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You should take the approach that you’re wrong. Your goal is to be less 
wrong.

— Elon Musk

I wrote my first C# benchmark in 2004. This was a long time ago, so I don’t remember 

exactly what I measured, but I guess that the source code looked like this:

var start = DateTime.Now;

// Some stuff

var finish = DateTime.Now;

Console.WriteLine(finish - start);

I remember my feelings about this code: I thought that now I know everything about 

time measurements.

After many years of performance engineering, I have learned a lot of new stuff. It 

turned out that time measurement is not a simple thing. There are too many factors that 

can affect our measurements. In this book, I want to take you on a fascinating journey 

into the wonderful world of benchmarking, where we learn how to conduct accurate 

performance measurements and avoid hundreds of possible mistakes.

In the modern world, it is very important to make your software fast. Good speed 

could be a reason why customers will use your product instead of a competitor’s 

product. Poor speed could be a reason why users will stop using your product. But what 

does “fast” mean? When can we say that one program works “faster” than another? What 

should we do to be sure that our code will work “fast enough” everywhere?

If we want to make our application fast, the first thing we should learn is how to 

measure it. And one of the great ways to do it is benchmarking. According to the New 

Oxford American Dictionary, a benchmark is “a problem designed to evaluate the 

performance of a computer system.” Here, you should ask further questions. What does 

“performance” mean? How can we “evaluate” it? Someone may say that these are very 

simple questions. However, they are so complicated that I decided to write an entire 

book about them.

Introduction
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 About Content
This book contains nine chapters:

• Chapter 1 “Introducing Benchmarking”

This chapter contains some basic information about 

benchmarking and other performance investigations, including 

benchmarking goals and requirements. We will also discuss 

performance spaces and why it’s so important to analyze 

benchmark results.

• Chapter 2 “Common Benchmarking Pitfalls”

This chapter contains 15 examples of common mistakes that 

developers usually make during benchmarking. Each example is 

pretty small (so, you can easily understand what’s going on), but 

all of them demonstrate important problems and explain how to 

resolve them.

• Chapter 3 “How Environment Affects Performance”

This chapter explains why the environment is so important and 

introduces a lot of terms that will be used in subsequent chapters. 

You will find 12 case studies that demonstrate how minor 

changes in the environment may significantly affect application 

performance.

• Chapter 4 “Statistics for Performance Engineers”

This chapter contains the essential knowledge about statistics 

that you need during performance analysis. For each term, 

you will find practical recommendations that will help you use 

statistical metrics during your performance investigations. It also 

contains some statistical approaches that are really useful for 

benchmarking. At the end of this chapter, you will find different 

ways to lie with benchmarking: this knowledge will protect you 

from incorrect result interpretation.

InTroduCTIon
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• Chapter 5 “Performance Analysis and Performance Testing”

This chapter covers topics that you need to know if you want to 

control the performance level in a large product automatically. 

You will learn different kinds of performance tests, performance 

anomalies that you can observe, and how to protect yourself 

from these anomalies. At the end of this chapter, you will find a 

description of performance-driven development (an approach 

for writing performance tests) and a general discussion about 

performance culture.

• Chapter 6 “Diagnostic Tools”

This chapter contains a brief overview of different tools that can 

be useful during performance investigations.

• Chapter 7 “CPU-Bound Benchmarks”

This chapter contains 24 case studies that show different pitfalls 

in CPU-bound benchmarks. We will discuss some runtime-

specific features like register allocation, inlining, and intrinsics; 

and hardware-specific features like instruction-level parallelism, 

branch prediction, and arithmetics (including IEEE 754).

• Chapter 8 “Memory-Bound Benchmarks”

This chapter contains 12 case studies that show different pitfalls 

in memory-bound benchmarks. We will discuss some runtime-

specific features about garbage collection and its settings; and 

hardware- specific features like CPU cache and physical memory 

layout.

• Chapter 9 “Hardware and Software Timers”

This chapter contains all you need to know about timers. We will 

discuss basic terminology, different kinds of hardware timers, 

corresponding timestamping APIs on different operating systems, 

and the most common pitfalls of using these APIs. This chapter 

also contains a lot of “extra” content that you don’t actually need 

for benchmarking, but it may be interesting for people who want 

to learn more about timers.

InTroduCTIon
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The order of these chapters matters (e.g., Chapter 3 introduces a lot of terms used in 

later chapters), but I tried to make them as independent as possible. If you are interested 

in specific topics, you can read only the corresponding chapters: the essential part of the 

content should be understandable even if you skip the first chapters.

This book will provide a basic understanding of the core concepts and it will teach 

you how to use them for performance measurements. Technologies are changing—we 

get new versions of hardware, operating systems, and .NET runtime every year—but the 

basic concepts remain the same. If you learn them, you can easily adapt them to new 

technology stacks.

 About examples
It’s hard to learn benchmarking without examples. In this book, you will find a lot of 

them! Some of these examples are small synthetic programs that illustrate theoretical 

concepts. However, you will also find a lot of examples from real life.

Most of them are based on my own performance testing experience at JetBrains.1 

Thus, you will see some real-world problems (and possible solutions) that are related 

to JetBrains products like IntelliJ IDEA2 (Java IDE), ReSharper3 (Visual Studio plug-in), 

and Rider4 (a cross-platform .NET IDE based on both IntelliJ IDEA and ReSharper). All 

products are very huge (Rider source code base contains about 20 million lines of code) 

and include a lot of performance-critical components. Many developers make hundreds 

of commits to these products every day, so keeping the performance level decent is not 

an easy task. I hope that you find these examples and techniques useful and find a way to 

use them in your own products.

Another source of experience for me is BenchmarkDotNet. I started it in 2013 as a 

small pet project. Today, it has become a highly adopted open-source library. During 

maintaining the project, I was involved in hundreds of pretty interesting discussions 

about performance. Some of the examples in this book may look too artificial, but almost 

all of them came from real life.

1 https://www.jetbrains.com/
2 https://www.jetbrains.com/idea/
3 https://www.jetbrains.com/resharper/
4 https://www.jetbrains.com/rider/
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 About expectations
We will talk a lot about performance, but we will not cover all kinds of performance 

topics. You will not learn the following things:

• How to write fast code

• How to optimize slow code

• How to profile applications

• How to find hotspots in applications

• And many other performance-related “how-tos”

There are many excellent books and papers on these topics; you can find some of 

them in the reference list at the end of the book. Note that this book is focused only on 
benchmarking. You will learn the following:

• How to design a good benchmark

• How to choose relevant metrics

• How to avoid common benchmarking pitfalls

• How to analyze benchmark results

• And many other benchmarking-related “how-tos”

Also, you should keep in mind that benchmarks don’t fit all situations. You will not 

be a good performance engineer if your only skill is benchmarking. However, it’s one of 

the most important skills. If you learn it, you will become a better software developer 

who is able to conduct very complex performance investigations.

InTroduCTIon
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CHAPTER 1

Introducing 
Benchmarking

It is easier to optimize correct code than to correct optimized code.

— Bill Harlan, 1997

In this chapter, we will discuss the concept of benchmarking, the difference between 

benchmarking and other kinds of performance investigations, what kind of problems 

can be solved with benchmarking, what a good benchmark should look like, how to 

design a benchmark, and how to analyze its results. In particular, the following topics 

will be covered:

• Performance investigations

What does good performance investigation look like? Why is 

it important to define your goals and problems? What kind of 

metrics, tools, and approaches should you choose? What should 

you do with the performance metrics we get?

• Benchmarking goals

When is benchmarking useful? How can it be used in performance 

analysis or marketing? How could we use it for improvement of 

our technical expertise or for fun?

• Benchmarking requirements

What are the basic benchmarking requirements? Why is it 

important to write repeatable, noninvasive, verifiable, portable, 

and honest benchmarks with an acceptable level of precision?
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• Performance spaces

Why should we work with multidimensional performance spaces 

(and what is it)? Why is it important to build a good performance 

model? How can input data and environment affect performance?

• Analysis

Why is it important to analyze benchmark results? How are they 

interpreted? What is the bottleneck and why do we need to find it? 

Why should we know statistics for benchmarking?

In this chapter, we’ll cover basic theoretical concepts using practical examples. If you 

already know how to benchmark, feel free to skip this chapter and move on to Chapter 2.

Step 1 in learning how to do benchmarking or any other kind of performance 

investigation is creating a good plan.

 Planning a Performance Investigation
Do you want your code to work quickly? Of course you do. However, it’s not always 

easy to maintain excellent levels of performance. The application life cycle involves 

complicated business processes that are not always focused on performance. When you 

suddenly notice that a feature works too slowly, it is not always possible to dive in and 

accelerate your code. It’s not always obvious how to write code in the present for a fast 

program in the future.

It’s OK that you want to improve performance but have no idea what you should do. 

Everything you need is just a good performance investigation away.

Any thorough investigation requires a good plan with several important steps:

 1. Define problems and goals

 2. Pick metrics

 3. Select approaches and tools

 4. Perform an experiment to get the results

 5. Complete the analysis and draw conclusions
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Of course, this plan is just an example. You may customize your own with 20 steps 

or skip some because they are obvious to you. The most important takeaway is that a 

complete performance investigation includes (explicitly or implicitly) all these steps at a 

minimum. Let’s discuss each of them in detail.

 Define Problems and Goals
This step seems obvious, but a lot of people skip it to immediately begin measuring or 

optimizing something. It’s very important to ask yourself some important questions: 

What is wrong with the current level of performance? What do I want to achieve? And, 

how fast should my code work?

If you just start to randomly optimize your program, it will be just a waste of time. It’s 

better to define the problems and goals first. I even recommend writing your problems 

and goals on a piece of paper, putting it next to your workplace, and keeping an eye on it 

during the performance investigation. This is a great visual reminder.

Here are some problem and goal statements for consideration:

• Problem: We need a library that supports JSON serialization, but 
we don’t know which one will be fast enough.

Goal: Compare two libraries (performance analysis).

We found two good JSON libraries, both of which have all required 

features. It’s important to choose the fastest library, but it’s hard 

to compare them in the general case. So, we want to check which 

library is faster on our typical use cases.

• Problem: Our customers use our competitor’s software because 
they think it works faster.

Goal: Our customers should know that we are faster than the 
competition (marketing).

In fact, the current level of performance is good enough, but we 

need to communicate to customers that we are faster.

Chapter 1  IntroduCIng BenChmarkIng



4

• Problem: We don’t know which design pattern is most efficient in 
terms of performance.

Goal: Improve technical expertise of our developers (scientific 
interest).

Developers do not always know how to write code effectively. 

Sometimes it makes sense to spend time on research and come 

up with good practices and design patterns which are optimal for 

performance-critical places.

• Problem: Developers are tired of implementing boring business 
logic.

Goal: Change the working context and solve a few interesting 
problems (fun).

Organize a performance competition to improve code base 

performance between developers. The team that achieves the best 

level of performance wins.

Such challenges do not necessarily have to solve some of 

your business problems, but it can improve morale in your 

organization and increase developer productivity after the event.

As you can see, the problem definition can be an abstract sentence that describes 

a high-level goal. The next step is to make it more specific by adding the details. These 

details can be expressed with the help of metrics.

 Pick Metrics
Let’s say you are not happy with the performance of a piece of your code and you want to 

increase its speed twofold.1 What increasing speed means to you may not be the same to 

another developer on the team. You can’t work with abstracts. If you want clear problem 

statements and goals, you need concise well-defined metrics that correspond to the 

1 Of course, it’s not a good problem definition. If you are going to make some optimizations, you 
need better reasons than just “unhappiness.” Now we are talking about metrics, so let’s say we 
have some well-defined performance requirements and our software doesn’t satisfy our business 
goals (in this subsection, it doesn’t matter what kind of goals we have).

Chapter 1  IntroduCIng BenChmarkIng



5

goals. It’s not always apparent which metric to enlist, so let’s discuss some questions that 

will help you decide.

• What do I want to improve?

Maybe you want to improve the latency of a single invocation  

(a time interval between start and finish) or you want to improve 

the throughput of this method (how many times we can call it 

per second). People often think that these are interrelated values 

and it doesn’t matter which metric is chosen because all of them 

correlate to the application performance the same way. However, 

that’s not always true. For example, changes in the source code 

can improve the latency and reduce the throughput. Examples of 

other metrics might be cache misses rate, CPU utilization, the size 

of the large object heap (LOH), cold start time, and many others. 

Don’t worry if the terms are not familiar; we will cover them in 

future chapters.

• Am I sure that I know exactly what I want to improve?

Usually, “No.” You should be flexible and ready to change your 

goals after obtaining results. A performance investigation is an 

iterative process. On each iteration, you can choose new metrics. 

For example, you start with a simple operation latency. After the 

first iteration, you discover that the program spends too much 

time garbage collecting. Next, you start another metric: memory 

traffic (allocated bytes per second). After the second iteration, it 

turns out that you allocate a lot of int[] instances with a short 

lifetime. The next metric could be an amount of created int 

arrays. After some optimizations (e.g., you implement an array 

pool and reuse array instances between operations), you may 

want to measure the same metric again. Of course, you could use 

only the first metric (the operation latency). However, in this case, 

you look only at the consequences instead of the original problem. 

The overall performance is complicated and depends on many 

factors. It can be hard to track how changes in one place affect the 

duration of some method. Generally it is easier to track specific 

properties of the whole system.
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• What are the target conditions?

Let’s say the chosen metric is the throughput: you want to 

handle 10000 operations per second. What kind of throughput is 

important for you? Do you want to improve the throughput under 

average load or under peak load? Is it a single- or multithreaded 

application? What level of concurrency is appropriate for your 

situation? How much RAM do you have on the target machine? Is 

it important to improve performance in all target environments or 

do you want to work under specific conditions?

It’s not always obvious how to choose the right target conditions 

and how these conditions affect the performance. Carefully 

think about relevant restrictions for your metrics. We will discuss 

different restrictions later in this book.

• How should results be interpreted?

A good performance engineer always collects the same metric 

several times. On the one hand, it is good because we can check 

statistical properties of the metrics. On the other hand, it is bad 

because now we have to check these properties. How should we 

summarize them? Should we always choose mean? Or median? 

Maybe we want to be sure that 95% of our requests can be handled 

faster than N milliseconds; in this case, the 95th percentile is 

our friend. We will talk a lot about statistics and the importance 

of understanding that they are not just about result analysis but 

also about desired metrics. Always think about the summarizing 

strategy that will be relevant to the original problem.

To sum it up, we can work with different kinds of basic metrics (from latency and 

throughput to cache miss rate and CPU utilization) and different conditions (e.g., 

average load vs. under peak load), and summarize them in different ways (e.g., take 

mean, median, or 95th percentile). If you are unsure of which to use, just look at the 

piece of paper with your problem; the selected metrics should complement your goal 

and specify low-level details of the problem. You should have an understanding that if 

you improve selected metrics, it will solve your problem and make you, your boss, and 

the customers happy.

Once you are satisfied with the metrics, the next step is choosing how to collect them.
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 Select Approaches and Tools
In the modern world, there are many tools, approaches, and methods that provide 

performance metrics. Choose the performance analysis that is suitable for your situation 

and make sure that the tool you select has the required characteristics: precision of 

measurements, portability, the simplicity of use, and so on.

To decide, try to pick the best match to your problem and metrics, weighing some 

options to help you decide. So, let’s talk about some of the most popular methods and 

corresponding tools.

• Looking at your code

A senior developer with good experience can say a lot about 

performance even without measurements. Check the asymptotic 

complexity of an algorithm, think about how expensive the API 

is, or note an apparently ineffective piece of code. Of course, you 

can’t know for sure without measurements, but often you can 

solve simple performance puzzles just by looking at your code 

with the help of thoughtful analysis. Be careful though, to keep 

in mind that personal feelings and intuition can easily deceive 

you and even the most experienced developers can get things 

wrong. Also keep in mind that technologies change, completely 

invalidating previous assumptions. For example, some method 

XYZ is superslow, and thus you avoid it for years. Then one day 

XYZ is fixed and superfast, but unless you’re made aware of that 

somehow, you’re going to continue avoiding it, and be less likely 

to discover the fix.

• Profiling

What if you want to optimize your application? Where should 

you start? Some programmers start at the first place that looks 

“suboptimal”: “I know how to optimize this piece of code, and  

I will do it right now!” Usually, such an approach does not work 

well. Optimization in a random method may not affect the 

performance of the whole application. If this method takes 0.01% 

of the total time, you probably will never observe any optimization 

effects. Or worse, you can do more harm than good. Trying to 
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write “too smart” or fast code can increase code complexity, 

introduce new bugs, and just waste time.

To really make a difference, find a place where the application 

spends a significant part of its time. The best way to do it is 

profiling. Some people add measurements directly in the 

application and get some numbers, but that is not profiling. 

“Profiling” means that you should take a profiler, attach it to the 

application, take a snapshot, and look at the profile. There are 

many tools for profiling: we will discuss them in Chapter 6.  

The primary requirement here is that it must show the hot 

methods (methods that are called frequently) and bottlenecks 

of your application and should help you to locate where to start 

optimizing your code.

• Monitoring

Sometimes, it is impossible to profile an application on your 

local computer; for example, when a performance phenomenon 

occurs only in the production environment or only rarely. In this 

case, monitoring can help you to find a method with performance 

problems. There are different approaches, but most commonly 

developers use built-in monitoring logic (e.g., they log important 

events with timestamps) or external tools (e.g., based on ETW 

[Event Tracing for Windows]). All of these approaches yield 

performance data to analyze. Once you have some performance 

troubles, you can take this data and try to find the source of this 

problem.

• Performance tests

Imagine that you performed some amazing optimizations. Your 

application is superfast and you want to maintain that level of 

performance. But then somebody (probably you) accidentally 

makes some changes that spoil this beautiful situation. It’s a 

common practice to write unit tests that ensure the business logic 

works fine after any changes in your code base. However, it is 

not enough to check only the business logic after your amazing 

optimizations. Sometimes it’s a good idea to write special tests 
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(so-called performance tests) which check that you have the same 

level of performance before and after changes. The performance 

tests can be executed on a build server, as part of a continuous 

integration (CI) pipeline.

It is not easy to write such tests, as it usually requires the 

same server environment (hardware + software) for all the 

benchmarking configurations. If the performance is very 

important for you, it makes sense to invest some time on the 

infrastructure setup and development of performance tests.  

We will discuss how to do it correctly in Chapter 5.

• Benchmarking

Ask five different people what a benchmark is and you will get 

five different answers. For our purposes, it’s a program that 

measures some performance properties of another program or 

piece of code. Consider a benchmark as a scientific experiment: it 

should provide some results that allow access to new information 

about our program, a .NET runtime, an operating system, 

modern hardware, and the world around us. Ideally, results of 

such an experiment should be repeatable and sharable with our 

colleagues, and they should also allow us to make a decision 

based on the new information.

 Perform an Experiment to Get the Results
Now it’s time for an experiment. At the end of the experiment (or a series of 

experiments), you will obtain results in the form of numbers, formulas, tables, plots, 

snapshots, and so on. A simple experiment may use one approach, while more 

complicated cases may call for more. Here is an example. You start with monitoring, 

which helps you find a slow user scenario. The profiling will help you to localize hot 

methods, and from there you compose several benchmarks to find the fastest way to 

implement the feature. Performance tests will help keep the performance on the same 

level in the future. As you can see, there is no silver bullet; all of the approaches have 

a purpose and use. The trick is to always keep the problems and metrics front in mind 

when you do this investigation.
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 Complete the Analysis and Draw Conclusions
Analysis is the most important part of any performance investigation. Once you get 

the numbers, you have to explain them, and be sure that your explanation is correct. 

A common mistake would be to say something like the following: “Profiler shows that 

method A is faster than method B. Let’s use A everywhere instead of B!” Here is a better 

version of the conclusion: “Profiler shows that method A is faster than method B. We 

have an explanation for this fact: method A is optimized for the input data patterns that 

we used in the experiment. Thus, we understand why we got such results in the profiler 

sessions. However, we should continue the research and check other data patterns 

before we decide which method should be used in the production code. Probably, 

method A can be dramatically slower than method B in some corner cases.”

A lot of performance phenomena are caused by mistakes in the measurement 

methodology. Always strive for a credible theory that explains each number from the 

obtained results. Without such theory, you can make a wrong decision and spoil the 

performance. A conclusion should be drawn only after careful analysis.

 Benchmarking Goals
So now that we’ve covered the basic plan of a performance investigation, let’s turn the 

focus to benchmarking and learn the important aspects of benchmarking step by step. 

Let’s start from the beginning with benchmarking goals (and corresponding problems).

Do you remember the first thing to do at the beginning of any performance 

investigation? You should define a problem. Understand your goal and why it’s 

important to solve this problem.

Benchmarking is not a universal approach that is useful in any performance 

investigation. Benchmarks will not optimize your code for you, nor do they solve all your 

performance problems. They just produce a set of numbers.

So before you begin, be sure that you need these numbers and understand why you 

need them. Lots and lots of people just start to benchmark something without an idea 

how to make conclusions based on the obtained data. Benchmarking is a very powerful 

approach, but only if you understand when and why you should apply it.

So moving on, let’s learn about some of common benchmarking goals.
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 Performance Analysis
One of the most popular benchmarking goals is performance analysis. It is critical if you 

care about the speed of your software and can help you with the following problems and 

scenarios:

• Comparing libraries/frameworks/algorithms

It’s common to want to use existing solutions for your problem, 

selecting the fastest one (if it satisfies your basic requirements). 

Sometimes it makes sense to check carefully which one works 

the fastest and say something like “I did a few dry runs and it 

seems that the second library is the fastest one.” However, it’s 

never enough to make only a few measurements. If choosing the 

fastest solution is critical, then you must do the legwork and write 

benchmarks that fairly compare alternatives in various states and 

conditions and provide a complete performance picture. Good 

measurements always provide a strong argument to convince your 

colleagues, an added bonus!

• Tuning parameters

Programs contain many hardcoded constants, including some 

that can affect your performance, such as the size of a cache or the 

degree of parallelism. It’s hard to know in advance which values 

are best for your application, but benchmarking can fine-tune such 

parameters in order to achieve the best possible performance.

• Checking capabilities

Imagine looking for a suitable server for your web application. 

You want it to be as cheap as possible, but it also should able to 

process N requests per second (RPS). It would be useful to have a 

program that can measure the maximum RPS of your application 

on different hardware.

• Checking impact of a change

You implemented a great feature that should make users happy, 

but it’s time-consuming, and you are worried about how it affects 

the overall performance of the application. In order to find out, 
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you will need to measure some performance metrics before and 

after the feature was included in the product.

• Proof-of-concept

You have a brilliant idea to implement, but it requires a lot of 

changes, and you are unsure of how it will impact the level of 

performance. In this case, you can try to implement the idea in the 

“quick and dirty” style using measurements.

• Regression analysis

You want to monitor how the performance of a feature is changing 

from change to change, so if you hear complaints like “It worked 

much faster in the previous release,” you will be able to check 

if that’s true or not. Regression analysis can be implemented 

via performance tests, but benchmarking is also an acceptable 

approach here.

Thus, performance analysis is a useful approach that allows solving a lot of different 

problems. However, it’s not the only possible benchmarking goal.

 Benchmarks as a Marketing Tool
Marketing, sales, and others really like to publish articles or blog posts that promote how 

fast a product is, and a good performance investigation report can do just that. While we 

programmers hyperfocus on source code and the technical aspects of the development 

process, we should be open to the idea that marketing is a legitimate and important 

goal. Writing performance reports based on benchmark results can be a useful activity 

in new product development. Unlike your benchmarking goals, when you write a 

performance report for others, you are summarizing all your performance experiments. 

You draw plots, make tables, and vet every aspect of your benchmark. You think about 

questions people might ask about your research, trying to answer them in advance, and 

you think about important facts to share. When we are talking about performance to 

marketing, there is no such thing as “too many measurements.” A good performance 

report can make your marketing department look good, making everyone happy. It is 

also necessary to say a few words about black marketing, the situation when somebody 
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presents benchmark results that are known (to the presenter) to be false. It’s not ethical 

to do such things, but worth knowing about. There are several kinds of “black marketing” 

benchmarking:

• Yellow headers

Taking some measurements and making unfounded claims, e.g. 

“our library is the fastest tool.” A lot of people still believe that if 

something was posted on the Internet, it’s obviously true, even 

without any actual measurements.

• Unreproducible research

Adding some highly nonreproducible technical details with 

source code, tables, and plots. But no one can build the source, 

run your tools, or find the specified hardware because it’s hard, 

and key implementation details are missing in the description.

• Selected measurements

Picking and choosing measurements. For example, you can 

perform 1000 performance measurements for your software and 

the same for your competitor’s software. But then you select the 

best results for your software and the worst for your competitors. 

Technically, you are presenting real results, which can be 

reproduced, but you are providing only a small subset of the true 

performance picture.

• Specific environment

Finding a set of parameters that benefits you. For example, if you 

know that the competitor’s software works fast only on computers 

with high amounts of RAM and an SSD, then you pick a machine 

with little RAM and an HDD. If you know that your software shows 

good results only on Linux (and poor results on Windows), then 

you choose the Linux environment. It’s also usually possible to 

find a particular input data that will be profitable only for you. 

Such results will be correct, and it will be 100% reproducible, but it 

is biased.
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• Selected scenarios

Presenting only selected scenarios of benchmarking. You might do 

honest benchmarking comparing your solution to a competitor’s 

in five different scenarios. Imagine that your solution is better only 

in one of these scenarios. In this case, you can present only this 

scenario and say that your solution is always faster.

In summary, I think we all can agree that black marketing practices are unethical 

and, worse, promote bad benchmarking practices. Meanwhile, “white” marketing 

is a good tool to share your performance results. If you want to distinguish between 

good and bad performance research, you need to understand it. We will discuss some 

important techniques in Chapters 4 and 5.

 Scientific Interest
Benchmarks can help you improve your developer skills and get in-depth knowledge 

of software internals. It helps you to understand the layers of your program, including 

central organization principles of modern runtimes, databases, I/O storages, CPUs, 

and so on. When you read abstract theory about how hardware is organized, it’s hard 

to understand all the information and context. In this book, we will mainly discuss 

academic benchmarks, small pieces of code which show something important. While 

not useful on their own, if you want to benchmark big complex systems, first you must 

learn how to benchmark at the granular level.

 Benchmarking for Fun
Many of my friends like puzzle games with riddles to solve. My favorite puzzles are 

benchmarks. If you do a lot of benchmarking, you will often meet measurement results 

that you can’t explain from the first attempt. You then have to locate the bottleneck 

and benchmark again. On occasion, I have spent months trying to explain tricky code, 

making it especially sweet when I find a solution.

Perhaps you’ve heard of “performance golf.”2 You are given a simple problem that 

is easily solved, but you have to implement the fastest and the most efficient solution. 

2 For example, see https://mattwarren.org/2016/05/16/adventures-in-benchmarking- 
performance-golf/
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If your solution is faster by a few nanoseconds than a friend’s, you need benchmarking 

to show the difference. Note that it’s important to know how to competently play with 

input data and environments (your solution could be the fastest only under specific 

conditions). Benchmarking for fun is a great way to unwind after a week of routine.

Now that you are familiar with the most common benchmarking goals, let’s take a 

look at the benchmark requirements that will help us to achieve those goals.

 Benchmark Requirements
Generally, any program that measures the duration of an operation can be a benchmark. 

However, a good benchmark should satisfy certain conditions. While there’s no official 

list of benchmark requirements, the following is a list of useful recommendations.

 Repeatability
Repeatability is probably the most important requirement. If you run a benchmark twice, 

you should get the same results. If you run a benchmark thrice, you should get the same 

results. If you run a benchmark 1000 times, you should get the same results. Of course, it 

is impossible to get the exactly same result each time, there is always a difference between 

measurements. But this difference should not be significant; all measurements should 

be close enough.

Note that the same code can work for various periods of time because of its nature 

(especially if it involves some I/O or network operations). A good benchmark is more 

than just a single experiment or a single number; it’s a distribution of numbers. You 

can have a complicated measurement distribution with several local maximums as a 

benchmark output.

Even if the measured code is fixed and you cannot change it, you still have control 

over how to run it vis-à-vis multiple iterations, initializing the environment, or preparing 

specific input data. You can design a benchmark in multiple ways, but it must have 

repeatable output as a result.

Sometimes, it is impossible to attain repeatability, but that is the goal. In this book, 

we will delve into practices and approaches that will help you to stabilize your results. 

Even if your benchmark is consistently repeatable, it doesn’t mean that everything is 

perfect. There are other requirements to be satisfied.
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 Verifiability and Portability
Good performance research does not happen in a vacuum. If you want to share your 

performance results with others, make sure that they will be able to run it in their own 

environment. Enlist your friends, colleagues, or people from the community to help 

you to improve your results; just be sure to prepare the corresponding source code and 

ensure that the benchmark is verifiable in another environment.

Non-Invading Principle
During benchmarking, you can often get the observer effect, that is, the mere act of 

observation can affect an outcome. Here are two popular examples from physics, from 

which the term came:

• Electric circuit

When you want to measure voltage in an electric circuit, you 

connect a voltmeter to the circuit, but then you’ve made some 

changes in the circuit that can affect the original voltage. Usually, 

the voltage delta is less than the measurement error, so it’s not a 

problem.

• Mercury-in-glass thermometer

When you are using a classic mercury-in-glass thermometer, 

it absorbs some thermal energy. In a perfect scenario, the 

absorption, which affects the temperature of the body, would also 

be measured.

We have pretty similar examples in the world of performance measurements:

• Looking for a hot method

You want to know why a program is slow or where to find a 

hotspot, but you don’t have an access to a profiler or other 

measurement tools. So you decide to add logging and print to the 

current timestamp to a log file at the beginning and at the end 

of each suspicious method. Unfortunately, the cost of the I/O 

operation is high, and your small logging logic can easily cause 

a bottleneck. It’s impossible to find the original hotspot now 

because you spent 90% of the time writing logs.
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• Using a profiler

Use of a profiler can impact a situation. When you work with 

another process, you make it slower. In some profiler modes, the 

impact can be small (e.g., in the sampling mode), but in others, it 

can be huge. For example, tracing can easily double the original 

time. We will discuss sampling, tracing, and other profiler modes 

in Chapter 6.

The takeaway here is that when you measure software performance, the observer 

effect is usually present, so do keep it in mind.

 Acceptable Level of Precision
Once I investigated a strange performance degradation. After some changes in Rider, 

a test that covers the “Find Usages,” the feature went from 10 seconds to 20. We did 

not make any significant changes, so it looked like a simple bug. It was easy to find a 

superslow method in my first profiling session. A piece of thoughtlessly copy-pasted 

code was the culprit. The bug is fixed, right? But before pushing it to a remote repository, 

I wanted to make sure that the feature works fast again. What measurement tool do 

you think I used? I used a stopwatch! Not the System.Diagnostics.Stopwatch class, 

but a simple stopwatch embedded in my old-school Casio 3298/F-105 wristwatch. This 

tool has a really poor precision. It showed ~10 seconds, but it could be 9 or 11 seconds. 

However, the accuracy of my stopwatch was enough to detect the difference between 10 

and 20 seconds.

For every situation, there are tools that will solve problems, but none are good 

enough for all kinds of situations. My watch solved the problem because the measured 

operation took about 10 seconds and I did not care about a 1-second error. When 

an operation takes 100 milliseconds, it would obviously be hard to measure it with 

a physical stopwatch; we need a timestamping API. When an operation takes 100 

microseconds, we need a high-resolution timestamping API. When an operation takes 

100 nanoseconds, even high-resolution timestamping API is not enough; additional 

actions (like repeating the operation several times) are needed to achieve a good 

precision level.

Remember that operation duration is not a fixed number. If you measure an 

operation 10 times, you will get 10 different numbers. In modern software/hardware, 

noise sources can spoil the measurements, increase the variance, and ultimately affect 

final accuracy.
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Unfortunately, there is no such thing as the perfect accuracy: you will always have 

measurement errors. The important thing here is to know your precision level and to be 

able to verify that the level achieved is enough for solving your original problem.

 Honesty
In a perfect world, every benchmark should be honest. I always encourage developers 

to present full actual data. In the benchmarking world, it is easy to fool yourself 

accidentally. If you get some strange numbers, there is no need to hide them. Share them 

and confess that you don’t know why. We can’t help each other improve our benchmarks 

if all our reports contain only “perfect” results.

 Performance Spaces
When we talk about performance, we are not talking about a single number. A single 

measured time interval is usually not enough to draw a meaningful conclusion. In any 

performance investigation, we are working with a multidimensional performance space. 

It is important to remember that our subject of study is a space with any number of 

dimensions, dependent on many variables.

 Basics
What do we mean by the “multidimensional performance space” term? Let’s start 

with an example. We will write a web site for a bookshop. In particular, we are going 

to implement a page which shows all books in a category (e.g., all fantasy books). For 

simplification, we say that processing of a single book takes 10 milliseconds (10 ms) and 

all other things (like networking, working with a database, HTML rendering, etc.) are 

negligibly fast. How much time does it take to show this page? Obviously, it depends 

on the number of books in the category. We need 150 ms for 15 books and 420 ms 

for 42 books. In the general case, we need 10*N ms for N books This is a very simple 

one-dimensional space that can be expressed by a linear model. The only dimension 

here is the number of books N. In each point of this one-dimensional space, we have 

a performance number: how much time it takes to show the page. This space can be 

presented as a two-dimensional plot (see Figure 1-1).
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Now let’s say that processing a single book takes X milliseconds (instead of constant 

10 ms). Thus, our space becomes two-dimensional. The dimensions are the number of 

books N and the book processing time X. The total time can be calculated with a simple 

formula: Time = N ∗ X (the plot is shown in Figure 1-2).

Figure 1-1. Example 1 of a simple performance space

Figure 1-2. Example 2 of a simple performance space
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Of course, in real life, the total time is not a constant even if all parameters are 

known. For example, we can implement a caching strategy for our page: sometimes, 

the page is already in the cache, and it always takes a constant time (e.g., 5 ms); other 

times, it’s not in the cache, so it takes N ∗ X milliseconds. Thus, in each point of our two- 

dimensional space, we have several performance values instead of a single one.

This was a simple example. However, I hope that you understand the concept 

of “multidimensional performance space.” In real life, we have hundreds (or even 

thousands) of dimensions. It’s really hard to work with such performance spaces, so we 

need a performance model that describes the kind of factors we want to consider.

 Performance Model
It’s always hard to speak about “performance” and “speed” of programs, because 

different people understand these words in different ways. Sometimes, I see blog posts 

with titles like “Why C++ is faster than C#” or “Why C# is faster than C++.” What do you 

think: which title is correct? The answer: both titles are wrong because a programming 

language does not have properties like rapidity, quickness, performance, and so on.

However, in everyday speech, you could say to your colleague something like “I think 

that we should use ‘X’ language instead of ‘Y’ language for this project because it will be 

faster.” It’s fine if you both understand the inner meaning of this phrase, and you are talking 

about specific language toolchains (particular version of runtimes/compilers/etc.), a 

specific environment (like operating system and hardware), and a specific goal (to develop 

a specific project with known requirements). However, this phrase is wrong in general 

because a programming language is an abstraction; there is no performance of language.

Thus, we need a performance model. This is a model that includes all the factors 

important for performance: source code, environment, input data, and the performance 

distribution.

 Source Code
The source code is the first thing that you should consider; it is a start point of your 

performance investigation. Also, at this point, you could start to talk about performance. 

For example, you could perform asymptotic analysis and describe the complexity of your 

algorithm with the help of the big O notation.3

3 We will discuss asymptotic analysis and the big O notation in Chapter 4.
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Let’s say that you have two algorithms with complexities O(N) and O(N^2). 

Sometimes, it will be enough to choose the first algorithm without additional 

performance measurements. However, you should keep in mind that the O(N) algorithm 

is not always faster than O(N^2): there are many cases when you have the opposite 

situations for small values of N. You should understand that this notation describes only 

the limiting behavior and usually works fine only for large values.

Sometimes it is hard to calculate the computational complexity of an algorithm 

(especially if it is not a traditional academic algorithm) even with the help of the 

amortized analysis (which we also will discuss later). For example, if an algorithm 

(which is written in C#) allocates many objects, there will be an implicit performance 

degradation because of the garbage collector (GC).

Also, the classic asymptotic analysis is an academic and fundamental activity; it 

does not respect features of modern hardware. For example, you could have CPU cache–

friendly and –unfriendly algorithms with the same complexity but with entirely different 

performance characteristics.

All of the preceding doesn’t mean that you should not try to analyze performance only 

based on source code. An experienced developer often can make many correct performance 

assumptions at a quick glance at the code. However, remember that source code is still 

an abstraction. Strictly speaking, we cannot discuss the speed of raw source code without 

knowledge of how we are going to run it. The next thing that we need is an environment.

 Environment
Environment is the set of external conditions that affect the program execution.

Let’s say we wrote some C# code. What’s next? Further, we compile it with a 

C# compiler and run it on a .NET runtime that uses a JIT compiler to translate the 

Intermediate Language (IL) code to native instructions of a processor architecture.4 It will 

be executed on a hardware with some amount of RAM and some networking throughput.

Did you notice how many unknown factors there are here? In real life, your program 

always runs in a particular environment. You can use the x86 platform, the x64 platform, 

or the ARM platform. You can use the LegacyJIT or the new modern RyuJIT. You can use 

different target .NET frameworks or Common Language Runtime (CLR) versions. You 

can run your benchmark with .NET Framework, .NET Core, or Mono.

4 We will discuss all these terms in Chapter 3.
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Don’t extrapolate benchmark results of a single environment to the general case. 

For example, if you switch LegacyJIT to RyuJIT, it could significantly affect the results. 

LegacyJIT and RyuJIT use different logic for performing the most optimizations (it is 

hard to say that one is better than another; they are just different). If you developed a 

.NET application for Windows and .NET Framework and suddenly decided to make it 

cross-platform and run it on Linux with the help of Mono or .NET Core, many surprises 

are waiting for you!

Of course, it is impossible to check all the possible environments. Usually, you 

are working with a single environment which is the default for your computer. When 

users find a bug, you might hear, “it works on my machine.” When users complain 

that software works slowly, you might hear “it works fast on my machine.” Sometimes 

you check to see how it works on a few other environments (e.g., check x86 vs. x64 or 

check different operating systems). However, there are many, many configurations that 

will never be checked. Only a deep understanding of modern software and hardware 

internals can help you to guess how it will work in different production environments. 

We will discuss environments in detail in Chapter 3.

It’s great if you are able to check how the program works in all the target 

environments. However, there is one more thing which affects performance: input data.

 Input Data
Input data is the set of variables that is processed by the program. (it may be user input, 

the content of a text file, method arguments, and so on).

Let’s say we wrote some C# code and chose our target environment. Can we talk 

about performance now or compare two different algorithms to check which one is 

faster? The answer is no because we can observe different algorithm speeds for various 

input data.

For example, we want to compare two regular expression engines. How can we do 

it? We might search something in a text with the help of a regular expression. However, 

which text and expression should we use? Moreover, how many text-expression pairs 

should we use? If we check only one pair and it shows that engine A is faster than engine 

B, it does not mean that it is true in the general case. If there are two implementations, it 

is a typical situation when one implementation works faster on one kind of input data, 
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and another implementation is faster on another kind. It is nice to have a reference input 

set that allows comparing algorithms. However, it is difficult to create such a set: you 

should check different typical kinds of inputs and corner cases.

If you want to create a good reference set, you need to understand what’s going on 

under the hood of your code. If you are working with a data structure, check different 

memory access patterns such as sequential reads/writes, random reads/writes, and 

some regular patterns. If you have a branch inside your algorithms (just an if operator), 

check different patterns for branch condition values: condition is always true, condition 

is random, condition values alternate, and so on (branch predictors on modern 

hardware do internal magic that could significantly affect your performance).

 Distribution
Performance distribution is the set of all measured metrics during benchmarking.

Let’s say we wrote some C# code, chose the target environment, and defined 

a reference input set. Could we now compare two algorithms and state, “The first 

algorithm is five times faster than the second one”? The answer is still no. If we run the 

same code in the same environment on the same data twice, we won’t observe the same 

performance numbers. There is always a difference between measurements. Sometimes 

it is minor, and we overlook it. However, in real life, we cannot describe performance 

with a single number: it is always a distribution. In a simple case, the distribution looks 

like a normal one, and we can use only average values to compare our algorithms. 

However, you could also have many “features” that complicate the analysis. For example, 

the variance could be colossal, or your distribution could have several local maximums 

(a typical situation for big computer systems). It is really hard to compare algorithms in 

such cases and make useful conclusions.

For example, look at the six distributions in Figure 1-3. All of them have the same 

mean value: 100.
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You may note that

• (a) and (d) are uniform distributions

• (b) and (e) are normal distributions

• (d) and (e) have much bigger variance than (a) and (b)

• (c) has two local maximums (50 and 150) and doesn’t contain any 

values equal to 100

• (f) has three local maximums (50, 100, and 150) and contains many 

values equal to 100

It’s very important to distinguish between different kinds of distributions because if 

you only look at the average value, you may not notice the difference between them.

When you are working with complex logic, it’s typical to have several local 

maximums and big standard deviation. Fortunately, in simple cases you can usually 

ignore the distributions because the average of all measurements is enough for basic 

Figure 1-3. Six different distributions with the same mean
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performance analysis. However, it does not hurt to occasionally check the statistical 

properties of your distributions.

Now that we have discussed the important parts of a performance model, it’s time to 

put them together.

 The Space
Finally, we can talk about the performance space, which helps combine source 

code, environment, and input data, and analyze how it affects the performance 

distribution. Mathematically speaking, we have a function from the Cartesian product of 

<SourceCode>, <Environment>, and <InputData> to <Distribution>:

SourceCode Environment InputData Distribution´ ´  .

It means that for each situation when we execute the source code in an 

environment on the input data, we get a distribution of measurements and a function 

(in a mathematical sense) with three arguments (<SourceCode>, <Environment>, 

<InputData>) that returns a single value (<Distribution>). We say that such a function 

defines a performance space. When we do a performance investigation, we try to 

understand the internal structure of a space based on a limited set of benchmarks. In 

this book, we will discuss which factors affect performance, how they do it, and what you 

need to keep in mind while benchmarking.

Even if you build such functions and they yield a huge number of performance 

measurements, you still have to analyze them. So, let’s talk about the performance 

analysis.

 Analysis
The analysis is the most important step in any performance investigation because 

experiment results without analysis is just a set of useless raw numbers. Let’s talk about 

what to do to in order get the maximum profit from raw performance data.
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The Bad, the Ugly and the Good
I sometimes refer to benchmarks as “bad” but honestly, they cannot be good or bad  

(but they can be ugly). However, since we use these words in everyday life and 

understand the implications, let’s discuss them in those terms.

The Bad. A bad benchmark has unreliable, unclear results. If you write a program 

that prints some performance numbers, they always mean something, but perhaps not 

what you expect. A few examples:

• You want to measure the performance of your hard drive, but your 

benchmark measures performance of a file system.

• You want to measure how much time it takes to render a web page, 

but your benchmark measures performance of a database.

• You want to measure how fast a CPU can process arithmetical 

expressions, but your benchmark measures how effectively your 

compiler optimizes these expressions.

It is bad when benchmarks don’t give you reliable information about the 

performance space. If you wrote “an awful benchmark,” you’re still able to analyze it the 

right way and explain why you have such numbers. If you wrote “the best benchmark 

in the world,” you’re still able to make a mistake in analysis. If you are using a  super- 

reliable benchmarking framework, it does not mean that you will come up with the right 

conclusions. If you wrote a poor benchmark in ten lines based on a simple loop with the 

help of DateTime.Now, it does not mean that your results are wrong: if you understand 

extremely well what’s going on under the hood of your program, you can get much useful 

information from the obtained data.

The Ugly. An ugly benchmark gives results that are hard to verify. It is not an 

indication of right or wrong, it just means that we may not be able to trust it. If you ignore 

important good practices of benchmarking, you can’t be sure of getting correct results.

For example, imagine a poorly written piece of code. No one understands how 

it works, but it does, and it solves a problem. You can ruminate all day about terrible 

formatting, confusing variable names, and inconsistent style, but the program still 

works properly. The same holds true in the benchmark world: a really ugly benchmark 

can produce correct results if you can analyze it the right way. So while you can’t tell 

someone that their results are wrong because his/her benchmark is awful, skips the 

warm-up stage, does an insufficient number of iterations, and so on, you can call out 

results as unreliable and request further analysis.
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The Good. A good benchmark is a benchmark meets the following criteria:

• The source code looks trustable. It follows common benchmarking 

practices and avoids common pitfalls that can easily spoil results.

• The results are correct. It measures precisely what it is designed to 

measure.

• Conclusions are presented. It explains context for the results and 

provides new knowledge about the performance space (in lieu of raw 

performance numbers).

• The results are explained and verified. Supportive information about 

the results and why they can be trusted is offered.

Good performance investigation always includes analysis. Raw measurement 

numbers are not enough. The main result is a conclusion drawn based on analysis of the 

numbers.

On the Internet, you can find Stopwatch-based code snippets containing sample of 

output without comments. (“Look at this awesome benchmark” does not count.) If you 

have performance numbers, you have to interpret them and explain why you have these 

exact numbers. You should explain why we can extrapolate our conclusions and use it in 

other programs (remember how complicated the performance spaces could be).

Of course, that’s not enough. A benchmark should always include the verification 

stage when trying to prove that results are correct.

 Find Your Bottleneck
When you analyze benchmark results, always ask why a benchmark doesn’t work faster. 

A benchmark usually has a limiting factor or a “bottleneck” that is important to identify 

for the following reasons:

• If you aren’t aware of the bottleneck, it is challenging to explain the 

benchmark result.

• Only knowledge of the limiting factor allows verification of the set 

of metrics. Are you sure that your metrics fit your problem? This is 

a typical situation when a developer is trying to measure the total 

execution time, but it’s better to measure specific things like a cache- 

miss count or memory traffic.
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• Understanding the bottleneck will allow you to design a better 

benchmark and explore the performance space in the right direction.

• A lot of developers use benchmarking as a first stage trying to 

optimize something, but if you don’t know the limiting factor, you 

won’t know how to optimize.

The Pareto Principle (also called the 80/20 Rule) describes uneven distribution. For 

example, 20% of a given effort produces 80% of the results, 20% of the hazards causes 80% 

of the injuries, 20% of the bugs cause 80% of the crashes, and so on. We can apply the 

Pareto Principle to the bottlenecks (let’s call it The Bottlenecks Rule5) and say that 20% of the 

code consumes 80% of the resource. If we go deeper and try to find the problem using this 

20%, we can apply the Pareto Principle again and get the second- order Pareto Principle 

(or just Pareto2). In this case, we are talking about 4% of the code (4%  = 20%  · 20%) and 

64% of the resource (64%  = 80%  · 80%). In huge applications with a complex multilevel 

architecture, we can go even deeper and formulate the third-order Pareto Principle (or just 

Pareto3). In this case, we get 0.8% of the code (0.8%  = 20%  · 20%  · 20%) and 51.2% of the 

resource (51.2%  = 80%  · 80%  · 80%). To summarize:

The Bottlenecks Rule:

• Pareto1: 20% of the code consumes 80% of the resource

• Pareto2: 4% of the code consumes 64% of the resource

• Pareto3: 0.8% of the code consumes 51.2% of the resource

Here we use “the resource” as an abstract term, but it’s important to know what 

kind of resources limit performance and how they correspond to the different kinds 

of bottlenecks. In the book, we will learn that each kind has its own set of pitfalls and 

limiting factors to keep in mind (see Chapters 7 and 8). Understanding that allows you to 

focus on more important things for your particular situation.

 Statistics
I wish that each benchmark could print the same number each time, but reality is that 

performance measurements have crazy and scary distributions. Of course, it depends on 

5 The Bottlenecks Rule was introduced by Federico Lois. You can watch his great talk about it and 
other performance topics on YouTube: www.youtube.com/watch?v=7GTpwgsmHgU
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what kind of metric you choose, but you should be ready to get a distribution of a strange 

form (especially if you measure wall clock time). If you want to analyze benchmark 

results properly, you have to know basic concepts of statistics such as the difference 

between mean and median, along with the meaning of words like “outlier,” “standard 

error,” and “percentile.” It’s also good to know about the Central Limit Theorem and 

multimodal distributions. Big bonus points if you know how to do significance tests, 

feel comfortable when someone says “Null hypothesis,” and can draw beautiful and 

incomprehensible statistical plots. Don’t worry if you don’t know all this stuff; we will 

discuss all of it in Chapter 4.

I hope now you understand why it’s so important to spend some time on analysis. 

Now let’s summarize what we have learned in this chapter.

 Summary
In this chapter, you were briefly introduced to the main topics that are important for any 

developer who wants to write benchmarks, including the following:

• Good performance investigation and the steps it entails.

• Typical benchmarking goals and how can they help us make better 

software and improve our skills.

• Common benchmarking requirements and the difference between 

good and bad benchmarks.

• Performance spaces and why it’s important to look at the source 

code, environments, and input data.

• Why the analysis is so important and how to make good conclusions.

In the subsequent chapters, we will dive into these topics in detail.
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CHAPTER 2

Common Benchmarking 
Pitfalls

If you have spent less than a week studying a benchmark result, it is  
probably wrong.

— Brendan Gregg, author of Systems Performance:  
Enterprise and the Cloud, Prentice Hall, 2013

In this chapter, we will discuss the most common mistakes that people make when they 

try to measure performance. If you want to write benchmarks, you have to accept the fact 

that most of the time you will be wrong. Unfortunately, there is no universally reliable 

way to verify that you get the performance metrics you wanted to get. There are many 

pitfalls on different levels: C# compiler, .NET runtime, CPU, and so on. We will also learn 

some approaches and techniques to help you to write reliable and correct benchmarks.

Most pitfalls are especially painful for microbenchmarks with very short durations 

(such methods can take milliseconds, microseconds, or even nanoseconds). The pitfalls 

that we are going to discuss are relevant not only to microbenchmarks, but also to all 

other kinds of benchmarks. However, we will focus mainly on microbenchmarks for the 

following reasons:

 1. The simplest microbenchmarks contain only a few lines of code. 

It usually takes less than one minute to understand what’s going 

on in each example. However, simplicity is deceptive. You will see 

how hard it is to benchmark even very simple pieces of code.

 2. Microbenchmarks are usually the first step in the world of 

benchmarking that developers usually take. If you want to write 

good real-world benchmarks, you should learn how to write 
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microbenchmarks. The basic benchmarking routine is the 

same for both cases, and it is much easier to learn it on smaller 

examples.

In this chapter, we will look at some of the most common mistakes that people 

usually make during microbenchmarking. In each example, you will find “A bad 

benchmark” subsection. This will describe a benchmark that looks fine to some 

developers (especially to people who don’t have any benchmarking experience) but 

produces wrong results. After that, “A better benchmark” will be presented. It’s usually 

still not a perfect benchmark, and it still has some issues, but it shows the right way to 

improve your benchmarks. We can say that if “a bad benchmark” contains N mistakes,  

“a better benchmark” contains at most N-1 mistakes. I hope it will be a nice illustration  

of how to fix one of these mistakes.

One more thing: if you want to get not only knowledge but also some benchmarking 

skills, you should not mindlessly flip through examples. Try each example on your own 

computer. Play with it: check different environments or change something in the code. 

Look at the results and try to explain them yourself before you read the explanation in 

the book. You get benchmarking skills only if you get enough benchmarking experience.

 General Pitfalls
We will start with the “General Pitfalls.” All the examples will be presented in C#, but 

corresponding pitfalls are common not only for .NET, but for all languages and runtimes.

 Inaccurate Timestamping
Before we start learning the pitfalls, let’s talk about benchmarking basics. The first thing 

that you should learn here is timestamping.

How is the time of an operation measured? This question may seem obvious. We 

should take a timestamp before the operation (it’s like asking the computer “What time is 

it now?”), execute the operation, and take another timestamp. Then, we subtract the first 

timestamp from the second one, and we get the elapsed time! The pseudocode may  

look like this (we use var here because the timestamp type depends on the used API):
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var startTimestamp = GetTimestamp();

// Do something

var endTimestamp = GetTimestamp();

var totalTime = endTimestamp - startTimestamp;

But how exactly should we take these timestamps? The .NET Framework provides 

several APIs for timestamping. A lot of developers who are just starting to write 

benchmarks use DateTime.Now:

DateTime start = DateTime.Now;

// Do something

DateTime end = DateTime.Now;

TimeSpan elapsed = end - start;

And it works fine for some scenarios. However, DateTime.Now has many drawbacks:

• There are a lot of time-related surprises that can spoil your 

benchmark. For example, the current time can be suddenly changed 

because of daylight saving time. A possible solution is using 

DateTime.UtcNow instead of DateTime.Now. Also, DateTime.UtcNow 

has lower overhead because it doesn’t have to do any calculations 

with time zones.

• The current time can be accidentally synchronized with the Internet. 

The synchronization happens pretty often and may easily introduce a 

few-second error.

• The accuracy of DateTime.Now and DateTime.UtcNow is poor. If your 

benchmark takes minutes or hours, it could be OK, but it’s absolutely 

unacceptable if your method takes less than 1 millisecond.

There are many other time-related problems; we will discuss them in Chapter 9. 

Fortunately, we have another API called System.Diagnostics.Stopwatch. This class 

is designed to measure elapsed time with the best possible resolution. This is the best 

solution if we are talking about managed API in the .NET Framework. A usage example:

Stopwatch stopwatch = Stopwatch.StartNew();

// Do something

stopwatch.Stop();

TimeSpan elapsedTime = stopwatch.Elapsed;
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Using the StartNew() and Stop() methods is the most convenient way to use 

Stopwatch. It’s also good to know that there is no magic under the hood: these methods 

just call Stopwatch.GetTimestamp() twice and calculate the difference. GetTimestamp() 

returns the current number of ticks (tick is an abstract time unit used by Stopwatch 

and other timestamping APIs), which can be converted to real time with the help of the 

Stopwatch.Frequency field.1 Usually, you don’t need to use this, but the raw tick values 

can be useful when you do microbenchmarking (read more about it in Chapter 9).  

A usage example:

long startTicks = Stopwatch.GetTimestamp();

// Do something

long endTicks = Stopwatch.GetTimestamp();

double elapsedSeconds = (endTicks - startTicks)

    * 1.0 / Stopwatch.Frequency;

There are also some troubles with Stopwatch (especially on old hardware), but it’s 

still the best available timestamping API. When you are writing a microbenchmark, 

it’s nice to know how it works internally. You should be able to answer the following 

questions:

• What is the accuracy/precision/resolution of the chosen API?

• What are the possible values for the difference between two 

sequential timestamps? Could it be equal to zero? Could it be much 

bigger than the resolution? Could it be less than zero?

• What is the timestamping latency on your operating system? (How 

much time does it take to get a single timestamp?)

All of these topics and many implementation details are covered in Chapter 9. It’s OK 

if you don’t remember some tricky facts about Stopwatch internals, but you should be 

able to answer the preceding questions for your target environment.

OK, now it’s time for examples!

1 We should divide the tick delta by frequency to get the number of seconds. Both values are 
integer numbers, but the result should be a fractional number. So we have to convert the delta 
to double before performing the division operation. My favorite way to do this is multiplying the 
numerator by 1.0.
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 A bad benchmark

Let’s say we want to measure how much it takes to sort a list with 10000 elements. Here is 

a bad DateTime-based benchmark:

var list = Enumerable.Range(0, 10000).ToList();

DateTime start = DateTime.Now;

list.Sort();

DateTime end = DateTime.Now;

TimeSpan elapsedTime = end - start;

Console.WriteLine(elapsedTime.TotalMilliseconds);

This is an awful benchmark: it has a lot of problems, and we just can’t trust it. We 

will learn why it’s so bad and how to fix all the problems later; now we are looking only at 

timestamping resolution.

Let’s do some calculations. On Windows 10, the default frequency of DateTime 

updates is 64 Hertz. It means that we get a new value once per 15.625 milliseconds. Some 

applications (like a browser or a music player) can increase this frequency up to 2000 

Hertz (0.5 milliseconds). Sorting 10000 elements is a pretty quick operation that typically 

works faster than 0.5 milliseconds on modern computers. So, if you use Windows and 

you close all nonsystem applications, the benchmark will print 0 milliseconds or 
~15.625 milliseconds (depends on how lucky you are). Obviously, such a benchmark is 

useless; we can’t use these numbers for evaluating the performance of List.Sort().

 A better benchmark

We can rewrite our example with the help of Stopwatch:

var list = Enumerable.Range(0, 10000).ToList();

var stopwatch = Stopwatch.StartNew();

list.Sort();

stopwatch.Stop();

TimeSpan elapsedTime = stopwatch.Elapsed;

Console.WriteLine(elapsedTime.TotalMilliseconds);

This is still a bad benchmark, and it’s still unstable (if you run it several times, 

the difference between measurements will be huge), but for now we have a good 

timestamping resolution. The typical Stopwatch resolution on Windows is about 

Chapter 2  Common BenChmarking pitfalls



36

300–500ns. This code prints about 0.05–0.5 milliseconds (depends on hardware and 

runtime), which is closer to the actual sorting time.

 Advice: prefer Stopwatch over DateTime

In 99% of cases, Stopwatch should be your primary tool for timestamping. Of course, 

there are some corner cases, when you need something else (and we will talk about 

it later), but you don’t need anything more in simple cases. This advice is simple and 

doesn’t require additional lines of code. DateTime can be useful only if you actually need 

to know the current time (and you probably would want to do monitoring in this case 

instead of benchmarking). If you don’t need the actual current time, use the right API: 

use Stopwatch.

Now we know how to write a simple benchmark with the help of Stopwatch. It’s time 

to learn how to run it.

 Executing a Benchmark in the Wrong Way
Now you know how to write a simple small benchmark. You also should know how 

to execute a benchmark. It may seem very obvious, but many developers suffer from 

incorrect benchmark results that were spoiled because the program was run the wrong 

way.

 A bad benchmark

Open your favorite IDE, create a new project, and write the following simple program:

var stopwatch = Stopwatch.StartNew();

for (int i = 0; i < 100000000; i++)

{

}

stopwatch.Stop();

Console.WriteLine(stopwatch.ElapsedMilliseconds);

It doesn’t measure anything useful, just a simple empty loop. The results have no 

practical importance; we will use it just for demonstration.
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Let’s run it. On my laptop, it prints values around 400 milliseconds (Windows, 

.NET Framework 4.6).2 So, what’s the main problem here? By default, each new project 

uses the Debug configuration. This is a configuration for debugging, but not for 

benchmarking. Many people forget to change it, measure the performance of the debug 

assemblies, and get wrong results.

 A better benchmark

Let’s switch to the Release mode and run this code again. On my laptop, it shows ~40 

milliseconds in Release. The difference is about 10 times!

Now it’s your turn. Run this empty loop in both configurations on your machine and 

compare the results.

 Advice: use Release without attached debugger in sterile 
environment

In fact, here I have a series of small tips. Let’s discuss all the good practices that you 

should follow if you want to get reliable results.

• Use Release instead of Debug

When you create a new project, you typically have two 

configurations: Debug and Release. The release mode means  

that you have <Optimize>true</Optimize> in your csproj file or 

use /optimize for csc.

Sometimes (especially in the case of microbenchmarks), the 

debug version of the target method can run 100 times slower! 

Never use the Debug build for benchmarking. Never.

Sometimes I see performance reports on the Internet that contain 

separated results for both modes. Don’t do it! Debug results don’t 

show anything useful. Roslyn compiler injects a lot of additional 

IL opcodes into the compiled assembly with only one goal: to 

simplify the debugging. Just-In-Time (JIT) optimizations are also 

2 .NET Framework 4.6 honestly performs this loop, but be careful: in the future, some additional 
JIT optimizations could be implemented and this loop could be thrown away because it doesn’t 
do anything useful (thus, the benchmark will print 0 milliseconds).
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disabled in Debug. The performance of the debug build can be 

interesting for you only if you are developing some debugging 

tools. Otherwise, always use the Release mode.

• Don’t use attached debugger or profiler

Also, you never should use an attached debugger (e.g., embedded 

IDE debugger or external debugger like WinDbg or gdb) during 

the benchmarking. A debugger usually adds some performance 

overhead. It’s not ten times overhead like the Debug build overhead, 

but it also can significantly spoil the results. By the way, if you use 

Visual Studio debugger (pressing F5), it disables JIT optimization by 

default even in the Release mode (you can turn off this feature, but 

it’s enabled by default). The best way is to build a benchmark in the 

Release mode and run it in a terminal (e.g., cmd for Windows).

If you use other kinds of attached applications (like performance 

or memory profilers), they also can easily spoil the performance 

picture. In the case of attached profiler, the overhead depends 

on the profiling kind (e.g., tracing adds bigger overhead than 

sampling), but it’s always significant.

Sometimes, you can use the internal diagnostic tools 

of the runtime. For example, if you run mono with the 

--profile=log:sample arguments, it produces a .mlpd file with 

information about the application performance profile. It can 

be useful for analysis of relative performance (hunting for hot 

methods), but the absolute performance will be affected by the 

mono profiler.

It’s OK to use the Debug build with an attached debugger or 

profiler only if you debug or profile the code. Don’t use it for 

collecting final performance measurements, which should be 

analyzed.

• Turn off other applications

Turn off all of the applications except the benchmark process and 

the standard OS processes. If you run a benchmark and work in 

an IDE at the same time, it can negatively affect the benchmark 
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results. Someone may say that in real life our application works 

side by side with other applications, so we should measure 

performance in realistic conditions. Here is the problem with 

such conditions: their influence is unpredictable. If you want to 

work in realistic conditions, you should carefully check how these 

applications can affect your performance, which is not easy (we 

will discuss many useful tools in Chapter 6). And it’s much better 

to check the performance in a sterile condition when you are not 

bothered by other applications.

When you design a benchmark, it’s OK to perform dry runs 

directly from your favorite IDE. When you collect the final results, 

it’s better to turn off the IDE and run it from the terminal.

Some benchmarks can take hours to finish. Waiting is boring, 

and so many developers like to do something else during the 

benchmarking: play some games, draw funny pictures in Photoshop, 

or develop another feature for a pet project. Of course, it’s not a good 

idea. It can be OK if you clearly understand what kind of results you 

want to get and how they can be affected. For example, if you are 

checking a hypothesis that one method takes 1000 times more time 

than another method, it will be hard to spoil the conclusion by  

third-party applications. However, if you do microbenchmarking in 

order to check a 5%-difference hypothesis, it’s unexpected to have 

heavy background processes: the experiment is not sterile anymore, 

and the results can’t be trusted. Of course, you can be lucky and get 

correct results. But how can you be sure?

Be careful. Even if you shut down all the applications that can 

be terminated, an operating system still can run some CPU-

consuming services. A typical example is Windows Defender, 

which can decide to do some heavy operations at any moment. 

In Figure 2-1, you can observe typical CPU noise on Windows.3 

3 It’s a screenshot of ProcessHacker (a cool replacement for default Task Manager). The x axis 
denotes time, and the y axis denotes CPU usage. ProcessHacker uses two different colors for 
kernel CPU usage (red) and all CPU usage (green). Print readers: see the color copy of this figure 
in the download package for this book.
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Usually, there are no heavy processes which could spoil a 

benchmark, but be prepared for the fact that some of the 

measurements could be much larger than others because of the 

CPU noise.

In order to avoid such situations, you should run a benchmark 

many times and aggregate the results. The CPU noise is random, 

so it typically spoils only some measurements, but not all of 

them. Also, you can verify that the environment is sterile with 

additional tools that monitor resource usage. In some cases, such 

tools also can affect the results, so you still have to perform sterile 

benchmark runs and use runs with monitoring for additional 

checks.

• Use high-performance power mode

If you use a laptop for benchmarking, keep it plugged in and 

use the maximum performance mode. Let’s play again with our 

empty loop benchmark. Plug out your laptop, choose the “Power 

saver” mode, and wait until 10% of battery energy remains. 

Run the benchmark. Then plug in the laptop, choose the “High 

performance” mode, and run the benchmark again. Compare the 

results. On my laptop, I have a performance improvement from 

~140 milliseconds to ~40 milliseconds. We have a similar situation 

not only for microbenchmarks but also for any other applications. 

Try to play with your favorite programs and check how much 

it takes to finish different long-running operations. I hope that 

you will not run benchmarks on an unplugged laptop after this 

experiment.

Unfortunately, if you run a benchmark correctly, it doesn’t mean 

that you always get “good” results. Let’s continue to look at 

different microbenchmark pitfalls.
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 Natural Noise
Even if you create a supersterile environment and run your benchmark according to the 

rules, natural noise still will be presented. If you run a benchmark twice, you will almost 

never get two identical results. Why? Well, there are a lot of noise sources:

• There are always other processes which compete for computer 
resources

Even if you turn off all user processes, there are still a lot of OS 

processes (each of them has its own priority) that can’t be turned 

off. And you always share resources with them. Since you can’t 

predict what’s happening in other processes, you also can’t 

predict how it affects your benchmark.

• Resource scheduling is nondeterministic

The operating system always controls the execution of your 

program. Since we always work in a multiprocessing and 

multithreading environment, it’s also impossible to say how OS 

Figure 2-1. Typical CPU noise on Windows
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will schedule and when and how each program will be executed. 

These resources include CPU, GPU, networking, disks, and so on. 

The number of process context switches is also unpredictable, and 

each context switch is painful for your measurements.

• Memory layout and address space layout randomization (ASLR)

Whenever you run your program, you will get a new fragment of 

the global address space. The .NET runtime can allocate memory 

in different places with different distances between the same 

objects. It can affect performance on different levels: aligned data 

access has a different performance cost from unaligned; different 

data locality patterns produce different situations in the CPU 

cache, which also affects total time; the CPU can use physical 

object offsets as factors in some low-level optimization heuristics; 

and so on.

Another interesting security feature of modern OS is ASLR; It 

protects you from malicious programs that try to exploit buffer 

overflows. It’s a good feature, but it also adds some unpredictable 

numbers to the total wall clock time.4

• CPU frequency scaling and boosting

A modern CPU can change the internal frequency dynamically, 

depending on the current workload. Unfortunately, it’s another 

nondeterministic process; you can’t predict when and how the 

frequency will be changed.

• External environment matters

I’m not talking about the version of .NET Framework or your 

OS. I’m talking about real external environmental factors like 

temperature. Once, I had cooler problems on my laptop. The 

cooler was almost broken, and the CPU temperature was high all 

the time. When I was in my room, the laptop made loud noises 

4 You can find an example in the following article: de Oliveira, Augusto Born, Jean-Christophe 
Petkovich, and Sebastian Fischmeister. How much does memory layout impact performance?  
A wide study. Intl. Workshop Reproducible Research Methodologies, 2014.
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and turned down after 10 minutes because the CPU temperature 

was too high. Fortunately, it was winter, so I opened a window, 

sat on the windowsill, and worked in a jacket, hat, and gloves. 

Should I tell you about performance? Well, it was superslow. And 

the most important thing: slowness was unpredictable. It was 

impossible to run any benchmarks because the variance was too 

high as well.

Of course, this was an extreme situation; you typically don’t have 

such awful conditions. Here is another example which you can 

meet in real life: running benchmarks in the cloud. It’s a perfectly 

valid case if you care about performance in the real environment. 

The data center environment of your cloud provider is important. 

There are so many external factors: environmental temperature, 

mechanical vibrations, and so on. We will discuss these factors in 

detail in Chapter 3.

Thus, it’s OK to have a difference between similar measurements, but you always 

have to keep in mind how big the errors are. In this section, we will look at an example 

when natural noise matters.

 A bad benchmark

Let’s say we want to check if a number is prime. We are going to implement several ways 

to do it and compare performance. For now, we have only one IsPrime implementation, 

and we want to have the benchmarking infrastructure right now. So, we compare the 

performance of two identical calls (just to check that the benchmarking stuff works 

correctly):

// It's not the fastest algorithm,

// but we will optimize it later.

static bool IsPrime(int n)

{

  for (int i = 2; i <= n - 1; i++)

    if (n % i == 0)

      return false;

  return true;

}
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static void Main()

{

  var stopwatch1 = Stopwatch.StartNew();

  IsPrime(2147483647);

  stopwatch1.Stop();

  var stopwatch2 = Stopwatch.StartNew();

  IsPrime(2147483647);

  stopwatch2.Stop();

  Console.WriteLine(stopwatch1.ElapsedMilliseconds + " vs. " +

                    stopwatch2.ElapsedMilliseconds);

  if (stopwatch1.ElapsedMilliseconds < stopwatch2.ElapsedMilliseconds)

    Console.WriteLine("The first method is faster");

  else

    Console.WriteLine("The second method is faster");

}

Try this snippet on your own computer and run it several times.

I already checked how it works on my laptop:

5609 vs. 5667

The first method is faster

And run it once again:

5573 vs. 5490

The second method is faster

Thus, we have two performance results for the same program with different 

conclusions. Our main mistake: we forget about the errors! If there is a difference 

between two measurements, it doesn’t mean that one method works faster than another. 

We should check if the difference is bigger than the natural errors. Unfortunately, it’s 

hard to evaluate the size of such errors. It’s also hard to minimize these errors (you 

will find a lot of useful examples in this book). Usually, it’s about 5–20% for a naive 

benchmark, but sometimes it can be 200–500%! So, be careful when you compare the 

performance of two methods!

Now it’s time to improve the IsPrime benchmark.
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 A better benchmark

Thus, we want the following things:

 1. Results should be stable; we should get the same conclusion each 

time.

 2. If the methods take approximately the same time, we should get a 

corresponding message.

How can it be implemented? We can introduce a “maximum acceptable error” (let’s 

say 20%5 of the average of two measurements) and use it during comparison:

var error = ((stopwatch1.ElapsedMilliseconds +

              stopwatch2.ElapsedMilliseconds) / 2) * 0.20;

if (Math.Abs(stopwatch1.ElapsedMilliseconds -

             stopwatch2.ElapsedMilliseconds) < error)

  Console.WriteLine("There is no significant difference between methods");

else if (stopwatch1.ElapsedMilliseconds < stopwatch2.ElapsedMilliseconds)

  Console.WriteLine("The first method is faster");

else

  Console.WriteLine("The second method is faster");

Fix it in your snippet and try it. Here is my result:

542 vs. 523

There is no significant difference between methods

Hooray, we got the correct result!

Once again, however: this is not a perfect solution. You can’t detect 5–10% 

performance deviation with such code: if one method actually works 7% longer than 

another, you don’t notice it. But it can be OK if the performance difference is about two 

to three times (and it’s obvious which method is faster). Be careful: it’s not always OK; 

the natural performance noise can be really huge sometimes.

5 20% is an example; this number depends on your benchmarking goals and business 
requirements. Also, it’s a good idea to measure each case many times and check the difference 
between the minimal and maximal elapsed time: it provides the first approximation of the 
natural noise order. Thus, you get some initial rough value, which can be used as a maximum 
acceptable error. In the next chapters, we will discuss the standard deviation of the performance 
distributions and we will learn how to use this value for comparing different methods.
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 Advice: always analyze random errors

We can’t prevent natural noise and random errors, so the best thing that we can do is 

the correct analysis. Perform many iterations of your benchmark, look at the variance, 

and keep in mind the order of these random errors. If you get two different performance 

numbers for two different methods (in our cruel world, you always get different 

numbers), compare the difference with the order of natural noise for each method 

before making any conclusions as to which method is faster (do we have significant 

difference between methods or not). We will discuss statistical methods for distribution 

comparison in Chapter 4.

In the next section, we will discuss other “surprises” we can observe in a distribution 

of measurements.

 Tricky Distributions
In the previous sections, we discussed how to achieve the stable benchmark result. 

Unfortunately, you can’t always describe a code performance with a single number.

 A bad benchmark

Consider the following I/O benchmark:

byte[] data = new byte[64 * 1024 * 1024];

var stopwatch = Stopwatch.StartNew();

var fileName = Path.GetTempFileName();

File.WriteAllBytes(fileName, data);

File.Delete(fileName);

stopwatch.Stop();

Console.WriteLine(stopwatch.ElapsedMilliseconds);

Here we do a simple thing: create a new temp file, write 64MB data, and delete the 

file. What is the problem with this benchmark? We do only one iteration here! Are we 

sure that all I/O operations are equal?
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 A better benchmark

Now let’s do several iterations and make some basic statistics:

int N = 1000;

byte[] data = new byte[64 * 1024 * 1024];

var measurements = new long[N];

for (int i = 0; i < N; i++)

{

  var stopwatch = Stopwatch.StartNew();

  var fileName = Path.GetTempFileName();

  File.WriteAllBytes(fileName, data);

  File.Delete(fileName);

  stopwatch.Stop();

  measurements[i] = stopwatch.ElapsedMilliseconds;

  Console.WriteLine(measurements[i]);

}

Console.WriteLine("Minimum = " + measurements.Min());

Console.WriteLine("Maximum = " + measurements.Max());

Console.WriteLine("Average = " + measurements.Average());

On my SSD (SanDisk SD8SNAT128G1002) + Windows (10.0.17134.285), I have the 

following values:

334 304 266 333 575 371 269 488 377 472 374 266, , , , , , , , , , , , , ,2488 1336 115827,¼

And here is the program output:

Minimum = 265

Maximum = 19029

Average = 531.176

You can see that most values are about 250–500, but we also have some outliers 

(from 600 to 19000). If we increase the number of iterations, we will see that it was not a 

few accidental big values: we can consistently observe extremely high values from time 

to time (see Figure 2-2).
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Benchmarking of I/O operations is very hard, and it’s a normal situation when it’s 

impossible to describe the performance by one average number.

 Advice: always look at your distribution

Fortunately, in many simple cases, we can just take the average value and work with 

it. But how can we be sure? But if we want to be sure that everything is OK, we always 

should check the distribution first. In Chapter 4, we will discuss in detail how to correctly 

analyze distributions.

In the next section, we will talk about the difference between the first measurement 

and the subsequent measurements (and why we can observe such effects).

 Measuring Cold Start Instead of Warmed Steady State
If you execute some code for the first time (after the application was started), it is called 

the cold start. It includes a large amount of third-party logic (basically on the runtime 

and CPU levels): jitting of target methods, loading of assemblies, CPU cache warm-up, 

Figure 2-2. I/O-bound method measurements

Chapter 2  Common BenChmarking pitfalls



49

and so on. It also can include some user logic: initialization of business objects, running 

constructors of static classes, filling user caches, and so on. All of that can increase the 

work time and spoil the benchmark results.

Measuring the cold start is a rare task: developers typically do it only in situations 

when they are optimizing the startup time. In all other cases, it’s a huge mistake if 

you include the initialization overhead in the final results. Thus, you should perform 

a warm-up: run the benchmark method several times in the idle mode (without 

measurements). “Warming up” means that we are waiting for a moment when all 

initialization and transitional processes are finished, and we will be in a steady state. 

“Steady state” means that all benchmark iterations do the exact same amount of work 

and there are no side effects. In other words, we should strive to a situation when we 

have the same state of the program before and after each iteration.

You should decide for yourself which state you want to measure: cold or warmed. For 

example, if you are working on the startup time of an application, you are interested only 

in the first benchmark iteration (subsequent iterations will be warmed). So, if you want 

to make several measurements of the cold start, you should restart the whole application 

each time.

However, most benchmarks work with the warmed program. Typically, you should 

warm up the program and only then perform target runs and measure its time.

How can we check that we are in the steady state? A short answer: we can’t. Huge 

applications from real life with smart caching strategies and tricky multithreading 

scheduling can request tens or hundreds of warm-up iterations. Fortunately, for simple 

benchmarks, it’s usually enough to do four or five iterations (run ten iterations to be sure). 

If each iteration works faster than the previous one, you probably are still not warmed 

(typically, you should observe some fluctuation around a single value at the steady state).

Now let’s make sure that it’s important to distinguish between cold and warmed states.

 A bad benchmark

Consider the following benchmark:

int[] x = new int[100000000];

var stopwatch = Stopwatch.StartNew();

for (int i = 0; i < x.Length; i++)

  x[i]++;

stopwatch.Stop();

Console.WriteLine(stopwatch.ElapsedMilliseconds);
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Here we have an int array with 100000000 elements, and we increment each 

element. What’s wrong with this benchmark? We make a lot of memory reads/writes 

in the loop. Modern CPUs have a complicated hierarchical structure with a multilevel 

cache. When we run this code for the first time, this cache is unwarmed. Access to the 

main memory is too expensive, and this code will take a lot of time. Thus, the result will 

describe the cold state. Probably, that’s not what we want.

 A better benchmark

Let’s do five iterations and measure the time for each of them:

int[] x = new int[100000000];

for (int iter = 0; iter < 5; iter++)

{

  var stopwatch = Stopwatch.StartNew();

  for (int i = 0; i < x.Length; i++)

    x[i]++;

  stopwatch.Stop();

  Console.WriteLine(stopwatch.ElapsedMilliseconds);

}

The typical output on my laptop (check how it works on your computer):

180

80

67

71

68

As you can see, the first iteration took about 180 milliseconds. That’s our cold start 

time. After a few iterations, we can observe that measures are fluctuating around 70 

milliseconds. Here we already achieved the steady state; that’s our warmed time. The 

cold start benchmarking is too tricky, so such measurements should be handled in a 

special way. When we are talking about benchmarking in general, usually we assume a 

warmed state.
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Here is an exercise for you: take some code from your work or pet project, and 

run it several times at the beginning of the Main method (with Stopwatch-based 

measurements). Compare the first measurement and subsequent measurements.

Make conclusions about how many iterations do you need before you get a steady 

state.

 Advice: use different approaches for cold and warm states

Before actual benchmarking, you always should decide: do you want to measure the 

cold start or the warmed steady state? If you are interested in the cold start, you typically 

should restart the whole program (or restart a computer in some cases) before each 

iteration. Otherwise, you should make some warm-up iterations and get to the steady 

state before you start to collect target performance numbers.

In the next section, we discuss how many iterations we should do.

 Insufficient Number of Invocations
When you make some micro-optimizations, it can be useful to measure a time of 

really small methods that take nanoseconds. If you are working with a hot method and 

you invoke it a million times per second, even a 10–20% performance boost can be 

important. However, it’s hard to measure such methods.

Let’s say we have a method that takes about 100 nanoseconds and we are trying to 

measure it with the help of Stopwatch:

var stopwatch = Stopwatch.StartNew();

Foo(); // 100ns

stopwatch.Stop();

// Print ElapsedTime

As we already know, the typical Stopwatch resolution on Windows is about  

300–500ns. That’s not enough to measure such a small method: the result most likely 

will be zero or the Stopwatch resolution. Even if a method takes microseconds, we still 

have natural noise, which spoils the repeatability of the benchmark. This problem can 

be solved if we invoke the method many times between measurements and divide the 

result into the number of invocations. Let’s see how it works in an example.
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 A bad benchmark

We want to know how many divisors are there for the number 100000 (spoiler: 36). Let’s 

solve this simple problem, measure it, and repeat the benchmark ten times (as usual, try 

this code on your computer):

const int N = 100000;

for (int iter = 0; iter < 10; iter++)

{

  var stopwatch = Stopwatch.StartNew();

  int counter = 0;

  for (int i = 1; i <= N; i++)

    if (N % i == 0)

      counter++;

  stopwatch.Stop();

  var elapsedMs = stopwatch.Elapsed.TotalMilliseconds;

  Console.WriteLine(elapsedMs + " ms");

}

Here is a typical output:

0.410468973641887 ms

0.475654133074913 ms

0.531752876344543 ms

0.308148026410656 ms

0.364641831252615 ms

0.460246731754378 ms

0.346864060498149 ms

0.308148026410656 ms

0.371752939554394 ms

0.274567792763341 ms

As you can see, the variance is huge: we have values from 0.27 to 0.53 milliseconds. 

The whole benchmark takes a small amount of time, so the random noise significantly 

affects measurements, and we get a new random error each time. It’s hard to work with 

such measurements. If we make some optimizations and run the benchmark again, we 

can miss the difference, because the original measurement values may differ twofold.
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 A better benchmark

Let’s repeat the measured code block 3000 times! Of course, we should divide the 

elapsed time by 3000 to get the actual time.

const int N = 100000;

const int Invocations = 3000;

for (int iter = 0; iter < 10; iter++)

{

  var stopwatch = Stopwatch.StartNew();

  for (int rep = 0; rep < Invocations; rep++)

  {

    int counter = 0;

    for (int i = 1; i <= N; i++)

      if (N % i == 0)

        counter++;

  }

  stopwatch.Stop();

  var elapsedMs = stopwatch.Elapsed.TotalMilliseconds

                  / Invocations;

  Console.WriteLine(elapsedMs + " ms");

}

The output:

0.356982772550016 ms

0.358534890455352 ms

0.358426564572221 ms

0.356142476585688 ms

0.358213231323168 ms

0.356969735518129 ms

0.356878397282608 ms

0.357596382184145 ms

0.358787255787751 ms

0.359197546588624 ms

Now it looks much more stable! Our result is about 0.356–0.359 milliseconds!
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 Advice: do many invocations

Well, sometimes it’s hard to decide how many invocations you need. You should make 

at least enough invocations for preventing problems that you aware of. A general 

recommendation: when you are doing microbenchmarking, repeat the measurable 

code for at least 1 second. If you are in a hurry, 100ms can be acceptable in most cases. 

When you are working with a 10ms-loop, it’s already easy to make mistakes because the 

benchmark precision is low, and the measurement variance is huge.

Now we know that an additional loop can help us to stabilize the results. However, 

such changes in the source code can bring additional problems. In the next section, we 

will discuss these problems and how to fix them.

 Infrastructure Overhead
As you can see, a benchmark is more than just a code that you want to measure.  

A benchmark includes an infrastructure: additional code that helps you to measure  

time correctly and get reliable results. However, this infrastructure has overhead: any 

changes in a program can affect the measurements. Let’s look at another example  

which illustrates the overhead.

 A bad benchmark

We want to measure the conversion of 0.0 from double to int via Convert.ToInt32. 

We also know that such a microbenchmark should be wrapped into a loop (because the 

conversion duration is less than the Stopwatch resolution). Let’s measure it:

var stopwatch = Stopwatch.StartNew();

for (int i = 0; i < 100000001; i++)

  Convert.ToInt32(0.0);

stopwatch.Stop();

Console.WriteLine(stopwatch.ElapsedMilliseconds);

Here you have the observer effect (we discussed it in Chapter 1): the loop is required 

for such micro-operations, but it also adds some performance costs. We don’t measure 

only our target operation; we measure it together with the loop. There are many 

complicated cases when a loop can produce an additional unexpected performance 

effect (read more in Chapter 7). In simple cases, you always should keep in mind that 
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the benchmark infrastructure (basically, it’s all the code you wrote for performing 

measurements) always adds some overhead (and probably other performance effects).

 A better benchmark

One of the possible solutions for “normalizing” results is just to measure benchmarking 

infrastructure (the loop in our case) for empty code (so called “overhead” or “idle” 

iterations), and subtract “empty” measurements from the “target” measurements.  

We can write something like this:

var stopwatchOverhead = Stopwatch.StartNew();

for (int i = 0; i < 100000001; i++)

{

}

stopwatchOverhead.Stop();

var stopwatchTarget = Stopwatch.StartNew();

for (int i = 0; i < 100000001; i++)

  Convert.ToInt32(0.0);

stopwatchTarget.Stop();q

var resultOverhead =

  stopwatchTarget.ElapsedMilliseconds -

  stopwatchOverhead.ElapsedMilliseconds

Console.WriteLine(resultOverhead);

You can find an example of results for RyuJIT-x64 on .NET Framework 4.6 in Table 2- 1.

Table 2-1. An Empty Loop vs.  

a Loop with ToInt32() Call

Method Time

overhead   ~34ms

target ~295ms

result ~261ms

As you can see, the overhead takes more than 10% of the target measurements.  

Of course, it’s a naive implementation; correct overhead evaluating may require more 

efforts in complicated benchmarks.
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 Advice: always calculate your infrastructure overhead

Remember that you always have the observer effect. Any additional time measurements 

always affect the performance of your code. In some cases, this overhead can be 

negligible, and in others, it can be significant. Anyway, it’s a good thing to evaluate and 

get the knowledge of the part of the total measured time that you spend during basic 

benchmarking stuff.

Now we know how to get honest and repeatable results without included overhead. 

In the next section, we will talk about another important problem that can make 

distributions difficult to analyze.

 Unequal Iterations
The lives of performance engineers would have been easier if each method had a fixed 

performance. Unfortunately, method performance might depend not only on the 

environment but also on the current program state. When you repeat a method a lot of 

times, be sure that each method invocation has the same performance cost and doesn’t 

have side effects. Otherwise, you can’t average it.

 A bad benchmark

Let’s say we want to measure the performance of List.Add. Write the following 

benchmark:

void Measure(int n)

{

  var list = new List<int>();

  var stopwatch = Stopwatch.StartNew();

  for (int i = 0; i < n; i++)

    list.Add(0);

  stopwatch.Stop();

  Console.Write("Capacity: " + list.Capacity + ", Time = ");

  Console.WriteLine("{0:0.00} ns",

    stopwatch.ElapsedMilliseconds * 1000000.0 / n);

}
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It adds an element to a listn times and prints the total time and the result list 

capacity. Usually, when we do a lot of iterations, it does not matter exactly how many 

iterations we do; this number should just be sufficiently large. So, let’s run this method 

for n = 16777216 and n = 16777217:

Measure(16777216);

Measure(16777217);

You can see an example of possible results in Table 2-2.

Table 2-2. Performance of List.Add

n Capacity Average Time

16777216 16777216 ~6.62ns

16777217 33554432 ~8.87ns

How is this possible? Why do we have a significant difference between 

measurements? The answer is simple: the Add method has two different run cases. In the 

first one, list.Capacity > list.Count, addition of a new element is cheap (because we 

have already the reserved memory for it). In the second case, list.Capacity == list.

Count, we have to resize the internal array, which takes a lot of time.

16777216 is not a random number; it’s 224. We can observe such effect for each power 

of two. You can see a plot with a series of Measure outputs for different N in Figure 2-3.
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Here are some of the List<T> implementation details with comments:

public void Add(T item)

{

  if (size == items.Length)

    EnsureCapacity(size + 1); // Here the list can be resized

  items[size++] = item;

  version++;

}

private void EnsureCapacity(int min)

{

  if (items.Length < min)

  {

    int newCapacity = items.Length == 0

      ? defaultCapacity : items.Length * 2;

Figure 2-3. “Average” duration of List.Add depending on the number of 
iterations
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    if ((uint)newCapacity > Array.MaxArrayLength)

      newCapacity = Array.MaxArrayLength;

    if (newCapacity < min)

      newCapacity = min;

     Capacity = newCapacity; // Calling the setter of the 'Capacity' 

property

  }

}

public int Capacity

{

  get { return items.Length; }

  set

  {

    if (value != items.Length)

    {

      if (value > 0)

      {

        // Setting new capacity has a side effect:

        //   it can create a new internal array

        T[] newItems = new T[value];

        if (size > 0)

          // Copying items to the new array

          Array.Copy(items, 0, newItems, 0, size);

        items = newItems;

      }

      else

      {

        items = emptyArray;

      }

    }

  }

}
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Thus, the performance of the Add method depends on the current list Count and 

Capacity. It’s wrong to calculate the average time of different Add calls (we may have 

many cheap calls and several expensive calls).

 A better benchmark

There are several possible strategies that can solve this problem. For example:

• Measure pair Add/Remove together. In this case, each iteration doesn’t 

change the list state and it doesn’t have a side effect. It makes sense 

when you start and finish with an empty list: such a benchmark 

allows an evaluation of the performance cost of each element that 

should be added/removed.

• Allocate a list with huge capacity at the beginning of a benchmark 

(new List<int>(MaxCapacity)). Make sure that the program does 

not exceed this capacity. In this case, all the Add calls will be cheap.

 Advice: measure methods that have a steady state

In the general case, the most important question is not “How to measure it?” but “Why 

do we want to measure it?” The best strategy always depends on what we want to 

achieve.

A recommendation: you should check that your average results don’t depend on 

the number of iterations. If you run a benchmark with N iterations, also try 2*N, 5*N, 

12.3456*N iterations. Make sure that each experiment has the same distribution and that 

there is no significant difference between them.

Now we know some of the commonest general pitfalls that are valid for many different 

languages and runtimes. It’s time to learn some pitfalls that are specific for .NET.

 .NET-Specific Pitfalls
.NET is a great platform. Each .NET runtime has many awesome optimizations that make 

your applications fast. When you want to write a superfast program, these optimizations 

are your best friends. When you want to design a benchmark, they are your worst 

enemies. A .NET runtime doesn’t know that you want to measure performance; it tries to 

execute a program as fast as possible.
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In the next sections, we will learn different runtime optimizations that can spoil our 

measurements. Let’s start with a problem that affects loops in the benchmarks.

 Loop Unrolling
We already know that fast methods should be wrapped in a loop for benchmarking. Do 

you know what happens with such loops on the assembly level?

Consider the following simple loop:

for (int i = 0; i < 10000; i++)

  Foo();

If we build it in Release and look at the assembly code for LegacyJIT-x86,6 we will 

get something like this:

LOOP:

call  dword ptr ds:[5B0884h] ; Foo();

inc   esi                    ; i++

cmp   esi,2710h              ; if (i < 10000)

jl    LOOP                   ; Go to LOOP

This listing looks pretty obvious. Now let’s look at the assembly code for 

LegacyJIT-x64:

LOOP:

call  00007FFC39DB0FA8       ; Foo();

call  00007FFC39DB0FA8       ; Foo();

call  00007FFC39DB0FA8       ; Foo();

call  00007FFC39DB0FA8       ; Foo();

add   ebx,4                  ; i += 4

cmp   ebx,2710h              ; if (i < 10000)

jl    00007FFC39DB4787       ; Go to LOOP

6 Don’t worry if you don’t know anything about LegacyJIT-x86 and LegacyJIT-x64. We will 
discuss different JIT compilers later in the next chapter. Right now, you should know that we are 
talking about .NET Framework on Windows and comparing x86 and x64 versions of the same 
program. On modern versions of .NET Framework, you usually work with RyuJIT for x64, but 
LegacyJIT is still pretty popular.
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What happened here? Our loop was unrolled! LegacyJIT-x64 performed loop 
unrolling and transformed the code to the following:

for (int i = 0; i < 10000; i += 4)

{

  Foo();

  Foo();

  Foo();

  Foo();

}

You can read more about different tricky JIT optimizations in Chapter 7. Right 

now, you should just know that you can’t control which loops will be unrolled. In .NET 

Framework 4.6, LegacyJIT-x86 and RyuJIT-x64 can’t do it. Only LegacyJIT-x64 knows 

how to do unrolling. It can unroll a loop only if the number of iterations is a constant  

(it is known in advance) and if it is divisible by 2, 3, or 4 (LegacyJIT-x64 tries to select 

the maximum divisor). However, it’s not the best idea to use specific knowledge about 

JIT compiler optimization: it can be changed at any moment. The best possible solution 

is to keep the number of iterations at an auxiliary field so the JIT compiler will not be 

able to apply the optimization.

Do we really need to worry about this? Let’s check it!

 A bad benchmark

For example, we want to know how much time it takes to execute an empty loop with 

1000000001 and 1000000002 iterations. This is another absolutely useless experiment, 

but it’s a minimal reproduction case for the discussed problem. (For some reason, a lot 

of developers like to benchmark empty loops.)

var stopwatch1 = Stopwatch.StartNew();

for (int i = 0; i < 1000000001; i++)

{

}

stopwatch1.Stop();

var stopwatch2 = Stopwatch.StartNew();

for (int i = 0; i < 1000000002; i++)

{
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}

stopwatch2.Stop();

Console.WriteLine(stopwatch1.ElapsedMilliseconds + " vs. " +

                  stopwatch2.ElapsedMilliseconds);

You can find an example of approximated results for LegacyJIT-x86 and 

LegacyJIT-x64 in Table 2-3.

Table 2-3. Results for Empty Loops with Constants

Iterations LegacyJIT-x86 LegacyJIT-x64

1000000001 ~360ms ~360ms

1000000002 ~360ms ~120ms

How is it possible? The most interesting part: why do 1000000002 iterations work 

three times faster than 1000000001 iterations on LegacyJIT-x64? It’s all about unrolling! 

1000000001 is not divisible by or 2, 3, 4. So, LegacyJIT-x64 can’t do unrolling here. But 

it’s possible to unroll the second loop with 1000000002 iterations because this number is 

divisible by 3! It’s also divisible by 2; the JIT compiler chooses the maximum divisor for 

the loop unrolling. Here are assembly listings for both loops:

; 1000000001 iterations

LOOP:

inc   eax           ; i++

cmp   eax,3B9ACA01h ; if (i < 1000000001)

jl    LOOP          ; Go to LOOP

; 1000000002 iterations

LOOP:

add   eax,3         ; i += 3

cmp   eax,3B9ACA02h ; if (i < 1000000002)

jl    LOOP          ; Go to LOOP

In the second case, we can see the add eax,3 instruction, which increments the 

counter by 3: we can see the loop unrolling in action! Now it’s pretty obvious why the 

second loop works three times faster.
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 A better benchmark

We can be smarter than JIT and keep the number of iterations in fields. Be careful:  

it should be exactly the fields, not the constants!

private int N1 = 1000000001, N2 = 1000000002;

public void Measure()

{

  var stopwatch1 = Stopwatch.StartNew();

  for (int i = 0; i < N1; i++)

  {

  }

  stopwatch1.Stop();

  var stopwatch2 = Stopwatch.StartNew();

  for (int i = 0; i < N2; i++)

  {

  }

  stopwatch2.Stop();

}

So, the JIT compiler can’t apply unrolling because he doesn’t know a number of 

iterations. Furthermore, these values can be changed by someone in another thread, 

and it’s too risky to do such optimization. Now we have the same results for all the 

configurations (see Table 2-4).

Table 2-4. Results for Empty Loops with Variables

Iterations LegacyJIT-x86 LegacyJIT-x64

1000000001 ~360ms ~360ms

1000000002 ~360ms ~360ms

Yeah, the LegacyJIT-x64/1000000002 configuration is not so fast as in the first case. 

But now it’s a fair comparison: we are not trying to get the maximum performance here, 

we are trying to compare the performance of two pieces of code.
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 Advice: use variables instead of constants in loops

You want to compare two different implementations of an algorithm: the loop is  

just a way to get meaningful results for pretty quick operations; it’s not a real part of 

measured logic. Of course, we don’t want to get different impacts from the loops on  

total performance. Thus, it’s better to make N1 and N2 variables instead of constants.  

If you continue to read this chapter carefully, you may notice that we still use constants 

in loops. We do it only for simplification and use constants that are not divisible by 2 or 3.  

(LegacyJIT-x64, you can’t unroll it!) All of these examples are not real benchmarks; 

they are just illustrations of benchmarking pitfalls. So, it’s OK to use constants for such 

demonstrations, but please don’t do it in real benchmarks.

Now we know how to how to prevent loop unrolling, but that’s not the only 

runtime optimization. In the next section, we will learn how to prevent elimination of 

the loop body.

 Dead Code Elimination
Modern compilers are very smart. In most cases, they are even smarter than developers 

who try to benchmark something. A typical benchmark contains some “fake” 

operations that are not actually used, because we don’t care about the results, we care 

only about the duration of these operations. If the measured code doesn’t produce any 

observable effects, the compiler can throw this code away. This optimization is called 

dead code elimination (DCE). Let’s look at an example which shows this optimization 

in action.

 A bad benchmark

Let’s calculate square roots of all numbers from 0 to 100000000:

double x = 0;

for (int i = 0; i < 100000001; i++)

  Math.Sqrt(x);
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Now let’s measure the duration of this code. We know that the loop can add some 

overhead, so let’s measure it as well and subtract overhead from the target measurements:

double x = 0;

var stopwatch = Stopwatch.StartNew();

for (int i = 0; i < 100000001; i++)

    Math.Sqrt(x);

stopwatch.Stop();

var stopwatch2 = Stopwatch.StartNew();

for (int i = 0; i < 100000001; i++);

stopwatch2.Stop();

var target = stopwatch.ElapsedMilliseconds;

var overhead = stopwatch2.ElapsedMilliseconds;

var result = target - overhead;

Console.WriteLine("Target   = " + target   + "ms");

Console.WriteLine("Overhead = " + overhead + "ms");

Console.WriteLine("Result   = " + result   + "ms");

The output example (Windows, .NET Framework, RyuJIT-x64, Release mode):

Target   = 37ms

Overhead = 37ms

Result   = 0ms

Hooray, it seems that Math.Sqrt works instantly! We can execute Math.Sqrt as many 

times as we want without any performance cost! Let’s run it again:

Target   = 36ms

Overhead = 37ms

Result   = -1ms

Hooray, it seems that additional calls of Math.Sqrt can improve our performance! 

Although… Does it look believable? Not for a good performance engineer. Let’s look at 

the assembly code for our target loop:

; for (int i = 0; i < 100000001; i++)

;   Math.Sqrt(x);
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LOOP:

inc   eax        ; i++

cmp   eax,2710h  ; if (i < 10000)

jl    LOOP       ; Go to LOOP

Aha! JIT compiler has applied magic optimizations here! You may notice that we 

don’t use the result of Math.Sqrt in any way. This code can be safely removed and this 

optimization spoils our benchmark. In both cases, we measure an empty loop. Because 

of the natural noise, we have variance in measurements, so it’s a normal situation when 

we get a negative result (it just means that one measurement is bigger than another).

We still want to measure the performance cost of Math.Sqrt. How can we improve 

our benchmark?

 A better benchmark

A typical workaround is to use the result somehow (let’s rewrite the first part of the bad 

benchmark):

double x = 0, y = 0;

var stopwatch = Stopwatch.StartNew();

for (int i = 0; i < 100000001; i++)

  y += Math.Sqrt(x);

stopwatch.Stop();

Console.WriteLine(y);

Now the Math.Sqrt calls can’t be removed because we need the result for printing 

the sum of square roots. Of course, we also add little overhead for the y += operation, 

which is a part of benchmarking infrastructure cost. Let’s check how it works:

Target   = 327ms

Overhead = 37ms

Result   = 290ms

Now the Result is a positive number (290ms), which makes more sense.
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 Advice: always use results of your calculations

The modern compilers are smart, but we should be smarter! Our benchmarks shouldn’t 

contain the code, which can be thrown away. The only way to do it is to use all results 

somehow. Roslyn and JIT compiler shouldn’t know that we don’t actually need this 

result. The simplest way here is to accumulate all calculated values and save it to a field. 

If you use a local variable, you should use it somehow after the measurements (Console.

WriteLine is OK if you don’t care about extra lines in the program output).

Be careful: any code which prevents DCE is also a part of your benchmark 

infrastructure; it increases the total time. You should be sure that this overhead is small 

and doesn’t affect measurements significantly. Imagine that you get a string as a result. 

How can we use it? For example, we can add it to a global string accumulator like this:

string StringOperation() { /* ... */ }

// The benchmark

var stopwatch = Stopwatch.StartNew();

string acc = "";

for (int i = 0; i < N; i++)

  acc += StringOperation();

stopwatch.Stop();

Is it a good way to keep benchmark results? No, because the overhead of string 

concatenation is huge. Moreover, the overhead depends on the number of iterations: 

each iteration takes more time than the previous one because the length of the string acc 

grows. We need allocate more memory and copy more characters. How can we improve 

this benchmark? For example, we can accumulate string lengths:

string StringOperation() { /* ... */ }

// The benchmark

var stopwatch = Stopwatch.StartNew();

int acc = 0;

for (int i = 0; i < N; i++)

  acc += StringOperation().Length;

stopwatch.Stop();
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This is much better because integer addition and getting the string lengths usually 

work much faster than any string operations. In most cases, we will not observe any 

significant performance overhead for this trick, but it perfectly solves the “DCE preventing” 

task: the compiler can’t throw away StringOperation() calls because we use the result!

The DCE is not the only optimization that can eliminate some logic from our code. 

In the next section, we will talk about another cool optimization that also can reduce a 

program.

 Constant Folding
Let’s say we want to benchmark the following multiplication operation:

int Mul() => 2 * 3;

Does it look like a good method for multiplication benchmarking? Let’s compile it 

(with optimizations) and look at the IL code:

ldc.i4.6

ret

ldc.i4.6 means “Push 6 onto the stack as int32.” ret means “Return from method, 

possibly with a value.” (We take the value from the stack.)

Here you can see the multiplication result (6), which is hardcoded inside the 

program. The C# compiler is smart enough to precalculate such expressions at the 

compile time. The name of this optimization is constant folding. This optimization 

works for all kinds of constants including strings (e.g., "a" + "b" will be compiled to 

"ab"). It is great for performance, but not so great for benchmarking. We should be sure 

that it’s impossible for the compiler to do any calculations in advance (if we want to 

measure these calculations). For example, we can keep our arguments in separate fields:

private int a = 2, b = 3;

public int Mul() => a * b;

Now, we can observe an honest mul opcode on the IL level:

ldarg.0

ldfld     a

ldarg.0
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ldfld     b

mul

ret

ldarg.0 means “Load argument 0 onto the stack.” The argument 0 here is this. 

ldfld <field>, which means “Push the value of field of object (or value type) onto the 

stack.” mul means “Multiply values.” Thus, in this code, we load this.a onto the stack, 

then load this.b onto the stack, then take the last two values from the stack, multiply 

them, push the result onto the stack, and return it.

The constant folding may look like a simple and predictable optimization, but this is 

not always true. Let’s consider another interesting example.

 A bad benchmark

Here is another question for you: which method is faster on RyuJIT-x64 (.NET 

Framework 4.6 without updates)?

public double Sqrt13()

{

  return

    Math.Sqrt(1) + Math.Sqrt(2) + Math.Sqrt(3) +

    Math.Sqrt(4) + Math.Sqrt(5) + Math.Sqrt(6) +

    Math.Sqrt(7) + Math.Sqrt(8) + Math.Sqrt(9) +

    Math.Sqrt(10) + Math.Sqrt(11) + Math.Sqrt(12) +

    Math.Sqrt(13);

}

public double Sqrt14()

{

  return

    Math.Sqrt(1) + Math.Sqrt(2) + Math.Sqrt(3) +

    Math.Sqrt(4) + Math.Sqrt(5) + Math.Sqrt(6) +

    Math.Sqrt(7) + Math.Sqrt(8) + Math.Sqrt(9) +

    Math.Sqrt(10) + Math.Sqrt(11) + Math.Sqrt(12) +

    Math.Sqrt(13) + Math.Sqrt(14);

}

If we carefully benchmark each method, we will get a result like in Table 2-5.
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It looks very strange. We added an additional square root operation, and it improved 

the performance of our code. Not just improved, it made it instant! How is this possible? 

It’s time to look at the assembly code for each method:

; Sqrt13

vsqrtsd     xmm0,xmm0,mmword ptr [7FF94F9E4D28h]

vsqrtsd     xmm1,xmm0,mmword ptr [7FF94F9E4D30h]

vaddsd      xmm0,xmm0,xmm1

vsqrtsd     xmm1,xmm0,mmword ptr [7FF94F9E4D38h]

vaddsd      xmm0,xmm0,xmm1

vsqrtsd     xmm1,xmm0,mmword ptr [7FF94F9E4D40h]

vaddsd      xmm0,xmm0,xmm1

vsqrtsd     xmm1,xmm0,mmword ptr [7FF94F9E4D48h]

vaddsd      xmm0,xmm0,xmm1

vsqrtsd     xmm1,xmm0,mmword ptr [7FF94F9E4D50h]

vaddsd      xmm0,xmm0,xmm1

vsqrtsd     xmm1,xmm0,mmword ptr [7FF94F9E4D58h]

vaddsd      xmm0,xmm0,xmm1

vsqrtsd     xmm1,xmm0,mmword ptr [7FF94F9E4D60h]

vaddsd      xmm0,xmm0,xmm1

vsqrtsd     xmm1,xmm0,mmword ptr [7FF94F9E4D68h]

vaddsd      xmm0,xmm0,xmm1

vsqrtsd     xmm1,xmm0,mmword ptr [7FF94F9E4D70h]

vaddsd      xmm0,xmm0,xmm1

vsqrtsd     xmm1,xmm0,mmword ptr [7FF94F9E4D78h]

vaddsd      xmm0,xmm0,xmm1

vsqrtsd     xmm1,xmm0,mmword ptr [7FF94F9E4D80h]

vaddsd      xmm0,xmm0,xmm1

Table 2-5. Results for Sqrt13 

and Sqrt14 on RyuJIT-x64

Method Time

sqrt13 ~91 ns

sqrt14      0 ns
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vsqrtsd     xmm1,xmm0,mmword ptr [7FF94F9E4D88h]

vaddsd      xmm0,xmm0,xmm1

ret

; Sqrt14

vmovsd      xmm0,qword ptr [7FF94F9C4C80h]

ret

vsqrtsd computes the square root of a floating-point value, vaddsd adds one 

floating-point value to another, and vmovsd moves a floating-point value. Thus, Sqrt13 

calculates the whole sum each time, while Sqrt14 just returns a constant.

Aha! It seems that RyuJIT-x64 applied the constant folding optimization for Sqrt14. 

But why doesn’t this work for Sqrt13?

Well, it’s really hard to be a JIT compiler. You know a lot of awesome optimizations, 

and you don’t have a huge amount of time to apply them (no one wants to have 

performance problems because of the JIT compilation). So, we need a trade-off between 

the time of JIT compilation and the number of applied optimizations. RyuJIT-x64 has 

a set of heuristics that help to make such decisions. In particular, if we are working with 

a small method, we can skip some optimizations because it probably should be fast 

enough. If a method is a big one, we can spend more time in the JIT compilation stage to 

improve performance. In our example, adding the Math.Sqrt(14) is a moment when we 

reach a heuristic threshold: from this point, RyuJIT applies additional optimization.

You should know that such things are possible, but it’s not a good idea to use such 

knowledge in production code. If you want to improve the performance of an application 

by adding an additional Math.Sqrt here and there, please don’t. The JIT implementation 

details can be changed at any moment. For example, the preceding issue was reported7 

and resolved,8 so it can’t be reproduced on .NET Framework 4.7+ (both Sqrt13 and 

Sqrt14 will take 0 nanoseconds because of the constant folding).

Let’s fix the benchmark.

7 https://github.com/dotnet/coreclr/issues/978
8 https://github.com/dotnet/coreclr/issues/987
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 A better benchmark

The best way to avoid the constant folding is simple: don’t use constants. For example, 

we can rewrite our code by introducing additional variables that keep our values:

public double x1 = 1, x2 = 2, x3 = 3, x4 = 4, x5 = 5, x6 = 6,

              x7 = 7, x8 = 8, x9 = 9, x10 = 10, x11 = 11,

              x12 = 12, x13 = 13, x14 = 14;

public double Sqrt14()

{

  return

    Math.Sqrt(x1) + Math.Sqrt(x2) + Math.Sqrt(x3) +

    Math.Sqrt(x4) + Math.Sqrt(x5) + Math.Sqrt(x6) +

    Math.Sqrt(x7) + Math.Sqrt(x8) + Math.Sqrt(x9) +

    Math.Sqrt(x10) + Math.Sqrt(x11) + Math.Sqrt(x12) +

    Math.Sqrt(x13) + Math.Sqrt(x14);

}

RyuJIT can’t apply the constant folding here because there are no constants in the 

method.

 Advice: don’t use constants in your benchmarks

It’s simple: if you don’t have constants, the constant folding can’t be applied. If you have 

any parameters that you want to pass to the target methods, introduce fields for these 

parameters. Such approach also provokes good benchmark design. It’s typical to get 

different performance metrics from different input data. If you use parameters instead of 

hardcoded values, it will be easier to check different input values in the future.

.NET has many ways to eliminate different parts of your code. In the next section, we 

will discuss another one.

 Bound Check Elimination
.NET is a great platform, and it allows you to write safe code. For example, if you try 

to get an element of array A with a nonexistent index (e.g. A[-1]), the runtime throws 

IndexOutOfRangeException. On the one hand, it is a good thing: the runtime protects 

us from writing incorrect code, as it’s impossible to take a value from someone else’s 

memory. On the other hand, it adds additional performance overhead.

Chapter 2  Common BenChmarking pitfalls



74

Fortunately, the JIT compiler is smart enough to eliminate bound check sometimes. 

The name of this optimization is bound check elimination (BCE). The keyword here is 

sometimes; we can’t control when the BCE is performed. Such optimizations are good for 

performance, but they are not so good for people who write benchmarks.

 A bad benchmark

Let’s say we have a big array with a constant length and we want to increment each 

element of this array. How should we design the benchmark loop? We can set the upper 

loop limit as a constant or as an array length. We get the same number of iterations in 

each case, and there is no difference in result. But is there a difference in performance?

const int N = 1000001;

int[] a = new int[N];

var stopwatch1 = Stopwatch.StartNew();

for (int iteration = 0; iteration < 101; iteration++)

  for (int i = 0; i < N; i++)

    a[i]++;

stopwatch1.Stop();

var stopwatch2 = Stopwatch.StartNew();

for (int iteration = 0; iteration < 101; iteration++)

  for (int i = 0; i < a.Length; i++)

    a[i]++;

stopwatch2.Stop();

Console.WriteLine(stopwatch1.ElapsedMilliseconds + " vs. " +

                  stopwatch2.ElapsedMilliseconds);

You can find an example of results (Windows, .NET Framework 4.6, RyuJIT-x64) in 

Table 2-6.
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The reason of the performance difference is the BCE. The JIT compiler can skip 

bound checks when the upper limit is a.Length, but it can’t do it when the upper limit 

is constant. It’s not recommended to actively exploit such JIT compiler “features” during 

benchmarking: they depend on the runtime and its version. But we should know about 

it and design benchmarks in such a way that our results are not spoiled by different JIT 

decisions about the BCE.

 A better benchmark

The main rule against BCE: use a consistent loop style for all your benchmarks. If you 

use a constant in one loop, use it everywhere (results for the same environment are in 

Table 2-7).

const int N = 1000001;

int[] a = new int[N];

var stopwatch1 = Stopwatch.StartNew();

for (int iteration = 0; iteration < 101; iteration++)

for (int i = 0; i < N; i++)

  a[i]++;

stopwatch1.Stop();

var stopwatch2 = Stopwatch.StartNew();

for (int iteration = 0; iteration < 101; iteration++)

for (int i = 0; i < N; i++)

  a[i]++;

stopwatch2.Stop();

Console.WriteLine(stopwatch1.ElapsedMilliseconds + " vs. " +

                  stopwatch2.ElapsedMilliseconds);

Table 2-6. Performance of Array Modification 

Loop with Different Upper Bound Styles

Experiment Loop upper bound Duration

1 n ~175ms

2 a.length   ~65ms
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Now the results look much better.

 Advice: use consistent loop style

If you want to use benchmark result for optimizing your software, use the same loop style 

as your production code. Of course, the preceding benchmark is a toy; real benchmarks 

are more complicated and can involve a lot of calls to the array indexer. You always 

have to keep in mind that the bound check has an additional performance cost, but 

sometimes the JIT compiler can eliminate it.

In the next section, we will learn how .NET can eliminate method calls.

 Inlining
If you want to make your code readable, supportable, and beautiful, you probably don’t 

like huge methods. Books about good code teach us that methods should be small; each 

method should solve its own small problem. If you have a 100-line method, it’s usually 

possible to introduce additional small methods that are responsible for small subtasks. 

Someone may say: “Introducing additional methods adds a performance overhead 

because of additional calls.” A general recommendation: usually you shouldn’t care 

about it. The JIT compiler is the one who should care. Just write nice readable code and 

let the JIT compiler do all the dirty work. Besides, the call absence is not always good for 

performance. Sometimes, when you simplify a huge method by introducing additional 

calls, the JIT compiler will be able to optimize this simplified method well, which 

noticeably improves the performance (calls overhead will be negligibly small compared 

to these improvements).

However, this is only a general recommendation. The JIT compiler is not always 

as smart as we would like. Also, it’s possible to disable inlining for a method, but it’s 

impossible to make sure that a method will be inlined.

Table 2-7. Performance of Array Modification 

Loop with the Same Upper Bound Styles

Experiment Loop upper bound Time

1 n ~175ms

2 n ~175ms
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Consider the following method:

void Run1()

{

    for (int i = 0; i < N; i++)

    {

        // huge complicated logic

    }

}

If we do a lot of iterations of some huge complex logic, it makes sense to introduce 

a method for it. And we will keep the loop (and other benchmarking stuff) in the main 

method.

void Logic() =>// huge complicated logic

void Run2()

{

    for (int i = 0; i < N; i++)

        Logic();

}

The code looks perfect: each layer of abstraction has its own method. Steve 

McConnell9 would be proud of us! However, such refactoring could affect performance. 

It’s especially important in case of microbenchmarking.

 A bad benchmark

In the next example, we will have two methods A and B. Both of them have a single 

double argument x. The A method just calculates x ∗ x. The B method also calculates x ∗ x, 

but it throws ArgumentOutOfRangeException for negative arguments.

double A(double x)

{

  return x * x;

}

double B(double x)

9 Author of Code Complete (Microsoft Press, 2016).
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{

  if (x < 0)

    throw new ArgumentOutOfRangeException("x");

  return x * x;

}

public void Measurements()

{

  double sum = 0;

  var stopwatchA = Stopwatch.StartNew();

  for (int i = 0; i < 1000000001; i++)

    sum += A(i);

  stopwatchA.Stop();

  var stopwatchB = Stopwatch.StartNew();

  for (int i = 0; i < 1000000001; i++)

    sum += B(i);

  stopwatchB.Stop();

  Console.WriteLine(

      stopwatchA.ElapsedMilliseconds + " vs. " +

      stopwatchB.ElapsedMilliseconds);

}

Check how it works on your computer. My results (Windows, .NET Framework 4.6, 

RyuJIT-x64) are in Table 2-8.

Table 2-8. Performance of Different 

Strategies for Handling Invalid Values

Method Time

a ~2125ns

B ~2466ns

Chapter 2  Common BenChmarking pitfalls



79

Why does the B method work so slowly? It contains only one additional check, but 

the difference in measurements between A and B looks too huge. The reason is simple: 

the A method was inlined because it’s small and simple. The JIT compiler decided to not 

inline B because it’s not so small.10 Thus, we measure inlined A (without call overhead) 

and noninlined B (with call overhead), which is not fair. We need justice!

 A better benchmark

The best available solution is to disable inlining with the help of the [MethodImpl] 

attribute:

[MethodImpl(MethodImplOptions.NoInlining)]

double A(double x)

{

  return x * x;

}

[MethodImpl(MethodImplOptions.NoInlining)]

double B(double x)

{

  if (x < 0)

    throw new ArgumentOutOfRangeException("x");

  return x * x;

}

New results:

Method Time

a ~2125ms

B ~2466ms

Now we have the performance of method body + call overhead in both cases. We still 

observe the difference in measurements (because B has additional logic), but it’s not so 

dramatic.

10 Remember that we are talking about .NET Framework 4.6 only. You will observe another result 
with future versions of .NET Framework or .NET Core.
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 Advice: control inlining of the benchmarked methods

You should be sure that all benchmarked methods have the same inlining strategy. Since 

it’s impossible to always force inlining (MethodImplOptions.AggressiveInlining is just 

a recommendation; the JIT compiler can ignore it), it’s better to always disable inlining. 

[MethodImpl(MethodImplOptions.NoInlining)] is one of the simplest ways to do it (the 

JIT compiler can’t ignore it).

If you don’t want to write MethodImplOptions.NoInlining all the time and looking 

for a general approach, the delegates are your friends. Currently, JIT compilers can’t 

inline them,11 so you can wrap all benchmarked methods in delegates and pass them to 

your generic measurement logic.

JIT compilation has many smart optimizations, but it can apply them in different 

ways. We will discuss inlining in details in Chapter 7.

In the next section, we will discuss a situation when the final assembly code depends 

on additional conditions.

 Conditional Jitting
Usually you will get identical assembly codes for the same method, regardless of how 

and when we call it. However, an executed code can sometimes affect how other 

methods will be jitted. Because of that, it may be dangerous to run several benchmarks 

in one program. The easiest way to explain this is with another example.

 A bad benchmark

Consider the following code:

static string Measure1()

{

  double sum = 1, inc = 1;

  var stopwatch = Stopwatch.StartNew();

  for (int i = 0; i < 1000000001; i++)

    sum = sum + inc;

11 It’s true for .NET Framework 4.7.1, .NET Core 2.0, Mono 5.6. Who knows how smart .NET will be 
in the future…
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  return $"Result = {sum}, Time = {stopwatch.ElapsedMilliseconds}";

}

static string Measure2()

{

  double sum = 1, inc = 1;

  var stopwatch = Stopwatch.StartNew();

  for (int i = 0; i < 1000000001; i++)

    sum = sum + inc;

  return $"Result = {sum}, Time = {stopwatch.ElapsedMilliseconds}";

}

static void Main()

{

  Console.WriteLine(Measure1());

  Console.WriteLine(Measure2());

}

Here we have two identical methods that measure the summation of double 

variables. Each method returns the final value of sum and the elapsed time. The source 

code looks clumsy, but it’s a good small repro of one interesting effect. Let’s run this 

program on LegacyJIT-x86 (Windows, .NET Framework 4.6):

Result = 1000000002, Time = 3362

Result = 1000000002, Time = 1119

You probably expected to have the same result for both methods (because they are 

identical). However, there is a threefold difference between measurements. Why? Let’s 

look at the assembly code of the loop bodies for each method:

; Measure1

fld1

fadd        qword ptr [ebp-14h]

fstp        qword ptr [ebp-14h]

; Measure2

fld1

faddp       st(1),st
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It turned out that the first method keeps the sum value on the stack, and the second 

method keeps it in an FPU register. It’s very important in such a short loop, so we have 

a significant performance difference. But why do we have different assembly codes for 

these methods?

The JIT compiler has a lot of different heuristics based on different factors. One 

such factor in LegacyJIT-x86 is the number of call sites. When we run the first method, 

the static constructor of the Stopwatch class wasn’t executed. So, the JIT compiler has 

to add a few additional assembly instructions that check whether we need to call this 

static constructor or not. This call will be performed only once, but these assembly 

instructions will be inside the method forever. When we run the second method, the 

Stopwatch static constructor has already been executed. So, we don’t need an additional 

check, and we can skip the described assembly instructions.

This check doesn’t have any performance impact. But it increases the number of call 

sites. The floating-point registration logic for the LegacyJIT-x86 uses the number of call 

sites as a factor for choosing whether or not to register floating-point locals. Thus, we 

have different assembly listings and different performance.

There are two important lessons here:

• Execution of one benchmark can affect the performance of other 

benchmarks. So, it’s recommended not to run several measurements 

in the same program because we can get different results depending 

on the benchmark order.

• If you remove the Stopwatch logic from methods, both of them 

will work fast. Thus, we made the first method slow by adding 

measurements logic. This is another example of the observer effect: 

when we add some measurement logic, we start to measure modified 

code instead of the original. Additional Stopwatch calls can spoil 

some optimizations in very short methods.

 A better benchmark

It’s better to run each benchmark in its own program. Just don’t mix them and you will 

avoid some of these problems.

Another approach is to move the Stopwatch logic out from the method body:

[MethodImpl(MethodImplOptions.NoInlining)]

publicstatic double Measure1()
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{

  double sum = 1, inc = 1;

  for (int i = 0; i < 1000000001; i++)

    sum = sum + inc;

  return sum;

}

[MethodImpl(MethodImplOptions.NoInlining)]

publicstatic double Measure2()

{

  double sum = 1, inc = 1;

  for (int i = 0; i < 1000000001; i++)

    sum = sum + inc;

  return sum;

}

public static void Main()

{

  var stopwatch1 = Stopwatch.StartNew();

  Measure1();

  stopwatch1.Stop();

  var stopwatch2 = Stopwatch.StartNew();

  Measure2();

  stopwatch2.Stop();

  Console.WriteLine(stopwatch1.ElapsedMilliseconds + " vs. " +

                    stopwatch2.ElapsedMilliseconds);

}

The result:

1119 vs. 1117

The second approach works for this particular case, but it’s not a good solution in 

general. You can’t control conditional jitting and you never know when it will spoil the 

measurements.
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 Advice: use own process for each benchmarked method

If you create an own process for each method, they can’t affect each other. Yes, it’s hard 

to do it manually each time, but it’s a good practice which can prevent many problems. 

If you don’t want to think about low-level JIT “features,” it’s always better to run each 

benchmark in isolation. Are you still not convinced of this? Then check out the next 

section, where we look at another benchmark isolation example.

 Interface Method Dispatching
Conditional jitting is not the only reason why it’s a good idea to isolate each benchmark 

in a separate process. In most cases, once the JIT compiler generates assembly code for a 

method, it will not be changed. However, there are exceptions.12

One such exception is interface method dispatching. When you call an interface 

method, the runtime should check the actual object type and find the corresponding 

method table. For this purpose, it generates a stub method which is called when you 

are trying to execute an interface method. This stub method depends on your current 

profile and can be regenerated. In other words, the performance cost of the interface 

method call can be implicitly changed by these calls. The important fact here is that one 

benchmark could affect the results of another benchmark.

Let’s look at an example.

 A bad benchmark

Let’s say we have a simple interface, IIncrementer, which knows how to increment an 

int value. And we have two identical implementations of this interface. We also have a 

benchmark method, Measure, which takes an instance of the interface and run the Inc 

method in a loop:

interface IIncrementer

{

  int Inc(int x);

}

12 For example, in .NET Core 2.x, the tiered jitting is introduced. If this feature is enabled, JIT can 
quickly generate a simple native code for the first invocation of a method. If this implementation 
is slow and the method is hot (you call it too many times), JIT can update the native code by a 
smarter and faster implementation.
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class Incrementer1 : IIncrementer

{

  public int Inc(int x) => x + 1;

}

class Incrementer2 : IIncrementer

{

  public int Inc(int x) => x + 1;

}

static void Measure(IIncrementer incrementer)

{

  for (int i = 0; i < 100000001; i++)

    incrementer.Inc(0);

}

static void Main()

{

  var stopwatch1 = Stopwatch.StartNew();

  Measure(new Incrementer1());

  stopwatch1.Stop();

  var stopwatch2 = Stopwatch.StartNew();

  Measure(new Incrementer2());

  stopwatch2.Stop();

  Console.WriteLine(stopwatch1.ElapsedMilliseconds + " vs. " +

                    stopwatch2.ElapsedMilliseconds);

}

In the Main method, we measure the loop performance for the first interface 

implementation, and then for the second one. Someone who doesn’t know about 

interface method dispatching can expect to get the same result. But we know how the 

runtime works, so unequal measurements will not be a surprise for us. The following are 

typical results on Windows, .NET Framework 4.6, and LegacyJIT-x64:

241 vs. 328

As you can see, the second case is much slower than the first one. In the first case, 

there is a single implementation of IIncrementer in the memory. So, the JIT compiler 

can generate a fast and simple stub that “knows” that there is only one possible method 
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table for this call. In the second case, there are two implementations of IIncrementer, 

and the JIT compiler has to regenerate our stub. Now it’s not so fast because it has to 

choose between two method tables. Of course, this is a simplification; the full algorithm 

is much more complicated, but I hope that you get the idea.

 A better benchmark

Thus, the best choice for benchmarking is to run each target method in its own process. 

Mixing benchmarks in one program can lead to spoiled results.

Here our first program:

// Program1.cs

static void Main()

{

  var stopwatch1 = Stopwatch.StartNew();

  Measure(new Incrementer1());

  stopwatch1.Stop();

  Console.WriteLine(stopwatch1.ElapsedMilliseconds);

}

Here is our second program:

// Program2.cs

static void Main()

{

  var stopwatch2 = Stopwatch.StartNew();

  Measure(new Incrementer2());

  stopwatch2.Stop();

  Console.WriteLine(stopwatch2.ElapsedMilliseconds);

}

Now we can get the equal results:

// Program1

243

// Program2

242

It looks much better.
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 Advice: use a unique process for each benchmarked method

Isolating is always a good thing for benchmarks. Someone can say that we have to 

measure real performance in a real environment, so such isolation is wrong because 

we miss important runtime “features.” And this makes sense, but now we are talking 

about how to design good benchmarks. Good benchmarks should provide repeatable, 

stable results regardless of the order. If you want to take effects like method interface 

dispatching into account, you have to design a proper set of benchmarks.

It is worth mentioning that such problems are not frequent. Usually, you will not 

suffer from conditional jitting or method interface dispatching. But you can’t know about 

it in advance. It’s also possible to have the order problem because of high-level logic like 

caching (the first benchmark initializes a cache and the second one works on a warmed 

cache). So it’s a good idea, in general, to isolate each benchmark in a separate program.

This is the last benchmarking pitfall to be discussed in this chapter (but it’s far from 

the last in this book). Let’s summarize what we have learned.

 Summary
In this chapter, we discussed some common pitfalls typical for people who have just 

started to write benchmarks. Some of them are general and can be applied to different 

languages and runtimes:

• Inaccurate timestamping

DateTime-based benchmarks have many problems like pure 

resolution, so it’s better to use Stopwatch for time measurements. 

We will discuss all .NET timestamping APIs and their 

characteristics in Chapter 9.

• Executing a benchmark in the wrong way

Benchmarks should always be executed with enabled 

optimization (Release mode) without an attached debugger in a 

sterile environment.

• Natural noise

Each benchmark iteration has random errors because of the 

natural noise.
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• Tricky distributions

Performance distributions often have a tricky form: they may have 

huge variance or include extremely high values. Such distribution 

should be carefully analyzed; we will discuss how to do this in 

Chapter 4.

• Measuring cold start instead of warmed steady state

The first benchmark iterations are “cold” and can take much more 

time than subsequent “warm” iterations.

• Insufficient number of invocations

In the case of microbenchmarks, the measured code should be 

repeated many times. Otherwise, errors will be huge because 

timestamping is limited on the hardware level and can’t correctly 

measure high-speed operations.

• Infrastructure overhead

Each benchmark includes an “infrastructure” part that helps you 

to get reliable and repeatable results. This infrastructure can affect 

results and spoil the measurements. Thus, the overhead should be 

calculated and removed from the final results.

• Unequal iterations

If you repeat a code several times, you should be sure that all 

repetitions take the same amount of time.

We also have other kinds of pitfalls because of optimizations in .NET runtimes:

• Loop unrolling

If you use a constant as the upper loop limit, the loop can be 

unrolled by different factors depending on the dividers of this 

constant.

• Dead code elimination (DCE)

If you don’t use the results of your code, the code can be 

completely removed.
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• Constant folding

If you use constants in expressions, these expressions can be 

precalculated at the compilation stage.

• Bound check elimination (BCE)

If you manipulate array elements, the runtime can check the array 

bounds or skip these checks.

• Inlining

Sometimes, the runtime can inline method calls, which can be 

pretty important for microbenchmarks. We will discuss inlining 

and similar optimizations in Chapter 7.

• Conditional jitting

The final assembly code for a method can depend on the previous 

methods that were executed. So, it’s a good idea to isolate 

benchmarks and run each benchmark in its own process.

• Interface method dispatching

If you call an interface method, the performance of this call 

depends on loaded interface implementation. That’s another 

reason why the benchmark isolation is a good idea.

I hope that now you understand why benchmarking can be difficult. Benchmarking 

(and especially microbenchmarking) requires in-depth knowledge of the target .NET 

runtime, modern operation systems, and modern hardware.

Of course, you shouldn’t create own benchmarking infrastructure and solve all 

these problems each time you want to measure something. In Chapter 6, we will discuss 

BenchmarkDotNet, a library that can protect you from most pitfalls and help you to 

conduct a qualitative performance investigation.

However, BenchmarkDotNet is not a silver bullet: you still have to know how to 

design a benchmark correctly and what kind of runtime optimizations can spoil your 

results. It’s not easy because you don’t know in advance which optimizations will be 

applied to your program. It depends on your runtime (e.g., .NET Framework, .NET 

Core, or Mono), a specific version of C# compiler, a particular version of JIT compiler 

(e.g., LegacyJIT-x86 or RyuJIT-x64), and so on. In the next chapter, we will talk about 

different environments and how application performance depends on it.

Chapter 2  Common BenChmarking pitfalls



91
© Andrey Akinshin 2019 
A. Akinshin, Pro .NET Benchmarking, https://doi.org/10.1007/978-1-4842-4941-3_3

CHAPTER 3

How Environment Affects 
Performance

The environment is everything that isn’t me.

— Albert Einstein

In Chapter 1, we discussed performance spaces. The main components of a 

performance space are source code, environment, and input data. The source code is 

a mathematical abstraction; it doesn’t have the “performance” characteristic. If you 

want to talk about how fast your program is, you should put it in a real environment. 

In each environment, the source code will have a long journey before we can discuss 

performance (see Figure 3-1).

Figure 3-1. Source code journey
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In this chapter, we will discuss different factors affecting performance during this 

journey:

• Runtime

Runtime is probably one of the most important parts of your 

environment. Today, .NET is more than just Windows-only .NET 

Framework; there are three different popular runtimes, and you 

should understand the differences between them. For example, 

you can get utterly different performance pictures if you run the 

same program on .NET Core and Mono. Another important thing is 

the version of your runtime. Even a small minor update can change 

the performance. We will discuss a brief history of each runtime, 

check out the most important versions, and learn some interesting 

“features.” In the scope of this book, we will discuss the three most 

popular runtimes: .NET Framework, .NET Core, and Mono.

• Compilation

It’s a long way from the source code to executable binary files.  

It usually includes several stages:

 – IL generation

The first typical stage is the transformation of our source code 

(in C#, VB.NET, or another language) to IL. We are going to 

discuss the main components of this transformation: build 

systems (like MSBuild or XBuild), compilers (like legacy 

Microsoft C# compiler, Mono Compiler, or Roslyn), and their 

versions.

 – JIT compilation

After the IL generation, we have a set of binary assemblies, but 

it’s not the final point of our trip. Next, we should transform it 

into the native code. When I say “we,” I mean the JIT compiler. 

It produces the native code from your IL on the fly (during the 

execution). As usual, we have different JIT compilers (we will 

talk about LegacyJIT, RyuJIT, and MonoJIT). The target platform 

is essential, so we will also discuss x86 and x64 compilers.
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 – Ahead-Of-Time (AOT) compilation

JIT compilation is not the only way to get the native code: 

we can compile IL AOT (before the execution). The AOT 

compilation is also a very important scenario that changes 

the performance space. And of course, we have different AOT 

compilers (e.g., NGen [Native Image Generator], Mono AOT, 

.NET Native, and CoreRT). A good benchmark report usually 

includes what kind of compilation you use (JIT or AOT), 

the compiler type, its version, the target platform, and its 

parameters.

• External environment

The last section is about the environment of the runtime: there 

are many factors beyond the .NET ecosystem that also affect 

performance.

 – Operating systems

The classic .NET Framework is Windows only, but we live in 

times of cross-platform .NET applications. You can run your 

C# programs on Windows, Linux, and macOS (and also on Sun 

Solaris, FreeBSD, or tvOS if you want). Each operating system 

has a lot of unique performance “features.” We will recall a 

brief OS history, discuss each OS and its versions, and compare 

the performance of the same programs on different operating 

systems.

 – Hardware

There are too many hardware configurations. We will talk about 

CPU, RAM, disks, networks, and other hardware components. 

The most important thing is that it’s too hard to compare 

performance on different machines. There are a lot of low-

level details that can affect the program. In this section, we will 

just briefly look at a variety of hardware and discuss the most 

important configuration parameters.
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 – The physical world

The hardware always exists in real physical conditions. The 

performance can be affected by many physical factors like 

temperature, vibrations, humidity, and others.

This chapter has three purposes:

 1. Introduce important codenames, titles, captions, and so on.

In this chapter, you will learn some new terms (e.g., Rotor, CoreFx, 

mcs, SGen, Roslyn, RyuJIT, Darwin, or Sandy Bridge), so if you skip 

this chapter and jump to a more interesting one, you can always 

come back to this one for a description of different environments, 

for short explanations of “what’s what,” and to understand why we 

should care about it.

 2. Provide ways to get information about the current 
environment.

If you write your own tools to analyze performance, it’s pretty 

important to add logic for collecting information about the 

current environment. It’s not obvious how to get the exact version 

of installed .NET Framework or .NET Core or determine the JIT 

engine (e.g., LegacyJIT or RyuJIT). In this chapter, you will learn 

how to collect detailed information about the environment of a 

.NET program.

 3. Explain why it’s so important to care about your environment.

We will learn how minor differences between environments can 

significantly affect your results.

Each section in this chapter has the same structure. We start with an overview: 

history, versions, technology codenames, and so on. After that, you can read four 

different stories about how each technology can affect your benchmarks. These case 

studies are not random stories; each of them is presented for a reason. Each case 

contains a “Conclusions” part at the end that highlights things that you should learn 

from the corresponding story. Also, it contains an “Exercise” part. If you want, you 

can skip the exercises because some of them require special setup (e.g., hardware or 

operating systems) and a huge amount of time. However, if you decide to solve these 
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problems, you will get skills that can be useful in real performance investigations. Some 

stories are based on my own developer experience, some of them are based on other 

people’s research, and others are just pretty interesting code snippets.

Of course, in the scope of this book, we will not discuss all possible environments. We 

will not cover in detail Windows Servers, ARM processors, Mono LLVM (low-level virtual 

machine), GPU, and so on. We will briefly talk about many versions of each environment 

component, but we will not learn each version separately. It’s just not necessary. You will 

never learn all versions of all technologies: there are too many of them, and we get a lot 

of new stuff every day. But it’s important to have a general perspective (what kinds of 

environments do we have) and understand which components of the environment can 

affect performance (and how they can do it). In this case, you will be able to check all the 

important things during benchmarking.

Let’s start with the most important part: .NET runtimes. Of course, you can work 

with only one runtime and know it very well, but you can’t discuss “.NET performance” 

in general until you understand what’s going on with other runtimes.

 Runtime
Today, there are three popular .NET runtimes: .NET Framework, .NET Core, and Mono. 

Technically, all of them are more than just runtimes because they also include class 

libraries. However, people often call them runtimes because there is no better term 

(“framework” will be more correct, but it can be easily confused with .NET Framework). 

Thus, when you see the “runtime” term, it usually means “runtime and corresponding 

class libraries.”

To be honest, .NET Framework, .NET Core, and Mono are not the only available 

.NET runtimes. There were many attempts to create other alternative .NET runtimes 

like Silverlight, Moonlight, .NET Micro Framework, and others. There are also many 

approaches to run C# code in a browser: Blazor (an experimental .NET web framework 

using C#/Razor and HTML that runs in the browser via WebAssembly), Script#, Bridge.

NET, and so on. All of them are valid environments for .NET applications, but they are not 

as popular as .NET Framework, .NET Core, and Mono, so we are not going to discuss them 

in this book. You can find a nice overview of different .NET runtimes in [Warren 2018a].

All three runtimes that we are going to discuss are mature and widely adopted. 

In this section, we will briefly talk about each of them: we will discuss different topics 

like the history, available versions (and how to get these versions), and performance 
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changes. In the end, you will find several case studies that demonstrate why it’s so 

important to know the exact version of your runtime.

 .NET Framework
.NET Framework is the first implementation of .NET created by Microsoft. To avoid 

misunderstanding between .NET Framework as a runtime and the ecosystem behind 

.NET, let’s agree that .NET Framework as a runtime consists of two main parts: CLR 

(or Desktop CLR) and Framework Class Library (FCL). To clearly distinguish .NET 

Framework from other .NET implementations, people often use other titles like Full 

.NET Framework (or .NET Full Framework), Microsoft .NET Framework, or Desktop .NET 

Framework. In this book, when we say “.NET Framework,” we mean the classic Windows-

only .NET Framework by Microsoft.

Let’s start from the beginning and remember the history of .NET Framework. It was 

created by Microsoft; the first version was released in 2002 (but the development was 

started in the late 1990s). In Table 3-1, you can see the list of .NET Framework versions.1

Table 3-1. .NET Framework Release History

Framework version CLR version Release date Support ended

1.0 1.0 2002-02-13 2009-07-14

1.1 1.1 2003-04-24 2015-06-14

2.0 2.0 2004-11-07 2011-07-12

3.0 2.0 2006-11-06 2011-07-12

3.5 2.0 2007-11-19 2028-10-10

4.0 4.0 2010-04-12 2016-01-12

4.5 4.0 2012-08-15 2016-01-12

1 .NET Framework 4.8 was announced in [Lander 2018b], but it wasn’t released at the moment 
of book writing. You can find the actual list of all versions here: https://docs.microsoft.com/
en-us/dotnet/framework/migration-guide/versions-and-dependencies

(continued)
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Some important facts that are good to know:

• Versions 1.0-3.0 of .NET Framework are obsolete and not supported 

by Microsoft anymore.

• Some legacy projects still use .NET Framework 3.5 because it’s tough 

to upgrade the runtime. There are many significant changes between 

CLR 2 (used by .NET Framework 3.5) and CLR 4 (used by .NET 

Framework 4.0+).

• All .NET Framework 4.x versions are in-place updates for old 4.x 

versions (it includes CLR and FCL), and they use the same installation 

folder: C:\Windows\.NET Framework\V4.0.30319. Thus, if you install 

.NET Framework 4.5 and 4.7, all applications will use 4.7. You can’t use 

two different 4.x versions of the .NET Framework on the machine at 

the same time. The CLR version for all 4.x versions is the same (CLR 4), 

but this doesn’t mean that the same CLR implementation is used for 

execution: it gets updates with each .NET Framework update.

An example

You work on a Windows machine with .NET Framework 4.6.1 

installed and develop a .NET Framework 4.0 application. If you 

execute it on this machine, 4.6.1 will be used. If you execute it on 

Framework version CLR version Release date Support ended

4.5.1 4.0 2013-10-17 2016-01-12

4.5.2 4.0 2014-05-05 not announced

4.6 4.0 2015-07-20 not announced

4.6.1 4.0 2015-11-30 not announced

4.6.2 4.0 2016-08-02 not announced

4.7 4.0 2017-04-05 not announced

4.7.1 4.0 2017-10-17 not announced

4.7.2 4.0 2018-04-30 not announced

4.8 4.0 2019-04-18 not announced

Table 3-1. (continued)
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the computer of a friend who installed .NET Framework 4.7, 4.7 

will be used. In this case, “4.0” in the properties of your project 

means that you can’t use API from .NET Framework 4.5+ and that 

you can run this application on a machine with installed .NET 

Framework 4.0+. But it doesn’t require a specific version of .NET 

Framework to be used for execution.

There are many essential changes between versions of the .NET Framework; you can 

get different performance metric values for the same code on different .NET Framework 

versions. Thus, it’s important to know how to determine versions of the installed 

.NET Framework. You can do it via special keys in Windows Registry. For example, for 

.NET Framework 4.5+, you should look at the value of HKLM\SOFTWARE\Microsoft\

NET Framework Setup\NDP\v4\Full\Release. This is an internal number that can be 

mapped to the .NET Framework versions. The same version of the .NET Framework 

can have different internals numbers (depends on the Windows version and installed 

updates). You can find the minimum values of the Release value in Table 3-2.2

Table 3-2. .NET Framework Registry Release Values

Framework version Minimum release value

4.5 378389

4.5.1 378675

4.5.2 379893

4.6 393295

4.6.1 394254

4.6.2 394802

4.7 460798

4.7.1 461308

4.7.2 461808

2 The full actual manual can be found here: https://docs.microsoft.com/en-us/dotnet/
framework/migration-guide/how-to-determine-which-versions-are-installed
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It’s important to say a few words about the .NET Framework source code. The old 

versions of .NET Framework are known as closed source. However, we have access to the 

source code of some of these versions. Shared Source Common Language Infrastructure 

(SSCLI, codename “Rotor”) is Microsoft’s shared source implementation of the main 

parts of .NET Framework. The first version was released in 2002, and the second version 

(and the last one) of SSCLI was released in 20063; it contains the essential parts of .NET 

Framework 2.0. You can find a good overview of the source code in [SSCLI Internals]. 

Unfortunately, there are no updates of SSCLI for .NET Framework 3.0, 3.5, 4.0, or 4.5. 

Later, Microsoft opened the source code of .NET Framework 4.5.1+ in a read-only mode. 

You can find it on the Microsoft Reference Source website.4

Today, .NET Framework is still a Windows-only runtime, which is a severe limitation 

for many developers. Fortunately, Microsoft has decided to create a free open source, 

cross-platform version: .NET Core.

 .NET Core
.NET Core is an alternative implementation of .NET Framework. Originally, .NET Core 

was started as a fork of a .NET Framework subset, but it has become a mature full-

featured independent platform.

.NET Core has been a free and open source project from the beginning (it uses 

the MIT License). The .NET Core Runtime is called CoreCLR5 (instead of CLR in .NET 

Framework); it contains GC, JIT compiler, System.Private.CoreLib (a replacement for 

mscorlib), and some basic runtime-specific classes. The set of .NET Core foundation 

libraries is called CoreFX6 (instead of FCL in .NET Framework); it contains all basic 

classes like collections, I/O, globalization, and so on. Another important project in the 

3 Unfortunately, official Microsoft links to the SSCLI download page are outdated and don’t work 
anymore. Fortunately, the Internet remembers everything: you can find the source code here: 
https://github.com/AndreyAkinshin/shared-source-cli-2.0

4 You can browse the source of the latest version of .NET Framework here: https://
referencesource.microsoft.com. Old versions are available as .zip files in the Download 
section. The source code is also available on GitHub: https://github.com/Microsoft/
referencesource.

5 https://github.com/dotnet/coreclr
6 https://github.com/dotnet/corefx
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.NET Core ecosystem is .NET Core SDK,7 which includes .NET Core, project templates, 

.NET Core command-line interface (CLI),8 MSBuild, NuGet tools, and other components 

that help to develop .NET Core applications.

.NET Core is a cross-platform runtime (.NET Framework works only on Windows). 

Thus, there are a lot of .NET Framework components that can’t be included in .NET Core 

because of the deep integration with Windows. However, some of them can be executed 

with .NET Core on Windows with the help of the Windows Compatibility Pack (see 

[Landwerth 2017b]). Since .NET Core 3.0, it has even been possible to develop Windows-

only WPF and WinForms applications on .NET Core (see [Lander 2018a]).

Internally, the core part of the code base is the same for both .NET Core and .NET 

Framework. However, there are a lot of differences. Platforms have different release 

cycles: it can be hard to distinguish between versions of .NET Framework that contain 

particular changes from .NET Core. .NET Core includes a lot of cross-platform logic that 

is required for Linux and macOS. Meanwhile, .NET Framework has many backward 

compatibility hacks for Windows. There are a lot of commonalities between these 

runtimes, but we will talk about them independently.

Let’s recall the brief history of .NET Core. .NET Core 1.0 was released on 27 June 

2016. Since then, many versions have been released; you can see some of them in 

Table 3-3.9

Table 3-3. .NET Core Release History

Runtime SDK version Release date

1.0.0 1.0.0-preview2-003121 2016-06-27

1.0.1 1.0.0-preview2-003131 2016-09-13

1.0.2 1.0.0-preview2-003148 2016-10-17

1.1.0 1.0.0-preview2.1-003177 2016-11-16

7 https://github.com/dotnet/core-sdk
8 https://github.com/dotnet/cli
9 You can find full actual release history here: https://github.com/dotnet/core/blob/master/
release-notes/releases.csv

(continued)
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(continued)

Runtime SDK version Release date

1.0.3 1.0.0-preview2-003156 2016-12-13

1.1.1 1.0.1 2017-03-07

1.0.4 1.0.1 2017-03-07

1.1.2 1.0.4 2017-05-09

1.0.5 1.0.4 2017-05-09

2.0.0 2.0.0 2017-08-14

1.0.7 1.1.4 2017-09-21

1.1.4 1.1.4 2017-09-21

1.0.8 1.1.5 2017-11-14

1.1.5 1.1.5 2017-11-14

2.0.3 2.0.3 2017-11-14

2.0.3 2.1.2 2017-12-04

2.0.5 2.1.4 2017-12-04

1.0.10 1.1.8 2018-03-13

1.1.7 1.1.8 2018-03-13

2.0.6 2.1.101 2018-03-13

1.0.11 1.1.9 2018-04-17

1.1.8 1.1.9 2018-04-17

2.0.7 2.1.105 2018-04-17

2.0.7 2.1.200 2018-05-08

2.0.7 2.1.201 2018-05-21

2.1.0 2.1.300 2018-05-30

2.1.1 2.1.301 2018-06-19

1.0.12 1.1.10 2018-07-10

1.1.9 1.1.10 2018-07-10

2.0.9 2.1.202 2018-07-10

Table 3-3. (continued)
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There are some important facts that we should learn from this table:

• The first stable version of the runtime was released with a preview 

version of the SDK. If you try to play with early versions of SDK, you 

will have to work with .xproj+project.json files instead of the usual 

.csproj files. Many developers were unhappy about these changes, 

so it was decided to drop project.json-based projects and resurrect 

the *.csproj files to keep the backward compatibility with the old 

versions of MSBuild. However, if you want to check something on the 

old versions of the runtime, you don’t need the old versions of SDK: 

newer SDK builds support old versions of the runtime.

• The same version of the runtime can be used with different SDK 

versions.

With .NET Core SDK and MSBuild 15+, Microsoft introduced an “improved” version 

of the .csproj format. It looks like this:

<Project Sdk="Microsoft.NET.Sdk">

  <PropertyGroup>

    <TargetFrameworks>net46;netcoreapp2.1</TargetFrameworks>

  </PropertyGroup>

</Project>

Runtime SDK version Release date

2.1.2 2.1.302 2018-07-10

2.1.2 2.1.400 2018-08-14

2.1.3 2.1.401 2018-08-14

2.1.4 2.1.402 2018-09-11

2.1.5 2.1.403 2018-10-02

1.0.13 1.1.11 2018-10-09

1.1.10 1.1.11 2018-10-09

2.1.6 2.1.500 2018-11-13

2.2.0 2.2.100 2018-12-04

Table 3-3. (continued)
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We will call it SDK-style projects. If a project uses the “original” format (with a huge 

number of lines in a .csproj file), we will call it just classic projects. SDK-style projects 

were introduced with .NET Core SDK, but that doesn’t mean that you can use it only 

with .NET Core. In the preceding example, a project targets .NET Framework 4.6 (net46) 

and .NET Core 2.1 (netcoreapp2.1). If you develop a library that should be compatible 

with any target framework,10 you can list all of them in each project, but it’s not very 

convenient. This problem was solved with the help of .NET Standard. Here is the official 

definition of .NET Standard from Microsoft documentation11:

The .NET Standard is a formal specification of .NET APIs that 

are intended to be available on all .NET implementations. The 

motivation behind the .NET Standard is establishing greater 

uniformity in the .NET ecosystem. ECMA 335 continues to 

establish uniformity for .NET implementation behavior, but there 

is no similar spec for the .NET Base Class Libraries (BCL) for .NET 

library implementations.

In Table 3-4, you can see mapping between .NET Standard and different .NET 

platforms.12

10 There are a lot of them. You can find the full list here: https://docs.microsoft.com/en-us/
dotnet/standard/frameworks

11 https://docs.microsoft.com/en-us/dotnet/standard/net-standard
12 It’s not a full table. You can find the actual full version of this table here: https://docs.
microsoft.com/en-us/dotnet/standard/net-standard. Moreover, actual mapping also 
depends on the version of .NET Core SDK. For example, .NET Standard 1.5 corresponds to .NET 
Framework 4.6.2 if you use .NET Core SDK 1.x and .NET Framework 4.6.1 if you use .NET Core 
SDK 2.x. If you are not sure that you correctly understand the concept of .NET Standard, it’s 
recommended to watch [Landwerth 2017a].
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Let’s say that we have a library targeting .NET Standard 2.0. This means that we can 

use it with .NET Core 2.0, .NET Framework 4.6.1, or Mono 5.4. Here is the main thing that 

you should understand in the context of benchmarking: .NET Standard is not a runtime; 

it’s a set of APIs. You can’t run an application or unit tests13 on .NET Standard. Thus, we 

can’t discuss the performance of .NET Standard 2.0, but we can discuss the performance 

of .NET Core 2.0, .NET Framework 4.6.1, and Mono 5.4. And it doesn’t make any sense to 

say something like “.NET Standard 1.3 works faster than .NET Standard 1.2.”

It’s very important to know the runtime version when we discuss performance. Let’s 

learn how to detect the current version of .NET Core. Unfortunately, there is no public 

API which allows getting the current version of .NET Core at runtime. However, if we 

really want to know this version, we can use the following hack. The typical location 

of the runtime libraries in .NET Core SDK looks like this: dotnet/shared/Microsoft.

NETCore.App/2.1.0/. As we can see, the full path includes the runtime version. Thus, 

we can take the location of an assembly that contains one of the base types (e.g., 

GCSettings), and find a part of the path with the exact version:

public static string GetNetCoreVersion()

{

  var assembly = typeof(System.Runtime.GCSettings).GetTypeInfo().Assembly;

  var assemblyPath = assembly.CodeBase.Split(new[] { '/', '\\' },

                     StringSplitOptions.RemoveEmptyEntries);

  int netCoreAppIndex = Array.IndexOf(assemblyPath, "Microsoft.NETCore.App");

Table 3-4. .NET Standard Compatibility Matrix

.net standard 1.0 1.1 1.2 1.3 1.4 1.5 1.6 2.0

.net Core 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0

.net framework 4.5 4.5 4.5.1 4.6 4.6.1 4.6.1 4.6.1 4.6.1

mono 4.6 4.6 4.6 4.6 4.6 4.6 4.6 5.4

Xamarin.ios 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.14

Xamarin.mac 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.8

Xamarin.android 7.0 7.0 7.0 7.0 7.0 7.0 7.0 8.0

13 https://xunit.github.io/docs/why-no-netstandard
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  if (netCoreAppIndex > 0 && netCoreAppIndex < assemblyPath.Length - 2)

    return assemblyPath[netCoreAppIndex + 1];

  return null;

}

It works for regular .NET Core installation, but it doesn’t work for special 

environments like Docker containers.14 In the case of Docker, you can get the runtime 

version from environment variables like DOTNET_VERSION and ASPNETCORE_VERSION (see 

[Hanselman 2018] for details).

For diagnostics, it can be also good to know the exact internal version of CoreCLR 

and CoreFX:

var coreclrAssemblyInfo = FileVersionInfo.GetVersionInfo(

  typeof(object).GetTypeInfo().Assembly.Location).FileVersion;

var corefxAssemblyInfo = FileVersionInfo.GetVersionInfo(

  typeof(Regex).GetTypeInfo().Assembly.Location).FileVersion;

Here is an example of possible values:

.NET Core 3.0.0-preview-27122-01

CoreCLR 4.6.27121.03

CoreFX 4.7.18.57103

As you can see, they do not match each other. The internal versions of CoreCLR and 

CoreFX are especially important when you are working on changes in .NET Core itself.

Each version of .NET Core has tons of performance improvements (see [Toub 2017], 

[Toub 2018]). If you care about the speed of your application, it’s recommended to use 

the latest available version. However, the set of old .NET Core versions is an excellent 

guinea pig for benchmarking exercises.

The last thing that you should know is .NET Core Configuration Knobs.15 Knobs are 

configuration parameters that help you to tune the runtime. You can enable a knob 

with the help of COMPlus_* environment variables. For example, if you want to enable 

14 https://github.com/dotnet/BenchmarkDotNet/issues/788
15 You can find the full list of all knobs in .NET Core 2.2.0 on GitHub: https://github.com/
dotnet/coreclr/blob/v2.2.0/Documentation/project-docs/clr-configuration-knobs.md
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JitAggressiveInlining (we will discuss JIT later in this chapter), you should set 

COMPlus_JitAggressiveInlining=1.

.NET Core was born in 2016, but it wasn’t the first cross-platform .NET 

implementation. Developers were able to use .NET on Linux and macOS for years with 

the help of another .NET runtime: Mono.

 Mono
Microsoft announced .NET Framework in 2000. It looked like a great runtime, but it was 

Windows only. Miguel de Icaza from Ximian decided to create his own open source 

version of .NET that works on Linux. It was a pretty successful attempt. After three years 

of development, Mono 1.0 was born. The first versions had many problems, bugs, and 

performance issues. However, the runtime evolved rapidly, and Mono became a good 

Linux/macOS alternative for .NET developers. Ximian was acquired by Novell in 2003. 

In 2011, Miguel de Icaza and Nat Friedman founded Xamarin, the new company that 

continued to develop Mono. In 2016, Xamarin was acquired by Microsoft. Since then, 

Mono has been a part of .NET Foundation.16 While .NET Core is a good option for cross-

platform applications in terms of reliability and performance, Mono is still widely used 

(mainly for mobile applications17 and Unity applications18).

After the first Mono release in 2004, dozens of major and minor Mono versions 

were released. Each version has a huge list of changes; you can find all the details in 

the official release notes.19 I want to highlight only some specific performance-related 

changes:

• Mono 1.0 (2004-01-30): The first official Mono release.

• Mono 1.2 (2006-11-02): Many common optimizations (inlining, DCE, 

constant folding, and so on), AOT compilation, Boehm GC.

• Mono 2.0 (2008-10-01): Improved performance of operations on 

decimals and locking, reduced memory usage for generics.

16 https://dotnetfoundation.org/
17 https://visualstudio.microsoft.com/xamarin/
18 https://unity3d.com/
19 www.mono-project.com/docs/about-mono/releases/
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• Mono 2.2 (2009-01-09): New code generation engine with advanced 

optimizations, improved AOT, improved regex interpreter.

• Mono 2.4 (2009-03-13): SIMD (Single Instruction Multiple Data) 

support, optimized XPath and resource loading.

• Mono 2.6 (2009-12-14): LLVM support.

• Mono 2.8 (2010-10-05): New GC engine support: SGen (the 

difference between Boehm and SGen is shown in Figure 3-220; the 

lower straight line corresponds to SGen, the upper curved line 

corresponds to Boehm).

• Mono 2.10 (2011-02-15): Significant SGen improvements like 

concurrent mark and sweeping.

• Mono 3.0 (2012-10-19) A new task management system in SGen, 

low-level intrinstics for ThreadLocal<T>, List<T> optimizations.

• Mono 3.2 (2013-07-24): LLVM 3.2 with better optimizations, SGen 

become the default GC, important AOT and LINQ optimizations, 

faster large object cloning and boxing, optimized Marhshal.Read and 

Marshal.Write.

• Mono 3.4 (2014-03-31): Miscellaneous minor performance 

improvements.

• Mono 3.6 (2014-08-12): New GC modes, improved lock performance, 

optimized EqualityComparer.

• Mono 3.8 (2014-09-04) JIT improvements like better handling long 

remainders by the power of two, faster code for delegates that are 

only invoked once

• Mono 3.10 (2014-10-04): Remove unnecessary locking from core 

metadata parsing functions, avoid cache thrashing of locals array 

when looping over enumerator.

20 The picture was taken from the official release notes: www.mono-project.com/docs/
about-mono/releases/2.8.0/
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• Mono 3.12 (2015-01-13): Major performance and memory consumption 

improvements on SGen, pushless code generations for x86.

• Mono 4.0 (2015-04-29): Adoption of Microsoft’s open source code 

(significant perf changes in many BCL classes like System.Decimal), 

floating-point optimizations, SGen tuning, many improvements in 

different places like Interlocked, Thread.MemoryBarrier, Enum.

HasFlag, and so on.

• Mono 4.2 (2015-08-25): More adoption of Microsoft’s open source 

code (and more perf changes in BCL), updated delegate internals.

• Mono 4.4 (2016-06-08) Unmanaged thin locks (10x perf 

improvements for locking in some cases), cooperative GC Mode.

• Mono 4.6 (2016-09-13): Improved GC on Android, miscellaneous 

performance improvements.

• Mono 4.8 (2017-02-22): Initial concurrent SGen support, further MS 

Reference Source Adoption.

• Mono 5.0 (2017-05-10): Shipping Roslyn C# compiler (performance 

surprise for everyone who used old mcs), SIMD acceleration support 

enabling concurrent SGen GC by default, CoreFx + Reference Source 

Adoption, lazy array interfaces, reduced runtime memory usage, 

SIMD register scanning.

• Mono 5.2 (2017-08-14): Experimental default interface methods 

support, optimized array stores, class initialization improvements, 

reduced minor collection pause times.

• Mono 5.4 (2017-10-05): Concurrent method compilation, array 

element store optimization, load scalability improvements, 

ValueType write barrier optimization, Intrisificy Marshal.

PtrToStruct for blitable types.

• Mono 5.8 (2018-02-01): Modes for the SGen GC (balanced, 

throughput, pause).

• Mono 5.10 (2018-02-26): ARM memory barriers, AOT size reduction 

via code deduplication.
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• Mono 5.12 (2018-05-08): jemalloc support.

• Mono 5.14 (2018-08-07): better generic sharing, memory 

optimization for handles, LLVM inlining improvements, GC handling 

of very large objects.

• Mono 5.16 (2018-1008): hybrid GC suspend, improved 32-bit 

floating-point math, intrinsics for Span<T> and ReadOnlySpan<T>.

Figure 3-2. Difference between Boehm and SGen in Mono 2.8

As you can see from the changelog, each major release has important performance 

improvements. When you benchmark your code, it’s very important to specify which 

version of Mono you are using. The changes affect the main Mono component: the JIT 

compiler, the implementation of base classes, and the GC. Speaking of GC, the runtime 
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has two of them: Boehm and SGen. Boehm is a legacy one, SGen has been the default GC 

since Mono 3.2. It provides better performance and has many nice features. SGen has 

many possibilities for tuning, which will be covered in Chapter 8.

Mono is a cross-platform runtime. In this book, we usually discuss Windows, Linux, 

and macOS, but you can also use Mono 5.12+ on iOS, tvOS, watchOS, Sun Solaris, 

different flavors of BSD, Sony PlayStation 4, XboxOne, and so on.21

From the beginning, Mono was designed as an alternative runtime for existing 

.NET Framework programs. It doesn’t have its own target framework. If you have an 

application that targets net47 and netcoreapp2.0, the net47 profile can be executed on 

both .NET Framework and Mono; netcoreapp2.0 can be executed only on .NET Core.  

If you want to check if the current runtime is Mono, you should check the existence of 

the Mono.Runtime type22:

bool isMono = Type.GetType("Mono.Runtime") != null;

To get the installed version of Mono, you should run mono --version in the 

command line. This command will also print additional useful information about your 

Mono build like the architecture or default GC. Here is an example of output:

$ mono --version

Mono JIT compiler version 5.16.0.220

(2018-06/bb3ae37d71a Fri Nov 16 17:12:11 EST 2018)

Copyright (C) 2002-2014 Novell, Inc, Xamarin Inc and Contributors.

www.mono-project.com

  TLS:           normal

  SIGSEGV:       altstack

  Notification:  kqueue

  Architecture:  amd64

  Disabled:      none

  Misc:          softdebug

  Interpreter:   yes

  LLVM:          yes(3.6.0svn-mono-release_60/0b3cb8ac12c)

  GC:            sgen (concurrent by default)

21 You can find the full list of supported platforms and architectures in the official documentation: 
www.mono-project.com/docs/about-mono/supported-platforms/

22 www.mono-project.com/docs/faq/technical/#how-can-i-detect-if-am-running-in-mono
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There are two builds of Mono for Windows: x86 and x64 (we will discuss different 

processor architectures later in this chapter). On Linux and macOS, only the x64 version 

of Mono is available.

Now it’s time for a few exciting performance stories about different versions of 

different .NET runtimes.

 Case Study 1: StringBuilder and CLR Versions
In .NET, string is an immutable type. It means that each operation like “concatenation” 

or “replace” creates a new instance of string. If you are working with huge strings, such 

operations allocate a lot of memory and take a significant amount of time. Fortunately, 

we have the StringBuilder23 class, which was introduced in .NET Framework 1.1. It 

represents a mutable string and allows performing effective string operations without 

unnecessary memory allocations.

It looks very simple, but the internal implementation of StringBuilder is not 

so simple. Moreover, different versions of .NET Framework use different underlying 

algorithms.

Let’s say that we want to implement a logging method Log(string s) that should 

collect all strings and join them into one huge string. Here is a naive implementation 

based on usual strings:

private string buffer = "";

public void Log(string s)

{

  buffer += s;

}

This is not an effective implementation because each call of Log will create a new 

instance of string, copy the content of buffer to this instance, copy the content of s to 

this instance, and save the instance back to the buffer field. As a result, we have many 

23 https://docs.microsoft.com/en-us/dotnet/api/system.text.stringbuilder
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allocations, and we should spend a lot of time copying the same data between strings. 

Let’s rewrite it with the help of StringBuilder:

private StringBuilder buffer = new StringBuilder();

public void Log(string s)

{

  buffer.Append(s);

}

How effective is this code? It depends.

In .NET Framework 1.1-3.5 (CLR2), the implementation was pretty simple.24 

StringBuilder has an internal string field that represents the current value. In this 

context, we consider it as a mutable string because we can modify it via unsafe code. 

The initial capacity (length of this internal field) of StringBuilder by default is 16. When 

we call the Append method, StringBuilder checks if the capacity is big enough to keep 

additional characters. If everything is OK, it just adds new characters. Otherwise, it 

creates a new string with doubled capacity,25 copies the old content to the new instance, 

and then appends target characters.

In .NET Framework 4.x (CLR4), Microsoft made a lot of significant changes.26 The 

most important change is about the internal representation: it’s not a single string 

instance anymore. Now it’s a linked list of chunks that contain char arrays for parts of the 

represented string. It allows optimizing many operations. For example, Append doesn’t 

allocate a huge string when we don’t have enough space: we can create new chunks 

and keep the chunks that contain the beginning of the string! The new implementation 

of the Append method is much better in CLR4. However, we don’t have performance 

improvements for all methods. For example, ToString() works slower because we have 

to construct the final string from chunks (in CLR2, we had a ready string in the internal 

field). The indexer also works slower because we have to find the target chunk in the 

24 You can find the full source code for .NET Framework 2.0 here: https://github.com/
AndreyAkinshin/shared-source-cli-2.0/blob/master/clr/src/bcl/system/text/
stringbuilder.cs

25 https://github.com/AndreyAkinshin/shared-source-cli-2.0/blob/master/clr/src/bcl/
system/text/stringbuilder.cs#L604

26 You can find the full source code for the latest version of .NET Framework here:  
https://referencesource.microsoft.com/#mscorlib/system/text/stringbuilder.cs
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linked list (in CLR2, we could instantly get the target character because we had only one 

instance of a string). However, it’s probably a good trade-off because a making a vast 

number of the Append calls is the most popular use case of StringBuilder. You can find 

more information about differences in StringBuilder implementations between CLR2 

and CLR4 in [Guev 2017].

This is not the only change in StringBuilder that affects its performance; there 

are many other exciting stories. A few examples (we are not going to discuss all 

StringBuilder-related issues in this book, so it’s recommended to read these GitHub 

discussions yourself):

• corefx#463227: “StringBuilder creates unnecessary strings with 

Append methods”

• corefx#2992128: “ValueStringBuilder is slower at appending short 

strings than StringBuilder”

• corefx#2580429: “Iterating over a string builder by index becomes 

~exponentially slow for large builders”

• coreclr#1753030: “Adding GetChunks which allow efficient scanning 

of a StringBuilder”

• msbuild#159331: “Performance issue in ReusableStringBuilder.cs with 

large string and many appends”

Conclusions:

• .NET Framework version matters.

Most modern .NET Framework applications are based on .NET 

Framework 4.x+ (CLR4). However, there are still many huge legacy 

projects that use .NET Framework 3.5 (CLR2). There are so many 

differences between 3.5 and 4.0. If you work with a legacy .NET 

27 https://github.com/dotnet/corefx/issues/4632
28 https://github.com/dotnet/corefx/issues/29921
29 https://github.com/dotnet/corefx/issues/25804
30 https://github.com/dotnet/coreclr/pull/17530
31 https://github.com/Microsoft/msbuild/issues/1593
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Framework 3.5 project, you can’t use measurements on .NET 

Framework 4.0 to make any conclusions about the performance of 

your application.

• Major runtime updates can contain significant changes in basic 
algorithms.

Performance updates are not only about some advanced API or 

corner cases. Sometimes, you can get significant changes even for 

basic classes like StringBuilder.

• Some updates change trade-offs.

When you read about performance changes in a changelog, it 

doesn’t mean that you get better performance in the new runtime 

version for all possible use cases. Some updates can just change 

trade-offs: it can improve the performance of the most popular use 

cases and slow down some less popular scenarios. If you have some 

tricky logic, you can get a performance regression after an update.

AN EXERCISE

write two programs that use StringBuilder.Insert and StringBuilder.Remove. 

one program should be much faster on .net framework 3.5 than on .net framework 4.0+. 

another program should be much faster on .net framework 4.0+ than on .net framework 

3.5. it’s one of my favorite kinds of exercises because of the many developers who like to 

confidently say something like “.net framework 4.0+ is always faster than .net framework 

3.5.” this exercise should help you to understand that in-depth knowledge of runtime internals 

often allows writing a benchmark that demonstrates that one runtime is “faster” than another 

(no matter which runtime should be “faster”).

 Case Study 2: Dictionary and Randomized String Hashing
In old versions of .NET Framework, the String class had a well-known hash function 

that is the same between different application domains. It allowed performing a hash 

table attack on classes like Dictionary and HashSet: we can find a vast number of 
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strings with equal hash codes in advance and put them in a dictionary. As a result, the 

algorithmic complexity of dictionary lookup will be O(N) instead of O(1).

In .NET Framework 4.5, it was decided to introduce randomized string hashing 

to prevent such attacks. Because of the backward compatibility,32 a new hashing 

algorithm can’t be enabled by default; it can break old code that is exploiting knowledge 

about legacy algorithms. However, if we are already under attack, we don’t care about 

backward compatibility anymore and switch the hashing algorithm from legacy to 

randomized. Here is a fragment33 of Dictionary source code (the Insert method, .NET 

Framework 4.7.2):

#if FEATURE_RANDOMIZED_STRING_HASHING

#if FEATURE_CORECLR

 // In case we hit the collision threshold

 // we'll need to switch to the comparer, which is

 // using randomized string hashing

 // in this case will be EqualityComparer<string>.Default.

 // Note, randomized string hashing is turned on

 // by default on coreclr so EqualityComparer<string>.Default will

 // be using randomized string hashing

 if (collisionCount > HashHelpers.HashCollisionThreshold &&

     comparer == NonRandomizedStringEqualityComparer.Default)

 {

    comparer = (IEqualityComparer<TKey>) EqualityComparer<string>.Default;

    Resize(entries.Length, true);

 }

#else

 if (collisionCount > HashHelpers.HashCollisionThreshold &&

    HashHelpers.IsWellKnownEqualityComparer(comparer))

 {

   comparer = (IEqualityComparer<TKey>)

    HashHelpers.GetRandomizedEqualityComparer(comparer);

32 https://github.com/dotnet/corefx/issues/1534#issuecomment-143086216
33 https://referencesource.microsoft.com/#mscorlib/system/collections/generic/
dictionary.cs
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   Resize(entries.Length, true);

 }

#endif// FEATURE_CORECLR

#endif

As you can see, if collisionCount is bigger than HashHelpers.

HashCollisionThreshold (it equals 100 in .NET Framework 4.7.2) and the legacy 

IEqualityComparer is used, we change the comparer.

You can control this behavior via the UseRandomizedStringHashAlgorithm34 

property in app.config. An example:

<?xml version ="1.0"?>

<configuration>

  <runtime>

    <UseRandomizedStringHashAlgorithm enabled="1" />

  </runtime>

</configuration>

In .NET Core, there are no problems with backward compatibility, so the randomized 

string hashing is enabled by default. You can find more details about it in [Lock 2018].

Conclusions:

• Performance of a method can be changed in the middle of a 
program.

In Chapter 2, we discussed that warm-up is important for 

benchmarking: the first call of a method can take much more time 

than subsequent calls. However, this is not the only case when 

a method performance can be changed. .NET Framework has a 

set of heuristics that can switch the internal implementation in 

special situations. If we want to design a good benchmark, we 

should be aware of such switches and cover different API use 

cases.

34 https://docs.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/
runtime/userandomizedstringhashalgorithm-element
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• Internal algorithms can be tuned by app.config settings.

We already know that different .NET Framework versions 

could have performance differences because of changes in 

the implementation. However, we can manually switch some 

algorithms by values in app.config or via environment variables.

• .NET Framework and .NET Core can have different algorithms for 
the same API.

.NET Framework and .NET Core share the main part of their 

code bases. Typically, we will get the same performance levels 

for the same base classes (it’s not always easy to match .NET 

Framework and .NET Core versions, but you can check the source 

code for each version of each runtime). However, the behavior of 

some classes can be different even for the same versions: .NET 

Framework contains a lot of backward compatibility hacks that 

were removed in .NET Core.

AN EXERCISE

try to implement a hash function attack on HashSet or Dictionary with disabled 

FEATURE_RANDOMIZED_STRING_HASHING (you should find over 100 different strings with 

the same hash codes). write a benchmark that demonstrates performance difference between 

legacy and modern hashing behavior. this exercise should help you to learn how to exploit 

internal implementation details, find “corner cases,” and demonstrate pure performance for 

common apis, which usually work fast.

 Case Study 3: IList.Count and Unexpected Performance 
Degradation
This story is about the development of JetBrains Rider. When Rider 2017.1 was released, 

it used Mono 4.9. Then, we started to upgrade it to Mono 5.2. Unfortunately, after the 

upgrade, some of the performance tests were red. Primarily, we had problems with 

the Solution-Wide Error Analysis (SWEA). On Mono 4.9, one of the tests took around 

3 minutes (we are trying to find all errors and warnings in huge solutions; it takes 
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some time). After the upgrade, this test failed with 5 minutes timeout. It was tough to 

investigate this issue because Mono 4.9/5.2 had poor abilities for profiling (advanced 

profiling was introduced only in Mono 5.6). If we run this test under profiling (mono 

--profile) with enough sampling frequency, it took about 30 minutes and the snapshot 

is about 50 GB (which is almost impossible to open). After a few weeks of unsuccessful 

profiling attempts, we decided to find other tests with the same problem and small 

total execution times. However, it turned out that the duration of almost all our tests 

were the same in both versions of Mono. So, we sorted all our tests by the performance 

difference between 4.9 and 5.2. In the top, we observed two kinds of tests: SWEA and 

code completion! A completion test looks like this: we open a file, move the caret to a 

specific place, press Ctrl+Space, wait for a completion list, press Enter, complete the 

statement. One such test took 4 seconds on Mono 4.9 and 18 seconds on Mono 5.2! The 

difference is huge, but it’s pretty small in terms of profiling: it’s much easier to make a 

performance snapshot for an 18-second session than for a 5-minute session. Of course, 

we didn’t find the problem on the first attempt. Mono sampling showed an approximate 

place with the performance degradation. Next, we started to add Stopwatches here and 

there (it’s 4->18 perf degradation; it should be easy to find it, right?) After another few 

days of investigating, we finally found the line that was responsible for the degradation. 

It contained just a Count call for an IList<> object. At first, I didn’t believe that I found 

it correctly, so I created a minimal reproduction case and wrote a microbenchmark with 

the help of BenchmarkDotNet:

private readonly IList<object> array = new string[0];

[Benchmark]

public int CountProblem() => array.Count;

Here are the results on Linux:

BenchmarkDotNet=v0.10.9, OS=ubuntu 16.04

Processor=Intel Core i7-7700K CPU 4.20GHz (Kaby Lake), ProcessorCount=8

  Mono49     : Mono 4.9.0 (mono-49/f58eb9e642b Tue), 64bit

  Mono52     : Mono 5.2.0 (mono-52/da80840ea55 Tue), 64bit

 Runtime |         Mean |      Error |     StdDev |

-------- |-------------:|-----------:|-----------:|

  Mono49 |     5.038 ns |  0.2869 ns |  0.8459 ns |

  Mono52 | 1,471.963 ns | 19.8555 ns | 58.5445 ns |
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And here are the results on macOS:

BenchmarkDotNet=v0.10.9, OS=Mac OS X 10.12

Processor=Intel Core i7-4870HQ CPU 2.50GHz (Haswell), ProcessorCount=8

  Mono49     : Mono 4.9.0 (mono-49/f58eb9e642b Tue), 64bit

  Mono52     : Mono 5.2.0 (mono-52/da80840ea55 Tue), 64bit

Runtime  |         Mean |      Error |      StdDev |

-------- |-------------:|-----------:|------------:|

  Mono49 |     5.548 ns |  0.0631 ns |   0.1859 ns |

  Mono52 | 2,443.500 ns | 44.6687 ns | 131.7068 ns |

As you can see, the Count invocation takes about 5 nanoseconds on Linux/

macOS+Mono 4.9, about 1500 nanoseconds on Linux+Mono 5.2, and about 2500 

nanoseconds on macOS+Mono 5.2. It significantly affects Rider in some different 

places like completion and SWEA. It’s probably not a good idea to cast string[] to 

IList<object>, but we had such a “pattern” deep inside of different Rider subsystems 

and it’s not easy to detect and refactor all of them.

OK, why do we have such a degradation here? If you read about Mono performance 

changes carefully, you probably noticed a remark about “Lazy array interfaces” in Mono 

5.0. Here’s a fragment from the official release notes35:

Lazy array interfaces One curious aspect of C# is that arrays 

implement invariant interfaces as if they were covariant. This 

happens for IList<T>, ICollection<T> and IEnumerable<T> 

which means, for example, that string[] implements both 

IList<string> and IList<object>.

Mono traditionally implemented this by creating the runtime-

side metadata for all of those interfaces and that came with an 

extraordinary memory cost of creating a lot of interfaces that 

never ended up being referenced by C# code.

With Mono 5.0 we now treat those interfaces as magic/special and 

use a different casting code-path. This allows them to be lazily 

35 www.mono-project.com/docs/about-mono/releases/5.0.0/#lazy-array-interfaces
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implemented in arrays, which can save a lot of memory in LINQ-

heavy workloads. As part of this work we refactored the casting 

code in the JIT to be simpler and more maintainable.

Unfortunately, there was a bug in the interface method dispatch implementation. 

We are in touch with developers from Mono, so this bug was quickly fixed36 (Thank you 

guys!). We have patched Mono 5.2 with this fix and released Rider 2017.2 without any 

performance degradation (and some improvements).

Conclusions:

• Runtime updates can unpredictably affect any parts of your code.

It’s a good practice to read changelogs when you upgrade a 

runtime or third-party libraries. It can help you to find some 

serious problems in advance. However, you never know how these 

changes will affect your application. Don’t trust your intuition and 

carefully measure performance before the update.

• The implementation of simple API can be performance-critical for 
special cases.

Before this story, I didn’t believe that would be possible to get 

serious performance problems because of the IList<>.Count 

implementation. When looking at such calls, you would usually 

think that you shouldn’t care about its performance because it 

should always work superfast. However, even the simplest API 

calls could have a significant performance impact, especially if 

you call it too often, if you meet some corner cases, or if there are 

some bugs inside.

AN EXERCISE

try to reproduce this issue locally. if you want to investigate performance changes at runtime, 

you should learn how to install (or build from source) different versions of runtime (e.g., mono) 

and run a benchmark on each of them.

36 https://github.com/mono/mono/pull/5486
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 Case Study 4: Build Time and GetLastWriteTime  
Resolution
The next story is also about Rider update. In Rider 2018.2, we decided to update Mono 

from 5.10 to 5.12. After the previous case study, we already know that it’s a good practice 

to read changelogs carefully. Here is a short note from the Mono 5.12 release notes37:

Added support for nanosecond resolution in file information 

on platforms where the information is available. This means the 

return value of APIs like FileInfo.GetLastWriteTime () is now 

more precise.

Let’s look at this change38 in detail. Here are the values of File.

GetLastWriteTime(filename).Ticks for the same file on Mono 5.10 and Mono 5.12  

(1 tick = 100 nanoseconds):

           InternalTicks

Mono 5.10: 636616298110000000

Mono 5.12: 636616298114479590

As you can see, the old versions of Mono have information only about seconds 

(10000000 ticks is exactly 1 second). In the new versions of Mono, we have information 

about milliseconds and microseconds. This is definitely a good improvement, but it’s 

also a breaking change. However, it sounds like a small harmless change that wouldn’t 

affect performance. In fact, it can. As usual, we decided to check that there are no 

performance regressions in the new version of Mono. And we found a lot of tests with 

increased duration. How is it possible? Let’s figure it out!

Rider has a neat feature called the solution builder. As you can guess, it builds your 

solutions. Obviously, if a solution has already been built before, and a user asks to build 

it again, we shouldn’t rebuild projects without any changes. The solution builder has a 

set of smart heuristics that help to detect such projects. One of the basic heuristics uses 

the last modification file time to find files without changes.

37 www.mono-project.com/docs/about-mono/releases/5.12.0/
38 https://github.com/mono/mono/pull/6307
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The solution builder contains two parts. The first part is placed inside Rider host 

process, which uses the bundled version of Mono (this version is fixed for each Rider 

release). Here we save information about the last modification timestamps in a cache. 

The second part is placed inside an MSBuild39 task, which uses the installed version of 

Mono (this version depends on the user environment). Here we check for the last actual 

modification timestamps. Next, we compare two timestamps (cached and actual) and 

decide whether to build a project or not.

Imagine a situation when Rider uses Mono 5.12 and a user has installed Mono 5.10. 

It means that the cached timestamp values have the milliseconds/microseconds data 

and the actual values don’t have it. In the preceding example, these values are equal to 

636616298114479590 and 636616298110000000. Thus, the probability that these two 

values are equal is very low. As a result, the solution builder rebuilds all the projects all 

the time; the feature is broken. Of course, we covered the solution builder by many tests, 

but these tests were executed only on Windows (for some historical reasons), where we 

use .NET Framework. On Linux/macOS, we didn’t have such tests in Rider 2018.1, so the 

build was green. However, we discovered serious performance degradations for some 

tests because Rider executed extra builds. The bug was quickly found and fixed.

There was not a long performance investigation here, but this story still can teach us.

Conclusion:

• Minor harmless changes can significantly affect performance.

This case study once again reminds us that it’s very hard to predict 

how changes can affect the performance of a huge application. 

Don’t forget to measure things and don’t trust your intuition.

AN EXERCISE

as usual, try to reproduce the described change in mono locally: download mono 5.10 and 

5.12, and then call File.GetLastWriteTime(filename).Ticks on a random file. try to 

call it on .net framework and .net Core.

39 We will discuss it in the “Compilation” section.
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 Summing Up
In this section, we discuss the three most popular .NET runtimes: .NET Framework, 

.NET Core, and Mono. .NET Framework is a proprietary Windows-only runtime, while 

.NET Core and Mono are free and cross-platform runtimes. Now we know a short history 

of these runtimes and how to get the exact version of each of them.

Whichever runtime you use, don’t forget that even minor changes in runtime 

updates can unpredictably affect performance in the most unexpected places. Don’t 

forget to always measure all the performance-critical application use cases.

If you got some interesting benchmarking results on a single runtime, don’t 

extrapolate your results on .NET in general. Remember that there are many .NET 

runtimes: each of them has its own implementation.

In the next section, we are going to talk about the transformation of the original 

source to native code.

 Compilation
If you want to execute your C#40 program, you should compile it first. After the compilation, 

we get a binary file that is based on the IL. When this file is executed by the runtime, we 

have another stage of compilation: runtime transforms it into native code. This process is 

known as JIT compilation. There are also a lot of tools that can do this transformation in 

advance (before the start of the application). This is known as AOT compilation. To avoid 

misunderstanding, we will call the first compilation stage IL generation.

In this section, we will discuss different topics about these three kinds of 

compilations:

• What kind of compiler we have and the differences between them.

• How to get the exact version of each compiler.

• How we can affect the compilation process.

Let’s start with the first compilation stage: IL generation.

40 Many languages can be used with the .NET platform. In addition to C#, we also have two pretty 
popular languages (Visual Basic .NET, F#), and many less popular languages like Managed C++ 
or Q#. Here and in the following, we will discuss C#, but almost all the facts are also valid for 
other .NET languages.
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 IL Generation
In this subsection, we will discuss tools that help us to compile and build the source 

code.

 Compiling

If we want to compile a C# program, we need a C# compiler, which translates your C# 

code into IL.41 Let’s discuss the most popular compilers:

• Legacy C#/VB compilers

In the epoch of C# 1..C# 5, we had C# and VB compilers as a part 

of .NET Framework. They were written in C++.

• Roslyn

Roslyn is the modern open source42 C# and Visual Basic compiler. 

It was pretty hard to maintain the legacy C#/VB compilers and 

introduce new features. So Microsoft decided to rewrite it in C#. 

Thus, Roslyn was born. The first Community Technology Preview 

(CTP) was presented in October 2011 and distributed as a part 

of Visual Studio 2010 SP1 (see [Osenkov 2011]). The first version 

of the compiler was released in July 2015 (see [Lander 2015]) 

with .NET Framework 4.6 and Visual Studio 2015. This version 

included the C# 6 and VB 14 support. All the subsequent releases 

of C# and VB are also based on Roslyn. The last version of C# 

supported by the legacy compiler is C# 5. Roslyn is distributed 

independently from .NET Framework; you can download a 

specific version of Roslyn via the Microsoft.Net.Compilers43 NuGet 

package. You can find the full story of Roslyn in [Torgersen 2018].

41 IL is also known as CIL (Common Intermediate Language) or MSIL (Microsoft Intermediate 
Language).

42 https://github.com/dotnet/roslyn
43 www.nuget.org/packages/Microsoft.Net.Compilers/
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• Mono C# Compiler

Historically, Mono had its own compiler: Mono C# Compiler.44 It 

was developed as a cross-platform open source replacement of 

the Microsoft C# compiler. Initially, there were several different 

versions of the compiler (gmcs, smcs, dmcs).45 Starting with Mono 

2.11, there is a universal compiler version: mcs. Starting with Mono 

5.0, the default compiler was changed from mcs to Roslyn, which 

is now shipped with Mono. However, mcs is still continuing to get 

updates in new versions of Mono.

If you have installed .NET Framework 4.x, you can find the legacy C# compiler in 

C:\Windows\Microsoft.NET\Framework\v4.0.30319\Csc.exe. If you run it, you will see 

a prompt message like this:

Microsoft (R) Visual C# Compiler version 4.7.3056.0 for C# 5

Copyright (C) Microsoft Corporation. All rights reserved.

This compiler is provided as part of the Microsoft (R) .NET Framework,

but only supports language versions up to C# 5,

which is no longer the latest version.

For compilers that support newer versions of the C# programming language,

see http://go.microsoft.com/fwlink/?LinkID=533240

The Roslyn compiler is not a part of the .NET Framework, so you should install it 

separately. One of the typical installation paths on Windows looks like this: C:\Program 

Files (x86)\Microsoft Visual Studio\2017\Community\MSBuild\15.0\Bin\Roslyn\

csc.exe (this path is valid for Visual Studio Community 2019). If you launch it, the 

prompt message will look like this:

Microsoft (R) Visual C# Compiler version 2.9.0.63208 (958f2354)

Copyright (C) Microsoft Corporation. All rights reserved.

Note that the title of both compilers is the same (Visual C# Compiler), but Roslyn 

has the lower version (2.9 instead of 4.7). This doesn’t mean that it’s an older version of 

44 It was renamed “Mono Turbo C# Compiler” in Mono 5.8: https://github.com/mono/mono/comm
it/7d68dc8e71623ba76b16c5c5aa597a2fc7783f16

45 https://stackoverflow.com/q/3882590
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the C# compiler. When Roslyn was created, Microsoft started the versioning from 1.0. 

You can quickly detect the legacy compiler by the "for C# 5" suffix.

 Building

If you have a huge solution with tons of files, it’s pretty hard to manually specify all 

arguments that should be passed to the compiler. Fortunately, we can use a build system 

that orchestrates the compilation process: it controls not only how we compile separate 

files with source code, but how to build an entire solution with many projects and what 

kind of additional steps we need. There are several tools that can build .NET projects and 

solutions:

• MSBuild

MSBuild is the most popular build tool in the .NET ecosystem. 

Initially, it was also a Windows-only closed source project 

distributed as a part of .NET Framework. Today, MSBuild is 

an open source and cross-platform project.46 There are many 

ways to install it. For example, you can get it with Visual Studio, 

Build Tools for Visual Studio47 or build it from sources. The latest 

versions of MSBuild ship Roslyn for compiling C# and VB files.

• .NET Core CLI

CLI (command-line tool) allows performing all basic development 

operations: building, testing, deployment, and so on.48 Internally, 

it has its own version of MSBuild.

• XBuild

XBuild is a classic build tool for Mono. In the old days, it was the 

only way to build projects on Linux and macOS. Since Mono 5.0, 

XBuild has been deprecated because Mono ships MSBuild as the 

default build system.

46 https://github.com/Microsoft/msbuild
47 https://visualstudio.microsoft.com/downloads/#build-tools-for-visual-studio-2017
48 You can download it here: www.microsoft.com/net/download

Chapter 3  how environment affeCts performanCe

https://github.com/Microsoft/msbuild
https://visualstudio.microsoft.com/downloads/#build-tools-for-visual-studio-2017
https://www.microsoft.com/net/download


127

• Other build systems

Many developers don’t like pure MSBuild and try to use different 

build systems on top of it. Basically, they provide you a DSL 

(domain-specific language), which simplifies configuring your 

build process. Popular build systems include Fake, Cake, and 

Nuke.49

Today, the most popular toolset is MSBuild+Roslyn. However, some projects still 

may use the legacy C# compiler or XBuild. We discuss these technologies because they 

provide many good examples that demonstrate how changes in a compiler can affect the 

performance of your applications.

When MSBuild and the C# compiler were a part of .NET Framework, there were only 

a few widely used versions of the compiler. With the new Visual Studio 2017 Release 

Rhythm,50 we get compiler updates all the time.

 Build configurations

When you create a new solution in Visual Studio, you get two default build configuration: 

Debug and Release. If we open a csproj file for a classic application, we will find lines 

like this (some lines were removed for simplification):

<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|AnyCPU'">

  <DebugSymbols>true</DebugSymbols>

  <DebugType>full</DebugType>

  <Optimize>false</Optimize>

  <OutputPath>bin\Debug\</OutputPath>

</PropertyGroup>

<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|AnyCPU'">

  <DebugType>pdbonly</DebugType>

  <Optimize>true</Optimize>

  <OutputPath>bin\Release\</OutputPath>

</PropertyGroup>

49 https://fake.build/, https://cakebuild.net/, https://nuke.build/
50 www.visualstudio.com/en-us/productinfo/vs2017-release-rhythm
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The most important element for us is <Optimize>; this value is passed to the 

compiler and controls the optimization mode. By default, optimizations are disabled, 

but we can explicitly call compiler with enabled optimizations with the help of /

optimize flag:

csc /optimize Program.cs

In a csproj file, we can define our own build configuration with custom rules 

for <Optimize>. We can even enable optimizations in Debug and disable it in 

Release. However, it’s not a typical configuration. In this book, we will use the most 

common notation: Release means <Optimize>true</Optimize> and Debug means 

<Optimize>false</Optimize>. You can control the target configuration for MSBuild 

with the help of /p:Configuration:

msbuild /p:Configuration=Release Project.csproj

If you are using .NET Core SDK, you need --configuration or just -c:

dotnet build -c Release Project.csproj

Be careful: Debug (build configuration with disabled optimizations) is always the 

default option. It’s great for debugging, but not so great for benchmarking.

 Language version vs. compiler version

Sometimes, developers confuse C# version and C# compiler version. C# version is a 

specification. C# compiler version is a version of a program that translates C# source code 

to IL. Let’s see what the difference is with the help of the legacy C# compiler. Consider 

the following program:

var numbers = new int[] { 1, 2, 3 };

var actions = new List<Action>();

foreach (var number in numbers)

    actions.Add(() => Console.WriteLine(number));

foreach (var action in actions)

    action();

There are two possible outcomes: 3 3 3 and 1 2 3. Old versions of the C# compiler 

created a single field for number, which was reused in all lambda expressions. After the 

end of the loop, the value of number is 3. Since all lambda expressions reference the 
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same field, all of them will print 3 (you can find an explanation with more details in 

[Lippert 2009]). It was pretty confusing behavior for many developers, so the compiler 

team decided to make a breaking change in the compiler. Now, the compiler introduces 

a separate field per each loop iteration. Thus, we get 1 2 3 as the output because each 

lambda expression has its own field.

The breaking change was made in the compiler, not in the language version. Let’s 

look at some possible compiling configurations in Table 3-5.

Table 3-5. Closures on Different Versions of the Legacy C# Compiler

Compiler version Command line Output

3.5.30729.7903 (C#3) v3.5/csc.exe 3 3 3

4.0.30319.1 (C#4) v4.0.30319/csc.exe 3 3 3

4.0.30319.33440 (C#5) v4.0.30319/csc.exe 1 2 3

4.0.30319.33440 (C#5) v4.0.30319/csc.exe /langversion:4 1 2 3

Let’s discuss these in detail.

• 3.5.30729.7903 This is a compiler version that supports C# 3.

• 4.0.30319.1 This is a compiler version that supports C# 4.

• 4.0.30319.33440 This is a compiler version that supports C# 5.

• 4.0.30319.33440 with langversion:4 This is a compiler version that 

supports C# 5 and targets C# 4. We can specify the target language 

version for a C# compiler via the /langversion argument. Thus, we 

can run C# compiler 4.0.30319.33440 against C# 4 instead of C# 5. 

Basically, this means that we will not use C#5 language features like 

asynchronous methods. And it doesn’t mean that we get the same IL 

code as in the “C# 4 compiler” (4.0.30319.1). As you can see, with  

/langversion:4, we still have 1 2 3 in output. The breaking change 

is still here.

The C# compiler produces IL code instead of native code. In the next section, we 

will discuss the next compilation stage: the JIT compilation. Sometimes, we will denote 

the compiler from this subsection as IL generator, “regular” compiler, or C# compiler 

to avoid confusion with the JIT compiler. To be short, we will also call it Roslyn because 
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it’s the most popular .NET compiler, but most of the conclusions can also be applied to 

the legacy C# compiler or other IL generators (for example, F# has its own compiler; this 

language is not supported by Roslyn).

Just-In-Time (JIT) Compilation
JIT compilation is a great technology that transforms IL code to native code (we will also 

call it assembly code or just ASM code). Here are some of the main advantages of the JIT 

compilation:

• IL code is hardware independent, so we can reuse the same binary 

file on different platforms.

• The JIT compiler compiles only methods that you really need.

• The generated code can be optimized for current usage profile.

• Some methods can be regenerated in order to achieve better 

performance.

In this section, we will discuss different JIT compilers in the .NET ecosystem.

The first versions of .NET Framework have two JIT compilers: JIT32 and JIT64 (for 

32-bit and 64-bin versions of the runtime). Both compilers have independent code bases 

and different sets of optimizations. After years of development, it became very difficult 

to maintain and improve them, so it was decided to write a next-generation JIT compiler 

called RyuJIT.51 Initially, JIT32 and JIT64 didn’t have codenames (because .NET had only 

one JIT compiler for each platform). To avoid misunderstandings, we will use the terms 

LegacyJIT-x86 and LegacyJIT-x64 in this book.

The .NET team started to design RyuJIT in 2009, the development process was 

started in 2011, the first preview version was announced in September 2013 (see [RyuJIT 

2013]), and it was finally released in 2015 (x64 only): RyuJIT became the default x64-

JIT since .NET Framework 4.6. Thus, if you have a .NET 4.0 64-bit application, it will be 

automatically use RyuJIT after .NET Framework 4.6+ installation.

Early versions of RyuJIT had a lot of problems (especially on the CTP stage). Some 

of them are performance-related (RyuJIT produced slow code in comparison with 

LegacyJIT). Some of them are critical bugs that were the cause of huge problems in 

51 Here you can find a short story about origin of this name: https://github.com/dotnet/
coreclr/blob/master/Documentation/botr/ryujit-tutorial.md#why-ryujit
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some production systems.52 However, now RyuJIT is a pretty stable, reliable, and fast 

JIT compiler. The development way was thorny, but eventually, we got a cool new 

JIT. Another interesting fact: the original source code of RyuJIT-x64 was based on 

LegacyJIT-x86, so you can find a lot of similar optimizations between these two JIT 

compilers.

If you want to switch back to LegacyJIT-x64 in .NET Framework, there are several 

ways. You can set <useLegacyJit enabled="1" /> in the configuration/runtime 

section of your app.config, define the COMPLUS_useLegacyJit=1 environment 

variable, or add a 32-bit DWORD Value useLegacyJit=1 in the HKEY_LOCAL_MACHINE\

SOFTWARE\Microsoft\.NETFramework and HKEY_CURRENT_USER\SOFTWARE\Microsoft\.

NETFramework Windows Registry subkeys. You can find the full actual instructions about 

disabling RyuJIT in [MSDOCS RyuJIT].

Let’s start to understand what kind of JIT compiler (LegacyJIT or RyuJIT) is used for 

an x64-program. I want to tell you about one of my favorite hacks, which I used for years. 

Consider the following method:

int bar;

bool Foo(int step = 1)

{

  var value = 0;

  for (int i = 0; i < step; i++)

  {

    bar = i + 10;

    for (int j = 0; j < 2 * step; j += step)

      value = j + 10;

  }

  return value == 20 + step;

}

If you call this method on LegacyJIT-x64 with enabled optimization, Foo will return 

true: value will be equal to 21 instead of 11. You can find a detailed description of this 

bug with corresponding assembly listings in [Akinshin 2015]. A bug report was reported 

52 There is a famous post by Nick Craver from StackOverflow: [Craver 2015]. It’s an intriguing story 
about bug advisory problems on StackOverflow production servers after upgrading .NET up to 
4.6. It worth reading it and checking out all the links.
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on Microsoft Connect,53 but it was closed with status “Closed as Won’t Fix. Due to several 

factors, the product team decided to focus its efforts on other items.” Thus, if you run this 

code as an x64 application on .NET Framework and Foo returns true, LegacyJIT-x64 is 

used. Otherwise, the runtime uses RyuJIT-x64.

Another approach is based on the list of jit modules that is loaded into the current 

process. You can print this list as follows:

var modules = Process.GetCurrentProcess().Modules

  .OfType<ProcessModule>()

  .Where(module => module.ModuleName.Contains("jit"));

foreach (var module in modules)

  Console.WriteLine(

    Path.GetFileNameWithoutExtension(module.FileName) + " " +

    module.FileVersionInfo.ProductVersion);

In CLR2, you will see mscorjit. It always means LegacyJIT because it’s the only JIT 

available in CLR2. In CLR4, RyuJIT-x64 has only one module: clrjit (formerly known 

as protojit). LegacyJIT-x64 has two modules: clrjit and compatjit. Thus, if you 

see compatjit in your module list, it means that LegacyJIT is used. RyuJIT-x86 is not 

available for .NET Framework; LegacyJIT-x86 is the only option for x86 programs.

Now let’s talk about JIT compilers in .NET Core. .NET Core 1.x uses RyuJIT-x64 for 

x64 and LegacyJIT-x86 for x86 (the x86 version is available only for Windows). In .NET 

Core 2.0, LegacyJIT-x86 was replaced by RyuJIT-x86.54 Eventually, all LegacyJIT-x86-

related code was removed from the .NET Core source code.55 .NET Framework and .NET 

Core share the same RyuJIT-x64 code base.56

In Mono, there is no well-known name for the JIT compiler, so we will call it 

MonoJIT. It’s a part of the Mono runtime, so MonoJIT has improvements in each Mono 

update. In addition to the default JIT compiler, we also have a Mono LLVM option for JIT 

53 This page is not available anymore because the service has been retired.
54 https://github.com/dotnet/announcements/issues/10
55 https://github.com/dotnet/coreclr/pull/18064
56 You can find some interesting technical details in this GitHub issue: https://github.com/
dotnet/coreclr/issues/14250
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compilation, which uses LLVM57 for generating assembly code (available since Mono 

2.6). You can control it via the --nollvm or --llvm arguments.

In Table 3-6, you can see a compatibility matrix between different JIT compilers and 

.NET runtimes.

Table 3-6. Compatibility of JIT Compilers

JIT .NET Framework .NET Core Mono

LegacyJit-x86 1.0+ 1.x —

LegacyJit-x64 2.0+ — —

ryuJit-x86 — 2.0+ —

ryuJit-x64 4.6+ 1.0+ —

monoJit — — 1.0+

monoLLvm — — 2.6+

In the next subsection, we will discuss another approach for generating native code.

Ahead-Of-Time (AOT) Compilation
JIT compiler generates the native code for a method when you want to call this method. 

This is the default strategy for most of the .NET applications, but it’s not the only one. 

You can also compile your code AOT, generate native code for all methods, and produce 

binaries that don’t need JIT compiler. AOT compilation has some advantages and 

disadvantages compared to JIT compilation: in some cases, it can provide significant 

performance improvements, but it can also do more harm than good.

Advantages (compared to JIT):

• Better startup time

JIT compiler can take a lot of time during initial assembly loading 

and slow down the startup time. In the case of an AOT compiler, 

we don’t have such problems.

57 LLVM is a popular cross-platform solution for generating native code on different platforms 
based on own intermediate representation. You can find more information on the official site: 
https://llvm.org/
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• Lower memory usage

If several applications use the same assembly, the native image of 

the assembly can be shared between them. Thus, the total amount 

of used memory can be reduced.

• Better optimizations

JIT compiler should work fast, and it doesn’t have enough time 

for all “smart” optimizations. AOT compiler is not limited by 

compilation time, so it has an opportunity to “think well” about 

the best way to optimize your code.

Disadvantages (compared to JIT):

• Optimizations are not always better

AOT compilation doesn’t guarantee that all optimizations will 

be better. JIT compiler has knowledge about the current runtime 

session, so it can produce better assembly code. Also, it can 

generate better memory layout for generated code (e.g., if you 

have a call chain of methods, JIT compiler can put them near to 

each other).

• API limitations

It’s not always possible to use all .NET APIs with an AOT toolchain 

because you can’t always compile everything AOT. For example, 

you can have problems with dynamic assembly loading, dynamic 

code execution, reflection, generic classes and interfaces, and 

other “advanced” APIs.

• JIT/AOT binding overhead

If you have an interaction between AOT and JIT compiled 

methods, it can have noticeable performance overhead because of 

the expensive method address bindings.
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• Build process complication

AOT build usually takes much more time and you have to generate 

separate native binaries for all target platforms.

• Huge size of binary files

JIT compiler can produce native code only for a method that you 

actually call. AOT compiler has to generate native code for all 

classes and methods because you don’t know in advance which 

method will be called. JIT compiler can eliminate some branches 

based on the runtime information like values of static read-only 

values (e.g., IsSupported). AOT compiler has to generate code for 

all branches because it doesn’t have values that will be computed 

in runtime.

Thus, the AOT compiler can be not a good option for all kinds of applications, but it 

can be pretty useful in some cases. Several engines provide AOT features for .NET:

• NGen

NGen58 is the classic and most famous AOT tool for .NET 

Framework. It can create native images (.ni.dll or .ni.exe) of 

the managed assemblies and install them into the native image 

cache. One of the interesting NGen features is MPGO59 (Managed 

Profile Guided Optimization): it allows tracing your code during 

runtime, building “profile” data, and using it for better native code 

generation. MPGO works great when real-world usage scenarios 

are similar to these profiles.

• CrossGen

CrossGen60 is analogue of NGen (which is .NET Framework-

specific) for .NET Core. It also generates native images for 

58 https://docs.microsoft.com/en-us/dotnet/framework/tools/
ngen-exe-native-image-generator

59 https://docs.microsoft.com/en-us/dotnet/framework/tools/
mpgo-exe-managed-profile-guided-optimization-tool

60 https://github.com/dotnet/coreclr/blob/v2.2.0/Documentation/building/crossgen.md
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managed assemblies, but it’s cross-platform: you can use it on 

Windows, Linux, or macOS. MPGO is also available for .NET Core 

(see [Le Roy 2017]).

• Mono AOT

Mono also provides a tool for AOT compilation61 that can be 

used by the --aot runtime arguments. It generates native images 

(with the extension .so on Linux; .dylib on macOS) that will be 

automatically used when the assembly is executed. Mono AOT 

has a huge number of options. For example, with --aot=full, you 

can enable the full AOT. This mode is designed for platforms that 

don’t allow dynamic code generation: all of the target methods 

should be compiled AOT. Next, you can run the application with 

mono --full-aot (it’s not an equivalent of mono --aot=full, it’s 

another command!), which means that the JIT engine (and all 

the dynamic features) will be disabled. You can also use AOT on 

Xamarin.Android and Xamarin.iOS.62

• .NET Native

If we are talking about UWP (Universal Windows Platform) 

applications, there is another interesting technology called .NET 

Native.63 Many UWP applications are designed for mobile devices 

and have high requirements for startup time, execution time, 

memory usage, and power consumption. .NET Native uses C++ 

compiler on the back end; it is optimized for static precompilation 

and links the required parts of the .NET Framework directly 

in the app. When a user downloads an app, the precompiled 

native image is used. Thus, the startup time is much faster, and 

we don’t have to spend the energy of a mobile device on the JIT 

compilation.

61 www.mono-project.com/docs/advanced/runtime/docs/aot/
62 https://xamarinhelp.com/xamarin-android-aot-works/, https://docs.microsoft.com/
en-us/xamarin/ios/internals/architecture#aot

63 https://docs.microsoft.com/en-us/dotnet/framework/net-native/
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• CoreRT

CoreRT64 is a .NET Core runtime optimized for AOT compilation. 

It’s cross-platform, which means that you can create native 

applications for Windows, Linux, and macOS. You can learn a lot 

about CoreRT internals in [Warren 2018b].

• RuntimeHelpers

Unlike the preceding AOT approaches, RuntimeHelpers is a 

managed static class with handy methods that you can use 

for AOT compilation during runtime. Imagine that you have a 

method requiring “heavy” JIT compilation, but you don’t want to 

wait on the first method call and you can’t warm it up by calling 

it in advance because each invocation produces side effects. In 

this case, you can get the method handle via reflection and ask 

JIT compiler to generate native code in advance with the help of 

RuntimeHelpers.PrepareMethod.

Now let’s discuss a few case studies about different kinds of compilation.

 Case Study 1: Switch and C# Compiler Versions
switch is one of the basic C# keywords. Do you know how it works internally? Actually, it 

depends on the version of your C# compiler. Consider the following code with switch:

string Capitalize(string x)

{

  switch (x)

  {

    case "a":

      return "A";

    case "b":

      return "B";

    case "c":

      return "C";

64 https://github.com/dotnet/corert
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    case "d":

      return "D";

    case "e":

      return "E";

    case "f":

      return "F";

    case "g":

      return "G";

  }

  return "";

}

The legacy C# compiler 4.0.30319.33440 generates the following code:

; Phase 0: Dictionary<string, string>

IL_000d: volatile.

IL_000f: ldsfld class  Dictionary<string, int32>

IL_0014: brtrue.s IL_0077

IL_0016: ldc.i4.7

IL_0017: newobj instance void class Dictionary<string, int32>::.ctor

IL_001c: dup

IL_001d: ldstr "a"

IL_0022: ldc.i4.0

IL_0023: call instance void class Dictionary<string, int32>::Add

IL_0028: dup

IL_0029: ldstr "b"

IL_002e: ldc.i4.1

IL_0023: call instance void class Dictionary<string, int32>::Add

IL_0034: dup

IL_0035: ldstr "c"

; ...

; Phase 1:

IL_0088: ldloc.1

IL_0089: switch (

  IL_00ac, IL_00b2, IL_00b8,

  IL_00be, IL_00c4, IL_00ca, IL_00d0)
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IL_00aa: br.s IL_00d6

; Phase 2: cases

IL_00ac: ldstr "A"

IL_00b1: ret

IL_00b2: ldstr "B"

IL_00b7: ret

IL_00b8: ldstr "C"

IL_00bd: ret

IL_00be: ldstr "D"

IL_00c3: ret

IL_00c4: ldstr "E"

IL_00c9: ret

IL_00ca: ldstr "F"

IL_00cf: ret

IL_00d0: ldstr "G"

IL_00d5: ret

IL_00d6: ldstr ""

IL_00db: ret

It allocates an internal static instance of Dictionary<string, int> and puts all 

values in this dictionary. This code is executed only once on the first call of the method.

Roslyn generates a smarter version for switch from the first version:

// Phase 1: ComputeStringHash

uint num = ComputeStringHash(x);

// Phase 2: Binary search

if (num <= 3792446982u) {

  if (num != 3758891744u) {

    if (num != 3775669363u) {

      if (num == 3792446982u) {

        if (x == "g") { return "G"; }

      }

    }

    else if (x == "d") { return "D"; }

  }

  else if (x == "e") { return "E"; }

}
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else if (num <= 3826002220u) {

  if (num != 3809224601u) {

    if (num == 3826002220u) {

      if (x == "a") { return "A"; }

    }

  }

  else if (x == "f") { return "F"; }

}

else if (num != 3859557458u) {

  if (num == 3876335077u) {

    if (x == "b") { return "B"; }

  }

}

else if (x == "c") { return "C"; }

return "";

As you can see, there is not an additional dictionary anymore. We calculate a hash 

code for the given string and do a binary search. We need a runtime-independent value, 

so we use additional method instead of string.GetHashCode:

internal static uint ComputeStringHash(string s)

{

  uint num = default(uint);

  if (s != null)

  {

    num = 2166136261u;

    for (int i = 0; i < s.Length; i++)

      num = (s[i] ^ num) * 16777619;

  }

  return num;

}

Since all switch keys should be constants and known on the compilation stage, we 

can precalculate hash codes for all of them in advance. Next, we can sort the hash codes 

and implement a simple binary search by known values. It’s pretty effective in terms of 

performance and memory.
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Conclusion:

• Performance can depend on the version of C# compiler.

The main part of the optimizations is the responsibility of JIT and 

AOT compilers. C# compiler just produces IL code from your 

source code. In most cases, it doesn’t apply smart optimizations. 

However, some “advanced” language construction like switch 

can be translated to IL in different ways. When we discuss a new 

version of a compiler, we usually discuss new language features, 

but we also should be aware of changes in the existing features.

AN EXERCISE

write a program with a huge switch statement. try to write a benchmark that shows the 

performance difference between the legacy C# compiler and roslyn.

 Case Study 2: Params and Memory Allocations
C# has a lot of syntax sugar that allows writing laconic and understandable code. 

However, developers don’t always think about the performance cost of this sugar. There 

is the params keyword, which helps us to create methods with a variable number of 

arguments:

void Foo(params int[] x)

{

// ...

}

It is a good approach in some cases. However, it may hide implicit object allocations 

from the developers. For example, what happens if you call such a method without 

arguments:

Foo();
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The correct answer: it depends. If the project targets .NET Framework 4.5, Roslyn 

produces the following code:

IL_0000: ldc.i4.0

IL_0001: newarr    System.Int32

IL_0006: call      Foo(int32[])

IL_000b: ret

As you can see, a new empty array was created. It means that the runtime allocates a 

new object per method invocation without arguments.

In .NET Framework 4.6, Microsoft introduced a new API, Array.Empty<T>65: it 

returns an empty array instance. An implementation is pretty simple:

public class Array

{

  private static class EmptyArray<T>

  {

    internal static readonly T[] Value = new T[0];

  }

  public static T[] Empty<T>()

  {

    return EmptyArray<T>.Value;

  }

}

For each type T, we get at most one array instance which will be reused. Roslyn 

knows about this API. If a project targets .NET Framework 4.6+, Roslyn will generate an 

optimized version of the IL code:

IL_0000: call      !!0[] System.Array::Empty<int32>()

IL_0005: call      void ConsoleApp7.Program::Foo(int32[])

IL_000a: ret

In this case, the static Array.Empty<T> instance is used. This means that you 

shouldn’t worry about unwanted memory allocation.

65 https://docs.microsoft.com/en-gb/dotnet/api/system.array.empty
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Conclusion:

• Generated IL code can depend on project properties.

The compiler version is not the only factor that can affect 

generated code. The same version of the compiler can produce 

different IL code for the same language construction based on the 

target .NET Framework version and available API.

AN EXERCISE

take a look at what iL code the legacy C# compiler generates for the preceding example on 

.net framework 4.5 and 4.6.66

 Case Study 3: Swap and Unobvious IL
Consider a simple method that takes two integer values, swaps them, and divides the 

swapped variables (it doesn’t look like a useful method, but it’s a small example with 

pretty exciting properties). There are many ways to implement this logic, and here is one 

of the most obvious solutions:

public int SwapAndDiv1(int a, int b)

{

  var temp = a;

  a = b;

  b = temp;

  return a / b;

}

Here we swap the variables with the help of an additional variable, temp. It works, but 

it looks too wordy: we need three lines of code and an additional variable. Fortunately, 

C# 7.0 introduces the tuple syntax, which allows rewriting this method as follows:

public int SwapAndDiv2(int a, int b)

{

  (a, b) = (b, a);

  return a / b;

}

66 We will discuss how to get the generated IL code in Chapter 6.
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Now we can swap the values by one line of code without additional variables. 

This code is easier to read, and it looks more expressive. Now it’s time for a puzzle: 

which method will get a more optimized IL representation? Someone can propose 

the following hypothesis: “The second method can swap variables without additional 

variables, so it should have a better IL representation.” It may sound logical, but this 

hypothesis is based on what we have on the C# level. Let’s check the hypothesis, 

compile the code with Roslyn 2.6.0.62309 (d3f6b8e7), and look at the IL listing. Here is 

the first method:

.method public hidebysig

    instance int32 SwapAndDiv1 (

        int32 a,

        int32 b

    ) cil managed

{

  ; Header Size: 1 byte

  ; Code Size: 10 (0xA) bytes

  .maxstack 8

  ; Swap

  IL_0000: ldarg.1   ; Loads 'a' onto the stack

  IL_0001: ldarg.2   ; Loads 'b' onto the stack

   IL_0002: starg.s a ; Pops the stack top value ('b') in the 'a' argument 

slot

   IL_0004: starg.s b ; Pops the stack top value ('a') in the 'b' argument 

slot

  ; Division

  IL_0006: ldarg.1

  IL_0007: ldarg.2

  IL_0008: div

  IL_0009: ret

}
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As you can see, we have an additional variable on the C# level, but we don’t have it 

on the IL level: Roslyn loads both variables onto the stack and stores them back in the 

reverse order. Here is the IL listing for the second method:

.method public hidebysig

    instance int32 SwapAndDiv2 (

        int32 a,

        int32 b

    ) cil managed

{

  ; Header Size: 12 bytes

  ; Code Size: 12 (0xC) bytes

  ; LocalVarSig Token: 0x11000002 RID: 2

  .maxstack 2

  .locals init (

      [0] int32 ; an additional variable 'temp'

  )

  IL_0000: ldarg.2   ; Loads 'b' onto the stack

  IL_0001: ldarg.1   ; Loads 'a' onto the stack

  IL_0002: stloc.0   ;  Pops the stack top value ('a') in the local 

variable 'temp'

   IL_0003: starg.s a ;  Pops the stack top value ('b') in the 'a' argument 

slot

  IL_0005: ldloc.0   ; Loads the local variable 'temp' onto the stack

   IL_0006: starg.s b ;  Pops the stack top value ('temp') in the 'b' 

argument slot

  ; Division

  IL_0008: ldarg.1

  IL_0009: ldarg.2

  IL_000A: div

  IL_000B: ret

}

Here you see a reversed situation: we don’t have an additional variable on the C# level, 

but we have one on the IL level. This doesn’t mean that we will get better performance in the 

first case, but it makes the situation easier for the next stages of the code source journey.
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Conclusion:

• Don’t trust your intuition about compiler output.

Many developers try to guess the generated IL code, the native code, and 

the application performance based on what we have in the C# source 

code. Even if you have rich experience, your intuition is not your best 

friend here. You shouldn’t make any conclusions based on your guesses; 

always check the generated code and carefully measure performance.

AN EXERCISE

what do you think: do we get any performance difference between SwapAndDiv1 and 

SwapAndDiv2? try to write a small benchmark and measure both methods. Check out the 

generated assembly code with different Jit compilers and compare it for both cases.67 You can 

also implement your own methods that use different ways to swap two variables.

 Case Study 4: Huge Methods and Jitting
A friend of mine told me a story about his project. He had some serious performance 

problems (current performance level did not satisfy business requirements). He tried 

many different approaches without luck. Eventually, he decided to try code generation. 

The idea was simple: native IL provides many constructions which are not available 

in pure C#. My friend tried to rewrite the hotspot in IL. He also decided to reduce the 

number of calls and inline everything into one huge method. After the first benchmark, 

it turned out that the generated method takes significantly more time than the original 

C# method. After quick research, the problem was found: the runtime spends 95% of 

the time during the JIT phase! The method was so big that it requires several seconds for 

generating native code. However, the second call of this method was superfast.

We will not reproduce this situation with all details, but we will write a small example 

that demonstrates this effect. Let’s say we want to calculate the value of the following 

expression:

 0 1 2 3 4 5 999999 1000000- + - + - + ××× - +  

67 We will discuss how to get the generated native code in Chapter 6.
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Of course, we can do it via a simple for loop:

var result = 0;

for (var i = 1; i <= 1000000; i++)

  result += (i % 2 == 0 ? 1 : -1) * i;

Instead, we will try to generate this expression in IL without any loops:

// Regular code generation routine

var assemblyName = new AssemblyName {Name = "MyAssembly"};

var assembly = AppDomain.CurrentDomain

  .DefineDynamicAssembly(assemblyName, AssemblyBuilderAccess.RunAndSave);

var module = assembly.DefineDynamicModule("Module");

var typeBuilder = module.DefineType("Type", TypeAttributes.Public);

var methodBuilder = typeBuilder.DefineMethod(

  "Calc", MethodAttributes.Public | MethodAttributes.Static,

  typeof(int), new Type[0]);

// Generate the target method

var generator = methodBuilder.GetILGenerator();

generator.Emit(OpCodes.Ldc_I4, 0); // Put 0 on stack

for (var i = 1; i <= 1000000; i++)

{

  generator.Emit(OpCodes.Ldc_I4, i); // Put i on stack

  generator.Emit(i % 2 == 0 // Apply '+' or '-' on two top stack values

    ? OpCodes.Add : OpCodes.Sub);

}

generator.Emit(OpCodes.Ret); // Return the top value from stack

// Build the target type

var type = typeBuilder.CreateType();

// Lambda which call this method via reflection

Func<int> calc = () => (int) type.InvokeMember("Calc",

  BindingFlags.InvokeMethod | BindingFlags.Public |

  BindingFlags.Static, null, null, null);
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// Measure duration of the 1st and 2nd calls

var stopwatch1 = Stopwatch.StartNew();

calc(); // 1st call (cold start)

stopwatch1.Stop();

var stopwatch2 = Stopwatch.StartNew();

var result = calc(); // 2nd call (warmed state)

stopwatch2.Stop();

// Print results

Console.WriteLine($"Result   : {result}");

Console.WriteLine($"1st call : {stopwatch1.ElapsedMilliseconds} ms");

Console.WriteLine($"2nd call : {stopwatch2.ElapsedMilliseconds} ms");

Here is an example of possible results:

Result   : 500000

1st call : 612 ms

2nd call : 0 ms

If you try to run it on your machine, you can get other absolute numbers for the first call, 

but the conclusion will be the same: the first call takes a huge amount of time.

Conclusions:

• Jitting of a single method can take a lot of time.

The JIT compiler can significantly slow down not only the startup 

time, but also the first call of a single method. Such a problem can 

be easily found if you profile the application.

• Some optimization changes the trade-off between cold and warm 
start.

When you have two approaches, it’s not always possible to say 

which one is faster. Like in the “The Tortoise and The Hare” story, 

some solutions can be slow on start and still come out ahead.
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AN EXERCISE

replace 1000000 in the code snippet with code generation with parameter n. take 

measurements for different values of n and draw a plot that demonstrates the duration of the 

first call for each n. try several Jit compilers (LegacyJit, ryuJit, monoJit) and compare plots. 

find the value of n when each Jit starts to take more than 100ms on jitting. try to write your 

own algorithms on pure iL and repeat the measurements. the exercise should give you the 

basic feeling of how expensive Jit compiler can be depending on the method body.

This was the last case study in this section. Let’s summarize what have we learned.

 Summing Up
In this section, we discussed different kinds of compilation:

• IL Generation

When we create a new program on our favorite .NET-compatible 

language (e.g., C#, VB.NET, F#, Managed C++, or Q#), a compiler 

transforms it to IL. A build system orchestrates the compilation 

process and helps us to build projects and solutions. The 

most popular toolset is MSBuild+Roslyn, but there are other 

technologies like XBuild and the legacy C# compiler that are still 

used in the industry. By default, our programs will be compiled in 

the Debug mode (with disabled optimizations), which is great for 

debugging but not a good option for benchmarking. If we want to 

benchmark anything, we should switch to the Release mode (with 

enabled optimizations).

• JIT Compilation

The IL code can be transformed to native code by the JIT compiler. 

It’s happening in runtime on demand: runtime generates native 

code on the first method call. .NET Framework has three available 

JIT compilers: LegacyJIT-x86 (the only option for x86), RyuJIT-x64 

(the default option since .NET Framework 4.6), and LegacyJIT-x64 

(the default option before .NET Framework 4.6; can be manually 

Chapter 3  how environment affeCts performanCe



150

enabled in the latest versions). .NET Core 2.0+ uses RyuJIT for 

both x86 and x64 architectures. Mono uses its own independent 

JIT compiler (MonoJIT), which can be switched to the LLVM back 

end (MonoLLVM).

• AOT Compilation

The native code can be generated in advance with additional 

tools like NGen, CrossGen, Mono AOT, .NET Native, CoreRT, or 

RuntimeHelpers.PrepareMethod. Such an approach can reduce 

the application startup time and provide better optimizations, but 

it has some limitations (e.g., dynamic code execution, reflection, 

generics, and so on).

Now we know the most popular compiling and build tools in the .NET ecosystem. It’s 

time to the discuss external environments that surround our runtimes.

 External Environment
The environment of a program is a runtime. However, a runtime also has an 

environment. We use runtime on a specific operating system that is running on some 

hardware that exists in the physical world. In this section, we will discuss all these 

“external environments”: why they matter and how they can affect performance.

 Operating System
In the modern world, .NET is cross-platform. From the user’s point of view, it’s good 

because now you can run a .NET application on different operating systems. From the 

performance engineer’s point of view, it’s bad because now you should worry about 

performance on each operating system as well.

The duration of the same method call may vary depending on the operating system. 

Let’s consider an example. In Figure 3-3, you can see a plot that demonstrates the duration 

of a single integration test in Rider 2018.2. The test shows completely different results on 

different OS. In June, we can observe around 9–16 seconds on Windows, around 58–77 

seconds on Linux, and around 87–120 seconds on macOS. It doesn’t mean that Windows 

is always fast and macOS is always slow: we also have tests where macOS is the champion 

and Windows is the slowest operating system, and in other tests, all three operating 
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systems show the same result. If you look closely at the chart and compare May and 

August, you can notice a significant performance degradation on Linux and macOS (on 

Windows, the duration of the test has not changed). It seems that we had some destructive 

changes that randomly slowed down the cleanup on Linux and macOS.

Figure 3-3. Duration of a cleanup test in Rider 2018.2 on different OS

In this subsection, we briefly recall the history of Windows, Linux, and macOS, look 

at the important operating system versions, and learn how to get these versions from the 

command line and managed code.

Windows is the only operating system that supports all three .NET runtimes because 

.NET Framework works only on Windows. On Unix-like operating systems (Linux and 

macOS), we can use only .NET Core and Mono. There are some other operating systems 

which can also be used for running .NET programs. For example, you can build .NET 

Core on FreeBSD as well. Mono supports different mobile OS (like Android, iOS, tvOS, 

and watchOS) and game consoles (like PlayStation 3, Xbox 360, and Wii). However, these 

operating systems are out of this book’s scope, so we are going to discuss only Windows, 

Linux, and macOS.

Let’s talk about each operating system in detail.
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 Windows

Windows is the homeland for .NET because .NET Framework was designed for this 

OS. Internally, many of the .NET Framework subsystems (like WPF) are tightly integrated 

with the Windows API and can be used only on Windows.

Let’s briefly recall some important versions of Windows. You can find some major 

desktop and server editions in Table 3-7.

Table 3-7. Some Windows Versions

Edition Version Kernel version Release date

Desktop 95 4.00 1995-08-24

Desktop 98 4.10 1998-06-25

Desktop me 4.90 2000-09-14

Desktop 2000 nt 5.0 2000-02-17

Desktop Xp nt 5.1 2001-10-25

Desktop vista nt 6.0 2007-01-30

Desktop 7 nt 6.1 2009-10-22

Desktop 8 nt 6.2 2012-10-26

Desktop 8.1 nt 6.3 2013-10-17

Desktop 10 nt 10.0 2015-07-29

server 2000 nt 5.0 2000-02-17

server 2003 nt 5.2 2003-04-24

server 2003 r2 nt 5.2 2005-12-06

server 2008 nt 6.0 2008-02-27

server 2008 r2 nt 6.1 2009-10-22

server 2012 nt 6.2 2012-09-04

server 2012 r2 nt 6.3 2013-10-18

server 2016 nt 10.0 2016-10-12

server 2019 nt 10.0 2018-10-02
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In the scope of the book, we will discuss mainly Windows 10 (desktop) because it’s 

the most recent version of Windows and the end of mainstream support for Windows 8.1 

was on January 9, 2018. .NET Framework 3.5+ supports Windows XP+68 (and Windows 

Server 2003+), so sometimes we will discuss Windows XP, Vista, 7, 8, and 8.1 as well. 

Other Windows versions (like 1.01 or NT 3.1) are out of the scope of this book.

Since Windows 10 is the most interesting OS for us, it good to know the major 

updates for it; you can find them in Table 3-8.

It’s also good to know how to check the exact version of it. In particular, we are 

interested in the full four-number versions like 10.0.15063.674. On Windows, there are 

several ways to get the current operating system versions. For example, in Figure 3-4, you 

can see screenshots of the following programs:

Table 3-8. Major Windows 10 Builds

Version Build Marketing name Codename Release date

1507 10240 rtm threshold 1 2015-07-29

1511 10586 november Update threshold 2 2015-11-10

1607 14393 anniversary Update redstone 1 2016-08-02

1703 15063 Creators Update redstone 2 2017-04-05

1709 16299 fall Creators Update redstone 3 2017-10-17

1803 17134 april 2018 Update redstone 4 2018-04-30

1809 17763 october 2018 Update redstone 5 2018-11-13

68 .NET Framework 1.0, 1.1., and 2.0 can be used on Windows 98/ME/2000.
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• ver in the command line, which returns Microsoft Windows [Version 

10.0.15063]. Now we know the main part of the version (build 15063 

corresponds to 1703 “Creators Update”), but we don’t know the 

revision version. ver prints the revisions only since 10.0.16299+.

• regedit (Registry Editor) with opened HKEY_LOCAL_MACHINE\

SOFTWARE\Microsoft\Windows NT\CurrentVersion\UBR. As you can 

see, the UBR (Update Build Revision) value is 674, which means that 

the full Windows version is 10.0.15063.674.

• winver, which provides a more user-friendly way to get the complete 

Windows version.

 Linux

.NET Framework doesn’t work on Linux, but we can use Mono and .NET Core for our 

.NET applications. There is a huge number of Linux distributions,69 and of course, we 

can’t discuss them all in this book. The main idea of checking different versions of 

Linux is to show how it can affect your performance. You should understand that it’s not 

Figure 3-4. Screenshots of different programs with Windows version

69 You can find the list of the most popular Linux distributions here: www.distrowatch.com
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enough to say that you are working on Linux; it’s also worth mentioning the title of the 

Linux distribution and its full version.

The main operating systems that are officially supported in the latest versions of 

Mono are Ubuntu, Debian, Raspbian, and CentOS. However, you can also use it on other 

distributions like openSUSE, Fedora, Linux Mint, and so on.

.NET Core supports several Linux distributions70: Red Hat Enterprise Linux, CentOS, 

Oracle Linux, Fedora, Debian, Ubuntu, Linux Mint, openSUSE, SUSE Enterprise Linux 

(SLES), and Alpine Linux.

In the scope of this book, we usually discuss only popular Debian-based 

distributions (e.g., Ubuntu), but the main parts of the explanations are applicable for 

other Linux distributions as well.

One of the best ways to check the distribution version in the command line is lsb_

release -a.

Typical output for Ubuntu:

Distributor ID:  Ubuntu

Description:     Ubuntu 16.04.3 LTS

Release:         16.04

Codename:        xenial

 macOS

macOS is another operating system developed by Apple. In Table 3-9, you can see the 

list of major versions with their codenames and kernel versions (the macOS kernel is 

known as Darwin). Previously, macOS was known as “Mac OS X” (10.0–10.7) and “OS X” 

(10.8–10.11), but it was renamed to macOS in 10.12 to be consistent with other operating 

systems by Apple like iOS, watchOS, and tvOS.

70 Different versions of .NET Core support different distributions.
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There are several ways to check your Mac version from the command line. The first one 

is to run sw_vers, which will give you output like this:

ProductName:     Mac OS X

ProductVersion:  10.14.2

BuildVersion:    18C54

If you need only the version number, you can run sw_vers -productVersion (it 

returns 10.14.2 in this case). If you need extended information (including the kernel 

version), run system_profiler SPSoftwareDataType. here are some typical lines in the 

output:

System Version:  macOS 10.14.2 (18C54)

Kernel Version:  Darwin 18.2.0

Table 3-9. List of Major Mac OS X / OS X / macOS Versions

Title Version Codename Darwin Release date

mac os X 10.0 Cheetah 1.3.1 2001-03-24

mac os X 10.1 puma 1.4.1 2001-09-25

mac os X 10.2 Jaguar 6 2002-08-24

mac os X 10.3 panther 7 2003-10-24

mac os X 10.4 tiger 8 2005-04-29

mac os X 10.5 Leopard 9 2007-10-26

mac os X 10.6 snow Leopard 10 2009-08-28

mac os X 10.7 Lion 11 2011-07-20

os X 10.8 mountain Lion 12 2012-07-25

os X 10.9 mavericks 13 2013-22-10

os X 10.10 Yosemite 14 2014-10-16

os X 10.11 el Capitan 15 2015-09-30

macos 10.12 sierra 16 2016-09-20

macos 10.13 high sierra 17 2017-09-25

macos 10.14 mojave 18 2018-09-24
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Now let’s check which values we get from C# code on Mono and CoreCLR:

Environment.OSVersion = "Unix 18.2.0.0"

macOS is based on Unix, so macOS and Linux have much in common. 

Unfortunately, it’s not possible to distinguish Linux and macOS via Environment.

OSVersion because it returns "Unix" for modern versions of both operating systems.  

If you want to check what kind of OS you have without additional dependencies, you  

can do the following hack based on uname from libc:

[DllImport("libc", SetLastError = true)]

private static extern int uname(IntPtr buf);

private static string GetSysnameFromUname()

{

  var buf = IntPtr.Zero;

  try

  {

    buf = Marshal.AllocHGlobal(8192);

    // This is a hacktastic way of getting sysname from uname ()

    int rc = uname(buf);

    if (rc != 0)

    {

      throw new Exception("uname from libc returned " + rc);

    }

    string os = Marshal.PtrToStringAnsi(buf);

    return os;

  }

  finally

  {

    if (buf != IntPtr.Zero)

      Marshal.FreeHGlobal(buf);

  }

}

The GetSysnameFromUname() returns "Linux" for Linux and "Darwin" for macOS.
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There is another way to get full info about the current OS version: you can install 

the Microsoft.DotNet.PlatformAbstractions NuGet packages (which require .NET 

Framework 4.5.1+ or .NET Standard 1.3+) and use the RuntimeEnvironment class from 

the Microsoft.DotNet.PlatformAbstractions namespace. Here is an example of the 

RuntimeEnvironment properties on macOS:

RuntimeEnvironment.OperatingSystem          = "Mac OS X"

RuntimeEnvironment.OperatingSystemPlatform  = "Darwin"

RuntimeEnvironment.OperatingSystemVersion   = "10.14"

If you target .NET Core, you can also use System.Runtime.InteropServices.

RuntimeInformation.71 RuntimeInformation.OSDescription will return a string like 

this:

Darwin 18.2.0 Darwin Kernel Version 18.2.0: Mon Nov 12 20:24:46 PST 2018;

root:xnu-4903.231.4~2/RELEASE_X86_64

This API is also available for .NET Framework 4.7.1+, but it returns “Unix 18.2.0.0” on 

Mono.

Mono 5.18+ supports OS X 10.9 and later.72 .NET Core 1.0 supports macOS 10.11, 

10.12; .NET Core 2.0 supports macOS 10.12+. In this book, we will discuss macOS 

10.12+.

In the next subsection, we will talk about the hardware environment for the 

operating system.

 Hardware
In the modern world, there are an enormous number of different devices. If you 

open technical specification for your computer or mobile phone, you will find many 

characteristics that are important for performance. It’s pretty hard to compare different 

71 https://docs.microsoft.com/en-us/dotnet/api/system.runtime.interopservices.
runtimeinformation

72 Previously, Mono supported Mac OS X 10.7+, but the requirement was updated because of the 
limitations in the TLS stack. See https://github.com/mono/mono/issues/9581
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hardware; it’s not always possible to say which device is faster because different devices 

can be optimized for specific use cases and be better only in specific situations.73

In this subsection, we are going to briefly discuss the main hardware components: 

CPU, RAM, disks, network hardware, and others.

The CPU is the heart of any computer. It’s an electronic circuitry which performs all 

the basic operations like arithmetic, logical, and I/O (input/output). There many different 

companies that produce CPU chips: the most famous and popular are Intel, AMD, and 

VIA Technologies. Each CPU has an architecture that defines an instruction set. One of 

the most popular architectures is x86, with a 32-bit instruction set developed by Intel. 

There is a 64-bit version of this architecture called x64 (also known as x86_64, AMD64, or 

Intel 64). Initially, Intel tried to create another 64-bit architecture called Itanium, but 

it wasn’t popular because it didn’t support existing x86-based programs. Meanwhile, 

AMD developed its own instruction set, AMD64, which was backward compatible with 

x86. It became very popular, so Intel also decided to adopt it. While x86 and x64 are 

very popular on server and desktop machines, there is another architecture called ARM, 

which is widely used on mobile and embedded devices because it was designed for low 

power consumption. There are 32-bit and 64-bit versions of ARM: ARM32 and ARM64 .NET 

Core 2.1+ supports ARM32,74 so you can run it even on Raspberry Pi.75 Meanwhile, Mono 

supports many other architectures like MIPS, PowerPC, SPARC (32 bits), s390x (64 bits), 

and others.76 There are a huge number of different processor architectures by different 

manufacturers, but in the scope of this book, we will be focused on x86 and x64.

If you create a classic .NET application from a template, you can find the following 

line in the corresponding csproj file:

<PlatformTarget>AnyCPU</PlatformTarget>

This means that your application can target any platform, no special requirements 

are specified. If you want to run the application only on a specific platform, you can 

change this value (e.g., you can specify x86 or x64).

73 If you really want to compare two hardware configurations, you can use www.userbenchmark.
com to get the basic device characteristics. It doesn’t mean that you will know which hardware is 
better “in general,” but you will get some expectation about it.

74 https://github.com/dotnet/announcements/issues/29
75 https://github.com/dotnet/core/blob/v2.1.3/samples/RaspberryPiInstructions.md
76 www.mono-project.com/docs/about-mono/supported-platforms/
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There is another interesting option that can you meet in csproj files:

<Prefer32bit>false</Prefer32bit>

The default value of Prefer32bit is true. This means that if you create a new classic 

.NET Framework project on Windows-x64 (which supports both x86 and x64 programs), 

it will be executed using x86 instruction set. If you want to run it on x64, you should set 

PlatformTarget=x64 or Prefer32bit=false. The “AnyCPU with Prefer32bit” mode has 

a special feature: it will correctly work on ARM-based Windows while an x86 program 

will fail on ARM (you can find more details in [Goldshtein 2012]). If you compile C# 

files directly via a compiler, you can specify the platform via the /platform: argument 

(possible values: x86, x64, Itanium, arm, anycpu32bitpreferred, anycpu).

We are not going to discuss all kinds of CPU, but it’s still pretty important to show 

how performance depends on CPU internals. In the scope of this book, we will focus 

on Intel Core iX processors. This lineup includes Core i3, Core i5, Core i7, and Core 

i9 (i5 is superior to i3, i7 is superior to i5, i9 is superior to i7). Each model has several 

different generations of microarchitectures (Micro-arch); you can find some of them in 

Table 3-10. Usually, you can guess the microarchitecture by a processor number. The full 

specification can be found on Intel’s official website.77

Table 3-10. List of Recent Intel Core iX Processors

Gen Process Micro-arch Codename Release date

1 45nm nehalem nehalem 2008-11-17

1 32nm nehalem westmere 2010-01-04

2 32nm sandy Bridge sandy Bridge 2011-01-09

3 22nm sandy Bridge ivy Bridge 2012-04-29

4 22nm haswell haswell 2013-06-02

5 14nm haswell Broadwell 2014-09-05

6 14nm skylake skylake 2015-08-05

7 14nm skylake Kaby Lake 2017-01-03

8 14nm skylake Coffee Lake 2017-10-05

77 www.intel.com/content/www/us/en/processors/processor-numbers.html
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A CPU can have several physical cores; each core can process instruction 

independently. A technology called Hyperthreading allows emulating two logical cores 

on a single physical core. One of the basic CPU characteristics is CPU frequency (or CPU 

clock rate). It defines the number of clock cycles per second. Each assembly instruction 

takes one or several CPU cycles. If you open the technical specifications of your CPU, 

you can find a single value that describes the primary CPU frequency. However, it’s not 

a constant: the frequency can be dynamically or permanently changed with the help of 

overclocking, underclocking, CPU throttling, or other techniques. CPU has many other 

characteristics which are important for performance: a number of CPU cache levels 

and their size, supported sets of instructions (like SSE or AVX), advanced supported 

technologies (like Power reduction technology), and so on.

CPU is not the only hardware component “responsible” for performance. There are 

many others:

• RAM

Each program operates with RAM all the time. In terms of 

performance, the kind of RAM we have (e.g., DDR2, DDR3, 

DDR3L, DDR4), its latency, frequency, and the total memory size 

(bad things may happen if you don’t have enough memory) are all 

important.

• Disks

Programs also require different memory storage devices to 

save data permanently. Again, we have so many options to save 

our data: HDD, SSD, SSHD, RAID, different kinds of storage 

virtualization, and so on.

• Network hardware

Modern applications actively interact with the Internet or the 

local network. Network bandwidth also becomes a bottleneck 

for the application performance. If you want to send data from 

one computer to another, the “data transportation process” may 

involve a huge number of different network devices with different 

types of commutation.
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• Other hardware components

Depending on the application use cases, other hardware 

components also may be pretty important. If the application 

mines cryptocurrency, the GPU model can be pretty important. 

Advanced rendering 3D engines are also sensitive to the GPU’s 

capabilities, but its performance can also depend on the screen 

resolution. Other components like the battery and cooler are also 

important.

During my performance investigations at JetBrains, I have six different physical 

computers on my desks: three equivalent Mac mini with installed macOS, Windows, and 

Linux; a MacBook Pro, a Linux desktop, and a Windows laptop. The three equivalent Mac 

mini allow comparing performance on different operating systems without concerns 

about different hardware. I also have three different monitors: two with 4K resolution 

and one without the 4K support. Such a setup is not a luxury; it’s my primary tool which 

significantly simplifies my performance investigations. Of course, we also have a huge 

pool of remote machines, but these can’t be used for all of our tasks because our main 

products like Rider and IntelliJ IDEA are desktop applications. It’s pretty important to 

check performance under conditions that are similar to the user environment. Some 

of the tricky problems are HiDPI-specific, so a physical monitor is required; many UI 

benchmarks can’t be executed correctly via a remote session.

Everything depends on your use cases. However, there are some “main” components 

that can be bottlenecks for most applications: CPU, memory, disks, network. We will 

discuss CPU and memory in detail in Chapters 7 and 8. And now we have the last part of 

the environment to discuss: the physical world.

 The Physical World
The hardware always exists in some real physical conditions. These conditions can 

also affect the performance of your applications. In this section, we are going to 

briefly discuss some of the physical factors that have an influence on performance: 

temperature, vibrations, physical location, and humidity.
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 Temperature

Temperature is one of the most important physical characteristics in terms of 

performance and reliability. Companies that have their own data centers spend a huge 

amount of money and effort on thermal control. Handling cooling issues is a serious 

challenge, there are many technologies and approaches that try to solve them. For 

example, Microsoft even decided to create data centers under the sea (see [Roach 2018]).

Cooling is important not only for data centers but also for desktop computers and 

laptops. There are several ways to save your CPU from overheating. One of the most 

obvious approaches is to use an external cooler. It’s not always enough, so we have 

another option to reduce the temperature. Most modern processors have a cool feature 

called CPU throttling. It allows dynamically changing the CPU frequency depending on 

external factors. Thus, if heavy calculations cause too-high temperatures that can’t be 

handled by a cooler, we can slow down the CPU and reduce the amount of generated 

heat. This is also called thermal throttling.

There are many interesting stories about performance problems and CPU 

throttling, but I’m going to tell you my favorite one. In July 2018, Apple started to sell 

a new generation of MacBook Pro, which included a model with six-core Intel Core i9 

processors. It was supposed to be a high-performance device, but there was a bug in the 

thermal management system: when you started to do a lot of CPU-bound calculations, 

the temperature rose and the thermal throttling significantly slowed down the CPU clock 

rate. As a result, it worked slower than the cheaper MacBook of the same generation 

with the less advanced Core i7 processor. Some users complained (see [Lee 2018]) that 

it could outperform i7 only if you put the MacBook in a freezer. The bug was fixed by a 

software update in the macOS High Sierra 10.13.6 Supplemental Update.

Thermal throttling is not a rare event; I observe it all the time on different laptops. 

In general, it’s a good technology because it protects your computers from damage. 

However, it’s a serious problem for benchmarking: a sudden throttling can completely 

distort your performance measurements.

 Vibrations

While temperature is important for CPU-bound programs, vibrations can affect disk-

bound operations if you are using an HDD. It has mechanical parts, so any vibrations 

may affect its performance or reliability.
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There is a famous video by Brendan Gregg called “Shouting in the Datacenter” (see 

[Gregg 2008]). In this video, Brendan screams at hard disk drives and shows real-time 

latency charts with peaks at the moments of screaming. This experiment demonstrates 

that even “scream” vibrations can significantly increase the latency of I/O operations.

There are some other interesting effects based on the sensitivity of HDD to 

vibrations. For example, in the kscope78 project, Alfredo Ortega demonstrates how HDD 

can be used as a microphone: he measures the latency of disk operations and calculates 

the HDD frequency. He also uses this technique for another program called hdd-killer: if 

we play a sound with the current HDD frequency, it will resonate with the hardware and 

can seriously damage the hardware (in addition to causing changes in performance).

In [Shahrad 2017], scientists from Princeton University present an another attack 

based on acoustic resonance. They show how an attacker can disable a closed-circuit 

television (CCTV) system by targeting its digital video recorder (DVR) device. The same 

attack can also target a personal computer, causing a failure of an operating system.

Another interesting HDD “feature” is the active hard-drive protection. When the 

internal accelerometer detects excess acceleration or vibration, the hard drive unloads its 

heads to prevent damage. Thus, if you accidentally drop your laptop with an HDD during 

disk-bound benchmarking, you may observe performance regression at this moment.

As you can see, vibration is a serious issue for HDD performance. During 

benchmarking, you can get performance perturbations because of vibration, which can be 

incorrectly interpreted if you don’t know about such phenomena. If you are using an SSD, 

you can ignore vibration because such disks have no moving parts. However, hard disk 

drives are still widely used, so it’s good to know about possible performance problems.

 Physical location

In the modern world, many people actively use different mobile applications on 

phones and tablets. The network becomes the bottleneck for most of such applications: 

performance depends on the signal strength. You have probably experienced a poor 

signal in the country or on a picnic in the woods: a browser and all the applications work 

superslow. Typical operations that are usually performed instantly may take many seconds 

or even minutes. Unfortunately, developers often forget about this during the development 

of their own mobile applications and run target benchmarks only with a good signal. This 

is probably not the best strategy if you want to make all of your users happy.

78 https://github.com/ortegaalfredo/kscope/
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Thus, developers who care about performance in all possible locations try to handle 

cases with poor signal. Some of the approaches look pretty interesting. For example, in 

[Colwell 2018], Brien Colwell speaks about a “distributed node device lab.” Basically, it’s 

a box with many Android and iOS devices. Such boxes were deployed in different cities 

to different locations: secure office buildings, base station, retail stores, data centers, 

moving cars/buses, and so on. With this approach, his team was able to detect places 

with poor signal, collect relevant metrics, make a recording of tests with performance 

problems, debug these tests, and fix them.

Some companies are trying to emulate poor connection in the office.79 For example, 

in Facebook, there is a practice called “2G Tuesdays” (see [McCormick 2015]): they 

simulate a superslow Internet connection for an hour. It helps developers to get the same 

experience that other people with 2G Internet have. With this simple exercise, they can 

find features that are not optimized for a slow connection.

 Humidity

Physical location is not the only factor that affects the signal strength. In [Luomala 2015], 

researchers from the University of Jyvaskyla investigated how temperature and humidity 

affect radio signal strength in outdoor wireless sensor networks. They conducted many 

experiments during different seasons (winter/summer) and times of day (day/night) in 

different weather conditions. They showed the relationship between the weather and 

radio signal strength. We already discussed that temperature may affect performance, 

but we talked about the hardware temperature and CPU-bound operations. According 

to the research, the outdoor temperature (and humidity) may affect network-bound 

operations. Thus, we can get different performance metrics in the same location 

depending on the weather.

The physical conditions are very important for any hardware. External factors like 

temperature, vibrations, physical location, humidity, and others have an influence 

on the application performance.80 Hardware does not exist in a vacuum; don’t forget 

about the physical world. If you know which external factors are important for a specific 

79 There are a lot of different ways to emulate low network connectivity. Here is a pretty interesting 
way to do it: https://stackoverflow.com/a/8630401

80 External conditions can have pretty strange effects on hardware. Here is an interesting Twitter 
thread where John Hyphen explains why he was late: https://twitter.com/JohnHyphen/
status/971405857446645761. His clock shows incorrect time because of the unbalanced 
frequency in the electricity grid.
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benchmark (CPU-bound, disk-bound, and network-bound benchmarks are sensitive to 

different factors), you can predict possible problems that can spoil the measurements, 

and then you can stabilize the result by controlling external conditions.

Now let’s discuss a few interesting stories about external environmental factors that 

can significantly affect performance.

 Case Study 1: Windows Updates and Changes in .NET 
Framework
Developers usually care about the runtime versions and don’t care about the OS version. 

However, the OS version can also be pretty important. For example, minor Windows 

updates can change the installed versions of the .NET Framework.

There was a bug known as coreclr#1157481 in RyuJIT optimizations that affected .NET 

Framework 4.7. Consider the following code from the issue:

using System;

class Program

{

  static byte[] s_arr2;

  static byte[] s_arr3;

  static void Init()

  {

    s_arr2 = new byte[] { 0x11, 0x12, 0x13 };

    s_arr3 = new byte[] { 0x21, 0x22, 0x33 };

  }

  static void Main(string[] args)

  {

    Init();

    byte[] arr1 = new byte[] { 2 };

    byte[] arr2 = s_arr2;

    byte[] arr3 = s_arr3;

81 https://github.com/dotnet/coreclr/issues/11574
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    int len = arr1.Length + arr2.Length + arr3.Length;

    int cur = 0;

    Console.WriteLine("1: cur = {0}", cur);

    cur += arr1.Length;

    Console.WriteLine("2: cur += {0}, now {1}", arr1.Length, cur);

    cur += arr2.Length;

    Console.WriteLine("3: cur += {0}, now {1}", arr2.Length, cur);

    cur += arr3.Length;

    Console.WriteLine("4: cur += {0}, now {1}", arr3.Length, cur);

    Console.WriteLine("5: len is {0}", len);

  }

}

Because of the bug, this code snippet printed the following output:

1: cur = 0

2: cur += 1, now 1

3: cur += 3, now 6

4: cur += 3, now 7

5: len is 7

In the 3: cur += 3, now 6 line, we can see that the cur value is miscalculated: we 

got 6 instead of 4. The bug was fixed in .NET Framework September 2017 Security and 

Quality Rollup.

Let’s say you have Windows 10 1703 installed (10.0.15063). The bug fix for this 

version was included in KB403878882 (a part of the .NET Framework September 

2017 Security and Quality Rollup83), which corresponds to Windows 10.0.15063.608 

(September 12, 2017). If you have an earlier version of 1703 (10.0.15063.x where x is 

0, 13, 138, 250, 296, 297, 332, 413, 414, 447, 483, 502, or 540), you have this bug. If you 

have the update (10.0.15063.x where x is 608 or higher), you don’t have the bug. .NET 

Framework versions are the same, and the main parts of Windows version (major.minor.

build) are the same, but the logic of RyuJIT optimizations depends on the Windows 

revision number.

82 https://support.microsoft.com/en-us/help/4038788/windows-10-update-kb4038788
83 https://blogs.msdn.microsoft.com/dotnet/2017/09/12/
net-framework-september-2017-security-and-quality-rollup/
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If you share some performance results for .NET Framework, it’s recommended to 

share also the full version of your Windows (include the revision number).

Conclusion:

• Windows revision number matters.

The full versions of the installed .NET Framework may be not enough 

to fully describe the behavior of your applications. Windows updates 

can contain some important fixes for existing versions of the runtime.

AN EXERCISE

Check out other .net framework security and Quality rollups (you can find it in the microsoft 

.net Blog84) and try to find other Jit-specific changes.

 Case Study 2: Meltdown, Spectre, and Critical Patches
Meltdown and Spectre are probably the biggest known CPU security vulnerabilities 

of the 21st century. They were disclosed on January 3, 2018, and it was huge news. 

Long story short: these vulnerabilities allow you to read data from OS kernels or other 

processes without permissions. It affects almost all modern CPUs (Intel, AMD, ARM) 

manufactured since 1995 (with some limitations). We will skip detailed descriptions of 

these vulnerabilities (because it’s out of the scope of this book), but you can read more in 

[Meltdown] and [Spectre].85

This sounds impressive, but these vulnerabilities are security issues. Why should 

we care about performance here? Some of the most important security holes were fixed 

by OS patches (without hardware updates). These patches for most popular operating 

systems were published almost immediately. The only drawback was performance 

reduction of up to 30% (for some use cases). You can easily google many other reports 

about performance problems that occurred as a result of the vulnerability fixes. One of 

my favorite blog posts is [Gregg 2018] by Brendan Gregg.

84 https://blogs.msdn.microsoft.com/dotnet/
85 If you like stories about interesting vulnerabilities, it’s also recommended to read [Foreshadow].
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An important fact: we are talking about minor OS updates. Well, these performance 

updates contain huge changes and huge performance impacts, even though they are 

minor.

Conclusions:

• The operating system versions matter.

Not only the major part, even the build and revision number 

matter a lot. And it’s not only about .NET Framework; it’s about 

the overall OS performance for all kinds of software.

• Security fixes can slow down your applications.

If an update changelog doesn’t include information about 

performance changes, it doesn’t mean that you will not get a 

performance drop. It’s a common situation when security patches 

fix vulnerabilities by sacrificing performance.

AN EXERCISE

take hardware that is affected by meltdown and do your own performance research. You 

should write some benchmarks and show the performance problems that were introduced 

by the security fixes. You may use old and new versions of your favorite os or find a way to 

disable the meltdown patches. it’s not a quick and easy exercise, but it will help you to learn 

some important skills.

 Case Study 3: MSBuild and Windows Defender
This is another story about Rider. Once, we bought new physical machines for our 

performance agent pool. We deployed Windows, Linux, and macOS images on them 

and started to run a specific part of our test suite several times per day. We checked 

the current level of performance; everything was fine. After a few days, we noticed a 

serious performance degradation for some tests on Windows. We tried to revert the latest 

commits, but it didn’t help: these tests still took a tremendous amount of time. After an 

investigation, it turned out that the culprit was Windows Defender!86 The biggest part 

86 www.microsoft.com/en-us/windows/windows-defender/
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of the degraded test involved a solution build, which produced many I/O operations. 

Windows Defender87 can slow down such operations, especially if a process creates 

many exe and dll files. Unfortunately, it’s not so trivial to disable Windows Defender: 

if you just turn it off in the settings, it will be enabled again after reboot. This is what 

happened on the day of degradation. There is a way to disable it permanently, but 

this approach wasn’t applied to our updated Windows images because of a mistake. 

In Figure 3-5, you can see the performance plot for one of such tests: we had about 28 

seconds with enabled Windows Defender and 4 seconds after this environment fix.

There are a lot of OS processes that can slow down your benchmarks. For example, 

after another update of our macOS agents, we got a 300% performance degradation. 

After a short investigation, it turned out that the only problem was about the screen saver 

Figure 3-5. Performance plot of Rider SimpleBuildTest

87 You can find it in the process explorer by looking for msmpeng.exe process.
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process, which was accidentally enabled during the update. This is a common problem 

for macOS VMs; you can find more details in [Albrechtslund 2013].

Conclusion:

• Some OS features can significantly slow down your program.

As you can see, Windows Defender has a significant impact on 

some workloads with a huge number of I/O operations. If you 

want to get better performance with local projects, it makes 

sense to add your work directory to the list of Windows Defender 

exclusions. During benchmarking, you can monitor the process 

explorer and check for any processes which do CPU, disk, or 

network operations. This sanity check will help you to verify that 

performance measurements are not spoiled by other processes.

AN EXERCISE

if you are working on windows, check if windows Defender is enabled and does it have your 

work directory in the exclusions list. try to rebuild your project with enabled and disabled 

windows Defender. if you are lucky enough and the build process of the project is simple, you 

will not observe any different for these configurations. in another case, you may also discover 

some interesting performance impacts.

 Case Study 4: Pause Latency and Intel Skylake
Now let’s talk about different CPU models. People often don’t expect serious 

performance changes during an upgrade on the next CPU microarchitecture. If you 

ask your colleagues “What is the difference between fifth and sixth Intel Core iX 

generations?”, you probably get an answer like “The sixth generation is better, it should 

work faster,” but most developers can’t explain why it works “faster” and what “better” 

means. In fact, next-generation CPUs are not always faster; some workloads can be even 

slower. Let’s look at an example.
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In the x86 instruction set, there is the pause instruction. It’s used by Thread.

SpinWait88 for spin-wait loops. This method may help to improve performance in 

multithreaded applications because threads can acquire locks without expensive context 

switching. In [Intel OptManual], section 8.4.7, we can find interesting information about 

the pause latency:

The latency of PAUSE instruction in prior generation 

microarchitecture is about 10 cycles, whereas on Skylake 

microarchitecture it has been extended to as many as 140 cycles.

…

As the PAUSE latency has been increased significantly, workloads 

that are sensitive to PAUSE latency will suffer some performance 

loss.

140 CPU cycles may sound like a small value. For example, on a CPU with a 2.0GHz 

frequency, it takes about 140 · 1 sec /(2 · 109) or 70 nanoseconds. Should we really worry 

about it? With the original idea, the increased pause latency should have a positive 

performance impact on highly threaded applications. However, everything depends on 

the implementation. It turned out that this change affected many .NET applications. For 

example, Alois Kraus reported about a 50% performance drop in some cases in [Kraus 

2018]. The described situation is pretty typical for heavily multithreaded applications. 

Imagine many threads that try to acquire a lock on the same object. To avoid heavy 

context switches, each thread tries to do spin wait first. In .NET Core 2.0/.NET 

Framework 4.7.2, the locking implementation contained many iterations with Thread.

SpinWait(PlatformHelper.ProcessorCount * (4 << i)) calls, where i is the index of 

an iteration. Such calls became pretty expensive with the 140 as the pause latency on the 

big values of i: each thread continues to be alive, spending more and more CPU time on 

each iteration. The corresponding .NET Core issue was reported in coreclr#13388.89  

It was actively discussed on GitHub; you can find many interesting details there. The issue 

was fixed in coreclr#1355690 by replacing these expensive calls with Thread.SpinWait 

(4 << i): this small edit solved the original problem. The fix is available in .NET Core 

88 https://docs.microsoft.com/en-us/dotnet/standard/threading/spinwait
89 https://github.com/dotnet/coreclr/issues/13388
90 https://github.com/dotnet/coreclr/pull/13556
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2.1.0 and .NET Framework 4.8 Preview.91 Later, the implementation was significantly 

improved (see coreclr#1367092 and coreclr#2998993).

Conclusions:

• Processor model matters.

Typically, people don’t care about the CPU model generations 

(especially when the frequency is the same). However, on 

some workloads, different CPU models can show a significant 

performance difference.

• Some instructions can have performance regression in new 
versions of processors.

Most developers expect small performance improvements with 

hardware updates and don’t expect any serious regression. But 

this is not always the case; performance is often about trade-offs. 

Engineers from Intel have decided to change the pause latency 

to optimize some workloads by sacrificing performance of other 

workloads.

AN EXERCISE

read the Github discussion about this problem and [Kraus 2018]. write your own 

multithreaded benchmark that shows the difference between .net Core 2.0.0 and 2.1.0 (you 

will need a proper CpU).

 Summing Up
When people say “program environment,” they often mean a specific version of a particular 

runtime. However, any runtime has its own external environment: it’s running on an 

operating system (like Windows, Linux, or macOS). An OS also has an external environment, 

91 https://github.com/Microsoft/dotnet-framework-early-access/blob/master/release-
notes/NET48/dotnet-48-changes.md

92 https://github.com/dotnet/coreclr/pull/13670
93 https://github.com/dotnet/corefx/pull/29989
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namely, hardware, which includes CPU (with a specific architecture like x86 or x64), RAM, 

disks, network hardware, and other components. And the hardware also has its own external 

environment: the physical world with variable temperature, vibrations, and humidity.

Benchmarking requires an understanding of these environmental factors and how 

they can affect performance. In this section, we briefly discussed each of them and 

introduced some terms and technologies. We will use them in subsequent chapters 

to illustrate some theoretical concepts. You won’t be able to know each aspect of each 

environment component (and we are not going to discuss even a fraction of them). 

It’s enough to understand which factors may be important for specific performance 

measurements. This knowledge will help you to design benchmark experiments and 

make correct conclusions.

 Summary
The only thing that you should learn from this chapter is simple: environment matters. 

You can’t discuss the performance of abstract source code in general case.

In this chapter, we covered the following environment-specific topics:

• Runtime

 – .NET Framework

The original version of .NET platform by Microsoft. Initially, 

it was closed source. The source code of some core runtimes 

parts was open for reading (Rotor). Currently, the source code 

for the basic class library for .NET Framework 4.5.1+ is also 

available. Works only on Windows.

 – .NET Core

An alternative implementation of .NET Framework by 

Microsoft. It’s a cross-platform and open source project 

(available on GitHub).

 – Mono

Another alternative implementation of the .NET platform. The 

first versions were maintained by Xamarin, but now the project 

belongs to .NET Foundation. It’s a cross-platform and open 

source project (available on GitHub).
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• Compilation

 – IL generation

C# compiler translates your C# code into IL. There were two 

generations of C# compilers by Microsoft: the legacy compiler 

(C# 1 .. C# 5) and Roslyn (since C# 6). Mono had its own 

implementation of C# compiler (msc) but it was replaced 

by Roslyn in Mono 5.0.0. Another important component of 

the .NET infrastructure is a build system. The most popular 

build system, which was a part of .NET Framework from the 

beginning, is MSBuild. Mono had its own build system (XBuild) 

but it was replaced by MSBuild in Mono 5.0.0. There are some 

build toolchains on top of MSBuild like .NET Core SDK (the 

primary way to build and run SDK-style projects), Cake, Fake, 

Nuke, and so on.

 – JIT compilation

JIT compiler translates your IL code into native code during 

runtime. The original JIT in .NET Framework is LegacyJIT. 

Since .NET Framework 4.6, it has been replaced by RyuJIT for 

x64 (you can still switch to LegacyJIT if you want). .NET Core 

has used RyuJIT from the beginning. Mono has its own JIT 

implementation (MonoJIT).

 – AOT compilation

Besides JIT compilation, we have different AOT toolchains. 

AOT means that we create native code in advance (before 

the program execution is started). There are several ways to 

perform AOT, like NGen, Crossgen, Mono AOT, .NET Native, or 

CoreRT.

• External environment

 – Operating system

There are many different operating systems. In this book, we 

will usually discuss Windows, Linux, and macOS.
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 – Hardware

The most important hardware components are CPU, RAM, 

disks, and network hardware. In this book, Chapters 7 and 8 

demonstrate how hardware capabilities affect performance.

 – The physical world

Many physical characteristics and external conditions like 

temperature, vibrations, and humidity are also important in 

terms of performance.

The environment is one of the key components of your performance space. Even 

minor changes in the environment could significantly affect benchmarks. If you want to 

share some performance results, it’s a good practice to share as much information about 

your environment as possible.

Of course, you don’t need all this information in all kinds of benchmarks. It’s also 

good to think about possible bottlenecks and what component of the environment is 

important for your case. For example, in a CPU-bound benchmark, the most important 

environment factor is the processor model. In a disk-bound benchmark, it’s worth it 

to check the disk model. If you are not sure which environment properties you need, 

it’s better to write down more details than fewer details. Any of these answers could 

be very helpful for people who work with your benchmarks. Always think about your 

environment and don’t forget to share it with performance results.
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CHAPTER 4

Statistics for Performance 
Engineers

Without data you’re just another person with an opinion.

— W. Edwards Deming, a data scientist

In this chapter, we are going to discuss statistics and how to apply it to benchmarking. 

You will learn many useful approaches and techniques to help you improve your 

benchmark design and analyze the results.

There are many excellent books about statistics. For me as an author, it would be 

easy to name a few books and say: “Read them if you want to analyze benchmark results.” 

However, there are several problems with this idea. First of all, most developers don’t 

want to read books about statistics. And this is understandable: such books typically 

contain a lot of information that is irrelevant for your current task. Thus, most developers 

just don’t find them useful and interesting enough. Even if you read some good books 

about statistics, the human mind has a nasty “feature”: it quickly forgets information that 

it’s not using. If you had statistics lessons in the past and don’t have statistics experience 

in the present, you probably can’t reproduce all the important formulas and approaches.

Even if you perfectly remember everything, it’s often unclear how to apply statistics 

in the real world for performance distributions. “Performance distribution” means that 

we got this distribution from real performance measurements. Such distributions have 

many properties that may be nontypical for other data sources. Unfortunately, many 

classic academic approaches just don’t work when you try to apply them to performance 

distributions. In this chapter, you will find many practical recommendations about how 

to use different metrics in real life. Here you will not find any classic examples about 

balls in a box or presidential elections. We will focus only on how to use statistics in 
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benchmarking. Some of these recommendations can’t be applied for statistical research 

in general. Also, they can be invalid for some specific performance investigations. 

However, they contain empirical rules that work in most cases and help you make initial 

hypotheses about your data.

In this chapter, we are going to cover the following topics:

• Descriptive statistics

A set of measurements forms a distribution, which can be 

described by special statistical metrics: minimum, maximum, 

median, mean, percentiles, quartiles, variance, standard error, 

and others. We will discuss how to calculate all these values and 

correctly interpret them. Sometimes it’s hard to work with raw 

numbers, so we will learn several ways to visualize data.

• Performance analysis

How can two distributions be compared? How can a relationship 

between a method’s performance and its parameters be 

detected? How can the parameters that have the most impact on 

performance be found? We are going to answer all these questions 

and cover important concepts like the null and alternative 

hypotheses, Type I and Type II errors, and p-values. Statistics 

can be useful not only after a performance experiment, but also 

during this experiment. You can adaptively choose the best 

number of iterations and other experiment options instead of 

choosing magic numbers in advance.

• How to lie with benchmarking

It’s pretty easy to fool yourself or others with the help of 

statistics. For self-defense, you need to know the most popular 

ways to lie with benchmarking. We will learn many deceiving 

techniques based on small samples, percentages, ratios, plots, 

and data dredging.

We are not going to cover the internal implementations of the statistical algorithms. 

In practice, it’s almost always better to take an existing implementation and consider 

such algorithms as black boxes. The most important skills are related to the correct 

interpretation of statistical metrics rather than how they are calculated (only the 
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simplest formulas will be presented). Some of the statements about statistics are not 

mathematically strict: this is to simplify the explanations and skip many footnotes about 

corner cases that you shouldn’t worry about. In benchmarking, you don’t need an 

in-depth knowledge of statistics: it’s enough to know the main concepts and how they 

should be used.

We assume that we already have well-designed benchmarks that were executed in 

the right environment without any mistakes. The output of these benchmarks is not a 

single number; it’s a set of different numbers that form a distribution (even if we are 

executing benchmarking in the same environment). Let’s start with the basics and learn 

how to describe typical performance distributions.

 Descriptive Statistics
In this section, we are going to discuss essential statistical metrics and visualizations that 

help to explore a single distribution.

Let’s say that we have a benchmark that produces a single performance metrics 

in the output (e.g., the operation duration). If we run this benchmark n times, we will 

get a new number for each iteration. We will denote them as x1, x2, … , xn. This set of 

measurements is known as a sample x, and n is the sample size. It would be simpler if 

all these numbers were equal. Unfortunately, that’s not the case: these measurements 

form a distribution that should be analyzed. Let’s learn some approaches to help 

aggregate and analyze such samples. We will discuss such topics as basic sample 

plots (timeline plot, rug plot, histograms, density plots, waterfall plots), sample size, 

minimum, maximum, range, mean, median, quantiles, quartiles, percentiles, five- 

number summary, interquartile range (IQR), outliers, box plots, frequency trails, modes, 

standard deviation, variance, normal distribution, skewness, kurtosis, standard error, 

confidence intervals, and the central limit theorem.

 Basic Sample Plots
Analyzing tons of raw numbers is hard. You can simplify this analysis with the help 

of good visualizations. A picture is worth a thousand numbers: you can instantly 

understand distribution properties with a good chart, but it’s not always possible if you 
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just look at numbers. There are several ways to draw a distribution. Here are some of the 

most popular ways:

• Timeline plot

You can see an example of a timeline plot in Figure 4-1 (the 

central part with dots). It’s the most direct way to display the 

measurements. For each iteration i (x axis), we draw a point that 

corresponds to the duration xi (y axis) of this iteration.

• Rug plot

You can see an example of a rug plot in Figure 4-1 (the right part 

with horizontal dashes). It’s a one-dimensional plot with all 

measurements. It contains all xi values on a single axis. You can 

imagine it as a “compressed” version of the timeline plot where 

the information about the iteration indexes is omitted.

• Histogram

You can see an example of a histogram in Figure 4-2 (A).  

A histogram shows the shape of your distribution. It’s a bar 

chart where each bar (also known as bin) shows how many 

measurements we have in the corresponding interval. If one bar is 

twice as high as another bar, it contains twice as many values from 

the sample. Usually, all bins have the same width, but you can 

choose your own binning functions (e.g., logarithmic). If you want 

to use the fixed width size, there are many different approaches to 

choosing this size.1

• Density plot

You can see an example of a density plot in Figure 4-2 (B).  

A density plot is a “smooth version” of a histogram. It shows the 

distribution shape with the help of a smooth curve instead of a 

set of bins. If you don’t care about specific bin heights and just 

want to know what the distribution looks like, the density plot 

is preferred because it has less visual noise. A histogram and a 

1 For example, Scott’s normal reference rule, Rice rule, Freedman–Diaconis’ choice, Doane’s 
formula, square-root choice, Sturges’ formula, and others.
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density plot can be combined into one picture as presented in 

Figure 4-2 (C).

• Density waterfall plots

If you have many distributions for the same benchmark, it may be 

hard to analyze them one by one. A waterfall plot combines many 

images and displays them on the same picture one under the 

other. A plot overlapping helps to make it compact. You can see an 

example of a density waterfall plot in Figure 4-2 (D).

Figure 4-1. Timeline and rug plots
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Figure 4-2. Different distribution visualizations
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Plotting is an excellent way of representing data, but it has one serious disadvantage: 

it’s hard to analyze plots automatically. You can instantly understand the distribution 

shape when you look at a single image, but if there are hundreds of distributions, you 

can’t look at all of them at the same time. A waterfall plot may solve this problem for 

a single benchmark, but it’s still an issue when you are working with many different 

methods and performance metrics. If you have a continuous benchmarking (you run 

a huge benchmark suite on a server each day), you probably don’t want to examine all 

generated plots every day; you need only those plots with issues. So, it’s important to 

have a way to detect “suspicious” distributions, which is hard if you only have a set of 

images: you need numeric metrics.

 PRACTICAL RECOMMENDATIONS

it’s always worth looking at a histogram or a density plot. however, a typical performance 

investigation includes dozens of experiments, and continuous plot monitoring may be time-

consuming. it’s recommended to look at the plots at the special moments of the investigation 

lifetime: e.g., after the first benchmark run (to get an idea about the distribution form), after 

the last benchmark run (to verify that your hypothesis is correct before making conclusions), 

and after a benchmark run with “suspicious” statistical metrics (to check the distribution for 

anomalies).

 Sample Size
The sample size is the number n of measurements in a sample. The histograms and 

density plots show the distribution shape, but they don’t contain information about the 

sample size. Thus, if you have three density plots for samples with n = 5, n = 100, and 

n = 10000, it’s not always possible to say where the plot is for each sample. Meanwhile, 

the sample size is a very important characteristic: it’s responsible for the accuracy. 

If you take many different samples with n = 5 for the same benchmark, you will get 

absolutely different density plots and values of the basic statistical metrics. If you take 

many samples with n = 10000, the results will be similar to each other. A big sample size 

helps to improve the result repeatability. However, extremely huge sample sizes are not 

optimal in terms of the total research duration: you may have to wait too much time for 

benchmark results. Thus, it makes sense to choose the minimal possible sample size that 

provides the required level of accuracy and repeatability.
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 PRACTICAL RECOMMENDATIONS

for the first benchmark run, it’s recommended to take the sample size from 15 to 30. 15 is 

the value when the essential statistical characteristics (which we are going to discuss soon) 

usually start to show trustworthy values. 30 is the value when most statistical tests start to 

work and show believable results. of course, 15 and 30 are just initial approximations: you 

can get good metrics estimation with 10 iterations or completely incorrect statistical test 

results with 40 iterations. if you make changes in the source code and rerun the benchmark 

trying to detect significant improvements like 5× speedup, you can try to do a few iterations 

(or even a single iteration). a single measurement doesn’t provide any statistical metrics, but 

it helps to evaluate the magnitude of measurements roughly. Sometimes it’s enough to say 

that a benchmark takes several milliseconds or several minutes. Benchmarks with complex 

distributions may require hundreds or even thousands of runs to get the correct metric values. 

it’s recommended to make a lot of runs for final checks before making any conclusions.

 Minimum, Maximum, and Range
The simplest distribution characteristics that we can calculate are the minimum and the 

maximum (or min and max). Together they form the range.

The minimum and the maximum values correspond to the best-case and worst-case 

performance or the fastest and the slowest measurements that we observe. The range 

provides us an idea what kind of values can we get for this benchmark.

 PRACTICAL RECOMMENDATIONS

if you run a simple benchmark in a sterile environment, you may get a narrow range like 

(15.181ms, 15.226ms). if you don’t care about better accuracy and you just want to compare 

two distributions, you may take any number from the interval (e.g., 15.2ms) and work with it: 

no other statistical characteristics are required. a benchmark with the (15.181ms, 15.226ms) 

range is most likely faster than a benchmark with the (629.4ms, 653.2ms) range. if the range 

is wide (there is a significant difference between the minimum and the maximum), you need 

more distribution metrics.
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 Mean
The mean or the arithmetical average is the most straightforward way to aggregate 

numbers: we should just sum up all numbers and divide the result by the number of 

elements. It’s usually denoted as x  or μ.

Mean x
x x x

n
n: =

+ +¼+1 2

The mean is one of the most popular statistical metrics. Many developers use only 

the mean during performance investigations. What is the easiest way to compare the 

performance of the two methods? We can measure the duration of each method several 

times, calculate the mean for each method, and compare the means! In most simple 

cases it works fine. For example, the mean values of {99, 104, 105, 108, 114} and {503, 765, 

653, 741, 593} are 106 and 651: the first method is obviously faster.

However, you never know in advance that it’s OK. There are many problems with 

the mean. One of the most typical problems is a complex shape of distributions and 

extremely high values. For example, the mean of {95, 101, 304, 97, 295, 314} is 201 and 

the mean of {150, 125, 110, 5000, 115} is 1100, which may be pretty confusing because the 

mean values are far away from the measurements that we have in the distributions. Let’s 

learn another metric that will help us to solve this problem.

 PRACTICAL RECOMMENDATIONS

the mean value is a good starting point for distribution exploration. in simple cases (especially 

if the range is narrow), it may be enough just to check out the mean. however, it can be 

misleading in some cases: there are some distribution “features” that makes the mean value 

useless. in many simple cases when the difference between distributions is noticeable, the 

“relationship” between distributions and the mean values is the same. it creates a false sense 

of confidence that it’s enough just to compare the mean values. however, you should never 

use only the mean value for analysis if you don’t know the shape of the data.

 Median
The median is another way to describe the “average” value of the sample. To find it, 

you have to sort all values and take the middle element. If the sample size is even, the 

median is the arithmetical average of two middle elements. For example, the median of 
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{1, 4, 7, 15, 20} is 7 and the median of {1, 4, 7, 8, 15, 20} is (7 + 8)/2 = 7.5. Thus, the median 

separates the lower half and the higher half of the measurement set.

The median solves the problem of extremely high and extremely low values that 

spoil the mean value. Imagine that a benchmark downloads a file from the Internet. All 

iterations finished fine except for one, which was terminated by timeout. Thus, we have 

the following sample: x : {150,125,110,5000,115}. The mean is 1100, but this number 

doesn’t help to describe the data. The median is 125, which is much closer to actual 

“average” download time. By the way, some people use the “average” term to describe 

median or other “averaged” values like mean. To avoid misunderstanding, we will always 

use the terms “mean” and “median” instead of “average.”

 PRACTICAL RECOMMENDATIONS

Which metric should we use for describing the measurements set: the median or the mean? 

fortunately, in most simple cases, these values are close to each other, and you can choose 

either of them. if there is a significant distance between them, additional analysis is required: 

you can’t choose only one value, you need the median, the mean, and other metrics. even 

if the values are close, we still don’t know anything about the shape of the data and we still 

can’t describe the distribution by a single number.

 Quantiles, Quartiles, and Percentiles
The q-quantiles are cut points that divide the sample into q equal intervals.

We are already familiar with the 2-quantile: it’s the median that splits the sample 

into two parts. For example, the 2-quantile of {1, 2, 3, 4, 5, 6, 7, 8, 9} is 5.

Another widely used kind of quantile is the 4-quantile or quartile. The quartiles are 

three values Q1, Q2, Q3 that split the sample into four equal parts. The second quartile Q2 

equals to the median. For example, the 4-quantiles of {1, 2, 3, 4, 5, 6, 7, 8, 9} are 3, 5, and 7.

The range with the quartiles form the five-number summary: {Min, Q1, Median, Q3, 

Max}. These five values are commonly used as a short form of distribution representation: 

it doesn’t describe the shape of the data, but it provides a general impression of the 

distribution. For example, the five-number summary of {1, 2, 3, 4, 5, 6, 7, 8, 9} is {1, 3, 5, 7, 9}.
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The difference between upper quartile Q3 and lower quartile Q1 is known as the 

Interquartile Range (IQR):

IQR = -Q Q3 1

The percentiles are 100-quantiles: the kth percentile pk is the value that separates the 

lower k% of the measurement set from higher elements. The median and the quartiles 

can be expressed via percentiles:

p Q p Q x p Q25 1 50 2 75 3= = = =, ,

Sometimes the granularity of percentiles is not enough, and we need 1000-quantiles 

or permilles. The “permille” term is not usually used: people use percentiles instead. For 

example, the 99.9th percentile corresponds to the 999th permille. We can continue to increase 

the granularity: the 99.95th percentile is used for denoting the 9995th 10000-quantile.

The number of q-quantiles is (q − 1). However, sometimes people introduce 

two additional fake quantiles: 0th and qth, which are equal to the minimum and the 

maximum. Thus, the five-number summary can be expressed in percentiles like this: 

p0, p25, p50, p75, p100. Technically, this is wrong (there are no 0th and 100th percentiles), but 

such notation is used in many articles and blog posts because it looks consistent.

Percentile values like p80, p95, p99, and p99.9 are often used during performance analysis 

of web applications. Many people think that values like p99 affect users very rarely and 

we shouldn’t care about them. Now imagine a web page which makes 300 requests to 

additional resources like images, css, and javascript files. The probability that the latency 

of each request is less than the 99th percentile is 1 − 0.99300 ≈ 0.95. Thus, we have 95% 

probability that the total page loading time will be affected by the 99th percentile. If we 

consider the 99.9th percentile, this value will be 1 − 0.99300 ≈ 0.26. The 26% probability is 3.7 

times better than 95%, but it’s still a huge number. Here is a simple exercise: open a popular 

web site like facebook.com or amazon.com, check out how many requests are processed, and 

calculate the probability of getting p90, p95, p99, p99.9, p99.99 for one of the requests.

 PRACTICAL RECOMMENDATIONS

the five-number summary (the range with the quartiles) is a common way to describe the 

distribution. if the range is wide and we are care about huge values, we may need a better 

granularity, which can be achieved with the help of percentiles. for example, this is a popular 

way of describing web request latencies.
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 Outliers
The outliers are very high or low values compared to other measurements. We will call 

them upper and lower outliers accordingly.

A typical performance distribution is presented in Figure 4-3. It shows the distribution 

of 1000 local runs of the Rider NuGetTest.uninstallOk (this test checks that we can 

correctly uninstall a NuGet package). This test includes some disk operations, so we are 

expecting to get some outliers. The mean value is 4.938 sec, but sometimes the test takes 

up to 26.930 sec. You can find many other real-life examples of outliers in [Gregg 2014b].

There are many different ways to define which values are too high or low. One of the 

most popular approaches is the Tukey’s fences2:

Lower Fence Q Upper Fence Q IQR  IQR: . ; : .1 31 5 1 5- × + ×

2 It’s not the only outlier test; there are many other approaches: 6 sigma test, Chauvenet’s criterion, 
Grubbs’ test, Dixon’s Q test, Peirce’s criterion, and others.

Figure 4-3. Distribution with outliers
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All values that are smaller than the lower fence are the lower outliers. All values that 

are bigger than the upper fence are the upper outliers. In this formulas, 1.5 is the most 

popular factor for IQR, but you can use another value if you want to set another level of 

“sensitivity” to outliers.

It’s important to understand why we have the outliers. There are two kinds of upper 

outliers:

• Random noise (unwanted outliers)

In Chapter 2, we have already discussed that the performance 

measurements are noisy. We have many random errors because of 

different reasons: from other user and kernel processes that work 

in parallel with a benchmark to hardware timer quantizing errors 

(more about this in Chapter 9). We can’t completely remove this 

noise, but we can clear the data and remove the unwanted outliers 

because they don’t provide useful information and prevent us 

from getting accurate performance distribution.

• True effects (wanted outliers)

In some benchmarks, there are outliers that we expect. Typically, 

you can observe extremely high values during I/O operations, 

network requests, database quires, and so on. Knowledge about 

such outliers is important because we will get them in production. 

It’s a major part of real performance space that should be 

analyzed. We care about these outliers and we want to know the 

full list of them.

In most cases, the performance distributions have only upper outliers. However, the 

lower outliers also can be observed. Here are two examples:

• Errors

Imagine that you are making a web request, but the network 

is accidentally not available. Such a request will be finished 

instantly; it produces an unusually low duration. These errors 

should also be handled and analyzed: it’s a part of many 

performance and reliability analysis like the Utilization 
Saturation and Errors (USE) Method (see [Gregg 2017]). If you 

have a retry policy, such values can be transformed into regular 
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values or upper outliers, so we can miss important information if 

we don’t analyze errors separately.

• Fast paths

Many software systems have different caching strategies. It’s 

great for the application performance because we can process 

the repeated requests faster. But it’s not so great if we want to 

benchmark the request processing time without caching. If it’s 

impossible to disable caching or do cache invalidation3 after each 

iteration, we should randomize our requests to avoid getting 

cached results. In this case, the lower outliers may notify us that 

we hit “fast paths” and skipped actual calculations.

 PRACTICAL RECOMMENDATIONS

it’s recommended to split your data into two groups: outliers and everything else. next, you 

can analyze the original sample with included outliers, the modified sample with excluded 

outliers, and the full outlier list. for example, values like p95, p99, p99.9 require a sample with 

included outliers. When you use a sample with excluded outliers, many statistical distribution 

characteristics like the mean value will become more stable and reliable metrics. analysis of 

wanted outliers (which can be explained by true effects) is very important; it’s a part of the 

performance space. You should make a decision about which piece of the data to use (with or 

without outliers) based on the selected metrics and business goals.

 Box Plots
The box plot (also known as the whisker plot) is a compact way to display the 

minimum, Q1, Q2, Q3, the maximum, the lower and upper fences, and the outliers at the 

same time.

3 http://thecodelesscode.com/case/220
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One of the most popular kinds of box plot is the Tukey box plot; you can see an 

example of it in Figure 4-4 (A). The box shows the positions of Q1 and Q3. The band 

inside the box shows the median. The box is extended by lines (also known as whiskers) 

that indicate the lower and upper fences. The outliers are presented as dots outside the 

whiskers.

The box plot has many variations. Usually, the box with the band always describes 

Q1, Q2, Q3, but the rule for the whiskers can be different; it depends on the outlier 

detection algorithm used. The whiskers are often reduced to the nearest value from the 

sample (e.g., if we don’t have a value that exactly equals Q1 − 1.5 · IQR, we finish to draw 

the lower whisker on the smallest value that is higher than the lower fence). That’s why 

the whisker lengths in Figure 4-4 are not equal and the positions of the lower fence and 

the upper fence don’t match the Tukey formula. If we don’t have any values between 

Q3 and the lowest upper outlier, the upper whisker can be completely removed. Also, 

Figure 4-4. Examples of box plots
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there are many different kinds of visual variations4 (you can find explanations with 

illustrations of different box plot kinds in [Wickham 2011] and [Ribecca 2017]).

 PRACTICAL RECOMMENDATIONS

the box plots are very efficient when you want to compare many different distributions at the 

same time, as shown in figure 4-4 (B). You will not get the exact model of each distribution: 

the final conclusions about specific pairs require additional analysis. however, you will get 

some initial ideas about five-number summaries for each distribution and will be able to 

create the first hypothesis about the data (which should be checked later). there are different 

variations of the box plots, so pay attention to the convention used.

 Frequency Trails
The frequency trail is an excellent kind of visualization introduced by Brendan Gregg 

in [Gregg 2014a]. Basically, it’s a combination of a density plot and a rug plot. The classic 

density plot has one serious disadvantage: it doesn’t show outliers. If you have a few 

extremely high values, they can become invisible. The rug plot part of the frequency 

trail plot solves this problem: it highlights the full list of outliers, which is very important 

for the distribution analysis. If we have many different distributions, it makes sense 

to combine several frequency trails into a waterfall plot by displaying them on the 

same image. You can see examples of frequency trail waterfall plots in Figure 4-5. The 

color palette can be arbitrary, but an inverted black-white palette is especially popular 

because it looks similar to the cover of the “Unknown Pleasures” album by Joy Division.

 PRACTICAL RECOMMENDATIONS

the frequency trail is a good alternative to density plots when you want to look at the 

distribution shape and the list of outliers at the same time.

4 For example, the classic box plot can be improved by additional information and transformed 
to the variable width box plot, the notched box plot, the vase plot, the bean plot, the bee swarm 
box plot, the highest density region box plot, the box-percentile plot, the letter-value box plot, or 
other kinds of box plot.
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 Modes
Typically, density plots are not flat; they contain “low” and “high” areas. A local 

maximum of a density plot is known as mode; it’s a point that contains a lot of 

measurements around it. On a histogram, such point will be presented by a bin that is 

higher than its neighbors.

If the density plot has a single local maximum, the distribution is called unimodal; 
you can see an example in Figure 4-6 (A). If the density plot has two local maximums,  

the distribution is called bimodal; an example is presented in Figure 4-6 (B). We say  

that the distribution is multimodal when the number of local maximums is more than 

one (the bimodal distribution is a special case of the multimodal distribution).

Figure 4-5. Frequency trail waterfall plots
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In real life, many performance distributions look like combinations of a multimodal 

distribution, random noise, and a set of outliers (you can see an example in Figure 4-6 (C)).

Thus, it’s not always possible to say how many modes we have. However, it’s usually 

possible to distinguish “simple” unimodal distributions and “complex” multimodal 

distributions. Let’s discuss how to detect multimodal distributions. If you are not 

interested in a particular implementation, you can skip the rest of this subsection.

There are many different algorithms for multimodal distribution detection. 

Unfortunately, most classic academic algorithms don’t work well on real data. The 

situation becomes worse when the sample size is small (less than 30–40 measurements). 

After many experiments, I finally found an approach that works acceptably. One 

approach that works really well with performance distributions is described in [Gregg 

2015] by Brendan Gregg and based on the modal values (mvalues). If we have a 

histogram h with k bins h1, h2, … , hk (the ith bin contains hi measurements), the modal 

value hm is defined as follows:

Modal Value h
h h h h h h

h h hm
k k

k
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Figure 4-6. Unimodal, bimodal, and performance distributions
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In this formula, we summarize all elevations between neighboring bins and divide 

by the number of measurements in the highest bin. The minimal possible modal value is 

2, which corresponds to the unimodal distribution. A modal value of a perfect bimodal 

distribution is 4.

The modal values and many other multimodality detection methods are very 

sensitive to given histograms. In Figure 4-7 (A), you can see a bimodal distribution with 

a histogram. If you look only at the histogram, you can easily say that the distribution 

is bimodal because the centers of the second and the fourth bins match the local 

maximums of the density plot. In Figure 4-7 (B), you can see the same distribution with 

another histogram. The bin size for both histograms are the same, but the first bin offsets 

are different. As a result, the second histogram looks unimodal: each bin contains the 

same number of values from the sample because of another histogram offset.

Figure 4-7. Different histograms for bimodal distribution

It’s very important to build a good histogram. After a series of unsuccessful attempts, 

I finally came up with an algorithm for histogram building, which has been used in 

BenchmarkDotNet since v0.10.14.5 It follows the following scheme (the particular 

implementation includes many additional corner case checks):

5 See https://github.com/dotnet/BenchmarkDotNet/blob/v0.11.3/src/BenchmarkDotNet/
Mathematics/Histograms/AdaptiveHistogramBuilder.cs
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 1. Remove outliers based on the Tukey’s fences.

 2. Choose a value for the desired bin width w. It’s recommended to 

use the Scott’s normal reference rule and divide it by 2:

Desired BinWidth modified Scott s rule w
s

n
 ’ :

.
.( ) =

3 5

2 3

 3. Start with a histogram that contains a single bin with all values.

 4. Find a bin that is bigger than w. If there are no such bins, the 

histogram is ready; go to step 6.

 5. In the selected bin, find an interval of width w that contains the 

maximum number of measurements. Calculate the arithmetical 

average c of the left and the right point positions; it will be the 

center of the new bin. If the c − w and c + w positions are inside 

the original bin, add a new cutting point at the histogram. 

Otherwise, move the new bin to the inside area of the original bin 

and add a single cutting point, which is not equal to the borders of 

the original bin. Next, go to step 4.

 6. Calculate the modal value and compare it with thresholds. If the 

modal value is less than 2.8, the distribution is probably unimodal. 

If the modal value is in the interval [2.8; 3.2], the distribution 

may be unimodal or bimodal. The interval [3.2; 4.2] describes a 

situation in which the distribution is most likely bimodal, but it 

can have more modes. If the modal value is bigger than 4.2, the 

distribution most likely has several modes. The threshold values 

(2.8, 3.2, 4.2) are initial approximations that can be used for first 

experiments. In case of modifications in the desired bin width 

formula, the threshold values should be adjusted.

The idea behind the algorithm is pretty simple. The modal values don’t work 

correctly when we have a mode on the border between two bins like in Figure 4-7 (B). 

Thus, we are trying to find the “best” local maximum (step 4) and introduce a bin with 

the center equaling to the mode. Now, this mode is “protected” from being “split” and 

we are trying to find the next “best” local maximum.
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It’s not a classic kind of histogram and it doesn’t have a special name. The approach 

doesn’t have a formal proof, but it was tested on thousands of BenchmarkDotNet runs 

with different performance distributions. It turned out that it works really well on the real 

data, unlike some classic academic algorithms.

 PRACTICAL RECOMMENDATIONS

one of the first things that you should check for in a distribution is multimodality. if a 

distribution is multimodal, many statistical metrics like the mean don’t work as designed, 

and you can’t use these values for meaningful conclusions. meanwhile, you can still use the 

percentile analysis without any modifications.

the modal values provide a powerful approach for detecting multimodal distributions. it helps 

to identify “suspicious” distributions that probably can’t be compared with “usual” metrics like 

the mean or the median.

 Variance and Standard Deviation
The measurements vary from iteration to iteration. We can evaluate how huge the value 

spread is with the help of variance:

Biased Variance s
x x x x x x

n
n( ) =

-( ) + -( ) +¼+ -( )
: 2 1

2

2

2 2

Here we just subtract the mean value x  from each value xi, summarize squares of 

x xi -( ) , and divide the sum by the sample size n.

In practice, the standard deviation is usually used instead. It’s just a square root 

from variance:

Biased Standard Deviation s
x x x x x x

n
n( ) =

-( ) + -( ) +¼+ -( )
 : 1

2

2

2 2

We denote the standard deviation as s, but you may also meet the σ symbol in many 

texts. Common short forms of the standard deviation in the source code are StdDev and SD.

You may notice the “(Biased)” prefix in the preceding formulas. These formulas 

would be correct if you collect all measurements. However, it’s not possible to collect all 

of them because we can continue to take measurements without limitations. Thus, we 
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have to evaluate the variance and the standard deviation with the help of a small sample. 

That’s why we have a small error (bias). The error can be fixed with the help of Bessel’s 

correction, which just replaces n in the divider by n − 1:

Unbiased Variance s
x x x x x x

n
n( ) =

-( ) + -( ) +¼+ -( )
-

: 2 1

2

2

2 2

1

Unbiased Standard Deviation s
x x x x x x

n
n( ) =

-( ) + -( ) +¼+ -( )
-

 : 1

2

2

2 2

11

Bessel’s correction is the source of confusion and misunderstanding. Which divider 

should we use: n or n − 1? In theory, n − 1 is better. From the practical point of view, 

it usually doesn’t matter. When the number of observations n is low (less than five or 

ten), the errors are huge, and the evaluated values are rough approximations of the real 

variance and standard deviation. When the number of observations n is big enough 

(more than ten or fifteen), the difference between 1/n and 1/(n − 1) becomes less than 

the accuracy that you care about. Bessel’s correction exists for a reason, and it may be 

pretty important in some statistics applications. However, usually you do not have to 

worry about it during real performance investigations.

 PRACTICAL RECOMMENDATIONS

the standard deviation can be used as a measure of “instability.” it shows how big the 

difference between measurements can be. a low value shows that most of the measurements 

are close to the mean value, while a high value indicates that measurements can be far from 

the mean.

When you are comparing two distributions, a huge standard deviation may notify you that you 

can’t compare the mean values. for example, if arithmetical averagesr of two distributions are 

50 seconds and 52 seconds, but the standard deviation is about 15 seconds for each of them, 

you can’t make any conclusions about which method is faster. in the next subsection, we will 

learn how to interpret the absolute value of the standard deviation.

phrases like “the variance is big” are “the standard deviation is big” mean the same, but the 

first form is more popular because it’s shorter. meanwhile, the standard deviation is more often 

used in practice because it is expressed in the same units as the measurements and it’s used 

in many useful formulas (some of them will be covered in the next subsections).
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the mean and the standard deviation values are important metrics, but they still don’t describe 

the distribution shape. in [matejka 2017], you can find pictures of completely different 

distributions with the same values of x  and s.

the standard deviation can be spoiled by outliers. if you calculate the standard deviation 

of a sample without outliers, you will get a more repeatable value, but you may lose some 

important information about the spread. Usually, it’s a good practice to exclude outliers before 

the calculation but still look at them.

 Normal Distribution
The normal distribution is one of the most famous and classic distributions that is 

important to know. You can see its bell-shaped density plot in Figure 4-8.

Figure 4-8. Normal distribution

The normal distribution has some important properties:

• The distribution is symmetric and unimodal.

• The mean equals to the median.
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• The interval x s x s- +[ ]1 1;  contains ≈68% of values.

• The interval x s x s- +[ ]2 2;  contains ≈95% of values.

• The interval x s x s- +[ ]3 3;  contains ≈99.7% of values.

The last property is known as the three-sigma rules. It states that almost all values 

(≈99.7%) in the normal distribution lie within three standard deviations of the mean.

 PRACTICAL RECOMMENDATIONS

the normal distribution is a good mental model for the intuitive understanding of different 

metrics like the mean and the standard deviation in case of unimodal distributions. for 

example, if we have two samples x and y that are described by normal distributions, we can 

say that the samples are almost not overlapped if x y s sx y- < +3 3  (the ranges with 99.7% 

of the distribution values are not overlapped). on the other hand, if x y s sx y- > +  (the 

ranges with 68% of the distribution values are overlapped), the intersection of distribution is 

significant. the real performance distributions are not typically normal, but you still can use 

these formulas to get initial ideas about the distribution relationship in the unimodal case. if 

the distributions are multimodal, additional analysis of density plots is required.

 Skewness
The skewness is the measure of asymmetry. It can be calculated as follows:

Skewness
x x x x x x n

s

n
:

/
g =

-( ) + -( ) +¼+ -( )( )1

3

2

3 3

3

The skewness absolute value shows how asymmetric the distribution is. The 

skewness sign shows the asymmetry kind and makes it possible to distinguish left- 

skewed and right-skewed distributions. There are other formulas for skewness that can 

be interpreted in the same way. One of the simplest formulas is the Pearson median 
skewness:

Pearson Median Skewness
x Q

s
  median: g =

-( )3 2
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From this formula, it’s obvious that the skewness sign can be easily evaluated by 

comparing the mean x  and the median Q2:

• If the mean is less than the median, the distribution is skewed left 

and Skewness < 0

• If the mean is equal to the median, the distribution is symmetrical 

and Skewness = 0

• If the mean is more than the median, the distribution is skewed right 

and Skewness > 0

You can see the corresponding density plots and box plots in Figure 4-9.

Figure 4-9. Distribution with different skewness values

The skewness of the normal distribution is zero because it’s symmetrical. Note that 

Skewness = 0 doesn’t always mean that the distribution is perfectly symmetrical. Most of 

the real performance distributions are right-skewed (the skewness is positive).
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 PRACTICAL RECOMMENDATIONS

the skewness provides the idea about the distribution symmetry without a direct look at 

the density plots. a combination of the negative skewness and huge standard deviation is 

unusual for performance distributions and may notify us that additional analysis is required. 

outliers can distort the skewness values, so they should be excluded before the calculations. 

Skewness is unreliable on small sample sizes (n < 15) and multimodal distributions.

 Kurtosis
The kurtosis is the measure of “peakedness.” It can be calculated as follows:

Kurtosis
x x x x x x n

s

n
:

/
k =

-( ) + -( ) +¼+ -( )( )1

4

2

4 4

4

A high kurtosis value means that the distribution peak is sharp. A small kurtosis 

value means that the distribution peak is flat. The kurtosis of the normal distribution is 3. 

The normal distribution is often used as the base for comparing with other distributions, 

but 3 is not a good reference value. Thus, it was decided to introduce the excess kurtosis:

Excess Kurtosis
x x x x x x n

s

n
 excess:

/
k =

-( ) + -( ) +¼+ -( )( )
-

1

4

2

4 4

4
3

The excess kurtosis of the normal distribution is 0, which is very convenient. The 

difference between the kurtosis and the excess kurtosis is another popular topic for 

confusion. In many articles, books, blog posts, and programs, the excess kurtosis is 

denoted as just the kurtosis. Thus, if you see a phrase like “the kurtosis of the normal 

distribution,” it’s not possible to say the corresponding value in advance: it can be zero or 

three depending on the author’s preferences.
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Figure 4-10 should provide better “feeling” of the distribution form for different 

values of the excess kurtosis. The kurtosis describes the central peak of the distribution: a 

high kurtosis value corresponds to a sharper peak, and a low kurtosis value corresponds 

to a flat peak.

 PRACTICAL RECOMMENDATIONS

the kurtosis is another number that helps us to imagine a distribution without charts. When 

you see the kurtosis value somewhere, check the local naming convention: it may be the 

excess kurtosis. outliers can distort the kurtosis values, so they should be excluded before 

the calculations. Kurtosis is unreliable on small sample sizes (n < 15) and multimodal 

distributions.

Figure 4-10. Distribution with different excess kurtosis values
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 Standard Error and Confidence Intervals
When we talk about the mean value, we calculate the mean value of the sample, but 

not the “true” mean value of the distribution. In fact, there is not a fixed value for the 

true mean because the whole measurement set is endless: we can produce as many 

measurements as we want. However, we may assume that the true mean exists and it 

corresponds to the mean value of an unimaginably large measurement set.

Let’s learn how to calculate the error between the sample and true mean values. We 

will do it with the help of the standard error, which is the rate between the standard 

deviation and the square root of the sample size:

Standard Error
s

n
 :

You can interpret the standard error as a measure of accuracy: a smaller standard 

error means that you have a better estimation of the true mean. As you can see from 

the formula, the standard error depends on the standard deviation and the sample size. 

If the standard deviation is huge, it becomes hard to detect the true mean correctly 

because measurements are too varied. A higher sample size would yield a lower 

standard error. While the standard deviation shows the spread between different 

values in the distribution, the standard error shows the spread between mean values 

in different samples. Thus, it’s also a measure of repeatability: if we run the whole 

experiment many times and get different distributions for the same benchmark, the 

difference between obtained values correlates with the standard error.

Now we can calculate the margin of error, which is the standard error multiplied by 

a critical value t∗:

Margin of Error t
s

n
  : *

The critical value t∗ is a “magic” constant that depends on the sample size and the 

confidence level (expressed in percentages). In Table 4-1, you can see the critical values 

for the most popular confidence intervals on different sample sizes.
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Table 4-1. Critical Values for Confidence Intervals 

n 80% 90% 95% 98% 99% 99.9%

2 3.078 6.314 12.706 31.821 63.657 636.619

3 1.886 2.920 4.303 6.965 9.925 31.599

4 1.638 2.353 3.182 4.541 5.841 12.924

5 1.533 2.132 2.776 3.747 4.604 8.610

6 1.476 2.015 2.571 3.365 4.032 6.869

7 1.440 1.943 2.447 3.143 3.707 5.959

8 1.415 1.895 2.365 2.998 3.499 5.408

9 1.397 1.860 2.306 2.896 3.355 5.041

10 1.383 1.833 2.262 2.821 3.250 4.781

11 1.372 1.812 2.228 2.764 3.169 4.587

12 1.363 1.796 2.201 2.718 3.106 4.437

13 1.356 1.782 2.179 2.681 3.055 4.318

14 1.350 1.771 2.160 2.650 3.012 4.221

15 1.345 1.761 2.145 2.624 2.977 4.140

16 1.341 1.753 2.131 2.602 2.947 4.073

17 1.337 1.746 2.120 2.583 2.921 4.015

18 1.333 1.740 2.110 2.567 2.898 3.965

19 1.330 1.734 2.101 2.552 2.878 3.922

20 1.328 1.729 2.093 2.539 2.861 3.883

100 1.290 1.660 1.984 2.365 2.626 3.392

1000 1.282 1.646 1.962 2.330 2.581 3.300

10000 1.282 1.645 1.960 2.327 2.576 3.292

Chapter 4  StatiStiCS for performanCe engineerS



210

The confidence interval of the mean is an interval around the mean with the 

margin of error as the radius. This means that the difference between any point from the 

interval and the mean is less than or equal to the margin of error:

Confidence Interval x t
s

n
x t

s

n
 ;: - +é

ëê
ù

ûú
* *

By definition, 99% of all confidence intervals with confidence level=99% include the 

true mean. The confidence intervals are often incorrectly interpreted, which leads to 

wrong conclusions. Here is the most common pitfall:

• Not true: “the true mean is most likely in the confidence interval, but 

if it’s not in the interval, it should be close to it.” In fact, the true mean 

can be far away from a confidence interval of a particular sample. 

The 99% confidence level says that such situations are unusual, but 

it doesn’t say anything about the distance between the confidence 

interval and the true mean.

For performance distributions, the standard definition of the confidence interval 

doesn’t work “as is.” If a distribution is very skewed and has extremely high outliers, it’s 

pretty hard to define the true mean. In practice, you can easily get a situation in which 

80% of 99.9% confidence intervals don’t have any common points. The situation can 

become better if we significantly increase the sample size, but it may be impractical: 

it significantly increases the whole experiment time without tangible benefits. It’s 

much more efficient just to exclude the outliers from the sample and describe them 

independently. In simple cases, a 99.9% confidence level usually provides a pretty good 

accuracy that can be used for analysis.

The standard error helps you understand the influence of the sample size on the 

accuracy. Many people think that if we increase the sample size twice, the accuracy will 

also be increased twice, but this is a wrong assumption. Let’s say that we change the 

sample size from 100 to 400. If the standard deviation is the same for both samples, the 

standard error will be changed from s s/ /100 10=  to s s/ /400 20= : Thus, increasing 

the sample size four times reduces the standard error twice. While all 100 iteration 

batches take the same amount of the experiment time, they contribute differently to the 

accuracy. The 100 → 200 sample size change reduces the error by ≈41%, but the 

5100 → 5200 sample size change reduces the error only by ≈1%.
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 PRACTICAL RECOMMENDATIONS

the standard error is a measure of accuracy and repeatability for benchmark results. in the 

case of performance distributions, the confidence intervals don’t work as designed, but it’s still 

a good metric for the initial estimation between the sample and true mean values.

in practice, the 99.9% confidence level is recommended. for n > 30, you may use t ∗ ≈ 3.6 

as an approximation for the critical value.if you want to take another confidence interval, 

you can use choose a value from table 4-1 (you can easily google an extended version of it). 

Usually, you shouldn’t worry about the accurate value for t ∗ because it’s enough to work with 

a rough approximation of the confidence interval. if you want to calculate the exact value, it’s 

recommended to reuse an existing implementation (e.g., BenchmarkDotnet has api for it that 

is based on approximations from [aCm209] and [aCm395]).

the standard error also helps to choose the optimal sample size. When you change the sample size 

from n1 to n2, the standard error will be reduced by n n2 1/ . When n is small, each additional 

iteration noticeably improves the accuracy. at some point, it becomes meaningless to “pay” for the 

accuracy by our waiting time, because the accuracy impact of additional iterations is too small.

 The Central Limit Theorem
The central limit theorem states that if we take many samples and calculate the mean 

for each sample, these mean values will form an approximately normal distribution. This 

theorem works only if the sample size in each case is big enough.

The most wonderful fact about the central limit theorem is that it works even on non- 

normal distributions. Your original data set can have many outliers and a complicated 

distribution shape, but the central limit theorem will work anyway.

People often make wrong conclusions based on the central limit theorem. Let’s 

discuss a few common pitfalls:

• The central limit theorem doesn’t work correctly when the sample 

sizes are small. For example, if you make a single measurement in 

each sample, the distribution based on the mean values will have the 

same shape with the original distribution.

• If we take a small number of samples (n < 100), we will not see a 

normal distribution on the density plot for mean values.

Chapter 4  StatiStiCS for performanCe engineerS



212

• If we do many iterations, the original distribution will not become 

normal, and we can’t interpret the mean, the variance, the skewness, 

and the kurtosis as in the case of normal distribution.

• The range of the mean values across all samples is not always narrow; 

we still can have a huge difference between the mean values in 

different samples. The normal distribution based on the mean values 

has its own standard deviation, which depends on the sample size 

and can be expressed via the standard error.

You can find another beautiful explanation of the central limit theorem in 

[Minitab 2013].

 PRACTICAL RECOMMENDATIONS

We know that a good benchmark should be repeatable, but it’s not always easy to achieve 

repeatability if a distribution has a huge variance. the central limit theorem states that if we 

use a proper sample size, the mean values from different samples are distributed normally. 

Usually, we need at least 30 iterations in each sample. if we have huge outliers, the minimal 

sample size requirement should be increased.

thus, you can evaluate the expected difference between the different experiments. imagine 

that you want to compare performance between two methods, but the difference between the 

mean values of these methods in a single experiment is less than the difference between the 

mean values of the same method in different experiments. You can make the situation better 

by increasing the sample size in each experiment.

 Summing Up
Descriptive statistics provides a rich set of metrics and approaches for distribution 

exploration:

• Mean, standard deviation, skewness, and kurtosis

These values help you to get the first impression of the sample. 

The mean is the simplest way to aggregate your data. In many 

cases, it can be misleading, but usually, it’s a good point to start. 

The variance (or the standard deviation, which is the square root 
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of variance) shows the data spread. The skewness and the kurtosis 

are measures of the distribution asymmetry and peakedness. 

These values can be easily spoiled by outliers (extremely high or 

low values). One of the most popular ways to detect outliers is the 

Tukey’s fences, but there are many alternative approaches (e.g., 

in [Gregg 2014b], the six-sigma test is described). The normal 

distribution is a good mental model for these values.

• Quantiles

The quantiles divide the range (an interval between the minimum 

and the maximum) into equal parts. The most popular kinds of 

quantiles are the median (separate the data into two parts), the 

quartiles (separate the data into four parts), and the percentiles 

(separate the data into 100 parts). A distribution can be described 

by the five-number summary: Min, Q1, Median, Q3, Max or p0, 

p25, p50, p75, p100 (technically, the 0th and 100th percentiles do not 

exist, but people often use them for consistency instead of the 

minimum and the maximum values).

• Accuracy

The sample size is critical for good accuracy; you can’t make 

reliable conclusions about the distribution based on a few 

measurements. It’s recommended to choose the initial sample 

size between 15 and 30, and make adjustments based on the 

results received. The standard error can be used as a measure of 

accuracy: it’s directly proportional to the standard deviation (it’s 

hard to achieve good accuracy with a huge spread) and inversely 

proportional to the sample size (the accuracy is better when we 

have many measurements). The confidence interval of the mean 

is a good estimation for the true mean. If it’s too wide, the sample 

mean value can’t be trusted.

• Modes

In real life, many performance distributions are multimodal. 

This means that the distribution has several local maximums. 

In this case, typical metrics like the mean are not very useful. 
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It’s very important to detect such distributions and handle them 

individually. One of the most powerful detection techniques is 

using modal values.

• Visualization

Visualization is a powerful technique that helps you to understand 

the shape of your data instantly. The timeline plot is the most 

direct way to present the sample; it just shows the sample value 

for each iteration. The rug plot is a “compressed” version of the 

timeline plot: it’s a one-dimensional plot with all measurements. 

The histogram is a bar chart that demonstrates the shape of data; 

it consists of bins that show the relative number of measurements 

in each small interval. The density plot is a “smooth version” of a 

histogram that shows the distribution shape with less visual noise. 

The frequency trail is a combination of a density plot and a rug 

plot; it’s efficient when we want to highlight outliers on the density 

plot. The waterfall plot is a combination of many overlapped 

plots on the same image; it’s efficient when we want to explore 

many density plots and frequency trails for the same benchmark. 

The box plot shows the minimum, Q1, Q2, Q3, the maximum, the 

lower and upper fences, and the outliers at the same time; it’s very 

efficient when we want to compare many distributions of different 

benchmarks at the same time. There are also many other different 

kinds of plots that also can be very useful.

 PRACTICAL RECOMMENDATIONS

it’s pretty time-consuming to check all possible statistical characteristics each time for each 

benchmark. thus, it makes sense to check out only the most important metrics (which are 

chosen according to your gaols). first of all, it’s recommended to check the distribution for 

multimodality and look at the outlier list. in the case of multimodal distributions, it makes 

sense to look at the density plot. if the distribution is unimodal, we can remove outliers and 

look at three values: the mean, the standard deviation, and the standard error. the mean 

provides the initial estimation of the “average” performance, the standard deviation helps  

to understand the “spread” of the values, and the standard error shows the “accuracy.”  
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if we want to compare many distributions at the same time, we can check out the box plot or 

compare five-number summaries. the best way to explore the distribution is by looking at a 

histogram or a density plot. in the case of many outliers, it’s better to look at a frequency trail 

plot. if we care about the worst cases and we have too many outliers or a huge variance, it 

makes sense to check out the percentiles (p95, p99, p99.9). to make any conclusions based on 

the confidence interval, we need a proper sample size: it should be at least 30 (larger sample 

size is required if the distribution is very skewed or there are many outliers).

the statistical inference (the process of understanding distribution properties based on the 

descriptive statistics) is largely based on experience. after conducting a series of statistical 

research, you will understand how to select the most important metrics for your current 

investigation quickly. You can even build your own set of empirical rules that help you to 

interpret these metrics correctly and come up with relevant conclusions.

Working with a single distribution is an important skill for our next topic: the analysis.

 Performance Analysis
We already know how to analyze a single distribution and calculate the basic statistical 

characteristics like the mean, the standard deviation, and the quartiles. It’s time to learn 

how to use it for analysis of several distributions and optimization of the benchmarking 

process. In this section, we are going to discuss the following important topics:

• Distribution comparison

We will learn how to compare two distributions with the help of 

different heuristics and statistical tests like Welch’s t-test and the 

Mann–Whitney U test. We will cover many important concepts 

like the null and alternative hypotheses, Type I and Type II errors, 

and p-values.

• Regression models

We will learn how to understand the relationship between the 

input data and the method performance. It requires knowledge 

of statistical approaches like polynomial regression models and 

curve fitting. We will also discuss how to analyze algorithmic 
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complexity and how to work with complex dependencies. 

Performance depends not only on the input data but also on the 

environment. We will learn basic ways to work with categorical 

variables and to find the factors that affect performance.

• Optional stopping

Statistics is a powerful tool when you want to analyze existing 

data. However, we can also use statistics during benchmarking. 

For example, instead of fixing the number of iterations in advance, 

we can stop the iteration process when the desired distribution 

characteristics are achieved.

• Pilot experiments

Instead of guessing the perfect number of method invocations 

inside each iteration, we can perform a series of pilot iterations 

before actual measurements and find the best number of 

invocations.

The performance analysis is an essential skill for benchmarking. Without it, the 

benchmark results are just numbers that can’t be used for any conclusions. Moreover, 

approaches like optional stopping and pilot experiments help to minimize the whole 

experiment duration and get acceptable accuracy. Let’s start with the most common 

problem: comparing two distributions.

 Distribution Comparison
Let’s say you have two methods and you want to know which method is faster. During 

benchmarking, we can collect performance samples x and y for both methods. After that, 

we have to compare two sets of numbers. The distribution comparison is one of the basic 

tasks in the performance analysis, but it’s not an easy task. In Figure 4-11, you can see 

density plots for three different methods. Can you tell which method is fastest?
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Performance is often about trade-offs. Sometimes, one method can be faster than 

another one, but we can get an opposite situation in another sample. Multimodality and 

outliers are the most common problems that prevent us from comparing distributions. 

However, even if we have unimodal distributions without outliers, the comparison task 

can be difficult because of the huge variance and overlapped ranges. Let’s learn how 

statistics can help us to solve these problems and automate distribution comparison.

When we compare two performance samples x and y, there are four possible 

outcomes:

 1. x is faster than y .

In fact, it doesn’t mean the first method is always faster than the 

second one. But it means that we probably should prefer the first 

method if we want to have better performance.

 2.  y is faster than x.

We have the same situation here: we can pretend that the 

second method is actually faster than the first one, and use this 

information for business decisions, but it doesn’t mean that it’s 

always true.

Figure 4-11. Distributions that are difficult to compare
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 3. There is no statistically significant difference between x and y 

This conclusion doesn’t mean that both methods have equal 

performance characteristics; it means that we just can’t say that 

one method is definitely faster than another.

 4. The sample sizes are too small to make a reliable conclusion.

This doesn’t mean that it’s not possible to find the fastest method; 

it means that we need more data to decide. Some statistical 

methods just can’t be applied to small samples.

The fourth case is not really interesting, because it just requires larger samples. The 

most interesting thing is how to distinguish the first two cases from the third one. Thus, 

the main question that we want to answer is the following: “Do we have a statistically 

significant difference between two distributions?” Based on this question, we can put 

forward two hypotheses:

• Null hypothesis H0: there is no statistically significant difference

• Alternative hypothesis H1: there is a statistically significant 

difference

For software developers, it’s often hard to remember how to choose each hypothesis. 

Personally, I like to use other kinds of titles based on the searching results:

• Negative hypothesis: no, we didn’t find a difference

• Positive hypothesis: hooray, we found a difference

Unfortunately, nobody uses them; almost all articles and blog posts contain the 

terms “null” and “alternative,” so you should remember them. Here are a few mnemonics 

which can help you:

• Letter rule:

Null hypothesis: there is Nothing interesting

Alternative hypothesis: there Actually is something interesting

• Do we have a statistically significant difference?

Null hypothesis: No, we don’t

Alternative hypothesis: YeAh, we do
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Any conclusions that we make describe the collected data, but not our theory. 

It’s impossible to prove that H0 or H1 for distributions is correct based on samples of 

measurements. However, we should make a business decision based on the collected 

samples (e.g., which algorithm should be used to get the best possible performance). 

Thus, we can act like H0 or H1 is true, but we should understand that some of our 

conclusions may be wrong.

The tests that we are going to cover allows rejecting the null hypothesis. Depending 

on the result (H0 is rejected or H0 is not rejected), there are two kinds of errors:

• Type I error: H0 is true, but is rejected

• Type II error: H0 is false, but is not rejected

Personally, I don’t like the “Type I/Type II” notation; I prefer to use the terms “false 

positive” and “false negative”:

• Type I error = False positive

Our conclusion that we have a positive result is false

We made an error when decided that the positive hypothesis is 

correct

There is no difference, but we think that there is a difference

• Type II error = False negative

Our conclusion that we have a negative result is false

We made an error when decided that the negative hypothesis is 

correct

There is a difference, but we think that there is no difference

Unfortunately, the “Type I/Type II” notation is used widely, so it’s nice to remember 

which is which. Here are a few other mnemonics:

• The number of vertical lines6:

Type I is a false Positive; P has one vertical line

Type II is a false Negative; N has two vertical lines

6 https://stats.stackexchange.com/a/1620
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• The village boy and the wolf 7:

The first error the villagers made (when they believed the boy) was 

a Type I error

The second error the villagers made (when they didn’t believe the 

boy) was a Type II error

• The importance rule:

Type I: higher importance (we can make a wrong decision)

Type II: lower importance (we can miss an opportunity to make a 

right decision)

You can see the classic form of all possible experimental outcomes in Table 4-2.

This representation may confuse some developers. Let’s try to simplify this table. In 

statistics, we always work with H0 because that’s how mathematics works: we can only 

reject or not reject H0, but we can’t make conclusions about H1. Thus, “H0 is not rejected” 

is a common conclusion in statistics. It’s strict, but it doesn’t sound understandable for 

everyone. When we need to interpret the result, we mentally translate it into “we think 

that H0 is true,” which is a negative result; we don’t have anything interesting. By analogy, 

we can translate “H0 is rejected” to “we think that H0 is false” or “we think that H1 is true,” 

which is a positive result; we found a difference between x and y. With this notation, 

Table 4-2 can be translated to Table 4-3.

7 https://stats.stackexchange.com/a/17399

Table 4-2. Error Types 

H0 is true H0 is false

H0 is not rejected no errors type ii error

H0 is rejected type i error no errors
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It’s not as strict as Table 4-2, but it looks more understandable and consistent. Now 

we are familiar with the basic “hypothesis and error” notation, it’s time to make some 

conclusions!

In most simple cases (especially when one method is several times faster than 

another), the difference between the two distributions is obvious. However, if we want 

to automate distribution comparison, we need some formulas. Here are a few possible 

heuristic tests that we can apply to check that x is faster than y:

• Range test: xmax < ymin

In many simple cases, the distribution tests are not overlapped 

at all. In such situations, we can just compare the maximum of 

the first distribution and the minimum of the second one. If the 

samples are large enough (it doesn’t work well for n ≤ 5), it’s most 

likely that the first method is faster then the second one.

• Tukey test: Q3(x) + 1.5 · IQRx < Q1(y) − 1.5 · IQRy

The range test can be easily spoiled by outliers. If x contains a 

single extremely high value that is inside the y range, the ranges 

are overlapped. This problem can be resolved if we exclude the 

outliers. No need here to actually find all outliers; we can just 

compare the upper Tukey fence for the first distribution and the 

lower Tukey fence for the second one.

• Three-sigma test: x s y sx y+ < -3 3

We know that 99.7% of values in the normal distribution are 

inside the ±3s interval around the mean. Thus, we can compare 

the upper interval bound for the first distribution and the lower 

Table 4-3. Error Types (Alternative Version) 

Negative hypothesis is true Positive hypothesis is true

We think that

h-Negative is true True negative False negative

We think that

h-Positive is true False positive True positive
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bound for the second one. This test works great for distributions 

that are close to normal, but it doesn’t work well for more complex 

distributions (e.g., multimodal).

These simple tests have a very small Type I (false positive) error rate: when we think 

that there is a statistically significant difference (H0 is false, H1 is true), we are most likely 

right. However, the Type II (false negative) error rate is huge: when the distribution 

ranges are overlapped, we most likely will fail to detect which method is faster even if 

there is a statistically significant difference. It’s a typical situation when we work with 

small performance improvements (e.g., 1%–10%). Thus, we need an advanced statistical 

tool for such cases.

There are many different statistical tests that can help us in different kinds of 

situations. In benchmarking, there are two tests that provide the most reliable results:

• Welch’s t-test

This test helps us to compare mean values of x and y. In theory, 

this test can be applied to only normal distributions. In practice, 

it often gives reliable results for unimodal distributions when the 

sample sizes are large enough. Usually, you need at least 30–40 

measurements in each sample to get reliable results.

• Mann–Whitney U test

This test helps to check that a random measurement from one 

sample is larger than a random measurement from another 

sample. This test doesn’t require normality, so it can be applied 

to all kinds of performance distributions. You can even use it with 

multimodal distributions of different shapes. It doesn’t work at all 

for extremely small samples; you need at least five measurements 

in each sample.

Such tests don’t give us a binary result; they provide a value between 0 and 1 called 

the p-value. You can interpret a statistical test like a function of two samples:

double StatisticalTest(double[] x, double[] y)

{

  // Some calculations

  return pValue;

}

Chapter 4  StatiStiCS for performanCe engineerS



223

For such tests, it’s recommended to use a threshold for comparison: instead of 

checking that “the first method is faster than the second method,” we will check that 

“the performance difference between the two methods is larger than a given value.” The 

threshold can be relative (e.g., 1% of the baseline) or absolute (e.g., 15ms). The threshold 

approach allows reducing the Type I (false positive) error rate because it’s more robust 

against the natural noise. Thus, we have to modify the signature of our method:

double StatisticalTest(double[] x, double[] y, double threshold = 0.0)

{

  // Some calculations

  return pValue;

}

These tests have different variations. When we check that the difference x − y is not 

zero (or other fixed value), we are talking about a two-sided test. When we check that 

the difference x − y is larger than a threshold, we are talking about a one-sided test. 

When we check that the absolute difference ∣x − y∣ is larger than a threshold, we are 

talking about an equivalence test. If we already know how to perform a one-sided test, 

an equivalence test can be implemented based on the two-one-sided tests (TOST) 

approach: we can perform two one-sided tests and check that x − y is larger than a 

threshold or y − x is larger than a threshold.

The returned magic p-value number is a classic source of confusion and 

misunderstanding. The general rule that is used in a lot of research looks as follows: 

“If the p-value is less than 0.05, we can reject H0.” Here are a few facts to help you 

understand p-values better:

• p-value<0.05 doesn’t mean that H1 is true.

It means that we observe “unusual” results. Even if we don’t have 

a statistically significant difference, we still can observe small 

p-values; it’s a normal situation.

• p-value>0.05 doesn’t mean that H1is true.

It means that we can’t reject H0 based on the given samples. If you 

have p-value=0.20, you can’t make any conclusions about H0 and 

H1; you need more experiments for that.
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• 0.05 is not a mandatory value.

It’s just the historical p-value threshold, but you don’t have to use 

this particular number. It’s not recommended to increase it, but 

you may consider using smaller numbers. Typically, you can use 

0.01 or even 0.001 in benchmarking.

• p-values work correctly only in a series of experiments.

It’s not enough to have a single experiment with p-value < 0.05 to 

reject H0. You have to collect other samples, repeat the statistical 

test, and get many small p-values in a row to be sure the H0 is false.

It’s also important to understand the distribution of p-values. Imagine two normal 

distributions x and y where the true difference between means is d = 7 and the standard 

deviation for both distributions is s = 10. Let’s consider different threshold values from 

0 to 14 and repeat the following experiment 1000 times for each value: we will take 

samples from each distribution (n = 20) and check that the difference x − y is larger 

than a threshold t with the help of one-sided Welch’s t-test. Thus, the null hypothesis H0 

is d ≤ t, and the alternative hypothesis H1 is d > t. You can see histograms that present 

distributions of p-values for different thresholds in Figure 4-12.
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Let’s discuss some plots from this figure in detail:

• t = 0, H0 is false because d > 1, the distribution is right skewed.

When the threshold is significantly less than the true difference 

between means, most p-values are close to zero. However, there 

are still many p-values that are not small. Even when the threshold 

is zero, about 30% of the p-values are actually higher than 0.05. 

Thus, we can reject H0 and say that the true difference between 

means is larger than zero only if we do several experiments.

• t = 7, H0 is true because d = t, the distribution is uniform.

When the threshold equals the true difference between means, 

the p-values are distributed uniformly. Thus, we can observe 0.05 

and 0.95 p-values with the same probability.

Figure 4-12. p-value distributions for different thresholds
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• t = 14, H0 is true because d < t, the distribution is left skewed.

When the threshold is significantly larger than the true difference 

between means, most p-values are close to 1. About 70% of the 

p-values are higher than 0.95.

It’s pretty hard to verify the statistical hypotheses in this case because the standard 

deviation is huge (it’s larger than the true difference between means) and the sample 

sizes are too small. In simple cases, you will most likely observe values that are pretty 

close 0.000 or 1.000, which allows easily choosing the correct hypothesis.

The magic 0.05 p-value threshold is known as α (the alpha-level or the significance 

level). Now we know how to interpret it another way. Since the p-values are distributed 

uniformly when the true difference equals the threshold (H0 is true), the probability of 

getting p-value <α is α. Such a situation is a Type I (false positive) error: H1 is false, but 

we think that it’s true. Thus, α is the probability of getting a Type I error in this case. By 

decreasing α, you can reduce the Type I error rate.

When you work with p-value-based statistical tests, there are two primary 

recommendations:

• Always run the statistical test several times on different samples. You 

can make a reliable conclusion only based on getting the same results 

several times in a row.

• If you have too many p-values between 0.01 and 0.99, the sample size 

is probably not enough to make a statistically significant conclusion. 

Try to increase it.

• When you are sure that there is a tangible difference between x and y 

and want to prove it, you can use very small α like 0.001: it should be 

enough to detect a statistically significant difference with low Type 

I (false positive) error rate. When the difference between x and y is 

small (e.g., less than 1%) and the standard deviation is huge, it can 

be hard to prove that the difference is significant with a low α-level. 

However, if you did it, there is only a small chance that you did it 

wrong because α is responsible for the Type I (false positive) error 

rate. For example, in the Higgs boson experiment, α = 3 · 10−7 was 

used, which means that the probability of getting incorrectly positive 

results is really small.
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Now we know how to handle the fundamental task in the performance analysis: 

comparing two distributions. It’s time to learn how to analyze several distributions.

 Regression Models
Another important question in performance analysis is how the method performance 

depends on input parameters and environment. In statistics, there is an approach called 

regression analysis, which helps to answer this question.

In software development, the term “regression” has a negative meaning: it describes 

a situation when a feature worked fine before, but now it doesn’t work (or it works 

incorrectly). “Performance regression” means that something worked fast before, but 

now it works slowly. In statistics, the term “regression” has another meaning. Originally, 

it was introduced by Francis Galton. One of his most famous researches describes a 

phenomenon when tall parents, on average, have children with a smaller height. The 

name of this effect is “regression toward the mean” (this concept is also well-covered 

in [Kahneman 2013]), which has a biological meaning. Later, the term “regression” 

was adopted by statisticians; it’s used for describing a relationship between different 

variables (for example, the input data and the method performance).

In performance analysis, the regression models help to explore the performance 

space. With a regression model built on several samples, we can understand how 

the input data affects the performance and extrapolate this result for prediction of 

performance in real-life situations. One of the most popular usages of regression models 

in computer science is the asymptotic analysis. Consider the following three methods:

public int GetLength(int[] a)

{

  return a.Length;

}

public int ArraySum(int[] a)

{

  int n = a.Length;

  int sum = 0;

  for (int i = 0; i < n; i++)

    sum += a[i];

  return sum;

}
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public void BubbleSort(int[] a)

{

  int n = a.Length;

  for (int i = 0; i < n; i++)

  for (int j = 0; j < n - i; j++)

    if (a[j] > a[j + 1])

    {

      var temp = a[j];

      a[j] = a[j + 1];

      a[j + 1] = temp;

    }

}

The first one returns the length of an array, the second calculates the sum of 

elements in an array, and the third sorts numbers in an array with the help of the bubble 

sort. In the asymptotic analysis, we can describe the performance of this method by the 

big O notation. We can say that the algorithmic complexities of these methods are as 

follows:

• GetLength: O(1) (constant time complexity)

• ArraySum: O(n) (linear time complexity)

• BubbleSort: O(n2) (quadratic time complexity)

Such dependencies can be visualized with the help of scatter plots. In the two- 

dimensional case, this plot has the performance metric on one axis and the target input 

variable on the other axis. In Figure 4-13, we can see the values of O(1), O(n), and O(n2) 

for different values of n.
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The algorithmic complexity is often incorrectly interpreted, so let’s discuss a few 

common pitfalls:

• The algorithmic complexity is not the method duration

It just specifies the upper bound for the algorithm duration, 

which works even for huge n values. For example, O(n2) means 

that there is constant C such that the method duration is less 

than C · n2 for any n. In practice, it’s useful to know how fast the 

duration will increase when n is increased. The constant C can 

have a pretty high value. For example, we can set =100 , which 

means that ArraySum will take less than 100n seconds. It may 

sound obvious that it takes less than 100 seconds for n = 1, but 

the most important fact here is that this condition will be valid 

for huge n values. The BubbleSort complexity is (n2) , which 

means that 100n can’t be used for the upper bound duration.  

Of course, BubbleSort takes less than 100 seconds for n = 1 and 

Figure 4-13. Algorithmic complexity scatter plots
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less than 200 seconds for n = 2, but there are huge n values such 

that BubbleSort will take more than 100n seconds.

• If an algorithm has O(n) algorithmic complexities, it doesn’t 
mean that it always works faster on small n than on bigger n

The complexity helps to understand how the algorithm works on 

huge values of n, but it doesn’t state anything about performance 

for small n values. Thus, if an algorithm is optimized for cases 

when n = 2k, it may work slower for n = 255 than for n = 256.

• If two algorithms have O(n) and O(n2) algorithmic complexities, it 
doesn’t mean that the first algorithm is always faster

It means that the second algorithm will be slower on huge values 

of n, but we can’t say anything for sure about small values. For 

example, if the first algorithm takes 50 · n milliseconds and the 

second takes 1 · n2 milliseconds, the first one will work slower for 

n < 50.

In real life, the relationship between the method duration and the input data may 

be complicated. Let’s say that we have the following expression for an array: array.

OrderBy(x => x).Take(1). What is the algorithmic complexity of this method? In .NET 

Core 2.1, the internal implementation uses the quickselect algorithm. It has the O(n) 

best-case and average-case complexity. But the worst-case complexity is O(n2). This 

means that if the number in the array follows a special pattern (like 2 4 6 8 10 5 3 7 

1 9), the performance will be much worse than on the average case. In Table 4-4, you 

can see corresponding measurements for two cases: Equal (all numbers are zeros) and 

QsWorst (the worst case for the quickselect algorithm).

Table 4-4. Quickselect Performance 

n Case               Mean            StdDev

1000 equal 42.16 μs 0.1068 μs

1000 QsWorst 8,853.04 μs 84.8771 μs

10000 equal 415.93 μs 0.9477 μs

10000 QsWorst 876,433.01 μs 4,960.2892 μs

Chapter 4  StatiStiCS for performanCe engineerS



231

As you can see, when we increase n 10 times (1000 → 10000), the duration of Equal 

increases 10 times, but the duration of QsWorst increases 100 times, which can be 

explained by O(n) and O(n2) complexity. The behavior was improved8 and now it always 

has O(n) complexity because it just calculates the minimum element (the fix is available 

in .NET Core 3.0). Thus, the actual performance depends not only on the number of 

elements in an array, but also on the array content and the runtime version.

However, in simple cases, it’s often possible to build a regression model and explain 

how performance depends on the input data. A regression model provides more useful 

information about method performance than the algorithmic complexity does: instead 

of the determining the upper bound, it allows building a function that returns an 

estimation for method performance based on its parameters.

The simplest regression model is the linear regression model. It’s useful when 

you are sure that you have a linear dependency between the parameters and the 

performance. Such a model is expressed by the following equation:

Linear regression n Duration: = +a a0 1

where α0 and α1 are some constants.

It can be a good prediction model when the dependency is really linear. However, 

sometimes it can be quadratic.9 In this case, we can use the quadratic regression 
model:

Quadratic regression n n Duration: = + +a a a0 1 2
2

A cool fact about the linear regression model: it’s a special case of the quadratic 

regression. This means that if we are not sure if the algorithm is linear or quadratic, we 

can build a quadratic model and check α2. If this value is close to zero, the algorithm is 

most likely linear. If this value is far from zero, the algorithm is not linear, but we don’t 

know its degree. Fortunately, we can build the polynomial regression model:

Polynomial regression n n n n Duration: = + + + + +¼a a a a a0 1 2
2

3
3

4
4

8 https://github.com/dotnet/corefx/pull/32389
9 There is an interesting blog called “Accidentally Quadratic” with stories about situations 
when an algorithm has the quadratic complexity, but it wasn’t obvious: https://
accidentallyquadratic.tumblr.com/
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If the coefficients α3, α4, … are close to zero, the model is most likely quadratic. Such 

equations can be built with the help of the method of least squares.10 The regression 

is not always polynomial; it can be expressed by any kind of function. The problem of 

finding this function is known as curve fitting.11 You may come up with an idea of this 

curve from a scatter plot, make a hypothesis about the regression kind (e.g., O(n log n) or 

O n( ) ), and build the corresponding model.

A common problem that often arises in regression analysis is overfitting. It relates 

to the situation when the built curve perfectly fits the data we have, but doesn’t show 

the true dependency between the method performance and its parameters. The risk 

of overfitting is high when the sample size is small. For example, it’s always possible to 

build a perfect linear model when you have only two points (you should just connect 

them by a line). If you have three points, it’s always possible to build a perfect quadratic 

model even if the true model is logarithmic or cubic. In fact, any k points allow building 

a perfect polynomial model of degree k − 1. Thus, if we have 1000 points, we can build a 

polynomial model of degree 999, but it’s unlikely a correct model. To avoid overfitting, 

you always have to check how the model works on data that is not used for the 

construction of the regression model. This approach is known as cross-validation.

Another important kind of performance analysis tries to answer how the 

performance depends on the environment. Here we usually work with categorical 
variables. You can interpret it as a value from an enum (a predefined set of non-numeric 

values). For example, you can consider a JIT kind (LegacyJIT or RyuJIT), a runtime (.NET 

Framework, .NET Core, or Mono), or an operating system (Windows, Linux, or macOS). 

In the simplest case, you already know the environment factor that you want to check. 

For example, in JetBrains Rider, a typical factor that is important for performance is the 

operating system. In Figure 4-14, you can see performance measurements for a test that 

expands an ASP.NET template and performs some operations on it.

10 You can find an implementation of this method and other similar algorithms in the MathNet.
Numerics NuGet package: see https://numerics.mathdotnet.com/

11 You can find the most truthful explanation of how curve fitting works in real life here: https://
xkcd.com/2048/
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Different operating systems are denoted by different shapes and colors. As you can 

see, we obviously have clustering here: the test works much faster on Linux than on 

Windows or macOS. A good visualization may provide some initial hypothesis about 

factors affecting performance. Next, you can perform a statistical test against samples 

from a different OS. For example, we can apply one-sided Mann–Whitney U test, 

which checks that the difference between the macOS sample and the Linux sample is 

statistically significant with a 60-second threshold.

However, we don’t always know which environment factors really affect 

performance. Imagine that we have hundreds of characteristics for each measurement, 

but we don’t know which of them are important. In this case, we can do the following:

 1. Find the cluster in one performance measurements. Since we 

have one-dimensional data, we don’t need “advanced” cluster 

detection algorithms. It’s recommended to use a simple method 

like Jenks natural breaks optimization. After that, you should get 

several samples with statistically significant differences between 

them.

Figure 4-14. Performance clustering by OS
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 2. Enumerate all the values for each environmental characteristic. 

If different values of the same characteristic are presented in the 

same sample, we can exclude the corresponding characteristic 

from the analysis: it’s not responsible for clustering. Don’t forget 

about possible outliers: we need many occurrences of the values 

in a sample to say that the value is presented in it. If a specific 

value is presented in all samples, such characteristics can also be 

excluded.

 3. After that, we should get a small list of “suspicious” characteristics. 

Next, we can “forget” about initial clustering and perform 

statistical tests for values of the remaining characteristics against 

each other.

 4. Now we have a list of “suspicious” factors that are probably 

responsible for performance. We should verify each factor by 

performing additional measurements in the target environment 

and repeating the statistical test.

Such a method has a pretty high Type II (false negative) error rate and may miss 

some cluster effects. However, it also has very small Type I (false positive) error rate, so 

we will not be disturbed by a false alarm. Meanwhile, if we have an obvious clustering, 

we will probably find it. You can come up with your own checks based on your business 

goals and the environment part of the performance space. You can even use some 

machine learning–based approaches, but simple checks and heuristics may be much 

more effective in real life. In huge software products, you typically don’t need all existing 

clustering effects: you need only the most major effects, which are superobvious when 

you are looking at a scatter plot. Such effects can be easily detected with very simple 

checks that can be quickly implemented without complicated mathematics.

The use of regression models is a very powerful technique that helps you to 

understand your performance space better. It allows you to determine dependencies 

between the input data, the environment, and the performance. When you know how to 

use them, you can make a prediction about the duration of your methods under different 

conditions.
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 Optional Stopping
A typical benchmark includes many magic numbers, including the hardcoded number 

of iterations. The process of benchmarking has a unique “feature”: we can do as many 

measurements as we want. On one hand, this is good because if we don’t have enough 

performance data, we always can do additional iterations. On the other hand, it’s bad 

because we can’t collect all measurements. Here the problems begin. Since we have 

an endless set of measurements, how many iterations should we do? Is it enough to 

take ten measurements? Or do we need ten thousand of them? Usually developers set 

the number of iterations based on the amount of time that they are ready to wait. If 

an iteration takes 10 milliseconds, we can do hundreds of them. If an iteration takes 5 

minutes, it can be the only iteration. Most developers don’t want to wait too long, and 

the endless set transforms into a pretty small collection of numbers.

Usually, developers pick them at random: “Let’s make 100 iterations; I guess that 

should be enough.” This isn’t the best strategy because most likely a random number 

is less than necessary (accuracy is poor) or more than necessary (we are waiting for 

results too long). There is a solution to this problem: we can choose the magic numbers 

adaptively during the run. In statistics, this approach is known as the sequential 
analysis.

Let’s consider a part of a hypothetical performance investigation log:

• We are going to run the benchmark 5 times.

• It seems that 5 is not enough because the variance is too huge. Let’s 

try to run the benchmark 100 times.

• Now the variance is OK, but it takes too long run the benchmark 100 

times. Let’s try 20 iterations.

• Now the variance is still OK, and all runs takes an acceptable amount 

of time.

This investigation has one major problem: the goals are poorly chosen. Here are the 

described goals:

• We want to run the benchmark 5 times.

• We want to run the benchmark 100 times.

• We want to run the benchmark 20 times.
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However, it would be better to set the following goal:

• We want to get a low standard error (less than 2.5 seconds); the 

number of iterations should be as minimal as possible.

Thus, you will use magic numbers anyway. However, it’s very important which 

numbers to choose. Instead of asking “How many iterations should I choose?”, you 

should ask yourself “What kind of distribution characteristics I want?” The benchmark 

design should include the desired metric values of the future distributions. Once these 

conditions are achieved, we can stop the iteration process.

The optional stopping requires collecting cumulative metrics. These are 

intermediate statistical characteristics that are recalculated after each iteration. 

In Figure 4-15, you can see an example of a timeline plot that includes cumulative 

means and confidence intervals. Such plots can help you understand the relationship 

between the sample size and the final metrics. As you can see, if we stop the iteration 

process after a few iterations, the confidence interval will be huge; it can’t be used 

for reliable conclusions. After the first 10 iterations, the confidence interval becomes 

smaller, but it’s still pretty big (it equals to [36.53; 47.97] while the cumulative mean 

is 42.25). After 30 iterations, the confidence interval equals [35.98; 42.19] while the 

cumulative mean is 39.08.

Figure 4-15. Timeline plot with cumulative means and confidence intervals
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Once you have the cumulative metrics, you can formulate the stopping criteria 

based on that. Here are a few options:

• Stopping criteria for warm-up iterations may be based on 

fluctuations. We know that the first iteration can be heavy. Usually, 

the second iteration takes less time than the first one because it’s 

performed in a warmed-up state. However, one iteration may be not 

enough for full warm-up. The third iteration may be faster than the 

second one because it’s performed in a more warmed state. While 

each iteration takes less time than the previous one, the warm-up is 

in progress. Once fluctuations are started, we can assume that the 

warm-up is finished (it’s not true in the general case). Thus, we can 

wait for fluctuations before we terminate the warm-up process.

• Stopping criteria for actual iterations (which we use in the final 

results) may be based on the standard error. For example, we can 

specify an absolute or relative threshold for the standard error and 

wait until we reach it. Since the standard error is s n/ , it decreases 

when we increase the sample size.12 Thus, it’s almost always possible 

to find the sample size with a standard error less than a given value.

• Stopping criteria for any kind of iteration may be a logical formula 

that includes several conditions. For example, it’s recommended 

to set the upper limit for the number of iterations. If you didn’t 

achieve your requirements after 100 iterations, it’s most likely that 

a few dozen additional iterations will not help: it’s better to stop the 

experiment and look at the distribution and statistical metrics. After 

that, you can understand that it’s impossible to reach the desired 

distribution characteristics in a reasonable amount of time or that 

you need special stopping criteria for this particular benchmark.

You can use the preceding criteria or create your own based on the business goals. 

However, the metric that you use in the stopping criteria has an important requirement: 

the cumulative metrics should form a convergent series. For example, you shouldn’t use 

12 We assume that the standard deviation is not changing significantly with additional iterations. 
The only exception from this rule supposes that new iterations take more time than the 
previous. In this case, the benchmark doesn’t have a steady state, and it doesn’t make sense to 
discuss its distribution.
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the desired results of statistical tests: if you use stopping criteria based on p-values, it 

may significantly increase the Type I (false positive) error rate.

In Figure 4-16 (A), you can see cumulative p-value plot (based on the Welch’s t-test) 

for 20 experiments when H0 is true (we don’t have a statistically significant difference). 

The picture resembles random noise because such p-values are uniformly distributed. 

In Figure 4-16 (B), you can see the same experiments, but the plot is scaled to the [0.00, 

0.10] p-values range. Sometimes, a cumulative p-value function “dives” under the 0.5 

threshold and “emerges” from under it. If the sample size is fixed from the beginning, 

we will get uniformly distributed p-values as a result. However, if we stop the iteration 

process once p-value <0.05 is observed, we will get too many small p-values, which leads 

to the false H0 rejecting. In Figure 4-16 (C), a histogram of such p-values is presented. As 

you can see, the [0.00, 0.05] interval contains left-skewed distribution, which is untypical 

for p-values obtained from correct experiments. Knowledge of the expected p-value 

distribution helps to verify your own results and check someone else’s research. You can 

find an example of such verification in [Lakens 2014a].

In Figure 4-16 (D,E,F), you can see the same experiment, but H0 is false (we have 

a statistically significant difference). In this case, once a cumulative p-value function 

“dives” under the 0.5 threshold, it remains under it. This experiment has a pretty small 

difference between means, so sometimes we need many measurements to get a reliable 

result, but we eventually achieve p-value <0.05, which helps to reject H0 correctly.
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Figure 4-16. Cumulative p-values
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Optional stopping is a powerful technique that helps to minimize the experiment 

time and get reliable results. However, it can also increase the Type I (false positive) error 

rate if you use it incorrectly.

 Pilot Experiments
In Chapter 2, we discussed that it’s very hard to measure the performance of very fast 

methods. A typical solution for such cases is making many method invocations inside 

each iteration. But how should we choose the number of invocations? The rule of thumb 

says that an iteration should take at least 100 milliseconds for acceptable results (or 

1 second if you want better repeatability). If a method takes a few microseconds, we 

need millions of invocations; if a method takes several minutes, one invocation may be 

enough. When we don’t have any initial estimates for the duration of a single invocation, 

we can try to guess it. Probably, it will take several attempts before you find a proper 

number of invocations. Such guessing is a boring and routine job that can be automated. 

The tuning of benchmark parameters before actual measurements is known as the pilot 

experiment.

There are many strategies to find the perfect number of invocations. For example, 

we can start with a single invocation and try to measure its duration. If this invocation 

takes less than the specified minimum iteration time, we can try two invocations. 

If the duration of the two invocations is still too small, we can try four invocations, 

eight invocations, and so on until we get the desired duration. We can’t just divide the 

minimum iteration time by the duration of a single invocation to get the number of 

invocations: the error for very fast methods can be huge, which spoils that calculation 

(we can easily get a 1000-nanosecond estimate for a 10-nanosecond operation).

Here is a simplified log of a typical microbenchmark in BenchmarkDotNet:

Jitting  1:       1 op,    248000 ns, 248.00 µs/op

Jitting  2:      16 op,    521000 ns,  32.56 µs/op

Pilot    1:      16 op,      7000 ns, 437.50 ns/op

Pilot    2:      32 op,     10000 ns, 312.50 ns/op

Pilot    3:      64 op,     16000 ns, 250.00 ns/op

Pilot    4:     128 op,     31000 ns, 242.18 ns/op

Pilot    5:     256 op,     63000 ns, 246.09 ns/op

Pilot    6:     512 op,    128000 ns, 250.00 ns/op

Pilot    7:    1024 op,    305000 ns, 297.85 ns/op
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Pilot    8:    2048 op,    500000 ns, 244.14 ns/op

Pilot    9:    4096 op,    998000 ns, 243.65 ns/op

Pilot   10:    8192 op,   2189000 ns, 267.21 ns/op

...

Pilot   18: 2097152 op, 523762000 ns, 249.74 ns/op

Let’s discuss it in detail.

• Jitting 1: this is the first iteration of the jitting phase. During this 

iteration, the JIT compiler generates the native code for the method. 

BenchmarkDotNet runs a single invocation of the given method and 

measures its duration. In this example, 1 op means “1 operation,” 

which equals to one invocation by default. As you can see, a single 

iteration takes 248,000 nanoseconds.

• Jitting 2: this is the second iteration of the jitting phase. We already 

know that the given method is pretty fast, so we are switching to 

another benchmark mode where we have 16 consecutive method 

invocations inside a loop body. This manual loop unrolling helps us 

to achieve better accuracy in nanobenchmarks. During this iteration, 

the JIT compiler generates the native code for the described loop. The 

16 invocations of a method take 521000 nanoseconds, which means 

that a single invocation takes approximately 32.56 μs (microseconds).

• Pilot 1: Now it’s time for the pilot stage. First of all, we try to repeat an 

iteration with 16 invocations. It takes 7000 nanoseconds instead of 

521,000! The first jitting call had a huge overhead, but now we have 

a better estimation of the approximated average invocation time: 

437.50 nanoseconds.

• Pilot 2: 7000 nanoseconds is not enough to get reliable results. Let’s 

increase the number of invocations twice and measure the duration 

of 32 operations. It takes 10000 nanoseconds. It doesn’t equal to 

2∗7000 nanoseconds because the previous iteration was spoiled by 

natural noise. The increased number of invocations reduces the noise 

influence and allows getting a better approximation for the average 

invocation duration: 312.50 nanoseconds. Let’s continue to increase 
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the number of invocations until the total iteration time reaches an 

acceptable value.

• Pilot 18: After 18 pilot iterations, the iteration duration becomes 

523,762,000 nanoseconds (0.52 seconds). Thus, the average 

invocation time is 249.74 nanoseconds. It is significantly better than 

our first approximation, which is 248,000 nanoseconds. It doesn’t 

make sense to continue increasing the number of invocations 

because it doesn’t improve the accuracy: we achieved a reliable and 

repeatable estimation for a single invocation duration. If we use 

a larger number of invocations, the total experiment time will be 

increased without any benefits in terms of accuracy. Thus, we can 

continue to do 2,097,152 invocations per iteration during warm-up 

and actual stage when we collect the measurements that form our 

final performance distribution.

Of course, you can use other strategies for the pilot experiment. For example, you 

can invoke the method in a while loop until the minimum iteration time is achieved. 

Don’t use this approach for actual measurements: iteration with an unequal number of 

invocations also can spoil the results. Such a while loop also requires a separate warm- 

up stage: the first experiment can be spoiled by cold start effects like assembly loading or 

jitting.

The pilot experiment is a powerful technique that helps to find the best benchmark 

parameters and achieve a better trade-off between the accuracy and the total 

benchmarking time.

 Summing Up
In this section, we covered two important approaches to analyzing a group of 

distributions:

• Distribution comparison

When we want to compare two distributions, we work with 

two hypotheses: H0 (there is no difference) and H1 (there is a 

difference). The conclusions may include errors of two kinds: 

Type I (false positive: there is no difference, but we think that there 

is a difference) and Type II (false negative: there is a difference, but 
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we think that there is no difference). In most simple cases, we can 

apply simple heuristics (range test, Tukey test, or three-sigma test) 

or honest statistical tests: Welch’s t-test (works only for unimodal 

distributions that are close to normal), Mann–Whitney U test 

(works for any kind of distribution). Such tests provide a p-value 

that should be compared with α-level threshold (typical value 

is 0.05). If we get many small p-values (less than α) in a series of 

experiments, H1 is most likely true (we have a difference between 

distributions). When H0 is true, p-values are distributed uniformly, 

which means that α is the Type I (false positive) error rate.

• Regression models

Regression models help to detect relationships between the input 

data, the environment, and the performance. Asymptotic analysis 

helps to express the algorithmic complexity by the big O notation 

(e.g., O(n2) or O(n log n)). In many cases, we can use polynomial 

models (e.g., linear model or quadratic model), but other cases 

require advanced curve fitting. When we want to understand 

how the environment affects performance, we should work with 

categorical variables (e.g., OS: Windows/Linux/macOS). We can 

find the most important environment factors with the help of 

clustering and check that they really affect performance with the 

help of statistical tests.

Also, we discussed two approaches of adaptive benchmarking:

• Optional stopping

Instead of guessing the perfect number of iterations, we can define 

a stopping criteria: the iteration process should perform until the 

desired distribution properties are achieved. You shouldn’t use 

p-values for it because it can significantly increase the Type I (false 

positive) error rate.

• Pilot experiments

Some experimental parameters (like the number of invocations 

inside each iteration) can be determined in advance. In the pilot 

experiment (which is performed before the actual experiment), 
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we can run a series of iterations with different characteristics 

in order to determine the best benchmark parameters for our 

accuracy requirements.

Adaptive benchmarking helps you to design the benchmark correctly, achieve the 

desired accuracy, and minimize the total benchmark duration. These approaches have 

been successfully used in BenchmarkDotNet for years. Even with BenchmarkDotNet, 

you should still understand the concept of adaptive benchmarking; the library will not 

design a benchmark for you. BenchmarkDotNet provides some default values for the 

target distribution requirements, but it works fine only in simple cases. In complicated 

cases, you have to tune these numbers or even define your own statistics criteria.

However, knowledge of all analysis techniques doesn’t protect you from mistakes 

and wrong conclusions. Let’s learn how statistics may deceive you and force you into 

wrong business decisions.

 How to Lie with Benchmarking
The title of this section is inspired by a great book by Darrell Huff, How to Lie with 

Statistics (see [Huff 1993]). This book contains many examples that demonstrate how 

easily people can be fooled with the help of special ways of presenting the data. When we 

are talking about benchmarking, this topic becomes pretty important because it’s very 

easy to make incorrect conclusions based on benchmark results even if nobody tries to 

deceive you.

This section has two goals:

• Self-defense from others

Many performance reports that you can find in articles, blog posts, 

StackOverflow answers, and GitHub discussions often contain 

misleading numbers and plots that may push you to a wrong 

decision. It’s good to know how to detect different deceptive 

techniques.

• Self-defense from yourself

Even when you are working with your own set of benchmarks, 

it’s pretty easy to interpret results incorrectly and fool yourself. If 
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you want to prevent such a situation, you should learn the most 

common mistakes that developers usually make.

If you think that the knowledge of statistics is sufficient protection, I highly 

recommended you to read [Kahneman 2013], which demonstrates how bad human 

intuition handles pretty simple statistics tasks. One of the main book ideas is the 

following: the human mind has two “systems”: “System 1” (fast but not so smart) and 

“System 2” (slow but smart). The first ideas that we have about something are provided 

by “System 1”: we get them instantly, but they are often wrong. If we carefully think about 

the subject, “System 2” will provide more accurate and correct answer, but it can take 

some time. Unfortunately, people don’t always carefully think when they make decisions 

and use answers coming from System 1. This may lead to incorrect conclusions about 

the benchmark results.

In this section, we will try to activate our “System 2” and learn how to use it in 

benchmarking. We are going to cover the most common ways to lie with benchmarking 

and what you need to pay attention to in order to recognize a lie.

 Lie with Small Samples
When you are analyzing raw data, intuition is your worst enemy. It tries to find patterns 

everywhere, and it finds it (even if there are no patterns). Here is an exercise: based on 

the following measurements, which method is faster?

A: 58 ms 62 ms 57 ms 60 ms 66 ms

B: 61 ms 67 ms 70 ms 77 ms 73 ms

If you think like most people, you say “A faster than B” because in each column, the 

“A” value is less than the “B” value.

I have to confess: I generated all ten numbers based on the same benchmark with 

the following source code:

static long Measure()

{

  var data = new byte[64 * 1024 * 1024];

  var stopwatch = Stopwatch.StartNew();

  var fileName = Path.GetTempFileName();

  File.WriteAllBytes(fileName, data);

  File.Delete(fileName);
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  stopwatch.Stop();

  return stopwatch.ElapsedMilliseconds;

}

It’s one of my favorite guinea pigs for such experiments: it creates a file with 64 MB of 

data and removes it. Now we can generate ten numbers as we get in the preceding:

Console.Write("A: ");

for (int i = 0; i < 5; i++)

  Console.Write(Measure() + " ms ");

Console.WriteLine();

Console.Write("B: ");

for (int i = 0; i < 5; i++)

  Console.Write(Measure() + " ms ");

It still may seem that the probability of getting such results is pretty low. Let’s do 

some math. The chance that one measurement will be less than another is about 50% 

(the I/O operations don’t produce stable performance values, so it’s pretty unlikely 

to have equal measurements). The chance that each number from the “A” row will be 

less than the corresponding number from the “B” row is (1/2)5 or 3.125%. That’s not a 

small number. Let’s say that 22 readers of this book decide to try this code snippet. The 

probability that no one gets such a strange result is (1 − 0.03125)22 or 49.7%. This means 

that there is a 50.3% chance that at least one of them will get a result that looks like “A 

faster than B.” It’s pretty similar to the Birthday Paradox, which states that there is a 50% 

chance that in a room of 23 people, 2 of them will have the same birthday (read more 

about it in [Azad 2007]).

It’s a common situation when a small sample contains insidious data anomalies 

that look like patterns. If you often do benchmarking, you will often get “extraordinary” 

results in small samples because of the random noise. You may be tempted to make 

conclusions based on that, which may lead to wrong business decisions. Knowledge of 

statistics will help you to protect yourself from such situations and correctly verify all 

your performance hypotheses.

When the sample size is small, most of the statistical metrics are unreliable 

because you can’t calculate the correct values for the true distribution based on a few 

measurements. You can’t understand if the distribution is multimodal or unimodal, 

you can miss possible outliers, you can’t get a proper value of the standard deviation, 

and so on. A small sample size may be used for getting a first impression about the 
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measurements, such as “the method takes several seconds” or “the method takes 

several microseconds.” But it’s not enough to make a meaningful conclusion about the 

distribution. For example, when the difference between the two methods is 10–20%, you 

can’t detect it correctly if n = 5.

Lie with Percents
Let’s say that you made a performance improvement: a method which took 200ms 

before now takes 100ms. How do you describe this change with percentages? It depends 

on your baseline. If the baseline is 200ms, we have (200 − 100)/200 ∗ 100%  = 50% 

improvement. If the baseline is 100ms, we have (200 − 100)/100 ∗ 100%  = 100% 

improvement. The ratio is the same, but the result is different: 50% vs. 100%.

Someone may say that it’s cheating and the baseline should always be the original 

value (the “before” state). Here we have another hack: we can let readers choose the 

baseline themselves. Usually, people don’t like to do complicated math in their minds, 

so they try to choose the simplest baseline for calculations. Let’s say that you made a 2.5× 

performance improvement. Compare the following two sentences:

A method which took 250 seconds before, now takes 100 seconds.

and

A method which took 100 seconds before, now takes 40 seconds.

In both cases, we have a 2.5× speedup. However, many people mentally translate it to 

150% in the first case and 60% in the second case. It’s much easier to use 100 seconds as 

a baseline because it’s the most natural divider when we are talking about percentages. 

Of course, if you spend several seconds thinking, you will understand that your first 

intuitive guess was wrong. Kahneman’s System 1 and System 2 in action! Usually, people 

don’t like to apply math everywhere: they just quickly scan a text. Thus, for many people, 

the 250 → 100 improvement makes more impression than the 100 → 40 improvement.

Operations with percentages are a frequent source of wrong conclusions. Let’s say 

that our project had a good level of performance in May. The metric used is RPS. In June, 

we had a 40% degradation in terms of RPS. In July, we made some improvements and got 

a 50% speedup compared to June. Thus, we have the following picture:

May  : Baseline

June : -40%

July : +50%
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The question: what can you say about performance changes between May and July? 

Probably, the first idea that appeared in your head was “Performance in July was better 

because the 50% speedup beat the 40% degradation.” Now, let’s do some calculations. If 

a method performed around 100 RPS in May, the 40% degradation means that we had 

100 · (1 − 0.40) = 60 RPS in June. The 50% speedup means that we had 60 · (1 + 0.50) = 90 

RPS in July:

May  : Baseline | 100 RPS

June : -40%     |  60 RPS

July : +50%     |  90 RPS

As you can see, we still have a degradation comparing to May.

Here is another performance quiz for you (try to answer as fast as you can). Let’s say 

that we decided to optimize a method and we have two alternative improvements. After 

benchmarking, it turns out that the first optimization reduces the method duration by 

98%, and the second one reduces it by 99%. By how much is the second implementation 

faster than the first one?

Typically, the first number that arises in mind is 1%, but the correct answer is “two 

times.” Probably, you solved this quiz correctly because you were waiting for a trick. 

However, many people often incorrectly interpret such situations when they try to read 

benchmark results quickly and don’t expect any tricks.

Many performance reports use such tricks to create a feeling that the situation is 

better or worse than in reality. While such reports do not contain deliberately false data, 

the described manipulations may force you to think out wrong conclusions.

 Lie with Ratios
If you determined that one method is faster than another, the next logical question is 

“how many times faster?” The typical approach is to divide the mean value of the first 

method sample by the mean value of the second method sample. However, this doesn’t 

work well in general, because it’s another kind of situation where we can’t describe the 

answer with a single number. The correct approach is to build the ratio distribution z:
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This is a paired method, which means that you need samples of equal size. As a 

result, you have another distribution that has its own statistical metrics: mean, variance, 

and so on.

Consider the following two samples:

x y={ } ={ }200 200 200 200 200 100 100 100 100 10000, , , , , , , , ,

The x sample is superstable: all its elements equal to 200. The y sample also is pretty 

stable (almost all its elements equal to 100), but it has a single huge outlier. Now let’s 

build the ratio distribution:

z ={ }2 2 2 2 0 02, , , , .

How much faster is x than y? Let’s consider two ways to calculate it: the ratio of the 

means and the mean of the ratio:

x

y
z» »0 1 1 6. , .

The first answer says that x is 10 times faster than y, but the second answer says that x 

is 1.6 times slower than y. Which answer is better? In fact, both answers are bad because 

we can’t describe the answer by a single number in this case. The best answer contains 

information about the ratio distribution. For example, we can present it as follows:

min . , max , , . , . ,z z Q z z s nz z( ) = ( ) = ( ) = » » =0 02 2 2 1 6 0 89 52

After a quick analysis, we can understand that in most cases y is faster than x, but 

sometimes x may be significantly faster. We also know that the ratio sample size is five, 

which is not enough for meaningful conclusions; you probably need more data.

In most real-life benchmarks, x y/  and z  have close values and the z range 

is narrow, so people often use phrases like “10 times improvement.” It’s OK to say 

something like that if you have already checked the ratio distribution and know that 

the difference between zmin and zmax is small. It’s not a good idea to provide too many 

metrics in each performance report: it’s hard to read and understand such reports. You 

should highlight only the important metrics and provide a way to check out the full list 

of statistics characteristics. Unfortunately, developers quickly get used to narrow ranges 

and forget to check the ratio distribution before making their final conclusions.
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We can also not provide the scaled result and suggest to a reader to evaluate it 

himself. Look at the following table and try to quickly compare the performance of 

methods A and B:

    Mean    Skewness Kurtosis StdDev

A   523ms   0.34     2.64      752ms

B   929ms   0.39     2.31      983ms

Probably, the first impression was something like “A works two times faster than B” 

because of the Mean column. The Skewness and Kurtosis columns don’t provide useful 

information for this problem, but they “hide” the standard deviation column: a reader 

can stop to read the table because of the “boring” columns. Meanwhile, the standard 

deviation column contains very important information: it has very huge values. The 

sample sizes and the standard errors are not presented, so we don’t have enough data 

for any meaningful conclusions about A and B. The difference between means (406 

ms) can be easily explained by “bad” samples: it’s very easy to get such a value when 

the variance is huge and the sample sizes are small. We can’t say that A is faster than 

B without a proper statistical test or a density plot based on larger samples. However, 

many developers finish analyzing the results after the Mean column and reach unreliable 

conclusions.

 Lie with Plots
Plotting is a great way to visualize your data and quickly understand the form of the 

distribution. However, it can also be a dangerous weapon that forces you to make wrong 

conclusions.
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Figure 4-17. Lie with plots
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Let’s discuss a few popular ways to lie with plots:

• Playing with scales

In Figure 4-17 (A), you can see two plots with different scales 

for the same data. Here we measure the RPS metric for two web 

servers for several months. One server is much faster than the 

other from the beginning, and both servers improve the metric 

each month. The first plot (A.1) creates the wrong impression: 

it seems that the slower server almost “caught up” to the faster 

server and that it will reach the same metric value in the next 

month. This impression is explained by the logarithmic scale. 

This scale is useful in different performance plots, but not in this 

case. It’s better to use the usual linear scale, which is presented in 

(A.2). Now we can see that the slower server is at the beginning of 

its optimization journey. Impressive 10× speedups are explained 

by extremely poor performance in January (0.1 RPS). From the 

second plot, it’s obvious that the performance improvements in 

February, March, and April are ridiculously small compared with 

the faster server. In May, the slower server is still 10 times worse 

than the faster server, and it will be pretty hard to make another 

10× speedup in the next month.

• Highlighting the data

Let’s say that we want to compare the performance of the two 

methods. We performed six different experiments and drew 

six box plots, as presented in Figure 4-17 (B). One of the box 

plots is highlighted and painted large; the other experiments 

have small plots. This is a common technique when we have 

too many plots, but we don’t have enough space to draw all of 

them on a large scale. Thus, we can draw only a single plot on a 

large scale, and present the rest of the plots on a small scale. In 

this case, you should carefully think about which plot should be 

highlighted. After a glance at Figure 4-17 (B), you may think that 

the experiments that correspond to the upper box plot take more 

time because the corresponding plot is highlighted. However, if 

you spend some time looking at all the box plots, you will figure 
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out that it’s impossible to say which method is faster: we have 

opposite results in different experiments.

• Hiding the data

Sometimes, we have unwanted data that we don’t want to 

highlight. In this case, we can choose a special visualization form. 

For example, if we have too many outliers that we don’t want to 

present, we can choose a density plot over a frequency trail plot. A 

density plot is a popular kind of visualization, and it’s OK to use it. 

However, we know about one of its features: it “hides” outliers. It’s 

still an honest way to present the data, but it doesn’t show all the 

data. If the distribution is multimodal, but we don’t want to tell 

anyone about it, we can choose a box plot over a density plot. In 

this case, we also use a popular and honest kind of visualization, 

but we choose it because it hides information that we don’t want 

to share with others. Each plot kind shows only specific properties 

of a distribution: there is no compact and accurate way to present 

all possible distribution characteristics (especially if we have 

many distributions). Thus, we will always hide some information. 

Usually, when we finish the analysis, we are trying to find a 

visualization approach that highlights the most interesting parts of 

the performance space. However, it’s also possible to intentionally 

choose a plot that hides it.

There are many different ways to lie with plots (you can find other interesting 

examples of deceiving plots in [Wainer 1984]). A good visualization is a complicated 

task that usually takes much time and effort. It’s a common situation when a researcher 

doesn’t have enough time and just picks a random plot. Another typical situation: a 

researcher knows how to draw only one kind of plot and uses it everywhere instead of 

looking for the best visualization for each specific case. In such a situation, there is a high 

risk that a deceiving plot will be drawn unintentionally. When you read reports by other 

people, always pay attention to how the visualization is presented and why a specific plot 

kind is used.
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 Lie with Data Dredging
Imagine that we made some minor performance improvements and we really want to 

demonstrate a positive impact of it in real-world scenarios. We set up a benchmark, 

collect 100 pairs of samples, perform statistical tests, and calculate p-values. 

Unfortunately, only two of them have p-values <0.05, which is not enough to say that 

we have a statistically significant difference. We know that it’s OK to have a few small 

p-values when H0 is true because they are distributed uniformly. We didn’t show all 

the experiment results to anyone yet, and we still want to prove that our performance 

improvements matter. How can we convince others of this? Maybe we can show only 

pairs of samples with p-values <0.05?…

The described technique is known as p-hacking. It’s not a good practice, but 

unfortunately, it’s highly abused in many types of scientific research. We already 

discussed another example of it in the “Optional Stopping” section: terminating of the 

iteration process after achieving small p-value is a reliable way to support H1 and show 

that we really have a significant effect even when H1 is false.

While many people use p-hacking intentionally (they know that H1 is false, but 

want to show that it’s true), the p-hacking effect can accidentally spoil your conclusions 

even if you don’t want it to. Unintentional p-hacking happens when you have a strong 

temptation to accept H1 based on a few small p-values without additional checks.13

Several different approaches can save you from unintentional p-hacking. One of my 

favorites is the Holm–Bonferroni correction. The idea is simple: when we get a set of 

p-values from different experiments, we should sort them in descending order, and rank 

the sorted array. After that, we should multiply each p-value by its rank. You can see an 

example of such correction in Table 4-5. The original p-value set has two values that are 

less than 0.05: 0.009 and 0.015. After correction, they become 0.063 and 0.090, which are 

larger than our 0.05 α-level. Some values may become more than 1.0, but you shouldn’t 

worry about it while you are comparing it with α.

13 In [Lakens 2014b], Daniel Lakens describes an interesting effect called “bi-polar p-value 
disorder.”
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p-hacking is an example of data dredging. All such techniques are based on a 

simple idea. Let’s say that we don’t have a statistically significant effect, but we want to 

demonstrate that we have it. In this case, it’s almost impossible to achieve the zero Type I 

(false positive) error rate. If we perform a huge number of statistical experiments, we will 

typically get a few “untypical” results. Including only such experiments in the final report 

makes it possible to convince other people of incorrect results.

Data dredging has many variations. Another popular example relates to the multiple 
comparison problem in clustering. There is a saying: “He who seeks will always find.” 

This perfectly describes this approach. Imagine that we have a set of performance 

samples in different environments. Each environment is described by hundreds of 

characteristics, from the RyuJIT version to the SSD model. If we split the samples by 

each characteristic and perform statistical tests against different subsamples, we will 

probably get several characteristics with low p-values. This may lead to an incorrect 

conclusion that these characteristics affect performance. Fortunately, such a hypothesis 

can be easily checked: you should perform additional experiments in two environments 

(splitted by the selected characteristic) and repeat the statistical test on the new samples.

Data dredging is an unethical approach that helps lead to incorrect conclusions 

based on the real data. If you don’t trust a researcher, you always try to repeat the 

described experiment and check whether it’s possible to reproduce the results or 

not (a decent performance investigation should include enough information for 

reproduction). If you have the full raw data set, you can also analyze it yourself and check 

the distribution of p-values: you already know how it looks with and without the data 

dredging.

Table 4-5. Holm–Bonferroni Correction 

p-value Rank Corrected p-value

0.962 1 0.962

0.673 2 1.346

0.313 3 0.939

0.120 4 0.480

0.042 5 0.210

0.015 6 0.090

0.009 7 0.063
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 Summing Up
In this section, we discussed several techniques that allow lying with benchmarking:

• Small samples

When the sample size is small, the chance to get “extraordinary” 

results is high. With small sizes, you can easily miss outliers or 

incorrectly calculate the standard deviation. Typically, statistical 

tests can’t be applied to small samples.

• Percentages

If we want to calculate performance difference in terms of 

percentages correctly, we need a proper baseline (typically, it’s the 

“before” state). It’s incorrect to sum or subtract percentages from 

different experiments: the results don’t provide any meaningful 

numbers.

• Ratios

The ratio of two distributions can’t be described by a single 

number in general; we have to work with the distribution of 

ratios. In many simple cases, the ratio of mean values provides a 

“correct” answer, but it’s untrustworthy without the distribution 

analysis: it can be easily spoiled by outliers or a huge standard 

deviation.

• Plots

Plots may provide a wrong impression of the data. For example, 

you can use special scales to highlight or hide an important part of 

the performance space.

• Data dredging

When the H0 is true, the Type I (false positive) error rate is 

typically more than zero. If you perform enough experiments, you 

will find samples with low p-values that support H1. Presenting 

only such experiments may convince other people of wrong 

results. This technique is known as p-hacking, but there are 

other approaches based on looking for something “unusual” in 
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the performance space. For example, if you have hundreds of 

environmental characteristics for a small set of experiments, you 

will probably find a few that “supposedly” affect performance.

All of these described ways to lie don’t contain knowingly false data: on the contrary, 

all of them are based on real measurements. There are two kinds of conclusions:

• Direct way

Here the report contains wrong conclusions. For example, you can 

present incorrectly calculated metrics or try to prove H1 based on 

p-hacked samples.

• Indirect way

Here the report doesn’t contain any conclusions, it just presents 

the data in a “special way.” However, the presentation form forces 

intuition to work against the reader, which can lead to wrong 

conclusions. This approach is much more efficient because our 

own conclusions are usually more trustable than conclusions of 

other people.14

In this section, we didn’t cover all possible ways to lie with benchmarking, so stay 

alert and always carefully analyze performance distributions before making conclusions. 

Don’t trust your intuition and check everything twice.

 Summary
In this chapter, we covered the following topics:

• Descriptive statistics

We learned many metrics that can describe a single distribution: 

from the mean and the standard deviation to the skewness 

and the confidence interval. You don’t need to remember how 

to calculate all these metrics, but you should remember how 

to interpret them. We also learned many useful visualization 

14 You can find more information about this effect in the following Wikipedia article:  
https://en.wikipedia.org/wiki/Confirmation_bias
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techniques: from histograms and density plots to box plots and 

frequency trails. A good visualization significantly simplifies the 

investigation process.

• Performance analysis

We learned several approaches for the performance analysis. Two 

distributions can be compared with the help of statistical tests, 

and the regression models can help you understand how the 

performance depends on the input data and the environment. 

Adaptive techniques like optional stopping and pilot experiments 

use statistics during benchmarking and help to optimize the 

measurements in terms of the whole experiment duration and the 

accuracy.

• How to lie with benchmarking

We also learned many deceptive techniques that may force us to 

incorrect result interpretations. Since we know about them, we 

can recognize them in performance research and avoid popular 

mistakes in our own performance investigations.

This chapter is not a complete introduction to statistics. It’s a practical guide with 

the most useful techniques for real-world performance distribution. However, we 

didn’t discuss many statistical methods and approaches that also can be useful in 

different kinds of investigations. If you want to improve your knowledge of statistics, it’s 

recommended to read other books like [Downey 2014], [Freedman 2007], [Wasserman 

2010], and [Boslaugh 2012].

Note that this chapter is not a classic statistics theory; it’s a guide for a practicing 

performance engineer that should help him or her to analyze performance 

measurements, correctly interpret the results, and optimize the benchmarking process. 

Thus, some topics are not fully covered, and not all of the statements are mathematically 

strict. However, this shouldn’t be a problem in real performance investigation. It’s much 

more important just to be familiar with the main concepts and know how to work with 

them.
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CHAPTER 5

Performance Analysis 
and Performance Testing

The first principle is that you must not fool yourself — and you are the easiest 
person to fool.

— Richard Feynman, 1974

In most cases, benchmarking is a kind of performance investigation. Benchmarks allow 

getting new knowledge about software and hardware. This knowledge can be used later 

for different kinds of performance optimization.

Once you get the desired level of performance, you usually want to keep this 

level. And you typically don’t want to have situations when someone from your team 

accidentally spoils your performance improvements. How can we prevent such 

situations? Well, how do we usually prevent situations when someone spoils our code 

base? We write tests! If we don’t want to have any performance regressions, we need 

performance tests! Such tests can be a part of your CI pipeline, so it will be impossible to 

make any unnoticed performance degradations!1

So, it looks simple: we write performance tests and get profit! Sounds good, doesn’t 

it? Unfortunately, it’s harder than it sounds. In performance tests, it’s not enough to just 

measure performance metrics of your code; you also have to know how to process these 

values. A benchmark without analysis is not a benchmark, it’s just a program that prints 

some numbers. You always have to explain the benchmark results.

When you run a benchmark locally, you have all the relevant source code under your 

hands: you can read it, you can play with it. You can do additional actions depending 

on the current state of the investigation. You can look at the current data and make a 

1 In theory.
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decision about the next step. When a benchmark becomes a performance test, you 

should automate this process. This is much harder because the automation logic should 

handle future changes to the source code. You don’t know the future, you don’t know the 

performance metrics that you will get tomorrow, you can’t look at the future distribution 

plots, and you can’t make nonautomated decisions about future problems. Everything 

should be automated! And this is a huge challenge: you have to predict possible 

problems and write algorithms for analysis without knowledge of the data. You should 

design not only a set of benchmarks, but also a set of performance asserts and alarms 

that should notify you in case of any problems.

The title of this chapter is “Performance Analysis and Performance Testing” instead 

of just “Performance Testing.” These topics are close to each other: performance testing 

requires a deep understanding of performance analysis approaches. Meanwhile, you 

can apply performance analysis techniques not only for performance testing but also 

for regular benchmarks (which don’t include automatic asserts) and performance 

investigations. All problems and solutions will be discussed in the context of 

performance testing, but you should keep in mind that almost all of this can be used for 

benchmarking in general. We are going to cover the following topics:

• Performance testing goals

What problems do we want to solve? What exactly do we want 

when we are talking about performance tests? We should clearly 

understand our goals before the start; we should understand what 

we want to achieve.

• Kinds of benchmarks and performance tests

There are a lot of different kinds of performance tests. You should 

decide what your test should look like and what exactly it should 

measure. For example, it can be a stress test that checks what’s 

going on with your web server under high load. Or it can be a 

user interface test that checks that UI controls are responsive and 

work without delays. Or it can be an asymptotic test that verifies 

that the algorithmic complexity of a method is O(N). Or it can be 

a functional test that measures the latency of a single operation. 

Knowledge of these kinds allows you to choose how to write 

performance tests in each situation.
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• Performance anomalies

The duration of a test is not a single number; it’s always a 

distribution. Sometimes, this distribution looks “strange.” For 

example, it can be multimodal, or it can have an extremely 

huge variance. We say that distributions of “unusual shape” are 

performance anomalies. It’s not always a problem, but hunting 

for performance anomalies can usually help you to find many 

problems that you can’t find in another way.

• Strategies of defense

When should we run our performance tests: before or after the 

merge into the main branch in a version control system? Should 

we run performance tests per each commit or it will be enough 

to run it once per day? How much time should we spend on 

performance testing and what kind of degradation could we 

detect in each case? Can we implement completely automatic 

CI logic? Or do we always have to do things manually? What 

can we do if a product with performance problems has already 

been released? There are different strategies of defense from 

performance degradations: each of them has advantages and 

disadvantages, and each of them helps you to solve a specific set 

of problems.

• Performance space

For each test, you can collect many metrics. You can measure 

the total wall-clock time, and you can check out the hardware 

counters or the number of GC collections. You can collect these 

metrics only from a single branch or from several branches. There 

are a lot of ways to get performance numbers, and you should 

know about them because this knowledge will help you choose 

which of them will work best for you.

• Performance asserts and alarms

Everything is simple with functional tests because they are 

usually deterministic. If you don’t have tricky race conditions, a 

test always have the same result. It’s clear when a test is green; 
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depending on your requirements, you can easily check it with a 

series of assertions.

In the case of performance tests, everything is more complicated. 

Remember that a test output is a series of numbers; you have 

new numbers per run even on the same machine. Moreover, in 

some cases, you have to compare data from different machines. 

The standard deviation can be huge, so it can be hard or even 

impossible to detect 5-10% degradation. It’s very important to 

define your alarm criteria and answer a simple question: “When is 

a test red?”

• Performance-driven development (PDD)

This approach is similar to test-driven development (TDD) with 

one exception: instead of the usual functional tests, we write 

performance tests. The idea is simple: you shouldn’t start to 

optimize anything before you write corresponding performance 

tests that are red. Indeed, it sounds simple, but it’s a very powerful 

technique; it will help you to save a lot of time and nerves.

• Performance culture

Unfortunately, performance tests will not work well if members of 

the team don’t care about performance. You need a special kind of 

culture in your team and your company. Not only is performance 

testing about technologies; it’s also about attitude.

There is no universal approach that allows getting a performance testing system 

for free in any project. The best approach for you depends on your performance 

requirements and on CI/human resources. In this chapter, we will learn basic 

information about performance tests that will help you to understand which practices 

can be helpful for your projects and your team.

Many examples in this chapter are based on development stories about IntelliJ IDEA, 

ReSharper, and Rider. I will mention these projects without additional introductions.

Let’s start with performance testing goals!
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 Performance Testing Goals
In the modern world, we often release new versions of our software. We are trying to fix 

old bugs and implement excellent new features. Sometimes, though, these new features 

do not work as well as expected. However, this is a normal situation: it’s tough to write 

new code without introducing new problems. That’s just how it works. Hopefully, your 

users understand this and will wait for a new version with fixes. However, in many 

cases, it’s almost inexcusable when you’re breaking old features or make them slow. As 

a performance engineer, the worst user feedback I ever get was like: “The new version 

of your software works so slowly that I have to roll back to the previous version” or even 

“I have to switch to the product of your competitors.” Sometimes we have performance 

degradations—this is the problem that we are going to solve in this chapter. We have 

defined the problem, and now it’s time to define the goals!

 Goal 1: Prevent Performance Degradations
This is our primary goal: prevent performance degradations. Some developers may 

confuse this goal with “make software fast” or “make users happy with our performance.” 

Be careful! When we say “prevent performance degradations,” this is not about the 

overall level of performance or the happiness of our users. “Prevent performance 

degradations” means that each version of our software should work as fast as or faster 

than the previous one.

Remark 1. Programming is always about trade-offs; we can’t constantly improve 

the performance of all features in our program. Sometimes we have to slow down one 

part because we want to speed up another part (e.g., we spend time on loading caches 

on startup, which allows fast request processing in the future). This trade-off can be a 

conscious decision, and it’s completely OK. However, in most cases, developers slow 

down features accidentally. In large programs, it’s tough to measure performance impact 

on the whole product even for small changes. Thus, our goal actually sounds like this: 

prevent accidental performance degradations.

Remark 2. In this book, there is no strict general definition of performance 

degradation. You should define this term for yourself because it depends on your 

business goals and requirements. If you are reading this chapter, you probably already 

have some performance problems, or you expect them in the future. Try to formalize 
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the term “performance degradation” for your situation. Here are a few very simplified 

examples of how the definition may depend on the context:

• Sometimes even 1% degradation can be a huge problem.

An example: Let’s say we have a web server that processes 

requests. We host this server in the cloud, and we pay a cloud 

provider for the time resources at a fixed rate. In our spherical 

example in a vacuum, each request always takes 100 ms. 1% 

degradation means that we will get 101 ms per request after 

a deployment. If we have billions of such requests, the total 

processing time will increase noticeably.2 The most important 

thing is that our bills will also increase by 1%.

• Sometimes even 500% degradation can be not a problem.

An example: We have a server that displays statistics about 

user activities. Let’s say that we don’t need real-time statistics; 

it’s enough to refresh it daily. So, we have a console utility that 

regenerates a statistic report and deploys it. With the help of cron,3 

we run it every day at 02:00 AM. The utility takes 1 minute, so the 

report is ready at 02:01 AM. A developer from your team decided 

to implement additional “heavy” calculations: now the report 

contains new useful information, but the total generation time 

is 6 minutes; the report is ready at 02:06 AM. Is this a problem? 

Probably not, because analytics will review the report only in the 

morning. If the utility takes 10 hours, it can be a problem, but 

nobody cares about five extra minutes in this case.

2 Very small changes in the hot paths can significantly affect performance. A friend of mine has a 
nice example from a production system when a single .EndsWith('/') call caused a regression 
of 20% in RPS: the metric was changed from around 55000 to around 38000. The problem was 
solved with the help of a very simple optimization: the EndWith call was replaced by [variable.
Length-1] == '/'.

3 Cron is a time-based job scheduler in Unix-like computer operating systems.
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• Sometimes it’s impossible to talk about degradations in terms of 

percentages.

An example: Because of a complicated multilevel hierarchical 

cache, 20% of requests take 100 ms, 35% of requests take 200 ms, 

and 45% of requests take 300 ms. After some changes, 20% of 

requests take 225 ms, 35% of requests take 180 ms, and 45% of 

requests take 260 ms. Is this a good change or a bad change? Do 

we have a performance regression in this case? (Try to calculate 

the average processing time for both cases.) Well, this is another 

trade-off problem: we can’t answer this question without business 

requirements.

We will discuss different performance degradation criteria in the “Performance 

Asserts and Alarms” section.

Remark 3. In large software products, it’s very hard to prevent all possible 

performance degradations. “Prevent all performance degradations” sounds like 

“prevent all bugs” or “prevent all security vulnerabilities.” Theoretically, it’s possible. In 

practice, it requires too many resources and too much effort. You can write thousands 

of performance tests, and you can buy hundreds of CI servers that run these tests all 

the time. And it will help you to catch most problems in advance, but probably not all 

of them. Also, some performance degradations may not affect the business goals, so 

doesn’t always make sense to fix them. Thus, when we say “prevent all performance 

problems,” we usually mean “prevent most of them that matter.”

 Goal 2: Detect Not-Prevented Degradations
Since it’s almost impossible to prevent all performance degradations, we have a second 

goal: detect not-prevented degradations. In this case, we can fix them and recover the 

original performance. Such problems can be detected on the same day, in the same 

week, in the same month, and even one year later. We will discuss what kinds of problem 

we can detect in different moments in the “Strategies of Defense” section. The most 

important thing here is that we want to detect these problems before users/customers 

find them and start to complain about them.
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 Goal 3: Detect Other Kinds of Performance Anomalies
Degradation is not the only problem we can get. In this chapter, we will discuss so-called 

“performance anomalies,” which include clustering, huge variance, and other kinds of 

“strange” performance distributions. Usually (but not always) such anomalies help to 

detect different kinds of problems in the business logic. If you implement a system for 

performance analysis, it makes sense to check the performance space for these anomalies 

as well. One cool thing about it: some anomalies can be detected in a single revision, so 

you don’t have to analyze the whole performance history or compare commits.

 Goal 4: Reduce Type I Error Rate
If you skipped the chapter about statistics (Chapter 4), I will explain this goal in 

simple terms. A Type I error (false positive result) means that there is no performance 

degradation, but performance tests detect “fake” problems. Consequences: developers 

spend some time on investigations in vain. This is not just a waste of our most precious 

resource (time of developers), it’s also a substantial demotivating factor. Having a few 

Type I errors per month is OK. Moreover, you should expect to have such errors; it’s too 

hard to implement an excellent performance testing system with zero Type I error rate. 

However, if you get several false positive results per day, developers will not care about it. 

And it sounds reasonable: what’s the point to spend time on useless investigations each 

day? You can have “real” problems among the “fake” problems, but you will miss them: 

developers will ignore all alarms because they are likely false alarms. The whole idea is 

destroyed: performance tests do not benefit and instead distract your team members.

Thus, you should monitor Type I errors. If you have too many of them, it makes sense 

to reduce performance requirements and weaken the degradation criteria. It’s better to 

miss a few real problems than to have a completely useless set of performance tests.

 Goal 5: Reduce Type II Error Rate
Type II error (false negative result) means that there is performance degradation, but 

we failed to detect it. Consequences: serious performance problems can be delivered 

to users with the next update. In this case, we didn’t solve our main problem; we didn’t 

prevent degradation. Since it’s impossible to prevent all performance degradation, we 

can try to keep the number of such situations low.
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It sounds like a consequence of the first goal, but I decided to form it as a separate 

goal because the Type II error rate is also a metric that describes our performance testing 

system. It’s not enough to just write a bunch of performance tests and let them live their 

lives. You should monitor how successful your performance framework is. For example, 

you can form a monthly report like: “In January, we detected 20 performance problems 

and fixed them before the release. Three problems were detected by performance tests 

after the release, and two problems were reported in February by dissatisfied users.” 

Such reports allow the following:

• Evaluation of the effectiveness of performance tests

• Detection of weaknesses and pieces of code that should be covered 

by additional performance tests

• If you detected many problems in time, it will encourage the team to 

write new performance tests

• If you didn’t have any significant issues (both detected and 

nondetected), you probably don’t need performance tests for these 

projects, and it doesn’t make sense to invest time into it in the future.

 Goal 6: Automate Everything
It’s not easy to formulate proper degradation criteria and get low Type I and Type II 

error rates. Sometimes you may be tempted to monitor performance manually instead 

of writing a reliable system for performance tests. For example, performance tests can 

produce thousands of numbers that are aggregated and displayed in a monitoring 

service. Next, you (or one of your colleagues) check performance reports every day, 

manually look for problems, and notify the rest of the team of the results. This is not a 

good approach because there are always many problems with the human factor: the 

person who is responsible for monitoring can be sick, on vacation, or busy. In this case, 

we will not get any alarms even if we have essential problems. In addition, he or she can 

miss some dangerous problems due to inattentiveness.

Unfortunately, it’s hard to automate everything. In huge projects, it’s almost 

impossible to implement a reliable and automated performance monitoring system with 

low Type I and Type II error rates. Sometimes you have to analyze some data manually. 

In this case, you can try to automate everything that can be automated. For example, let’s 
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say we have a huge integration test that typically takes 5 minutes. After some changes, it 

takes 6 minutes, so the main analyst gets a notification. Now he or she should investigate 

it. How can automation help? Here are a few ideas:

• Automatic reports

You can generate a full report about the problem automatically. 

Such a report could include links to the commits (if you have 

a web service that allows browsing your code base), a list of 

authors of these changes, performance history of this test, links 

to other tests from the same test suite with new performance 

problems (they can be related), and so on. The main idea here is 

that the analyst shouldn’t look for additional data; all necessary 

information should be collected automatically. You can even 

automatically create an issue in your issue tracker and easily track 

all performance problems.

• Automatic bisecting

It’s not always possible to run all performance tests for each commit. 

Imagine that one of your daily performance tests is red and there are 

N=127 commits in this day by ten different people. How do you find 

the commit that introduces the problem? It’s a good idea to start to 

bisect these commits. Let’s check the commit 64 (for simplification, 

assuming that we have a linear history without branches). If the 

test is red, it means that the problem was introduced before this 

commit, and we are going to check commit 32. If the test is green, it 

means that the problem was introduced after this commit, and we 

are going to check commit 96. If we continue this process, we can 

find the commit with problem after log2(N) iterations (in the perfect 

world without branches). Manual bisecting is a waste of developers’ 

time. This process can also be automated: the report should include 

the specific commit and the author of this commit (this person 

should start to investigate the issue).
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• Automatic snapshots

One of the first steps in such investigations is profiling. Once we 

get a slow test, we can automatically take a performance snapshot 

before and after the change. In this case, the analyst can just 

download both snapshots and compare them. It can allow finding 

the problem even without the need to download the sources and 

build it locally: many stupid mistakes can be found only with the 

snapshots.

• Automatic step-by-step analysis

If you have a 1-minute degradation in a huge integration test, 

you probably have a problem in a single subsystem instead of a 

project-wide problem. In this case, you can measure separate 

steps for both cases and compare them automatically. After that, 

a notification (or an issue) can contain additional information like 

“it seems that we have a problem with these two steps; the rest of 

the steps doesn’t have noticeable degradation.”

• Automatic continuous profiling

If you have a pool of servers with services that sometimes suffer 

from accidental performance drops, you can try to profile them 

automatically. If the overhead of such profiling is too big, you can 

randomly profile only a part of the pool. For example, pick 10% 

of the servers and profile them for 30 seconds, then pick another 

10%, and so on. You can play with the exact numbers and get a 

profile snapshot at the moment the problem reproduced (maybe 

it will not be on the first try). The randomized approach helps to 

reduce the profiling overhead on your production system.

Try to come up with your ways to automate routine. You should manually do only 

work that cannot be automated and requires creativity. If a series of performance 

investigations has common parts, you should try to automate these parts. It allows saving 

the time of developers and simplifying the investigation process for people who don’t 

have distinctive performance skills.
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 Summing Up
Let’s summarize. Our main problem: sometimes we have performance degradations. 

If we understand what “performance degradation” means well, we can try to prevent 

accidental performance degradations (Goal 1). Unfortunately, we can’t prevent all of 

them, so we want to detect not-prevented degradations in time (Goal 2) and detect other 

kinds of performance problems (Goal 3). We also want to reduce Type I error (false 

positive: there are no degradations, but we detect “fake” problems) rate (Goal 4) and 

Type II error (false negative: nondetected degradations) rate (Goal 5). Everything that 

can be automated should be automated (Goal 6).

Now we know our problems and goals. It’s time to learn what kinds of performance 

tests we can choose.

 Kinds of Benchmarks and Performance Tests
There are many kinds of approaches that can be used as performance tests. In this 

section, we briefly discuss some of them:

• Cold start tests: situations when we care about startup time

• Warmed-up tests: situations when an application is already running

• Asymptotic tests: tests that try to determine the asymptotic 

complexity (e.g., O(N) or O(N^2))

• Latency and throughput tests: instead of asking “How much time 

does it take to process N requests?”, we ask “How many requests can 

we process during a time interval?”

• Unit and integration tests: if you already have some usual tests 

(which are not designed to be performance tests), you can use the 

raw durations of these tests for performance analysis

• Monitoring and telemetry: looking at the production performance 

in real time

• Tests with external dependencies: tests that involve some part of the 

external world that we can’t control
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• Other kinds of performance tests: stress/load tests, user interface 

tests, fuzz tests, and so on

All of these kinds can be applied not only for performance testing but also for regular 

benchmarking. Let’s start with the cold start tests.

 Cold Start Tests
There are different kinds of cold start test depending on which part of your software 

environment is cold. Here is a list of some of the cold start levels:

• Method cold start

When you run a method for the first time, a lot of time-consuming 

things may happen on different levels: from JIT compilation 

and assembly loading on the runtime level to some first-time 

calculations for static properties on the application logic level.

• Feature cold start

Difference between cold and warm time for a method can be 

negligibly small. However, it can be noticeable when we are 

talking about thousands of methods and many assemblies. 

Because of that, a user can experience delays when he or she 

launches a feature for the first time (especially if this feature 

involves tons of methods that were not invoked before).

• Application cold start

Startup time is important for many kinds of applications. And 

it’s definitely crucial for desktop and mobile applications. The 

perfect situation is a situation when the user instantly gets a ready 

application after a double-click on a shortcut (or launching it any 

other way). Any delay can make him or her nervous. Imagine a 

situation when you should quickly make a few edits in a file. You 

open it in your favorite text editor and… . And you have to wait a 

few seconds until the text editor is initialized. If you edit files often 

and close the editor each time, these few seconds can be irritating. 
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For some people, startup time is critical; they might prefer a pure-

featured text editor that starts instantly over a full-featured text 

editor that starts in a few seconds.

• OS cold start

If your benchmark interacts with different OS resources, a physical 

restart can be required for a cold start test.

• Fresh OS image

Sometimes it’s not enough to reboot the operating system; we 

may need a fresh image of the system. The old test runs can make 

any changes on the disk that can be important for subsequent 

launches. For example, Rider uses a pool of TeamCity agents 

for running hundreds of build configurations with tests every 

day. TeamCity refreshes the agent images once per several 

days: then the fun begins. Sometimes, we have a significant 

performance difference between the last (warmed) test run 

on the old image and the first (cold) test run on the new image 

(without any changes in the source code base). We don’t use a 

fresh OS installation each time, because such approach has a 

huge infrastructure overhead and the described problems are not 

frequent.

Let’s try the following exercise. Take a machine with installed Windows and restart 

it. Open a video file with your favorite movie in your favorite video player, watch the 

movie, and close the player. Next, run the RAMMap4 utility (a part of the Sysinternals suite). 

This utility allows performing advanced physical memory usage analysis and provides 

many low-level details. Check out the “Standby” category for “MappedFile” on the “Use 

Counts” tab (we will discuss all these categories in Chapter 8); the memory usage should 

be huge. Next, open the “File Summary” tab and sort all files by the “Standby” column. 

Now find the file with the movie on this tab. You should see a huge amount of “Standby” 

memory for it (you can see my RAMMap instance in Figure 5-1).

4 https://docs.microsoft.com/en-us/sysinternals/downloads/rammap
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How is this possible? We closed the player; there are no more applications that use 

this file. Why do we see it in RAMMap? And what does “Standby” mean?

You can imagine the “Standby” category as a memory cache. After closing the player 

(which loaded the whole movie file into main memory), there is no need to clear the 

memory instantly. We can mark this memory as “free” (thus, you will not see it in the Task 

Manager as a part of “usual” memory) and clear it later when another application asks for 

additional memory allocation. However, if we decide to watch the movie again, the video 

Figure 5-1. RAMMap shows huge “Standby” memory use for closed file
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player can reuse the file from the “Standby” list. The startup will be faster because we 

don’t have to load the file into memory again. On the one hand, it’s great: we have better 

performance for all player launches except the first one. On the other hand, it’s harder 

to write a performance test or a benchmark for the player cold start. In this specific case, 

you can manually clear the “Standby” list.5 However, it’s hard to track all the resources 

that can be reused in the general case and manually clear these resources each time. The 

system reboot is a universal way to achieve a sterile environment for an honest cold start.

When you run a performance test (or a benchmark) for cold start, you should clearly 

understand what exactly should be “cold.” In most cases, you have to restart the whole 

application or even reboot OS before each iteration. This is not always an acceptable 

way (because each iteration takes too much time), so programmers are looking for other 

solutions that allow making the environment cold without “heavy” restarts. For example, 

you can clear OS resources via native API instead of OS restarting or perform each 

method invocation in a new AppDomain instead of restarting the application.

 Warmed Up Tests
It’s always hard to write cold start tests because it’s impossible to run several iterations 

in a row: you have to restart the whole application (or even the operating system) before 

each iteration. It’s much easier to write warmed-up tests, and it’s more popular because 

in many applications (especially for web services), you usually don’t need to care how 

long startup takes; the performance of a warmed application is more interesting.

However, correct warmed-up tests also require some preparation. The most 

important thing is the absence of side effects: all iterations must start from the same 

state. Unfortunately, most of the benchmarks spoil the environment, so the environment 

has to be recovered. There are several common ways to achieve it.

State recovering in Setup/Cleanup methods Let’s say that we want to benchmark 

the List<int>.Sort() method:

void ListSortBenchmark()

{

  list.Sort();

}

5 In the RAMMap utility, open the “Empty” menu and click on “Empty Standby List.” In this menu, 
you can clear other memory lists as well.
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Regardless of the initial state, the list will be sorted after the first iteration. It’s not 

interesting to perform benchmarking of sorting of a sorted list. Thus, we have to choose 

the “reference initial state” that should be recovered after each iteration. Let’s say that 

the initial state is a reversed array. Here is an example of the setup method:

void IterationSetup()

{

  for (int i = 0; i < list.Count; i++)

    list[i] = list.Count - i;

}

It solves the “recovered state problem,” but now we have another problem: the 

IterationSetup method should be invoked before each benchmark call; it can affect the 

measurements. Usually, we write code like this with IterationCount iterations:

var stopwatch = Stopwatch.StartNew();

for (int i = 0; i < IterationCount; i++)

{

  ListSortBenchmark();

}

stopwatch.Stop();

long sum = stopwatch.ElapsedMilliseconds;

long average = sum / IterationCount;

Now we have to call IterationSetup() before each iteration. We can write it as 

follows:

var stopwatch = Stopwatch.StartNew();

for (int i = 0; i < IterationCount; i++)

{

  IterationSetup();    // Setup inside measurements

  ListSortBenchmark();

}

stopwatch.Stop();

long sum = stopwatch.ElapsedMilliseconds;

long average = sum / IterationCount;
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In this case, the duration of IterationSetup() will be included in 

ElapsedMilliseconds and increase the average time (the setup method can be heavy 

and take a lot of time). It’s better to exclude IterationSetup() from the measurements:

long sum = 0;

for (int i = 0; i < IterationCount; i++)

{

  IterationSetup();    // Setup outside measurements

  var stopwatch = Stopwatch.StartNew();

  ListSortBenchmark();

  stopwatch.Stop();

  sum += stopwatch.ElapsedMilliseconds;

}

long average = sum / IterationCount;

Such approach can be fine for macrobenchmarks (if we sort tons of elements), 

but in the case of microbenchmarks (let’s say list.Count < 100), we can get big 

errors because of these interrupts between stopwatch measurements. In Chapter 2, 

we discussed that we should use many iterations for microbenchmarks because the 

Stopwatch resolution is not enough to handle nanosecond operations: if we try to 

measure the duration of a single ListSortBenchmark call, the ElapsedMilliseconds will 

have an inaccurate value. In the preceding example, the loop multiplies the error instead 

of reducing it! Moreover, IterationSetup calls between measurements can produce 

additional side effects. For example, if this method allocates memory, it can cause a 

sudden garbage collection during the measurements.

In such cases, it can be useful to evaluate the overhead separately. For example, we 

can write something like this:

public void SetupRunCleanup()

{

  Setup();

  Run();

  Cleanup();

}

Chapter 5  performanCe analysis and performanCe testing



279

public void SetupCleanup()

{

  Setup();

  Cleanup();

}

Next, you can get Duration(Run) as Duration(SetupRunCleanup) - 

Duration(SetupCleanup). This trick is not always successful (especially if Setup and 

Cleanup allocate many objects and have complex performance distributions), but it 

usually works for simple cases.

Another factor that can affect the benchmark is the CPU cache. The effect of this 

cache on the program is simple: the recently read data can be read much faster than 

data that hasn’t been read by anyone for a long time. In ListSortBenchmark, we should 

choose the optimal strategy for the CPU cache state. When you sort the array for the 

first time, CPU loads the list content (or a part of the list in the case of a huge list) into 

the cache. Next iterations will be faster because we already have the elements (or some 

of the elements) in the cache. Here we should choose between a cold and a warm state 

for it. The decision depends on how you are going to use the Sort method in the real 

application. If you work with elements before sorting, you get a warm list: everything 

is OK with the benchmark because it also uses the warmed list. If you don’t touch 

the elements before sorting, you get a cold list in real life. In this case, the benchmark 

requires cache invalidation in the setup method as well (we will discuss how to do it in 

Chapter 7).

Preparing many “initial” states in advance If we have enough memory and a 

small number of iterations, we can prepare several instances of the benchmark input in 

advance. Let’s say that we are going to run IterationCount iterations (it’s a constant) 

with lists of equal size ListSize (it’s also a constant). In this case, we can create an array 

of lists and fill all the list instances with the same data:

private List<int>[] lists = new List<int>[IterationCount];

public void GlobalSetup()

{

  for (int i = 0; i < IterationCount; i++)

  {

    lists[i] = new List<int>(ListSize); // All lists have the same size
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    // And the same "reversed" elements:

    for (int j = 0; j < ListSize; j++)

      lists[i].Add(ListSize - j);

  }

}

Next, we take a new list for each iteration:

public void ListSortBenchmark()

{

  var stopwatch = Stopwatch.StartNew();

  for (int i = 0; i < IterationCount; i++)

    lists[i].Sort(); // We use lists[i] instead of the same list instance

  stopwatch.Stop();

  long sum = stopwatch.ElapsedMilliseconds;

  long average = sum / IterationCount;

}

The approach also has its own problems. Given how those lists are created, there is 

a high tendency for those objects to live in approximate sequential memory; therefore 

all the CPU cache pollution is not enough to not skew the results. A better approach 

for that kind of test is to create all the lists and ensure that the amount of memory used 

by those is higher by at least 10× the maximum size of the CPU total cache available. 

Then we should create another list with a random uniform distribution of numbers and 

iterate over that list to get the indexes. As you are always running the same sequence, 

the memory effects would be reduced to the index list (therefore diminishing its impact 

on the benchmark results) and at the same time ensuring a uniform distribution cache 

pollution. We will discuss more details about this topic in Chapter 8.

State recovering inside a benchmark We already discussed a similar problem in 

Chapter 2 (the “Unequal Iterations” section) when we tried to benchmark the List.

Add method. This method has a side effect: we have the different number of elements 

before and after the List.Add invocation. When the list capacity is not enough for an 

extra element, the next List.Add call will cause the internal array resizing, which takes 

too much time and spoils the results. If we want to write a repeatable benchmark, all side 

effects should be annihilated. One of the possible solutions is to benchmark the List.

Add/List.Remove pair:
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public void AddRemoveBenchmark()

{

  list.Add(0);

  list.RemoveAt(list.Count - 1);

}

Is this a good solution? The answer depends on what you actually want to achieve. 

Consider several possible goals:

• We want to know the duration of list.Add.

Actually, we want to gain knowledge of the list.Add duration and 

use it for solving a real problem (e.g., writing a fast algorithm). The 

solution of the problem is our “true” goal, but not the knowledge 

itself. This is important because the correct way to benchmark 

list.Add depends on how you are going to use it.

• We want to add many elements in a list and want to know how much 

time does it take.

In this case, we probably have to benchmark the addition of N 

elements instead of a single one. Remember that not all of the Add 

calls are equal: some of them can produce resizing of the internal 

array. You can play with the initial state, the initial capacity, the 

number of elements, and so on. If you want to know the duration 

of the adding of N elements, you should benchmark this. The 

performance cost of a single Add is useless for you because you 

can’t multiply it by N (in the general case) to get the result.

• We are going to make a few edits in the Add implementations and 

check for performance improvements/degradations.

Any performance changes in the Add method will also affect 

the performance of the Add/RemoveAt pair. It will be hard to say 

something about how much the edits affect the Add method 

(quantitative changes), but we can say is it better or worse 

(qualitative changes). Also, we still have to check cases with the 

resizing of the internal array carefully.
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• We are going to use a list as a stack (with Push/Pop operations) with 

the known maximum capacity and want to know the duration of the 

“average” operation.

In this case, the Add/RemoveAt benchmark is a great solution 

because there is no difference between Add and RemoveAt here: we 

have to measure these methods together.

As you can see, everything depends on the goal. There are many ways to use quick 

operations like list.Add, but the algorithm performance depends on how you use 

it. Typically, you can’t get the “reference” operation duration, because this duration 

depends on the use case. Always ask yourself: why do you want to get knowledge about 

method performance? How are you going to use this method?6 If you answer these 

questions first, it will help you to design a good benchmark and decide when you need a 

cold start test and when you need a warmed-up test (or a combination of the two).

 Asymptotic Tests
Sometimes it’s impossible to run all tests on huge data sets. But we can run them on 

several small data sets and extrapolate the results.

Let’s consider an example. In IntelliJ IDEA, there are a lot of code inspections (as in 

any IDE). From the user’s point of view, an inspection is a logic that shows a problem 

with your code (from compilation errors and potential memory leak to unused code and 

spelling problems). From the developer point of view, an inspection is an algorithm that 

should be applied to the source code. Different algorithms are independent and don’t 

affect each other. When IntelliJ IDEA analyzes a file, it applies all inspections to each file. 

Since there are so many inspections, they should be efficient. Even a single nonoptimal 

inspection could be a reason for performance problems in the whole IDE.

Well, how should we choose which inspection is “nonoptimal”? There is a simple 

rule: a proper inspection should have an O(N) complexity where N is the file length. If the 

inspection complexity is (N^2), we will get a performance problem with huge files.

Thus, our metric here is not time; it’s the computational complexity. This approach 

has a couple of important advantages:

6 If you have several possible use cases, you have to consider all of them.
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• Portability

Results almost always don’t depend on hardware: we should get 

the same result on slow and fast computers.

• Benchmarks take less time

The inspection performance impact can be noticeable only in 

huge files. There are hundreds of inspection; we have to wait too 

long until we benchmark each inspection on each huge file from 

the test data. The asymptotic approach allows getting reliable 

results in less time. We can apply an inspection to a few small 

files, measure the analysis durations, and calculate the asymptotic 

complexity. Thus, we can check that the the inspection works fast 

enough without using huge files.

It also has two important disadvantages:

• Many iterations

We can’t build a regression model with one or two iterations. We 

have to run many iterations if we want to build a reliable model 

that produces correct results.

• Complicated implementation

It’s not easy to build a good regression model. If you are lucky 

enough, your performance function is polynomial. If you are not 

lucky, the performance function can’t be approximated by an 

analytic function. Even if the function type is known (and you 

have only to find the coefficient), it’s not always easy to build such 

model with a small error.

Thus, asymptotic analysis is not a silver bullet for all kinds of benchmarks, but it 

can be extremely useful when we want to get measurements for huge input data and we 

don’t want to wait too long.

 Latency and Throughput Tests
There are many ways to benchmark the same code. The final conclusions depend on the 

question we want to answer and the metric that we use. Let’s say that we process some 

requests. It doesn’t matter what kind of requests we have and how we process them. 
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Consider a couple of questions (and corresponding metrics) that we can use in this 

situation.

• (A) “How much time (T) do we need to process N requests?”

The metric here is the latency of processing of N requests (the time 

interval between the start and end of processing).

• (B) “How many requests (N) can we process in the fixed time interval T?”

The metric here is the processing throughput. Such case is also 

called capacity planning or scalability analysis.

These metrics may sound too abstract. Let’s look at a code sample that measures 

each metric. The full infrastructure for measurements can be huge; we will look only at 

small and simple benchmarks to illustrate the idea.

• (A) In the first case, N is fixed. Thus, we have to do N iterations and 

measure the time between start and finish:

// Latency

var stopwatch = Stopwatch.StartNew();

for (int i = 0; i < N; i++)

  ProcessRequest();

stopwatch.Stop();

var result = stopwatch.ElapsedMilliseconds;

• (B) In the second case, T is fixed. We don’t know how many requests 

can we process, so we will process requests until the time is over. In 

real life, it’s typically complicated multithreaded code, but we can 

write a very simple single-threaded benchmark:

// Throughput

var stopwatch = Stopwatch.StartNew();

int N = 0;

while (stopwatch.ElapsedMilliseconds < T) {

  N++;

  ProcessRequest();

}

var result = N;
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If we have a linear dependency between N and T, there is no difference between 

these approaches. However, the difference can be huge if the dependency is nonlinear.

Let’s say that we know the exact formula for T(N):

T N C N( ) = ( )·log ,2

where C is a constant. The initial value for C was 2, but after a refactoring, 

it has become 4. You can see the T values for both cases and different N 

(32,64,128,256,512,1024) in Table 5-1.

Table 5-1. T = C · log2(N) Dependency for C=2 and C=4

N log2 (N ) TC = 2 TC = 4

32 5 10 20

64 6 12 24

128 7 14 28

256 8 16 32

512 9 18 36

1024 10 20 40

Imagine that a manager asks you about the performance drop: “How much slower 

does it work now”? Further, imagine that he or she is not a very good manager and 

doesn’t want to hear anything about nonlinear dependencies and logarithms7; you 

should provide a single number as an answer.

Let’s calculate the answer for both cases.

• (A) Let’s check how much time (T) it takes to process N = 1024 

requests. When C = 2, T = 20sec. When C = 4, T = 40sec. The 

performance drop is 40sec/20sec or 2x.

7 Of course, not all managers behave like this. Many of them are great people with strong 
professional skills who are deeply involved in the development process. Unfortunately, our 
hypothetical manager is not one of them.
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• (B) Let’s check how many requests (N) we can process in T = 20 

seconds. When C = 2, N = 1024. When C = 4, N = 32. Performance 

drop is 1024/32 or 32x.

So, what’s the answer? 2x or 32x? Well, there is not one single correct generic answer. 

If you want to describe a situation in a general case, you should provide the model 

(T = C · log2(N) in our case) as an answer. If you want to describe a specific case, you 

should clearly define the case.

Usually, the target metric depends on your business goals. If the business goal is 

“Process N = 1024 requests as fast as possible,” you should use the “latency approach” 

(A). If the business goal is “Process as many requests as possible in T = 20sec,” you 

should use the “throughput approach” (B). If you have other business goals, you 

should design a set of benchmarks or performance tests that correspond to your goals. 

“Correspond” means that you measure the target case and use the correct set of metrics.

If you look at Table 5-1, you may think that capacity planning (the “throughput 

approach”) is similar to asymptotic analysis. This is not always true. Asymptotic analysis 

requires several measurements for building the performance model. Capacity planning 

can be implemented with a single measurement. However, you can use asymptotic 

analysis for capacity planning: the knowledge of T values for N = 32, … , 1024 allows 

predicting T for huge N like 2048, 4096, 8192, and so on without actual measurements.

 Unit and Integration Tests
Some people are afraid of performance testing because it looks too complicated: they 

should make a lot of preparation (especially for cold/warm/stress tests), choose correct 

performance metrics, probably do some tricky math (especially for asymptotic analysis), 

and so on. I have some good news: if you have “usual” integration tests, you can use 

them as performance tests! There are many kinds of test classifications. In this book, 

we will use the term “integration test” for all not-unit tests: functional tests, end-to-

end tests, component tests, acceptance tests, API tests, and so on. The main property 

of such tests that is important for performance testing is duration: the integration tests 

usually work much longer than instant unit tests. In fact, you can use any of your tests 

(even “usual” unit tests), which takes a noticeable amount of time (let’s say more than 

ten milliseconds). If a test takes several microseconds or nanoseconds, we can’t use it 

“as is” because the natural errors are too big; we have to transform such tests into “true” 

benchmarks. If a test takes more than ten milliseconds (or even several seconds or 
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minutes, it’s much better), we can try to use it as a performance test without additional 

modifications.

It may sound strange because we don’t control accuracy for such tests, we don’t do 

many iterations, we don’t calculate statistics, and we don’t do anything that we usually 

do in benchmarking. These tests were designed to check the correctness of your program, 

not performance. It seems that raw duration of unit and integration tests can’t be used in 

performance analysis.

To me, it sounds strange to have so many performance data and don’t use it. Yes, 

errors are huge, accuracy is poor, results are unstable, everything is terrible. But this 

doesn’t mean that we can’t try to use it. In performance tests, every iteration is expensive 

because it consumes the CI resources and increases our waiting time. From the 

practical point of view, a good suite of performance tests is always a trade-off between 

accuracy and the total elapsed time. The unit and integration tests will be executed 

anyway because we have to check the correctness of the business logic. We will get the 

duration of these tests anyway without additional effort. It’s also a performance data. 

Moreover, it’s a performance data that we have for free. If it’s possible to get some useful 

information from this data (somehow), we should definitely do it!

A few words about terminology for the rest of this section. We can’t use the term 

“performance test” anymore because now we consider all tests as performance tests. In 

the context, we introduce a few additional terms (they’re not official terms, but we will 

use them for a while):

• Explicit performance tests

These tests were designed to evaluate performance. Explicit tests 

may require special hardware and tricky execution logic (with 

warm-up, many iterations, metrics calculation, and so on). The 

result of such test is a conclusion about performance (like “the 

test works two times slower than before” or “the variance is too 

huge”).

• Implicit performance tests

These tests are “usual” tests that are designed to check logic. Each 

run of such tests has a duration, its performance number, which 

we get as a side effect. The result of such a test is a conclusion 

about correctness (green status for correct logic and red status for 

incorrect logic). “Implicit performance tests” means that these 
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tests are not designed as performance tests, but we still can use 

them as such.

• “Mixed” performance tests

It may sound obvious, and we will not discuss such tests in detail, 

but I still have to highlight this idea: you can check logic and 

performance at the same time. For example, we can write a huge 

integration stress test that covers the most performance-critical 

pieces of our code. Such a test can check that everything works 

correctly even under load (some race conditions can appear in 

such situations) and that we don’t have a performance regression 

in such a case.

Now we know that we can use both explicit performance tests (which are designed 

to measure performance) and implicit performance tests (which are designed for 

something else, but we can still use them as performance tests). However, there is a 

huge difference between them. Let’s compare explicit and implicit performance tests by 

several factors:

• Persistent CI agent

When we measure performance, it’s a good idea to run 

performance tests on the same hardware each time. It’s very hard 

(or sometimes impossible) to evaluate the performance impact 

of your changes when you compare the “before” performance 

data from one agent with the “after” data from another agent. 

It’s always better to have persistent CI agent (or set of agents) for 

explicit performance tests. This is not mandatory, but it’s highly 

recommended. In case of implicit performance tests, there is no 

such requirement8; they should work correctly on any agent.

8 Of course, there are exceptions to anything. Implicit performance tests may require some 
special environment like a specific operating system, a specific amount of memory, a specific 
drive (HDD or SSD), or even a specific processor model. With such tests, we can check many 
statements like “The program shouldn’t crash if we have only 2GB of RAM” or “If a processor 
doesn’t support SSE 4.1, we should use an old slow algorithm instead of our default fast 
algorithm, which uses modern processor instructions.”
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• Virtualization

Virtualization is a great invention that helps us to organize a 

flexible cloud infrastructure. However, a virtual environment is a 

poison for the accuracy of explicit performance tests. You never 

know who else is running benchmarks on the same hardware 

at the same time. Explicit performance tests usually require a 

dedicated real (not virtual) agent. Implicit performance tests 

should work correctly in any environment.9

• Number of iterations

Most explicit performance tests require several iterations. 

Remember that performance of a method is not a single 

number; it’s a distribution. We can’t evaluate errors and build a 

confidence interval if we have only one iteration. And we can’t 

compare two revisions if we don’t know errors and variance. Of 

course, sometimes a test can be too expensive (it consumes too 

much time), so you can’t afford to run it several times. Implicit 

performance tests typically need only one iteration.10

9 This is not always true. An example: there are many paid desktop programs with a trial period. 
This means that you can use a program for free at the beginning (let’s say for 30 days). After 
that, you need to pay if you want to continue. Of course, smart rogues found a workaround: they 
install the program on a virtual machine, use it for 30 days, and create a new virtual machine 
with a new trial period. Developers often try to protect their programs from such exploits. The 
obvious solution is to prohibit running the program on virtual machines. Thus, they should 
implement a method that checks if the environment is virtual, and they should write tests for this 
method. The only way to check this logic is to run these tests in different virtual environments or 
without it.

10 This is also not true. A simple example: we have a race condition in a test which fails our test in 
1% of the cases. If we run a test only once, it can pass; on the CI server, such a test will be flaky 
because it can switch its status from green to red without any changes or reasons. A simple 
solution: we can run such test (with potential race conditions) 100 times. If it’s a flaky test, it 
should fail after 100 iterations with a good probability.
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• Writing easiness

It’s easy to write implicit performance tests.11 I mean that every 

method which somehow calls your code can be a test. Different 

teams have different standards of coding, but most of them agree 

that the source code should be covered by tests. Some good 

development practices require writing tests (e.g., before writing 

a bug fix, you should write a red test for this bug and make it 

green with your fix). Typically, you get tests as an “artifact” of the 

development process. You write tests because it will simplify your 

life in the future and make you more confident in the quality of 

your code. Most of the unit tests are deterministic: a test is red, 

or a test is green. Moreover, it’s usually obvious when a test is 

green. If you are writing a method Mul(x,y) that should multiply 

two numbers, you know the expected output. Mul(2,3) should 

be 6. Not 5, not 7; there is only one correct answer: 6. When we 

are writing explicit performance tests and making performance 

asserts, it’s always complicated. For example, yesterday Mul took 

18 nanoseconds; today it takes 19 nanoseconds. Is it a regression 

or not? How should we check it? How many iterations do we 

need? How should we evaluate errors? And the most important 

question: is the test red or green? If you have clear answers to 

all questions about performance asserts, ask your teammates 

about it. Are you sure that you have the same point of view? It’s so 

hard to write performance tests because there are no strict rules 

here. You should come up with your own performance asserts 

that satisfy your performance goal. It’s hard because there is no 

“absolute green status,” and there is no single “correct” way to 

write “performance asserts.” There are only trade-offs.

11 I confess: There are many footnotes in this section in which I tried to deceive you. I just tried 
to show that there are always exceptions. However, I’m not going to explain all exceptions for 
each case, as there are too many of them. In this book, I’m trying to show only general ideas, 
principles, and approaches. It’s tough to write about performance testing because for each 
example, there are so many counterexamples. For each situation in which a particular fact works 
well, there are hundreds of situations in which this same fact won’t work. If you see a sentence 
and you don’t agree with it, imagine that there is a footnote with additional explanations.
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• Time of execution

Speaking of trade-offs, the most interesting one is between 

accuracy and the execution time. Performance tests wouldn’t be 

so fun if we had unlimited amount of time. I wish I could perform 

billions of iterations for each of my benchmark or performance 

tests. Unfortunately, the world is cruel, and we don’t have such 

opportunities. There is the natural upper limit for the total execution 

time of a test suite. It can be 10 seconds, 10 minutes, 2 hours, or 5 

days: it depends on your workflow. But you have this limit anyway; 

you can’t spend months and years for a single suite run. It would 

be great if you could run all of your performance tests during a 

few hours. If the total time is limited and you have too many tests, 

you can afford the only small number of iterations. It can be 100 

iterations, or 10 iterations, or even a single iteration. And sometimes 

you have to deal with this single iteration. Implicit performance tests 

should be as fast as possible, there is no reason (typically) to repeat 

the same thing over and over. In the case of the explicit performance 

tests, each additional iteration can increase the accuracy. Of course, 

there is a “desired” level of accuracy and a “recommended” number 

of iterations. Usually, it doesn’t make sense to “pay” for additional 

iterations by execution time after that point.

• Variance and errors

Since the explicit performance tests are designed to get reliable 

performance results, we do everything to stabilize them: use real 

dedicated hardware, make many iterations, and calculate statistics. 

In case of the implicit performance tests, we (typically) don’t care 

about variance and errors: we can run it inside a virtual machine, 

we can choose a new CI agent each time, we can always do only one 

iteration, and so on. Variance and errors are typically huge.

Well, does it make any sense to analyze the performance of “usual” tests (a.k.a. implicit 

performance tests) if it’s so unstable? A general answer: it depends. A more specific answer: 

you will never know if you don’t try. In the “Performance Anomalies” section later in this 

chapter, we will discuss many approaches that can be easily applied to implicit performance 

tests. When you work with a huge code base, it’s impossible to cover all methods by 
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performance tests: you don’t have enough time and resources. However, if someone made 

a simple mistake (most of the mistakes are simple) and get a huge performance regression 

(most of the regressions due to simple mistakes are huge), you can easily catch it with your 

“usual” unit and integration tests (if you use them as implicit performance tests).

 Monitoring and Telemetry
In this subsection, we will talk about two additional and interesting techniques of 

performance analysis:

• Monitoring

Monitoring is a typical solution for web servers: we can watch 

for life indicators of the server with the help of special tools like 

Zabbix12 or Nagios.13

• Telemetry

Telemetry is a widely used technology in software development14 

that allows collecting information on the usage of user 

applications. Such data is typically anonymous and doesn’t 

include any sensitive information. However, it can include 

important information about the performance of different 

operations. While usual monitoring is a great approach for web 

services, telemetry is our main “monitoring” tool for desktop 

applications (however, it can also be useful for the client side of 

web services). There is an existed API for telemetry by Microsoft,15 

but we can implement our own set of tools.

For example, Mozilla Firefox collects data16 about memory usage 

and operation latencies.

12 www.zabbix.com/
13 www.nagios.org/
14 In fact, telemetry has been used since the 19th century for many different applications including 

meteorology, oil and gas industry, motor racing, transportation, agriculture, and so on. Check 
out the Wikipedia page for interesting examples: https://en.wikipedia.org/wiki/Telemetry

15 https://docs.microsoft.com/en-us/azure/application-insights/
app-insights-windows-desktop

16 https://wiki.mozilla.org/Performance/Telemetry
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Of course, telemetry can include only general usage data without 

any performance statistics. For example, .NET Core CLI Tools 

use17 telemetry for collecting information about .NET Core SDK 

usage.18 The collected telemetry datasets are open and available 

for everyone, but they don’t include any information about 

performance.

Strictly speaking, monitoring and telemetry are not kinds of benchmarks or 

performance tests. If you look at the list of benchmarking requirements from Chapter 1,  

the first requirement (and one of the most important) is repeatability. Forget about it! 

Each second you have a new situation; the external world is constantly changing. It’s hard 

to write performance asserts for such data, but there are a few useful approaches:

• Common trends

It’s hard to perform a precise analysis, but you can track common 

trends. For example, you can compare statistics (like average, 

p90, p99, and so on) of a web page load duration on the previous 

week (with the previous version of your web service) and the 

current week (with an updated web service version). If you see a 

statistically significant difference, it’s a reason for a performance 

investigation.

• Thresholds

If you have a low latency requirement for some operations, you 

can introduce thresholds and send telemetry data in cases of 

failure. Imagine that you develop a desktop application and 

you want to keep the startup time low. Let’s say that 1 second 

on modern hardware (you can collect information about the 

hardware as well) is your upper limit. Of course, a user can have 

some heavy processes running at the same time, so let’s say that 

the threshold is 2 seconds. If the startup time is more than 2 

seconds, a telemetry alarm should be sent. Probably, you will get 

a few such alarms every day because you can’t control the user 

17 https://docs.microsoft.com/en-us/dotnet/core/tools/telemetry
18 This feature is enabled by default, but you can disable it with the DOTNET_CLI_TELEMETRY_
OPTOUT environment variable.
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environment. However, if you start getting dozens or hundreds 

of such alarms after the publishing of a new version, you have an 

issue for investigation.

• Manual watching

It’s hard to predict all the things that can go wrong. It’s even harder 

to automate the analysis of performance plot and write a system 

that automatically notifies us about all suspicious things. We will 

talk about performance anomalies later in this chapter. Thus, it’s 

a common practice when a special person (or a group of people) 

are looking for performance charts. Popular services require 

24/7 monitoring: in case of any problems (not only performance 

problems but also availability and business logic issues), the 

reaction must be immediate. Unfortunately, it’s almost impossible 

to automate this process. But you can use dashboards and alarm 

systems to make life easier.

 Tests with External Dependencies
Sometimes, we have a performance-critical scenario that involves something from 

the external world. In this case, the final performance distribution is affected by it. 

Unfortunately, we can’t control the external world. Let’s consider a couple of examples:

• External services

In Rider, we have some tests that cover NuGet features like install, 

uninstall, or restore. The logic of the test is simple: we just check 

that we can correctly perform these operations in small and huge 

solutions. Most of the tests are using our local NuGet repository, 

but some of them are using the nuget.org and myget.org servers. 

The primary goal of these tests is checking that the logic is correct, 

but we can also use it as performance tests. In Figure 5-2, you 

can see a typical performance plot for one of our NuGet tests. 

On March 22, 2018, nuget.org was down (see [Kofman 2018]). 

On April 16, 2018, api.nuget.org was blacklisted in Russia.19 On 

19 https://github.com/NuGet/NuGetGallery/issues/5806
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May 6, 2018, there were some serious problems with search API 

in the NuGet Gallery (see [Akinshin 2018]). We learn about these 

incidents immediately because we are watching the performance 

plots all the time. On the one hand, it’s hard to use such tests 

for honest performance regression testing: we get false positive 

results (a performance test is red, but there are no changes in the 

code base). On the other hand, all these problems are relevant to 

the behavior that users have in the product. It’s good to be notified 

about it as soon as possible.

• External devices

Many years ago, I was involved in an interesting project. My 

colleagues and I worked on a program that communicates with 

OWEN TRM 138.20 This is an industrial measurement device with 

eight channels that can measure different characteristics, such 

as temperature, amperage, and voltage. If you connect it to eight 

different points of a machine detail and measure the temperature 

at these points, the program can extrapolate the data and build a 

2D map of the temperature surface. Everything should work in real 

time: if the user changes some connection points, the map should 

be recalculated instantly. The real-time visualization was an 

important feature, so we checked that the time intervals between 

changes in the experimental setup and a new visualization. 

Unfortunately, sometimes we experienced unpredictable delays: 

OWEN TRM 138 provided data a few seconds late. Thus, it was 

almost impossible to make reliable performance measurements 

(because the delays were unpredictable). Eventually, we stopped 

to measure the whole cycle and started to measure different 

stages: fetching data, extrapolating, building an image, and so 

on. It solved the problem because measurements of the device-

independent stages were pretty stable.

20 www.owen.ru/uploads/re_trm138.pdf (In Russian.)
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The general advice: if you have some parts of the external world that affect your 

performance and you can’t control it, try to isolate it. It’s still nice to see the whole picture 

and get the performance distribution of the whole operations (monitoring/telemetry), 

but you can’t build reliable performance tests on top of it. For such stages, you should 

measure test stages that you can control (without any interaction with the external world).

 Other Kinds of Performance Tests
There is a huge number of different approaches that can be used for writing performance 

tests. This section is just an overview of possible techniques; we are not going to cover 

all of them. However, there are a few more performance test kinds that are worth 

mentioning: stress/load tests, user interface tests, and fuzz tests.

• Stress/load tests

You should always know the limitations of your software product. 

Usually, it’s a good idea to cover these limitations by performance 

tests. When we are talking about performance stress tests, we usually 

mean integration tests. Such testing is especially useful for web 
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Figure 5-2. Performance plot of a NuGet test in Rider
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services that handle a huge number of users at the same time. A 

typical mistake for server application benchmarking is focusing only 

on a situation without load (we send a single request to the server 

and measure the response time). In real life, you have many users 

who send requests at the same time. The most interesting thing 

is that the way the server process these requests depends on the 

volume of these requests. Fortunately, there are existing solutions 

that can help to automate this process (e.g., Apache JMeter, Yandex.

Tank, Pandora, LoadRunner, Gatling).

• User interface tests

It’s not always easy to implement a correct infrastructure for user 

interface tests, because you usually can’t run it a “headless” mode; 

you need a “graphical environment” for such tests. For example, in 

the IntelliJ IDEA code base, there are some user interface tests that 

check whether the IDE interface is responsive. In the CI pipeline, 

these tests are running on dedicated agents that are connected to 

physical 4K monitors.

There are also many libraries and frameworks that can help you to 

automate testing of the interface in your product (e.g., Selenium).

• Fuzz tests

We already know that the performance space is complicated and 

a method duration can depend on many different factors. Let’s 

say that there is an algorithm that processes a list of integers 

and makes some calculations. We implemented a faster version 

of this algorithm and now we want to verify that it really works 

faster. How should we compare them? Obviously, we can create 

a reference set of lists and benchmark both algorithms on each 

list from the set. Even if the new algorithm shows great results 

on all these pregenerated lists, we can’t be sure that it will always 

be faster than the original algorithm. What if there is a corner 

case that spoils the performance of the new implementation? 

Unfortunately, we can’t enumerate all possible lists of integers 

and check each of them. In such cases, we can try a technique 

called fuzzing. The idea is simple: we should generate random 
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lists until we find input which causes problems.  

A very simplified version may look as follows:

for (int i = 0; i < N; i++)

{

  var list = GenerateRandomList();

  var statistics = RunBenchmark(NewAlgorithm, list);

  if (HasPerformanceProblem(statistics))

    ReportAboutProblem(list);

}

Fuzzing is a powerful approach used in different areas of software engineering. It can 

be applied even for searching for bugs in RyuJIT (see [Warren 2018] for details). If we can 

discover bugs in a JIT compiler that were unnoticed by developers and passed all unit 

tests, we definitely can try it in benchmarking.

Here is another situation: a user complains about performance problems, you know 

that these problems most likely relate to specific parameter values, but you don’t know 

the exact values that cause the problems, and it’s not possible to get information about 

the user setup. If you are not able to try all possible setups, you can try to find it with the 

help of fuzzing.

Fuzzing can be also a part of your continuous integration pipeline: you can generate 

new input data each time and check for unusual performance phenomena.

However, fuzzing has one important drawback. It breaks one of the main benchmark 

requirements: the repeatability. The fuzz benchmarks are a special kind with only one 

goal: to catch undesirable results. However, you still should make each run of a fuzz 

benchmark repeatable by saving the input data or a random seed that is used for data 

generation.

 Summing Up
There are many kinds of benchmarks and performance tests. In this section, we 

discussed only some of them. To be honest, all kinds of performance tests are not exactly 

kinds. They are like concepts, ideas, or approaches that you can mix in any combination. 

For example, you can use asymptotic analysis for capacity planning for a web server in 

the warmed state under load. Of course, you shouldn’t implement all the discussed test 

categories in each product: you can select only a few of them or invent your own kinds of 

performance tests relevant to your problems. The main rule is simple: you should design 

Chapter 5  performanCe analysis and performanCe testing



299

such tests that correspond to the business goals and take a reasonable amount of time. If 

you write some benchmarks or performance tests, you should clearly understand what 

kind of problems are you going to solve. Typically, figuring out the problem takes more 

than half of the time that goes into finding the solution. Based on this understanding, 

you can choose the best techniques (or combinations of them) that fit your situation.

 Performance Anomalies
In simple words, a performance anomaly is a situation when the performance space 

looks “strange.” What does this mean? Well, you can choose your own definition. It’s a 

situation when you look at a performance plot and say: “This plot seems unusual and 

suspicious; we might have a problem with it. We should investigate it and understand 

why we have such plot.”

An anomaly is not a problem that should be fixed; it is a characteristic of the 

performance space that you should know. All anomalies can be divided into two groups: 

temporal and spatial. A temporal anomaly assumes that you have a history (a set of 

revisions or commits) that is analyzed. For example, you can find a problem that was 

introduced by recent changes in the source code. A spatial anomaly can be detected in a 

single revision. For example, it can be based on a difference between environments or a 

strange performance distribution of a single test.

In this section, we discuss some of the more common performance anomalies:

• Degradation. Something worked quickly before, and now it works 

slowly.

• Acceleration. Something worked slowly before, and now it works 

quickly.

• Temporal clustering. Something suddenly changed for several tests 

at the same time.

• Spatial clustering. Performance results depend on a parameter of 

the test environment.

• Huge duration. A test takes too much time.

• Huge variance. The difference between subsequential 

measurements without any changes is huge.

• Huge outliers. The distribution has too many extremely high values.
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• Multimodal distributions. The distribution has several modes.

• False anomalies. A situation when the performance space looks 

“strange,” but there’s nothing to worry about here.

Each anomaly subsection has a small example with a table that illustrates the 

problem. After that, we discuss the anomaly in detail and why it’s so important to detect 

it. Some of the subsections also contain a short classification of the anomaly kinds.

In the last two subsections, we will discuss problems that can be solved by hunting 

for these anomalies and recommendations about what can you do with performance 

anomalies.

Let’s start from one of most famous anomalies: the performance degradation.

 Degradation
Performance degradation is a situation when a test works slower than before. It’s a 

temporal anomaly because you detect a degradation by comparing several revisions.

An example. You can see a performance test history of a single test in Table 5-2. 

Compare the performance history before and since May 20.

Table 5-2. An Example of Degradation

Day May 17 May 18 May 19 May 20 May 21 May 22

time 504 ms 520 ms 513 ms 2437 ms 2542 ms 2496 ms

Performance degradation is one of the most common anomalies. When people 

talk about performance testing, one of the typical goals is to prevent performance 

degradation. Sometimes it’s the only goal (before people start to explore the 

performance state and discover exciting things).

There are two main kinds of performance degradations:

• Cliff

A cliff degradation is a situation when you have a statistically 

significant performance drop after a commit. You can see an 

example of the cliff degradation in Figure 5-3.
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• Incline

An incline degradation is a situation when you have a series of 

small performance degradations. Each degradation can’t be 

easily detected, but you can observe a performance drop when 

you look at the history for a period. For example, your current 

performance can be 2 times worse than a month ago, but you 

can’t point to a commit that ruined everything because there are 

too many commits with a small performance impact. You can see 

an example of the incline degradation in Figure 5-4.

Figure 5-3. Performance anomaly: cliff
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Of course, it’s not always easy to say whether you have a cliff degradation, an incline 

degradation, a mix of them, or whether you have a degradation at all. However, the 

difference between the cliff and the incline is important because it affects when and 

how you are going to detect a degradation: the cliff can be detected on a specific commit 

(even before a merge), and the incline can be detected during the retrospective analysis.

 Acceleration
Performance acceleration is a situation when a test works faster than before. It’s a 

temporal anomaly because you detect acceleration by comparing several revisions.

An example. You can see a performance test history of a single test in Table 5-3. 

Compare the performance history before and since April 08.

Figure 5-4. Performance anomaly: incline
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It’s very important to distinguish expected and unexpected accelerations:

• Expected accelerations

An expected acceleration is a good anomaly. For example, you 

make an optimization, commit it, and see that many tests work 

much faster now. There’s nothing to worry about! However, it still 

makes sense to track such anomalies because of the following 

reasons:

 – Tracking optimization impact

Even if you are sure that the optimization works, it still makes 

sense to verify it. Of course, you should perform local checks 

first, but it’s better to have several verification stages: it reduces 

the risk that a problem can go unnoticed. Also, you get a better 

overview of the features that were improved.

 – Team morale

However, tracking such acceleration can be good for morale in 

your team. When you implement a feature, you instantly see 

the result of your work. When you fix performance problems 

all the time, it can be demoralizing due to lack of feedback.21 

People should see a positive impact of their work. A single 

performance plot with significant performance improvements 

can make a developer very happy.

• Unexpected accelerations

An unexpected acceleration is always suspicious. You can meet 

a lot of developers who can say something like the following: 

21 If something works slowly, users often complain about it all the time. Typically, if something 
works fast enough, nobody tells you about it.

Table 5-3. An Example of Acceleration

Day Apr 05 Apr 06 Apr 07 Apr 08 Apr 09 Apr 10

time 954 ms 981 ms 941 ms 1 ms 2 ms 1 ms
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“I didn’t change anything, but now the software works faster. 

Hooray!” Unfortunately, an unexpected speedup can often 

mean a bug. I had observed many situations when a developer 

accidentally turned off a feature and got a performance 

improvement. Such situations can pass all the tests, but you 

can’t hide them from the performance plots! Investigations of 

unexpected accelerations don’t help you with performance, but 

they can help you to find some bugs.

 Temporal Clustering
Temporal clustering is a situation when several tests have significant performance 

changes at the same time. It’s a temporal anomaly because you detect it by comparing 

several revisions.

An example. You can see a performance test history of three tests in Table 5-4. 

Compare October and November results for Test1 and Test2.

Table 5-4. An Example of Temporal Clustering

Day Oct 29 Oct 30 Oct 31 Nov 01 Nov 02

test1 1.4 sec 1.3 sec 1.4 sec 2.9 sec 2.8 sec

test2 4.3 sec 4.2 sec 4.4 sec 8.8 sec 8.7 sec

test3 5.3 sec 5.3 sec 5.4 sec 5.4 sec 5.3 sec

One of the performance testing goals is automation. A simple “you have a problem 

somewhere here” is a good thing, but it’s not enough. You should provide all data that 

can help to investigate the problem quickly and easily.

One of the ways to do it is by tracking the grouped changes. If you get 100 tests with 

problems after a change, it doesn’t mean that you should create 100 issues in your bug 

tracker and investigate them independently. It’s most likely that you have a few problems 

(or only one problem) that affect many tests. Thus, you should find groups of the tests 

that likely suffer from the same problem.
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Let’s discuss a few possible group kinds.

• Suite degradation

Most of the projects have a test hierarchy. You can have several 

projects in a solution, several test classes in a project, several test 

methods in a class, and several input parameter sets for a method. 

When you are looking for performance degradation or another 

performance anomaly, you should try to highlight test suites22 that 

share the same problem.

Let’s look at an example in Table 5-5. Here we have two suites: 

A and B, three tests in each suite. We have some measurements 

before and after some changes. We have different measurement 

values for all tests, but some of them can be explained by natural 

noise. You can note that performance delta in the B suite is not 

significant: it’s about 1% (typical fluctuations for usual unit tests). 

Meanwhile, we have a noticeable time increase for tests from 

the A suite: around 10-18%. The fact that we got a performance 

degradation for all tests of the suite at the same time is a reason to 

assume that we have the same problem with the whole suite.

22 Different developers use different definitions for the term “suite.” In the context of a project or a 
team, you can have a clear definition. For example, you can say that a suite is a test class that is 
marked with the TestFixture attribute in a NUnit project. In this book, we use a higher level of 
abstraction and say that a suite is a group of tests that have the same place in the test hierarchy. 
For example, a suite can be a set of tests in a project or a single test with different sets of input 
parameters (test cases).

Table 5-5. An Example of Suite Degradation

Suite Test Time (before) Time (after) Delta

a a1 731 ms 834 ms 103 ms

a a2 527 ms 623 ms 96 ms

a a3 812 ms 907 ms 95 ms

B B1 345 ms 349 ms 4 ms

B B2 972 ms 966 ms −6 ms

B B3 654 ms 657 ms 3 ms
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• Paired degradation/acceleration

This is another kind of very common problem. In a suite, 

you often have an initialization logic. It can be an explicit 

setup or an implicit lazy initialization. In this case, you can 

have a test that works slowly not because of the test logic, but 

because it includes the initialization logic. Let’s look at an 

example in Table 5-6. As you can see, before the change all test 

methods take about 100 ms except Foo which takes 543 ms. 

After the change, Foo takes 104 ms (acceleration), Bar takes 

560 ms (degradation), and other tests don’t have statistically 

significant changes. In such cases, we can assume that the 

order of tests was changed: Foo was the first test in the suite 

before the changes; after the changes, Bar is the first test. 

This is not always true, but it’s a hypothesis which should be 

checked. Why should we care about it? The initialization logic 

should always move away from the tests to a separate method. 

It’s not only a good practice, but it’s also important from the 

performance point of view. A huge deviation from the setup 

can hide real performance problems in the tests. Let’s do some 

calculations with rounded example values. If a test takes 100 

ms and a setup takes 400 ms, they take 500 ms together. If we 

have a 30 ms degradation, this comprises 30% of the test time 

(a significant change) and only 6% of the total time, which can 

be ignored because of huge errors. If you have a setup logic 

inside one of the tests, it’s not a bug, but it’s a design flaw. 

Usually, it’s a good idea to get rid of it (if possible).
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• Correlated changes in time series

If you can detect a correlation between two time series in your 

tests, it can be interesting to check that you always have this 

correlation. In Table 5-7, you can see an example of some latency 

and throughput measurements. The latency is just a raw duration, 

the throughput is a number of RPS. We run these tests on 

different agents with different hardware, so we can’t apply “usual” 

degradation analysis here. However, we can notice a pattern: 

Throughput≈2 sec / Latency. For example, if Latency = 0.1 

sec, we get Throughput = 2 sec / 0.1 sec = 20. This pattern 

can be explained by parallelization: we have two threads on each 

agent that process our requests. We can observe such patterns 

on all agents except Agent4. So, we can assume that something 

is wrong with parallelization here. Of course, we can detect this 

problem in other ways. However, the correlation analysis helped 

us to formulate a hypothesis for future investigation (something 

is wrong with the Latency/Throughput) and get additional 

important information (we have this problem only on Agent4). 

Such facts can save a lot of investigator time because you can 

collect all such suspicious patterns automatically. You can find 

another example of such analysis in [AnomalyIo 2017].

Table 5-6. An Example of Suite Degradation

Test Time (before) Time (after) Delta

foo 543 ms 104 ms -439 ms

Bar 108 ms 560 ms 452 ms

Baz   94 ms 101 ms 7 ms

Qux 103 ms 105 ms 2 ms

Quux 102 ms   99 ms -3 ms

Quuz   98 ms   96 ms -2 ms
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 Spatial Clustering
Spatial clustering is a situation when the performance of some tests significantly 

depends on some test or environment parameters. It’s a spatial anomaly because you 

detect it with a single revision.

An example. In Table 5-8, you can see average durations of three tests depend on an 

operating system. Compare durations of Test1 and Test2 for Windows vs. Linux/macOS.

Table 5-7. An Example of Correlated Changes in Time Series

Day Agent Latency Throughput

Jan 12 agent1 100 ms 20.12 rps

Jan 13 agent1 105 ms 19.01 rps

Jan 14 agent2 210 ms 9.48 rps

Jan 15 agent2 220 ms 8.98 rps

Jan 16 agent3 154 ms 12.89 rps

Jan 17 agent3 162 ms 12.41 rps

Jan 18 Agent4 205 ms 4.95 RPS

Jan 19 Agent4 209 ms 5.02 RPS

Table 5-8. An Example of Spatial Clustering

Test1 Test2 Test3

Windows 5.2 sec 9.3 sec 1.2 sec

linux 0.4 sec 0.6 sec 1.4 sec

macos 0.4 sec 0.7 sec 1.2 sec

Sometimes, it’s obvious that test performance can depend on some properties of 

the environment. Sometimes, it’s not obvious enough. Moreover, some external factors 

can unexpectedly affect the performance only of a specific set of tests. If you check 

your product on different machines with different environments, it’s a good idea to 

check the difference between performance measurements for the same test in different 

environments.
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Let’s consider an example. The same version of ReSharper should work on different 

versions of Visual Studio (VS). For example, ReSharper 2017.3 should work on VS 2010, 

VS 2012, VS 2013, VS 2015, and VS 2017. The ReSharper team has a suite of integration 

tests that are executed on all versions of Visual Studio. It’s not a rare situation when some 

changes spoil performance only on a specific version of Visual Studio. Moreover, if we 

work only with a single revision (without performance history), we can observe that 

some tests work fast on VS 2010, VS 2012, VS 2013, and VS 2015 and work slowly on VS 

2017. It’s a good practice to look for such situations and try to investigate them.

Another example is about Rider. Rider should work fast on all supported operating 

systems. It uses .NET Framework on Windows and Mono on Linux/macOS. Most of the 

tests have about the same duration on different operating systems, but some of them 

demonstrate huge differences. In Figure 5-5, you can see performance measurements for 

.NET Core ASP.NET MVC template (create a solution from the template, restore NuGet 

packages, build it, run the analysis, and so on). As you can see in the figure, these tests 

work faster on Windows than on Linux or macOS. Also, it has a huge variance, but we 

will discuss it in the next subsection.

The clustering anomaly can be applied to a single revision instead of a set of 

revisions. It doesn’t show problems which were introduced by recent changes, but it can 

show problems that you have right now (and had for a long time).

Figure 5-5. Performance anomaly: spatial clustering
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In Chapter 4, we discussed the multiple comparisons problem. This becomes a 

very serious problem when we are talking about clustering. The more parameters we 

consider, the more chances we have of finding a “pseudo” clustering. If you include too 

many parameters in the parameter set (you can include anything from the GCCpuGroup 

value and free disk space to times of day23 and the moon phase24), you will definitely find 

a parameter that ostensibly affects the performance. In this case, you can try a popular 

method of vector quantization from k-means clustering (e.g., see [AnomalyIo 2015]) to 

neural models and machine learning (some of the cauterization methods were covered 

in Chapter 4).

 Huge Duration
Huge duration is a situation when some tests take too much time. “Too much” can 

be relative (much more than most of the tests) or absolute (seconds, minutes, or even 

hours). It’s usually a spatial anomaly because you are looking for the slowest test per 

revision.

An example. In Table 5-9, you can see examples from the top five slowest tests. 

Compare the first test and the fifth test.

23 Times of day can be an essential parameter if we monitor the performance of a popular web 
service.

24 In programmers’ folklore, the moon phase is the final reasonable explanation of an anomaly 
when all other plausible hypotheses are rejected.

Table 5-9. Examples of Huge Duration

Place Test Time

1 test472 18.54 sec

2 test917 16.83 sec

3 test124 5.62 sec

4 test952 0.42 sec

5 test293 0.19 sec
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First of all, try to answer the following questions:

• What is the maximum acceptable duration of a single test?

• What is the maximum acceptable duration of the whole test suite?

• Check out the durations of tests in your project. What is the typical 

duration of the whole test suite? Find the slowest test (or a group of 

the slowest tests). Is it possible to test the same thing in less time?

It’s always great when you can run all of your tests quickly. When we are talking 

about usual unit tests, it’s a typical situation when thousands of tests take a few seconds. 

However, the situation is worse with integration and performance tests. Sometimes, such 

tests can take minutes and even hours.

If you are going to speed up the test suite, it doesn’t mean that you should implement 

some crazy optimizations. There are many examples of success stories when people 

significantly reduce the total test suite duration by a small change. In [Kondratyuk 2017], 

a developer changed localhost to 127.0.0.1 and got a 18x speedup of a test suite. In 

[Songkick 2012], the test suite time was reduced from 15 hours to 15 seconds by a series 

of different improvements. In [Bragg 2017], the test suite time was reduced from 24 hours 

to 20 seconds.

If the duration of the whole test suite is your pain point and affects the development 

process, here are a couple of classic techniques that can minimize it:

• Run tests in parallel if possible

If you are care only about the total build time, you should try 

to run tests in parallel. Be careful: in this case, you will not get 

reliable performance results. Also, it’s not always possible to run 

arbitrary tests in parallel because they can work with the same 

static class or share resources (e.g., files on a disk).

• Replace integration tests by unit tests if possible 

If you have a ready framework for integration tests, it’s usually 

much simpler to write an integration test instead of a unit test. 

Unit tests require some effort: you have to isolate a part of the 

system correctly, mock other parts, generate synthetic data, and 

so on. You typically shouldn’t do it in integration tests: the whole 

system with real data is ready for your checks. However, if you 
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want to check only a single feature, a unit test is a recommended 

way. If you run the unit tests before the integration tests, the 

increased feature covering by additional unit tests can also 

improve the build time: in case of failed unit tests, you can skip the 

integration test phase.

 Huge Variance
Huge variance is a situation when some tests have too much variance. “Too much” 

can be relative to other tests (much more than most of the tests), relative to the mean 

value (e.g., mean = 50 sec, variance = 40 sec), or absolute (seconds, minutes, or even 

hours). It can be a temporal anomaly (if you analyze a performance history) or a spatial 
anomaly (if you analyze several iterations for the same revision).

An example. In Table 5-10, you can see durations of several invocations for the same 

test and the same revision (no changes were made). Find the minimum and maximum 

values.

Table 5-10. An Example of Huge Variance

InvocationIndex Time

1 2.34 sec

2 54.73 sec

3 5.15 sec

4 186.94 sec

5 25.70 sec

6 92.52 sec

7 144.41 sec

Another example from the IntelliJ IDEA test suite is presented in Figure 5-6. It’s a 

stress test with a huge number of threads. It takes 100–1000 seconds on Linux/Windows 

and 1000–4000 seconds on macOS.
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 Huge Outliers
Huge outliers is a situation when the outliers values are too big (much bigger than the 

mean value) or there are too many outlier values (e.g., significantly more than before). It 

can be a temporal anomaly (if you analyze a performance history) or a spatial anomaly 

(if you analyze several test iterations for the same revision).

An example. In Table 5-11, you can see durations of several invocations for the same 

test and the same revision (no changes were made). Find the outlier.

Table 5-11. An Example of Huge Outliers

InvocationIndex Time

1 100 ms

2 105 ms

3 103 ms

4 1048 ms

5 102 ms

6 97 ms

Figure 5-6. Performance anomaly: variance
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It’s a normal situation when you have some outlier values. However, there are 

expected and unexpected outliers. To be more precise, there is the expected number 

of outliers. For example, if you do a lot of I/O operations, you will definitely get 

some outliers, but you will get them with the same rate for the same configurations. 

Different configurations can have a different number of expected outliers. If you read 

data from the disk, you will probably get different distributions for Windows+HDD 

and Linux+SSD. But you usually have the same number for a fixed configuration (for 

example, 10–15 outliers for 1000 iterations).

Checking the number of outlier values is a powerful technique that helps to 

detect additional suspicious changes. It’s OK to have outliers, but you should always 

understand why you have them.

There are several possible problems with outliers. Here are two of them:

• Too many outliers

Sometimes you make some changes (for example, change API for 

reading data from the disk) and accidentally increase the number 

of outliers (e.g., 40–50 instead of 10–15). In this case, the standard 

deviation is also increased, so you have an additional way to 

detect the problem.

• Extremely huge outliers

Outliers are always bigger than the mean value. It’s usually OK 

if the difference between the maximum outlier and the mean 

value is huge (e.g., mean = 300 ms, max = 2600 ms). However, 

sometimes these values are extremely high (e.g., mean = 300 ms, 

max = 650000 ms). Such a situation can be a sign of a serious bug 

that can hurt your users.

 Multimodal Distributions
Multimodal distribution is a situation when the distribution has several modes (we 

already covered this topic in Chapter 4). It can be a temporal anomaly (if you analyze a 

performance history) or a spatial anomaly (if you analyze several iterations for the same 

revision).
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When you run some simple synthetic benchmarks, you usually don’t observe 

such situations. However, it’s a pretty common situation in real-life performance 

measurements. For example, in Figure 5-7, you can see measurements for the 

OutputLineSplitterTest_testFlushing from the IntelliJ IDEA test suite. This test 

takes about 0 sec or 10 sec. The test name (which contains testFlushing) helps us to 

assume that we do output flushing only in some cases, but not every time. This is not 

always a mistake; it can be a “by design” behavior. However, it’s very important to detect 

such situations in advance because we can’t use the average value (which is around 

5 sec for testFlushing) in case of a multimodal distribution. We already discussed 

multimodal distribution and how to detect them in Chapter 4.

Table 5-12. An Example of Multimodal 

Distribution

InvocationIndex Time

1 101 ms

2 502 ms

3 504 ms

4 105 ms

5 103 ms

6 510 ms

7 114 ms

An example. In Table 5-12, you can see durations of several invocations of the same 

test. As you can see, the total time is around 100 ms or 500 ms.
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 False Anomalies
False anomaly is a situation that looks like an anomaly but there are no problems 

behind it. A false anomaly can be temporal (if you analyze a performance history) or 

spatial (if you analyze only a single revision).

An example. Let’s say that we have a test that takes 100 ms:

public void MyTest() // 100 ms

{

  DoIt();            // 100 ms

}

We decided to add some heavy asserts (200 ms), which check that everything is OK:

public void MyTest() // 300 ms

{

  DoIt();            // 100 ms

  HeavyAsserts();    // 200 ms

}

On the performance plot, we will see something that looks like a performance 

degradation (100 ms ->300 ms), but there is no performance problem here; it’s an 

Figure 5-7. Performance anomaly: bimodal distribution
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expected change of the test duration. If you have a recently introduced anomaly, it’s a 

good practice to check the changes in the source code first. Found changes in a test body 

at the beginning of an investigation can save hours of useless work. You can also use a 

proactive approach and set an agreement in your team: each person who makes any 

performance-sensitive changes on purpose should mark them somehow. For example, 

a test can be marked with a special comment or an attribute. Or you can create common 

storage (a database, a web service, or even a plain text file) that contains all information 

about such changes. It doesn’t matter which way you choose if all the team members 

know how to view the history of the intentional performance changes in each test.

If you have an anomaly, it doesn’t always mean that you have a problem. It’s a regular 

situation to have an anomaly because of some natural reason. If you hunt for anomalies 

all the time and investigate each of them, it’s important to be aware of “false anomalies” 

that don’t have any actual problems behind them.

Let’s discuss some frequent reasons for such anomalies.

• Changes in tests

This is one of the most common false anomalies. If you make any 

changes in a test (add or remove some logic), it’s obvious that the 

test duration can be changed. Thus, if you have a performance 

anomaly like degradation in a test, the first thing that you should 

check is if there are any changes in the test. The second thing for 

checking is any changes that spoil the performance on purpose 

(e.g., you can sacrifice performance for the sake of correctness).

• Changes in the test order

The test order can be changed at any moment; there can be 

several reasons for this, including test renaming. It can be painful 

if the first test of the suite includes a heavy initialization logic. 

Let’s say we have five tests in a test fixture with the following 

order (revision A): Test01, Test02, Test03, Test04, Test05. Our 

test framework uses lexicographical order to execute tests. In 

revision B, we rename Test05 to Test00. You can see possible 

consequences of such renaming in Table 5-13. It’s most likely that 

we have an example of the “Paired degradation/acceleration” 

anomaly: now we have a new slow test, Test00, instead of the old 

slow Test01. We have already discussed that it’s a good idea to 
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move the initialization logic to a separate setup method, but it’s 

not always possible. If we know about such a “first test effect” and 

we can’t do anything about it, we will still get a notification about 

an anomaly here.

Table 5-13. Example of Changes in the Test Order

Revision Index Name Time

a 1 Test01 100ms

a 2 test02 20ms

a 3 test03 30ms

a 4 test04 35ms

a 5 Test05 25ms

B 1 Test00 105ms

B 2 Test01 20ms

B 3 test02 20ms

B 4 test03 30ms

B 5 test04 35ms

• Changes in CI agent hardware

It’s great if you can run performance tests on the same CI agent 

(a physical machine) all the time. However, the agent can break 

down, and it can be hard to find an identical replacement. Any 

changes in the environment can affect performance: from a minor 

change in the processor model number to the RAM memory 

size. It’s always hard to compare measurements from different 

machines because the actual changes are unpredictable. If you 

want to perform nanobenchmarks, you typically need a set of 

identical physical CI agents.
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• Changes in CI agent software

You can get some trouble with the same agent without hardware 

replacement. It’s a common practice when admins install 

operating system updates from time to time. They can be minor 

security updates or major OS updates (e.g., Ubuntu 16.04 → 

Ubuntu 18.04). Any environment change can affect performance. 

This leads to a situation when you see a suspicious degradation 

or acceleration on performance plots without any changes in the 

source code.

• Changes in CI agent pool

Only the luckiest have an ability to run tests on a CI agent pool 

with dedicated identical machines. A much more frequent 

situation is a dynamic pool of CI agents: you can’t predict which 

hardware/software environment will be used for the next test 

suite run. Something is constantly changing in such a pool: some 

machines are turned off, some machines are put into operation, 

some machines get updates, some machines are occupied by 

developers who do performance investigations, and so on. Such 

a situation means increased variance (because of the constant 

jumping between) and performance anomalies based on the 

changes in the pool. In Figure 5-8, you can see a performance 

anomaly for MonoCecil test in Rider for macOS agents around 

October 20. Nothing was changed in the source code; the 

degradation was caused by a planned update of all macOS agents. 

The updating process consumes CPU and disk resources and 

affects the performance of tests (it wasn’t a special performance 

test; it was a regular test that runs on regular agents from the 

pool). As soon as the update finished, the performance returned 

to the “normal level” (if you can say “normal” for a test with such 

variance).
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• Changes in the external world

If you have any external dependencies, they can be a persistent 

source of performance anomalies. Unfortunately, it’s not always 

possible to get rid of these dependencies. Once a dependency 

becomes a part of your tested logic, you start to share the 

performance space with it. The classic example of such a 

dependency is an external web service. You can download 

something from the web or test an authentication method. For 

example, I had such a problem with NuGet Restore tests in Rider. 

These tests checked that we could restore packages correctly and 

fast. The first version of these tests used nuget.org as a source 

feed for all NuGet packages. Unfortunately, these tests were very 

unstable. Once a day, there was such a situation in which one of 

the tests was failing because of slow nuget.org responses. On the 

next iteration, we created a mirror of nuget.org and deployed it 

on our local server. We (almost) didn’t have fails any more, but 

the variance was still huge for these tests. On the final iteration, 

we started to use a local package source (all the packages were 

downloaded on the disk before the test suite is started). We got 

Figure 5-8. False performance anomaly: agent problems
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(almost) stable tests with low variance. It should be noted that 

it’s not an honest test refactoring. We sacrificed a part of the logic 

(downloading packages from a remote server) for the sake of the 

false anomaly rate.

• Any other changes

Our world is constantly changing. Anything can happen at any 

minute. You should always be ready to meet false performance 

anomalies. A performance engineer who is responsible for the 

processing of the anomalies should know what kinds of false 

anomalies are frequent for the project infrastructure. Checking 

if an anomaly is false should be the first thing that you should 

do before a performance investigation. This simple check helps 

to save time and prevent a situation in which a false anomaly 

becomes a Type I (false positive) error.

 Underlying Problems and Recommendations
Usually, performance anomalies notify us about different problems in a project. Here are 

some of them:

• Performance degradation

It may sound obvious, but the biggest problem with this anomaly 

is the degradation of the performance. Usually, people start to do 

performance testing because they want to prevent degradations.

• Hidden bugs

Missed asserts are bugs in tests, but you can have similar bugs 

in the production code. If a test has a huge variance, the first 

thing that you should ask is the following: “why do we have such 

variance here?” In most cases, you have a nondeterministic bug 

behind it. For example, it can be a race condition or a deadlock 

(with termination on timeout but without assert).

• Slow build process

You have to wait too long before all tests are passed on a CI server. 

It’s a typical requirement that all tests should pass before an 
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installer will be available, or a web service will be deployed. When 

the whole test suite takes 30 minutes or even 1 hour to run, it’s 

acceptable. However, if it takes many hours, it slows down your 

development process.

• Slow development process

If a test is red and you are trying to fix it, you have to run the test 

locally again and again after each fix attempt. If a test takes 1 hour, 

you have only eight attempts with a standard 8-hour working 

day. Moreover, it doesn’t make any sense to wait for the test 

result without any actions, so developers often switch to another 

problem. The developer context switch is always painful. Also, 

the huge test duration implies huge errors. When a test takes 1 

hour, you are usually OK with an error of a few minutes. In such a 

situation, it’s hard to set up strict performance asserts (we will talk 

about this later).

• Unpredictably huge duration

We already talked about a huge test duration: this is not a good 

thing. When you have an unpredictably huge test duration, it’s 

much worse. In such case, it’s hard to work on the performance 

of such tests. If you have timeouts (which are popular solutions 

because tests may hang), the test can be flaky because the total 

duration can sometimes exceed the timeout.

• It’s hard to specify performance asserts

Let’s look again at Figure 5-6. You can see a performance history 

plot of a concurrency test from the IntelliJ IDEA test suite. Some 

of the runs can take 100 seconds (especially on Windows), and 

others can take 4000 seconds (especially on macOS). We can 

observe both kinds of values on the same revision without any 

changes. Imagine that you introduce a performance degradation. 

How do you catch it? Even if you have a performance degradation 

of 1000 seconds, you can miss it because the variance is too huge.
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• Missed asserts

Many times, I have seen tests with green performance history as 

follows: 12.6 sec, 15.4 sec, 300.0 sec, 14.3 sec, 300.0 sec, 

16.1 sec, … . A typical example: we send a request and wait for 

a response. The waiting timeout is 5 minutes, but there is no 

assert that we got the response. After 5 minutes, we just terminate 

waiting and finish the test with the green status. It may sound like 

a stupid bug, but there are a lot of such bugs in real life. Such tests 

can be easily detected if we look for the tests with extremely high 

outliers.

• Surprising delays in production

Have you ever had a situation when you do an operation that is 

usually performed instantly, but it hangs an application for a few 

seconds? Such situations are always annoying users. There are 

many different reasons for such behavior. Usually, it’s hard to fix 

them because you typically don’t have a stable repro. However, 

some of them can also be a cause of outliers on your performance 

plot. If you systematically have outliers on a CI server, you can add 

some logs, find the problem, and fix it.

• Hacks in test logic

Have you ever had flaky tests with race conditions? What is the 

best way to fix such tests? There is an incorrect but popular 

hotfix: putting Thread.Sleep here and there. Usually, it fixes the 

flakiness; the test is always green again. However, it fixes only 

symptoms of a problem, but not the problem. Once such fix is 

committed, it’s hard to reproduce this problem again. And it’s 

hard to find tests with such “smart fixes.”25 Fortunately, such hacks 

can be seen with the naked eye on the performance plots. Any 

Thread.Sleep calls or other hacks that prevent race conditions 

25 Of course, there are some ways. For example, I like to find all Thread.Sleep usages in our code 
base. If I find such a call in our test base, I remove it and see what will happen. Usually, some 
tests become red or flaky. After that, I’ll try to fix bugs that were revealed.
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or similar problems can’t be hidden from a good performance 

engineer.

• False anomalies

The main problem with a false anomaly is obvious: you spend 

time on investigations, but you do not get a useful result.

There are several general recommendations for handling performance anomalies:

• Systematic monitoring

This is the most important recommendation: you should monitor 

performance anomalies all the time. Since, a real application 

can have hundreds of them, you can use the dashboard-

oriented approach: for each anomaly, we can sort all tests by the 

corresponding metrics and look at the top. Look at the tests with 

the highest duration, the highest variance, the highest outliers, 

the highest modal values, and so on. Try to understand why you 

have these anomalies. Do you have any problems behind them? 

Could you fix these problems? You can look at such a dashboard 

one time at month, but it will be much better if you will do it every 

day: in this case you can track new anomalies as soon as they are 

introduced.

• Serious anomalies should be investigated

If you systematically track anomalies, you can find a lot of serious 

problems in your code. Sometimes, you can find performance 

problems that are not covered by performance tests. Sometimes, 

you can find problems in business logic that are not covered by 

functional or unit tests. Sometimes, it turns out that there are not 

any problems: an anomaly can be a false anomaly or a natural 

anomaly (which is caused by “natural” factors you can’t control 

like network performance). If you don’t know why you have a 

particular anomaly, it’s a good practice to investigate it. If you 

can’t do it right now, you can create an issue in your bug tracker 

or add the anomaly to a “performance investigation list.” If you 

ignore found anomalies, you can miss some serious problems, 

which will be discovered only in the production stage.
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• Beware of high false anomaly rates

If the Type I (false positive) error rate is huge, the anomaly 

tracking system becomes untrustable and valueless. It’s better 

to miss a few real issues and increase the Type II (false negative) 

error rate than overload the team with false alarms, which can 

undo all your performance efforts. If you see a performance 

anomaly, the first thing that you should do is check for natural 

reasons. Typically, these checks don’t take too much time, but 

they can protect you from useless investigations. Here are a few 

check examples:

 – Check for changes in test

If somebody changed the source code of the test in a 

corresponding revision, check these changes.

 – Check for changes in test order

Just compare test orders for the current revision and for the 

previous one.

 – Check the CI agent history

Did you use the same agent for the current and previous 

results? Did you make any changes in the agent hardware/

software?

 – Check typical sources of false anomalies

If you are looking for performance anomalies all the time, you 

probably know the most common causes of false anomalies. 

Let’s say you download content from an external server with 

95% uptime. If the server is down, you are doing retries until the 

server is up again. Such behavior can be a frequent source of 

outliers without any changes. If you know that a group of tests 

suffer from such phenomena, the first thing that you should 

check is log messages about retries.
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• Beware of alert fatigue

It’s great when you can track down all your performance 

problems. However, you should understand how many issues 

can be handled by your team. If there are too many performance 

anomalies in the queue, the investigation process becomes an 

endless and boring activity. You can’t fix performance issues all 

the time: you also have to develop new features and fix bugs.

 Summing Up
There are too many kinds of performance anomalies to fully discuss here. Most of them 

can be easily detected with the help of very simple checks. You don’t typically need 

advanced techniques because the basic anomaly checkers catch most of the problems. 

In Rider, we usually look only at the “Huge variance” and “Clustering” anomalies. The 

first implementation of our "performance analyzer" took about 4 hours: it was a C# 

program that downloads data from a TeamCity server with an R script, which aggregates 

this data and draws a performance plot for the most suspicious tests. In those days, 

I created a few dozen performance investigation issues for different people. Many of 

them were real problems that were hidden among thousands of unit tests. And to this 

day, we continue to find important problems every week. We also have many advanced 

analyzers that look for tricky performance issues. However, basic “Huge variance” and 

“Clustering” supply us with a huge list of problems to be investigated.

I believe that checking for performance anomalies is a healthy thing for any huge 

project that requires performance tests. It helps to detect critical problems in time 

before users start to suffer after the next software update. Each project is unique, with 

its own set of performance anomalies. Everything depends on your domain area. You 

can find many interesting examples of different projects on the Internet. I recommend 

that you read about flow anomalies in distributed systems (see [Chua 2014]), anomalies 

in correlated time series (see [AnomalyIo 2017]), and other methods of performance 

anomaly analysis in different cases (see [Ibidunmoye 2016], [Dimopoulos 2017],  

[Peiris 2014]).

There is no universal way to write analyzers that will work great for every project. 

Knowledge of the main performance anomalies allows you to check the performance 

history of your test suite and write analyzers that will work great for your program.
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 Strategies of Defense
There are several ways to prevent or detect performance degradation. In this section, we 

talk about some common ways to do this.

Here is a list of discussed approaches:

• Precommit tests: looking for performance problems before a merge 

into the master branch.

• Daily tests: looking for performance problems in the recent history.

• Retrospective analysis: looking for performance problems in the 

whole history.

• Checkpoint testing: looking for performance problems in special 

moments of the development life cycle.

• Prerelease testing: looking for performance problems just before a 

release.

• Manual testing: looking for performance problems manually.

• Postrelease telemetry and monitoring: looking for performance 

problems after a release.

I call these approaches “Strategies of defense against performance problems,” but 

this not a well-known term, and other terms may also be used. For example, Joe Duffy 

calls them “test rings” in [Duffy 2016].

For each approach, we will cover the following characteristics:

• Detection time: when can a performance degradation be detected?

• Analysis duration: how much time does it take to detect a problem?

• Degree of degradation: what kind of degradation can be detected?  

Is it huge (50-100% or more), medium (5-10%), or small (less  

than 1%)?26

• Process: automatic, semiautomatic, or manual? What should the 

developers do in each case and how can it be automated?

26 Of course, these are very rough estimates; they’re just some examples. The exact estimation 
depends on your business requirements and the performance space. In some cases, 1% can be a 
huge degradation or 200% can be a small one.
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 Pre-Commit Tests
We use this approach at the JetBrains .NET team. The idea is simple: you can’t commit 

directly to master.27 Instead, you have to create a feature branch and run a build 

configuration that should merge it into master. This build configuration runs all the tests 

and merges it only if all the tests are green. Thus, it’s impossible to get stable28 red tests 

in the master. This mechanism can be used not only for a functional test but also for 

performance tests. There are many variations of this approach, but the idea is always the 

same: we check all the changes for any performance degradation automatically before 

we have these changes in the master branch.

• Detection time: on time.

The best thing about this approach is simple: we detect all 

performance degradations in advance automatically. There is no 

need to solve any new performance problems because we don’t 

have any of those (in theory, of course).

• Analysis duration: short.

Since we won’t wait too long before our changes will be merged, 

the precommit tests should work quickly. It’s great if a typical 

precommit test suite run doesn’t take more than a few hours.

• Degree of degradation: huge.

Of course, there are some limitations. We don’t have any 

possibility of doing a lot of iterations (because we have to run all 

the tests very quickly). Thus, we can catch only huge degradations 

(e.g., 50% or 100%); it’s almost impossible to detect small 

degradations (e.g., 5% or 10%). If we try to do this, it will increase 

the total run duration or Type I (false positive) error rate.

27 Here we mean the main branch; in your repository, it can have another name like “default,” 
“trunk,” “release,” “dev,” or something else.

28 This doesn’t solve all the problems. For example, we still can merge flaky tests (tests that are 
sometimes red).
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• Process: automatic.

I just want to repeat one of my favorite parts about this way: 

it’s completely automatic, meaning that no human actions are 

required.

 Daily Tests
Unfortunately, we can’t always run all the tests per each commit or merge. The reason 

is simple: some tests (especially integration tests or smart performance tests) take too 

much time. The common solution for such case is daily tests. These are a special set of 

tests that are checked one time per day.29 Of course, you can choose any interval of time: 

for example, you can run once-weekly or even once-monthly tests.

• Detection time: 1 day late.

With daily tests, we detect performance degradations when they 

are already in master.

• Analysis duration: up to 1 day.

Daily tests don’t have “a few hours run” limitation; we can use up 

to 24 hours. If that’s not enough, we can try weekly tests and spend 

up to 7 days per a test suit.

• Degree of degradation: medium.

Since we have a lot of time, we can do many iterations and detect 

medium performance degradation (like 5% or 10%).

• Process: semiautomatic.

Daily tests should be a part of your CI pipeline; the build server 

should run them every day automatically. However, if some tests 

are red (we have a performance degradation), the incident should 

be investigated manually. Typically there are a few team members 

who monitor the status of daily tests all the time and notify a team 

in case of any trouble.

29 Some teams call them nightly tests because they usually run them at night when there is some 
free time on CI agents.
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 Retrospective Analysis
This is one of my favorite approaches. The idea: we take all historical data for all tests 

and analyze it.

• Detection time: late.

Unfortunately, some degradations will be detected late (probably 

after a week or after a month). However, it’s better to detect such 

cases after a month inside the team than to let customers detect 

them after a few months.

• Analysis duration: it depends.

We don’t have any duration limitations; we can spend as much 

time as we want. If we don’t have enough historical data, we can 

even take specific commits, build them, and run some additional 

iterations. Everything is possible in the retrospective analysis!

• Degree of degradation: small.

We can detect any kind of performance degradations (even less 

than 1%)! In fact, the main limitation here is how much we are 

ready to allocate in terms of resources.

• Process: semiautomatic.

The same situation as in the case of daily tests: we can run 

retrospective analysis automatically, but all issues found should 

be investigated manually.

Checkpoints Testing
Sometimes you know that your changes are dangerous. For example, you do a big 

refactoring, you rewrite a performance-critical algorithm, or you upgrade your runtime 

version (e.g., Mono or .NET Core). If you are not sure that there are no performance 

degradations in your changes, you can run performance tests in the master branch and 

in your branch. After that, you can compare results. Thus, we have a checkpoint (a huge 

change that should be checked) and we want to reduce risks.
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• Detection time: on time.

This approach allows preventing performance degradations 

before they will be merged into master.

• Analysis duration: it depends.

In fact, the merge deadline is our only limitation. We can do as 

many tests as we want before we are sure that it’s safe to merge it.

• Degree of degradation: small.

Since we have a lot of time, we also can do a ridiculous number of 

iterations, and find even very small degradations.

• Process: almost completely manual.

It’s the developer’s responsibility to check dangerous changes; 

it’s not possible to automate this. If you suspect that you can have 

some performance problems in your branch, you should run tests 

manually. If you find any problems, you should investigate them 

manually. There is no automation here (except for running tests 

and branch comparison).

 Pre-Release Testing
There is a special kind of checkpoint: the release. Your customers will be unhappy if, 

after the software update, they get performance problems. So, each release should be 

carefully checked before it’s published. For some projects, the full test suite can take 

several days. In this case, you don’t have an opportunity to run these tests every day or 

for each dangerous branch. But you can run such suite once per release candidate to be 

sure that you didn’t skip any really serious problems.

• Detection time: very late.

Usually, developers run prerelease performance tests before the 

release. And they hope that there are not any problems; it’s an 

additional check just to be sure. However, if you discover a serious 

performance problem a few days before the release, it can be a 

huge problem (especially if you have strict deadlines).
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• Analysis duration: it depends.

Well, it’s up to you: it depends on your release cycle. How much 

time do you typically have between the release candidate and the 

actual release? Some teams spend only a few days for the final 

stage of testing, while others spend months. You should find an 

acceptable trade-off between how fast you want to deliver your 

product and how critical performance degradation can be.

• Degree of degradation: it depends.

It depends on the duration of analysis. The rule is simple: the 

more time you spend, the more minor degradations can be found.

• Process: almost completely manual.

The same situation as in the usual checkpoint case. You should 

manually run tests before release, and you should manually check 

the report and investigate all the issues.

 Manual Testing
Of course, your QA team can test the software manually. Usually, this is not the best 

way because it requires a lot of man-hours, but it can help to find some performance 

problems that you didn’t cover in your tests. It’s a good practice to write new 

performance tests as soon as you find a new performance problem manually.

• Detection time: late.

This approach allows checking changes that are already merged. 

Typically, the manual testing is a part of your workflow: you can 

check your daily builds,30 you can check some internal milestone 

builds, you can check “checkpoints,” you can check preview 

versions, and you have to check the release candidate.

• Analysis duration: it depends.

It always takes too much time. The exact number of spent hours 

depends on the target product quality and capabilities of the QA team.

30 Or nightly builds; there is no difference between these terms.
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• Degree of degradation: huge.

Usually, manual testing allows detecting only huge performance 

degradations because it’s hard to detect a small performance 

regression with the human eye.

• Process: completely manual.

You start to test software manually, you test it manually, and you 

investigate it manually. There is no automation here.

 Post-Release Telemetry and Monitoring
Many people think that their performance adventure ends after a release. In fact, it’s just 

starting. It’s impossible to fix all bugs or to resolve all performance issues in advance. 

Some of them can be detected immediately after the release. Other problems may 

show up after a prolonged period of time: you can’t detect them with other strategies of 

defense, because they might take multiple releases to become statistically significant.

• Detection time: too late for the current release, but not too late for the 

next one.

It’s never too late to fix performance problems. It’s bad if you 

missed some problems in the current release, but it’s much worse 

if you do nothing about it. You will always get “it works too slowly” 

feedback from your users or customers. It’s very important to 

collect all performance issues from each release. There are several 

ways to do it:

 – Monitoring

In case of a web service, you can monitor performance metrics 

of your servers in real time. You can manually compare them 

with expected metrics or set up automatic alarms about 

performance problems.

 – Telemetry

If you can’t monitor your software (desktop programs, mobile 

applications, embedded systems, the client side of a web page, 

and so on), you can collect telemetry data and regularly process it.
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 – Issue tracker

If you have an issue tracker, group all performance-related 

issues with the help of tags or issue fields.

 – New tests

It’s almost impossible to cover all use cases by performance 

tests. Never stop writing tests! If you continue to write new tests, 

you probably will discover new problems.

• Analysis duration, Degree of degradation, Process: it depends.

It’s up to you how you collect, analyze, and process performance 

issues after a release.

 Summing Up
You can see the overview of all strategies in Table 5-14 (“T&M” means “telemetry and 

monitoring”; “DoD” means “Degree of degradation”).

Table 5-14. Overview of Strategies of Defense

Strategy Detection time Analysis duration DoD Process

precommit tests on time short huge automatic

daily tests 1 day late Up to 1 day medium semiautomatic

retrospective analysis late it depends small semiautomatic

Checkpoint testing on time it depends small almost completely manual

prerelease testing Very late it depends it depends almost completely manual

manual testing late it depends huge Completely manual

postrelease t&m too late it depends it depends it depends

Each approach has its advantages and disadvantages. It’s up to you how to test your 

software. If you care about performance a lot, it makes sense to use several approaches 

(or all of them) or their combination. Of course, we didn’t cover all possible options for 

performance testing; we just discussed some main directions. You can come up with an 

approach that will be the best for your own situationr.
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 Performance Subpaces
In Chapter 1, we discussed performance spaces. It’s time to learn about performance 

subspaces. They are covered by different factors that can affect performance. Knowledge 

about these factors can help you to complete your performance investigation. In this 

section, we will talk about the most important subspaces:

• Metric subspace: what do we measure: wall-clock time, asymptotic 

complexity, hardware counter values, or something else?

• Iteration subspace: how many iterations do we do?

• Test subspace: how many tests do we analyze in the same suite?

• Environment subspace: how many different environments do we 

use?

• Parameter subspace: what parameter values do we use?

• History subspace: are we working with a single branch or looking at 

the whole repository?

Let’s discuss each subspace in detail.

 Metric Subspace
When we analyze performance reports, we are always working with some metrics. 

Different metrics can provide different performance pictures. For example, two tests 

can have the same value in one metric and different values in another. Relevant metrics 

should be chosen based on your business goals. If you don’t know which metrics are 

more important for you, you can try several options and check out which metrics are 

useful for your investigations. Here are a few possible metrics for you:

• Wall-clock time

This is an honest test duration. It can be measured via Stopwatch 

or be fetched from a CI server.

• Throughput

How many operations can we process per second?
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• Asymptotic complexity

What is the asymptotic complexity of your algorithm? O(N)? 

O(N*log(N))? O(N^3)?

• Hardware counters

There are plenty of them. You can use “general” counters for 

all cases (e.g., “Retired Instructions”) or “specific” counters for 

specific tests (e.g., “Branch mispredict rate” or “L2 Cache Misses”). 

We will talk about hardware counters in detail in Chapter 7.

• I/O metrics

You can collect all the metrics provided by OS for network and 

disk operations. It often helps to locate a real bottleneck correctly.

• GC.CollectionCount

This is one of my favorite metrics. One of the main problems with 

“time” and “counter” metrics is variance. You can’t control OS 

and how it schedules the execution time for different processes. If 

you run a test ten times, you will probably get ten different results. 

With GC.CollectionCount, you should get a stable value. Let’s 

consider an example:

var gcBefore = GC.CollectionCount(0);

var stopwatch = Stopwatch.StartNew();

// Dummy code with huge number of allocations

int count = 0;

for (int i = 0; i < 10000000; i++)

  count += new byte[1000].Length;

Console.WriteLine(count);

stopwatch.Stop();

var gcAfter = GC.CollectionCount(0);

Console.WriteLine($"Time: {stopwatch.ElapsedMilliseconds}ms");

Console.WriteLine($"GC0: {gcAfter - gcBefore}");

Run it several times and write down the values of Time and GC0. You can see an 

example of the result in Table 5-15. Despite the fact that the Time value varies, the 
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GC0 value (the number of collections in Generation 0) is the same for all runs. We will 

discuss GC metrics in detail in Chapter 8.

Remark. Of course, GC.CollectionCount has limitations. If you are working with 

a nondeterministic multithreaded algorithm, you can get different values even for GC.

CollectionCount. But this value will be still more “stable” than the pure wall-clock time. 

If an algorithm is allocation-free, this metric is useless because it’s always zero.31

 Iteration Subspace
When you run a test, you can always choose the number of iterations. Let’s discuss cases 

when you do a single iteration or a set of iterations.

• Single iteration

This is the most popular and simple case: we always do exactly 

one iteration of a test. On the one hand, it’s great because it’s 

a very simple situation: we have only one measurement per 

revision. Performance history looks simple as well; it’s just a 

function from a commit to a single number (for each metric). 

On the other hand, we have limited data: we don’t know any 

information about the performance distribution for the test. 

Imagine that you have the following measurements for two 

subsequential commits: 50 ms and 60 ms. Do we have a problem? 

You can’t say anything about it because you don’t know the 

distribution.

31 Unless you want to keep it allocation-free, and therefore know that even 1 byte should be 
considered a regression.

Table 5-15. Wall-Clock Time and GC.CollectionCount Metrics

Run 1 2 3 4 5

time 6590ms 6509ms 6241ms 7312ms 6835ms

gC0 16263 16263 16263 16263 16263
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• Many iterations

If you do many iterations, you have much more data! On the one 

hand, that’s great because you can run many cool analyses. On the 

other hand, now you kind of have to do these analyses. Additional 

iterations are not free: you pay for them with time and machine 

resources. If you decide to do many iterations, you should 

understand how you are going to use this data (it also helps you 

to choose the best number of iterations). For example, it allows 

comparing commits. If you have a (50ms) vs. (60ms) situation, you 

can’t say for sure that there is a performance degradation here. If 

you have a (50ms;51ms;49ms;50ms;52ms) vs. (60ms;63ms;61ms;49ms; 

61ms) situation, you can say that it’s most likely a degradation. If 

you have a (50ms;65ms;56ms;61ms;58ms) vs. (60ms;48ms;64ms;53ms;5

0ms) situation, you can say that most likely nothing is changed.

 Test Subspace
A single test is not always the only source of the metrics. You can take smaller or bigger 

units. For example, you can take a small test part or group several tests. Thus, we have 

the following option:

• Whole test

This is probably the most common way. You write a test that 

measures only one target case. Such testing may require a 

preparation (e.g., you should set an initial state up and warm the 

target logic up), but one test measures only one thing.

• Test stage

In some cases, an honest test separation can be expensive. 

Imagine that you have a huge desktop application and you 

want to measure the “shutdown” time: the interval between a 

moment when a user clicks the close button and the moment 

when the application process is finished. Such tests require a 

lot of preparatory work. For example, you can spend 5 minutes 

for initialization (emulation of active work in the application) 

and only 1.5 seconds on the shutdown logic. If we perform 12 
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iterations inside the test, the whole test will take more than 1 hour. 

A whole hour of testing for a single test that takes 1.5 seconds! 

That looks like a waste of our time and machine resources.

Unfortunately, we can’t significantly improve the situation for 

the shutdown test. However, we can something else: we can use 

these 5 initialization minutes to our advantage! In fact, we have 

an integration test that takes a lot of time and performs a lot of 

different operations. Let’s introduce “test stages” and measure 

each test separately. We can measure the application load time 

and duration of some typical operations in the same tests. On the 

one hand, this move looks dirty and breaks the rules of classic 

unit testing: instead of measuring each feature in a separate test, 

we measure all kinds of different stuff in the same test. On the 

other hand, we have no choice (don’t hate the player; hate the 

game!). Tests should be fast. In the case of performance tests, it’s 

impossible to run them really fast, but the whole performance 

testing suite should take a reasonable amount of time. Test stage is 

a powerful technique that can save you a lot of time.

• Test suite

When we analyze many tests together, we can do a lot of 

additional analysis. It’s very important to perform a correlation 

analysis. For example, if you have a performance degradation after 

some changes, it’s useful to find the whole scope of tests that have 

this degradation.

 Environment Subspace
A huge part of this book is about different environments. There are so many important 

details: hardware, operating systems, build toolchain, runtime, JIT, and so on. If you have 

a huge project with many tests and run them all the time, you probably have several CI 

agents. The same test can be executed on different build agents. Even if the configuration 

(hardware+software) is the same for all agents, you still can get different results between 

them. If you don’t have a huge pool of agents, you can manually check test suites in 

different environments. You can’t be sure how a particular change affects performance 
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until you check it in many different environments. The environment subspace can be 

used during analysis of the following anomalies:

• Spatial clustering

When you have metrics for the same test from several agent, 

you can try to find factors that affect performance. It can be the 

operating system, the processor model, or any other parameter of 

your environment.

• Temporal anomalies

If you are investigating the performance history of a single test, it 

can be useful to compare durations of the test runs on different 

CI agents. If a performance degradation or another anomaly 

appeared at that moment when the CI agent was changed, the first 

thing that you should check is the difference between the CI agent 

environments.

 Parameter Subspace
The same test can be executed on different sets of input parameters. You can get different 

durations depending on the parameters. Here are a few things that you can check:

• Nontrivial dependencies

Let’s say that we have a test that processes many requests. The 

requests can be processed in several threads. How does the 

performance depend on the degree of parallelization? You may 

get a 2x performance boost when a single-thread implementation 

is replaced by a two-thread solution. However, switching from 

four threads to eight may slow down the benchmark because of 

inefficient and heavy locking. You can find the best parallelization 

degree only if you check several possible values.

• Asymptotic complexity

Let’s say that we have a test that checks whether a given string of 

length M is contained in a text of length N. The time complexity 

depends on the underlying algorithm. For example, it can be 
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O(N · M) for a trivial implementation or O(N + M) for a smarter 

algorithm. You can easily miss some important degradation if 

the test works only for short search patterns and doesn’t check 

the larger cases. The knowledge of the complexity allows you to 

extrapolate results on huge inputs without actually having to test 

them.

• Corner cases

Let’s say that we have a test with the quicksort algorithm. In 

the best and average case, the complexity is O(N ·  log N), but it 

becomes O(N2) in the worst case. The knowledge of the worst-case 

performance also may be very important (especially if we have a 

risk on a performance attack on the program). The worst possible 

performance is another valuable metric that we can collect during 

testing.

• Duration range

Let’s say that we have a test that parses text with a regular 

expression. In this case, the test duration may vary in a huge range 

depending on the expression complexity and the text. It’s not 

enough to just check a few input cases to get reliable performance 

metrics. Good performance coverage for such a test requires 

hundreds of inputs that correspond to different real-life situations 

and corner cases. Speaking of corner cases: there are regular 

expression denial of service (ReDoS) attacks that can significantly 

slow down your code. One of the most famous .NET Framework 

4.5 ReDoS exploits against MVC web applications is described in 

[Malerisch 2015]: the EmailAddressAttribute, PhoneAttribute, 

UrlAttribute classes contained regular expressions that can be 

forced to calculate an exponential number of states on special 

inputs. The vulnerability was fixed in Microsoft Security Bulletin 

MS15-101.32 As you can see, the subspaces can be analyzed 

together: here we have an interesting performance issue that 

involves the environment and performance subspaces.

32 https://docs.microsoft.com/en-us/security-updates/SecurityBulletins/2015/ms15-101
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The parameter subspace analysis is very complex because you usually can’t 

check all possible inputs. However, you still should try to cover different cases for the 

same method. The benchmark metrics for a single test of input parameters can’t be 

extrapolated to the method performance in general.

 History Subspace
When we are talking about performance testing, one of the most important subspaces 

is the history subspace. The source code is changing all the time. Some popular 

repositories have dozens or even hundreds of commits (revisions) per day. In each 

situation, you are looking at a set of commits; applicable analysis depends on this set. 

Let’s discuss the main types of such commit sets.

• History moment (single revision)

If you only have a single revision, you can look for spatial 

anomalies: there are plenty of them. You can’t find any 

performance degradations here, but you still can find a lot of 

problems that can be critical for your production environment.

• Linear history (single branch)

If you have several revisions, you can look for spatial anomalies 

like degradation/acceleration. If you find a problem that is 

introduced in the latest release, you can bisect the history and find 

a commit with relevant changes.

• Treelike history (selected branches or whole repository)

Sometimes, it makes sense to analyze several branches or even 

the whole repository. The number of performance measurements 

are always limited. If you are looking for anomalies like “Huge 

variance” or “Huge outliers,” you can join performance history 

of the master branch and all feature branches. Analysis of this 

“mixed” history can produce a lot of false positive results, but 

it usually easily finds serious problems that are hard to detect 

based on a single branch because you don’t have enough 

measurements.
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 Summing Up
The performance space contains many subspaces like the metric subspace, the iteration 

subspace, the test subspace, the environment subspace, the parameter subspace, the 

history subspace, and others. Each of these subspaces or their combination can have 

a significant impact on performance. The knowledge of the situation in a few points of 

the whole space doesn’t allow extrapolating these results in general. Understanding the 

performance space helps you to perform high-quality performance investigation: you 

can discover more anomalies and find the factors that affect performance. Of course, 

it’s not possible to carefully check the whole space: there are just too many possible 

combinations. The rich investigation experience will help you to guess factors that 

most likely affect the performance. You may also find interesting ideas in other people’s 

stories: they increase your erudition and improve your performance intuition.

 Performance Asserts and Alarms
One of the biggest challenges in performance testing is automated problem detection. 

When you do a regular local performance investigation, it’s not always easy to say if you 

have a performance problem or not. The performance space can be really complicated, 

and it takes time to collect all relevant metrics and analyze them. In the world of 

performance testing, you have to automate this decision. There are two main kinds of 

such decisions, which can be expressed as performance asserts and performance alarms.

When a performance assert is triggered, we’re sure that something is wrong with the 

performance. Asserts can be effectively applied to processes with 100% automation like 

the precommit testing. If a performance assert fails, it means that the corresponding 

test is red. Thus, it should have a low Type I (false positive) error rate. Unfortunately, 

it’s almost impossible to get rid of errors completely, but the errors should be quite rare 

(otherwise, we get flaky tests).

When a performance alarm is triggered, we are not sure that something is wrong; 

the situation requires a manual investigation. Alarms can be effectively applied to 

situations when a performance plot looks “suspicious.” Such alarms can be aggregated 

into a single dashboard, which is processed by developers on a regular basis. It’s a typical 

situation when you have several false alarms per day because this doesn’t interfere 

with the development process. Usually, it doesn’t take a lot of time to check out such 

alarms and make a decision that we have nothing to worry about. Meanwhile, some 
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serious problems can be detected in time with this approach, which reduces Type II 

(false negative) errors. Alarms work well for anomalies like clustering or huge variance: 

in these cases, we can’t afford to have a red test for all such anomalies. Moreover, if a 

test has a huge variance, it’s hard to write a strict performance degradation assert with a 

small false positive rate. An alarm can solve this problem: you can get a few notifications 

per week for no good reason,33 but you will also be notified when someone spoils the 

performance for real. The alarm approach is also useful for trade-off situations when 

we sacrifice performance in one place for some benefits in other areas. In such cases, 

developers definitely should be notified about it (in many cases, changes are made 

unintentionally), but the situation should be resolved manually.

Asserts and alarms usually have similar implementations (the only difference is 

how we report the results). In general, the logic looks very simple: we calculate some 

statistics (average test duration, variance, minimum/maximum time, P99, and so on) 

and compare it with a threshold. And this is the trickiest part: how should we choose the 

correct threshold value? In this section, we will discuss four different approaches (with 

an overview of the most important advantages and disadvantages):

• Absolute threshold: a hardcoded value in the source code (like 2 

seconds or 5 minutes)

• Relative threshold: a hardcoded ratio to a reference value (like 2 

times faster than another method)

• Adaptive threshold: comparing current performance with the 

history without hardcoded values (like it shouldn’t be slower than 

yesterday)

• Manual threshold: a special developer who watches the 

performance plots all the time and who is looking for problems

Let’s discuss each kind of threshold in detail.

33 However, I think that we have a good reason for that: huge variance is almost always a bad thing. 
If you get false alarms about such tests all the time, you will be tempted to reduce the variance.
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 Absolute Threshold
Probably, this is the most popular kind of threshold because it has the simplest 

implementation. Typically, it looks as follows:

const int TimeoutMs = 2000; // 2 seconds

[Fact] // xUnit test

public void MyTest()

{

  var stopwatch = Stopwatch.StartNew();

  DoTest(); // Target logic

  stopwatch.Stop();

  Assert.True(stopwatch.ElapsedMilliseconds < TimeoutMs);

}

The implementation depends on the unit test framework:

• NUnit, MSTest: both frameworks provide [Timeout] attributes, 

which all allow you to set timeout in milliseconds.

• xUnit: As of xUnit 2.0 (and in subsequent versions like 2.1, 2.2, 2.3), 

the framework doesn’t support timeouts34 because it’s pretty hard 

to achieve stable time measurements with parallelization enabled 

by default in xUnit 2.x. Thus, you have to implement the timeouts 

manually like in the preceding example. In this case, it’s highly 

recommended to disable parallelization.

However, you can always set a timeout in the code with the help of stopwatch. Also, 

you have to implement it manually when you are looking for performance anomalies. 

For example, you can do 20 iterations, calculate the standard deviation, and compare it 

with the threshold.

• Simple implementation

You can implement it with a few lines of code. In case of NUnit or 

MSTest, a single [Timeout] attribute is usually enough. In case of 

xUnit or a complicated check, you need two lines with Stopwatch 

(Start/Stop) and a single line with assert.

34 https://xunit.github.io/releases/2.0
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Although the implementation is quite simple, this approach has some important 

problems.

• Portability

Not all computers are equally fast. A test can satisfy a 2000ms 

timeout on your machine in 100% runs, but it can fail on a slow 

machine of your colleague or in a virtual environment on a CI 

server.

• Flakiness

When a timeout is close to actual test duration, the test can be red 

sometimes depending on the duration variance and other resource-

consuming processes in OS, which can slow down this test.

• Maintainability

When I see a test with a hardcoded absolute timeout, I always 

look at the test history. Typically, it looks like in Table 5-16. You 

can see that developers change the hardcoded value in the source 

code all the time. This is not a healthy thing. If such commits are 

a common practice in your team, it’s always easier to increase the 

timeout of a red test instead of doing an investigation in case of 

real performance problems.

Table 5-16. Example of Absolute Timeout History

Revision Timeout Comment

n 5000 increased timeout because test works too slow on my machine

n-1 3000 test timeout adjustments

n-2 7000 some new Ci agents are too slow; increase timeouts

n-3 4562 decrease timeouts to minimum possible values

n-4 5000 test is flaky, it’s red in 3% cases on Ci; increase timeout

… … …
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Meanwhile, absolute thresholds can be the last line of defense against test hanging. 

If a test typically takes a few seconds, you can safely set a rough timeout like 1 minute. 

In this case, if a test is red because of the timeout, it’s definitely a good thing because it 

notifies us about serious problems like the following:

• Test is hanged because of a deadlock. The timeout helped us to save 

time on a CI agent.

• Test takes 1.5 minutes instead of a few seconds because of a 

bug. Hooray, performance asserts helped to find a performance 

degradation.

• The variance is huge, a test takes from 1 second to 5 minutes 

(probably because of the moon phase). Typically, this means 

a serious bug in the source code; such anomalies should be 

investigated.

If you want to use accurate absolute timeouts (like 5 seconds in our example), 

you probably should use alarms instead of asserts. For example, you can manually 

check all tests that have several alarms per week. This isn’t a perfect solution, but the 

implementation is really simple (if you already have an “alarm infrastructure”).

If you don’t like the idea of absolute timeouts, there are other ways to implement 

performance tests. Let’s talk about relative thresholds.

 Relative Threshold
Relative thresholds try to solve the portability problem. The idea is simple: we write a 

reference (Baseline) method (or a set of reference methods) and evaluate its “average” 

performance. There are several kinds of relative thresholds:

• Relative method performance

You can introduce a Baseline and measure the relative 

performance of all methods to the baseline. When you are 

marking changes in the source code, you can calculate relative 

performance against the baseline instead of analyzing the 

absolute numbers.
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• Relative machine or environment performance

The baseline approach can also be used for comparing 

performance between different machines.35 The same trick can be 

used to compare performance between several runtimes on the 

same hardware. For example, Mono and .NET Core have different 

startup time overheads. In theory, the relative threshold is not a 

correct approach because the performance ratio between different 

methods can be different for each machine/environment. In 

practice, this approach usually works for most simple cases.

• Handling portability issues

You should understand that this is not the perfect solution, but it 

usually works pretty well for simple cases.

• Flakiness

The same as in the absolute threshold case: sometimes you will 

get false alarms.

• Maintainability

Relative thresholds are still hardcoded; you should manually 

change it in case of important changes like changes in the test.

 Adaptive Threshold
Probably, this is the most powerful and the most complicated kind of alarm. Here you 

don’t have any hardcoded thresholds, you only have the performance history of the 

test. This history can include any metrics that you want to collect. At the moment of 

performance testing, you compare the current state with the whole history.

• No hardcoded values

You shouldn’t keep many magic numbers in the source code 

anymore. You even shouldn’t think about how fast the code 

35 Such an approach is used for some performance tests in IntelliJ IDEA: https://github.
com/JetBrains/intellij-community/blob/181.5451/platform/testFramework/src/com/
intellij/testFramework/CpuTimings.java
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should be. An algorithm will check automatically that you don’t 

have any performance degradations or other anomalies.

• Slow reaction to changes in the test

If you change the logic of the test (for example, add a few heavy 

asserts), you should retrain your algorithm and wait while the 

algorithm “learns” the new baseline. Meanwhile, you will get 

false alerts. Of course, you can introduce a way to mark a test as 

“changed” or clear the performance history, but it’s usually not as 

simple as changing a hardcoded threshold.

• Smart algorithm is required

You should manually implement an algorithm that compares 

the performance history and the current state. Unfortunately, no 

universal algorithm solves this problem in general or works for all 

projects. There are some ready solutions, but you should check 

which one works for you. Don’t forget about possible pitfalls like 

the optional stopping problem (which we discussed in Chapter 4).

 Manual Threshold
When we discussed the strategies of defense against performance anomalies, the last 

one was the manual testing. If we can’t cover tests by performance asserts, we always can 

generate performance alarms. It’s not easy to detect all “suspicious” tests because this 

requires a threshold. However, you can easily generate “worst of the worst” tests.

For example, let’s imagine that we are looking for tests with huge variance but 

we can’t say when the variance is huge. Let’s calculate the variance for each test and 

sort the results. We can generate the “Top 10” tests with the biggest variances each 

day. Performance plots for these ten worst tests should be checked manually, and a 

developer should decide the following for each test: do we have a problem here or not? I 

call this the “dashboard-oriented approach.”

Another example: we are looking for performance degradation but we can’t say 

when we really have a degradation. Let’s calculate the difference between average 

performances from this week and the previous week. Yes, I know that the average is an 

awful metric and the distribution can be too complicated. But if something really bad 

happens with the test, you typically will see it in the “worst of the worst” tests. We call it 
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“manual threshold” because a developer should manually check a test in order to say “It 

doesn’t look like a normal test to me.”

This approach is not accurate, and it requires manual checking of these reports every 

day. However, it can help discover some performance anomalies that were not caught 

by performance asserts. Since we don’t have real performance asserts here, the final 

Type I (false positive) error rate is zero. The Type II (false negative) error rate is reduced 

because you can find some missed problems. Of course, the reduction is not free; you 

pay for it with the working time of your team members.

It’s not recommended to use only this approach for performance testing because it’s 

time-consuming and you can’t manually check out all your tests every day. But it can be 

a good addition to your automated performance testing infrastructure because it helps 

to find some tricky problems that can’t be automated because corresponding checks 

usually have a huge false positive rate.

• Handle even supertricky cases

You can detect very tricky problems that are almost impossible to 

cover by a smart algorithm. Typically, an experienced developer 

can instantly say if you have a performance problem or not with a 

quick glance at the performance plot.

• Complete lack of automation

You should manually check most suspicious tests every day.

 Summing Up
If you want to implement a reliable system that helps you to handle all kinds of 

performance problems, you need both performance asserts and alarms. Asserts helps 

you to automatically prevent degradations before the changes are merged with a high 

confidence. Alarms help you to monitor the whole test suite and notify you about 

problems that cannot be detected with a low false positive rate.

You can use different kinds of thresholds in both cases. Absolute thresholds are 

the simplest way to implement it, which is good for a start, but it’s not a reliable way 

in the longer term: this approach has a lot of issues with portability, flakiness, and 

maintainability. Relative threshold is better: it solves some of the issues, but not all of 

them. Adaptive thresholds are great, but it’s not easy to implement them, and you should 

carefully handle cases when you change the test performance on purpose. Manual 
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threshold is also an effective technique that helps you to find problems not currently 

covered by automatic thresholds, but it requires a special performance engineer who 

systematically monitors performance charts.

There is no single universal approach that will be great for all kinds of projects. 

However, combinations of different approaches for performance asserts and alarms can 

protect you even from very tricky and nonobvious performance problems.

Performance-Driven Development (PDD)
You are probably familiar with TDD (Test-Driven Development). PDD (Performance-

Driven Development) is a similar technique with one important difference: it uses 

performance tests instead of the usual functional and integration tests. Usually, it looks 

as follows:

• Define a task and performance goals

• Write a performance test

• Change the code

• Check the new performance space

In this section, we discuss this approach in detail: how it should be used and how 

useful it can be in daily performance routine. The PDD is not a solution for all kinds 

of situations, but this concept can be useful when you want to minimize the risk of 

introducing performance issues.

 Define a Task and Performance Goals
As we already know, any performance-related work should start with defining goals. 

PDD is a technique that is suitable only for a specific set of goals. You should use it only 

if it fits your current task. There are three primary kinds of tasks/goals that can be solved 

via PDD. Each kind (I will provide codenames for future reference) should be started 

with a performance test.

• Codename: “Optimizations”

Task: Optimize ineffective code

Goal: We should achieve “better” performance
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It’s not a good idea to blindly optimize different parts of your 

code. A performance test can help you to verify that you actually 

optimized something and evaluate the performance boost.

• Codename: “Feature”

Task: Implement a new feature

Goal: The feature should be fast

When a feature is already implemented, there is always a 

temptation to say something like “It seems that it works fast 

enough.” A proper performance test helps to set your business 

requirements in advance. This case is pretty similar to a situation 

in classic TDD.

• Codename: “Refactoring”

Task: Refactoring in performance-sensitive code

Goal: We should keep the same level of performance (or make 
it better)

It’s pretty hard to say that you didn’t introduce any performance 

degradations if you don’t have a baseline. A baseline helps you to 

verify that everything is OK.

In each case, the task should correspond to your business goals. “Better 

performance,” “fast feature,” and “same level of performance” are abstract, ineffective 

terms. The PDD forces you to formalize the goal and specify the required metric values.

 Write a Performance Test
This is the most important part of PDD. You shouldn’t do anything before you get a 

reliable performance test (or a test suite). “Optimizations” and “Feature” should be 

started with a red test; “Refactoring” should be started with a green test that can be easily 

transformed to a red one.

If you can’t write a performance test, something is going wrong. Usually, it means 

that you have problems with performance goals. For example, you want to optimize a 

method because it “looks ineffective.” In this case, you should prove that it’s ineffective 

by a red performance test. Your performance requirements should be strictly defined. 
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If you can’t write a red test that corresponds to performance requirements, you probably 

don’t need optimizations because you can’t demonstrate that the method is ineffective.

Keep in mind that the test should be green at the end. If you made your 

optimizations, but the test is still red, you may be tempted to change performance 

asserts. Be careful: it’s a slippery slope! Indeed, sometimes you collect new information, 

and you have to change something in the test. In this case, you also have to check that 

the test is still red before the optimizations. PDD assumes that an optimization is always 

a transition from a red performance test to a green one. There are many cases when you 

can’t achieve such transition. And it’s the coolest “feature” of PDD: it protects you from 

premature or wrong optimizations!

Now it’s time to discuss five typical steps of writing such tests.

• Step 1: Write target method

Just write a method that covers the target case. Imagine that you 

are writing a functional test that covers your code. As in the case 

of ordinary tests, you should try to isolate logic and measure only 

logic that matters to you. In the “Optimizations” case, you should 

cover only logic that you are going to optimize and nothing else. 

In the “Feature” case, you should cover the feature (and only 

the feature) in advance (as you usually do in typical TDD). In 

the “Refactoring” case, you should cover only the performance-

critical part of the architecture that you are going to refactor. It’s 

always better to have several performance tests. If you came up 

only with a single one, try to parametrize it. If you read a file, try 

files with different sizes. If you process a dataset, try different 

datasets.

• Step 2: Collect metrics

As a minimum, you have to measure raw test duration. However, 

it’s better to collect some additional metrics like hardware 

counters, GC collections, and so on. Do many iterations, 

accumulate them, and calculate statistics numbers. Run tests not 

only on your developer machine but also on machines of your 

colleagues and on a server.
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• Step 3: Look at the performance space

It’s not enough to just collect raw metrics; you should carefully 

look at them. Check out how the distribution looks. Does it have 

one mode or several modes? What about the variance? How 

does the performance depend on the test parameters? Is the 

dependency linear or not? What’s the maximum parameter value 

that produces a reasonable duration for the performance test? If 

you practice PDD on a regular basis, you will come up with your 

own checklist soon. Looking at the performance space doesn’t 

require too much time (especially if it’s not your first time), but it 

can save a lot of time later. Knowledge about some “features” of 

the test performance space will help you to find tricky places in 

your source code that you should be aware of.

• Step 4: Write performance asserts

Now it’s time to transform your business goals into performance 

asserts. Remember that the test should be red for “Optimizations” 

cases. Many developers skip this step. You may be tempted to 

say: “OK, I know how much time it takes now. I can optimize 

my code and check how much it takes after that. Next, I will 

write performance asserts.” This is a bad practice: it can destroy 

your business goal. If you want to optimize a method twice, 

write a corresponding assert. If you discover new things during 

optimizations (like “Hey, I can optimize it ten times!” or “It’s 

just impossible to optimize more than 50%”), you always can 

change the assert later. But you still have to express your original 

intention in the form of performance asserts. I have seen many 

times when developers say something like “After these crazy 

hacks I get 5% speedup, now I’m going to commit it” (whereas 5% 

speedup doesn’t have business value and crazy hacks mutilate the 

code and move it to the “impossible to maintain” state). Original 

performance asserts don’t protect you from all such cases, but 

they will make you think twice before committing code that 

doesn’t solve the original problem.
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• Step 5: Play with the test status

Next, you should check that you wrote good performance asserts. 

In the “Optimizations” case, try to transform the red test to a 

green one by commenting the “heaviest” part of your code. In the 

“Refactoring” case, try to add a few Thread.Sleep calls here and 

there and make sure that the test is red now. In the “Feature” case, 

check empty and Thread.Sleep implementations. You should be 

sure that you wrote performance asserts correctly (at the end, tests 

should be green in case of success or red in case of failure).

Once you have a good performance test with correct performance asserts and you 

learned what the performance space looks like, it will be time to write some real code!

 Change the Code
Now it’s time to remember your original goals and optimize the product, implement new 

features, or perform refactoring. You can be completely focused on your task without 

fearing to introduce a performance problem.

The classic TDD approach assumes that you should write a code that makes your test 

red. It can be useful for PDD as well. For example, if you are developing a feature, you 

can write a naive implementation first. Such implementation should work correctly, but 

it can be slow. You should get a situation with green functional/integration/unit tests 

and red performance tests. After that, you can start to optimize the code until you reach 

your original performance goals. It should be very easy to verify it with one click because 

you have the performance tests.

 Check the New Performance Space
Remember that it’s not always possible to cover all possible problems by automatic 

performance asserts. So, it’s nice to check the part of the performance space that can be 

affected by your changes.

Here is another example from my personal experience. Rider on Unix uses Mono as 

a runtime for the ReSharper process. Each version of Rider is based on a fixed bundled 

version of the Mono runtime. Sometimes, we have to upgrade Mono to the next stable 

release. We never know how this upgrade can affect the Rider performance. We have 

a lot of tests, but it’s almost impossible to cover all cases in a huge product that can be 
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affected by changes in the runtime. So, we create two revisions with the same Rider 

code base and different versions of Mono. After that, we do several dozen runs of the 

whole test suite on the same hardware and different operating systems (Windows, Linux, 

macOS). Next, we build dashboards for different metrics that have the biggest differences 

between revisions. Next, I start to manually check the top tests in these dashboards and 

look at their performance plots. My favorite metric is variance: we have found plenty of 

problems by looking at tests that have huge differences between variance for old and 

new versions of Mono. Unfortunately, it’s almost impossible to automate this process 

because the high Type I (false positive) error rate. However, sometimes, in perhaps 1 test 

out of 100, we find very serious problems that actually affect the product.

 Summing Up
PDD is a powerful technique that provides a reliable way to do performance-sensitive 

tasks. It allows you to control performance of your code during development and 

prevent many bugs and degradations in advance. Also, it forces you to formalize your 

performance goals and write many performance tests.

However, this approach also has one important disadvantage: it creates an immense 

amount of work, most of which is likely extraneous for most projects and most types 

of code. While TDD can be used on daily basis, it’s not recommended to use PDD all 

the time. You should be sure that the benefits from PDD (decreased risk of introduced 

performance problems) are worth the time and resources that you spend on writing 

performance tests in advance.

 Performance Culture
Performance testing is a discipline that consists of two components. The first one is 

the technical part, which we discussed in previous sections. It answers the question of 

how the performance testing should be implemented. The second one is performance 

culture (this term was taken from an awesome blog post by Joe Duffy, see [Duffy 2016]). 

It answers the question of how to make performance testing work. You can implement 

an awesome performance testing toolkit with excellent anomaly detection algorithms 

and smart performance alarms/asserts. However, it will not work if there is not much 

performance culture in your team. Performance testing is not only about technologies; 
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it’s also about attitude. In this section, we will discuss some core principles of the 

performance culture:

• Shared performance goals: all team members should have the same 

performance goals.

• Reliable performance testing infrastructure: infrastructure should 

work great, and developers should trust it.

• Performance cleanness: you shouldn’t be tolerant to performance 

problems and your list of unexamined performance anomalies 

should be empty.

• Personal responsibility: each developer is responsible for the 

performance of his or her code.

As usual, let’s start with the performance goals.

 Shared Performance Goals
All team members should share common performance goals. They should clearly 

understand it. It doesn’t matter what kind of goals do you have.

It’s OK if you don’t care about performance at all if all team members don’t care 

about performance. It can be applied not only to performance but to every business goal. 

It’s hard to work with the same team on the same product with people who don’t share 

goals with you. Such situations produce many communication problems and spoil the 

business process.

If a decent performance level is your business goal, it should be obvious for all 

developers in the team. Remember that when we say “good performance,” this isn’t 

the best wording. The target performance level should be formalized and expressed 

with some metric. In this book, there are many chapters that explain again and again 

why it’s so important to formalize your goals. There is a reason for that. There are many 

situations when a performance engineer speaks with another team member and says 

something like “We have a performance degradation after your recent changes: could 

you please fix it?” If he or she gets an answer like “I’m too busy, I am not going to fix it, it 

works fast enough,” we can’t say whether it make sense to fix the problem or not because 

we don’t know the performance goals of this team. Moreover, there are no unified 

business goals in the team that are clear for everyone.
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If such a situation exists, you have to formalize goals. For example, you can say that a 

web server should process at least 1000 RPS. Or you can say that any operation on the UI 

thread shouldn’t take more than 200 ms.

It’s worth noting that some teams can live without strict formalized performance 

goals. I have seen many cases in which a team has an empirical understanding of the 

goals. If you can work without conflict over performance and still achieve your goals, 

that’s great; keep up the good work!36

It doesn’t matter what kind of goals you have and how you express them, as long as 

all team members agree with them.

In [Duffy 2016] (see the “Management: More Carrots, Fewer Sticks” section therein), 

Joe Duffy said: “In every team with a poor performance culture, it’s management’s fault. 

Period. End of conversation.” That’s a controversial statement, but it seems to be true 

for most teams. Originally, performance culture was an approach to help you achieve 

performance goals. However, if you really care about performance, the performance 

culture should become one of the goals for management. It’s not something that you can 

get for free: a performance culture requires hard work and many conversations with your 

team members. All of them should have common values and views, and management 

should make some investment in it. Here is another quote from the post: “Magical things 

happen when the whole team is obsessed about performance.”

 Reliable Performance Testing Infrastructure
If developers don’t trust performance tests, these tests are useless. Here are the three 

most important requirements:

• All tests should be green

If you constantly have some red or flaky tests, nobody will care 

about “one more test” with some performance problems.

36 Here is a quote from Federico Andres Lois about his development experience in RavenDB: 
“RavenDB team behaves like that. Our goal is to be the fastest database out there, everybody 
understands that even if there is no formal goal. So everybody does their part, and when in 
doubt they ask the resident performance expert on their timezone of convenience. Having said 
that, almost never would performance improvements trump a new feature or correctness. We 
flag that feature, and then an expert would look into how to make it blazing fast as soon as it is 
stabilized.”
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• Type I (false positive) error rate should be low

If you get false alarms about performance problems all the time, 

you will probably start to ignore them because you will spend your 

time on the investigation without any benefits from it.

• It should be easy to write a performance test

Writing performance tests is usually an optional task. If such tests 

require complicated routine work, developers will be tempted to 

skip it.

If you want to force developers to use a tool (e.g., a performance testing 

infrastructure), it should be reliable and easy to use. The developers should trust the tool 

and enjoy using it. Otherwise, it will not work.

 Performance Cleanness
There is a well-known criminological theory called “the Broken Windows theory” (see 

[Wilson 1982]). Here is the key rule from the original article:

If a window in a building is broken and is left unrepaired, all the rest of the 
windows will soon be broken.

This rule can also be applied to software development. If you have many 

performance problems here and there, or if you have a lot of tests with suspicious 

anomalies without an assignee, you will get new performance problems all the time.

Once you get performance cleanness, there are two important rules to save it:

• Zero tolerance for performance problems

If you have a new performance problem, it should be investigated 

on the spot. Try to forget about backlog lists and thoughts like 

“I’m too busy right now, will take a look at the next week.” It 

will be much harder to investigate the issue a week later: other 

problems can be introduced and “the rest of the windows will 

soon be broken.” Of course, it’s ideal when you instantly fix 

any performance problems. In many cases, though, this can be 

impossible because you have many other higher-priority issues 

that can’t be postponed. But, in terms of zero tolerance for 
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performance problems, it doesn’t matter that you can’t always 

achieve this ideal situation.37

• Regular checking of the performance anomaly list

I should say it again: it’s pretty hard to catch all problems 

automatically. New problems that are not covered by performance 

tests with strict asserts can be introduced at any moment. Thus, 

it’s a very good practice to have some performance alarms and 

dashboards and to check them regularly.

Of course, these rules are valid only for projects with corresponding business 

goals. The performance cleanness can significantly simplify keeping a decent level of 

performance. Once you achieve the cleanness, it’s much easier to support it than trying 

to find the most important issues in the midst of “performance chaos.”

 Personal Responsibility
Performance cleanness is the responsibility of each developer. In many teams, there 

are a few developers who know a lot about performance and everyone thinks that they 

should handle all the performance problems. Why?

Let’s say you are going to commit a new feature. If you want to have clean code in 

your repository, you are responsible for your code. Imagine that there is a developer who 

is responsible for the clean code: you commit dirty code, and this developer will clean 

this code for you: make basic formatting, choose proper names for variables, and so on. 

But this sounds ridiculous, right? No developer will fix your code style for you.

Why is it a common practice to have a performance geek who should solve all the 

performance problems? It’s good to have someone who knows a lot about performance 

and optimization and can help you with a tricky situation. But he or she shouldn’t do all 

tasks.

37 Here is another quote from Federico Andres Lois about RavenDB: “RavenDB took an entirely 
different path back in 3.0 time frame. They hired a dedicated guy (they assigned me exclusively) 
to investigate any potential venue to improve performance… . And while we did a lot of good 
stuff, most of the work was actually uncovering the architectural deficiency issues that we would 
need to fix for 4.0. The team started to pick up the theme of the usual optimizations and apply 
the cookie cutter techniques rapidly, but because with Oren we did a general theme to post on 
the internal and external channels, we got 3× here, 2× there, 30% there, etc. There was no week 
without one of two of those, for like a year. So the culture shifted pretty fast.”

Chapter 5  performanCe analysis and performanCe testing



361

You should care about the performance of your code. You should care about 

performance cleanness. It’s your personal responsibility.

 Summing Up
If I had to choose between a team of developers who have strong performance skills 

and a team of developers who have strong performance culture, I would choose the 

second team. If developers have the performance culture, they can read books and blog 

posts about performance, optimizations, and runtime internals, they can learn how to 

use tools for profiling and benchmarking, and they can adopt some good practices and 

techniques. Without the performance culture, their performance skills will probably not 

help to develop a product with a small number of performance problems.

The shared performance goals help you to communicate with each other. A reliable 

performance testing infrastructure helps you to easily solve routine technical tasks. The 

performance cleanness helps you maintain the product without any “broken windows.” 

Personal responsibility helps to make the code of each developer better and faster. All 

these things together help you to get the performance culture in your team and develop 

awesome, fast, and reliable software.

 Summary
Performance analysis is an essential skill for every performance engineer. It helps 

to do in-depth performance investigations and implement a reliable infrastructure 

for performance testing. In this chapter, we discussed the most critical topics for 

performance analysis:

• Performance testing goals

The basic goals are to prevent performance degradations, detect 

not-prevented degradations, detect other kinds of performance 

problems, reduce Type I (false positive) and Type II (false 

negative) error rates, and automate everything. You can also have 

your own goals, but you still have to remember these primary 

goals, which are relevant for most projects.
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• Kinds of benchmarks and performance tests

There are many of them like cold start tests, warmed-up tests, 

asymptotic tests, latency and throughput tests, user interface 

tests, unit and integration tests, monitoring and telemetry, tests 

with external dependencies, stress/load tests, user interface tests, 

fuzzing tests, and so on. A good performance test suite usually 

includes a combination of these kinds.

• Performance anomalies

Degradation is not the only performance problem that you can 

have. There are many other anomalies like acceleration; temporal 

and spatial clustering; huge duration, variance, outliers; and 

multimodal distributions. If you want to get rid of all performance 

problems, you should systematically check out your test suite. 

Probably, you will get many false anomalies, but it’s still worth it to 

monitor your anomalies.

• Strategies of defense

There are many strategies of defense against performance 

problems. Here are some of them: precommit tests, daily tests, 

retrospective analysis, checkpoint testing, prerelease testing, 

manual testing, postrelease telemetry and monitoring. As usual, 

it makes sense to use a combination of some or all of these 

approaches.

• Performance space

In most performance investigations, we work with a 

multidimensional performance space that contains many 

subspaces like metric subspace, iteration subspace, test subspace, 

CI agent subspace, environment subspace, and history subspace. 

Understanding these subspaces allows collecting more data for the 

investigation and finding the factors that actually affect performance.

• Performance asserts and alarms

Performance asserts are automatic checks used in performance 

tests with a low false positive rate. Performance alarms are 
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notifications about performance problems that can’t be used 

directly as an assert because of a high false positive rate. Both 

asserts and alarms can use different kinds of thresholds: absolute, 

relative, adaptive, and manual.

• PDD

This technique is similar to classic TDD with performance 

tests instead of the usual unit/functional/integration tests. It 

helps you to optimize the product, implement new features, or 

perform refactoring with confidence that you will not spoil the 

performance (or that you will make it even better).

• Performance culture

Performance testing is not only about technologies, it’s also 

about attitude. The key components of the performance culture 

are shared performance goals, good management, reliable 

performance testing infrastructure, performance cleanness, and 

personal responsibility. The performance culture is required if you 

want to make performance testing work.

Of course, it’s not possible to cover all aspects of performance testing in a single 

chapter. However, we discussed some of the most important techniques and ideas that 

will help you to improve your investigator skills and start to cover your product with 

performance tests.
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CHAPTER 6

Diagnostic Tools

If all you have is a hammer, everything looks like a nail.

— Abraham Maslow

Benchmarking is only one of the performance investigation steps. In this chapter, you 

will find a brief overview of the some important diagnostic tools that can be useful for 

the whole investigation. We will learn the following kinds of tools:

• Benchmarking harness

This tool automatically benchmarks the specified method and 

displays corresponding metrics. It tells you how much time it 

takes to perform this method, but it doesn’t always tell you why 

you have such values.

• Performance profiler

This tool measures performance metrics for each called method 

inside an application. It tells you where the performance 

bottleneck of the application is and allows exploring performance 

profiles with detailed information about consumed CPU resources 

for each method.

• Memory profiler

This tool measures memory traffic for an application. It tells you 

how many objects were allocated and allows exploring memory 

snapshots with detailed information about the graph of alive and 

dead objects of each class.
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• C#/VB decompiler

This tool takes a .NET assembly and shows C#/VB code (even if 

you don’t have original source code).

• IL decompiler

This tool takes a .NET assembly and shows IL code for requested 

classes and methods.

• ASM Decompiler

This tool takes a .NET assembly or an existing .NET process and 

shows the native code for requested classes and methods.

• Debuggers

This tool allows debugging .NET assemblies. The debugger is 

especially useful when it can also show C#/IL/ASM disassembly 

listings and debug external code (with or without symbols).

• System monitoring tool

This tool monitors all processes in the operating system and 

shows performance, memory, and other metrics for the system in 

general and for individual processes and their threads.

The tools will be presented in the following groups:

• BenchmarkDotNet

We will discuss the only one benchmarking harness: 

BenchmarkDotNet. This is the most adopted library, used in many 

popular open source and closed source projects.

• Visual Studio Tools

Visual Studio is an IDE, but it has some important embedded tools 

that are useful for performance investigations. We will discuss the 

embedded memory/performance profiler and debugging tools.

• JetBrains Tools

JetBrains has many different tools that provide advanced support 

for performance/memory profiling and decompilation. We will 

discuss dotPeek, dotTrace, dotMemory, ReSharper, and Rider.
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• Windows Sysinternals

This is a suite of independent tools for Windows that can simplify 

different steps of performance investigations and collect system 

metrics. We will discuss RAMMap, VMMap, and ProcessMonitor.

• Other Useful Tools

There are many other tools in the .NET ecosystem that can 

also be useful in different scenarios. We will discuss ildasm, 

monodis, ILSpy, dnSpy, WinDbg, PerfView, Mono Console Tools, 

perfcollect, Process Hacker, and Intel VTune Amplifier.

The topic of diagnostic tools is huge, and it’s not possible to cover all of them in detail 

in this chapter. The aim of this chapter is to provide an overview of some available tools. 

However, you will not find step-by-step tutorials that teach you how to use them: you will 

have to study them yourself. You are free to choose any tools you like: you can look for 

them on the Internet or build your own software. In this chapter, we are going to briefly 

discuss some features of some tools that can be used during performance investigations.

For each tool, you will find some useful information: the URL of the official website, 

links to useful resources, the license, and the supported operating systems. The “free/

commercial” label means that the general license is commercial, but there are some free 

options (e.g., for open source projects, for students and teachers, for small teams, and so 

on). You can find the full information about the discounted and complimentary licenses 

on the official websites.

 BenchmarkDotNet
BenchmarkDotNet is a powerful .NET library for benchmarking with tons of features 

that help to design benchmarks, execute them, and analyze performance results. I’m 

proud to say that I’m the project lead of this library. I started BenchmarkDotNet in 2013 

as a small pet project. Today, it’s a highly adopted open source project supported by the 

.NET Foundation. BenchmarkDotNet is used for performance experiments in the most 

popular .NET projects including .NET Core. Here is a usage example:

using System;

using System.Security.Cryptography;

using BenchmarkDotNet.Attributes;

using BenchmarkDotNet.Running;
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namespace MyBenchmarks

{

  [ClrJob(baseline: true), CoreJob, MonoJob, CoreRtJob]

  public class Md5VsSha256

  {

    private SHA256 sha256 = SHA256.Create();

    private MD5 md5 = MD5.Create();

    private byte[] data;

    [Params(1000, 10000)]

    public int N;

    [GlobalSetup]

    public void Setup()

    {

      data = new byte[N];

      new Random(42).NextBytes(data);

    }

    [Benchmark]

    public byte[] Sha256() => sha256.ComputeHash(data);

    [Benchmark]

    public byte[] Md5() => md5.ComputeHash(data);

  }

  public class Program

  {

    public static void Main(string[] args)

    {

      var summary = BenchmarkRunner.Run<Md5VsSha256>();

    }

  }

}

This program will generate an output like this:

BenchmarkDotNet=v0.11.0, OS=Windows 10.0.16299.309 (1709/Redstone3)

Intel Xeon CPU E5-1650 v4 3.60GHz, 1 CPU, 12 logical and 6 physical cores
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Frequency=3507504 Hz, Resolution=285.1030 ns, Timer=TSC

.NET Core SDK=2.1.300-preview1-008174

  [Host]     : .NET Core 2.1.0-preview1-26216-03

               (CoreCLR 4.6.26216.04, CoreFX 4.6.26216.02), 64bit RyuJIT

  Job-HKEEXO : .NET Framework 4.7.1

               (CLR 4.0.30319.42000), 64bit RyuJIT-v4.7.2633.0

  Core       : .NET Core 2.1.0-preview1-26216-03

               (CoreCLR 4.6.26216.04, CoreFX 4.6.26216.02), 64bit RyuJIT

  CoreRT     : .NET CoreRT 1.0.26414.01, 64bit AOT

  Mono       : Mono 5.10.0 (Visual Studio), 64bit

| Method | Runtime |     N |       Mean |     Error |    StdDev | Ratio |

|------- |-------- |------ |-----------:|----------:|----------:|------:|

| Sha256 |     Clr |  1000 |   8.009 us | 0.0370 us | 0.0346 us |  1.00 |

| Sha256 |    Core |  1000 |   4.447 us | 0.0117 us | 0.0110 us |  0.56 |

| Sha256 |  CoreRT |  1000 |   4.321 us | 0.0139 us | 0.0130 us |  0.54 |

| Sha256 |    Mono |  1000 |  14.924 us | 0.0574 us | 0.0479 us |  1.86 |

|        |         |       |            |           |           |       |

|    Md5 |     Clr |  1000 |   3.051 us | 0.0604 us | 0.0742 us |  1.00 |

|    Md5 |    Core |  1000 |   2.004 us | 0.0058 us | 0.0054 us |  0.66 |

|    Md5 |  CoreRT |  1000 |   1.892 us | 0.0087 us | 0.0077 us |  0.62 |

|    Md5 |    Mono |  1000 |   3.878 us | 0.0181 us | 0.0170 us |  1.27 |

|        |         |       |            |           |           |       |

| Sha256 |     Clr | 10000 |  75.780 us | 1.0445 us | 0.9771 us |  1.00 |

| Sha256 |    Core | 10000 |  41.134 us | 0.2185 us | 0.1937 us |  0.54 |

| Sha256 |  CoreRT | 10000 |  40.895 us | 0.0804 us | 0.0628 us |  0.54 |

| Sha256 |    Mono | 10000 | 141.377 us | 0.5598 us | 0.5236 us |  1.87 |

|        |         |       |            |           |           |       |

|    Md5 |     Clr | 10000 |  18.575 us | 0.0727 us | 0.0644 us |  1.00 |

|    Md5 |    Core | 10000 |  17.562 us | 0.0436 us | 0.0408 us |  0.95 |

|    Md5 |  CoreRT | 10000 |  17.447 us | 0.0293 us | 0.0244 us |  0.94 |

|    Md5 |    Mono | 10000 |  34.500 us | 0.1553 us | 0.1452 us |  1.86 |

You can find the full documentation for the latest version of BenchmarkDotNet 

on GitHub, so I’m not going to describe how to use all the features. Instead, I want to 

talk about the philosophy of tools for benchmarking. I think that a good benchmarking 

library should satisfy the following requirements:
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• It should do all routine tasks for you

A typical benchmark includes a lot of boilerplate code. Users 

shouldn’t write it each time when they want to measure 

performance. A benchmarking tool should automatically run 

several iterations, and each iteration should include several 

method invocations. It should run several warm-up iterations 

and remove them from the report. It should isolate benchmarks 

from each other and run each benchmark in a separate process. 

If you want to check several different environments, it should 

automatically perform benchmarks in each environment and 

aggregate the results. It should automatically evaluate its own 

overhead and subtract it from the measured values. All the 

dirty work should be done by the benchmarking library. During 

benchmarking, users should be able to focus on the measured 

logic instead of the benchmarking infrastructure.

• It should protect you from known pitfalls

It shouldn’t allow you to run benchmarks in the DEBUG mode 

(without optimizations). It should control inlining and make sure 

that all benchmarks use the same inlining policy. It should use the 

best available timestamping API. The best benchmarking practices 

(like warm-up and isolation) should be enabled by default.

• It should choose the best benchmarking mode for you

Approaches of adaptive benchmarking should be implemented. 

Instead of asking the user about the number of iterations, it 

can use optional stopping. Instead of asking the user about the 

number of method invocations inside each iteration, it should 

find the best value during the pilot experiment. By default, users 

shouldn’t worry about infrastructure parameters: the library has 

to find the best possible values by default.

• It should be highly configurable

Each benchmark experiment is unique, with its own 

requirements. Users should be able to disable all the smart 

features. For example, if they want to measure the cold start, 
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it should pe possible to disable warm-up. If they know that 

benchmarks don’t affect each other, they may want to disable the 

process isolation to speed up the whole experiment. It’s nice when 

somebody else chooses the number of iterations for you, but it 

should also be possible to set it manually.

• It should have a user-friendly API

This requirement is valid for any library. The API should be 

understandable and well documented. It should support different 

approaches: some users like to configure benchmarks in the 

command line, some users like to use attributes, some users like 

to use fluent API. The library should provide different ways to 

configure the benchmarking process.

• It should know statistics for you

The library should be able to calculate all the basic statistics 

characteristics like the mean and the median, the standard 

deviation and the confidence interval, the quartiles and the 

percentiles, and the skewness and the kurtosis. It should know 

how to detect outliers, how to perform statistical tests like Welch’s 

t-test or the Mann–Whitney U test, and how to check distributions 

for multimodality.

• It should help you to analyze results

If the library can calculate all possible statistical metrics, it doesn’t 

mean that it should print all of them each time. The library should 

highlight all the essential features of the calculated distribution. 

We know that we can get a huge difference between the mean 

and the median, but these values are often close to each other. 

If the library will print both values each time, users will learn to 

ignore one of them. It’s better to show only the mean by default 

and present the median only when it’s important. We know that 

it’s important to distinguish between unimodal and multimodal 

distributions. However, most simple performance distributions 

are unimodal. It doesn’t make sense to print “Everything is OK, 

the distribution is unimodal” each time. It’s better to print a 

warning in case the distribution is multimodal. It should tell you 
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if the distribution is spoiled by outliers. The basic report should 

contain only important data in the most compact form. It’s 

great if it can calculate the mean value with the highest possible 

precision, but does it really make sense to print 6.38319573993657 

ms? The most users care only about the most significant digits, so 

it will be enough to print just 6.383. The library can perform the 

Mann–Whitney U test and print the p-value, but it will be better 

to print a conclusion based on it (many users don’t remember 

how to correctly interpret p-values). The library should tell you 

when the results are unreliable because of the initial settings 

(e.g., small sample size or insufficient iteration time). The final 

summary table should be as small as possible but contain the 

most important numbers and facts. Users should be able to read it 

and quickly understand what’s going on with the data.

• It should collect information about environment

A good performance report should include the most important 

information about the environment like OS version, processor 

model, used runtime, JIT compiler kind, and so on.

• It should provide basic diagnostics data

A benchmarking library is not a profiler or a decompiler, but it can 

perform some basic diagnostics logic and provide the minimal 

diagnostics data. For example, it can measure the amount of 

allocated memory, evaluate values of hardware counters, print 

IL and native listings for the main methods, generate a trace file 

based on ETW events, check runtime optimizations like inlining 

or tail call optimizations, and so on. It should help users to 

understand why they have such a performance report and what 

kinds of additional tools they need.

• It should generate many reports and draw plots

The information about performed measurements should be 

available in different formats like CSV, JSON, XML, HTML, 

Markdown, AsciiDoc, and others. Developers often share 

their performance results, so the library should support 

different dialects of Markdown that can be posted to GitHub, 
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StackOverflow, JIRA, or other services. The distribution should 

be shown with the help of different plots like histograms, timeline 

plots, density plots, bar plots, box plots, frequency trails, and so 

on. The library should know how to generate any kinds of report 

that can be useful during performance analysis.

BenchmarkDotNet has become popular because it tries to follow all these 

requirements. Of course, the library is not perfect; it has some bugs and missed features. 

 However, BenchmarkDotNet gets better with each version thanks to community 

contributions.

You should understand that any benchmarking library (including 

BenchmarkDotNet) is not a silver bullet. It will not write a benchmark for you. It will not 

analyze benchmarking reports for you. It just helps to design and execute benchmarks. 

Thus, you still have to know the benchmarking methodology, and you still have to know 

about possible pitfalls. You still should know about JIT optimizations like DCE, BCE, and 

constant folding. You still should know about natural noise and possible huge variance; 

you should check the distribution manually, and you should know how to analyze it.

There is no magic library that solves all these problems for you: they are still your 

responsibility. BenchmarkDotNet just allows you to skip the boilerplate part of a 

benchmark and focus on the target code. It’s especially useful for beginners who don’t 

know about the discussed problems (or for people who just don’t want to think about all 

of that right then). The library does not guarantee that all your benchmarks are correct. 

But at least you do not have to worry about common stupid benchmark bugs. It’s a 

handy tool for bootstrapping benchmarks, so we will discuss it several times in this book.

URL: https://github.com/dotnet/benchmarkdotnet

Open source (MIT); free; cross-platform.

Resources: https://benchmarkdotnet.org/, [Sitnik 2017a], [Sitnik 2017b],  

[Sitnik 2018].

 Visual Studio Tools
Visual Studio is the most popular IDE for .NET development. We are not going to discuss 

Visual Studio as an IDE; we will talk only about a few features that can be useful during 

performance investigations.

URL: https://visualstudio.microsoft.com/vs/

Closed source; free/commercial; Windows-only.
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 Embedded Profilers
Visual Studio has many different profiling modes:

• CPU usage

• Memory usage

• Resource consumption for XAML

• Network usage for UWP Apps

• GPU usage for Direct3D

• Energy usage for UWP Apps

A screenshot is presented in Figure 6-1.

Figure 6-1. Performance and memory profilers in Visual StudioURL: https://
docs.microsoft.com/en-us/visualstudio/profiling
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 Disassembly View
Visual Studio has several tool windows for low-level debugging:

• Disassembly: a disassembly listing of a method.

• Registers: plain text information about all available register values. It 

supports different groups of registers: CPU, CPU Segments, Floating 

Point, MMX, 3DNow!, SSE, AVX, AVX-512, MPX, Neon, Neon Float, 

Neon Double, and CPU flags.

• Memory: several tool windows that show a dump of a specified 

segment of memory. It can interpret memory as 1/2/4/8-byte integers 

or 32/64-bit floating-point numbers and display them in different 

formats (hexadecimal, signed numbers, unsigned numbers).

All the tool windows can be found during debugging in the Debug→Windows menu.

By default, the debugger in Visual Studio suppresses some JIT optimizations to 

provide better debugging experience. Unfortunately, it spoils the native code even in the 

Release mode. If you want to get the real native code, you should disable the “Suppress 

JIT optimization on module load” check box in the settings.1

A screenshot is presented in Figure 6-2.

1 You can find more information about it in the documentation: https://docs.microsoft.com/
en-us/visualstudio/debugger/jit-optimization-and-debugging
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 JetBrains Tools
JetBrains has a suite of tools for .NET development. In this section, we are going to 

discuss some profiling, decompiling, and debugging features.

 dotPeek
dotPeek is a free .NET decompiler and assembly browser. Here are some of the useful 

features:

• Decompilation to C# and IL

• Export decompiled code to Visual Studio projects and generation of 

pdb files

• Find usages of any symbol

• Quick navigation to a type, symbol, or anything else

A screenshot is presented in Figure 6-3.

Figure 6-2. Disassembly view in Visual StudioURL: https://docs.microsoft.
com/en-us/visualstudio/debugger/how-to-use-the-disassembly-window
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 dotTrace and dotMemory
dotTrace and dotMemory are .NET performance and memory profilers. Here are some 

of the useful features of both products:

• Support for various .NET applications

It supports different kinds of .NET Framework applications 

(including desktop apps, IIS, IIS Express, Windows services, UWP, 

and so on) and .NET Core applications.

• Rich visualizations

Both profilers have a lot of visualization views, which allows you 

to investigate different kinds of issues. For example, dotMemory 

has the timeline view with real-time data collection, sunburst 

diagram, call tree chart, and many tree views that help to examine 

relations between objects in a snapshot.

Figure 6-3. dotPeekURL: www.jetbrains.com/decompiler/Closed source; free; 
Windows-only
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• Comparing snapshots

When you want to evaluate the impact of a particular change, you 

can capture performance or memory snapshots before and after 

the change and compare them. It’s useful when you want to verify 

that the change fixes a performance problem (or that the change 

doesn’t introduce performance degradations).

• Many execution options

You can use dotTrace as a stand-alone desktop application, via 

command line, or via profiling API. You can attach to local or 

remote applications (remote profiling is especially useful when 

you have a problem in a web application on a server).

Here are some special features of dotTrace:

• Different profiling modes

dotTrace supports the following types of profiling:

 – Sampling. The idea of this approach is simple: the profiler at the call stacks 

for all threads from time to time. With this information, it can find methods 

that take too much time (because they will often appear in captured call 

stacks). This approach has the lowest possible overhead, but it’s not 

 accurate: it can miss some fast methods and it can’t calculate the number of 

calls for each method. It’s useful when you want to find a performance 

bottleneck without significant profiler overhead.

 – Tracing. In the tracing mode, the profiler gets special entry and exit events 

for each method with the help of code instrumentation. As a result, it may 

add some overhead to each call; the measured time can be distorted. It’s 

useful when you want to know the exact number of calls for each method.

 – Line-by-line. This approach is similar to tracing, but it works with state-

ments instead of methods. It has bigger overhead than tracing. It’s useful 

when you are looking for the slowest statement in a huge method.

 – Timeline. In the timeline mode, the profiler collects temporal information 

about call stacks, thread state data, memory allocation, garbage collections, 

and I/O operations. The results are presented with the help of the Timeline 
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Viewer, which displays recorded events on a timeline diagram. It’s useful 

when the chronological order of events does matter; it allows detecting UI 

freezes, excessive GC and I/O operations, and lock contention.

• Support for advanced cases

dotTrace has a lot of additional features like profiling async calls, 

analyzing slow HTTP requests, SQL queries, and file system 

operations.

Here are some special features of dotMemory:

• Powerful automatic inspections

dotMemory automatically detects common memory issues in 

your snapshots like string duplicates, sparse arrays, leaking event 

handlers or WPF bindings, and others.

• Support for raw memory dumps

You can work with raw Windows memory dumps as regular 

snapshots, explore them via standard view panes, and apply 

inspections.

dotTrace 2018.3 and dotMemory 2018.3 are Windows-only applications, but future 

versions should support .NET Core and Mono profiling on Linux and macOS.

Screenshots of dotTrace and dotMemory are presented in Figure 6-4 and Figure 6-5.
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Figure 6-5. dotMemoryURL: www.jetbrains.com/profiler/, www.jetbrains.
com/dotmemory/Closed source; free/commercial; Windows-only

Figure 6-4. dotTrace
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 ReSharper
ReSharper is a Visual Studio extension for .NET developers. It has many useful features, 

but I want to highlight only one: IL Viewer. It allows viewing IL code for the current file 

in a separate tool window. Thus, you can check out the generated IL listing without 

switching from Visual Studio to another program. ReSharper and dotPeek use the same 

decompilation engine.

A screenshot is presented in Figure 6-6.

Figure 6-6. ReSharper IL ViewerURL: www.jetbrains.com/resharper/Closed 
source; free/commercial; Windows-only.Resources: [Balliauw 2017a], www.
jetbrains.com/help/resharper/Viewing_Intermediate_Language.html

 Rider
Rider is a fast and powerful cross-platform .NET IDE. We are not going to discuss Rider 

as an IDE. Instead, we will talk only about the following features:

• Embedded decompiler

With the help of the dotPeek engine, Rider is able to show decompiled 

C# code for any third-party classes even without symbols.
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• External code debug

Even if you are working with a simple console application, you 

can attach to any .NET application and debug the decompiled 

code of any class without original source code or symbols. You 

can even set breakpoints in the decompiled sources and analyze 

the execution of third-party assemblies. While most of the classic 

.NET tools are Windows-only, Rider supports external debug for 

Mono and .NET Core on Linux and macOS.

• Embedded profiler

Rider contains an embedded dotTrace engine, which allows 

profiling your application from the IDE.

URL: www.jetbrains.com/rider/

Closed source; free/commercial; cross-platform.

Resources: [Balliauw 2017b], www.jetbrains.com/help/rider/

Debugging_External_Code.html

 Windows Sysinternals
Windows Sysinternals is a set of advanced system utilities for Windows. This suite 

includes many different tools that form the following groups:

• File and Disk Utilities: tools that can obtain detailed information 

about disks (e.g., resource permissions, disk usage, disk mapping, 

information about encrypted files) and disk manipulation tools  

(e.g., scheduling file operations for the next reboot, defragmentation, 

working with symbolic links).

• Networking Utilities: tools that can work with Active Directory, 

named pipes, sockets, and remote computers. It also includes PsPing, 

which allows performing basic network latency and bandwidth 

measurements.
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• Process Utilities: tools that can monitor and control processes, their 

threads, and handles.

• Security Utilities: tools that can operate with users, their sessions 

and permissions.

• System Information: tools that can collect different information 

about the operating system, processes, memory, devices, and 

hardware.

• Miscellaneous: other tools that help to work with registry, encodings, 

screens, and desktops.

In this section, we are going to discuss a few tools that can be especially useful 

during performance investigations: RAMMap, VMMap, and Process Monitor.

URL: https://docs.microsoft.com/en-us/sysinternals/

Closed source; free; Windows-only.

 RAMMap
RAMMap shows a detailed low-level view of all kinds of memory in the operating system. 

It allows exploring different kinds of memory (Active, Standby, Modified, and so on) 

for different usage types (Process Private, Mapped Files, Sharable, and so on). You can 

analyze the memory of each process, physical memory pages, and ranges.

You can find more information about different kinds of memory in Windows in 

[Russinovich 2017] and [Russinovich 2019].

A screenshot is presented in Figure 6-7.
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 VMMap
VMMap shows a detailed low-level view of memory for a process. While RAMMap helps 

to explore memory in the whole operating system, VMMap is always working with a 

single process. It provides advanced data for all memory segments that are used by this 

process.

A screenshot is presented in Figure 6-8.

Figure 6-7. RAMMapURL: https://docs.microsoft.com/en-us/sysinternals/
downloads/rammap
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 Process Monitor
Process Monitor is an advanced monitoring tool for Windows that shows real-time file 

system, Registry, and process/thread activity. It allows viewing all kinds of low-level OS 

events (e.g., CreateFile/OpenFile/CloseFile, LoadImage, RegQueryKey/RegCloseKey, 

ThreadCreate/ThreadExit, and so on). It’s also possible to get all available metadata for 

each event, including full thread stack traces with integrated symbol support for each 

operation. Since Windows has a huge number of such events, Process Monitor allows 

setting different kinds of complicated filters, which helps you to catch only the events 

that you want to see.

A screenshot is presented in Figure 6-9.

Figure 6-8. VMMapURL: https://docs.microsoft.com/en-us/sysinternals/
downloads/vmmap
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 Other Useful Tools
In this section, we are going to discuss other useful tools from different vendors which 

can also simplify performance investigations.

Figure 6-9. Process MonitorURL: https://docs.microsoft.com/en-us/
sysinternals/downloads/procmon
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 ildasm and ilasm
ildasm allows getting IL disassembly for a .NET assembly and dumping it into a text file. 

It’s a companion tool to the ilasm, which builds a .NET assembly from the IL sources. 

Thus, you can decompile an assembly to IL with ildasm, make a few changes, and create 

a modified assembly with ilasm. Both tools are installed with Visual Studio and available 

from the Developer command prompt. Typical installation paths of these tools look like 

c:\Program Files (x86)\Microsoft SDKs\Windows\v10.0A\bin\NETFX 4.7.1 Tools\

ildasm.exe and c:\Windows\Microsoft.NET\Framework\v4.0.30319\ilasm.exe.

Let’s say that we have a Program.cs file with the following content:

using System;

namespace ConsoleApp

{

  class Program

  {

    static void Main(string[] args)

    {

      Console.WriteLine("Hello World!");

    }

  }

}

Let’s compile it with the help of Roslyn:

csc Program.cs

Now we have the Program.exe assembly, which can be decompiled to IL:

ildasm.exe Program.exe /out:Program.il

This command creates Program.il with the full IL metadata of our assembly. In the 

middle of this file, we can find the following lines:

.class private auto ansi beforefieldinit ConsoleApp.Program

       extends [mscorlib]System.Object

{
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  .method private hidebysig static void  Main(string[] args) cil managed

  {

    .entrypoint

    // Code size       13 (0xd)

    .maxstack  8

    IL_0000:  nop

    IL_0001:  ldstr      "Hello World!"

    IL_0006:  call       void [mscorlib]System.Console::WriteLine(string)

    IL_000b:  nop

    IL_000c:  ret

  } // end of method Program::Main

  .method public hidebysig specialname rtspecialname

          instance void  .ctor() cil managed

  {

    // Code size       8 (0x8)

    .maxstack  8

    IL_0000:  ldarg.0

    IL_0001:  call       instance void [mscorlib]System.Object::.ctor()

    IL_0006:  nop

    IL_0007:  ret

  } // end of method Program::.ctor

} // end of class ConsoleApp.Program

Let’s open this file in a text editor and change IL_0001: ldstr "Hello World!" to 

IL_0001: ldstr "Modified" and compile it back to the executable file:

ilasm.exe Program.il

Now, if we execute Program.exe, we will get “Modified” instead of “Hello World!”.

This approach is especially powerful when you want to make a few changes in the 

assembly without rebuilding the project in the command line.

URL: https://docs.microsoft.com/en-us/dotnet/framework/tools/ildasm-exe- 

il-disassembler

Closed source; free; Windows-only
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 monodis
monodis is a Mono version of ildasm. It makes the preceding example with  

modification of IL code cross- platform. monodis prints the IL listing to the output,  

so we can rewrite ildasm.exe Program.exe /out:Program.il like this:

monodis Program.exe > Program.il

ilasm also exists in Mono (the title is the same).

URL: www.mono-project.com/docs/tools+libraries/tools/monodis/ Open 

source; free; cross-platform

 ILSpy
ILSpy is a .NET assembly browser and decompiler. It’s a pretty simple decompiler, 

without many UI features. However, it allows using its decompilation engine via the 

ICSharpCode.Decompiler NuGet package. Thus, you can easily embed this decompiler 

into your own tools.

Originally, ILSpy was a Windows-only application, but now we have a cross-platform 

version based on Avalonia.2

A screenshot is presented in Figure 6-10.

2 https://github.com/AvaloniaUI/Avalonia
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 dnSpy
dnSpy is a debugger and .NET assembly editor. Here are some of its useful features:

• Decompilation to C#, VB, and IL

• Edit assemblies in C#/VB/IL and edit metadata

• Debug .NET Framework, .NET Core, and Unity assemblies without 

source code

• Powerful IL code hex editor

The decompilation engine is based on ILSpy and the compilation engine is based on 

Roslyn.

Figure 6-10. ILSpyURL: https://github.com/icsharpcode/ILSpy, https://
github.com/icsharpcode/AvaloniaILSpy Open source (MIT); free; cross- 
platform
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The most powerful feature of dnSpy is assembly editing: you can easily change any 

IL instruction in a third-party assembly even without its source code. It significantly 

simplifies experiments when you are trying to find a performance problem in one of 

your project dependencies. Even when you are working with your own assembly, dnSpy 

allows making minor code fixes without time-consuming solution recompilation.

A screenshot is presented in Figure 6-11.

Figure 6-11. dnSpyURL: https://github.com/0xd4d/dnSpy Open source 
(GPLv3); free; Windows-only.

 WinDbg
WinDbg is the most powerful low-level debugger for Windows. It allows profiling 

native and .NET Windows applications. A rich set of commands helps to get any kind of 

information needed during debugging. The .loadby sos clr command loads a special 

WinDbg extension called SOS (Son of Strike): it provides many additional commands 

for .NET applications. With WinDbg, you can examine all runtime objects, threads, 

call stacks, locks, and heaps; you can also explore managed and unmanaged memory, 

registers, and disassembly listings.
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The classic version of WinDbg has a poor user interface, and it’s not easy to use it. 

Fortunately, there is a modern version of WinDbg with reworked UI, which is available 

via the Microsoft Store (see [Luhrs 2017]).

A screenshot of this modern version is presented in Figure 6-12.

Figure 6-12. WinDbgURL: https://docs.microsoft.com/en-us/windows- 
hardware/drivers/debugger/debugger-download-tools Closed source; free; 
Windows-only.Resources:[Goldshtein 2016b], https://docs.microsoft.com/en- 
us/windows-hardware/drivers/debugger/debugging-using-windbg, http://
windbg.info/doc/1-common-cmds.html, https://theartofdev.com/windbg- 
cheat- sheet/

 Asm-Dude
Asm-Dude is an extension for Visual Studio 2015+ that improves the disassembly 

support. Here are some of the useful features:

• Enhanced disassembly tool window

The extension applies syntax highlighting in the disassembly 

tool window and provides QuickInfo tooltips with detailed 

information about each assembly instruction and its performance 

characteristics.
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• ASM language support 

You can also get syntax highlighting, QuickInfo tooltips, code 

completion, code folding, signature help, and label analysis in the 

editor. It’s significantly simplifying the editing of assembly programs.

URL: https://github.com/HJLebbink/asm-dude

Open source (MIT), Free, Windows-only.

 Mono Console Tools
Mono has several embedded tools that can be useful during investigations.

For example, Mono allows viewing the generated native code for any method. Let’s 

say we have the following program:

using System;

namespace MyApp

{

  class Program

  {

    static void Main()

    {

      int x = 3, y = 4;

      double z = Math.Sqrt(x ∗ x + y ∗ y);
      Console.WriteLine(z);

    }

  }

}

We can ask mono to compile this method without actual execution with the help of 

the following command on Linux/macOS:

$ MONO_VERBOSE_METHOD=MyApp.Program:Main mono

            --compile MyApp.Program:Main Program.exe

Here is the Windows version:

> SET MONO_VERBOSE_METHOD=MyApp.Program:Main

> mono --compile MyApp.Program:Main Program.exe
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At the end of the command output, we will find an assembly listing like this:

0000000000000000  subq       0x8, %rsp

0000000000000004  movl       0x19, %eax

0000000000000009  cvtsi2sdl  eax, %xmm0

000000000000000d  movsd      xmm0, -0x8(%rsp)

0000000000000013  fldl       0x8(%rsp)

0000000000000017  fsqrt

0000000000000019  fstpl      -0x8(%rsp)

000000000000001d  movsd      -0x8(%rsp), %xmm0

0000000000000023  nop

0000000000000026  movabsq    $0x106f05fc8, %r11

0000000000000030  callq      ∗%r11
0000000000000033  addq       $0x8, %rsp

0000000000000037  retq

Also, mono allows running your program with the Mono log profiler:

$ mono --profile=log Program.exe

As a result, you will get the output.mlpd file, which can be opened via the mprof- 

report or Xamarin Profiler.3 The mono profiler has a lot of different options, which you 

can learn about in the official documentation.

URL: https://github.com/mono/mono/

Open source (MIT/BSD), free, cross-platform

Resources: www.mono-project.com/docs/, www.mono-project.com/docs/

debug+profile/profile/profiler/

 PerfView
PerfView is a free performance analysis tool. It can collect ETW events and explore 

collected data. ETW is a built-in Windows mechanism (with special support for .NET 

applications) with extremely low overhead, which makes PerfView very useful for 

production system monitoring.

A screenshot is presented in Figure 6-13.

3 https://docs.microsoft.com/en-us/xamarin/tools/profiler
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 perfcollect
perfcollect is a bash script that automates performance measurements for .NET Core 

applications on Linux. The collected traces can be viewed using PerfView on Windows.

URL: http://aka.ms/perfcollect

Open source (MIT), free, Linux-only

Resources: [Kokosa 2017], [Goldshtein 2017], https://github.com/dotnet/

coreclr/blob/master/Documentation/project-docs/linux-performance-tracing.md

 Process Hacker
Process Hacker is a free, powerful, multipurpose tool that helps you monitor system 

resources, debug software, and detect malware. It’s an “advanced” version of the default 

Windows task manager. There is also a similar tool from the Sysinternals suite called 

Process Explorer.4

Process Hacker has a detailed view for each process with general statistics (CPU, 

Memory, I/O usage), performance charts, dozens of .NET performance metrics (like GC 

heap sizes, the number of jitted methods, the number of thrown exceptions, and so on), 

4 https://docs.microsoft.com/en-us/sysinternals/downloads/process-explorer

Figure 6-13. PerfViewURL: http://aka.ms/perfview Open source (MIT); free; 
Windows-only.Resources: [Goldshtein 2016a]
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loaded .NET assemblies, information about threads (with stack traces), environment 

variables, tokens, modules, handles, and memory segments.

A screenshot is presented in Figure 6-14.

Figure 6-14. Process HackerURL: https://github.com/processhacker/
processhacker Open source (GPLv3); free; Windows-only

 Intel VTune Amplifier
Intel VTune Amplifier is an advanced general-purpose profiler. It knows about hundreds 

of hardware counters that are supported by Intel CPUs. In especially complicated 

performance investigations, it’s almost impossible to make any conclusions without 

these counters.

VTune has a lot of different profiling modes for different use cases from four 

groups: “Hotspots,” “Microarchitecture,” “Parallelism,” and “Platform Analysis.” Each 

mode is highly configurable: the many different settings allow customizing your profile 

session and getting only metrics that you really need. One of my favorite modes is 

 “Microarchitecture Exploration”: it allows getting a lot of different hardware counters 

that are not available in other profilers.

It has advanced support for different languages like C, C++, C#, Fortran, Java, Python, 

Go, and Assembly. VTune 2019+ has advanced support for .NET Core applications.

A screenshot is presented in Figure 6-15.
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 Summary
In this chapter, we briefly discussed different diagnostic tools that can be useful during 

performance investigations:

• Benchmarking harness: BenchmarkDotNet

• Performance profiler: Visual Studio embedded profiler, Rider 

embedded profiler, dotTrace, Intel VTune Amplifier, Mono Console 

Tools, perfcollect with PerfView

Figure 6-15. Intel VTune AmplifierURL: https://software.intel.com/en-us/
vtune Closed source; commercial; cross-platform.Resources: [Lander 2018]
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• Memory profiler: Visual Studio embedded profiler, dotMemory, 

Intel VTune Amplifier, VMMap, Mono Console Tools

• C#/VB decompiler: ILSpy, dnSpy, dotPeek, Rider, ReSharper

• IL decompiler: ildasm, monodis, ILSpy, dnSpy, dotPeek, ReSharper 

(via IL Viewer), Intel VTune Amplifier, BenchmarkDotNet (via 

DisassemblyDiagnoser)

• ASM Decompiler: Visual Studio disassembly view (which is more 

powerful with Asm-Dude), WinDbg, BenchmarkDotNet (via 

DisassemblyDiagnoser), Mono Console Tools

• Debuggers: Visual Studio embedded debugger, Rider embedded 

debugger, WinDbg

• System monitoring tool: Process Hacker, RAMMap, Process Monitor

A good benchmark answers questions like “How long does this method take?”, but it 

doesn’t answer questions like “Why does this method take so long?”. A full performance 

investigation often involves additional tools that help to diagnose applications and make 

meaningful conclusions.

Of course, this not a complete list of available tools; you can easily find more of them 

on the Internet. I described only those tools that I typically use. You are free to choose 

any tools you like.

In this chapter, the following tool versions were used: BenchmarkDotNet v0.11.3 

Visual Studio 2017 (15.9), dotPeek/dotTrace/dotMemory/ReSharper/Rider 2018.3, 

RAMMap 1.51, VMMap 3.25, Process Monitor 3.50, ildasm 4.0.30319.0, ILSpy 4.0 Beta 2, 

dnSPy 5.0.10, WinDbg Preview 1.0.1812.12001, PerfVew 2.0.26, Asm-Dude 1.9.5.3, Mono 

5.16, ProcessHacker 3.0.1563, Intel VTune Amplifier 2019 Update 2. Updated versions of 

these tools can include changes in the feature set and license policy.
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CHAPTER 7

CPU-Bound Benchmarks
Knock, knock.

Branch prediction.

Who’s there?

— A classic programming joke

One of the most common bottlenecks in many benchmarks is CPU. Proper design 

and analysis of CPU-bound benchmarks require knowledge of different runtime 

and hardware “features” that can affect performance. Each .NET runtime has a lot of 

different optimizations that can improve (or spoil) performance of your code. Each CPU 

microarchitecture has a lot of low-level mechanisms that also affect measurements. 

If you are not aware of these optimizations and mechanisms, it’s hard to design some 

benchmarks and interpret the measured metrics correctly. In this chapter, we are going 

to cover the following topics:

• Registers and Stack

We will discuss when a JIT compiler keeps the intermediate values 

in registers and when it uses the stack for it.

• Inlining

We will discuss when a JIT compiler can inline your methods and 

why it’s important.

• Instruction-Level Parallelism (ILP)

We will discuss one of the most important hardware features, ILP, 

which allows processing multiple instructions at the same time 

inside a single thread.



402

• Branch Prediction

We will discuss the ability of modern CPUs to predict which 

branches will be taken in your programs. Correct predictions help 

to improve conditions for the ILP. It’s  important in the context of 

benchmarking because the input data can significantly affect the 

method performance based on the correct prediction rate.

• Arithmetic

We will discuss what kind of problems we can get with 

benchmarks that use arithmetic operations. We will talk about 

hardware (floating-point numbers and IEEE 754) and runtime 

(different environments and JIT optimizations) features.

• Intrinsics

We will discuss cases when a JIT compiler can generate a “smart” 

native implementation for specific methods and statements.

The full explanation of each topic is pretty huge because it includes a lot of low-level 

details about runtime and hardware internals. However, you don’t actually have to know 

all the internals during benchmarking. In this chapter, we are going to cover only high- 

level concepts that are good to know. In each section, you will find four case studies that 

demonstrate how these concepts can affect even small and simple benchmarks. Each 

case study contains four sections:

• Source code

A small set of benchmarks that demonstrate an interesting 

performance effect. You can find the source code of all examples 

in the attachment to this book.

• Results

Benchmark results in a specific environment. If you can’t 

reproduce the result on your own machine, check out the versions 

of your OS, .NET Core, .NET Core SDK, runtime, JIT compiler, 

and the CPU model. The performance always depends on your 

environment: anything can spoil the described performance 

phenomena or introduce another one.
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• Explanation

A short description of the observed results. We will often look at 

the generated IL and native code in order to understand what’s 

going on in the corresponding example.

• Discussion

General recommendations about the discussed effects, additional 

interesting information, links to GitHub issues, and other 

references for further reading. Many case studies are based on 

some great StackOverflow questions and answers: you will find 

the corresponding links at the end of the subsection.

You will learn the commonest mistakes which developers usually make because 

they are not aware of some benchmarking pitfall. This knowledge will help you to design 

better CPU-bound benchmarks and correctly interpret their results.

 Registers and Stack
When we have a local variable, the JIT compiler can put it into registers or on the 

stack. Operations with registers are usually much faster than operations with stack 

values. Thus, the JIT compiler decision can have a significant impact on performance. 

It’s impossible to keep all local variables in registers because the number of registers 

is limited: the JIT compiler should use it wisely. Different CPU instruction sets have 

different numbers of registers.

 Case Study 1: Struct Promotion
In most cases, when we use a struct value in local variables, the JIT compiler keeps its 

fields on the stack. In some special cases, the fields can be saved into registers. Such 

an approach is known as struct promotion or scalar replacement. It’s implemented in 

RyuJIT, but you can’t manually enable or disable this feature for a particular method. 

Let’s learn an example that demonstrates some limitations of struct promotion.
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 Source code

Consider the following BenchmarkDotNet-based benchmark:

public struct Struct3

{

  public byte X0, X1, X2;

}

public struct Struct8

{

  public byte X0, X1, X2, X3, X4, X5, X6, X7;

}

public class Benchmarks

{

  public const int Size = 256;

  private int[] sum = new int[Size];

  private Struct3[] struct3 = new Struct3[Size];

  private Struct8[] struct8 = new Struct8[Size];

  [Benchmark(OperationsPerInvoke = Size, Baseline = true)]

  public void Run3()

  {

    for (var i = 0; i < sum.Length; i++)

    {

      Struct3 s = struct3[i];

      sum[i] = s.X0 + s.X1;

    }

}

  [Benchmark(OperationsPerInvoke = Size)]

  public void Run8()

  {

    for (var i = 0; i < sum.Length; i++)

    {
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      Struct8 s = struct8[i];

      sum[i] = s.X0 + s.X1;

    }

  }

}

Here we have two structs: Struct3 with three byte fields and Struct8 with eight byte 

fields. We also have two benchmarks: Run3 and Run8. In each benchmark, we calculate 

the sum of the first two struct fields in a loop. The only difference between Run3 and Run8 

is the used struct.

 Results

Here is an example of results (Windows 10.0.17763.195, Intel Core i7-6700HQ CPU 

2.60GHz, .NET Core 2.1.5, RyuJIT-x64):

   Method |     Mean |    StdDev | Ratio |

--------- |---------:|----------:|------:|

     Run3 | 1.100 ns | 0.0091 ns |  1.00 |

     Run8 | 1.579 ns | 0.0115 ns |  1.44 |

As you can see, Run8 works much slower. Run8 uses Struct8, which is similar to 

Struct3 but contains five additional fields. These fields are not actually used in the 

benchmark, but we still have a ~30–50% performance drop.

 Explanation

Let’s look at the native code of the Run3 loop body:

; Run3

lea    r8,[r8+r10+10h]              ; r8 = &struct3[i]

movzx  r10d,byte ptr [r8]           ; r10d = X0

movzx  r11d,byte ptr [r8+1]         ; r11d = X1

movzx  r8d,byte ptr [r8+2]          ; r8d  = X2

mov    r8,rdx                       ; r8 = &sum

cmp    eax,dword ptr [r8+8]         ; if (i > sum.Length)

jae    00007ffe`e62a2b74            ;   throw

add    r10d,r11d                    ; r10d += r11d

mov    dword ptr [r8+r9*4+10h],r10d ; sum[i] = r10d
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As you can see, we find the location of struct3[i] and load the three corresponding 

fields X0, X1, and X2 into registers r10d, r11d, and r8d. This is the struct promotion in 

action! We don’t actually need X2, but JIT loads all the fields by default. Next, we add 

r11d to r10d and save the result to sum[i].

Now, let’s look at the native code of the Run8 loop body:

; Run8

mov    rdx,qword ptr [rdx+r8*8+10h] ; rdx = struct8[i]

mov    qword ptr [rsp+20h],rdx      ; [rsp+20h] = struct8[i]

mov    rdx,qword ptr [rcx+8]        ; rdx = &sum

mov    r9,rdx                       ; r9 = &sum

cmp    eax,dword ptr [r9+8]         ; if (i > sum.Length)

jae    00007ffe`e6272b7a            ;   throw

movzx  r10d,byte ptr [rsp+20h]      ; r10d = X0

movzx  r11d,byte ptr [rsp+21h]      ; r11d = X1

add    r10d,r11d                    ; r10d += r11d

mov    dword ptr [r9+r8*4+10h],r10d ; sum[i] = r10d

Here we load struct8[i] onto the stack first. After that, we load the first two fields 

of struct8[i] from the stack to registers r10d and r11d. Next, we add r11d to r10d and 

save the result to sum[i].

As you can see, RyuJIT was able to apply struct promotion in Run3, but not in Run8. 

This result can be explained by a limitation of RyuJIT in .NET Core 2.1.5: it can’t promote 

structs that have more than four fields.

 Discussion

In .NET Core 1.x/2.x, the implementation of scalar replacement has many different 

limitations. For example, the promoted struct has to follow some rules1:

• It must have only primitive fields.

• It must not be an argument or a return value that is passed in 

registers.

• It can’t be larger than 32 bytes.

• It can’t have more than 4 fields.

1 https://github.com/dotnet/coreclr/issues/6733#issuecomment-240623400
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In general, it’s not recommended to rely on these particular heuristics during 

optimization because they might be changed in future versions of RyuJIT. Also, these 

rules are not valid for other JIT compilers like LegacyJIT-x64 or MonoJIT. However, if you 

really want to optimize some hot methods and the .NET Core version is fixed, you can 

use this knowledge, but it makes sense to check such optimizations after each .NET Core 

update (you can automate it with the help of performance tests).

We discussed this case study because the knowledge of the struct promotion 

concept helps to interpret some benchmark results correctly. If you are designing a small 

benchmark based on a real application, it’s not recommended to modify the used structs 

even if some of its fields are not actually used in the benchmark. Any modifications in 

the struct layout may introduce unpredictable performance changes.

This particular benchmark also has some interesting memory-alignment 

performance issues. We will continue to discuss this in Chapter 8.

See also:

• coreclr#6839 “Promote (scalar replace) structs with more than 4 

fields”2

• coreclr#6733 “Scalar replacement of aggregates”3

• CoreCLR design docs: “First Class Structs”4

This case study is based on StackOverflow question 38949304.5

 Case Study 2: Local Variables
“Introduce a local variable” is a popular refactoring that can improve the readability of 

your code. This code modification doesn’t change the logic, so developers don’t expect 

situations when this refactoring will have an impact on the application performance. 

However, any changes in the source code may lead to performance changes.

2 https://github.com/dotnet/coreclr/issues/6839
3 https://github.com/dotnet/coreclr/issues/6733
4 https://github.com/dotnet/coreclr/blob/v2.2.0/Documentation/design-docs/first-
class-structs.md

5 https://stackoverflow.com/q/38949304
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 Source code

Consider the following BenchmarkDotNet-based benchmarks:

public struct Struct

{

  public Struct(uint? someValue)

  {

    SomeValue = someValue;

  }

  public uint? SomeValue { get; }

}

public class Benchmarks

{

  [Benchmark(Baseline = true)]

  public uint? Foo()

  {

    return new Struct(100).SomeValue;

  }

  [Benchmark]

  public uint? Bar()

  {

    Struct s = new Struct(100);

    return s.SomeValue;

  }

}

Here we have two benchmarks: Foo and Bar. Both methods do the same thing: they 

create an instance of Struct (which is a value type wrapper for the uint? type) and 

return the only field of it. However, Bar differs from Foo: it saves the struct instance to a 

local variable instead of using it in the return expression. The performed logic is identical 

for both cases, but we have minor changes on the C# level. Typically, we don’t expect any 

performance changes during simple code refactoring like this.
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 Results

Here is an example of results (Windows 10.0.17763.195, Intel Core i7-6700HQ CPU 

2.60GHz, .NET Core SDK 2.1.403, .NET Core 2.1.5, RyuJIT-x64):

 Method |     Mean |    StdDev | Ratio |

------- |---------:|----------:|------:|

    Foo | 6.597 ns | 0.0433 ns |  1.00 |

    Bar | 4.975 ns | 0.0439 ns |  0.75 |

As you can see, Bar works ~20–30% faster than Foo. How is that possible?

 Explanation

Let’s look at the generated IL code (Roslyn 2.9.0.63127):

// Foo()

.maxstack 1

.locals init (

  [0] valuetype Struct V_0

)

IL_00: ldc.i4.s   100

IL_02: newobj     System.Void System.Nullable`1::.ctor(!0)

IL_07: newobj     System.Void Struct::.ctor(System.Nullable`1)

IL_0c: stloc.0    // V_0

IL_0d: ldloca.s   V_0

IL_0f: call       System.Nullable`1 Struct::get_SomeValue()

IL_14: ret

// Bar()

.maxstack 2

.locals /*11000001*/ init (

  [0] valuetype Struct s

)

IL_00: ldloca.s   s

IL_02: ldc.i4.s   100

IL_04: newobj     System.Void System.Nullable`1::.ctor(!0)

IL_09: call       System.Void Struct::.ctor(System.Nullable`1)
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IL_0e: ldloca.s   s

IL_10: call       System.Nullable`1 Struct::get_SomeValue()

IL_15: ret

As you can see, there are some minor differences between these methods. Foo 

creates Struct via newobj, loads the result to a local variable, and loads the address of 

this variable. Meanwhile, Bar creates Struct via call (which saves the result to a local 

variable) and instantly loads the address of this variable. Both implementations are 

equivalent, but they use different IL instructions.

Now let’s look at the generated native code for Foo():

; Foo()

sub  rsp,18h

xor  eax,eax;                ; Initialize Struct

mov  qword ptr [rsp+10h],rax ; Store Struct into stack

mov  eax,64h                 ; eax = 100

mov  edx,1                   ; edx = 1

xor  ecx,ecx;                ; Initialize SomeValue

mov  qword ptr [rsp+8],rcx   ; Store SomeValue into stack

lea  rcx,[rsp+8]             ; rcx = pointer to SomeValue

mov  byte ptr [rcx],dl       ; SomeValue.HasValue = 1

mov  dword ptr [rcx+4],eax   ; SomeValue.Value = 100

mov  rax,qword ptr [rsp+8]   ; rax = pointer to SomeValue

mov  qword ptr [rsp+10h],rax ;  Store SomeValue to a different location on 

stack

mov  rax,qword ptr [rsp+10h] ; rax = pointer to SomeValue

add  rsp,18h

ret

As you can see, the stloc.0/ldloca.s pair forces RyuJIT to generate some 

redundant mov instructions. And here is the native code for Bar:

; Bar()

push  rax

xor   eax,eax                ; Initialize Struct

mov   qword ptr [rsp],rax    ; Store Struct into stack
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mov  eax,64h                 ; eax = 100

mov  edx,1                   ; edx = 1

lea   rcx,[rsp]              ; rcx = pointer to SomeValue

mov   byte ptr [rcx],dl      ; SomeValue.HasValue = 1

mov   dword ptr [rcx+4],eax  ; SomeValue.Value = 100

mov   rax,qword ptr [rsp]    ; rax = pointer to SomeValue

add   rsp,8

ret

It looks more efficient because it doesn’t have redundant instructions.

 Discussion

Any code refactorings that don’t change logic can change the generated IL code. Any 

changes in the IL code can unpredictably affect the efficiency of the generated code. 

When developers design benchmarks based on real-life scenarios, they often do some 

small refactorings to improve the readability of the benchmark. Unfortunately, these 

refactorings can introduce additional performance effects and spoil (or improve) the 

performance. When you are refactoring an existing benchmark, it’s recommended to 

verify that your code changes don’t have an impact on the results.

In such cases, the performance depends on the compiler version. The preceding 

example is valid for Roslyn 2.9.0.63127 (which is bundled in .NET Core SDK 2.1.403), but 

the behavior can be changed in future versions (see roslyn#302846 for details).

It’s a pretty common situation when minor changes in source code lead to 

interesting performance effects. For example, in StackOverflow question 53452713,7  

you can find a simple Java benchmark that becomes faster after replacing 2 * i * i by  

2 * (i * i).

This case study is based on StackOverflow question 52565479.8

6 https://github.com/dotnet/roslyn/issues/30284
7 https://stackoverflow.com/q/53452713
8 https://stackoverflow.com/q/52565479
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 Case Study 3: Try-Catch
A proper exception handling is important if you want to develop stable .NET 

applications. A lot of developers put try-catch blocks here and there “just in case.” They 

don’t expect performance penalty because exceptions are considered as rare events. It 

may seem that if the source code doesn’t throw any exceptions, the try-catch overhead 

shouldn’t be noticeable. Unfortunately, this is not always true because the JIT compiler 

can modify the generated native code when a try-catch block is added.

 Source code

Consider the following BenchmarkDotNet-based benchmarks:

public class Benchmarks

{

  private const int N = 93;

  [Benchmark(Baseline = true)]

  public long Fibonacci1()

  {

    long a = 0, b = 0, c = 1;

    for (int i = 1; i < N; i++)

    {

      a = b;

      b = c;

      c = a + b;

    }

    return c;

  }

  [Benchmark]

  public long Fibonacci2()

  {

    long a = 0, b = 0, c = 1;

    try

    {
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      for (int i = 1; i < N; i++)

      {

        a = b;

        b = c;

        c = a + b;

      }

    }

    catch {}

    return c;

  }

}

Here we have two methods, Fibonacci1 and Fibonacci2, which calculate the 

93rd Fibonacci number.9 However, Fibonacci2 wraps the main loop in try-catch. This 

code doesn’t throw any exceptions, so we probably shouldn’t expect any performance 

overhead because of it, right?

 Results

Here is an example of results (Windows 10.0.17763.195, Intel Core i7-6700HQ CPU 

2.60GHz, .NET Core 2.1.5, RyuJIT-x64):

     Method |      Mean |    StdDev | Ratio |

----------- |----------:|----------:|------:|

 Fibonacci1 |  41.07 ns | 0.1446 ns |  1.00 |

 Fibonacci2 | 102.93 ns | 0.3394 ns |  2.50 |

In this environment, Fibonacci2 works 2.5 slower than Fibonacci1.

 Explanation

Let’s look at the generated native code for Fibonacci1:

; Fibonacci1

xor  eax,eax       ; a = 0

mov  edx,1         ; c = 1

9 It equals to 12,200,160,415,121,876,738. It’s the largest Fibonacci number that can be represented 
using long.
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mov  ecx,1         ; i = 1

LOOP:

mov  r8,rdx        ; b = c

lea  rdx,[rax+r8]  ; c = a + b

inc  ecx           ; i++

cmp  ecx,5Dh       ; if (i < 93)

mov  rax,r8        ;   a = b

jl   LOOP          ;   goto LOOP

mov  rax,rdx       ; result = c

ret                ; return result

This implementation is pretty simple. The a, b, and c variables are represented using 

registers rax, r8, and rdx.

Now let’s look at the generated native code for Fibonacci2:

; Fibonacci2

sub  esp,10h                  ; Reserve space

lea  rbp,[rsp+10h]            ;   on stack

mov  qword ptr [rbp-10h],rsp  ;

xor  eax,eax                  ; a = 0

mov  qword ptr [rbp-8],1      ; c = 1

mov  edx,1                    ; i = 1

LOOP:

mov  rcx,qword ptr [rbp-8]    ; b = c

add  rax,rcx                  ; a += b

mov  qword ptr [rbp-8],rax    ; c = a

inc  edx                      ; i++

cmp  edx,5Dh                  ; if (i < 93)

mov  rax,rcx                  ;   a = b

jl   LOOP                     ;   goto LOOP

mov  rax,qword ptr [rbp-8]    ; result = c

lea  rsp,[rbp]                ; Recover stack pointer

pop  rbp                      ;

ret                           ; return result
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The a and b variables are still using registers rax and rcx. However, the c variable is 

placed on the stack (qword ptr [rbp-8]) instead of registers. Fibonacci2 works much 

slower than Fibonacci1 because the read/write operations with stack values take much 

more time than operations with registers.

The only difference between Fibonacci1 and Fibonacci2 is a try-catch in 

Fibonacci2. We don’t have any native instructions for exception handling because 

Fibonacci2 doesn’t throw any exceptions. However, the existence of the try-catch block 

forced RyuJIT to put the c variable on the stack, which spoiled the method performance.

 Discussion

This case study is based on StackOverflow question 8928403.10 In this question, the 

author asks why a method with try-catch works faster than a method without exception 

handling. But we have the opposite result with RyuJIT! Performance always depends on 

the environment. The question was asked in 2012; the original measurements used .NET 

Framework 2.0 with LegacyJIT-x86 and old versions of the C# compiler. Here is a quote 

from the Jon Skeet’s answer11:

Possibly the try/catch block forces more registers to be saved 

and restored, so the JIT uses those for the loop as well… which 

happens to improve the performance overall. It’s not clear 

whether it’s a reasonable decision for the JIT to not use as many 

registers in the “normal” code.

The underlying problem is the same (the JIT compiler uses registers in one case and 

the stack in another case), but the result is the opposite. That’s why it’s not a good idea 

to use such knowledge during performance optimizations: different JIT compilers use 

different algorithms that can be changed at any moment. However, this knowledge is 

extremely useful during performance investigations when you are trying to explain some 

interesting performance effects.

10 https://stackoverflow.com/q/8928403
11 https://stackoverflow.com/a/8928476
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 Case Study 4: Number of Calls
The number of calls in a method is an important factor for some JIT compiler heuristics. 

The overhead of these calls can be small, but it can force the JIT compiler to change the 

generated native code for other statements in the same method.

 Source code

Consider the following BenchmarkDotNet-based benchmarks:

public class X {}

[LegacyJitX86Job]

public class Benchmarks

{

  private const int N = 100001;

  [Benchmark(Baseline = true)]

  public double Foo()

  {

    double a = 1, b = 1;

    for (int i = 0; i < N; i++)

      a = a + b;

    return a;

  }

  [Benchmark]

  public double Bar()

  {

    double a = 1, b = 1;

    new X(); new X(); new X();

    for (int i = 0; i < N; i++)

      a = a + b;

    return a;

  }

}

Here we have two methods: Foo and Bar. Both methods add one double variable to 

another one in a loop. However, the Bar method has three additional constructor calls.

Chapter 7  CpU-BoUnd BenChmarks



417

 Results

Here is an example of results (Windows 10.0.17763.195, Intel Core i7-6700HQ CPU 

2.60GHz, .NET Framework 4.7.2, LegacyJIT-x86 v4.7.3260.0):

 Method |     Mean |    StdDev | Ratio |

------- |---------:|----------:|------:|

    Foo | 103.5 us | 0.4686 us |  1.00 |

    Bar | 309.7 us | 1.4324 us |  2.99 |

The Bar method works three times slower than the Foo method. The only difference 

that we have is three additional constructor calls in Bar. These calls should be executed 

almost instantly and they shouldn’t introduce a noticeable overhead. So, why do we have 

these results?

 Explanation

Let’s look at the generated native code for Foo (only the main part is shown):

; Foo()

xor    eax,eax      ; i = 0

LOOP:

fld1                ; load 1 into st(0)

faddp  st(1),st     ; st(1) += st(0)

inc    eax          ; i++

cmp    eax,186A1h   ; if (i < 100001)

jl     LOOP         ;   goto LOOP

Here we load 1 in the st(0) and add it to st(1). st(0) and st(1) are x87 FPU data 

registers (see [FPUx87] for details). Now let’s look at the generated native code for Bar:

; Bar()

mov     ecx,569952Ch

call    017130c8        ; new X();

mov     ecx,569952Ch

call    017130c8        ; new X();

mov     ecx,569952Ch

call    017130c8        ; new X();

xor     eax,eax         ; i = 0
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LOOP:

fld1                    ; load 1 into st(0)

fadd    qword ptr [esp] ; st(0) += [esp]

fstp    qword ptr [esp] ; [esp] = st(0)

inc     eax             ; i++

cmp     eax,186A1h      ; if (i < 100001)

jl      LOOP            ;   goto LOOP

Here we keep the result on the stack (qword ptr [esp]) and perform read/write 

stack operations on each loop iteration. At the beginning of the method, we can see 

three calls of the X constructor. These calls don’t have a noticeable overhead. However, 

LegacyJIT- x86 decided to use the stack for the calculations instead of registers because it 

uses the number of calls for this decision.

 Discussion

The described performance phenomena in the preceding example is valid only for 

LegacyJIT-x86; you will not observe a performance drop for this case study with other 

JIT compilers. However, the number of calls in a method still can be used by any JIT 

compiler as a factor for different optimizations. In general, you shouldn’t try to optimize 

methods by reducing the number of additional calls: this factor is important only in 

some specific cases. When you get a situation when adding/removing an additional call 

leads to unexpected performance changes (larger than the expected call duration), you 

should check how these calls affect the generated native code of the whole method.

A similar example was already discussed in Chapter 2 (“Conditional Jitting” section). 

This case study is based on StackOverflow question 32114308.12

 Summing Up
When we have local variables, the JIT compiler can store it into registers or on the 

stack. When these local variables are primitive types or structs, this decision may have 

a significant impact on performance. In this section, we covered several factors that are 

important for this decision:

12 https://stackoverflow.com/q/32114308
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• The number of fields in a struct definition.

• Explicitly introducing a local variable from an expression.

• Existence of a try-catch block that wraps the measured logic.

• The number of calls in a method.

When you design a small benchmark based on a real application, you can easily 

introduce some conditions that are important for JIT heuristics. It’s good to have a 

minimal benchmark that demonstrates an important performance effect. However, 

any changes in the source code may lead to additional unexpected performance 

changes. Be careful when you are prettifying your benchmarks! If you want to compare 

two small benchmarks or if you want to apply benchmark results for optimization of 

a real application, it’s a good practice to check how the JIT compiler handles the local 

variables.

Of course, some benchmarks can be huge and involve hundreds of additional 

methods. It’s almost impossible to check the native code for each invoked method in 

each performance investigation. Fortunately, you shouldn’t worry about the “stack vs. 
registers” problem in most cases: this problem actually affects performance in real-life 

benchmarks only infrequently. Meanwhile, when you hit this problem and get results 

you can’t explain, you have one more thing to check.

 Inlining
The topic of inlining has already been discussed in this book several times. When the 

JIT compiler inlines a method, it means that a call of this method is replaced by its body. 

It’s not easy to decide when we should use inlining because this optimization has some 

advantages and disadvantages.

Advantages:

• Eliminated call overhead

When we call a method, we always have some overhead. For 

example, we perform a couple of additional instructions (call, 

ret). Sometimes, we have to save some register values before 

the call and restore them after the call. Inlining eliminates this 

overhead. It can be important for hot methods that should be 

superfast.
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• Opportunity for other optimizations

Once a method is inlined, other optimizations like constant 

folding or code elimination are possible.

• Better register allocation

In some cases, when a method is inlined, the JIT compiler can 

use the registers better because it shouldn’t pass arguments to the 

called method.

Disadvantages:

• Increasing code size

On the CPU level, we have an instruction cache, which helps to 

load the executed code faster. Duplication of the inlined method 

native code across its usages may hurt the instruction cache 

performance. This effect is almost invisible on small programs, 

but it can affect applications with a huge source code base.

• Preventing further inlining

Imagine three methods A, B, C where A calls B and B calls C. If the 

JIT compiler inlines B into A, A may become too complicated, 

which will prevent further inlining C into A. Meanwhile, the C→B 

inlining can be more profitable than B→A inlining.

• Worse register allocation

You may think about a method as a scope for the JIT compiler 

where it tries to use registers as best as possible. Since the number 

of registers is limited, an inlined method may lead to worse 

conditions for register usage. In the previous section, we already 

discussed many cases when we have a performance drop because 

some variables are placed on the stack instead of registers.

Thus, inlining can be a good optimization or a bad optimization. Usually, the JIT 

compiler tries to make a decision that is best for performance. However, these decisions 

are not always obvious, and they may lead to unexpected performance phenomena. Let’s 

look at some case studies that help us to recognize situations when the knowledge about 

inlining is important for performance investigations.
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 Case Study 1: Call Overhead
When we have a hot method, we want to make it as fast as possible. Typically, a call of a 

simple method takes a few nanoseconds. If a method also takes a few nanoseconds, the 

call overhead may increase its duration twice. This overhead can be eliminated with the 

help of inlining. Unfortunately, it’s not always possible to inline a method. Let’s look at 

an example that shows what kind of performance drop we could get when it’s impossible 

to inline a hot method.

 Source code

Consider the following BenchmarkDotNet-based benchmarks:

public class Benchmarks

{

  private const int N = 1000;

  private int[] x = new int[N];

  private int[] y = new int[N];

  private int[] z = new int[N];

  [Benchmark(Baseline = true)]

  public void Foo()

  {

    for (int i = 0; i < z.Length; i++)

      z[i] = Sum(x[i], y[i]);

  }

  [Benchmark]

  public void Bar()

  {

    for (int i = 0; i < z.Length; i++)

      z[i] = VirtualSum(x[i], y[i]);

  }

  public int Sum(int a, int b) => a + b;

  public virtual int VirtualSum(int a, int b) => a + b;

}
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Here we have three int arrays of the same length: x, y, and z. In the declared 

benchmarks Foo and Bar, we perform z[i] = x[i] + y[i] for all array elements. 

Instead of the direct calculations, the sum operation is extracted to a separate method. 

Foo uses Sum (a nonvirtual method), and Bar uses VirtualSum (a virtual method).

 Results

Here is an example of results (macOS 10.14.2, Intel Core i7-4870HQ CPU 2.50GHz, .NET 

Core 2.1.3, RyuJIT-x64):

 Method |     Mean |    StdDev | Ratio |

------- |---------:|----------:|------:|

    Foo | 1.121 us | 0.0148 us |  1.00 |

    Bar | 2.311 us | 0.0196 us |  2.06 |

As you can see, Bar works two times slower than Foo.

 Explanation

VirtualSum can’t be inlined because it’s marked as a virtual method. According to the 

set of RyuJIT heuristics in .NET Core 2.1.3, virtual methods can’t be inlined here. Sum can 

be inlined because there are no factors that prevent inlining. Foo works two times faster 

than Bar because it used the inlined version of the sum operation and it doesn’t have the 

Sum call overhead.

 Discussion

Here are some conditions that typically prevent inlining:

• MethodImplOptions.NoInlining

We can annotate a method with 

[MethodImpl(MethodImplOptions.NoInlining)], which notifies 

the JIT compiler that this method shouldn’t be inlined. In this 

case, inlining can’t be applied even if a method is empty.

• Big methods

When a method is “big” (it contains too many IL instructions), it 

will not be inlined by default. There are no strict criteria for when 
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a method is “big.” Different JIT compilers have different rules for 

that. In some cases, we can ask the JIT compiler to inline a “big” 

method with the help of [MethodImpl(MethodImplOptions.

AggressiveInlining)], but it still can decide to not inline it.

• Exception handling

If a method contains a try/catch block, it can’t be inlined 

because such optimization will spoil the call stack during 

exception handling.

• Virtual methods (in most cases)

The JIT compiler can’t inline virtual methods (in most cases) 

because they can be overridden in a derived class. However, there 

are some special cases when it’s possible to inline both virtual and 

interface calls. Also, this behavior can be changed in the future 

(see coreclr#990813 for details).

• Recursive methods

Recursive methods can’t be inlined because it’s impossible 

to completely inline the whole recursive chain. However, it’s 

potentially possible to inline the “first recursive step.”

The JIT compilers in .NET have a lot of different heuristics that are responsible for 

the inlining policy. You can find some information about these heuristics in [Notario 

2004], [Morrison 2008], and [Ayers 2016]. Inlining is a complicated topic because it’s 

hard to predict how a particular rule affects the performance of a real application in 

general (e.g., see [Amit 2018]).

Typically, you may rely on some specific rules that definitely prevent inlining and be 

sure that a recursive method or a method with the [MethodImpl(MethodImplOptions.

NoInlining)] attribute can’t be inlined. However, you can’t be sure that a particular 

method will always be inlined: different JIT compilers (or different versions of the same 

JIT compiler) can have different inlining policies. To make the final decision, the JIT 

compiler does a series of “observations” about each method.14 Next, it combines these 

13 https://github.com/dotnet/coreclr/issues/9908
14 You can find some of these observations for RyuJIT here: https://github.com/dotnet/
coreclr/blob/v2.2.0/src/jit/inline.def
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observations with the help of very tricky rules. Here is my favorite method in the RyuJIT 

implementation15:

// EstimateCodeSize: produce (various) code size estimates based on

// observations.

//

// The "Baseline" code size model used by the legacy policy is

// effectively

//

//   0.100 * m_CalleeNativeSizeEstimate +

//  -0.100 * m_CallsiteNativeSizeEstimate

//

// On the inlines in CoreCLR's mscorlib, release windows x64, this

// yields scores of R=0.42, MSE=228, and MAE=7.25.

//

// This estimate can be improved slightly by refitting, resulting in

//

//  -1.451 +

//   0.095 * m_CalleeNativeSizeEstimate +

//  -0.104 * m_CallsiteNativeSizeEstimate

//

// With R=0.44, MSE=220, and MAE=6.93.

void DiscretionaryPolicy::EstimateCodeSize()

{

// Ensure we have this available.

  m_CalleeNativeSizeEstimate = DetermineNativeSizeEstimate();

// Size estimate based on GLMNET model.

// R=0.55, MSE=177, MAE=6.59

//

// Suspect it doesn't handle factors properly...

// clang-format off

  double sizeEstimate =

15 .NET Core 2.2.0 version is presented. You can find the full source code here: https://github.
com/dotnet/coreclr/blob/v2.2.0/src/jit/inlinepolicy.cpp
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    -13.532 +

      0.359 * (int) m_CallsiteFrequency +

     -0.015 * m_ArgCount +

     -1.553 * m_ArgSize[5] +

      2.326 * m_LocalCount +

      0.287 * m_ReturnSize +

      0.561 * m_IntConstantCount +

      1.932 * m_FloatConstantCount +

     -0.822 * m_SimpleMathCount +

     -7.591 * m_IntArrayLoadCount +

      4.784 * m_RefArrayLoadCount +

     12.778 * m_StructArrayLoadCount +

      1.452 * m_FieldLoadCount +

      8.811 * m_StaticFieldLoadCount +

      2.752 * m_StaticFieldStoreCount +

     -6.566 * m_ThrowCount +

      6.021 * m_CallCount +

     -0.238 * m_IsInstanceCtor +

     -5.357 * m_IsFromPromotableValueClass +

     -7.901 * (m_ConstantArgFeedsConstantTest > 0 ? 1 : 0) +

      0.065 * m_CalleeNativeSizeEstimate;

// clang-format on

// Scaled up and reported as an integer value.

  m_ModelCodeSizeEstimate = (int)(SIZE_SCALE * sizeEstimate);

}

As you can see, this method contains a lot of “magic” numbers that are involved in 

the decision process. If you have a huge experience of reading generated native code for 

C# methods, you can guess which method will be inlined in some cases for a particular 

version of the JIT compiler. However, the inlining policy is evolving all the time, which 

means that these assumptions can obsolete in future versions of the JIT compiler.
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 Case Study 2: Register Allocation
In the previous section, we covered many cases in which we have a performance drop 

because the JIT compiler decides to use the stack instead of the register for some 

variables. Let’s discuss one more case that involves inlining.

 Source code

Consider the following BenchmarkDotNet-based benchmarks:

public class Benchmarks

{

  private const int n = 100;

  private bool flag = false;

  [Benchmark(Baseline = true)]

  public int Foo()

  {

    int sum = 0;

    for (int i = 0; i < n; i++)

    for (int j = 0; j < n; j++)

    {

      if (flag)

        sum += InlinedLoop();

      sum += i * 3 + i * 4;

    }

    return sum;

  }

  [Benchmark]

  public int Bar()

  {

    int sum = 0;

    for (int i = 0; i < n; i++)

    for (int j = 0; j < n; j++)

    {

      if (flag)

        sum += NotInlinedLoop();
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      sum += i * 3 + i * 4;

    }

    return sum;

  }

  [MethodImpl(MethodImplOptions.AggressiveInlining)]

  public int InlinedLoop()

  {

    int sum = 0;

    for (int i = 0; i < 10; i++)

      sum += (i + 1) * (i + 2);

    return sum;

  }

  [MethodImpl(MethodImplOptions.NoInlining)]

  public int NotInlinedLoop()

  {

    int sum = 0;

    for (int i = 0; i < 10; i++)

      sum += (i + 1) * (i + 2);

    return sum;

  }

}

Here we have two benchmarks, Foo and Bar, which perform some calculations in a 

loop. They don’t calculate anything useful, but they will help us to show an interesting 

performance effect.

Both Foo and Bar have a call to another method with additional calculations. 

Foo calls InlinedLoop, which is marked with AggressiveInlining; Bar calls 

NotInlinedLoop, which is marked with NoInlining. The logic of InlinedLoop is identical 

to that of NotInlinedLoop; the only difference between them is the inlining policy.

The InlinedLoop and NotInlinedLoop calls are conditional: they will be performed 

only if flag == true. In our benchmarks, flag is always false, which means that we are 

not going to actually perform these calls. Since we don’t actually call these methods, we 

may think that we shouldn’t get any performance effects because of these calls. This is a 

valid assumption for some JIT compilers, but it’s not always true.
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 Results

Here is an example of results (Windows 10.0.17763.195, Intel Core i7-6700HQ CPU 

2.60GHz, .NET Framework 4.7.2, LegacyJIT-x86):

 Method |      Mean |    StdDev | Ratio |

------- |----------:|----------:|------:|

    Foo | 23.403 us | 0.2643 us |  1.00 |

    Bar |  8.495 us | 0.0560 us |  0.36 |

As you can see, Foo (with an AggressiveInlining call) works three times slower 

than Bar (with a NoInlining call).

 Explanation

Let’s look at the generated native code for Foo (only the main part is presented):

; Foo

xor   ebx,ebx                 ; sum = 0

xor   ecx,ecx                 ; i = 0

LOOP1:

xor   edx,edx                 ; edx = 0

mov   dword ptr [ebp-10h],edx ; j = 0

mov   eax,dword ptr [ebp-18h] ; eax = &this

movzx eax,byte ptr [eax+4]    ; eax = flag

mov   dword ptr [ebp-14h],eax ; [ebp-14h] = flag

LOOP2:

cmp   dword ptr [ebp-14h],0   ; if (flag == false)

je    AFTER_CALL              ;   goto AFTER_CALL

xor   edi,edi                 ; <InlinedLoop Body>

xor   esi,esi                 ; <InlinedLoop Body>

lea   eax,[esi+1]             ; <InlinedLoop Body>

lea   edx,[esi+2]             ; <InlinedLoop Body>

imul  eax,edx                 ; <InlinedLoop Body>

add   edi,eax                 ; <InlinedLoop Body>

inc   esi                     ; <InlinedLoop Body>
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cmp   esi,0Ah                 ; <InlinedLoop Body>

jl    014304A9                ; <InlinedLoop Body>

add   ebx,edi                 ; sum += InlinedLoop();

AFTER_CALL:

lea   eax,[ecx+ecx*2]         ; eax = i * 3

add   eax,ebx                 ; eax += sum

lea   ebx,[eax+ecx*4]         ; sum = eax + i * 4

inc   dword ptr [ebp-10h]     ; j++

cmp   dword ptr [ebp-10h],64h ; if (j < 100)

jl    LOOP2                   ;   goto LOOP2

inc   ecx                     ; i++

cmp   ecx,64h                 ; if (i < 100)

jl    LOOP1                   ;   goto LOOP1

As you can see, InlinedLoop was actually inlined (we asked the JIT compiler to do 

it via AggressiveInlining). The generated code for InlinedLoop is pretty efficient: it 

performs all the calculations using registers only. Unfortunately, this inlined snippet 

affected the rest of the method: the JIT compiler decided to keep the j loop counter on 

the stack (dword ptr [ebp-10h]).

Now let’s look at the generated native code for Bar (only the main part is presented):

; Bar

xor   esi,esi                 ; sum = 0

xor   edi,edi                 ; i = 0

LOOP1:

xor   ebx,ebx                 ; j = 0

LOOP2:

mov   eax,dword ptr [ebp-10h] ; eax = &this

cmp   byte ptr [eax+4],0      ; if (flag == false)

je    0143051A                ;   goto AFTER_CALL

mov   ecx,dword ptr [ebp-10h] ; ecx = &this

call  dword ptr ds:[1214D5Ch] ; call NotInlinedLoop

add   esi,eax                 ; sum += NotInlinedLoop();
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AFTER_CALL:

lea   eax,[edi+edi*2]         ; eax = i * 3

add   eax,esi                 ; eax += sum

lea   esi,[eax+edi*4]         ; sum = eax + i * 4

inc   ebx                     ; j++

cmp   ebx,64h                 ; if (j < 100)

jl    01430506                ;   goto LOOP2

inc   edi                     ; i++

cmp   edi,64h                 ; if (i < 100)

jl    014304FE                ;   goto LOOP1

It looks pretty similar to Foo, with two important differences. The first one: we have 

a direct call to NotInlinedLoop instead of the inlined body. The second one: both loop 

counters i and j are using registers edi and ebx. That’s why it works faster than Foo: 

operations with registers are usually more efficient.

 Discussion

If you remove the [MethodImpl(MethodImplOptions.AggressiveInlining)] attribute 

from the InlinedLoop method, it will not be inlined, and we will get the same duration 

for both methods. By default, LegacyJIT-x86 makes the right decision.

The preceding example looks too artificial because it doesn’t calculate anything 

useful. We discussed it because it allows showing disadvantages of inlining with a small 

number of lines. In real life, such a situation can arise in pretty complicated pieces 

of code that are hard to analyze. In most simple examples, inlining usually improves 

performance (or just doesn’t make it worse). It may create a false sense of confidence 

that inlining is always a good optimization.

Applying of AggressiveInlining for hot methods can improve performance, but 

you should be sure that it’s a good idea (such a decision requires careful measurements). 

Mindless usage of AggressiveInlining on all methods can lead to serious performance 

problems that are really hard to find.

 Case Study 3: Cooperative Optimizations
Inlining can be profitable for performance not only because of the call overhead 

elimination, but also because it can create opportunities for other optimizations.
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 Source code

Consider the following BenchmarkDotNet-based benchmarks:

public class Benchmarks

{

  private double x1, x2;

  [Benchmark(Baseline = true)]

  public double Foo()

  {

    return Calc(true);

  }

  public double Calc(bool dry)

  {

    double res = 0;

    double sqrt1 = Math.Sqrt(x1);

    double sqrt2 = Math.Sqrt(x2);

    if (!dry)

    {

      res += sqrt1;

      res += sqrt2;

    }

    return res;

  }

  [Benchmark]

  public double Bar()

  {

    return CalcAggressive(true);

  }

  [MethodImpl(MethodImplOptions.AggressiveInlining)]

  public double CalcAggressive(bool dry)

  {

    double res = 0;

    double sqrt1 = Math.Sqrt(x1);
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    double sqrt2 = Math.Sqrt(x2);

    if (!dry)

    {

      res += sqrt1;

      res += sqrt2;

    }

    return res;

  }

}

Here we have the Calc method with a bool argument dry. When dry is true, this 

method returns zero. When dry is false, it returns the sum of square roots of the x1 and 

x2 fields. We also have the CalcAggressive method with the same implementation, 

but it’s marked with [MethodImpl(MethodImplOptions.AggressiveInlining)]. 

Two benchmarks are presented: Foo, which calls Calc(true), and Bar, which calls 

CalcAggressive(true).

 Results

Here is an example of results (Windows 10.0.17763.195, Intel Core i7-6700HQ CPU 

2.60GHz, .NET Framework 4.7.2, LegacyJIT-x86):

 Method |      Mean |    StdDev |

------- |----------:|----------:|

    Foo | 1.5214 ns | 0.0972 ns |

    Bar | 0.0000 ns | 0.0127 ns |

As we can see, Foo takes ~1.5 nanoseconds and Bar works almost instantly. How is 

that possible?

 Explanation

Let’s look at the native generated code for Foo:

; Foo

push  ebp

mov   ebp,esp

mov   edx,1

call  dword ptr ds:[0F94D50h]   ; call Calc
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popebp

ret

; Calc

fldz                       ; load 0 into stack (res)

fld    qword ptr [ecx+4]   ; load x1 into registers

fsqrt                      ; sqrt(x1)

fld    qword ptr [ecx+0Ch] ; load x2 into registers

fsqrt                      ; sqrt(x2)

and    edx,0FFh            ; if (!dry)

je     012C04BA            ;   goto SUM

fstp   st(0)               ; discard sqrt2

fstp   st(0)               ; discard sqrt1

jmp    FINISH              ; goto FINISH

SUM:

fxch   st(1)               ; swap FPU registers

faddp  st(2),st            ; res += sqrt1

faddp  st(1),st            ; res += sqrt2

FINISH:

ret                        ; return result

In the Foo method, we call Calc, which always calculates values of sqrt(x1) and 

sqrt(x2). Only after that does it check the dry value: if it’s true, the calculated values 

are discarded.16 In our benchmark, dry is always true, but the JIT compiler doesn’t 

know about that. It will be better to move square root calculations inside the if 

(!dry) { } scope, but LegacyJIT-x86 is not smart enough: the generated code is pretty 

straightforward, and it exactly matches the original C# program.

Now let’s look at the native generated code for Bar:

; Bar

push   ebp

mov    ebp,esp

cmp    byte ptr [ecx+4],al

fldz                       ; load 0 into stack (res)

16 If you are not fully understand how FPU data registers (st(0), st(1), st(2)) work, it’s 
recommended to read [FPUx87].
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pop    ebp

ret

Because of the [MethodImpl(MethodImplOptions.AggressiveInlining)] attribute, 

LegacyJIT-x86 was able to inline CalcAggressive. After inlining, if (!dry) becomes 

if (false) (because dry is true), and the JIT compiler was able to completely eliminate 

this scope with res += sqrt1 and res += sqrt2 statements. After that, the sqrt1 and 

sqrt2 become unused variables and LegacyJIT-x86 decided to eliminate square root 

calculations as well. The final versions of the generated code (after all the optimizations) 

just return zero without any additional calculation.

In the BenchmarkDotNet output, we can also find the following warning for Bar: 

“The method duration is indistinguishable from the empty method duration.” According 

to the BenchmarkDoNet approach, the duration of an empty method with matching 

signature (like double Empty() { return 0; }) is considered zero. The Bar method 

contains instructions that take some time, but these instructions are considered as the 

call overhead, which is automatically subtracted from the actual measurements. That’s 

why we have 0 ns in the summary table.

 Discussion

Cooperative optimizations are very powerful and they can significantly improve the 

performance of your applications. Unfortunately, it’s not always easy to control them. In 

the preceding example, AggressiveInlining helped to get performance benefits from 

inlining and code elimination, which were working together on LegacyJIT-x86. However, 

you can’t always predict how your current JIT compiler will process all usages of the 

inlined method. You can optimize your code with the help of AggressiveInlining in 

some specific cases, but you should be sure that it doesn’t spoil your performance in other 

cases (like in the previous case study).

In the context of benchmarking, you should understand that cooperative 

optimizations are very fragile: any changes in the source code can enable or disable 

inlining policy for your methods and affect conditions for further optimizations.

 Case Study 4: The “starg” IL Instruction
We already know that inlining has some limitations. For example, virtual or recursive 

methods can’t be inlined. However, some of the inlining limitations are not so obvious 

(and, as usual, they can depend on the JIT compiler version).

Chapter 7  CpU-BoUnd BenChmarks



435

 Source code

Consider the following BenchmarkDotNet-based benchmarks:

public class Benchmarks

{

  [Benchmark]

  public int Calc()

  {

    return WithoutStarg(0x11) + WithStarg(0x12);

  }

  private static int WithoutStarg(int value)

  {

    return value;

  }

  private static int WithStarg(int value)

  {

    if (value < 0)

      value = -value;

    return value;

  }

}

In the Calc benchmark, we calculate the sum of two methods: WithoutStarg(0x11) 

and WithStarg(0x12). The WithoutStarg method just returns its argument. The 

WithStarg method also returns its argument, but it performs one additional check first: 

if the value is less than zero, it assigns -value back to this argument.

 Results

Here is an example of results (Windows 10.0.17763.195, Intel Core i7-6700HQ CPU 

2.60GHz, .NET Framework 4.7.2, LegacyJIT v4.7.3260.0):

           Job |      Mean |    StdDev |

-------------- |----------:|----------:|

 LegacyJIT-x64 | 0.0000 ns | 0.0000 ns |

 LegacyJIT-x86 | 1.7637 ns | 0.0180 ns |
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As you can see, Calc works instantly on LegacyJIT-x64, but it takes a few 

nanoseconds on LegacyJIT-x86.

 Explanation

We can find a hint which will help us to understand these results in the source code of 

the Decimal constructor from an integer value17:

public Decimal(int value) {

// JIT today can't inline methods that contains "starg" opcode.

// For more details, see DevDiv Bugs 81184: x86 JIT CQ:

// Removing the inline striction of "starg".

  int value_copy = value;

  if (value_copy >= 0) {

    flags = 0;

  }

  else {

    flags = SignMask;

    value_copy = -value_copy;

  }

  lo = value_copy;

  mid = 0;

  hi = 0;

}

Here we can see an interesting comment: it says that LegacyJIT-x86 can’t inline 

methods that contain the starg opcode. It stores the value on top of the evaluation 

stack in the argument slot at a specified index.18 The Decimal constructor is a small hot 

method in some programs, so it would be nice to inline it where it’s possible. In order to 

avoid LegacyJIT-x86 inlining limitations, we don’t have a value = -value assignment in 

this constructor. Instead, we have the value_copy = -value_copy assignment, which is 

performed on the value copy. This simple trick allows you to avoid the starg opcode on 

the IL level and to unblock inlining on LegacyJIT-x86.

17 https://github.com/dotnet/coreclr/blob/v2.1.5/src/mscorlib/src/System/Decimal.
cs#L157

18 You can find more information in the official documentation: https://docs.microsoft.com/
en-us/dotnet/api/system.reflection.emit.opcodes.starg
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Now let’s look at the IL code of the WithStarg method:

IL_0000: ldarg.0      // 'value'

IL_0001: ldc.i4.0

IL_0002: bge.s        IL_0008

IL_0004: ldarg.0      // 'value'

IL_0005: neg

IL_0006: starg.s      'value'

IL_0008: ldarg.0      // 'value'

IL_0009: ret

Here we have starg.s, which should block inlining of this method on LegacyJIT-x86. 

Let’s check this hypothesis and look at the native code for this method:

; Calc/LegacyJIT-x86

push  ebp

mov   ebp,esp

mov   ecx,12h                  ; ecx = 12h

call  dword ptr ds:[11B4D74h]  ; call WithStarg

add   eax,11h                  ; eax += 11h

pop   ebp

ret                            ; return eax

; WithStarg/LegacyJIT-x86

mov   eax,ecx                  ; eax = 12h

test  eax,eax                  ; if (eax >= 0)

jge   FINISH                   ;   goto FINISH

neg   eax                      ; eax = -eax

FINISH:

ret                            ; return eax

As we can see, we pass 12h to the WithStarg method, get the returned value, add 

11h to it, and return the sum. The WithoutStarg method was successfully inlined, so we 

don’t see the corresponding call. The WithStarg method wasn’t inlined and we can see 

its call overhead in the summary table (~1.8 ns).
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Now let’s look at the native code of this method on LegacyJIT-x64:

; Calc/LegacyJIT-x64

mov     eax, 12h

add     eax, 11h

ret

Both methods were inlined; Calc works almost instantly (we get the “method 

duration is indistinguishable from the empty method duration” message in the 

BenchmarkDotNet output).

 Discussion

Sometimes, the JIT compiler has nonobvious conditions that prevent inlining. Different 

JIT compilers have their own sets of inlining heuristics, which can be changed after 

runtime update. When a JIT compiler fails to inline a method, we have a corresponding 

ETW event that contains the fail reason. You can get this information with the help of 

the BenchmarkDotNet [InliningDiagnoser] attribute: it will notify you about all failed 

inlining optimizations. For the preceding example, we will get the following message: 

“Fail Reason: Inlinee writes to an argument.”

You can find more information about the discussed LegacyJIT-x86 limitation in 

[Akinshin 2015].

This case study is based on StackOverflow question 26369163.19

 Summing Up
Inlining is a powerful optimization. Here are some facts about it that are good to know:

• Inlining is critical for hot methods that take a few nanoseconds. 

When such a method is inlined, the method call overhead is 

eliminated. This optimization may increase the throughput of such a 

method noticeably.

• You can disable inlining of a specific method with the help of the 

[MethodImpl(MethodImplOptions.NoInlining)] attribute. There 

19 https://stackoverflow.com/q/26369163

Chapter 7  CpU-BoUnd BenChmarks

https://stackoverflow.com/q/26369163


439

are some other implicit factors that automatically disable inlining 

(exception handling, recursion, virtual modifier, and others).

• You can’t force the JIT compiler to always inline a method, 

but you can use the [MethodImpl(MethodImplOptions.

AggressiveInlining)] attribute to ask the JIT compiler to inline 

some methods (if possible) that are not inlined by default. For 

example, the JIT compiler doesn’t inline “huge” methods that contain 

“too many” IL opcodes (the “too many” threshold value depends 

on the specific JIT compiler implementation). In some cases, these 

“huge” methods can be inlined if AggressiveInlining is enabled.

• It’s not recommended to mindlessly apply AggressiveInlining to 

all methods. In general, the JIT compilers knows better when the 

inlining will be profitable. In some cases, we can get performance 

benefits with AggressiveInlining, but it may lead to performance 

degradations in other cases.

• Inlining is more than just a call overhead elimination. It’s especially 

profitable with other JIT compiler optimizations like constant folding 

or DCE. It also affects the register allocation: after inlining, the JIT 

compiler may get better or worse conditions for efficient register usage.

Knowledge about inlining is also important when you are writing handwritten 

benchmarks (which don’t use BenchmarkDotNet or other benchmarking frameworks). 

Consider the following code:

void Main()

{

  // Start timer1

  for (int i = 0; i < n; i++)

    Foo();

  // Stop timer1

  // Start timer2

  for (int i = 0; i < n; i++)

    Bar();

  // Stop timer2

}
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void Foo() { /* Benchmark body */ }

void Bar() { /* Benchmark body */ }

Here we want to compare the performance of Foo and Bar. Imagine that Foo was 

inlined in the Main method and Bar wasn’t. Even if Foo is actually slower than Bar, we 

can get the opposite result because of inlining. This particular case can be fixed with the 

help of MethodImplOptions.NoInlining:

[MethodImpl(MethodImplOptions.NoInlining)]

void Foo() { /* Benchmark body */ }

[MethodImpl(MethodImplOptions.NoInlining)]

void Bar() { /* Benchmark body */ }

Now both methods will not be inlined, which means that competition conditions 

are “fairer.” However, you can’t always control attributes for all methods (especially if 

you want to benchmark methods from third-party assemblies). In this case, you can 

benchmark a delegate that contains a reference to the benchmarked method.20

However, this doesn’t resolve all the issues. Imagine that a method is inlined in a 

real application, but it’s not inlined in the corresponding benchmark because you did 

some minor code changes that hit the JIT compiler inlining limitations. In this case, 

the benchmark results are not relevant to the situation that we get in real life. If you are 

using BenchmarkDotNet, you can get information about failed inlining with the help 

of the [InliningDiagnoser] attribute. You can also manually get this information via 

corresponding ETW events.

 Instruction-Level Parallelism
ILP is a powerful CPU technique that helps to improve the performance of your 

applications significantly. In this chapter, we will not going to discuss all the details 

of CPU internals: you don’t need this information for benchmarking. In practice, it’s 

enough just to know the general concepts. This knowledge will help you to design 

proper benchmarks and interpret the results correctly. If you want to know more about 

this topic, it’s recommended to read [Hennessy 2011]. In this book, we are just going to 

20 .NET Framework 4.7.2, .NET Core 2.2, and Mono 5.18 can’t inline delegates.
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discuss a series of case studies that demonstrate the performance effects of ILP on very 

simple benchmarks.

Let’s discuss the main concept of the ILP. On the CPU level, we have different 

execution units that are responsible for the processing of different instructions. While 

one execution unit performs the current instruction, other units are usually idle. Since 

this is not an efficient way to utilize your CPU, modern hardware allows execution 

of several instructions in parallel. Here we are not talking about multithreading: the 

parallelization is performed for a single thread on a single CPU core.

One of the key ILP mechanism is the out-of-order execution: the CPU can “look 

forward” at the “future” instructions and process them in advance (at the same time as 

the current instruction).

Another important ILP mechanism is instruction pipelining. When CPU is executing 

an instruction, it’s performing several execution “stages” (e.g., instruction fetching, 

instruction decoding, execution, writing results, and so on). When the first stages of the 

current instruction are already performed, we can start to perform these stages for the 

next instruction (we shouldn’t wait until the current instruction is completely finished).

If you open [Agner Instructions] (a list of CPU instruction performance 

characteristics for different CPUs), you will see that typically we have two different 

metrics: latency and reciprocal throughput expressed in CPU cycles. Some examples of 

these values for Intel Skylake are presented in Table 7-1.

Table 7-1. Latencies and Reciprocal Throughputs of some Skylake Instructions

Instruction Operands Latency Reciprocal throughput

moV r8/r16,r8/r16 1 0.25

moVQ x,x 1 0.33

pop r 2 0.5

pUsh r 3 1

VmaskmoVps m128,x,x 13 1

dpps x,x,i 13 1.5

dIV r8 23 6

FBLd m80 46 22

Frstor m 175 175
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For example, the latency of MOVQ x,x is one. It means that the duration of a single 

instruction (from start to end) takes one CPU cycle. The reciprocal throughput of this 

instruction is 0.33. This means that if we have a series of 3000 such instructions, they 

can be performed with 1000 CPU cycles (0.33 CPU cycles on average). However, it 

doesn’t mean that we are able to perform a single instruction using 0.33 CPU cycles: it’s 

impossible to execute any instruction faster than a single CPU cycle.

ILP allows getting better performance, but it makes it harder to measure individual 

instructions because any instruction has several performance metrics. Everything 

depends on how we use these instructions in our source code. In practice, the actual 

“average” instruction duration is between the latency and the reciprocal throughput. In 

some cases, it’s even impossible to measure the latency correctly because it’s impossible 

to write such a program that performs a series of the same instructions without ILP effects.

In this section, we are going to discuss four case studies that demonstrate how ILP 

may affect benchmark results.

 Case Study 1: Parallel Execution
ILP is a common problem during benchmarking that may lead to incorrect result 

interpretation. Let’s discuss a very simple example where this problem occurs.

 Source code

Consider the following BenchmarkDotNet-based benchmarks:

public class Benchmarks

{

  private const int n = 10001;

  private int x = 3;

  [Benchmark(Baseline = true)]

  public int Div1()

  {

    int a = 1;

    for (int i = 0; i < n; i++)

    {

      a /= x;

    }
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    return a;

  }

  [Benchmark]

  public int Div2()

  {

    int a = 1, b = 2;

    for (int i = 0; i < n; i++)

    {

      a /= x;

      b /= x;

    }

    return a + b;

  }

  [Benchmark]

  public int Div3()

  {

    int a = 1, b = 2, c = 3;

    for (int i = 0; i < n; i++)

    {

      a /= x;

      b /= x;

      c /= x;

    }

    return a + b + c;

  }

  [Benchmark]

  public int Div4()

  {

    int a = 1, b = 2, c = 3, d = 4;

    for (int i = 0; i < n; i++)

    {

      a /= x;

      b /= x;

      c /= x;
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      d /= x;

    }

    return a + b + c + d;

  }

  [Benchmark]

  public int Div5()

  {

    int a = 1, b = 2, c = 3, d = 4, e = 5;

    for (int i = 0; i < n; i++)

    {

      a /= x;

      b /= x;

      c /= x;

      d /= x;

      e /= x;

    }

    return a + b + c + d + e;

  }

}

Here we have five benchmarks. In each of them, we perform integer division 

operations in a loop. In Div1, all the divisions are performed with a single variable a. In 

Div2, the loop body contains two division operations with two independent variables a and 

b. In Div3, Div4, and Div5, we have three, four, and five operations on different variables.

 Results

Here is an example of results (Windows 10.0.17763.195, Intel Core i7-6700HQ CPU 

2.60GHz, .NET Framework 4.7.2, LegacyJIT-x64 v4.7.3260.0):

 Method |     Mean |    StdDev | Ratio |

------- |---------:|----------:|------:|

   Div1 |  75.5 us | 0.2012 us |  1.00 |

   Div2 |  75.5 us | 0.2196 us |  1.00 |

   Div3 |  80.6 us | 0.3359 us |  1.07 |

   Div4 | 100.0 us | 0.3588 us |  1.33 |

   Div5 | 126.1 us | 0.4532 us |  1.67 |
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As you can see, Div1 and Div2 have very similar durations. It may look strange 

because Div2 has two division operations instead of a single division in Div1. Div3 takes 

a little bit more time than Div2 (5 microseconds). Div4 takes 20 microseconds longer 

than Div3. Div5 takes 26 microseconds longer than Div5.

 Explanation

Let’s use Intel VTune Amplifier to get more metrics for our benchmarks. We write the 

Main method of the program in the following way:

var b = new Benchmarks();

b.Div1();

b.Div2();

b.Div3();

b.Div4();

b.Div5();

Also, we increase n to 100,000,000 (which will help to get meaningful results). Next, 

we profile this new program in the “Microarchitecture Exploration” mode. The results 

are presented in Figure 7-1.

Figure 7-1. VTune report for the “Parallel Execution” case study

In this report, we can see three essential columns:

• Clockticks: how many CPU clock ticks were performed

• Instruction Retired: how many instructions were executed

• CPI Rate (cycles per instruction rate): how many CPU clock ticks 

were performed per instruction on average
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The most interesting methods in the summary table are Div1 and Div2, which have 

very similar durations. We have this situation because the CPU was able to perform a 

/= x and b /=x in parallel. Let’s look at the VTune report again. The numbers of clock 

ticks for Div1 and Div2 are close to each other (they are not equal because the VTune 

profile session of a console application is not so accurate as BenchmarkDotNet execution 

toolchain). Meanwhile, the CPI Rate of Div2 is two times lower than the CPI Rate of Div1. 

This means that we were able to execute two times more instructions at the same time.

Div3 takes a little bit longer than Div2 because we are too close to the parallelism 

capacity. When we continue to add additional division operations in Div4 and Div5, the 

total duration noticeably increases because we reach the ILP capacity: we can’t perform 

additional divisions in parallel with existing operations. The CPI Rates for Div4 and Div5 

are almost the same, which proves that we hit the parallelism limitations.

 Discussion

ILP helps to execute code faster, but it makes it harder to write proper benchmarks. Also, 

we can’t extrapolate our conclusions to other benchmarks because of ILP. When we 

add an additional division operation in Div1, it doesn’t increase the method duration. 

This doesn’t mean that this operation is performed instantly. We can’t expect that 

this  additional division will not increase the duration of other methods. The actual 

performance cost of a single instruction always depends on the execution context: the 

kind of statements we have before and after this instruction is very important.

See also:

• StackOverflow question 5418873121

 Case Study 2: Data Dependencies
The capabilities of the ILP are limited by dependencies that we have in the code. Let’s 

look at the following method:

int Calc(int a, int b, int c)

{

  int d = a + b;

21 https://stackoverflow.com/q/54188731
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  int e = d * c;

  return e;

}

Here we can’t execute both arithmetic operations (a + b and d * c) in parallel 

because the second operation depends on the result of the first operation. It’s a pretty 

simple example of a data dependency. Let’s look at an example that shows how such 

dependencies can affect benchmark results.

 Source code

Consider the following BenchmarkDotNet-based benchmarks:

public class Benchmarks

{

  private int n = 1000001;

  private double x0, x1, x2, x3, x4, x5, x6, x7;

  [Benchmark(Baseline = true)]

  public void WithoutDependencies()

  {

    for (int i = 0; i < n; i++)

    {

      x0++; x1++; x2++; x3++;

      x4++; x5++; x6++; x7++;

    }

  }

  [Benchmark]

  public void WithDependencies()

  {

    for (int i = 0; i < n; i++)

    {

      x0++; x0++; x0++; x0++;

      x0++; x0++; x0++; x0++;

    }

  }

}
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Here we have two methods: WithoutDependencies and WithDependencies. In 

both cases, we are performing eight double increments in a loop. In the first case 

(WithoutDependencies), we are incrementing eight different variables. In the second 

case (WithDependencies), we are incrementing the same variable eight times.

 Results

Here is an example of results (macOS 10.14.2, Intel Core i7-4870HQ CPU 2.50GHz, .NET 

Core 2.1.3):

              Method |      Mean |    StdDev | Ratio |

-------------------- |----------:|----------:|------:|

 WithoutDependencies |  3.503 ms | 0.0327 ms |  1.00 |

    WithDependencies | 10.560 ms | 0.1149 ms |  3.02 |

As you can see, WithoutDependencies works three times faster than 

 WithDependencies.

 Explanation

The WithoutDependencies method works much faster because we don’t have any 

dependencies between the increment statements and the ILP can improve the loop 

performance. In the WithDependencies method, there is a dependency between the 

subsequent increments: we should finish the previous statement before we start the next 

one. Thus, we can’t improve the performance with the help of the ILP.

 Discussion

You may ask: “How do we have to evaluate the actual duration of the double increment?” 

The right answer: there is no such thing as the actual duration of double increment. You 

may ask: “Which benchmark is the correct one?” The right answer: both benchmarks are 

correct, but they are measuring different things. The application performance depends 

on how we use these increments in the source code. Any data dependencies may limit 

the ILP and reduce the performance.

In the instruction tables (like [Agner Instructions]), we can find the latency and 

reciprocal throughput of some instructions, but these values will not help us to guess the 

performance metrics of a method without actual measurements (however, they can help 

us to make a hypothesis that explains these measurements). These values correspond to 
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the “corner cases,” which are not useful in performance investigations without the full 

source code.

 Case Study 3: Dependency Graph
In the previous case study, it was obvious where we have data dependencies between 

instructions. However, these dependencies are not always obvious at first sight. The 

full data dependency graph may be pretty complicated, which makes it harder to guess 

where the ILP can optimize our code.

 Source code

Consider the following BenchmarkDotNet-based benchmarks:

public class Benchmarks

{

  private double[] a = new double[100];

  [Benchmark]

  public double Loop()

  {

    double sum = 0;

    for (int i = 0; i < a.Length; i++)

      sum += a[i];

    return sum;

  }

  [Benchmark]

  public double UnrolledLoop()

  {

    double sum = 0;

    for (int i = 0; i < a.Length; i += 4)

      sum += a[i] + a[i + 1] + a[i + 2] + a[i + 3];

    return sum;

  }

}

Chapter 7  CpU-BoUnd BenChmarks



450

Here we have two benchmarks: Loop and UnrolledLoop. Both of them calculate the 

sum of elements in a double array. However, in the UnrolledLoop method we have the 

manual unrolling: instead of a single addition per loop iteration, we add four elements 

to sum each time. For simplification, we use a constant that is divided by four as the array 

length.

 Results

Here is an example of results (macOS 10.14.2, .NET Core 2.1.3, Intel Core i7-4870HQ 

CPU 2.50GHz):

       Method |     Mean |    StdDev |

------------- |---------:|----------:|

         Loop | 82.04 ns | 1.3756 ns |

 UnrolledLoop | 51.69 ns | 0.6441 ns |

As you can see, UnrolledLoop works ~30–40% faster.

 Explanation

The addition of double values is not an associative operation. It means that (a + b) + c 

is not always equal to a + (b + c) (we will discuss this fact in detail in the “Arithmetic” 

section). Thus, the CPU is not allowed to reorder subsequent additions. It creates 

implicit dependencies between operations. You can see the dependency graphs in 

Figure 7-2 (the Loop graph is shown on the top half; the UnrolledLoop graph is shown on 

the bottom half).
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In the Loop method, we have subsequent dependencies between all operations. On 

the first iteration, we should perform sum += a[0]. Only after that, we can perform sum 

+= a[1]. This operation requires the value of sum after the first iteration: these additions 

can’t be executed in parallel. Only after the second operation, we can perform the third one. 

There is no place for the ILP here: all the statements should be executed one after another.

The situation in the UnrolledLoop method is much better: the expressions a[0] + 

a[1] + a[2] + a[3] and a[4] + a[5] + a[6] + a[7] are independent: there are no 

dependencies between them. Thus, we can calculate the values of the a[i] + a[i + 1] 

+ a[i + 2] + a[i + 3] expression from different iterations in parallel. Of course, we 

can’t execute all of them in parallel because of the ILP limitations. However, the situation 

is still better than in the Loop case. That’s why we have ~30–40% performance boost.

 Discussion

In the discussed case studies, the dependencies between statements were pretty 

simple. In real applications, the dependency graph may be pretty complicated, which 

complicates the analysis. In some cases, we don’t have dependencies on the C# level, but 

they exist on the native code level.

Figure 7-2. visualization for the “Dependency Graph” case study
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For example, in coreclr#993,22 a performance problem in RyuJIT was discovered (this 

problem has already been fixed). In the example in this issue, RyuJIT generated native 

code that used the same register for two different operations. The CPU was not able to 

apply ILP there because the second operations should wait until this register will be 

“free” for further calculations. Such situations are rare, but you should be ready to work 

with such problems.

You can find another example of an unobvious data dependency in StackOverflow 

question 25078285.23 The author got a 50% drop after replacing a 32-bit loop counter 

with a 64-bit counter. The investigation uses a C++ example and contains a lot of native 

code listings, but it worth reading it if you like interesting performance case studies.

It’s not always easy to analyze the full dependency graph and explain performance 

measurements,24 but it’s usually possible using only general knowledge about the ILP 

without low-level hardware details.

 Case Study 4: Extremely Short Loops
Modern hardware contains a lot of low-level “features” that can unpredictably affect 

your benchmarks. Let’s discuss one more interesting example.

 Source code

Consider the following program:

public class Program

{

  private static int n = 10000000;

  private static int rep = 100;

  static void Main()

  {

    MeasureAll();

    MeasureAll();

  }

22 https://github.com/dotnet/coreclr/issues/993
23 https://stackoverflow.com/q/25078285
24 There are some tools that can do it for you. Here is a good example: https://godbolt.org/z/
baOZWy.
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  public static void MeasureAll()

  {

    Measure("Loop 00", () => Loop00());

    Measure("Loop 01", () => Loop01());

    Measure("Loop 02", () => Loop02());

    Measure("Loop 03", () => Loop03());

    Measure("Loop 04", () => Loop04());

    Measure("Loop 05", () => Loop05());

    Measure("Loop 06", () => Loop06());

    Measure("Loop 07", () => Loop07());

  }

  public static void Measure(string title, Action action)

  {

    var stopwatch = Stopwatch.StartNew();

    for (int i = 0; i < rep; i++)

      action();

    stopwatch.Stop();

    Console.WriteLine(title + ": " + stopwatch.ElapsedMilliseconds);

  }

  public static void Loop00()

  {

    for (int i = 0; i < n; i++) { }

  }

  public static void Loop01()

  {

    for (int i = 0; i < n; i++) { }

  }

  public static void Loop02()

  {

    for (int i = 0; i < n; i++) { }

  }
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  public static void Loop03()

  {

    for (int i = 0; i < n; i++) { }

  }

  public static void Loop04()

  {

    for (int i = 0; i < n; i++) { }

  }

  public static void Loop05()

  {

    for (int i = 0; i < n; i++) { }

  }

  public static void Loop06()

  {

    for (int i = 0; i < n; i++) { }

  }

  public static void Loop07()

  {

    for (int i = 0; i < n; i++) { }

  }

}

Here we have eight empty loops, which are measured with the help of a 

Stopwatch instance. We purposefully aren’t using BenchmarkDotNet here, in order to 

completely eliminate the possibility of hitting unknown BenchmarkDotNet bugs. The 

performance effect that we are going to discuss is so noticeable that we can neglect good 

benchmarking practices like warm-up and distribution analysis.

 Results

Here is an example of results (Windows 10.0.17763.195, Intel Core i7-6700HQ CPU 

2.60GHz, .NET Framework 4.7.2, RyuJIT-x64):

Loop 00: 727

Loop 01: 352
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Loop 02: 371

Loop 03: 369

Loop 04: 752

Loop 05: 352

Loop 06: 348

Loop 07: 349

Loop 00: 692

Loop 01: 344

Loop 02: 351

Loop 03: 349

Loop 04: 702

Loop 05: 345

Loop 06: 347

Loop 07: 351

As you can see, Loop00 and Loop04 work two times slower than other loops.

 Explanation

I don’t have a proper explanation for these results. Unfortunately, Intel keeps many low- 

level hardware features secret and doesn’t include them in the official manuals. Anyway, 

this effect is pretty stable (I reproduced it on 30+ different computers), so it should be 

discussed. Here I want to share some of my investigation notes.

Observation 1.

This effect is valid only for RyuJIT-x64; it’s not reproduced on LegacyJIT-x86, 

LegacyJIT- x64, or MonoJIT. RyuJIT generates the following code for the empty loop:

LOOP:

inc eax

cmp eax,edx

jl LOOP

I also have a reproduction case on pure assembly that proves that it’s a CPU 

microarchitecture phenomenon (it’s not affected by the .NET runtime). Also, it works the 

same way on Windows, Linux, and macOS (it’s not affected by the operating system).
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Observation 2.

This effect is valid only for Intel Haswell and subsequent Intel Core processor 

families like Broadwell, Skylake, and Kaby Lake. It’s not reproduced on older processors 

like Sandy Bridge and Ivy Bridge.

Observation 3.

In the preceding example, we have “slow” and “fast” loops. The exact indexes of the 

slow loops depend on the memory layout of the generated native code. Any changes in 

the source code can change the layout and corresponding results. To be more specific, 

a loop is slow when the cmp/jl pair is placed on the border of two 64-byte segments like 

this:

00007FFEB1AF377C  inc  eax

00007FFEB1AF377E  cmp  eax,edx

00007FFEB1AF3780  jl   00007FFEB1AF377C

I checked a lot of different hypothesis including features of the instruction cache, 

MacroFusion,25 and branch prediction,26 but all of them were rejected.

Observation 4.

The CPI Rate for the fast loop is 0.333, which means that CPU executes all three 

instructions at one cycle. The CPI Rate for the slow loop is 0.666. That’s why it works two 

times slower than the fast loops.

If you have any plausible explanations of this performance effect, please let me 

know.

 Discussion

Despite the fact that I have no explanation for this effect, the effect does exist. It can 

easily spoil your nanobenchmarks if you don’t know about it, because the actual 

performance depends not only on your source code, but also on the memory layout of 

the generated native code. Let’s say we want to compare the performance of the two 

25 This kind of optimization can “join” the cmp and jl instruction into a single “macro instruction” 
that can be performed in one CPU cycle. We have the following sentence in the [Intel Manual] 
(section 2.3.2.1): “Macro fusion does not happen if the first instruction ends on byte 63 of a 
cache line, and the second instruction is a conditional branch that starts at byte 0 of the next 
cache line.” It looks similar to our situation, but it’s not the actual problem.

26 We will discuss this in the next section.
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methods, Foo and Bar, which take a few nanoseconds. In order to get reliable results, we 

wrap them in loops as follows:

for (int i = 0; i < n; i++)

  Foo();

for (int j = 0; j < n; j++)

  Bar();

If one loop will hit the border of the 64-byte segment, and another loop will not, the 

measurement will be spoiled by different ILP strategies. There is an approach to resolve 

this problem called loop unrolling. For example, we can rewrite the loop for the Foo 

method like this:

for (int i = 0; i < n / 16; i++)

{

  Foo(); Foo(); Foo(); Foo();

  Foo(); Foo(); Foo(); Foo();

  Foo(); Foo(); Foo(); Foo();

  Foo(); Foo(); Foo(); Foo();

}

In this case, we resolve the preceding ILP problem and reduce the loop overhead. This 

trick is used in BenchmarkDotNet by default, which allows getting reliable results even for 

nanobenchmarks. You can control the number of calls in the loop body with the help of 

UnrollFactor property (check out the official documentation for details); the default value 

is 16. If you are using your own short loops inside your benchmarks, BenchmarkDotNet will 

not protect you from this problem or other problems that are specific for short loops (e.g., 

see StackOverflow question 5369596127). When you have a high-speed operation inside a 

loop (which takes several nanoseconds), it’s always recommended to unroll it manually.

 Summing Up
The ILP is a common source of mistakes in benchmark result interpretation. The ability 

to execute several instructions of the same thread in parallel on the same CPU core is 

“hidden” from developers on the hardware level: you can’t control it, and it’s pretty hard 

to analyze how it affects your code.

27 https://stackoverflow.com/q/53695961
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In this section, we discussed four kinds of possible problems:

• We can observe no performance changes after adding a statement in 

the source code because it can be executed in parallel with existing 

instructions.

• The source code may contain dependencies between statements, 

which prevents ILP. Thus, you can have two benchmarks that perform 

the same number of native instructions but have different durations 

because of these dependencies.

• The data dependency graph may be pretty complicated because 

some of the dependencies can be implicit.

• The performance of a short loop can depend on the memory layout 

of the native code (which you can’t control). Fortunately, it doesn’t 

affect unrolled versions of this loops.28

You should understand that there are no incorrect benchmarks29; there are only 

incorrect interpretations of the benchmark results. Each benchmark is a program that 

prints some numbers. The task of a performance engineer is to combine these numbers 

with knowledge about the environment (hardware, operating system, runtime, and so 

on) and make correct conclusions about the measured code.

 Branch Prediction
Branch prediction is another CPU technique that helps to increase possibilities for 

the ILP. We already know that the out-of-order execution helps to look at the further 

instructions and execute them ahead of time if it’s possible. It works pretty well when we 

have a linear program without any branches. But what if we have a program like this:

28 Here is a more correct version of this statement: “I had never observed situations when ILP 
affected huge loops noticeably in simple benchmarks.” I’m sure that it’s possible to find a specific 
case when it’s important. However, you probably shouldn’t worry about it because it’s hard to 
hit such cases in real life. Meanwhile, the described problem with small loops actually affects 
many simple nanobenchmarks.

29 Usually we say that a benchmark is incorrect when it doesn’t measure the metrics that it has to 
measure.
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if (flag)

  Foo();

else

  Bar();

It’s impossible to actually perform Foo or Bar before we get the value of flag. Since a 

typical program contains a lot of if conditions, ternary operators, switch statements, and 

loops, it becomes pretty hard to get proper benefits from the out-of-order execution. The 

situation becomes much better with the help of the branch predictor. This is a part of 

the CPU that tries to guess which branch will be taken based on the previously evaluated 

condition values. Internally, this is a very complicated piece of hardware. We are not 

going to cover its internals because you don’t need low-level knowledge of branch 

prediction algorithms in most cases. In practice, it’s enough just to understand the basic 

concept. In this section, we will look at four case studies that show how the input data 

may affect the performance of the same program. This will help you to design better 

benchmarks based on the branches that you have in your code.

 Case Study 1: Sorted and Unsorted Data
When we want to measure the duration of a method, we typically focus on the source 

code and the environment. However, there is one more performance space component 

that we usually forget: the input data. Let’s look an example that shows how it can affect 

the performance metrics.

 Source code

Consider the following BenchmarkDotNet-based benchmark:

public class Benchmarks

{

  private const int n = 100000;

  private byte[] sorted = new byte[n];

  private byte[] unsorted = new byte[n];

  [GlobalSetup]

  public void Setup()

  {
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    var random = new Random(42);

    for (int i = 0; i < n; i++)

      sorted[i] = unsorted[i] = (byte) random.Next(256);

    Array.Sort(sorted);

  }

  [Benchmark(Baseline = true)]

  public int SortedBranch()

  {

    int counter = 0;

    for (int i = 0; i < sorted.Length; i++)

      if (sorted[i] >= 128)

        counter++;

    return counter;

  }

  [Benchmark]

  public int UnsortedBranch()

  {

    int counter = 0;

    for (int i = 0; i < unsorted.Length; i++)

      if (unsorted[i] >= 128)

        counter++;

    return counter;

  }

  [Benchmark]

  public int SortedBranchless()

  {

    int counter = 0;

    for (int i = 0; i < sorted.Length; i++)

      counter += sorted[i] >> 7;

    return counter;

  }

  [Benchmark]

  public int UnsortedBranchless()
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  {

    int counter = 0;

    for (int i = 0; i < unsorted.Length; i++)

      counter += unsorted[i] >> 7;

    return counter;

  }

}

Here we have two byte arrays: sorted and unsorted. Both arrays contain the same 

set of random elements in a different order: the sorted array contains sorted elements, 

and the unsorted array contains randomly shuffled elements. In the SortedBranch and 

UnsortedBranch benchmarks, we enumerate the corresponding arrays and calculate 

the number of elements that are greater than or equal to 128 with the help of a simple 

if statement like if (sorted[i] >= 128) counter++. In the SortedBranchless and 

UnsortedBranchless benchmarks, we perform the same logic, but instead of the if 

statement, we increment the counter by an expression like sorted[i] >> 7. When an 

array element is greater than or equal to 128, this expression will be equal to 1, which 

means that counter will be incremented by 1. When an array element is less than 128, 

this expression will be equal to 0, which means that counter will not be changed. As you 

can see, these algorithms are equivalent, but the last two benchmarks are branchless 

(the loop bodies don’t contain any branches).

 Results

Here is an example of results (macOS 10.14.2, Intel Core i7-4870HQ CPU 2.50GHz, .NET 

Core 2.1.3):

             Method |      Mean |    StdDev | Ratio |

------------------- |----------:|----------:|------:|

       SortedBranch |  65.75 us | 0.6622 us |  1.00 |

     UnsortedBranch | 424.04 us | 4.9999 us |  6.45 |

   SortedBranchless |  65.82 us | 0.4978 us |  1.00 |

 UnsortedBranchless |  65.03 us | 0.8578 us |  1.00 |

As you can see, SortedBranch works six to seven times faster than UnsortedBranch. 

Meanwhile, SortedBranchless and UnsortedBranchless have approximately the same 

duration.
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 Explanation

Let’s imagine that the branch predictor is a small creature who is living inside the 

CPU. In our example, this creature will have a short memory: it will remember only 

the last value of the condition that it’s trying to predict. It will always assume that the 

condition will have the same value we observed last time. Let’s say it has to predict 

values of the a[i] >= 128 expression for the following small array: a = {0, 32, 64, 

96, 128, 160, 192, 224}. In this case, this creature will perform the following chain of 

reasoning:

• a[0] >= 128 (it’s false because a[0] == 0)

“I don’t have a previous value of this condition. Probably, it’s false.”

The prediction is correct.

• a[1] >= 128 (it’s false because a[1] == 32)

“Last time this expression was false. Probably, it’s false again.”

The prediction is correct.

• a[2] >= 128 (it’s false because a[2] == 64)

“Last time this expression was false. Probably, it’s false again.”

The prediction is correct.

• a[3] >= 128 (it’s false because a[3] == 96)

“Last time this expression was false. Probably, it’s false again.”

The prediction is correct.

• a[4] >= 128 (it’s true because a[4] == 128)

“Last time this expression was false. Probably, it’s false again.”

The prediction is incorrect.

• a[5] >= 128 (it’s true because a[5] == 160)

“Last time this expression was true. Probably, it’s true again.”

The prediction is correct.

• a[6] >= 128 (it’s true because a[6] == 192)
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“Last time this expression was true. Probably, it’s true again.”

The prediction is correct.

• a[7] >= 128 (it’s true because a[7] == 224)

“Last time this expression was true. Probably, it’s true again.”

The prediction is correct.

Here we get seven of eight correct predictions. This is a pretty good result! Now let’s 

do the same for another array which contains the same elements in another order: a = 

{224, 0, 192, 32, 160, 64, 128, 96}.

• a[0] >= 128 (it’s true because a[0] == 224)

“I don’t have a previous value of this condition. Probably, it’s false.”

The prediction is incorrect.

• a[1] >= 128 (it’s false because a[1] == 0)

“Last time this expression was true. Probably, it’s true again.”

The prediction is incorrect.

• a[2] >= 128 (it’s true because a[2] == 192)

“Last time this expression was false. Probably, it’s false again.”

The prediction is incorrect.

• a[3] >= 128 (it’s false because a[3] == 32)

“Last time this expression was true. Probably, it’s true again.”

The prediction is incorrect.

• a[4] >= 128 (it’s true because a[4] == 160)

“Last time this expression was false. Probably, it’s false again.”

The prediction is incorrect.

• a[5] >= 128 (it’s false because a[5] == 64)

“Last time this expression was true. Probably, it’s true again.”
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The prediction is incorrect.

• a[6] >= 128 (it’s true because a[6] == 128)

“Last time this expression was false. Probably, it’s false again.”

The prediction is incorrect.

• a[7] >= 128 (it’s false because a[7] == 96)

“Last time this expression was true. Probably, it’s true again.”

The prediction is incorrect.

In this case, all eight predictions are incorrect.

Of course, the real branch predictors are much smarter than our imaginary creature 

and they have much more memory for the condition value history. However, the general 

idea is the same: they try to predict future values based on existing observations. When 

these values follow a specific pattern (e.g., all of the values are equal), it’s much easier to 

predict future values than when the values are completely random.

When the prediction is correct, we can evaluate the corresponding correct branch 

out of order and get noticeable performance benefits.

When the prediction is incorrect, we evaluate the corresponding incorrect branch out 

of order. When we get the actual value of the condition, we have to revert the evaluation 

results and evaluate another branch. Such a situation is known as branch mispredict and 

it has a huge performance penalty because we have to spend time on reverting existing 

results and evaluating another branch without out-of-order benefits.

That’s why UnsortedBranch works so much slower than SortedBranch: when we 

are working with the unsorted array, we have a huge branch mispredict rate. We don’t 

see a difference between the SortedBranchless and UnsortedBranchless benchmarks 

because both methods don’t contain conditions which involve the array elements. They 

work as fast as SortedBranch because they don’t have a performance penalty because of 

the branch mispredict.

 Discussion

Branch prediction is another technique that’s good for performance, but not so good for 

benchmarking. When you have branches in the source code, it’s impossible to determine 

its “actual” duration in a specific environment in general because this duration depends 

on the input data. Proper benchmark design, in this case, requires checking different 

input patterns that can give you different measurements.

Chapter 7  CpU-BoUnd BenChmarks



465

This case study is based on StackOverflow question 11227809.30 In the most 

popular answer to this question, you can find another interesting branch prediction 

interpretation based on trains and railroad junctions.

 Case Study 2: Number of Conditions
Let’s say that we have a simple if/else block:

if (/* Expression */)

{

  /* Statement1 */

}

else

{

  /* Statement2 */

}

When we are working with C# source code, we often consider such expression as 

an atomic unit. On the C# level, we have exactly two possibilities: the expression is 

true (Statement1 should be executed) or the expression is false (Statement2 should be 

executed). This is a good mental model when we are thinking about the program logic. 

However, when we are thinking about performance and branch prediction, we can have 

more possibilities here in the case of a composite expression.

 Source code

Consider the following BenchmarkDotNet-based benchmarks:

public class Benchmarks

{

  private const int n = 100000;

  private int[] a = new int[n];

  private int[] b = new int[n];

  private int[] c = new int[n];

30 https://stackoverflow.com/q/11227809
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  [Params(false, true)]

  public bool RandomData;

  [GlobalSetup]

  public void Setup()

  {

    if (RandomData)

    {

      var random = new Random(42);

      for (int i = 0; i < n; i++)

      {

        a[i] = random.Next(2);

        b[i] = random.Next(2);

        c[i] = random.Next(2);

      }

    }

  }

  [Benchmark(Baseline = true)]

  public int OneCondition()

  {

    int counter = 0;

    for (int i = 0; i < a.Length; i++)

      if (a[i] * b[i] * c[i] != 0)

        counter++;

    return counter;

  }

  [Benchmark]

  public int TwoConditions()

  {

    int counter = 0;

    for (int i = 0; i < a.Length; i++)

      if (a[i] * b[i] != 0 && c[i] != 0)

        counter++;

    return counter;

  }
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  [Benchmark]

  public int ThreeConditions()

  {

    int counter = 0;

    for (int i = 0; i < a.Length; i++)

      if (a[i] != 0 && b[i] != 0 && c[i] != 0)

        counter++;

    return counter;

  }

}

Here we have three int arrays, a, b, and c, and three benchmarks, OneCondition, 

TwoConditions, and ThreeConditions. All the benchmarks calculate the number of 

cases when a[i] != 0 && b[i] != 0 && c[i] != 0. In the ThreeConditions method, 

we just use this expression without any modifications. In the TwoConditions method, 

we replaced “a[i] != 0 && b[i] != 0” with “a[i] * b[i] != 0” (we assume that 

the element values are small enough and the multiplication can be evaluated without 

overflow). In the OneCondition method, we replaced the whole expression with “a[i] * 

b[i] * c[i] != 0”.

Also, we have the RandomData parameter. When RandomData is true, we fill all arrays 

by random numbers from 0 to 1. When RandomData is false, we don’t fill arrays, which 

means that all elements are zeros.

 Results

Here is an example of results (macOS 10.14.2, Intel Core i7-4870HQ CPU 2.50GHz, .NET 

Core 2.1.3, RyuJIT-x64):

          Method | RandomData |      Mean |    StdDev | Ratio |

---------------- |----------- |----------:|----------:|------:|

    OneCondition |      False | 130.15 us | 1.9242 us |  1.00 |

   TwoConditions |      False |  89.68 us | 1.5718 us |  0.69 |

 ThreeConditions |      False |  58.51 us | 0.4505 us |  0.45 |

                 |            |           |           |       |

    OneCondition |       True | 227.79 us | 1.7919 us |  1.00 |

   TwoConditions |       True | 419.46 us | 2.9244 us |  1.84 |

 ThreeConditions |       True | 717.50 us | 6.7728 us |  3.15 |
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As you can see, when RandomData is false, OneCondition is the slowest benchmark, 

and ThreeConditions is the fastest one. When RandomData is true, we have the opposite 

situation: OneCondition is the fastest benchmark, and ThreeConditions is the slowest one.

 Explanation

When RandomData is false, OneCondition is the slowest benchmark because it performs 

more operations than other benchmarks. The integer multiplication is a “heavy” 

operation; it takes much more time than a comparison of an integer number with 

zero or the && operation. OneCondition has two multiplications and one comparison; 

TwoConditions has one multiplication, two comparisons, and one && operation; 

ThreeConditions has three comparisons and two && operations. The methods with more 

multiplication operations take more time.

When RandomData is true, the branch prediction is starting to affect performance 

because we have a high branch mispredict rate. Instead of working with the whole 

expression, the branch prediction is trying to predict individual comparisons separately.

Now let’s look at the ThreeConditions native code:

; ThreeConditions/RyuJIT-x64

sub    rsp,28h                    ; Move stack pointer

xor    eax,eax                    ; counter = 0

xor    edx,edx                    ; i = 0

mov    r8,qword ptr [rcx+8]       ; r8 = &a

cmp    dword ptr [r8+8],0         ; if (a.Length <= 0)

jle    FINISH                     ;   goto FINISH

START:

mov    r9,r8                      ; r9 = &a

cmp    edx,dword ptr [r9+8]       ; if (i >= a.Length)

jae    OUT_OF_RANGE               ;   goto OUT_OF_RANGE

movsxd r10,edx                    ; r10 = i

cmp    dword ptr [r9+r10*4+10h],0 ; if (a[i] == 0)

je     CONTINUE                   ;   goto CONTINUE

mov    r9,qword ptr [rcx+10h]     ; r9 = &b

cmp    edx,dword ptr [r9+8]       ; if (i >= b.Length)

jae    OUT_OF_RANGE               ;   goto OUT_OF_RANGE

cmp    dword ptr [r9+r10*4+10h],0 ; if (b[i] == 0)
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je     CONTINUE                   ;   goto CONTINUE

mov    r9,qword ptr [rcx+18h]     ; r9 = &c

cmp    edx,dword ptr [r9+8]       ; if (i >= c.Length)

jae    OUT_OF_RANGE               ;   goto OUT_OF_RANGE

cmp    dword ptr [r9+r10*4+10h],0 ; if (c[i] == 0)

je     CONTINUE                   ;   goto CONTINUE

inc    eax                        ; counter++

CONTINUE:

inc    edx                        ; i++

cmp    dword ptr [r8+8],edx       ; if (i < a.Length)

jg     START                      ;   goto START

FINISH:

add    rsp,28h                    ; Restore stack pointer

ret                               ; return counter

OUT_OF_RANGE:

call   IndexOutOfRangeException   ; throw IndexOutOfRangeException

int    3                          ;

As you can see, inside the a[i] != 0 && b[i] != 0 && c[i] != 0 expression, we 

have six jump instructions! Three of them are range checks, which are always false in 

the preceding example. The other three jumps correspond to the a[i] != 0, b[i] != 0, 

and c[i] != 0 checks. First of all, the branch predictor should predict the value of a[i] 

!= 0. If it is false, the whole expression is false. If it is true, the branch predictor should 

predict the value of b[i] != 0. If it is false, the whole expression is false. If it is true, the 

branch predictor should predict the value of c[i] != 0. Since all of the arrays contain 

random data, we will suffer from branch mispredict three times.

The mispredict penalty in this case is much bigger than the duration of a 

multiplication operation. That’s why ThreeConditions is the slowest method. 

TwoConditions works faster because it suffers from mispredict two times. In the case of 

the OneCondition method, there is at most one branch mispredict per iteration.

 Discussion

One of the most popular benchmarking goals is to determine which method is faster. 

Even if we know the exact environment, performance may still depend on the input 

data. As you can see, the OneCondition method can be the fastest one or the slowest one 

depending on the content of the arrays.
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This case study is based on StackOverflow question 35531369.31

 Case Study 3: Minimum
In this case study, we will try to measure the performance of two simple methods 

that calculate a minimum of two numbers. We will benchmark the two following 

implementations:

int MinTernary(int x, int y)

{

  return x < y ? x : y;

}

int MinBitHacks(int x, int y)

{

  return x & ((x - y) >> 31) | y & (~(x - y) >> 31);

}

The first implementation looks obvious, but it has one significant problem: it could 

suffer from branch mispredictions because of a condition in the expression. Fortunately, 

it is possible to rewrite it without a branch with the help of bit hacks.

Here we calculate (x-y); the sign of this expression depends on which number is less. 

Then, (x-y) >> 31 gives a bit mask that contains only zeros or ones. Next, we calculate 

an inverted mask: ~(x - y) >> 31. Now we and our operands and the corresponding bit 

masks (the minimum number get the 11...11 mask). That’s all: the or operator returns 

the correct result. Here is an example for x=8 and y=3 (assuming 8-bit numbers):

Expression     | Binary   | Decimal

     x         | 00001000 | 8

       y       | 00000011 | 3

     x-y       | 00000101 | 5

    (x-y)>>31  | 00000000 | 0

   ~(x-y)>>31  | 11111111 | -1

x&( (x-y)>>31) | 00000000 | 0

y&(~(x-y)>>31) | 00000011 | 3

Result         | 00000011 | 3

31 https://stackoverflow.com/q/35531369
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As you can see, there is no branch here: we compute the minimum using only bit 

operations.

 Source code

Consider the following BenchmarkDotNet-based benchmarks:

public class Benchmarks

{

  const int N = 100001;

  private int[] a = new int[N];

  private int[] b = new int[N];

  private int[] c = new int[N];

  [Params(false, true)]

  public bool RandomData;

  [GlobalSetup]

  public void Setup()

  {

    if (RandomData)

    {

      var random = new Random(42);

      for (int i = 0; i < N; i++)

      {

        a[i] = random.Next();

        b[i] = random.Next();

      }

    }

  }

  [Benchmark]

  public void Ternary()

  {

    for (int i = 0; i < N; i++)

    {

      int x = a[i], y = b[i];
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      c[i] = x < y ? x : y;

    }

  }

  [Benchmark]

  public void BitHacks()

  {

    for (int i = 0; i < N; i++)

    {

      int x = a[i], y = b[i];

      c[i] = x & ((x - y) >> 31) | y & (~(x - y) >> 31);

    }

  }

}

Here we have two benchmarks, Ternary and BitHacks, which put the minimum 

value of a[i] and b[i] to c[i] in a loop. Each benchmark has its own way to calculate 

the minimum: Ternary uses the ternary operations (with a branch), and BitHacks uses 

bit hacks (without branches).

Also, we have the RandomData parameter. When RandomData is true, we fill the a and 

b arrays with random numbers. When RandomData is false, we don’t fill arrays, which 

means that all elements are zeros.

 Results

Here is an example of results (Windows 10.0.17763.195, Intel Core i7-6700HQ CPU 

2.60GHz, .NET Framework 4.7.2 (JIT 4.7.3260.0); Mono x64 5.180.225):

   Method |          Job | RandomData |     Mean |    StdDev |

--------- |------------- |----------- |---------:|----------:|

  Ternary | LegacyJitX64 |      False | 136.0 us | 1.9197 us |

 BitHacks | LegacyJitX64 |      False | 170.3 us | 1.1214 us |

  Ternary | LegacyJitX86 |      False | 142.3 us | 1.2358 us |

 BitHacks | LegacyJitX86 |      False | 177.6 us | 1.6017 us |

  Ternary |         Mono |      False | 157.8 us | 1.3883 us |

 BitHacks |         Mono |      False | 231.0 us | 4.5545 us |

  Ternary |    RyuJitX64 |      False | 126.0 us | 1.4962 us |
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 BitHacks |    RyuJitX64 |      False | 172.8 us | 1.9703 us |

  Ternary | LegacyJitX64 |       True | 498.2 us | 4.3987 us |

 BitHacks | LegacyJitX64 |       True | 171.4 us | 0.9027 us |

  Ternary | LegacyJitX86 |       True | 577.1 us | 5.5484 us |

 BitHacks | LegacyJitX86 |       True | 179.5 us | 1.4957 us |

  Ternary |         Mono |       True | 159.3 us | 1.2456 us |

 BitHacks |         Mono |       True | 229.0 us | 2.0781 us |

  Ternary |    RyuJitX64 |       True | 504.3 us | 5.2434 us |

 BitHacks |    RyuJitX64 |       True | 173.1 us | 1.0211 us |

And here are the mean values regrouped into a better summary table (without 

information about the standard deviation):

              | RandomData=False    | RandomData=True     |

              | Ternary  | BitHacks | Ternary  | BitHacks |

------------- | -------- | -------- | -------- | -------- |

LegacyJIT-x86 | 142.3 us | 177.6 us | 577.1 us | 179.5 us |

LegacyJIT-x64 | 136.0 us | 170.3 us | 498.2 us | 171.4 us |

RyuJIT-x64    | 126.0 us | 172.8 us | 504.3 us | 173.1 us |

Mono          | 157.8 us | 231.0 us | 159.3 us | 229.0 us |

When RandomData is false, the BitHacks method always works more slowly 

than Ternary. When RandomData is true, the BitHacks method works faster on 

LegacyJIT-x86, LegacyJIT-x64, RyuJIT-x64, but not on Mono.

 Explanation

First of all, let’s discuss the situation on .NET Framework (LegacyJIT-x86, 

LegacyJIT- x64, RyuJIT-x64). When RandomData is false, BitHacks works more slowly 

than Ternary because it contains more instructions. When RandomData is true, Ternary 

gets a performance penalty because of the branch mispredicts. The BitHacks method 

duration is not affected by the RandomData value because it doesn’t contain conditional 

logic in the loop body.
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The situation becomes much more interesting on Mono. We can make a few 

interesting observations about it:

• Ternary always works faster than BitHacks on Mono (even when 

RandomData is true).

• Mono version of the Ternary method works much faster than the 

same code on .NET Framework when RandomData is true.

• We get approximately the same duration for RandomData=False and 

RandomData=True on Mono for both benchmarks.

Let’s look at the native code. For simplification, we will look at the generated code for 

MinTernary and MinBitHacks methods. Here is the corresponding listing for RyuJIT-x64:

; MinTernary/RyuJIT-x64

cmp  edx,r8d ; if (x < y)

jl   LESS    ;   goto LESS

mov  eax,r8d ; result = y

ret          ; return y

LESS:

mov  eax,edx ; result = x

ret          ; return x

This looks very straightforward: we just compare x and y and return the minimum 

value. Now let’s look at the same method on Mono:

; MinTernary/Mono5.180.225-x64

sub    $0x18,%rsp     ; move stack pointer

mov    %rsi,(%rsp)    ; save rsi on stack

mov    %rdi,0x8(%rsp) ; save rdi on stack

mov    %rdx,%rdi      ; rdi = x

mov    %r8,%rsi       ; rsi = y

cmp    %esi,%edi      ; compare x and y

mov    %rsi,%rax      ; rax = rsi (y)

cmovl  %rdi,%rax      ; rax = rdi (x) if (x < y)

mov    (%rsp),%rsi    ; restore rsi from stack

mov    0x8(%rsp),%rdi ; restore rdi from stack
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add    $0x18,%rsp     ; restore stack pointer

retq                  ; return rax

Here Mono uses the Conditional move (the cmovl instruction). The cmovl %rdi,%rax 

moves the value from %rdi to %rax only if the previous cmp instruction “decided” that x 

< y. The execution of the cmovl instruction is not affected by the branch predictor. The 

mono implementation of Ternary doesn’t have branch mispredict performance penalty 

because there is no branch on the native code level (despite the fact that we have a 

condition in the source C# code).

Now we can explain our observation. The RandomData value doesn’t have a 

performance impact on the Ternary and BitHacks methods on Mono because neither 

of them contain branches. The BitHacks method takes more time than the Ternary 

method because it contains more “heavy” instructions. The Ternary method works 

faster on Mono than on .NET Framework when RandomData is true because the Mono 

implementation doesn’t actually have branches (.NET Framework implementation 

contains the jmp instruction) and it doesn’t have the branch mispredict penalty.

 Discussion

All of the main performance space components (source code, environment, input data) are 

important. In the preceding example, we can’t say which method (Ternary or BitHacks) is 

faster: the performance depends on the environment and the input data at the same time. 

Even if you see an if statement in a C# program, it doesn’t mean that you will get a real 

branch on the native code level: everything depends on the C# and JIT compilers.

Branchless versions of different algorithms may look interesting because they are not 

affected by branch mispredict. This makes it easier to analyze the performance of such 

methods (we shouldn’t enumerate different input data sets).

There is a cool project called movfuscator32 that can transform a program into a 

series of the mov instructions. Both programs (the original one and its movfuscated 

version) are equivalent. From the academic point of view, it’s a very interesting project 

because it allows making branchless versions of any program. Unfortunately, the 

movfuscated programs are superslow, which makes them unusable.33

32 https://github.com/xoreaxeaxeax/movfuscator
33 You can try to play in the branchless DOOM; the source code can be found here: https://
github.com/xoreaxeaxeax/movfuscator/tree/master/validation/doom. It takes 
approximately 7 hours to render a single frame.
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See also:

• coreclr#2161534: “Branchless TextInfo.ToLowerAsciiInvariant / 

ToUpperAsciiInvariant”

This case study is based on [Akinshin 2016a].

 Case Study 4: Patterns
In the first branch prediction case study (“Sorted and Unsorted Data”), we imagined 

that the branch predictor is a creature who remembers only the latest evaluated value of 

each condition. The real branch predictors are much smarter; they can perform correct 

predictions even if the data follows a specific pattern.

 Source code

Consider the following BenchmarkDotNet-based benchmark:

public class Benchmarks

{

  private int[] a = new int[100001];

  [Params(

    "000000000000",

    "000000000001",

    "000001000001",

    "001001001001",

    "010101010101",

    "random"

    )]

  public string Pattern;

  [GlobalSetup]

  public void Setup()

  {

    var rnd = new Random(42);

34 https://github.com/dotnet/coreclr/pull/21615
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    for (int i = 0; i < a.Length; i++)

      a[i] = Pattern == "random"

        ? rnd.Next(2)

        : Pattern[i % Pattern.Length] - '0';

  }

  [Benchmark(Baseline = true)]

  public int Run()

  {

    int counter = 0;

    for (int i = 0; i < a.Length; i++)

      if (a[i] == 0)

        counter++;

      else

        counter--;

    return counter;

  }

}

Here we have an int array that is filled by zeros and ones according to the specified 

pattern. In the only benchmark, we compare each element of the array with zero: if it 

equals to zero, we increment counter; otherwise, we decrement counter. Thus, the 

numbers of instruction are the same for all kinds of patterns.

 Results

Here is an example of results (macOS 10.14.2, Intel Core i7-4870HQ CPU 2.50GHz, .NET 

Core 2.1.3):

      Pattern |      Mean |    StdDev | Ratio |

------------- |----------:|----------:|------:|

 000000000000 |  86.30 us | 0.5490 us |  1.00 |

 000000000001 |  90.75 us | 0.5556 us |  1.05 |

 000001000001 |  95.63 us | 0.4887 us |  1.11 |

 001001001001 | 109.50 us | 0.5972 us |  1.27 |

 010101010101 | 141.40 us | 0.4198 us |  1.64 |

       random | 434.80 us | 3.5712 us |  5.04 |

Chapter 7  CpU-BoUnd BenChmarks



478

As you can see, the benchmark with the 000000000000 pattern is the fastest one, and 

the benchmark with the random pattern is the slowest one.

 Explanation

The branch predictor provides the best performance when all of the condition values 

are the same. In this case, we don’t have branch mispredict at all. When the pattern 

is random, we have the highest branch mispredict rate (and the worst performance) 

because it’s pretty hard to predict random values. We also have some “intermediate” 

results between these two cases: the branch predictor is able to “recognize” some 

specific patterns. In the preceding example, the worst pattern is 010101010101 because 

the predicted value is changing on each iteration. However, the benchmark with this 

pattern still works three times faster than the random case.

 Discussion

If you want to know more about branch prediction internals, it’s recommended to read 

[Intel Manual], [Rohou 2015], [Edelkamp 2016], [Luu 2017], and [Mittal 2018]. The 

branch predictor is a very complicated part of CPU; different CPU models have different 

branch prediction algorithms. They may involve some unobvious factors; some parts of 

these algorithms can be kept secret. Here is a quote from [Agner Microarch]:

3.8 Branch prediction in Intel Haswell, Broadwell and Skylake

The branch predictor appears to have been redesigned in the 

Haswell, but very little is known about its construction.

The measured throughput for jumps and branches varies between 

one branch per clock cycle and one branch per two clock cycles 

for jumps and predicted taken branches. Predicted not taken 

branches have an even higher throughput of up to two branches 

per clock cycle.

The high throughput for taken branches of one per clock was 

observed for up to 128 branches with no more than one branch 

per 16 bytes of code. If there is more than one branch per 16 bytes 

of code then the throughput is reduced to one jump per two 

clock cycles. If there are more than 128 branches in the critical 

part of the code, and if they are spaced by at least 16 bytes, then 
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apparently the first 128 branches have the high throughput and 

the remaining have the low throughput.

These observations may indicate that there are two branch 

prediction methods: a fast method tied to the μop cache and the 

instruction cache, and a slower method using a branch target 

buffer.

As you can see, it’s pretty hard to learn all the details of branch predictor internals 

on all existing CPUs. However, you usually don’t need this knowledge in practice: you 

can design great benchmarks and analyze the results correctly with the help of the core 

concept of branch prediction.

 Summing Up
Branch prediction increases the power of the ILP capabilities near branches. Here are 

some conclusions based on the discussed case studies:

• Performance depends on the input data. Even if we perform the 

same number of instructions each time, a method duration may be 

different depending on the branch conditions.

• If we have a composite expression like “a && b && c” as a branch 

condition, we can consider it as an atomic unit in the C# code flow. 

On this level, we have only two options: the expression is true (and 

we take the branch) or the expression is false (and we don’t take the 

branch). However, it’s translated to three jump instructions on the 

native code level. This, the branch predictor has to perform three 

independent predictions. In the worst case, we can get three branch 

mispredictions for this expression.

• Even if you have an explicit branch on the C# level (e.g., an if 

statement or an expression with the ternary operator), some JIT 

compilers can be smart enough to replace it with a branchless native 

implementation. In this case, the code execution will not be affected 

by random data because the branch predictor has nothing to predict.

• Usually, the best case for a branch predictor is a situation when the 

branch condition has the same value all the time. The worst case is 
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a situation when the branch condition values are random. However, 

there are a lot of “intermediate” cases: modern branch predictors 

are able to “recognize” some regular patterns and provide good 

performance. It will be still worse than the best case, but it can be 

much better than the worst case with random data.

When you are designing a benchmark with branches, you should carefully check 

different input data patterns. Of course, you shouldn’t enumerate all kinds of patterns 

for each condition in each benchmark. Usually, it’s enough to check the best case (all 

condition values are the same), the worst case (all condition values are random), and 

some real cases (with data from real-life scenarios). Typically, these cases provide 

enough measurements for conclusions.

 Arithmetic
Arithmetic operations like addition and multiplication are very common in many kinds 

of programs. It’s very easy to use them, but it’s not so easy to benchmark them (especially 

when the calculations involve floating-point numbers).

Usually, we skip low-level explanations of different effects because you don’t actually 

need them during benchmarking. In this section, we have to briefly discuss operations 

with floating-point types like float, double, and decimal: it will help to understand 

some performance results of benchmarks that involve arithmetic operations.

The float and double types follow the IEEE 754 standard, which states that a 

floating- point number is represented by a sign S, an exponent E, and a mantissa M which 

can be converted to the real value by the following rule:

V M
s E Ebias= -( ) × × -1 21.

After this formula, most developers stop reading texts about floating-point numbers 

because things become too complicated and confusing. Instead of the classic theory, we 

will use another approach, which was introduced in [Sanglard 2017] by Fabien Sanglard. 

According to the Sanglard interpretation, a floating-point number is represented by 

a sign, a window between two consecutive powers of two, and an offset within that 

window. All numbers can be splitted into nonoverlapped intervals (windows): [0.125; 

0.25), [0.25; 0.5), [0.5; 1), [1; 2), [2; 4), and so on. Each window also can be split into 

nonoverlapped subintervals (buckets). If we want to convert a number to the IEEE 754 
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notation, we should find the window that contains this number. The index of the window 

is the exponent value. Next, we should find the bucket inside the window that contains 

the number. The bucket index (offset) is the mantissa value. If the number is negative, we 

should do the same for the absolute value of this number and put 1 in the sign bit.

Unfortunately, we can’t represent every real number in computer memory: the range 

and the precision depends on the number of bits that we have. In Table 7-2, you can see 

the main characteristics of the 32-bit, 64-bit, and 80-bit floating-point numbers.

Table 7-2. Characteristics of the Floating-Point Numbers

Sign Exponent Mantissa Digits Lower Upper Ebias

32bit 1 8 23 ≈7.2 1.2 ⋅ 10−38 3.4 ⋅ 10+38 127

64bit 1 11 52 ≈15.9 2.3 ⋅ 10−308 1.7 ⋅ 10+308 1023

80bit 1 15 64 ≈19.2 3.4 ⋅ 10−4932 1.1 ⋅ 10+4932 16383

For example, a 32-bit number contains 1 bit for the sign, 8 bits for the exponent, and 

23 bits for the mantissa. It’s enough to represent numbers from 1.2 ⋅ 10−38 to 3.4 ⋅ 10+38, 

but we can keep approximately 7.2 digits for each number.

Let’s do a simple exercise and calculate the real value of the following IEEE 754 32-bit 

number35:

Sign Exponent                Mantissa

   0 10011100 11011100110101100101001

• The sign S is zero, which means that the number is positive (1 

denotes negative numbers).

• The exponent E is 100111002100111002 or 15610. In order to find 

the window, we should subtract Ebias from it: this trick helps to 

encode very small and very huge numbers using a non-negative 

number as an exponent. For 32-bit numbers, Ebias = 127(see 

Table 7-2), E − Ebias = 156 − 127 = 29. Thus, our window is [229; 230] or 

[536,870,912; 1,073,741,824].

35 You can explore the details of this number here: https://float.exposed/0x4e6e6b29
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• The mantissa M is 1101110011010110010100121101110011010110

01010012 or 7,236,39310. Since we have 23 bits in the mantissa, the 

window should be divided into 223 (8,388,608) buckets; the index of 

our bucket (the offset within the window) is 7,236,393.

Our window is [536,870,912; 1,073,741,824]. If we split into 223 subintervals, we get 64 

as the bucket size. Since we know the bucket index (the offset), we can easily calculate 

the value:

 V = + × =536 870 912 64 7236393 1 000000064  

The same value can be obtained with the classic formula. In this formula, we use 1.M 

because the mantissa has the leading 1 by default; it helps to save one bit in memory. 

The value of 1.M is 1.110111001101011001010012 or 15'625'00110 ⋅ 2−23. Thus, we get:

 
V = -( ) × ×( ) × = × =- -1 15 625 001 2 2 15 625 001 2 1 000 000 064

0 23 156 127 6
 

In .NET, we have only two native types that follow the IEEE 754 representation: float 

(32-bit) and double (64-bit). .NET doesn’t have a type for 80-bit floating-point numbers, 

but the runtime still can use such values for intermediate calculations. There is one 

additional standard type that can handle real values: decimal (128-bit). However, this 

is not a native type; it’s a struct. It has a custom implementation, based on four int 

fields,36 which doesn’t follow the IEEE 754 standard. It was designed for financial and 

monetary calculations. In C#, you can specify the type that you want to use with the help 

of special postfix: 1.0f is float, 1.0d is double, 1.0m is decimal.

Each floating-point type has its own set of “features.” For example, if we convert 

1,000,000,064 to float and print it in the 10-digit form (((float)1000000064).

ToString("G10")), we will get 1000000060 instead of 1000000064. Despite the fact that 

1,000,000,064 is perfectly represented in IEEE 754, the runtime rounds it because the 

float precision is not enough to handle 10-digit numbers. This number can be perfectly 

represented in decimal. Another interesting fact: 1000000064.00m.ToString() will print 

1000000064.00 because decimal keeps the knowledge about two zeros after the decimal 

point. You can find more interesting facts about decimals in [Skeet 2008].37

36 You can find its source code here: https://referencesource.microsoft.com/#mscorlib/
system/decimal.cs

37 You can also find it here: http://csharpindepth.com/Articles/General/Decimal.aspx
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On the hardware level, there are several sets of instructions that can operate with 

IEEE 754 numbers. The first x86-compatible instruction set that supports IEEE 754 is 

x87: it was introduced in the first math coprocessor by Intel: Intel 8087. Later, Intel 

designed other instruction sets like SSE and AVX, which also support IEEE 754 operations.

Different JIT compilers use different sets of instructions for float and double 

operations. For example, LegacyJIT-x86 knows how to work only with x87. LegacyJIT-x64 

is better; it knows how to work with SSE (if it’s available). RyuJIT is even better; it knows 

how to work with AVX (if it’s available).

Most of the classic arithmetic rules don’t work with floating-point numbers. Here is 

one of the most famous IEEE 754 equations38:

 0 1 0 2 0 3. . .d d d+ ¹  

We have such situations because 0.1d, 0.2d, and 0.3d can’t be perfectly presented in 

IEEE 754 notation:

0.1d ~ 0.100000000000000005551115123125783

+0.2d ~ 0.200000000000000011102230246251565

-------------------------------------------

        0.300000000000000044408920985006262

 0.3d ~ 0.299999999999999988897769753748435

Many arithmetic rules don’t work with float and double in general: 

(a + b) + c ≠ a + (b + c), (a ⋅ b) ⋅ c ≠ a ⋅ (b ⋅ c), (a + b) ⋅ c ≠ a ⋅ c + b ⋅ c, ax + y ≠ ax ⋅ ay, and so 

on. Such behavior is not surprising for people who know IEEE 754. However, there is an 

important fact about floating-point numbers in .NET that developers usually don’t know: 

operations with float and double are nondeterministic. This means that the same 

program can produce different floating-point results under different conditions.

Here is my favorite example from [Skeet 2008]39:

static float Sum(float a, float b) => a + b;

static float x;

static void Main()

{

38 See also: https://0.30000000000000004.com/
39 You can also find it here: http://csharpindepth.com/Articles/General/FloatingPoint.aspx
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        x = Sum(0.1f, 0.2f);

  float y = Sum(0.1f, 0.2f);

  Console.WriteLine(x == y);

  // y = y + 1;

  // Console.WriteLine(y);

  // GC.KeepAlive(y);

}

It seems that this program should always print True. However, LegacyJIT-x86 will 

prints True only in the DEBUG mode; in the RELEASE mode, we will get False. How is 

that possible? We can find a clue in the specifications:

ECMA-335, I.12.1.3 “Handling of floating-point data types”

The nominal type of the variable or expression is either float32 

or float64, but its value can be represented internally with 
additional range and/or precision.

In the RELEASE mode, LegacyJIT-x86 uses an 80-bit floating-point number for 

y. We don’t have the 80-bit floating-point type in .NET, but the runtime can use it for 

intermediate calculations. If you uncomment one of the commented lines, it may force 

LegacyJIT- x86 to use float for y, which changes the program output.

If you want to understand all nuances of using floating-point types, it’s 

recommended to read [Goldberg 1991].

 Case Study 1: Denormalized Numbers
Let’s continue to talk about IEEE754. In Table 7-3, you can see the lower window bound, 

the upper window bound, and the bucket size for different exponent values in the 

context of 32-bit numbers.
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All the exponents follow the same rule except the last one (E=0). When the exponent 

equals to zero, we get an additional window that covers numbers from zero to 2-126; the 

bucket size is 2-149 (we have the same value in the E=1 case). These numbers (except zero) 

are known as denormalized numbers. Typically, operations with denormalized numbers 

have serious performance issues. Let’s learn how serious they can be by an example.

 Source code

Consider the following BenchmarkDotNet-based benchmark:

public class Benchmarks

{

  [Params(100000, 1000000)]

  public int N;

  [Benchmark]

  public double PowerA()

  {

    double res = 1.0;

    for (int i = 0; i < N; i++)

      res = res * 0.96;

    return res;

  }

Table 7-3. Windows for 32-Bit Floating-Point Numbers

E Lower Upper Bucket size

254 2127 = 1.7 ⋅ 1038 2128 = 3.4 ⋅ 1038 2104 = 2.0 ⋅ 1031

253 2126 = 8.5 ⋅ 1037 2127 = 1.7 ⋅ 1038 2103 = 1.0 ⋅ 1031

128 21 = 2 22 = 4 2−22 = 2.4 ⋅ 10−7

127 20 = 1 21 = 2 2−23 = 1.2 ⋅ 10−7

3 2−124 = 4.7 ⋅ 10−38 2−123 = 9.4 ⋅ 10−38 2−147 = 5.6 ⋅ 10−45

2 2−125 = 2.4 ⋅ 10−38 2−124 = 4.7 ⋅ 10−38 2−148 = 2.8 ⋅ 10−45

1 2−126 = 1.2 ⋅ 10−38 2−125 = 2.4 ⋅ 10−38 2−149 = 1.4 ⋅ 10−45

0 0 2−126 = 1.2 ⋅ 10−38 2−149 = 1.4 ⋅ 10−45
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  private double resB;

  [Benchmark]

  public double PowerB()

  {

    resB = 1.0;

    for (int i = 0; i < N; i++)

      resB = resB * 0.96;

    return resB;

  }

  [Benchmark]

  public double PowerC()

  {

    double res = 1.0;

    for (int i = 0; i < N; i++)

      res = res * 0.96 + 0.1 - 0.1;

    return res;

  }

}

Here we calculate 0.96N in three different ways. In PowerA, we just multiply a local 

variable by 0.96 N times. In PowerB, we use a field for the multiplication results instead of 

the local variable. In PowerC, we use a local variable, but we perform + 0.1 - 0.1 on it 

after each iteration.

 Results

Here is an example of results (Windows 10.0.17763.195, Intel Core i7-6700HQ CPU 

2.60GHz, .NET Framework 4.7.2, JIT 4.7.3260.0):

 Method |       Jit | Platform |       N |         Mean |       StdDev |

------- |---------- |--------- |-------- |-------------:|-------------:|

 PowerA | LegacyJit |      X86 |  100000 |     151.5 us |     1.298 us |

 PowerB | LegacyJit |      X86 |  100000 |  17,480.7 us |    99.446 us |

 PowerC | LegacyJit |      X86 |  100000 |     330.7 us |     1.129 us |

 PowerA |    RyuJit |      X64 |  100000 |   3,547.9 us |    11.868 us |

 PowerB |    RyuJit |      X64 |  100000 |   3,783.8 us |    12.350 us |
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 PowerC |    RyuJit |      X64 |  100000 |     366.6 us |     1.383 us |

 PowerA | LegacyJit |      X86 | 1000000 | 150,718.6 us | 3,663.819 us |

 PowerB | LegacyJit |      X86 | 1000000 | 219,923.4 us | 6,075.390 us |

 PowerC | LegacyJit |      X86 | 1000000 |   3,521.8 us |    82.629 us |

 PowerA |    RyuJit |      X64 | 1000000 |  43,119.9 us |   693.725 us |

 PowerB |    RyuJit |      X64 | 1000000 |  45,739.5 us |   771.414 us |

 PowerC |    RyuJit |      X64 | 1000000 |   3,755.5 us |    54.615 us |

And here are the mean values regrouped into a better summary table (without 

information about the standard deviation):

          JIT |       N |       PowerA |       PowerB |     PowerC |

-------------:| -------:| ------------:| ------------:| ----------:|

LegacyJIT-x86 |  100000 |     151.5 us |  17,480.7 us |   330.7 us |

   RyuJIT-x64 |  100000 |   3,547.9 us |   3,783.8 us |   366.6 us |

LegacyJIT-x86 | 1000000 | 150,718.6 us | 219,923.4 us | 3,521.8 us |

   RyuJIT-x64 | 1000000 |  43,119.9 us |  45,739.5 us | 3,755.5 us |

Some of these results may look surprising. Here we can ask the following questions 

about the summary table:

• Why does PowerC work so fast?

• Why are PowerA and PowerB so slow on LegacyJIT-x86 for N = 106?

• Why is PowerA much faster than PowerB and PowerC on 

LegacyJIT-x86 for N = 105?

 Explanation

Let’s try to answer these questions. First of all, let’s compare PowerA and PowerC on 

RyuJIT. To understand why PowerC is faster, we should look at Table 7-4, in which 

the intermediate res values are presented in the real decimal form with internal 

hexadecimal representation.
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Let’s learn what’s going on here step by step:

• The initial value of res is 1.0, which is 3FF0000000000000 in the IEEE 

754 format.

• After the first iteration (i=1), res becomes 0.96 (3FEEB851EB851EB8) 

in PowerA. In PowerC, res * 0.96 + 0.1 - 0.1 gives 

0.96000000000000008 (3FEEB851EB851EB9). The difference between 

PowerA and PowerC is in a single bit.

Table 7-4. RyuJIT-x64 Intermediate Results for Benchmark with 

Denormalized Numbers

i PowerA PowerC

0 1.0 1.0

3FF0000000000000 3FF0000000000000

1 0.96 0.96000000000000008

3FeeB851eB851eB8 3FeeB851eB851eB9

885 2.0419318345555615E-16 1.8041124150158794E-16

3Cad6d6617566397 3CAA000000000000

886 1.9602545611733389E-16 1.6653345369377348E-16

3CaC4010166769d8 3CA8000000000000

887 1.8818443787264053E-16 1.6653345369377348E-16

3CaB1eC7C3967a17 3CA8000000000000

18171 6.42285339593621E- 323 1.6653345369377348E-16

000000000000000D 3Ca8000000000000

18172 5.92878775009496E- 323 1.6653345369377348E-16

000000000000000C 3Ca8000000000000

18173 5.92878775009496E- 323 1.6653345369377348E-16

000000000000000C 3Ca8000000000000
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• When i=886, we get 1.6653345369377348E-16 (3CA8000000000000) 

in PowerC. This magic number is an invariant for res * 0.96 + 

0.1 - 0.1: this operation doesn’t change this number. We can 

continue to perform iterations, but res will not be changed.

• When i=18172, we get 5.92878775009496E-323 (000000000000000C) 

in PowerA. This number is an invariant for res * 0.96: the res value 

will not be changed anymore in either method.

Now we can see that PowerA performs most of the operations with 

5.92878775009496E-323, which is a denormalized number: that’s why the performance 

is so bad. In PowerC, the + 0.1 - 0.1 trick helps to keep the intermediate results 

normalized. Since we don’t have any operation with denormalized numbers in PowerC, 

this method works pretty fast.

Now let’s look what’s going on with LegacyJIT-x86. This JIT compiler uses x87 

instruction. Here are disassembly listings for PowerA and PowerB:

; PowerA (N=10^5:   ~167us      N=10^6: ~152770us)

fld      qword ptr ds:[14D2E28h] ; 0.96

fmulp    st(1),st; In a register

; PowerB (N=10^5: ~19079us      N=10^6: ~226219us)

fld      qword ptr ds:[892E20h]  ; 0.96

fmul     qword ptr [ecx+4]

fstp     qword ptr [ecx+4]       ; In memory

As we can see, PowerA performs multiplication using a register; PowerB keeps the 

intermediate result in memory (because it should dump the value to a field). The next 

clue can be found in [Intel Manual]:

§8.2 X87 FPU Data Types

With the exception of the 80-bit double extended-precision 

format, all data types exist in memory only. When they are loaded 

into x87 FPU data registers, they are converted into double 
extended-precision format and operated on in that format.

When a denormal number is used as a source operand, the x87 

FPU automatically normalizes the number when it is converted 

to double extended-precision format.
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Thus, PowerA actually uses 80-bit floating-point numbers for calculations. It doesn’t 

hit the “denormalized zone” for N = 105, unlike PowerB, which uses 64-bit numbers. 

That’s why PowerA is so fast for N = 105: it performs all calculations on normalized 

numbers using a register. For N = 106, we have a lot of denormalized operations even for 

80-bit numbers (try to calculate the exact iteration when we get the first denormalized 

number and the iteration when we get the invariant value).

 Discussion

As you can see, the denormalized number can be a cause of serious performance 

problems. Such numbers can also be used for timing side channel attacks (e.g., see 

[Andrysco 2015]). The performance effect of denormalized numbers significantly 

depends on the environment.

 Case Study 2: Math.Abs
Math.Abs is a widely used static method that returns the absolute value of a specified 

number. Let’s check its performance on different versions of .NET Core.

 Source code

Consider the following BenchmarkDotNet-based benchmark:

public class Benchmarks

{

  private int positive = 1, negative = -1;

  [Benchmark]

  public int Positive()

  {

    return Math.Abs(positive);

  }

  [Benchmark]

  public int Negative()

  {

    return Math.Abs(negative);

  }

}
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Here we have two benchmarks: Positive (measures Math.Abs for +1) and Negative 

(measures Math.Abs for -1).

 Results

Here is an example of results (Windows 10.0.17763.195, Intel Core i7-6700HQ CPU 

2.60GHz, .NET Core 2.0.9 and .NET Core 2.1.5):

   Method |        Job |      Mean |    StdDev |

--------- |----------- |----------:|----------:|

 Positive | .NETCore20 | 0.2797 ns | 0.0182 ns |

 Negative | .NETCore20 | 0.9145 ns | 0.0239 ns |

 Positive | .NETCore21 | 0.2744 ns | 0.0077 ns |

 Negative | .NETCore21 | 0.2762 ns | 0.0126 ns |

As you can see, the Negative benchmark on .NET Core 2.0 works three times slower 

than other cases.

 Explanation

Let’s look at its implementation in .NET Core 2.0.040:

public static int Abs(int value)

{

  if (value >= 0)

    return value;

  else

    return AbsHelper(value);

}

private static int AbsHelper(int value)

{

  Contract.Requires(value < 0,

    "AbsHelper should only be called for negative values!" +

    "(workaround for JIT inlining)");

  if (value == Int32.MinValue)

40 https://github.com/dotnet/coreclr/blob/v2.0.0/src/mscorlib/src/System/Math.
cs#L268
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    throw new OverflowException(SR.Overflow_NegateTwosCompNum);

  Contract.EndContractBlock();

  return -value;

}

Here we can see that Math.Abs instantly returns value for positive input and 

calls additional method AbsHelper for the negative case. Thus, we always have an 

additional call for negative values. This call is not inlined, so we have a performance 

penalty for such cases. The performance was improved in .NET Core 2.1, and now the 

implementation looks as follows:

[MethodImpl(MethodImplOptions.AggressiveInlining)]

public static int Abs(int value)

{

  if (value < 0)

  {

    value = -value;

    if (value < 0)

    {

      ThrowAbsOverflow();

    }

  }

  return value;

}

[StackTraceHidden]

private static void ThrowAbsOverflow()

{

  throw new OverflowException(SR.Overflow_NegateTwosCompNum);

}

The updated implementation doesn’t have an additional call for negative numbers. 

That’s why the Positive and Negative benchmarks have the same duration on .NET 

Core 2.1.
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 Discussion

In the GitHub discussion, we can find a great explanation of this approach by Andy 

Ayers41:

The general guidance is to separate out throws into helper 

methods that do the work of creating the exception object and 

any related data (eg formatted exception messages) and then 

unconditionally throw. The jit’s inline performance heuristic 

will then block inlining of the helper. This has a number of 

performance benefits:

• overall code size savings when are multiple callers or callers with 

multiple throw sites

• call sites to helper are considered “rare” and so moved into the 

caller’s cold code region

• helper IL is only jitted if an exception about to be thrown, so 

caller jits faster

• caller’s prolog/epilog may be simplified with fewer register saves/

restores

Native codegen for exception throws that use resource based 

strings is surprisingly large.

There is no “correctness” reason preventing methods with throws 

from being inlined, and methods that conditionally throw (like the 

original AbsHelper in the preceding) may end up getting inlined, 

as they might contain a mixture of hot and cold code. Methods 

that unconditionally throw are much less likely to contain any hot 

code.

Many developers think that operations with numbers are so fundamental that they 

should have been written perfectly a long time ago and never changed since then. This 

is not true: most base operations that we use all the time get performance improvements 

all the time. For example, in [Icaza 2018], you can read a story about a 2× performance 

improvement of 32-bit floating-point calculations.

41 https://github.com/dotnet/corefx/issues/26253#issuecomment-356736809
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See also:

• corefx#2625342 “Math.Abs is slow”

• coreclr#1582343 “Improve performance for Math.Abs”

 Case Study 3: double.ToString
A conversion from double to string is another popular operation used in most .NET 

applications. This conversion is pretty time-consuming. Let’s measure its performance 

on .NET Core 2.0 and .NET Core 2.1

 Source code

Consider the following BenchmarkDotNet-based benchmark:

public class Benchmarks

{

  private double value = -8.98846567431158E+307;

  [Benchmark]

  public string ConvertToString()

  {

    return value.ToString(CultureInfo.InvariantCulture);

  }

}

Here we have the only benchmark that measures ToString conversion for 

-8.98846567431158E+307.

 Results

Here is an example of results (Windows 10.0.17763.195, Intel Core i7-6700HQ CPU 

2.60GHz, .NET Core 2.0.9 and .NET Core 2.1.5):

42 https://github.com/dotnet/corefx/issues/26253
43 https://github.com/dotnet/coreclr/pull/15823
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        Job |       Mean |     StdDev |

----------- |-----------:|-----------:|

 .NETCore20 | 4,649.4 ns | 125.019 ns |

 .NETCore21 |   222.1 ns |   1.425 ns |

As you can see, double.ToString() works much faster for -8.98846567431158E+307 

on .NET Core 2.1.

 Explanation

In coreclr#14646,44 the Grisu3 algorithm (read more about it in [Steele 1990] and 

[Andrysco 2016]) was added in double.ToString() implementation. This improvement 

was included in .NET Core 2.1 In the pull request comments, you can find benchmark 

results for different inputs (a fragment is presented in Table 7-5).

 Discussion

The performance boost was noticed in some internal .NET Core benchmarks (see 

coreclr#1662445 and coreclr#1662546).

44 https://github.com/dotnet/coreclr/pull/14646
45 https://github.com/dotnet/coreclr/issues/16624
46 https://github.com/dotnet/coreclr/issues/16625

Table 7-5. Grisu3 Performance Improvement for double.ToString

Number Arguments Before After

-1.79769313486232e+308 — 237.492 28.660

-8.98846567431158e+307 — 227.782 29.921

-1.79769313486232e+308 culture: “zh” 252.797 26.215

4.94065645841247e-324 format: “e” 222.350 40.334

-1.79769313486232e+308 format: “F50” 324.054 132.538

4.94065645841247e-324 format: “G” 213.085 39.974

-1.79769313486232e+308 format: “r” 443.718 45.578

4.94065645841247e-324 format: “r” 231.865 49.403
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Note that the old and new implementations may return different values in some 

special cases. For example, consider the following lines:

var value = BitConverter.Int64BitsToDouble(-4585072949362425856);

Console.WriteLine(value);

It will print -122.194458007813 on .NET Core 2.0 and -122.194458007812 on .NET 

Core 2.1. You can find the corresponding discussion in coreclr#17805.47

 Case Study 4: Integer Division
The integer division operation may be heavy when the divider is not a power of two. 

There is an old bit hack that allows replacing the division by a multiplication and a bit 

shift.48 The following two methods produce the same result:

uint Div3Simple(uint n)   => n / 3;

uint Div3BitHacks(uint n) => (uint)((n * (ulong)0xAAAAAAAB) >> 33);

In theory, Div3BitHacks should work much faster because it doesn’t perform the 

heavy division operation. Let’s check how it works in practice.

 Source code

Consider the following BenchmarkDotNet-based benchmark:

public class Benchmarks

{

  private uint x = 1, initialValue = uint.MaxValue;

  [Benchmark(OperationsPerInvoke = 16)]

  public void Simple()

  {

    x = initialValue;

    x = x / 3;

    x = x / 3;

47 https://github.com/dotnet/coreclr/issues/17805
48 You can find more details about it in [Lemire 2019] and [Tillaart 2007]. You can also find tons of 

interesting bit hacks in https://graphics.stanford.edu/~seander/bithacks.html
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    x = x / 3;

    x = x / 3;

    x = x / 3;

    x = x / 3;

    x = x / 3;

    x = x / 3;

    x = x / 3;

    x = x / 3;

    x = x / 3;

    x = x / 3;

    x = x / 3;

    x = x / 3;

    x = x / 3;

    x = x / 3;

  }

  [Benchmark(OperationsPerInvoke = 16)]

  public void BitHacks()

  {

    x = initialValue;

    x = (uint) ((x * (ulong) 0xAAAAAAAB) >> 33);

    x = (uint) ((x * (ulong) 0xAAAAAAAB) >> 33);

    x = (uint) ((x * (ulong) 0xAAAAAAAB) >> 33);

    x = (uint) ((x * (ulong) 0xAAAAAAAB) >> 33);

    x = (uint) ((x * (ulong) 0xAAAAAAAB) >> 33);

    x = (uint) ((x * (ulong) 0xAAAAAAAB) >> 33);

    x = (uint) ((x * (ulong) 0xAAAAAAAB) >> 33);

    x = (uint) ((x * (ulong) 0xAAAAAAAB) >> 33);

    x = (uint) ((x * (ulong) 0xAAAAAAAB) >> 33);

    x = (uint) ((x * (ulong) 0xAAAAAAAB) >> 33);

    x = (uint) ((x * (ulong) 0xAAAAAAAB) >> 33);

    x = (uint) ((x * (ulong) 0xAAAAAAAB) >> 33);

    x = (uint) ((x * (ulong) 0xAAAAAAAB) >> 33);

    x = (uint) ((x * (ulong) 0xAAAAAAAB) >> 33);
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    x = (uint) ((x * (ulong) 0xAAAAAAAB) >> 33);

    x = (uint) ((x * (ulong) 0xAAAAAAAB) >> 33);

  }

}

Here we have two benchmarks: Simple and BitHacks. Both of them divide x by 3 (16 

times). In order to avoid ILP, all of the division operations use the same field x.

 Results

Here is an example of results (Windows 10.0.17763.195, Intel Core i7-6700HQ CPU 

2.60GHz, .NET Framework 4.7.2 with JIT 4.7.3260.0; Mono 5.18.0.225):

   Method |           JIT |       Mean |    StdDev |

--------- |-------------- |-----------:|----------:|

   Simple | LegacyJIT-x86 |  5.6259 ns | 0.0217 ns |

 BitHacks | LegacyJIT-x86 |  1.3119 ns | 0.0123 ns |

   Simple | LegacyJIT-x64 |  1.2916 ns | 0.0065 ns |

 BitHacks | LegacyJIT-x64 |  0.8484 ns | 0.0039 ns |

   Simple |    RyuJIT-x64 |  0.8491 ns | 0.0099 ns |

 BitHacks |    RyuJIT-x64 |  0.7035 ns | 0.0081 ns |

   Simple |      Mono-x86 |  3.5624 ns | 0.0111 ns |

 BitHacks |      Mono-x86 | 13.4624 ns | 0.1121 ns |

   Simple |      Mono-x64 |  1.1475 ns | 0.0117 ns |

 BitHacks |      Mono-x64 |  1.4359 ns | 0.0074 ns |

And here are the mean values regrouped into a better summary table (without 

information about the standard deviation):

|           JIT |    Simple |   BitHacks |

| -------------:| ---------:| ----------:|

| LegacyJIT-x86 | 5.6259 ns |  1.3119 ns |

| LegacyJIT-x64 | 1.2916 ns |  0.8484 ns |

|    RyuJIT-x64 | 0.8491 ns |  0.7035 ns |

|      Mono-x86 | 3.5624 ns | 13.4624 ns |

|      Mono-x64 | 1.1475 ns |  1.4359 ns |
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We can make the following observations about the summary table:

• The Simple benchmark works much faster on LegacyJIT-x64, 

RyuJIT-x64, and Mono-x64 than on LegacyJIT-x86 and Mono-x86.

• The BitHacks benchmark works extremely slow on Mono-x86.

 Explanation

To understand what’s going on here, we should look at the generated native code 

for all JIT compilers. Let’s start with LegacyJIT-x86 because it produces the most 

straightforward native code:

; Simple/LegacyJIT-x86

mov  eax,dword ptr [esi+4]  ; eax = x

xor  edx,edx                ; edx = 0

div  eax,ecx                ; eax /= 3

mov  dword ptr [esi+4],eax  ; x = eax

; BitHacks/LegacyJIT-x86

mov  eax,dword ptr [ecx+4]  ; eax = x

mov  edx,0AAAAAAABh         ; edx = 0AAAAAAABh

mul  eax,edx                ; eax * edx (result in edx)

mov  eax,edx                ; eax = edx

shr  eax,1                  ; eax >>= 1

xor  edx,edx                ; edx = 0

mov  dword ptr [ecx+4],eax  ; x = eax

No magic here: LegacyJIT-x86 translated C# code to assembly in the most 

straightforward way. At the beginning of each division operation, we load the x value 

from the stack to a register, perform the division, and save the x value from the register 

to the stack. The BitHacks benchmark works faster than Simple because it uses 

multiplication instead of division.

Now let’s look at the LegacyJIT-x64 native code:

; Simple/LegacyJIT-x64

mov  ecx,dword ptr [r8+8]     ; ecx = x

mov  eax,0AAAAAAABh           ; eax = 0AAAAAAABh

mul  eax,ecx                  ; aex * ecx (result in edx)
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shr  edx,1                    ; edx >>= 1

mov  dword ptr [r8+8],edx     ; x = edx

; BitHacks/LegacyJIT-x64

mov     eax,dword ptr [rcx+8]  ; eax = x

mov     edx,0AAAAAAABh         ; edx = 0AAAAAAABh

imul    rax,rdx                ; rax * rdx (result in rax)

shr     rax,21h                ; rax >>= 31

mov     dword ptr [rcx+8],eax  ; x = eax

LegacyJIT-x64 is smart enough to replace division by multiplication for the Simple 

benchmark! That’s why the LegacyJIT-x64 version works faster than the LegacyJIT-x86 

version.

Now let’s look at the RyuJIT-x64 native code:

; Simple/RyuJIT-x64

mov     edx,0AAAAAAABh         ; edx = 0AAAAAAABh

mul     eax,edx                ; eax * edx (result in edx)

mov     eax,edx                ; eax = edx

shr     eax,1                  ; eax >>= 1

mov     dword ptr [rcx+8],eax  ; x = eax

; BitHacks/RyuJIT-x64

moveax,eax; eax = eax

imul    rax,rdx                ; rax * rdx (result in rax)

shr     rax,21h                ; rax >>= 31

mov     dword ptr [rcx+8],eax  ; x = eax

RyuJIT-x64 is also smart enough to replace division by multiplication. It works a 

little bit faster than LegacyJIT-x64 because it doesn’t load the x value from the stack to 

the register at the beginning of the operation (the actual x value is already in the register 

after the previous operation).

Now let’s look at the Mono-x86 native code:

; Simple/Mono-x86

movl   $0x0,-0xc(%rbp)       ; -0xc(%rbp) = 0

mov    -0x10(%rbp),%eax      ; eax = x

mov    %eax,0x8(%rdi)        ; 0x8(%rdi) = eax
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mov    0x8(%rdi),%eax        ; eax = 0x8(%rdi)

mov    $0xaaaaaaab,%ecx      ; ecx = 0xaaaaaaab

mul    %ecx                  ; eax * ecx (result in edx)

mov    %edx,-0xc(%rbp)       ;  -0xc(%rbp) = edx

mov    %eax,-0x10(%rbp)      ; -0x10(%rbp) = eax

mov    -0xc(%rbp),%eax       ; eax = -0xc(%rbp) (mul result)

shr    %eax                  ; eax >>= 1

mov    %eax,-0x10(%rbp)      ; x = eax

; BitHacks/Mono-x86

mov    0x8(%rdi),%eax        ; %eax = x

movl   $0x0,0xc(%rsp)        ; 0xc(%rsp) = 0

movl   $0xaaaaaaab,0x8(%rsp) ; 0x8(%rsp) = 0xaaaaaaab

movl   $0x0,0x4(%rsp)        ; 0x4(%rsp) = 0

mov    %eax,(%rsp)           ; (%rsp) = %eax

lea    0x0(%rbp),%ebp        ; %epb = 0x0(%rbp)

callq  fffffffffffffff4      ; Call external method

mov    %edx,-0xc(%rbp)       ; -0xc(%rbp) = %edx

mov    %eax,-0x10(%rbp)      ; -0x10(%rbp) = %eax

mov    -0xc(%rbp),%eax       ; %eax = -0xc(%rbp)

shr    %eax                  ; %eax >>= 1

mov    %eax,0x8(%rdi)        ; x = eax

Mono-x86 doesn’t know how to handle our bit hacks with simple instructions: it 

generates a complicated code with an external call. That’s why the BitHacks benchmark 

on Mono-x86 is so slow.

Now let’s look at the Mono-x64 native code:

; Simple/Mono-x64

mov    0x10(%rsi),%eax  ; eax = x

mov    $0xaaaaaaab,%ecx ; ecx = 0xaaaaaaab

mov    %eax,%eax        ; eax = eax

imul   %rcx,%rax        ; rax * rcx (result in rax)

shr    $0x21,%rax       ; rax >>= 31

mov    %eax,0x10(%rsi)  ; x = eax
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; BitHacks/Mono-x64

mov    0x10(%rsi),%eax  ; eax = x

mov    %eax,%eax        ; eax = eax

mov    $0xaaaaaaab,%ecx ; ecx = 0xaaaaaaab

imul   %rcx,%rax        ; rax * rcx (result in rax)

shr    $0x21,%rax       ; rax >>= 31

shr    $0x0,%eax        ; eax >>= 0

mov    %eax,0x10(%rsi)  ; x = eax

Mono-x64 is also smart enough to replace division by multiplication. Moreover, the 

optimized version of Simple is more efficient than BitHacks where we manually applied 

the optimization. Also, it can generate native code for BitHacks using only simple 

instructions (without external calls).

 Discussion

As you can see, the division performance significantly depends on the environment. 

Some JIT compilers can apply the discussed optimization automatically. This automatic 

optimization may get a more efficient native code for the Simple benchmark than the 

native code for the BitHacks benchmark where we applied this optimization manually.

The preceding results are valid only for specified versions of runtimes; you never 

know what kind of optimization you will get on future versions of .NET.

• coreclr#810649 “Move magic division optimization from morph to 

lowering”

• [Akinshin 2016b]

• [Chen 2019]

 Summing Up
In the IEEE 754 standard, each floating-point number is represented by a sign, 

an exponent, and a mantissa. Instead of the classic terms, we can use Sanglard’s 

interpretation, which replaces the exponent with a window between two consecutive 

powers of two (e.g., [1; 2] or [8; 16]) and the mantissa by an offset within that window 

(each window is split by the fixed number of buckets). In .NET, float (32-bit) and double 

49 https://github.com/dotnet/coreclr/pull/8106
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(64-bit) follow the IEEE 754 standard; decimal (128-bit) is a custom implemented 

floating-point struct useful for financial and monetary calculations (it has high precision 

but poor performance).

The same expression with floating-point numbers can return different results in 

different cases. For example, LegacyJIT-x86 can use 80-bit numbers for intermediate 

calculations even if you are using the float (32-bit) or double (64-bit) types in your 

code.

In the context of benchmarking, it’s important to know about denormalized 

numbers. The denormalized numbers are IEEE 754 numbers with zero exponent. 

Usually, you don’t have them in real code because they are very small (less than 

1.2 ⋅ 10−38 for float), but when you do, you can get a significant performance 

degradation (e.g., 100 times). Such a performance effect can be used for timing side 

channel attacks.

Almost all .NET applications use different operations with numbers. The 

performance of these operations depends on the number values, the compiler version, 

and the runtime version. It’s not always easy to benchmark even a single arithmetic 

statement because there are too many different combinations of the input data and 

environments. Thus, we can’t extrapolate results from a single environment to a general 

case.

 Intrinsics
Intrinsic is a “smart” implementation of a specific method or a statement that the JIT 

compiler can use in specific situations. In this subsection, we are going to discuss several 

kinds of intrinsics that are available in different .NET JIT compilers.

 Case Study 1: Math.Round
Let’s discuss the Math.Round(double x) method: it rounds a value to the nearest 

integer.50

In .NET Core 2.1, it has the following implementation51:

50 You can find more information about different overloads in the following documentation: 
https://docs.microsoft.com/en-us/dotnet/api/system.math.round

51 See https://github.com/dotnet/coreclr/blob/v2.1.7/src/mscorlib/shared/System/Math.
cs#L647
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[Intrinsic]

public static double Round(double a)

{

  // If the number has no fractional part do nothing

  // This shortcut is necessary to workaround precision loss

  // in borderline cases on some platforms

  if (a == (double)((long)a))

  {

    return a;

  }

  // We had a number that was equally close to 2 integers.

  // We need to return the even one.

  double flrTempVal = Floor(a + 0.5);

  if ((a == (Floor(a) + 0.5)) && (FMod(flrTempVal, 2.0) != 0))

  {

    flrTempVal -= 1.0;

  }

  return copysign(flrTempVal, a);

}

The [Intrinsic] attribute means that the JIT compiler can throw away this 

implementation and replace the method call by more efficient native instructions.

 Source code

Consider the following BenchmarkDotNet-based benchmark:

public static class MyMath

{

  public static double Round(double a)

  {

    if (a == (double)((long)a))

    {

      return a;

    }
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    double flrTempVal = Math.Floor(a + 0.5);

    if ((a == (Math.Floor(a) + 0.5)) && (flrTempVal % 2.0 != 0))

    {

      flrTempVal -= 1.0;

    }

    return copysign(flrTempVal, a);

  }

  private static double copysign(double x, double y)

  {

    var xbits = BitConverter.DoubleToInt64Bits(x);

    var ybits = BitConverter.DoubleToInt64Bits(y);

    if (((xbits ^ ybits) >> 63) != 0)

    {

      return BitConverter.Int64BitsToDouble(xbits ^ long.MinValue);

    }

    return x;

  }

}

public class Benchmarks

{

  private double doubleValue = 1.3;

  [Benchmark]

  public double SystemRound()

  {

    return Math.Round(doubleValue);

  }

  [Benchmark]

  public double MyRound()

  {

    return MyMath.Round(doubleValue);

  }

}
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Here we have the MyMath.Round method, which is a copy-pasted implementation 

of the system Math.Round method. We also have two benchmarks, SystemRound and 

MyRound, which call the corresponding Round implementations.

 Results

Here is an example of results (Windows 10.0.17763.195, Intel Core i7-6700HQ CPU 

2.60GHz, .NET Framework 4.7.2 with LegacyJIT 4.7.3260.0, .NET Core 2.1.5 with 

RyuJIT- x64):

      Method |          Job |      Mean |    StdDev |

------------ |------------- |---------- |----------:|

 SystemRound | LegacyJitX64 | 7.2785 ns | 0.2532 ns |

     MyRound | LegacyJitX64 | 7.1982 ns | 0.0876 ns |

 SystemRound |    RyuJitX64 | 0.4929 ns | 0.0184 ns |

     MyRound |    RyuJitX64 | 3.4426 ns | 0.0338 ns |

As you can see, SystemRound works much faster than MyRound on RyuJIT-x64. On 

LegacyJIT-x64, both methods have the same duration.

 Explanation

The [Intrinsic] means that the JIT compiler has special knowledge about this 

method and can replace the preceding implementation by a more efficient native code. 

RyuJIT- x64 can generate a superefficient native code using the vroundsd AVX instruction:

; SystemRound/RyuJIT-x64

vzeroupper

vroundsd    xmm0,xmm0,mmword ptr [rcx+8],4

ret

That’s why SystemRound works so fast on RyuJIT-x64 (it takes less than 1 

nanosecond). The JIT compiler doesn’t have special knowledge about the MyMath.Round 

method, so it generates a straightforward native code for the preceding implementation, 

which works slower.

On LegacyJIT-x64, we have the same duration for both benchmarks because this JIT 

compiler doesn’t have a special intrinsic for the Math.Round method. Thus, it works with 

the same IL code in both cases.
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 Discussion

When we compare the performance of the same method on different JIT compilers, we 

should keep in mind that these JIT compilers may have different sets of intrinsics that 

can be applied to any system method.

See also:

• StackOverflow question 4046085052 “Significant drop in performance 

of Math.Round on x64 platform”

• coreclr#805353 “A question about Math.Round intrinsic on x64”

 Case Study 2: Rotate Bits
The JIT compiler can generate intrinsic not only for the known methods but also for 

statements of a specific form. Consider the following method, which implements the 

classic bit rotation for ulong value:

public static ulong RotateRight64(ulong value, int count)

{

  return (value >> count) | (value << (64 - count));

}

Such expression is widely used in different cryptographic algorithms. This method 

can be executed millions of times in a single method, so it would be nice to have a 

 decent performance level here. Let’s check the performance of this method on different 

JIT compilers.

 Source code

Consider the following BenchmarkDotNet-based benchmark:

public class Benchmarks

{

  public static ulong RotateRight64(ulong value, int count)

  {

52 https://stackoverflow.com/q/40460850
53 https://github.com/dotnet/coreclr/issues/8053
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    return (value >> count) | (value << (64 - count));

  }

  private ulong a = 100;

  private int b = 2;

  [Benchmark]

  public ulong Foo()

  {

    return RotateRight64(a, b);

  }

}

Here we just apply the “Rotate Bit” operation for a private ulong field.

 Results

Here is an example of results (Windows 10.0.17763.195, Intel Core i7-6700HQ CPU 

2.60GHz, .NET Framework 4.7.2 with LegacyJIT-x86 4.7.3260.0, .NET Core 2.1.5 with 

RyuJIT-x64):

          Job |     Mean |    StdDev |

------------- |---------:|----------:|

 LegacyJitX86 | 4.676 ns | 0.1208 ns |

    RyuJitX64 | 1.217 ns | 0.0299 ns |

As you can see, this benchmark works much faster on .NET Core 2.1.5 with 

RyuJIT- x64 than on .NET Framework 4.7.2 with LegacyJIT-x86.

 Explanation

RyuJIT is able to recognize the (value >> count) | (value << (64 - count)) pattern 

and generate fast implementation for it.

ror  rax,cl

LegacyJIT-x86 doesn’t support this heuristic and generates a straightforward native 

code for the original expression. Of course, it works much slower than a single ror 

instruction.
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 Discussion

We already discussed a similar intrinsic in the “Integer Division” case study, in which 

some JIT compilers were able to replace a division operation by a multiplication 

operation. Each JIT compiler has its own set of “code patterns” that can be optimized. It’s 

pretty hard to control this kind of intrinsics: any changes in the source code can prevent 

the JIT compiler from the optimization because it can recognize only some specific 

forms of these patterns.

See also:

• coreclr#161954 “RyuJIT: “Understand the idiomatic rotate bits”

• coreclr#183055 “Generate efficient code for rotation patterns”

 Case Study 3: Vectorization
In the System.Numerics56 namespace, there are a lot of useful structs including 

SIMD- enabled types: Vector2, Vector3, Vector4, Matrix3x2, Matrix4x4, Plane, and 

Quaternion. RyuJIT has hardware acceleration support for these types via SIMD 

intrinsics. The SIMD operations are another kind of parallelization on the hardware 

level: with the help of special instruction sets like SSE or AVX, we can explicitly perform 

an operation on multiple data at once. Other JIT compilers like LegacyJIT-x86 and 

LegacyJIT-x64 have no advanced support for these types: they are using a fallback option 

and perform the corresponding operations without smart intrinsics.

 Source code

Consider the following BenchmarkDotNet-based benchmark:

public struct MyVector4

{

  public float X, Y, Z, W;

  public MyVector4(float x, float y, float z, float w)

54 https://github.com/dotnet/coreclr/issues/1619
55 https://github.com/dotnet/coreclr/pull/1830
56 This has been available since .NET Framework 4.6 and .NET Core 1.0. See also: https://docs.
microsoft.com/en-us/dotnet/api/system.numerics
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  {

    X = x;

    Y = y;

    Z = z;

    W = w;

  }

  [MethodImpl(MethodImplOptions.AggressiveInlining)]

  public static MyVector4 operator *(MyVector4 left, MyVector4 right)

    => new MyVector4(

      left.X * right.X,

      left.Y * right.Y,

      left.Z * right.Z,

      left.W * right.W);

}

public class Benchmarks

{

  private Vector4 vectorA, vectorB, vectorC;

  private MyVector4 myVectorA, myVectorB, myVectorC;

  [Benchmark]

  public void MyMul() => myVectorC = myVectorA * myVectorB;

  [Benchmark]

  public void SystemMul() => vectorC = vectorA * vectorB;

}

Here we have two benchmarks: SystemMul and MyMyl. SystemMul multiplies two 

Vector4 instances. MyMul also multiplies two vectors, but it operates with MyVector 

instances. The MyVector type is a partial copy of the system Vector4 class.57 The 

operator * method in the original method is marked with the [Intrinsic] attribute.

57 You can find the .NET Core 2.2.1 version of this class here: https://github.com/dotnet/
corefx/blob/v2.2.1/src/System.Numerics.Vectors/src/System/Numerics/Vector4_
Intrinsics.cs#L252
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 Results

Here is an example of results (Windows 10.0.17763.195, Intel Core i7-6700HQ CPU 

2.60GHz, .NET Framework 4.7.2, LegacyJIT-x64/RyuJIT-x64 v4.7.3260.0):

    Method |          Job |     Mean |   StdDev |

---------- |------------- |---------:|---------:|

     MyMul | LegacyJitX64 | 12.33 ns | 0.058 ns |

 SystemMul | LegacyJitX64 | 12.37 ns | 0.109 ns |

     MyMul |    RyuJitX64 |  1.71 ns | 0.021 ns |

 SystemMul |    RyuJitX64 |  0.00 ns | 0.009 ns |

As you can see, the SystemMul benchmark works instantly on RyuJIT-x64. The 

MyMul benchmark works pretty fast on RyuJIT-x64, but not as fast as SystemMul. On 

LegacyJIT- x64, both benchmarks take the same time, which is much bigger than the 

corresponding result on RyuJIT-x64.

 Explanation

Let’s look at the native code of both methods on LegacyJIT-x64:

; SystemMul/MyMul, LegacyJIT-x64

mov     eax,dword ptr [rcx+38h]

mov     dword ptr [rsp+20h],eax

mov     eax,dword ptr [rcx+3Ch]

mov     dword ptr [rsp+24h],eax

mov     eax,dword ptr [rcx+40h]

mov     dword ptr [rsp+28h],eax

mov     eax,dword ptr [rcx+44h]

mov     dword ptr [rsp+2Ch],eax

mov     eax,dword ptr [rcx+48h]

mov     dword ptr [rsp+10h],eax

mov     eax,dword ptr [rcx+4Ch]

mov     dword ptr [rsp+14h],eax

mov     eax,dword ptr [rcx+50h]

mov     dword ptr [rsp+18h],eax

mov     eax,dword ptr [rcx+54h]

mov     dword ptr [rsp+1Ch],eax
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lea     rdx,[rsp+20h]

mov     rax,qword ptr [rdx]

mov     qword ptr [rsp+40h],rax

mov     rax,qword ptr [rdx+8]

mov     qword ptr [rsp+48h],rax

lea     rdx,[rsp+10h]

mov     rax,qword ptr [rdx]

mov     qword ptr [rsp+30h],rax

mov     rax,qword ptr [rdx+8]

mov     qword ptr [rsp+38h],rax

movss   xmm3,dword ptr [rsp+40h]

mulss   xmm3,dword ptr [rsp+30h]

movss   xmm2,dword ptr [rsp+44h]

mulss   xmm2,dword ptr [rsp+34h]

movss   xmm1,dword ptr [rsp+48h]

mulss   xmm1,dword ptr [rsp+38h]

movss   xmm0,dword ptr [rsp+4Ch]

mulss   xmm0,dword ptr [rsp+3Ch]

xor     eax,eax

mov     qword ptr [rsp],rax

mov     qword ptr [rsp+8],rax

lea     rax,[rsp]

movss   dword ptr [rax],xmm3

movss   dword ptr [rax+4],xmm2

movss   dword ptr [rax+8],xmm1

movss   dword ptr [rax+0Ch],xmm0

lea     rdx,[rsp]

mov     eax,dword ptr [rdx]

mov     dword ptr [rcx+58h],eax

mov     eax,dword ptr [rdx+4]

mov     dword ptr [rcx+5Ch],eax

mov     eax,dword ptr [rdx+8]

mov     dword ptr [rcx+60h],eax

mov     eax,dword ptr [rdx+0Ch]

mov     dword ptr [rcx+64h],eax

Chapter 7  CpU-BoUnd BenChmarks



513

Both methods have the same implementation because they have the same IL 

representation. The native code uses SSE instruction to perform the multiplication.

Now let’s look at the native code for MyMul on RyuJIT-x64:

; MyMul/RyuJIT-x64

lea     rax,[rcx+38h]

vmovss  xmm0,dword ptr [rax]

vmovss  xmm1,dword ptr [rax+4]

vmovss  xmm2,dword ptr [rax+8]

vmovss  xmm3,dword ptr [rax+0Ch]

lea     rax,[rcx+48h]

vmovss  xmm4,dword ptr [rax]

vmovss  xmm5,dword ptr [rax+4]

vmovss  xmm6,dword ptr [rax+8]

vmovss  xmm7,dword ptr [rax+0Ch]

vmulss  xmm0,xmm0,xmm4

vmulss  xmm1,xmm1,xmm5

vmulss  xmm2,xmm2,xmm6

vmulss  xmm3,xmm3,xmm7

lea     rax,[rcx+58h]

vmovss  dword ptr [rax],xmm0

vmovss  dword ptr [rax+4],xmm1

vmovss  dword ptr [rax+8],xmm2

vmovss  dword ptr [rax+0Ch],xmm3

vmovaps xmm6,xmmword ptr [rsp+10h]

This version is much shorter and much smarter: it uses AVX instructions, which are 

not available on LegacyJIT-x64.

Now let’s look at the native code for SystemMul on RyuJIT-x64:

; SystemMul/RyuJIT-x64

vmovupd xmm0,xmmword ptr [rcx+8]

vmovupd xmm1,xmmword ptr [rcx+18h]

vmulps  xmm0,xmm0,xmm1

vmovupd xmmword ptr [rcx+28h],xmm0
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The operator * method is marked with the [Intrinsic] attribute. RyuJIT-x64 

has special knowledge about it: it’s able to perform multiplication with a single AVX 

instructions vmulps. BenchmarkDotNet reports 0 ns for it because of the ILP effects.

 Discussion

This example is pretty similar to the “Math.Round” case study. However, it deserves to be 

discussed independently because System.Numerics APIs were designed for using such a 

kind of intrinsics.

Sometimes, benchmarking of SSE/AVX instructions requires an advanced warm-up. 

Here is a quote from [Agner Microarch]:

11.9 Execution unit

Warm-up period for YMM and ZMM vector instructions.

The processor turns off the upper parts of the vector execution 

units when they are not used, in order to save power. Instructions 

with 256-bit vectors have a throughput that is approximately 4.5 

times slower than normal during an initial warm-up period of 

approximately 56,000 clock cycles or 14 μs. A sequence of code 

containing 256-bit vector operations will run at full speed after 

this warm-up period. The processor returns to the mode of slow 

256-bit execution 2.7 million clock cycles, or 675 μs, after the 

last 256-bit instruction (these times were measured on a 4 GHz 

processor). Similar times apply to 512-bit vectors.

 Case Study 4: System.Runtime.Intrinsics
In the previous case studies, we discussed implicit intrinsics. This means that some JIT 

compilers may use advanced native instructions to generate efficient code. However, you 

can’t control it: you should be ready to get “slow” native implementations in some cases.

Since .NET Core 3.0, we have System.Runtime.Intrinsics namespaces with various 

APIs, which provide direct access to different native instructions. Here we are talking 

about explicit intrinsics: we force the JIT compiler to use a specific instruction without 

any other options.
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Let’s say that we want to calculate the number of set bits in an uint value. In the 

SSE4, there is a native instruction for it called popcnt.58 However, it may be unavailable 

on old hardware without SSE4 support. To handle this case correctly, we can write code 

like this:

public uint MyPopCount(uint x)

{

  if (Popcnt.IsSupported)

    return Popcnt.PopCount(x);

  else

  {

    // Manual implementation

  }

}

The Popcnt.PopCount(x) call always uses the popcnt instruction; the JIT compiler 

has no other options.

 Source code

Consider the following BenchmarkDotNet-based benchmark:

public static unsafe class CompareHelper

{

  // Assuming x.Length == y.Length

  public static bool NotEqualManual(int[] x, int[] y)

  {

    for (int i = 0; i < x.Length; i++)

      if (x[i] == y[i])

        return false;

    return true;

  }

  // Assuming x.Length == y.Length; x.Length % 4 == 0

  public static bool NotEqualSse41(int[] x, int[] y)

  {

58 https://www.felixcloutier.com/x86/popcnt
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    fixed (int* xp = &x[0])

    fixed (int* yp = &y[0])

    {

      for (int i = 0; i < x.Length; i += 4)

      {

        Vector128<int> xVector = Sse2.LoadVector128(xp + i);

        Vector128<int> yVector = Sse2.LoadVector128(yp + i);

        Vector128<int> mask = Sse2.CompareEqual(xVector, yVector);

        if (!Sse41.TestAllZeros(mask, mask))

          return false;

      }

    }

    return true;

  }

  // Assuming x.Length == y.Length; x.Length % 8 == 0

  public static bool NotEqualAvx2(int[] x, int[] y)

  {

    fixed (int* xp = &x[0])

    fixed (int* yp = &y[0])

    {

      for (int i = 0; i < x.Length; i += 8)

      {

        Vector256<int> xVector = Avx.LoadVector256(xp + i);

        Vector256<int> yVector = Avx.LoadVector256(yp + i);

        Vector256<int> mask = Avx2.CompareEqual(xVector, yVector);

        if (!Avx.TestZ(mask, mask))

          return false;

      }

    }

    return true;

  }

}
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public class Benchmarks

{

  private const int n = 100000;

  private int[] x = new int[n];

  private int[] y = new int[n];

  [GlobalSetup]

  public void Setup()

  {

    Array.Fill(x, 1);

    Array.Fill(y, 2);

  }

  [Benchmark(Baseline = true)]

  public bool Manual() => CompareHelper.NotEqualManual(x, y);

  [Benchmark]

  public bool Sse41() => CompareHelper.NotEqualSse41(x, y);

  [Benchmark]

  public bool Avx2() => CompareHelper.NotEqualAvx2(x, y);

}

Here we have three benchmarks: Manual, See41, and Avx2. All of them check that 

in the x and y arrays, there is no pair x[i]/y[i] where x[i] == y[i]. In the Manual 

benchmark, we have a simple loop that checks this condition for each pair of elements. 

In the Sse41 and Avx2 benchmarks, we do the same with the help of SSE4.1 and AVX2 

instructions, which are called directly via System.Runtime.Intrinsics.

 Results

Here is an example of results (Windows 10.0.17763.195, Intel Core i7-6700HQ CPU 

2.60GHz, .NET Core 3.0.0-preview-27122-01):

 Method |     Mean |    StdDev | Ratio |

------- |---------:|----------:|------:|

 Manual | 53.34 us | 0.5719 us |  1.00 |

  Sse41 | 40.45 us | 0.5451 us |  0.76 |

   Avx2 | 23.56 us | 0.1158 us |  0.44 |
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As you can see, Avx2 is the fastest benchmark, Sse41 works slowly, and Manual is the 

slowest benchmark.

 Explanation

With the help of System.Runtime.Intrinsics APIs, we can explicitly call SSE/AVX 

instructions that can process several array elements at once. That’s why it allows getting 

better performance on hardware where these instructions are supported.

 Discussion

Explicit intrinsics allows implementing different algorithms inside the same method 

based on the instruction availability. For example, if Avx.IsSupported is true, we can 

execute a fast AVX-based algorithm; if Avx.IsSupported is false, we can fall back to a 

slow algorithm without explicit intrinsics.

This is great for performance, but it’s not so great for benchmarking: it makes 

harder to conduct “general” conclusions about method performance based on a 

single benchmark session. Of course, we have this problem without System.Runtime.

Intrinsics usages: the JIT compiler is able to generate different native implementations 

on different hardware. However, now we have to check not only the JIT compiler 

“performance effects,” but also hardware-specific user code in the benchmark execution 

paths.

See also:

• [Mijailovic 2018a], [Mijailovic 2018b], [Mijailovic 2018c], [Mijailovic 

2018d]

• [Damageboy 2018a], [Damageboy 2018b], [Damageboy 2018c]

• [Lui 2018]

• https://github.com/EgorBo/IntrinsicsPlayground
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• dotnet/designs: .NET Platform Dependent Intrinsics59

• dotnet/machinelearning#129260: “Use FMA instruction in CpuMath 

for .NET Core 3”

 Summing Up
In this section, we discussed several kinds of intrinsics:

• Some JIT compilers have special intrinsics for some standard 

methods. For example, in RyuJIT-x64, we have an intrinsic for Math.

Round. Meanwhile, this method has an “honest” C# implementation, 

which is used by other JIT compilers.

• Some JIT compilers can recognize some patterns in the source code 

and generate a smart native code using special instructions. For 

example, RyuJIT-x64 can transform idiomatic bit rotation ((value >> 

count) | (value << (64 - count))) to a single ror instruction.

• In the System.Numerics namespace, we have SIMD-enabled 

types like Vector4 or Matrix4x4. These types were designed to be 

accelerated on the hardware level with the help of SIMD instructions. 

JIT compilers without knowledge of these types have a fallback 

option with slow implementation.

• Since .NET Core 3.0, we have had access to explicit intrinsics, which 

allows calling specific native instructions from different instruction 

sets. In the source code, we can also check which kinds of these sets 

are supported on the current CPU.

The variety of intrinsics in different JIT compilers makes benchmarks more 

hardware- specific. It’s pretty hard to make general conclusions about method 

performance based on a single environment. If you change the runtime, the JIT version, 

or the hardware, it may dramatically distort your results. Fortunately, now you know one 

more thing that will help you to explain the difference in performance between different 

environments.

59 https://github.com/dotnet/designs/blob/e55c517a1e7f8dc35b092397058029531209d610/
accepted/platform-intrinsics.md

60 https://github.com/dotnet/machinelearning/pull/1292
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 Summary
CPU-bound benchmarks are pretty popular, but it’s not easy to design and analyze them 

because there are a lot of hardware and runtime features that may spoil our performance 

experiments. In this chapter, we discussed the following topics:

• Registers and Stack

When the JIT compiler generates the native code for a method, 

it can put the local variable on the stack or in registers. Usually, 

operations with registers work much faster than operations with 

the stack. Unfortunately, you can’t control the JIT compiler: even 

very small and harmless changes may affect its decisions.

• Inlining

When the JIT compiler inlines a method, it replaces a method 

call by its body. Usually, this is a good optimization because 

it eliminates the call overhead and opens possibilities for 

other JIT compiler optimizations. However, it also can spoil 

performance because it may lead to worse register allocation 

or it can prevent further inlining that is more profitable. We 

can disable inlining for a specific method with the help of the 

[MethodImpl(MethodImplOptions.NoInlining)] attribute. There 

are a lot of other factors that may prevent inlining like method 

size, exception handling, virtual modifier, and recursion. Some 

of these factors are not obvious, and they may be valid only for 

specific JIT compilers (e.g., the starg IL instructions prevents 

method inlining on LegacyJIT-x86). We can tell the JIT compiler 

that we really want to inline a specific method with the help of 

the [MethodImpl(MethodImplOptions.AggressiveInlining)] 

attribute. However, we can’t force it, because inlining is not always 

possible. AggressiveInlining may help to optimize some small 

hot methods, but it can also increase the duration of some methods.

• ILP

ILP allows executing multiple instructions at the same time inside a 

single thread. As usual, this is good for performance, but not so good 

for benchmarking. For example, you can add some statements to 
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the benchmark body without any performance changes because the 

new statements will be executed in parallel with previously existing 

code. The ILP capabilities depend on the dependency graph that 

you have in your C# code or on the native code level. When you 

have an extremely short loop, its performance may be significantly 

affected because of the native code alignment. In order to prevent 

such situations, it’s recommended to unroll such loops manually.

• Branch Prediction

When CPUs are able to predict taken branches correctly, it 

significantly improves conditions for ILP. The branch predictor 

uses the history of taken branches in your execution sessions. This 

means that performance can be affected by changes in the input 

data even if you execute the same number of native instructions.

• Arithmetic

Performance of even the simplest arithmetic operations 

depends on the environment. The floating-point calculations are 

nondeterministic, so the program result may also be different with 

different runtimes and hardware. In the IEEE 754 standard,  

we have denormalized numbers which can be a cause of extremely 

slow calculations. Thus, the performance of float and double 

calculations also depends on the operand values.

• Intrinsics

In C#, you have a lot of different implicit and explicit intrinsics, 

which allows getting an efficient native code for the current 

hardware. The implicit intrinsics are used by the JIT compiler to 

optimize specific statements or system methods using the best 

available hardware instructions. The explicit intrinsics are used 

by you to manually optimize your algorithms using any hardware 

instructions you want (if they are available).

All of these topics are important for benchmark design and analysis. The proper 

benchmark design requires careful work with all the components of the performance 

spaces. Changes in the source code can affect the native code generation for the local 

variables (they can be put on the stack or in registers), the JIT compiler inlining policy, 
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and conditions for the ILP. Changes in the environment (e.g., runtime version or 

hardware) can affect generated native instructions and intrinsic availability. Changes 

in the input data can affect branch mispredict rate. When you analyze the performance 

distributions for a specific source code/environment/input data combination, you 

should keep in mind that you can get dramatic performance changes under other 

conditions. And now you know what can you check during performance investigations 

in the case of such changes in a CPU-bound benchmark.
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CHAPTER 8

Memory-Bound 
Benchmarks

Blaming perf issues on Garbage Collection is like blaming your hangover 
on your liver…

Its the thing that’s saving you from your code.

— Ben Adams

It’s a common situation for memory to be a bottleneck in your code. In this case, it’s 

very important to understand how memory works on different levels: from CPU to 

.NET runtime. This knowledge allows designing good benchmarks. On the other hand, 

if you don’t know some memory “features,”1 it’s very easy for you to design a wrong 

benchmark: you can miss an important part of the performance space or measure the 

performance of some memory-specific things instead of the performance of your code.

The memory management in .NET is a huge topic: it deserves its own book. And this 

book has already been published: Pro .NET Memory Management ([Kokosa 2018a]). It 

contains more than 1000 pages with a detailed overview of the most important aspects of 

memory management.

If you want to know more low-level details about memory on the hardware level, 

it’s recommended to read [Drepper 2007]. It’s a pretty old paper, but it explains pretty 

fundamental concepts that are still valid for modern hardware.

When developers discuss program memory, they usually think about different kinds 

of memory on the OS level like virtual memory, management memory, private set, 

1 Some of these features are nonobvious if you don’t know about them. Here is a pretty interesting 
example: [Majkowski 2018].
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shared memory, resident memory, working set, and so on. In this section, we are not 

going to talk about it.2

In this book, we don’t cover theoretical topics around memory management. 

Instead, we are continuing to learn different case studies that demonstrate how different 

pitfalls may affect memory-bound benchmarks. We will use the same structure used in 

Chapter 7. Each case study contains four sections: Source code, Results, Explanation, and 

Discussion.

This chapter will help you to design better memory-bound benchmarks and avoid 

common mistakes. It’s still good to have knowledge about low-level topics, but it’s not 

mandatory for most simple benchmarks. As usual, it’s enough just to understand general 

concepts (and how to use it during benchmark design and analysis).

 CPU Cache
The read and write operations are very popular in any program. When we discuss the 

algorithmic complexity of different algorithms, we often use O(1) as the complexity of 

a single I/O operation. This is correct, but it doesn’t mean that all of the I/O operations 

have the same duration: the actual performance depends on the area of memory that we 

are working with.

For example, we can work with physical disks like HDD or SDD. The disks are great 

when we need persistent storage for our data. In terms of performance, this storage is 

not the best solution for algorithms that should process data because the disk access is 

pretty slow.

The main memory (RAM) works much faster than disks. In our benchmarks, we 

often operate with arrays and different data structures that exist in the RAM. The RAM 

access works faster than the disk access, but it’s still not fast enough for many use cases.

That’s why we have the CPU cache: it’s pretty efficient storage for the hot data that is 

placed on the CPU. When you perform I/O operations on the same data several times, 

the CPU puts the corresponding memory chunks in the cache. It allows getting a very 

good performance boost.

2 You can find some interesting information about different kinds of memory in [Goldshtein 
2016] and [Gregg 2018]. In [Dawson 2018a] and [Dawson 2018b], you can also find relevant 
performance case studies.
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We also have the CPU registers, which work even faster than the CPU cache, but we 

have only a few of them. It’s enough to provide fast access to several variables, but it’s not 

enough to handle a huge array.

While we can work directly with CPU registers or main memory on the native code 

level, we don’t have direct access to the CPU cache. That’s why the CPU cache topic 

is so important for benchmarking: it can significantly change the performance of our 

code without our direct involvement. Let’s discuss a few case studies that show the 

corresponding performance effects.

 Case Study 1: Memory Access Patterns
The understanding of the CPU cache effects is also important when you choose the 

memory access patterns in your benchmarks. Let’s learn a case study that demonstrates 

why it’s so important.

 Source code

Consider the following BenchmarkDotNet-based benchmarks:

public class Benchmarks

{

  private int n = 512;

  private long[,] a;

  [GlobalSetup]

  public void Setup()

  {

    a = new long[n, n];

  }

  [Benchmark(Baseline = true)]

  public long SumIj()

  {

    long sum = 0;

    for (int i = 0; i < n; i++)

    for (int j = 0; j < n; j++)

      sum += a[i, j];
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    return sum;

  }

  [Benchmark]

  public long SumJi()

  {

    long sum = 0;

    for (int i = 0; i < n; i++)

    for (int j = 0; j < n; j++)

      sum += a[j, i];

    return sum;

  }

}

Here we have a square array a. In the SumIj benchmark, you can see the most classic 

way to calculate the sum of elements in this array. In the SumJi benchmark, you do the 

same, but we use a[j, i] elements instead of a[i, j] on each iteration.

 Results

Here is an example of results (Windows 10.0.17763.195, Intel Core i7-6700HQ CPU 

2.60GHz, .NET Core 2.1.5, RyuJIT-x64):

  Method |     Mean |    StdDev | Ratio |

-------- |---------:|----------:|------:|

   SumIj | 334.8 us |  6.466 us |  1.00 |

   SumJi | 692.0 us | 30.509 us |  2.13 |

As you can see, SumJi works much slower than SumIj.

 Explanation

In the SumIj benchmark, we enumerate all elements line by line. If we don’t have a[0, 0] 

in the cache, we have a situation called cache miss. It means that we have to load this 

value in the cache, which takes some time.

The atomic unit of the CPU cache is cache line. The typical cache line size is 64 bytes, 

which means that it can handle eight long values. When we load a[0, 0] in the cache, 

we actually load the whole cache line, which also contains a[0, 1], a[0, 2], a[0, 3], 

a[0, 4], a[0, 5], a[0, 6], and a[0, 7] (assuming that the array is aligned in the 
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memory). Once we loaded this cache line, the access for the following seven elements 

will be fast because these elements are already in the cache. On the a[0, 8], we will hit a 

cache miss again, and load the next 64 bytes in the cache. This means that the next seven 

read operations will be fast.

In the SumJi benchmark, we enumerate all elements column by column. When we 

read a value of a[0, 0], we also have a cache miss with a corresponding performance 

penalty. However, we don’t need the a[0, 1]..a[0, 7] elements (which are loaded in 

the cache with a[0, 0]) right now. After the a[0, 0] element, we are reading the value 

of a[1, 0]. And we hit another cache miss! The elements we load in the cache with  

a[1, 0] (a[1, 1]..a[1, 7]) are not useful for us right now because the next used 

element is a[2, 0].

Both SumIj and SumJi benchmarks perform the same number of instructions. 

However, SumJi works much slower because it has more cache misses. The illustration of 

the memory layout for this case study is presented in Figure 8-1 (each cache line has its 

own color).

Figure 8-1. Square array and CPU cache lines

 Discussion

In real life, you can’t always control the memory access pattern, but you can control it 

in your benchmarks. If you want to get a proper overview of the performance space, it’s 

recommended to check different access patterns (if it’s possible): a sequential pattern 

(which should be the fastest one), a pattern when you never hit the same cache line 

twice (which should be the slowest one), a random pattern (which should be close to the 

slowest one), and some patterns that match real-life scenarios.
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When you compare different algorithms, you can get the opposite results on 

different access patterns. In many cases, it’s impossible to say which data structure is 

more efficient for your program, because one data structure may be faster in one kind of 

benchmark and slower in another kind. For example, the insert operation works much 

faster with a linked list than with a plain array, but the enumeration of the linked list may 

be much slower because of the high case miss rate.

If you want to use knowledge about CPU cache during optimization, you may be 

interested in the topic of cache-friendly algorithms and data structures (e.g., see [Hiroshi 

2015] and [Kulukundis 2017]; “Data-Oriented Design” section in [Kokosa 2018a]). You 

can also find more interesting case studies about CPU caches in [Douillet 2018].

 Case Study 2: Cache Levels
The core principles of the CPU cache are pretty similar on different hardware, but its 

physical layout depends on the CPU model. Let’s consider the Intel Core i7-6700HQ CPU 

2.60GHz.3 It has three cache levels: L1, L2, and L3. The size of L1 is 32 KB; it’s the fastest 

cache level. The size of L2 is 256 KB; it’s still pretty fast, but it’s not as fast as L1. The size 

of L3 is 6 MB; it’s the slowest cache level, but it still works much faster than the physical 

main memory. Let’s look at an example that demonstrates the performance of different 

cache levels.

 Source code

Consider the following BenchmarkDotNet-based benchmarks:

[HardwareCounters(HardwareCounter.CacheMisses)]

public class Benchmarks

{

  private const int N = 16 ∗ 1024 ∗ 1024;
  private byte[] data;

  [Params(1, 2, 4, 8, 16, 32, 64, 128, 256,

          512, 1024, 2048, 4096, 8192, 16384, 32768)]

  public int SizeKb;

3 https://ark.intel.com/products/88967/Intel-Core-i7-6700HQ-Processor-6M-Cache-up- 
to-3-50-GHz-
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  [GlobalSetup]

  public void Setup()

  {

    data = new byte[SizeKb ∗ 1024];
  }

  [Benchmark]

  public void Calc()

  {

    int mask = data.Length - 1;

    for (int i = 0; i < N; i++)

      data[(i ∗ 64) & mask]++;
  }

}

Here we have a byte array data. We also have the SizeKb parameter, which defines 

the size of this array in kilobytes. In the only benchmark Calc, we increment elements of 

this array with the 64B delta. This is not a random number: it’s the size of a single CPU 

cache line—the minimum chunk size processed by the cache. The CPU cache can’t fetch 

a single variable from the main memory because it always works with cache lines. The 

number of increments in the benchmark is the same for all values of SizeKb. The [Har

dwareCounters(HardwareCounter.CacheMisses)] attribute asks BenchmarkDotNet to 

measure the CPU cache misses via hardware counters.

 Results

Here is an example of results (Windows 10.0.17763.195, Intel Core i7-6700HQ CPU 

2.60GHz, .NET Core 2.1.5, RyuJIT-x64):

 SizeKb |     Mean |    StdDev | CacheMisses/Op |

------- |---------:|----------:|---------------:|

      1 | 18.75 ms | 0.1259 ms |          1,044 |

      2 | 18.63 ms | 0.1602 ms |          1,058 |

      4 | 18.62 ms | 0.1656 ms |          1,348 |

      8 | 18.74 ms | 0.1555 ms |          1,065 |

     16 | 18.75 ms | 0.1675 ms |          1,292 |

     32 | 18.82 ms | 0.1431 ms |          1,841 |
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     64 | 21.76 ms | 0.2145 ms |          2,743 |

    128 | 21.55 ms | 0.1594 ms |          3,702 |

    256 | 21.55 ms | 0.1367 ms |          3,076 |

    512 | 36.71 ms | 0.4937 ms |          2,791 |

   1024 | 36.31 ms | 0.2990 ms |          3,051 |

   2048 | 36.57 ms | 0.3610 ms |         49,448 |

   4096 | 40.92 ms | 0.4023 ms |        434,477 |

   8192 | 67.61 ms | 0.7010 ms |      3,162,028 |

  16384 | 85.49 ms | 0.7213 ms |      5,493,341 |

  32768 | 92.18 ms | 0.8848 ms |      6,240,472 |

As you can see, we have several groups of benchmark results. The SizeKb values 

from 1 to 32 give approximately the same result. The SizeKb values from 64 to 256 form 

another group of measurements that is two times slower than the first group. Next, we 

have a group of SizeKb values from 512 to 4096 that have bigger duration. After the 

SizeKb=8192, the duration becomes even bigger.

 Explanation

When the work memory size is less than 32 KB, the CPU is able to keep the whole array 

in the L1 cache level. It’s pretty efficient, and we have good performance results. Starting 

from 64 KB, the array can’t be saved in L1 because it’s too huge: the CPU has to use L2, 

which works slower. Starting from 512 KB, the CPU has to use L3 because L2 is not big 

enough: the performance becomes worse. Starting from 8192 KB, the array is too huge 

for all CPU cache levels: the read/write operations are starting to work directly with the 

main memory, which is even slower than L3.

The algorithmic complexity and the number of performed native instruction are the 

same for all SizeKb values. However, the benchmark with 32768 KB working memory 

works several times slower than the benchmark with 1 KB working memory.

 Discussion

The knowledge about CPU cache is very important when you are starting to design small 

benchmarks based on real applications. In such applications, the working memory 

(memory that is actually used in the application lifecycle) may be pretty huge (dozens of 
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megabytes or even gigabytes). Also, the CPU cache is typically cold: when we are working 

with the memory segment for the first time, the data is not loaded to the CPU cache yet. 

It means that memory access will be slow. In small artificial benchmarks, the CPU cache 

is typically warm (because we are performing several warm-up iterations to get the 

repeatable results), and the working memory is typically small (because we don’t have 

gigabytes of memory, which are not necessary for this particular benchmark). Another 

common benchmarking pitfall is applying results of such benchmarks for optimizing real 

applications. Sometimes you can do it, but not always: the performance may be much 

worse in a real application because we don’t have the benefits of the CPU cache that we 

have in a small benchmark. A general recommendation is simple: if you are working with 

arrays or other data structures, you should run your benchmarks on different sizes of the 

working memory.

The CPU cache performance also depends on the CPU microarchitecture. For 

example, there is a quote from [Intel OptManual], 2.1.3 “Cache and Memory Subsystem,” 

about changes in Intel Skylake:

L3 write bandwidth increased from 4 cycles per line in previous generation 
to 2 per line.

It’s not easy to design small benchmarks that demonstrate such effects, but it 

may have a noticeable impact on application performance. It’s also not easy to detect 

situations when we have performance changes between different CPUs because of the 

CPU cache efficiency, but it’s one more factor that may affect the measurements.

 Case Study 3: Cache Associativity
Another important “feature” of the CPU cache is the associativity. This is a special 

number used for matching main memory and cache lines. For example, in the Intel 

Core i7-6700HQ CPU 2.60GHz, the L1 cache level is 8-way associative, the L2 cache level 

is 4-way associative, and the L3 cache level is 12-way associative. Let’s learn another 

example that will help us to understand how we should interpret these values during 

performance measurements.
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 Source code

Consider the following BenchmarkDotNet-based benchmarks:

public class Benchmarks

{

  private int[,] a;

  [Params(1023, 1024, 1025)]

  public int N;

  [GlobalSetup]

  public void Setup()

  {

    a = new int[N, N];

  }

  [Benchmark]

  public int Max()

  {

    int max = int.MinValue;

    for (int i = 0; i < N; i++)

      max = Math.Max(max, a[i, 0]);

    return max;

  }

}

Here we have a square array a. In the only benchmark, Max, we calculate the 

maximum element of the first column in this array. The array size is a benchmark 

parameter: we check 1023×1023, 1024×1024, and 1025×1025 arrays.

 Results

Here is an example of results (Windows 10.0.17763.195, Intel Core i7-6700HQ CPU 

2.60GHz, .NET Core 2.1.5, RyuJIT-x64):

    N |     Mean |    StdDev |
----- |---------:|----------:|
 1023 | 2.026 us | 0.0694 us |
 1024 | 4.452 us | 0.2049 us |

 1025 | 2.012 us | 0.0117 us |
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As we can see, the N=1023 and N=1025 cases have approximately the same duration. 

However, N=1024 case works much slower.

 Explanation

Now it’s time to discuss the meaning of the cache associativity. In Figure 8-2, you can see 

an illustration for a two-way associative cache.

Figure 8-2. Illustration of two-way associative cache

As we mentioned before, the atomic unit of the CPU cache is the cache line (which 

is typically 64B). The “two-way” associativity means that for each 64B segment of the 

main memory, there are exactly two cache lines that can keep this segment. The total 

cache size is much lower than the main memory size, so it should reuse the same pair of 

cache lines for different 64B segments. The difference between 64B segments of the main 

memory that match the same set of cache lines is known as the critical stride. Its value 
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can be easily calculated by dividing the cache size by the associativity value. In Table 8-1, 

you can see the critical stride values for different cache levels based on its associativity.

Table 8-1. Critical Stride Values for Different CPU Caches

Level Size Associativity Critical stride

L1 32 kB 8-way 4 kB

L2 256 kB 4-way 64 kB

L2 256 kB 8-way 32 kB

L3 6 MB 12-way 512 kB

In the preceding benchmark, L1 is big enough to handle all elements that we are 

working with. Its associativity is eight-way, which means that the critical stride equals 

4 KB (or 4096 B). The difference between subsequent elements in the first column is 

4*N bytes (because the size of int is 4 bytes). When N=1024, this difference is exactly 

4096 bytes; it equals the critical stride value. This means that all elements from the 

first column match the same eight cache lines of L1. We don’t really have performance 

benefits from the cache because we can’t use it efficiently: we have only 512 bytes  

(8 cache lines * 64-byte cache line size) instead of the original 32 kilobytes. When we 

iterate the first column in a loop, the corresponding elements pop each other from 

the cache. When N=1023 and N=1025, we don’t have problems with the critical stride 

anymore: all elements can be kept in the cache, which is much more efficient.

 Discussion

Developers like to use degrees of two in their benchmarks because it simplifies working 

memory size calculation (and it also looks more “geeky”). Unfortunately, it increases 

the probability of getting problems with the critical strides. You can easily get bad 

performance metrics because of that. The general recommendation is the same: you 

should check different sizes of the working memory in your performance experiments 

(including sizes that are not the power of two).

The critical stride effects also depend on the hardware. Here is another quote 

from [Intel OptManual], 2.1.3 “Cache and Memory Subsystem,” about changes in Intel 

Skylake:

L2 associativity changed from 8 ways to 4 ways in Intel Skylake.
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When you compare performance metrics in a memory-bound benchmark on two 

different CPUs, you can get a difference because of the different values of the cache 

associativity and the critical strides.

 Case Study 4: False Sharing
False sharing is an effect that can spoil multithreading benchmarks. Let’s look at an 

example that demonstrates it.

 Source code

Consider the following BenchmarkDotNet-based benchmarks:

public class Benchmarks

{

  private static int[] x = new int[1024];

  private void Inc(int p)

  {

    for (int i = 0; i < 1000001; i++)

    {

      x[p]++; x[p]++; x[p]++; x[p]++;

      x[p]++; x[p]++; x[p]++; x[p]++;

      x[p]++; x[p]++; x[p]++; x[p]++;

      x[p]++; x[p]++; x[p]++; x[p]++;

    }

  }

  [Params(1, 256)]

  public int Step;

  [Benchmark]

  public void Run()

  {

    Task.WaitAll(

      Task.Factory.StartNew(() => Inc(0 ∗ Step)),
      Task.Factory.StartNew(() => Inc(1 ∗ Step)),
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      Task.Factory.StartNew(() => Inc(2 ∗ Step)),
      Task.Factory.StartNew(() => Inc(3 ∗ Step)));
  }

}

Here we have the Inc method, which increments the same element of an array many 

times. It uses manual loop unrolling to avoid effects of the ILP that were discussed in 

Chapter 7. In the only Run benchmark, we start four tasks that are incrementing different 

array elements (each task has its own element index). The benchmark has the Step 

parameter, which defines the difference between indexes of the incremented elements. 

When Step=1, we are incrementing x[0], x[1], x[2], and x[3]. When Step=256, we are 

incrementing x[0], x[256], x[512], and x[768].

 Results

Here is an example of results (Windows 10.0.17763.195, Intel Core i7-6700HQ CPU 

2.60GHz, .NET Core 2.1.5, RyuJIT-x64):

 Step |      Mean |   StdDev |

----- |----------:|---------:|

    1 | 215.66 ms | 8.953 ms |

  256 |  61.54 ms | 4.002 ms |

As you can see, the case with Step=256 works much faster than the case with Step=1.

 Explanation

Imagine a situation with two threads on two different CPU cores that perform read/write 

operations on the same variable. On Intel Core i7-6700HQ, each core has its own L1 

and L2 caches. This means that CPU has to synchronize the variable value between the 

caches. Obviously, we will have a performance penalty because of this synchronization. 

This situation is known as true sharing (Figure 8-3, left side).
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Now imagine another situation: we still have two threads on two different CPU cores, 

but these threads perform read/write operations on different variables. We can assume 

that we will not have the synchronization performance penalty anymore because the 

threads don’t share the same variable anymore. However, the CPU cache atomic unit 

for synchronization is not a single variable; it’s a cache line! If these variables belong to 

the same cache line, the CPU cache still has to synchronize this cache line! It doesn’t 

matter that we work with different variables. If we have read/write operations with 

the same cache line on two different cores, the CPU will synchronize it anyway (even 

if we don’t actually share memory between threads). This situation is known as false 

sharing (Figure 8-3, right side). And it also has the performance penalty because of the 

synchronization.

 Discussion

The discussed problem is valid only for multithreading benchmarks. Moreover, it’s not 

a stable problem: you can observe the false sharing effect only if the target variables 

belong to the same cache line. Any changes in the source code or environment may 

move the variables into two different cache lines (the first variable will be at the end of 

one cache line; the second variable will be at the start of the next cache line). In this case, 

the false sharing effect will not affect the results anymore for these two variables.

The general recommendation: if you are writing a multithreading benchmark, make 

sure that the different variables which you use from different threads have a distance 

between them which is more than 64 bytes. In the preceding example, we did it with 

the help of Step=256: different tasks just use array elements that are pretty far from each 

Figure 8-3. True and false sharing
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other. If we are talking about individual fields, you can add eight unused long variables 

between them.

You can find more examples of benchmarks with false sharing in [Mendola 2008], 

[Jainam M. 2017], and [Wakart 2013].

 Summing Up
In this section, we discussed four topics that may be important for benchmarking 

because of the modern CPU features:

• Memory Access Patterns

The sequential access to the data is always faster than the random 

access because CPU cache operates with cache lines (the typical 

size is 64 B) instead of the variables. Once you load a variable in 

the cache, you also load the neighboring variables from the same 

cache line. After that, you can access these variables without 

additional cache miss penalty.

• Cache Levels

Typically, the CPU cache has three levels: L1, L2, and L3 (but you 

can also find other CPU cache configurations with two or four 

levels). The first level is the fastest one, but it’s also the smallest 

one. The latest level is the biggest one, but it works much slower 

than other levels. Operations with any level of the CPU cache work 

faster than operations with data from the main memory, which is 

not presented in the cache.

• Cache Associativity

Each byte of the main memory has a limited number of 

positions in the CPU cache that can handle its value. Typically, 

the associativity of the modern caches is between 4 and 24. 

The minimum positive difference between data segments that 

matches the same set of cache lines is known as the critical stride.
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• False Sharing

In multithreading benchmarks, you can get a situation when two 

different threads are performing read/write operations with two 

different variables on two different CPU cores. If these variables 

belong to the same cache line, we will get a situation called false 

sharing: the CPU has to synchronize this cache line between 

cores. As a result, we have a performance penalty for this kind of 

situation.

If you want to design a good CPU-bound benchmark, it’s recommended to check the 

different sizes of working memory. To reduce the number of these sizes, you can try the 

sizes of L1, L2, L3, and the size that is much bigger than L3. In order to avoid problems 

with critical strides, it makes sense also to check working sizes that are not powers 

of two. It’s also recommended to check different access patterns (if possible) like the 

sequential access and random access. Such corner cases are useful to get an overview 

of the performance space because they typically provide the best-case and worse-case 

measurements. However, it’s still important to check cases that are close to real-life 

usage scenarios.

 Memory Layout
In this section, we are going to discuss how performance depends on the actual 

addresses of the variables that we are working with. In .NET, we can’t always control the 

alignment of our objects and structs, but there are still a lot of interesting performance 

effects on the hardware level that may affect benchmark results.

In the previous section, we discussed typical problems with the CPU cache that affect 

simple benchmarks pretty often. We will also continue to discuss the CPU cache effects 

because this topic is closely related to the topic of the memory layout.

 Case Study 1: Struct Alignment
In .NET, you can manually control the struct alignment via the [StructLayout] and 

[FieldOffset] attributes (you can read more about it in [Kalapos 2018]). However, most 

developers don’t use these attributes and rely on default layout algorithms. Meanwhile, 

different .NET runtimes have different layout policies that may produce a noticeable 

impact on the application performance.
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 Source code

Consider the following BenchmarkDotNet-based benchmarks:

public struct Struct7

{

  public byte X0, X1, X2, X3, X4, X5, X6;

}

public struct Struct8

{

  public byte X0, X1, X2, X3, X4, X5, X6, X7;

}

[LegacyJitX86Job, MonoJob]

public class Benchmarks

{

  public const int Size = 256;

  private int[] sum = new int[Size];

  private Struct7[] struct7 = new Struct7[Size];

  private Struct8[] struct8 = new Struct8[Size];

  [Benchmark(OperationsPerInvoke = Size, Baseline = true)]

  public void Run7()

  {

    for (var i = 0; i < sum.Length; i++)

    {

      Struct7 s = struct7[i];

      sum[i] = s.X0 + s.X1;

    }

  }

  [Benchmark(OperationsPerInvoke = Size)]

  public void Run8()

  {

    for (var i = 0; i < sum.Length; i++)

    {
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      Struct8 s = struct8[i];

      sum[i] = s.X0 + s.X1;

    }

  }

}

We have already discussed a similar benchmark in the “Struct Promotion” case study 

(Chapter 7). Here we have two structs: Struct7 with seven byte fields and Struct8 with 

eight byte fields. We also have two benchmarks: Run7 and Run8. In each benchmark, we 

calculate the sum of the first two struct fields in a loop. The only difference between Run7 

and Run8 is the used struct.

 Results

Here is an example of results (Windows 10.0.17763.195, Intel Core i7-6700HQ CPU 

2.60GHz, .NET Framework 4.7.2, LegacyJIT-x86 v4.7.3260.0; Mono-x64 v5.18.0):

 Method |          Job |     Mean |    StdDev | Ratio |

------- |------------- |---------:|----------:|------:|

   Run7 | LegacyJitX86 | 7.331 ns | 0.0216 ns |  1.00 |

   Run8 | LegacyJitX86 | 2.409 ns | 0.0088 ns |  0.33 |

   Run7 |         Mono | 3.643 ns | 0.0177 ns |  1.00 |

   Run8 |         Mono | 3.716 ns | 0.0164 ns |  1.02 |

As you can see, Run8 works three times faster than Run7 on LegacyJIT-x86. On 

Mono-x64, Run8 works a little bit slower than Run7.

 Explanation

When we have an array of structs, LegacyJIT-x86 tries to lay out its memory as 

compactly as possible. You can find the layout of the first eight elements of Struct7[] 

in the left side of Figure 8-4 (each struct instance has its own color). The elements 

are placed in memory one after another without padding. As you can see, most of the 

elements are unaligned. Access to the unaligned data usually works slower than access 

to the aligned data. That’s why Run8 works much faster: all of its elements are naturally 

aligned because each element contains exactly eight bytes.
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In the right side of Figure 8-4, you can see the Struct7[] aligned on Mono: it uses 

one-byte padding after each element to make all Struct7 instances aligned. On the one 

hand, this is bad because such an alignment policy increases the total memory used for 

keeping the array. On the other hand, it’s good because all the elements are properly 

aligned and access operation may be performed much faster than for the unaligned case.

Discussion

When you want to achieve the best possible performance for operation with struct 

arrays, it’s a good idea to control the alignment for the struct instances manually. 

However, proper alignment may also increase the memory footprint because of the 

paddings. Also, note that unaligned access performance effects significantly depend on 

the used CPU model.

You can find more interesting information about memory alignment issues in 

[Sumedh 2013], [Sandler 2008], and [Lemirer 2012].

This case study is based on the StackOverflow question 38949304.4

4 https://stackoverflow.com/q/38949304

Figure 8-4. Struct7 layout in LegacyJIT-x86 and Mono-x64
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 Case Study 2: Cache Bank Conflicts
In the context of the CPU caches, a cache bank is a small segment inside a CPU cache 

line. When we match a byte from the main memory to the CPU cache line, we can 

also uniquely identify the number of a cache bank that contains this byte. In the next 

example, we will benchmark sequential operations with memory that works with the 

same cache bank from different cache lines.

 Source code

Consider the following BenchmarkDotNet-based benchmark:

public unsafe class Benchmarks

{

  private readonly int[] data = new int[2 ∗ 1024 ∗ 1024];

  [Params(15, 16, 17)]

  public int Delta;

  [Benchmark]

  public bool Calc()

  {

    fixed (int∗ dataPtr = data)
    {

      int∗ ptr = dataPtr;
      int d = Delta;

      bool res = false;

      for (int i = 0; i < 1024 ∗ 1024; i++)
      {

        res |= (ptr[0] < ptr[d]);

        ptr++;

      }

      return res;

    }

  }

}
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Here we have a data array and a parameter called Delta. In the benchmark, we are 

enumerating the first 1024 * 1024 elements of this array. For each element data[i], we 

compare it with data[i + Delta]. The algorithm is written with unsafe code to avoid 

bound checks during array element access. This code doesn’t calculate anything useful; 

it’s just another small example that demonstrates a pretty interesting CPU effect.

 Results

Here is an example of results on Skylake (Windows 10.0.17763.195, Intel Core i7-6700HQ 

CPU 2.60GHz, .NET Framework 4.7.2, RyuJIT-x64 v4.7.3260):

 Delta |     Mean |    StdDev |

------ |---------:|----------:|

    15 | 0.957 ms | 0.0030 ms |

    16 | 0.955 ms | 0.0045 ms |

    17 | 0.956 ms | 0.0051 ms |

And here is an example of results on Ivy Bridge (Windows 10.0.15063.1387, Intel Core 

i7-3615QM CPU 2.30GHz, .NET Framework 4.7.2, RyuJIT-x64 v4.7.3190):

 Delta |     Mean |    StdDev |

------ |---------:|----------:|

    15 | 1.040 ms | 0.0036 ms |

    16 | 1.243 ms | 0.0063 ms |

    17 | 1.039 ms | 0.0062 ms |

As you can see, we have approximately the same duration of all runs on Skylake. 

However, on Ivy Bridge, the run with Delta=16 works 20% slower.

 Explanation

We can find an explanation for these results in [Intel OptManual], 3.6.1.3 “Handling L1D 

Cache Bank Conflict”:

In Intel microarchitecture code name Sandy Bridge, the internal organiza-
tion of the L1D cache may manifest a situation when two load micro-ops 
whose addresses have a bank conflict. When a bank conflict is present 
between two load operations, the more recent one will be delayed until the 
conflict is resolved. A bank conflict happens when two simultaneous load 
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operations have the same bit 2–5 of their linear address but they are not 
from the same set in the cache (bits 6–12).

Bank conflicts should be handled only if the code is bound by load band-
width. Some bank conflicts do not cause any performance degradation 
since they are hidden by other performance limiters. Eliminating such bank 
conflicts does not improve performance.

With the Haswell microarchitecture, the L1 DCache bank conflict issue does 
not apply.

Thus, each cache line can be split into 16 cache banks (this number also depends on 

the CPU model). Two load operations may collide on Ivy Bridge if they target values from 

different cache lines, but from cache banks with the same number.

Discussion

This problem is relevant only for old Intel processors (e.g., Ivy Bridge); you will not 

observe the described effect on processors since Haswell. Even on Sandy/Ivy Bridge 

processors, it’s not so easy to hit the problem in real benchmarks. However, it’s still good 

to know about such effects because they can unpredictably change the performance 

measurements. If you don’t know about it, you may easily come up with the wrong 

conclusions.

 Case Study 3: Cache Line Splits
Let’s learn another case study about the CPU cache. This time, we will discuss it in the 

context of the data alignment.

 Source code

Consider the following BenchmarkDotNet-based benchmarks:

[StructLayout(LayoutKind.Explicit, Pack = 8)]

public struct MyStruct

{

  [FieldOffset(0x04)] public ulong X0;

  [FieldOffset(0x0C)] public ulong X1;

  [FieldOffset(0x14)] public ulong X2;

  [FieldOffset(0x1C)] public ulong X3;

  [FieldOffset(0x24)] public ulong X4;
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  [FieldOffset(0x2C)] public ulong X5;

  [FieldOffset(0x34)] public ulong X6;

  [FieldOffset(0x3C)] public ulong X7;

}

public unsafe class Benchmarks

{

  private int N = 1000;

  public void Run(int offset)

  {

    var myStruct = new MyStruct();

    if ((long) &myStruct.X0 % 64 == offset)

    {

      for (int i = 0; i < N; i++)

        myStruct.X0++;

    }

    else if ((long) &myStruct.X1 % 64 == offset)

    {

      for (int i = 0; i < N; i++)

        myStruct.X1++;

    }

    else if ((long) &myStruct.X2 % 64 == offset)

    {

      for (int i = 0; i < N; i++)

        myStruct.X2++;

    }

    else if ((long) &myStruct.X3 % 64 == offset)

    {

      for (int i = 0; i < N; i++)

        myStruct.X3++;

    }

    else if ((long) &myStruct.X4 % 64 == offset)

    {

      for (int i = 0; i < N; i++)

        myStruct.X4++;

    }
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    else if ((long) &myStruct.X5 % 64 == offset)

    {

      for (int i = 0; i < N; i++)

        myStruct.X5++;

    }

    else if ((long) &myStruct.X6 % 64 == offset)

    {

      for (int i = 0; i < N; i++)

        myStruct.X6++;

    }

    else if ((long) &myStruct.X7 % 64 == offset)

    {

      for (int i = 0; i < N; i++)

        myStruct.X7++;

    }

  }

  [Benchmark(Baseline = true)]

  public void InsideCacheLine() => Run(4);

  [Benchmark]

  public void CacheSplit() => Run(60);

}

Here we have the MyStruct value type with the explicit layout. It contains eight ulong 

fields with the following offsets: 0x04, 0x0C, 0x14, 0x1C, 0x24, 0x2C, 0x34, and 0x3C. In 

this case, .NET Framework will align this struct by eight bytes, which means that exactly 

one field will be placed on the boundary of two cache lines. The Run method takes 

offset and finds the field with an address that satisfies the following condition: “the 

remainder of dividing the address by 64 should be equal to offset.” Next, it increments 

the corresponding field N times.

Also, we have two benchmarks: InsideCacheLine and CacheSplit. The 

InsideCacheLine benchmark invokes Run(4), which means that it will increment the 

field that is inside a cache line. The InsideCacheLine benchmark invokes Run(60), 

which means that it will increment the field on the boundary of two cache lines: the 

first four bytes of this field are located at the end of one cache line, and the last four are 

located at the start of another cache line.
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 Results

Here is an example of results on Skylake (Windows 10.0.17763.195, Intel Core i7-6700HQ 

CPU 2.60GHz, .NET Framework 4.7.2, RyuJIT-x64 v4.7.3260):

          Method |     Mean |    StdDev | Ratio |

---------------- |---------:|----------:|------:|

 InsideCacheLine | 1.630 us | 0.0063 us |  1.00 |

      CacheSplit | 3.041 us | 0.0089 us |  1.87 |

As you can see, the CacheSplit benchmark works significantly slower than the 

InsideCacheLine benchmark.

 Explanation

We can find an explanation in [Intel OptManual], 3.6.4 “Alignment”:

Misaligned data access can incur significant performance penalties. This is 
particularly true for cache line splits. The size of a cache line is 64 bytes in 
the Pentium 4 and other recent Intel processors, including processors based 
on Intel Core microarchitecture.

An access to data unaligned on 64-byte boundary leads to two memory 
accesses and requires several μops to be executed (instead of one). Accesses 
that span 64-byte boundaries are likely to incur a large performance penalty, 
the cost of each stall generally are greater on machines with longer pipelines.

 Discussion

Cache line split is another effect that can unpredictably affect application performance. 

You will not get problems with it in most of the benchmarks because the data are 

usually properly aligned by the .NET runtime. However, you should be careful when you 

manually change the struct layout or when you are writing unsafe code.

You can find a lot of additional information about this topic in [Intel OptManual].

 Case Study 4: 4K Aliasing
4K aliasing is a pretty exciting phenomenon that can also affect your measurements. It 

happens when we store a value to one memory location and load another value from a 

different memory location with a 4096-byte offset between these locations. Let’s look at 

an example that demonstrates such a situation.
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 Source code

Consider the following BenchmarkDotNet-based benchmark:

public class Benchmarks

{

  private readonly byte[] data = new byte[32 ∗ 1024 ∗ 1024];
  private readonly int baseOffset;

  public Benchmarks()

  {

    GCHandle handle = GCHandle.Alloc(data, GCHandleType.Pinned);

    IntPtr addrOfPinnedObject = handle.AddrOfPinnedObject();

    long address = addrOfPinnedObject.ToInt64();

    const int align = 4 ∗ 1024; // 4 KB
    baseOffset = (int) (align - address % align);

  }

  [Params(0, 1)]

  public int SrcOffset;

  [Params(

    -65, -64, -63, -34, -33, -32, -31, -3, -2, -1,

    0, 1, 2, 30, 31, 32, 33, 34, 63, 64, 65, 66)]

  public int StrideOffset;

  [Benchmark]

  public void ArrayCopy() => Array.Copy(

    sourceArray:      data,

    sourceIndex:      baseOffset + SrcOffset,

    destinationArray: data,

    destinationIndex: baseOffset + SrcOffset +

                      24 ∗ 1024 +    // 24 KB
                      StrideOffset,

    length:           16 ∗ 1024      // 16 KB
  );

}
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Here we have the benchmark ArrayCopy, which copies 16 kilobytes from one array 

location to another. In the object constructor, we pin the array instance and prevent GC 

from moving the array. Also, we calculate the array address and find the baseOffset 

index, which is aligned by the 4 KB boundary. The SrcOffset parameter controls 

the alignment of the source data (sourceIndex equals to baseOffset + SrcOffset). 

The StrideOffset parameter controls the alignment of the destination address 

(destinationIndex equals to baseOffset + SrcOffset + 24 * 1024 + StrideOffset, 

which means that the difference between destinationIndex and sourceIndex equals to 

24 * 1024 + StrideOffset).

 Results

Here is an example of results on Haswell (Windows 10.0.17134.523, Intel Core i7-

4702MQ CPU 2.20GHz, .NET Framework 4.7.2, RyuJIT-x64 v4.7.3260):

 SrcOffset | StrideOffset |       Mean |    StdDev |

---------- |------------- |-----------:|----------:|

         0 |          -65 |   401.8 ns |  4.727 ns |

         0 |          -64 |   335.2 ns | 32.741 ns |

         0 |          -63 |   447.8 ns | 29.978 ns |

         0 |          -34 |   502.1 ns | 35.900 ns |

         0 |          -33 |   482.4 ns | 30.916 ns |

         0 |          -32 |   369.1 ns | 18.939 ns |

         0 |          -31 |   481.8 ns | 27.200 ns |

         0 |           -3 |   487.4 ns | 21.360 ns |

         0 |           -2 |   476.2 ns | 25.476 ns |

         0 |           -1 |   496.1 ns | 21.471 ns |

         0 |            0 |   364.3 ns | 28.113 ns |

         0 |            1 | 1,184.3 ns |  2.415 ns |

         0 |            2 | 1,224.3 ns |  2.339 ns |

         0 |           30 | 2,079.1 ns |  5.735 ns |

         0 |           31 | 1,197.0 ns |  2.367 ns |

         0 |           32 |   315.5 ns |  3.046 ns |

         0 |           33 | 1,117.5 ns |  2.957 ns |

         0 |           34 | 1,150.7 ns |  2.149 ns |

         0 |           63 | 1,106.0 ns |  2.494 ns |
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         0 |           64 |   317.4 ns |  3.952 ns |

         0 |           65 |   881.8 ns |  6.027 ns |

         0 |           66 |   856.9 ns |  2.421 ns |

         1 |          -65 |   333.1 ns |  3.071 ns |

         1 |          -64 |   434.8 ns |  5.049 ns |

         1 |          -63 |   445.0 ns |  3.903 ns |

         1 |          -34 |   436.0 ns |  3.135 ns |

         1 |          -33 |   318.3 ns |  2.898 ns |

         1 |          -32 |   444.9 ns |  2.463 ns |

         1 |          -31 |   443.4 ns |  6.471 ns |

         1 |           -3 |   417.3 ns |  2.362 ns |

         1 |           -2 |   422.7 ns |  2.393 ns |

         1 |           -1 |   357.7 ns |  9.241 ns |

         1 |            0 |   430.4 ns |  4.918 ns |

         1 |            1 | 1,020.1 ns |  2.329 ns |

         1 |            2 | 1,015.7 ns |  2.179 ns |

         1 |           30 | 1,021.5 ns |  2.753 ns |

         1 |           31 |   412.8 ns |  6.160 ns |

         1 |           32 |   834.7 ns |  3.752 ns |

         1 |           33 |   709.2 ns | 11.557 ns |

         1 |           34 |   708.8 ns |  1.318 ns |

         1 |           63 |   608.8 ns |  8.753 ns |

         1 |           64 |   663.9 ns |  1.496 ns |

         1 |           65 |   625.9 ns |  5.878 ns |

         1 |           66 |   648.8 ns |  7.477 ns |

This table is shown for all parameter values because it contains a lot of interesting 

alignment-related performance effects: we have dozens of different performance 

measurements for the same operations that just transfer 16 KB of memory. You can take 

this table (or build the same table on your own hardware) and try to explain the results. 

In the scope of this section, we will focus only on a small fragment of it:

 SrcOffset | StrideOffset |       Mean |    StdDev |

---------- |------------- |-----------:|----------:|

         0 |           -1 |   496.1 ns | 21.471 ns |

         0 |            0 |   364.3 ns | 28.113 ns |

         0 |            1 | 1,184.3 ns |  2.415 ns |

Chapter 8  MeMory-Bound BenChMarks



554

         0 |            2 | 1,224.3 ns |  2.339 ns |

         0 |           30 | 2,079.1 ns |  5.735 ns |

         0 |           31 | 1,197.0 ns |  2.367 ns |

         0 |           32 |   315.5 ns |  3.046 ns |

As you can see, we have extremely high measurements for StrideOffset values from 

1 to 31. In other fragments of the original table (e.g., for StrideOffset values from –31 to 1), 

the measurements are not so high, which means that it’s not just unaligned memory 

access: we observe a more significant performance effect.

 Explanation

When we perform read/write operations with memory, the CPU cache is used as an 

intermediate data storage. However, there is one more layer between the registers and 

the CPU, which is shown in Figure 8-5.

Figure 8-5. Store buffer, load buffer, and store forwarding
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Imagine an instruction that moves data from the registers to the CPU cache. It 

performs an action that takes some time: CPU can’t transfer data instantly. However, 

it doesn’t make sense to wait until this transfer is finishing before CPU can start 

performing the next instruction. Instead of it, the register value is placed in the special 

store buffer. Next, it’s possible to start the next instruction while the CPU moves values 

from the store buffer to the CPU cache.

The same approach is applied for getting data from the CPU cache: instead of waiting 

for transferring data from the CPU cache to the CPU registers, we fetch data in advance 

via the load buffer.

Now imagine the situation when we write a value to the memory and immediately 

read it again. In this case, the store and load buffers can introduce a significant delay 

because we should wait until the value is transferred from a register to the CPU cache 

via store buffer; next, we should wait until the value is transferred from the CPU cache to 

a register, and only after that can we use this value. Fortunately, this problem is already 

solved with the help of the store forwarding. This mechanism allows moving values from 

the store buffer to the load buffer bypassing the CPU cache!

To make the store forwarding efficient, the CPU has to understand very quickly that 

the required value is in the store buffer. Since it’s not fast to enumerate the store buffer 

each time, the CPU uses a small hash table for the buffer values where the hash is the 

least significant 12 bits of the value address (it’s valid for Intel CPUs). What do you think 

will happen in the case of a hash collision?

Now we are ready to read about 4K aliasing from [Intel OptManual], 11.8 “4K 

Aliasing”:

4-KByte memory aliasing occurs when the code stores to one memory loca-
tion and shortly after that it loads from a different memory location with a 
4-KByte offset between them. For example, a load to linear address 0x400020 
follows a store to linear address 0x401020.

The load and store have the same value for bits 5–11 of their addresses and 
the accessed byte offsets should have partial or complete overlap.

4K aliasing may have a five-cycle penalty on the load latency. This penalty 
may be significant when 4K aliasing happens repeatedly and the loads are 
on the critical path. If the load spans two cache lines it might be delayed 
until the conflicting store is committed to the cache. Therefore 4K aliasing 
that happens on repeated unaligned Intel AVX loads incurs a higher perfor-
mance penalty.

Chapter 8  MeMory-Bound BenChMarks



556

To detect 4K aliasing, use the LD_BLOCKS_PARTIAL.ADDRESS_ALIAS event 
that counts the number of times Intel AVX loads were blocked due to 4K 
aliasing.

To resolve 4K aliasing, try the following methods in the following order:

• Align data to 32 Bytes.

• Change offsets between input and output buffers if possible.

• Use 16-Byte memory accesses on memory which is not 32-Byte aligned.

The 4K aliasing explains the highlighted fragment of the summary table. The 

difference between the source and destination addresses is 24 * 1024 + StrideOffset. 

When the StrideOffset value belongs to the 1..31 interval, we have a situation that 

exactly matches to the preceding quote from the Intel manual.

 Discussion

4K aliasing doesn’t affect most benchmarks, but this effect may be very important when 

you copy chunks of bytes from one location to another.

You can find more interesting case studies about store forwarding and 4K aliasing in 

[Lemirer 2018], [Wong 2014], [Bakhvalov 2018], and JDK-8150730.5

 Summing Up
In this section, we discussed several performance issues that are related to the data 

alignment:

• Struct alignment

When we process an array of structs, performance depends on the 

alignment and the size of each struct instance. The layout strategy 

depends on the [StructLayout] and [FieldOffset] attributes 

and runtime version.

5 https://bugs.openjdk.java.net/browse/JDK-8150730
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• Cache bank conflicts

A bank conflict happens when two simultaneous load operations 

have the same bit 2–5 of their linear address but they are not from 

the same set in the cache (bits 6–12). This problem is actual for 

Sandy Bridge and Ivy Bridge, but you shouldn’t worry about it with 

Haswell and subsequent Intel CPU microarchitectures.

• Cache line splits

A cache line split happens when you perform read/write 

operations on data that is unaligned on a 64-byte boundary.

• 4K aliasing

4K aliasing happens when the code stores to one memory location 

and shortly after that it loads from a different memory location 

with a 4-KByte offset between them.

You should remember about these effects when you work with structs, write unsafe 

code, or copy huge chunks for bytes.

 Garbage Collector
Garbage collection is a huge and pretty interesting topic. If you want to learn it in detail, 

it’s recommended to read [Jones 2016] and [Kokosa 2018a]. In this section, we are 

going to cover only some aspects that can be useful in terms of benchmarking and show 

corresponding effects with small case studies. You will also find a lot of useful links that 

help you to learn more information about GC in different runtimes.

 Case Study 1: GC Modes
In .NET Framework and .NET Core, we have a few options to configure the GC behavior. 

One of the most important option is switching between Server and Workstation modes. 

Let’s check how this setting can affect our measurements.

Chapter 8  MeMory-Bound BenChMarks



558

 Source code

Consider the following BenchmarkDotNet-based benchmarks:

[Config(typeof(Config))]

[MemoryDiagnoser]

public class Benchmarks

{

  private class Config : ManualConfig

  {

    public Config()

    {

      Add(Job.Default.WithGcServer(true).WithId("Server"));

      Add(Job.Default.WithGcServer(false).WithId("Workstation"));

    }

  }

  [Benchmark]

  public byte[] Heap()

  {

    return new byte[10 ∗ 1024];
  }

  [Benchmark]

  public unsafe void Stackalloc()

  {

    var array = stackalloc byte[10 ∗ 1024];
    Consume(array);

  }

  [MethodImpl(MethodImplOptions.NoInlining)]

  private static unsafe void Consume(byte∗ input)
  {

  }

}

Here we have two benchmarks: Heap, which allocates 10 kilobytes in the 

managed heap, and Stackalloc, which allocates 10 kilobytes on the stack. The 
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Stackalloc benchmark uses empty Consume method (which is marked with the 

[MethodImpl(MethodImplOptions.NoInlining)] attribute) to prevent the DCE.

Also, we have two jobs, Server and Workstation, which are responsible for executing 

these benchmarks with corresponding GC modes.

 Results

Here is an example of results (Windows 10.0.17763.195, Intel Core i7-6700HQ CPU 

2.60GHz, .NET Framework 4.7.2, RyuJIT-x64 v4.7.3260):

     Method |         Job |       Mean |     StdDev |  Gen 0 |

----------- |------------ |-----------:|-----------:|-------:|

       Heap |      Server | 745.193 ns | 22.7130 ns | 0.1917 |

 Stackalloc |      Server |   4.531 ns |  0.0920 ns |      - |

       Heap | Workstation | 480.974 ns |  7.3521 ns | 3.2673 |

 Stackalloc | Workstation |   4.425 ns |  0.0537 ns |      - |

The Gen 0 column shows the number of GC Generation 0 collects per 1000 

operations.

As you can see, the Heap benchmark works much slower in the Server GC mode 

than in the Workstation GC mode. However, this setting doesn’t affect the Stackalloc 

benchmark.

 Explanation

The Workstation GC mode is designed for interactive UI applications that should be 

responsive. In this mode, we have a lot of small GC sessions: the runtime tries to avoid 

long GC pauses that may lead to UI hangs.

The Server GC mode is designed for server applications that should have the 

maximum throughput. In this mode, we have a small number of huge GC sessions: the 

runtime doesn’t care about long GC pauses.

In the Heap benchmark, we have many more garbage collections of the Generation 

0 in the Workstation mode. The GC pauses are pretty small, and they don’t hurt the 

“average” performance as much as in the Server mode.

It worth noting that it’s not always easy to correctly measure the performance of 

methods that allocate a lot of objects. You may think of these allocations as getting a 

“performance loan”: the allocation itself is processed pretty fast, but you have to “pay” 
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for it in the future during garbage collection sessions. These “payments” significantly 

depend on the selected runtime and GC settings.

A common problem in handwriting benchmarks is excluding the GC time for the 

measurements. You can easily get such a situation if you stop the measurements before 

the GC is starting to collect objects that you allocated during the benchmark. You should 

not underestimate the duration of GC pauses. Some pauses can take 1 minute (see 

[Lemarchand 2018]) or even 15 minutes (see [Kokosa 2018b])! The general advice here is 

simple: if you have too many allocations in a benchmark, you should use more iterations! 

In this case, the performance metrics will include the “average” GC impact. Meanwhile, 

you can get better performance in real life because the garbage collection may happen 

outside the method scope. It doesn’t mean that you shouldn’t worry about it because it 

still affects performance. You still have to “repay the performance loan,” but you can do it 

after the measured method is finished.

In the Heap benchmark, the actual duration of the object allocation is approximately 

the same for both GC modes. We can see the difference in measurements because of 

the garbage collections that occur during the benchmark. Meanwhile, the Stackalloc 

benchmark doesn’t allocate anything in the managed heap (we have "-" in the Gen 0 

column): that’s why it’s not affected by the GC mode.

 Discussion

Here is a list of the most popular settings that you can change:

• gcServer: specifies whether CLR runs server GC or client GC. The 

default value is false for desktop applications and true for ASP.NET 

applications.

• gcConcurrent: specifies whether the CLR runs GC on a separate 

thread (or threads) concurrently with the application threads. The 

default value is true.

• GCCpuGroup: specifies whether garbage collection supports 

multiple CPU groups. When a computer has multiple CPU groups 

and server garbage collection is enabled, enabling this element 

extends garbage collection across all CPU groups and takes all cores 

into account when creating and balancing heaps. The default value is 

false.
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• gcAllowVeryLargeObjects: on 64-bit platforms, enables arrays that 

are greater than 2 GB in total size. The default value is false.

• GCHeapCount: the desired number of server GC heaps. The default 

value is 0, which means “not specified.”

In .NET Framework applications, you can control all these settings via app.config. 

A configuration example:

<configuration>

  <runtime>

    <gcServer enabled="true"/>

    <gcConcurrent enabled="true"/>

    <GCCpuGroup enabled="true"/>

    <gcAllowVeryLargeObjects enabled="true"/>

    <GCHeapCount enabled="6"/>

  </runtime>

</configuration>

In .NET Core, you can specify these values via runtimeconfig.json6 file or via 

COMPLUS_* environment variables. Also, you can specify a lot of additional options like 

the smallest Generation 0 size (GCgen0size) or the heap segment size (GCSegmentSize).7

You can find a lot of useful information about GC in .NET Framework and .NET Core 

in [Kokosa 2018a] (see Chapter 11 therein) and [MSDOCS GC Fundamentals].

 Case Study 2: Nursery Size in Mono
Mono has its own GC implementation. The first versions of Mono used the Boehm 

(Boehm–Demers–Weiser) GC. This is a classic conservative C/C++ GC. It wasn’t efficient 

for .NET application, so it was decided to replace it with SGen (Generational GC), which 

was introduced in Mono 2.8. SGen has been the default GC since Mono 3.2; you can find 

a detailed description of it in [MONODOCS SGen].

The main thing that you should understand is that GC engines in .NET Framework/.

NET Core and Mono are completely different. Thus, you can’t apply observation from 

one GC to the .NET platform in general. For example, SGen uses two primary GC 

6 See https://github.com/dotnet/cli/blob/v2.2.104/Documentation/specs/runtime-
configuration-file.md

7 https://github.com/dotnet/coreclr/blob/v2.2.2/src/gc/gcconfig.h
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generations (instead of three in .NET Framework/.NET Core): Minor (Nursery) and 

Major. It also has a lot of settings that you can configure. For example, you can tune the 

size of the nursery generation. Let’s check how it can affect our measurements.

 Source code

Consider the following BenchmarkDotNet-based benchmark:

[Config(typeof(Config))]

[MemoryDiagnoser]

public class Benchmarks

{

  private class Config : ManualConfig

  {

    public Config()

    {

      Add(Job.Mono

        .With(new[] {new EnvironmentVariable(

          "MONO_GC_PARAMS", "nursery-size=1m")})

        .WithId("Nursery=1MB"));

      Add(Job.Mono

        .With(new[] {new EnvironmentVariable(

          "MONO_GC_PARAMS", "nursery-size=4m")})

        .WithId("Nursery=4MB"));

    }

  }

  [Benchmark]

  public byte[] Heap()

  {

    return new byte[10 ∗ 1024];
  }

}

Here we have only one benchmark which allocates 10 kilobytes in the managed 

heap. Also, we have two jobs that execute this benchmark with different nursery sizes: 1 

megabyte and 4 megabytes.
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 Results

Here is an example of results (Windows 10.0.17763.195, Intel Core i7-6700HQ CPU 

2.60GHz, Mono 5.18):

         Job |     Mean |    StdDev |  Gen 0 |

------------ |---------:|----------:|-------:|

 Nursery=1MB | 6.058 us | 0.0321 us | 2.3193 |

 Nursery=4MB | 7.669 us | 0.0473 us | 0.5951 |

The Gen 0 column shows the number of GC Generation 0 collects per 1000 

operations.

As you can see, Nursery=1MB works faster than Nursery=4MB.

 Explanation

If you change any of the GC settings, it is most likely that it affects measurements of 

a benchmark that allocates object somehow. However, you can’t make any general 

conclusions about “better” GC setting values for all kinds of applications.

The default size of the nursery generation in Mono 5.18 is 4 megabytes. As we can 

see, 1 megabyte looks like a better value for our benchmark, which allocates just 10 

kilobytes of memory. However, it doesn’t mean that 1 megabyte is a better value for other 

applications. For example, in [Akinshin 2018], you can find a story about how I changed 

it from 4 MB to 64 MB and increased the Rider startup time twice on Linux and macOS.

 Discussion

You can specify different parameters of SGen via MONO_GC_PARAMS environment variable 

(all parameters are joined in a single string by commas). Here is a list of some SGen 

parameters in Mono 5.18 (you can always get the actual list for your version of mono via 

man mono):

• max-heap-size=size: Sets the maximum size of the heap.

• nursery-size=size: Sets the size of the nursery generation.

• major=collector: Specifies which major collector to use. Available 

options: marksweep (Mark&Sweep collector), marksweep-conc 

(concurrent Mark&Sweep), and marksweep-conc-par (parallel and 

concurrent Mark&Sweep).
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• mode=balanced|throughput|pause[:max-pause]: Specifies what 

should be the GC’s target.

• soft-heap-limit=size: Once the heap size gets larger than this 

size, ignore what the default major collection trigger metric says and 

allow only four nursery sizes of major heap growth between major 

collections.

• evacuation-threshold=threshold: Sets the evacuation threshold as 

a percentage.

• (no-)lazy-sweep: Enables or disables lazy sweep for the 

Mark&Sweep collector.

• (no-)concurrent-sweep: Enables or disables concurrent sweep for 

the Mark&Sweep collector.

• stack-mark=mark-mode: Specifies how application threads should be 

scanned; options are precise and conservative.

• save-target-ratio=ratio: Specifies the target save ratio for the 

major collector.

• default-allowance-ratio=ratio: Specifies the default allocation 

allowance when the calculated size is too small.

• minor=minor-collector: Specifies which minor collector to use.

• alloc-ratio=ratio: Specifies the ratio of memory from the nursery 

to be used by the alloc space.

• promotion-age=age: Specifies the required age of an object must 

reach inside the nursery before been promoted to the old generation.

• allow-synchronous-major: Forbids the major collector from 

performing synchronous major collections.

The SGen implementation has a lot of pretty interesting features. For example, the 

nursery generation consists of slots of fixed size. Here is the definition of predefined sizes 

in Mono 5.188:

8 You can find the full source code here: https://github.com/mono/mono/blob/
mono-5.18.0.245/mono/sgen/sgen-internal.c#L38
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#if SIZEOF_VOID_P == 4

static const int allocator_sizes [] = {

     8,   16,   24,   32,   40,   48,   64,   80,

    96,  124,  160,  192,  224,  252,  292,  340,

   408,  452,  508,  584,  680,  816, 1020,

  1364, 2044, 2728, 4092, 5460, 8188 };

#else

static const int allocator_sizes [] = {

     8,   16,   24,   32,   40,   48,   64,   80,

    96,  128,  160,  192,  224,  248,  288,  336,

   368,  448,  504,  584,  680,  816, 1016,

  1360, 2040, 2728, 4088, 5456, 8184 };

#endif

Thus, if we create an object which needs 2729 bytes on x64, a 4088-byte slot will be 

used, because it’s the smallest possible slot that can handle such an object. If you want to 

monitor and analyze memory traffic, you should know such details. Otherwise, you will 

not be able to interpret measurements right way.

If you want to get performance metrics for different GC modes, you can run mono 

with the -stats argument: it will print you a lot of useful GC statistics.

 Case Study 3: Large Object Heaps
In .NET Framework and .NET Core, there are two kinds of heaps:

• Small Object Heap (SOH): objects that are smaller than 85,000 bytes.

• Large Object Heap (LOH)9: objects that are equal or larger than 

85,000 bytes.

When we are talking about GC generations, we usually mean SOH. However, we 

shouldn’t forget about LOH, which has its own rules of memory management. Let’s look 

at another example that shows the performance impact of working with LOH objects.

9 https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/
large-object-heap
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 Source code

Consider the following BenchmarkDotNet-based benchmarks:

[MemoryDiagnoser]

public class Benchmarks

{

  [Benchmark]

  public byte[] Allocate84900()

  {

    return new byte[84900];

  }

  [Benchmark]

  public byte[] Allocate85000()

  {

    return new byte[85000];

  }

}

Here we have two benchmarks: Allocate84900, which allocates 84900 bytes, and 

Allocate85000, which allocates 85000 bytes.

 Results

Here is an example of results (Windows 10.0.17763.195, Intel Core i7-6700HQ CPU 

2.60GHz, .NET Framework 4.7.2, RyuJIT-x64 v4.7.3260):

        Method |     Mean |    StdDev |  Gen 0 |  Gen 1 |  Gen 2 |

-------------- |---------:|----------:|-------:|-------:|-------:|

 Allocate84900 | 3.017 us | 0.0216 us | 26.313 |      - |      - |

 Allocate85000 | 4.511 us | 0.0362 us | 27.023 | 27.023 | 27.023 |

The Gen 0, Gen 1, and Gen 2 columns show the number of GC Generation 0/1/2 

collects per 1000 operations. As you can see, Allocate85000 works 1.5 times slower than 

Allocate84900. Also, Allocate85000 has collects in Generation 1 and Generation 2, 

unlike Allocate84900.
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 Explanation

The concept of LOH was introduced because moving objects during compacting 

collection is a heavy operation. GC doesn’t compact LOH by default, which means that 

it doesn’t move objects.10 This is a great decision for applications that operate with a 

high number of huge arrays because it reduces the overhead of garbage collection in 

complicated allocation scenarios. However, it also may spoil performance in some 

simple scenarios like the preceding benchmark because it triggers advanced GC 

techniques. Allocate84900 works fast because GC is able to collect all the allocated 

objects in Generation 0. Allocate85000 doesn’t work so fast, because GC has to collect 

higher generations (all the allocated objects are placed to LOH instead of Generation 0).

 Discussion

In general, it’s not recommended to use knowledge of such heuristics in practice. 

However, the 85000 constant becomes so fundamental that it’s used for different 

optimization heuristics in many applications. For example, you can find usages of this 

magic constant even in the implementation of standard classes.11

The LOH has one pretty interesting exception: double arrays on the 32-bit runtime. 

Here is a quote by Abhishek Mondal from [Bray 2011]:

In 32-bit architectures CLR’s execution engine attempts to place these arrays 
> 1000 doubles on the LOH because of the performance benefit of accessing 
aligned doubles. However there are no benefits of applying the same heuris-
tics on 64-bit architectures because doubles are already aligned on an 
8-byte boundary. As such we have disabled this heuristics for 64-bit archi-
tectures in .NET 4.5.

On Mono, we also have the concept of the LOH, which is known as the large object 

space. Its default threshold in Mono 5.18 is 8000 bytes.12

You can find more information about the LOH in [Kokosa 2018a] (see Chapter 5, 

section “Size Partitioning,” therein), [Morter 2013], and [Goldshtein 2013].

10 Since .NET Framework 4.5.1 and .NET Core 1.0, it’s been possible to force GC to compact LOH 
via GCSettings.LargeObjectHeapCompactionMode. You can find more information about it 
in the official documentation: https://docs.microsoft.com/en-us/dotnet/api/system.
runtime.gcsettings.largeobjectheapcompactionmode.

11 For example, see https://github.com/dotnet/corefx/blob/v2.2.1/src/Common/src/
CoreLib/System/Text/StringBuilder.cs#L73

12 See https://github.com/mono/mono/blob/mono-5.18.0.245/mono/sgen/sgen-conf.h#L161
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 Case Study 4: Finalization
The last GC concept we are going to discuss is finalization. In .NET, each object can 

have a finalizer, which is executed by a dedicated finalization thread after GC collection 

stage. This technique may be useful when you have some unmanaged resources that you 

want to free with the help of GC. However, finalizers have a significant impact on the GC 

performance. Let’s check how it may affect our measurements.

 Source code

Consider the following BenchmarkDotNet-based benchmarks:

public class Benchmarks

{

  public class ClassWithoutFinalizer

  {

  }

  public class ClassWithFinalizer

  {

    ~ClassWithFinalizer()

    {

    }

  }

  [Benchmark(Baseline = true)]

  public object WithoutFinalizer()

  {

    return new ClassWithoutFinalizer();

  }

  [Benchmark]

  public object WithFinalizer()

  {

    return new ClassWithFinalizer();

  }

}
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Here we have two classes: ClassWithoutFinalizer (an empty class) and 

ClassWithFinalizer (an empty class with an empty finalizer). In two declared 

benchmarks (WithoutFinalizer and WithFinalizer), we just allocate instances of the 

corresponding classes.

 Results

Here is an example of results (Windows 10.0.17763.195, Intel Core i7-6700HQ CPU 

2.60GHz, .NET Framework 4.7.2, RyuJIT-x64 v4.7.3260):

           Method |       Mean |    StdDev | Ratio |

----------------- |-----------:|----------:|------:|

 WithoutFinalizer |   2.235 ns | 0.0422 ns |  1.00 |

    WithFinalizer | 153.198 ns | 1.7301 ns | 68.57 |

As you can see, WithFinalizer works ~70 times slower than WithoutFinalizer!

 Explanation

This is another example of how GC may affect performance measurements. In the 

WithFinalizer benchmark, GC has much more work to do: it has to track all the 

finalizers and execute them. In the preceding example, the finalizer does nothing, but it 

doesn’t mean the GC can skip it.

 Discussion

It’s pretty hard to perform accurate measurements while GC collects nonreachable 

objects and executes their finalizers. The GC in .NET is not deterministic. It means that 

you can’t directly control when the finalizers should be executed. However, you can wait 

until all the finalizers are finished. Here is the most common pattern for the ultimate GC 

collect:

GC.Collect();

GC.WaitForPendingFinalizers();

GC.Collect();
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Here we collect garbage, wait until all finalizers are executed, and collect garbage 

(that we have after the finalization) again. This pattern can be useful when you want 

to avoid the performance impact of collecting previously allocated objects during new 

measurements.

This case study is based on the “Finalization Overhead” example from [Kokosa 

2018a] (see Listing 12-11 therein).

 Summing Up
In this section, we discussed four case studies showing the impact of GC on application 

performance. We talked about different GC modes, about the size of the nursery 

generation in Mono, about the LOH in .NET Framework, and about the performance 

impact of GC finalization.

During benchmarking, you should keep in mind the following facts:

• If you allocate objects, the measurements will be affected by the GC.

• In the general case, you can’t control GC and you can’t exclude the 

GC overhead from your measurements. And this is OK: you shouldn’t 

want to exclude the GC overhead, because it’s one of the essential 

performance factors that affect all managed applications.

• If you have a huge standard deviation because of nondeterministic 

GC, the best thing that you can do is increase the number of 

iterations. This will help you to get “more stable” GC impact on the 

measurements.

• Benchmarks with huge memory traffic are very sensitive to the GC 

settings. Switching between different GC modes or tuning GC settings 

may completely change the benchmark results.

It’s not always easy to write benchmarks with many object allocations because you 

can’t control moments when the GC decides that you have to “repay your performance 

loans.” Only knowledge of GC internals will help to correctly interpret the benchmark 

results. In most cases, it’s enough to know the general concepts (GC impact on the 

measurements, GC generations, LOH, finalizers, GC settings). Some special cases may 

require deep knowledge of GC internals (here I want to recommend [Kokosa 2018a] one 

more time) and good tools that help you to investigate different memory issues (e.g., 

PerfView or dotMemory).
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 Summary
In this chapter, we covered three different topics that are related to the memory-bound 

benchmarks:

• CPU Cache

When we perform read/write operations with the main 

memory, CPU can accelerate these operations with the help 

of CPU cache. It may significantly affect our performance 

measurements because of different memory access patterns, size 

and associativity of different CPU cache levels, and other cache-

specific effects like false sharing.

• Memory Layout

The alignment of the data (which we can’t always control) also 

has a significant performance impact. Unaligned memory access, 

cache banks conflicts, cache line splits, and 4K aliasing can spoil 

your measurements when you don’t expect that.

• GC

GC also can unpredictably affect the performance measurements 

because it’s nondeterministic and it can add overhead at random 

moments. This overhead depends on the GC settings (like Server/

Workstation GC modes or mono nursery size) and internal GC 

features (like the LOH or finalization).

Knowledge about these hardware and runtime features will help you to design 

benchmarks and analyze their results better. The primary advice for this kind of 

benchmark is the advanced exploration of the performance space: you should check 

different sizes of the working memory, different access patterns, different memory 

layouts, and different GC settings. Based on these configurations, you can make 

conclusions that are valid not only for a specific benchmark, but for a variety of different 

cases. The proper description of the performance space helps to extrapolate these results 

and predict performance metrics in real applications based on individual benchmarks.
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CHAPTER 9

Hardware  
and Software Timers

A man with a watch knows what time it is. A man with two watches is 
never sure.

—Segal’s law

There are a lot of useful benchmarking tools that can simplify your benchmarking life, 

but they are usually optional. You can use them or not depending on your preferences. 

But there is one tool that is essential for benchmarking: the timestamping API (methods 

that help you to get the current time). You can’t write a benchmark if you can’t get a 

timestamp. It’s critical to understand what kind of APIs you have on your system, how 

these APIs work internally, and what the main properties of these APIs are. Of course, 

you can write a benchmark without this knowledge. However, in-depth understanding 

of the hardware and software timers allows you to design better benchmarks, control the 

accuracy level, and avoid timestamping pitfalls. In this chapter, we are going to cover the 

following topics:

• Terminology

We will learn the basic terms that are widely used in discussions 

about timers: time units, frequency units, tick generator, 

quantizing errors, resolution, granularity, latency, precision, 

accuracy, and so on.
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• Hardware timers

We will cover the most used hardware components that provide 

timestamping capabilities: TSC, ACPI PM, and HPET. We 

will discuss the history and internals of these timers, the 

corresponding low-level API for getting timestamps, and how to 

switch between different time sources.

• OS timestamping API

The operating systems have native timestamping API, which can 

be used in different programming platforms including .NET. We 

will learn what kind of API we have on Windows, Linux, and 

macOS.

• .NET timestamping API

We will discuss three primary APIs that can be used in 

.NET Framework, .NET Core, and Mono: DateTime.UtcNow, 

Environment.TickCount, Stopwatch.GetTimestamp. We will learn 

how to use them, how they are implemented internally, and how 

to benchmark their resolution and latency.

• Timestamping pitfalls

We will discuss the most common mistakes that developers 

usually make during timestamping with each kind of .NET 

timestamping API.

I want to be sure that we are speaking the same language, so let’s discuss some 

essential terms first.

 Terminology
In this book, we use a lot of specific terms and specific notation. Sometimes, these terms 

confuse people. In this section, we will briefly cover the basic concepts:

• Time units: d, h, m, s, ms, μs, ns, ps

• Frequency units: THz, GHz, MHz, kHz, Hz, mHz, μHz, nHz

Chapter 9  hardware and Software timerS 



577

• Main components of a hardware timer: tick generator, tick counter, 

and tick counter API

• Ticks and quantizing errors: how computers work with  

discrete time

• Basic timer characteristics: nominal frequency, actual frequency, 

nominal reciprocal frequency, nominal resolution, nominal granularity, 

actual reciprocal frequency, actual resolution, actual granularity, 

maximum frequency offset, timestamp latency, access time, timer 

overhead, precision, random errors, accuracy, systematic error.

It’s very important to understand all the terms and symbols.

 Time Units
You can’t talk about time if you don’t know basic time units, which help you to measure 

time intervals. I hope you understand what a second means; it’s the base unit of time 

in the International System of Units (SI). The exact actual definition according to the 

National Institute of Standards and Technology is the following:

One second is the duration of 9 192 631 770 periods of the radiation corre-
sponding to the transition between the two hyperfine levels of the ground 
state of the cesium 133 atom.

Of course, you don’t need to remember this definition for benchmarking; the usual 

domestic understanding used in civilian timekeeping will be enough. However, if you 

are curious why we have this definition (why 9,192,631,770 and why the cesium 133 

atom), and if you are also interested in the history of timekeeping and the corresponding 

technical concepts, it’s worth reading [Jones 2000].

In SI, there are some additional time units that are commonly used by software 

engineers. The most useful of them (with corresponding symbols and equivalents in 

seconds) are presented in Table 9-1.
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Someone may think that microsecond, nanosecond, and picosecond are  

very small time units and that we don’t need them in real life. They are indeed very 

small. A picosecond relates to a second as a second relates to 31710 years! However, 

sometimes we should care about small time units like microseconds in real software 

(e.g., see [Cook 2017]). When we are writing benchmarks, we often need nanoseconds, 

a typical time unit for short code snippets. Many single CPU instructions take even less 

than 1 nanosecond, so picoseconds are also useful.

Common symbols for time and time intervals are t and T. Thus, if you see T=5s, it 

can mean “the time interval is equal to 5 seconds.”

There are a couple of things that usually confuse people:

• Papers, articles, blog posts, and other texts about general topics 

usually use the day, hour, min/minutes, sec/second terms, which 

are widely used and understandable to everyone. In texts about 

time measurements and performance, we often use the d, h, m, and s 

symbols instead (to be short).

• The standard SI unit for microseconds is μs. Unfortunately, there is 

no μ1 character on a typical keyboard. Also, you can have encoding 

troubles with this character in some text editors and terminals. Thus, 

developers often use the us symbol instead.

1 Unicode Character ‘GREEK SMALL LETTER MU’ (U+03BC), ASCII code 230. You can type it via 
Alt+230 on Windows, Option+m on macOS, Ctrl+Shift+u00b5 on Linux.

Table 9-1. Time Units

Unit Symbol Duration in seconds

day d (day) 86400

hour h (hour) 3600

minute m (min) 60

Second s (sec) 1

millisecond ms 10−3

microsecond us (μs) 10−6

nanosecond ns 10−9

picosecond ps 10−12
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There are also some informal time units that you may meet in different blog posts:

• jiffy: a short period of time with an unspecified length

• flick2: a time unit which was introduced by Oculus,  

1 flick = 1/705600000 second.

Now it’s time to talk about frequency units, which can be easily expressed via  

time units.

 Frequency Units
When we are talking about timer properties, there is another handy term: frequency. The 

frequency unit is 1 Hertz (Hz). If the frequency of some event is n Hz, it means that the 

event occurs n times per second. Thus, 1 Hz = 1/second = 1 second−1. Each frequency 

value corresponds to a time period. For example, 20 Hz corresponds to 50 ms because

20 20
1

20
1000

1
50

Hz
s ms ms

= = =

Some additional useful frequency units (with corresponding time periods) are 

presented in Table 9-2.

2 https://github.com/OculusVR/Flicks

Table 9-2. Frequency Units

Unit Symbol Value in Hz Time period

terahertz thz 1012 1ps

Gigahertz Ghz 109 1ns

megahertz mhz 106 1us

Kilohertz khz 103 1ms

hertz hz 1 1s

millihertz mhz 10−3 103s

microhertz uhz (μhz) 10−6 106s

nanohertz nhz 10−9 109s
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The common symbol for frequency is f. If we want to calculate the frequency of an 

event, we should divide the number of events by a time interval that contains all these 

events. For example, if something happens 42 times per day, it means that the frequency 

of the e ollows:

f
d s

s= = » =-42
1

42
86400

0 000486 4861. mHz

The term “frequency” is widely used in many physics and engineering disciplines. 

Here are some famous examples:

• Humans can hear sounds with frequencies between 20 Hz  

and 20 kHz.

• Visible spectrum (the part of the electromagnetic spectrum that is 

visible to the human eye) is about 430..770 THz. The frequency range 

for the color yellow is about 508..526 THz.

• 440 Hz is the frequency of the musical note of A above middle C (A440, 

the pitch standard).

• Communication with submarines uses extremely low frequency: 

from 3 to 30 Hz.

• Shortwave radio uses frequencies in the range 1.6..30 MHz.

• The frequency of a typical microwave oven is about 2.45 GHz.

• The most popular WiFi frequencies are about 2.4 GHz (802.11b/g/n/

ax) and 5 GHz (802.11a/h/j/n/ac/ax).

If we are talking about waves and we want to draw these waves on a plot, frequency 

can be easily compared at a glance. Look at Figure 9-1. Here we have three waves with 

different frequencies:

 (a) Let’s say that the first wave is a “reference” wave with frequency 1x

 (b) The second wave frequency is twice (2x) that of the reference one

 (c) The third wave has frequency = 8x (eight times more than the 

reference one; four times more than the second frequency)

As you can see, we can compare frequencies of different waves by a picture (even if 

we don’t know the exact value of the reference frequency x).
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The term “frequency” is also very useful for describing one of the most basic timer 

properties. Let’s look at how we can use it for describing characteristics of hardware 

timers.

 Main Components of a Hardware Timer
Real time is continuous. Unfortunately, it’s impossible to work with continuous time and 

measure arbitrary time intervals. Any time measurements are based on hardware timers. 

You may think about a hardware timer as being composed of the following three parts 

(see Figure 9-2).

• Tick generator. This is a piece of hardware that generates a special 

kind of events (ticks) at a constant frequency. In practice, the 

generator frequency can be changeable, but in most cases, it’s easier 

to imagine that the frequency is fixed. Typically, the generator is 

implemented with the help of a crystal oscillator (a small piece of 

quartz or other ceramic material).

Figure 9-1. Three waves with different frequencies
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• Tick counter. In modern computers, there is no data type that 

expresses the actual time. We can only emulate it with basic data 

types like int or long. Hardware timers use a tick counter, which is 

basically an integer value that counts how many ticks are generated 

by the tick generator. Each tick corresponds to a time interval (again, 

it’s easier to imagine that each tick corresponds to the same fixed 

time interval). Thus, the number of ticks can be converted to a time 

interval.

• Tick counter API. This is a programming interface that allows getting 

the current value of a tick counter from your software.

Figure 9-2. Components of a hardware timer

This construction allows measuring any time interval (with some limitations, which 

will be discussed soon). Usually, the tick duration is fixed and pretty small, and it’s 

described in the timer documentation, or it can be obtained with the help of another 

API. Sometimes developers use the term “jiffy” for the duration of 1 tick.
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An example. Let’s say that we can get the tick counter value via the 

GetCurrentTicks() method and the frequency of our tick generator is 64 Hz. This 

means that one tick is (1/64) s = 0.015625 s = 15.625 ms. Here is an example of 

measurements:

int startTicks = GetCurrentTicks();       // 100 ticks

SomeLogic();                              // Actual time: 0.5 s

int endTicks   = GetCurrentTicks();       // 132 ticks

int elapsedTicks = endTicks - startTicks; // 32 ticks

double ticksInSec = 1.0 / 64.0;           // 1 tick = 0.015625 s

double elapsedTimeInSec =                 // Measure elapsed time

    elapsedTicks * ticksInSec;            // 32 * 0.015625 s = 0.5s

Here the SomeLogic() method takes 0.5 seconds, but we don’t know this in 

advance; we want to get this value in the program. We get two timestamps (by calling 

GetCurrentTicks()): before and after the method invocation. Let’s say the first value is 

100 ticks, and the second one is 132 ticks. The difference between these timestamps 

is 32 ticks. We can easily convert ticks to seconds because we know the frequency 

(64 Hz):

 
ElapsedTime Ticks

Hz
= × = × = × =

1 32 1
64

32 15 625 0 5
f

ms s. . .
 

AN EXERCISE

Let’s say frequency = 500 Hz, startTicks = 1280, endTicks = 1301. what is the 

value of the elapsed time in milliseconds?

I hope you solved this without any problems. It looks pretty easy, eh? However, it’s 

not always as easy as in these examples. The tick-based approach has some problems, 

and one of the main problems is quantizing errors.
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 Ticks and Quantizing Errors
Thus, on the hardware level, we have discrete time (expressed in ticks) instead of 

continuous time. This time mapping (real time → number of ticks) is called quantization. 

The quantization process adds quantizing errors in our measurements. Let’s figure out 

what that means with some examples.

 Examples

Consider the three different measurements shown in Figure 9-3. In all these cases, we 

have two timestamps (A and B) and we are trying to measure the time between them. 

All timestamps are expressed in ticks, and we will use 1 tick as the time unit. For each 

timestamp, we will look at the actual and measured values. Here the measured value 

is always an integer (because the tick counter holds this value as an integer value); the 

actual time is expressed by a fractional number (it’s a theoretical value that uniquely 

corresponds to a specific moment on the actual timeline).

Figure 9-3. Quantizing errors
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• Case 1. Actual(A) = 1.2 ticks, Actual(B) = 1.8 ticks. Because 

of the quantization, in both cases we have the same value of the 

tick counter: Measured(A) = Measured(B) = 1 tick. If we try to 

calculate the elapsed time based on these measurements, we get 

Measured(B) - Measured(A) = 0 ticks. The actual elapsed time is 0.6 

ticks, but we just can’t measure it because it’s too small.

• Case 2. Actual(A) = 0.8 ticks, Actual(B) = 1.2 ticks, 

Measured(A) = 0 ticks, Measured(B) = 1 tick. The actual elapsed 

time is 0.4 ticks (smaller than in case 1), but the measured elapsed 

time is 1 tick (bigger than in case 1). Thus, we can’t compare 

measured time intervals without knowledge about quantizing errors. 

If one measured interval is bigger than another, it doesn’t mean that 

it’s true for the actual time intervals!

• Case 3. Actual(A) = 0.2 ticks, Actual(B) = 1.8 ticks, 

Measured(A) = 0 ticks, Measured(B) = 1 tick. The actual elapsed 

time is 1.6 ticks (much bigger than in case 2), but the measured 

elapsed time is 1 tick (the same as in case 1). If two measured 

intervals are equal, the actual intervals may differ by up to 2 ticks.

Thus, the hardware time quantizing error is ±1 tick. Now we have to learn a few 

more terms in order to to describe errors.

 Basic Timer Characteristics
There are many terms for describing basic timer characteristics. In this subsection, we 

are going to cover the following group of terms:

• Nominal and actual frequency, resolution, and granularity

• Frequency offset

• Timestamp latency, access time, and timer overhead

• Precision and accuracy
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 Nominal and actual frequency, resolution, and granularity

You may think that the minimum achievable positive difference between two 

timestamps is 1 tick. However, this is not always true. It’s better to say that this 

difference is not less than 1 tick. A tick is the measurement unit of a timer, but it doesn’t 

mean that you are always able to measure a 1 tick interval. For example, 1 tick for 

DateTime is 100 ns, but it’s impossible to measure so small an interval with the help of 

DateTime (read more in the next section).

We can have some terminology troubles with the frequency term here. Sometimes 

“frequency” means how many ticks we have in 1 second. This is the nominal frequency. 

Sometimes “frequency” means how many counter increments we have per one second. 

This is the actual frequency.

If we have a value for frequency, we can calculate reciprocal frequency. The formula 

is simple: <reciprocal frequency> = 1 / <frequency>. Thus, if we are talking about 

the nominal frequency, the nominal reciprocal frequency is the duration of 1 tick. If we 

are talking about the actual frequency, the actual reciprocal frequency is the time interval 

between two sequential counter increments.

An example. The Stopwatch.Frequency value is the nominal stopwatch frequency 

because it can be used only for calculation of the 1 tick duration. There is nothing 

about it in the specification and the documentation, so it can return any value. And we 

can’t make any conclusions about the actual Stopwatch frequency based on this value. 

For example, Stopwatch.Frequency in Mono is always 10000000.

“Reciprocal frequency” may sound clumsy, so we have another handy term: 

resolution. Unfortunately, here we also have some troubles with the definition. 

Sometimes people say “Resolution” and mean the duration of 1 tick. This is the 

nominal resolution. Sometimes people say “Resolution” and mean the minimum 

positive interval between two different measurements. This is the actual resolution.

There is another term for resolution: granularity. Usually, people use both words 

as synonyms (so, we can also talk about the nominal granularity and the actual 

granularity), but more often the granularity describes the actual reciprocal frequency 

(the actual resolution) instead of the 1 tick duration.

If we actually can measure the 1 tick interval, everything is OK. There is no 

difference between nominal and actual values: they are equal. Thus, people often say 

just “frequency” or “resolution” without any prefixes. However, if the actual resolution is 

more than 1 tick, there may be troubles with terminology. Be careful and always look at 

the context.
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An example. The standard value of DateTime.Ticks is 100 ns. On modern versions 

of Windows, the default timer frequency (which is responsible for DateTime.Now) is 

64 Hz. Thus, the actual resolution is the following:

 
ActualResolution

ActualFrequency Hz
ms n= = = =

1 1
64

15 625 15625000. ss ticks=156250 .
 

Let’s look once again on all these values:

NominalResolution = 100 ns

ActualResolution  = 15.625 ms

NominalFrequency  = 10 MHz

ActualFrequency   = 64 Hz

As you can see, it’s important to distinguish between the nominal and actual values.

 Frequency offset

As it was mentioned before, it’s easy to think that the frequency is fixed. Usually, this 

assumption doesn’t affect the calculations. However, it’s good to know that the frequency 

may differ from the declared value. In this case, the actual frequency may differ from the 

declared value by the so-called maximum frequency offset, which is expressed in parts 

per million (ppm, 10−6).

An example. The declared timer frequency is 2 GHz with a maximum frequency 

offset of 70ppm. This means that the actual frequency should be in the range 

1,999,930,000 Hz..2,000,070,000 Hz. Let’s say we measure a time interval, and 

the measured value is 1 second (or 2,000,000,000 ticks). If the actual frequency is 

1,999,930,000 Hz, the actual time interval is:

 
ElapsedTime ticks

ticks
= »

2 000 000 000
1 999 930 000

1 000035001
/ sec

. 2225sec.
 

If the actual frequency is 2,000,070,000 Hz, the actual time interval is:

 
ElapsedTime ticks

ticks
= »

2 000 000 000
2 000 070 000

0 999965001
/ sec

. 2225sec.
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Thus, the actual value of the measured interval (assuming there are no other errors) 

is in range 0.999965001225 sec..1.000035001225 sec.

Once again: usually we shouldn’t care about it because other errors have a greater 

impact on the final error.

 Timestamp latency, access time, and timer overhead

When we discussed Figure 9-3, the timestamps were shown as instant events. In fact, a 

call of a timestamping API method also takes some time. Sometimes it interacts with the 

hardware, and such a call can be quite expensive. You may find different terms for this 

value: timestamp latency, access time, or timer overhead. All of these terms usually mean 

the same thing: a timer interval between two moments, calling a timestamping API and 

getting the value.

 Precision and accuracy

There are two more important terms: precision and accuracy.

Precision (or random error) is the maximum difference between different 

measurements of the same time interval. Precision describes how repeatable 

measurements are. In other words, precision is defined by random errors of measured 

values around the actual value.

Accuracy (or systematic error) is the maximum difference between the measured 

value and the actual value.

In most cases, the timestamp latency is negligibly small compared to the actual 

resolution. However, sometimes the latency is huge, and it can affect total accuracy. We 

can say that the accuracy, in this case, is the sum of the latency and the resolution.

An example. On Windows 10 with enabled HPET (read more in further sections), the 

frequency of Stopwatch is 14.31818 MHz, and the latency of Stopwatch.GetTimestamp() 

is about 700 ns. It’s easy to calculate the Stopwatch resolution: (1/14318180) 

second≈70 ns. Unfortunately, the latency is much bigger, so it’s impossible to actually 

measure 70 ns intervals:

 Accuracy Latency Resolution ns ns ns» + » + »700 70 770 .  
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A typical measurement for such situation is presented in Figure 9-4.

Thus, if you want to calculate the accuracy level, you should know both values: the 

actual resolution and the timestamp latency.

People often confuse resolution, precision, and accuracy. Let’s look at the difference 

with a simple example.

An example. We have a timer with frequency = 100 Hz (this means that 1 sec = 100 

ticks). We are trying to measure an exactly 1 second interval five times. Here are our 

results: 119 ticks, 121 ticks, 122 ticks, 120 ticks, 118 ticks. In this case:

• Resolution is the smallest difference between two measured values. 

We can’t get a difference less than 1 tick (because we are working 

with an integer number of ticks), and we can get exactly 1 tick (the 

actual and nominal resolution are equal). Thus, the resolution is 

exactly 1 tick or 10 ms.

• Accuracy is the difference between actual and measured values. The 

actual value is 100 ticks, and the average of all measurements is 120 

ticks. Thus, the accuracy is approximately equal to 20 ticks or 200 ms.

• Precision is the maximum difference between measurements that 

correspond to the same actual value. We measure exactly 1 second 

each time, but get different values (for example, because of the 

frequency offset): from 118 ticks to 122 ticks. Thus, precision is 

approximately equal to 4 ticks or 40 ms.

Figure 9-4. Small resolution and big latency
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Thus, we get

Resolution = 10 ms

Accuracy   = 200 ms

Precision  = 40 ms

As we can see, all three terms define different values. However, people confuse them 

because very often we can observe the same values in all cases. Precision is limited by 

nominal resolution (we can’t get a precision of less than 1 tick). Accuracy is limited 

by precision and actual resolution (if the difference between measurements of the 

same value if x, accuracy can’t be less than x). Usually, if we work with a high-precision 

timer and a low access time, precision, resolution, and accuracy have the same order 

(sometimes these values can be equal). So, if everyone knows the context (exact values of 

all timer properties), the terms can replace each other (e.g., we can say “precision level” 

instead of “accuracy level” because they are the same). Formally, this is wrong. Despite 

this, people do it anyway. If you read a description of some measurements, always look 

at the context and be ready for incorrect statements.

 Summing Up
In this section, we learned the following terms:

• Time unit: a unit for time measurement. The basic time unit is 1 

second, but benchmarks often operate with very small units like 

1 microsecond (10−6 seconds, notation: μs or us) or 1 nanosecond 

(10−9seconds, notation: ns). Commonly used time units: d, h, m, s, ms, 

μs, ns, ps. Common symbols for time and time intervals are t and T. 

There are some informal time units like “jiffy,” which means a short 

period of time with unspecified length, but developers often use it to 

denote the duration of 1 tick.

• Frequency unit: a unit for frequency measurements, reciprocal of time 

unit: 1 Hz = 1 second−1 Commonly used frequency units: nHz, μHz, 

mHz, Hz, kHz, MHz, GHz, THz. The common symbol for frequency is f.

• Tick generator: a piece of hardware that generates a special kind of 

event (ticks) at a constant frequency.
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• Tick counter: an integer counter that holds the number of  

elapsed ticks.

• Tick counter API: a programming interface that allows getting the 

current value of a tick counter from your software.

• Hardware timer: a combination of a tick generator, a tick counter, and 

tick counter API.

• Quantization: a mapping from real continuous time to discrete time 

(number of ticks).

• Quantizing errors: errors that are introduced by quantization (we 

can’t express real time by an integer value).

• Nominal frequency: how many ticks we have in 1 second.

• Actual frequency: how many counter increments we have in 1 second.

• Nominal reciprocal frequency, nominal resolution, nominal 

granularity: duration of 1 tick.

• Actual reciprocal frequency, actual resolution, actual granularity: the 

minimum positive interval between two different measurements.

• Maximum frequency offset: a difference between actual and declared 

frequency.

• Timestamp latency, access time, timer overhead: duration of a tick 

counter API call that returns the current value of a tick counter.

• Precision, random errors: the maximum difference between different 

measurements of the same time interval.

• Accuracy, systematic error: the maximum difference between the 

measured and actual value.

Now we know basic terminology. In the next section, we will use these terms to 

discuss the origin of the tick generators: hardware timers.
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 Hardware Timers
All of the timestamp methods use hardware in one way or another. So, first of all, we have 

to learn which hardware timers we have and how they can be used. In this section, we 

will cover the following timers:

• TSC (Time Stamp Counter)

• HPET (High Precision Event Timer)

• ACPI PM (Power Management Timer)

We will also talk about

• A brief history of the different kinds of these timers

• Basic timer properties (like actual frequency and timestamp latency) 

on different hardware

• How to work with TSC directly from C#

• How to switch between TSC, HPET, and ACPI PM on Windows  

and Linux

• What problems we might have with each timer

 TSC
TSC is a common abbreviation for Time Stamp Counter. It is an internal 64-bit 

register that has been presented on all x86 processors since the Pentium. The TSC is an 

independent counter and can’t be affected by changes in the current system time. It 

keeps monotonically increasing values of ticks; the tick duration depends on the CPU 

model. The TSC frequency is usually close to the nominal CPU frequency.

The value of the TSC can be read into EDX:EAX registers using the RDTSC instruction. 

The opcode for this instruction is 0F 31 ([Intel Manual], Vol. 2B 4-545). C# and other 

.NET languages are high level, so we are not typically working directly with assembly 

opcodes (because we have the powerful BCL, which contains managed wrappers for all 

useful functions). However, if you really want to do it, there are some special tricks. For a 

better understanding of internals, we will learn how to get the value of the TSC without 

standard .NET classes. On Windows, it can be read directly from C# code with the help of 

the following assembly injection:
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const uint PAGE_EXECUTE_READWRITE = 0x40;

const uint MEM_COMMIT = 0x1000;

[DllImport("kernel32.dll", SetLastError = true)]

static extern IntPtr VirtualAlloc(IntPtr lpAddress,

                                  uint dwSize,

                                  uint flAllocationType,

                                  uint flProtect);

static IntPtr Alloc(byte[] asm)

{

  var ptr = VirtualAlloc(IntPtr.Zero,

                         (uint)asm.Length,

                         MEM_COMMIT,

                         PAGE_EXECUTE_READWRITE);

  Marshal.Copy(asm, 0, ptr, asm.Length);

  return ptr;

}

delegate long RdtscDelegate();

static readonly byte[] rdtscAsm =

{

  0x0F, 0x31, // RDTSC

  0xC3        // RET

};

static void Main()

{

  var rdtsc = Marshal

    .GetDelegateForFunctionPointer<RdtscDelegate>(Alloc(rdtscAsm));

  Console.WriteLine(rdtsc());

}

Chapter 9  hardware and Software timerS 



594

Let’s discuss this code in detail.

• For an assembly injection, we need the VirtualAlloc function 

from kernel32.dll. This function will help us to manually allocate 

memory in the virtual address space of the current process.

• The Alloc function takes a byte array with assembly instruction 

opcodes, allocates memory with the help of VirtualAlloc, copies 

the opcodes there, and returns a pointer to the address of the 

allocated and filled memory chunk. The penultimate argument of 

VirtualAlloc (flAllocationType) is responsible for what we are 

going to do with this memory: MEM_COMMIT means that we are going 

to commit memory changes. The last argument of VirtualAlloc 

(flProtect) is responsible for the memory protection mode: PAGE_

EXECUTE_READWRITE means that we can execute code directly from 

the allocated pages.

• We define a signature for the new managed rdtsc function via 

RdtscDelegate (it doesn’t have any arguments and returns a long 

value).

• The rdtscAsm array contains all the target assembly opcodes: 0F 31 

for RDTSC and C3 for RET.

• The Main method uses Marshal.GetDelegateForFunctionPointer 

for converting an unmanaged function pointer to a delegate. The 

generic overload is supported only in the .NET Framework 4.5.1 and 

later versions. The argument of this method is Alloc(rdtscAsm): 

here we take the byte array with the assembly opcodes and transform 

it into an IntPtr, which points to a piece of memory with these 

opcodes.

This approach allows calling RDTSC from the managed code. Usually, it’s not a 

good idea to do so because there are a lot of troubles with the TSC that can spoil your 

measurements (many of them will be covered soon). Operating systems have special 

APIs that allow getting high-precision timestamps without assembly injection and direct 

knowledge about TSC. These APIs protect you from problems that you can get with the 

direct RDTSC call. However, sometimes the described assembly injection can be useful for 

research and diagnostics.
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If you want to read the TSC value directly via the RDTSC instruction, you should know 

that the processor can reorder your instructions and spoil your measurements. From 

[Intel Manual], Vol. 3B 17-41, section 17.15:

The RDTSC instruction is not serializing or ordered with other instructions. 
It does not necessarily wait until all previous instructions have been exe-
cuted before reading the counter. Similarly, subsequent instructions may 
begin execution before the RDTSC instruction operation is performed.

We can find a classic way to solve this problem in [Agner Optimizing Assembly] 

(section 18.1):

On all processors with out-of-order execution, you have to insert XOR 
EAX,EAX/CPUID before and after each read of the counter to prevent it from 
executing in parallel with anything else. CPUID is a serializing instruction, 
which means that it flushes the pipeline and waits for all pending opera-
tions to finish before proceeding. This is very useful for testing purposes.

In [Agner Optimizing Cpp] (section 16, “Testing Speed”), you can find a C++ example 

of direct RDTSC call with a memory barrier via CPUID.

There is another timestamping native instruction which prevents instruction 

reordering: RDTSCP. It also reads the TSC value, but it waits until all previous instructions 

have been executed before reading the counter. From [Intel Manual], Vol. 2B 4-545:

If software requires RDTSC to be executed only after all previous instruc-
tions have completed locally, it can either use RDTSCP (if the processor sup-
ports that instruction) or execute the sequence LFENCE;RDTSC.

You can use RDTSCP instead of RDTSC and not be afraid of out-of-order execution. In 

addition to TSC reading, RDTSCP also reads the processor ID, but you don’t need it for 

time measurements.

Now let’s talk about the RDTSCP access time. In Table 9-3, you can see the list of 

reciprocal RDTSC throughputs (CPU clock cycles) for different processors (the data is 

taken from [Agner Instructions]).
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Table 9-3. Reciprocal Throughput of RDTSC on Different Processors

Processor Name Reciprocal throughput

amd K7 11

amd K8 7

amd K10 67

amd Bulldozer 42

amd pilediver 42

amd Steamroller 78

amd Bobcat 87

amd Jaguar 41

intel pentium m, Core Solo, Core duo 42

intel pentium 4 80

intel pentium 4 w. em64t (prescott) 100

intel Core 2 (merom) 64

intel Core 2 (wolfdale) 32

intel nehalem 24

intel Sandy Bridge 28

intel ivy Bridge 27

intel haswell 24

intel Broadwell 24

intel Skylake 25

intel SkylakeX 25

How can we interpret these numbers? Let’s say that we have Intel Haswell (our 

reciprocal throughput is 24) with fixed CPU frequency = 2.2G Hz. So, 1 CPU clock 

cycle is about 0.45 ns (this is our resolution). We can say that a RDTSC invocation 

takes approximately 24 × 0.45ns ≈ 10.8ns (for RDTSC, we can assume that latency is 

approximately equal to reciprocal throughput).
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You can also evaluate the throughput of RDTSC on your machine. Download testp.

zip3 from the Agner Fog site, build it, and run misc_int.sh1. Here are typical results for 

Intel Haswell:

rdtsc Throughput

Processor 0

Clock Core cyc Instruct Uops uop p0 uop p1 uop p2

 1686     2384      100 1500    255    399      0

 1686     2384      100 1500    255    399      0

 1686     2384      100 1500    255    399      0

 1686     2384      100 1500    254    399      0

 1686     2384      100 1500    255    399      0

 1686     2384      100 1500    255    399      0

 1686     2384      100 1500    255    399      0

 1686     2384      100 1500    254    399      0

 1686     2384      100 1500    255    399      0

 1686     2384      100 1500    255    399      0

Here we have 2384 CPU cycles per 100 RDTSC instructions, which means 

approximately 24 CPI.

On modern hardware and modern operating systems, TSC works very well, but it has 

a long history,4 and people often consider TSC as an unreliable source of timestamps. 

Let’s discuss different generations of TSC and problems that we can get with it (you can 

find more information about it in [Intel Manual], Vol. 3B 17-40, section 17.16).

Generation 1: Variant TSC

The first version of TSC (see the list of the processor’s families in [Intel Manual], Vol. 3B 

17-40, section 17.16) was very simple: it just counted internal processor clock cycles. 

This is not a good way to measure time on modern hardware because the processor 

can dynamically change its own frequency (e.g., the SpeedStep and Turbo Boost 

technologies by Intel).

There is another problem: each processor core has its own TSC, and these TSCs are 

not synchronized. If a thread starts a measurement on one core and ends on another 

3 http://www.agner.org/optimize/testp.zip
4 https://stackoverflow.com/a/19942784
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core, the obtained result can’t be reliable. For example, there is a nice bug report on 

support.microsoft.com (see [MSSupport 895980]); the author had the following output 

for the ping command:

C:\>ping x.x.x.x

Pinging x.x.x.x with 32 bytes of data:

Reply from x.x.x.x: bytes=32 time=-59ms TTL=128

Reply from x.x.x.x: bytes=32 time=-59ms TTL=128

Reply from x.x.x.x: bytes=32 time=-59ms TTL=128

Reply from x.x.x.x: bytes=32 time=-59ms TTL=128

The cause:

This problem occurs when the computer has the AMD Cool’n’Quiet technology 

(AMD dual cores) enabled in the BIOS or some Intel multicore processors. Multicore or 

multiprocessor systems may encounter TSC drift when the times between different cores 

are not synchronized. Operating systems that use TSC as a timekeeping resource may 

experience this issue.

If you want to use TSC on old hardware/software, it’s a good idea to set the processor 

affinity of your thread or process. If you are working with native code, you can do it via 

SetThreadAffinityMask on Windows or sched_setaffinity on Linux. In managed C# 

code, you can use the ProcessorAffinity property of the process like this:

IntPtr affinityMask = (IntPtr) 0x0002; // Second core only

Process.GetCurrentProcess().ProcessorAffinity = affinityMask;

Fortunately, we don’t have these problems on modern hardware because the TSC 

internals were significantly improved.

Generation 2: Constant TSC

Constant TSC is the next generation of TSC; it solves the dynamic frequency problem by 

incrementing at a constant rate. This is a good step forward, but Constant TSC still has 

some issues (e.g., it could be stopped when CPU runs into deep C-state; read more in 

[Kidd 2014]). These problems were solved in the next incarnation of TSC.
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Generation 3: Invariant TSC

Invariant TSC, the latest version of the counter, works well. A quote from [Intel 

Manual]:

The invariant TSC will run at a constant rate in all ACPI P-, C-. and T-states. 
This is the architectural behavior moving forward. On processors with 
invariant TSC support, the OS may use the TSC for wall clock timer services 
(instead of ACPI or HPET timers).

You can check which kind of TSC you have with the help of the CPUID opcode. 

Fortunately, you don’t need to write another assembly injection for that because there 

are existing tools that can detect the TSC kind. On Windows, you can check it via the 

Coreinfo5 utility (a part of the Sysinternals Suite):

Here is a partial output example with TSC-specific lines:

Coreinfo v3.31 - Dump information on system CPU and memory topology

Copyright (C) 2008-2014 Mark Russinovich

Sysinternals - www.sysinternals.com

Intel(R) Core(TM) i7-6700HQ CPU @ 2.60GHz

Intel64 Family 6 Model 94 Stepping 3, GenuineIntel

RDTSCP          *       Supports RDTSCP instruction

TSC             *       Supports RDTSC instruction

TSC-INVARIANT   *       TSC runs at constant rate

This tells us that both RDTSC and RDTSCP are supported and the invariant TSC is 

available. You can do the same thing on Linux with the following command:

$ cat /proc/cpuinfo | tr ' ' '\n' | sort -u | grep -i "tsc"

If RDTSC, RDTSCP, and the invariant TSC are available, you should have the following 

lines in the output:

constant_tsc

nonstop_tsc

rdtscp

tsc

5 https://docs.microsoft.com/en-us/sysinternals/downloads/coreinfo
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The invariant TSC is indicated by a combination of constant_tsc (synchronization 

between cores) and nonstop_tsc (power management independence) flags.

In most cases, you can trust Invariant TSC and use it as a wall-clock timer for 

high-precision measurements. In rare cases, you can still have some problems (like 

synchronization problems on large multiprocessor systems), but you typically shouldn’t 

worry about it. Nowadays, Invariant TSC is a very popular kind of TSC; you can find it in 

most modern Intel processors.

Now we know some basic information about different generations of TSC, assembly 

instructions for getting counter values, how to call it from the managed C# code, and 

what kinds of problems we may have with the TSC. But there are also other hardware 

timers.

 HPET and ACPI PM
Along with TSC, many processors have two additional timers: HPET and ACPI PM. 

These are also independent counters that can’t be affected by changes in the current 

system time.

HPET is the High-Precision Event Timer. HPET was designed by Microsoft and AMD 

to replace old timers like TSC and be the main timer for high-precision measurements. 

However, HPET didn’t become the main timer, mainly because of the huge access time. 

On modern hardware and operating systems, HPET is usually disabled (the invariant 

TSC is used as the primary timestamp source), but it’s usually possible to enable it (if you 

want it for some reason).

According to [HPET Specifications], section 2.2, the minimum HPET clock frequency 

is 10 MHz, but the actual HPET frequency is always 14.31818 MHz (the origin of this 

number is explained in the “History of Magic Numbers” section).

ACPI PM is a timer in the power management system. The most common 

abbreviations are ACPI PM and ACPI PMT. ACPI means Advanced Configuration and 

Power Interface, and PMT means Power Management Timer. However, it’s common to 

call it ACPI PM, PMC, or just Power Management Timer.

According to [ACPI Specifications] (section 4.8.2.1), the frequency of this timer is 

always 3.579545 MHz. Both HPET and ACPI PM use the same master oscillator crystal 

(14.31818 MHz is 4-3.579545 MHz). Consequently, ACPI PM also has a huge access time.

The operating system has the “primary” hardware timer, which is used by default for 

timestamping. Typically, the default is TSC, but you can change this value manually.
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On Windows, you can enable or disable HPET with the help of the bcdedit6 utility. 

For enabling, you should run it with /set useplatformclock true arguments and 

reboot your computer.

:: Enable HPET (reboot is required):

bcdedit /set useplatformclock true

This sets the useplatformclock value in Boot Manager, which requires HPET  

instead of TSC. If you don’t want to use it anymore, you should delete this value  

by /deletevalue and reboot:

:: Disable HPET (reboot is required):

bcdedit /deletevalue useplatformclock

If you want to check whether HPET is enabled or not, you should look for 

useplatformclock in the output of the following command:

bcdedit /enum

On Linux, all the time source–related files are typically placed in /sys/devices/

system/clocksource/clocksource0/. You can look at the full list of available clock 

sources in available_clocksource. For example, I have TSC, HPET, and ACPI PM on my 

Linux laptop:

# Get available clocksource:

$ cat /sys/devices/system/clocksource/clocksource0/available_clocksource

tsc hpet acpi_pm

The current clock source can be find in current_clocksource:

# Get current clocksource:

$ cat /sys/devices/system/clocksource/clocksource0/current_clocksource

tsc

6 A command-line tool for managing Boot Configuration Data (BCD). You can find more 
information about in https://docs.microsoft.com/en-us/windows-hardware/manufacture/
desktop/bcdedit-command-line-options and https://msdn.microsoft.com/en-us/library/
windows/hardware/ff542202.aspx
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This value can be easily changed. For example, for enabling HPET, you should run the 

following:

# Set current clocksource:

$ sudo /bin/sh -c \

   'echo hpet > /sys/devices/system/clocksource/clocksource0/current_clocksource'

Usually, HPET is disabled, but you shouldn’t assume that TSC is always the default. 

For example, you can meet enabled HPET on many legacy servers (which didn’t have 

OS reinstallation for several years). It can be also enabled manually for some specific 

scenarios or because of the bugs.7

 History of Magic Numbers
We already know that the HPET frequency is 14.31818 MHz and that the ACPI PM 

frequency is 3.579545 MHz. Why are these numbers used for hardware timers? If we 

want to understand this, we have to take an intriguing history lesson (you can skip it if 

you don’t like history).

In 1950, the National Television System Committee (NTSC) started to construct 

a new standard for color television. This standard was approved in 1953. It was a 

complicated technical task because the new standard had to be backward compatible 

with old black-and-white television (B&W TV). The new standard uses the luminance- 

chrominance encoding system: a color image is represented as a sum of luminance and 

chrominance signals. The luminance signal corresponds to the monochrome signal 

in B&W TV, so that B&W TV could accept the new standard. The chrominance signal 

contains only information about color (two additional signals with different phases). 

Now let’s solve a simple task: we should choose the chrominance signal frequency fc 

(also known as color subcarrier frequency) which doesn’t affect B&W TV. Consider 

several basic conditions that we should satisfy.

Condition 1 “Bandwidth for the chrominance signal”

The frequency of chrominance signal fc should be as high as possible: it allows getting 

small noise structure. By the American standard, the maximum video frequency is 

fmax=4.18 MHz. After a series of experiments, it turned out that the difference fmax − fc 

7 For example, there was a firmware bug in CentOS 7: “available_clocksource” contained only 
“hpet acpi_pm” without “tsc”. The discussion is here: https://stackoverflow.com/q/45803565
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can’t be less than 0.6 MHz (otherwise, we will get image distortions). Thus, we have the 

following requirement:

 f fcmax - ³ 0 6. MHz  

Now we have the upper limit for fc:

 fc £ 3 58. MHz  

Condition 2 “Line frequency”

To minimize the visibility of the color subcarrier on B&W screens, its frequency should 

be chosen as an odd half-integer multiple of the horizontal line rate fh:

 
f n f
c

h= +( )2 1
2  

Thanks to this, the chrominance signal peaks would fit neatly between the 

luminance signal peaks, which minimizes the interference. In case of an even multiplier 

2n, we get a strong noise pattern (a set of vertical lines).

Condition 3 “Audio signal”

We also have to minimize the interference between the audio signal (sound carrier) and 

the chrominance signal (chrominance carrier). So, we have to introduce an additional 

requirement (by analogy with Condition 2) for the distance between the sound carrier 

spacing fΔs and the frequency of chrominance carrier fc:

 
f f m f

s c
h

D - = +( )2 1
2  

Substituting (2n + 1) ⋅ fh/2 for fc, we get

 
f m f n f

s
h h

D = +( ) + +( )2 1
2

2 1
2  

It follows that

 

f
f

m n ks

h

D = + + =1
 

where k is an integer number.
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The original standard had a frame rate of 30 Hz with 525 lines per frame (15750 lines 

per second). This number was chosen because of the vacuum-tube-based technology 

limitations of the day. Thus, the original horizontal line rate was fh=15750 Hz. By the 

American standard for B&W TV, the sound carrier spacing fΔs between the audio and 

video frequency is exactly 4.5 MHz. Thereby, we have

 

f
f
s

h

D = »
4 5
15750

285 714285714. . .MHz
Hz  

To minimize interference between audio and color video signals, fΔs/fh should be an 

integer number. It was decided to make fΔs 286th harmonic of fh (286 is the closest integer 

number to 285.714285714). However, we can’t change the audio carrier frequency (the 

legacy TV receivers will not decode it), but we can change the horizontal line frequency! 

It’s easy to calculate the new horizontal line rate:

 
f f
h

s= =
286

15734 26573. .Hz  

The frequency reduction coefficient is 15750 Hz/15734.26573 Hz≈ 1.001. An 

interesting implication from this is that now we have 29.97 Hz as the frame rate instead 

of 30 Hz and 59.94 Hz as the field frequency instead of the common 60 Hz.8

Condition 4 “Simple construction”

We also want to have an oscillator that is easy to implement. It is easier to create frequency 

divider chains when (2n+1) is a product of small prime numbers. We know that

 
f n f
c

h= +( )2 1
2
.  

From fc ≤ 3.58 MHz and fh = 15734.26573 Hz, we have

 
2 1 2 2 3580000

15734 26573
455 0578n f

f
h

h

+ = £ »
.

.
.Hz

Hz  

8 It’s a special kind of fun to convert “24 frames per second” films to the 59.94 Hz NTSC video 
standard. Long story short, it requires slowing the film motion by 1/1000 to 23.976 frames per 
second, which increases a 1.5-hour film by 5.4 seconds. Google for “Three-two pull down.”
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We know that the chrominance signal frequency fc should be as high as possible. The 

maximum possible value for (2n+1) (which should be an odd integer number) is 455. 

This is a great number because it has small frequency divisors, namely, 5, 7, and 13:

 2 1 5 7 13 455n +( ) = × × = .  

Solution

Hooray, now we can calculate fc , which became the default NTSC color burst frequency:

 
f n f
c

h= +( ) = × »2 1
2

455 15734 26573
2

3 579545. . .Hz MHz  

If you like the history of television, you can also find a lot of interesting technical 

details in [Schlyter] and [Stephens 1999]. The 3.579545 MHz value had a significant 

impact on modern hardware timers. But how? Well, it’s time to learn more about one of 

the first clock oscillators: the Intel 8284 clock oscillator.

Let’s remember some old-fashioned processor models and clock oscillators. Intel 

8284 is a clock oscillator for Intel 8086/8088 microprocessors. By specification, the 

maximum frequency for 8088 is 5 MHz. The signal should have 33.3% duty clock cycle 

(1/3 of the time high; 2/3 of the time low), so the original signal should be around 

15 MHz (we can get 5 MHz by dividing the original frequency by 3).

At that time, it was a common practice to use TVs instead of monitors. Thus, the 

Color Graphics Adapter (CGA) required the 3.579545 MHz signal for creating the NTSC 

color subcarrier.

Also, it was expensive to have several crystal oscillators on the same chip. It was 

decided to use the same crystal for both CGA and CPU. Thereby, the master oscillator 

has the 14.31818 MHz frequency (4× NTSC). It allows getting 3.579545 MHz for CGA 

video controller (dividing the master frequency by 4) and 4.77272666 MHz for CPU 

(dividing it by 3). Yes, it was less than the 5 MHz limit (4.6% performance drop), but it’s 

a good trade-off that allowed producing cheap CPU chips. You can find this story in a 

blog post by Tim Paterson (the original author of MS-DOS) (see [Paterson 2009]). Also, 

it is worth it to read the same story by Calvin Hsia (see [Hsia 2004]). Some additional 

technical information about Intel 8284 can be found in [Karna 2017] and [Govindarajalu 

2002].
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Now we can understand the origin of ACPI PM and HPET frequencies. The ACPI PM 

reuses the 3.579545 MHz NTSC frequency because we already have hardware support for 

this. HPET has a the minimum frequency requirement: 10 MHz. Since it was expensive 

to introduce an additional oscillator for HPET, it was decided to reuse the 14.31818 MHz 

frequency, which is also already implemented at the hardware level. Another hardware 

timer affected by these magic numbers is the PIT (Programmable Interval Timer) (also 

known as Intel 8253/8254 chip). The frequency of this timer is 1.193182 MHz. It uses 

the same 14.31818 MHz master frequency, which is divided by 12, so it’s compatible 

with CGA (CGA Frequency = 3 * PIT Frequency) and CPU (CPU Frequency = 4 * PIT 

Frequency).

 Summing Up
At the present time, the most popular and reliable hardware timer is TSC. You can read 

the value of the TSC via the RDTSC instruction, which has a high resolution and a low 

latency. However, you don’t want to use it directly in general because there are a lot of 

problems with TSC. Here is a summary:

• Some old processors don’t have TSC registers.

• The processor can change the frequency and affect the old version  

of TSC.

• There are synchronization problems on multicore systems.

• Even if we have Invariant TSC, there are still synchronization 

problems on large multiprocessor systems.

• Some processors can execute RDTSC out of order.

Thus, a direct RDTSC call is not a good choice for time measurements in general, 

because you can’t be sure in advance that it produces reliable measurements. 

Fortunately, modern operating systems provide nice APIs that allow getting the most 

reliable timestamps for your current hardware.

TSC is not the only tick generator; there are also ACPI PM, and HPET. You can meet ACPI 

PM (frequency = 3.579545 MHz) or HPET (frequency = 14.31818 MHz) even on modern 

versions of Windows or Linux, but they are not popular because of the high latency.

Now we know the basic hardware sources of ticks. In the next section, we are going to 

learn different ways to get tick values from the software.
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 OS Timestamping API
We already know about hardware timers and how to use them. However, it’s not a good 

idea to interact with them directly: it requires knowledge of these timers on different 

hardware and deep understanding of what can go wrong for all target environments. 

Fortunately, operating systems introduce a higher level of abstraction by providing 

special APIs.

There are three main groups of timestamping APIs on Windows:

• System timer 

 – GetSystemTime: Retrieves the current system date and time in coordinated 

universal time (UTC) format as SYSTEMTIME.

 – GetLocalTime: Retrieves the current local date and time as SYSTEMTIME.

 – GetSystemTimeAsFileTime: Retrieves the current system date and time in 

UTC format as FILETIME.

• System ticks 

 – GetTickCount: Retrieves the number of milliseconds that have elapsed 

since the system was started. The first version returns a 32-bit number up to 

49.7 days.

 – GetTickCount64: 64-bit version of GetTickCount

• High-resolution timer 

 – QueryPerformanceCounter and QueryPerformanceFrequency: Retrieves the 

current value and the frequency of the performance counter, which is a 

high-resolution timestamp that can be used for time interval 

measurements.

 – KeQueryPerformanceCounter: An analogue of QueryPerformanceCounter 

that can be used in device drivers (kernel-mode API).

 – GetSystemTimePreciseAsFileTime: Retrieves the current system date and 

time with the highest possible level of precision.
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The second group (System ticks) is not very interesting,9 so we are going to focus 

on the first and third groups (system timer and high-resolution timer), which will be 

covered in the next two subsections.

We will also discuss some Unix timestamping APIs like clock_gettime, clock_

settime, clock_getres, mach_absolute_time, mach_timebase_info, gethrtime, read_

real_time, gettimeofday, and settimeofday.

 Timestamping API on Windows: System Timer
On Windows, there are several types of time representations. Here are two of the most 

popular options:

• SYSTEMTIME: Specifies a date and time, using individual members 

for the month, day, year, weekday, hour, minute, second, and 

millisecond. The time is either in UTC or local time, depending on 

the function that is being called.

• FILETIME: Contains a 64-bit value representing the number of 

100-nanosecond intervals since January 1, 1601 (UTC).

If we want to know what time is it now (and don’t need high-resolution 

measurements), Windows provides another useful mechanism called system timer. 

The primary API is the GetSystemTimeAsFileTime function. It returns FILETIME, which 

represents the current system date and time in the UTC format. If we want to get this 

value as SYSTEMTIME, we can also use GetSystemTime: it works slowly, but it returns the 

current date and time in a well-suited format. You can convert FILETIME to SYSTEMTIME 

manually with the help of FileTimeToSystemTime. If we want to get the local date and 

time (instead of UTC), we can use the GetLocalTime function.

All of the preceding APIs use the Windows system timer internally. It’s important to 

understand the resolution of this timer, how the resolution can be changed, and how this 

can affect your application.

9 It’s useful only for some specific situations, and there is no really interesting information about it. 
We will discuss it in the next section because it’s the underlying API for Environment.TickCount 
on Windows.
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 System timer and its resolution

The actual resolution of the system timer may take different values. You can easily get the 

configuration of your OS with the help of the ClockRes10 utility (a part of the Sysinternals 

Suite). Here is a typical output on modern versions of Windows:

> Clockres.exe

Clockres v2.1 - Clock resolution display utility

Copyright (C) 2016 Mark Russinovich

Sysinternals

Maximum timer interval: 15.625 ms

Minimum timer interval: 0.500 ms

Current timer interval: 1.000 ms

First of all, look at the maximum timer interval: it equals to 15.625 ms (this 

corresponds to a frequency of 64 Hz). This is the default DateTime resolution when 

we don’t have any nonsystem running applications. This value can be changed 

programmatically by any application. In the preceding example, the current timer 

interval is 1 ms (frequency = 1000 Hz). However, there are limits for this value: the 

minimum timer interval equals 0.5 ms (frequency = 2000 Hz) and the maximum is 

15.625 ms. The current timer interval may take its value only from the specified range.

This is a typical configuration for the modern version of Windows. However, you can 

observe other resolution values on the older version of Windows. Here are two examples:

• Windows 95/98/Me: 55 ms (We already discussed this value in the 

“Hardware Timers” section; we have it thanks to the NTSC)

• Windows NT/2000/XP: 10 ms or 15 ms

You can also find a lot of useful information about different configurations in [The 

Windows Timestamp Project].

10 https://docs.microsoft.com/en-us/sysinternals/downloads/clockres
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 System timer resolution API

So, how can the timer resolution be changed? There are some Windows APIs that  

can be used:

• timeBeginPeriod, timeEndPeriod from winmm.dll

• NtQueryTimerResolution, NtSetTimerResolution from ntdll.dll

You can use it directly from C#; here is a helper class for you:

public struct ResolutionInfo

{

  public uint Min;

  public uint Max;

  public uint Current;

}

public static class WinApi

{

  [DllImport("winmm.dll",

             EntryPoint = "timeBeginPeriod",

             SetLastError = true)]

  public static extern uint TimeBeginPeriod(uint uMilliseconds);

  [DllImport("winmm.dll",

             EntryPoint = "timeEndPeriod",

             SetLastError = true)]

  public static extern uint TimeEndPeriod(uint uMilliseconds);

  [DllImport("ntdll.dll", SetLastError = true)]

  private static extern uint NtQueryTimerResolution

          (out uint min,

           out uint max,

           out uint current);

  [DllImport("ntdll.dll", SetLastError = true)]

  private static extern uint NtSetTimerResolution

          (uint desiredResolution,
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           bool setResolution,

           ref uint currentResolution);

  public static ResolutionInfo QueryTimerResolution()

  {

    var info = new ResolutionInfo();

    NtQueryTimerResolution(out info.Min,

                           out info.Max,

                           out info.Current);

    return info;

  }

  public static ulong SetTimerResolution(uint ticks)

  {

    uint currentRes = 0;

    NtSetTimerResolution(ticks, true, ref currentRes);

    return currentRes;

  }

}

The ResolutionInfo data structure represents the minimum, maximum, and 

current resolution of the system timer. In the WinApi static class, we import four target 

functions from winmm.dll and ntdll.dll. The custom methods QueryTimerResolution 

and SetTimerResolution are just wrappers for the imported NtQueryTimerResolution 

and NtSetTimerResolution.

Now let’s play a little bit with this class. First of all, we can write our own ClockRes 

based on the described API:

var resolutionInfo = WinApi.QueryTimerResolution();

Console.WriteLine($"Min     = {resolutionInfo.Min}");

Console.WriteLine($"Max     = {resolutionInfo.Max}");

Console.WriteLine($"Current = {resolutionInfo.Current}");

Output (without any running apps):

Min     = 156250

Max     = 5000

Current = 156250
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The only difference between ClockRes and our program is that ClockRes prints time 

in milliseconds, while we print time in 100 ns units. Max = 5000 means MaxResolution = 

5000 * 100 ns = 0.5 ms.

Now, let’s manually check that resolutionInfo.Current is the actual resolution of 

DateTime. Here is a very simple code that shows observed DateTime behavior:

// DateTimeResolutionObserver

for (int i = 0; i < 5; i++)

{

  DateTime current = DateTime.UtcNow;

  DateTime last = current;

  while (last == current)

    current = DateTime.UtcNow;

  TimeSpan diff = current - last;

  Console.WriteLine(diff.Ticks);

}

Here we save the current value of DateTime.UtcNow in current, and then we wait for 

another DateTime.UtcNow value in the while loop (by updating the last variable). This 

is not the most beautiful and correct way to get the DateTime resolution, but it’s a simple 

program that should be affected by the actual DateTime resolution.

Typical output (without any running apps):

155934

156101

156237

156256

156237

Here is the output for case resolutionInfo.Current = 5000:

5574

4634

5353

5014

4271
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As you can see, the received numbers are not exactly equal to 156250 or 5000. So, the 

difference between two sequential different DateTime values is approximately equal to 

the current timer interval.

PLAY WITH WINAPI CLASS

• run ClockRes on your system. next, get the minimum, maximum, and current 

resolution of the system timer from C# code.

• try to increase or decrease the current resolution via SetTimerResolution.  

Check the new resolution value via api and via DateTimeResolutionObserver.

• try to change the current resolution via TimeBeginPeriod/TimeEndPeriod 

functions.

• try to set the current resolution to an invalid value (less than minimum or 

bigger than maximum).

it will probably be hard to change this value because other applications already requested high 

timer frequency. So, it’s a good idea to terminate them before the experiments. But how do we 

know which applications changed the resolution? the powercfg utility will help us!

 System timer analysis: powercfg

Let’s say your current timer interval is not the maximum timer interval. How do you 

know what’s to blame? Which program increased the system timer frequency? You can 

check it with the help of powercfg. This is a command-line utility that helps to control 

power system settings. Typically, you can find it in C:\Windows\System32\powercfg.exe.

Let’s check how it works. Run the following command as administrator:

> powercfg -energy duration 10

This command will monitor your system for 10 seconds and generate an HTML 

report (energy-report.html in the current directory) with a lot of useful information 

including information about the platform timer resolution. Here is an example of output:

Platform Timer Resolution:Platform Timer Resolution

The default platform timer resolution is 15.6ms (15625000ns)
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and should be used whenever the system is idle. If the timer

resolution is increased, processor power management technologies

may not be effective. The timer resolution may be increased due

to multimedia playback or graphical animations.

  Current Timer Resolution (100ns units) 5003

  Maximum Timer Period (100ns units) 156250

Platform Timer Resolution: Outstanding Timer Request

A program or service has requested a timer resolution smaller

than the platform maximum timer resolution.

  Requested Period 5000

  Requesting Process ID 6676

  Requesting Process Path

    \Device\HarddiskVolume4\Users\akinshin\ConsoleApplication1.exe

Platform Timer Resolution: Outstanding Timer Request

A program or service has requested a timer resolution smaller

than the platform maximum timer resolution.

  Requested Period 10000

  Requesting Process ID 10860

  Requesting Process Path

    \Device\HarddiskVolume4\Program Files (x86)\Mozilla Firefox\firefox.exe

As you can see, the default interval is 15.6 ms, Firefox requires a 1.0 ms interval, 

and ConsoleApplication1.exe in the home directory (which just calls WinApi.

SetTimerResolution(5000)) requires a 0.5 ms interval. ConsoleApplication1.exe 

won; now we have the maximum possible platform timer frequency.

AN EXERCISE

run all your favorite applications and monitor your system for 10 seconds via powercfg. Look 

at the report and find all applications which have requested small timer resolution.

And we have one more topic that is related to the system timer: Thread.Sleep.
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 System timer and Thread.Sleep

All this sounds very interesting, but where is the practical value? Why should we care 

about the system timer resolution? Here I want to ask you a question: what does the 

following call do?

Thread.Sleep(1);

Somebody might probably answer: it suspends the current thread for 1 ms. 

Unfortunately, that is not the correct answer. The documentation states the following:

The actual timeout might not be exactly the specified timeout, because the 
specified timeout will be adjusted to coincide with clock ticks.

In fact, the elapsed time depends on system timer resolution. Let’s write another 

naive benchmark (we don’t need any accuracy here; we just want to show the Sleep 

behavior in a simple way, so we don’t need usual benchmarking routines here like a 

warm-up, statistics, and so on):

for (int i = 0; i < 5; i++)

{

  var stopwatch = Stopwatch.StartNew();

  Thread.Sleep(1);

  stopwatch.Stop();

  var time = stopwatch.ElapsedTicks * 1000.0 / Stopwatch.Frequency;

  Console.WriteLine(time + " ms");

}

This code just tries to measure the duration of Thread.Sleep(1) with the help of 

Stopwatch five times. Typical output for current timer interval = 15.625 ms:

14.8772437280584 ms

15.5369201880125 ms

18.6300283418281 ms

15.5728431635545 ms

15.6129649284456 ms
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As you can see, the elapsed intervals are much more than 1 ms. Now, let’s run Firefox 

(which sets the interval to 1 ms) and repeat this stupid benchmark:

1.72057056881932 ms

1.48123957592228 ms

1.47983997947259 ms

1.47237546507424 ms

1.49756820116866 ms

Firefox affected the Sleep call and reduced the elapsed interval by ~10 times. You 

can find a good explanation of the Sleep behavior in [The Windows Timestamp Project]:

Say the ActualResolution is set to 156250, the interrupt heartbeat of the sys-
tem will run at 15.625 ms periods or 64 Hz, and a call to Sleep is made with 
the desired delay of 1 ms. Two scenarios are to be looked at:

• The call was made < 1ms (ΔT) ahead of the next interrupt. The next 

interrupt will not confirm that the desired period of time has expired. 

Only the following interrupt will cause the call to return. The resulting 

sleep delay will be ΔT + 15.625ms.

• The call was made ≥ 1ms (ΔT) ahead of the next interrupt. The  

next interrupt will force the call to return. The resulting sleep delay will 

be ΔT.

There are many other Sleep “features,” but they are beyond the scope of this book. Of 

course, there is another Windows API that depends on the system timer resolution (e.g., 

WaitableTimer). We will not discuss this class in detail; I just want to recommend once 

again that you read it in [The Windows Timestamp Project].

 Timestamping API on Windows: QPC
The primary APIs for high-resolution timestamping on Windows are 

QueryPerformanceCounter (QPC) and QueryPerformanceFrequency (QPF). QPC is 

completely independent of the system time and UTC (it is not affected by daylight 

savings time, leap seconds, or time zones). If you need high-resolution time-of-day 

measurements, use GetSystemTimePreciseAsFileTime (available since Windows 8 / 

Windows Server 2012). Thus, it is the best option if you want to measure the duration of 

an operation.
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Here are some important facts about QPC and different versions of Windows:

• QPC is available on Windows XP and Windows 2000 and works well 

on most systems. However, some hardware systems’ BIOS did not 

indicate the hardware CPU characteristics correctly (a noninvariant 

TSC), and some multicore or multiprocessor systems used processors 

with TSCs that could not be synchronized across cores. Systems 

with flawed firmware that run these versions of Windows might not 

provide the same QPC reading on different cores if they used the TSC 

as the basis for QPC.

• All computers that shipped with Windows Vista and Windows Server 

2008 used the HPET or the ACPI PM as the basis for QPC.

• The majority of Windows 7 and Windows Server 2008 R2 computers 

have processors with constant-rate TSCs and use these counters as 

the basis for QPC.

• Windows 8, Windows 8.1, Windows Server 2012, and Windows Server 

2012 R2 use TSCs as the basis for the performance counter.

There are two main functions for high-resolution timestamps in kernel32.dll that 

can be imported to C# program with the following lines:

[DllImport("kernel32.dll")]

static extern bool QueryPerformanceCounter(out long value);

[DllImport("kernel32.dll")]

static extern bool QueryPerformanceFrequency(out long value);

As you can guess from the title, QueryPerformanceCounter allows getting counter 

value (via out long value), and QueryPerformanceFrequency allows getting the tick 

generator frequency. But how does it work? Let’s find out!
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Consider a simple program:

static void Main()

{

  long ticks;

  QueryPerformanceCounter(out ticks);

}

[DllImport("kernel32.dll")]

static extern bool QueryPerformanceCounter(out long value);

Build this in Release-x64 and open the executable in WinDbg. There is a difference 

between x86 and x64 asm code, but x64 asm code will be enough to understand what’s 

going on. Let’s set a breakpoint on KERNEL32!QueryPerformanceCounter (bp command) 

and go to it (g command). For simplification, address prefixes like 00007ff are removed 

from the listings:

> bp KERNEL32!QueryPerformanceCounter

> g

KERNEL32!QueryPerformanceCounter:

e6ccbb720  jmp  qword ptr [KERNEL32!QuirkIsEnabled2Worker+0x9ec8 (e6cd16378)]

  ds:00007ffe6cd16378={ntdll!RtlQueryPerformanceCounter (e6d83a7b0)}

If you are not able to set a breakpoint to KERNEL32!QueryPerformanceCounter, you 

can try to use KERNEL32!QueryPerformanceCounterStub (different versions of Windows 

have different naming styles):

> bp KERNEL32!QueryPerformanceCounterStub

> g

KERNEL32!QueryPerformanceCounterStub:/

f431f5750  jmp  qword ptr [KERNEL32!_imp_QueryPerformanceCounter (f43255290)]

  ds:00007fff43255290={ntdll!RtlQueryPerformanceCounter (f45300ff0)}

KERNEL32!QueryPerformanceCounter (or KERNEL32!QueryPerformanceCounterStub) 

just redirects us to ntdll!RtlQueryPerformanceCounter. Let’s look at the 

disassembly of this method (uf command):

> uf ntdll!RtlQueryPerformanceCounter
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ntdll!RtlQueryPerformanceCounter:

e6d83a7b0  push    rbx

e6d83a7b2  sub     rsp,20h

; Checking special flag

e6d83a7b6  mov     al,byte ptr [SharedUserData+0x3c6 (e03c6)]

e6d83a7bd  mov     rbx,rcx

e6d83a7c0  cmp     al,1

e6d83a7c2  jne     ntdll!RtlQueryPerformanceCounter+0x44 (e6d83a7f4)

; The fast rdtsc version

ntdll!RtlQueryPerformanceCounter+0x14:

e6d83a7c4  mov     rcx,qword ptr [SharedUserData+0x3b8 (e03b8)]

e6d83a7cc  rdtsc

e6d83a7ce  shl     rdx,20h

e6d83a7d2  or      rax,rdx

e6d83a7d5  mov     qword ptr [rbx],rax

e6d83a7d8  lea     rdx,[rax+rcx]

e6d83a7dc  mov     cl,byte ptr [SharedUserData+0x3c7 (e03c7)]

e6d83a7e3  shr     rdx,cl

e6d83a7e6  mov     qword ptr [rbx],rdx

ntdll!RtlQueryPerformanceCounter+0x39:

e6d83a7e9  mov     eax,1

e6d83a7ee  add     rsp,20h

e6d83a7f2  pop     rbx

e6d83a7f3  ret

; The slow syscall version

ntdll!RtlQueryPerformanceCounter+0x44:

e6d83a7f4  lea     rdx,[rsp+40h]

e6d83a7f9  lea     rcx,[rsp+38h]

e6d83a7fe  call    ntdll!NtQueryPerformanceCounter (e6d8956f0)

e6d83a803  mov     rax,qword ptr [rsp+38h]

e6d83a808  mov     qword ptr [rbx],rax

e6d83a80b  jmp     ntdll!RtlQueryPerformanceCounter+0x39 (e6d83a7e9)
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There is a special flag in [SharedUserData+0x3c6 (e03c6)] that determines which 

QPC algorithm will be used. If everything is fine (we are working on modern hardware 

with invariant TSC, and we can directly use it), we are going to the fast algorithm 

 (ntdll!RtlQueryPerformanceCounter+0x14). Otherwise, we are going to call ntdll!NtQ

ueryPerformanceCounter, which produces a syscall:

> uf ntdll!NtQueryPerformanceCounter

ntdll!NtQueryPerformanceCounter:

e6d8956f0  mov     r10,rcx

e6d8956f3  mov     eax,31h

e6d8956f8  test    byte ptr [SharedUserData+0x308 (e0308)],1

e6d895700  jne     ntdll!NtQueryPerformanceCounter+0x15 (e6d895705)

ntdll!NtQueryPerformanceCounter+0x12:

e6d895702  syscall

e6d895704  ret

ntdll!NtQueryPerformanceCounter+0x15:

e6d895705  int     2Eh

e6d895707  ret

Here is an important fact about the fast algorithm (ntdll!RtlQueryPerformance 

Counter+0x14): it directly calls RDTSC without any syscalls. It allows achieving low latency 

for simple situations (when we really can use TSC without any troubles).

Another interesting fact: QPC uses a shifted value of RDTSC: it puts the full value of the 

counter in rdx, and then it performs shr rdx,cl (where cl typically equals to 0xA). Thus, 

one QPC tick equals to 1024 rdtsc ticks. We can say the same thing about QPF: nominal 

Windows frequency for high-precision measurements is 1024 times less than the RDTSC 

frequency.

A remark: in the modern world, versions of Windows are changing very quickly,  

so you can get different asm on different versions of Windows and hardware.

AN EXERCISE

try to repeat this experiment on your machine and explain the assembly code that you get.
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 Timestamping API on Unix
On Unix, there are many different time functions:

• Linux: clock_gettime, clock_settime, clock_getres11

• macOS: mach_absolute_time, mach_timebase_info12

• Oracle Solaris: gethrtime13

• PowerPC: read_real_time14

• All Unix systems: gettimeofday, settimeofday15

Let’s briefly talk about some of these functions.

 clock_getttime, clock_settime, clock_getres

On Linux, there are the following useful functions for timestamping:

int clock_getres(clockid_t clock_id, struct timespec *res);

int clock_gettime(clockid_t clock_id, struct timespec *tp);

int clock_settime(clockid_t clock_id, const struct timespec *tp);

Here is some useful information from the documentation:

The function clock_getres() finds the resolution (precision) of the speci-
fied clock_id, and, if res is non-NULL, stores it in the struct timespec 
pointed to by res. The resolution of clocks depends on the implementation 
and cannot be configured by a particular process. If the time value pointed 
to by the argument tp of clock_settime() is not a multiple of res, then it is 
truncated to a multiple of res. The functions clock_gettime() and clock_
settime() retrieve and set the time of the specified clock clk_id.

11 http://man7.org/linux/man-pages/man2/clock_gettime.2.html
12 https://developer.apple.com/library/mac/#qa/qa1398/_index.html
13 https://docs.oracle.com/cd/E23824_01/html/821-1465/gethrtime-3c.html
14 http://ps-2.kev009.com/tl/techlib/manuals/adoclib/aixprggd/genprogc/highrest.htm
15 http://linux.die.net/man/2/gettimeofday
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clock_getttime allows getting a timespec value:

struct timespec {

    time_t tv_sec; /* seconds */

    long tv_nsec;  /* nanoseconds */

};

The timespec structure has two fields: tv_sec for seconds and tv_nsec for nanoseconds. 

Thus, the minimal possible resolution of functions that returns timespec is 1 ns.

The clock_id argument is the ID of the target clocks. Some typical values:

• CLOCK_REALTIME: System-wide real-time clock. Setting this clock 

requires appropriate privileges.

• CLOCK_REALTIME_COARSE: A faster but less precise version of 

CLOCK_REALTIME. Use when you need very fast, but not fine-grained 

timestamps. Available since Linux 2.6.32.

• CLOCK_MONOTONIC: Clock that cannot be set and represents 

monotonic time from some unspecified starting point.

• CLOCK_MONOTONIC_COARSE: A faster but less precise version of 

CLOCK_MONOTONIC. Use when you need very fast, but not fine-grained 

timestamps. Available since Linux 2.6.32.

• CLOCK_MONOTONIC_RAW: Similar to CLOCK_MONOTONIC, but provides 

access to a raw hardware-based time that is not subject to NTP 

adjustments or the incremental adjustments performed by 

adjtime(3). Available since Linux 2.6.28.

• CLOCK_BOOTTIME: Identical to CLOCK_MONOTONIC, except it also 

includes any time that the system is suspended. Available since Linux 

2.6.39.

• CLOCK_PROCESS_CPUTIME_ID: High-resolution per-process timer from 

the CPU.

• CLOCK_THREAD_CPUTIME_ID: Thread-specific CPU-time clock.

For high-precision timestamping, you should use CLOCK_MONOTONIC (if this option is 

available on current hardware) but there are other clock options (like CLOCK_REALTIME for 

the real-time clock or CLOCK_THREAD_CPUTIME_ID for thread-specific CPU-time clock).
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A usage example:

struct timespec ts;

uint64_t timestamp;

clock_gettime(CLOCK_MONOTONIC, &ts);

timestamp = (static_cast<uint64_t>(ts.tv_sec) * 1000000000) +

             static_cast<uint64_t>(ts.tv_nsec);

Internally, clock_gettime(CLOCK_MONOTONIC, ...) is based on the current high- 

precision hardware timer (usually TSC, but it can also be HPET or ACPI_PM).

To reduce clock_gettime latency, Linux kernel uses the vsyscalls (virtual system 

calls) and VDSOs (Virtual Dynamically Linked Shared Objects) instead of a direct 

syscall.

If Invariant TSC is available, clock_gettime(CLOCK_MONOTONIC, ...) will use 

it directly via the rdtsc instruction. Of course, it adds some overhead, but in general, 

you should use clock_gettime instead of rdtsc because it solves a lot of portability 

problems.16

clock_gettime has been available on macOS since macOS 10.12 Sierra.

 mach_absolute_time

If you want to write a portable code that supports old versions of macOS (before 10.12), 

the mach_absolute_time() is the primary timestamping API. This function returns 

ticks as unsigned 64-bit integers. For the conversation from these ticks to real time, we 

need the following struct:

struct mach_timebase_info {

    uint32_t  numer;

    uint32_t  denom;

};

You can get mach_timebase_info for your system with the help of the mach_

timebase_info function. If you multiply ticks by numer and then divide into denom, you 

will get the time in nanoseconds.

16 There is a nice commit in the Linux repository: “x86: tsc prevent time going backward” https://
github.com/torvalds/linux/commit/d8bb6f4c1670c8324e4135c61ef07486f7f17379
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A usage example:

mach_timebase_info_data_t timebase;

mach_timebase_info(&timebase);

uint64_t timestamp = mach_absolute_time();

uint64_t timestampInNanoseconds = timestamp * timebase.numer /  timebase.

denom;

 gettimeofday

The gettimeofday function is available almost everywhere and allows you to get the 

current date and time as well as a time zone. We also can set the current date and time 

with the help of the settimeofday functions. Here are the signatures of these functions:

int gettimeofday(struct timeval *tv, struct timezone *tz);

int settimeofday(const struct timeval *tv, const struct timezone *tz);

The functions work with the timeval structure, which is similar to timespec:

struct timeval {

    time_t      tv_sec;     /* seconds */

    suseconds_t tv_usec;    /* microseconds */

};

Be careful: the first field in both types are seconds, but the second field is 

nanoseconds for timespec and microseconds for timeval. The minimal possible 

resolution of gettimeofday is 1 us.

A usage example:

struct timeval tv;

if (gettimeofday(&tv, NULL) == 0)

{

  return tv.tv_sec * 1000000000 +

         tv.tv_usec * 1000; // Nanoseconds

}
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 Summing Up
In this section, we learned a lot of useful information about software timers. Let’s briefly 

recall it.

On Windows, we have three groups of Timestamping API: system timer, system ticks, 

and high-resolution timer.

The system timer is used for WinAPI functions like GetSystemTime, GetLocalTime, 

and GetSystemTimeAsFileTime. This timer has poor accuracy. Typically, its resolution 

is between 0.5 ms and 15.625 ms; this value can be changed manually via timeBegin

Period/timeEndPeriod or NtQueryTimerResolution/NtSetTimerResolution. You can 

get the current values with the help of ClockRes; powercfg will help you to get the list 

of applications that try to change this value. Thread.Sleep also uses the system timer 

under the hood, so Thread.Sleep(1) can easily take 15 ms.

System ticks can be obtained via GetTickCount and GetTickCount64 WinAPI 

functions.

If you want to perform high-precision measurements, you can use 

QueryPerformanceCounter and QueryPerformanceFrequency (in kernel-mode 

API, you should use KeQueryPerformanceCounter). If you want to get the current 

system date and time with the highest possible level of precision, you should use 

GetSystemTimePreciseAsFileTime.

On Unix there are also a lot of timestamping APIs: clock_gettime, clock_settime, 

clock_getres, mach_absolute_time, mach_timebase_info, gethrtime, read_real_time, 

gettimeofday, and settimeofday. Some of them are available only on specific Unix 

distributions. clock_getttime is the best option on Linux (available if HAVE_CLOCK_

MONOTONIC is defined). mach_absolute_time is the best option on macOS (available if 

HAVE_MACH_ABSOLUTE_TIME is defined; clock_getttime has been available on macOS 

since 10.12). gettimeofday is available almost everywhere, so it’s a good fallback option 

(but this API has worse accuracy than clock_getttime and mach_absolute_time).

Now we know what kind of timestamping APIs we have on different operating 

systems. But what’s about the managed APIs? Let’s time to check what do we have on the 

.NET platform!
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 .NET Timestamping API
In this section, we are going to cover three primary .NET timestamping APIs:

• DateTime.UtcNow

• Environment.TickCount

• Stopwatch.GetTimestamp

For each API, we will briefly discuss how to use it and how it’s implemented 

internally. You can find the detailed source code overview for .NET Framework, .NET 

Core, and Mono in the attachment to this book. We will also benchmark each API and 

calculate the latency and the resolution. The source code of benchmarks also can be 

found in the attachment to this book. The following configuration was used for the 

presented values:

Benchmark setup Hardware (the same for all benchmarks): Mac mini, Intel Core 

i7-3615QM CPU 2.30GHz (Ivy Bridge). Operating systems: Windows 10.0.15063.1155, 

macOS High Sierra 10.13.4, Ubuntu 16.04. Runtimes: .NET Framework 4.6 (CLR 

4.0.30319.42000), Mono 5.12.0, .NET Core 1.1.8, .NET Core 2.1.0. Hardware timers: 

TSC, HPET, ACPI_PM. Windows Current Timer Interval (CTI): 5000, 156250. 

BenchmarkDotNet v0.10.14 is used for benchmarking. Source code of all benchmarks 

and the detailed results can be found in the attachment to this book.

For each benchmark, it’s recommended to try it in your own environment and then 

explain the results.

This section will help you to understand the API internals and their basic 

characteristics that can affect measurements.

 DateTime.UtcNow
System.DateTime is a widely used .NET type. A lot of developers use it all the time, but 

not all of them really know how it works. The DateTime structure represents an instant in 

time, typically expressed as a date and time of day. Here are some important DateTime 

properties:

• int Year, int Month, int Day, int Hour, int Minute, int Second, 

int Millisecond: Gets the corresponding components of the date 

represented by this instance. All of the values are non-negative.
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• long Ticks: Gets the number of ticks that represent the date and 

time of this instance (expressed as a value between DateTime.

MinValue.Ticks and DateTime.MaxValue.Ticks). A single tick equals 

to 100 ns. The number of ticks represents the number of 100 ns time 

units elapsed since 12:00:00 midnight, January 1, 0001 (0:00:00 UTC 

on January 1, 0001, in the Gregorian calendar).

• DateTimeKind Kind: Gets a value that indicates whether the time 

represented by this instance is based on local time (DateTimeKind.

Local), UTC (DateTimeKind.Utc), or neither  (DateTimeKind.

Unspecified).

DateTime provides two important properties: UtcNow (the current UTC date and 

time on a local computer) and Now (the current local date and time on a local computer). 

DateTime.Now is based on DateTime.UtcNow, so we will focus only on DateTime.UtcNow.

We can evaluate the difference between two DateTimes with the help of the 

TimeSpan class:

DateTime a = DateTime.UtcNow;

// <Measured logic>

DateTime b = DateTime.UtcNow;

TimeSpan span = b - a;

Here are some important TimeSpan properties:

• int Days, int Hours, int Minutes, int Seconds, int 

Milliseconds: these properties correspond to the same properties of 

DateTime. Be careful: these values represent the corresponding time 

component. Thus, the value range of Seconds is -59..59, and the 

value range of Milliseconds is -999..999.

• double TotalDays, double TotalHours, double TotalMinutes, 

double TotalSeconds, double Milliseconds, long Ticks: these 

properties express total elapsed time in the specified time unit.
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An example of measurements with DateTime:

DateTime start = DateTime.UtcNow;

// Logic

DateTime end = DateTime.UtcNow;

TimeSpan elapsed = end - start;

Console.WriteLine(elapsed.TotalMilliseconds);

Internally, it uses different native APIs depending on environment:

• Windows, .NET Framework/.NET Core 1.x/Mono: 

GetSystemTimeAsFileTime

• Windows, .NET Core 2.x: GetSystemTimePreciseAsFileTime (if 

available) or GetSystemTimeAsFileTime (as a fallback)

• Unix, .NET Core 1.x/Mono: gettimeofday

• Unix, .NET Core 2.x: clock_gettime (if available) or gettimeofday 

(as a fallback)

Since .NET Core 2.0, it was decided to use GetSystemTimePreciseAsFileTime 

instead of GetSystemTimeAsFileTime to get a better accuracy (see coreclr#506117 

and coreclr#973618). However, another problem was introduced: on misconfigured 

systems, the GetSystemTimePreciseAsFileTime drifts and returns incorrect 

results (see coreclr#1418719) So, it was decided to introduce a workaround (see 

coreclr#1428320): now .NET Core checks whether GetSystemTimePreciseAsFileTime 

is trustable or not. If GetSystemTimePreciseAsFileTime has a drift, the runtime uses 

GetSystemTimeAsFileTime as a fallback option.

Now let’s benchmark the DateTime.UtcNow resolution and latency.

[Benchmark]

public long DateTimeNowLatency() => DateTime.Now.Ticks;

17 https://github.com/dotnet/coreclr/issues/5061
18 https://github.com/dotnet/coreclr/pull/9736
19 https://github.com/dotnet/coreclr/issues/14187
20 https://github.com/dotnet/coreclr/pull/14283
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[Benchmark]

public long DateTimeNowResolution()

{

    long lastTicks = DateTime.Now.Ticks;

    while (DateTime.Now.Ticks == lastTicks)

    {

    }

    return lastTicks;

}

[Benchmark]

public long DateTimeUtcNowLatency() => DateTime.UtcNow.Ticks;

[Benchmark]

public long DateTimeUtcNowResolution()

{

    long lastTicks = DateTime.UtcNow.Ticks;

    while (DateTime.UtcNow.Ticks == lastTicks)

    {

    }

    return lastTicks;

}

The results of these benchmarks are presented in Table 9-4 (“*” means “Any 

runtime”; CTI means “Current Timer Interval” of the system timer). Remember that it’s 

only an example of possible measurements in some specific configurations; you can get 

other results on your machine.

Chapter 9  hardware and Software timerS 



630

Table 9-4. DateTime.UtcNow Resolution and Latency

OS Runtime Env Resolution Latency

windows .net framework tSC, Cti=5000 500 us         6–7 ns

windows .net framework tSC, Cti=156250 15625 us         6–7 ns

windows mono tSC, Cti=5000 500 us     19–20 ns

windows mono tSC, Cti=156250 15625 us     19–20 ns

windows .net Core 1.x tSC, Cti=5000 500 us         6–7 ns

windows .net Core 1.x tSC, Cti=156250 15625 us         6–7 ns

windows .net Core 2.x tSC 0.4–0.5 us     18–19 ns

macoS * tSC 1 us     36–40 ns

Linux mono tSC 1 us     26–30 ns

Linux .net Core 1.x tSC 1 us     26–30 ns

Linux .net Core 2.x tSC 0.1 us     26–30 ns

Linux * hpet/aCpi_pm 1.8–1.9 us 900–950 ns

These numbers and the knowledge of DateTime.UtcNow internals allow making 

some important conclusions:

• On Windows, the resolution equals to the Windows CTI (except .NET 

Core 2.0). Usually, it’s about 0.5 ms..15.625 ms. This value can be 

changed programmatically by any application.

• On Linux, the resolution equals to 1 us (except .NET Core 2.0). 

As mentioned before, on Linux, DateTime.UtcNow uses the 

gettimeofday function. gettimeofday allows you to get the time in 

microseconds. Thus, 1 us is the minimal possible resolution.

• In .NET Core 2.0, the implementation of DateTime.UtcNow was 

changed: now it uses GetSystemTimePreciseAsFileTime on 

Windows and clock_gettime(CLOCK_REALTIME) on Unix. Thus, 

resolution was reduced to 0.4-0.5 us on Windows and 0.1 us on 

Linux.
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As you may notice, only results for DateTime.UtcNow are shown. Try to repeat these 

benchmarks for DateTime.Now in your environment and explain the results.

Typically, DateTime is a good choice when you want to know the actual current 

time (e.g., for logging) and you don’t need high precision. You should understand that 

the measurements can be spoiled if the current time is changing during measurements 

(more about that in the next section). If you need to measure some time interval (not just 

put an approximate timestamp into a log file), you probably need a better API. OK, let’s 

check what other kinds of timestamping APIs we have. The next one is  Environment.

TickCount.

 Environment.TickCount
System.Environment.TickCount returns the number of milliseconds elapsed since  

the system started. You can measure elapsed milliseconds of some logic with the 

following code:

int start = Environment.TickCount;

// <Measured logic>

int end = Environment.TickCount;

int elapsedMilliseconds = end - start;

The internal implementation depends on the OS and the runtime:

• On Windows, TickCount just calls the GetTickCount64 WinAPI 

function.

• On Unix+.NET Core, it uses the clock_gettime(), mach_absolute_

time(), gethrtime(), read_real_time(), gettimeofday() functions.

• On Unix+Mono, it uses mono_100ns_datetime() - get_boot_

time().

The nominal resolution is always 1 ms and the nominal frequency is always 1 kHz.
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Now, let’s benchmark the Environment.TickCount resolution and latency:

[Benchmark]

public long TickCountLatency() => Environment.TickCount;

[Benchmark]

public long TickCountResolution()

{

  long lastTimestamp = Environment.TickCount;

  while (Environment.TickCount == lastTimestamp)

  {

  }

  return lastTimestamp;

}

The results of these benchmarks are presented in Table 9-5. Remember that it’s only 

an example of possible measurements in some specific configurations; you can get other 

results on your machine.

Table 9-5. Environment.TickCount Resolution and Latency

OS Runtime Resolution Latency

windows .net framework 15.625 ms 2–3 ns

windows .net Core 15.625 ms 2–3 ns

windows mono 15.625 ms 11–12 ns

macoS mono 1 ms 30–40 ns

macoS .net Core 1.x 1 ms 30–40 ns

macoS .net Core 2.x 1 ms 70–80 ns

Linux mono 3.9–4.0 ms 12–20 ns

Linux .net Core 3.9–4.0 ms 8–10 ns
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These numbers and the knowledge of Environment.TickCount internals allow 

making some important conclusions:

• The resolution on Windows is always 15.625 ms for all runtimes. You 

may notice that this is not an integer number. The actual difference 

between two consecutive calls of TickCount is always an integer 

number (typically, it’s 0, 15, or 16). Technically, you can’t measure a 

15.625 ms time interval by values of two timestamps. However, it’s 

the exact value between two counter increments.

• The resolution on macOS is 1 ms for all runtimes.

• The resolution on Linux is 3.9-4.0 ms for all runtimes.

• The latency is pretty small. It equals to 2–3 ns on Windows for .NET 

Core and .NET Framework. However, it can take up to 80 ns in some 

environments (e.g., macOS + .NET Core 2.x).

Well, Environment.TickCount is also not the best timestamping API for 

benchmarking. Now it’s time to learn the most powerful API: Stopwatch!

 Stopwatch.GetTimestamp
The Stopwatch class is the best tool for high-precision time measurements on .NET. We 

have already used it a lot of times, so just recall the main use cases. The method pair 

StartNew()/Stop() allows measuring the time of any operation:

// Simple time measurement

Stopwatch stopwatch = Stopwatch.StartNew();

// <Measured logic>

stopwatch.Stop();

Next, we can get the elapsed time with the help of Elapsed, ElapsedMilliseconds, or 

ElapsedTicks:

// Elapsed time in different measurement units

TimeSpan elapsed = stopwatch.Elapsed;

long elapsedMilliseconds = stopwatch.ElapsedMilliseconds;

long elapsedTicks = stopwatch.ElapsedTicks;

double elapsedNanoseconds = stopwatch.ElapsedTicks * 1_000_000_000.0 /

                            Stopwatch.Frequency;
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After that, we can restart the Stopwatch instance and use it again without additional 

allocations:

// Reusing existed stopwatch

stopwatch.Restart();

// <Measured logic>

stopwatch.Stop();

Internally, it calls Stopwatch.GetTimestamp(), which can be used directly. Thus, we 

can compare several timestamps without Stopwatch instances:

// Measurements without an instance of Stopwatch

long timestamp1 = Stopwatch.GetTimestamp();

// <Measured logic>

long timestamp2 = Stopwatch.GetTimestamp();

double elapsedSeconds = (timestamp2 - timestamp1) * 1.0 /

                         Stopwatch.Frequency;

The implementation depends on the operating system and the runtime:

• Windows (.NET Framework, .NET Core, Mono): the 

QueryPerformanceFrequency and QueryPerformanceCounter 

WinAPI functions

• Linux (.NET Core, Mono): uses clock_gettime as a primary way (with 

fallbacks gettimeofday)

• macOS (.NET Core 2.0.x, .NET Core 2.1.0-2.1.2): uses clock_gettime as a 

primary way (with fallbacks to mach_absolute_time and gettimeofday)

• macOS (.NET Core 1.x, .NET Core 2.1.3+, Mono): uses mach_

absolute_time as a primary way (with fallbacks to gettimeofday)

An interesting problem was introduced in .NET Core 2.0 (see corefx#3039121). In 

.NET Core 1.0, we had the following implementation of Stopwatch.GetTimestamp(): 

we tried to call clock_gettime, next we tried to call mach_absolute_time (if clock_

gettime is not available), and then we called gettimeofday (if mach_absolute_time is 

not available). clock_gettime is available on macOS since macOS 10.12. .NET Core 1.0 

21 https://github.com/dotnet/corefx/issues/30391
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supports macOS 10.11,22 so it was compiled against macOS 10.11 SDK, which doesn’t 

support clock_gettime. As a result, .NET Core 1.0 uses mach_absolute_time as a time 

source for Stopwatch.GetTimestamp(). In .NET Core 2.0, it was decided to drop macOS 

10.11 support: only macOS 10.12+ is supported.23 .NET Core 2.0 was compiled against 

macOS 10.12 SDK, which has the clock_gettime support. Thus, without any changes 

in the source code, clock_gettime becomes the primary time source for Stopwatch.

GetTimestamp(). Unfortunately, it had worse accuracy than mach_absolute_time on 

macOS: the default resolution of clock_gettime is 1000ns. The problem was fixed in 

.NET Core 3.0 (see coreclr#1850524 and corefx#3045725); the fix was back-ported to .NET 

2.1.3 (but it’s not available in .NET Core 2.0.x).

The Stopwatch.Frequency value also depends on the environment:

• Windows (.NET Framework, .NET Core) with enabled HPET: TSC 

frequency divided by 1024 (usually, it’s about 2 ⋅ 106..4 ⋅ 106)

• Windows (.NET Framework, .NET Core) with disabled HPET: 

14,318,180

• Windows/Linux/macOS (Mono): 107

• Linux/macOS (.NET Core): 109

Now, let’s benchmark the Stopwatch resolution and latency:

[Benchmark]

public long StopwatchLatency() => Stopwatch.GetTimestamp();

[Benchmark]

public long StopwatchResolution()

{

  long lastTimestamp = Stopwatch.GetTimestamp();

  while (Stopwatch.GetTimestamp() == lastTimestamp)

  {

  }

  return lastTimestamp;

}

22 See https://github.com/dotnet/core/blob/master/release-notes/1.0/1.0-supported-os.md
23 See https://github.com/dotnet/core/blob/master/release-notes/2.0/2.0-supported-os.md
24 https://github.com/dotnet/coreclr/pull/18505
25 https://github.com/dotnet/corefx/pull/30457
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Results of these benchmarks are presented in Table 9-6 (“*” means “Any runtime”). 

Remember that it’s only an example of possible measurements in some specific 

configurations; you can get other results on your machine.

Table 9-6. Stopwatch Resolution and Latency

OS Runtime Timer Resolution Latency

windows * tSC 400–500 ns 15–25 ns

windows * hpet 1800–1900 ns 900–950 ns

macoS mono tSC 100 ns 30–40 ns

macoS .net Core 1.x tSC 70–80 ns 30–40 ns

macoS .net Core 2.0.x tSC 1000 ns 90–100 ns

macoS .net Core 2.1.3+ tSC 70–80 ns 30–40 ns

Linux mono tSC 100 ns 25–30 ns

Linux .net Core tSC 70–80 ns 30–40 ns

Linux * hpet/aCpi_pm 1800–1900 ns 900–950 ns

These numbers and the knowledge of Stopwatch internals allow making some 

important conclusions:

• Windows+TSC: In this case we get Resolution≈ (1 second / 

Stopwatch.Frequency) ≈ (1 second / (rdstc Frequency / 1024)).

• HPET/ACPI_PM: benchmarks show that Resolution≈2 x Latency 

because we call Stopwatch.GetTimestamp at least twice per the 

Resolution method invocation. It’s hard to say something about 

real resolution because the value of HPET/ACPI_PM ticks is much 

smaller than the latency. For practical use, you can assume that the 

resolution has the same order as latency.

• macOS/Linux+TSC: In Mono, we have Resolution = 100 ns because 

it is the value of 1 tick (and it can be achieved). In .NET Core, 

1 ticks is 1 ns, and it uses rdtsc, which works on frequency 

(2.30 GHz for the preceding example). Thus, we have a situation 

which is similar to the HPET/ACPI_PM case: latency is much bigger 

than resolution. So, it’s hard to evaluate it via a microbenchmark.
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Stopwatch is the best available .NET API for high-precision measurements, but this 

doesn’t mean that all Stopwatch-based measurements are correct. With this knowledge 

of internals, oyou can not only get raw numbers, but also interpret it in the right way and 

make good error estimations.

 Summing Up
On .NET, we have several ways to get timestamps:

• Stopwatch is the best solution when you need high-precision 

timestamping. When HPET is disabled, the typical resolution is about 

300–500 ns on Windows and 70–100 ns on Linux/macOS. When 

HPET is enabled, the situation is worse because the actual resolution 

rises up to ~2000 ns.

• Environment.TickCount is the best solution on Windows when 

you don’t care about precision (±1 sec is enough) and you need 

extremely low latency (2–3 ns).

• DateTime.Now/DateTime.UtcNow is the best solution when you don’t 

care about precision and you want to connect timestamps and real- 

time (e.g., for logging).

Thus, if you want to write a proper benchmark, Stopwatch is your friend. However, 

correct benchmarks still require a lot of benchmark routine in order to get proper results.

 Timestamping Pitfalls
The timestamping APIs look simple, but it’s not always easy to use them correctly. In this 

section, we are going to cover the most common mistakes that developers usually make 

with usages of DateTime, Environment.TickCount, and Stopwatch.
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 Small Resolution
The timestamping resolution depends on different factors including runtime and OS. In 

general, you can expect the following values:

• DateTime.UtcNow: 0.1 us .. 15625 us

• Environment.TickCount: 1000 us .. 15625 us

• Stopwatch.GetTimestamp: 0.07 us .. 2 us

If the timestamping resolution is q, the final random measurement error is about 

±2q (because we have two timestamps: “before” and “after”). Thus, if the measured 

operation takes several minutes, we shouldn’t worry about the timer resolution. 

However, if it takes several nanoseconds, the error is too high. Even 1000 repetitions of 

the operation will not save us: the worst-case Stopwatch resolution is 2 us, which means 

that we will get ±4 ns error.

 Counter Overflow
All timestamping API counters are represented by integer types and can handle a limited 

number of values. Of course, we can get a counter overflow at any moment. Let’s check 

whether should we worry about it or not.

• DateTime

The DateTime.Tick property contains the number of ticks since 

January 1, 0001; one tick is 100 ns. The type of this property is 

long; the maximum long value equals to ≈9.22 ⋅ 1018. However, 

the actual maximum value for DateTime.Ticks is ≈3.16 ⋅ 1018 

(three times less). It corresponds to 11:59:59 PM, December 31, 

9999. Thus, we shouldn’t worry about overflow problems for the 

next eight thousand years.

• Environment.TickCount

TickCount returns an int value that can hold timestamps up 

to (231 − 1) ms or 49 days, 17 hours, 2 minutes, 47 seconds, and 

295 milliseconds. If you are writing a system with uptime that 

takes months, Environment.TickCount isn’t a good tool for time 

measurements. Some developers think that TickCount equals to 
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0 on system startup. But this isn’t always true, and the software 

shouldn’t use this fact. In order to catch wrong TickCount usages, 

Windows debug builds use “one hour before 32-bit timer tick 

rollover” as the initial value (see [Chen 2014] for details).

• Stopwatch

In theory, the duration of a single Stopwatch tick can be arbitrary. 

In practice, the smallest used value is 1 ns (.NET Core + Unix). 

Stopwatch.GetTimestamp() returns a long value, which means 

that it can handle ≈9.22 ⋅ 1018 nanoseconds or approximately 

292 years. Thus, we will not have any overflow problems with 

Stopwatch.

The only timestamping API that has a potential counter overflow problem is 

Environment.TickCount. It can handle intervals up to approximately 50 days. You can 

use it for short time measurements, but it’s not recommended to use it in services that 

can be active for months.

 Time Components and Total Properties
When we are working with TimeSpan, we have the time-component properties (Days, 

Hours, …) and the total properties (TotalDays, TotalHours, …). There is a huge 

difference between them. Let’s look at a small example that demonstrates it:

TimeSpan span = new TimeSpan(

  days: 8,

  hours: 19,

  minutes: 46,

  seconds: 57,

  milliseconds: 876

);

WriteLine("TimeSpan = {0}", span);

WriteLine("Days:         {0,3} TotalDays:         {1}",

           span.Days,          span.TotalDays);

WriteLine("Hours:        {0,3} TotalHours:        {1}",

           span.Hours,         span.TotalHours);
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WriteLine("Minutes:      {0,3} TotalMinutes:      {1}",

           span.Minutes,       span.TotalMinutes);

WriteLine("Seconds:      {0,3} TotalSeconds:      {1}",

           span.Seconds,       span.TotalSeconds);

WriteLine("Milliseconds: {0,3} TotalMilliseconds: {1}",

           span.Milliseconds,  span.TotalMilliseconds);

WriteLine("                  Ticks:             {0}",

                             span.Ticks);

Here is the output:

TimeSpan = 8.19:46:57.8760000

Days:           8 TotalDays:         8.82428097222222

Hours:         19 TotalHours:        211.782743333333

Minutes:       46 TotalMinutes:      12706.9646

Seconds:       57 TotalSeconds:      762417.876

Milliseconds: 876 TotalMilliseconds: 762417876

                  Ticks:             7624178760000

The difference is huge! For example, Hours = 19 (an integer time-component that is 

less than 24) and TotalHours (a double total property that can be much bigger than 24). 

Thus, it’s easy to mix up these values and write something like that:

var start = DateTime.UtcNow;

Thread.Sleep(2500);

var end = DateTime.UtcNow;

WriteLine((end - start).Milliseconds); // prints 500 instead of 2500

This is a very popular bug that is easy to write and hard to detect.

 Changes in Current Time
If you are using DateTime.UtcNow or DateTime.Now, the measurements can be spoiled if the 

current time is changing during the benchmark. Let’s discuss a few possible reasons for that.

 Time synchronization

If you have enabled time synchronization, the current time can be changed at any 

moment. Moreover, some servers have several time synchronization services. There are 
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many stories about Linux servers with enabled ntp and systemd-timesyncd at the same 

time.26 Such services can have desynchronized time sources with several seconds delta. 

In this case, these services can constantly change time backward or forward. It leads to 

flaky bugs with incorrect time measurements.

 Daylight saving time

The DateTime.Now returns the local user’s date and time. This value uses the current 

time zones, which are full of surprises. For example, the practice of daylight saving time 

in some countries can accidentally affect your benchmark: you will get a 1 hour error if 

you run a benchmark at an unfortunate moment in time.

 Changes in time zones

The time zone of a region can be changed. For example, here are some historical data for 

the Netherlands time zone:

1909–1937:  GMT+00:19:32.13

1937–1940:  GMT+00:20

1940–1942:  UTC+02:00

Another recent example: the time zone of Samoa was changed in 2011 from UTC-10 

to UTC+14. Because of that, December 30 was cancelled. Just imagine that somebody 

ran a DateTime-based benchmark in Samoa on this day: such measurements had a 

1-day error!

For time measurements, it’s almost always better to use UTC time (DateTime.UtcNow).

Time can be manually changed

Finally, a user is always able to change the system time at any moment. If this happens 

during time measurements, the measurements will be spoiled. Probably, you will not 

manually change the time yourself, but you can have some time measurements inside 

a real application; for instance, a user might run this application in the background and 

decide to change the time.

26 For example, see https://bugs.launchpad.net/ubuntu/+source/ntp/+bug/1597909
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 Sequential Reads
Let’s say that we do two sequential reads of Stopwatch.GetTimestamp():

var a = Stopwatch.GetTimestamp();

var b = Stopwatch.GetTimestamp();

var delta = b - a;

Can you name the possible values of delta? Let’s check it out with the help of the 

following program, which builds the delta histogram:

// (1)

const int N = 100000000;

var values = new long[N];

for (int i = 0; i < N; i++)

  values[i] = Stopwatch.GetTimestamp();

// (2)

var deltas = new long[N - 1];

for (int i = 0; i < N - 1; i++)

  deltas[i] = values[i + 1] - values[i];

// (3)

var table =

  from d in deltas

  group d by d into g

  orderby g.Key

  select new

  {

    Ticks = g.Key,

    Microseconds = g.Key * 1000000.0 / Stopwatch.Frequency,

    Count = g.Count()

  };

// (4)

WriteLine("Ticks      | Time(us) | Count   ");

WriteLine("-----------|----------|---------");

foreach (var line in table)

{

  var ticks = line.Ticks.ToString().PadRight(8);

  var us = line.Microseconds.ToString("0.0").PadRight(8);
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  var count = line.Count.ToString();

  WriteLine($"{ticks}   | {us} | {count}");

}

Let’s discuss what’s going on here:

 1. We do N measurements (in this case N=100000000, but you are 

free to choose any positive value). The measurement here is 

just a call of Stopwatch.GetTimestamp(). We save N sequential 

measurements in the value array. There is a small overhead of the 

for loop but it doesn’t matter in this case (fortunately we know 

the latency of GetTimestamp(); it’s huge in comparison with the 

for overhead of a single iteration).

 2. We calculate differences between each pair of sequential 

measurements and save it in the deltas array.

 3. Next, we group deltas and calculate the number of delta values 

in each group (LINQ allows doing it in a simple way).

 4. We print the results with nice formatting. This means a table with 

three columns: Ticks (the raw difference between sequential 

measurements in ticks), Time(us) (it’s not convenient to work with 

ticks, so we convert them to microseconds), and Count (how many 

times we observed such differences in our small experiment).

Here is an example of output on macOS 10.13 + .NET Core 2.1.0 (the middle part was 

removed):

Ticks      | Time(us) | Count

-----------|----------|---------

0          | 0.0      | 91961519

1000       | 1.0      | 7820660

2000       | 2.0      | 129139

3000       | 3.0      | 55617

4000       | 4.0      | 4378

5000       | 5.0      | 2619

6000       | 6.0      | 1484

7000       | 7.0      | 1272

...        | ...      | ...
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822000     | 822.0    | 1

875000     | 875.0    | 1

1083000    | 1083.0   | 1

1177000    | 1177.0   | 1

1479000    | 1479.0   | 1

1991000    | 1991.0   | 1

2751000    | 2751.0   | 1

8317000    | 8317.0   | 1

12341000   | 12341.0  | 1

In this pseudohistogram, there are three very important lines:

• The first line (zero time value). And we get a zero difference 

between sequential measurements 91961519 times!

• The second line (minimum positive time value). In the 

“Terminology” section, we already discussed that the nominal and 

actual resolutions are not always equal. The nominal resolution of 

Stopwatch (1 tick) is defined by Stopwatch.Frequency. However, in 

some cases, we can’t measure exactly one tick: the actual resolution 

(the minimum possible interval that can be measured) contains 

more than one tick. The second line of the histogram shows this value 

(sometimes, it’s only an approximation). In the current example, 

Stopwatch.Frequency is 109. This means that 1 tick = 1 ns.

• The last line (maximum time value). As you can see, once I had a 

delta between two sequential GetTimestamp calls, which equals to 

12341000 ticks or 12.3 ms! Note that we even don’t have any target 

method here; we are trying to measure nothing! Of course, this is 

a rare situation. Usually, you get plausible measurements. But you 

can never be sure! This approach is methodologically wrong; such 

benchmarks cannot be trusted. A good microbenchmark always 

performs many method invocations. It allows getting better accuracy 

because the error is divided by the number of invocations.
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The positive difference between sequential timestamping calls can cause tricky bugs. 

Can you say where there is a problem in the following expression?

var stopwatch = Stopwatch.StartNew();

// ... some logic

var value = stopwatch.ElapsedMilliseconds > timeout

  ? 0

  : timeout - (int)stopwatch.ElapsedMilliseconds;

The answer: we can’t be sure that two invocations of stopwatch.

ElapsedMilliseconds will return the same value. For example, let’s say that timeout 

equals to 100. We are trying to evaluate stopwatch.ElapsedMilliseconds > timeout; 

stopwatch.ElapsedMilliseconds returns 99, and the expression value is false. Next, 

we are going to evaluate timeout - (int)stopwatch.ElapsedMilliseconds. But we 

have another stopwatch.ElapsedMilliseconds here! Let’s say it returns 101. Then, 

the resulting value will be equal to –1! Probably, the author of this code did not expect 

negative values here.

This is an example of a real bug from the AsyncIO library. The bug is already fixed,27 

but it was a cause of a very tricky bug in Rider. We spent several days on an investigation 

because such kinds of bugs are really hard to reproduce.

AN EXERCISE

Build this histogram in different environments and compare the results. write the same 

logic for DateTime.Now, DateTime.UtcNow, and Environment.TickCount, compare 

histograms for different timestamping apis.

27 https://github.com/somdoron/AsyncIO/commit/5c838f3d30d483dcadb4181233a4437fb5
e7f327
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 Summing Up
In this section, we discussed five timestamping pitfalls:

• Small Resolution

The timer resolution is typically not enough to measure a method 

that takes several nanoseconds. In such cases, you have to invoke 

the method many times inside each iteration to achieve good 

accuracy.

• Counter Overflow

Environment.TickCount overflows every ≈50 days. You shouldn’t 

use this API in services that can be active for months.

• Time Components and Total Properties

Another common mistake is using properties like TimeSpan.

Milliseconds instead of TimeSpan.TotalMilliseconds. 

Milliseconds always returns values from –999 to 999. If you want 

to report the total number of elapsed milliseconds, you need 

TotalMilliseconds.

• Changes in Current Time

DateTime.Now and DateTime.UtcNow can be useful for logging, 

but it’s not recommended to use these properties for time 

measurements. They use the actual time, which can be changed 

because of different reasons like a time synchronization service.

• Sequential Reads

The difference between two sequential calls of a timestamping 

API can be any non- negative number. Even if you are using 

Stopwatch with 1 us resolution, this difference can be several 

milliseconds.

Even if you are using Stopwatch, you can get huge measurement errors if the number 

of method invocations inside an iteration is not big enough. Stopwatch.Elapsed returns 

a TimeSpan that can be misused.
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 Summary
In this chapter, we learned a lot about timers. We covered the following topics:

• Terminology

We discussed the basic timer and frequency units, including 

the common notation (symbols like μs, ps, THz), the main 

components of a hardware timer (tick generator, tick counter, tick 

counter API), quantizing errors, and basic timer characteristics 

(now we know the difference between accuracy and precision or 

between the nominal and the actual resolution).

• Hardware timers

On the hardware level, there are several time sources like 

TSC, ACPI PM, and HPET. TSC is the most reliable way to get 

timestamps in most configurations. The TSC frequency is usually 

close to the nominal CPU frequency. ACPI PM (frequency = 

3.579545 MHz) and HPET (frequency = 14.31818 MHz) are usually 

disabled by default on modern versions of operating systems 

because of the high latency. However, you still should be ready to 

meet ACPI PM or HPET. The frequency values of these two timers 

have a long history, which was started when NTSC started to 

construct a new standard for color television.

• OS timestamping API

Operating systems provide you many APIs that internally 

interact with hardware timers. On Windows, the best high-

resolution timestamping APIs are QueryPerformanceCounter 

(QPC) and QueryPerformanceFrequency (QPF). The value 

doesn’t relate to the current local time. If you want to know the 

current time, you can use GetSystemTime, GetLocalTime, and 

GetSystemTimeAsFileTime. These APIs use the Windows system 

timer with resolution between 0.5 ms and 15.625 ms. If you want 

to know the current time with better accuracy, you should use 

GetSystemTimePreciseAsFileTime. On Unix, you can use clock_

gettime/mach_absolute_time (if available) for high-precision 

timestamping and gettimeofday for regular timestamping.
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• .NET timestamping API

The best high-resolution timestamping API in .NET is Stopwatch; 

internally it uses the best API, which is provided by the OS. 

Environment.TickCount can be used on Windows if you don’t 

need good accuracy, but you do need extremely low latency. 

DateTime.Now and DateTime.UtcNow can be useful for logging.

• Timestamping pitfalls

Even if you are using Stopwatch, you can still get huge errors 

for short operations because of the small resolution or a huge 

delta between sequential reads. The Stopwatch.Elapsed is a 

TimeSpan that can be misused (taking Milliseconds instead 

of TotalMilliseconds). The Environment.TickCount counter 

overflows after ≈50 days. Measurements based on DateTime.Now 

or DateTime.UtcNow can be spoiled by a time synchronization 

service or other changes in the current time.

Now we have learned the internals of the hardware and the software timers. 

This knowledge will help us choose a proper timer in each situation, design better 

benchmarks, and avoid common mistakes.
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Hardware timers, 581
ACPI PM, 600–602
HPET, 600
magic numbers, history

audio signal, 603, 604
B&W TV, 602
chrominance signal, 602
construction, 604, 605
line frequency, 603

Executing benchmark (cont.)
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TSC
code, 592, 594
RDTSC instruction, 592, 594, 595
RDTSC reciprocal throughput, 596
versions, 597, 598, 600

Hash code, 140
High-Precision Event Timer (HPET), 

600–602
High-resolution timer, 607
History subspace, 335, 342
Huge methods and jitting, 146, 148
Huge outliers, 313, 314
Huge variance, 312, 313
Humidity, 165, 166
Hyperthreading, 161

I
IDE/external debugger, 38
IIncrementer, 84, 86
Ildasm/Ilasm, 387
IL decompiler, 366
IL generation, 92

building, 126, 127
compiling, 124–126
CTP, 124
debug and release, 127, 128
language vs. compiler  

version, 128, 129
IList.Count and Unexpected Performance 

Degradation, 117–120
ILSpy, 389
Implicit performance tests, 287
Inaccurate timestamping, 32

DateTime-based benchmark, 35
DateTime.Now, drawbacks, 33
Stopwatch, 35
Stopwatch.Frequency field, 34

Incline degradation, 301
Inc method, 84, 538
Infrastructure, 54, 55
InlinedLoop method, 427
Inlining, 76–80

advantages, 419
call overhead, 421–423, 425
cooperative optimizations

Bar code, 433, 434
Calc method, 430, 432
CalcAggressive method, 432
Foo code, 432, 433

disadvantages, 420
IL instruction, 434–437, 439, 440
register allocation, 426–430

Instruction-Level Parallelism (ILP)
data dependencies, 446, 448
dependency graph

Loop method, 449, 451
UnrolledLoop  

method, 450–452
visualization, 451

parallel execution, 442–446
short loops, 452–458
Skylake instructions, 440–442

Insufficient number invocations, 51–53
Integration test, 286
IntelliJ IDEA, 162
Intel VTune Amplifier, 396
Interface method dispatching, 84–87
Intermediate Language (IL), 21
Intrinsics

Math.Round(double x)  
method, 503, 504, 506

rotate bits, 507–509, 511–514
System.Runtime, 514, 515, 517–519

I/O-bound method measurements, 48
Itanium, 159
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IterationSetup(), 277
Iteration subspace, 335, 337, 338

J
JetBrains tools

dotMemory, 377, 380
dotpeek, 376
dotTrace, 377, 378, 380
ReSharper, 381
Rider, 381

JIT compilation, 92, 130–133
JIT compiler, 401, 403
Just-In-Time (JIT), 37

K
Kurtosis, 206, 207

L
Lambda expressions, 128
Large object heap (LOH), 5, 565
Large object space, 567
Latency and throughput  

tests, 283, 285, 286
LegacyJIT, 92, 94, 132
Linear regression model, 231
Linux, 154, 155, 173
ListSortBenchmark, 279
Loop method, 451
Loop unrolling

add eax, 3 instruction, 63
empty loops, constants, 63
assembly code, LegacyJIT-x64, 61, 62
assembly code, LegacyJIT-x86, 61
variable empty loops, 64

Low-level virtual machine (LLVM),  
95, 133, 150

M
macOS, 155–158, 173
Managed Profile Guided Optimization 

(MPGO), 135, 136
Mann–Whitney U test, 222
Manual threshold, 344, 349, 350
Margin of error, 208
Math.Abs, 490
Math.Round(double x)  

method, 503
Math.Sqrt, 66
Meltdown and Spectre, 168, 169
Memory layout

cache bank conflicts, 545–547
cache line splits

CacheSplit, 549
coding, 547–549
InsideCacheLine, 549
MyStruct, 549

4K aliasing
ArrayCopy, 552
coding, 551
Intel AVX, 556
load buffer, 554, 555
parameter values, 553
store buffer, 554, 555
store forwarding, 554, 555
StrideOffset values, 554

struct alignment
coding, 542, 543
LegacyJIT-x86, 543, 544
Mono-x64, 543, 544
Struct7, 543
Struct8, 543

Memory profiler, 365
Metric subspace, 335, 337
Microbenchmarks, 31
Mixed performance tests, 288
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Modes
academic algorithms, 198
BenchmarkDotNet, 199–201
bimodal, 197
histogram, 199
multimodal, 197
unimodal, 197

Monitoring, 292
Mono, 92, 95

Boehm, 109, 110
builds, 111
SGen, 107, 108
SIMD, 107, 108
versions, 106–108

Mono AOT, 93, 136
Monodis, 389
MonoJIT, 92, 132, 133
MonoLLVM, 133
movfuscator, 475
MSBuild, 92, 100, 122, 126–128
MSBuild and Windows Defender, 169–171
Multidimensional performance space, 18
Multimodal distribution, 198, 314, 316
Multithreaded applications, 172

N
Natural noise

ASLR, 42
CPU frequency scaling, 42
IsPrime implementation, 43, 44
maximum acceptable error, 45
multiprocessing/multithreading 

environment, 41
OS processes, 41

.NET Core, 92, 95, 99
BCL, 103
CLI, 100

compatibility matrix, 103, 104
configuration knobs, 105
CoreCLR, 99, 105
CoreFx, 99, 105
MIT License, 99
SDK, 100, 102–104
versions, 100–102

.NET Core SDK, 128

.NET Framework
CLR, 97
FCL, 96, 97
release values, 98, 99
SSCLI, 99
versions, 96–98
windows updates and changes, 

166–168
.NET Native, 136
.NET timestamping APIs

DateTime.UtcNow
DateTime properties, 626, 627
Environment.TickCount, 631–633
resolution and latency, 628, 630, 631
TimeSpan properties, 627, 628

Stopwatch class
operating system, 634
resolution and latency, 636, 637
StartNew()/Stop(), 633
Stopwatch.Frequency value, 635
Stopwatch.GetTimestamp(), 634

NGen, 135
Nontrivial dependencies, 340
Normal distribution, 203, 204
NuGet tools, 100

O
Observer effect, benchmarking, 16, 17
O(N) algorithm, 21
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OneCondition method, 469
Operating system

Linux, 150, 151, 154, 155
macOS, 150, 151, 155–158
Windows, 150–154

Operator ∗ method, 514
Optional stopping

cumulative metrics, 236–240
goals, 235, 236
sequential analysis, 235
set of measurements, 235

OS timestamping API
high-resolution timer, 607, 608
on Unix

clock_getttime, clock_settime, 
clock_getres, 621, 622

gettimeofday, 624
mach_absolute_time, 623

QPC, 616–618, 620
system ticks, 607
system timer

powercfg, 613, 614
resolution, 609
ResolutionInfo data structure, 611
Thread.Sleep, 615, 616
Windows APIs, 610, 611, 613

Outliers
with distribution, 192
errors, 193
paths, 194
random noise, 193
sensitivity, 193
true effects, 193

P
Paired degradation/acceleration, 306
Parameter subspace, 335, 340, 341

Params and memory allocations, 141–143
Pareto Principle, 28
Pause Latency and Intel  

Skylake, 171–173
Pearson median skewness, 204
Percentiles, 191
Performance acceleration, 302, 303
Performance analysis

bad benchmark, 26
distribution comparison (see 

Distribution comparison)
good benchmark, 27
limiting factor, 27, 28
optional stopping, 216, 235
pilot experiments, 216, 240–242
regression models, 215, 227
statistics, 28
ugly benchmark, 26

Performance anomalies
acceleration, 302, 303
degradation, 300–302
false anomaly (see False anomaly, 

changes)
huge duration, 310–312
huge outliers, 313, 314
huge variance, 312, 313
multimodal distribution, 314, 316
problems and recommendations

alert fatigue, 326
false anomalies, 324, 325
hacks in test logic, 323
hidden bugs, 321
missed asserts, 323
performance asserts, 322
performance degradation, 321
serious anomalies, 324
slow build process, 321
slow development process, 322
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systematic monitoring, 324
unpredictably huge duration, 322

spatial clustering, 308–310
temporal clustering, 304–306, 308

Performance cleanness, 359, 360
Performance culture

cleanness, 359, 360
reliable performance testing 

infrastructure, 358
responsibility, 360, 361
shared performance goals, 357, 358

Performance degradation,  
265–267, 300–302

Performance distribution, 181
Performance-driven development (PDD)

code change, 355
performance space, 355, 356
task and performance  

goals, 351, 352
test

collect metrics, 353
performance asserts, 354
performance space, 354
target method, 353
test status, 355

Performance investigation
analysis, 10
business processes, 2
measurement methodology, 10
metrics, 4

average/peak load, 6
int[] instances, 5
latency, 5
memory traffic, 5
statistical properties, 6
target conditions, 6

problems definition, 3, 4
selecting approaches/tools, 7

asymptotic complexity, 7
monitoring, 8
optimization, 7
performance tests, 8

Performance profiler, 365
Performance spaces

distribution, 23–25
environment, 21, 22
input data, 22, 23
model, 20
single performance spaces, 18–20
source code, 20, 21

Performance subspaces
environment subspace, 339, 340
history subspace, 342
iteration subspace, 337, 338
metric subspace, 335, 337
parameter subspace, 340, 341
test subspace, 338, 339

Performance testing
cold start test, 273–276
explicit, 287
external dependencies, 294–296
fuzz tests, 297, 298
goals

automatic bisecting, 270
automatic continuous profiling, 271
automatic reports, 270
automatic snapshots, 271
automatic step-by-step analysis, 271
detect not-prevented  

degradations, 267
implicit, 287
performance anomalies, 268
prevent performance  

degradations, 265–267
Type I Error rate, 268
Type II Error rate, 268, 269
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monitoring, 292
telemetry, 292
unit and integration tests, 286–292
user interface, 297

Persistent CI agent, 288
P-hacking, 254
Physical location, 164, 165
Polynomial regression model, 231
popcnt, 515
powercfg, 613
Process Hacker, 395

Q
Quadratic regression model, 231
Quantiles, 190, 191
Quantization, 584
Quartiles, 190, 191
QueryPerformanceCounter (QPC), 616
QueryPerformanceFrequency (QPF), 616

R
RAMMap, 383
Recursive methods, 423
Register and stack

local variable, 407–411
number of calls, 416–418
struct promotion, 403, 405–407
try-catch, 412, 413, 415

Regression analysis
algorithmic complexities, 228–230
asymptotic analysis, 227, 228
cluster, 233, 234
cross-validation, 232
linear regression model, 231
overfitting analysis, 232
polynomial regression model, 231

quadratic regression model, 231
quickselect algorithm, 230, 231

Regression model, 283
Relative thresholds, 344, 347, 348
Reliable performance testing 

infrastructure, 358
Repeatability, 15
Requests per second (RPS), 11
ReSharper, 381
ResolutionInfo data structure, 611
Rider, 162, 381
Roslyn, 124, 129, 139, 142
RuntimeHelpers, 137
Runtimes

degradation, 118–120
Dictionary and HashSet, 114–117
Mono (see Mono)
MSBuild, 122
.NET Core (see .NET Core)
.NET Framework (see .NET 

Framework)
overview, 123
solution builder, 121
StringBuilder, 111–114
SWEA, 117–119

RyuJIT, 92, 94, 130–132

S
Sample plots

density plot, 184
distribution visualizations, 186
histogram, 184
rug plot, 184, 185
timeline plot, 184
waterfall plot, 185, 187

Sanglard interpretation, 480
Scalability analysis, 284

Performance testing (cont.)
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SGen, 94, 107
Shared performance goals, 357, 358
Shared Source Common Language 

Infrastructure (SSCLI), 99
Single Instruction Multiple Data  

(SIMD), 107
Skewness, 204–206
Small object heap (SOH), 565
Solution builder, 121
Solution-Wide Error Analysis (SWEA), 117
SomeLogic() method, 583
Son of Strike (SOS), 391
Spatial anomaly, 312, 314
Spatial clustering, 308–310, 340
Sqrt13, 71
Sqrt14, 72
Standard error, 208, 210, 211
StartNew() methods, 34, 633
Statistical metrics and visualizations

box plots, 194–196
frequency trails, 196
mean/arithmetical average, 189
median, 189, 190
minimum and maximum values, 188
modes, 197
normal distribution, 203, 204
sample plots, 183
sample sizes, 187, 188
skewness, 204, 205

Steady state, 49
Stop() methods, 34, 633
Stopwatch.GetTimestamp(), 634
Strategies of defense, performance 

problems
checkpoint testing, 330, 331
daily tests, 329
manual testing, 332, 333
overview, 334

postrelease telemetry and  
monitoring, 333, 334

precommit tests, 328, 329
prerelease testing, 331, 332
retrospective analysis, 330

StringBuilder and CLR Versions, 111–114
Suite degradation, 305, 307
Suspicious statistical metrics, 187
Swap and unobvious IL, 143–146
Switch and C# compiler  

versions, 137–141
System.Diagnostics.Stopwatch, 17, 33
System ticks, 607
System timer, 607

T
Telemetry, 292
Temperature, 163
Temporal anomaly, 300, 312, 314, 340
Temporal clustering, 304–306, 308
Ternary method, 475
Test subspace, 335, 338, 339
Thermal throttling, 163
Three-sigma test, 221
Threshold approach, 223
Tick counter, 582
Tick generator, 581
Timers

characteristics
accuracy, 588–590
actual frequency, 586
frequency offset, 587
granularity, 586
nominal frequency, 586
precision, 588, 589
resolution, 586
timestamps, 588
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frequency units, 579–581
hardware timers

components, 582
GetCurrentTicks() method, 583
quantizing error, 584, 585
SomeLogic() method, 583
tick counter API, 582
tick generator, 581

.NET timestamping APIs  
(see .NET timestamping APIs)

OS timestamping API (see OS 
timestamping API)

time units, 577, 578
Time Stamp Counter (TSC), 592
Timestamping

pitfalls
change in current time, 640, 641
counter overflow, 638, 639
sequential reads, 642–645
small resolution, 638
TimeSpan, 639, 640

Time units, 577
Tricky distributions, 46–48
True sharing, 538, 539
Tukey test, 221
Two-one-sided tests (TOST), 223
Two-way associative cache, 535
Type I error (false positive result), 268
Type II error (false negative result), 268

U
Unequal iterations

add/remove, 60
List.Add, 56, 57
List<T> implementation, 58, 60
method invocation, 56

Unexpected acceleration, 303
Unit and integration tests, 286, 287
Universal Windows Platform (UWP), 136
UnrolledLoop method, 451
User interface tests, 297
Utilization Saturation and Errors (USE) 

Method, 193

V
Variance and standard deviation, 201–203
Vectorization, 509
Verifiability/portability, 16
Vibrations, 163, 164
Virtualization, 289
Visual Studio, 366
VMMap, 384

W
Warmed-up tests, 49, 276–282
Welch’s t-test, 222
Whisker plot, 194
Windows, 152–154, 173
Windows Sysinternals, 367

Process Monitor, 385
RAMMap, 383
tools, 382
VMMap, 384

WithoutDependencies method, 448
WithStarg method, 435

X, Y, Z
x64, 159
x86, 160
x86_64, 159
XBuild, 92, 126

Timers (cont.)
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