com/dotnet/corefx/blob/v2.2.1/src/Common/src/
CoreLib/System/Text/StringBuilder.cs#L73

12 See https://github.com/mono/mono/blob/mono-5.18.0.245/mono/sgen/sgen-conf.h#L161

Chapter 8 MeMory-Bound BenChMarks

https://docs.microsoft.com/en-us/dotnet/api/system.runtime.gcsettings.largeobjectheapcompactionmode
https://docs.microsoft.com/en-us/dotnet/api/system.runtime.gcsettings.largeobjectheapcompactionmode
https://github.com/dotnet/corefx/blob/v2.2.1/src/Common/src/CoreLib/System/Text/StringBuilder.cs#L73
https://github.com/dotnet/corefx/blob/v2.2.1/src/Common/src/CoreLib/System/Text/StringBuilder.cs#L73
https://github.com/mono/mono/blob/mono-5.18.0.245/mono/sgen/sgen-conf.h#L161

568

 Case Study 4: Finalization
The last GC concept we are going to discuss is finalization. In .NET, each object can

have a finalizer, which is executed by a dedicated finalization thread after GC collection

stage. This technique may be useful when you have some unmanaged resources that you

want to free with the help of GC. However, finalizers have a significant impact on the GC

performance. Let’s check how it may affect our measurements.

 Source code

Consider the following BenchmarkDotNet-based benchmarks:

public class Benchmarks

{

 public class ClassWithoutFinalizer

 {

 }

 public class ClassWithFinalizer

 {

 ~ClassWithFinalizer()

 {

 }

 }

 [Benchmark(Baseline = true)]

 public object WithoutFinalizer()

 {

 return new ClassWithoutFinalizer();

 }

 [Benchmark]

 public object WithFinalizer()

 {

 return new ClassWithFinalizer();

 }

}

Chapter 8 MeMory-Bound BenChMarks

569

Here we have two classes: ClassWithoutFinalizer (an empty class) and

ClassWithFinalizer (an empty class with an empty finalizer). In two declared

benchmarks (WithoutFinalizer and WithFinalizer), we just allocate instances of the

corresponding classes.

 Results

Here is an example of results (Windows 10.0.17763.195, Intel Core i7-6700HQ CPU

2.60GHz, .NET Framework 4.7.2, RyuJIT-x64 v4.7.3260):

 Method | Mean | StdDev | Ratio |

----------------- |-----------:|----------:|------:|

 WithoutFinalizer | 2.235 ns | 0.0422 ns | 1.00 |

 WithFinalizer | 153.198 ns | 1.7301 ns | 68.57 |

As you can see, WithFinalizer works ~70 times slower than WithoutFinalizer!

 Explanation

This is another example of how GC may affect performance measurements. In the

WithFinalizer benchmark, GC has much more work to do: it has to track all the

finalizers and execute them. In the preceding example, the finalizer does nothing, but it

doesn’t mean the GC can skip it.

 Discussion

It’s pretty hard to perform accurate measurements while GC collects nonreachable

objects and executes their finalizers. The GC in .NET is not deterministic. It means that

you can’t directly control when the finalizers should be executed. However, you can wait

until all the finalizers are finished. Here is the most common pattern for the ultimate GC

collect:

GC.Collect();

GC.WaitForPendingFinalizers();

GC.Collect();

Chapter 8 MeMory-Bound BenChMarks

570

Here we collect garbage, wait until all finalizers are executed, and collect garbage

(that we have after the finalization) again. This pattern can be useful when you want

to avoid the performance impact of collecting previously allocated objects during new

measurements.

This case study is based on the “Finalization Overhead” example from [Kokosa

2018a] (see Listing 12-11 therein).

 Summing Up
In this section, we discussed four case studies showing the impact of GC on application

performance. We talked about different GC modes, about the size of the nursery

generation in Mono, about the LOH in .NET Framework, and about the performance

impact of GC finalization.

During benchmarking, you should keep in mind the following facts:

• If you allocate objects, the measurements will be affected by the GC.

• In the general case, you can’t control GC and you can’t exclude the

GC overhead from your measurements. And this is OK: you shouldn’t

want to exclude the GC overhead, because it’s one of the essential

performance factors that affect all managed applications.

• If you have a huge standard deviation because of nondeterministic

GC, the best thing that you can do is increase the number of

iterations. This will help you to get “more stable” GC impact on the

measurements.

• Benchmarks with huge memory traffic are very sensitive to the GC

settings. Switching between different GC modes or tuning GC settings

may completely change the benchmark results.

It’s not always easy to write benchmarks with many object allocations because you

can’t control moments when the GC decides that you have to “repay your performance

loans.” Only knowledge of GC internals will help to correctly interpret the benchmark

results. In most cases, it’s enough to know the general concepts (GC impact on the

measurements, GC generations, LOH, finalizers, GC settings). Some special cases may

require deep knowledge of GC internals (here I want to recommend [Kokosa 2018a] one

more time) and good tools that help you to investigate different memory issues (e.g.,

PerfView or dotMemory).

Chapter 8 MeMory-Bound BenChMarks

571

 Summary
In this chapter, we covered three different topics that are related to the memory-bound

benchmarks:

• CPU Cache

When we perform read/write operations with the main

memory, CPU can accelerate these operations with the help

of CPU cache. It may significantly affect our performance

measurements because of different memory access patterns, size

and associativity of different CPU cache levels, and other cache-

specific effects like false sharing.

• Memory Layout

The alignment of the data (which we can’t always control) also

has a significant performance impact. Unaligned memory access,

cache banks conflicts, cache line splits, and 4K aliasing can spoil

your measurements when you don’t expect that.

• GC

GC also can unpredictably affect the performance measurements

because it’s nondeterministic and it can add overhead at random

moments. This overhead depends on the GC settings (like Server/

Workstation GC modes or mono nursery size) and internal GC

features (like the LOH or finalization).

Knowledge about these hardware and runtime features will help you to design

benchmarks and analyze their results better. The primary advice for this kind of

benchmark is the advanced exploration of the performance space: you should check

different sizes of the working memory, different access patterns, different memory

layouts, and different GC settings. Based on these configurations, you can make

conclusions that are valid not only for a specific benchmark, but for a variety of different

cases. The proper description of the performance space helps to extrapolate these results

and predict performance metrics in real applications based on individual benchmarks.

Chapter 8 MeMory-Bound BenChMarks

572

 References
[Akinshin 2018] Akinshin, Andrey. 2018. “Analyzing Distribution of Mono GC

Collections.” February 20. https://aakinshin.net/posts/mono-gc-collects.

[Bakhvalov 2018] Bakhvalov, Denis. 2018. “Store Forwarding by Example.” March 9.

https://dendibakh.github.io/blog/2018/03/09/Store-forwarding.

[Bray 2011] Bray, Brandon. 2011. “Large Object Heap Improvements in .NET 4.5.”

October 3. https://blogs.msdn.microsoft.com/dotnet/2011/10/03/large-object-

heap-improvements-in-net-4-5/.

[Dawson 2018a] Dawson, Bruce. 2018. “Zombie Processes Are Eating Your Memory.”

Random ASCII. https://randomascii.wordpress.com/2018/02/11/zombie-

processes-are-eating-your-memory/.

[Dawson 2018b] Dawson, Bruce. 2018. “24-Core CPU and I Can’t Type an Email (Part

One).” Random ASCII. https://randomascii.wordpress.com/2018/08/16/24-core-

cpu-and-i-cant-type-an-email-part-one/.

[Douillet 2018] Douillet, Nicolas. 2018. “Effects of CPU Caches.” April 6. https://

medium.com/@minimarcel/effect-of-cpu-caches-57db81490a7f.

[Drepper 2007] Drepper, Ulrich. 2007. “What Every Programmer Should Know About

Memory.” Red Hat, Inc 11 (July): 2007. https://people.freebsd.org/~lstewart/

articles/cpumemory.pdf.

[Goldshtein 2013] Goldshtein, Sash. 2013. “On ‘Stackalloc’ Performance and the Large

Object Heap.” October 17. http://blogs.microsoft.co.il/sasha/2013/10/17/on-

stackalloc-performance-and-the-large-object-heap/.

[Goldshtein 2016] Goldshtein, Sasha. 2016. “Windows Process Memory Usage

Demystified.” January 5. http://blogs.microsoft.co.il/sasha/2016/01/05/windows-

process-memory-usage-demystified/.

[Gregg 2018] Gregg, Brendan. 2018. “How to Measure the Working Set Size on Linux.”

January 17. www.brendangregg.com/blog/2018-01-17/measure-working-set-size.html.

[Hiroshi 2015] Inoue, Hiroshi, and Kenjiro Taura. 2015. “SIMD-and Cache-Friendly

Algorithm for Sorting an Array of Structures.” Proceedings of the VLDB Endowment 8 (11).

VLDB Endowment: 1274–85.

Chapter 8 MeMory-Bound BenChMarks

https://aakinshin.net/posts/mono-gc-collects
https://dendibakh.github.io/blog/2018/03/09/Store-forwarding
https://blogs.msdn.microsoft.com/dotnet/2011/10/03/large-object-heap-improvements-in-net-4-5/
https://blogs.msdn.microsoft.com/dotnet/2011/10/03/large-object-heap-improvements-in-net-4-5/
https://randomascii.wordpress.com/2018/02/11/zombie-processes-are-eating-your-memory/
https://randomascii.wordpress.com/2018/02/11/zombie-processes-are-eating-your-memory/
https://randomascii.wordpress.com/2018/08/16/24-core-cpu-and-i-cant-type-an-email-part-one/
https://randomascii.wordpress.com/2018/08/16/24-core-cpu-and-i-cant-type-an-email-part-one/
https://medium.com/@minimarcel/effect-of-cpu-caches-57db81490a7f
https://medium.com/@minimarcel/effect-of-cpu-caches-57db81490a7f
https://people.freebsd.org/~lstewart/articles/cpumemory.pdf
https://people.freebsd.org/~lstewart/articles/cpumemory.pdf
http://blogs.microsoft.co.il/sasha/2013/10/17/on-stackalloc-performance-and-the-large-object-heap/
http://blogs.microsoft.co.il/sasha/2013/10/17/on-stackalloc-performance-and-the-large-object-heap/
http://blogs.microsoft.co.il/sasha/2016/01/05/windows-process-memory-usage-demystified/
http://blogs.microsoft.co.il/sasha/2016/01/05/windows-process-memory-usage-demystified/
http://www.brendangregg.com/blog/2018-01-17/measure-working-set-size.html

573

[Intel OptManual] “Intel® 64 and IA-32 Architectures Optimization Reference Manual

(248966-033).” 2016. www.intel.com/content/dam/www/public/us/en/documents/

manuals/64-ia-32-architectures-optimization-manual.pdf.

[Jainam M. 2017] M., Jainam. 2017. “Understanding False Sharing.” March 17. https://

parallelcomputing2017.wordpress.com/2017/03/17/understanding-false-

sharing/.

[Jones 2016] Jones, Richard, Antony Hosking, and Eliot Moss. 2016. The Garbage

Collection Handbook: The Art of Automatic Memory Management. Chapman; Hall/CRC.

[Kalapos 2018] Kalapos, Gergely. 2018. “Struct Layout in C# - .NET Concept

of the Week - Episode 13.” May 11. https://kalapos.net/Blog/ShowPost/

DotNetConceptOfTheWeek13_DotNetMemoryLayout.

[Kokosa 2018a] Kokosa, Konrad. 2018. Pro .NET Memory Management: For Better Code,

Performance, and Scalability. 1st ed. Apress. https://prodotnetmemory.com/.

[Kokosa 2018b] Kokosa, Konrad. 2018. “War Story – the Mystery of the Very Long GC

Pauses in .NET Windows Service.” December 13. http://tooslowexception.com/

scenario-mystery-of-the-very-long-gc-pauses-in-net-windows-service/.

[Kulukundis 2017] Kulukundis, Matt. 2017. “Designing a Fast, Efficient, Cache-Friendly

Hash Table, Step by Step.” presented at the CppCon 2017, September 27. www.youtube.

com/watch?v=ncHmEUmJZf4.

[Lemarchand 2018] Lemarchand, Remi. 2018. “The Mysterious Case of the 1 Minute

Pauses.” Remi’s World. https://theonlinedebugger.blogspot.com/2018/11/the-

mysterious-case-of-1-minute-pauses.html.

[Lemirer 2012] Lemire, Daniel. 2012. “Data Alignment for Speed: Myth or Reality?” May

31. https://lemire.me/blog/2012/05/31/data-alignment-for-speed-myth-or-

reality/.

[Lemirer 2018] Lemire, Daniel. 2018. “Don’t Make It Appear Like You Are Reading Your

Own Recent Writes.” January 4. https://lemire.me/blog/2018/01/04/dont-make-it-

appear-like-you-are-reading-your-own-recent-writes/.

[Majkowski 2018] Majkowski, Marek. 2018. “Every 7.8us Your Computer’s Memory Has a

Hiccup.” November 23. https://blog.cloudflare.com/every-7-8us-your-computers-

memory-has-a-hiccup/.

[Mendola 2008] Mendola, Gaetano. 2008. May 31. http://cpp-today.blogspot.

com/2008/05/false-sharing-hits-again.html.

Chapter 8 MeMory-Bound BenChMarks

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://parallelcomputing2017.wordpress.com/2017/03/17/understanding-false-sharing/
https://parallelcomputing2017.wordpress.com/2017/03/17/understanding-false-sharing/
https://parallelcomputing2017.wordpress.com/2017/03/17/understanding-false-sharing/
https://kalapos.net/Blog/ShowPost/DotNetConceptOfTheWeek13_DotNetMemoryLayout
https://kalapos.net/Blog/ShowPost/DotNetConceptOfTheWeek13_DotNetMemoryLayout
https://prodotnetmemory.com/
http://tooslowexception.com/scenario-mystery-of-the-very-long-gc-pauses-in-net-windows-service/
http://tooslowexception.com/scenario-mystery-of-the-very-long-gc-pauses-in-net-windows-service/
https://www.youtube.com/watch?v=ncHmEUmJZf4
https://www.youtube.com/watch?v=ncHmEUmJZf4
https://theonlinedebugger.blogspot.com/2018/11/the-mysterious-case-of-1-minute-pauses.html
https://theonlinedebugger.blogspot.com/2018/11/the-mysterious-case-of-1-minute-pauses.html
https://lemire.me/blog/2012/05/31/data-alignment-for-speed-myth-or-reality/
https://lemire.me/blog/2012/05/31/data-alignment-for-speed-myth-or-reality/
https://lemire.me/blog/2018/01/04/dont-make-it-appear-like-you-are-reading-your-own-recent-writes/
https://lemire.me/blog/2018/01/04/dont-make-it-appear-like-you-are-reading-your-own-recent-writes/
https://blog.cloudflare.com/every-7-8us-your-computers-memory-has-a-hiccup/
https://blog.cloudflare.com/every-7-8us-your-computers-memory-has-a-hiccup/
http://cpp-today.blogspot.com/2008/05/false-sharing-hits-again.html
http://cpp-today.blogspot.com/2008/05/false-sharing-hits-again.html

574

[MONODOCS SGen] “Generational GC.” Mono Docs. www.mono-project.com/docs/

advanced/garbage-collector/sgen/.

[Morter 2013] Morter, Chris. 2013. “Large Object Heap Compaction: Should You Use It?”

October 2. www.red-gate.com/simple-talk/dotnet/net-framework/large-object-

heap-compaction-should-you-use-it/.

[MSDOCS GC Fundamentals] “Fundamentals of Garbage Collection.” Microsoft Docs.

https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/

fundamentals.

[Sandler 2008] Sandler, Alexander. 2008. “Aligned Vs. Unaligned Memory Access.” June 3.

www.alexonlinux.com/aligned-vs-unaligned-memory-access.

[Sumedh 2013] Sumedh. 2013. “Coding for Performance: Data Alignment and

Structures.” September 26. https://software.intel.com/en-us/articles/coding-

for-performance-data-alignment-and-structures.

[Wakart 2013] Wakart, Nitsan. 2013. “Using JMH to Benchmark Multi-Threaded Code.”

May 15. http://psy-lob-saw.blogspot.com/2013/05/using-jmh-to-benchmark-

multi-threaded.html.

[Wong 2014] Wong, Henry. 2014. “Store-to-Load Forwarding and Memory

Disambiguation in X86 Processors.” January 9. http://blog.stuffedcow.net/2014/01/

x86-memory-disambiguation/.

Chapter 8 MeMory-Bound BenChMarks

http://www.mono-project.com/docs/advanced/garbage-collector/sgen/
http://www.mono-project.com/docs/advanced/garbage-collector/sgen/
https://www.red-gate.com/simple-talk/dotnet/net-framework/large-object-heap-compaction-should-you-use-it/
https://www.red-gate.com/simple-talk/dotnet/net-framework/large-object-heap-compaction-should-you-use-it/
https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/fundamentals
https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/fundamentals
http://www.alexonlinux.com/aligned-vs-unaligned-memory-access
https://software.intel.com/en-us/articles/coding-for-performance-data-alignment-and-structures
https://software.intel.com/en-us/articles/coding-for-performance-data-alignment-and-structures
http://psy-lob-saw.blogspot.com/2013/05/using-jmh-to-benchmark-multi-threaded.html
http://psy-lob-saw.blogspot.com/2013/05/using-jmh-to-benchmark-multi-threaded.html
http://blog.stuffedcow.net/2014/01/x86-memory-disambiguation/
http://blog.stuffedcow.net/2014/01/x86-memory-disambiguation/

575
© Andrey Akinshin 2019
A. Akinshin, Pro .NET Benchmarking, https://doi.org/10.1007/978-1-4842-4941-3_9

CHAPTER 9

Hardware
and Software Timers

A man with a watch knows what time it is. A man with two watches is
never sure.

—Segal’s law

There are a lot of useful benchmarking tools that can simplify your benchmarking life,

but they are usually optional. You can use them or not depending on your preferences.

But there is one tool that is essential for benchmarking: the timestamping API (methods

that help you to get the current time). You can’t write a benchmark if you can’t get a

timestamp. It’s critical to understand what kind of APIs you have on your system, how

these APIs work internally, and what the main properties of these APIs are. Of course,

you can write a benchmark without this knowledge. However, in-depth understanding

of the hardware and software timers allows you to design better benchmarks, control the

accuracy level, and avoid timestamping pitfalls. In this chapter, we are going to cover the

following topics:

• Terminology

We will learn the basic terms that are widely used in discussions

about timers: time units, frequency units, tick generator,

quantizing errors, resolution, granularity, latency, precision,

accuracy, and so on.

576

• Hardware timers

We will cover the most used hardware components that provide

timestamping capabilities: TSC, ACPI PM, and HPET. We

will discuss the history and internals of these timers, the

corresponding low-level API for getting timestamps, and how to

switch between different time sources.

• OS timestamping API

The operating systems have native timestamping API, which can

be used in different programming platforms including .NET. We

will learn what kind of API we have on Windows, Linux, and

macOS.

• .NET timestamping API

We will discuss three primary APIs that can be used in

.NET Framework, .NET Core, and Mono: DateTime.UtcNow,

Environment.TickCount, Stopwatch.GetTimestamp. We will learn

how to use them, how they are implemented internally, and how

to benchmark their resolution and latency.

• Timestamping pitfalls

We will discuss the most common mistakes that developers

usually make during timestamping with each kind of .NET

timestamping API.

I want to be sure that we are speaking the same language, so let’s discuss some

essential terms first.

 Terminology
In this book, we use a lot of specific terms and specific notation. Sometimes, these terms

confuse people. In this section, we will briefly cover the basic concepts:

• Time units: d, h, m, s, ms, μs, ns, ps

• Frequency units: THz, GHz, MHz, kHz, Hz, mHz, μHz, nHz

Chapter 9 hardware and Software timerS

577

• Main components of a hardware timer: tick generator, tick counter,

and tick counter API

• Ticks and quantizing errors: how computers work with

discrete time

• Basic timer characteristics: nominal frequency, actual frequency,

nominal reciprocal frequency, nominal resolution, nominal granularity,

actual reciprocal frequency, actual resolution, actual granularity,

maximum frequency offset, timestamp latency, access time, timer

overhead, precision, random errors, accuracy, systematic error.

It’s very important to understand all the terms and symbols.

 Time Units
You can’t talk about time if you don’t know basic time units, which help you to measure

time intervals. I hope you understand what a second means; it’s the base unit of time

in the International System of Units (SI). The exact actual definition according to the

National Institute of Standards and Technology is the following:

One second is the duration of 9 192 631 770 periods of the radiation corre-
sponding to the transition between the two hyperfine levels of the ground
state of the cesium 133 atom.

Of course, you don’t need to remember this definition for benchmarking; the usual

domestic understanding used in civilian timekeeping will be enough. However, if you

are curious why we have this definition (why 9,192,631,770 and why the cesium 133

atom), and if you are also interested in the history of timekeeping and the corresponding

technical concepts, it’s worth reading [Jones 2000].

In SI, there are some additional time units that are commonly used by software

engineers. The most useful of them (with corresponding symbols and equivalents in

seconds) are presented in Table 9-1.

Chapter 9 hardware and Software timerS

578

Someone may think that microsecond, nanosecond, and picosecond are

very small time units and that we don’t need them in real life. They are indeed very

small. A picosecond relates to a second as a second relates to 31710 years! However,

sometimes we should care about small time units like microseconds in real software

(e.g., see [Cook 2017]). When we are writing benchmarks, we often need nanoseconds,

a typical time unit for short code snippets. Many single CPU instructions take even less

than 1 nanosecond, so picoseconds are also useful.

Common symbols for time and time intervals are t and T. Thus, if you see T=5s, it

can mean “the time interval is equal to 5 seconds.”

There are a couple of things that usually confuse people:

• Papers, articles, blog posts, and other texts about general topics

usually use the day, hour, min/minutes, sec/second terms, which

are widely used and understandable to everyone. In texts about

time measurements and performance, we often use the d, h, m, and s

symbols instead (to be short).

• The standard SI unit for microseconds is μs. Unfortunately, there is

no μ1 character on a typical keyboard. Also, you can have encoding

troubles with this character in some text editors and terminals. Thus,

developers often use the us symbol instead.

1 Unicode Character ‘GREEK SMALL LETTER MU’ (U+03BC), ASCII code 230. You can type it via
Alt+230 on Windows, Option+m on macOS, Ctrl+Shift+u00b5 on Linux.

Table 9-1. Time Units

Unit Symbol Duration in seconds

day d (day) 86400

hour h (hour) 3600

minute m (min) 60

Second s (sec) 1

millisecond ms 10−3

microsecond us (μs) 10−6

nanosecond ns 10−9

picosecond ps 10−12

Chapter 9 hardware and Software timerS

579

There are also some informal time units that you may meet in different blog posts:

• jiffy: a short period of time with an unspecified length

• flick2: a time unit which was introduced by Oculus,

1 flick = 1/705600000 second.

Now it’s time to talk about frequency units, which can be easily expressed via

time units.

 Frequency Units
When we are talking about timer properties, there is another handy term: frequency. The

frequency unit is 1 Hertz (Hz). If the frequency of some event is n Hz, it means that the

event occurs n times per second. Thus, 1 Hz = 1/second = 1 second−1. Each frequency

value corresponds to a time period. For example, 20 Hz corresponds to 50 ms because

20 20
1

20
1000

1
50

Hz
s ms ms

= = =

Some additional useful frequency units (with corresponding time periods) are

presented in Table 9-2.

2 https://github.com/OculusVR/Flicks

Table 9-2. Frequency Units

Unit Symbol Value in Hz Time period

terahertz thz 1012 1ps

Gigahertz Ghz 109 1ns

megahertz mhz 106 1us

Kilohertz khz 103 1ms

hertz hz 1 1s

millihertz mhz 10−3 103s

microhertz uhz (μhz) 10−6 106s

nanohertz nhz 10−9 109s

Chapter 9 hardware and Software timerS

https://github.com/OculusVR/Flicks

580

The common symbol for frequency is f. If we want to calculate the frequency of an

event, we should divide the number of events by a time interval that contains all these

events. For example, if something happens 42 times per day, it means that the frequency

of the e ollows:

f
d s

s= = » =-42
1

42
86400

0 000486 4861. mHz

The term “frequency” is widely used in many physics and engineering disciplines.

Here are some famous examples:

• Humans can hear sounds with frequencies between 20 Hz

and 20 kHz.

• Visible spectrum (the part of the electromagnetic spectrum that is

visible to the human eye) is about 430..770 THz. The frequency range

for the color yellow is about 508..526 THz.

• 440 Hz is the frequency of the musical note of A above middle C (A440,

the pitch standard).

• Communication with submarines uses extremely low frequency:

from 3 to 30 Hz.

• Shortwave radio uses frequencies in the range 1.6..30 MHz.

• The frequency of a typical microwave oven is about 2.45 GHz.

• The most popular WiFi frequencies are about 2.4 GHz (802.11b/g/n/

ax) and 5 GHz (802.11a/h/j/n/ac/ax).

If we are talking about waves and we want to draw these waves on a plot, frequency

can be easily compared at a glance. Look at Figure 9-1. Here we have three waves with

different frequencies:

 (a) Let’s say that the first wave is a “reference” wave with frequency 1x

 (b) The second wave frequency is twice (2x) that of the reference one

 (c) The third wave has frequency = 8x (eight times more than the

reference one; four times more than the second frequency)

As you can see, we can compare frequencies of different waves by a picture (even if

we don’t know the exact value of the reference frequency x).

Chapter 9 hardware and Software timerS

581

The term “frequency” is also very useful for describing one of the most basic timer

properties. Let’s look at how we can use it for describing characteristics of hardware

timers.

 Main Components of a Hardware Timer
Real time is continuous. Unfortunately, it’s impossible to work with continuous time and

measure arbitrary time intervals. Any time measurements are based on hardware timers.

You may think about a hardware timer as being composed of the following three parts

(see Figure 9-2).

• Tick generator. This is a piece of hardware that generates a special

kind of events (ticks) at a constant frequency. In practice, the

generator frequency can be changeable, but in most cases, it’s easier

to imagine that the frequency is fixed. Typically, the generator is

implemented with the help of a crystal oscillator (a small piece of

quartz or other ceramic material).

Figure 9-1. Three waves with different frequencies

Chapter 9 hardware and Software timerS

582

• Tick counter. In modern computers, there is no data type that

expresses the actual time. We can only emulate it with basic data

types like int or long. Hardware timers use a tick counter, which is

basically an integer value that counts how many ticks are generated

by the tick generator. Each tick corresponds to a time interval (again,

it’s easier to imagine that each tick corresponds to the same fixed

time interval). Thus, the number of ticks can be converted to a time

interval.

• Tick counter API. This is a programming interface that allows getting

the current value of a tick counter from your software.

Figure 9-2. Components of a hardware timer

This construction allows measuring any time interval (with some limitations, which

will be discussed soon). Usually, the tick duration is fixed and pretty small, and it’s

described in the timer documentation, or it can be obtained with the help of another

API. Sometimes developers use the term “jiffy” for the duration of 1 tick.

Chapter 9 hardware and Software timerS

583

An example. Let’s say that we can get the tick counter value via the

GetCurrentTicks() method and the frequency of our tick generator is 64 Hz. This

means that one tick is (1/64) s = 0.015625 s = 15.625 ms. Here is an example of

measurements:

int startTicks = GetCurrentTicks(); // 100 ticks

SomeLogic(); // Actual time: 0.5 s

int endTicks = GetCurrentTicks(); // 132 ticks

int elapsedTicks = endTicks - startTicks; // 32 ticks

double ticksInSec = 1.0 / 64.0; // 1 tick = 0.015625 s

double elapsedTimeInSec = // Measure elapsed time

 elapsedTicks * ticksInSec; // 32 * 0.015625 s = 0.5s

Here the SomeLogic() method takes 0.5 seconds, but we don’t know this in

advance; we want to get this value in the program. We get two timestamps (by calling

GetCurrentTicks()): before and after the method invocation. Let’s say the first value is

100 ticks, and the second one is 132 ticks. The difference between these timestamps

is 32 ticks. We can easily convert ticks to seconds because we know the frequency

(64 Hz):

ElapsedTime Ticks

Hz
= × = × = × =

1 32 1
64

32 15 625 0 5
f

ms s. . .

AN EXERCISE

Let’s say frequency = 500 Hz, startTicks = 1280, endTicks = 1301. what is the

value of the elapsed time in milliseconds?

I hope you solved this without any problems. It looks pretty easy, eh? However, it’s

not always as easy as in these examples. The tick-based approach has some problems,

and one of the main problems is quantizing errors.

Chapter 9 hardware and Software timerS

584

 Ticks and Quantizing Errors
Thus, on the hardware level, we have discrete time (expressed in ticks) instead of

continuous time. This time mapping (real time → number of ticks) is called quantization.

The quantization process adds quantizing errors in our measurements. Let’s figure out

what that means with some examples.

 Examples

Consider the three different measurements shown in Figure 9-3. In all these cases, we

have two timestamps (A and B) and we are trying to measure the time between them.

All timestamps are expressed in ticks, and we will use 1 tick as the time unit. For each

timestamp, we will look at the actual and measured values. Here the measured value

is always an integer (because the tick counter holds this value as an integer value); the

actual time is expressed by a fractional number (it’s a theoretical value that uniquely

corresponds to a specific moment on the actual timeline).

Figure 9-3. Quantizing errors

Chapter 9 hardware and Software timerS

585

• Case 1. Actual(A) = 1.2 ticks, Actual(B) = 1.8 ticks. Because

of the quantization, in both cases we have the same value of the

tick counter: Measured(A) = Measured(B) = 1 tick. If we try to

calculate the elapsed time based on these measurements, we get

Measured(B) - Measured(A) = 0 ticks. The actual elapsed time is 0.6

ticks, but we just can’t measure it because it’s too small.

• Case 2. Actual(A) = 0.8 ticks, Actual(B) = 1.2 ticks,

Measured(A) = 0 ticks, Measured(B) = 1 tick. The actual elapsed

time is 0.4 ticks (smaller than in case 1), but the measured elapsed

time is 1 tick (bigger than in case 1). Thus, we can’t compare

measured time intervals without knowledge about quantizing errors.

If one measured interval is bigger than another, it doesn’t mean that

it’s true for the actual time intervals!

• Case 3. Actual(A) = 0.2 ticks, Actual(B) = 1.8 ticks,

Measured(A) = 0 ticks, Measured(B) = 1 tick. The actual elapsed

time is 1.6 ticks (much bigger than in case 2), but the measured

elapsed time is 1 tick (the same as in case 1). If two measured

intervals are equal, the actual intervals may differ by up to 2 ticks.

Thus, the hardware time quantizing error is ±1 tick. Now we have to learn a few

more terms in order to to describe errors.

 Basic Timer Characteristics
There are many terms for describing basic timer characteristics. In this subsection, we

are going to cover the following group of terms:

• Nominal and actual frequency, resolution, and granularity

• Frequency offset

• Timestamp latency, access time, and timer overhead

• Precision and accuracy

Chapter 9 hardware and Software timerS

586

 Nominal and actual frequency, resolution, and granularity

You may think that the minimum achievable positive difference between two

timestamps is 1 tick. However, this is not always true. It’s better to say that this

difference is not less than 1 tick. A tick is the measurement unit of a timer, but it doesn’t

mean that you are always able to measure a 1 tick interval. For example, 1 tick for

DateTime is 100 ns, but it’s impossible to measure so small an interval with the help of

DateTime (read more in the next section).

We can have some terminology troubles with the frequency term here. Sometimes

“frequency” means how many ticks we have in 1 second. This is the nominal frequency.

Sometimes “frequency” means how many counter increments we have per one second.

This is the actual frequency.

If we have a value for frequency, we can calculate reciprocal frequency. The formula

is simple: <reciprocal frequency> = 1 / <frequency>. Thus, if we are talking about

the nominal frequency, the nominal reciprocal frequency is the duration of 1 tick. If we

are talking about the actual frequency, the actual reciprocal frequency is the time interval

between two sequential counter increments.

An example. The Stopwatch.Frequency value is the nominal stopwatch frequency

because it can be used only for calculation of the 1 tick duration. There is nothing

about it in the specification and the documentation, so it can return any value. And we

can’t make any conclusions about the actual Stopwatch frequency based on this value.

For example, Stopwatch.Frequency in Mono is always 10000000.

“Reciprocal frequency” may sound clumsy, so we have another handy term:

resolution. Unfortunately, here we also have some troubles with the definition.

Sometimes people say “Resolution” and mean the duration of 1 tick. This is the

nominal resolution. Sometimes people say “Resolution” and mean the minimum

positive interval between two different measurements. This is the actual resolution.

There is another term for resolution: granularity. Usually, people use both words

as synonyms (so, we can also talk about the nominal granularity and the actual

granularity), but more often the granularity describes the actual reciprocal frequency

(the actual resolution) instead of the 1 tick duration.

If we actually can measure the 1 tick interval, everything is OK. There is no

difference between nominal and actual values: they are equal. Thus, people often say

just “frequency” or “resolution” without any prefixes. However, if the actual resolution is

more than 1 tick, there may be troubles with terminology. Be careful and always look at

the context.

Chapter 9 hardware and Software timerS

587

An example. The standard value of DateTime.Ticks is 100 ns. On modern versions

of Windows, the default timer frequency (which is responsible for DateTime.Now) is

64 Hz. Thus, the actual resolution is the following:

ActualResolution

ActualFrequency Hz
ms n= = = =

1 1
64

15 625 15625000. ss ticks=156250 .

Let’s look once again on all these values:

NominalResolution = 100 ns

ActualResolution = 15.625 ms

NominalFrequency = 10 MHz

ActualFrequency = 64 Hz

As you can see, it’s important to distinguish between the nominal and actual values.

 Frequency offset

As it was mentioned before, it’s easy to think that the frequency is fixed. Usually, this

assumption doesn’t affect the calculations. However, it’s good to know that the frequency

may differ from the declared value. In this case, the actual frequency may differ from the

declared value by the so-called maximum frequency offset, which is expressed in parts

per million (ppm, 10−6).

An example. The declared timer frequency is 2 GHz with a maximum frequency

offset of 70ppm. This means that the actual frequency should be in the range

1,999,930,000 Hz..2,000,070,000 Hz. Let’s say we measure a time interval, and

the measured value is 1 second (or 2,000,000,000 ticks). If the actual frequency is

1,999,930,000 Hz, the actual time interval is:

ElapsedTime ticks

ticks
= »

2 000 000 000
1 999 930 000

1 000035001
/ sec

. 2225sec.

If the actual frequency is 2,000,070,000 Hz, the actual time interval is:

ElapsedTime ticks

ticks
= »

2 000 000 000
2 000 070 000

0 999965001
/ sec

. 2225sec.

Chapter 9 hardware and Software timerS

588

Thus, the actual value of the measured interval (assuming there are no other errors)

is in range 0.999965001225 sec..1.000035001225 sec.

Once again: usually we shouldn’t care about it because other errors have a greater

impact on the final error.

 Timestamp latency, access time, and timer overhead

When we discussed Figure 9-3, the timestamps were shown as instant events. In fact, a

call of a timestamping API method also takes some time. Sometimes it interacts with the

hardware, and such a call can be quite expensive. You may find different terms for this

value: timestamp latency, access time, or timer overhead. All of these terms usually mean

the same thing: a timer interval between two moments, calling a timestamping API and

getting the value.

 Precision and accuracy

There are two more important terms: precision and accuracy.

Precision (or random error) is the maximum difference between different

measurements of the same time interval. Precision describes how repeatable

measurements are. In other words, precision is defined by random errors of measured

values around the actual value.

Accuracy (or systematic error) is the maximum difference between the measured

value and the actual value.

In most cases, the timestamp latency is negligibly small compared to the actual

resolution. However, sometimes the latency is huge, and it can affect total accuracy. We

can say that the accuracy, in this case, is the sum of the latency and the resolution.

An example. On Windows 10 with enabled HPET (read more in further sections), the

frequency of Stopwatch is 14.31818 MHz, and the latency of Stopwatch.GetTimestamp()

is about 700 ns. It’s easy to calculate the Stopwatch resolution: (1/14318180)

second≈70 ns. Unfortunately, the latency is much bigger, so it’s impossible to actually

measure 70 ns intervals:

 Accuracy Latency Resolution ns ns ns» + » + »700 70 770 .

Chapter 9 hardware and Software timerS

589

A typical measurement for such situation is presented in Figure 9-4.

Thus, if you want to calculate the accuracy level, you should know both values: the

actual resolution and the timestamp latency.

People often confuse resolution, precision, and accuracy. Let’s look at the difference

with a simple example.

An example. We have a timer with frequency = 100 Hz (this means that 1 sec = 100

ticks). We are trying to measure an exactly 1 second interval five times. Here are our

results: 119 ticks, 121 ticks, 122 ticks, 120 ticks, 118 ticks. In this case:

• Resolution is the smallest difference between two measured values.

We can’t get a difference less than 1 tick (because we are working

with an integer number of ticks), and we can get exactly 1 tick (the

actual and nominal resolution are equal). Thus, the resolution is

exactly 1 tick or 10 ms.

• Accuracy is the difference between actual and measured values. The

actual value is 100 ticks, and the average of all measurements is 120

ticks. Thus, the accuracy is approximately equal to 20 ticks or 200 ms.

• Precision is the maximum difference between measurements that

correspond to the same actual value. We measure exactly 1 second

each time, but get different values (for example, because of the

frequency offset): from 118 ticks to 122 ticks. Thus, precision is

approximately equal to 4 ticks or 40 ms.

Figure 9-4. Small resolution and big latency

Chapter 9 hardware and Software timerS

590

Thus, we get

Resolution = 10 ms

Accuracy = 200 ms

Precision = 40 ms

As we can see, all three terms define different values. However, people confuse them

because very often we can observe the same values in all cases. Precision is limited by

nominal resolution (we can’t get a precision of less than 1 tick). Accuracy is limited

by precision and actual resolution (if the difference between measurements of the

same value if x, accuracy can’t be less than x). Usually, if we work with a high-precision

timer and a low access time, precision, resolution, and accuracy have the same order

(sometimes these values can be equal). So, if everyone knows the context (exact values of

all timer properties), the terms can replace each other (e.g., we can say “precision level”

instead of “accuracy level” because they are the same). Formally, this is wrong. Despite

this, people do it anyway. If you read a description of some measurements, always look

at the context and be ready for incorrect statements.

 Summing Up
In this section, we learned the following terms:

• Time unit: a unit for time measurement. The basic time unit is 1

second, but benchmarks often operate with very small units like

1 microsecond (10−6 seconds, notation: μs or us) or 1 nanosecond

(10−9seconds, notation: ns). Commonly used time units: d, h, m, s, ms,

μs, ns, ps. Common symbols for time and time intervals are t and T.

There are some informal time units like “jiffy,” which means a short

period of time with unspecified length, but developers often use it to

denote the duration of 1 tick.

• Frequency unit: a unit for frequency measurements, reciprocal of time

unit: 1 Hz = 1 second−1 Commonly used frequency units: nHz, μHz,

mHz, Hz, kHz, MHz, GHz, THz. The common symbol for frequency is f.

• Tick generator: a piece of hardware that generates a special kind of

event (ticks) at a constant frequency.

Chapter 9 hardware and Software timerS

591

• Tick counter: an integer counter that holds the number of

elapsed ticks.

• Tick counter API: a programming interface that allows getting the

current value of a tick counter from your software.

• Hardware timer: a combination of a tick generator, a tick counter, and

tick counter API.

• Quantization: a mapping from real continuous time to discrete time

(number of ticks).

• Quantizing errors: errors that are introduced by quantization (we

can’t express real time by an integer value).

• Nominal frequency: how many ticks we have in 1 second.

• Actual frequency: how many counter increments we have in 1 second.

• Nominal reciprocal frequency, nominal resolution, nominal

granularity: duration of 1 tick.

• Actual reciprocal frequency, actual resolution, actual granularity: the

minimum positive interval between two different measurements.

• Maximum frequency offset: a difference between actual and declared

frequency.

• Timestamp latency, access time, timer overhead: duration of a tick

counter API call that returns the current value of a tick counter.

• Precision, random errors: the maximum difference between different

measurements of the same time interval.

• Accuracy, systematic error: the maximum difference between the

measured and actual value.

Now we know basic terminology. In the next section, we will use these terms to

discuss the origin of the tick generators: hardware timers.

Chapter 9 hardware and Software timerS

592

 Hardware Timers
All of the timestamp methods use hardware in one way or another. So, first of all, we have

to learn which hardware timers we have and how they can be used. In this section, we

will cover the following timers:

• TSC (Time Stamp Counter)

• HPET (High Precision Event Timer)

• ACPI PM (Power Management Timer)

We will also talk about

• A brief history of the different kinds of these timers

• Basic timer properties (like actual frequency and timestamp latency)

on different hardware

• How to work with TSC directly from C#

• How to switch between TSC, HPET, and ACPI PM on Windows

and Linux

• What problems we might have with each timer

 TSC
TSC is a common abbreviation for Time Stamp Counter. It is an internal 64-bit

register that has been presented on all x86 processors since the Pentium. The TSC is an

independent counter and can’t be affected by changes in the current system time. It

keeps monotonically increasing values of ticks; the tick duration depends on the CPU

model. The TSC frequency is usually close to the nominal CPU frequency.

The value of the TSC can be read into EDX:EAX registers using the RDTSC instruction.

The opcode for this instruction is 0F 31 ([Intel Manual], Vol. 2B 4-545). C# and other

.NET languages are high level, so we are not typically working directly with assembly

opcodes (because we have the powerful BCL, which contains managed wrappers for all

useful functions). However, if you really want to do it, there are some special tricks. For a

better understanding of internals, we will learn how to get the value of the TSC without

standard .NET classes. On Windows, it can be read directly from C# code with the help of

the following assembly injection:

Chapter 9 hardware and Software timerS

593

const uint PAGE_EXECUTE_READWRITE = 0x40;

const uint MEM_COMMIT = 0x1000;

[DllImport("kernel32.dll", SetLastError = true)]

static extern IntPtr VirtualAlloc(IntPtr lpAddress,

 uint dwSize,

 uint flAllocationType,

 uint flProtect);

static IntPtr Alloc(byte[] asm)

{

 var ptr = VirtualAlloc(IntPtr.Zero,

 (uint)asm.Length,

 MEM_COMMIT,

 PAGE_EXECUTE_READWRITE);

 Marshal.Copy(asm, 0, ptr, asm.Length);

 return ptr;

}

delegate long RdtscDelegate();

static readonly byte[] rdtscAsm =

{

 0x0F, 0x31, // RDTSC

 0xC3 // RET

};

static void Main()

{

 var rdtsc = Marshal

 .GetDelegateForFunctionPointer<RdtscDelegate>(Alloc(rdtscAsm));

 Console.WriteLine(rdtsc());

}

Chapter 9 hardware and Software timerS

594

Let’s discuss this code in detail.

• For an assembly injection, we need the VirtualAlloc function

from kernel32.dll. This function will help us to manually allocate

memory in the virtual address space of the current process.

• The Alloc function takes a byte array with assembly instruction

opcodes, allocates memory with the help of VirtualAlloc, copies

the opcodes there, and returns a pointer to the address of the

allocated and filled memory chunk. The penultimate argument of

VirtualAlloc (flAllocationType) is responsible for what we are

going to do with this memory: MEM_COMMIT means that we are going

to commit memory changes. The last argument of VirtualAlloc

(flProtect) is responsible for the memory protection mode: PAGE_

EXECUTE_READWRITE means that we can execute code directly from

the allocated pages.

• We define a signature for the new managed rdtsc function via

RdtscDelegate (it doesn’t have any arguments and returns a long

value).

• The rdtscAsm array contains all the target assembly opcodes: 0F 31

for RDTSC and C3 for RET.

• The Main method uses Marshal.GetDelegateForFunctionPointer

for converting an unmanaged function pointer to a delegate. The

generic overload is supported only in the .NET Framework 4.5.1 and

later versions. The argument of this method is Alloc(rdtscAsm):

here we take the byte array with the assembly opcodes and transform

it into an IntPtr, which points to a piece of memory with these

opcodes.

This approach allows calling RDTSC from the managed code. Usually, it’s not a

good idea to do so because there are a lot of troubles with the TSC that can spoil your

measurements (many of them will be covered soon). Operating systems have special

APIs that allow getting high-precision timestamps without assembly injection and direct

knowledge about TSC. These APIs protect you from problems that you can get with the

direct RDTSC call. However, sometimes the described assembly injection can be useful for

research and diagnostics.

Chapter 9 hardware and Software timerS

595

If you want to read the TSC value directly via the RDTSC instruction, you should know

that the processor can reorder your instructions and spoil your measurements. From

[Intel Manual], Vol. 3B 17-41, section 17.15:

The RDTSC instruction is not serializing or ordered with other instructions.
It does not necessarily wait until all previous instructions have been exe-
cuted before reading the counter. Similarly, subsequent instructions may
begin execution before the RDTSC instruction operation is performed.

We can find a classic way to solve this problem in [Agner Optimizing Assembly]

(section 18.1):

On all processors with out-of-order execution, you have to insert XOR
EAX,EAX/CPUID before and after each read of the counter to prevent it from
executing in parallel with anything else. CPUID is a serializing instruction,
which means that it flushes the pipeline and waits for all pending opera-
tions to finish before proceeding. This is very useful for testing purposes.

In [Agner Optimizing Cpp] (section 16, “Testing Speed”), you can find a C++ example

of direct RDTSC call with a memory barrier via CPUID.

There is another timestamping native instruction which prevents instruction

reordering: RDTSCP. It also reads the TSC value, but it waits until all previous instructions

have been executed before reading the counter. From [Intel Manual], Vol. 2B 4-545:

If software requires RDTSC to be executed only after all previous instruc-
tions have completed locally, it can either use RDTSCP (if the processor sup-
ports that instruction) or execute the sequence LFENCE;RDTSC.

You can use RDTSCP instead of RDTSC and not be afraid of out-of-order execution. In

addition to TSC reading, RDTSCP also reads the processor ID, but you don’t need it for

time measurements.

Now let’s talk about the RDTSCP access time. In Table 9-3, you can see the list of

reciprocal RDTSC throughputs (CPU clock cycles) for different processors (the data is

taken from [Agner Instructions]).

Chapter 9 hardware and Software timerS

596

Table 9-3. Reciprocal Throughput of RDTSC on Different Processors

Processor Name Reciprocal throughput

amd K7 11

amd K8 7

amd K10 67

amd Bulldozer 42

amd pilediver 42

amd Steamroller 78

amd Bobcat 87

amd Jaguar 41

intel pentium m, Core Solo, Core duo 42

intel pentium 4 80

intel pentium 4 w. em64t (prescott) 100

intel Core 2 (merom) 64

intel Core 2 (wolfdale) 32

intel nehalem 24

intel Sandy Bridge 28

intel ivy Bridge 27

intel haswell 24

intel Broadwell 24

intel Skylake 25

intel SkylakeX 25

How can we interpret these numbers? Let’s say that we have Intel Haswell (our

reciprocal throughput is 24) with fixed CPU frequency = 2.2G Hz. So, 1 CPU clock

cycle is about 0.45 ns (this is our resolution). We can say that a RDTSC invocation

takes approximately 24 × 0.45ns ≈ 10.8ns (for RDTSC, we can assume that latency is

approximately equal to reciprocal throughput).

Chapter 9 hardware and Software timerS

597

You can also evaluate the throughput of RDTSC on your machine. Download testp.

zip3 from the Agner Fog site, build it, and run misc_int.sh1. Here are typical results for

Intel Haswell:

rdtsc Throughput

Processor 0

Clock Core cyc Instruct Uops uop p0 uop p1 uop p2

 1686 2384 100 1500 255 399 0

 1686 2384 100 1500 255 399 0

 1686 2384 100 1500 255 399 0

 1686 2384 100 1500 254 399 0

 1686 2384 100 1500 255 399 0

 1686 2384 100 1500 255 399 0

 1686 2384 100 1500 255 399 0

 1686 2384 100 1500 254 399 0

 1686 2384 100 1500 255 399 0

 1686 2384 100 1500 255 399 0

Here we have 2384 CPU cycles per 100 RDTSC instructions, which means

approximately 24 CPI.

On modern hardware and modern operating systems, TSC works very well, but it has

a long history,4 and people often consider TSC as an unreliable source of timestamps.

Let’s discuss different generations of TSC and problems that we can get with it (you can

find more information about it in [Intel Manual], Vol. 3B 17-40, section 17.16).

Generation 1: Variant TSC

The first version of TSC (see the list of the processor’s families in [Intel Manual], Vol. 3B

17-40, section 17.16) was very simple: it just counted internal processor clock cycles.

This is not a good way to measure time on modern hardware because the processor

can dynamically change its own frequency (e.g., the SpeedStep and Turbo Boost

technologies by Intel).

There is another problem: each processor core has its own TSC, and these TSCs are

not synchronized. If a thread starts a measurement on one core and ends on another

3 http://www.agner.org/optimize/testp.zip
4 https://stackoverflow.com/a/19942784

Chapter 9 hardware and Software timerS

http://www.agner.org/optimize/testp.zip
https://stackoverflow.com/a/19942784

598

core, the obtained result can’t be reliable. For example, there is a nice bug report on

support.microsoft.com (see [MSSupport 895980]); the author had the following output

for the ping command:

C:\>ping x.x.x.x

Pinging x.x.x.x with 32 bytes of data:

Reply from x.x.x.x: bytes=32 time=-59ms TTL=128

Reply from x.x.x.x: bytes=32 time=-59ms TTL=128

Reply from x.x.x.x: bytes=32 time=-59ms TTL=128

Reply from x.x.x.x: bytes=32 time=-59ms TTL=128

The cause:

This problem occurs when the computer has the AMD Cool’n’Quiet technology

(AMD dual cores) enabled in the BIOS or some Intel multicore processors. Multicore or

multiprocessor systems may encounter TSC drift when the times between different cores

are not synchronized. Operating systems that use TSC as a timekeeping resource may

experience this issue.

If you want to use TSC on old hardware/software, it’s a good idea to set the processor

affinity of your thread or process. If you are working with native code, you can do it via

SetThreadAffinityMask on Windows or sched_setaffinity on Linux. In managed C#

code, you can use the ProcessorAffinity property of the process like this:

IntPtr affinityMask = (IntPtr) 0x0002; // Second core only

Process.GetCurrentProcess().ProcessorAffinity = affinityMask;

Fortunately, we don’t have these problems on modern hardware because the TSC

internals were significantly improved.

Generation 2: Constant TSC

Constant TSC is the next generation of TSC; it solves the dynamic frequency problem by

incrementing at a constant rate. This is a good step forward, but Constant TSC still has

some issues (e.g., it could be stopped when CPU runs into deep C-state; read more in

[Kidd 2014]). These problems were solved in the next incarnation of TSC.

Chapter 9 hardware and Software timerS

599

Generation 3: Invariant TSC

Invariant TSC, the latest version of the counter, works well. A quote from [Intel

Manual]:

The invariant TSC will run at a constant rate in all ACPI P-, C-. and T-states.
This is the architectural behavior moving forward. On processors with
invariant TSC support, the OS may use the TSC for wall clock timer services
(instead of ACPI or HPET timers).

You can check which kind of TSC you have with the help of the CPUID opcode.

Fortunately, you don’t need to write another assembly injection for that because there

are existing tools that can detect the TSC kind. On Windows, you can check it via the

Coreinfo5 utility (a part of the Sysinternals Suite):

Here is a partial output example with TSC-specific lines:

Coreinfo v3.31 - Dump information on system CPU and memory topology

Copyright (C) 2008-2014 Mark Russinovich

Sysinternals - www.sysinternals.com

Intel(R) Core(TM) i7-6700HQ CPU @ 2.60GHz

Intel64 Family 6 Model 94 Stepping 3, GenuineIntel

RDTSCP * Supports RDTSCP instruction

TSC * Supports RDTSC instruction

TSC-INVARIANT * TSC runs at constant rate

This tells us that both RDTSC and RDTSCP are supported and the invariant TSC is

available. You can do the same thing on Linux with the following command:

$ cat /proc/cpuinfo | tr ' ' '\n' | sort -u | grep -i "tsc"

If RDTSC, RDTSCP, and the invariant TSC are available, you should have the following

lines in the output:

constant_tsc

nonstop_tsc

rdtscp

tsc

5 https://docs.microsoft.com/en-us/sysinternals/downloads/coreinfo

Chapter 9 hardware and Software timerS

https://docs.microsoft.com/en-us/sysinternals/downloads/coreinfo

600

The invariant TSC is indicated by a combination of constant_tsc (synchronization

between cores) and nonstop_tsc (power management independence) flags.

In most cases, you can trust Invariant TSC and use it as a wall-clock timer for

high-precision measurements. In rare cases, you can still have some problems (like

synchronization problems on large multiprocessor systems), but you typically shouldn’t

worry about it. Nowadays, Invariant TSC is a very popular kind of TSC; you can find it in

most modern Intel processors.

Now we know some basic information about different generations of TSC, assembly

instructions for getting counter values, how to call it from the managed C# code, and

what kinds of problems we may have with the TSC. But there are also other hardware

timers.

 HPET and ACPI PM
Along with TSC, many processors have two additional timers: HPET and ACPI PM.

These are also independent counters that can’t be affected by changes in the current

system time.

HPET is the High-Precision Event Timer. HPET was designed by Microsoft and AMD

to replace old timers like TSC and be the main timer for high-precision measurements.

However, HPET didn’t become the main timer, mainly because of the huge access time.

On modern hardware and operating systems, HPET is usually disabled (the invariant

TSC is used as the primary timestamp source), but it’s usually possible to enable it (if you

want it for some reason).

According to [HPET Specifications], section 2.2, the minimum HPET clock frequency

is 10 MHz, but the actual HPET frequency is always 14.31818 MHz (the origin of this

number is explained in the “History of Magic Numbers” section).

ACPI PM is a timer in the power management system. The most common

abbreviations are ACPI PM and ACPI PMT. ACPI means Advanced Configuration and

Power Interface, and PMT means Power Management Timer. However, it’s common to

call it ACPI PM, PMC, or just Power Management Timer.

According to [ACPI Specifications] (section 4.8.2.1), the frequency of this timer is

always 3.579545 MHz. Both HPET and ACPI PM use the same master oscillator crystal

(14.31818 MHz is 4-3.579545 MHz). Consequently, ACPI PM also has a huge access time.

The operating system has the “primary” hardware timer, which is used by default for

timestamping. Typically, the default is TSC, but you can change this value manually.

Chapter 9 hardware and Software timerS

601

On Windows, you can enable or disable HPET with the help of the bcdedit6 utility.

For enabling, you should run it with /set useplatformclock true arguments and

reboot your computer.

:: Enable HPET (reboot is required):

bcdedit /set useplatformclock true

This sets the useplatformclock value in Boot Manager, which requires HPET

instead of TSC. If you don’t want to use it anymore, you should delete this value

by /deletevalue and reboot:

:: Disable HPET (reboot is required):

bcdedit /deletevalue useplatformclock

If you want to check whether HPET is enabled or not, you should look for

useplatformclock in the output of the following command:

bcdedit /enum

On Linux, all the time source–related files are typically placed in /sys/devices/

system/clocksource/clocksource0/. You can look at the full list of available clock

sources in available_clocksource. For example, I have TSC, HPET, and ACPI PM on my

Linux laptop:

Get available clocksource:

$ cat /sys/devices/system/clocksource/clocksource0/available_clocksource

tsc hpet acpi_pm

The current clock source can be find in current_clocksource:

Get current clocksource:

$ cat /sys/devices/system/clocksource/clocksource0/current_clocksource

tsc

6 A command-line tool for managing Boot Configuration Data (BCD). You can find more
information about in https://docs.microsoft.com/en-us/windows-hardware/manufacture/
desktop/bcdedit-command-line-options and https://msdn.microsoft.com/en-us/library/
windows/hardware/ff542202.aspx

Chapter 9 hardware and Software timerS

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/bcdedit-command-line-options
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/bcdedit-command-line-options
https://msdn.microsoft.com/en-us/library/windows/hardware/ff542202.aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff542202.aspx

602

This value can be easily changed. For example, for enabling HPET, you should run the

following:

Set current clocksource:

$ sudo /bin/sh -c \

 'echo hpet > /sys/devices/system/clocksource/clocksource0/current_clocksource'

Usually, HPET is disabled, but you shouldn’t assume that TSC is always the default.

For example, you can meet enabled HPET on many legacy servers (which didn’t have

OS reinstallation for several years). It can be also enabled manually for some specific

scenarios or because of the bugs.7

 History of Magic Numbers
We already know that the HPET frequency is 14.31818 MHz and that the ACPI PM

frequency is 3.579545 MHz. Why are these numbers used for hardware timers? If we

want to understand this, we have to take an intriguing history lesson (you can skip it if

you don’t like history).

In 1950, the National Television System Committee (NTSC) started to construct

a new standard for color television. This standard was approved in 1953. It was a

complicated technical task because the new standard had to be backward compatible

with old black-and-white television (B&W TV). The new standard uses the luminance-

chrominance encoding system: a color image is represented as a sum of luminance and

chrominance signals. The luminance signal corresponds to the monochrome signal

in B&W TV, so that B&W TV could accept the new standard. The chrominance signal

contains only information about color (two additional signals with different phases).

Now let’s solve a simple task: we should choose the chrominance signal frequency fc

(also known as color subcarrier frequency) which doesn’t affect B&W TV. Consider

several basic conditions that we should satisfy.

Condition 1 “Bandwidth for the chrominance signal”

The frequency of chrominance signal fc should be as high as possible: it allows getting

small noise structure. By the American standard, the maximum video frequency is

fmax=4.18 MHz. After a series of experiments, it turned out that the difference fmax − fc

7 For example, there was a firmware bug in CentOS 7: “available_clocksource” contained only
“hpet acpi_pm” without “tsc”. The discussion is here: https://stackoverflow.com/q/45803565

Chapter 9 hardware and Software timerS

https://stackoverflow.com/q/45803565

603

can’t be less than 0.6 MHz (otherwise, we will get image distortions). Thus, we have the

following requirement:

 f fcmax - ³ 0 6. MHz

Now we have the upper limit for fc:

 fc £ 3 58. MHz

Condition 2 “Line frequency”

To minimize the visibility of the color subcarrier on B&W screens, its frequency should

be chosen as an odd half-integer multiple of the horizontal line rate fh:

f n f
c

h= +()2 1
2

Thanks to this, the chrominance signal peaks would fit neatly between the

luminance signal peaks, which minimizes the interference. In case of an even multiplier

2n, we get a strong noise pattern (a set of vertical lines).

Condition 3 “Audio signal”

We also have to minimize the interference between the audio signal (sound carrier) and

the chrominance signal (chrominance carrier). So, we have to introduce an additional

requirement (by analogy with Condition 2) for the distance between the sound carrier

spacing fΔs and the frequency of chrominance carrier fc:

f f m f

s c
h

D - = +()2 1
2

Substituting (2n + 1) ⋅ fh/2 for fc, we get

f m f n f

s
h h

D = +() + +()2 1
2

2 1
2

It follows that

f
f

m n ks

h

D = + + =1

where k is an integer number.

Chapter 9 hardware and Software timerS

604

The original standard had a frame rate of 30 Hz with 525 lines per frame (15750 lines

per second). This number was chosen because of the vacuum-tube-based technology

limitations of the day. Thus, the original horizontal line rate was fh=15750 Hz. By the

American standard for B&W TV, the sound carrier spacing fΔs between the audio and

video frequency is exactly 4.5 MHz. Thereby, we have

f
f
s

h

D = »
4 5
15750

285 714285714. . .MHz
Hz

To minimize interference between audio and color video signals, fΔs/fh should be an

integer number. It was decided to make fΔs 286th harmonic of fh (286 is the closest integer

number to 285.714285714). However, we can’t change the audio carrier frequency (the

legacy TV receivers will not decode it), but we can change the horizontal line frequency!

It’s easy to calculate the new horizontal line rate:

f f
h

s= =
286

15734 26573. .Hz

The frequency reduction coefficient is 15750 Hz/15734.26573 Hz≈ 1.001. An

interesting implication from this is that now we have 29.97 Hz as the frame rate instead

of 30 Hz and 59.94 Hz as the field frequency instead of the common 60 Hz.8

Condition 4 “Simple construction”

We also want to have an oscillator that is easy to implement. It is easier to create frequency

divider chains when (2n+1) is a product of small prime numbers. We know that

f n f
c

h= +()2 1
2
.

From fc ≤ 3.58 MHz and fh = 15734.26573 Hz, we have

2 1 2 2 3580000

15734 26573
455 0578n f

f
h

h

+ = £ »
.

.
.Hz

Hz

8 It’s a special kind of fun to convert “24 frames per second” films to the 59.94 Hz NTSC video
standard. Long story short, it requires slowing the film motion by 1/1000 to 23.976 frames per
second, which increases a 1.5-hour film by 5.4 seconds. Google for “Three-two pull down.”

Chapter 9 hardware and Software timerS

605

We know that the chrominance signal frequency fc should be as high as possible. The

maximum possible value for (2n+1) (which should be an odd integer number) is 455.

This is a great number because it has small frequency divisors, namely, 5, 7, and 13:

 2 1 5 7 13 455n +() = × × = .

Solution

Hooray, now we can calculate fc , which became the default NTSC color burst frequency:

f n f
c

h= +() = × »2 1
2

455 15734 26573
2

3 579545. . .Hz MHz

If you like the history of television, you can also find a lot of interesting technical

details in [Schlyter] and [Stephens 1999]. The 3.579545 MHz value had a significant

impact on modern hardware timers. But how? Well, it’s time to learn more about one of

the first clock oscillators: the Intel 8284 clock oscillator.

Let’s remember some old-fashioned processor models and clock oscillators. Intel

8284 is a clock oscillator for Intel 8086/8088 microprocessors. By specification, the

maximum frequency for 8088 is 5 MHz. The signal should have 33.3% duty clock cycle

(1/3 of the time high; 2/3 of the time low), so the original signal should be around

15 MHz (we can get 5 MHz by dividing the original frequency by 3).

At that time, it was a common practice to use TVs instead of monitors. Thus, the

Color Graphics Adapter (CGA) required the 3.579545 MHz signal for creating the NTSC

color subcarrier.

Also, it was expensive to have several crystal oscillators on the same chip. It was

decided to use the same crystal for both CGA and CPU. Thereby, the master oscillator

has the 14.31818 MHz frequency (4× NTSC). It allows getting 3.579545 MHz for CGA

video controller (dividing the master frequency by 4) and 4.77272666 MHz for CPU

(dividing it by 3). Yes, it was less than the 5 MHz limit (4.6% performance drop), but it’s

a good trade-off that allowed producing cheap CPU chips. You can find this story in a

blog post by Tim Paterson (the original author of MS-DOS) (see [Paterson 2009]). Also,

it is worth it to read the same story by Calvin Hsia (see [Hsia 2004]). Some additional

technical information about Intel 8284 can be found in [Karna 2017] and [Govindarajalu

2002].

Chapter 9 hardware and Software timerS

606

Now we can understand the origin of ACPI PM and HPET frequencies. The ACPI PM

reuses the 3.579545 MHz NTSC frequency because we already have hardware support for

this. HPET has a the minimum frequency requirement: 10 MHz. Since it was expensive

to introduce an additional oscillator for HPET, it was decided to reuse the 14.31818 MHz

frequency, which is also already implemented at the hardware level. Another hardware

timer affected by these magic numbers is the PIT (Programmable Interval Timer) (also

known as Intel 8253/8254 chip). The frequency of this timer is 1.193182 MHz. It uses

the same 14.31818 MHz master frequency, which is divided by 12, so it’s compatible

with CGA (CGA Frequency = 3 * PIT Frequency) and CPU (CPU Frequency = 4 * PIT

Frequency).

 Summing Up
At the present time, the most popular and reliable hardware timer is TSC. You can read

the value of the TSC via the RDTSC instruction, which has a high resolution and a low

latency. However, you don’t want to use it directly in general because there are a lot of

problems with TSC. Here is a summary:

• Some old processors don’t have TSC registers.

• The processor can change the frequency and affect the old version

of TSC.

• There are synchronization problems on multicore systems.

• Even if we have Invariant TSC, there are still synchronization

problems on large multiprocessor systems.

• Some processors can execute RDTSC out of order.

Thus, a direct RDTSC call is not a good choice for time measurements in general,

because you can’t be sure in advance that it produces reliable measurements.

Fortunately, modern operating systems provide nice APIs that allow getting the most

reliable timestamps for your current hardware.

TSC is not the only tick generator; there are also ACPI PM, and HPET. You can meet ACPI

PM (frequency = 3.579545 MHz) or HPET (frequency = 14.31818 MHz) even on modern

versions of Windows or Linux, but they are not popular because of the high latency.

Now we know the basic hardware sources of ticks. In the next section, we are going to

learn different ways to get tick values from the software.

Chapter 9 hardware and Software timerS

607

 OS Timestamping API
We already know about hardware timers and how to use them. However, it’s not a good

idea to interact with them directly: it requires knowledge of these timers on different

hardware and deep understanding of what can go wrong for all target environments.

Fortunately, operating systems introduce a higher level of abstraction by providing

special APIs.

There are three main groups of timestamping APIs on Windows:

• System timer

 – GetSystemTime: Retrieves the current system date and time in coordinated

universal time (UTC) format as SYSTEMTIME.

 – GetLocalTime: Retrieves the current local date and time as SYSTEMTIME.

 – GetSystemTimeAsFileTime: Retrieves the current system date and time in

UTC format as FILETIME.

• System ticks

 – GetTickCount: Retrieves the number of milliseconds that have elapsed

since the system was started. The first version returns a 32-bit number up to

49.7 days.

 – GetTickCount64: 64-bit version of GetTickCount

• High-resolution timer

 – QueryPerformanceCounter and QueryPerformanceFrequency: Retrieves the

current value and the frequency of the performance counter, which is a

high-resolution timestamp that can be used for time interval

measurements.

 – KeQueryPerformanceCounter: An analogue of QueryPerformanceCounter

that can be used in device drivers (kernel-mode API).

 – GetSystemTimePreciseAsFileTime: Retrieves the current system date and

time with the highest possible level of precision.

Chapter 9 hardware and Software timerS

608

The second group (System ticks) is not very interesting,9 so we are going to focus

on the first and third groups (system timer and high-resolution timer), which will be

covered in the next two subsections.

We will also discuss some Unix timestamping APIs like clock_gettime, clock_

settime, clock_getres, mach_absolute_time, mach_timebase_info, gethrtime, read_

real_time, gettimeofday, and settimeofday.

 Timestamping API on Windows: System Timer
On Windows, there are several types of time representations. Here are two of the most

popular options:

• SYSTEMTIME: Specifies a date and time, using individual members

for the month, day, year, weekday, hour, minute, second, and

millisecond. The time is either in UTC or local time, depending on

the function that is being called.

• FILETIME: Contains a 64-bit value representing the number of

100-nanosecond intervals since January 1, 1601 (UTC).

If we want to know what time is it now (and don’t need high-resolution

measurements), Windows provides another useful mechanism called system timer.

The primary API is the GetSystemTimeAsFileTime function. It returns FILETIME, which

represents the current system date and time in the UTC format. If we want to get this

value as SYSTEMTIME, we can also use GetSystemTime: it works slowly, but it returns the

current date and time in a well-suited format. You can convert FILETIME to SYSTEMTIME

manually with the help of FileTimeToSystemTime. If we want to get the local date and

time (instead of UTC), we can use the GetLocalTime function.

All of the preceding APIs use the Windows system timer internally. It’s important to

understand the resolution of this timer, how the resolution can be changed, and how this

can affect your application.

9 It’s useful only for some specific situations, and there is no really interesting information about it.
We will discuss it in the next section because it’s the underlying API for Environment.TickCount
on Windows.

Chapter 9 hardware and Software timerS

609

 System timer and its resolution

The actual resolution of the system timer may take different values. You can easily get the

configuration of your OS with the help of the ClockRes10 utility (a part of the Sysinternals

Suite). Here is a typical output on modern versions of Windows:

> Clockres.exe

Clockres v2.1 - Clock resolution display utility

Copyright (C) 2016 Mark Russinovich

Sysinternals

Maximum timer interval: 15.625 ms

Minimum timer interval: 0.500 ms

Current timer interval: 1.000 ms

First of all, look at the maximum timer interval: it equals to 15.625 ms (this

corresponds to a frequency of 64 Hz). This is the default DateTime resolution when

we don’t have any nonsystem running applications. This value can be changed

programmatically by any application. In the preceding example, the current timer

interval is 1 ms (frequency = 1000 Hz). However, there are limits for this value: the

minimum timer interval equals 0.5 ms (frequency = 2000 Hz) and the maximum is

15.625 ms. The current timer interval may take its value only from the specified range.

This is a typical configuration for the modern version of Windows. However, you can

observe other resolution values on the older version of Windows. Here are two examples:

• Windows 95/98/Me: 55 ms (We already discussed this value in the

“Hardware Timers” section; we have it thanks to the NTSC)

• Windows NT/2000/XP: 10 ms or 15 ms

You can also find a lot of useful information about different configurations in [The

Windows Timestamp Project].

10 https://docs.microsoft.com/en-us/sysinternals/downloads/clockres

Chapter 9 hardware and Software timerS

https://docs.microsoft.com/en-us/sysinternals/downloads/clockres

610

 System timer resolution API

So, how can the timer resolution be changed? There are some Windows APIs that

can be used:

• timeBeginPeriod, timeEndPeriod from winmm.dll

• NtQueryTimerResolution, NtSetTimerResolution from ntdll.dll

You can use it directly from C#; here is a helper class for you:

public struct ResolutionInfo

{

 public uint Min;

 public uint Max;

 public uint Current;

}

public static class WinApi

{

 [DllImport("winmm.dll",

 EntryPoint = "timeBeginPeriod",

 SetLastError = true)]

 public static extern uint TimeBeginPeriod(uint uMilliseconds);

 [DllImport("winmm.dll",

 EntryPoint = "timeEndPeriod",

 SetLastError = true)]

 public static extern uint TimeEndPeriod(uint uMilliseconds);

 [DllImport("ntdll.dll", SetLastError = true)]

 private static extern uint NtQueryTimerResolution

 (out uint min,

 out uint max,

 out uint current);

 [DllImport("ntdll.dll", SetLastError = true)]

 private static extern uint NtSetTimerResolution

 (uint desiredResolution,

Chapter 9 hardware and Software timerS

611

 bool setResolution,

 ref uint currentResolution);

 public static ResolutionInfo QueryTimerResolution()

 {

 var info = new ResolutionInfo();

 NtQueryTimerResolution(out info.Min,

 out info.Max,

 out info.Current);

 return info;

 }

 public static ulong SetTimerResolution(uint ticks)

 {

 uint currentRes = 0;

 NtSetTimerResolution(ticks, true, ref currentRes);

 return currentRes;

 }

}

The ResolutionInfo data structure represents the minimum, maximum, and

current resolution of the system timer. In the WinApi static class, we import four target

functions from winmm.dll and ntdll.dll. The custom methods QueryTimerResolution

and SetTimerResolution are just wrappers for the imported NtQueryTimerResolution

and NtSetTimerResolution.

Now let’s play a little bit with this class. First of all, we can write our own ClockRes

based on the described API:

var resolutionInfo = WinApi.QueryTimerResolution();

Console.WriteLine($"Min = {resolutionInfo.Min}");

Console.WriteLine($"Max = {resolutionInfo.Max}");

Console.WriteLine($"Current = {resolutionInfo.Current}");

Output (without any running apps):

Min = 156250

Max = 5000

Current = 156250

Chapter 9 hardware and Software timerS

612

The only difference between ClockRes and our program is that ClockRes prints time

in milliseconds, while we print time in 100 ns units. Max = 5000 means MaxResolution =

5000 * 100 ns = 0.5 ms.

Now, let’s manually check that resolutionInfo.Current is the actual resolution of

DateTime. Here is a very simple code that shows observed DateTime behavior:

// DateTimeResolutionObserver

for (int i = 0; i < 5; i++)

{

 DateTime current = DateTime.UtcNow;

 DateTime last = current;

 while (last == current)

 current = DateTime.UtcNow;

 TimeSpan diff = current - last;

 Console.WriteLine(diff.Ticks);

}

Here we save the current value of DateTime.UtcNow in current, and then we wait for

another DateTime.UtcNow value in the while loop (by updating the last variable). This

is not the most beautiful and correct way to get the DateTime resolution, but it’s a simple

program that should be affected by the actual DateTime resolution.

Typical output (without any running apps):

155934

156101

156237

156256

156237

Here is the output for case resolutionInfo.Current = 5000:

5574

4634

5353

5014

4271

Chapter 9 hardware and Software timerS

613

As you can see, the received numbers are not exactly equal to 156250 or 5000. So, the

difference between two sequential different DateTime values is approximately equal to

the current timer interval.

PLAY WITH WINAPI CLASS

• run ClockRes on your system. next, get the minimum, maximum, and current

resolution of the system timer from C# code.

• try to increase or decrease the current resolution via SetTimerResolution.

Check the new resolution value via api and via DateTimeResolutionObserver.

• try to change the current resolution via TimeBeginPeriod/TimeEndPeriod

functions.

• try to set the current resolution to an invalid value (less than minimum or

bigger than maximum).

it will probably be hard to change this value because other applications already requested high

timer frequency. So, it’s a good idea to terminate them before the experiments. But how do we

know which applications changed the resolution? the powercfg utility will help us!

 System timer analysis: powercfg

Let’s say your current timer interval is not the maximum timer interval. How do you

know what’s to blame? Which program increased the system timer frequency? You can

check it with the help of powercfg. This is a command-line utility that helps to control

power system settings. Typically, you can find it in C:\Windows\System32\powercfg.exe.

Let’s check how it works. Run the following command as administrator:

> powercfg -energy duration 10

This command will monitor your system for 10 seconds and generate an HTML

report (energy-report.html in the current directory) with a lot of useful information

including information about the platform timer resolution. Here is an example of output:

Platform Timer Resolution:Platform Timer Resolution

The default platform timer resolution is 15.6ms (15625000ns)

Chapter 9 hardware and Software timerS

614

and should be used whenever the system is idle. If the timer

resolution is increased, processor power management technologies

may not be effective. The timer resolution may be increased due

to multimedia playback or graphical animations.

 Current Timer Resolution (100ns units) 5003

 Maximum Timer Period (100ns units) 156250

Platform Timer Resolution: Outstanding Timer Request

A program or service has requested a timer resolution smaller

than the platform maximum timer resolution.

 Requested Period 5000

 Requesting Process ID 6676

 Requesting Process Path

 \Device\HarddiskVolume4\Users\akinshin\ConsoleApplication1.exe

Platform Timer Resolution: Outstanding Timer Request

A program or service has requested a timer resolution smaller

than the platform maximum timer resolution.

 Requested Period 10000

 Requesting Process ID 10860

 Requesting Process Path

 \Device\HarddiskVolume4\Program Files (x86)\Mozilla Firefox\firefox.exe

As you can see, the default interval is 15.6 ms, Firefox requires a 1.0 ms interval,

and ConsoleApplication1.exe in the home directory (which just calls WinApi.

SetTimerResolution(5000)) requires a 0.5 ms interval. ConsoleApplication1.exe

won; now we have the maximum possible platform timer frequency.

AN EXERCISE

run all your favorite applications and monitor your system for 10 seconds via powercfg. Look

at the report and find all applications which have requested small timer resolution.

And we have one more topic that is related to the system timer: Thread.Sleep.

Chapter 9 hardware and Software timerS

615

 System timer and Thread.Sleep

All this sounds very interesting, but where is the practical value? Why should we care

about the system timer resolution? Here I want to ask you a question: what does the

following call do?

Thread.Sleep(1);

Somebody might probably answer: it suspends the current thread for 1 ms.

Unfortunately, that is not the correct answer. The documentation states the following:

The actual timeout might not be exactly the specified timeout, because the
specified timeout will be adjusted to coincide with clock ticks.

In fact, the elapsed time depends on system timer resolution. Let’s write another

naive benchmark (we don’t need any accuracy here; we just want to show the Sleep

behavior in a simple way, so we don’t need usual benchmarking routines here like a

warm-up, statistics, and so on):

for (int i = 0; i < 5; i++)

{

 var stopwatch = Stopwatch.StartNew();

 Thread.Sleep(1);

 stopwatch.Stop();

 var time = stopwatch.ElapsedTicks * 1000.0 / Stopwatch.Frequency;

 Console.WriteLine(time + " ms");

}

This code just tries to measure the duration of Thread.Sleep(1) with the help of

Stopwatch five times. Typical output for current timer interval = 15.625 ms:

14.8772437280584 ms

15.5369201880125 ms

18.6300283418281 ms

15.5728431635545 ms

15.6129649284456 ms

Chapter 9 hardware and Software timerS

616

As you can see, the elapsed intervals are much more than 1 ms. Now, let’s run Firefox

(which sets the interval to 1 ms) and repeat this stupid benchmark:

1.72057056881932 ms

1.48123957592228 ms

1.47983997947259 ms

1.47237546507424 ms

1.49756820116866 ms

Firefox affected the Sleep call and reduced the elapsed interval by ~10 times. You

can find a good explanation of the Sleep behavior in [The Windows Timestamp Project]:

Say the ActualResolution is set to 156250, the interrupt heartbeat of the sys-
tem will run at 15.625 ms periods or 64 Hz, and a call to Sleep is made with
the desired delay of 1 ms. Two scenarios are to be looked at:

• The call was made < 1ms (ΔT) ahead of the next interrupt. The next

interrupt will not confirm that the desired period of time has expired.

Only the following interrupt will cause the call to return. The resulting

sleep delay will be ΔT + 15.625ms.

• The call was made ≥ 1ms (ΔT) ahead of the next interrupt. The

next interrupt will force the call to return. The resulting sleep delay will

be ΔT.

There are many other Sleep “features,” but they are beyond the scope of this book. Of

course, there is another Windows API that depends on the system timer resolution (e.g.,

WaitableTimer). We will not discuss this class in detail; I just want to recommend once

again that you read it in [The Windows Timestamp Project].

 Timestamping API on Windows: QPC
The primary APIs for high-resolution timestamping on Windows are

QueryPerformanceCounter (QPC) and QueryPerformanceFrequency (QPF). QPC is

completely independent of the system time and UTC (it is not affected by daylight

savings time, leap seconds, or time zones). If you need high-resolution time-of-day

measurements, use GetSystemTimePreciseAsFileTime (available since Windows 8 /

Windows Server 2012). Thus, it is the best option if you want to measure the duration of

an operation.

Chapter 9 hardware and Software timerS

617

Here are some important facts about QPC and different versions of Windows:

• QPC is available on Windows XP and Windows 2000 and works well

on most systems. However, some hardware systems’ BIOS did not

indicate the hardware CPU characteristics correctly (a noninvariant

TSC), and some multicore or multiprocessor systems used processors

with TSCs that could not be synchronized across cores. Systems

with flawed firmware that run these versions of Windows might not

provide the same QPC reading on different cores if they used the TSC

as the basis for QPC.

• All computers that shipped with Windows Vista and Windows Server

2008 used the HPET or the ACPI PM as the basis for QPC.

• The majority of Windows 7 and Windows Server 2008 R2 computers

have processors with constant-rate TSCs and use these counters as

the basis for QPC.

• Windows 8, Windows 8.1, Windows Server 2012, and Windows Server

2012 R2 use TSCs as the basis for the performance counter.

There are two main functions for high-resolution timestamps in kernel32.dll that

can be imported to C# program with the following lines:

[DllImport("kernel32.dll")]

static extern bool QueryPerformanceCounter(out long value);

[DllImport("kernel32.dll")]

static extern bool QueryPerformanceFrequency(out long value);

As you can guess from the title, QueryPerformanceCounter allows getting counter

value (via out long value), and QueryPerformanceFrequency allows getting the tick

generator frequency. But how does it work? Let’s find out!

Chapter 9 hardware and Software timerS

618

Consider a simple program:

static void Main()

{

 long ticks;

 QueryPerformanceCounter(out ticks);

}

[DllImport("kernel32.dll")]

static extern bool QueryPerformanceCounter(out long value);

Build this in Release-x64 and open the executable in WinDbg. There is a difference

between x86 and x64 asm code, but x64 asm code will be enough to understand what’s

going on. Let’s set a breakpoint on KERNEL32!QueryPerformanceCounter (bp command)

and go to it (g command). For simplification, address prefixes like 00007ff are removed

from the listings:

> bp KERNEL32!QueryPerformanceCounter

> g

KERNEL32!QueryPerformanceCounter:

e6ccbb720 jmp qword ptr [KERNEL32!QuirkIsEnabled2Worker+0x9ec8 (e6cd16378)]

 ds:00007ffe6cd16378={ntdll!RtlQueryPerformanceCounter (e6d83a7b0)}

If you are not able to set a breakpoint to KERNEL32!QueryPerformanceCounter, you

can try to use KERNEL32!QueryPerformanceCounterStub (different versions of Windows

have different naming styles):

> bp KERNEL32!QueryPerformanceCounterStub

> g

KERNEL32!QueryPerformanceCounterStub:/

f431f5750 jmp qword ptr [KERNEL32!_imp_QueryPerformanceCounter (f43255290)]

 ds:00007fff43255290={ntdll!RtlQueryPerformanceCounter (f45300ff0)}

KERNEL32!QueryPerformanceCounter (or KERNEL32!QueryPerformanceCounterStub)

just redirects us to ntdll!RtlQueryPerformanceCounter. Let’s look at the

disassembly of this method (uf command):

> uf ntdll!RtlQueryPerformanceCounter

Chapter 9 hardware and Software timerS

619

ntdll!RtlQueryPerformanceCounter:

e6d83a7b0 push rbx

e6d83a7b2 sub rsp,20h

; Checking special flag

e6d83a7b6 mov al,byte ptr [SharedUserData+0x3c6 (e03c6)]

e6d83a7bd mov rbx,rcx

e6d83a7c0 cmp al,1

e6d83a7c2 jne ntdll!RtlQueryPerformanceCounter+0x44 (e6d83a7f4)

; The fast rdtsc version

ntdll!RtlQueryPerformanceCounter+0x14:

e6d83a7c4 mov rcx,qword ptr [SharedUserData+0x3b8 (e03b8)]

e6d83a7cc rdtsc

e6d83a7ce shl rdx,20h

e6d83a7d2 or rax,rdx

e6d83a7d5 mov qword ptr [rbx],rax

e6d83a7d8 lea rdx,[rax+rcx]

e6d83a7dc mov cl,byte ptr [SharedUserData+0x3c7 (e03c7)]

e6d83a7e3 shr rdx,cl

e6d83a7e6 mov qword ptr [rbx],rdx

ntdll!RtlQueryPerformanceCounter+0x39:

e6d83a7e9 mov eax,1

e6d83a7ee add rsp,20h

e6d83a7f2 pop rbx

e6d83a7f3 ret

; The slow syscall version

ntdll!RtlQueryPerformanceCounter+0x44:

e6d83a7f4 lea rdx,[rsp+40h]

e6d83a7f9 lea rcx,[rsp+38h]

e6d83a7fe call ntdll!NtQueryPerformanceCounter (e6d8956f0)

e6d83a803 mov rax,qword ptr [rsp+38h]

e6d83a808 mov qword ptr [rbx],rax

e6d83a80b jmp ntdll!RtlQueryPerformanceCounter+0x39 (e6d83a7e9)

Chapter 9 hardware and Software timerS

620

There is a special flag in [SharedUserData+0x3c6 (e03c6)] that determines which

QPC algorithm will be used. If everything is fine (we are working on modern hardware

with invariant TSC, and we can directly use it), we are going to the fast algorithm

 (ntdll!RtlQueryPerformanceCounter+0x14). Otherwise, we are going to call ntdll!NtQ

ueryPerformanceCounter, which produces a syscall:

> uf ntdll!NtQueryPerformanceCounter

ntdll!NtQueryPerformanceCounter:

e6d8956f0 mov r10,rcx

e6d8956f3 mov eax,31h

e6d8956f8 test byte ptr [SharedUserData+0x308 (e0308)],1

e6d895700 jne ntdll!NtQueryPerformanceCounter+0x15 (e6d895705)

ntdll!NtQueryPerformanceCounter+0x12:

e6d895702 syscall

e6d895704 ret

ntdll!NtQueryPerformanceCounter+0x15:

e6d895705 int 2Eh

e6d895707 ret

Here is an important fact about the fast algorithm (ntdll!RtlQueryPerformance

Counter+0x14): it directly calls RDTSC without any syscalls. It allows achieving low latency

for simple situations (when we really can use TSC without any troubles).

Another interesting fact: QPC uses a shifted value of RDTSC: it puts the full value of the

counter in rdx, and then it performs shr rdx,cl (where cl typically equals to 0xA). Thus,

one QPC tick equals to 1024 rdtsc ticks. We can say the same thing about QPF: nominal

Windows frequency for high-precision measurements is 1024 times less than the RDTSC

frequency.

A remark: in the modern world, versions of Windows are changing very quickly,

so you can get different asm on different versions of Windows and hardware.

AN EXERCISE

try to repeat this experiment on your machine and explain the assembly code that you get.

Chapter 9 hardware and Software timerS

621

 Timestamping API on Unix
On Unix, there are many different time functions:

• Linux: clock_gettime, clock_settime, clock_getres11

• macOS: mach_absolute_time, mach_timebase_info12

• Oracle Solaris: gethrtime13

• PowerPC: read_real_time14

• All Unix systems: gettimeofday, settimeofday15

Let’s briefly talk about some of these functions.

 clock_getttime, clock_settime, clock_getres

On Linux, there are the following useful functions for timestamping:

int clock_getres(clockid_t clock_id, struct timespec *res);

int clock_gettime(clockid_t clock_id, struct timespec *tp);

int clock_settime(clockid_t clock_id, const struct timespec *tp);

Here is some useful information from the documentation:

The function clock_getres() finds the resolution (precision) of the speci-
fied clock_id, and, if res is non-NULL, stores it in the struct timespec
pointed to by res. The resolution of clocks depends on the implementation
and cannot be configured by a particular process. If the time value pointed
to by the argument tp of clock_settime() is not a multiple of res, then it is
truncated to a multiple of res. The functions clock_gettime() and clock_
settime() retrieve and set the time of the specified clock clk_id.

11 http://man7.org/linux/man-pages/man2/clock_gettime.2.html
12 https://developer.apple.com/library/mac/#qa/qa1398/_index.html
13 https://docs.oracle.com/cd/E23824_01/html/821-1465/gethrtime-3c.html
14 http://ps-2.kev009.com/tl/techlib/manuals/adoclib/aixprggd/genprogc/highrest.htm
15 http://linux.die.net/man/2/gettimeofday

Chapter 9 hardware and Software timerS

http://man7.org/linux/man-pages/man2/clock_gettime.2.html
https://developer.apple.com/library/mac/#qa/qa1398/_index.html
https://docs.oracle.com/cd/E23824_01/html/821-1465/gethrtime-3c.html
http://ps-2.kev009.com/tl/techlib/manuals/adoclib/aixprggd/genprogc/highrest.htm
http://linux.die.net/man/2/gettimeofday

622

clock_getttime allows getting a timespec value:

struct timespec {

 time_t tv_sec; /* seconds */

 long tv_nsec; /* nanoseconds */

};

The timespec structure has two fields: tv_sec for seconds and tv_nsec for nanoseconds.

Thus, the minimal possible resolution of functions that returns timespec is 1 ns.

The clock_id argument is the ID of the target clocks. Some typical values:

• CLOCK_REALTIME: System-wide real-time clock. Setting this clock

requires appropriate privileges.

• CLOCK_REALTIME_COARSE: A faster but less precise version of

CLOCK_REALTIME. Use when you need very fast, but not fine-grained

timestamps. Available since Linux 2.6.32.

• CLOCK_MONOTONIC: Clock that cannot be set and represents

monotonic time from some unspecified starting point.

• CLOCK_MONOTONIC_COARSE: A faster but less precise version of

CLOCK_MONOTONIC. Use when you need very fast, but not fine-grained

timestamps. Available since Linux 2.6.32.

• CLOCK_MONOTONIC_RAW: Similar to CLOCK_MONOTONIC, but provides

access to a raw hardware-based time that is not subject to NTP

adjustments or the incremental adjustments performed by

adjtime(3). Available since Linux 2.6.28.

• CLOCK_BOOTTIME: Identical to CLOCK_MONOTONIC, except it also

includes any time that the system is suspended. Available since Linux

2.6.39.

• CLOCK_PROCESS_CPUTIME_ID: High-resolution per-process timer from

the CPU.

• CLOCK_THREAD_CPUTIME_ID: Thread-specific CPU-time clock.

For high-precision timestamping, you should use CLOCK_MONOTONIC (if this option is

available on current hardware) but there are other clock options (like CLOCK_REALTIME for

the real-time clock or CLOCK_THREAD_CPUTIME_ID for thread-specific CPU-time clock).

Chapter 9 hardware and Software timerS

623

A usage example:

struct timespec ts;

uint64_t timestamp;

clock_gettime(CLOCK_MONOTONIC, &ts);

timestamp = (static_cast<uint64_t>(ts.tv_sec) * 1000000000) +

 static_cast<uint64_t>(ts.tv_nsec);

Internally, clock_gettime(CLOCK_MONOTONIC, ...) is based on the current high-

precision hardware timer (usually TSC, but it can also be HPET or ACPI_PM).

To reduce clock_gettime latency, Linux kernel uses the vsyscalls (virtual system

calls) and VDSOs (Virtual Dynamically Linked Shared Objects) instead of a direct

syscall.

If Invariant TSC is available, clock_gettime(CLOCK_MONOTONIC, ...) will use

it directly via the rdtsc instruction. Of course, it adds some overhead, but in general,

you should use clock_gettime instead of rdtsc because it solves a lot of portability

problems.16

clock_gettime has been available on macOS since macOS 10.12 Sierra.

 mach_absolute_time

If you want to write a portable code that supports old versions of macOS (before 10.12),

the mach_absolute_time() is the primary timestamping API. This function returns

ticks as unsigned 64-bit integers. For the conversation from these ticks to real time, we

need the following struct:

struct mach_timebase_info {

 uint32_t numer;

 uint32_t denom;

};

You can get mach_timebase_info for your system with the help of the mach_

timebase_info function. If you multiply ticks by numer and then divide into denom, you

will get the time in nanoseconds.

16 There is a nice commit in the Linux repository: “x86: tsc prevent time going backward” https://
github.com/torvalds/linux/commit/d8bb6f4c1670c8324e4135c61ef07486f7f17379

Chapter 9 hardware and Software timerS

https://github.com/torvalds/linux/commit/d8bb6f4c1670c8324e4135c61ef07486f7f17379
https://github.com/torvalds/linux/commit/d8bb6f4c1670c8324e4135c61ef07486f7f17379

624

A usage example:

mach_timebase_info_data_t timebase;

mach_timebase_info(&timebase);

uint64_t timestamp = mach_absolute_time();

uint64_t timestampInNanoseconds = timestamp * timebase.numer / timebase.

denom;

 gettimeofday

The gettimeofday function is available almost everywhere and allows you to get the

current date and time as well as a time zone. We also can set the current date and time

with the help of the settimeofday functions. Here are the signatures of these functions:

int gettimeofday(struct timeval *tv, struct timezone *tz);

int settimeofday(const struct timeval *tv, const struct timezone *tz);

The functions work with the timeval structure, which is similar to timespec:

struct timeval {

 time_t tv_sec; /* seconds */

 suseconds_t tv_usec; /* microseconds */

};

Be careful: the first field in both types are seconds, but the second field is

nanoseconds for timespec and microseconds for timeval. The minimal possible

resolution of gettimeofday is 1 us.

A usage example:

struct timeval tv;

if (gettimeofday(&tv, NULL) == 0)

{

 return tv.tv_sec * 1000000000 +

 tv.tv_usec * 1000; // Nanoseconds

}

Chapter 9 hardware and Software timerS

625

 Summing Up
In this section, we learned a lot of useful information about software timers. Let’s briefly

recall it.

On Windows, we have three groups of Timestamping API: system timer, system ticks,

and high-resolution timer.

The system timer is used for WinAPI functions like GetSystemTime, GetLocalTime,

and GetSystemTimeAsFileTime. This timer has poor accuracy. Typically, its resolution

is between 0.5 ms and 15.625 ms; this value can be changed manually via timeBegin

Period/timeEndPeriod or NtQueryTimerResolution/NtSetTimerResolution. You can

get the current values with the help of ClockRes; powercfg will help you to get the list

of applications that try to change this value. Thread.Sleep also uses the system timer

under the hood, so Thread.Sleep(1) can easily take 15 ms.

System ticks can be obtained via GetTickCount and GetTickCount64 WinAPI

functions.

If you want to perform high-precision measurements, you can use

QueryPerformanceCounter and QueryPerformanceFrequency (in kernel-mode

API, you should use KeQueryPerformanceCounter). If you want to get the current

system date and time with the highest possible level of precision, you should use

GetSystemTimePreciseAsFileTime.

On Unix there are also a lot of timestamping APIs: clock_gettime, clock_settime,

clock_getres, mach_absolute_time, mach_timebase_info, gethrtime, read_real_time,

gettimeofday, and settimeofday. Some of them are available only on specific Unix

distributions. clock_getttime is the best option on Linux (available if HAVE_CLOCK_

MONOTONIC is defined). mach_absolute_time is the best option on macOS (available if

HAVE_MACH_ABSOLUTE_TIME is defined; clock_getttime has been available on macOS

since 10.12). gettimeofday is available almost everywhere, so it’s a good fallback option

(but this API has worse accuracy than clock_getttime and mach_absolute_time).

Now we know what kind of timestamping APIs we have on different operating

systems. But what’s about the managed APIs? Let’s time to check what do we have on the

.NET platform!

Chapter 9 hardware and Software timerS

626

 .NET Timestamping API
In this section, we are going to cover three primary .NET timestamping APIs:

• DateTime.UtcNow

• Environment.TickCount

• Stopwatch.GetTimestamp

For each API, we will briefly discuss how to use it and how it’s implemented

internally. You can find the detailed source code overview for .NET Framework, .NET

Core, and Mono in the attachment to this book. We will also benchmark each API and

calculate the latency and the resolution. The source code of benchmarks also can be

found in the attachment to this book. The following configuration was used for the

presented values:

Benchmark setup Hardware (the same for all benchmarks): Mac mini, Intel Core

i7-3615QM CPU 2.30GHz (Ivy Bridge). Operating systems: Windows 10.0.15063.1155,

macOS High Sierra 10.13.4, Ubuntu 16.04. Runtimes: .NET Framework 4.6 (CLR

4.0.30319.42000), Mono 5.12.0, .NET Core 1.1.8, .NET Core 2.1.0. Hardware timers:

TSC, HPET, ACPI_PM. Windows Current Timer Interval (CTI): 5000, 156250.

BenchmarkDotNet v0.10.14 is used for benchmarking. Source code of all benchmarks

and the detailed results can be found in the attachment to this book.

For each benchmark, it’s recommended to try it in your own environment and then

explain the results.

This section will help you to understand the API internals and their basic

characteristics that can affect measurements.

 DateTime.UtcNow
System.DateTime is a widely used .NET type. A lot of developers use it all the time, but

not all of them really know how it works. The DateTime structure represents an instant in

time, typically expressed as a date and time of day. Here are some important DateTime

properties:

• int Year, int Month, int Day, int Hour, int Minute, int Second,

int Millisecond: Gets the corresponding components of the date

represented by this instance. All of the values are non-negative.

Chapter 9 hardware and Software timerS

627

• long Ticks: Gets the number of ticks that represent the date and

time of this instance (expressed as a value between DateTime.

MinValue.Ticks and DateTime.MaxValue.Ticks). A single tick equals

to 100 ns. The number of ticks represents the number of 100 ns time

units elapsed since 12:00:00 midnight, January 1, 0001 (0:00:00 UTC

on January 1, 0001, in the Gregorian calendar).

• DateTimeKind Kind: Gets a value that indicates whether the time

represented by this instance is based on local time (DateTimeKind.

Local), UTC (DateTimeKind.Utc), or neither (DateTimeKind.

Unspecified).

DateTime provides two important properties: UtcNow (the current UTC date and

time on a local computer) and Now (the current local date and time on a local computer).

DateTime.Now is based on DateTime.UtcNow, so we will focus only on DateTime.UtcNow.

We can evaluate the difference between two DateTimes with the help of the

TimeSpan class:

DateTime a = DateTime.UtcNow;

// <Measured logic>

DateTime b = DateTime.UtcNow;

TimeSpan span = b - a;

Here are some important TimeSpan properties:

• int Days, int Hours, int Minutes, int Seconds, int

Milliseconds: these properties correspond to the same properties of

DateTime. Be careful: these values represent the corresponding time

component. Thus, the value range of Seconds is -59..59, and the

value range of Milliseconds is -999..999.

• double TotalDays, double TotalHours, double TotalMinutes,

double TotalSeconds, double Milliseconds, long Ticks: these

properties express total elapsed time in the specified time unit.

Chapter 9 hardware and Software timerS

628

An example of measurements with DateTime:

DateTime start = DateTime.UtcNow;

// Logic

DateTime end = DateTime.UtcNow;

TimeSpan elapsed = end - start;

Console.WriteLine(elapsed.TotalMilliseconds);

Internally, it uses different native APIs depending on environment:

• Windows, .NET Framework/.NET Core 1.x/Mono:

GetSystemTimeAsFileTime

• Windows, .NET Core 2.x: GetSystemTimePreciseAsFileTime (if

available) or GetSystemTimeAsFileTime (as a fallback)

• Unix, .NET Core 1.x/Mono: gettimeofday

• Unix, .NET Core 2.x: clock_gettime (if available) or gettimeofday

(as a fallback)

Since .NET Core 2.0, it was decided to use GetSystemTimePreciseAsFileTime

instead of GetSystemTimeAsFileTime to get a better accuracy (see coreclr#506117

and coreclr#973618). However, another problem was introduced: on misconfigured

systems, the GetSystemTimePreciseAsFileTime drifts and returns incorrect

results (see coreclr#1418719) So, it was decided to introduce a workaround (see

coreclr#1428320): now .NET Core checks whether GetSystemTimePreciseAsFileTime

is trustable or not. If GetSystemTimePreciseAsFileTime has a drift, the runtime uses

GetSystemTimeAsFileTime as a fallback option.

Now let’s benchmark the DateTime.UtcNow resolution and latency.

[Benchmark]

public long DateTimeNowLatency() => DateTime.Now.Ticks;

17 https://github.com/dotnet/coreclr/issues/5061
18 https://github.com/dotnet/coreclr/pull/9736
19 https://github.com/dotnet/coreclr/issues/14187
20 https://github.com/dotnet/coreclr/pull/14283

Chapter 9 hardware and Software timerS

https://github.com/dotnet/coreclr/issues/5061
https://github.com/dotnet/coreclr/pull/9736
https://github.com/dotnet/coreclr/issues/14187
https://github.com/dotnet/coreclr/pull/14283

629

[Benchmark]

public long DateTimeNowResolution()

{

 long lastTicks = DateTime.Now.Ticks;

 while (DateTime.Now.Ticks == lastTicks)

 {

 }

 return lastTicks;

}

[Benchmark]

public long DateTimeUtcNowLatency() => DateTime.UtcNow.Ticks;

[Benchmark]

public long DateTimeUtcNowResolution()

{

 long lastTicks = DateTime.UtcNow.Ticks;

 while (DateTime.UtcNow.Ticks == lastTicks)

 {

 }

 return lastTicks;

}

The results of these benchmarks are presented in Table 9-4 (“*” means “Any

runtime”; CTI means “Current Timer Interval” of the system timer). Remember that it’s

only an example of possible measurements in some specific configurations; you can get

other results on your machine.

Chapter 9 hardware and Software timerS

630

Table 9-4. DateTime.UtcNow Resolution and Latency

OS Runtime Env Resolution Latency

windows .net framework tSC, Cti=5000 500 us 6–7 ns

windows .net framework tSC, Cti=156250 15625 us 6–7 ns

windows mono tSC, Cti=5000 500 us 19–20 ns

windows mono tSC, Cti=156250 15625 us 19–20 ns

windows .net Core 1.x tSC, Cti=5000 500 us 6–7 ns

windows .net Core 1.x tSC, Cti=156250 15625 us 6–7 ns

windows .net Core 2.x tSC 0.4–0.5 us 18–19 ns

macoS * tSC 1 us 36–40 ns

Linux mono tSC 1 us 26–30 ns

Linux .net Core 1.x tSC 1 us 26–30 ns

Linux .net Core 2.x tSC 0.1 us 26–30 ns

Linux * hpet/aCpi_pm 1.8–1.9 us 900–950 ns

These numbers and the knowledge of DateTime.UtcNow internals allow making

some important conclusions:

• On Windows, the resolution equals to the Windows CTI (except .NET

Core 2.0). Usually, it’s about 0.5 ms..15.625 ms. This value can be

changed programmatically by any application.

• On Linux, the resolution equals to 1 us (except .NET Core 2.0).

As mentioned before, on Linux, DateTime.UtcNow uses the

gettimeofday function. gettimeofday allows you to get the time in

microseconds. Thus, 1 us is the minimal possible resolution.

• In .NET Core 2.0, the implementation of DateTime.UtcNow was

changed: now it uses GetSystemTimePreciseAsFileTime on

Windows and clock_gettime(CLOCK_REALTIME) on Unix. Thus,

resolution was reduced to 0.4-0.5 us on Windows and 0.1 us on

Linux.

Chapter 9 hardware and Software timerS

631

As you may notice, only results for DateTime.UtcNow are shown. Try to repeat these

benchmarks for DateTime.Now in your environment and explain the results.

Typically, DateTime is a good choice when you want to know the actual current

time (e.g., for logging) and you don’t need high precision. You should understand that

the measurements can be spoiled if the current time is changing during measurements

(more about that in the next section). If you need to measure some time interval (not just

put an approximate timestamp into a log file), you probably need a better API. OK, let’s

check what other kinds of timestamping APIs we have. The next one is Environment.

TickCount.

 Environment.TickCount
System.Environment.TickCount returns the number of milliseconds elapsed since

the system started. You can measure elapsed milliseconds of some logic with the

following code:

int start = Environment.TickCount;

// <Measured logic>

int end = Environment.TickCount;

int elapsedMilliseconds = end - start;

The internal implementation depends on the OS and the runtime:

• On Windows, TickCount just calls the GetTickCount64 WinAPI

function.

• On Unix+.NET Core, it uses the clock_gettime(), mach_absolute_

time(), gethrtime(), read_real_time(), gettimeofday() functions.

• On Unix+Mono, it uses mono_100ns_datetime() - get_boot_

time().

The nominal resolution is always 1 ms and the nominal frequency is always 1 kHz.

Chapter 9 hardware and Software timerS

632

Now, let’s benchmark the Environment.TickCount resolution and latency:

[Benchmark]

public long TickCountLatency() => Environment.TickCount;

[Benchmark]

public long TickCountResolution()

{

 long lastTimestamp = Environment.TickCount;

 while (Environment.TickCount == lastTimestamp)

 {

 }

 return lastTimestamp;

}

The results of these benchmarks are presented in Table 9-5. Remember that it’s only

an example of possible measurements in some specific configurations; you can get other

results on your machine.

Table 9-5. Environment.TickCount Resolution and Latency

OS Runtime Resolution Latency

windows .net framework 15.625 ms 2–3 ns

windows .net Core 15.625 ms 2–3 ns

windows mono 15.625 ms 11–12 ns

macoS mono 1 ms 30–40 ns

macoS .net Core 1.x 1 ms 30–40 ns

macoS .net Core 2.x 1 ms 70–80 ns

Linux mono 3.9–4.0 ms 12–20 ns

Linux .net Core 3.9–4.0 ms 8–10 ns

Chapter 9 hardware and Software timerS

633

These numbers and the knowledge of Environment.TickCount internals allow

making some important conclusions:

• The resolution on Windows is always 15.625 ms for all runtimes. You

may notice that this is not an integer number. The actual difference

between two consecutive calls of TickCount is always an integer

number (typically, it’s 0, 15, or 16). Technically, you can’t measure a

15.625 ms time interval by values of two timestamps. However, it’s

the exact value between two counter increments.

• The resolution on macOS is 1 ms for all runtimes.

• The resolution on Linux is 3.9-4.0 ms for all runtimes.

• The latency is pretty small. It equals to 2–3 ns on Windows for .NET

Core and .NET Framework. However, it can take up to 80 ns in some

environments (e.g., macOS + .NET Core 2.x).

Well, Environment.TickCount is also not the best timestamping API for

benchmarking. Now it’s time to learn the most powerful API: Stopwatch!

 Stopwatch.GetTimestamp
The Stopwatch class is the best tool for high-precision time measurements on .NET. We

have already used it a lot of times, so just recall the main use cases. The method pair

StartNew()/Stop() allows measuring the time of any operation:

// Simple time measurement

Stopwatch stopwatch = Stopwatch.StartNew();

// <Measured logic>

stopwatch.Stop();

Next, we can get the elapsed time with the help of Elapsed, ElapsedMilliseconds, or

ElapsedTicks:

// Elapsed time in different measurement units

TimeSpan elapsed = stopwatch.Elapsed;

long elapsedMilliseconds = stopwatch.ElapsedMilliseconds;

long elapsedTicks = stopwatch.ElapsedTicks;

double elapsedNanoseconds = stopwatch.ElapsedTicks * 1_000_000_000.0 /

 Stopwatch.Frequency;

Chapter 9 hardware and Software timerS

634

After that, we can restart the Stopwatch instance and use it again without additional

allocations:

// Reusing existed stopwatch

stopwatch.Restart();

// <Measured logic>

stopwatch.Stop();

Internally, it calls Stopwatch.GetTimestamp(), which can be used directly. Thus, we

can compare several timestamps without Stopwatch instances:

// Measurements without an instance of Stopwatch

long timestamp1 = Stopwatch.GetTimestamp();

// <Measured logic>

long timestamp2 = Stopwatch.GetTimestamp();

double elapsedSeconds = (timestamp2 - timestamp1) * 1.0 /

 Stopwatch.Frequency;

The implementation depends on the operating system and the runtime:

• Windows (.NET Framework, .NET Core, Mono): the

QueryPerformanceFrequency and QueryPerformanceCounter

WinAPI functions

• Linux (.NET Core, Mono): uses clock_gettime as a primary way (with

fallbacks gettimeofday)

• macOS (.NET Core 2.0.x, .NET Core 2.1.0-2.1.2): uses clock_gettime as a

primary way (with fallbacks to mach_absolute_time and gettimeofday)

• macOS (.NET Core 1.x, .NET Core 2.1.3+, Mono): uses mach_

absolute_time as a primary way (with fallbacks to gettimeofday)

An interesting problem was introduced in .NET Core 2.0 (see corefx#3039121). In

.NET Core 1.0, we had the following implementation of Stopwatch.GetTimestamp():

we tried to call clock_gettime, next we tried to call mach_absolute_time (if clock_

gettime is not available), and then we called gettimeofday (if mach_absolute_time is

not available). clock_gettime is available on macOS since macOS 10.12. .NET Core 1.0

21 https://github.com/dotnet/corefx/issues/30391

Chapter 9 hardware and Software timerS

https://github.com/dotnet/corefx/issues/30391

635

supports macOS 10.11,22 so it was compiled against macOS 10.11 SDK, which doesn’t

support clock_gettime. As a result, .NET Core 1.0 uses mach_absolute_time as a time

source for Stopwatch.GetTimestamp(). In .NET Core 2.0, it was decided to drop macOS

10.11 support: only macOS 10.12+ is supported.23 .NET Core 2.0 was compiled against

macOS 10.12 SDK, which has the clock_gettime support. Thus, without any changes

in the source code, clock_gettime becomes the primary time source for Stopwatch.

GetTimestamp(). Unfortunately, it had worse accuracy than mach_absolute_time on

macOS: the default resolution of clock_gettime is 1000ns. The problem was fixed in

.NET Core 3.0 (see coreclr#1850524 and corefx#3045725); the fix was back-ported to .NET

2.1.3 (but it’s not available in .NET Core 2.0.x).

The Stopwatch.Frequency value also depends on the environment:

• Windows (.NET Framework, .NET Core) with enabled HPET: TSC

frequency divided by 1024 (usually, it’s about 2 ⋅ 106..4 ⋅ 106)

• Windows (.NET Framework, .NET Core) with disabled HPET:

14,318,180

• Windows/Linux/macOS (Mono): 107

• Linux/macOS (.NET Core): 109

Now, let’s benchmark the Stopwatch resolution and latency:

[Benchmark]

public long StopwatchLatency() => Stopwatch.GetTimestamp();

[Benchmark]

public long StopwatchResolution()

{

 long lastTimestamp = Stopwatch.GetTimestamp();

 while (Stopwatch.GetTimestamp() == lastTimestamp)

 {

 }

 return lastTimestamp;

}

22 See https://github.com/dotnet/core/blob/master/release-notes/1.0/1.0-supported-os.md
23 See https://github.com/dotnet/core/blob/master/release-notes/2.0/2.0-supported-os.md
24 https://github.com/dotnet/coreclr/pull/18505
25 https://github.com/dotnet/corefx/pull/30457

Chapter 9 hardware and Software timerS

https://github.com/dotnet/core/blob/master/release-notes/1.0/1.0-supported-os.md
https://github.com/dotnet/core/blob/master/release-notes/2.0/2.0-supported-os.md
https://github.com/dotnet/coreclr/pull/18505
https://github.com/dotnet/corefx/pull/30457

636

Results of these benchmarks are presented in Table 9-6 (“*” means “Any runtime”).

Remember that it’s only an example of possible measurements in some specific

configurations; you can get other results on your machine.

Table 9-6. Stopwatch Resolution and Latency

OS Runtime Timer Resolution Latency

windows * tSC 400–500 ns 15–25 ns

windows * hpet 1800–1900 ns 900–950 ns

macoS mono tSC 100 ns 30–40 ns

macoS .net Core 1.x tSC 70–80 ns 30–40 ns

macoS .net Core 2.0.x tSC 1000 ns 90–100 ns

macoS .net Core 2.1.3+ tSC 70–80 ns 30–40 ns

Linux mono tSC 100 ns 25–30 ns

Linux .net Core tSC 70–80 ns 30–40 ns

Linux * hpet/aCpi_pm 1800–1900 ns 900–950 ns

These numbers and the knowledge of Stopwatch internals allow making some

important conclusions:

• Windows+TSC: In this case we get Resolution≈ (1 second /

Stopwatch.Frequency) ≈ (1 second / (rdstc Frequency / 1024)).

• HPET/ACPI_PM: benchmarks show that Resolution≈2 x Latency

because we call Stopwatch.GetTimestamp at least twice per the

Resolution method invocation. It’s hard to say something about

real resolution because the value of HPET/ACPI_PM ticks is much

smaller than the latency. For practical use, you can assume that the

resolution has the same order as latency.

• macOS/Linux+TSC: In Mono, we have Resolution = 100 ns because

it is the value of 1 tick (and it can be achieved). In .NET Core,

1 ticks is 1 ns, and it uses rdtsc, which works on frequency

(2.30 GHz for the preceding example). Thus, we have a situation

which is similar to the HPET/ACPI_PM case: latency is much bigger

than resolution. So, it’s hard to evaluate it via a microbenchmark.

Chapter 9 hardware and Software timerS

637

Stopwatch is the best available .NET API for high-precision measurements, but this

doesn’t mean that all Stopwatch-based measurements are correct. With this knowledge

of internals, oyou can not only get raw numbers, but also interpret it in the right way and

make good error estimations.

 Summing Up
On .NET, we have several ways to get timestamps:

• Stopwatch is the best solution when you need high-precision

timestamping. When HPET is disabled, the typical resolution is about

300–500 ns on Windows and 70–100 ns on Linux/macOS. When

HPET is enabled, the situation is worse because the actual resolution

rises up to ~2000 ns.

• Environment.TickCount is the best solution on Windows when

you don’t care about precision (±1 sec is enough) and you need

extremely low latency (2–3 ns).

• DateTime.Now/DateTime.UtcNow is the best solution when you don’t

care about precision and you want to connect timestamps and real-

time (e.g., for logging).

Thus, if you want to write a proper benchmark, Stopwatch is your friend. However,

correct benchmarks still require a lot of benchmark routine in order to get proper results.

 Timestamping Pitfalls
The timestamping APIs look simple, but it’s not always easy to use them correctly. In this

section, we are going to cover the most common mistakes that developers usually make

with usages of DateTime, Environment.TickCount, and Stopwatch.

Chapter 9 hardware and Software timerS

638

 Small Resolution
The timestamping resolution depends on different factors including runtime and OS. In

general, you can expect the following values:

• DateTime.UtcNow: 0.1 us .. 15625 us

• Environment.TickCount: 1000 us .. 15625 us

• Stopwatch.GetTimestamp: 0.07 us .. 2 us

If the timestamping resolution is q, the final random measurement error is about

±2q (because we have two timestamps: “before” and “after”). Thus, if the measured

operation takes several minutes, we shouldn’t worry about the timer resolution.

However, if it takes several nanoseconds, the error is too high. Even 1000 repetitions of

the operation will not save us: the worst-case Stopwatch resolution is 2 us, which means

that we will get ±4 ns error.

 Counter Overflow
All timestamping API counters are represented by integer types and can handle a limited

number of values. Of course, we can get a counter overflow at any moment. Let’s check

whether should we worry about it or not.

• DateTime

The DateTime.Tick property contains the number of ticks since

January 1, 0001; one tick is 100 ns. The type of this property is

long; the maximum long value equals to ≈9.22 ⋅ 1018. However,

the actual maximum value for DateTime.Ticks is ≈3.16 ⋅ 1018

(three times less). It corresponds to 11:59:59 PM, December 31,

9999. Thus, we shouldn’t worry about overflow problems for the

next eight thousand years.

• Environment.TickCount

TickCount returns an int value that can hold timestamps up

to (231 − 1) ms or 49 days, 17 hours, 2 minutes, 47 seconds, and

295 milliseconds. If you are writing a system with uptime that

takes months, Environment.TickCount isn’t a good tool for time

measurements. Some developers think that TickCount equals to

Chapter 9 hardware and Software timerS

639

0 on system startup. But this isn’t always true, and the software

shouldn’t use this fact. In order to catch wrong TickCount usages,

Windows debug builds use “one hour before 32-bit timer tick

rollover” as the initial value (see [Chen 2014] for details).

• Stopwatch

In theory, the duration of a single Stopwatch tick can be arbitrary.

In practice, the smallest used value is 1 ns (.NET Core + Unix).

Stopwatch.GetTimestamp() returns a long value, which means

that it can handle ≈9.22 ⋅ 1018 nanoseconds or approximately

292 years. Thus, we will not have any overflow problems with

Stopwatch.

The only timestamping API that has a potential counter overflow problem is

Environment.TickCount. It can handle intervals up to approximately 50 days. You can

use it for short time measurements, but it’s not recommended to use it in services that

can be active for months.

 Time Components and Total Properties
When we are working with TimeSpan, we have the time-component properties (Days,

Hours, …) and the total properties (TotalDays, TotalHours, …). There is a huge

difference between them. Let’s look at a small example that demonstrates it:

TimeSpan span = new TimeSpan(

 days: 8,

 hours: 19,

 minutes: 46,

 seconds: 57,

 milliseconds: 876

);

WriteLine("TimeSpan = {0}", span);

WriteLine("Days: {0,3} TotalDays: {1}",

 span.Days, span.TotalDays);

WriteLine("Hours: {0,3} TotalHours: {1}",

 span.Hours, span.TotalHours);

Chapter 9 hardware and Software timerS

640

WriteLine("Minutes: {0,3} TotalMinutes: {1}",

 span.Minutes, span.TotalMinutes);

WriteLine("Seconds: {0,3} TotalSeconds: {1}",

 span.Seconds, span.TotalSeconds);

WriteLine("Milliseconds: {0,3} TotalMilliseconds: {1}",

 span.Milliseconds, span.TotalMilliseconds);

WriteLine(" Ticks: {0}",

 span.Ticks);

Here is the output:

TimeSpan = 8.19:46:57.8760000

Days: 8 TotalDays: 8.82428097222222

Hours: 19 TotalHours: 211.782743333333

Minutes: 46 TotalMinutes: 12706.9646

Seconds: 57 TotalSeconds: 762417.876

Milliseconds: 876 TotalMilliseconds: 762417876

 Ticks: 7624178760000

The difference is huge! For example, Hours = 19 (an integer time-component that is

less than 24) and TotalHours (a double total property that can be much bigger than 24).

Thus, it’s easy to mix up these values and write something like that:

var start = DateTime.UtcNow;

Thread.Sleep(2500);

var end = DateTime.UtcNow;

WriteLine((end - start).Milliseconds); // prints 500 instead of 2500

This is a very popular bug that is easy to write and hard to detect.

 Changes in Current Time
If you are using DateTime.UtcNow or DateTime.Now, the measurements can be spoiled if the

current time is changing during the benchmark. Let’s discuss a few possible reasons for that.

 Time synchronization

If you have enabled time synchronization, the current time can be changed at any

moment. Moreover, some servers have several time synchronization services. There are

Chapter 9 hardware and Software timerS

641

many stories about Linux servers with enabled ntp and systemd-timesyncd at the same

time.26 Such services can have desynchronized time sources with several seconds delta.

In this case, these services can constantly change time backward or forward. It leads to

flaky bugs with incorrect time measurements.

 Daylight saving time

The DateTime.Now returns the local user’s date and time. This value uses the current

time zones, which are full of surprises. For example, the practice of daylight saving time

in some countries can accidentally affect your benchmark: you will get a 1 hour error if

you run a benchmark at an unfortunate moment in time.

 Changes in time zones

The time zone of a region can be changed. For example, here are some historical data for

the Netherlands time zone:

1909–1937: GMT+00:19:32.13

1937–1940: GMT+00:20

1940–1942: UTC+02:00

Another recent example: the time zone of Samoa was changed in 2011 from UTC-10

to UTC+14. Because of that, December 30 was cancelled. Just imagine that somebody

ran a DateTime-based benchmark in Samoa on this day: such measurements had a

1-day error!

For time measurements, it’s almost always better to use UTC time (DateTime.UtcNow).

Time can be manually changed

Finally, a user is always able to change the system time at any moment. If this happens

during time measurements, the measurements will be spoiled. Probably, you will not

manually change the time yourself, but you can have some time measurements inside

a real application; for instance, a user might run this application in the background and

decide to change the time.

26 For example, see https://bugs.launchpad.net/ubuntu/+source/ntp/+bug/1597909

Chapter 9 hardware and Software timerS

https://bugs.launchpad.net/ubuntu/+source/ntp/+bug/1597909

642

 Sequential Reads
Let’s say that we do two sequential reads of Stopwatch.GetTimestamp():

var a = Stopwatch.GetTimestamp();

var b = Stopwatch.GetTimestamp();

var delta = b - a;

Can you name the possible values of delta? Let’s check it out with the help of the

following program, which builds the delta histogram:

// (1)

const int N = 100000000;

var values = new long[N];

for (int i = 0; i < N; i++)

 values[i] = Stopwatch.GetTimestamp();

// (2)

var deltas = new long[N - 1];

for (int i = 0; i < N - 1; i++)

 deltas[i] = values[i + 1] - values[i];

// (3)

var table =

 from d in deltas

 group d by d into g

 orderby g.Key

 select new

 {

 Ticks = g.Key,

 Microseconds = g.Key * 1000000.0 / Stopwatch.Frequency,

 Count = g.Count()

 };

// (4)

WriteLine("Ticks | Time(us) | Count ");

WriteLine("-----------|----------|---------");

foreach (var line in table)

{

 var ticks = line.Ticks.ToString().PadRight(8);

 var us = line.Microseconds.ToString("0.0").PadRight(8);

Chapter 9 hardware and Software timerS

643

 var count = line.Count.ToString();

 WriteLine($"{ticks} | {us} | {count}");

}

Let’s discuss what’s going on here:

 1. We do N measurements (in this case N=100000000, but you are

free to choose any positive value). The measurement here is

just a call of Stopwatch.GetTimestamp(). We save N sequential

measurements in the value array. There is a small overhead of the

for loop but it doesn’t matter in this case (fortunately we know

the latency of GetTimestamp(); it’s huge in comparison with the

for overhead of a single iteration).

 2. We calculate differences between each pair of sequential

measurements and save it in the deltas array.

 3. Next, we group deltas and calculate the number of delta values

in each group (LINQ allows doing it in a simple way).

 4. We print the results with nice formatting. This means a table with

three columns: Ticks (the raw difference between sequential

measurements in ticks), Time(us) (it’s not convenient to work with

ticks, so we convert them to microseconds), and Count (how many

times we observed such differences in our small experiment).

Here is an example of output on macOS 10.13 + .NET Core 2.1.0 (the middle part was

removed):

Ticks | Time(us) | Count

-----------|----------|---------

0 | 0.0 | 91961519

1000 | 1.0 | 7820660

2000 | 2.0 | 129139

3000 | 3.0 | 55617

4000 | 4.0 | 4378

5000 | 5.0 | 2619

6000 | 6.0 | 1484

7000 | 7.0 | 1272

... | ... | ...

Chapter 9 hardware and Software timerS

644

822000 | 822.0 | 1

875000 | 875.0 | 1

1083000 | 1083.0 | 1

1177000 | 1177.0 | 1

1479000 | 1479.0 | 1

1991000 | 1991.0 | 1

2751000 | 2751.0 | 1

8317000 | 8317.0 | 1

12341000 | 12341.0 | 1

In this pseudohistogram, there are three very important lines:

• The first line (zero time value). And we get a zero difference

between sequential measurements 91961519 times!

• The second line (minimum positive time value). In the

“Terminology” section, we already discussed that the nominal and

actual resolutions are not always equal. The nominal resolution of

Stopwatch (1 tick) is defined by Stopwatch.Frequency. However, in

some cases, we can’t measure exactly one tick: the actual resolution

(the minimum possible interval that can be measured) contains

more than one tick. The second line of the histogram shows this value

(sometimes, it’s only an approximation). In the current example,

Stopwatch.Frequency is 109. This means that 1 tick = 1 ns.

• The last line (maximum time value). As you can see, once I had a

delta between two sequential GetTimestamp calls, which equals to

12341000 ticks or 12.3 ms! Note that we even don’t have any target

method here; we are trying to measure nothing! Of course, this is

a rare situation. Usually, you get plausible measurements. But you

can never be sure! This approach is methodologically wrong; such

benchmarks cannot be trusted. A good microbenchmark always

performs many method invocations. It allows getting better accuracy

because the error is divided by the number of invocations.

Chapter 9 hardware and Software timerS

645

The positive difference between sequential timestamping calls can cause tricky bugs.

Can you say where there is a problem in the following expression?

var stopwatch = Stopwatch.StartNew();

// ... some logic

var value = stopwatch.ElapsedMilliseconds > timeout

 ? 0

 : timeout - (int)stopwatch.ElapsedMilliseconds;

The answer: we can’t be sure that two invocations of stopwatch.

ElapsedMilliseconds will return the same value. For example, let’s say that timeout

equals to 100. We are trying to evaluate stopwatch.ElapsedMilliseconds > timeout;

stopwatch.ElapsedMilliseconds returns 99, and the expression value is false. Next,

we are going to evaluate timeout - (int)stopwatch.ElapsedMilliseconds. But we

have another stopwatch.ElapsedMilliseconds here! Let’s say it returns 101. Then,

the resulting value will be equal to –1! Probably, the author of this code did not expect

negative values here.

This is an example of a real bug from the AsyncIO library. The bug is already fixed,27

but it was a cause of a very tricky bug in Rider. We spent several days on an investigation

because such kinds of bugs are really hard to reproduce.

AN EXERCISE

Build this histogram in different environments and compare the results. write the same

logic for DateTime.Now, DateTime.UtcNow, and Environment.TickCount, compare

histograms for different timestamping apis.

27 https://github.com/somdoron/AsyncIO/commit/5c838f3d30d483dcadb4181233a4437fb5
e7f327

Chapter 9 hardware and Software timerS

https://github.com/somdoron/AsyncIO/commit/5c838f3d30d483dcadb4181233a4437fb5e7f327
https://github.com/somdoron/AsyncIO/commit/5c838f3d30d483dcadb4181233a4437fb5e7f327

646

 Summing Up
In this section, we discussed five timestamping pitfalls:

• Small Resolution

The timer resolution is typically not enough to measure a method

that takes several nanoseconds. In such cases, you have to invoke

the method many times inside each iteration to achieve good

accuracy.

• Counter Overflow

Environment.TickCount overflows every ≈50 days. You shouldn’t

use this API in services that can be active for months.

• Time Components and Total Properties

Another common mistake is using properties like TimeSpan.

Milliseconds instead of TimeSpan.TotalMilliseconds.

Milliseconds always returns values from –999 to 999. If you want

to report the total number of elapsed milliseconds, you need

TotalMilliseconds.

• Changes in Current Time

DateTime.Now and DateTime.UtcNow can be useful for logging,

but it’s not recommended to use these properties for time

measurements. They use the actual time, which can be changed

because of different reasons like a time synchronization service.

• Sequential Reads

The difference between two sequential calls of a timestamping

API can be any non- negative number. Even if you are using

Stopwatch with 1 us resolution, this difference can be several

milliseconds.

Even if you are using Stopwatch, you can get huge measurement errors if the number

of method invocations inside an iteration is not big enough. Stopwatch.Elapsed returns

a TimeSpan that can be misused.

Chapter 9 hardware and Software timerS

647

 Summary
In this chapter, we learned a lot about timers. We covered the following topics:

• Terminology

We discussed the basic timer and frequency units, including

the common notation (symbols like μs, ps, THz), the main

components of a hardware timer (tick generator, tick counter, tick

counter API), quantizing errors, and basic timer characteristics

(now we know the difference between accuracy and precision or

between the nominal and the actual resolution).

• Hardware timers

On the hardware level, there are several time sources like

TSC, ACPI PM, and HPET. TSC is the most reliable way to get

timestamps in most configurations. The TSC frequency is usually

close to the nominal CPU frequency. ACPI PM (frequency =

3.579545 MHz) and HPET (frequency = 14.31818 MHz) are usually

disabled by default on modern versions of operating systems

because of the high latency. However, you still should be ready to

meet ACPI PM or HPET. The frequency values of these two timers

have a long history, which was started when NTSC started to

construct a new standard for color television.

• OS timestamping API

Operating systems provide you many APIs that internally

interact with hardware timers. On Windows, the best high-

resolution timestamping APIs are QueryPerformanceCounter

(QPC) and QueryPerformanceFrequency (QPF). The value

doesn’t relate to the current local time. If you want to know the

current time, you can use GetSystemTime, GetLocalTime, and

GetSystemTimeAsFileTime. These APIs use the Windows system

timer with resolution between 0.5 ms and 15.625 ms. If you want

to know the current time with better accuracy, you should use

GetSystemTimePreciseAsFileTime. On Unix, you can use clock_

gettime/mach_absolute_time (if available) for high-precision

timestamping and gettimeofday for regular timestamping.

Chapter 9 hardware and Software timerS

648

• .NET timestamping API

The best high-resolution timestamping API in .NET is Stopwatch;

internally it uses the best API, which is provided by the OS.

Environment.TickCount can be used on Windows if you don’t

need good accuracy, but you do need extremely low latency.

DateTime.Now and DateTime.UtcNow can be useful for logging.

• Timestamping pitfalls

Even if you are using Stopwatch, you can still get huge errors

for short operations because of the small resolution or a huge

delta between sequential reads. The Stopwatch.Elapsed is a

TimeSpan that can be misused (taking Milliseconds instead

of TotalMilliseconds). The Environment.TickCount counter

overflows after ≈50 days. Measurements based on DateTime.Now

or DateTime.UtcNow can be spoiled by a time synchronization

service or other changes in the current time.

Now we have learned the internals of the hardware and the software timers.

This knowledge will help us choose a proper timer in each situation, design better

benchmarks, and avoid common mistakes.

 References
[ACPI Specifications] “Advanced Configuration and Power Interface Specification

(Version 6.0).” 2015. www.uefi.org/sites/default/files/resources/ACPI_6.0.pdf.

[Agner Instructions] Fog, Agner. “Instruction Tables. Lists of Instruction Latencies,

Throughputs and Micro-Operation Breakdowns for Intel, AMD and VIA CPUs.” www.

agner.org/optimize/instruction_tables.pdf.

[Agner Optimizing Assembly] Fog, Agner. “Optimizing Subroutines in Assembly

Language. An Optimization Guide for X86 Platforms.” www.agner.org/optimize/

optimizing_assembly.pdf.

[Agner Optimizing Cpp] Fog, Agner. “Optimizing Software in C++. An Optimization Guide for

Windows, Linux and Mac Platforms.” www.agner.org/optimize/optimizing_cpp.pdf.

Chapter 9 hardware and Software timerS

http://www.uefi.org/sites/default/files/resources/ACPI_6.0.pdf
http://www.agner.org/optimize/instruction_tables.pdf
http://www.agner.org/optimize/instruction_tables.pdf
http://www.agner.org/optimize/optimizing_assembly.pdf
http://www.agner.org/optimize/optimizing_assembly.pdf
http://www.agner.org/optimize/optimizing_cpp.pdf

649

[Chen 2014] Chen, Raymond. 2014. “When Does GetTickCount Consider the

System to Have Started?” November 13. https://blogs.msdn.microsoft.com/

oldnewthing/20141113-00/?p=43623.

[Cook 2017] Cook, Carl. 2017. “When a Microsecond Is an Eternity: High Performance

Trading Systems in C++.” Presented at the CppCon 2017. www.youtube.com/

watch?v=NH1Tta7purM.

[Govindarajalu 2002] Govindarajalu, B. 2002. IBM PC AND CLONES: Hardware,

Troubleshooting and Maintenance. Tata McGraw-Hill Education.

[HPET Specifications] “IA-PC HPET (High Precision Event Timers) Specification (Version

1.0a).” 2004. www.intel.com/content/dam/www/public/us/en/documents/technical-

specifications/software-developers-hpet-spec-1-0a.pdf.

[Hsia 2004] Hsia, Calvin. 2004. “Why Was the Original IBM PC 4.77 Megahertz?” August.

https://blogs.msdn.microsoft.com/calvin_hsia/2004/08/12/why-was-the-

original-ibm-pc-4-77-megahertz/.

[Intel Manual] “Intel: Intel® 64 and IA-32 Architectures Software Developer’s Manual

(325462-061US).” 2016. www.intel.com/content/dam/www/public/us/en/documents/

manuals/64-ia-32-architectures-software-developer-manual-325462.pdf.

[Jones 2000] Jones, Anthony. 2000. Splitting the Second: The Story of Atomic Time.

CRC Press.

[Karna 2017] Karna, Satish K. 2017. Microprocessors—GATE, PSUS AND ES Examination.

Vikas Publishing House.

[Kidd 2014] Taylor, Randy. 2014. “Power Management States: P-States, C-States, and

Package C-States.” April. https://software.intel.com/en-us/articles/power-

management- states-p-states-c-states-and-package-c-states.

[MSSupport 895980] “Programs That Use the QueryPerformanceCounter Function May

Perform Poorly in Windows Server 2000, in Windows Server 2003, and in Windows XP.”

Microsoft Support. https://support.microsoft.com/en-us/kb/895980.

[Paterson 2009] Paterson, Tim. 2009. “IBM PC Design Antics.” May. http://

dosmandrivel.blogspot.ru/2009/03/ibm-pc-design-antics.html.

[Schlyter] Schlyter, Paul. “Analog TV Broadcast Systems.” http://stjarnhimlen.se/tv/

tv.html.

[Solntsev 2017] Solntsev, Andrey. 2017. “Flaky Tests (in Russian).” presented at the

Heisenbug Moscow, December 9. www.youtube.com/watch?v=jLG3RXECQU8.

Chapter 9 hardware and Software timerS

https://blogs.msdn.microsoft.com/oldnewthing/20141113-00/?p=43623
https://blogs.msdn.microsoft.com/oldnewthing/20141113-00/?p=43623
https://www.youtube.com/watch?v=NH1Tta7purM
https://www.youtube.com/watch?v=NH1Tta7purM
http://www.intel.com/content/dam/www/public/us/en/documents/technical-specifications/software-developers-hpet-spec-1-0a.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/technical-specifications/software-developers-hpet-spec-1-0a.pdf
https://blogs.msdn.microsoft.com/calvin_hsia/2004/08/12/why-was-the-original-ibm-pc-4-77-megahertz/
https://blogs.msdn.microsoft.com/calvin_hsia/2004/08/12/why-was-the-original-ibm-pc-4-77-megahertz/
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
https://software.intel.com/en-us/articles/power-management-states-p-states-c-states-and-package-c-states
https://software.intel.com/en-us/articles/power-management-states-p-states-c-states-and-package-c-states
https://support.microsoft.com/en-us/kb/895980
http://dosmandrivel.blogspot.ru/2009/03/ibm-pc-design-antics.html
http://dosmandrivel.blogspot.ru/2009/03/ibm-pc-design-antics.html
http://stjarnhimlen.se/tv/tv.html
http://stjarnhimlen.se/tv/tv.html
https://www.youtube.com/watch?v=jLG3RXECQU8

650

[Stephens 1999] Stephens, Randy. 1999. “Measuring Differential Gain and Phase.”

Application Report SLOA040. www.ti.com/lit/an/sloa040/sloa040.pdf.

[The Windows Timestamp Project] Lentfer, Arno. “Microsecond Resolution Time

Services for Windows.” www.windowstimestamp.com/description.

Chapter 9 hardware and Software timerS

http://www.ti.com/lit/an/sloa040/sloa040.pdf
http://www.windowstimestamp.com/description

651
© Andrey Akinshin 2019
A. Akinshin, Pro .NET Benchmarking, https://doi.org/10.1007/978-1-4842-4941-3

Index

A
Absolute threshold, 344–347
Adaptive threshold, 344, 348, 349
Add method, 60
Address space layout randomization

(ASLR), 42
Ahead-Of-Time (AOT) compilation, 93

advantage, 133, 134
CoreRT, 137
CrossGen, 135
disadvantage, 134, 135
Mono, 136
.NET Native, 136
NGen, 135
RuntimeHelpers, 137

AMD64, 159
Arithmetic

characteristics, 481–484
denormalized numbers, 484, 486,

487, 489
double to string, 494, 495
integer division, 496, 498–500,

502, 503
Math.Abs, 490–493
operations, 480
Sanglard interpretation, 480

ASM decompiler, 366
Asserts and alarms, performance

absolute threshold, 345–347
adaptive threshold, 348, 349

manual threshold, 349, 350
relative thresholds, 347, 348

Asymptotic analysis, 227
Asymptotic complexity, 340
Asymptotic tests, 282, 283
Asynchronous methods, 129

B
Bad benchmark (N mistakes), 32
Bar method, 416, 434
Base Class Libraries (BCL), 103
BenchmarkDotNet, 366, 408
Benchmarking

data dredging, 254
goals, 10, 244, 245

marketing tools, 12–14
performance analysis, 11, 12
puzzles, 14
scientific interest, 14

Holm–Bonferroni
correction, 254, 255

multiple comparison
problem, 255

percentages, 247, 248
ratios, 248–250
small samples, 245, 246
statistics knowledge, 245

Bessel’s correction, 202
Bimodal distribution, 199, 316
BitHacks method, 475

https://doi.org/10.1007/978-1-4842-4941-3

652

Bound check elimination (BCE)
JIT compiler, 74
upper loop limit, 74–76

Branch prediction
minimum, 470–475
number of conditions, 465, 467–469
patterns, 476–479
Sorted and Unsorted data, 459,

461–464
technique, 458

Build Time and GetLastWriteTime
Resolution, 121, 122

C
Cache miss, 528
CalcAggressive method, 432
Capacity planning/scalability

analysis, 284
Central limit theorem, 211, 212
Checkpoint testing, 330, 331
Cliff degradation, 300
Closed-circuit television (CCTV), 164
Cold start test

applications, 273
asymptotic, 282, 283
feature, 273
fresh OS image, 274
latency and throughput tests,

283, 285, 286
method, 273
OS resources, 274
RAMMap utility, 274
standby memory, 275
warmed-up tests, 276–282

Cold/warmed states, 49–51
Command-line interface (CLI), 100
Common Language Runtime (CLR), 21

Community Technology Preview (CTP), 124
Compilation

AOT (see Ahead-Of-Time (AOT)
compilation)

IL generation (see IL Generation)
JIT, 130–133
jitting, 146–148
params, 141
RyuJIT, 150
swap, 143–145
switch, 137–141
XBuild, 149

Computational complexity, 282
Conditional jitting, 80–84
Confidence intervals, 209–211
Constant folding, 69–73
Continuous integration (CI) pipeline, 9
Cooperative optimizations, 430
CoreCLR, 99
CoreFx, 94, 99
CoreLib, 99
CoreRT, 137, 150
CPU cache

associativity
coding, 534
critical stride, 535, 536
two-way associative cache, 535

cache levels
coding, 530, 531
memory size, 532
microarchitecture, 533
SizeKb parameter, 531
SizeKb values, 532

false sharing
cache lines, 539
coding, 537, 538
Inc method, 538
Step parameter, 538

INDEX

653

memory access patterns
cache miss, 528
coding, 527, 528
CPU cache lines, 529
I/O operations, 526
random, 529
sequential, 529
SumIj benchmark, 528
SumJi benchmark, 529

CPU throttling, 163
C#/Razor, 95
Critical patches, 168, 169
CrossGen, 135
Cross-validation, 232
Cumulative metrics, 236
Cumulative p-value function, 238, 239
C#/VB decompiler, 366

D
Daily tests, 329
Dead code elimination (DCE), 65–69
Debugger/profiler, 38, 366
Degradation, 268
Denormalized numbers, 485
Density waterfall plot, 185
Diagnostic tools

ASM decompiler, 366
Asm-Dude, 392
BenchmarkDotNet, 366

definition, 367
example, 367, 368
requirements, 369, 372, 373

C#/VB decompiler, 366
debugger, 366
dnSpy, 390
ildasm/ilasm, 387, 388
ILSpy, 389
Intel VTune Amplifier, 396

JetBrains (see Jetbrains tools)
Mono console, 393, 394
monodis, 389
perfcollect, 395
performance profiles, 365
PerfView, 394
Process Hacker, 395
Visual Studio

disassembly view, 375, 376
embedded profilers, 374

WinDbg, 391
Windows Sysinternals (see Windows

Sysinternals)
Dictionary and Randomized String

Hashing, 114–116
Digital video recorder (DVR), 164
Distribution comparison

density plots, 216
errors, 219
heuristic tests, 221, 222
hypotheses, 218
mnemonics, 218–220
performance, 217, 218
p-value, 222–225
statistical hypotheses, 225–227
statistical tests, 222
statistics, 220

dnSpy, 390
Domain-specific language (DSL), 127
dotPeek, 376
DotTrace/DotMemory, 377

E
Environment subspace, 335, 339, 340
Executing benchmark

CPU noise, 40, 41
debugger, 36
JIT optimizations, 37

Index

654

maximum performance mode, 40
microbenchmarking, 39
profiler, 38
realistic conditions, 39
release mode, 37

Expected acceleration, 303
Explicit and implicit performance tests,

factors
number of iterations, 289
persistent CI agent, 288
time of execution, 291
variance and errors, 291
virtualization, 289
writing easiness, 290

F
False anomaly, changes

CI agent hardware, 318
CI agent pool, 319
CI agent software, 319
external dependencies, 320
sharing, 539
test order, 317

Foo method, 416, 433
Framework Class Library (FCL), 96
Frequency trails, 196
Frequency unit, 579
Fuzz tests, 297, 298

G
Garbage collection

finalization, 568–570
LOH, 566, 567
modes

coding, 558
Heap, 558

Server, 559
Stackalloc, 558
workstation, 559

Mono
Boehm, 561
coding, 562
MONO_GC_PARAMS, 563
SGen parameters, 563, 564

gcAllowVeryLargeObjects, 561
gcConcurrent, 560
GCCpuGroup, 560
GCHeapCount, 561
gcServer, 560
GetCurrentTicks() method, 583
gettimeofday function, 624
GetTimestamp() method, 34
GitHub, 172
Grisu3 algorithm, 495

H
Hardware, 93

ARM, 159, 160
components, 159, 162
disks, 161
hyperthreading, 161
Intel, 159, 160
network bandwidth, 161
RAM, 161

Hardware timers, 581
ACPI PM, 600–602
HPET, 600
magic numbers, history

audio signal, 603, 604
B&W TV, 602
chrominance signal, 602
construction, 604, 605
line frequency, 603

Executing benchmark (cont.)

INDEX

655

TSC
code, 592, 594
RDTSC instruction, 592, 594, 595
RDTSC reciprocal throughput, 596
versions, 597, 598, 600

Hash code, 140
High-Precision Event Timer (HPET),

600–602
High-resolution timer, 607
History subspace, 335, 342
Huge methods and jitting, 146, 148
Huge outliers, 313, 314
Huge variance, 312, 313
Humidity, 165, 166
Hyperthreading, 161

I
IDE/external debugger, 38
IIncrementer, 84, 86
Ildasm/Ilasm, 387
IL decompiler, 366
IL generation, 92

building, 126, 127
compiling, 124–126
CTP, 124
debug and release, 127, 128
language vs. compiler

version, 128, 129
IList.Count and Unexpected Performance

Degradation, 117–120
ILSpy, 389
Implicit performance tests, 287
Inaccurate timestamping, 32

DateTime-based benchmark, 35
DateTime.Now, drawbacks, 33
Stopwatch, 35
Stopwatch.Frequency field, 34

Incline degradation, 301
Inc method, 84, 538
Infrastructure, 54, 55
InlinedLoop method, 427
Inlining, 76–80

advantages, 419
call overhead, 421–423, 425
cooperative optimizations

Bar code, 433, 434
Calc method, 430, 432
CalcAggressive method, 432
Foo code, 432, 433

disadvantages, 420
IL instruction, 434–437, 439, 440
register allocation, 426–430

Instruction-Level Parallelism (ILP)
data dependencies, 446, 448
dependency graph

Loop method, 449, 451
UnrolledLoop

method, 450–452
visualization, 451

parallel execution, 442–446
short loops, 452–458
Skylake instructions, 440–442

Insufficient number invocations, 51–53
Integration test, 286
IntelliJ IDEA, 162
Intel VTune Amplifier, 396
Interface method dispatching, 84–87
Intermediate Language (IL), 21
Intrinsics

Math.Round(double x)
method, 503, 504, 506

rotate bits, 507–509, 511–514
System.Runtime, 514, 515, 517–519

I/O-bound method measurements, 48
Itanium, 159

Index

656

IterationSetup(), 277
Iteration subspace, 335, 337, 338

J
JetBrains tools

dotMemory, 377, 380
dotpeek, 376
dotTrace, 377, 378, 380
ReSharper, 381
Rider, 381

JIT compilation, 92, 130–133
JIT compiler, 401, 403
Just-In-Time (JIT), 37

K
Kurtosis, 206, 207

L
Lambda expressions, 128
Large object heap (LOH), 5, 565
Large object space, 567
Latency and throughput

tests, 283, 285, 286
LegacyJIT, 92, 94, 132
Linear regression model, 231
Linux, 154, 155, 173
ListSortBenchmark, 279
Loop method, 451
Loop unrolling

add eax, 3 instruction, 63
empty loops, constants, 63
assembly code, LegacyJIT-x64, 61, 62
assembly code, LegacyJIT-x86, 61
variable empty loops, 64

Low-level virtual machine (LLVM),
95, 133, 150

M
macOS, 155–158, 173
Managed Profile Guided Optimization

(MPGO), 135, 136
Mann–Whitney U test, 222
Manual threshold, 344, 349, 350
Margin of error, 208
Math.Abs, 490
Math.Round(double x)

method, 503
Math.Sqrt, 66
Meltdown and Spectre, 168, 169
Memory layout

cache bank conflicts, 545–547
cache line splits

CacheSplit, 549
coding, 547–549
InsideCacheLine, 549
MyStruct, 549

4K aliasing
ArrayCopy, 552
coding, 551
Intel AVX, 556
load buffer, 554, 555
parameter values, 553
store buffer, 554, 555
store forwarding, 554, 555
StrideOffset values, 554

struct alignment
coding, 542, 543
LegacyJIT-x86, 543, 544
Mono-x64, 543, 544
Struct7, 543
Struct8, 543

Memory profiler, 365
Metric subspace, 335, 337
Microbenchmarks, 31
Mixed performance tests, 288

INDEX

657

Modes
academic algorithms, 198
BenchmarkDotNet, 199–201
bimodal, 197
histogram, 199
multimodal, 197
unimodal, 197

Monitoring, 292
Mono, 92, 95

Boehm, 109, 110
builds, 111
SGen, 107, 108
SIMD, 107, 108
versions, 106–108

Mono AOT, 93, 136
Monodis, 389
MonoJIT, 92, 132, 133
MonoLLVM, 133
movfuscator, 475
MSBuild, 92, 100, 122, 126–128
MSBuild and Windows Defender, 169–171
Multidimensional performance space, 18
Multimodal distribution, 198, 314, 316
Multithreaded applications, 172

N
Natural noise

ASLR, 42
CPU frequency scaling, 42
IsPrime implementation, 43, 44
maximum acceptable error, 45
multiprocessing/multithreading

environment, 41
OS processes, 41

.NET Core, 92, 95, 99
BCL, 103
CLI, 100

compatibility matrix, 103, 104
configuration knobs, 105
CoreCLR, 99, 105
CoreFx, 99, 105
MIT License, 99
SDK, 100, 102–104
versions, 100–102

.NET Core SDK, 128

.NET Framework
CLR, 97
FCL, 96, 97
release values, 98, 99
SSCLI, 99
versions, 96–98
windows updates and changes,

166–168
.NET Native, 136
.NET timestamping APIs

DateTime.UtcNow
DateTime properties, 626, 627
Environment.TickCount, 631–633
resolution and latency, 628, 630, 631
TimeSpan properties, 627, 628

Stopwatch class
operating system, 634
resolution and latency, 636, 637
StartNew()/Stop(), 633
Stopwatch.Frequency value, 635
Stopwatch.GetTimestamp(), 634

NGen, 135
Nontrivial dependencies, 340
Normal distribution, 203, 204
NuGet tools, 100

O
Observer effect, benchmarking, 16, 17
O(N) algorithm, 21

Index

658

OneCondition method, 469
Operating system

Linux, 150, 151, 154, 155
macOS, 150, 151, 155–158
Windows, 150–154

Operator ∗ method, 514
Optional stopping

cumulative metrics, 236–240
goals, 235, 236
sequential analysis, 235
set of measurements, 235

OS timestamping API
high-resolution timer, 607, 608
on Unix

clock_getttime, clock_settime,
clock_getres, 621, 622

gettimeofday, 624
mach_absolute_time, 623

QPC, 616–618, 620
system ticks, 607
system timer

powercfg, 613, 614
resolution, 609
ResolutionInfo data structure, 611
Thread.Sleep, 615, 616
Windows APIs, 610, 611, 613

Outliers
with distribution, 192
errors, 193
paths, 194
random noise, 193
sensitivity, 193
true effects, 193

P
Paired degradation/acceleration, 306
Parameter subspace, 335, 340, 341

Params and memory allocations, 141–143
Pareto Principle, 28
Pause Latency and Intel

Skylake, 171–173
Pearson median skewness, 204
Percentiles, 191
Performance acceleration, 302, 303
Performance analysis

bad benchmark, 26
distribution comparison (see

Distribution comparison)
good benchmark, 27
limiting factor, 27, 28
optional stopping, 216, 235
pilot experiments, 216, 240–242
regression models, 215, 227
statistics, 28
ugly benchmark, 26

Performance anomalies
acceleration, 302, 303
degradation, 300–302
false anomaly (see False anomaly,

changes)
huge duration, 310–312
huge outliers, 313, 314
huge variance, 312, 313
multimodal distribution, 314, 316
problems and recommendations

alert fatigue, 326
false anomalies, 324, 325
hacks in test logic, 323
hidden bugs, 321
missed asserts, 323
performance asserts, 322
performance degradation, 321
serious anomalies, 324
slow build process, 321
slow development process, 322

INDEX

659

systematic monitoring, 324
unpredictably huge duration, 322

spatial clustering, 308–310
temporal clustering, 304–306, 308

Performance cleanness, 359, 360
Performance culture

cleanness, 359, 360
reliable performance testing

infrastructure, 358
responsibility, 360, 361
shared performance goals, 357, 358

Performance degradation,
265–267, 300–302

Performance distribution, 181
Performance-driven development (PDD)

code change, 355
performance space, 355, 356
task and performance

goals, 351, 352
test

collect metrics, 353
performance asserts, 354
performance space, 354
target method, 353
test status, 355

Performance investigation
analysis, 10
business processes, 2
measurement methodology, 10
metrics, 4

average/peak load, 6
int[] instances, 5
latency, 5
memory traffic, 5
statistical properties, 6
target conditions, 6

problems definition, 3, 4
selecting approaches/tools, 7

asymptotic complexity, 7
monitoring, 8
optimization, 7
performance tests, 8

Performance profiler, 365
Performance spaces

distribution, 23–25
environment, 21, 22
input data, 22, 23
model, 20
single performance spaces, 18–20
source code, 20, 21

Performance subspaces
environment subspace, 339, 340
history subspace, 342
iteration subspace, 337, 338
metric subspace, 335, 337
parameter subspace, 340, 341
test subspace, 338, 339

Performance testing
cold start test, 273–276
explicit, 287
external dependencies, 294–296
fuzz tests, 297, 298
goals

automatic bisecting, 270
automatic continuous profiling, 271
automatic reports, 270
automatic snapshots, 271
automatic step-by-step analysis, 271
detect not-prevented

degradations, 267
implicit, 287
performance anomalies, 268
prevent performance

degradations, 265–267
Type I Error rate, 268
Type II Error rate, 268, 269

Index

660

monitoring, 292
telemetry, 292
unit and integration tests, 286–292
user interface, 297

Persistent CI agent, 288
P-hacking, 254
Physical location, 164, 165
Polynomial regression model, 231
popcnt, 515
powercfg, 613
Process Hacker, 395

Q
Quadratic regression model, 231
Quantiles, 190, 191
Quantization, 584
Quartiles, 190, 191
QueryPerformanceCounter (QPC), 616
QueryPerformanceFrequency (QPF), 616

R
RAMMap, 383
Recursive methods, 423
Register and stack

local variable, 407–411
number of calls, 416–418
struct promotion, 403, 405–407
try-catch, 412, 413, 415

Regression analysis
algorithmic complexities, 228–230
asymptotic analysis, 227, 228
cluster, 233, 234
cross-validation, 232
linear regression model, 231
overfitting analysis, 232
polynomial regression model, 231

quadratic regression model, 231
quickselect algorithm, 230, 231

Regression model, 283
Relative thresholds, 344, 347, 348
Reliable performance testing

infrastructure, 358
Repeatability, 15
Requests per second (RPS), 11
ReSharper, 381
ResolutionInfo data structure, 611
Rider, 162, 381
Roslyn, 124, 129, 139, 142
RuntimeHelpers, 137
Runtimes

degradation, 118–120
Dictionary and HashSet, 114–117
Mono (see Mono)
MSBuild, 122
.NET Core (see .NET Core)
.NET Framework (see .NET

Framework)
overview, 123
solution builder, 121
StringBuilder, 111–114
SWEA, 117–119

RyuJIT, 92, 94, 130–132

S
Sample plots

density plot, 184
distribution visualizations, 186
histogram, 184
rug plot, 184, 185
timeline plot, 184
waterfall plot, 185, 187

Sanglard interpretation, 480
Scalability analysis, 284

Performance testing (cont.)

INDEX

661

SGen, 94, 107
Shared performance goals, 357, 358
Shared Source Common Language

Infrastructure (SSCLI), 99
Single Instruction Multiple Data

(SIMD), 107
Skewness, 204–206
Small object heap (SOH), 565
Solution builder, 121
Solution-Wide Error Analysis (SWEA), 117
SomeLogic() method, 583
Son of Strike (SOS), 391
Spatial anomaly, 312, 314
Spatial clustering, 308–310, 340
Sqrt13, 71
Sqrt14, 72
Standard error, 208, 210, 211
StartNew() methods, 34, 633
Statistical metrics and visualizations

box plots, 194–196
frequency trails, 196
mean/arithmetical average, 189
median, 189, 190
minimum and maximum values, 188
modes, 197
normal distribution, 203, 204
sample plots, 183
sample sizes, 187, 188
skewness, 204, 205

Steady state, 49
Stop() methods, 34, 633
Stopwatch.GetTimestamp(), 634
Strategies of defense, performance

problems
checkpoint testing, 330, 331
daily tests, 329
manual testing, 332, 333
overview, 334

postrelease telemetry and
monitoring, 333, 334

precommit tests, 328, 329
prerelease testing, 331, 332
retrospective analysis, 330

StringBuilder and CLR Versions, 111–114
Suite degradation, 305, 307
Suspicious statistical metrics, 187
Swap and unobvious IL, 143–146
Switch and C# compiler

versions, 137–141
System.Diagnostics.Stopwatch, 17, 33
System ticks, 607
System timer, 607

T
Telemetry, 292
Temperature, 163
Temporal anomaly, 300, 312, 314, 340
Temporal clustering, 304–306, 308
Ternary method, 475
Test subspace, 335, 338, 339
Thermal throttling, 163
Three-sigma test, 221
Threshold approach, 223
Tick counter, 582
Tick generator, 581
Timers

characteristics
accuracy, 588–590
actual frequency, 586
frequency offset, 587
granularity, 586
nominal frequency, 586
precision, 588, 589
resolution, 586
timestamps, 588

Index

662

frequency units, 579–581
hardware timers

components, 582
GetCurrentTicks() method, 583
quantizing error, 584, 585
SomeLogic() method, 583
tick counter API, 582
tick generator, 581

.NET timestamping APIs
(see .NET timestamping APIs)

OS timestamping API (see OS
timestamping API)

time units, 577, 578
Time Stamp Counter (TSC), 592
Timestamping

pitfalls
change in current time, 640, 641
counter overflow, 638, 639
sequential reads, 642–645
small resolution, 638
TimeSpan, 639, 640

Time units, 577
Tricky distributions, 46–48
True sharing, 538, 539
Tukey test, 221
Two-one-sided tests (TOST), 223
Two-way associative cache, 535
Type I error (false positive result), 268
Type II error (false negative result), 268

U
Unequal iterations

add/remove, 60
List.Add, 56, 57
List<T> implementation, 58, 60
method invocation, 56

Unexpected acceleration, 303
Unit and integration tests, 286, 287
Universal Windows Platform (UWP), 136
UnrolledLoop method, 451
User interface tests, 297
Utilization Saturation and Errors (USE)

Method, 193

V
Variance and standard deviation, 201–203
Vectorization, 509
Verifiability/portability, 16
Vibrations, 163, 164
Virtualization, 289
Visual Studio, 366
VMMap, 384

W
Warmed-up tests, 49, 276–282
Welch’s t-test, 222
Whisker plot, 194
Windows, 152–154, 173
Windows Sysinternals, 367

Process Monitor, 385
RAMMap, 383
tools, 382
VMMap, 384

WithoutDependencies method, 448
WithStarg method, 435

X, Y, Z
x64, 159
x86, 160
x86_64, 159
XBuild, 92, 126

Timers (cont.)

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Chapter 1: Introducing Benchmarking
	Planning a Performance Investigation
	Define Problems and Goals
	Pick Metrics
	Select Approaches and Tools
	Perform an Experiment to Get the Results
	Complete the Analysis and Draw Conclusions

	Benchmarking Goals
	Performance Analysis
	Benchmarks as a Marketing Tool
	Scientific Interest
	Benchmarking for Fun

	Benchmark Requirements
	Repeatability
	Verifiability and Portability
	Non-Invading Principle
	Acceptable Level of Precision
	Honesty

	Performance Spaces
	Basics
	Performance Model
	Source Code
	Environment
	Input Data
	Distribution
	The Space

	Analysis
	The Bad, the Ugly and the Good
	Find Your Bottleneck
	Statistics

	Summary

	Chapter 2: Common Benchmarking Pitfalls
	General Pitfalls
	Inaccurate Timestamping
	A bad benchmark
	A better benchmark
	Advice: prefer Stopwatch over DateTime

	Executing a Benchmark in the Wrong Way
	A bad benchmark
	A better benchmark
	Advice: use Release without attached debugger in sterile environment

	Natural Noise
	A bad benchmark
	A better benchmark
	Advice: always analyze random errors

	Tricky Distributions
	A bad benchmark
	A better benchmark
	Advice: always look at your distribution

	Measuring Cold Start Instead of Warmed Steady State
	A bad benchmark
	A better benchmark
	Advice: use different approaches for cold and warm states

	Insufficient Number of Invocations
	A bad benchmark
	A better benchmark
	Advice: do many invocations

	Infrastructure Overhead
	A bad benchmark
	A better benchmark
	Advice: always calculate your infrastructure overhead

	Unequal Iterations
	A bad benchmark
	A better benchmark
	Advice: measure methods that have a steady state

	.NET-Specific Pitfalls
	Loop Unrolling
	A bad benchmark
	A better benchmark
	Advice: use variables instead of constants in loops

	Dead Code Elimination
	A bad benchmark
	A better benchmark
	Advice: always use results of your calculations

	Constant Folding
	A bad benchmark
	A better benchmark
	Advice: don’t use constants in your benchmarks

	Bound Check Elimination
	A bad benchmark
	A better benchmark
	Advice: use consistent loop style

	Inlining
	A bad benchmark
	A better benchmark
	Advice: control inlining of the benchmarked methods

	Conditional Jitting
	A bad benchmark
	A better benchmark
	Advice: use own process for each benchmarked method

	Interface Method Dispatching
	A bad benchmark
	A better benchmark
	Advice: use a unique process for each benchmarked method

	Summary

	Chapter 3: How Environment Affects Performance
	Runtime
	.NET Framework
	.NET Core
	Mono
	Case Study 1: StringBuilder and CLR Versions
	Case Study 2: Dictionary and Randomized String Hashing
	Case Study 3: IList.Count and Unexpected Performance Degradation
	Case Study 4: Build Time and GetLastWriteTime Resolution
	Summing Up

	Compilation
	IL Generation
	Compiling
	Building
	Build configurations
	Language version vs. compiler version

	Just-In-Time (JIT) Compilation
	Ahead-Of-Time (AOT) Compilation
	Case Study 1: Switch and C# Compiler Versions
	Case Study 2: Params and Memory Allocations
	Case Study 3: Swap and Unobvious IL
	Case Study 4: Huge Methods and Jitting
	Summing Up

	External Environment
	Operating System
	Windows
	Linux
	macOS

	Hardware
	The Physical World
	Temperature
	Vibrations
	Physical location
	Humidity

	Case Study 1: Windows Updates and Changes in .NET Framework
	Case Study 2: Meltdown, Spectre, and Critical Patches
	Case Study 3: MSBuild and Windows Defender
	Case Study 4: Pause Latency and Intel Skylake
	Summing Up

	Summary
	References

	Chapter 4: Statistics for Performance Engineers
	Descriptive Statistics
	Basic Sample Plots
	Sample Size
	Minimum, Maximum, and Range
	Mean
	Median
	Quantiles, Quartiles, and Percentiles
	Outliers
	Box Plots
	Frequency Trails
	Modes
	Variance and Standard Deviation
	Normal Distribution
	Skewness
	Kurtosis
	Standard Error and Confidence Intervals
	The Central Limit Theorem
	Summing Up

	Performance Analysis
	Distribution Comparison
	Regression Models
	Optional Stopping
	Pilot Experiments
	Summing Up

	How to Lie with Benchmarking
	Lie with Small Samples
	Lie with Percents
	Lie with Ratios
	Lie with Plots
	Lie with Data Dredging
	Summing Up

	Summary
	References

	Chapter 5: Performance Analysis and Performance Testing
	Performance Testing Goals
	Goal 1: Prevent Performance Degradations
	Goal 2: Detect Not-Prevented Degradations
	Goal 3: Detect Other Kinds of Performance Anomalies
	Goal 4: Reduce Type I Error Rate
	Goal 5: Reduce Type II Error Rate
	Goal 6: Automate Everything
	Summing Up

	Kinds of Benchmarks and Performance Tests
	Cold Start Tests
	Warmed Up Tests
	Asymptotic Tests
	Latency and Throughput Tests
	Unit and Integration Tests
	Monitoring and Telemetry
	Tests with External Dependencies
	Other Kinds of Performance Tests
	Summing Up

	Performance Anomalies
	Degradation
	Acceleration
	Temporal Clustering
	Spatial Clustering
	Huge Duration
	Huge Variance
	Huge Outliers
	Multimodal Distributions
	False Anomalies
	Underlying Problems and Recommendations
	Summing Up

	Strategies of Defense
	Pre-Commit Tests
	Daily Tests
	Retrospective Analysis
	Checkpoints Testing
	Pre-Release Testing
	Manual Testing
	Post-Release Telemetry and Monitoring
	Summing Up

	Performance Subpaces
	Metric Subspace
	Iteration Subspace
	Test Subspace
	Environment Subspace
	Parameter Subspace
	History Subspace
	Summing Up

	Performance Asserts and Alarms
	Absolute Threshold
	Relative Threshold
	Adaptive Threshold
	Manual Threshold
	Summing Up

	Performance-Driven Development (PDD)
	Define a Task and Performance Goals
	Write a Performance Test
	Change the Code
	Check the New Performance Space
	Summing Up

	Performance Culture
	Shared Performance Goals
	Reliable Performance Testing Infrastructure
	Performance Cleanness
	Personal Responsibility
	Summing Up

	Summary
	References

	Chapter 6: Diagnostic Tools
	BenchmarkDotNet
	Visual Studio Tools
	Embedded Profilers
	Disassembly View

	JetBrains Tools
	dotPeek
	dotTrace and dotMemory
	ReSharper
	Rider

	Windows Sysinternals
	RAMMap
	VMMap
	Process Monitor

	Other Useful Tools
	ildasm and ilasm
	monodis
	ILSpy
	dnSpy
	WinDbg
	Asm-Dude
	Mono Console Tools
	PerfView
	perfcollect
	Process Hacker
	Intel VTune Amplifier

	Summary
	References

	Chapter 7: CPU-Bound Benchmarks
	Registers and Stack
	Case Study 1: Struct Promotion
	Source code
	Results
	Explanation
	Discussion

	Case Study 2: Local Variables
	Source code
	Results
	Explanation
	Discussion

	Case Study 3: Try-Catch
	Source code
	Results
	Explanation
	Discussion

	Case Study 4: Number of Calls
	Source code
	Results
	Explanation
	Discussion

	Summing Up

	Inlining
	Case Study 1: Call Overhead
	Source code
	Results
	Explanation
	Discussion

	Case Study 2: Register Allocation
	Source code
	Results
	Explanation
	Discussion

	Case Study 3: Cooperative Optimizations
	Source code
	Results
	Explanation
	Discussion

	Case Study 4: The “starg” IL Instruction
	Source code
	Results
	Explanation
	Discussion

	Summing Up

	Instruction-Level Parallelism
	Case Study 1: Parallel Execution
	Source code
	Results
	Explanation
	Discussion

	Case Study 2: Data Dependencies
	Source code
	Results
	Explanation
	Discussion

	Case Study 3: Dependency Graph
	Source code
	Results
	Explanation
	Discussion

	Case Study 4: Extremely Short Loops
	Source code
	Results
	Explanation
	Discussion

	Summing Up

	Branch Prediction
	Case Study 1: Sorted and Unsorted Data
	Source code
	Results
	Explanation
	Discussion

	Case Study 2: Number of Conditions
	Source code
	Results
	Explanation
	Discussion

	Case Study 3: Minimum
	Source code
	Results
	Explanation
	Discussion

	Case Study 4: Patterns
	Source code
	Results
	Explanation
	Discussion

	Summing Up

	Arithmetic
	Case Study 1: Denormalized Numbers
	Source code
	Results
	Explanation
	Discussion

	Case Study 2: Math.Abs
	Source code
	Results
	Explanation
	Discussion

	Case Study 3: double.ToString
	Source code
	Results
	Explanation
	Discussion

	Case Study 4: Integer Division
	Source code
	Results
	Explanation
	Discussion

	Summing Up

	Intrinsics
	Case Study 1: Math.Round
	Source code
	Results
	Explanation
	Discussion

	Case Study 2: Rotate Bits
	Source code
	Results
	Explanation
	Discussion

	Case Study 3: Vectorization
	Source code
	Results
	Explanation
	Discussion

	Case Study 4: System.Runtime.Intrinsics
	Source code
	Results
	Explanation
	Discussion

	Summing Up

	Summary
	References

	Chapter 8: Memory-Bound Benchmarks
	CPU Cache
	Case Study 1: Memory Access Patterns
	Source code
	Results
	Explanation
	Discussion

	Case Study 2: Cache Levels
	Source code
	Results
	Explanation
	Discussion

	Case Study 3: Cache Associativity
	Source code
	Results
	Explanation
	Discussion

	Case Study 4: False Sharing
	Source code
	Results
	Explanation
	Discussion

	Summing Up

	Memory Layout
	Case Study 1: Struct Alignment
	Source code
	Results
	Explanation

	Case Study 2: Cache Bank Conflicts
	Source code
	Results
	Explanation

	Case Study 3: Cache Line Splits
	Source code
	Results
	Explanation
	Discussion

	Case Study 4: 4K Aliasing
	Source code
	Results
	Explanation
	Discussion

	Summing Up

	Garbage Collector
	Case Study 1: GC Modes
	Source code
	Results
	Explanation
	Discussion

	Case Study 2: Nursery Size in Mono
	Source code
	Results
	Explanation
	Discussion

	Case Study 3: Large Object Heaps
	Source code
	Results
	Explanation
	Discussion

	Case Study 4: Finalization
	Source code
	Results
	Explanation
	Discussion

	Summing Up

	Summary
	References

	Chapter 9: Hardware and Software Timers
	Terminology
	Time Units
	Frequency Units
	Main Components of a Hardware Timer
	Ticks and Quantizing Errors
	Examples

	Basic Timer Characteristics
	Nominal and actual frequency, resolution, and granularity
	Frequency offset
	Timestamp latency, access time, and timer overhead
	Precision and accuracy

	Summing Up

	Hardware Timers
	TSC
	Generation 1: Variant TSC
	Generation 2: Constant TSC
	Generation 3: Invariant TSC

	HPET and ACPI PM
	History of Magic Numbers
	Condition 1 “Bandwidth for the chrominance signal”
	Condition 2 “Line frequency”
	Condition 3 “Audio signal”
	Condition 4 “Simple construction”
	Solution

	Summing Up

	OS Timestamping API
	Timestamping API on Windows: System Timer
	System timer and its resolution
	System timer resolution API
	System timer analysis: powercfg
	System timer and Thread.Sleep

	Timestamping API on Windows: QPC
	Timestamping API on Unix
	clock_getttime, clock_settime, clock_getres
	mach_absolute_time
	gettimeofday

	Summing Up

	.NET Timestamping API
	DateTime.UtcNow
	Environment.TickCount
	Stopwatch.GetTimestamp
	Summing Up

	Timestamping Pitfalls
	Small Resolution
	Counter Overflow
	Time Components and Total Properties
	Changes in Current Time
	Time synchronization
	Daylight saving time
	Changes in time zones
	Time can be manually changed

	Sequential Reads
	Summing Up

	Summary
	References

	Index

