
www.apress.com

Pro iOS Table and Collection Views with Swi� takes a task-oriented focus to assist you when
implementing customized table and collection views. It’s a great reference and customization
cookbook at the same time, useful for beginners as well as intermediate developers. You’ll learn
how to create table and collection views for a variety of screen types, including the new Apple
Watch, using the Swi� 2 programming language.

If you’re an iOS app developer, chances are you’ll be using table and collection views in your
development projects. They are the bread and butter of iOS apps - with them, you can create
everything from the simplest of lists to fully tricked-out user interfaces.

Table and collection views are some of the most complex components found in UIKit. While
using them for standard user interfaces is quite simple, customizing them can become really
challenging.

• Covers the entire UITableView and UICollectionView APIs in depth

• Covers customization and performance topics in depth

• Task-oriented reference with multiple levels of detail

• The anatomy of tables, collection views, cells and layouts

• The design patterns that power table and collection views

• How to create and con� gure table views and collection views

• How to customize every last little detail of the view

• Advanced tips and tricks for performance and killer user interfaces

• The latest updates in iOS 9 and how to exploit them

Pro iOS Table Views and Collection Views

B O O K S F O R P R O F E S S I O N A L S B Y P R O F E S S I O N A L S®

Pro iOS
Table Views and
Collection Views

Using Swi� 2
—
Tim Duckett

Duckett
Pro iOS Table View

s and Collection View
s

9 781484 212431

55499
ISBN 978-1-4842-1243-1

US $54.99

Shelve in:
Mobile Computing

User level:
Intermediate–Advanced

SOURCE CODE ONLINE

www.allitebooks.com

http://www.allitebooks.org

Pro iOS Table Views and
Collection Views

Using Swift 2

Tim Duckett

www.allitebooks.com

http://www.allitebooks.org

Pro iOS Table Views and Collection Views: Using Swift 2

Copyright © 2015 by Tim Duckett

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-1243-1

ISBN-13 (electronic): 978-1-4842-1242-4

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image, we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
 proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
 material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Michelle Lowman
Development Editor: James Markham
Technical Reviewers: Tiago Duarte and Michael Thomas
Editorial Board: Steve Anglin, Pramila Balan, Louise Corrigan, Jonathan Gennick, Robert Hutchinson,

Celestin Suresh John, Michelle Lowman, James Markham, Susan McDermott, Matthew Moodie,
Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Mark Powers
Copy Editor: Mary Behr
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and
the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Fi-
nance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers at
www.apress.com/9781484212431. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/. Readers can also access source code at SpringerLink in the Supplementary
Material section for each chapter.

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781484212431
www.apress.com/source-code/
http://www.allitebooks.org

For Lucy, Kath, and Isaac

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author ��xix

About the Technical Reviewers ��xxi

Acknowledgments ��xxiii

Introduction ���xxv

 ■Chapter 1: Table Views Quick Start ��� 1

 ■Chapter 2: How the Table View Fits Together �� 29

 ■Chapter 3: Collection Views Quick Start �� 45

 ■Chapter 4: How The Collection View Fits Together �� 83

 ■Chapter 5: Feeding Data to Your Views ��� 105

 ■Chapter 6: How the Table Cell Fits Together �� 141

 ■Chapter 7: Improving the Look of Cells ��� 175

 ■Chapter 8: Creating Custom Cells with Subclasses ��� 205

 ■Chapter 9: Improving Interaction �� 241

 ■Chapter 10: Using Tables for Navigation ��� 273

 ■Chapter 11: Indexing, Grouping, and Sorting Tables ��� 311

 ■Chapter 12: Selecting and Editing Content �� 347

www.allitebooks.com

http://www.allitebooks.org

vi Contents at a Glance

 ■Chapter 13: Static Tables ��� 405

 ■Chapter 14: Tables in WatchKit �� 421

 ■Chapter 15: Collection View Flow Layouts �� 455

 ■Chapter 16: Collection View Custom Layouts �� 479

 ■Chapter 17: Animated and Interactive Collection Views ����������������������������������� 519

Index ��� 545

vii

Contents

About the Author ��xix

About the Technical Reviewers ��xxi

Acknowledgments ��xxiii

Introduction ���xxv

 ■Chapter 1: Table Views Quick Start ��� 1

What Are Table Views? ��� 1

The Anatomy of a Table View �� 3

Creating a Simple Table View App �� 5

Creating the Application Skeleton �� 5

Generating Some Data ��� 8

Creating the Table View �� 10

Conforming to the Table View Protocols ��� 14

Wiring Up the Data Source and Delegate ��� 15

Displaying the Data �� 16

numberOfSectionsInTableView(:) ��� 17

tableView:numberOfRowsInSection(:) ��� 17

Creating Cells ��� 18

viii Contents

Creating a Prototype Cell �� 19

Configuring the Cell �� 21

Running the App ��� 21

Adding Some Interactivity �� 22

tableView:didSelectRowAtIndexPath: ��� 23

Understanding How the App’s Objects Fit Together ��� 25

Summary �� 27

 ■Chapter 2: How the Table View Fits Together �� 29

Understanding Table Views �� 29

Working with the UITableView Family �� 30

The UITableView Class Hierarchy �� 31

Choosing the Type of Table View �� 32

The Plain Table �� 32

The Indexed Table ��� 33

The Sectioned Table�� 34

The Grouped Table �� 34

Setting TableView Dimensions ��� 36

Controlling the Background of a UITableView �� 37

What UITableView Inherits from UIScrollView �� 38

Creating UITableViews �� 38

Creating a UITableView in Interface Builder ��� 39

Creating a UITableView Programmatically �� 41

Creating a UITableView with UITableViewController ��� 42

Summary �� 44

 ■Chapter 3: Collection Views Quick Start �� 45

What Are Collection Views? �� 45

The Anatomy of a Collection View �� 48

The Collection View Itself�� 48

Collection View Cells��� 49

The Supporting Objects �� 51

ixContents

Creating a Simple Collection View App ��� 54

Creating the Application Skeleton �� 56

Creating Some Data ��� 58

Adding the Card Images ��� 58

Building the Model �� 60

Setting Up the Collection View in the Storyboard ��� 66

Setting Up the delegate and dataSource Funtions ��� 68

The App in Action �� 81

Summary �� 81

 ■Chapter 4: How The Collection View Fits Together �� 83

What Are Collection Views? �� 83

The Architecture of a Collection View ��� 84

The Anatomy of a Collection View �� 87

The Collection View Itself�� 87

Collection View Items ��� 89

Collection View Layouts �� 91

The Supporting Objects in Detail �� 92

Creating Collection Views ��� 95

Creating a UICollectionView with Interface Builder �� 95

Creating a UICollectionView in Code ��� 102

Summary �� 103

 ■Chapter 5: Feeding Data to Your Views ��� 105

UITableView, UICollectionView, and Delegation �� 105

Understanding Delegation �� 106

Setting Delegates ��� 108

Wiring Up an Object with a Delegate �� 109

Defining Protocols �� 111

Using UITableView’s Delegate Methods �� 113

Using UITableViewDelegate Methods ��� 115

Using UICollectionViewDelegate Methods �� 118

x Contents

Datasources ��� 121

The UITableView dataSource �� 121

How the Key Information Is Obtained by the Table ��� 122

Cell-, Section-, and Row-Related UITableViewDataSource Methods �� 124

Title- and Index-Related UITableViewDataSource Methods �� 124

Insertion-, Removal-, and Reordering-Related UITableViewDataSource Methods ������������������������������ 125

The UICollectionView dataSource ��� 126

How the Key Information Is Obtained by the Collection View ��� 127

Which configuration method should I use? �� 128

Cell-, Section-, and Item-Related UICollectionViewDataSource Methods �� 129

The Thing to Bear in Mind About dataSource Methods �� 130

Implementing the dataSource and delegate Protocols �� 130

All About indexPaths ��� 132

The Model-View-Controller Design Pattern �� 133

Why Use the Model-View-Controller Pattern? �� 135

MVC and iOS ��� 135

MVC, tableViews, and collectionViews ��� 136

Improving the App Structure �� 136

How to Split Out Datasources and Delegates ��� 137

Summary �� 139

 ■Chapter 6: How the Table Cell Fits Together �� 141

Understanding the Anatomy of a UITableViewCell �� 141

Basic Structure of the Cell �� 142

The Cell’s Background Views �� 143

Content and Accessory Views ��� 145

Designing Prototype Cells �� 145

The Code for This Chapter �� 145

Creating Prototype Cells in XIB Files �� 146

Creating Prototype Cells in Storyboards ��� 150

Creating Prototype Cells in Code �� 158

xiContents

Working with Standard Cell Types �� 160

Using UITableViewCellStyleDefault ��� 160

Using UITableViewCellStyleValue1 �� 161

Using UITableViewCellStyleValue2 �� 162

Using UITableViewCellStyleSubtitle �� 162

Configuring the Default Cell’s Content ��� 163

textLabel ��� 163

detailTextLabel �� 163

imageView �� 163

contentView �� 163

Formatting Text in Default Cell Types�� 164

Working with Accessory Views ��� 164

Using UITableViewCellAccessoryDisclosureIndicator ��� 164

Using UITableViewCellAccessoryDetailDisclosureIndicator �� 165

Using UITableViewCellAccessoryCheckmark �� 165

Using UITableViewCellAccessoryNone �� 165

Setting the Accessory View Type �� 166

Using an Accessory View to Show Cell Selection State �� 166

Creating and Reusing Cells �� 168

Memory Limitations �� 168

Speed and Smoothness �� 168

Just-in-Time Creation and Recycling ��� 168

The Table View’s “Conveyor Belt” ��� 169

Side Effects of Cell Reuse and Caching �� 173

Summary �� 174

 ■Chapter 7: Improving the Look of Cells ��� 175

Customizing Cells ��� 175

Which Function Should I Use? �� 176

Adding Subviews to the Cell’s contentView ��� 176

Creating the Elements in the Cell ��� 179

xii Contents

Creating Custom Cells Visually As Prototypes In A Storyboard ������������������������������������� 184

Creating Prototype Dynamic Cells �� 184

Creating Custom Cells Visually Using Interface Builder ��� 191

The Stages of Creating Cells Visually ��� 192

Creating a New XIB File �� 192

Creating the Cell’s Content ��� 195

Registering the Cell �� 197

Controlling Cell Sizes �� 197

Handling Cell Resizing in Tables ��� 201

Summary �� 204

 ■Chapter 8: Creating Custom Cells with Subclasses ��� 205

Why Create a Custom Cell Subclass? ��� 206

The Process of Creating Custom Cells �� 206

Custom Cells with XIBs �� 207

Designing Your Cell ��� 207

Creating the Class for the Custom Cell ��� 208

Building the Cell in Interface Builder �� 210

Creating Instances of the Custom Cells �� 217

Handling Selection in Custom Cells �� 220

Custom Cells in Code ��� 222

The Process of Custom Cells in Code ��� 222

Creating Custom Subclasses �� 224

Overriding the layoutSubviews Function �� 228

Overriding the prepareForReuse Function �� 229

Improving the App’s Architecture with MVVM �� 229

The Model-View-View Model Approach �� 230

Advantages and Disadvantages of MVVM �� 231

Implementing the MVVM Approach �� 232

Converting the Project to an MVVM Approach �� 235

Summary �� 238

xiiiContents

 ■Chapter 9: Improving Interaction �� 241

Embedding Custom Controls into Cells �� 241

A Simple Approach – Adding a Button Directly To The Cell ��� 243

Creating the Buttons ��� 243

Adding the Buttons to Cells �� 245

Reacting to Individual Controls ��� 246

A More Robust Subclass-based Approach �� 247

Adding Gestures to Cells �� 252

Adding Pull-to-Refresh to Table Views ��� 253

Implementing Pull-to-Refresh with UITableViewController �� 253

Implementing the pullToRefresh Function �� 256

Adding a UIRefreshControl to a Table View ��� 256

Searching in Tables and Collection Views �� 257

Adding a Search Bar to the Table ��� 258

How Search Works�� 259

Implementing Search ��� 260

Happy, Healthy Tables ��� 267

Background, Background, Background �� 268

Are the Cells Cached? ��� 268

Do Your Table Cells Have Varying Heights? ��� 269

Cutting the Cost of Compositing ��� 269

Summary �� 271

 ■Chapter 10: Using Tables for Navigation ��� 273

The Navigation Controller Interface Pattern ��� 274

Introducing the UINavigationController �� 276

Creating a Navigation Controller App ��� 277

Creating the Name Class �� 280

Creating Some Dummy Data �� 284

Connecting Up the Table View �� 287

Building the Detail View �� 294

xiv Contents

Passing Data into the Detail View ��� 296

Implementing the Navigation Controller ��� 297

How the Navigation Controller Is Wired Up ��� 299

Linking the Navigation Controller and Detail Views Together ��� 301

Building Navigation Structure with Segues �� 303

Embedding the Table View in a Navigation Controller �� 303

Updating the App Delegate ��� 305

Linking the Detail View to the Table View ��� 305

Summary �� 310

 ■Chapter 11: Indexing, Grouping, and Sorting Tables ��� 311

Using Indexed Tables �� 311

Using Sectioned and Grouped Tables ��� 312

Creating a Simple Indexed Table �� 313

Setting Up the Basic Table �� 314

Creating the Source Data �� 315

Feeding the Table with Data ��� 317

Building Practical Sectioned Tables ��� 322

Creating the Data for a Table with Sections and Indexes ��� 323

Arrays of Arrays �� 325

UILocalizedIndexedCollation ��� 325

Creating the All-Singing, All-Dancing Table �� 327

Creating the App from a Template �� 327

Creating Some Data in a plist File �� 327

Sorting Out the User Interface �� 332

Extending the ViewController Class �� 333

Creating Table and Section Header and Footer Views �� 338

Table Headers and Footers ��� 340

Tidying the Bottom of Tables �� 342

xvContents

Moving the Table Programmatically ��� 343

scrollToRowAtIndexPath:atScrollPosition:animated: �� 344

scrollToNearestSelectedRowAtScrollPosition:animated: �� 344

selectRowAtIndexPath:animated:scrollPosition: ��� 344

Finding the Current Scroll Position in the Table ��� 344

Summary �� 345

 ■Chapter 12: Selecting and Editing Content �� 347

A Recap of the Model-View-Controller Pattern �� 347

Why the Model-View-Controller Pattern Is Important �� 349

Cell Selection in TableViews ��� 349

Cell Selection Types �� 349

Visualizing Selection ��� 352

Optimizing Selection Performance ��� 360

Selection Dos and Don’ts ��� 361

Responding to Selections with More Detail ��� 361

Design Patterns and UITableViews ��� 362

Read ��� 362

Create ��� 362

Update �� 363

Delete ��� 363

Custom Row Actions �� 364

Inserting and Deleting Rows �� 365

Putting the Table into Editing Mode �� 368

Controlling Whether Rows Can Be Edited ��� 369

Controlling Each Row’s Editing Style �� 370

Dealing with Row Deletions �� 370

Dealing with Row Insertions ��� 374

Rearranging Tables ��� 380

xvi Contents

Moving Rows Around �� 382

Enabling Batch Insertion and Deletion �� 385

Batch Insertion and Deletion of Sections �� 386

Selection in UICollectionViews ��� 386

Cut, Copy, and Paste with Collection Views �� 387

Implementing Custom Menus in a Collection View ��� 389

Rearranging UICollectionViews �� 395

Prerequisites��� 395

Implementing Drag-and-Drop with UICollectionViewController ��� 397

Implementing Drag-and-Drop with UIViewController ��� 400

Summary �� 404

 ■Chapter 13: Static Tables ��� 405

How to Build Static Tables �� 406

Adding Static Cells to the Table View �� 408

Fixing Scrolling ��� 410

Adding Controls to the Static Cells ��� 411

Using Static Tables Inside Container Views �� 413

Prerequisites��� 414

Adding a UIViewController Scene ��� 415

Adding a Container View to the UIViewController ��� 416

Embedding the Static Table View into the View Controller ��� 417

Other Uses for Static Tables ��� 419

Summary �� 419

 ■Chapter 14: Tables in WatchKit �� 421

About WatchKit ��� 421

The Anatomy of a WatchKit App ��� 422

What Are WatchKit Tables? ��� 422

Creating a Basic Table �� 426

Creating the Project �� 426

Adding the WatchKit Target ��� 427

xviiContents

Building the Table Interface �� 429

Creating the Table ��� 432

Navigation with WatchKit Tables �� 442

Adding a New Interface Controller �� 443

Adding a New Screen to the Storyboard �� 443

Implementing the Navigation�� 445

Adding Navigation in Code�� 452

Summary �� 453

 ■Chapter 15: Collection View Flow Layouts �� 455

About Flow Layouts �� 455

The Characteristics of a Flow Layout ��� 458

UICollectionViewFlowLayout �� 459

Creating and Configuring Flow Layouts ��� 459

Instantiating a Flow Layout �� 460

Customizing Flow Layouts �� 463

Customizing with Attributes ��� 464

Customizing with UICollectionViewDelegateFlowLayout �� 470

Subclassing UICollectionViewFlowLayout �� 475

Controlling Item Layout Attributes �� 476

Adding Additional Custom Layout Attributes to Items �� 476

Adding New Supplementary Views ��� 476

Controlling Insertion and Deletion Animations�� 476

Summary �� 477

 ■Chapter 16: Collection View Custom Layouts �� 479

About Custom Layouts ��� 479

When to Create a Custom Collection View Layout �� 481

Creating a Custom Layout Subclass ��� 481

Deciding When to Calculate Attributes ��� 481

What the Custom Layout Does �� 482

What Are Layout Attributes? ��� 482

xviii Contents

The Four Key Functions to Implement �� 484

prepareLayout��� 484

collectionViewContentSize ��� 484

layoutAttributesForElementsInRect �� 485

layoutAttributesForItemAtIndexPath ��� 485

Supplementary and Decoration View Attributes ��� 486

Checking if Supplementary or Decoration Views Are Required �� 486

Calculating Supplementary and Decoration View Attributes �� 486

This Chapter’s Project �� 487

SwiftClock: The “Static” Example ��� 487

Getting Started ��� 488

The Initial Project ��� 488

Updating the Project ��� 492

Adding the Custom Layout Class �� 493

Implementing the Layout Functions ��� 496

Implementing the Custom Layout Functions �� 499

Next Steps �� 507

Displaying the Numerals and Hands ��� 507

Summary �� 517

 ■Chapter 17: Animated and Interactive Collection Views ����������������������������������� 519

Controlling Collection Views with Gestures �� 519

Connecting Gestures with Layouts ��� 520

Collection Views and Animations ��� 523

Creating the Custom Layout ��� 525

Wiring Up the Collection View ��� 538

Controlling Insertion and Removal Animations ��� 542

Summary �� 543

Index ��� 545

xix

About the Author

Tim Duckett designs and builds software for mobile platforms
with iOS and Android, and for back-end systems with
languages like Go and Ruby.

Having started out in the business in the last century, he’s
worked with all kinds of clients in all kinds of sectors.

Along the way he picked up an MBA and is a certified project
manager, but asks that you don’t hold those against him.

He lives in Berlin in Germany, with his family and two large dogs.

In his spare time, he walks the dogs, tries to improve his
schrecklich Deutsch, takes photographs with obsolete
equipment, and continues on what will likely be a lifelong quest
to find the perfect single malt.

You can find him online at http://adoptioncurve.net, and on
places including Twitter and GitHub as timd.

http://adoptioncurve.net

xxi

About the Technical
Reviewers

Tiago Duarte studied Software Engineering in the Faculty of
Engineering of the University of Porto (Portugal). After working
for 5 years at multiple companies, he is now embracing his own
projects.

Inspired by Apple, he sees in iOS an opportunity to do what he
likes best: to create new experiences.

Despite this passion for iOS and mobile devices in general, he
believes that people are becoming slaves of technology and
that “virtual reality” is driving us away from what really matters.
How much time do we spend on social networks scrolling
around? What if we used that time to visit our families and
friends, instead of scrolling through their lives on a screen?

Living by the words “Mens sana in corpore sano,” Tiago likes to
take the body and the mind to their limits. Reading and training
have been daily routines since a young age.

Michael Thomas has worked in software development for
more than 20 years as an individual contributor, team lead,
program manager, and vice president of engineering. Michael
has more than 10 years of experience working with mobile
devices. His current focus is in the medical sector, using mobile
devices to accelerate information transfer between patients
and health care providers.

xxiii

Acknowledgments

It’s my name on the cover, but there’s a whole host of people without whom this book would
never have happened.

At Apress, Mark Powers and Michelle Lowman kept me on track from one end of the project
plan to the other, and were very gracious about my procrastination and constant content
changes. Mary Behr hunted down all the rogue ‘u’s that I tried to hide in the word “colour”.
Tiago and Michael were both kind and constructive as the technical reviewers, and if they
laughed at my mistakes, they didn’t tell me.

There is a group of fantastic current and former colleagues – Martin, Marco, Eduardo,
Eli, Johannes and many more - in various locations around Europe who have been sources
of inspiration, support, and fanfarres of squirrels during projects both successful and
not-so-successful.

Tom Armitage is responsible for taking the only decent picture of me in existence.

Finally, none of this would have happened without the unconditional love and support of my
family, who put up with me writing this book while we embarked on a rollercoaster of moving
between four houses in three different countries in the space of two years. I don’t tell them
this nearly often enough, but - I’m very lucky to have them.

xxv

Introduction

If you’re an iOS app developer, chances are you’ll be using table and collection views
somewhere in your development projects. They’re the bread and butter of iOS apps. With
them, you can create everything from the simplest of lists to fully tricked-out user interfaces.

Table and collection views are two of the more complex components found in UIKit. Using
them for (potentially boring!) standard user interfaces is quite simple, but customizing them
can become much more challenging.

This book has a task-oriented focus to assist you when implementing customized table and
collection views. Although it delves deeply into the APIs, you can always choose the level of
detail you want to dive into. This book aims to be a reference and customization cookbook
at the same time, useful for beginners as well as intermediate developers.

What This Book Covers
Chapter 1, “Table Views Quick Start”, introduces the table view with some examples
of the current state of the art. After showing you something of what’s possible, we’ll start
out with a very simple table view–based app for the iPhone, which will introduce you to
the UITableView and its main elements. The app will also act as a starting point for later
versions, and it’ll be a working prototype that you can use as the basis for your own
experiments.

In Chapter 2, “How The Table Fits Together”, you’ll look at how the parts of the table
view work together. You’ll see the main types of UITableViews and their anatomy. You’ll
learn how to create them both with Interface Builder and in code, and how to use the
UITableViewController class as a template.

Chapter 3, “Collection View Quick Start”, switches focus to UICollectionView to
showcase what’s possible with this powerful and infinitely flexible control. Like Chapter 1,
we’ll start with a simple example that can act as a starting point for more advanced topics,
and provide a working prototype as the basis for your experiments.

http://dx.doi.org/10.1007/978-1-4842-1242-4_1
http://dx.doi.org/10.1007/978-1-4842-1242-4_2
http://dx.doi.org/10.1007/978-1-4842-1242-4_3
http://dx.doi.org/10.1007/978-1-4842-1242-4_1

xxvi Introduction

Chapter 4, “How the Collection View Fits Together”, looks at how the parts of the
collection view work together. You’ll see how they are similar – but even more flexible – than
UITableViews, and the component parts of their anatomy. You’ll learn how to create them
both with Interface Builder and in code, and how to use the UICollectionViewController
class as a template.

Chapter 5, “Feeding Data To Your Views” is about where tables and collection views get
their data and how you get it there. It shows how they keep track of sections and rows, and
covers some of the software design patterns that the UITableView and UICollectionView
classes exploit.

Chapter 6 “How The Table Cell Fits Together”, focuses on the cells that make up tables.
You’ll see how cells are structured internally, and how they’re created and reused. It also
covers the standard cells types that come for free with the UITableView classes.

In Chapter 7, “Improving the Look of Cells”, you will start to look at the process of going
beyond standard cell types to customize the look and feel of your table views. This chapter
covers some of the quickest ways to make the cells look the way you need them to.

Chapter 8, “Creating Custom Cells With Subclasses”, covers the most powerful and
flexible way of customizing every aspect of cells to use in table and collection views. With
great power comes great responsibility – but it’s worth persevering so that your able to
achieve complete mastery of the look, feel and behaviour of your apps.

Chapter 9, “Improving Interaction”, steps you though the process of embedding
interactive controls in table and collection views; implementing pull-to-refresh; exploiting
gesture recognizers, and implementing in-view search.

Chapter 10, “Using Tables for Navigation”, covers an almost-ubiquitous feature of the iOS
user interface, and shows how tables can be used to navigate through a hierarchy of data in
a simple and consistent way.

The constrained size of the iOS user interface presents some challenges when it comes
to presenting large amounts of data. Chapter 11, “Indexing, Grouping, and Sorting”,
presents some ways of arranging the data in tables, to help users find their way.

Chapter 12, “Selecting and Editing Content”, shows how you can use tables and
collection views to manage data. It covers how to add, delete, and rearrange the
information, and some of the interface aspects that this entails.

Chapter 13, “Static Tables”, is an introduction to an often-overlooked use of table views to
present controls and information in a static way. These can often be used as a short-cut to
simplifying otherwise complex layouts.

Chapter 14, “Tables in WatchKit”, looks at the challenges of table-based interfaces with
Apple’s first venture into wearable technologies. The small form factor and low power of
the Apple Watch presents some challenges, but effective use of tables can be the key to
engaging user interactions.

Chapter 15, “Collection View Flow Layouts”, looks at one of the most useful components
of the UICollectionView family, which allows you to very rapidly build sophisticated line-
oriented layouts with a minimum of complex calculations.

http://dx.doi.org/10.1007/978-1-4842-1242-4_4
http://dx.doi.org/10.1007/978-1-4842-1242-4_5
http://dx.doi.org/10.1007/978-1-4842-1242-4_6
http://dx.doi.org/10.1007/978-1-4842-1242-4_7
http://dx.doi.org/10.1007/978-1-4842-1242-4_8
http://dx.doi.org/10.1007/978-1-4842-1242-4_9
http://dx.doi.org/10.1007/978-1-4842-1242-4_10
http://dx.doi.org/10.1007/978-1-4842-1242-4_11
http://dx.doi.org/10.1007/978-1-4842-1242-4_12
http://dx.doi.org/10.1007/978-1-4842-1242-4_13
http://dx.doi.org/10.1007/978-1-4842-1242-4_14
http://dx.doi.org/10.1007/978-1-4842-1242-4_15

xxviiIntroduction

When a line-based layout isn’t sufficient to deliver the interface you need, collection views
can be completely customized. Chapter 16, “Collection View Custom Layouts” looks at
taking complete control over every aspect of the collection view’s look and feel.

Chapter 17, “Animated And Interactive Collection Views”, takes them to the limits
of what’s possible in interactive interfaces. Combining collection views with gesture
recognizers and custom layouts allows you to create interfaces that are limited only by your
imagination.

The Style of This Book
I’ve tried to bridge the gap between two styles of book—the in-depth treatment of every
last little detail, and the cookbook of specific point solutions. Both have their place, but
sometimes I find that descriptions of very detailed, elegant solutions with lots of features can
obscure the detail of the problem I’m trying to solve. Equally, sometimes cookbook solutions
are too specific and don’t easily lend themselves to adapting to my specific situation.

In the code examples that follow, I’ve tried to balance the two styles. The visual polish
and extraneous functions are kept to a minimum, which hopefully results in examples that
illustrate how to build a solution while also acting as a building block for your own code.

About the Second Edition
Nothing in the technology world stays still for long, and Apple frameworks are no exception.
The first edition published in 2012 predated the iPad, collection views, a complete overhaul
of the iOS design language, and one of the most exciting developments in software
development for a long time.

With the introduction of Swift in 2014, Apple have taken all the very best parts of a myriad of
programming languages and paradigms available, and combined them with their legendary
frameworks and APIs to produce something that completely lives up to the superlatives
used to describe it. The open-sourcing of Swift at the end of 2015 will make for some very
interesting developments in the months and years to come.

I’ve spent many happy years working with Objective-C, but with Swift things have taken
a giant leap forward. This book uses Swift exclusively, as I suspect I and many other iOS
developers will be doing for the foreseeable future.

This book was written using Swift 2.0, WatchKit 2.0 and Xcode 7.1. It’s as up-to-date and
current as it’s possible to be when covering a dynamic and rapidly-changing world – when
things change, updates and errata will be available from the Apress site and the book’s
source code on GitHub.

http://dx.doi.org/10.1007/978-1-4842-1242-4_16
http://dx.doi.org/10.1007/978-1-4842-1242-4_17

xxviii Introduction

The Book’s Source Code
You can download the source code for each chapter’s examples from the Apress
site (www.apress.com/9781484212431) or from GitHub at https://github.com/timd/
ProiOSTableCollectionViews.

Although that’s the quickest way to get up and running, I encourage you to take the extra
time to key in the code yourself as you go along. With Xcode’s code completion, it doesn’t
take that long, and code that has flowed through your eyes and brain, and then out to your
fingers, is much more likely to sink in and make sense.

Where to Find Out More
Beyond the pages of this book, there’s a wealth of other information available online (not to
mention the great range of other Apress titles):

	For a general overview, Apple’s “Table View Programming Guide” and
“Collection View Programming Guide” are detailed guides that cover
most of the topics in this book. They are both available from the Apple
Developer Portal, or in Xcode’s documentation.

	Apple’s iOS Developer Library has full documentation for all Cocoa
Touch libraries, as well as the Swift language. It tends not to include
examples in the documentation itself, but the Library is the one-stop
shop for a detailed reference for each class, protocol, library and
language.

	Online forums are a fantastic resource. Sites such as Stack Overflow
(www.stackoverflow.com) are the place to go for practical advice.
Chances are, a number of people will have met and overcome the
same problem that you’re experiencing, and the answer will be there.
Stack Overflow’s customs and practices can be a little daunting at first,
but it’s worth persevering. There are no stupid questions, after all, just
questions that haven’t been answered yet.

	A general Google search will often throw up answers from blogs. There
are some extremely talented individuals out there who regularly post
about how to do this or that with iOS and Objective-C, and many of
them also point to source code on their sites or GitHub and the like.

	Apple also provides some fairly detailed source code examples. Your
mileage may vary with these. I sometimes find that they can be a bit
overcomplicated and can obscure the core technique that I’m trying to
grasp. But they shouldn’t be overlooked, if only because they’ve been
written by engineers with an intimate understanding of the frameworks.

	Universities such as Stanford and MIT place entire semesters’ worth
of lecture modules online, both on their sites and on iTunes U. Their
technical education is some of the best on the planet, and some of the
online lectures are taught by current and former Apple engineers. These
are definitely worth checking out.

www.apress.com/9781484212431
https://github.com/timd/ProiOSTableCollectionViews
https://github.com/timd/ProiOSTableCollectionViews
www.stackoverflow.com

xxixIntroduction

	Local user groups meet regularly around the world. It’s an iron law of
software that there’s always someone who knows more than you do
about a topic, and problems are always less daunting when discussed
with them over a beverage or two.

	Mailing lists have had a renaissance in the last couple of years. Some
excellent examples (which often cover not just coding topics, but design
and business issues as well) are http://iosdevweekly.com,
http://natashatherobot.com and http://ios-goodies.com

Finally, if you’ve battled with—and resolved—some gnarly issue, then post about it yourself,
whether that’s on your own blog or a site like Stack Overflow. Even if the topic has been
covered numerous times before, there’s always room for another take on a problem. Your
unique point of view could be just what someone else needs.

Contacting the Author
Tim Duckett can be found online at http://adoptioncurve.net and on places like Twitter
and GitHub as @timd.

http://iosdevweekly.com
http://natashatherobot.com
http://ios-goodies.com
http://adoptioncurve.net

1

Chapter 1
Table Views Quick Start
In this chapter, you’ll start your exploration of table views. This chapter begins with an
overview of what table views are and some examples of how they’re used in practice. Then,
in the second section, you’ll build a simple “Hello, world”-style table view app to introduce
you to the components behind the user interface and help you contextualize the detail that
will come in later chapters.

If you’re just starting to use table views, it’s worth taking some time to build a very simple
one from scratch before diving into the gnarly details. However, if you’ve reached the
stage where you feel more confident about how the components of the table view jigsaw
fit together and want to get straight into the code, feel free to skip the rest of this chapter
completely. I’ll cover the elements in detail later, so you won’t miss out.

What Are Table Views?
Examples of table views can be found everywhere in iOS apps. You are already familiar with
simple tables, implemented as standard controls such as the iPhone’s Settings app or the
iPad’s Mail app, shown in Figure 1-1.

2 CHAPTER 1: Table Views Quick Start

At the other end of the scale, the default look, feel, and behavior of the table view and cells
can be customized to the point where they are hardly recognizable as table views at all.
Figure 1-2 shows some examples.

Figure 1-1. Some basic table-based applications

3CHAPTER 1: Table Views Quick Start

The Anatomy of a Table View
The table view displays a list of elements, also known as table view cells, that can be
scrolled vertically. The table view is composed of two physical parts:

	The container part—the tableView itself—is a subclass of UIScrollView
and contains a vertically scrollable list of table cells.

	Table cells, which can be instances of one of four standard
UITableViewCell types or custom subclasses of UITableViewCell that
can be customized as required.

Figure 1-2. Examples of table views in action on the iPhone

4 CHAPTER 1: Table Views Quick Start

Figure 1-3 illustrates the parts of a table view.

The table view can’t operate on its own, though; it needs the support of objects that conform
to two UITableView protocols:

	The object that conforms to the UITableViewDatasource protocol
provides the table view with the data that it needs to construct and
configure itself, such as the number of sections and rows. It also creates
and provides the cell objects that the table view displays.

	The object that conforms to the UITableViewDelegate protocol is
responsible for handling user interaction with the table, such as
selection, editing, and ordering.

A very common pattern is for the UIViewController instance that manages the view in which
the table lives to also act as the data source and delegate. As you’ll see later in Chapter 5,
this doesn’t always have to be the case; it can help to make the architecture of your app
cleaner if those functions are delivered by other classes.

Figure 1-3. The basic anatomy of a table view

http://dx.doi.org/10.1007/978-1-4842-1242-4_5

5CHAPTER 1: Table Views Quick Start

Creating a Simple Table View App
In the rest of this chapter, you’ll build a simple “Hello, world” style table view app from
scratch. It will show you how the container, cells, data source, and delegate all fit together
and give you an app that you can use as the basis for your own experiments.

I’m going to take it deliberately slowly and cover all the steps. If you’re a confident Xcode
driver, you won’t need this hand-holding—just concentrate on the code instead.

Still with me? Okay—you’re going to do the following:

	Create a simple, window-based application skeleton.

	Generate some data to feed the table.

	Create a simple table view.

	Wire up the table view’s data source and delegate.

	Implement some very simple interactivity.

It’s a very straightforward but useful practice. Onward!

Creating the Application Skeleton
For this application, you’re going to use a simple structure: a single view managed by a view
controller, and a Storyboard file to provide the content for the view. Fire up Xcode and select
the Single View Application template, as shown in Figure 1-4.

6 CHAPTER 1: Table Views Quick Start

Figure 1-4. Xcode’s template selection pane

Note With each new release of Xcode, Apple frequently (and pointlessly) changes the templates
that are included. You may see a set that is different from those shown in Figure 1-5. Check the
description of the templates to find the one that provides a single view application.

Call the application SimpleTable. You’re going to build an iPhone version, but you don’t
need Core Data or any tests.

Make sure those options are selected as needed, as shown in Figure 1-5.

7CHAPTER 1: Table Views Quick Start

Finally, you need to select where you want to save the project. You don’t need to worry
about creating a local Git repository for this project unless you particularly want to.

When you’ve reached this point, you’ll see the project view of Xcode, with the initial skeleton
of your application. It’ll look something like Figure 1-6, assuming that you’ve stuck with the
SimpleTable application name.

Figure 1-5. Name the application

8 CHAPTER 1: Table Views Quick Start

Figure 1-6. The initial Xcode view showing your new skeleton application

You’ll see that you have the following:

	An app delegate (AppDelegate.swift)

	A view controller (ViewController.swift)

	A Storyboard file (Main.storyboard)

At the end of this chapter, you’ll look again at how these fit together. For the moment, you’ll
be working with the view controller and the Storyboard file.

At this point, you can run the app to verify that it compiles correctly. Go to Product ➤ Run
or press Command+R and you’ll see the app’s launch screen and an empty white view. Now
you’re ready to start building the table view.

Generating Some Data
Before you start with the table view itself, you need to create some data to feed it. Because
this is a simple table example, the data is going to be simple too. You’ll create an array of
strings that contains some information to go into each cell.

The data array will need to be ready by the time the data source is called by the table
view, so where to create it? There are several options, but one obvious place is in the view
controller’s viewDidLoad function. It's safe to create it here.

You’re also going to need a way of passing the array of data around the application. This
process requires a property that can be accessed by the various functions that will need
access to the data.

9CHAPTER 1: Table Views Quick Start

Let’s get started. Open the ViewController.swift file shown in Figure 1-7 and begin by
creating the property.

Note To save space from now on, I’m not going to show the full Xcode interface—just the code
that you need to enter.

Figure 1-7. Editing the ViewController.swift file

Add in a declaration for the property so that the code looks like Listings 1-1.

Listing 1-1. Declaring the Property

import UIKit

class ViewController: UIViewController {

 var tableData = [String]()

 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view, typically from a nib.
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }

}

10 CHAPTER 1: Table Views Quick Start

Now you’re going to create the actual data array itself. Your data array will be a simple
array of ten strings. You’re going to add this in the viewDidLoad function, as this function is
executed as part of UIViewController’s lifecycle before the view is visible on-screen. Setting
up the data here will give the table the data it needs to draw itself before it becomes visible.
Add the code shown in Listings 1-2.

Listing 1-2. Creating the Data Array

override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view, typically from a nib.

 for count in 0...10 {
 // The cell will contain the string "Item X"
 tableData.append("Item \(count)")
 }

 // Print out the contents of the data array into the log
 print("The tableData array contains \(tableData)")

}

Let’s run the application to see that data array being created. The user interface isn’t doing
much yet, but you’ll be able to see the data that you’re going to feed to the table.

Run the application in the Simulator by pressing Command+R or by choosing Product ➤
Run, and then take a look at the logger output

The tableData array contains ["Item 0", "Item 1", "Item 2", "Item 3", "Item 4", "Item 5",
"Item 6", "Item 7", "Item 8", "Item 9", "Item 10"]

Creating the Table View
As it stands, the user interface for your application is a bit dull. You haven’t added the table
yet! This needs fixing.

Click the Main.storyboard file in the project explorer, and you’ll see the Storyboard open in
the Interface Builder pane, as shown in Figure 1-8.

Note To save space, in future listings I’ll only show the added or amended code with enough
additional lines to establish the context.

11CHAPTER 1: Table Views Quick Start

In the Objects browser at the bottom right, find the TableView item and drag it out onto the
view in the center; this will act as the container for the table view. The scene’s Document
Outline will now look like Figure 1-9.

Figure 1-8. Editing the Storyboard file in Interface Builder

Figure 1-9. The scene’s Document Outline after adding the UITableView

To make the table display properly in any view size (and if the device is rotated) you need to
add some AutoLayout constraints.

12 CHAPTER 1: Table Views Quick Start

Highlight the table view if it’s not already selected, and add the constraints by clicking the
Pin icon at the bottom of the Storyboard, then updating the values, as shown in Figure 1-10.

Figure 1-10. Adding the table view’s AutoLayout constraints

Believe it or not, that’s all you need to do in order to implement the most basic table view.
It won’t display any data yet because you haven’t implemented the UITableViewDataSource
protocol functions, and it certainly won’t have any interactivity—but the app will run.

13CHAPTER 1: Table Views Quick Start

To prove this, run it again (Command +R), and marvel at your awesome application in the
Simulator, as shown in Figure 1-11.

Figure 1-11. A functional, albeit not very impressive, table view application

14 CHAPTER 1: Table Views Quick Start

Okay—maybe this isn’t all that impressive. Let’s complete the wiring up of the table view so
that it actually does something.

Conforming to the Table View Protocols
The table view that you’ve just created needs both a data source and a delegate; the data
source will provide the table with the information it needs to configure itself plus the cells to
display, while the delegate will handle interactions like cell selection.

You need to conform your ViewController class to both the UITableViewDataSource and
UITableViewDelegate protocols.

In the class, update the class declaration so it looks like Listing 1-3.

Listing 1-3. Conforming the Swift Class to the UITableDelegate and UITableDataSource Protocols

class ViewController: UIViewController, UITableViewDataSource, UITableViewDelegate {

Note Data sources and delegates are covered in detail in Chapters 3, 4, and 5.

Figure 1-12. The table view rotated

What’s more, you can even rotate the Simulator and the table view will resize itself (shown in
Figure 1-12).

http://dx.doi.org/10.1007/978-1-4842-1242-4_3
http://dx.doi.org/10.1007/978-1-4842-1242-4_4
http://dx.doi.org/10.1007/978-1-4842-1242-4_5

15CHAPTER 1: Table Views Quick Start

This will tell the compiler to expect the required functions to have been implemented.
Immediately you'll see Xcode display a warning that the ViewController doesn’t yet conform
to the protocol (shown in Figure 1-14).

Figure 1-14. The Table View property HUD

Figure 1-13. The Xcode error

You’ll fix this in moment, but first, let’s wire up the table to the ViewController class.

Wiring Up the Data Source and Delegate
Your ViewController object will be ready shortly, but the table view itself doesn’t yet know
that the view controller will act as both a data source and a delegate. You need to connect
the two together.

There are two ways of doing this: visually (though Interface Builder) or in code. For this
example application, you’ll use Interface Builder, so click the Storyboard file to open it again.

Right-click the table view object (either in the main Interface Builder or in the objects tree in
the middle pane), and you’ll see the Table View property HUD, as shown in Figure 1-14.

It’s showing the two Outlet properties that you’re interested in: the dataSource and the delegate.

To connect these, mouse-over the circle to the right of the dataSource entry. The circle
changes to a plus symbol. Click and drag from this symbol and a blue line extends out.

Mouse-over to the File’s Owner item in the object tree, and it becomes highlighted in blue.
Release the mouse, and the dataSource is now connected.

Next, repeat the same process for the delegate: drag from the plus symbol to File’s Owner,
drop, and connect.

16 CHAPTER 1: Table Views Quick Start

The Table View properties HUD will now show that both the dataSource and the delegate are
connected to the View Controller, as shown in Figure 1-15.

Figure 1-15. The dataSource and delegate are now connected to the View Controller

Displaying the Data
Now that you have the table view wired up to its delegate and dataSource, you’re in a
position to start making it do something. A logical next step would be to get the table view
to display its data.

As the table view draws itself, it asks its dataSource to provide cells that can then be
displayed. You’ll look at this process in a lot more detail in Chapters 3 and 5, but for now
let’s get those cells created.

The UITableViewDataSource protocol has two required functions and nine optional ones.
Because this is a simple example, you’re going to implement only the two required functions
and one optional one.

The first required function, tableView(_:numberOfRowsInSection:) returns the number of
rows that the section will eventually contain.

The second required function, tableView(_:cellForRowAtIndexPath:), creates and returns
the cell itself.

The optional function is numberOfSectionsInTableView(_:). It’s optional in your app because
you’re using a table with a single section, and by default the number of sections in a table is 1.

Later, when you look at more complex sectional tables, this function definitely will be
required, so I'm including it here even though it’s not strictly necessary.

http://dx.doi.org/10.1007/978-1-4842-1242-4_3
http://dx.doi.org/10.1007/978-1-4842-1242-4_5

17CHAPTER 1: Table Views Quick Start

numberOfSectionsInTableView(:)
You have a simple table with one section, so this function is going to be pretty trivial. Switch
to ViewController.swift or ViewController.m, where you can create the function, shown in
Listing 1-4.

Listing 1-4. The numberOfSectionsInTableView(:) Function

//MARK: UITableViewDatasource functions

func numberOfSectionsInTableView(tableView: UITableView) -> Int {
 return 1
}

tableView:numberOfRowsInSection(:)
In order to draw itself successfully, the table view needs to know how many rows are going
to appear in the section (your simple table view has only one section).

Earlier, you created an array to hold your data and populated it with this string. The section
will have as many rows as there are elements in the array.

The Array class has a useful function for returning the number of elements in an array:

tableData.count

In the view controller class, add the function as shown in Listing 1-5.

Listing 1-5. The tableView:numberOfRowsInSection: Function

func tableView(tableView: UITableView, numberOfRowsInSection section: Int) -> Int {

 return tableData.count

}

Pretty straightforward, yes?

Note The MARK lines are compiler directives. They’re not used during compilation, but they
demarcate sections of the code during the writing process. If you pull down the breadcrumb menu
or press Crtl+6 at the top of the Edit pane, you’ll see that these lines break up the list of functions
and make the code easier to navigate. Using these directives is not a big deal now, but as your
classes grow, they can be a real lifesaver when trying to find a particular function among others.

18 CHAPTER 1: Table Views Quick Start

Creating Cells
Now that you’ve connected the table view to the ViewController it’s time to start creating cells.

Whenever the table needs a cell, it asks its data source to provide one by calling the
cellForRowAtIndexPath: function. The data source will either create a brand new instance of
a cell, configure it, and hand it back to the table view, or it will dequeue a previously-created
instance from its cache, before configuring and handing this back.

You’ll look at the caching and dequeueing mechanisms in more detail in Chapter 5, but for
now just bear in mind that the data source uses its cache to vastly improve the performance
of the table view.

To begin, add the function in Listing 1-6 to the view controller class, and then I’ll step
through what it does.

Listing 1-6. The tableView:cellForRowAtIndexPath: Function

 func tableView(tableView: UITableView, cellForRowAtIndexPath
indexPath: NSIndexPath) -> UITableViewCell {

 let cell = tableView.dequeueReusableCellWithIdentifier("CellIdentifier",

forIndexPath: indexPath)

 cell.textLabel! .text = tableData[indexPath.row]

 return cell

}

Let’s start by looking at the function itself:

func tableView(tableView: UITableView, cellForRowAtIndexPath
indexPath: NSIndexPath) -> UITableViewCell {

This returns an instance of UITableViewCell and takes the following two parameters:

	The tableView that is calling for the cell (because this class might be
the data source for numerous tables, it needs to identify which table it’s
dealing with)

	An indexPath, which has a row property identifying the table row for
which the cell is being requested

The first line of the functions attempts to grab a previously-instantiated cell from the
tableView’s cache with the dequeueReusableCellWithIdentifier: function:

let cell = tableView.dequeueReusableCellWithIdentifier("CellIdentifier", forIndexPath:
indexPath)

Tip The use of cell identifiers is something you’ll explore in much more detail in Chapter 5. For
now, you can get by thinking of this as a label that identifies which kind of cell you’re using. This
table has only one kind of cell, hence the single identifier.

http://dx.doi.org/10.1007/978-1-4842-1242-4_5
http://dx.doi.org/10.1007/978-1-4842-1242-4_5

19CHAPTER 1: Table Views Quick Start

Creating Cells
Now that you’ve connected the table view to the ViewController it’s time to start creating cells.

Whenever the table needs a cell, it asks its data source to provide one by calling the
cellForRowAtIndexPath: function. The data source will either create a brand new instance of
a cell, configure it, and hand it back to the table view, or it will dequeue a previously-created
instance from its cache, before configuring and handing this back.

You’ll look at the caching and dequeueing mechanisms in more detail in Chapter 5, but for
now just bear in mind that the data source uses its cache to vastly improve the performance
of the table view.

To begin, add the function in Listing 1-6 to the view controller class, and then I’ll step
through what it does.

Listing 1-6. The tableView:cellForRowAtIndexPath: Function

 func tableView(tableView: UITableView, cellForRowAtIndexPath
indexPath: NSIndexPath) -> UITableViewCell {

 let cell = tableView.dequeueReusableCellWithIdentifier("CellIdentifier",

forIndexPath: indexPath)

 cell.textLabel! .text = tableData[indexPath.row]

 return cell

}

Let’s start by looking at the function itself:

func tableView(tableView: UITableView, cellForRowAtIndexPath
indexPath: NSIndexPath) -> UITableViewCell {

This returns an instance of UITableViewCell and takes the following two parameters:

	The tableView that is calling for the cell (because this class might be
the data source for numerous tables, it needs to identify which table it’s
dealing with)

	An indexPath, which has a row property identifying the table row for
which the cell is being requested

The first line of the functions attempts to grab a previously-instantiated cell from the
tableView’s cache with the dequeueReusableCellWithIdentifier: function:

let cell = tableView.dequeueReusableCellWithIdentifier("CellIdentifier", forIndexPath:
indexPath)

Tip The use of cell identifiers is something you’ll explore in much more detail in Chapter 5. For
now, you can get by thinking of this as a label that identifies which kind of cell you’re using. This
table has only one kind of cell, hence the single identifier.

Figure 1-16. Increasing the number of prototype cells

Creating a Prototype Cell
A prototype cell is a “blueprint” that is used by the UITableViewDataSource to create
an actual cell when called for. The data source uses the cellIdentifier string that you
provided in the cellForRowAtIndexPath function to determine which prototype is the basis of
which type of cell.

Switch to the Storyboard, and select the UITableView by clicking on the Table View item in
the Document Outline. You’ll see that the table view in the canvas shows Prototype Content,
and the Attributes Inspector shows Dynamic Protoypes in the Content dropdown.

Create a prototype cell by increasing the number in the Prototype Cells box to 1, as shown
in Figure 1-16.

Behind the scenes, the data source will have either dequeued an existing cell instance or
it will create a fresh one for you. You don’t have to worry about this because the function
is guaranteed to return a cell instance that you can work with, so you’re ready to configure
its contents.

http://dx.doi.org/10.1007/978-1-4842-1242-4_5
http://dx.doi.org/10.1007/978-1-4842-1242-4_5

20 CHAPTER 1: Table Views Quick Start

Figure 1-17. Selecting the prototype cell

Now you can select the newly-created prototype cell, by selecting in the Document Outline
shown in Figure 1-17:

Figure 1-18. Setting the cell identifier

The Attributes Inspector will show the attributes of the prototype cell – so here you can add
the cell’s cell identifier so that the data source is able to find it.

Add CellIdentifier to the Identifier field as shown in Figure 1-18 – make sure that you
match the cell identifier exactly with the string that you used in the ViewController. Then save
the Storyboard, and switch back to the ViewController.

21CHAPTER 1: Table Views Quick Start

Configuring the Cell
Once the data source has created or dequeued a cell instance, you can configure its
contents before handing it back to the table view.

You’ll look at cells in much more detail in Chapter 6, but for now all you need to know is
that a UITableViewCell contains a UILabel outlet called textLabel that you can set the text
property of, like

cell.textLabel!.text = tableData[indexPath.row]

The cellForRowAtIndexPath() function is passed an NSIndexPath parameter by the
tableView ; this indicates the section and row of the table that the cell is intended for.

You’re not interested in the section, because your table only has one, but you can use the
row property of the indexPath parameter to retrieve the corresponding String (or NSString)
from the tableData array.

Finally, your configured cell is returned to the tableView with

return cell

Running the App
At this stage, you have some data and a table view, and you have wired up the functions that
feed the table view with the data. Run the application, and you’ll see your table resplendent
with content, as in Figure 1-19.

http://dx.doi.org/10.1007/978-1-4842-1242-4_6

22 CHAPTER 1: Table Views Quick Start

On that triumphant note, it’s time to make the table respond to some user input.

Adding Some Interactivity
You can legitimately feel quite pleased with yourself at this point. You have a table view that
takes in data, displays it on the screen, and can scroll around (try scrolling the table if you
haven’t already). You can also select cells by tapping them, and the table view will highlight
the selected row.

All of this functionality comes for free with an instance of UITableView, which saves you an
awful lot of time getting a table view up and running. But eventually, you’re going to want it
to do much more. This is where the UITableViewDelegate comes in.

Whenever the table receives some kind of interaction (tapping on a row to select it, for
example) it will ask its delegate to handle that for it. Think of the table view as “outsourcing”
the details of how to respond to the delegate.

Figure 1-19. The table replete with content

23CHAPTER 1: Table Views Quick Start

UITableViewDelegate provides a host of functions that allow the table and the cells (among
other things) to react to user input. These functions support selecting, editing, reordering,
and deleting cells, in addition to configuring how the table view looks. For the moment, you’ll
take a look at just one of those functions, which enables a row to react to being tapped by
the user.

tableView:didSelectRowAtIndexPath:
Your table view already responds in a somewhat limited way to user input. When you tap a
cell, it’s highlighted in a light grey color. Behind the scenes, the table view makes a call to
the delegate indicating two things: that a row has been selected, and which row that was.

If the delegate implements the tableView:didSelectRowAtIndexPath: function, it can
use that to fire off some other activity. For example, in the iPhone’s Contacts app, a view
showing the contact’s details will be displayed. In iTunes, the song shown in the row will
start playing. And so on.

You’re not going to do anything quite so ambitious here. When a row is tapped, you’ll log the
event into the debugger, and you’ll then pop up a modal dialog box showing which row has
been tapped.

To begin, enter the function in Listing 1-7 into the ViewController.

Listing 1-7. The tableView:didSelectRowAtIndexPath: Function

// MARK:
// MARK: UITableViewDelegate functions

func tableView(tableView: UITableView, didSelectRowAtIndexPath indexPath: NSIndexPath) {

 let messageString = "You tapped row \(indexPath.row)"

 let alertController = UIAlertController(title: "Row tapped",
 message: messageString, preferredStyle: .Alert)

 let okAction = UIAlertAction(title: "OK", style: .Default,
 handler: nil)

 alertController.addAction(okAction)

 self.presentViewController(alertController, animated: true) {
 print("\(messageString)")
 }

}

24 CHAPTER 1: Table Views Quick Start

Let’s unpack this function. The tableView(_:didSelectRowAtIndexPath:) function doesn’t
return anything and takes the following two parameters:

	The UITableView instance that called the function (as with the data
source, the delegate could respond to more than one table view and
therefore needs to be able to distinguish between them)

	The indexPath whose row property corresponds to the row that
was tapped

First, you create a string that will be displayed in the log and the alert controller:

let messageString = "You tapped row \(indexPath.row)"

Next, you create the UIAlertController:

let alertController = UIAlertController(title: "Row tapped",
message: messageString, preferredStyle: UIAlertControllerStyle.Alert)

The alert controller needs a UIAlertAction button:

let okAction = UIAlertAction(title: "OK", style: UIAlertActionStyle.Default,
handler: nil)
alertController.addAction(okAction)

Finally, you present the UIAlertController and send a message to the debugger as the
completion action of the presentation:

self.presentViewController(alertController, animated: true) {
 print("\(messageString)")
}

Run the code by pressing Command +R (if the Simulator is still running, select the option
to quit). Then tap a row at random. If all goes well, you’ll see something like Figure 1-20.

Tip Most developers spend as much time looking at the output of the debugger as they
do actually writing code. To make the debugger console visible if it isn’t already, do one
of the following: choose View ➤ Debug Area ➤ Show Debug Area from the menu, type
Command+Shift+Y, or click the middle of the three View icons at the top left of the Xcode toolbar.

25CHAPTER 1: Table Views Quick Start

Congratulations—that’s a fully functional, responsive table you’ve just built there!

Understanding How the App’s Objects Fit Together
Before you leave the SimpleTable app for more adventurous exercises, it’s worth looking at
how the various objects fit together. The app has three main objects:

	The app delegate

	The view controller

	The view, which has the table view embedded within it

Figure 1-20. Tapping a row

26 CHAPTER 1: Table Views Quick Start

Figure 1-21 shows how the three objects relate, together with their outlets.

The AppDelegate’s window has a rootViewController property, which is connected to the
ViewController object. This in turn has a view outlet, which is connected to the view object
in the Storyboard file. Embedded in the Storyboard is the UITableView instance, which has
delegate and dataSource properties. These are linked back to the ViewController.

Obviously, this is a pretty simple application, but as applications get more complex, it’s
worth spending time to sketch out an object diagram. If a picture’s worth a thousand words,
as the saying goes, an object diagram is worth at least a thousand lines of comments!

Figure 1-21. The object diagram

27CHAPTER 1: Table Views Quick Start

Summary
In this chapter, you created a very basic table view stage by stage:

	To start, you created some data to display in the table.

	Then, using Interface Builder, you created an instance of UITableView in
the window.

	The view controller conformed to the UITableViewDataSource and
UITableViewDelegate protocols so that it could provide the data for the
table and the response to interaction.

	You implemented the code required to create cells for the table.

	Finally, you made the table react to user input.

From here, it’s time to look in much more detail at how tables and cells are constructed,
together with how they can be customized and made to respond to user interaction.

29

Chapter 2
How the Table View
Fits Together
In this chapter, you’re going to take a whistle-stop tour of table views and the elements from
which they’re built. Although this chapter does not present a lot of code, it will provide a
useful foundation for later when you start to customize table views.

Along the way, you’ll look at the following:

	The types and styles of table views

	The anatomy and dimensions of table views

	UITableView’s relationship to the UIScrollView superclass

	Creation of table views in code and with Interface Builder

	Use of the UITableViewController class to take advantage of its
template methods

Understanding Table Views
At its simplest, a table view is a list of items that can (often) be scrolled vertically. Because this
is a common interface design pattern, UIKit provides a powerful suite of classes and protocols
to make the creation and management of table views as simple and as effective as possible.

Table views can range from a very plain list created by using one of the standard styles
provided by the SDK to something so customized that it’s barely recognizable as a table at
all. Figure 2-1 shows some examples of table views.

30 CHAPTER 2: How the Table View Fits Together

The Settings app uses grouped static rows, while the 1Password app is a plain table view
with a search bar. The Collins German Dictionary app uses cell customization to create
custom typography effects. Despite the differences in visual appearance, all three of these
apps are based around UITableViews and have identical interaction patterns.

Working with the UITableView Family
At the heart of the table view are the classes, protocols, and view objects that make up the
members of the UITableView family:

	The UITableView and UITableViewController classes

	The UITableViewDelegate and UITableViewDataSource protocols

	The UITableView and UITableViewCell view objects

All six work together. The classes provide the core functionality for the table view, the
protocols define various data and interaction methods, and the view objects provide the
physical user interface.

Figure 2-1. Examples of table views—the built-in Settings app, the 1Password password manager and the Collins
German Dictionary app

31CHAPTER 2: How the Table View Fits Together

The UITableView Class Hierarchy
The UITableView class is a subclass of UIScrollView, which in turn inherits from UIView,
UIResponder, and ultimately NSObject, as shown in Figure 2-2.

This means that UITableView benefits from much of the functionality provided by its parent
classes. For example, UIScrollView provides the scrolling of the table, while UIResponder
allows the table cells to respond to user touches and swipes.

Note In an attempt to reduce confusion, I’ll use UITableView when I’m referring to the class,
tableView when I’m referring to a specific instance of a UITableView, and “table view” when
I’m talking about table views in general.

Figure 2-2. The UITableView inheritance chain

32 CHAPTER 2: How the Table View Fits Together

Choosing the Type of Table View
Although their visual appearance can be customized to the point where it’s almost difficult
to recognize them as instances of the UITableView class at all, table views come in one of
two basic forms: plain and grouped. These basic types have two variations: indexed and
sectioned.

The Plain Table
The plain table is the basic vanilla incarnation of the UITableView. Figure 2-3 shows an
example (with possibly the dullest content imaginable).

Figure 2-3. A plain table view and its components

The plain table is the version that is created by default when dragging into a view in Interface
Builder, although the type can be specified when creating a table view in code:

 var tableView: UITableView = UITableView(frame: tvFrame,
 style:.Plain)

If the number of rows in the tableView doesn’t fit in the frame, the table can be scrolled
to reveal more rows. Scroll indicators appear in the right-hand scroll area when the table is
in motion.

33CHAPTER 2: How the Table View Fits Together

The Indexed Table
The indexed table builds on the plain table by adding an extra navigation aid in the form of
an index that appears on the right-hand side of the table view, adjacent to the scroll area.
Figure 2-4 shows an example.

Figure 2-4. An indexed table

Implementing indexes involves UITableViewDataSource protocol methods, and is covered in
detail in Chapter 11.

http://dx.doi.org/10.1007/978-1-4842-1242-4_11

34 CHAPTER 2: How the Table View Fits Together

The Sectioned Table
The sectioned table, as its name suggests, groups its rows into sections. These sections can
have headers. Figure 2-5 shows an example of relatively simple text headers, which could
be replaced with complex UIView objects if needed.

This type of table view utilizes several UITableViewDataSource protocol methods to configure
the behavior of the sections, and is covered in Chapter 11.

The Grouped Table
The grouped table takes things one step further by separating the sections into a style that is
distinct from the table view’s background. Figure 2-6 shows the difference between sections
and groups.

Figure 2-5. A simple sectioned table

http://dx.doi.org/10.1007/978-1-4842-1242-4_11

35CHAPTER 2: How the Table View Fits Together

Each section has a header and footer. These are UIViews, and are returned by two
UITableViewDelegate methods:

func tableView(tableView: UITableView, viewForFooterInSection
 section: Int) -> UIView?

func tableView(_ tableView: UITableView, viewForHeaderInSection
 section: Int) -> UIView?

Although you can manipulate the view that comprises the entire header and footer, often
it’s enough just to be able to set the titles. UITableViewDataSource has two methods to
support this:

func tableView(tableView: UITableView, titleForHeaderInSection
 section: Int) -> String?

func tableView(tableView: UITableView, titleForFooterInSection
 section: Int) -> String?

Figure 2-6. Comparing sections and groups

36 CHAPTER 2: How the Table View Fits Together

If for any reason you need to find the dimensions of the headers and footers, the
UITableView can return these as CGRect values with the following methods:

func rectForHeaderInSection(_ section: Int) -> CGRect
func rectForFooterInSection(_ section: Int) -> CGRect

The dimensions of the entire section (header, footer, and content) are available by calling
the following:

func rectForSection(_ section: Int) -> CGRect

Setting TableView Dimensions
One way to visualize a tableView is to think of it as a window that provides a view of a
conveyor belt of cells. The number of cells that are visible through the window depends on
the size of the window—indicated by the tableView’s frame property—and the height of
each cell. The frame property is a CGRect with height and width values.

The overall length of the conveyor belt—or more properly, the height of the tableView in
points—is available through the contentSize property, which returns a CGSize. From there
you can access the width and height values.

At the top and bottom of each “belt” of cells, you can add a UIView as a static header
and footer. These are set through the tableHeaderView and tableFooterView properties,
respectively. Figure 2-7 illustrates a tableView’s dimensions.

37CHAPTER 2: How the Table View Fits Together

The cells that are visible at any given moment can be accessed en masse through the
tableView’s visibleCells property. This is an Array and is updated as the table scrolls up
and down.

Controlling the Background of a UITableView
Setting an image as the background of a UITableView is possible, albeit slightly-convoluted.
There are four steps.

1. Create an instance of a UIImageView and set its image property to the
image that you want to appear behind the table.

let tableBackgroundImage = UIImageView(image: UIImage(named:"myImage"))

2. Set the UIImageView’s frame property so that it’s the same size as
that of the tableView:

tableBackgroundImage.frame = tableView.frame

Figure 2-7. The dimensions of a tableView

38 CHAPTER 2: How the Table View Fits Together

3. Update the tableView’s backgroundImage property to point to your
new UIImageView object:

tableView.backgroundView = tableBackgroundImage

4. Set the background color of the table’s cells to clearColor so that
the background image can be seen:

cell.backgroundColor = UIColor.clearColor()

What UITableView Inherits from UIScrollView
What does UITableView get from UIScrollView?

The short answer to this is, “Everything that UITableView doesn’t explicitly override.” This
provides some useful UIScrollView and UIScrollViewDelegate methods and properties that
are particularly relevant to the UITableView class.

contentSize indicates the full height that the table would be if all rows were created and
populated at once. (In fact, unless the table is small, this very rarely happens because of
UITableView’s caching and queuing mechanism.) contentSize is calculated by adding the
total height of all the rows, plus the header and footer views.

contentOffset indicates how far down the table has been scrolled from the top of the
tableView’s frame. For example, if the tableView’s contentSize.height value is 1,000 points,
and the table is scrolled halfway down, the contentOffset would be 500 points.

Two UIScrollViewDelegate methods are particularly useful if you want to know when your
user is scrolling the table around.

scrollViewWillBeginDraggingtableView starts moving, and scrollViewDidScroll is called
multiple times while the table scrolls.

This is where you could get the new contentOffset value and update anything that needed
to change as a result.

Creating UITableViews
Any discussion of how to go about creating UITableViews has to come with a caveat: on
their own, UITableViews don’t really do very much. In order to become populated with
data and interact with your user, they need the support of a class that implements the
UITableViewDelegate and UITableViewDatasource protocols.

Having said that, in order to get a UITableView onto the screen, you need to be able to
draw it. You have two options here: create it visually using Interface Builder in a XIB file or
Storyboard or create it programmatically in code.

Note Although UITableView is a subclass of UIScrollView, table views can only scroll
vertically.

39CHAPTER 2: How the Table View Fits Together

Creating a UITableView in Interface Builder
Creating a UITableView in Interface Builder is a massively challenging process.

1. Open your Storyboard.

2. Drag a UITableView from the Objects browser onto your view, as
shown in Figure 2-8.

Figure 2-8. The UITableView item in the Objects browser

Okay, I lied. It’s actually pretty straightforward. But there are a couple of details to take care
of, so the process is worth stepping through.

Placing a UITableView into Another View
Although you’ll often see table views full-screen, you’re not restricted to that option. You can
make your table views any size you want. This is pretty simple: drag the UITableView object
onto the view in which it’s going to appear, and adjust the AutoLayout constraints as needed
(see Figure 2-9).

Figure 2-9. Placing a UITableView into another view

40 CHAPTER 2: How the Table View Fits Together

Placing a Full-Screen UITableView
If, on the other hand, your tableView will always be shown full screen, there’s not really
much point in creating it as a child of another view that will never be shown.

The process in this scenario is slightly different.

1. Delete the existing view object from the NIB file or Storyboard.

2. Drag a UITableView object into the central area (Figure 2-10).

Figure 2-10. Dragging a UITableView object into the main area

3. Having removed the default view from the NIB file or Storyboard,
you need to reconnect the File’s Owner view outlet to the tableView.
Ctrl-click the File’s Owner icon in the Placeholders list and drag out
to the tableView. Then release the mouse button, and select the
View outlet from the pop-up list.

Caution It’s easy to forget to reconnect the view outlet if you’ve deleted the object it was once
connected to. If you don’t reconnect, your app will crash with an error something along the lines of

*** Terminating app due to uncaught exception 'NSInternalInconsistency

Exception', reason: '-[UIViewController _loadViewFromNibNamed:bundle:]

loaded the "PlainTable" nib but the view outlet was not set.'

41CHAPTER 2: How the Table View Fits Together

4. After the view outlet is reconnected, hook your new tableView up to
its dataSource and delegate.

The chances are that the class that will act as dataSource and delegate will also be the File’s
Owner. If that’s the case, you can connect these by Ctrl-clicking and dragging from the table
to the File’s Owner icon and selecting dataSource and delegate from the pop-up options.

Creating a UITableView Programmatically
In Chapter 1, we built a simple app with a table view using Interface Builder.

Following the maxim of anything you can do in Interface Builder, you can also do in code, the
alternative way of creating a UITableView is to do so in code. It’s a four-step process.

1. Create an instance of UITableView with a size and a style.

2. Set the new tableView’s delegate and dataSource properties.

3. Add the new tableView to the superView.

4. Call the new tableView’s reloadData method to make sure it updates.

Listing 2-1 shows an example of how you could do this in a UIViewController’s
viewDidLoad method.

Listing 2-1. Adding a tableView Programmatically

override func viewDidLoad() {

 super.viewDidLoad()
 // Do any additional setup after loading the view, typically from a nib.

 tableView = UITableView(frame: self.view.frame, style:.Plain)
 tableView.delegate = self
 tableView.dataSource = self

 self.view.addSubview(tableView)
 tableView.reloadData()

}

3. Having removed the default view from the NIB file or Storyboard,
you need to reconnect the File’s Owner view outlet to the tableView.
Ctrl-click the File’s Owner icon in the Placeholders list and drag out
to the tableView. Then release the mouse button, and select the
View outlet from the pop-up list.

Caution It’s easy to forget to reconnect the view outlet if you’ve deleted the object it was once
connected to. If you don’t reconnect, your app will crash with an error something along the lines of

*** Terminating app due to uncaught exception 'NSInternalInconsistency

Exception', reason: '-[UIViewController _loadViewFromNibNamed:bundle:]

loaded the "PlainTable" nib but the view outlet was not set.'

http://dx.doi.org/10.1007/978-1-4842-1242-4_1

42 CHAPTER 2: How the Table View Fits Together

Creating a UITableView with UITableViewController
In order for a tableView to operate successfully, it needs a number of UITableViewDelegate
and UITableViewDataSource methods to be implemented.

Although Xcode’s autocompletion helps with the typing, creating all the methods by hand
will probably induce repetitive strain injury. Save your wrists, speed things up, and create a
subclass of UITableViewController instead!

The process is delightfully simple. Instead of creating an instance of a vanilla
UIViewController, drop down the subclass list and select UITableViewController instead,
as shown in Figure 2-11.

Caution Having set the delegate and dataSource properties of your tableView,
it will expect (nay, demand!) that the controller adopts the UITableViewDelegate and
UITableViewDataSource protocols–in particular, that the numberOfSectionsInTableView:,
tableView:numberOfRowsInSection: and tableView:cellForRowAtIndexPath:
methods are implemented.

If those protocols haven’t been implemented correctly, the app will crash when the tableView is
loaded, complaining that the dataSource hasn’t returned a cell.

Figure 2-11. Creating an instance of UITableViewController

43CHAPTER 2: How the Table View Fits Together

The new class files will be created as usual, but with some added extras. In addition to the
usual UIViewController methods, you’ll find some stubbed-out UITableViewDataSource
methods in the file (see Figure 2-12).

Figure 2-12. The UITableViewDataSource methods

This is the minimal subset of UITableViewController, delegate, and dataSource methods
that you need to get going, and the class’s header file declares it as conforming to the
two protocols.

Xcode also provides a slew of other methods that are commented out:

override func tableView(tableView: UITableView, canMoveRowAtIndexPath indexPath:
NSIndexPath) -> Bool

override func tableView(tableView: UITableView, moveRowAtIndexPath fromIndexPath:
NSIndexPath, toIndexPath: NSIndexPath)

override func tableView(tableView: UITableView, commitEditingStyle editingStyle:
UITableViewCellEditingStyle, forRowAtIndexPath indexPath: NSIndexPath)

override func tableView(tableView: UITableView, canEditRowAtIndexPath indexPath:
NSIndexPath) -> Bool

None of these have to be implemented, but they are there as skeleton methods ready to be
uncommented if you need them.

Connecting UITableViewController Outlets
If you selected the “with XIB for user interface” option when creating the
UITableViewController subclass, the XIB file will contain a UITableView that comes already
connected to its delegate and dataSource.

If you didn’t select the option to create the XIB file, you’ll need to connect things up
manually once you’ve created the XIB file yourself.

44 CHAPTER 2: How the Table View Fits Together

	First, create a new View file and then delete the UIView object that is
added for you, and replace it with a UITableView object.

	Next, set the interface’s File's Owner by selecting the File's Owner
icon in the Placeholders list, then changing the Custom Class field in
the Identity Inspector to the name of your UITableViewController
subclass.

	The UITableViewController subclass exposes a view property; this
needs to be connected to the Table View object.

	Finally, the Table View object’s dataSource and delegate outlets
need to be connected to the UITableViewController subclass via the
File's Owner object in the Placeholders list.

At this point, you’ve effectively replicated the process that’s done for you automatically when
you create a new UITableViewController subclass with the “with XIB for user interface”
option selected.

Summary
This short chapter introduced the anatomy and core components of the UITableView.

There are two basic styles of table view:

	Plain

	Grouped

Table views can also be split into sections, and provided with an index.

Although they can look different, the different types of table view have similar component
parts and dimensions. They also inherit methods and properties from the UIScrollView
parent class.

Like many of UIKit’s components, it’s possible to create UITableViews both visually—using
Interface Builder—and programmatically. Anything that can be done with Interface Builder
can also be done in code.

Implementing the tableView’s controller as a subclass of UITableViewController allows us
to cut down on creating methods manually and use the templates that are provided.

In Chapter 5, you’ll learn how your newly created UITableView is fed with data, and how it
works in conjunction with the UITableViewDelegate and UITableViewDataSource protocols.

http://dx.doi.org/10.1007/978-1-4842-1242-4_5

45

Chapter 3
Collection Views Quick Start
In this chapter, you’ll start your exploration of collection views. It begins with an overview of
what collection views are and some examples of how they’re used in practice. Then in the
second section, you’ll build a simple “Hello, world”-style collection view app to introduce
you to the components behind the user interface and help you to contextualize the detail
that’s going to come in later chapters.

If you’re just starting to use collection views, it’s worth taking some time to build a very
simple one from scratch before diving into the gnarly details. However, if you’ve reached
the stage where you feel more confident about how the components of the collection view
jigsaw fit together and want to get straight into the code, feel free to skip the rest of this
chapter completely. I’ll cover the elements in detail later, so you won’t miss out.

What Are Collection Views?
A collection view provides a way of managing and displaying an ordered set of data items
with customizable and interactive layouts.

Collection views consist of data items displayed in cells, together with supplementary
views that can display additional information for things like section headers and footers, or
additional metadata about the items themselves.

Decoration views are purely visual components that can be used to display interface
elements like backgrounds and borders; they don’t include any variable data elements.

The collection view builds on the table view control by providing the potential for much more
complex layouts. Whereas a table view can display items in a single column, collection views
can present items in layouts ranging from linear grids to circles and every conceivable layout
in between, as shown in Figure 3-1.

46 CHAPTER 3: Collection Views Quick Start

The UICollectionView control works with four other objects, shown in Figure 3-2. The
collection view itself is managed by a UIViewController. The model contains the data that
will be displayed in the collection view; this is supplied to the collection view itself by the
UICollectionViewDataSource. Interactions with the collection view are handed by an object
acting as the UICollectionViewDelegate.

Figure 3-1. Examples of collection views in action

47CHAPTER 3: Collection Views Quick Start

UICollectionView uses the model-view-controller pattern to organize itself. The data that
drives the contents of the items and supplementary views is provided by the model object,
while the UICollectionView control itself is the view component. The controller part is
normally a UIViewController, but the role of the controller can also be split across different
objects that act as delegate and dataSource.

The layout of a collection view is managed by a UICollectionViewLayout object that tells
the collection view how each cell, supplementary view, and decoration view should be
positioned within the bounds of the collection view itself by configuring the various layout
attributes of each item. Changes in layouts can be animated and react to interactions.

As with UITableView, collection views use a dequeuing and recycling approach to creating
and managing cells. This allows collection views to manage potentially huge numbers of
individual data items while maintaining fast scrolling and animation performance, and all
within the stringent memory limitations of an iOS device.

There’s a detailed description of how the dequeueing mechanism works with UITableView
in Chapter 5; UICollectionView operates in exactly the same way, with the addition of
supplementary and decoration views as well as item cells.

Figure 3-2. The collection view and supporting objects

http://dx.doi.org/10.1007/978-1-4842-1242-4_5

48 CHAPTER 3: Collection Views Quick Start

The Anatomy of a Collection View
The collection view displays a list of items—or cells—that can be scrolled vertically and
horizontally. They are instances of the UICollectionView class and come in two physical parts.

The Collection View Itself
The visible container part, the collectionView itself, is a subclass of UIScrollView, and is
responsible for displaying a collection of data items as cells.

These are laid out inside the bounds of the collection view’s contentView. If the contentView
is larger than the collectionView’s frame, then the collection view will take care of scrolling
the content view around, either in response to user interaction or programmatically. Figure 3-3
shows how the frame and contentView relate.

Figure 3-3. The frame and contentView

49CHAPTER 3: Collection Views Quick Start

As the content view scrolls around, the collection view will create and remove items from it
as required; this is a balance between ensuring that items are always created and placed
in time to be visible as that part of the content view scrolls into the frame, but not creating
and maintaining so many items that aren’t visible so that the memory consumption of the
collection view is excessive.

In exactly the same way as a UITableView, the collection view uses a queue of preexisting
items that it can dequeue and recycle as required. Just before an item scrolls into the visible
area, the collection view will grab it from the queue and configure it with the correct data.
Once the item scrolls out of the visible area, the collection view will dump it back onto the
queue ready for eventual reuse.

In this way, a collection view can appear to create and display thousands of items while only
needing to create a small fraction of them as actual objects to maintain in memory.

Collection View Cells
Collection view cells are instances of UICollectionReusableView or its subclasses. They
have one of three roles:

	Item cells, which are created as instances of UICollectionViewCell.
These are analogous to the cells of a table view, and are used to display
the main data items. In a gallery app, for example, the cells are likely to
display thumbnail images of the photos in an album.

	Supplementary views, which are instances of
UICollectionReusableView. These are entirely optional, and can have a
variety of purposes. In grid-type layouts, such as a photo gallery, they’re
often used to provide metadata about sections by acting as headers and
footers. In more complex layouts, they can be used to display additional
information about items.

	Decoration views, which are also instances of
UICollectionReusableView. These are independent of the collection
view’s model and don’t display any data. Typically they’re often used to
display graphical elements such as backgrounds or section highlights.

Figure 3-4 shows the conceptual parts of a collection view with a grid layout, with the
various types of views highlighted.

50 CHAPTER 3: Collection Views Quick Start

Figure 3-4. The basic anatomy of a collection view

Figure 3-5 shows a collection view in action in the iOS iBooks app. It uses cells to show the
book covers, supplementary views to contain the download control, and a decoration view
to provide the “shelf” effect.

51CHAPTER 3: Collection Views Quick Start

Figure 3-5. The iBooks app

The Supporting Objects
The collection view control itself is pretty dumb; it relies on the support of four other objects
in order to display its data:

	Model

	Datasource

	Delegate

	Layout

Each object has a specific role to play in supporting the collection view, and their organization
is based on the model-view-controller architecture. Figure 3-6 shows how the four objects
interrelate.

52 CHAPTER 3: Collection Views Quick Start

The Collection View’s Model
The model contains the data that will be displayed in the collection view through the datasource.
As the name suggests, it’s part of the model component of the model-view-controller
architecture.

Models can take many forms, and will depend on the way that the data in your app needs to
be managed. At its simplest, the model may be a one-dimensional array that contains a set
of Strings. More complex models may involve two-dimensional arrays to split the data into
sections, or could retrieve data from a local Core Data database or an external network source.

Regardless of what form the model takes, it doesn’t communicate directly with the
collection view. That’s the role of the datasource.

The Collection View’s Datasource
The responsibility of the datasource object is to supply the collection view with cells,
supplementary views, and decoration views when requested so that they can be displayed
by the collection view. It forms the other part of the model component of the
model-view-controller architecture.

Figure 3-6. How the collection view and supporting objects interrelate

53CHAPTER 3: Collection Views Quick Start

The relationship between the collection view and its datasource is defined by the
UICollectionViewDataSource protocol. There are mandatory functions that the collection
view’s datasource must implement, and some optional ones.

The datasource can be a standalone class that conforms to the UICollectionViewDataSource
protocol, or it can be the collection view’s view controller. There are no hard and fast rules
about which approach is correct, but regardless of how its implemented, it’s vitally important
that the datasource is able to return data to the collection view as fast as possible in order to
maximize performance.

The Collection View’s Delegate
Handling user interaction with the collection view is the responsibility of the delegate object,
which forms one part of the controller component of the model-view-controller architecture.

The delegate is a class that implements some or all of the functions defined by the
UICollectionViewDelegate protocol. It handles selection and highlighting of the collection
view’s items. There are no mandatory functions in the UICollectionViewDelegate protocol,
but the collection view must have a delegate object set.

The Collection View’s Layout
Unlike UITableView, a UICollectionView control has no knowledge about how it should lay
out items in its content view. It relies on a UICollectionViewLayout object to provide layout
attributes for every item.

Each item in the collection view (cell, supplementary view, or decoration view) has a
corresponding instance of UICollectionViewLayoutAttributes , shown in Figure 3-7.
It manages the layout-related attributes for the item, and is created by the
UICollectionViewLayout object when requested by the collection view.

54 CHAPTER 3: Collection Views Quick Start

Having requested the attributes for each item, the collection view then uses them
to position the item in its content view. The attributes control the size, position,
transform, and opacity of each item, but you can also supplement them by subclassing
UICollectionViewLayoutAttributes and adding your own custom properties.

If your collection view layout is based around a line of items, with or without line breaks, then
you can take advantage of the UICollectionViewFlowLayout class, which takes care of much
of the layout requirements for you. You normally only need to specify item sizes and
inter-item and inter-line spacing; then the flow layout will calculate everything else for you.

For more complex layouts, you need to create a custom layout as a subclass of
UICollectionViewLayout. With this, you’re responsible for calculating all the necessary
attributes to display the items correctly.

Creating a Simple Collection View App
In the rest of this chapter, you’ll build a simple “Hello, world”-style collection view app from
scratch. It will show you how the container, datasource, delegate, layout, cells, and views all
fit together and give you an app that you can use as the basis for your own experiments. The
end result will display a deck of cards in suits, as shown in Figure 3-8.

Figure 3-7. UICollectionViewLayoutAttributes

55CHAPTER 3: Collection Views Quick Start

I’m going to take it deliberately slowly and cover all the steps. If you’re a confident Xcode
driver, you won’t need this hand-holding—just concentrate on the code instead.

Still with me? Okay, you’re going to do the following:

	Create a simple, window-based application skeleton

	Generate some data for feeding the collection view

	Create a simple collection view

	Wire up the collection view’s datasource and delegate

Figure 3-8. The completed app

56 CHAPTER 3: Collection Views Quick Start

	Implement the collection view’s layout

	Add some very simple interactivity

It’s all very straightforward, but useful practice nevertheless.

Creating the Application Skeleton
For this application, you’re going to use a simple structure: a single view managed by a view
controller and a Storyboard to provide the content for the view.

To begin with, create a new project in Xcode and select the Single View Application
template, as shown in Figure 3-9.

Figure 3-9. Xcode’s template selection pane

Call the application SimpleCV, as shown in Figure 3-10.

57CHAPTER 3: Collection Views Quick Start

Save the project somewhere appropriate, and you’ll see the project view of Xcode, with the
initial skeleton of your application. It’ll look something like Figure 3-11, assuming that you’ve
gone with the SimpleCV application name.

Figure 3-10. Name the application

58 CHAPTER 3: Collection Views Quick Start

Figure 3-11. The initial Xcode view

You’ll see that you have the following:

	An app delegate (AppDelegate.swift)

	A view controller (ViewController.swift)

	A Storyboard (Main.storyboard)

	An asset catalog (Images.xcassets)

	Supporting files and folders for unit tests, frameworks, and products

Creating Some Data
Before you start with the collection view itself, you need to create some data to feed it with.
You’re going to create the model for the collection view from a directory containing the four
card suits.

Adding the Card Images
In the source code for this book, you’ll find a cards folder than contains five subdirectories.
Each subdirectory contains the png image for each card. First, drag the cards folder into the
project folder, as shown in Figure 3-12.

59CHAPTER 3: Collection Views Quick Start

Next, drag the cards folder from the Finder into Xcode, and drop it so that it’s inside the
SimpleVC folder, as shown in Figure 3-13.

Figure 3-13. Adding the card images to the project

Figure 3-12. The card images

When adding the folder, make sure that you select the options to copy items into the
destination folder and to create groups for any added folders, as shown in Figure 3-14.

60 CHAPTER 3: Collection Views Quick Start

Building the Model
The approach you’re going to use is to build the data from a JSON file. The structure of the
JSON looks like Listing 3-1.

Listing 3-1. An Extract from the cards.json File

{
 "suits": [
 {
 "suitName": "Spades",
 "packOrder": 1,
 "cards": [
 {
 "cardName": "Ace of Spades",
 "cardImage": "ace_of_spades.png",
 "suitOrder": 1,
 "cardValue": 14
 },
 {
 "cardName": "King of Spades",
 "cardImage": "king_of_spades.png",
 "suitOrder": 2,
 "cardValue": 13
 },

Figure 3-14. The options for adding the card files

61CHAPTER 3: Collection Views Quick Start

 {
 "cardName": "Queen of Spades",
 "cardImage": "queen_of_spades.png",
 "suitOrder": 3,
 "cardValue": 12
 },
 ...
]
 },
 {
 "suitName": "Hearts",
 "packOrder": 2,
 "cards": [...]
 },
 {
 "suitName": "Diamonds",
 "packOrder": 3,
 "cards": [...]
 },
 {
 "suitName": "Clubs",
 "packOrder": 4,
 "cards": [...]
 },
 {
 "suitName": "Jokers",
 "packOrder": 5,
 "cards": [
 {
 "cardName": "Black Joker",
 "cardImage": "black_joker.png",
 "suitOrder": 1,
 "cardValue": 1
 },
 {
 "cardName": "Red Joker",
 "cardImage": "red_joker.png",
 "suitOrder": 2,
 "cardValue": 2
 }
]
 }
]
}

To save you having to create the JSON file from scratch, it’s available in the downloadable
source code.

62 CHAPTER 3: Collection Views Quick Start

The model will be stored as an Array of Dictionaries in a property in ViewController. Add
this at the top of the class:

class ViewController: UIViewController {

 var suitsArray = [Dictionary<String, AnyObject]()
 ...

Here, you’re declaring that suitsArray will be an array of Dictionaries. Each dictionary
will have a String as a key and can store an AnyObject as the corresponding value (this will
allow you to store Strings, Ints, and other Arrays, as you’ll see in a moment.)

Next, you need a function to load the data from the JSON file. This will read the JSON file
from disk and parse it as dictionaries into the suitsArray array.

Although you’re only building a simple example application, it’s still a good idea to get into
good habits around handling errors. Parsing JSON can be hazardous; the source JSON
might not exist, and it might prove impossible to parse. In either of those situations, you
need to handle the resulting errors.

To do this, first you add an enum to describe the potential error cases. Add this at the top of
the class, underneath the suitsArray declaration:

enum ParsingError: ErrorType {
 case MissingJson
 case JsonParsingError
}

This declares an enum that conforms to the ErrorType protocol. You’re creating two possible
values for the errors that this enum will describe: MissingJson, to indicate that there was a
problem with the source data, and JsonParsingError, to show that something went wrong
with the parsing of the JSON into the suitsArray.

Now add a new function at the bottom of the class called setupData(), as shown in Listing 3-2.

Listing 3-2. The setupData() Function

// MARK:
// MARK: Data setup

func setupData () throws {

 guard let filePath = NSBundle.mainBundle().pathForResource("cards",
 ofType: "json"), jsonData = NSData(contentsOfFile: filePath) else {
 throw ParsingError.MissingJson
 }

 do {
 let parsedObject = try NSJSONSerialization.JSONObjectWithData(jsonData,
 options: NSJSONReadingOptions.MutableContainers) as! NSDictionary
 suitsArray = parsedObject["suits"] as! Array

63CHAPTER 3: Collection Views Quick Start

 } catch {
 throw ParsingError.JsonParsingError
 }
}

Firstly, the function tries to load the cards.json file. It will throw a MissingJson error if it can’t
find it or there’s some problem loading it. If everything is OK, then the JSON will be loaded
into the jsonData object.

Next, the jsonData object is parsed into an NSDictionary. Since this might fail, it’s wrapped
in a do-catch block that will throw a JsonParsingError if anything fails. You’re indicating that
things might go wrong by using the try keyword in front of the JSONObjectWithData function.

You’re also force-unwrapping the result of the parsing into an NSDictionary. This might also
fail, but at least you’ll handle the error if either operation goes wrong.

The suitsArray property will have the structure shown in Figure 3-15.

64 CHAPTER 3: Collection Views Quick Start

An individual section or item in a UICollectionView is referenced by an NSIndexPath value.
Figure 3-16 shows how the indexPath section and row values map onto suits and cards.

Figure 3-15. The data structure

65CHAPTER 3: Collection Views Quick Start

The data model needs to be set up before the collection view starts asking for data, so add
a call to the setupData function in the ViewController’s viewDidLoad function, as shown in
Listing 3-3.

Listing 3-3. The Updated viewDidLoad() Function

override func viewDidLoad() {

 super.viewDidLoad()
 // Do any additional setup after loading the view, typically from a nib.

 // Configure data

 do {

 try setupData()

 } catch ParsingError.MissingJson {

 print("Error loading JSON")

 } catch ParsingError.JsonParsingError {

 print("Error parsing JSON")

Figure 3-16. Mapping between collection sections and rows

66 CHAPTER 3: Collection Views Quick Start

 } catch {

 print("Something went wrong")

 }

 }

This wraps the setupData() function inside a do-catch block. If any errors are thrown, they’ll
be handled here.

Setting Up the Collection View in the Storyboard
With the data set up, you can now set about wiring up the interface. This will be very simple,
with a single collection view that fills the full screen.

In order to configure the collection view, you need to connect it to the view controller, so
create an IBOutlet property in the ViewController implementation file:

class ViewController: UIViewController {

 var suitsArray = [Dictionary<String, AnyObject>]()
 @IBOutlet var collectionView: UICollectionView!
 ...

Next, switch to the Storyboard and drag a UICollectionView object from the Object Browser
into the view, and let it snap to fill the full screen, as shown in Figure 3-17.

Tip There’s no reason why you couldn’t put this data setup code in the viewDidLoad function
itself, but I prefer to keep this kind of thing separate in its own function. There are a couple of
advantages to this approach. Firstly, it keeps the viewDidLoad function compact and easier to
read. Secondly, it will make unit testing your view controllers much easier if you can decouple this
sort of data setup process from the view lifecycle.

67CHAPTER 3: Collection Views Quick Start

UICollectionViews that are dragged into Storyboards come with a single prototype cell
(that’s the white outline at the top-left of the collection view). You aren’t going to need this.
You can leave it there, but Xcode will pop up a warning about requiring reuse identifiers. To
keep the project tidy, highlight the Collection View Cell item in the Scene tree, and press
the Backspace key to delete it.

With the UICollectionView in place, you now need to connect it to the view controller’s
outlet (drag down from the File’s Owner placeholder to the collection view, and select the
collectionView outlet from the HUD).

Next, set the File’s Owner placeholder as the delegate and datasource of the collection
view (drag from the collection view up to the File’s Owner placeholder, and select the
datasource and delegate outlets from the HUD).

The final task is to set up the collection view’s AutoLayout constraints so that it fills the full
width and height of the view regardless of the orientation of the device, but doesn’t underlap
the status bar.

Highlight the Collection View if it’s not already selected, and add Leading, Trailing, Top,
and Bottom constraints to it by clicking the Pin button at the bottom of the Storyboard view,
as shown in Figure 3-18.

Figure 3-17. The UICollectionView added to the Storyboard

68 CHAPTER 3: Collection Views Quick Start

With those three connections established, you can switch back to the ViewController’s
implementation file and start configuring the collection view in code.

Setting Up the delegate and dataSource Funtions
As with UITableView, UICollectionView relies on the assistance of a delegate and a
dataSource object to provide it with cells, supplementary and decoration views, as well as
layout and configuration information at runtime.

Figure 3-18. Adding new constraints

69CHAPTER 3: Collection Views Quick Start

This can be any class that conforms to the UICollectionViewDelegate and
UICollectionViewDataSource protocols. It’s normally regarded as best practice to use
a separate class to act as delegate and dataSource, as this means that each class has
specific role (in software engineering terms, this is the Single Responsibility Principle).

In the projects in later chapters, you’ll take this approach, but to keep this one as simple as
possible, you’ll use the ViewController.

By connecting the collection view’s delegate and dataSource outlets in Interface Builder,
you’ve already told the collection view that the ViewController class will be acting as
delegate and dataSource. Now you need to set up the class to do this.

The first step is to conform the class to the three protocols as shown in Listing 3-4.

Listing 3-4. The Updated SCVViewControllerC

import UIKit
class ViewController: UIViewController, UICollectionViewDataSource, É
UICollectionViewDelegate, UICollectionViewDelegateFlowLayout {
...

The third protocol, UICollectionViewDelegateFlowLayout, extends the
UICollectionViewDelegate protocol with some optional functions that assist
UICollectionViewFlowLayout with attributes like cell sizes. You’ll look at that in a moment,
but while you’re updating the header file, it’s as good a time as any to add this in.

The UICollectionViewDataSource protocol is responsible for providing the data and views
that the collection needs at runtime. At a minimum, you need to implement two functions:

	collectionView(_:numberOfItemsInSection:)

	collectionView(_:cellForItemAtIndexPath:)

There’s also a third, optional function that you can to implement:

	numberOfSectionsInCollectionView(_:)

As the names suggest, the first function returns the number of items in the current section;
this will correspond to the number of cards in each suit.

The second is where you create or dequeue a UICollectionViewCell, configure its content,
and pass it to the collectionView that can then display it.

Note The UICollectionViewDelegateFlowLayout is an additional protocol that defines
some flow layout-specific functions for attributes such as cell sizes. You can think of it as
“extending” the UICollectionDelegate protocol to define the extra functions, similar to adding
additional functions to a Swift class by adding an extension.

70 CHAPTER 3: Collection Views Quick Start

The third (optional) function returns the number of suits; in your collection view, each suit will
sit inside its own section.

The numberOfSectionsInCollectionView: Function
The numberOfSectionsInCollectionView: function tells the collection view how many
sections will be needed to display the data contained in the model. In your example, this is
the number of suits in the deck of cards.

Add the code in Listing 3-5 to the bottom of the ViewController.

Listing 3-5. The numberOfSectionsInCollectionView: Function in Objective-C

func numberOfSectionsInCollectionView(collectionView: UICollectionView) -> Int {
 return suitsArray.count
}

The collectionView:numberOfItemsInSection: Function
Now you can implement the function that determines the number of items that will be
displayed in each section. With your data model, this will be the number of cards in the suit.

Add the collectionView:numberOfItemsInSection: function to the bottom of the
ViewController, as shown in Listing 3-6.

Listing 3-6. The collectionView:numberOfItemsInSection: Function

func collectionView(collectionView: UICollectionView, numberOfItemsInSection
section: Int) -> Int {
 let cardsDictionary = self.suitsArray[section]
 let cardsArray = cardsDictionary["cards"] as! NSArray
 return cardsArray.count
}

This function is very straightforward: it gets the dictionary containing the suit from the
relevant element of the suitsArray, then grabs the array containing the card items and
returns their count.

Tip Unless you tell it otherwise by implementing the
numberOfSectionsInCollectionView(_:) function, the collection view will assume that
there’s only one section.

Tip When the collection view calls one of these three datasource functions, it passes in a
reference to itself as one of the parameters. This means that by checking which one is being
passed in, you can serve multiple collection views with the same datasource function(s).

71CHAPTER 3: Collection Views Quick Start

The collectionView:cellForItemForIndexPath: Function
The collectionView:cellForItemAtIndexPath: function is where the magic happens.

This is the function that is called repeatedly by the collection view when it needs a new cell
to display, and is responsible for either creating or dequeueing a cell, configuring it, and
handing that cell over to the collection view on demand.

The question that immediately arises is “where does the cell come from in the first place?”
Unlike UITableView, UICollectionView doesn’t have any “standard” cell types. You have to
create them yourself from scratch.

You can do this in two ways: by creating a nib file, or creating a custom
UICollectionViewReusableView or UICollectionViewCell subclass. Then when you’re
configuring the collection view as it’s instantiated, you register the nib file or class together
with a cell reuse identifier.

This process of registration tells the collection view where the cells are to be sourced from.
The reuse identifier acts as a “tag” to tell the different cell types apart. Although your simple
example only has a single cell type, you can have many different kinds to display different
types of data within the same collection view.

In the spirit of a simple example, you’re going to create a very simple Xib file to contain your
UICollectionViewCell template. Create a new file (File ➤ New ➤ File) and select the View
item from the User Interface section, as shown in Figure 3-19.

Figure 3-19. Selecting a view template

72 CHAPTER 3: Collection Views Quick Start

The device family setting isn’t important, so click Next to step through this and then give
your new file a name. I’m calling mine CollectionViewCell. Click the Create button, and
you’ll be presented with a new UIView in the Interface Builder.

Somewhat counterintuitively, the first thing you need to do with your new file is delete the
view that’s been provided for you. Select it in the list of Placeholders, and then press the
Delete key.

Now find UICollectionViewCell in the Object Brower in the Utilities area on the right of the
Xcode window, and drag it out into the main area. You should end up with something looking
like Figure 3-20.

Figure 3-20. The new UICollectionViewCell

73CHAPTER 3: Collection Views Quick Start

Now you need to add a UIImageView to the cell to display the card, so drag one from the
Object Browser and drop it into the cell, as shown in Figure 3-21.

Figure 3-21. The UIImageView inside the cell

Note that the image view is bigger than the cell itself. Use AutoLayout constraints to “glue”
the image view to the cell frame, so that when the cell is resized, the image view will grow
with it.

Select the image view in the view tree, click the Pin button at the bottom of the Storyboard
view, and add four constraints, as shown in Figure 3-22.

74 CHAPTER 3: Collection Views Quick Start

Finally, select the image view again, open the Attributes Inspector if it isn’t visible, and add a
tag to the image view, as shown in Figure 3-23.

Caution Accessing in-cell controls through tags can be a brittle process. It relies on the tag
set in the Storyboard matching exactly with the tag used to refer to the control in the code. If
you have a cell with more than a single control, it’s safer to connect them via outlets in a custom
UICollectionViewCell subclass.

Figure 3-22. Adding constraints to the image view

75CHAPTER 3: Collection Views Quick Start

Finally, select the image view again, open the Attributes Inspector if it isn’t visible, and add a
tag to the image view, as shown in Figure 3-23.

Caution Accessing in-cell controls through tags can be a brittle process. It relies on the tag
set in the Storyboard matching exactly with the tag used to refer to the control in the code. If
you have a cell with more than a single control, it’s safer to connect them via outlets in a custom
UICollectionViewCell subclass.

That’s it as far as the user interface is concerned. The rest of the configuration of your
UICollectionViewCell will take place in code. Switch back to the ViewController’s
implementation file, and you’re ready to continue.

Having created the nib file containing your cell, you need to register it with the collection
view. The obvious place to do this is as the view controller loads, so you’re going to take
the same approach I used to create the data for the collection view, and create a separate
function that will be called by the view controller’s viewDidLoad function.

Create a new function called configureCollectionView, as shown in Listing 3-7.

Figure 3-23. Adding the tag to the image view

76 CHAPTER 3: Collection Views Quick Start

Listing 3-7. The configureCollectionView Function

func configureCollectionView() {
 collectionView.registerNib(UINib(nibName: "CollectionViewCell",
 bundle: nil), forCellWithReuseIdentifier: "CardCell")
}

This is very simple. You call the registerNib(_:forCellWithReuseIdentifier:) function on
the collection view, and provide it with the name of the nib file you just created and the reuse
identifier.

Having created the function, update the viewDidLoad function so that it’s called as the view
controller is loaded, as shown in Listing 3-8.

Listing 3-8. The updated viewDidLoad Function in Swift

override func viewDidLoad() {

 super.viewDidLoad()
 // Do any additional setup after loading the view, typically from a nib.

 // Configure data
 do {

 try setupData()

 } catch ParsingError.MissingJson {

 print("Error loading JSON")

 } catch ParsingError.JsonParsingError {

 print("Error parsing JSON")

 } catch {

 print("Something went wrong")

 }

 // Configure collection view
 configureCollectionView()

}

With the cell’s nib registered, you’re in a position to implement the collectionView(_:cell
ForItemAtIndexPath:) function, as shown in Listing 3-9.

77CHAPTER 3: Collection Views Quick Start

Listing 3-9. The collectionView:cellForItemAtIndexPath: Function

func collectionView(collectionView: UICollectionView, cellForItemAtIndexPath indexPath:
NSIndexPath) -> UICollectionViewCell {

 let cell: UICollectionViewCell = collectionView.dequeueReusableCellWithReuseIdentifier
("CardCell", forIndexPath: indexPath)

 let suitDictionary = suitsArray[indexPath.section]
 let cardsArray = suitDictionary["cards"] as! [Dictionary<String, AnyObject>]
 let cardDictionary = cardsArray[indexPath.row]

 let cardImageName = cardDictionary["cardImage"] as! String
 if let cardImage = UIImage(named: cardImageName) {

 if let imageView = cell.contentView.viewWithTag(1000) as? UIImageView {
 imageView.image = cardImage
 }

 }

 return cell

}

Just like UITableViews, UICollectionView maintains a queue of cells that can be recycled
when required to remove the need to maintain one cell per item, and to reduce the memory
overhead to an absolute minimum.

When the collection view needs a new cell to display, it calls the collectionView(_:cellFor
ItemAtIndexPath:) function on its datasource, passing over a reference to itself and the
index path for which the cell is required.

The datasource dequeues a cached cell of the appropriate type with the dequeueReusable
CellWithReuseIdentifier(_:forIndexPath:) function. If a queued cell is available, it will be
returned; otherwise a new one will be created in the background.

Regardless of which happens, the collection view guarantees that it will return an instance of
UICollectionViewCell that you can then configure with the relevant data for this item.

It’s worth noting that the same datasource can serve several collection views, hence the
collection view sending a reference to itself along with the request, so that the datasource
can keep track of which collection view it’s responding to.

It’s also at this point that the rationale for the reuseIdentifier becomes clear. You may
have a collection view that displays several types of cells, all of which will have a different
identifier. By supplying the identifier when you ask for a cell to be dequeued, you can control
the kind of cell that will be returned.

With a UICollectionViewCell returned, you can now configure it. First, you grab the
relevant suitDictionary from the suitsArray by getting the object that exists at the index
corresponding to the index of the item in the collection view.

The card details are stored as dictionaries in elements of an array. The index of the element
you need will correspond to the row value of the indexPath parameter passed into the
cellForItemAtIndexPath function.

78 CHAPTER 3: Collection Views Quick Start

Having retrieved the cardDictionary, you can access the image name through the String
object identified by the cardImage key. The PNG image is loaded into a UIImage object.

If there is a valid UIImage object, then you attempt to access the UIImageView in the cell. This
has a tag of 1000, so can be accessed through the contentView’s viewWithTag() property.

As this property returns an optional, you need to check that it’s unwrapped before setting its
image property to the card image that you just created.

Finally, the cell is returned to the collection view that’s asking for it.

Go ahead and run the app. You might be surprised at what you see. It’s not looking bad, but
something isn’t quite right yet, as you can see in Figure 3-24.

Figure 3-24. The not-quite-right collection view

79CHAPTER 3: Collection Views Quick Start

Configuring the Layout of the Collection View
The problem you have right now is that the collection view doesn’t really know how it should
lay out its items. It does its best, but there’s room for improvement.

There are two ways of doing this: you could create a UICollectionViewLayout subclass and
apply this to the collection view, or you can take the simpler (but ultimately less flexible)
approach and configure the collection view directly.

Because this is a simple app, let’s take the simple approach. Select the collection view in
the Storyboard, then switch to the Size Inspector. Update the Collection View values so they
match Figure 3-25.

Figure 3-25. Adjusted size values

80 CHAPTER 3: Collection Views Quick Start

Figure 3-26. The new spacing values in action

Now if you run the app again, you’ll see that the item, line, and section spacing look much
better, as shown in Figure 3-26.

You may have noticed that you didn’t update the values for the cell size. As it turns out, you
didn’t need to because the collection view is clever enough to fit the cell size to the contents
when using a very simple layout like this.

81CHAPTER 3: Collection Views Quick Start

The App in Action
With all these steps complete, you can now run the app! If you try rotating the device or
simulator, you’ll see that the collection view layout is automatically updated, and the items
flow neatly to fill the bounds of the view, as shown in Figure 3-27.

Summary
In this chapter, you created a very basic collection view stage by stage:

	To start, you created some data to display in the collection view.

	Then, using Interface Builder, you created an instance of
UICollectionView in the window.

	The view controller conformed to the UICollectionViewDataSource and
UICollectionViewDelegate protocols so that it could provide the data
for the collection view and responses to interaction.

	You implemented the code required to create cells for the collection view.

	You tweaked the layout to control how items are laid out within the
bounds of the collection view.

Figure 3-27. The app running in landscape orientation

82 CHAPTER 3: Collection Views Quick Start

This has been an indication of the power of UICollectionView. By setting four attributes, you
created a layout that can handle any number of items of any size and any orientation, and
do all of this with a tiny memory footprint and smooth scrolling performance thanks to the
caching of cells.

The structure of the app that you built here is the basis of all collection view-based apps,
so you can use this as a starting point for your own projects. As you delve deeper into
UICollectionView, you will reuse many of the same patterns.

Now it’s time to look in much more detail at how collection views and cells are constructed,
together with how they can be customized and made to respond to user interaction.

83

Chapter 4
How The Collection View
Fits Together
In this chapter, you’re going to take a whistle-stop tour of collection views and the elements
from which they’re built. Although this chapter does not present a lot of code, it will provide
a useful foundation for when you start to customize collection views.

Along the way, you’ll look at the following:

	The anatomy and dimensions of collection views

	UICollectionView’s relationship to the UIScrollView superclass

	How to create collection views in code and with Interface Builder

	Use of the UICollectionViewController class to take advantage of its
template methods

What Are Collection Views?
A collection view provides a way of managing and displaying an ordered set of data items
with customizable and interactive layouts.

Collection views consist of data items displayed in cells, together with supplementary views
that can display additional information for things like section headers and footers, or for
additional metadata about the items themselves.

Decoration views are purely visual components that can be used to display interface
elements like backgrounds and borders; they don’t include any variable data elements.

The collection view builds on the table view control by providing the potential for much more
complex layouts. Whereas a table view can display items in a single column, collection views
can present items in layouts ranging from linear grids to circles and every conceivable layout
in between. Some examples are shown in Figure 4-1.

84 CHAPTER 4: How The Collection View Fits Together

The Architecture of a Collection View
The UICollectionView class is part of the UIKit framework, and is a subclass of
UIScrollView, which in turns inherits from UIView, UIResponder, and ultimately NSObject, as
shown in Figure 4-2.

Figure 4-1. Collection view examples

85CHAPTER 4: How The Collection View Fits Together

The UICollectionView control works with four other objects, shown in Figure 4-3. The
collection view itself is managed by a subclass of UIViewController, either directly or as an
instance of UICollectionViewController that inherits from UIViewController.

Figure 4-2. The inheritance tree of UICollectionView

86 CHAPTER 4: How The Collection View Fits Together

The UICollectionViewDataSource is an object that is responsible for getting data from the
data model. It uses this to inform the collection view of the number and type of items that
are to be displayed, and it creates and configures the items before passing them to the
collection view itself.

Interactions with the collection view (selections, highlighting, focusing, etc.) are handled by
an object acting as the UICollectionViewDelegate.

UICollectionView uses the model-view-controller pattern to organize itself. The data that
drives the contents of the items and supplementary views is provided by the model object,
while the UICollectionView control itself is the view component.

The controller part is often a UICollectionViewController subclass, but the role of the
controller can also be played by another separate class, or even split across different
classes that act as delegate and dataSource independently of each other.

Tip The UIViewController subclasses that also act as a UICollectionView datasource
and delegates often have a tendency to become rather large. To avoid your project succumbing to
“Massive View Controller” syndrome, it’s worth considering whether it would be better structured with
a separate class to manage the collection view, while the view controller sticks to its normal role.

Figure 4-3. The collection view and supporting objects

87CHAPTER 4: How The Collection View Fits Together

The layout of a collection view is managed by a UICollectionViewLayout object that tells
the collection view how each cell, supplementary view, and decoration view should be
positioned within the bounds of the collection view itself by configuring the various layout
attributes of each item. Changes in layouts can be animated and react to interactions.

Although collection views and table views are similar in terms of their basic operation
(each uses a datasource to provide items to display, and a delegate to handle interaction),
the collection view layout provides a much greater degree of flexibility in configuring its
appearance.

As with UITableView, collection views use a dequeuing and recycling approach to creating
and managing cells. When cells are created, they’re tagged with a cell identifier that allows
the collection view to keep track of the cell type.

As cells scroll out of the visible area, they’re stored in a cache from where they can be
dequeued and recycled as “new” cells are needed to display items that are about to scroll
into view. By using the cell identifier, the collection view can handle the dequeuing and
recycling of multiple types of cells.

Creating cells is an expensive operation, so this approach allows collection views to manage
potentially huge numbers of individual data items while maintaining fast scrolling and
animation performance, and all within the stringent memory limitations of an iOS device.

There’s a detailed description of how the dequeuing mechanism works in Chapter 5.

The Anatomy of a Collection View
Collection views are instances of the UICollectionView class, and display a list of
items—or cells—that can be scrolled vertically and horizontally. They’re instances of the
UICollectionView class and come in three physical parts.

The Collection View Itself
The visible container part, the collectionView itself, is a specialized subclass of
UIScrollView, and is responsible for displaying a collection of data items as items.

Just like UIScrollView, the collection view’s frame acts as a “window” over the content view,
which, depending on the number and size of the items being displayed, may be larger than
the frame itself.

The content items are laid out inside the bounds of the collection view. If the contents are
larger than the collection view’s frame, the collection view will handle scrolling the content
around, either in response to user interaction or programmatically. Figure 4-4 shows how the
frame and content relate.

http://dx.doi.org/10.1007/978-1-4842-1242-4_5

88 CHAPTER 4: How The Collection View Fits Together

If the number and size of items means that they can all fit within the collection view’s frame,
then the content won’t scroll.

The overall size of the content view is calculated by the collection view’s layout, and is
recalculated every time the number of sections and/or items changes.

Figure 4-4 shows a collection view with a layout that arranges items in rows and columns,
but this doesn’t have to be the case. With custom layouts you can implement rows,
columns, circles, or pretty much any arrangement in between. Regardless of how the items
are arranged, however, the collection view will handle scrolling if they don’t all fit into the
collection view’s frame.

As the content view scrolls around, the collection view will create and remove items from it
as required. This is a balance between ensuring that items are always created and placed
in time to be visible as that part of the content view scrolls into the frame, but not creating

Figure 4-4. The frame and content view

89CHAPTER 4: How The Collection View Fits Together

and maintaining so many items that aren’t visible so that the memory consumption of the
collection view is excessive.

In exactly the same way as a UITableView, the collection view uses a queue of preexisting
items that it can dequeue and recycle as required. Just before an item scrolls into the visible
area, the collection view will grab it from the queue and configure it with the correct data.
Once the item scrolls out of the visible area, the collection view will dump it back onto the
queue ready for eventual reuse.

In this way a collection view can appear to create and display thousands of items while only
needing to create a small fraction of that amount as actual objects to maintain in memory.

Collection View Items
Collection view items are instances of UICollectionReusableView or its subclasses. They
play one of three roles:

	Item cells, which are created as instances of UICollectionViewCell.
These are analogous to the cells of a table view, and are used to display
the main data items. In a gallery app, for example, the cells might
display thumbnail images of the photos in an album.

	Supplementary views, which are instances of
UICollectionReusableView. These are entirely optional and can have a
variety of purposes. In grid-type layouts, such as a photo gallery, they’re
often used to provide metadata about sections by acting as headers
and footers (album names, for example). In more complex layouts, they
can be used to display additional information about items, such as
image metadata.

	Decoration views, which are also instances of
UICollectionReusableView (and also optional). These are independent of
the collection view’s model and don’t display any data. Typically they are
used to display visual elements such as backgrounds.

Figure 4-5 shows the conceptual parts of a collection view with a grid layout, with the
various types of view highlighted.

90 CHAPTER 4: How The Collection View Fits Together

Figure 4-6 shows a collection view in action in the iOS iBooks app. It uses cells to show the
book covers, supplementary views that contain the download control, and a decoration view
to provide the background gradient “shelf” effect.

Figure 4-5. The basic anatomy of a collection view

91CHAPTER 4: How The Collection View Fits Together

Unlike UITableViewCell, UICollectionViewCell doesn’t have any predefined cell types. Instead
you get an empty contentView into which you can place your own controls. For this reason,
when you’re building collection views you’ll always end up creating at least one cell object.

Cells can be created in several ways:

	Visually as prototype cells in a Storyboard

	Visually as a collection view cell in its own .xib file

	In code, by configuring a “standard” instance of UICollectionViewCell

	As a custom UICollectionViewCell subclass

We’ll look at all four approaches in later chapters.

Collection View Layouts
Unlike table views, collection views don’t know anything about how to lay out the positioning
of their items. Instead, they rely on a separate object, a collection view layout, to determine
the attributes of each item at any given moment. The collection view then uses those
attributes to figure out where each item should appear and how it should look.

The layout of a collection view is a subclass of UICollectionViewLayout and is responsible
for calculating the overall content size of the collection view, together with the layout
attributes for each individual item whenever the collection view requests it.

Figure 4-6. The iBooks app

92 CHAPTER 4: How The Collection View Fits Together

These control every aspect of the display and placement of the item: frame, bounds, center,
size, transform and transform3D, alpha, z-index, and visibility. By manipulating these,
it’s possible to design layouts that can range from simple rows and columns of items to
complex, animated interactive 3D arrangements.

Attributes can be requested individually for a specific item, or en-masse for all the items
contained within a specific part of the collection view’s content area. Performing the
calculations involved efficiently plays a major part in ensuring collection view performance.

Because the row-and-column layout is such a common one, UIKit ships with a predefined
UICollectionViewLayout subclass called UICollectionViewFlowLayout. It implements a
“line-breaking” layout of horizontal or vertical rows of items, and it takes care of figuring
out the positioning of line breaks for you. This removes a significant amount of the heavy
lifting involved in setting up collection view layouts, and can also be subclassed to get finer
degrees of control.

We’ll look at collection view layouts in detail in Chapters 15 and 16.

The Supporting Objects in Detail
The collection view control itself is pretty dumb, and relies on the support of five other
objects in order to display its data:

	View controller

	Model

	Datasource

	Delegate

	Layout

Each object has a specific role to play supporting the collection view, and their organization
is based on the model-view-controller architecture. Figure 4-7 shows how the five objects
interrelate.

http://dx.doi.org/10.1007/978-1-4842-1242-4_15
http://dx.doi.org/10.1007/978-1-4842-1242-4_16

93CHAPTER 4: How The Collection View Fits Together

The Collection View’s Model
The model contains the data that will be displayed in the collection view through the data
source. As the name suggests, it’s part of the model component of the model-view-controller
architecture.

Models can take many forms; the form will depend on the way that the data in your app
needs to be managed. At its simplest, the model may be a one-dimensional array that
contains a set of Strings. More complex models may involve two-dimensional arrays to split
the data into sections, or could retrieve data from a local persistent database or an external
network source.

Regardless of what form the model takes, it doesn’t communicate directly with the collection
view. That’s the role of the data source.

Figure 4-7. How the collection view and supporting objects interrelate

94 CHAPTER 4: How The Collection View Fits Together

The Collection View’s Data Source
The responsibility of the data source object is to supply the collection view with cells,
supplementary views, and decoration views when requested so that they can be
displayed by the collection view. It forms the other part of the model component of the
model-view-controller architecture, and mediates between the underlying data in the model
and the collection view itself.

The relationship between the collection view and its data source is defined by the
UICollectionViewDataSource protocol. There are mandatory methods that the collection
view’s data source must implement, and some optional ones.

The data source can be a standalone class that conforms to the
UICollectionViewDataSource protocol, or it can be the collection view’s view controller.

There are no hard and fast rules about which approach is correct. Splitting the functionality
out into a separate class can help to keep your app well-structured, but regardless of how its
implemented, it’s vitally important that the data source is able to return data to the collection
view as fast as possible in order to maximize performance.

The Collection View’s Delegate
Handling user interaction with the collection view is the responsibility of the delegate object,
which forms one part of the controller component of the model-view-controller architecture.

The delegate is a class that implements some or all of the methods defined by the
UICollectionViewDelegate protocol. These handle selection and highlighting of the
collection view’s items.

There are no mandatory methods in the UICollectionViewDelegate protocol, so a collection
view doesn’t necessarily need a delegate object in order to operate.

Just like the datasource, the delegate is often the UIViewController subclass that manages
the view in which the collection view lives. However, there’s no reason why that has to be the
case. It can help keep classes to a manageable size if you create a standalone class to act
as the delegate.

We’ll look at both data source and delegates in more detail in Chapter 5.

The Collection View’s Layout
Unlike UITableView, a UICollectionView control has no knowledge about how it should lay
out items in its content view, and so it relies on a UICollectionViewLayout object to provide
layout attributes for every item.

Each item in the collection view (cell, supplementary view, or decoration view) has a
corresponding instance of UICollectionViewLayoutAttributes. These define the layout-related
attributes for the item, and are created by the UICollectionViewLayout object when
requested by the collection view.

http://dx.doi.org/10.1007/978-1-4842-1242-4_5

95CHAPTER 4: How The Collection View Fits Together

Having requested the attributes for each item, the collection view then uses these to position
the item in its content view. The attributes control the size, position, transform, and opacity
of each item, but you can also supplement to control other properties of the items by
subclassing UICollectionViewLayoutAttributes and adding your own custom properties.

If your collection view layout is based around a line of items, with or without line breaks, then
you can take advantage of the UICollectionViewFlowLayout class, which takes care of much
of the layout requirements for you. You will normally only need to specify item sizes and
inter-item and inter-line spacing, after which the flow layout will figure out how to arrange
everything else for you.

For more complex layouts, you’ll need to create a custom layout as a subclass of
UICollectionViewLayout. With this, you’re responsible for calculating all the necessary
attributes to display the items correctly.

We’ll look at flow layouts in more detail in Chapter 15 and custom layouts in Chapter 16.

Creating Collection Views
Because a UICollectionView relies on the support of its delegate and datasource, the
process of creating one can be broken down into two stages:

	Setting up the visual elements, either in a Storyboard, an Interface
Builder xib file, or in code

	Setting up the supporting classes in code

Although both steps need to be completed before the collection view will function, you can
do either one first. We’ll go into more detail about creating and configuring the supporting
classes in Chapter 15. For the moment, let’s look at what is involved in creating the interface.

Creating a UICollectionView with Interface Builder
There are three approaches to creating UICollectionViews with Interface Builder:

	Embedding a UICollectionView object inside an existing view in a
Storyboard scene or XIB file

	Creating a UICollectionViewController object as an entire
Storyboard scene

	Creating a XIB file containing a UICollectionView as part of the process
of adding a UICollectionViewController subclass to the project

http://dx.doi.org/10.1007/978-1-4842-1242-4_15
http://dx.doi.org/10.1007/978-1-4842-1242-4_16
http://dx.doi.org/10.1007/978-1-4842-1242-4_15

96 CHAPTER 4: How The Collection View Fits Together

Embedding a UICollectionView into an Existing View
Embedding a UICollectionView into an existing view in a Storyboard or XIB is very easy.

1. Open the Storyboard or XIB in Interface Builder.

2. Drag a UICollectionView object from the Object Browser into the
main view, as shown in Figure 4-8.

Figure 4-8. A UICollectionView object in the Object Browser

3. Set up the AutoLayout constraints so that the collection view will be
sized correctly. Often the collection view will be full-screen, although
of course it can be placed in the interface with any size using the
appropriate constraints.

It’s common for the roles of the collection view’s delegate and datasource to be played by
the view controller that owns the scene in which the collection view is placed. If this is the
case, you can connect these directly in Interface Builder.

1. Select the collection view in Interface Builder, then Ctrl-click and
drag up to the view controller object in the object tree.

2. As the mouse cursor hovers over the view controller object, it will be
highlighted. Release the mouse button, and a popover showing the
delegate and datasource will appear, as shown in Figure 4-9.

97CHAPTER 4: How The Collection View Fits Together

Figure 4-9. Connecting the delegate and datasource

Figure 4-10. Comparing a subview with an entire scene

3. Click each in turn to connect the collection view’s delegate and
datasource to the view controller.

Adding a UICollectionView as a Storyboard Scene
If you have a UICollectionView that will be displayed full-screen, then you can add it to the
Storyboard as an entire scene. The advantage of taking this approach is that the collection
view is the root view of the scene, rather than being a subview of a parent UIView. The
difference in structure is shown in Figure 4-10.

Caution Just connecting the delegate and datasource outlets doesn’t implement any
of the functionality in the view controller that the collection view will need to work. You’re
responsible for making sure that the class implements the required methods from the
UICollectionViewDelegate and UICollectionViewDatasource protocols.
This is covered in Chapter 5.

http://dx.doi.org/10.1007/978-1-4842-1242-4_5

98 CHAPTER 4: How The Collection View Fits Together

There’s a prerequisite for this approach, however; you’ll need to have (or implement before
you try to run the project!) a subclass of UICollectionViewController to act as the delegate
and datasource for the collection view that is contained in the scene. By default, the
collection view scene assumes that its parent class will act as both.

Creating this UICollectionViewController subclass is covered in more detail in Chapter 5.

There are two steps to adding a UICollectionView as an entire scene.

1. Select the Collection View Controller object from the object browser,
then drag it out into the Storyboard. This will add the scene
containing the collection view, as shown in Figure 4-11.

Figure 4-11. Selecting the Collection View Controller

Figure 4-12. Updating the class

2. Update the scene’s Custom Class properties so that it belongs
to your UICollectionViewController class. Select the Collection
View Controller in the scene’s tree, as shown in Figure 4-11, then
switch to the Identity Inspector in the Utilities panel and update the
Custom Class field as shown in Figure 4-12. In this example, the
project contains a UICollectionViewController subclass called
MyCollectionViewController.

http://dx.doi.org/10.1007/978-1-4842-1242-4_5

99CHAPTER 4: How The Collection View Fits Together

Adding a UICollectionViewController Subclass to the Project
To speed up the process of creating UICollectionViewController subclasses, Xcode
ships with a preconfigured template. This creates a subclass with stubbed-out
UICollectionViewDataSource and UICollectionViewDelegate methods, and optionally, a XIB
file containing the collection view itself.

To create a UICollectionViewController subclass using the template, follow these steps.

1. Open the template chooser with File ➤ New ➤ Cocoa Touch Class,
and click the Next button (shown in Figure 4-13).

Figure 4-13. The template chooser

2. Give the class a name, and optionally select the “Also create XIB file”
option if you want the template to create the Interface Builder file for
you (shown in Figure 4-14).

100 CHAPTER 4: How The Collection View Fits Together

Selecting this will (unsurprisingly) create a XIB file that is prewired to the
new UICollectionViewController subclass.

3. Click Next to create the class and the XIB file, as shown in Figure 4-15.

Figure 4-14. The “Also create XIB file” option

101CHAPTER 4: How The Collection View Fits Together

The XIB file will be automatically named. Assuming your UICollectionViewController
subclass is called MyCollectionViewController.swift, the XIB file will be named
MyCollectionViewController.xib.

The XIB is created with the collection view’s delegate and datasource properties connected
to the parent class and a placeholder UICollectionViewFlowLayout object.

In the UICollectionViewController subclass, you’ll see some placeholder code that
contains the following:

	A private property for the cell’s reuse identifier:

private let reuseIdentifier = "Cell"

	In the viewDidLoad method, the collectionView registers the
UICollectionViewCell class using the identifier:

self.collectionView!.registerClass(UICollectionViewCell.self,
forCellWithReuseIdentifier: reuseIdentifier)

Figure 4-15. The resulting XIB file

102 CHAPTER 4: How The Collection View Fits Together

	Basic implementations of the three required UICollectionViewDataSource
methods are created, with helpful warnings:

override func numberOfSectionsInCollectionView(collectionView: UICollectionView) -> Int {
 // #warning Incomplete implementation, return the number of sections
 return 0
}

override func collectionView(collectionView: UICollectionView, numberOfItemsInSection
section: Int) -> Int {
 // #warning Incomplete implementation, return the number of items
 return 0
}

override func collectionView(collectionView: UICollectionView, cellForItemAtIndexPath
indexPath: NSIndexPath) -> UICollectionViewCell {
 let cell = collectionView.dequeueReusableCellWithReuseIdentifier(reuseIdentifier,
forIndexPath: indexPath)

 // Configure the cell

 return cell
}

	Commented-out placeholders for UICollectionViewDelegate methods
are added at the bottom of the class.

This placeholder code is enough to get the project to build and run, although you’ll need to
update the UICollectionViewDataSource methods before you’ll see any content displayed in
the newly-created collection view.

Creating a UICollectionView in Code
Following the mantra that “anything you can do visually, you can do in code,” it’s entirely
possible to create UICollectionViews in code if you prefer this to the visual approach.

Assuming that you already have a UIViewController class that will act as the collection
view’s delegate and datasource, this process has five steps. Listing 4-1 shows an example,
assuming the class has a UICollectionView property called myCollectionView.

Listing 4-1. Creating a UICollectionView in Code

override func viewDidLoad() {
 super.viewDidLoad()

 let myFlowLayout = UICollectionViewFlowLayout()
 // Configure flow layout here…

 myCollectionView = UICollectionView(frame: view.frame, collectionViewLayout: myFlowLayout)

103CHAPTER 4: How The Collection View Fits Together

 myCollectionView.dataSource = self
 myCollectionView.delegate = self
 myCollectionView.registerClass(UICollectionViewCell.self, forCellWithReuseIdentifier:
"ReuseIdentifier")

 view.addSubview(myCollectionView)

}

Stepping through this,

1. A UICollectionViewFlowLayout is created and configured (collection
view layouts are covered in Chapters 15 and 16).

2. Having created a flow layout, the myCollectionView property is then
instantiated with a UICollectionView. It uses the flow layout just
created, and will fill the full view by setting its frame to the same
dimension as the view’s frame.

3. The collection view’s datasource and delegate are connected
to the view controller (having done this, you’ll need to
ensure that the UIViewController implements the required
UICollectionViewDataSource and UICollectionViewDelegate
methods).

4. The UICollectionViewCell class is registered with the collection view
and given a cell identifier so that cells can be created and dequeued.

5. The collection view is added to the view controller’s view.

Summary
In this chapter, you looked at UICollectionView and the elements from which it’s built. With
this background knowledge, you’re ready to start building and customizing collection views
in your projects.

This is just the starting point, however. In Chapter 5, you’re going to look at the process of
feeding data into the collection view so that it can be displayed. In Chapters 15 and 16,
you’ll look at building collection view layouts to format and customize the data that is
presented. Chapter 17 will look at how to customize collection view cells themselves.

http://dx.doi.org/10.1007/978-1-4842-1242-4_15
http://dx.doi.org/10.1007/978-1-4842-1242-4_16
http://dx.doi.org/10.1007/978-1-4842-1242-4_5
http://dx.doi.org/10.1007/978-1-4842-1242-4_15
http://dx.doi.org/10.1007/978-1-4842-1242-4_16
http://dx.doi.org/10.1007/978-1-4842-1242-4_17

105

Chapter 5
Feeding Data to Your Views
When working with table and collection views, it’s important to bear in mind that on their
own, they are able to do very little. Just as it takes a small army of ground staff (not to
mention the flight crew!) to get an airliner off the tarmac and into the skies, so tableViews and
collectionViews need the help and support of other objects in order to function properly.

One of the main parts of building tableViews and collectionViews is getting the objects to
play nicely together, so this chapter covers the following:

	Where the views gets their data, and how you get it there

	How the views keep track of cells and sections

	An initial look at how the views handle interaction

	An overview of the architecture patterns that the UITableView and
UICollectionView classes exploit

Some of this chapter’s content might feel somewhat abstract and theoretical—but
sticking with it is worthwhile. Developing your expertise with iOS (and tableViews and
collectionViews especially!) often requires dealing with situations where you find yourself
thinking, “Where the heck did that come from?” Figuring out what that is and where it came
from is generally a case of understanding the design patterns that iOS uses—some of which
are covered in this chapter.

UITableView, UICollectionView, and Delegation
On its own, UITableView and UICollectionView are pretty puny creatures. Although they
handle the tasks involved in displaying and scrolling of cells themselves, they rely on
external support for pretty much everything else.

That’s not a weakness, though. By passing off their responsibility for other functions to
external objects, you end up with code that’s much more modular, robust, and easier to
debug. The process of passing off that responsibility is known as delegation.

106 CHAPTER 5: Feeding Data to Your Views

Understanding Delegation
Delegation is an application design pattern in which one object requests–or delegates–another
object to complete a task on its behalf.

An analogy for this is the delegation that takes place in a restaurant. You could place your
order yourself by walking to the kitchen and telling the chef what you want, but in most
establishments, you delegate that task to the wait staff. The process of informing the chef of
your order still gets completed; it’s just that you’ve delegated it to somebody else.

In a restaurant, you wouldn’t normally have a formal definition of how you’re going to
delegate things to the wait staff. There’s an unspoken assumption that they’re going to get
your order to the kitchen. But in software, that’s just not clear enough, so the processes are
usually spelled out in protocols.

You can think of protocols as informal contracts that define what tasks one party will do on
behalf of another and that outline how the information will be exchanged between them.

By conforming to a protocol, one of the parties (or objects, if we’re thinking in software
terms) is promising to implement the tasks that the other party will ask for, assuming that
they’re asked in the correct way.

Figure 5-1 illustrates this pattern, which can occur in a couple of scenarios:

	The first object is notifying the second that some event is about to
occur, is occurring, or has occurred.

	The first object is asking the second object for input.

Figure 5-1. The delegation pattern

Those are pretty dry descriptions, so let’s look at a couple of examples.

107CHAPTER 5: Feeding Data to Your Views

A Delegate Example: collectionView(_:didSelectItemAtIndexPath:)
When an item in a table or collection view is selected, it calls the collectionView(_:
didSelectItemAtIndexPath:) or tableView(_:didSelectRowAtIndexPath:) method of
its delegate with two parameters: a reference to itself (the collectionView or tableView
parameter) and the indexPath of the selected item.

The delegate can then respond to the selection event. It could do something to the calling
view, trigger some external action, or just ignore the message completely.

For example, tapping an item often causes a detail view to be loaded, so the collection
View(_:didSelectItemAtIndexPath:) method might look similar to Listing 5-1.

Listing 5-1. An Example collectionView(_:didSelectItemAtIndexPath:)Method

func collectionView(collectionView: UICollectionView, didSelectItemAtIndexPath
indexPath: NSIndexPath) {

 let detailView = DetailViewController(nibName: "DetailViewController", bundle: nil)
 detailView.modalPresentationStyle = UIModalPresentationStyle.FullScreen
 detailView.selectedItem = self.dataModel[indexPath.row]
 self.presentViewController(detailView, animated: true, completion: nil)

}

A dataSource Example: tableView:cellForRowAtIndexPath
You’ve met the tableView(_:cellForRowAtIndexPath:) method several times before. When
the tableView is ready to display a cell, it asks its dataSource to return a UITableViewCell for
the specified indexPath so that the cell can then be displayed inside the table itself.

The dataSource object will implement the tableView(_:cellForRowAtIndexPath:) method,
as shown in Listing 5-2.

Listing 5-2. An Example tableView(_:cellForRowAtIndexPath:) Method

func tableView(tableView: UITableView, cellForRowAtIndexPath indexPath: NSIndexPath)
 -> UITableViewCell {

 let cell = tableView.dequeueReusableCellWithIdentifier("cellIdentifier", forIndexPath:
indexPath)

 // cell properties will be configured here

 return cell

}

108 CHAPTER 5: Feeding Data to Your Views

The point of all this is that by separating out the functionality, you can split view concerns
from model concerns and use a controller to coordinate the two.

Setting Delegates
Objects and delegates don’t just get together magically. There needs to be an explicit
connection. Objects that have delegates have a delegate property, which can be set in
code. Alternatively, you can use Interface Builder to do the same thing visually.

In the case of table and collection views, you can also set both delegate and dataSource
by using Interface Builder. You Ctrl-Click the view and then drag the connection to the File’s
Owner icon. Figure 5-2 shows how to do this to a tableView.

Tip UITableViewDatasource and UITableViewDelegate are both examples of delegate
protocols; it’s just that one is explicitly named as a delegate, while the other has a slightly different
name.

Figure 5-2. Connecting UITableView dataSource and delegate properties in Interface Builder

109CHAPTER 5: Feeding Data to Your Views

It’s common for a view’s controller class to also be the dataSource and the delegate,
although there’s no reason why that has to be the case. If you have a number of views being
supplied by the same datasource, for example, it might make more sense to create a stand-
alone object to act as the datasource for some or all of them. The same can also be true of
delegates.

Getting an object and its delegate to play nicely together can feel a bit intricate at first, so it’s
worth taking a quick look at how this is done.

Wiring Up an Object with a Delegate
Think back for a moment to our two example objects, shown in Figure 5-3.

Figure 5-3. The delegate pattern, again

In order for objectB to act as objectA’s delegate, you need some way of connecting the two.
This requires setting the delegate property of objectA to point to the instance of its delegate
class, in this case objectB.

If objectA has a property called delegate, as shown here:

weak var delegate: ObjectB?

Then objectA can set the instance of objectB as the delegate:

delegate = objectB

110 CHAPTER 5: Feeding Data to Your Views

Delegates and Memory Management
There’s a subtlety here that’s important to be aware of. Although objectA is the object with
the delegate property, it’s objectB that is the delegate.

This leads to an interesting memory management–related side effect, which you’ll need
to bear in mind. Although objectB has been set as objectA’s delegate, objectA will be
unaware if objectB goes out of existence. objectA will continue to send messages to what it
thinks is its delegate.

As long as that delegate object exists, obviously that’s not a problem. However, if the
delegate object disappears, objectA will send messages to a nonexistent object, and the
program will crash.

The workaround for this is to declare delegate properties as optionals, and use optional
chaining to call delegate methods. If the delegate has become set to nil for some reason, the
call will fail quietly without causing your code to blow up.

You hopefully have noticed that the delegate property looks a little different from the way
that you’ve been setting up properties to this point:

weak var delegate: ObjectB?

Specifically, it’s a weak property. The property is weak (as opposed to strong) because
objects must not retain their delegates. If they do, you run the risk of causing a retain loop.

Consider the situation shown in Figure 5-4: object A has a delegate object B, which is
referenced with

var delegate: ObjectB

Figure 5-4. A strong reference

If object B receives a dealloc message, it won’t be deallocated because it is still owned by
the strong reference from object A, as shown in Figure 5-5.

111CHAPTER 5: Feeding Data to Your Views

Compare that with the situation in Figure 5-6, where object A has a weak optional reference
to object B.

Figure 5-5. After a dealloc message

Figure 5-6. A weak optional reference

If object B receives a dealloc message in this situation, shown in Figure 5-7, the weak
reference will allow it to be deallocated, and because object A refers to it as an optional
property, it’s perfectly legal for it to become nil as far as object A is concerned.

Figure 5-7. A Weak Reference After Deallocation

Defining Protocols
Methods are defined in protocols so that objects and their delegates know the methods
that each is expected to implement and respond to. A protocol is simply a list of methods—
sometimes required and sometimes optional—that an object promises to implement.

If a protocol method is required, the object adopting the protocol must implement it.
Otherwise, the compiler will complain, and the project won’t build. Optional methods are,
well, optional, so the compiler won’t moan if they are missing.

112 CHAPTER 5: Feeding Data to Your Views

Protocols are defined either in a stand-alone protocol header file or in a class itself. In
both situations, they’re defined as a list of methods, demarked by the @protocol compiler
directive. The list is split into @required and @optional sections.

Listing 5-3 shows the UITableViewDataSource protocol methods. (I’ve removed the
comments to save space.)

Listing 5-3. The UITableViewDataSource Protocol

protocol UITableViewDataSource : NSObjectProtocol {

 func tableView(tableView: UITableView, numberOfRowsInSection section: Int) -> Int

 func tableView(tableView: UITableView, cellForRowAtIndexPath indexPath:
 NSIndexPath) -> UITableViewCell

 optional func numberOfSectionsInTableView(tableView: UITableView) -> Int

 optional func tableView(tableView: UITableView, titleForHeaderInSection section:
 Int) -> String?
 optional func tableView(tableView: UITableView, titleForFooterInSection section:
 Int) -> String?

 optional func tableView(tableView: UITableView, canEditRowAtIndexPath indexPath:
 NSIndexPath) -> Bool

 optional func tableView(tableView: UITableView, canMoveRowAtIndexPath indexPath:
 NSIndexPath) -> Bool

 optional func sectionIndexTitlesForTableView(tableView: UITableView) -> [String?
 optional func tableView(tableView: UITableView, sectionForSectionIndexTitle
 title: String, atIndex index: Int) -> Int

 optional func tableView(tableView: UITableView, commitEditingStyle editingStyle:
 UITableViewCellEditingStyle, forRowAtIndexPath indexPath: NSIndexPath)

 optional func tableView(tableView: UITableView, moveRowAtIndexPath
 sourceIndexPath: NSIndexPath, toIndexPath destinationIndexPath: NSIndexPath)

}

This tells us that although the UITableViewDataSourceProtocol defines myriad methods, only
two of them have to be implemented in order for the table to function. The rest are optional.

Note Strictly speaking, in order to work, a tableView needs to know the number
of sections it has. You’ll notice that the UITableViewDataSource protocol lists
numberOfSectionsInTableView as an optional method, which seems a little counterintuitive.
A tableView gets around this by assuming that unless the dataSource says otherwise, the table
view has just the one section.

113CHAPTER 5: Feeding Data to Your Views

ACCESSING PROTOCOL DEFINITIONS IN XCODE

When you implement a protocol method in your classes, that method needs to be implemented exactly as it’s
defined in the protocol. That can lead to a lot of typing, so it’s much easier (and safer) to copy the method name
directly from the protocol itself. You’ll end up spending a lot of time checking protocol documentation, so here’s
a quick way of accessing it. If you hold down the Option key and hover the mouse cursor over the protocol
name in an Xcode window, the cursor changes to a question mark and the name becomes a hyperlink. Clicking
that link pops up a summary window.

Clicking any of the highlighted terms opens either the help file in the Xcode Organizer or the relevant code
file itself.

Using UITableView’s Delegate Methods
Both UITableView and UICollectionView use the delegate pattern to obtain data from their
dataSource and to handle user interaction and configuration (see Figures 5-8 and 5-9).
Despite the name, their dataSource is a form of a delegate, just one with specific
responsibilities.

114 CHAPTER 5: Feeding Data to Your Views

Figure 5-8. How the tableView interacts with its delegate and dataSource

Figure 5-9. How the collectionView interacts with its delegate and dataSource

115CHAPTER 5: Feeding Data to Your Views

Having seen how the views use the delegation pattern, you can then start to look at the
detail of how the dataSource and delegate operates. Although the processes are the same,
UITableView and UICollectionView delegate protocols are declared separately, so we’ll look
at each one in turn.

Using UITableViewDelegate Methods
The UITableViewDelegate handles the following:

	Configuring the tableView’s rows

	Configuring the header and footer of sections

	Managing the selection of rows

	Editing rows

	Managing accessory views

	Reordering rows

Table 5-1 shows the methods available in the UITableViewDelegate protocol.

Table 5-1. UITableViewDelegate Protocol Methods

Method Purpose

Configuring Rows

tableView(_:heightForRowAtIndex
Path:)

Returns the actual calculated height of the row as a CGFloat.

This overrides any table-wide value set for the row height.

tableView(_:estimatedHeightFor
Row AtIndexPath:)

Returns the estimated height of the row as a CGFloat.

Providing an estimated value can help to speed up the table,
which has to calculate the total height of all cells when it first
loads.

Deferring the calculation of cell height until actually required
means that time won’t be wasted with calculations for cells that
aren’t yet visible.

tableView(_:indentationLevelFor
Row AtIndexPath:)

Returns the indentation level for the current row as an Int.

tableView(_:willDisplayCell:for
Row AtIndexPath:)

Called to tell the delegate that the table is just about to display
the cell at this row.

This provides the final opportunity to customize cell settings like
selection or background color.

Does not return anything.

(continued)

116 CHAPTER 5: Feeding Data to Your Views

Method Purpose

Managing Accessory Views

tableView(_:editActionsForRow
AtIndexPath:)

Returns the UITableViewRowActions that are available for
this row.

If you don’t override this method, the cell will display the
standard accessory controls.

tableView(_:accessoryButton
TappedForRowWithIndexPath:)

Tells the delegate that the accessory button has been tapped
for this row.

You will often see this used to push in a new view as a drill-down
detail view for the data model element relating to this row.

Does not return anything.

Managing Accessory Views

tableView(_:willSelectRowAt
IndexPath:)

Tells the delegate that the row is about to be selected. It’s
triggered by a touch up inside the cell.

It returns an NSIndexPath for the row that the table should select
(it’s possible to select another row in response to a selection).

If the row should not be selected, return nil.

tableView(_:didSelectRowAt
IndexPath:)

Called after the row is selected.

You can use this method to deselect the other rows in the table
if only one can be selected at a time.

Does not return anything.

tableView(_:willDeselectRowAt
IndexPath:)

Called just before the cell is deselected.

Returns an NSIndexPath if you want to deselect another row.

If you want to prevent the row being deselected, return nil.

tableView(_:didDeselectRowAt
IndexPath:)

Called after the row is deselected.

You could use this method to remove any selection indicator
from the cell at this row.

Does not return anything.

Managing Section Headers and Footers

tableView(_:viewForHeader
InSection:)

Returns an optional UIView to use as the header for the current
section.

tableView(_:viewForFooter
InSection:)

Returns an optional UIView to use as the footer for the current
section.

tableView(_:heightForHeader
InSection:)

Returns the height of the header for the current section as a
CGFloat.

Table 5-1. (continued)

(continued)

117CHAPTER 5: Feeding Data to Your Views

Method Purpose

tableView(_:estimatedHeightFor
Header InSection:)

Returns the estimated height of the header for the current
section as a CGFloat.

Providing an estimated height can help to improve the table’s
performance by speeding up the calculation of the overall
content height.

tableView(_:heightForFooter
InSection:)

Returns the height of the footer for the current section as a
CGFloat

tableView(_:estimatedHeightFor
Footer InSection:)

Returns the estimated height of the footer for the current
section as a CGFloat.

Providing an estimated height can help to improve the table’s
performance by speeding up the calculation of the overall
content height

tableView(_:willDisplayHeader
View: forSection:)

Tells the delegate that the header view is about to be displayed
to allow a last chance for it to be customized before display.

Does not return anything.

tableView(_:willDisplayFooter
View: forSection:)

Tells the delegate that the footer view is about to be displayed
to allow a last chance for it to be customized before display.

Does not return anything.

Managing Editing of Rows

tableView(_:willBeginEditing
Row AtIndexPath:)

Tells the delegate that the table is about to go into editing
mode. The table’s editing property is set to true, and a Delete
button is displayed in this row.

This method gives you the chance to update the app’s view to
handle the change in mode.

Does not return anything.

tableView(_:didEndEditingRow
AtIndexPath:)

Called when the table leaves editing mode.

Does not return anything.

tableView(_:editingStyleForRow
AtIndexPath:)

Returns a UITableViewEditingStyle to control what editing
control is displayed in the cell.

If this method isn’t implemented, the control defaults to Delete.

tableView(_:titleForDelete
ConfirmationButtonForRow
AtIndexPath:)

Returns an optional String to use as the title of the Delete
confirmation button.

This title can be localized.

tableView(_:shouldIndentWhile
Editing RowAtIndexPath:)

Returns a Bool that tells the table whether it should indent the
cell’s background while it is in editing mode.

Table 5-1. (continued)

(continued)

118 CHAPTER 5: Feeding Data to Your Views

Method Purpose

Reordering Cells

tableView(_:targetIndexPath
ForMove FromRowAtIndexPath:
toProposedIndexPath:)

Returns an NSIndexPath to indicate where a cell should be
moved to during reordering.

Tracking View Removal

tableView(_:didEndDisplayingCell
: forRowAtIndexPath:)

Called when a cell has been removed from the table.

Does not return anything.

tableView(_:didEndDisplaying
HeaderView:forSection:)

Called when a header view has been removed from the table.

Does not return anything.

tableView(_:didEndDisplaying
FooterView:forSection

Called when a footer view has been removed from the table.

Does not return anything.

Copying and Pasting Row Content

tableView(_:shouldShowMenuForRow
AtIndexPath:)

Returns a Bool to indicate to the table view whether an editing
control should be displayed for this row.

Return false if you want to prevent copying of or pasting over
this cell.

tableView(_:canPerformAction: fo
rRowAtIndexPath:withSender:)

Returns a Bool to indicate to the table view whether the Copy or
Paste command should be available for this row.

tableView(_:performAction:forRow
AtIndexPath:withSender:)

This function is called when the user taps Copy or Paste in the
cell’s editing menu.

Does not return anything.

tableView(_:shouldHighlightRow
AtIndexPath:)

Returns a Bool to indicate whether a row should be selected or
not in response to touch events.

If you don’t override this method, it will default to true.

tableView(_:didHighlightRowAt
IndexPath:)

Called when the row is highlighted.

Does not return anything.

tableView(_:didUnhighlightRowAt
IndexPath:)

Called when the row highlighting is removed.

Does not return anything.

Table 5-1. (continued)

Using UICollectionViewDelegate Methods
The UICollectionViewDelegate handles the following:

	Managing the selection of cells

	Managing the highlighting of cells

	Tracking the insertion and removal of cells and views

119CHAPTER 5: Feeding Data to Your Views

	Providing a transition layout

	Managing actions for cells

Table 5-2 shows the methods available in the UICollectionViewDelegate protocol.

Table 5-2.

Method Purpose

Managing Selected Cells

collectionView(_:shouldSelectItem
AtIndexPath:)

Returns a Bool to control whether the item should be
selected.

The default return value is true.

collectionView(_:didSelectItem
AtIndexPath:)

Called when an item is selected in the collection view.

This method isn’t called if you select an item
programmatically.

Does not return anything.

collectionView(_:shouldDeselectItem
AtIndexPath:)

Returns a Bool to control whether the item should be
deselected.

The default return value is true.

collectionView(_:didDeselectItem
AtIndexPath:)

Called when an item is deselected in the collection view.

This method isn’t called if you deselect an item
programmatically.

Does not return anything.

Managing Cell Highlighting

collectionView(_:shouldHighlightItem
AtIndexPath:)

Returns a Bool to control whether an item should be
highlighted in response to a touch.

The default return value is true.

collectionView(_:didHighlightItem
AtIndexPath:)

Called when an item is highlighted in response to a user
touch (this doesn’t get called if the cell is highlighted
programmatically).

Does not return anything.

collectionView(_:didUnhighlightItem
AtIndexPath:)

Called when an item is no longer highlighted.

This doesn’t get called if the highlighting is removed
programmatically.

Does not return anything.

(continued)

120 CHAPTER 5: Feeding Data to Your Views

Method Purpose

Tracking Addition and Removal of Views

collectionView(_:willDisplayCell:
forItemAtIndexPath:)

Called when the cell is about to be displayed.

This is the preferred way of tracking when a cell is added
to the collection view. You shouldn’t track from within the
cell itself.

Does not return a value.

collectionView(_:willDisplay

SupplementaryView:
forElementKind:atIndexPath:)

Called when the view is about to be displayed.

This is the preferred way of tracking when a view is added
to the collection view. You shouldn’t track from within the
view itself.

Does not return a value.

collectionView(_:didEndDisplaying
Cell:forItemAtIndexPath:)

Called when the cell is removed from the collection view.

This is the preferred way of tracking when a cell is
removed to the collection view. You shouldn’t track from
within the cell itself.

Does not return a value.

collectionView(_:didEndDisplaying
SupplementaryView:forElementOfKind:
atIndexPath:)

Called when the view is removed from the collection view.

This is the preferred way of tracking when a view is
removed to the collection view. You shouldn’t track from
within the view itself.

Does not return a value.

Providing a Transition Layout

collectionView(_:transitionLayout
ForOldLayout:newLayout:)

Returns the custom transition layout to use when moving
from the supplied old to the new layouts.

If this method isn’t overridden, the collection view will use
a standard UICcollectionViewTransitionLayout.

Returns a UICollectionViewTransitionLayout.

Managing Actions for Cells

collectionView(_:shouldShowMenu
ForItemAtIndexPath:)

Returns a Bool to indicate whether an editing menu should
be displayed for the item.

Returns false by default.

collectionView(_:canPerformAction:
forItemAtIndexPath:withSender:)

Returns a Bool to indicate whether the specified action
can be performed for the item.

Returns false by default.

collectionView(_:performAction:
forItemAtIndexPath:withSender:)

Performs the specified action on the specified item.

Table 5-2. (continued)

(continued)

121CHAPTER 5: Feeding Data to Your Views

Table 5-2. (continued)

Method Purpose

Managing Collection View Focus

collectionView(_:canFocusItemAt
IndexPath:)

Returns a Bool to control whether the item can be focused.

The default return value is True.

collectionView(_:shouldUpdateFocus
InContext:)

Returns a Bool to control whether the focus update
specified by the given context should occur.

By default this returns false.

collectionView(_:didUpdateFocusIn
Context:withAnimationCoordinator:)

Called when a focus update in the provided context
occurred.

Does not return a value.

indexPathForPreferredFocusedViewIn
CollectionView(_:)

Returns the NSIndexPath for the preferred focused view in
the provided collection view.

Datasources
Datasources have a pretty straightforward role in life: they provide data and information
about data and they handle manipulation of data. Like delegates, the dataSource protocols
for UITableView and UICollectionView are similar but different, so we’ll look at each one
individually.

The UITableView dataSource
A UITableView needs three key pieces of information in order to successfully draw itself and
its cells:

	The number of sections in the table

	The number of rows in the section

	The cells that belong in the rows within the sections

The dataSource exists to provide this information.

Getting the Number of Sections in the Table
A simple table has only one section, so tableviews will assume this is 1 unless the
numberOfSectionsInTableView(_:) method is implemented and returns something different.

Although numberOfSectionsInTableView(_:) is an optional method, I tend to always
implement it so that it’s there. Because this is the first method that gets called, you can
also speed things up by returning 0 if the dataset for your table is empty—after which the
tableView assumes that it’s not going to get any additional data, and stops asking.

122 CHAPTER 5: Feeding Data to Your Views

Getting the Number of Rows in the Section
Assuming that there’s data to display, the tableView(_:numberOfRowsInSection:) method is
called. The tableView calling the method supplies the section number as an integer, and the
method returns the number of rows (also as an integer).

Getting Cells That Belong in This Row of This Section
Creating cells to be displayed is at the heart of setting up the tableView. This is where your
code will need to return an instance of a UITableViewCell for the tableView to display, each
time the tableView(_:cellForRowAtIndexPath:) method is called.

The tableView will provide the section and row numbers as an indexPath, and it’s up to your
tableView(_:cellForRowAtIndexPath:) method to retrieve the data from the model, dequeue
the cell, configure it, and return it as quickly as possible.

How the Key Information Is Obtained by the Table
The conversation between the four objects involved–the view controller that contains the
tableView, the tableView itself, and the delegate and dataSource objects belonging to the
tableView–takes place in a specific order. This is illustrated in Figure 5-10.

123CHAPTER 5: Feeding Data to Your Views

1. First, the view controller allocates and instantiates the tableView,
and then sets the delegate and dataSource properties.

2. Once in existence, the tableView asks the dataSource for the
number of sections for itself, and the dataSource replies with an
NSInteger value.

Figure 5-10. Messaging between view controller, tableView, and datasource

124 CHAPTER 5: Feeding Data to Your Views

3. Then the tableView provides a reference to itself and a section
number in an indexPath instance, and asks the dataSource for the
number of rows in that section. Again, the dataSource replies with an
NSInteger.

4. Finally, the tableView provides a reference to itself and the row
number in an indexPath object, and asks the dataSource to supply
the cell for that row. The dataSource replies with an instance of a
UITableViewCell.

After your dataSource provides these three pieces of information, your tableView is in
business. These three methods, and the other eight dataSource methods, are defined in the
UITableViewDataSource protocol.

Cell-, Section-, and Row-Related UITableViewDataSource
Methods
Three main methods, listed in Table 5-3, are concerned with providing exactly those three
pieces of information. Two of the methods are required.

Table 5-3. Cell, Section And Row Methods Of The UITableViewDataSource Protocol

Method Purpose Required?

numberOfSectionsInTableView(_:) Returns an Int for the number of
sections in the table view

No

tableView(_:numberOfRowsInSection:) Returns an Int for the number of rows
in the given section

Yes

tableView(_:cellForRowAtIndexPath:) Returns a UITableViewCell for the row
at the index path provided

Yes

Although the tableView needs to know the number of sections required, the default value is 1,
which is why you’ll often see numberOfSectionsInTableView omitted from simple tables.

Title- and Index-Related UITableViewDataSource Methods
There are four methods that create and manage the table’s titles and indexes. Table 5-4 lists
these methods.

125CHAPTER 5: Feeding Data to Your Views

Insertion-, Removal-, and Reordering-Related
UITableViewDataSource Methods
The remaining UITableViewDataSource protocol methods handle inserting, deleting, and
reordering rows within the tableView. Table 5-5 lists these methods.

Table 5-4. UITableViewDataSource Protocol Title And Section Methods

Method Purpose

tableView(_:titleForHeaderInSection:) Returns a String containing the header title for the
given section

tableView(_:titleForFooterInSection:) Returns a String containing the footer title for the
given section

sectionIndexTitlesForTableView(:_) Returns an optional Array of Strings containing titles
for the index list that appears down the right side of an
indexed table (for example, A, B, C, D, and so on)

tableView(_:sectionForSectionIndex
Title:atIndex:)

Returns an Int for the index number of the section with
the given title and section title index

Table 5-5. Insertion-, Removal-, and Reordering-related UITableViewDataSource Methods

Method Purpose

tableView(_:canEditRowAt IndexPath:) Returns a Bool that depends on whether the given row is
flagged as being editable.

If this method isn’t implemented, the tableView assumes
that all rows can be edited.

tableView(_:canMoveRowAt IndexPath:) Returns a Bool that depends on whether the given row is
flagged as being able to move within the table.

If this method isn’t overridden, the default will be false.

tableView(_:moveRowAtIndexPath:
toIndexPath:)

Instructs the dataSource to move a row from one location
to another.

This method also needs to update the underlying data
model if the change is to persist.

Doesn’t return a value.

tableView(_:commitEditingStyle:
forRowAtIndexPath:)

Instructs the dataSource to commit the insertion or
deletion of a row by calling the insertRowsAtIndexPath:
withRowAnimation or deleteRowsAtIndexPath:withRow
Animation tableView methods.

Doesn’t return a value.

126 CHAPTER 5: Feeding Data to Your Views

The UICollectionView dataSource
A UICollectionView operates in a very similar way to a UITableView when it comes to the
key pieces of information needed in order to successfully draw itself and its cells.

Specifically, it needs

	The number of sections in the collection view

	The number of items in each section

	The cell for each item within the sections

The UICollectionView dataSource exists to provide this information.

Getting the Number of Sections in the Table
A simple collection view has only one section, so collection views will assume this is 1
unless the collectionView(_:numberOfSectionsInCollectionView:) method is implemented
and returns something different.

Although numberOfSectionsInCollectionView is an optional method, I tend to always
implement it so that it’s there. Because this is the first method that gets called, you can also
speed things up by returning 0 if the dataset for your collection view is empty—after which
the collectionView assumes that it’s not going to get any additional data, and stops asking.

Getting the Number of Items in the Section
Assuming that there is data to display, the numberOfItemsInSection(:_) method is called.
The collectionView calling the method supplies the section number as an integer, and the
method returns the number of items (also as an integer).

Getting Cells That Belong To This Item of This Section
Creating cells to be displayed is at the heart of setting up the collectionView. This is where
your code will need to return an instance of a UICollectionViewCell for the collectionView
to display, each time the collectionView(_:cellForItemAtIndexPath:) method is called.

The collectionView will provide the section and item numbers as an indexPath, and it’s up
to your cellForItemAtIndexPath method to retrieve the data from the model, create the cell,
and return it as quickly as possible.

Getting Supplementary Views That Belong To This Index Path
Although supplementary views are optional, you provide them in much the same way that
collection view cells are provided: they are dequeued in response to a request from the
collection view.

The collectionView will provide the section and item numbers as an indexPath together
with the type of supplementary view required, and the collectionView:(_viewForSupplemen
taryElementOfKind:atIndexPath:) method is responsible for retrieving data from the model,
creating and configuring the supplementary view, and returning it as quickly as possible.

127CHAPTER 5: Feeding Data to Your Views

How the Key Information Is Obtained by the Collection View
The conversation between the four objects involved–the view controller that contains
the collectionView, the collectionView itself, and the delegate and dataSource objects
belonging to the collectionView–takes place in a specific order. This is illustrated in
Figure 5-11.

Figure 5-11. Messaging between view controller, collectionView, and datasource

128 CHAPTER 5: Feeding Data to Your Views

1. First, the view controller allocates and instantiates the
collectionView, and it then sets the delegate and dataSource
properties.

2. Once in existence, the collectionView asks the dataSource for the
number of sections for itself, and the dataSource replies with an
NSInteger value.

3. Then the collectionView provides a reference to itself and a section
number in an indexPath instance, and asks the dataSource for the
number of items in that section. Again, the dataSource replies with an
NSInteger.

4. The collectionView provides a reference to itself and the item
number in an indexPath object, and asks the dataSource to supply
the item for that item. The dataSource replies with an instance of a
UICollectionViewCell.

5. Optionally, the collectionView provides a reference to itself, the
item number in an indexPath object, and the kind of supplementary
view required, and asks the dataSource to supply the supplementary
view for that item. The dataSource replies with an instance of a
UICollectionViewReusableView.

After your dataSource provides this information, your collectionView is in business. These
three methods are defined in the UICollectionViewDataSource protocol.

Which configuration method should I use?
There are two points in the cell’s lifecycle where it’s possible to configure cells that will be
displayed in the table – when it’s dequeued or created by the datasource; and just before it’s
actually displayed in the collection view.

The datasource’s cellForItemAtIndexPath: function
The UICollectionViewDataSource function cellForItemAtIndexPath should be familiar by
now – this is where the collection view’s datasource returns a cell to the collection view
either by dequeueing a previously-created one, or by creating one from the subclass,
prototype or XIB that’s previously been registered.

This is the first point in the cell lifecycle where you can configure cells – and it’s the most
usual point for doing so. However, this function is called before the cell is displayed, albeit
that there isn’t usually much of a delay between dequeuing and display.

As a rule of thumb, you should use this method for updating the content of the cell based on
individual properties of the underlying data model – for example, the contents of a field or an
image view.

129CHAPTER 5: Feeding Data to Your Views

The delegate’s willDisplayCellAtIndexPath: function
The UICollectionViewDelegate function willDisplayCellForItemAtIndexPath: is called
by the collectionView just before it displays each cell. This happens immediately before
the cell is drawn in the collection view, so it’s the last point where you can tweak the cell’s
contents before display.

It is possible to change the cell’s contents here, but there are a couple of reasons why you
should restrict the changes to small, specific ones:

	If you use this method to update the cell contents, you’re blurring the
distinction between the roles of the collection view’s dataSource and
delegate objects. That can make it harder to refactor in the future, and
could lead to messier code.

	This function is called just before the cell is displayed, so if it’s slow
to complete it will adversely affect the collection view’s scrolling
performance.

As a rule of thumb, you should restrict the use of this function to updating the contents of
the cell based on selections, for example setting or removing checkboxes.

Cell-, Section-, and Item-Related UICollectionViewDataSource
Methods
Four main methods, listed in Table 5-6, are concerned with providing that information. Two
of the methods are required.

Table 5-6. Cell, Section, And Item Methods Of The UICollectionViewDataSource Protocol

Method Purpose Returns Required?

numberOfSections
InCollectionView(_:)

Returns the number of sections in the
collection view

NSInteger No

collectionView(_:
numberOfItemsInSection:)

Returns the number of items in the
given section

NSInteger Yes

collectionView(_:
cellForItemAtIndexPath:)

Returns a UICollectionViewCell for
the item at the index path provided

UICollection
ViewCell

Yes

collectionView(_:
viewForSupplementary
ElementOfKind:atIndexPath:)

Returns a UICollectionReusableView
to use as the supplementary view for
the item at the index path provided

UICollection
ReusableView

No

Supplementary views are optional and only need to be provided if your collection view layout
requires them.

Although the collectionView needs to know the number of sections required, the default
value is 1, which is why you’ll often see numberOfSectionsInCollectionView omitted for
simple collection views.

130 CHAPTER 5: Feeding Data to Your Views

The Thing to Bear in Mind About dataSource Methods
Although table and collection views look simple enough on the surface, there’s a lot going
on underneath. Key to a good user experience is scrolling that is smooth and instantaneous.
One of the main complaints you’ll hear about iPad rivals, for instance, is that their scrolling
stutters and is jerky.

In order for the views to scroll smoothly, your dataSource must be prepared to provide data
as soon as it’s asked for. Delays in returning data mean delays in drawing the cells and
updating the view’s layout—and that means jerks and stutters in the user interface.

Making the data available immediately can have various forms, caching data queries being
an obvious one. And needless to say, retrieving live tableView or collectionView data from
a network source is a spectacularly bad idea.

If your data isn’t available immediately, it’ll probably be necessary to provide placeholder
information and go back to update missing values later, when the data becomes available.

UITableView has three sets of methods that can be used for this: reloadData reloads the
whole table, while reloadRowsAtIndexPath updates specific rows. reloadSectionIndexTitles
and reloadSections:withRowAnimation: update the specified sections.

UICollectionViews handles updates in a very similar fashion: reloadData reloads the
whole of the collection view, reloadSections: does the same for a specific section, and
reloadItemsAtIndexPaths: reloads a number of specific items.

Implementing the dataSource and delegate Protocols
A common pattern is for the view controller that is responsible for the view in which the table
or collection view appears to act as the dataSource and delegate, although read on in this
chapter as to why that might not always be a good idea!

In order for a table view to use a class as its dataSource or delegate, the class has to
conform to the UITableViewDataSource and UITableViewDelegate protocols. There are
two ways of doing this: the first is to declare the class’s conformance and implement the
required methods in the body of the class, as shown in Listing 5-4.

Listing 5-4. An Example Class Acting as UITableViewDataSource and UITableViewDelegate

class ViewController: UIViewController, UITableViewDataSource, UITableViewDelegate {

 // mark: -
 // mark: UIViewController methods

 // ...
 // UIViewController methods here
 // ...

Note Everything in this section applies equally to both UITableView and UICollectionView,
so for “table view” read “collection view,” and vice versa.

131CHAPTER 5: Feeding Data to Your Views

 // mark: -
 // mark: UITableView methods

 func numberOfSectionsInTableView(tableView: UITableView) -> Int {
 ...
 }

 func tableView(tableView: UITableView, numberOfRowsInSection section: Int) -> Int {
 ...
 }

 func tableView(tableView: UITableView, cellForRowAtIndexPath indexPath:
 NSIndexPath) -> UITableViewCell {
 ...
 }

}

A “Swiftier” way to do this is to add an extension to the UIViewController, as shown in
Listing 5-5.

Listing 5-5. Using an Extension for Protocols

import UIKit

class ViewController: UIViewController {

 // ...
 // view controller methods here

}

extension ViewController: UITableViewDataSource, UITableViewDelegate {

 func numberOfSectionsInTableView(tableView: UITableView) -> Int {
 ...
 }

 func tableView(tableView: UITableView, numberOfRowsInSection section: Int) -> Int {
 ...
 }

 func tableView(tableView: UITableView, cellForRowAtIndexPath indexPath:
 NSIndexPath) -> UITableViewCell {
 ...
 }

}

Laying out your code in this way makes a clearer separation between the UIViewController
methods and the dataSource/delegate functions–and makes it easier to refactor these
functions out into a separate class if you need to do this later.

132 CHAPTER 5: Feeding Data to Your Views

All About indexPaths
Table and collection views describe their layouts in terms of instances of the NSIndexPath
class. Technically, these are representations of paths to nodes within a collection of nested
arrays.

However, that’s an extremely complicated description of what NSIndexPath objects are in the
context of views, so I’d stick to thinking of them in much more simple terms.

As far as a tableView is concerned, an indexPath has two properties: a section and a row,
shown in Figure 5-12. Both of these are instances of Int.

Figure 5-12. indexPath sections and rows

A collectionView thinks of an indexPath in very similar ways, but instead of rows, we refer
to items. So in the context of a collection view, we refer to itemAtIndexPath rather than
cellAtIndexPath.

As you can see, the table uses indexPaths to identify sections and rows. The iPhone
Simulator is running Apple’s The Elements sample code, and it’s scrolled down to the
elements beginning with the letter D.

The elements are grouped in sections according to their first letter. Because D is the fourth
letter of the alphabet, the elements beginning with D appear in section 3 (remember,
indexPath numbering, as with NSArrays and so on, starts at 0).

There happen to be three elements beginning with the letter E (including the fantastically
named einsteinium—atomic weight 252, discovered in 1952—the app has all the details).
These are placed in rows 0, 1, and 2 (again, indexPath rows start at 0). This allows each row
to be uniquely identified in the table. In the case of einsteinium, it’s found in the indexPath
with section == 3 and row == 0.

133CHAPTER 5: Feeding Data to Your Views

Creating indexPaths is somewhat fiddly, so the UITableView class extends NSIndexPath with
a category that provides some convenience methods for creating indexPaths with sections
and rows. One of these is indexPathForRow:inSection. Listing 5-6 shows a (somewhat
contrived) example of the kind of thing you could do to locate a specific cell.

Listing 5-6. Locating a Specific Cell

func findEinsteiniumCellContents() {

 let einsteinIndexPath = NSIndexPath(forRow: 1, inSection: 3)

 let einsteinCell = tableView.cellForRowAtIndexPath(einsteinIndexPath)

 let elementName = einsteinCell?.textLabel?.text

 print("The element name is \(elementName)")

}

The Model-View-Controller Design Pattern
To the untutored eye, an iOS application opened in Xcode looks like a mess of code. With a
bit of familiarity, though, it’s possible to discern that different aspects of the application have
different functions.

At the front end, the user interface presents information to, and receives input from, the user.
We typically think of a “user” as being a human, but the analogy still works if the user is in
fact another system, as would be the case if the interface were an API.

Behind the scenes, virtually all applications contain data of some form or another.
Sometimes that data is sourced externally, such as the HTML that a web browser displays.
Other times, the data is maintained internally to the application. Storing the application state
such as high scores is an example.

Sitting between the two, you need some logic—the application logic—to get and present
data to the user interface, and to receive and process input from the user. You also need
logic to manage the internal state of the application.

That “division of labor” has been formalized into an application architecture pattern called
the model-view-controller pattern, illustrated in Figure 5-13. It divides the application into
three areas:

	Views: In iOS terms, these are the views (or interfaces) that are created
in Interface Builder or programmatically within the code.

	Controllers: Controllers provide the application’s internal logic. They
tend to be easier to spot in iOS apps because they often have names
such as ScoreTableViewController.

	Models: Models manage the data within the application. A model can be
as simple as an NSArray containing some NSStrings or a full-blown Core
Data setup.

134 CHAPTER 5: Feeding Data to Your Views

Crudely speaking, the controllers fetch and process data from the models that gets passed
to the views for consumption by the user. The user interacts with the views, and the results
of those interactions are handled by the controllers.

Various analogies have been rolled out to illustrate the model-view-controller pattern, but the
one that works best for me is the process that goes into making a movie.

Before you can go watch a movie, someone needs to write it. So the process starts with a
screenwriter pouring out their soul over a typewriter and creating a script. That’s the model:
it’s the source of the data that will later be used to create the cinematic experience.

In order to bring the script to life, you need actors. (Okay, the analogy breaks down slightly if
you’re thinking about the latest Pixar blockbuster, but animated characters still need voices,
right?) They’re the views, responsible for presenting the data of the script to the audience
(via the medium of the camera, of course).

The person who sits between the writer and the actors—the controller in our programming
analogy—is the director. The director is responsible for interpreting the script and telling the
actors how to go about presenting it.

There’s room for analogic subtlety here, as well. Good actors will take the director’s direction
along with the script’s dialogue and add their own interpretation that takes the performance
from something resembling a tree to one that will win them an Oscar.

Figure 5-13. The model-view-controller pattern

135CHAPTER 5: Feeding Data to Your Views

That’s where the interfaces come in. Consider the graceful gradients and subtle shading of
the iOS interface, versus the, well, less-graceful and less-subtle interfaces of certain mobile
devices that weren’t designed in Cupertino...

Why Use the Model-View-Controller Pattern?
At first, the MVC pattern might seem like an unnecessary complication, especially for small
applications. But thinking about—and building—applications in this way brings some
benefits:

	Modularity: Each functional element of the application manages its own
area of concern. The models deal with reading and writing of data, while
the views handle presenting the information. This means that changes
to one functional element don’t necessarily affect others. You could
completely change the underlying database engine, for example, and
the views would remain the same.

	Multiple views: Consider the differences in the user interface between
the iPhone and the iPad. If your application’s logic were embedded in the
views, you’d need to create it twice—once for the smaller screen of the
iPhone, and again for the bigger screen of the iPad. By sticking with
the MVC pattern, the same set of models and controllers can feed both
versions of the interface.

	Efficiencies: Separating out the layers of the application allows for tricks
such as threading and background processing. You can kick off a data-
retrieval process while the views are still loading, for example, to take
advantage of the iOS device’s multitasking capabilities.

	Testability: By breaking applications into discrete areas, you can test
each one individually. If a tableView relies on a dataSource, as part of
the process of testing the table you can substitute the datasource with
a “stand-in”object that returns known values. This means that you can
pinpoint the source of any errors much more easily.

	Reuse: If your application involves the use of several table or collection
views, you can reduce duplication of code and features by creating
a single dataSource or delegate to serve several views. Much of the
supporting framework that an individual view needs will be common
with others. Less code means fewer sources of bugs, and less to
maintain.

MVC and iOS
iOS is a model-view-controller-centric framework, although compared to many SDKs—
particularly web frameworks—the MVC nature of iOS is sometimes a bit hidden. This
will be especially the case if you’ve come to iOS from web frameworks such as Rails or
Django. These make the separation of each layer very obvious. Each one has a set of files in
separate directories called models, views, and controllers.

136 CHAPTER 5: Feeding Data to Your Views

iOS, on the other hand, is more subtle. You can create views with XIB files, which are
clearly views. But you can also create views programmatically with code inside view
controllers, and that’s where things start to get potentially confusing. Similarly, a tableView
or collectionView's data comes from a model, but that model could be as “extracted” as
a SQLite database managed by Core Data, or as “embedded” as an Array created in the
viewDidLoad method inside a view controller!

The key to staying sane with MVC in the iOS world is to remember that MVC is a conceptual
framework, rather than something more absolute, such as a set of directories. If you bear
in mind that the table’s data comes from a model, and that model is actually the Array
mentioned, you’ll still be thinking (and working) in an MVC way.

MVC, tableViews, and collectionViews
The obvious question is now, “How does MVC fit with table and collection views?”

Fortunately, the answer is relatively straightforward. The table or collection view itself is the
view. It presents the user interface and intercepts user interaction such as taps and scrolling
flicks.

The data that the table or collection view presents comes from the model. As mentioned,
that could be as simple as a single Array that you create as you load the view, or something
a lot more complex involving Core Data or information retrieved from an external network
source.

The controller elements are the object(s) that act as the tableView or collectionView's
delegate and dataSource. The delegate receives messages from the table or collection
view and deals with events such as a user tapping an item or swiping a cell. The dataSource
“feeds” the table or collection view its data by retrieving it from the model.

Improving the App Structure
If a view controller is also acting as the datasource and delegate of a table or collection
view, it can rapidly grow to the point where you begin to suffer from “Massive View
Controller” syndrome. It’s not unheard of for view controllers to grow to hundreds of lines
long (the record for the largest one I’ve ever seen is 6,500 lines, and I’d just like to make it
really clear that I wasn’t responsible for it getting that big!)

Massive View Controllers are a problem for projects for a number of reasons: they violate
the “single responsibility principle” of object-orientated design; they’re hard to test; they
increase the risk of source control conflicts; and if they’re too big they can simply cause
Xcode to keel over and crash when you try to edit them.

It follows, then, that splitting up your large classes into smaller ones can help prevent some
or all of these problems.

137CHAPTER 5: Feeding Data to Your Views

How to Split Out Datasources and Delegates
Because you’re responsible for connecting table and collection views with their datasources
and delegates, you’re not restricted to only using the view controller that manages the table
or collection view in the view hierarchy.

Assuming that you’re beginning with the datasource and delegate methods in the view
controller, then there are X steps to separating things out

Step 1: Create a Separate Class
Start by creating a separate class. I usually name mine something along the lines of
ContactsTableHelper to make it clear which table it’s working with, and that it’s acting as
both datasource and delegate.

Next, move the datasource and delegate methods into this new class. You’ll need to declare
that the new class will conform to the dataSource and delegate protocols; and remove this
from the view controller:

class TableViewHelper : NSObject, UITableViewDataSource, UITableViewDelegate {
}

Step 2: Link the Table View to the New Class
With the new class created, you need to connect the table view to it. If you’ve created the
link in code, this needs to be updated by adding a property for the new class:

let tableViewHelper = TableViewHelper()

Then you can update the dataSource and delegate properties of your tableView from

tableView.dataSource = self
tableView.delegate = self

to

tableView.dataSource = tableViewHelper
tableView.delegate = tableViewHelper

If you’ve made the connections visually, the process is slightly different. First, in your
Storyboard you’ll need to drag an Object placeholder from the Objects browser to the view
hierarchy on the left, as shown in Figure 5-14.

138 CHAPTER 5: Feeding Data to Your Views

With the new Object placeholder selected, switch to the Identity inspector, and update its
Class value to TableViewHelper, as shown in Figure 5-15.

Figure 5-14. Adding an Object Placeholder

Figure 5-16. Reconnecting the dataSource and Delegates

Now you can connect the tableView’s dataSource and delegate properties by Ctrl-Clicking
in the tableView, and dragging over to the TableViewHelper placeholder, as shown in
Figure 5-16.

Figure 5-15. Updating the Class

139CHAPTER 5: Feeding Data to Your Views

Once connected, this will lazily instantiate an instance of the TableViewHelper class when
the table is loaded and use it as the dataSource and delegate of the table view instead of the
view controller.

Summary
This chapter has covered a lot of fairly heavy conceptual stuff, but all of the concepts tie
back into table and collection views in some way. The data that is displayed by a tableView
or collectionView is provided by the dataSource, while the user’s interaction with the view
is handled by the delegate. Both of these are examples of the delegation design pattern,
while the division of labor between the tableView or collectionView, its controllers, and the
underlying data is the model-view-controller architecture pattern in action.

Both the dataSource and delegate functions are defined by their respective protocols:
UITableViewDataSource, UITableViewDelegate, UICollectionViewDataSource, and
UICollectionViewDelegate. Building tableViews and collectionViews is a process of
implementing (at least) the required methods, and often some of the optional ones as well.

Armed with an understanding of where the data comes from, and how the views handle
interactions, you’re ready to dive into the details and start the process of customization.

141

Chapter 6
How the Table Cell Fits
Together
In this chapter, you’re going to take a detailed look at table cells and how they work. In order
to be able to customize them, it’s important to understand the anatomy of cells, and how
they’re created and reused.

You’ll see the following:

	The internal structure of a table cell

	The standard cell types that come for free with UITableView

	How to create prototype cells

	The configuration of default cell content

	The use of accessory views

	How the cell creation and recycling process works

This covers everything you need to know in order to create default-styled cells and perform
basic configuration of them. Configuring cells is often a case of knowing when to intervene
in the creation and reuse process. Later in Chapters 7 and 8, you’ll build on this when you
create customized cells.

Understanding the Anatomy of a UITableViewCell
The first thing to bear in mind about UITableViewCells is that they are UIView objects.
The UITableViewCell class inherits from UIView, which means that the features of
UIViews are available to you in UITableViewCells. Figure 6-1 shows the class hierarchy of
UITableViewCell.

http://dx.doi.org/10.1007/978-1-4842-1242-4_7
http://dx.doi.org/10.1007/978-1-4842-1242-4_8

142 CHAPTER 6: How the Table Cell Fits Together

Because UIView inherits in turn from UIResponder, this also means that it’s possible to
interact with cells by using gestures. I’ll show you some of the effects that this enables in
Chapter 9.

Basic Structure of the Cell
The vanilla cell has five component parts, shown in Figure 6-2.

	A frame and bounds, which describe the cell’s location and size

	The backgrounds, which you’ll look at in the next section

	The cell content

	An optional accessory view

	An automatically placed editing control, which appears when the cell is
in editing mode

Figure 6-1. The class hierarchy of UITableViewCell

http://dx.doi.org/10.1007/978-1-4842-1242-4_9

143CHAPTER 6: How the Table Cell Fits Together

The content of the cell can be accessed en masse through the contentView property, which
is a UIView. You can add and remove subviews, and the contentView will take care of
moving things around to allow the editing control to fit.

When switched to editing mode, the cell’s contentView is reduced in width by about 40
points, and an editing control is inserted at the left side, as shown in Figure 6-3.

Figure 6-2. The basic layout of a cell in normal mode

Figure 6-3. The basic layout of a cell in editing mode

The editing control can be either a green insertion control or a red deletion control.

The Cell’s Background Views
The cell has several background views, which are “stacked” along the Z-axis, as shown in
Figure 6-4.

Note When designing custom cells that will be edited, it’s important to make sure that the layout
of the content view can cope with being automatically resized. Chapter 8 covers this topic.

http://dx.doi.org/10.1007/978-1-4842-1242-4_8

144 CHAPTER 6: How the Table Cell Fits Together

Opaque content in upper views will obscure the content of the lower views, and empty views
are effectively invisible. The two selection background views, selectedBackgroundView and
multipleSelectionBackgroundView, normally have an alpha property of 0; this is toggled
between 0 and 1 in response to cell selection events.

To add a specific background view, you first need to create it and then add it to the relevant
cell property. For example, this code snippet will create a cyan background:

let backgroundView = UIView(frame: cell.frame)
backgroundView.backgroundColor = UIColor.cyanColor()
cell.backgroundView = backgroundView

You can also use this approach to add images as backgrounds:

if let selectedIimage = UIImage(named:"selectedBg") {
 cell.selectedBackgroundView = UIImageView(image: selectedImage)
}

The image will be toggled on and off as the cell is selected and deselected.

Because the background views are arranged along the Z-axis, it’s very important that you
only add custom controls to the cell’s contentView. Adding them to the cell itself will give
inconsistent results if they become obscured by one of the background views. There may
also be layout problems caused by the cell’s contentView being resized to show in-cell
editing controls when the table goes into editing mode.

Figure 6-4. The background views

145CHAPTER 6: How the Table Cell Fits Together

Content and Accessory Views
Content and accessory views are instances of UIView, which means that they have all the
properties and methods of a “normal” UIView. You’ll be exploiting these properties and
methods when you go on to create customized cells.

Designing Prototype Cells
Before cells can be created by the table view’s datasource, you need to build prototypes,
which you can think of as being the templates from which new cells are created.

In simple situations, it may be enough to use one or more of the four standard cell types
that UITableView provides for free. As your app interface becomes more sophisticated, the
standard types may not be sufficient, and you’ll want to create custom cells. The custom cell
process is covered in detail in Chapter 8.

Even if you’re only going to use standard cells, it’s still important to understand the options
for creating their prototypes. You have three options:

	Creating cells visually in separate XIB files, one for each cell type

	Laying out cells visually in Storyboards

	In code, by creating instances of standard cell types and updating the
in-cell controls

Although different, the three approaches all have the same end result, so which you decide
to use is a largely a matter of personal preference. We’ll look at each one in turn.

The Code for This Chapter
The sample app for this chapter is set up with a tabbed interface, each tab demonstrating
a table using one of the different techniques for cell creation. Each view controller has a
basic set of data wired up ready, so you can use them as a starting point for your own
customization.

Caution Despite the power of the graphics processor in iOS devices, compositing the various
layers in cells does come with some overhead. This is especially the case when dealing with layers
with transparency such as background images. Basically, the more areas of transparency there are
in layers, the slower the compositing will be.

To make your table views as performant as possible, it’s important to keep transparency to a
minimum wherever you can. This is covered in more detail in Chapter 8.

http://dx.doi.org/10.1007/978-1-4842-1242-4_8
http://dx.doi.org/10.1007/978-1-4842-1242-4_8

146 CHAPTER 6: How the Table Cell Fits Together

Creating Prototype Cells in XIB Files
This approach relies on creating the prototype cell in a standalone XIB file, then associating
the XIB with a cell identifier as part of the table view configuration process.

As the table view is set up, the XIB will be loaded and “inflated” to create prototype
instances, which the datasource can then use by accessing the data outlets and setting
these with the values from the cell’s model.

The process has five steps:

	Creating the XIB file

	Adding the cell object into the XIB

	Laying out the prototype cell

	Registering the XIB with a cell identifier as the table view is configured

	Creating and configuring instances of the cell in the datasource methods

You can create tables with multiple types of cells using this technique, simply by repeating
the process for each different kind of cell and giving it a different identifier. Then in the
tableView’s dataSource you can dequeue and configure the relevant cell type based on the
data in your table’s model.

Creating the XIB File
Creating a new XIB file isn’t complicated: select the File ➤ New ➤ File menu option and then
the Empty item from the User Interface section, as shown in Figure 6-5.

Note The table created using prototype cells in XIB files is displayed in the XIB table tab in the
sample app. The view controller for this tab is XibTableViewController. All the associated
source and XIB files can be found in the Xib-based table cells folder in Xcode.

147CHAPTER 6: How the Table Cell Fits Together

Give the file a name (I’m using XibCell.xib), and then click the Create button.

Adding the Cell Object to the XIB
With an empty XIB file, you’re now ready to add the table view cell. From the Object
Browser, select the Table View Cell object, as shown in Figure 6-6, and drag it out into the
canvas.

Figure 6-5. Creating a new XIB file

148 CHAPTER 6: How the Table Cell Fits Together

You’ve now added an empty custom-style UITableViewCell to the XIB file, which will look
like Figure 6-7.

Figure 6-7. The new cell in the Canvas

Figure 6-6. The Table View Cell object in the Object Browser

Laying Out the Prototype Cell
At this point, you’re ready to configure its layout. You’ll look at creating customizing cells
in detail in Chapter 7. If you only need one of the four standard cell types, you can quickly
change this by selecting it from the Style drop-down in the Attributes inspector, as shown in
Figure 6-8.

http://dx.doi.org/10.1007/978-1-4842-1242-4_7

149CHAPTER 6: How the Table Cell Fits Together

This will convert the cell into one of the four standard types. There are more details about
how to access the outlets in each one of the standard styles later in this chapter. For now,
select the Basic type so that you get a cell with a built-in Title label.

You’ll also need to set the cell’s Identifier, which you’ll use in a moment to identify the cell
to the table. This is an arbitrary String value, but it’s important!

Set it to something descriptive because it will be the table view’s link between the XIB and
the cell object, as you’ll see next. In the sample project, I’ve set it to MyXibCell, and created
a property for it:

let kCellIdentifier = "MyXibCell"

Telling the Table View About the XIB
With the cell created, you need to inform the table view that it’s going to load its prototype
cells from a XIB file. This has to be done before the datasource makes any attempt to
dequeue a cell from the table, so a good place to set this up is in the view controller’s
viewDidLoad method.

Add the following to the XibTableViewController's viewDidLoad: method:

tableView.registerNib(UINib(nibName: "XibCell", bundle: nil), forCellReuseIdentifier:
"MyXibCell")

Here, you’re informing the table view that it should use the contents of the XibCell nib file
for cells that are identified with MyXibCell. The table view will expect that the top-level object
in the XIB is an instance of UITableViewCell or a UITableViewCell subclass.

If you have several cell types, you can associate them with the table view by repeating this
process, remembering to provide the appropriate (and unique) cell identifier each time.

Creating and Configuring Cells
With the cell type(s) registered with the table view, it’s time to update the
cellForRowAtIndexPath: method to dequeue and configure the cells.

This doesn’t differ significantly from the process you’ve seen in previous chapters: dequeue
the cell with the correct identifier, configure it, and return it to the table view.

Figure 6-8. Selecting the cell’s style

150 CHAPTER 6: How the Table Cell Fits Together

Assuming you’re using your XibCell XIB, which is identified by the MyXibCell identifier, the
code will look something like Listing 6-1.

Listing 6-1. The cellForRowAtIndexPath: Method

func tableView(tableView: UITableView, cellForRowAtIndexPath indexPath: NSIndexPath)
 -> UITableViewCell {

 let cell = tableView.dequeueReusableCellWithIdentifier("MyCellIdentifier",
 forIndexPath: indexPath)

 // Configure the cell...
 cell.textLabel!.text = tableData[indexPath.row]

 return cell
}

If you added a standard cell type to your XIB, then it will be dequeued with all the controls
ready for use, and you can configure it as normal in the cellForRowAtIndexPath: method.
Configuring custom cells is covered in detail in Chapter 8.

Creating Prototype Cells in Storyboards
Laying out the design of your cells can be easier when it’s done visually. In the section
above, you looked at the process of doing this in a standalone XIB file, but if you prefer, you
can do exactly the same in a Storyboard instead.

When you look at a UITableView in a Storyboard, you’ll see that it comes with an empty
section for prototype content, as shown in Figure 6-9.

http://dx.doi.org/10.1007/978-1-4842-1242-4_8

151CHAPTER 6: How the Table Cell Fits Together

As the name suggests, this is where you can create prototype cells that are then instantiated
and dequeued by the table’s dataSource.

You can use this technique to create one or more prototype cells. The main limitation is that
if you have more cells than will fit in the Storyboard’s Table View, they can become a bit
unwieldy to manage. In this situation, you may be better off using separate XIB files.

Creating Prototype Cells
To add a prototype cell, select the Table View in the Storyboard, then switch to the
Attributes Inspector, shown in Figure 6-10. In the top section, you’ll see a drop-down that
allows you to switch between dynamic prototypes or static cells (creating static table views
is covered in Chapter 13).

Figure 6-9. The Prototype Content section

http://dx.doi.org/10.1007/978-1-4842-1242-4_13

152 CHAPTER 6: How the Table Cell Fits Together

Below this is the number of prototype cells that the Storyboard contains. If you increase
this value, you’ll see that cells are added to the Table View, complete with an empty
Content View.

In Figure 6-11, you can see that there are three prototype cells (because the default content
view background is white, it’s not always immediately obvious how many cells are in the
table until you look at the object hierarchy).

Figure 6-11. The prototype cells in the Table View

Figure 6-10. Selecting the number of dynamic prototypes

153CHAPTER 6: How the Table Cell Fits Together

Setting Up the Prototype Cells
With the prototype cells added, now you can start configuring them. By default, they arrive
in the Storyboard as instances of the Custom cell type, but you can change that by selecting
the Table View Cell in the object hierarchy and choosing a different style from the Style
dropdown in the Attributes Inspector.

This will update the prototype cell in the Storyboard. In Figure 6-12, there are five
prototypes, with types of (from top to bottom) Basic, Right Detail, Left Detail, Subtitle, and
Custom. In the screenshot from sample project, the cell identifiers have been updated to
match the cell types, which you’ll do in the next section.

Figure 6-12. The Table View with five prototype cells

As you can see, the standard cell types are shown in the Storyboard with their controls.
You can select this and change their styles by setting values in the Attributes Inspector.

Telling the Table View About the Prototype Cells
In order for the table view to be able to use the prototype cells, you have to provide a way of
referencing which particular cell should be used for which index path value.

This is done by setting the prototype cell’s identifier attribute in the Storyboard. When
dequeuing a cell, the dataSource will automatically retrieve the prototype with the matching
identifier from the Storyboard.

154 CHAPTER 6: How the Table Cell Fits Together

To set the prototype’s identifier, select the Table View Cell object in the hierarchy, as shown
in Figure 6-13.

Figure 6-13. Selecting the prototype cell

Then update the Identifier field in the Attributes inspector with the reuse identifier, as
shown in Figure 6-14.

155CHAPTER 6: How the Table Cell Fits Together

This will also update the name of the cell in the Object tree, as shown in Figure 6-15.

Figure 6-14. Updating the prototype cell’s Identifier

Figure 6-15. The updated prototype cell

156 CHAPTER 6: How the Table Cell Fits Together

The sample app will create one row for each of the cell types, so you can use that as your
source data. Add a tableData property to the view controller:

var tableData = [String]()

Now add the code in Listing 6-2 as an extension to the view controller.

Listing 6-2. The View Controller Extension

extension StoryboardTableViewController {

 func setupTable() {

 tableData.append("BasicCellIdentifier")
 tableData.append("RightDetailCellIdentifier")
 tableData.append("LeftDetailCellIdentifier")
 tableData.append("SubtitleCellIdentifier")
 tableData.append("CustomCellIdentifier")

 }

}

Finally, call the setupTable() function from the viewDidLoad() function:

override func viewDidLoad() {
 super.viewDidLoad()
 setupTable()
}

Creating and Configuring Cells
With the cell identifier set, the cellForRowAtIndexPath: method will now be able to create
instances from your prototype. The key is to use the cell’s Identifier attribute to create
(or dequeue) the correct prototype and then configure the cell from the data model in the
usual way.

Listing 6-3 shows how to do this for your newly-created cell type’s BasicCellIdentifier cells.

Listing 6-3. The cellForRowAtIndexPath: Method

override func tableView(tableView: UITableView, cellForRowAtIndexPath indexPath:
 NSIndexPath) -> UITableViewCell {

 let cellIdentifier = tableData[indexPath.row]

 let cell = tableView.dequeueReusableCellWithIdentifier(cellIdentifier,
 forIndexPath: indexPath) as! UITableViewCell

 switch cellIdentifier {

157CHAPTER 6: How the Table Cell Fits Together

 case "BasicCellIdentifier" :
 cell.textLabel!.text = "Basic cell"

 case "RightDetailCellIdentifier":
 cell.textLabel!.text = "Right detail cell"
 cell.detailTextLabel!.text = "Detail text label"

 case "LeftDetailCellIdentifier" :
 cell.textLabel!.text = "Left detail cell"
 cell.detailTextLabel!.text = "Detail text label"

 case "SubtitleCellIdentifier" :
 cell.textLabel!.text = "Subtitle cell"
 cell.detailTextLabel!.text = "Detail text label"

 default : // Handles CustomCellIdentifier by process of elimination
 print("The default custom cell type is empty and has no controls")

 }

 return cell

}

This method gets the item from the data array for the current index path, and uses that as
the cellIdentifier. Then it switches over the item and configures the cell accordingly. The
end result looks like Figure 6-16.

158 CHAPTER 6: How the Table Cell Fits Together

Creating Prototype Cells in Code
Creating prototype cells in code is normally used for custom instances of UITableViewCell
subclasses. If you use this approach to create “standard” UITableViewCells, you’re
restricted to the UITableViewStyle.Default style and won’t be able to use cells with
subtitles, etc.

The process is very similar to the visual methods: you register the cell class with the table
view using an identifier, and then you create or dequeue an instance of the class in the
cellForRowAtIndexPath: method.

Registering the Cell Class with the Table View
This must happen before the dataSource attempts to create or dequeue cells, so it is
normally done as the view is set up in the viewDidLoad method or similar.

To register a cell class with the table, use the registerClass:forCellReuseIdentifier:
method with the appropriate identifier.

Figure 6-16. The custom cells

159CHAPTER 6: How the Table Cell Fits Together

For example, to register the UITableViewCell class with the StandardCell identifier, add the
following to (for example) the tableViewController’s viewDidLoad method:

tableView.registerClass(UITableViewCell.self, forCellReuseIdentifier: "StandardCell")

If you had a custom UITableViewCell subclass, you’d use this in the registerClass:
forCellReuseIdentifier: method:

tableView.registerClass(MyCustomCellClass.self, forCellReuseIdentifier: "CustomCell")

To deregister a class for a given cellIdentifier, you pass nil to the registerClass:
forCellIdentifier: method:

tableView.registerClass(nil, forCellReuseIdentifier: "CustomCell")

Creating and Configuring Cells
Once the cell classes and identifiers are registered with the table view, the
cellForRowAtIndexPath: method will now be able to create instances on demand.

Use the cell’s Identifier attribute to create (or dequeue) an instance of the correct class,
and then configure the cell from the data model in the usual way.

Listing 6-4 shows how to do this for MyCustomCellClass cells.

Listing 6-4. The cellForRowAtIndexPath: Method

func tableView(tableView: UITableView, cellForRowAtIndexPath indexPath: NSIndexPath)
 -> UITableViewCell {

 let cell = tableView.dequeueReusableCellWithIdentifier("CustomCell",
 forIndexPath: indexPath) as! MyCustomCellClass

 // Configure the cell...
 cell.myCustomOutlet!.text = tableData[indexPath.row]

 return cell
}

Note that the dequeueReusableCellWithIdentifier:forIndexPath: method returns a vanilla
UITableViewCell instance, so you will need to downcast this to your custom class with the
as! method.

160 CHAPTER 6: How the Table Cell Fits Together

Working with Standard Cell Types
UITableViews come with four standard cell types, and for many applications these may be
all you need. The four styles have constant names, which unfortunately aren’t particularly
descriptive:

	UITableViewCellStyleDefault

	UITableViewCellStyleValue1

	UITableViewCellStyleValue2

	UITableViewCellStyleSubtitle

This section details the four types and then shows you how to select the one you want.

Using UITableViewCellStyleDefault
As the name suggests, UITableViewCellStyleDefault is the default cell style for a standard,
out-of-the-box UITableView. It provides three areas (shown in Figure 6-17):

	A UIImageView called imageView at the left end of the cell. This is
optional; if an image view isn’t present in the cell, the cell content will
align to the left.

	A UILabel called textLabel, which holds the cell content.

	An optional UIView called accessoryView that can show one of the
standard accessory view indicators, a custom image by adding a
UIImageView as a subView, or a control such as a UIButton.

Figure 6-17. UITableViewCellStyleDefault

As with all the other standard cell styles, the textLabel can be formatted by changing the
UILabel properties such as font, text alignment, and color. Although the layout of the default
cells may be fixed, this formatting does enable you to apply some degree of customization.

161CHAPTER 6: How the Table Cell Fits Together

The content of the textLabel is accessed through its text property:

cell.textLabel!.text = "textLabel"

Similarly, the image is set by accessing the imageView’s image property:

cell.imageView!.image = UIImage(named:"panda")

If you’re working with a prototype cell in a Storyboard, then the UITableViewCellDefault
corresponds to Basic style in the Attributes Inspector (see Figure 6-18).

Figure 6-18. Selecting a UITableViewCellBasic style in Interface Builder

Using UITableViewCellStyleValue1
The Value1 cell style is similar to the Default type, but includes an extra, optional UILabel
called detailTextLabel and an optional imageView. Figure 6-19 shows an example.

Figure 6-19. UITableViewCellStyleValue1

The textLabels will attempt to handle restricted space but won’t always result in the desired
effect, as shown in Figure 6-20. If the automatic results aren’t acceptable, this might be a
cue for you to think about implementing a custom cell style.

Figure 6-20. Truncation of cell content

162 CHAPTER 6: How the Table Cell Fits Together

If you’re working with a prototype cell in a Storyboard, then the UITableViewCellDefault
corresponds to Right Detail style in the Attributes Inspector (see Figure 6-21).

Figure 6-24. UITableViewCellStyleSubtitle with an image

Figure 6-23. Selecting a UITableViewCellValue2 style in Interface Builder

Figure 6-21. Selecting a UITableViewCellValue1 style in Interface Builder

Figure 6-22. UITableViewCellStyleValue2

Using UITableViewCellStyleValue2
The Value2 cell style is virtually identical to the Value1 style, with the exception that the
default weight of the textLabel and detailTextLabel are altered, and there’s no imageView.
Figure 6-22 shows an example.

If you’re working with a prototype cell in a Storyboard, then the UITableViewCellDefault
corresponds to the Left Detail style in the Attributes Inspector (see Figure 6-23).

I can’t ever remember seeing an example of UITableViewCellStyleValue2 in the wild, but it’s
there if you need it.

Using UITableViewCellStyleSubtitle
The fourth default type is another variation of the other three. It combines textLabel and
detailTextLabel with an optional imageView. Figure 6-24 shows this default cell with an
image, and Figure 6-25 shows it without an image.

163CHAPTER 6: How the Table Cell Fits Together

Configuring the Default Cell’s Content
A UITableViewCell of one of the four default types has a whole range of properties that you
can access to configure the content. This section presents four key properties—textLabel,
detailTextLabel, imageView, and contentView—and then shows an example of using them.

textLabel
The textLabel property is a UILabel, with text that can be changed. It is generally used as
the cell’s main title:

cell.textLabel!.text = "The main cell text"

detailTextLabel
detailTextLabel is also a UILabel, with text that can be changed. It can act as a subtitle for
the cell:

cell.detailTextLabel!.text = "The cell subtitle"

imageView
The cell’s imageView is a UIImageView. It has an image property that can be passed a
UIImage, which is then displayed in the cell:

if let avatar = UIImage(named:"avatar") {
 cell.imageView!.image = avatar
}

contentView
The cell’s contentView is a UIView to which subviews can be added:

cell.contentView.addSubview(theView)

You’ll look at contentView in much more detail in Chapter 8.

A common mistake is to try to access these properties directly:

cell.textLabel = "Some text" // This won’t work!

Figure 6-25. UITableViewCellStyleSubtitle without an image

http://dx.doi.org/10.1007/978-1-4842-1242-4_8

164 CHAPTER 6: How the Table Cell Fits Together

In order to ensure that the table is as responsive as possible, it’s a good idea to make sure
that any images are scaled before adding them to the cell. If cells need to rescale images
before displaying them, jerky scrolling of the table can result.

Formatting Text in Default Cell Types
Here’s an example of setting these properties in practice:

cell.textLabel!.textColor = UIColor.blueColor()
cell.detailTextLabel!.font = UIFont(name: "TimesNewRomanPSMT", size: 12)
cell.detailTextLabel!.textColor = UIColor.redColor()

This code results in the cell shown in Figure 6-26. I wouldn’t necessarily advise using this
frankly hideous combination of fonts and colors, but you get the idea.

Figure 6-27. UITableViewCellAccessoryDisclosureIndicator

Figure 6-26. Example cell formatting

Working with Accessory Views
UITableViewCell provides three types of accessory views (well, four if you count None as a
type). Accessory views are displayed at the right-hand end of the cell. You can also add your
own custom accessory view. These are UIViews, which either act as a hint to the user that
touching the cell will result in some kind of action or show some information about the cell
state.

Tapping an accessory view causes the tableView to call the delegate’s
accessoryButtonTappedForRowWithIndexPath method. This allows you to trigger actions such
as pushing in a new view controller.

As an alternative to using a default accessory view, you can provide a custom view of your
own or place a control such as a UIButton into a custom view.

Using UITableViewCellAccessoryDisclosureIndicator
The DisclosureIndicator acts as a hint that touching the cell will result in another table view
being displayed, to drill down into a data hierarchy. Figure 6-27 shows how this appears.

165CHAPTER 6: How the Table Cell Fits Together

Using UITableViewCellAccessoryDetailDisclosureIndicator
The fact that DetailDisclosureIndicator looks like an info button is a hint that touching the
cell will result in the display of more data. The display might be another table view, but could
be another view of a different type.

When it’s tapped, a DetailDisclosureIndicator sends the tableView:accessoryButtonTapped
ForRowWithIndexPath message to the table’s dataSource. Figure 6-28 shows this.

Figure 6-29. UITableViewCellAccessoryCheckmark

Figure 6-30. UITableViewCellAccessoryNone

Figure 6-28. UITableViewCellAccessoryDetailDisclosureIndicator

Using UITableViewCellAccessoryCheckmark
The check mark, shown in Figure 6-29, shows that the cell has been selected, either by
the user tapping the row or by some data field behind the scenes. This provides a way of
selecting and deselecting one or more items in a list. It’s a very common user interface
pattern for setting configuration items, for example.

Using UITableViewCellAccessoryNone
As the name suggests, UITableViewCellAccessoryNone doesn’t display any
accessory view. Figure 6-30 shows an example. Setting this accessory type removes
any previously set accessory. You might use this view because there’s no further
information below this level—or because the cell was previously selected and showed a
UITableViewCellAccessoryCheckmark.

166 CHAPTER 6: How the Table Cell Fits Together

Setting the Accessory View Type
The cell’s accessory view is set with the accessoryType property:

cell.accessoryType = UITableViewCellAccessory.Checkmark

The code in Listing 6-5 shows how you might toggle a check mark on and off, depending on
the value of some data.

Listing 6-5. Toggling a Cell’s Accessory Type

let dataItem = tableData[indexPath.row]

if dataItem == "some string that indicates a checkmark is needed" {

 cell.accessoryType = UITableViewCellAccessory.Checkmark;

} else {

 cell.accessoryType = UITableViewCellAccessory.None;

}

Apple provides guidelines about which accessory type should be used for what purpose.
Although I’ve never heard of an app being rejected from the App Store because disclosure
indicators were used in a nonstandard way, doing so runs the risk of confusing your users. It’s
probably best to stick with the default behaviors unless there’s a very good reason not to.

Using an Accessory View to Show Cell Selection State
Using the presence or absence of a cell accessory view is a perfectly valid way of showing
whether a cell is selected. But there is a “gotcha” that can very easily get you if you’re not
careful.

Think back to the model-view-controller pattern for a moment. Cells are views, and the data
that populates the cell exists in the model(s). When you switch a selection indicator on and
off, you’re doing that to the view—not the model.

Cells themselves don’t have state. Remember, even in a tableView of 99,999 rows, only
about 11 cells are created. If you want the selection state to persist the next time that data
point is displayed, you must update the external data model and then set the selection
indicator accordingly.

Similarly, if you set the accessory view state of a cell that is then recycled from the cache,
it’ll arrive back at the table in the same state it had when the cell was dumped into the
cache. That’s why it’s important to reset accessory views (and later, any controls or views
that you’ve included in your custom cells) every time a row is updated.

167CHAPTER 6: How the Table Cell Fits Together

Listing 6-6 presents a code snippet from one of my apps, a networked game called
TeaWars, that demonstrates this in practice. The table displays a list of peer devices. In the
next step, the user can select the ones they want to connect to. Tapping the row fires the
didSelectRowAtIndexPath method, which adds that client ID to an NSMutableArray called
listOfPlayers.

Listing 6-6. Toggling Cell Selection

func tableView(tableView: UITableView, cellForRowAtIndexPath indexPath: NSIndexPath)
-> UITableViewCell {

 let cell = tableView.dequeueReusableCellWithIdentifier(kCellIdentifier,
forIndexPath:indexPath)

 // Retrieve the ID of the relevant connected client
 let peerID = sessionManager.connectedClients[indexPath.row]

 // Retrieve the displayName of the peer
 cell.textLabel.text = sessionManager.gkSession.displayNameForPeer(peerID)

 // If this peerID is contained in the listOfPlayers, it’s been selected
 // so show the checkmark in the cell

 if listOfPlayers.containsObject(peerID) {

 cell.accessoryType = UITableViewCellAccessory.Checkmark

 } else {

 // The peer ID isn’t in the list, so it’s not selected
 cell.accessoryType = UITableViewCellAccessory.None

 }

 return cell
}

As the cells are popped and pushed in and out of the cache, the cellForRowAtIndexPath
method checks whether the peer exists in the listOfPlayers array. If it does, it must have
been selected, so the cell needs a UITableViewCellAccessoryCheckmark. (The _sessionManager
object handles the network communication, so it’s not really relevant to this example.)

Creating Custom Accessory Views
Because the cell’s accessoryView is an instance of UIView, it’s a pretty trivial task to assign
your own custom UIView to the cell:

if let image = UIImage(named: "imageName") {
 cell.accessoryView = UIImageView(image: image)
}

As with the cell’s imageView, it’s best to make sure any accessoryView image is sized and
scaled correctly first. You’re not just restricted to images, though; the accessoryView can be
a useful place to insert controls such as UIButtons.

168 CHAPTER 6: How the Table Cell Fits Together

Creating and Reusing Cells
Having looked at the various default cell styles that are available, you’re probably impatient
to start creating custom cell styles of your own. Before you move on to that, though, it’s
a good idea to explore in more detail how cells are created and managed by the table
view itself. Creating custom cells is often a process of knowing when to intervene in the
“standard” processes, so knowing what those processes are will help you to figure out
what’s going on and why.

Memory Limitations
iOS devices pack a lot into small packages. But even though the iPhone and iPad have
something like 256,000 times the memory of the Apollo Lunar Module’s onboard computer,
memory is still a constraint. The small form factor of the devices means there’s a limit to the
amount of RAM that can be crammed into the casing. As an iOS developer, you need to
remain aware of the memory footprint of your apps.

Apps with very small tables, like the SimpleTable app, don’t pose much of a problem;
you had only 10 rows. But if the app’s data comes from a bigger source, you could have
thousands—if not millions—of rows. Dealing with that data en masse could quickly
overwhelm the limited memory that iOS devices have.

Speed and Smoothness
When the first generation iPhone was first launched back in 2007, one thing that reviewers
were consistently blown away by was the smoothness of the interface. Flick a table view,
and it smoothly scrolls up and down—no stuttering, hesitation, or jerkiness. Interfaces that
don’t respond smoothly are incredibly obvious to the user (and jerky interface response is
one of the main criticisms of iPhone and iPad rivals).

Making content move around smoothly onscreen isn’t too big a challenge to today’s
powerful graphics processors. Making a table (or indeed, any scrolling interface) run
smoothly mainly requires that data can be retrieved fast enough to be moved onto the
screen, without the screen having to wait for it. Delays in fetching data manifest themselves
as stuttering or hesitating scrolling views.

Just-in-Time Creation and Recycling
So, how does iOS deal with limited memory and a need for smoothness and speed? The
solution to both problems is ingenious. UITableViews take advantage of an important fact:
although a table might have thousands of cells, only a few are visible to the user at any one
time.

First, UITableViews use a just-in-time approach to creating cells. A new cell is created just
before it’s required. Each cell is then ready to be displayed, but not so soon that the device
memory becomes clogged with cells that aren’t yet needed.

169CHAPTER 6: How the Table Cell Fits Together

Second, after a cell is no longer visible, it’s dequeued into a cache for reuse. Taking a
preexisting cell and updating its content is both quicker and less memory-intensive than
creating a brand new one. Instead of creating a brand new cell, the tableView will dequeue
and recycle an existing cell, updating its content just before it is displayed onscreen.

The Table View’s “Conveyor Belt”
All this can seem a little abstract, so a visual analogy can help. You can think of the
tableView as something like a conveyor belt inside a box, as shown in Figure 6-31. The user
can move the belt backwards and forwards with a control button. A small section of the belt
is visible through a window in the top of the box.

Figure 6-31. The cell production process

The conveyor belt has slots into which different types of cells can be placed. As the cells
reach either end of the conveyor belt, they fall off and are sorted into a series of boxes
underneath the belt, one box for each different type of cell.

Inside the box, and next to the conveyor, stand two robots. One robot – called
dataSource - is responsible for putting cells onto either end of the tray, and other – called
delegate - stands ready to tweak the attributes of a cell when required.

Also in the cell is a set of templates for cells; depending on how the table is set up, these
might have come from a Storyboard or XIB file, or they might be a description contained in a
UITableViewCell subclass.

Just before the user winds the belt to move an empty slot underneath the window, the
dataSource robot checks with the model to see what kind of cell is required. Armed with this
knowledge, it will look in the relevant tray to see if there are any spare cells lying around.

170 CHAPTER 6: How the Table Cell Fits Together

If the tray is empty, the dataSource robot will quickly create an empty new one by copying
from the relevant template. If there is a spare cell lying around in the tray, the robot will pick it
up and get it ready to put it onto the conveyor belt.

Immediately before the cell gets placed onto the conveyor belt, the robot checks with the
table’s model to find what information should be contained in this cell. It writes the content
into the cell, and the first arm places it into the slot just in time for the cell to be scrolled
into view.

If the user interacts with a cell on the conveyor belt, the delegate robot is responsible for
reacting. It might colour in the contents of the cell, or ask the view controller to pop up an
alert view or push in a new view.

How the “Conveyor Belt” Process Is Built in Code
Fortunately for those of us building and configuring table views, a lot of this
conveyor-belt action takes place behind the scenes. The heavy lifting is done by the
cellForRowAtIndexPath method.

If you’ve created a new UITableViewController subclass by using the built-in template, the
subclass is virtually ready to use out of the box. Listing 6-7 provides the template version
with some comments I’ve added so that it relates to our conveyor-belt analogy.

Listing 6-7. The “Conveyor Belt” Code

// the tableView asks the dataSource robot to create and return
// a cell to fit into the indexPath.row slot

func tableView(tableView: UITableView, cellForRowAtIndexPath indexPath:
NSIndexPath) -> UITableViewCell {

 let CellIdentifier = "MyImpressiveCell"

 // the dataSource robot reaches into the tray
 // and tries to find an old cell with cell identifier “MyImpressiveCell”
 // If it can’t find one, it will create a new one

 let cell = tableView.dequeueReusableCellWithIdentifier(CellIdentifier],
 forIndexPath: indexPath) as! UITableViewCell

 // The dataSource robot now sets up the cell
 // Configures the cell...
 cell.textLabel!.text = “cell contents...”

 // and hands it over to the tableView robot
 return cell

}

171CHAPTER 6: How the Table Cell Fits Together

Identifying Cells with the cellIdentifier
It’s important to bear in mind that it’s possible to display a potentially unlimited range of cell
types in the same tableView. Later you’ll exploit this to create highly customized tables. The
tableView, therefore, needs some way of identifying each different cell type, which is the job
of the cellIdentifier.

The CellIdentifier is simply an arbitrary String that is unique to each cell type. When
a new cell is created, it’s “tagged” with the cellIdentifier. Behind the scenes, the
dataSource uses this cellIdentifier to do the following:

	Drop the discarded cell into the right queue for later reuse

	Retrieve a cell of the right type from a queue when the tableView
requests a new cell

Figure 6-32 shows a somewhat contrived example with two cell types alternating on odd
and even rows.

Figure 6-32. Cell alternation

172 CHAPTER 6: How the Table Cell Fits Together

The table was produced by the code in Listing 6-8.

Listing 6-8. Creating Alternating Cell Types

func tableView(tableView: UITableView, cellForRowAtIndexPath indexPath: NSIndexPath)
 -> UITableViewCell {

 var currentCellIdentifier: String

 if (indexPath.row % 2) == 0 {
 currentCellIdentifier = "EvenCell"
 } else {
 currentCellIdentifier = "OddCell"
 }

 var cell = tableView.dequeueReusableCellWithIdentifier
 (currentCellIdentifier,forIndexPath: indexPath)

 cell.textLabel!.text = "textLabel"
 cell.detailTextLabel!.text = "detailTextLabel"

 return cell

}

Stepping through Listing 6-8, the first task is to create a string for use as the cell identifier:

var currentCellIdentifier: String

The identifier is used to determine whether the row is odd or even. You can use the modulo
function to divide the indexPath.row by 2. If the modulus is zero, the row is even; otherwise,
it’s odd. The cell identifier can then be set accordingly:

if (indexPath.row % 2) == 0 {
 currentCellIdentifier = "EvenCell"
} else {
 currentCellIdentifier = "OddCell"
}

You then dequeue a reusable cell with the cell identifier for this row:

 var cell = tableView.dequeueReusableCellWithIdentifier
 (currentCellIdentifier,forIndexPath: indexPath)

The cell identifier informs the tableView of which kind of cell is required. The tableView will
take care of either returning an already-existing cell for recycling or creating a new one from
scratch if there isn’t a spare waiting around.

173CHAPTER 6: How the Table Cell Fits Together

Having been handed the right kind of cell, then it’s simply a case of configuring it:

cell.textLabel!.text = "textLabel"
cell.detailTextLabel!.text = "detailTextLabel"

Finally, you return it to the tableView:

return cell

Side Effects of Cell Reuse and Caching
Although caching and reusing cells dramatically reduces memory use and speeds up the
table, some potential side effects can cause problems. When the unused cells are dumped
into the queue, they’re queued as is. In other words, their content and attributes remain in
exactly the same state as when the cell was created.

This can cause interesting display issues, with seemingly “old” cells creeping into the middle
of the table. This can be reasonably obvious when it happens with cell data, but it can often
catch you unawares if you’re customizing other cell attributes such as selection state.

To prevent this, it’s vitally important to reset the cell’s content every time it’s used—
regardless of whether it’s a new or dequeued cell.

There are three places where you can amend cell content:

	prepareForReuse: This method gets called on the cell in
the background just before it’s returned to the delegate by
dequeueReusableCellWithIdentifier. You can override this method if
needed, but for performance reasons Apple recommends that you reset
only noncontent cell attributes here (editing and selection properties, for
example). You can change content in cellForRowAtIndexPath.

	cellForRowAtIndexPath: As you’ve already seen, this is where you’ll do
most of the cell’s configuration—setting content items based on the
data returned by the tableView’s model and so on.

	willDisplayCell:forRowAtIndexPath: After the cell is created with
cellForRowAtIndexPath, there’s one last chance to tweak it before the
tableView actually draws it to the screen. Just before this happens,
the tableView will tell the delegate that it’s about to draw a cell for a
particular row—and at this point, you can change state-based properties
such as selection and background color.

One technique I have seen suggested on forums is to create each cell with a unique
cellIdentifier. Although this may work for very small tables, it’s an incredibly bad
idea if you’re populating a table with a significant number of cells. By creating unique
cellIdentifiers, you’re preventing the caching and reuse of cells, so the memory footprint
of your app will be significantly higher than it otherwise would be.

174 CHAPTER 6: How the Table Cell Fits Together

Summary
In this chapter, you looked in depth at how cells are structured, created, and reused. You
also saw how cells can be configured beyond their default look by using just the default
elements. Successfully customizing cells depends on knowing when to override the default
processes, so you learned how the table view creates and manages cells for you.

By understanding what’s possible with basic customizations, you can then use this
information to go further. In Chapter 7, you’ll use this knowledge to build completely
customized cells, and you'll build on this further in Chapter 8. In Chapter 9, you’ll improve
the way that your users can interact with cells.

http://dx.doi.org/10.1007/978-1-4842-1242-4_7
http://dx.doi.org/10.1007/978-1-4842-1242-4_8
http://dx.doi.org/10.1007/978-1-4842-1242-4_9

175

Chapter 7
Improving the Look of Cells
Using UITableView’s built-in standard cell types is a great way to get up and running quickly.
But pretty soon you’re going to run up against the limitations of the standard look and feel,
and you’ll want to move beyond the typical layouts.

If you’re working with a UICollectionView, you don’t have any standard cells in the first
place, so you’re going to need to customize them yourself from the outset.

Creating and using custom cells isn’t difficult, and builds on all the topics that we’ve covered
so far. There are four main ways of customizing cells:

	Add subviews to the cell’s contentView in code.

	Create prototype cells in a Storyboard.

	Create a custom cell in a XIB by using Interface Builder.

	Create a custom subclass of UITableViewCell or UICollectionViewCell.

The four functions complement each other, and apply to both table and collection views with
some minor differences. In this chapter, you’ll look at the first three. Then in Chapter 8, you’ll
take a detailed look at custom subclasses.

The three approaches in this chapter are different ways to achieve much the same result,
but there’s a certain amount of commonality between them. This chapter’s examples include
some repetition in order to compare the three techniques.

Customizing Cells
When it comes to customizing cells, you can take four approaches:

	Add subviews to the cell’s contentView in code.

The entire content of the cell can be accessed through the contentView
property. When the cell is dequeued by the cellForRowAtIndexPath or
cellforItemAtIndexPath functions, you can create and add your controls
as subviews to contentView.

http://dx.doi.org/10.1007/978-1-4842-1242-4_8

176 CHAPTER 7: Improving the Look of Cells

If you’re dealing with UITableViewCell, your new subviews can work
alongside the built-in subviews, or you can ignore the built-in subviews
completely. If you don’t set the built-in subviews, they will not be inserted
into the cell.

	Create a prototype cell in a Storyboard.

Using a Storyboard in Interface Builder, you can lay out the cell controls
visually in a prototype cell. These provide a “template” that the dataSource
can use to create cells. You register the template for use when you set up
the table or collection view.

When the cell is created by the dataSource, it’s possible to
programmatically set the properties of the custom controls.

	Create a custom cell in a XIB by using Interface Builder.

Using Interface Builder, you can lay out the cell controls visually in a XIB,
and then load that file when the cell is registered with the table or
collection view.

Then with a bit of additional code to access your custom controls, it’s
possible to set their values programmatically in the relevant dataSource
function.

	Create a cell subclass and override layoutSubviews.

As an alternative to Interface Builder’s visual approach, you can subclass
the cell class and lay out the custom cell’s content in code—either
overriding the layoutSubviews function or drawing the cell with drawRect.

Which Function Should I Use?
The short answer is—it depends! There’s no right or wrong way to customize cells.
Which approach is best depends on a combination of what you’re trying to achieve, how
comfortable you are working with code versus laying out views visually (and vice versa), and
how quickly you need to get your code up and running.

Adding Subviews to the Cell’s contentView
The cell’s contents sit inside a UIView called contentView. With a UITableViewCell, you
also get an accessory view, shown in Figure 7-1. A UICollectionViewCell has an empty
contentView, shown in Figure 7-2.

177CHAPTER 7: Improving the Look of Cells

Although contentView itself is read-only—meaning you can’t replace it—you can add and
remove subviews to and from it.

These subviews can be any control or component that inherits from UIView itself, including
labels, controls, text fields, images, and so on.

You add a custom view when a new cell is created for the first time. This view will then be in
place if and when the cell is subsequently recycled.

This means that if you’re adding content into the custom view that will vary with each
item—a label, an image, and so on—they need to be set for each and every item. The
implication here is that you need to be able to reach back inside the custom view, as it were,
to access the properties in order to set them.

Figure 7-1. The layout of a UITableViewCell

Figure 7-2. The layout of a UICollectionViewCell

178 CHAPTER 7: Improving the Look of Cells

The approach to take is to think of your custom view in two parts:

	Creating the structure: Setting the size and position of the elements
that you’re going to add to the cell’s contentView in each new cell.

	Updating the content: Configuring the properties of the custom
elements you’ve added to the contentView as each row is updated.

VIEWS AND THEIR HIERARCHY

One aspect of iOS that often causes confusion is how UIViews relate to each other. All this talk of adding
subviews—but to where? And what?

The key concept to understanding UIViews is that they form a hierarchy, shown in Figure 7-3.

Tip If you don’t explicitly reference the standard contents of a UITableViewCell
—textLabel, detailTextLabel, imageView, and accessoryView—then they won’t be
inserted into the cell and won’t get in the way of your custom layout.

Figure 7-3. The view hierarchy

Each UIView can have a parent—or superView—and one or many subViews. Visibility of subViews is tied
to their superView, so setting the visibility of UIView C to hidden will cause UIViews D and E to disappear.

Each UIView has a property called subViews, which is an Array containing any UIViews for which this
UIView instance is the parent, or superView; see Figure 7-4.

179CHAPTER 7: Improving the Look of Cells

You can access each subView for a UIView by iterating through its array of subViews:

for theSubView in parentView.subViews {

 // do something to theSubView
}

Similarly, each UIView has a superView property that is a reference to the “parent” view. In Figure 7-3, the
superView of view C is view A, and view C has two views in its subViews array: views D and E.

If you’re creating complex layouts with multiple views, subviews, and superviews, it’s worth keeping some
diagrams to show how each view relates to the others. That can prevent much confusion later.

Creating the Elements in the Cell
The first step has to take place as each cell is created. This occurs in the relevant
dataSource function, either tableView:cellForRowAtIndexPath, shown in Listing 7-1, or
collectionView:itemForRowAtIndexPath:, shown in Listing 7-2.

Each listing shows the basic technique:

	First, check whether the subview that you want to add exists (in case
you’re recycling an already-existing cell).

	If the subview already exists, configure the properties that you want to
control.

	If the subview doesn’t exist, create and add it to the cell’s contentView,
and then configure it.

Figure 7-4. Views in a subView array

180 CHAPTER 7: Improving the Look of Cells

Listing 7-1. Adding and Configuring a Custom Subview for UITableView

func tableView(tableView: UITableView, cellForRowAtIndexPath
 indexPath: NSIndexPath) -> UITableViewCell {

 let cell = tableView.dequeueReusableCellWithIdentifier("CellIdentifier",
 forIndexPath: indexPath)

 // Check if the custom view already exists – if it does,
 // we’re recycling an existing cell

 if let customView = cell.contentView.viewWithTag(1000) {

 // customize the properties of the view

 } else {

 // create the custom view and set the tag value
 let customView = UIView(frame: cell.contentView.frame)
 customView.tag = 1000

 // customize the custom view’s properties
 ...

 // add the custom view to the cell’s contentView
 cell.contentView.addSubview(customView)

 }

 // return the cell to the tableView
 return cell

}

Listing 7-2. Adding and Configuring a Custom Subview for UICollectionView

func collectionView(collectionView: UICollectionView, cellForItemAtIndexPath
 indexPath: NSIndexPath) -> UICollectionViewCell {

 let cell = collectionView.dequeueReusableCellWithReuseIdentifier(reuseIdentifier,
 forIndexPath: indexPath)

 if let customView = cell.contentView.viewWithTag(1000) {

 customView.backgroundColor = UIColor.redColor()

 } else {

 let customView = UIView(frame: cell.frame)
 customView.tag = 1000

181CHAPTER 7: Improving the Look of Cells

 customView.backgroundColor = UIColor.redColor()
 cell.contentView.addSubview(customView)

 }

 return cell
}

Updating the Content in a Customized Cell
The preceding code will ensure that every new cell will be created with a UIView inside it,
ready for configuration as each row is updated.

At this point, you meet what might seem like a bit of a stumbling block. After the subviews
that you created are inserted into the cell’s contentView, you can no longer access them
directly to update them. They’re effectively subsumed into the cell’s contentView, which
doesn’t have any properties or outlets that you can use to update them.

This is where the tags come in. Updating the content is a two-step process.

1. Get a reference to the custom label and imageView inside the cell’s
contentView, which you do by referencing their tags.

2. Update the content of the controls.

Tagging Controls in the Cell
Every UIView control has an associate tag property, which can be set either in Interface
Builder or dynamically in code. The tag is simply an Int value that uniquely identifies each
element—with one very important caveat: you’re in charge of the tag’s uniqueness.

Let me say that again, for emphasis. The control doesn’t care about what its tag value is,
and the view doesn’t care if the tag is unique. If you need to identify each control uniquely,
the tags need to be unique. You can get some very strange results if that’s not the case.

Setting the tag of a control can be done in code:

myControl.tag = 1050

Alternatively, you can use the View section of the Attributes Inspector (shown in Figure 7-5) if
you’re working with Interface Builder.

182 CHAPTER 7: Improving the Look of Cells

There are a couple of tricks I use to keep track of control tags within XIB files:

	Start the numbering at a large value, and leave “space” in the numbering
for additional tags. I’ve gotten into the habit of starting tag numbering
at 1000, and incrementing by 10 for each tag.

	Keep the tag numbering consistent with the layout of the XIB. For
example, if you have four UILabels in a line, give the top one the
tag 1000, the second 1010, the third 1020, and so on.

After you’ve finished with the XIB file, the next challenge is keeping track of tag numbers in
your classes. This is where enumerations come into their own.

Enumerations (enums) allow you to associate integer values with what are effectively text
labels. One way of thinking about them is as a kind of compile-time global find-and-replace
(this will make Swift purists wince, though.)

enums need to be defined before they’re used. I tend to put them at the top of my view
classes files so I know where to find them:

enum kCellControl: Int {
 case NameLabel = 1050
 case StreetLabel = 1060
 case UserImage = 1070
}

Then as the file is compiled, any instances of the enum (in this case kCellControl.NameLabel)
will be replaced by whatever integer follows. So this code

if let myLabel = cell.contentView.viewWithTag
(kCellControl.NameLabel.rawValue) as? UILabel {
 myLabel.text = "Label text"
}

Figure 7-5. Setting a control’s tag

183CHAPTER 7: Improving the Look of Cells

will be interpreted by the complier as

if let myLabel = cell.contentView.viewWithTag(1050) as? UILabel {
 myLabel.text = "Label text"
}

Starting an enum with k just indicates it’s a constant. You don’t need to do this, but you’ll see
this done a lot in Apple code that defines constants. It’s a hangover from days of yore.

By using enums inline in your code rather than the actual tag values themselves, you’re doing
several things:

	You’re making your code significantly more readable, because it’s far
more obvious what the control does.

	You’re making any use of the wrong tag much more obvious.

	You’re providing a record of all your tags at the top of your class (or
wherever you choose to place them), keeping everything neatly together.

Casting Controls
You’ll notice that the line that creates your UILabel has a slightly strange syntax. You’re
casting the UIView with the tag 1050 into a UILabel. If this is something new to you, fear
not—it’s not as arcane as it sounds.

The viewWithTag function returns a UIView, which will respond to all the functions defined for
the UIView class. The problem is that the view with tag 1050 is actually a UILabel, and you
want to set its textLabel property.

UIView doesn’t have a text property. If you try to send a text message to an instance of
UIView, the compiler will (rightly) complain that the UIView won’t respond, and the program
will crash when the message is sent.

The work-around is something of a cheat. What you’re doing in the line

if let myLabel = cell.contentView.viewWithTag(1050) as? UILabel

is telling the compiler that the view with tag 1050 is actually a UILabel, and that you want
to access it as such. Technically speaking, you’re casting it from a UIView to an optional
UILabel.

If the view with the tag 1050 can be cast to a UILabel, then it will be; if not, then it will be
returned as nil. By using the if let syntax to unwrap the optional, you can be sure that you
are dealing with a UILabel, and you can set the text property:

myLabel.text = "Some custom text"

184 CHAPTER 7: Improving the Look of Cells

Creating Custom Cells Visually As
Prototypes In A Storyboard
Prototype cells are a way of designing custom cells in Interface Builder, but without the
overhead of creating and managing separate XIB files. They can be used for both table and
collection views, and keep everything neatly together in the table or collection view object in
the Storyboard.

You can think of prototype cells as blueprints. You create one prototype for each type of
cell that you need, add the cell controls and lay them out, and then at runtime update the
controls from the data model.

The controls in prototype cells can be accessed by the view controller by referencing them
directly with tags, or via the outlets in a UITableViewCell or UICollectionViewCell subclass.

Dynamic cells, as the name suggests, will be updated at runtime with content obtained from
the table or collection view’s data model. They are supported in both table and collection
views.

UITableViews are slightly different, and also offer static cells. Static cell subviews are
not updated at runtime. They can be a flexible way of creating user interfaces for app
components such as preference settings, or for layouts that exploit the scrolling features of
table views.

Creating Prototype Dynamic Cells
Prototype dynamic cells are added to table views in Storyboards. When you first add a
UITableViewController object into a Storyboard, you’ll see that it arrives with one empty
prototype cell (see Figure 7-6).

185CHAPTER 7: Improving the Look of Cells

A UITableView is slightly different, in that it arrives in the Storyboard empty (shown
in Figure 7-7).

Figure 7-6. A prototype cell in a UITableViewController

186 CHAPTER 7: Improving the Look of Cells

UICollectionView provides a single prototype cell regardless of whether you’re adding a
UICollectionView inside a UIViewController or a UICollectionViewController.

Regardless of whether you’re using a UITableViewController or a UITableView inside a
UIViewController, you can control the number of prototype cells by changing the control in
the Attributes Inspector (shown in Figure 7-8).

Figure 7-9. Altering the number of prototype items in a collection view

Figure 7-7. A UITableView embedded inside a UIViewController

Figure 7-8. Altering the number of prototype cells in a table view

UICollectionView is similar, as shown in Figure 7-9.

187CHAPTER 7: Improving the Look of Cells

For each prototype that you create, you need to provide it with a cell or item identifier so that
the tableView:cellForRowAtIndexPath or collectionView:cellForItemAtIndexPath knows
which prototype to use when required.

You add this in the Attributes Inspector. Figure 7-10 shows the UITableView cell identifier,
while Figure 7-11 shows the UICollectionViewCell identifier.

Figure 7-10. Setting the custom cell identifier for a prototype table view cell

Figure 7-11. Setting the custom item identifier for a prototype collection view cell

Customizing Prototype Table View Cells
Table view cells can be instances of one of the four standard cell types:

	Basic (single titleLabel at the left)

	Right detail (titleLabel at the left, detailTextLabel on the right)

	Left detail (detailTextLabel on the left, titleLabel on the right)

	Subtitle (titleLabel on top, detailTextlabel below)

If these don’t fit your requirements, you have two options:

	Select the Custom cell type, lay out the controls from scratch, and
access them using their tag property.

	Create a custom UITableViewCell subclass, select the Custom cell in the
Storyboard, lay out the controls from scratch, and link them to outlets in
your custom class.

Both processes are shown in detail later in this chapter.

Prototype Cells and Custom UITableViewCell Subclasses
Custom cell subclasses allow you complete control over their content. You can lay out the
prototype cell in the Storyboard, and then connect the cell’s controls to outlets in the custom
UITableViewCell subclass. When the cell is dequeued, you can set the outlet properties so
that the cell displays your data.

188 CHAPTER 7: Improving the Look of Cells

To add a prototype of a custom cell, you first need to add a prototype cell to the table view
contained in the Storyboard, as you did above.

Then, you need to set the cell’s Custom Class property in the Identity Inspector, as shown
in Figure 7-12.

Figure 7-13. Connecting the nameLabel

Figure 7-12. Setting the cell’s class

Now you can connect the controls in the cell to the outlets in the UITableViewCell subclass.
Figure 7-13 shows this in action: the UILabel in the cell is connected to the nameLabel outlet
in the CustomCell class.

189CHAPTER 7: Improving the Look of Cells

When the cell is dequeued in the tableView:cellForRowAtIndexPath: function, you need to
cast the dequeued cell to an instance of the subclass:

let cell = tableView.dequeueReusableCellWithIdentifier("CustomCell",
 forIndexPath: indexPath) as! CustomCell

This will enable you to access the connected outlets:

cell.nameLabel.text = tableData[indexPath.row]

Setting Prototype Cell Heights
The standard table cell has a standard height of 44 points, but you have flexibility to change
this, either globally, or on a per-row basis. However, if you change the row height in the
prototype cells, you also need to make sure that this is set at runtime. You have two options:

	Set the row height globally for all rows in the table.

	Set the row height on a per-row basis.

To change the row height in the prototype, you can either drag the resizing handle at the
bottom of the cell, or set the row height value in the Size Inspector, as shown in Figure 7-14.

Figure 7-14. Setting the row height in the Size Inspector

Regardless of which approach you use, you will then need to set the row height in code. You
can do this for all cells in the table, by setting the tableView’s rowHeight property:

tableView.rowHeight = 150.0

Alternatively, you can implement the UITableViewDelegate function:

func tableView(tableView: UITableView, heightForRowAtIndexPath indexPath:
 NSIndexPath) -> CGFloat {
 return 150.0
}

Implementing the heightForRowAtIndexPath: function provides the flexibility to return
different heights for different sections or rows.

Setting Variable Cell Heights
If your table design involves varying heights of cells, you can potentially improve the
performance of your table by implementing the tableView:estimatedHeightForRowAtIndex
Path: function.

190 CHAPTER 7: Improving the Look of Cells

This is used by the table view when calculating its total height. If you have a lot of cells with
complex layouts, calculating the height upfront can take time. The estimated row height
gives the table view enough information to make an attempt at calculating the total content
height, but allows it to defer detailed calculation until absolutely necessary.

To implement this, you need to do two things. First, set the tableView’s rowHeight property
to UITableViewAutomaticDimension:

tableView.rowHeight = UITableViewAutomaticDimension

Then implement the tableView:estimatedHeightForCellAtIndexPath: function:

func tableView(tableView: UITableView, estimatedHeightForRowAtIndexPath
 indexPath: NSIndexPath) -> CGFloat {
 return 80
}

Using this approach allows you to exploit the power of AutoLayout when laying out
prototype cells, without needing to implement the heavy lifting involved in calculating the
height of cells yourself.

Customizing Prototype Collection View Cells
The process of customizing prototype collection view cells is exactly the same as that for
table view cells, with the difference that collection view cells don’t have standard types.
Each collection view cell is effectively completely customized.

As with table view cells, you’ve got two options: lay out controls and access them through
tag properties; or make connections to outlets in a custom UICollectionViewCell subclass.

Setting the Size of Prototype Collection View Cells
The size of collection view cells is controlled by the collection view’s layout. If you’re using a
flow layout, you can set either set this in the UICollectionViewFlowLayout that’s attached to
the collection view in the Storyboard, or do so in code.

Figure 7-15 shows how the item size is controlled in the Storyboard.

191CHAPTER 7: Improving the Look of Cells

Alternatively, if you’re creating a UICollectionViewFlowLayout or UICollectionViewLayout in
code, you can set the item size in two ways:

	Globally for all items controlled by this layout by setting the itemSize
property:

myCustomLayout.itemSize = CGSizeMake(100, 175)

	On an item-by-item basis when calculating the
UICollectionViewLayoutAttributes.

This process is covered in detail in Chapters 15 and 16.

Creating Custom Cells Visually Using Interface Builder
Adding subviews to the cell’s contentView can quickly lead to a lot of code—and unless
you’re good at mentally translating between the cell’s layout and the coordinates in the
code, that code can be difficult to follow.

An alternative approach is to use the power and flexibility of Interface Builder to create a
custom cell in a NIB file, and use this to create a completely customized cell whenever a
new one is required.

I don’t subscribe to the school of thought that maintains, “Real developers don’t use visual
tools.” If you find it quicker and easier to design your custom cells with a visual layout tool
(and subject to the following caveat), go right ahead. What counts, after all, is getting the job
done.

Figure 7-15. Setting the item size in the Storyboard

http://dx.doi.org/10.1007/978-1-4842-1242-4_15
http://dx.doi.org/10.1007/978-1-4842-1242-4_16

192 CHAPTER 7: Improving the Look of Cells

The Stages of Creating Cells Visually
Creating custom cells visually with Interface Builder is a multistage process:

1. Create a new XIB file, and lay out the cell using Interface Builder.

2. Give the cell a cell identifier.

3. Create controls inside your new cell.

4. Assign tags to the controls so they can be accessed from the
outside world.

5. Register the XIB file with the table or collection view for use with the
cell identifier that you created in step 2.

6. If needed, implement the functions needed to handle the size of
the cells.

These six steps will give you a custom cell that can be created when required using the
tableView:cellForRowAtIndexPath or collectionView:cellForItemAtIndexPath: functions.

After you have an instance of that custom cell, you can then manipulate the controls
according to the values of the data in your table’s model.

Laid out like this, it seems like a lot of work. In reality, it’s a very quick process to get the
housekeeping tasks out of the way so you can get on with creating the cell itself.

Creating a New XIB File
First, you need a new XIB file. From the File menu, choose the New File option, or type
Command + N.

From the templates (shown in Figure 7-16), select the User Interface section in the sidebar,
and then the Empty view option. Tap Next, and give the XIB file a name.

193CHAPTER 7: Improving the Look of Cells

The XIB will initially be empty, so the next task is to drag a cell into the main pane. In the
Object Browser, select a Table or Collection View Cell (Figure 7-17).

Figure 7-16. Creating the new view

Figure 7-17. Selecting a Table or Collection View Cell

194 CHAPTER 7: Improving the Look of Cells

Drag it out into the main pane, as shown in Figure 7-18.

Figure 7-18. Adding the cells to Interface Builder

Because these cells are subclasses of UIView, you can drag and drop other controls into
them in exactly the same way as if you were creating a full-screen view. However, before
you get carried away, there are a couple of housekeeping activities you could get out of the
way first.

Setting Up the Cell’s Identifier
In previous code samples, you saw how reuseIdentifiers are used to keep track of
dequeued cells for reuse. In the code, this is simply an arbitrary String. If there’s only one
type of cell to keep track of, I tend to call this cellIdentifier simply so its purpose is really
obvious.

When you’re creating cells in Interface Builder, it’s important to associate whatever the reuse
identifier is going to be with the kind of custom cell that it’s going to refer to.

If you select the Cell item in the Objects list, and then open the Attributes Inspector, you’ll
see an Identifier option at the top of the list (see Figure 7-19).

195CHAPTER 7: Improving the Look of Cells

Creating the Cell’s Content
Finally, after all that, you’re ready to start laying out the cell’s contents. Because the cell is
an instance of UIView, you can put in a cell pretty much anything you can put in a plain ole’
UIView, and position it with AutoLayout constraints.

Your choice is limited only by your imagination, what the cell needs to do, and the controls
at your disposal. Figures 7-20 and 7-21 show a very simple layout that will be used in the
next steps of this example.

Tip You’re not limited to static content such as UILabels and UIViews. You can also place controls
such as UIButtons, UISwitches, and UISliders into cells

Figure 7-19. Setting the cell reuse identifier

Figure 7-20. An example custom table cell layout

196 CHAPTER 7: Improving the Look of Cells

Assigning Tags to Controls
Earlier in the chapter, you were assigning tags to cell content by setting each object’s tag
property in code. That’s not an option when using Interface Builder because you need the
tag to get a reference to the control.

Tag attributes can be set in the View section of the Attributes Inspector (see Figure 7-22).

Figure 7-21. An example collection view cell layout

Figure 7-22. The Tag field in the Attributes Inspector

This has the same effect as

myControl.tag = 1050

has in code.

197CHAPTER 7: Improving the Look of Cells

Registering the Cell
Once you’ve created the cell in a XIB file, you need to inform the table or collection view that
you want to use it in conjunction with the cell reuse identifier that you set up. The function is
identical for both table and collection view:

tableView.registerNib(UINib(nibName: "MyCustomCell", bundle: nil),
 forCellReuseIdentifier: "MyCustomCell")

collectionView.registerNib(UINib(nibName: "MyCustomCell", bundle: nil),
 forCellReuseIdentifier: "MyCustomCell")

This must happen before your view makes any attempt to dequeue a cell for use. Failure
to do this will cause a runtime crash. One way of ensuring that this happens is to put the
registration code in the viewDidLoad function of the viewController that manages the table
or collection view:

override func viewDidLoad() {
 super.viewDidLoad()

 tableView.registerNib(UINib(nibName: "TableCustomCell", bundle: nil),
 forCellReuseIdentifier: "MyCustomCell")

}

Controlling Cell Sizes
The cell objects that you dragged out into the Interface Builder arrived with standard sizes,
but it’s unlikely that these are going to be right for the interface that you’re designing.

Collection View Cell Sizes
Controlling the size of the collection view cell for a given index path is the responsibility of
the collection view’s layout object. These are instances of UICollectionViewLayout, either
as the specialized line-oriented subclass UICollectionViewFlowLayout, or as a custom
layout that you implement from scratch.

The processes involved in this are covered in detail in Chapter 16 for flow layouts and
Chapter 17 for custom layouts.

Table View Cell Sizes
Table views are slightly easier to deal with because you can only control the height of cells;
their width is controlled by the width of the table view itself. However, cells can vary in
height, so you will need to tell the table view how to handle this.

http://dx.doi.org/10.1007/978-1-4842-1242-4_16
http://dx.doi.org/10.1007/978-1-4842-1242-4_17

198 CHAPTER 7: Improving the Look of Cells

There are two approaches:

	Set a fixed height for the cell, and use AutoLayout to arrange the
controls inside.

	Allow the cell height to vary, and implement one or both of the two
height-related functions of the UITableViewDelegate.

Setting a Fixed Height
If all cells that will ever be displayed in the table view have the same height, then you should
fix the cell height to maximize the table’s performance. You can do this in one of two ways:

	Programmatically, by setting the rowHeight property for the table
view with

tableView.rowHeight = 100.0

This overrides the cell height that you set in Interface Builder.

	By setting the table view’s rowHeight property in the Size Inspector in
Interface Builder, as shown in Figure 7-23.

Figure 7-23. Setting the table’s row height in Interface Builder

Setting Variable Row Heights
If the content of your cells demand it, you can display tables with rows of varying heights.
However, with great flexibility comes great responsibility: varying row height can have a
significant impact on the performance of your table views.

The reason for this lies in the fact that UITableView is a specialized subclass of
UIScrollView. The frame of the scroll view provides a “window” into a (potentially) much
larger content view, so one of the key setup calculations that you need to implement in order
to display a scroll view is the overall content size. This is shown in Figure 7-24.

199CHAPTER 7: Improving the Look of Cells

One way of thinking of UITableView is as a UIScrollView with a contentView that has the
same width as the frame, but with a height that can vary with the number of cells that need
to be displayed. This is shown in Figure 7-25.

Figure 7-24. The relationship between UIScrollView’s frame and content size

Figure 7-25. The relationship between a table view’s frame and total row height

200 CHAPTER 7: Improving the Look of Cells

Before the table view can be displayed, it will ask the data source for total number of rows
in the table, then calculate the height for each row in turn before adding them all together to
get the total height for the table.

If there are a lot of cells in the table, this can take a significant amount of time. If the
data source is dynamic, this calculation will also need to be rerun every time the table’s
underlying data changes.

Fortunately, UITableView provides a way of lessening the impact of this. The simplest option,
which you saw above, is to give all cells the same height, so the calculation is just (number
of rows x row height).

If your table will have rows of different height, this approach isn’t an option. The other
extreme is to implement UITableViewDelegate’s heightForRowAtIndexPath: function to
calculate and return the height of the row for the given indexPath:

func tableView(tableView: UITableView, heightForRowAtIndexPath
 indexPath: NSIndexPath) -> CGFloat {

 // calculate height of row here
 return height

}

This works for smaller tables, but doesn’t scale particularly well for larger ones because this
function will be called n times, where n is the number of cells in the table. If the calculation is
expensive, the performance of the table view might be sluggish.

The third option attempts to strike a balance between the speed of assuming that all cells
will have the same height versus assuming that every one must be calculated individually.

By setting an estimated row height, you can think of this as being the average across all
the cells. The table view can calculate a content that’s close enough, but defer the detailed
calculation of row height until it’s actually needed to display the cell.

There are two ways of setting an estimated row height:

	Setting it globally with the estimatedRowHeight property:

tableView.estimatedRowHeight = 125.0

	Implementing the UITableViewDatasource tableview:estimatedHeight
ForRowAtIndexPath function:

func tableView(tableView: UITableView, estimatedHeightForRowAtIndexPath
 indexPath: NSIndexPath) -> CGFloat {
 return 125.0
}

The second option is more flexible, in that it can return different estimated row heights for
different tables and/or sections.

201CHAPTER 7: Improving the Look of Cells

Handling Cell Resizing in Tables
In Chapter 12, you will look at the various changes that take place when selecting and
editing table content—and will spend a lot of time looking at the controls that are added to
the cell when the table goes into editing mode.

This begs the question: how should a customized cell react to changes in shape, either
because of the table entering editing mode, or because the entire device has been rotated?

There are two kinds of events that can cause cell resizing:

	Putting a table into editing mode, which causes the editing and/or
reordering controls to be displayed.

	Rotating the device so that the size class changes.

Both types of events will cause the cells to resize—in the first instance because the cell
needs to display more “furniture,” and in the second because the cell has to adapt to a new
table width.

As you saw earlier, the table goes into editing mode when the setEditing:animated function
is called. At this point, if the cell is editable (and/or the row can be rearranged), the additional
cell controls are inserted.

Figure 7-26 shows how a table changes.

Note Implementing one of these approaches doesn’t eliminate the need to calculate
the exact row height before the cell can be displayed. You’ll still need to do this in the
cellForRowAtIndexPath: function, based on the actual cell contents retrieved from the
data model.

http://dx.doi.org/10.1007/978-1-4842-1242-4_12

202 CHAPTER 7: Improving the Look of Cells

The deletion or insertion control appears at the left end of the cell, and the rearrangement
control (if applicable) appears at the right. This means that the content of the cell has to
move right to accommodate the deletion or insertion control, and potentially shrink to
accommodate the rearrangement control.

When the deletion/insertion controls appear, the row appears to move right, with the
accessory view moving off-screen if applicable. In both situations, the cells’ contentViews
will automatically alter the width value of their frames.

The good news is that AutoLayout will take care of rearranging the cell contents for you.

Figures 7-27 through 7-29 show the AutoLayout constraints in use in this example.

Figure 7-26. Changing from normal to editing mode

203CHAPTER 7: Improving the Look of Cells

Figure 7-27. The AutoLayout constraints in the cell

Figure 7-28. The cell in “edit” and “rearrange” modes

204 CHAPTER 7: Improving the Look of Cells

Figure 7-29. Cells adapting to rotation

Summary
This chapter covered three of the four main ways of creating and configuring custom
tableView cells:

	Adding subviews to the cell’s contentView, and configuring them in the
cellForRowAtIndexPath dataSource function

	Creating prototype cells in a Storyboard

	Designing a cell from scratch by using Interface Builder and configuring
the custom controls in code when the cell is loaded from its NIB file

The fourth approach—which is the most flexible, but also the one that requires the most
work to set up—is to create a custom subclass for each type of cell that your tableView
requires. This is covered in Chapter 8.

http://dx.doi.org/10.1007/978-1-4842-1242-4_8

205

Chapter 8
Creating Custom Cells with
Subclasses
In Chapter 7, you looked at two of the three main ways of creating and configuring custom
table view and collection view cells:

	Adding subviews to the cell’s built-in contentView

	Creating a custom cell from scratch and instantiating it from a XIB file

The third approach, which provides the greatest flexibility, albeit at the cost of slightly more
complexity, is to create a custom subclass of UITableViewCell or UICollectionViewCell.

The main reasons for using this approach are that you need multiple types of cells in the
same table or collection view, or in the case of table views, you want a level of control over
the contents that is awkward to achieve by adding subviews.

In this chapter, you will look at the different ways of creating custom cells with
UITableViewCell and UICollectionView subclasses:

	How to subclass UITableViewCell and UICollectionViewCell

	Using subclasses with XIB files

	Handling selection in cell subclasses

	Customizing the cell by overriding layoutSubviews

	Creating cells with a custom contentView

	Improving your app’s architecture with the Model-View-View
Model pattern.

http://dx.doi.org/10.1007/978-1-4842-1242-4_7

206 CHAPTER 8: Creating Custom Cells with Subclasses

Why Create a Custom Cell Subclass?
Creating a custom cell through the approach of using a custom subclass gives you complete
flexibility over the layout. You’re starting with a blank canvas (or blank view, at least), so how
the cell looks is entirely up to you.

The trade-off is that this function is slightly more complex. For a start, you have to create a
custom subclass of either UITableViewCell or UICollectionView. However, don’t let that put
you off; my experience is that it’s all too easy to spend significant amounts of time trying to
get the desired results using one of the “lighter” functions, when in fact it would have been
quicker to reach straight for a custom subclass.

Creating custom subclasses also enables the creation of multiple types of cells in the same
table. This can give your visual design a much greater degree of freedom than if you had to
shoehorn dissimilar data into a single cell type.

As you’d expect, there are two approaches you can use: the “visual” approach, involving
creating a custom cell in Interface Builder, and the “code” approach, which creates and
configures the cell entirely in code.

Both processes, though, have a couple of common steps at the outset.

The Process of Creating Custom Cells
Creating custom cells with subclasses is a multi-stage process, with two common steps at
the outset regardless of which approach you’re taking.

1. With a pencil and paper, design the layout of your custom cell. This
isn’t a compulsory step, but having an idea of how the cell will fit
together on paper tends to pay dividends in the long run.

2. Create a class for each type of custom cell that inherits from
UITableViewCell or UICollectionViewCell and implement properties
for the dynamic view objects that you are going to create in your cell,
and any properties that you need to set from outside the cell.

Then, you have a choice of two visual approaches:

	Build your cell as a XIB in Interface Builder, and populate it with the view
objects that you need: labels, views, images, and so on.

	Build the cell as a prototype cell in your Storyboard, populating it with
view objects as you would in a XIB.

Or a code-based approach:

	In the custom subclass, lay out the cell in code by overriding the
initialization function–init(style:reuseIdentifier)–and add controls to
the contentView.

207CHAPTER 8: Creating Custom Cells with Subclasses

Then, the final common steps:

3. Add any custom initialization to the layoutSubviews function that the
cell needs in order to function.

4. When the table needs to fill a row with a custom cell, instantiate
an instance of your custom UITableViewCell or UICollectionView
subclass in the dataSource, and set the dynamic properties
according to the data.

5. Rinse and repeat as required!

As you can see, it’s really not all that complicated a process. Keep in mind a couple of
subtleties as you build your custom cell (see the note below for details) and you’ll find that
this is actually a quick and flexible process.

SOME PERFORMANCE-RELATED FACTORS TO BEAR IN MIND

When creating a subclasses of UITableViewCell or UICollectionView, there are a couple of
performance-related factors to bear in mind in order to maximize the performance of your table:

	Be wary of building cells that are expensive for the graphics engine to render.
Although the GPUs (graphics processing units) built into the iPhone and iPad provide
breathtaking performance considering the size of the devices, they aren’t infallible. In
particular, be careful with transparency and alpha values. If the GPU has to calculate how
much of a lower layer can be seen through the transparency mask of an upper layer, this
can result in a serious performance hit. This is covered in more detail in Chapter 9.

	Don’t violate the principles of MVC. Your custom cell is a view, and as such should only
be concerned with displaying content. If you need to undertake any kind of code-based
configuration of that content (concatenating strings or adding values, for example), this
should take place in the datasource, not in the view.

Having mentioned these two caveats, don’t let them put you off trying to push the boundaries of what’s
possible. The members of the iOS device family are high-performance little beasts, so you’ll most likely be
surprised at what’s possible before you start to push at the limits of their capabilities.

Custom Cells with XIBs
In this section, you’ll look at the process of designing custom cell subclasses in conjunction
with Interface Builder and XIBs.

Designing Your Cell
When designing a custom cell, I put down my Magic Mouse and reach for a pencil and some
(squared) paper. That’s what works for me–your approach may differ–but I find that if I start
trying to design a cell in Interface Builder, two problems quickly emerge.

http://dx.doi.org/10.1007/978-1-4842-1242-4_9

208 CHAPTER 8: Creating Custom Cells with Subclasses

Firstly, Interface Builder tends to push me in the direction of “pixel perfection” before I’ve
decided on what the cell is actually going to do. The fact that you can (relatively) easily line
things up exactly means it’s very tempting to spend your time doing just that, at the expense
of thinking about the overall design.

Secondly, I become frustrated by the limitations of Interface Builder quite quickly. It looks
like it should have the same level of fine-detailed control over layout as a tool like
Photoshop, but it simply doesn’t. If laying out designs in Photoshop is precision surgery with
a scalpel, then Interface Builder can sometimes feel like painting a brick wall with a broom.

Creating the Class for the Custom Cell
The new custom cells that you will create will be instances of a subclass of UITableViewCell
or UICollectionViewCell. This means that when you create them, they will have all the
functionality of a “standard” cell, but with the opportunity to add additional functions of
your own.

To illustrate this process, you’ll create two UITableViewCell subclasses, which you’ll refer
to as OddCell and EvenCell, so that eventually the table will have two distinct types of cells
with differing layouts.

The process is virtually identical for UICollectionView, but you’ll look at this specifically later
in the chapter.

Creating the Subclasses
The first step is to create the subclasses (Figure 8-1). In Xcode, Ctrl-click the group in which
you want to create the new class and select New File from the pop-up window.

Then, select the Cocoa class icon from the Source group, and click Next, as shown in
Figure 8-1.

Note To illustrate the process of creating custom cells, and using multiple types of cells in the
same table, we’ll create a somewhat-contrived example with two types, one cell type for even-
numbered rows and one cell type for odd-numbered rows.

209CHAPTER 8: Creating Custom Cells with Subclasses

The next screen allows you to choose which superclass your new class is going to belong
to. Select UITableViewCell from the drop-down menu.

Call your new class OddCell and save it. You’ll now see the class file for OddCell.

Now, you need to create properties for the custom controls within the cell (Listing 8-1).

Listing 8-1. The OddCell Class

import UIKit

class OddCell: UITableViewCell {

 @IBOutlet var backView: UIImageView!
 @IBOutlet var iconView: UIImageView!
 @IBOutlet var cellTitle: UILabel!
 @IBOutlet var cellContent: UILabel!

 override func awakeFromNib() {
 super.awakeFromNib()
 // Initialization code
 }

Figure 8-1. Creating a new subclass

210 CHAPTER 8: Creating Custom Cells with Subclasses

 override func setSelected(selected: Bool, animated: Bool) {
 super.setSelected(selected, animated: animated)

 // Configure the view for the selected state
 }
}

Having got this far, you are now ready to build OddCell’s XIB and wire up the class’s
properties with the outlets in the XIB file.

Building the Cell in Interface Builder
Creating the cell itself is a four-stage process, which you will complete inside Interface
Builder.

1. Create the XIB file (if you checked the Also Create XIB File option
when creating the subclass, this is unnecessary).

2. Lay the custom controls out inside the XIB.

3. Conform the XIB to your custom class.

4. Link up the custom controls with the properties of the custom class.

Creating the XIB File
In Xcode, Ctrl-click the group in which you want to create the new XIB and select New File
from the pop-up window.

Then, select the User Interface section in the iOS group, and select the View icon from the
list of templates (Figure 8-2).

211CHAPTER 8: Creating Custom Cells with Subclasses

Then you need to provide a name for the cell (I’m calling it OddCell for consistency) and click
Create to save it.

The new view will open up in Interface Builder, with a blank view. Xcode has assumed
that this is a view with a size class of Any, Any, which is not what you want. So somewhat
counter-intuitively, the first thing you need to do after creating the new view is delete it.

Highlight the icon for the view in the left-hand Document Outline, and press delete. You now
have a completely empty Interface Builder pane.

This is the point when you create the new cell. Midway down the list of objects in the Utilities
area is the Table View Cell. Drag this out into the center pane, and you have replaced the
full-window view with a table view cell (Figure 8-3).

Figure 8-2. Choosing a template

Figure 8-3. The new empty cell

212 CHAPTER 8: Creating Custom Cells with Subclasses

The new cell will automatically have a standard size. You can resize it in the same way as
other UIView controls: either grab the sizing handles around the cell’s border, or set the
dimensions in the Size Inspector.

Whichever function you use, make a note of the height; you will need it later to return from
the tableView:heightForCellAtIndexPath: function. My OddCell is 70 points high.

Laying Out Controls in Interface Builder
In essence, this is exactly the same process that you have been through before: drag
instances of the controls from the Object Library into the UITableViewCell, and then size
and lay them out appropriately.

How you do this will obviously depend on the design of your cells. This is my work-in-
progress OddCell XIB, which has four controls (Figure 8-4):

	Two UIImageViews, one for the background and one for the icon

	Two UILabels, one for the cell’s title and one for the cell’s content

Figure 8-4. The OddCell XIB in progress

When fully instantiated, instances of OddCell will look like Figure 8-5.

213CHAPTER 8: Creating Custom Cells with Subclasses

Conforming the Cell to the Custom Class
This step is required if you didn’t create the XIB file when you created the custom class. If
you did, the cell in the XIB file will be an instance of the correct subclass and you can skip
straight to the next section.

If not,, the cell is an instance of UITableViewCell. In your custom class, which itself is a
subclass of UITableViewCell, you have created a raft of outlets for custom controls.

The problem is that because your custom class is a subclass of UITableViewCell, the parent
class neither knows nor cares about the outlets and properties that you created. In order to
connect the controls inside the cell up to the outlets in the custom subclass, you are going
to have to conform the cell to the subclass.

Fortunately, this is probably the simplest part of the whole process. In the Objects section,
highlight the Table View cell icon (shown in Figure 8-6).

Figure 8-5. The OddCell

Figure 8-6. The Objects section

Then switch over to the Identity Inspector, and expand the Custom Class section if it isn’t
visible. At the moment, it’ll show that the cell is inheriting from UITableViewCell.

What you need to do is to change this so that the cell’s class is your custom subclass
of UITableViewCell. Overtype the contents of the Custom Class section, and Xcode will
autocomplete the field with the name of the UITableViewCell subclass (Figure 8-7).

214 CHAPTER 8: Creating Custom Cells with Subclasses

Linking Up Custom Controls
If you’ve created any controls in the cell through Interface Builder, as opposed to
instantiating them in code, then these will currently be sitting in the cell as orphans. If
they’re not going to change in response to the cell’s data (for example, if you’ve got a static
background view), then that’s fair enough. But if you do want the controls to reflect the data
in the model, then they’ll have to be connected to the outlets in the custom class.

This will be familiar by now. Ctrl-click on the Custom Cell in the Objects list to reveal the
Outlets HUD, and drag from the circle out to the control in the cell itself, as shown in
Figure 8-8.

Figure 8-7. Changing the cell’s owner

Tip There will probably come a point in your table-building career when your app crashes as soon
as your custom table is loaded, with an error that looks something along the lines of this:

2015-11-05 19:58:13.263 myApp[6042:f803] *** Terminating app due to

uncaught exception 'NSUnknownKeyException', reason: '[<UITableViewCell

0x6895790> setValue:forUndefinedKey:]: this class is not key value

coding-compliant for the key cellSubtitle.'

Don’t panic. This is almost certainly the result of something going wrong with the connections of
the cell controls. Check that you’ve made the connections from the custom cell, and not the
file’s owner.

215CHAPTER 8: Creating Custom Cells with Subclasses

Repeat this for all the dynamic controls that you’ve inserted into the cell.

Creating the EvenCell
In this example, the EvenCell class is not too dissimilar to the OddCell class, but of course
you’ve got free rein to create cells that are radically different if your app requires that.

Instances of EvenCell will look like Figure 8-9.

Note Because this custom cell is a subclass of UITableViewCell, it inherits all
UITableViewCell’s properties such as accessoryView and backgroundView.

Figure 8-8. The Outlets HUD

Figure 8-9. The EvenCell

216 CHAPTER 8: Creating Custom Cells with Subclasses

The EvenCell subclass is more-or-less identical to OddCell, save for an extra property;
see Listing 8-2.

Listing 8-2. The EvenCell Subclass

import UIKit

class EvenCell: UITableViewCell {

 @IBOutlet var backView: UIImageView!
 @IBOutlet var iconView: UIImageView!
 @IBOutlet var cellTitle: UILabel!
 @IBOutlet var cellMainContent: UILabel!
 @IBOutlet var cellOtherContent: UILabel!

 override func awakeFromNib() {
 super.awakeFromNib()
 // Initialization code
 }

 override func setSelected(selected: Bool, animated: Bool) {
 super.setSelected(selected, animated: animated)

 // Configure the view for the selected state
 }

}

Setting the Cell Heights
Unless you tell it otherwise, the tableView assumes that it will be dealing with cells that have
a standard height of 44 points. Because the custom cell types you just created don’t have
standard sizes, you will need to implement the UITableViewDelegate’s tableView:heightFor
RowAtIndexPath: function in order to get cells of the correct size.

If you miss this function, your table will still work, but it will attempt to cram the cells into a
height of 44 points, and their contents will be cropped.

The tableView:heightForRowAtIndexPath: function is shown in Listing 8-3. It simply checks
whether the indexPath is odd or even, and then returns the appropriate height measurement
as a CGFloat.

Listing 8-3. The tableView:heightForRowAtIndexPath: Function

extension ViewController: UITableViewDelegate {

 func tableView(tableView: UITableView, heightForRowAtIndexPath
 indexPath: NSIndexPath) -> CGFloat {

 if (indexPath.row % 2 == 0) {
 return EvenRowHeight
 }

217CHAPTER 8: Creating Custom Cells with Subclasses

 return OddRowHeight

 }

}

Because values like row height are important to the interface being drawn successfully,
it’s often helpful to store them in constants:

let OddRowHeight: CGFloat = 70.0
let EvenRowHeight: CGFloat = 100.0

Creating Instances of the Custom Cells
Having gone to all the trouble of creating custom subclasses, and designing the layout of
your custom cells, there comes a point where you will want to create actual instances of
them.

It shouldn’t come as a surprise to learn that this takes place in our old friend the tableView:
cellForRowAtIndexPath: function. Whereas up until now you have been creating instances
of standard UITableViewCells, now you are going to ring the changes slightly, and create
instances of one of your custom classes.

This example is also slightly more sophisticated, in that there are two types of cells. The
implication here is that there will be some kind of conditional code to choose which type of
cell to create.

Before any cell types can be created, though, you need to register the XIB files that you
created with the tableView so that they can be created or dequeued as required.

To keep the view controller organized, you can place this process in an extension, and call
the function from viewDidLoad:. The configuration function is shown in Listing 8-4.

Listing 8-4. Configuring the Table

extension ViewController {

 func configureTable() {
 tableView.registerNib(UINib(nibName: "OddCell", bundle: nil),
 forCellReuseIdentifier: OddCellIdentifier)
 tableView.registerNib(UINib(nibName: "EvenCell", bundle: nil),
 forCellReuseIdentifier: EvenCellIdentifier)
 }

}

Cell identifiers are important because they can be used in several places, so again these are
defined as constants:

let OddCellIdentifier = "OddCellIdentifier"
let EvenCellIdentifier = "EvenCellIdentifier"

218 CHAPTER 8: Creating Custom Cells with Subclasses

Finally, call the configuration function from viewDidLoad:

override func viewDidLoad() {
 super.viewDidLoad()
 configureTable()
}

Having registered the XIBs, now they can be used in the tableView:cellForRowAtIndexPath:
function.

Here’s the first pass in Listing 8-5. The tableData and phraseData properties are just Arrays
of Latin boilerplate phrases that you created earlier from the viewDidLoad: function.

Listing 8-5. Returning Custom Cells from the tableView:cellForRowAtIndexPath: Function

func tableView(tableView: UITableView, cellForRowAtIndexPath indexPath: NSIndexPath)
 -> UITableViewCell {

 let remainder = indexPath.row % 2

 switch remainder {

 case 0:

 let cell = tableView.dequeueReusableCellWithIdentifier(EvenCellIdentifier,
 forIndexPath: indexPath) as! EvenCell

 cell.iconView.image = UIImage(named: "cat")
 cell.backgroundColor = UIColor(patternImage: UIImage(named: "evenBackground")!)
 cell.cellTitle.text = "Cell \(indexPath.row)"
 cell.cellMainContent.text = tableData[indexPath.row]
 cell.cellOtherContent.text = tableData[indexPath.row + 1]
 return cell

 default:

 let cell = tableView.dequeueReusableCellWithIdentifier(OddCellIdentifier,
 forIndexPath: indexPath) as! OddCell

 cell.iconView.image = UIImage(named: "dog")
 if let patternImage = UIImage(named: "oddBackground") {
 cell.backgroundColor = UIColor(patternImage: patternImage)
 }
 cell.cellTitle.text = "Cell \(indexPath.row)"
 cell.cellContent.text = tableData[indexPath.row]
 return cell
 }

}

219CHAPTER 8: Creating Custom Cells with Subclasses

It’s not too dissimilar to a standard tableView:cellForRowAtIndexPath: function, but there
are some changes:

let remainder = indexPath.row % 2;

remainder is the remainder after dividing the row number by 2. If it’s 0, the row is an even
one; if remainder is 1, it’s odd.

This allows you to create instances of the appropriate custom cell by switching between odd
and even cells:

switch remainder {

 case 0:

 let cell = tableView.dequeueReusableCellWithIdentifier(EvenCellIdentifier,
 forIndexPath: indexPath) as! EvenCell

 ... configure cell here ...

 return cell

 default:

 let cell = tableView.dequeueReusableCellWithIdentifier(OddCellIdentifier,
forIndexPath: indexPath) as! OddCell

 ... configure cell here ...

 return cell
 }

Configuring the individual cells depends on the outlets that you created in the XIB, such as
the OddCell:

cell.iconView.image = UIImage(named: "dog")
if let patternImage = UIImage(named: “OddBackground”) {
 cell.backgroundColor = UIColor(patternImage: patternImage)
}
cell.cellTitle.text = "Cell \(indexPath.row)"
cell.cellContent.text = tableData[indexPath.row]

Creating instances of EvenCell is much the same process, which results in a tableView that
looks like Figure 8-10.

220 CHAPTER 8: Creating Custom Cells with Subclasses

Handling Selection in Custom Cells
If you change the cell’s backgroundView property, chances are you’ll also need to control the
way the cell is highlighted when it’s selected.

Cell selection is controlled by UITableViewCell’s selectionStyle property. This can be in
one of four states:

	UITableViewCellSelectionStyleNone

	UITableViewCellSelectionStyleBlue

	UITableViewCellSelectionStyleGray

	UITableViewCellSelectionStyleDefault

When the selectionStyle value is set to None, there are no visible changes, but the other
three causes the cell’s background to appear to be filled with a solid color.

The cell also has two background views that sit behind the contentView: backgroundView,
which is shown by default, and selectedBackgroundView, which sits between backgroundView
and contentView (and isn’t displayed by default).

Figure 8-10. Two different UITableViewCell subclasses in one table

221CHAPTER 8: Creating Custom Cells with Subclasses

This arrangement is shown in Figure 8-11.

Figure 8-11. The arrangement of views inside the cell

The “selection layer” that’s controlled by the selectionStyle property sits in front of the
backgroundView, so if you’ve changed the backgroundView, it will be obscured by the default
selection coloring when the cell is selected.

That might be OK, but if you want a background other than solid blue or gray, you need to
change the selectedBackgroundView property. This sits behind contentView, but in front of
the “selection layer,” so instead of seeing the solid default color, you see whatever is in the
selectedBackgroundView.

This could be a solid color, such as

let redView = UIView(frame: cell.selectedBackgroundView.frame)
redView.backgroundColor = UIColor.redColor()
cell.selectedBackgroundView = redview

This selectedBackgroundView will need to be added to the cell. You could do this before any
selection takes place (for example, in the cellForRowAtIndexPath: function, as shown in
Listing 8-6).

Listing 8-6. Setting the selectedBackgroundView in cellForRowAtIndexPath:

func tableView(tableView: UITableView, cellForRowAtIndexPath indexPath: NSIndexPath)
 -> UITableViewCell {

 let cell = tableView.dequeueReusableCellWithIdentifier("CellIdentifier",
 forIndexPath: indexPath)

222 CHAPTER 8: Creating Custom Cells with Subclasses

 let selectionView = UIView(frame: cell.frame)
 selectionView.backgroundColor = UIColor.cyanColor()
 cell.selectedBackgroundView = selectionView

 ... configure rest of cell here ...

 return cell

}

Alternatively, you could set this while responding to the cell selection (shown in Listing 8-7) .

Listing 8-7. Adding a selectedBackgroundView While Handling Cell Selection

func tableView(tableView: UITableView, didSelectRowAtIndexPath indexPath: NSIndexPath) {

 let cell = tableView.cellForRowAtIndexPath(indexPath)

 let selectionView = UIView(frame: cell!.frame)
 cell?.selectedBackgroundView = selectionView
 selectionView.backgroundColor = UIColor.greenColor()

}

Of course, you’re not restricted to using solid colors to indicate selection if your design calls
for something a bit more imaginative. Here’s how you could use an image:

let selectedImageView = UIImageView(frame: cell.frame)
if let selectedImageView.image = UIImage(named: "SelectedCellBackground") {
 cell.selectedBackgroundView = selectedImageView
}

This will obscure the “selection layer” so you can control the background appearance of
your custom cell.

Custom Cells in Code
Laying out cells visually will take you so far, but if you prefer a code-based approach you
can override the init(style:reuseIdentifier:), and then use the layoutSubviews function
in the custom cell subclass or add AutoLayout contraints, which allows you to lay out a
completely custom cell.

The Process of Custom Cells in Code
The process of creating custom cells in code has six stages:

	Create a custom subclass of UITableViewCell or UICollectionViewCell
for each type of cell that you need.

	Create properties in the class to pass data into the cell.

223CHAPTER 8: Creating Custom Cells with Subclasses

	Lay out the cell’s controls by overriding the
init(style:reuseIdentifier:) function (for a UITableViewCell) or
init(frame:) for a UICollectionViewCell.

	Override the layoutSubviews function to update the cell’s controls with
the values passed into the cell properties.

	Optionally, override the prepareForReuse() function to update the cell’s
controls just before the cell is displayed

	Register the cell class for use by the table or collection view.

	Implement the standard datasource function to dequeue cells as
instances of your new custom cell subclass.

In this section, you’ll build a table view and a collection view that use custom cells to display
the simple layouts shown in Figure 8-12.

Figure 8-12. The apps using custom cells

224 CHAPTER 8: Creating Custom Cells with Subclasses

Creating Custom Subclasses
In order to create cells with custom subclasses, you need to override the appropriate init
function:

	init(style:reuseIdentifier:) for a UITableViewCell

	init(frame:) for a UICollectionViewCell

And the common init function:

	init(coder:)

Although you must provide an implementation of this last function in order to satisfy the
compiler, it won’t actually get called using your cell creation process.

Creating the Classes
The quickest way to create the classes is to use the built-in templates:

	From the File menu, select the File ➤ New ➤ File option, or type Ctrl + N.

	In the templates, select the Cocoa Touch class option.

	Name your class, and then select either UITableViewCell or
UICollectionViewCell as the subclass.

Now you can start implementing the custom classes.

Registering Custom Classes with the Table or Collection View
With the custom classes created, you need to tell the table or collection view how to use
them. This is done with the registerClass function:

collectionView.registerClass(CustomCell.self, forCellWithReuseIdentifier: "CustomCVCell")

or

tableView.registerClass(CustomClassCell.self, forCellReuseIdentifier: "CustomTVCell")

This has to be done before there’s any chance that a cell will be dequeued, so I usually call it
from the view controller’s viewDidLoad function.

With this done, it’s time to start work on the custom cell classes.

The init Functions
The init(style:reuseIdentifier:) and init(frame:) functions are called when the
datasource creates an instance of the cell; it’s here that you draw the cell contents.

225CHAPTER 8: Creating Custom Cells with Subclasses

The Table View Cell’s init Function
First, let’s add the properties that the class is going to need:

var cellTitle: String?
var cellSubtitle: String?

var leftLabel: UILabel!
var middleLabel: UILabel!
var rightLabel: UILabel!

The two String? properties will be set with the data model’s object; while the three labels
will display the data.

Now, get the init(coder:) function out of the way:

required init?(coder aDecoder: NSCoder) {
 super.init(coder: aDecoder)
}

Now you can implement the init(style:reuseIdentifier:) function; it isn’t much more
complicated at this stage:

override init(style: UITableViewCellStyle, reuseIdentifier: String?) {

 super.init(style: style, reuseIdentifier: reuseIdentifier)
 setupViews()

}

To help reduce code repetition, implement a helper function that creates the UILabel, shown
in Listing 8-8. It’s the same for both table and collection view.

Listing 8-8. The Label Helper Function

func drawLabel() -> UILabel {

 let cellTitleLabel = UILabel(frame: CGRectZero)
 cellTitleLabel.translatesAutoresizingMaskIntoConstraints = false
 cellTitleLabel.sizeToFit()

 return cellTitleLabel

}

Note You might be surprised to find that the init functions will only be called a few times
throughout the lifecycle of the table or collection view, even if your control has thousands of cells.
That’s down to the caching and dequeuing mechanism of the two controls; by recycling previously-
created cells, the number of expensive setup operations can be kept to a minimum.

226 CHAPTER 8: Creating Custom Cells with Subclasses

The heavy lifting is done by the setupViews() function, shown in Listing 8-9.

Listing 8-9. The setupViews() Function

func setupViews() {

 // Setup title label
 leftLabel = drawLabel()

 let vLeftLabelConstraint = NSLayoutConstraint(item: leftLabel, attribute:
NSLayoutAttribute.Top, relatedBy: NSLayoutRelation.Equal, toItem: self.contentView,
attribute: NSLayoutAttribute.Top, multiplier: 1.0, constant: 0)

 let hLeftLabelConstraint = NSLayoutConstraint(item: leftLabel, attribute:
NSLayoutAttribute.Left, relatedBy: NSLayoutRelation.Equal, toItem: self.contentView,
attribute: NSLayoutAttribute.Left, multiplier: 1.0, constant: 10)

 // Setup middle label
 middleLabel = drawLabel()

 let vMiddleLabelConstraint = NSLayoutConstraint(item: middleLabel, attribute:
 NSLayoutAttribute.CenterY, relatedBy: NSLayoutRelation.Equal, toItem:
 self.contentView, attribute: NSLayoutAttribute.CenterY, multiplier: 1.0, constant: 0)

 let hMiddleLabelConstraint = NSLayoutConstraint(item: middleLabel, attribute:
 NSLayoutAttribute.CenterX, relatedBy: NSLayoutRelation.Equal, toItem:
 self.contentView, attribute: NSLayoutAttribute.CenterX, multiplier: 1.0, constant: 0)

 // Setup subtitle label
 rightLabel = drawLabel()
 rightLabel.text = "...middle..."
 rightLabel.font = UIFont(name: "Georgia", size: 11.0)
 rightLabel.sizeToFit()

 let vRightLabelConstraint = NSLayoutConstraint(item: rightLabel, attribute:
 NSLayoutAttribute.Bottom, relatedBy: NSLayoutRelation.Equal, toItem:
 self.contentView, attribute: NSLayoutAttribute.Bottom, multiplier: 1.0, constant: 0)

 let hRightLabelConstraint = NSLayoutConstraint(item: rightLabel, attribute:
 NSLayoutAttribute.Right, relatedBy: NSLayoutRelation.Equal, toItem:
 self.contentView, attribute: NSLayoutAttribute.Right, multiplier: 1.0, constant: -10)

 self.contentView.addSubview(leftLabel)
 self.contentView.addSubview(middleLabel)
 self.contentView.addSubview(rightLabel)

 self.contentView.addConstraints([vLeftLabelConstraint, hLeftLabelConstraint,
 vMiddleLabelConstraint, hMiddleLabelConstraint,
 vRightLabelConstraint, hRightLabelConstraint])

}

227CHAPTER 8: Creating Custom Cells with Subclasses

Working through this, you create each UILabel in turn by calling the helper function. Then
there are horizontal and vertical AutoLayout constraints for each one.

The labels are added to the cell’s contentView, and then the layout constraints are added to
the container.

The Collection View’s init Function
If you’re building a UICollectionViewCell subclass, the process is very similar to that for
UITableViewCell.

Here’s the init function:

override init(frame: CGRect) {
 super.init(frame: frame)

 setupViews()

}

The drawLabel() function is exactly the same as Listing 8-8, and the setupViews() function
is shown in Listing 8-10.

Listing 8-10. The setupViews() Function for the Collection View Cell

func setupViews() {

 // Setup title label
 titleLabel = drawLabel()

 let vTitleConstraint = NSLayoutConstraint(item: titleLabel, attribute:
 NSLayoutAttribute.CenterY, relatedBy: NSLayoutRelation.Equal, toItem:
 self.contentView, attribute: NSLayoutAttribute.CenterY, multiplier: 1.0, constant: 0)

 let hTitleConstraint = NSLayoutConstraint(item: titleLabel, attribute:
 NSLayoutAttribute.CenterX, relatedBy: NSLayoutRelation.Equal, toItem:
 self.contentView, attribute: NSLayoutAttribute.CenterX, multiplier: 1.0, constant: 0)

 self.contentView.addSubview(titleLabel)

 // Setup subtitle label
 subtitleLabel = drawLabel()

 let hSubtitleConstraint = NSLayoutConstraint(item: subtitleLabel, attribute:
 NSLayoutAttribute.CenterX, relatedBy: NSLayoutRelation.Equal, toItem:
 self.contentView, attribute: NSLayoutAttribute.CenterX, multiplier: 1.0, constant: 0)

 let vSubtitleConstraint = NSLayoutConstraint(item: subtitleLabel, attribute:
 NSLayoutAttribute.Top, relatedBy: NSLayoutRelation.Equal, toItem: titleLabel,
 attribute: NSLayoutAttribute.Bottom, multiplier: 1.0, constant: 5)

228 CHAPTER 8: Creating Custom Cells with Subclasses

 self.contentView.addSubview(subtitleLabel)

 self.contentView.backgroundColor = UIColor.cyanColor()

 // Apply constraints
 self.contentView.addConstraints([vTitleConstraint, hTitleConstraint,
 hSubtitleConstraint, vSubtitleConstraint])

}

Here you’re creating each label in turn from the helper function and then setting up
some AutoLayout constraints. Once the labels have been added to the contentView, the
constraints can be applied.

Overriding the layoutSubviews Function
The layoutSubviews function is called on the cell when it’s dequeued; it’s a opportunity to
tweak the layout and look of the cell before it’s drawn, and also to set the content of any
controls based on the data model passed into the cell.

To show how this works in practice, let’s look at the cellForItemAtIndexPath: function from
the collection view app’s viewController class, in Listing 8-11.

Listing 8-11. The Collection View’s cellForItemAtIndexPath: Function

func collectionView(collectionView: UICollectionView, cellForItemAtIndexPath
indexPath: NSIndexPath) -> UICollectionViewCell {

 let cell = collectionView.dequeueReusableCellWithReuseIdentifier("CustomCVCell",
forIndexPath: indexPath) as! CustomCell

 cell.cellTitle = cvData[indexPath.row]

 return cell

}

You’ve seen this pattern before. You’re dequeuing a cell with the cell identifier, and then
downcasting it to an instance of your custom class.

This allows you to access the properties of the cell and pass in the relevant object from the
data model, before returning the cell to the collection view.

Listing 8-12 shows the equivalent for the table view app.

229CHAPTER 8: Creating Custom Cells with Subclasses

Listing 8-12. The Collection View’s cellForItemAtIndexPath: Function

func tableView(tableView: UITableView, cellForRowAtIndexPath indexPath: NSIndexPath)
-> UITableViewCell {

 let cell = tableView.dequeueReusableCellWithIdentifier("CustomTVCell",
 forIndexPath: indexPath) as! CustomClassCell

 cell.cellTitle = "Cell \(tableData[indexPath.row])..."
 cell.cellSubtitle = "...\(tableData[indexPath.row]) lleC"

 return cell

}

Behind the scenes, the cell’s init and layoutSubviews functions are being called:

	The init function is called when a new instance of the cell is
instantiated. This will only happen when the first few cells are created;
after that, the table or collection view will cache cells for reuse once they
scroll off the top or bottom of the view.

	The layoutSubviews function is called just before the cell is displayed,
so this is where you update the cell controls to display the data that was
passed into the cell when it was dequeued.

Overriding the prepareForReuse Function
The prepareForReuse() function is called just before the cell is returned from the
dequeueReusableCellWithIdentifier: or dequeueReusableViewWithIdentifier: functions.

It’s a last chance to clean the cell up before it’s reused, but there are a couple of things to
bear in mind when overriding this function:

	Always make sure that you call the superclass implementation at the
start of the function with super.prepareForReuse()

	Only use this function to reset non-content properties of the cell – alpha,
editing or selection properties. Using it to change content-related outlets
can have an adverse impact on performance.

Improving the App’s Architecture with MVVM
UITableView and UICollectionView are complex beasts, and rely on a lot of “moving parts”
to function: table and collection view objects, cells, datasources, delegates, and view
controllers. All them have to coordinate to produce the desired effect.

The number of moving parts can lead to blurred responsibilities within your app’s classes.
For example, a very common pattern that you’ve seen several times so far is where a
UIViewController acts as the dataSource and delegate for a table or collection view.

230 CHAPTER 8: Creating Custom Cells with Subclasses

There’s nothing wrong with this per se, but a class that does several things is usually
regarded as a code smell: it’s harder to write, harder to understand after you’ve written it,
harder to test, and harder to debug.

One of the most important design patterns in object- oriented software is the single
responsibility principle, which can be summed up as “do one thing, and do it well.” The
model-view-view model (or MVVM) approach is one way of attempting this.

The Model-View-View Model Approach
To understand the MVVM model, it’s worth starting by looking at the “traditional” approach
to structuring a table view project.

The split between controller and view is reasonably obvious: the table is the view, and the
view controller that acts as the table's datasource and delegate is the controller.

But views are a little more complicated than that; cells are also view objects, and the data
source has to be aware of cells in order to configure them in the tableView:cellForRow
AtIndexPath: function. This means that the datasource has to be concerned with the internal
structure of the cells so it can set outlets.

If you change your data model, you must change both cell and datasource. If you have
multiple cell types, your cellForRowAtIndexPath: function can quickly become messy
with if-then statements checking which kind of cell is being configured. Big, complex logic
statements like this are a code smell: hard to read, hard to understand, hard to test, and
hard to debug.

MVVM changes this approach radically, but with one very simple change.

You start by focusing the responsibility of the datasource. It does two things: gets the
relevant object from the underlying data model, and passes it to a cell before handing the
cell off to the table. It neither knows nor cares about the internal structure of the cell; as
far as the datasource is concerned, the cell has a single property that can be set, the view
model.

The view model is the object that contains all the data that the cell will require to configure
itself. In an address book app, this might be a Contact object containing name, phone
numbers, and email addresses. Crucially, it's not tailored in any way to the specific needs of
the cell. Even if the cell will only be displaying phone numbers, you pass the whole Contact
object into the cell subclass.

Figure 8-13 shows how the model, the view model, and the controllers interrelate.

Note I’m going to illustrate the MVVM approach with a UITableView example, but everything
that applies to MVVM in a table view context also applies to MVVM and UICollectionViews.

231CHAPTER 8: Creating Custom Cells with Subclasses

The cell is responsible for managing its own layout. It will take the relevant attributes of
the view model, say the phone number fields, and ignore the others. It will use the relevant
attributes to set up its view outlets, text field contents, and so on, as well as handling
AutoLayout constraints and so on. You can even go one stage further and use a property
observer so that the layout processes are triggered automatically whenever the view model
property is set.

Advantages and Disadvantages of MVVM
Employing a model-view-view model approach brings several advantages:

	The data source class of the table view no longer needs to be aware of
the internal structure of the cell.

	Cell types can be swapped in and out much more easily, with
significantly less code in the datasource class.

	It becomes much easier to update and adapt cells. Again, there’s no
need to keep the datasource and cell classes in sync.

	It makes testing cell subclasses much easier, as you don’t need to
wrangle the datasource class to generate and feed model objects in the
cell instance during the test.

The MVVM approach does have a couple of drawbacks, however:

	It’s not a “standard” Apple design pattern, so there’s no “native”
implementation to use as a starting point.

	The division of responsibilities is offset by the need for some more
“moving parts.” Your cell classes need to be more complex than they
would be if they were simpler “passive” components.

Even with these disadvantages, I’m firmly of the opinion that MVVM is a useful design
pattern that can make your table and collection views a lot easier to configure and maintain.

Figure 8-13. The model-view-view model relationship

232 CHAPTER 8: Creating Custom Cells with Subclasses

Implementing the MVVM Approach
To illustrate the MVVM approach, you’re going to use it to power a very simple example.
The table in this project will display the contents of a Contact object: name, number, and
notes. To keep things as simple as possible, all three Contact properties are Strings.

You’ll model the Contact object as a Struct, shown in Listing 8-13.

Listing 8-13. The Contact struct

struct Contact {

 var name: String?
 var number: String?
 var notes: String?

 init(name: String, number: String, notes: String) {
 self.name = name
 self.number = number
 self.notes = notes
 }

}

The Contacts will be stored in an Array that is set up by a function called from the table view
controller’s viewDidLoad function (shown in Listing 8-14).

Listing 8-14. The setupDate Function

extension ViewController {

 func setupData() {

 for index in 1...10 {

 let contact = Contact(name: "Name \(index)", number: "\(index)", notes:
 "The notes for contact \(index)")
 tableData.append(contact)

 }

 }

}

The cells displayed in the table are instances of a custom UITableViewCell subclass called
ContactCell (shown in Listing 8-15).

233CHAPTER 8: Creating Custom Cells with Subclasses

Listing 8-15. The ContactCell Class

import UIKit

class ContactCell: UITableViewCell {

 @IBOutlet var nameLabel: UILabel!
 @IBOutlet var numberLabel: UILabel!
 @IBOutlet var descriptionLabel: UILabel!

}

The three outlets are connected to UILabel controls in the prototype cell in the Storyboard,
as shown in Figure 8-14.

Figure 8-14. The prototype cell

With everything wired together, you can turn your attention to setting up the
UITableViewDataSource functions to configure and feed the cells to the table.

Up to now, you’ve used a very standard approach that uses the cellForRowAtIndexPath:
function to configure the cell. This is show in Listing 8-16.

234 CHAPTER 8: Creating Custom Cells with Subclasses

Listing 8-16. The Standard cellForRowAtIndexPath: Function

func tableView(tableView: UITableView, cellForRowAtIndexPath indexPath: NSIndexPath) ->
UITableViewCell {

 let cell = tableView.dequeueReusableCellWithIdentifier("ContactCell", forIndexPath:
indexPath) as! ContactCell

 let contact = tableData[indexPath.row]

 cell.nameLabel.text = contact.name
 cell.numberLabel.text = contact.number
 cell.descriptionLabel.text = contact.notes

 return cell

}

Run the project, and it will look like Figure 8-15.

Figure 8-15. The running project

235CHAPTER 8: Creating Custom Cells with Subclasses

There shouldn’t be any surprises about the approach here. You’re dequeuing a cell as an
instance of ContactCell, getting the Contact object from the data model, and populating the
cell outlets with the contents of the Contact’s properties.

However, it’s also possible to see some of the pitfalls of this approach:

	You’ve blurred the separations of concern between the cell subclass and
the view controller, because the view controller is directly referencing the
cell outlets.

	Any changes in the cell subclass or Contact object have to be reflected
in the table view controller.

	If you want to test the cell subclass, you must figure out a way to
wrangle the view controller so that you can populate the cell’s outlets.

Surely there has to be a more efficient way. Good news! There is.

Converting the Project to an MVVM Approach
You’re going to convert the project to an model-view-view model approach by passing the
Contact object directly to the ContactCell instance, and letting the cell configure itself..

The view controller won’t know, or care, what outlets the cell has. Instead, you’ll update the
cellForRowAtIndexPath: function to remove all references to the cell outlets.

This is an example of an approach known as dependency injection: the ContactCell has a
dependency on the Contact object to populate its outlets, and you’re going to inject that
Contact object into the ContactCell immediately after you’ve dequeued it.

Listing 8-17 shows what the updated cellForRowAtIndexPath: function looks like.

Listing 8-17. The Updated cellForRowAtIndexPath: Function

func tableView(tableView: UITableView, cellForRowAtIndexPath indexPath: NSIndexPath)
 -> UITableViewCell {

 let cell = tableView.dequeueReusableCellWithIdentifier("ContactCell",
 forIndexPath: indexPath) as! ContactCell

 let contact = tableData[indexPath.row]

 cell.contact = contact

 return cell

}

Straight away you can see that the function is much more streamlined, and the difference
would be even more dramatic if the cell was more complex than this admittedly trivial
example.

236 CHAPTER 8: Creating Custom Cells with Subclasses

However, this won’t compile as it stands. You need to make some changes to the
CustomCell class to allow it to accept the injection of the Contact dependency.

Listing 8-18 shows the initial changes.

Listing 8-18. The ContactCell Class Updated to Receive an Injected Contact

import UIKit

class ContactCell: UITableViewCell {

 var contact: Contact?

 @IBOutlet var nameLabel: UILabel!
 @IBOutlet var numberLabel: UILabel!
 @IBOutlet var notesLabel: UILabel!

}

This gets you part of the way, but if you run the project now you’ll see that the cells aren’t
displaying any data. Figure 8-16 shows the effect.

Figure 8-16. Cells no longer being updated

237CHAPTER 8: Creating Custom Cells with Subclasses

Previously, you were setting the text property of the UILabels in the cellForRowAtIndexPath:
function, but as this no longer happens, the cells are no longer updated.

You need to find some way to set the label properties once more.

One option would be to override the UITableViewCell’s layoutSubviews function, and set the
outlets there. Listing 8-19 shows how you could do that.

Listing 8-19. Using layoutSubviews to Update the Outlets

override func layoutSubviews() {
 nameLabel.text = contact?.name
 numberLabel.text = contact?.number
 notesLabel.text = contact?.notes
}

Although this would certainly work, there is a disconnect between setting the Contact
property in the cell and updating the outlets. Is there a way of tying the two things closer
together?

As it turns out, there is. Swift class and struct properties allow you to attach property
observers. These are inline functions that are called whenever a property is set, and they
allow you to perform arbitrary tasks every time you access a property to set it.

There are two property observers available to us:

	willSet is called just before a value is stored in the property.

	didSet is called just after a value is stored in the property.

This means you can use the cell’s contact property’s didSet observer to update the outlets
with the values of the Contact object that’s just been injected into the CustomCell instance.

Listing 8-20 shows the updated CustomCell class.

Listing 8-20. The Updated CustomCell Class

import UIKit

class ContactCell: UITableViewCell {

 var contact: Contact? {

 didSet {
 nameLabel.text = contact?.name
 numberLabel.text = contact?.number
 notesLabel.text = contact?.notes
 }
 }

 @IBOutlet var nameLabel: UILabel!
 @IBOutlet var numberLabel: UILabel!
 @IBOutlet var notesLabel: UILabel!

}

238 CHAPTER 8: Creating Custom Cells with Subclasses

Here, you’re using the didSet observer to update the nameLabel, numberLabel, and notesLabel
outlets with the relevant property from the Contact object. Whenever a new Contact object is
passed in, such as when a ContactCell is dequeued in the cellForRowAtIndexPath: function,
the cell outlets will be updated automatically.

Having updated the ContactCell class, run the project again, and you’ll see the rows being
populated once more, as shown in Figure 8-17.

Figure 8-17. Cells updated after dependency injection

Summary
In this chapter, you saw how to create your own custom subclass of UITableViewCell to give
you the ultimate in control over the appearance and functions of your cells.

239CHAPTER 8: Creating Custom Cells with Subclasses

There’s a range of approaches that you can use to tackle custom cells:

	Combine a custom subclass with a XIB file.

	Replace the need for a XIB file by building the cell entirely in code.

	Modify a standard cell type by overriding layoutSubviews.

Choosing the approach to take is a case of trading off the level of control you need over the
cell against the complexity and additional code overhead of each technique. Another factor
is performance; custom subclasses allow you to take advantage of various techniques that
can speed up the performance of your table views.

241

Chapter 9
Improving Interaction
So far, the cells that you have been creating have been relatively static: the user’s interaction
with them has been limited to tapping for selection and editing.

That’s not all you can do with cells, though, so this chapter looks at some of the tricks you
can use to make table and collection views truly interactive:

	Embedding custom controls including buttons, switches, and sliders
within the cell

	Implementing the widely used pull-to-refresh functionality

	Adding gesture recognizers to cells to support double taps and so on

	Implementing search within the contents of the view

No matter how interactive the view is, however, it’s not going to deliver a good user
experience if it’s not responsive. Although we’ve been covering best-practice as we’ve gone
along in earlier chapters, this chapter finishes up by looking at a checklist of ways to ensure
that you squeeze maximum performance from your table and collection views.

Embedding Custom Controls into Cells
Up to now, you’ve been mainly concerned with creating and presenting largely static views.
Although you’ve created cells that present dynamic data, the cells themselves have so far only
responded to the basic taps and swipes associated with editing, deleting, and sorting.

Note The techniques in this chapter are broadly identical for both UITableView and
UICollectionView. However, if it’s something that’s specific to just UITableView I’ll use “table
view”; if it’s something specific to UICollectionView I’ll use “collection view”; and when it’s
common to both I’ll use “view”.

242 CHAPTER 9: Improving Interaction

Because both UITableViewCell and UICollectionViewCell are subclassed of UIView, this
allows you to do pretty much anything you can do with a “standard” UIView. This includes
embedding custom controls such as buttons, sliders, and switches as subviews, and having
them respond to user actions.

To begin with, here’s a really trivial example. Each cell contains a UIButton that pops up an
alert view when it’s tapped, as shown in Figure 9-1.

Figure 9-1. Really simple buttons

There are two approaches that you can use to implement this kind of functionality:

	A simple approach, which inserts a button directly into the cell when the
cell is first created

	A more robust approach, which uses a custom cell class and delegation.

In this section, we’ll look at the simple approach; and then build up to a more robust solution
in the next section.

243CHAPTER 9: Improving Interaction

A Simple Approach – Adding a Button Directly To The Cell
I’m not going to go into detail about the main aspects of creating the table or collection
view — that’s pretty familiar by now—but there are two things you need to do in order to
create the button and the alert view.

Creating an Alert View
The first is to create a function to display the alert view when one of the buttons is tapped;
this should go in an extension of the view controller. Listing 9-1 shows the table version.

Listing 9-1. The didTapButtonInCell: Method

func didTapButtonInCell(sender: UIButton) {

 let alert = UIAlertController(title: "Something happened!", message: "A button was
 tapped", preferredStyle: .Alert)
 let action = UIAlertAction(title: "OK", style: .Default, handler: nil)

 alert.addAction(action)

 self.presentViewController(alert, animated: true, completion: nil)

}

Creating the Buttons
Having created the didTapButtonInCell function, you need to add the buttons to the cells
and connect them to this method.

Create a function called addButtonToCell. Listing 9-2 shows the table view version.

Listing 9-2. The addButtonToCell Method for a Table View

func addButtonToCell(cell: UITableViewCell) {

 guard cell.contentView.viewWithTag(1000) == nil else {
 return
 }

 let button = UIButton(type: UIButtonType.RoundedRect)
 button.tag = 1000
 button.setTitle("Tap me!", forState: UIControlState.Normal)
 button.sizeToFit()
 button.translatesAutoresizingMaskIntoConstraints = false

 button.addTarget(self, action: "didTapButtonInCell:", forControlEvents:
 UIControlEvents.TouchUpInside)

244 CHAPTER 9: Improving Interaction

 let vConstraint = NSLayoutConstraint(item: button, attribute:
 NSLayoutAttribute.CenterY, relatedBy:
 NSLayoutRelation.Equal, toItem: cell.contentView, attribute:
 NSLayoutAttribute.CenterY, multiplier: 1.0, constant: 0)

 let hConstraint = NSLayoutConstraint(item: button, attribute:
 NSLayoutAttribute.Right, relatedBy: NSLayoutRelation.Equal, toItem:
 cell.contentView, attribute: NSLayoutAttribute.Right, multiplier: 1.0, constant: 0)

 cell.contentView.addSubview(button)
 cell.contentView.addConstraints([vConstraint, hConstraint])

}

The collection view function needs a slightly different definition:

func addButtonToCell(cell: UICollectionViewCell) {

The first section of the function checks whether there’s already a button in the cell:

guard cell.contentView.viewWithTag(1000) == nil else {
 return
}

The guard statement checks if there’s a UIView or a UIView subclass in the cell’s contentView
that is tagged with 1000. Unless the result of the viewWithTag() function is nil, the function
will return, because there’s already a button created and it doesn’t need to be added.

If on the other hand there isn’t already a button in the cell, the next section of the function
creates an instance of a UIButton, sets the title, and then resizes it to fit:

let button = UIButton(type: UIButtonType.RoundedRect)
button.setTitle("Tap me!", forState: UIControlState.Normal)
button.sizeToFit()
button.translatesAutoresizingMaskIntoConstraints = false

Then you link the button with the function by adding a target to the button:

 button.addTarget(self, action: "didTapButtonInCell:", forControlEvents:
 UIControlEvents.TouchUpInside)

Next, you need a couple of AutoLayout constraints to position the button. Here’s the
positioning for the table view:

 let vConstraint = NSLayoutConstraint(item: button, attribute:
 NSLayoutAttribute.CenterY, relatedBy: NSLayoutRelation.Equal, toItem:
 cell.contentView, attribute: NSLayoutAttribute.CenterY, multiplier: 1.0, constant: 0)

 let hConstraint = NSLayoutConstraint(item: button, attribute:
 NSLayoutAttribute.Right, relatedBy: NSLayoutRelation.Equal, toItem:
 cell.contentView, attribute: NSLayoutAttribute.Right, multiplier: 1.0, constant: 0)

245CHAPTER 9: Improving Interaction

The positioning for a collection view is slightly different:

 let vConstraint = NSLayoutConstraint(item: button, attribute:
 NSLayoutAttribute.CenterX, relatedBy: NSLayoutRelation.Equal, toItem:
 cell.contentView, attribute: NSLayoutAttribute.CenterX, multiplier: 1.0, constant: 0)

 let hConstraint = NSLayoutConstraint(item: button, attribute:
 NSLayoutAttribute.Bottom, relatedBy: NSLayoutRelation.Equal, toItem:
 cell.contentView, attribute: NSLayoutAttribute.Bottom, multiplier: 1.0, constant: -10)

Finally, you can add the button to the cell:

cell.contentView.addSubview(button)

And add the layout constraints:

cell.contentView.addConstraints([vConstraint, hConstraint])

Adding the Buttons to Cells
Adding the buttons to the cells requires an update to either the
tableView:cellForRowAtIndexPath: or collectionView:cellForItemAtIndexPath: functions.

The first part of the function is standard – here there’s a label in the cell with the tag 2000,
which is used to display the row count.

To insert the button into the cell, add a call to the addButtonToCell(:_) function. Listing 9-3
shows the collection view version.

Listing 9-3. Adding the Buttons to Cells

func collectionView(collectionView: UICollectionView, cellForItemAtIndexPath
indexPath: NSIndexPath) -> UICollectionViewCell {

 let cell = collectionView.dequeueReusableCellWithReuseIdentifier("CellIdentifier",
 forIndexPath: indexPath)

 let label = cell.contentView.viewWithTag(2000) as! UILabel
 label.text = "Item \(cvData[indexPath.row])"

 addButtonToCell(cell)

 cell.layer.borderColor = UIColor.blackColor().CGColor
 cell.layer.borderWidth = 1.0

 return cell

}

246 CHAPTER 9: Improving Interaction

Reacting to Individual Controls
Impressive as this example might seem, there’s one significant limitation. Each button is
tied to the same method, so it isn’t possible to do something that is related to a specific
cell. A very simple example might be to pop up an alert view containing the indexPath of the
button’s cell.

To do this, you need to update the didTapButtonInCell: function, as shown in Listing 9-4.

Listing 9-4. Reacting to Individual Cells

func didTapButtonInCell(sender: UIButton) {

 let cell = sender.superview!.superview as! UICollectionViewCell
 let indexPathAtTap = collectionView.indexPathForCell(cell)

 let alert = UIAlertController(title: "Something happened!", message: "A button was
 tapped at row \(indexPathAtTap?.row)", preferredStyle: .Alert)
 let action = UIAlertAction(title: "OK", style: .Default, handler: nil)

 alert.addAction(action)

 self.presentViewController(alert, animated: true, completion: nil)

}

You’ll notice something slightly strange about the first line. You’re getting the superview of
the superview of the button.

That’s because the button sits inside the cell’s contentView, which sits inside the cell.
Figure 9-2 shows how the elements fit together.

Figure 9-2. How the cell views fit together

247CHAPTER 9: Improving Interaction

Putting this all together, you now have a set of cells with buttons that trigger row-specific
actions, shown in Figure 9-3.

Figure 9-3. The row-specific alertView

A More Robust Subclass-based Approach
Although it works, the simple approach has a major flaw – it relies on the button being in
exactly the right place in the cell’s view hierarchy. If that changes for any reason, you would
have to ensure that the didTapButtonInCell: function was updated to match.

A less hacky approach is to use a custom cell subclass which calls back to a delegate in
order to react to the tap on the button.

This involves making some changes to the project as it stands:

	Declaring a protocol to define the interaction between the cell and the
view controller.

	Implementing a custom UITableViewCell subclass which has a delegate
property, and adds a button which makes a call to the delegate when it
is tapped.

	Amending the Storyboard to use instances of the custom
UITableViewCell subclass

	Updating the view controller to set the cell’s delegate as the cell is
instantiated; and handle the delegate callback from the cell.

248 CHAPTER 9: Improving Interaction

Declaring the Protocol
To declare the protocol, you’ll need to add it to the very top of the view controller, as shown
in Listing 9-5:

Listing 9-5. The Delegate Protocol Declaration

protocol InCellButtonProtocol {
 func didTapButtonInCell(cell: ButtonCell)
}

Implementing the Custom UITableViewCell
The custom UITableViewCell subclass will differ from a vanilla table cell in three ways:

	It will add a button to its contentView in the awakeFromNib() function

	It will have a delegate optional property, which will require an object that
conforms to the InCellButtonProtocol

	It will have an IBAction function that calls the delegate in response to
taps in the button.

Start by adding a new class for the custom cell – File ➤ New ➤ File, and select the Cocoa
Touch class option from the Source templates. Call the file ButtonCell, and make sure that it
is a subclass of UITableViewCell, as shown in Figure 9-4:

Figure 9-4. Adding the cell subclass

249CHAPTER 9: Improving Interaction

Adding the Button to the Cell’s ContentView
To add the button to the cell’s contentView, you’ll override the awakeFromNib() function – this is
called when the cell is retrieved from the Storyboard in the cellForRowAtIndexPath: function.

As things stand, there will be a stub function in the ButtonCell class, as shown in Listing 9-6:

Listing 9-6. The Stub awakeFromNib() Function

override func awakeFromNib() {
 super.awakeFromNib()
 // Initialization code
}

Update this function as shown in Listing 9-7 – this is based on the code which you saw in
the previous section, but with some updates that are detailed below.

Listing 9-7. The Updated awakeFromNib() Function

override func awakeFromNib() {
 super.awakeFromNib()
 // Initialization code

 let button = UIButton(type: UIButtonType.RoundedRect)
 button.setTitle("Tap me!", forState: UIControlState.Normal)
 button.sizeToFit()
 button.translatesAutoresizingMaskIntoConstraints = false

 button.addTarget(self, action: "didTapButton:", forControlEvents: UIControlEvents.TouchUpInside)

 let vConstraint = NSLayoutConstraint(item: button, attribute: NSLayoutAttribute.CenterY,

relatedBy:
 NSLayoutRelation.Equal, toItem: self.contentView, attribute: NSLayoutAttribute.

CenterY, multiplier: 1.0, constant: 0)

 let hConstraint = NSLayoutConstraint(item: button, attribute: NSLayoutAttribute.Right,
relatedBy: NSLayoutRelation.Equal, toItem: self.contentView, attribute: NSLayoutAttribute.
Right, multiplier: 1.0, constant: 0)

 self.contentView.addSubview(button)
 self.contentView.addConstraints([vConstraint, hConstraint])

}

There are a couple of differences – firstly, the button has no tag set, and secondly, the added
target is the cell instance itself:

button.addTarget(self, action: "didTapButton:", forControlEvents: UIControlEvents.
TouchUpInside)

Otherwise, everything is the same – the button is created; the title is set; it is sized to fit the
text; the attributes are created; and added to the cell.

250 CHAPTER 9: Improving Interaction

Adding a Delegate Property
When the button is tapped, it will call back to the delegate which is responsible for
implementing whatever action should take place.

In order for this to happen, add a delegate property to the ButtonCell class:

var delegate: InCellButtonProtocol?

This declares that the delegate is an optional that conforms to the InCellButtonProtocol.

Adding the Code to Handle a Button Tap
The action that we added to the button in the awakeFromNib() function calls the ButtonCell’s
didTapButton: function, which you need to add. This is shown in Listing 9-8:

Listing 9-8. The didTapButton: function

func didTapButton(sender: AnyObject) {
 if let delegate = delegate {
 delegate.didTapButtonInCell(self)
 }
}

This simple checks if there is a delegate set, and calls the didTapButtonInCell: function if
there is, passing a reference to itself as the parameter.

This is all the changes that are needed in the ButtonCell class. Now there’s a change
required in the Storyboard.

Updating the Storyboard
Switch to the Storyboard, and update the prototype cell so that is an instance of ButtonCell.
In the Identity Inspector, click into the Class field in the Custom Class section, and add
ButtonCell as shown in Figure 9-5:

Figure 9-5. Updating the Cell’s Class

251CHAPTER 9: Improving Interaction

Updating the View Controller
Now it’s time to update the ViewController to use the new cell class, and react to calls from
the cell.

Firstly, conform the ViewController class to the InCellButtonProtocol by updating the class
declaration:

class ViewController: UIViewController, InCellButtonProtocol {

Then add the didTapButtonInCell: function as shown in Listing 9-9:

Listing 9-9. The didTapButtonInCell: Function

func didTapButtonInCell(cell: ButtonCell) {

 let indexPathAtTap = tableView.indexPathForCell(cell)

 let alert = UIAlertController(title: "Something happened!", message: "A button was

tapped at row \(indexPathAtTap!.row)", preferredStyle: .Alert)
 let action = UIAlertAction(title: "OK", style: .Default, handler: nil)

 alert.addAction(action)

 self.presentViewController(alert, animated: true, completion: nil)

}

This is similar to the previous version, but the cell parameter is an instance of the
ButtonCell class.

Next, update the cellForRowAtIndexPath: function so that it matches Listing 9-10:

Listing 9-10. The Updated cellForRowAtIndexPath: Function

func tableView(tableView: UITableView, cellForRowAtIndexPath indexPath: NSIndexPath) ->
UITableViewCell {

 let cell = tableView.dequeueReusableCellWithIdentifier("CellIdentifier", forIndexPath:
 indexPath) as! ButtonCell
 cell.textLabel?.text = "Row \(tableData[indexPath.row])"

 if cell.delegate == nil {
 cell.delegate = self
 }

 return cell
}

252 CHAPTER 9: Improving Interaction

This hasn’t changed much – but instead of calling the addButtonToCell: function, the cell’s
delegate is being set as a reference to the view controller itself.

At this point, you can also clean up the view controller a bit by removing the now-redundant
addButtonToCell: function.

If you run the project again, you’ll see that the functionality is exactly the same as it was
previously. The difference is that we’ve refactored the code to implement an architecture that
is much cleaner than before:

	There is now a separation of concerns between cell and view controller.

	The code to handle interaction with the button is much more robust,
with no reference to the cell’s view hierarchy.

	The project has become more adaptable, as it is now possible to implement
the cell’s delegate functionality in a class other than the view controller.

Adding Gestures to Cells
You’re not limited to adding controls to cells; you can also enable additional functionality
by attaching gesture recognizers. As you will see in the next section, this opens up the
possibility of adding swipe gestures to expose additional information. A simpler interaction is
to add the ability to double-tap a cell in order to trigger some action or transformation.

Listing 9-11 shows how to add a double-tap recognizer to each cell in the
cellForRowAtIndexPath: function.

Listing 9-11. Adding a gestureRecognizer to Each Cell

func tableView(tableView: UITableView, cellForRowAtIndexPath indexPath: NSIndexPath)
 -> UITableViewCell {

 let cell = tableView.dequeueReusableCellWithIdentifier("CellIdentifier",
 forIndexPath: indexPath)

 cell.textLabel?.text = "Row \(tableData[indexPath.row])"

 if cell.gestureRecognizers?.count != 1 {
 let tapRecognizer = UITapGestureRecognizer(target: self, action:
 "didDoubleTapInCell:")
 tapRecognizer.numberOfTapsRequired = 2
 cell.addGestureRecognizer(tapRecognizer)
 }

 return cell
}

253CHAPTER 9: Improving Interaction

Having added the double-tap recognizer to the cell, you’ll probably want to be able to
distinguish which cell has been tapped. Here’s how you can access the cell in the example
didDoubleTapCell: function:

func didTapButtonInCell(sender: AnyObject) {

 let recognizer = sender as! UITapGestureRecognizer
 let cell = recognizer.view as! UITableViewCell
 let indexPathAtTap = tableView.indexPathForCell(cell)

 ... do something with cell here ...

}

The UIGestureRecognizer instance that responded to the interaction is passed through
to the function as sender. This has a view property that’s a pointer to the UIView object to
which the gesture recognizer was attached.

In this case, it’s the cell, so the sender.view property can be cast to an instance of
UITableViewCell, at which point you can treat it as the cell that it is.

Obviously you’re not restricted to just tap gestures: pinches, pans, rotations, long presses,
and swipes are all available. Some of these will work better in the limited size of a cell than
others, though, so some careful experimentation is called for in order to get the best overall
user experience. You may find that some multi-touch gestures are only practical on the
larger user interface of the iPad.

Adding Pull-to-Refresh to Table Views
Pull-to-refresh is an action that triggers a refresh of a table’s data in response to the user
pulling the table down past the top, and then letting go. Instead of springing straight back,
they’ll see an activity indicator. Once the data has been updated (or sometimes, if the
network call times out) the table “springs” back up again, and the contents get refreshed.

It’s a brilliant piece of interface design–but actually not one originally created by Apple. It
first appeared in a third-party Twitter client; was quickly implemented as a number of open-
source controls; and eventually found its way into the official iOS SDK.

It’s also very easy to implement. The easiest option is when you’re using a
UITableViewController, but it’s also possible to implement if you have a table view inside a
standard UIViewController. We’ll look at both approaches in order.

Implementing Pull-to-Refresh with UITableViewController
In this example, I’m assuming that you’re using a UITableViewController instance in a
Storyboard, as shown in Figure 9-6.

254 CHAPTER 9: Improving Interaction

Adding the Refresh Control
In the Attributes Inspector, there’s a drop-down option for Refreshing. Select the Enabled
option, as shown in Figure 9-7.

Figure 9-6. A UITableViewController in the Storyboard

255CHAPTER 9: Improving Interaction

If you run the project now, you’ll see that you can pull down on the table, and the activity
indicator appears at the top, as shown in Figure 9-8.

Figure 9-7. Setting the Refreshing option

Figure 9-8. Pull-to-refresh in the table view

256 CHAPTER 9: Improving Interaction

Although this looks impressive, there’s a problem: the activity indicator doesn’t disappear!

There’s a little more work to do. First, you need to connect the refresh control to a function in
response to being invoked by the pull action. Add this to the viewDidLoad function:

 refreshControl?.addTarget(self, action: "didPullRefresh:", forControlEvents:
 UIControlEvents.ValueChanged)

The refreshControl is a built-in property of UITableViewController. Here, you’re adding the
didPullRefresh: function as the target in response to the pull action.

Implementing the pullToRefresh Function
Add a new function, as shown in Listing 9-12.

Listing 9-12. The pullToRefresh Function

func didPullRefresh(sender: UIRefreshControl) {

 tableData.append(tableData.count)
 tableView.reloadData()

 sender.endRefreshing()

}

This function does three things:

	It adds another entry to the end of the tableData array.

	It forces the table to reload the data from the model.

	It stops the UIRefreshControl from spinning, and animates its removal.

This is an extremely trivial example. What you would be far more likely to do in practice is
call some kind of network manager function to retrieve information from an API.

If you run the app again, you’ll see that the activity indicator appears, followed by a new
entry at the end of the table. Once the table has been refreshed, the activity indicator is
animated off the top of the view.

Adding a UIRefreshControl to a Table View
The process in the previous section was predicated on using a UITableViewController. If
instead you have a plain UITableView embedded inside a UIViewController, the process is a
little more involved.

The extra steps required are to

	Add a property for a UIRefreshControl to the view controller class.

	Instantiate the UIRefreshControl and give it an action.

	Add the newly-instantiated UIRefreshControl to the table view.

257CHAPTER 9: Improving Interaction

Adding the UIRefreshControl Property
This is simple a case of adding a property to the UIViewController:

var refreshControl: UIRefreshControl!

Instantiating the Refresh Control
Before it can be used, the property needs to be instantiated. Since this needs to be done
before it’s used, one obvious place to do this is in the viewController’s viewDidLoad function:

override func viewDidLoad() {
 super.viewDidLoad()

 ... setup the table and data ...

 refreshControl = UIRefreshControl()
 refreshControl.addTarget(self, action: "didPullRefresh:", forControlEvents:
 .ValueChanged)
 tableView.addSubview(refreshControl)

}

Here, you’re setting up the table and its data, and then instantiating the refreshControl property:

refreshControl = UIRefreshControl()

With that done, you can set the didPullRefresh: function as the action for a valueChanged
event. This event is triggered by the pull-down interaction on the table:

 refreshControl.addTarget(self, action: "didPullRefresh:", forControlEvents:
 .ValueChanged)

With the function linked to the refreshControl, you simply add it to the tableView:

tableView.addSubview(refreshControl)

The end result is exactly the same as if you’d used a UITableViewController and set up its
in-built refreshControl property.

Searching in Tables and Collection Views
If you’ve got a view displaying any significant amount of data, you owe it to your users to
give them the means to navigate around easily. There’s nothing more frustrating than having
to scroll through hundreds of entries in search of the one that you’re after.

Previously you looked at adding indexes to the tableView; that’s a good way of letting the
user jump between sections. But sometimes even that’s not enough. Wouldn’t it be much
better if you could provide a means of searching the content of the table so the user could
find the row for which they were looking?

258 CHAPTER 9: Improving Interaction

Fortunately for us, the iOS SDK includes the UISearchBar class and its associated delegate
protocols. This class makes implementing search in table views almost trivially easy; building
the same functionality from scratch would be significantly more work.

The UISearchBar class operates in exactly the same way for both table and collection views.
This example will focus on searching within a UITableView, but the processes are identical
between the two controls.

Adding a Search Bar to the Table
The UISearchBar provides a styled text field that you can add to your interface as required.
The normal layout for a table view is to put the search back at the top, although there’s
nothing to stop you putting somewhere else.

You can embed the search bar within in the table itself, in which case it will scroll with the
table (shown in Figure 9-9).

Figure 9-9. The search bar placed within the table

In this situation, the search bar will scroll with the table. If you want it to remain “anchored”
at the top, you can place it outside the table, as shown in Figure 9-10.

259CHAPTER 9: Improving Interaction

You can use AutoLayout constraints to set up and secure the place of the search bar within
your layout.

Regardless of where the UISearchBar is placed, it’s important that its delegate outlet is
connected.

You can do this visually, by Ctrl-clicking in the bar and dragging over to the relevant controller
object in the Document Outline to connect the delegate outlet; or programmatically by setting
the delegate property:

searchBar.delegate = self

How Search Works
The basic principle of table view search is that the table has two data sources:

	The default data source, which contains all the data that the table
will display. This is implemented in the same way as you’ve been
doing throughout the book so far. For example, it might be an Array
containing Strings.

Figure 9-10. The search bar placed above the table

260 CHAPTER 9: Improving Interaction

	The filtered data source, which is a subset of the default data source
after it’s been filtered in response to the user input in the search bar. You
trigger the filtering in response to user input. If your default data source
was an Array containing Strings, the filtered data source would also
be a String-containing Array, but the entries would only be those that
match the search terms.

The search process is normally triggered by the user tapping in the Search bar. The typical
process is the following:

	Set a flag on the class acting as the data source to indicate that the
table is currently being filtered.

	Filter the filtered data source to remove elements that don’t match the
search terms that the user has entered.

	Reload the table from the filtered source, using the flag to
control from which data source UITableDataSource functions like
numberOfRowsInSection and cellForRowAtIndexPath get their data.

	When the user ends the search, reset the flag back to the “normal table”
state, and reload the table. Because the flag is in normal mode, the table
will load from the unfiltered data source.

Implementing Search
Let’s work through the process of wiring up a search bar and filtering a data source. For the
purposes of this exercise, you’re going to use an Array of Strings as the table’s data source
and filter based on the text that you type in the search bar.

You can use whatever source data you like, but the sample project for this chapter uses a list
of German spa towns (there’s lots of them!) It looks like Figure 9-11.

261CHAPTER 9: Improving Interaction

Figure 9-11. The running app

As you type in the search bar, the list will be filtered using a case-insensitive substring
search and the table update (shown in Figure 9-12).

262 CHAPTER 9: Improving Interaction

I’ll assume that you’ve

	Built a basic table that displays items from an Array of Strings.

	Added a UISearchBar at the top of the table view, and connected its
delegate outlet to the view controller managing the table.

	Added an IBOutlet property called searchBar to the view controller, and
connected this to the UISearchBar in the Storyboard.

The first stage is to add two additional properties to the view controller class:

var filteredTableData = [String]()

This is an array to hold the list of filtered results, and will be used to feed the table while it’s
in search mode:

var searchActive: Bool = false

The searchActive flag will be used by the UITableViewDatasource methods to determine
whether they should use the filtered or unfiltered data model.

With those properties in place, the next stage is to set up the UISearchBarDelegate.

Figure 9-12. A basic search function in action

263CHAPTER 9: Improving Interaction

Implementing the UISearchBarDelegate Functions
Add the UISearchBarDelegate functions to an extension of the view controller. Listing 9-13
shows the first two functions to add.

Listing 9-13. Implementing the UISearchBarDelegate Functions

extension ViewController: UISearchBarDelegate {

 func searchBarTextDidBeginEditing(searchBar: UISearchBar) {
 searchActive = true
 }

 func searchBarTextDidEndEditing(searchBar: UISearchBar) {
 searchActive = false
 tableView.reloadData()
 }

}

The searchBarTextDidBeginEditing function simply sets the searchActive flag to true.

The searchBarTextDidEndEditing function does the opposite, and then forces the table to
reload, so that it contains unfiltered data once more.

Now it’s time for the function that will handle the actual searching, shown in Listing 9-14 – this
will also go inside the UISearchBarDelegate extension.

Listing 9-14. The searchBar:textDidChange Function

func searchBar(searchBar: UISearchBar, textDidChange searchText: String) {

 if searchText.characters.count == 0 {
 searchActive = false
 tableView.reloadData()
 return
 }

 searchActive = true

 filteredTableData = tableData.filter({(spaTown: String) -> Bool in

 let spaRange = Range(start: spaTown.startIndex, end: spaTown.endIndex)

 let stringMatch = spaTown.rangeOfString(searchText,
 options: NSStringCompareOptions.CaseInsensitiveSearch,
 range: spaRange,
 locale: NSLocale.autoupdatingCurrentLocale())

 return stringMatch != nil

 })

 tableView.reloadData()

}

264 CHAPTER 9: Improving Interaction

This looks a bit intimidating at first, but it’s not as bad as it seems.

The first part checks whether the user has cleared the search field. If there are no characters
in the searchText, you assumed that searching has completed. The searchActive flag is set
to false, you reload the table to show the unfiltered data, and then return:

if searchText.characters.count == 0 {
 searchActive = false
 tableView.reloadData()
 return
}

If there are characters in the searchString, then it’s game on.

First, you set the searchActive flag to true so that the UITableViewDelegate method will use
the filteredTableData array (you’ll implement this in a moment):

searchActive = true

Now comes the actual filtering. Here, you’re using the Array filter function to step
through the tableData array and place any Strings that match the searchText into the
filteredTableData array.

The filter function steps through each entry in turn, and passes it as the spaTown
parameter to a closure that returns a Bool. If the returned Bool is true, then the entry is
added to the filteredTableData array. If it’s false, the entry is ignored.

The closure starts by creating a Range from the spaTown parameter:

let spaRange = Range(start: spaTown.startIndex, end: spaTown.endIndex)

It then uses the rangeOfString function to look through the spaTown string to see if the
contents of searchText appear anywhere. For example, if the spaTown contained “Bad
Marianberg” then a searchText containing “enb” would match:

let stringMatch = spaTown.rangeOfString(searchText,
 options: NSStringCompareOptions.CaseInsensitiveSearch,
 range: spaRange,
 locale: NSLocale.autoupdatingCurrentLocale())

The options ensure that the search is case-insensitive, and the locale ensures that locale-
specific factors such as accented characters are handled correctly.

If a match is found, the rangeOfString function returns the range of characters in the
spaTown string where it was found. If there’s no match, it returns nil.

You can use this to decide whether to return a true or false to the filter function. If nothing
was found, it’ll have a range of nil and can return false. If something was found, then it’ll
return true so that the spaTown will be added to the filteredTableData array.

Finally, having filtered the tableData array, you call the table’s reloadData() function to force
it to reload.

265CHAPTER 9: Improving Interaction

Updating the UITableViewDatasource Functions
If you run the project now, you can enter text into the search box, but you won’t see any
difference in the data that the table displays.

This is because the table is loading its data from the tableData array regardless of whether
it’s in search mode or not. You need to update the UITableViewDelegate function to use the
right data source.

There are two functions that need to be updated. Listing 9-15 shows tableView:numberOf
RowsInSection:

Listing 9-15. The Updated tableView:numberOfRowsInSection: Function

func tableView(tableView: UITableView, numberOfRowsInSection section: Int) -> Int {

 if searchActive {
 return filteredTableData.count
 }

 return tableData.count
}

It’s actually very simple. If the table is in searchActive mode, then the number of rows
is derived from the filteredTableData array; if not, the number of rows is derived from
tableData as normal.

Listing 9-16 shows the updated tableView:cellForRowAtIndexPath: function. It uses the
same approach: if the table is being searched, use the filteredTableData array as the data
mode; if not, use tableData.

Listing 9-16. The Updated tableView:cellForRowAtIndexPath: Function

func tableView(tableView: UITableView, cellForRowAtIndexPath indexPath: NSIndexPath)
 -> UITableViewCell {

 let cell = tableView.dequeueReusableCellWithIdentifier("CellIdentifier",
 forIndexPath: indexPath)

 if searchActive {
 cell.textLabel!.text = filteredTableData[indexPath.row]
 } else {
 cell.textLabel!.text = tableData[indexPath.row]
 }

 return cell
}

There’s one other piece of housekeeping to do before things are completely finished. In the
UISearchBarDelegate extension, add the function shown in Listing 9-17.

266 CHAPTER 9: Improving Interaction

 Listing 9-17. The searchBarCancelButtonClicked Function

func searchBarCancelButtonClicked(searchBar: UISearchBar) {
 searchBar.text = ""
 searchBar.resignFirstResponder()
 searchActive = false
}

This clears the search bar, dismisses the keyboard, and sets the searchActive flag to false in
response to the user tapping the Cancel button in the Search Bar.

You haven’t actually set the Cancel button up so far, so switch back to the Storyboard,
highlight the Search Bar, and select the Shows Cancel Button option in the Attributes
Inspector (shown in Figure 9-13).

Figure 9-13. The Shows Cancel Button option

If you run the project again, you’ll see a working Search function complete with a
Cancel function that dismisses the keyboard and reloads the table with the full data
set (Figure 9-14).

267CHAPTER 9: Improving Interaction

Happy, Healthy Tables
If the overall user experience of the iOS device family had to be boiled down to a single
adjective, I’d go for “smooth.” Everything about the interface of well-written apps moves
without hesitation, stuttering, or jerkiness. Get it right, and the overall impression is that of a
precision, well-oiled device.

Table views have a lot of moving parts, so if that level of smoothness is going to go
wrong anywhere, it could be here. Although the UITableView, UICollectionView and their
supporting classes are designed and written for performance, it is possible to build table
and collection views that don’t perform well, especially if you lose sight of some basic
best practices.

In this section, we take a look at some things you can do—both quick fixes, and some more
in-depth—to make sure that your views perform as well as they possibly can.

Figure 9-14. The working search function

268 CHAPTER 9: Improving Interaction

Background, Background, Background
One of the most common problems with stuttering scrolling is caused by expensive and
slow processing taking place on the main thread.

The iOS interface is rendered on the main thread, so anything that slows this down will
cause the interface to be slowed as well. Normally that’s not a problem, but scrolling is one
situation where every one of the sixty frames a second is required.

As a general rule of thumb, expensive or long-running activity–network requests in
particular–should be dispatched onto a background queue, which calls back to the main
thread when the work is completed.

This is often an issue if you’re retrieving images from a network source. There are a couple of
techniques you can use here:

	Asynchronous background fetching of images, which are then updated
once retrieved.

	Placeholder images to “fill in” for the real thing. Often when scrolling a
view, the cells are removed from the visible view long before the image
can be downloaded. In those situations, you can use a placeholder
image initially, and only update the image if the cell hangs around on the
screen long enough for it to be visible.

Beware of premature optimization, though. There’s a saying in software engineering that goes
“I had a bottleneck problem, so I used background threading. Now problems two have I.” It’s
very easy to get completely tied in knots with race conditions.

Are the Cells Cached?
Building cells is expensive in processing terms, so the UITableView and UICollectionView
classes provide caching and dequeuing functionality to allow constructed cells to be reused.
This can make a dramatic difference if you’ve got more rows than can fit on the screen.

The two places to check are the tableView:cellForRowAtIndexPath: or collectionView:
cellForItemAtIndexPath: methods. For maximum efficiency, you should be doing one of
three things:

	Dequeuing an existing reusable cell before creating an new instance:

let cell = [tableView
dequeueReusableCellWithIdentifier:CellIdentifier];

	Registering a class for the cell:

tableView.registerClass(MyCell.self, forCellReuseIdentifier:
"MyCustomCell")

	Registering a nib file containing the cell layout:

tableView.registerNib(UINib(nibName: "MyCell", bundle: nil),
forCellReuseIdentifier: "MyCustomCell")

269CHAPTER 9: Improving Interaction

The only exceptions to the first rule are if you’re dealing with a static table or if you’ll never
have more cells than will fit into the visible area. In the later situation you can probably get
away without cached cells because they’ll always remain visible.

Do Your Table Cells Have Varying Heights?
Behind the scenes, UITableView uses the cell height to build a number of elements relating
to the “chrome” of the table. When all cells in the tableView are the same height, this can
be done relatively cheaply, but if the cell height varies, these calculations get repeated every
time a new cell is created.

To extract the last ounce of speed from a table view, it’s most efficient to keep the cell
heights identical. Whether this is possible is going to vary from project to project, of
course, but if your cell heights only vary within a limited range, you may find you’re better
off designing them with a single consistent height and managing the differences within the
internal cell layout.

If that’s not possible, implement UITableViewDelegate’s tableView:estimatedHeightForCell:
function to return an estimated height. The table will use this value to calculate the full
content area by assuming that all cells will have this height, and defer the exact calculation
until the very last moment possible.

It’s not a get-out-jail-free card–you can run into problems if your estimated row height is
wildly different from the actual value–but this function can help.

Cutting the Cost of Compositing
The iPhone and iPad have incredibly powerful GPUs considering the limitations of the form
factor and battery constraints. Even so, they do have limits, and one thing that pushes at
those limits is drawing views with transparency.

The reason is fairly apparent when you think about it. Put crudely, the device builds the view
front-to-back and if a front layer is opaque, it doesn’t need to bother with even considering
what lies behind it when rendering the screen.

Create a layer with transparent pixels, though, and that calculation has to take place, and
the more calculations that are needed, the slower the rendering process will become.

Life would be great if all elements of a view could be opaque, but of course it’s never that
simple. Gradients, drop shadows, and the like are all illusions that are only possible thanks
to transparency, so a purely opaque interface would be a pretty dull one.

The key to maximum application performance is to use transparency only where it’s needed.
This then poses another dilemma: how can you tell what’s transparent and what isn’t?
Fortunately, there’s a tool that can help.

270 CHAPTER 9: Improving Interaction

Checking Transparency in the Simulator
The Simulator has some often-overlooked tools that allow you to peer deep inside the
interface of your apps. One of the features that it provides enables the visualization of the
level of transparency and blending in your views, which can then be used to fine-tune your
interfaces.

	Color blended layers highlights multiple view layers that are drawn on
top of each other. Red layers indicate where there are transparent areas
that need to be blended with lower layers, while green shows opaque
areas that don’t need blending.

It’s not always possible to completely remove blended layers, but if you’re
having problems with rendering speeds and there’s a lot of red showing, it
is worth digging further to see if the interface can be rejigged to remove as
much blending as possible.

	Color copied images indicates images that have a color format that
the GPU can’t handle directly. In this situation, the rendering will be
handled by the CPU. That’s doubly-expensive because it uses resources
that will be needed elsewhere, and the CPU is not optimized for image
processing.

	Color misaligned images highlights images with bounds that don’t align
to pixel boundaries. This causes additional rendering to be needed,
which can slow things down.

This is often caused by mis-sizing of assets between @2x and @3x sizes.
Check to see if there are the image assets with sizes that have odd
numbers of pixels, and resize them to even numbers if necessary.

	Color offscreen-rendered highlights layers that have been rendered
separately to the main screen. This is something that can happen
automatically, so it’s not always an indication of a problem per-se, but
it’s caused by applying masks to layers, so this may be something to
look for in an effort to optimize your interfaces.

Figure 9-15 shows an example of this highlighting in action, in the iOS Calendar app – what’s
interesting to note is that even an app which has been built and optimized by Apple
engineers still has a certain amount of blending going on. That’s because it’s not necessarily
a bad thing per se – the key to optimizing performance is to aim for as little as possible.

271CHAPTER 9: Improving Interaction

Graphics processing and image optimization is a complex subject. There are some excellent
deep-dives into the problems and pitfalls available in WWDC videos on the Developer Portal
which are well-worth checking out.

Summary
In this chapter, you looked at bringing your table views to life by transforming cells from
static displays of data through adding some interaction to the cells. There’s a range of ways
to do this:

	Embedding custom controls such as buttons, switches, and sliders
within the cell

	Implementing pull-to-refresh functionality

	Adding gesture recognizers to cells to support double taps and so on

	Implementing search within the table’s contents

Finally, you looked at some of the processes to ensure that the performance of your table
views is as slick as possible.

Figure 9-15. View blend highlighting in action

273

Chapter 10
Using Tables for Navigation
Navigation controllers are an almost ubiquitous feature of the iOS user interface. They
enable a user to manage the navigation through a hierarchy of content, moving through the
tree of content items in a simple and consistent way.

Examples of this kind of user interface pattern abound. The iPhone’s built-in Contacts app
is a classic example. Contacts are displayed in a table view, and tapping a row pushes in a
view showing the details, as you can see in Figure 10-1.

Figure 10-1. The built-in iPhone Contacts app

274 CHAPTER 10: Using Tables for Navigation

This user interface pattern is so common that the iOS SDK provides a controller for
this specific purpose, which handles the heavy lifting of the navigation for you. This
chapter will show you how to create and configure a navigation-based app with
UINavigationController.

This is done in five steps.

1. Create the skeleton structure of the app.

2. Create some example data to feed the UINavigationController.

3. Build the detail view.

4. Link the UINavigationController with the detail view.

5. Tweak the UINavigationController to customize its appearance.

The approach that I take here is a little unusual, in that you would often create a navigation
controller-based app using the template that Xcode provides. That’s fine, but the template
does a lot for you, and it hides significant details about how the various pieces fit together.

Building the app from scratch, by contrast, will give you a good understanding of the
anatomy of a navigation controller.

The Navigation Controller Interface Pattern
The way in which navigation controllers fit together with the application structure always
reminds me of Russian dolls. Views fit inside controllers, which fit inside windows; at first it
can seem unfeasibly complicated.

Navigation controllers act in a similar way to the page history and forward and back buttons
of a web browser. As you visit each new page, that page is added to the browser’s history.
The forward and back buttons allow you to move up and down the list of pages that you’ve
visited. That’s the pattern used by the Contacts app, shown in Figure 10-2.

275CHAPTER 10: Using Tables for Navigation

Instead of a list of pages, the navigation controller is basically a stack of view controllers.
The top-most view controller in the stack is visible, so in order to display a new view
controller, you push that onto the top of the stack. Visually, the new view controller usually
appears to slide in from the right, as in Figure 10-3.

Figure 10-2. Pushing and popping views

Figure 10-3. Pushing and popping view controllers into the navigation controller stack

When you want to navigate “backwards,” you pop the current view controller off the stack
to expose the one underneath. The top-most view controller usually appears to slide off to
the right.

276 CHAPTER 10: Using Tables for Navigation

Introducing the UINavigationController
The Apple iOS documentation describes a UINavigationController as a “container for several
other views” which is as good a way of describing it as I can think of. Shown in Figure 10-4,
it gives you a top navigation bar and an optional toolbar at the bottom.

Figure 10-4. The components of UINavigationController

There’s also space for bar button items on the navigation bar. Between the top and bottom
bar there’s a space for your custom content to be loaded into: it’s into this space that you’ll
push and pop view controllers.

Interacting with the content inside the view controllers—tapping on a row, tapping on a
button, and so on—is the cue to call the UINavigationController’s pushViewController:
animated: and popViewController:animated: functions.

As well as moving through the stack of view controllers one by one, you can
also head straight to the top of the stack by calling the UIViewController class’s
popToRootControllerAnimated: function.

And finally, pushing (or popping) to a specific view controller is achieved by the
popToViewController:animated function, which takes a parameter of type UIViewController
through which you can indicate which controller you’re after.

277CHAPTER 10: Using Tables for Navigation

THE NAVIGATION CONTROLLER EXAMPLE APPLICATION

Illustrating the function of the UINavigationController really calls for an example application that is a bit
more complex than the simple apps that I’ve been using as the examples so far. To do this, I’ve built a relatively
simple app to use as the basis of this chapter. It’s far from being something that you’d want to buy from the App
Store, but it’ll do for these purposes.

If you’ve got kids (or even if you haven’t and you’ve got friends who do), you know that one of the most
important decisions you can make before the little bundle of joy arrives is deciding on a name. Get it wrong,
and you could condemn your offspring to an educational lifetime of teasing in the playground. Don’t get it right,
and Great Aunt Agatha will cut you out of her will for not continuing the family tradition of naming all first-born
males Algernon.

To help you navigate through this minefield, what you need (of course!) is an iOS app: enter the oh-so-imaginative
titled Baby Names. Although this most emphatically won’t win any awards for either design or ground-breaking
functionality, it gives us something to work with.

Creating a Navigation Controller App
Probably because navigation controller-based apps are so common, most versions of Xcode
so far have shipped with a template for creating this type of app. It provides much of the
plumbing ready-made to speed you on your way. You also get a lot of functionality for free if
you use a UITableViewController object in a Storyboard.

While that’s great, you’re going to take the back-to-basics approach, and build the app
entirely by hand. That’s not because there’s anything wrong with the app templates, but if you
start from scratch you’ll end up with a much better feel for how all the pieces fit together.

Start by creating a new app in Xcode (File ➤ New ➤ New Project) that uses the Single View
Application template, as shown in Figure 10-5.

Note Although using UITableViews with UIViewControllers is far and away the most
common scenario, it’s worth remembering that the view controllers you push and pop can be any
kind of view controller.

You’re not restricted to using a table at the top level; you could just as easily push in the next view
by tapping on, say, a UIButton as you could by tapping on a row in a tableView. Use whatever
will provide the user experience that you’re trying to deliver.

278 CHAPTER 10: Using Tables for Navigation

Name the application BabyNames and save it to the folder of your choice. You’ll end up with
an app containing

	An app delegate, called AppDelegate

	A view controller, called ViewController

	A storyboard file, called Main

As you progress through building the app you will create some extra view controllers, object
classes, and nib files, so you may want to set up some groups in Xcode to keep the various
files organized, as displayed in Figure 10-6. It’s up to you whether to do this in your apps,
but I find it helps keep things organized as the project expands.

Figure 10-5. Xcode’s new application dialog

Tip The selection of default templates that ship with Xcode tends to alter from version to version
(this book was written using Xcode 7.1).

Your version of Xcode may look different from this, but among the templates there’ll be one that
creates a skeleton application with a single view; that’s the one you’re after.

279CHAPTER 10: Using Tables for Navigation

To make keeping track of things slightly easier for yourself later, first rename the
ViewController to TableViewController.

Highlight the ViewController file in the Navigator, then double-click it and change the name
to TableViewController.

Next, change the name in the class itself, so that it looks like this:

class TableViewController: UIViewController {

Finally, open the Storyboard and select the ViewController in the Document Outline, switch
to the Identity Inspector in the Utilities pane and update the Class and Storyboard ID to
TableViewController, as shown in Figure 10-7.

Figure 10-6. Creating groups in the app

280 CHAPTER 10: Using Tables for Navigation

Figure 10-8. The Name struct

Figure 10-7. Updating the Storyboard

Having created the app skeleton, the next step is to create some sample data.

Creating the Name Class
Although the look and feel of the app is built up step by step, there’s no reason why the data
model can’t be created straight away. In fact, having a good idea of how the data will be
structured from the outset can help you figure out how the interface should work.

At the core of the app are names. So core, in fact, that you’re going to create a Name struct
with the following attributes (see also Figure 10-8):

	nameText: A string containing the name itself

	gender: A string containing a gender flag of M, F, or U (for unisex)

	derivation: A string containing some text about the derivation of
the name

	iconName: A string containing the filename of the name’s icon

	notes: A string containing some explanatory notes about the name

281CHAPTER 10: Using Tables for Navigation

Select Swift File and click Next (see Figure 10-10).

Let’s get this underway. Highlight the Models group in the navigator area and Ctrl or
right-click. In the context menu that pops up, select the New File option. You’ll be presented
with a selection of templates for the new file (see Figure 10-9).

Figure 10-9. Xcode’s New File templates

282 CHAPTER 10: Using Tables for Navigation

Call the new file Name, click Next, and make sure that the tick-box to add the file to the
BabyNames target is selected.

The new Name file will be created and appear in the navigator (Figure 10-11).

Figure 10-10. Naming the new file

283CHAPTER 10: Using Tables for Navigation

Now you need to configure the new struct. Open up the Name file, and add the struct’s
properties, as shown in Listing 10-1.

Figure 10-11. The new class’s files

Tip If you ticked the “Create local git repository for this project” option when you created the
project, you’ll see symbols appearing to the right of filenames. They show each file’s source control
status. New files show a status of A (indicating they need to be added to the repository). Files with a
status of M have been modified.

It’s out of the scope of this book, but if you’re not using source control with your projects, I’d
strongly recommend investigating it.

284 CHAPTER 10: Using Tables for Navigation

Listing 10-1. Name.swift

import Foundation

struct Name {

 var nameText: String?
 var gender: String?
 var derivation: String?
 var iconName: String?
 var notes: String?

}

Creating Some Dummy Data
Having created a Name struct, the next stage is to create some dummy data that you can use
for prototyping purposes. You need a model to feed the tableView with data; this is created
as the app starts up.

Switch to TableViewController, and add a property to hold an Array for the table data:

var tableData: [Name]!

Now add an IBOutlet to connect to the table view (you’ll use this later to manage the
highlighting of rows after the detail view has appeared):

@IBOutlet var tableView: UITableView!

Finally, add another property to hold the number of names that you want to display in the table:

let numberOfNames = 25

Initially, you’re going to create instances of Name with nonsense data so you’ve got some
data with which you can test out your app. To do this, you need to create a function called
createNameWithNonsenseData that returns—well—a Name filled with random data.

Then, in the ViewController’s viewDidLoad function, the tableData array will be loaded with
a suitable number of nonsense Names.

You’ll add the two new functions in an extension to the view controller, so that the functions
relating to the view controller lifecycle are separated from your custom functions.

At the bottom of the TableViewController file, add the extension; see Listing 10-2.

Listing 10-2. Updating the TableViewController

import UIKit

class TableViewController: UIViewController {

 var tableData: [Name]!
 @IBOutlet var tableView: UITableView!

285CHAPTER 10: Using Tables for Navigation

 let numberOfNames = 25

 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view, typically from a nib.
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }

}

extension ViewController {

}

Now add the first new function in the extension, shown in Listing 10-3.

Listing 10-3. Creating Random Names

func createRandomNameWithNonsenseData() -> Name {

 // Create sample data arrays

 let namesArray = ["Abigail", "Ada", "Adelaide", "Abel", "Algernon", "Anatole",
 "Barbara", "Bertha", "Brunhilda", "Barton", "Ben", "Boris", "Calista", "Cassandra",
 "Constance", "Caspar", "Clive", "Corey", "Danica", "Dido", "Dora", "Darnell",
 "Dexter", "Dunstan", "Duncan"]

 let genderArray = ["Boy", "Girl", "Unisex"]

 let notesArray = ["Prosperous and joyful", "A popular name in Victorian times.",
 "'Bright fair one'. A term of endearment used by the Irish", "'Son of the furrows;
 ploughman' One of the twelve apostles", "One who is graceful and charming",
"'Spear'. A warrior who wielded her spear to the detriment of her enemies"]

 let derivationArray = ["Celtic", "Germanic", "Old English", "Latin", "Greek"]

 let iconArray = ["icon1.png", "icon2.png", "icon3.png", "icon4.png", "icon5.png"]

 // Get counts of sample data arrays, to act as seeds
 // for the random numbers

 let nameCount = UInt32(namesArray.count)
 let genderCount = UInt32(genderArray.count)
 let notesCount = UInt32(notesArray.count)
 let derivationCount = UInt32(derivationArray.count)
 let iconCount = UInt32(iconArray.count)

286 CHAPTER 10: Using Tables for Navigation

 // Create a Name struct
 var thisName = Name()

 // Set some random facts
 thisName.nameText = namesArray[Int(arc4random_uniform(nameCount))]
 thisName.gender = genderArray[Int(arc4random_uniform(genderCount))]
 thisName.notes = notesArray[Int(arc4random_uniform(notesCount))]
 thisName.derivation = derivationArray[Int(arc4random_uniform(derivationCount))]
 thisName.iconName = iconArray[Int(arc4random_uniform(iconCount))]

 return thisName

}

Having gained the ability to create instances of Name filled with random data, you can now
store them in the tableData array.

Add a second function to the ViewController’s extension, shown in Listing 10-4.

Listing 10-4. Creating the Random Data

func loadRandomNames() -> [Name] {

var namesArray = [Name]()

 for _ in 0...numberOfNames {

 let thisName = createRandomNameWithNonsenseData()
 namesArray.append(thisName)

 }

 return namesArray

}

With the two data generation functions created, you can now use them to create the dummy
data for the table. Update the viewDidLoad() function, as shown in Listing 10-5.

Listing 10-5. The updated viewDidLoad() Function

override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view, typically from a nib.

 tableData = loadRandomNames()

}

Note You don’t need to use this data. I picked the values pretty much at random. There’s enough
lorem ipsum in the world without me adding to it!

287CHAPTER 10: Using Tables for Navigation

Connecting Up the Table View
As it stands, the app doesn’t actually display any content when it launches. Let’s fix that by
adding in a tableView, and getting it to load the data.

Switch to the Main storyboard, and drag in a UITableView object so that it looks like Figure 10-12.

Figure 10-12. Adding a table view to the view

Now add some AutoLayout constraints so that it fills the entire view. Select the tableView
in the Storyboard, click the Pin icon at the bottom right of the Storyboard pane, and set the
constraints to the values shown in Figure 10-13.

288 CHAPTER 10: Using Tables for Navigation

There are two things to note here:

	Make sure that the Constraint lines are solid red, not a hatched line.
Click the line to set it if that’s not the case.

	Make sure that Constrain to Margin option is unchecked.

Once those are set correctly, click the Add 4 Constraints button, and the constraints will be
added, as shown in Figure 10-14.

Figure 10-13. Setting the AutoLayout constraints

289CHAPTER 10: Using Tables for Navigation

The yellow lines indicate that there’s a discrepancy between the constraints that have been
added and the display of the table in the Storyboard. To force the Storyboard to apply the
constraints, click the yellow update icons, as shown in Figure 10-15.

Figure 10-14. The newly added constraints

290 CHAPTER 10: Using Tables for Navigation

Now let’s connect the new tableView to the view controller. Right-click the tableView in
the Storyboard and drag it over to the View Controller object in the Document Outline to
connect the table’s dataSource and delegate outlets, as shown in Figure 10-16.

Figure 10-15. Updating the AutoLayout constraints

291CHAPTER 10: Using Tables for Navigation

Now you need to connect the tableView outlet of the TableViewController to the table
itself. Right-click the TableViewController in the Document Outline, and drag it out to the
table in the Storyboard. When the HUD pops up, select the tableView outlet to make the
connection (Figure 10-17).

Figure 10-16. Connecting the dataSource and delegate

Figure 10-17. Linking the tableView outlet to the table

There’s one last job left to do with the tableView, which is to add a prototype cell and give
it a cellIdentifier so that the view controller can use the prototype to create a new cell
instance when required.

Click in the table view if it isn’t already selected, then switch to the Attributes Inspector in
the Utilities pane. At the top, there’s the drop-down to select the table’s content type; make
sure this is set to Dynamic Protoypes.

Then increase the Prototype Cells to 1, as shown in Figure 10-18.

Figure 10-18. Increasing the number of prototype cells

292 CHAPTER 10: Using Tables for Navigation

The table view will be updated to add a prototype cell, as shown in Figure 10-19.

Figure 10-19. The new prototype cell

Click into the prototype cell at the top of the table, switch to the Attributes Inspector, and
update the cell so that it has a Basic style, an identifier of NameCell and shows a Disclosure
Indicator accessory, as shown in Figure 10-20.

293CHAPTER 10: Using Tables for Navigation

Now you can switch back to the TableViewController class, and create the
UITableViewDataSource functions to feed the table with its data.

Add the dataSource functions in the extension to the class at the bottom, as shown in
Listing 10-6.

Listing 10-6. Adding dataSource Functions

extension TableViewController: UITableViewDataSource {

 // DataSource functions

 func numberOfSectionsInTableView(tableView: UITableView) -> Int {
 return 1
 }

 func tableView(tableView: UITableView, numberOfRowsInSection section: Int) ->
 Int {
 return tableData.count
 }

 func tableView(tableView: UITableView, cellForRowAtIndexPath indexPath:
 NSIndexPath) -> UITableViewCell {

 let cell = tableView.dequeueReusableCellWithIdentifier("NameCell",
 forIndexPath: indexPath)

 let name = tableData[indexPath.row]

 cell.textLabel!.text = name.nameText

 return cell

 }

}

Run the app to check everything’s wired up correctly, and you should see a table displaying
50 random names, as in Figure 10-21.

Figure 10-20. Updating the prototype cell

294 CHAPTER 10: Using Tables for Navigation

Building the Detail View
When the users click a Name row in the table, the app will present them with a details screen
with the information for that name. The UINavigationController will handle the process of
pushing the detail view in, but before it can do this you need to create a details view.

Since the app is still at the proof-of-concept stage, you can make this as simple or as
detailed as you like. I’ve made a very (very!) basic version to use as a starting point. Either
way, you’re going to need a new view controller.

Highlight the View controllers group in the Navigator, right-click, and add a new file. Choose
the Cocoa Class item in the templates, then create a UIViewController subclass, and call
the file DetailViewController.

Next, switch to the Storyboard and drag out a View Controller from the Object browser.
This will add the scene to the Document Outline, as shown in Figure 10-22.

Figure 10-21. Data appears in the table!

295CHAPTER 10: Using Tables for Navigation

Now you can lay out the controls in the Storyboard to display the data for the name detail.
My work of art looks like that in Figure 10-24.

Figure 10-22. The new view controller in the Document Outline

Figure 10-23. Linking the View Controller to the custom class

With the new view controller in the Storyboard, you need to link it to the
DetailViewController class you just created. Highlight the View Controller item in the
Document Outline if it isn’t already, then switch to the Identity Inspector. Update the Custom
Class property to DetailViewController, as shown in Figure 10-23.

296 CHAPTER 10: Using Tables for Navigation

There are corresponding outlets in the DetailViewController:

 @IBOutlet var nameLabel: UILabel!
 @IBOutlet var genderLabel: UILabel!
 @IBOutlet var derivationLabel: UILabel!
 @IBOutlet var notesLabel: UILabel!
 @IBOutlet var iconImageView: UIImageView!

Passing Data into the Detail View
To pass data into the detail view, you’ll use a technique called dependency injection. That’s
basically a fancy term for passing in–or injecting–some object that the view depends on to
configure itself, in this case the Name struct for the row whose detail you’re displaying.

Start by adding a displayName property as an option to the DetailViewController class:

var displayName: Name?

Figure 10-24. A very basic detail view

Tip To allow the image view to change its aspect ratio to fit an image, you can tweak the AutoLayout
constraints. Set the priority of the height and width constraints to 750, and the vertical and
horizontal priorities of both content hugging and content compression to 1000.

297CHAPTER 10: Using Tables for Navigation

This provides a property that the TableViewController can set when the table’s row is
tapped, before the detail view gets pushed in.

Then update the viewDidLoad function to set the outlets:

override func viewDidLoad() {

 super.viewDidLoad()

 if let displayName = displayName {

 nameLabel.text = displayName.nameText
 genderLabel.text = displayName.gender
 derivationLabel.text = displayName.derivation
 notesLabel.text = displayName.notes

 if let iconName = displayName.iconName {
 iconImageView.image = UIImage(named: iconName)
 }

 }

}

This unwraps the displayName property and updates the contents of the labels.

There’s a subtlety to note here: all the properties of the displayName struct are optionals.
That’s not a problem for setting labels, because they’ll be blank if the property is empty, but
when creating an image, you need to use the if-let construct to safely unwrap the optional
iconName string before attempting to use it to load the iconImageView.

Having created a view controller and a layout for the detail screen, this is the point where
you can introduce the navigation controller.

Implementing the Navigation Controller
Implementing the navigation controller is the process of replacing the app’s initial table view
with a UINavigationController, then loading the table view into this.

At the moment, the initial view that’s displayed is handled by the Storyboard, so there’s
no code in the AppDelegate to manage this. Listing 10-7 shows the current state of the
AppDelgate’s application:didFinishLaunchingWithOptions: function.

Listing 10-7. The Current Initial View Code

func application(application: UIApplication, didFinishLaunchingWithOptions
launchOptions: [NSObject: AnyObject]?) -> Bool {
 // Override point for customization after application launch.
 return true
}

298 CHAPTER 10: Using Tables for Navigation

You need to update this so that it does two things:

	Creates a UINavigationController, and sets it as the root view of the
app

	Loads the tableViewController as the root view of the navigation
controller

A diagram or two can help make sense of this. Let’s start by looking at Figure 10-25, which
displays how this app currently sets up its visual interface.

Figure 10-25. How the app delegate instantiates the user interface

The app delegate has a window property that is created using the bounds of UIScreen’s
mainScreen property. This window is where the visible user interface for the app has to fit. In
effect, it’s a virtual reference in software to the physical screen of the device.

The window property has a rootViewController property, which you can think of as the front
most slot in the window into which a view controller can be placed.

The app delegate also has a viewController property. An instance of the ViewController is
instantiated from the Storyboard, and then assigned to the viewController property.

At this point you have two things: a way of referencing the physical screen (via the window
property) and a viewController object. To make the viewController visible, you simply
insert the viewController object into the window’s rootViewController property. That’s at
the top of the stack, so it’s the one that’s visible on the device screen.

Caution There’s a potential source for confusion here due to some less-than-consistent naming
conventions in iOS. Both the app delegate and UINavigationControllers have a property
called rootViewController.

They’ve both got broadly similar purposes, but they’re NOT the same thing. Make sure you know
what context you’re dealing with when thinking about rootViewController properties.

299CHAPTER 10: Using Tables for Navigation

How the Navigation Controller Is Wired Up
The process for a navigation controller app is similar, but subtly different. Instead of filling
the window with the viewController, you create a UINavigationController object and put
that in the window. Then you take the viewController that you had to start with and put that
inside the navigation controller. See what I mean about Russian dolls?

Figure 10-26 shows how this hangs together in practice.

Figure 10-26. How the navigation controller fits into the picture

The corresponding code from the app delegate is shown in Listing 10-8.

Listing 10-8. The Updated Code

func application(application: UIApplication, didFinishLaunchingWithOptions
 launchOptions: [NSObject: AnyObject]?) -> Bool {
 // Override point for customization after application launch.

 let storyboard = UIStoryboard(name: "Main", bundle: nil)

 let tableViewController =
 storyboard.instantiateViewControllerWithIdentifier("TableViewController") as!
 TableViewController

 let navigationController = UINavigationController(rootViewController:
 tableViewController)
 navigationController.navigationBarHidden = false

 self.window?.rootViewController = navigationController

 self.window?.makeKeyAndVisible()

 return true

}

300 CHAPTER 10: Using Tables for Navigation

Just before you run the app, make one more tweak. Switch back to the
TableViewController, and add these two lines to the viewDidLoad function:

title = "Baby Names"
automaticallyAdjustsScrollViewInsets = false

This aligns the top of the table to the bottom of the navigation bar, and sets the title.

If you run the app now, you’ll see that the table is still there, but now it sits inside a
navigation controller that provides a top bar. The title of the view controller displayed in the
navigation controller’s content area is shown in the top bar (see Figure 10-27).

Figure 10-27. The navigation controller with the table inside

301CHAPTER 10: Using Tables for Navigation

Linking the Navigation Controller and Detail Views Together
The app is getting close to being done, but tapping on the cells still doesn’t cause the
detail view to magically appear. In order for this to happen, you need to implement the
TableViewController’s didSelectRowAtIndexPath: function.

Switch to the TableViewController and update the extension so that it also implements the
UITableViewDelegate protocol:

extension TableViewController: UITableViewDataSource, UITableViewDelegate {

Now implement the tableView:didSelectRowAtIndexPath: function, as shown in Listing 10-9.

Listing 10-9. The tableView:didSelectRowAtIndexPath: Function

func tableView(tableView: UITableView, didSelectRowAtIndexPath indexPath:
 NSIndexPath) {

 let storyboard = UIStoryboard(name: "Main", bundle: nil)
 let detailView =
 storyboard.instantiateViewControllerWithIdentifier("DetailViewController") as!
 DetailViewController

 detailView.displayName = tableData[indexPath.row]

 navigationController?.pushViewController(detailView, animated: true)

}
To kick things off, you need to create an instance of the storyboard:

 let storyboard = UIStoryboard(name: "Main", bundle: nil)

Then instantiate the DetailViewController from the view controller with the appropriate
Storyboard identifier:

 let detailView =
 storyboard.instantiateViewControllerWithIdentifier("DetailViewController") as!
 DetailViewController

When the detailView is instantiated from storyboard, it will be an instance of
UIViewController, so you need to force-downcast this to an instance of DetailViewController
with the as! operator so that the displayName property is available to be set.

With a newly-instantiated instance of DisplayViewController, you can inject the
displayName property with the appropriate Name from the tableData array:

detailView.displayName = tableData[indexPath.row]

And then get the navigation controller inside which TableViewController sits to push in the
new view:

navigationController?.pushViewController(detailView, animated: true)

302 CHAPTER 10: Using Tables for Navigation

Run the app now, and tap on a row: the DetailViewController will slide in from the right,
and tapping the “back” button will slide it out again, as shown in Figure 10-28.

Figure 10-28. Navigation from list to detail and back again

One minor bit of housekeeping remains: when the detail view is removed and the tableView
reappears, you need to deselect the previously selected row.

The TableViewController’s viewWillAppear: and viewDidAppear: functions are called just
before and just after the detail view is removed, so you can use the viewDidAppear: to
remove the selection highlight from the row, as shown in Listing 10-10.

Listing 10-10. The viewDidAppear: Function

override func viewDidAppear(animated: Bool) {
 super.viewDidAppear(animated)

 if let indexPath = tableView.indexPathForSelectedRow {
 tableView.deselectRowAtIndexPath(indexPath, animated: true)
 }

}

303CHAPTER 10: Using Tables for Navigation

First, you need to get hold of the indexPath of the currently selected row (which is the same
as it was when the detail view was pushed in), and then use this to call the tableView’s
deselectRowAtIndexPath:animated: function.

If you pass in true as the animated: parameter, the highlight will be removed with a gentle
fade effect.

Although this certainly isn’t going to win any awards for user interface design, you’ve now
got the navigation controller, table view, and detail view controllers wired up and playing
nicely together.

Building Navigation Structure with Segues
So far, you’ve build the app’s structure and navigation processes manually, which means that you
created the UINavigationController in code in the AppDelegate, and the TableViewController
and DetailViewController aren’t connected in any way in the Storyboard.

There is an alternative way of implementing the same results, which provides a more visual
indication of what’s going on in the Storyboard. The end results are completely identical, so
it’s up to you which to implement.

To illustrate this, let’s convert the app you’ve got at this point to use segues to manage the
transition between the table and the detail views.

Embedding the Table View in a Navigation Controller
The first step is to embed the TableViewController inside a UINavigationController in the
Storyboard. This is very simple: select the TableViewController in the Document Outline,
and select the Embed In ➤ Navigation Controller item from the Editor menu.

This will insert a Navigation Controller into the Storyboard, and link the
TableViewController with a relationship.

As you can see in Figure 10-29, the TableViewController is linked to the Navigation
Controller by a relationship, and the Navigation Controller has been set as the app’s initial
view controller (the inward pointing arrow at the left side of the Navigation Controller).

304 CHAPTER 10: Using Tables for Navigation

Figure 10-29. The new navigation controller in the Storyboard

All of these elements are listed below the Navigation Controller scene in the Document
Outline. It’s at this point in iOS development that you start to appreciate the utility of a large
monitor!

The Navigation Controller scene has arrived in the Storyboard without any identifier,
so you will need to set that. Select it in the Document Outline, switch to the Identity
Inspector in the Utilities pane, and update the Storyboard ID to NavigationController,
as shown in Figure 10-30.

Figure 10-30. Updating the Navigation Controller’s identifier

305CHAPTER 10: Using Tables for Navigation

Updating the App Delegate
Since you’ve changed the structure of the Storyboard, you’ll need to update the AppDelegate
to reflect the changes.

Switch to the application:didFinishLaunchingWithOptions: function, and update it to
match Listing 10-11.

Listing 10-11. The Updated Application:didFinishLaunchingWithOptions: Function

func application(application: UIApplication, didFinishLaunchingWithOptions
 launchOptions: [NSObject: AnyObject]?) -> Bool {
 // Override point for customization after application launch.

 let storyboard = UIStoryboard(name: "Main", bundle: nil)

 let navigationController =
 storyboard.instantiateViewControllerWithIdentifier("NavigationController")
 navigationController.navigationBarHidden = false

 self.window?.rootViewController = navigationController

 self.window?.makeKeyAndVisible()

 return true

}

Here you’re instantiating storyboard as before, but this time you’re loading the navigation
controller from storyboard rather than creating it with code. There’s also no need to create
an instance of the TableViewController; the links you made in storyboard take care of
that for you.

Linking the Detail View to the Table View
Now that the TableViewController is embedded inside a navigation controller, you can link
the TableViewController to the DetailViewController.

This is as simple as right-clicking in the prototype row in the table view, dragging the blue
connection line out to the Detail View Controller, and releasing the mouse button.

At this point, you’ll see the connection HUD pop up. Select the Show option, as shown
in Figure 10-31.

306 CHAPTER 10: Using Tables for Navigation

A connection will be made between the two controllers (shown in Figure 10-32).

Figure 10-31. The connection HUD

Figure 10-32. Making the connection between the TableViewController and the detail view

307CHAPTER 10: Using Tables for Navigation

Once the link, or segue, has been made, you need to give it an identifier. Click it so that the
line is highlighted, switch to the Identity Inspector in the Utilities pane, and give it a name of
PushDetailSegue, as shown in Figure 10-33.

Figure 10-33. Giving the segue an identifier

At this point, you no longer need the UITableViewDelegate function to react to selections, so
switch back to the TableViewController and remove the tableView:didSelectRowAtIndex
Path: function from the TableViewController extension. It should now look like Listing 10-12.

Listing 10-12. The Updated TableViewController Extension

extension TableViewController: UITableViewDataSource {

 // DataSource functions

 func numberOfSectionsInTableView(tableView: UITableView) -> Int {
 return 1
 }

 func tableView(tableView: UITableView, numberOfRowsInSection section: Int) ->
 Int {
 return tableData.count
 }

 func tableView(tableView: UITableView, cellForRowAtIndexPath indexPath:
 NSIndexPath) -> UITableViewCell {

 let cell = tableView.dequeueReusableCellWithIdentifier("NameCell",
 forIndexPath: indexPath)

 let name = tableData[indexPath.row]

 cell.textLabel!.text = name.nameText

 return cell

 }

}

Run the app, and test the push from table to detail. Something’s not quite right; the detail
view looks like Figure 10-34.

308 CHAPTER 10: Using Tables for Navigation

The problem here is that you removed the function where the Name struct was passed from
the TableViewController to the DetailViewController. This means that the displayName
property of the DetailViewController is empty and there’s nothing to update the fields with.

Before it performs a segue, the view controller executes the prepareForSegue:sender:
function. This is the point where you can access the view controller that will be displayed,
and pass over any data objects that the new controller will need.

In the main body of the TableViewController, add the function shown in Listing 10-13.

Listing 10-13. The prepareForSegue:sender Function

override func prepareForSegue(segue: UIStoryboardSegue, sender: AnyObject?) {

 if segue.identifier == "PushDetailSegue" {

 let detailViewController = segue.destinationViewController as!
 DetailViewController

Figure 10-34. The problematic detail view

309CHAPTER 10: Using Tables for Navigation

 if let indexPath = tableView.indexPathForSelectedRow {
 detailViewController.displayName = tableData[indexPath.row]
 }

 }

}

First, you check which segue is being performed. This function will be called for all segues,
so it’s important to make sure that the right action takes place.

Assuming that the segue that is about to be performed has an identifier of PushDetailSegue,
you access its destinationViewController property and create a reference to
detailViewController by force-downcasting it to an instance of the DetailViewController
class. (By default, the destinationViewController property of a segue is an instance of
UIViewController).

Next, you check if there is a selected row by asking the table for the indexPath of any
selected row. If there isn’t a selected row for some reason, the table view will return the
optional containing nil, so it’s safest to unwrap it with an if-left clause.

Then with the indexPath for the selected row, you can set the detailViewController’s
displayName property with the relevant item from the tableData array.

Run the app again, and this time you’ll see that the detail view has been populated with the
Name struct, as shown in Figure 10-35.

Figure 10-35. The app with a populated detail view

310 CHAPTER 10: Using Tables for Navigation

Summary
In this chapter you wired together a UINavigationController-based app from scratch. The
app delegate loads the navigation controller. The navigation controller loads the table view.
The table view provides the relevant row, and asks the navigation controller to push in the
detail view for the row’s content.

There are two basic ways to implement this functionality: either by wiring it up in code and
using the UITableViewDelegate functions to react to selections in the table, or by using
Storyboard features and reacting to segues.

Having put the structure and the basic function of the app together, you can adapt this to
drive the table with any suitable model as the data source. The structure of that data will
determine how you’ll handle drilling into the details; by moving from table to table, it’s very
easy to navigate backwards and forwards in a hierarchical data structure.

311

Chapter 11
Indexing, Grouping, and
Sorting Tables
Although UITableView is efficient at managing large quantities of data, the user interface is
constrained by the physical size of the device. By the time a table displays more than 10 or
12 rows, its labels and controls have become too small to easily work with.

If a table contains a lot of data, the user might also have to perform a lot of scrolling, which
doesn’t make for a good user experience. Fortunately, some UITableView facilities are
available to improve the organization of the data presented by the table view.

Using Indexed Tables
An indexed table is fundamentally the same as a plain-style table, but with an index running
down the right hand edge, as you saw in Chapter 3. Typically, this index displays letters or
numbers, which the user can tap to automatically scroll the table to the relevant section,
without having to scroll manually.

This is how apps such as the built-in Contacts application work. When the app opens,
you’re at the top of the list of names beginning with A. Tapping Z will rapidly scroll the app
down to the bottom of the list.

Indexed tables rely on two elements: an array of strings to act as index entries that will be
displayed down the right-hand edge, and data that is organized into sections corresponding
to the index entries. In the case of the Contacts app, names are organized alphabetically in
sections—a section for names beginning with A, a section for names beginning with B, and
so on.

Although there needs to be a corresponding section for each entry in the index, the titles
of the section headers don’t have to be the same as the index strings themselves. In the
Contacts app, the section headers and indexes are the same, but you can be more flexible if
you need to be.

http://dx.doi.org/10.1007/978-1-4842-1242-4_3

312 CHAPTER 11: Indexing, Grouping, and Sorting Tables

Using Sectioned and Grouped Tables
Sections take the organized presentation of data one stage further, and introduce the
concept of grouping the rows together, as you learned in Chapter 3. These can be presented
either by dividing the table view by section headers or by splitting the table up into groups.

Splitting the rows into distinct groups helps break up the information, and makes it easy to
see the separate groups when scrolling through a long table, as shown in Figure 11-1.

Figure 11-1. Sectioned and grouped table styles

Caution Apple’s iOS Human Interface Guidelines advise against using table indexes in conjunction
with in-cell controls, because the index will tend to obscure the right-hand side of the cells.

Although the visual presentation is quite distinct, both sectioned and grouped tables use the
same underlying data structure. The data for each section or group is stored in an “inner”
array, which in turn is stored in an “outer” array that organizes all the sections and groups
together.

http://dx.doi.org/10.1007/978-1-4842-1242-4_3

313CHAPTER 11: Indexing, Grouping, and Sorting Tables

Creating a Simple Indexed Table
Before you dive into the complex stuff, let’s put together a very simple indexed table, shown
in Figure 11-2. This table consists of a list of names, one for each letter of the alphabet. The
names are sorted into sections, and there’s an index list for navigation.

Figure 11-2. The simple indexed table

Note If you’re using a grouped table, you wouldn’t typically use an index. Although there’s nothing
in Apple’s Human Interface Guidelines explicitly prohibiting it, an index does tend to look strange
because of the way that it overlaps with the grouped table’s background.

To keep the example simple, each section has only one name, so there’s no need to sort the
data for each section. You’ll look at sorting the rows in the next section of this chapter.

Start by creating a new project based on the Single View Application template. This will
provide you with a skeleton application containing an AppDelegate, a view controller class,
and a XIB file.

314 CHAPTER 11: Indexing, Grouping, and Sorting Tables

Setting Up the Basic Table
The Single View Application template gives us a very basic skeleton app, with an
AppDelegate and a single view controller. At the moment, that view controller is an empty
view (if you run the app at this stage, it’s a blank, gray screen).

To get the initial table view up and running, you need to do two things:

1. Add the tableView to the Storyboard.

2. Add extensions to the view controller so that it conforms to the
UITableViewDelegate and UITableViewDataSource protocols.

To add the table view, switch to the Storyboard and drag a UITableView object out into the
view from the Object Browser. Add AutoLayout constraints so that it fits the entire view, as
shown in Figure 11-3.

Figure 11-3. Setting up the tableView

Then connect the tableView’s delegate and dataSource outlets to the viewController by
dragging out from the table to the View Controller in the Document Outline.

Next, add a single Prototype cell to the table by selecting the tableView object and setting
the number of Prototype Cells to 1 in the Attributes Inspector (shown in Figure 11-4).

315CHAPTER 11: Indexing, Grouping, and Sorting Tables

Finally, change the Prototype cell type to Basic by selecting the row and changing the
Style in the cell’s Attributes Inspector, and then give it an identifier of CellIdentifier
(shown in Figure 11-5).

Figure 11-4. Adding a prototype cell

Figure 11-5. Setting up the Protoype cell

That’s as much as you need to do with the Storyboard for now, so switch back to the
ViewController.

Creating the Source Data
To start, you’re going to need two sources of data:

	The objects to display in the table rows

	The objects to display as the index titles

These will be stored in two Array properties. The view controller will also need to act as a
delegate and a dataSource for the table view in an extension. Update the ViewController as
shown in Listing 11-1.

Listing 11-1. The Initial Update to the View Controller

import UIKit

class ViewController: UIViewController {

 var tableData: [String]!
 var indexTitlesArray: [String]!

 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view, typically from a nib.
 }

316 CHAPTER 11: Indexing, Grouping, and Sorting Tables

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }

}

extension ViewController {

}

extension ViewController: UITableViewDataSource {

}

To keep this example as simple as possible, you’ll use an array of 26 names for the table
data, and an array of the letters of the alphabet for the index titles.

To keep the view controller organized, add this setup in a function in an extension, which is
then called in the viewDidLoad function. Listing 11-2 shows the extension, Listing 11-3 the
updated viewDidLoad function.

Listing 11-2. The Extension to the View Controller

extension ViewController {

 func setupTableData() {

 tableData = ["Aaron", "Bailey", "Cadan", "Dafydd", "Eamonn", "Fabian",
 "Gabrielle", "Hafwen", "Isaac", "Jacinta", "Kathleen", "Lucy", "Maurice", "Nadia",
 "Octavia", "Padraig", "Quinta", "Rachael", "Sabina", "Tabitha", "Uma", "Valentin",
 "Wallis", "Xanthe", "Yvonne", "Zebadiah"]

 let letters = "A B C D E F G H I J K L M N O P Q R S T U V W X Y Z"

 indexTitlesArray = letters.componentsSeparatedByString(" ")

 }

}

The indexTitlesArray uses String’s handy componentsSeparatedByString method to take a
string of letters, separated by spaces, and return an array of the original string split at each
space. That’s a lot quicker than typing "a", "b", "c", and so on.

317CHAPTER 11: Indexing, Grouping, and Sorting Tables

Listing 11-3. The Updated viewDidLoad() Function

override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view, typically from a nib.

 setupTableData()

}

Feeding the Table with Data
To create an indexed table, the tableView’s dataSource and delegate have a little bit more
work to do than you’ve seen in previous examples.

The tableView:cellForRowAtIndexPath function is identical to ones that you’ve seen before,
as you can see in Listing 11-4.

Listing 11-4. The tableView:cellForRowAtIndexPath Function

func tableView(tableView: UITableView, cellForRowAtIndexPath indexPath: NSIndexPath)
 -> UITableViewCell {

 let cell = tableView.dequeueReusableCellWithIdentifier("CellIdentifier",
 forIndexPath: indexPath)
 cell.textLabel!.text = tableData[indexPath.section]

 return cell

}

In previous simple tables with a single section, the number of rows in the section was the
number of rows in the source data. This made the numberOfRowsInSection function very simple.

If the table’s data were stored in an Array called tableData, for example, the method would
look like Listing 11-5.

Listing 11-5. A Simple numberOfRowsInSection Method

func tableView(tableView: UITableView, numberOfRowsInSection section: Int) -> Int {
 return tableData.count
}
In your indexed table, you need to know how many rows will appear in each of the sections
so that the numberOfRowsInSection method can return this data.

Because this is a simple example with one name per letter of the alphabet, you can hack this
by simply returning 1, as shown in Listing 11-6.

Listing 11-6. The Actual numberOfRowsInSection Function

func tableView(tableView: UITableView, numberOfRowsInSection section: Int) -> Int {
 return 1
}

318 CHAPTER 11: Indexing, Grouping, and Sorting Tables

Having established the number of rows in each section, and created a cell for each row,
there are four things you need to do to get the indexing side of things working:

	Return the number of sections in the table.

	For each section, return the title for that section’s header so that it can
appear above the cells.

	Return an array of strings to use as the index so that this can be
displayed down the right-hand side of the table.

	For each string in the index, figure out which section that string relates
to so that the table can jump to the appropriate one.

Let’s tackle these one by one.

Returning the Number of Sections in the Table
To return the number of sections in the table, you need the numberOfSectionsInTableView
function. This will be the same as the number of entries in the index titles, as shown in
Listing 11-7.

Listing 11-7. The numberOfSectionsInTableView Function

func numberOfSectionsInTableView(tableView: UITableView) -> Int {
 return indexTitlesArray.count
}

Creating the Title for the Section Header
The section headers will appear above the rows in that section. The appearance of the
header can be customized, but the default is a gray bar, as shown in Figure 11-6.

Figure 11-6. The default section header

You need to supply a section header for each section, but these headers don’t necessarily
have to be the same as the index entries.

Your section headers will be the same as the index entries, so you can use the section
number to access the object at that index of the indexTitlesArray, as shown in Listing 11-8.

319CHAPTER 11: Indexing, Grouping, and Sorting Tables

Listing 11-8. The titleForHeaderInSection Method

func tableView(tableView: UITableView, titleForHeaderInSection section: Int)
 -> String? {
 return indexTitlesArray[section]
}

Building the Index
The index is built up from an Array of Strings. Strictly speaking, these could be of any
length, but there are fairly obvious space constraints. It’s best to keep the strings to no more
than about three letters.

Providing the data for the index is simply a case of returning the array, as shown in Listing 11-9.

Listing 11-9. The SectionIndexTitlesForTableView Function

func sectionIndexTitlesForTableView(tableView: UITableView) -> [String]? {
 return indexTitlesArray
}

Matching the Index to the Section
When an element in the index is tapped, the tableView will automatically scroll so that
the heading for the corresponding section is at the very top of the table. Fortunately, the
tableView handles working out how far to scroll, but you do need to give it a helping hand
by telling it which table section corresponds to which index. Listing 11-10 shows how to
achieve this.

Listing 11-10. The tableView:sectionForSectionIndexTitle:atIndex Function

func tableView(tableView: UITableView, sectionForSectionIndexTitle title: String,
 atIndex index: Int) -> Int {
 return indexTitlesArray.indexOf(title)!
}

Putting this all together will result in a table that looks like Figure 11-7.

320 CHAPTER 11: Indexing, Grouping, and Sorting Tables

It’s worth noting that you don’t have to use indexes and sections together. If you want an
indexed table without section headers, don’t implement the tableView:titleForHeaderInSection
function, and your table will be a simple indexed one, as shown in Figure 11-8.

Figure 11-7. A very simple indexed table

321CHAPTER 11: Indexing, Grouping, and Sorting Tables

Similarly, you can remove the index by omitting the sectionIndexTitlesForTableView
method, which will give you a table that looks like Figure 11-9.

Figure 11-8. An indexed table without section headings

322 CHAPTER 11: Indexing, Grouping, and Sorting Tables

Building Practical Sectioned Tables
The simple table that you’ve built so far will hopefully have given you a feel for how an
indexed and sectioned table fits together, but it was a very simple example. In reality,
your apps are likely to have far more complex data, with correspondingly complex
implementations.

In this section, you’re going to build a more complex example with data that can support the
table types in Figure 11-10.

Figure 11-9. Sections with indexes

323CHAPTER 11: Indexing, Grouping, and Sorting Tables

The app is going to implement several new features:

	Loading source data from a property list (plist) file

	Using the UILocalizedIndexedCollation class to automate the creation
of section headers and index lists

	Creating section headers conditionally, based on the index

Creating the Data for a Table with Sections and Indexes
To feed an indexed table, you need three sets of data:

	An array of strings for the table’s index

	Data for each section header

	Data for the rows in each section

The easiest way to supply the latter two is with an array of arrays. The outer array organizes
the sections, and contains the inner arrays that hold the data for the rows.

The inner arrays will be sorted so that the rows appear in order. The outer array is sorted so
that the sections appear in order. Figure 11-11 shows the example.

Figure 11-10. The all-singing, all-dancing tables

324 CHAPTER 11: Indexing, Grouping, and Sorting Tables

The data objects in the inner arrays don’t necessarily have to be ordered, but that’s usually
the case.

There are two ways to create the data for an indexed table:

	Manually, by creating an array of arrays yourself

	Using the UILocalizedIndexedCollation class to do much of the heavy
lifting for you

The method you use is a matter of personal preference and the dictates of the app you’re
building, so I’ll cover both.

Figure 11-11. How the table gets fed data

325CHAPTER 11: Indexing, Grouping, and Sorting Tables

Arrays of Arrays
Creating the data structure manually is a two-stage process:

1. Create the inner arrays and populate them with their objects.

2. Add the inner arrays into the outer array.

There’s an implicit assumption here that you’ll be adding the objects into the arrays (and the
inner arrays into the outer array) in the order that you want them to appear in the table. If this
isn’t the case, you can sort them before they’re needed. You’ll look at this in a moment.

Listing 11-11 provides a very simple (and very contrived) example of how you might create
an array of arrays.

Listing 11-11. The Simplest Possible Array of Arrays

func createArrayOfArrays() -> [Array<String>] {

 // Create the inner arrays
 let innerArrayA = ["A1", "A2", "A3", "A4"]
 let innerArrayB = ["B1", "B2", "B3", "B4"]
 let innerArrayC = ["C1", "C2", "C3", "C4"]
 let innerArrayD = ["D1", "D2", "D3", "D4"]
 let innerArrayE = ["E1", "E2", "E3", "E4"]

 let outerArray = [innerArrayA, innerArrayB, innerArrayC, innerArrayD, innerArrayE]

 return outerArray
}

Although this approach is perfectly functional, it’s not the most flexible—especially because
you’re in charge of sorting the arrays into the order that they’re needed.

Fortunately, iOS provides the snappily named UILocalizedIndexedCollation class that
automates a lot of the process for us.

UILocalizedIndexedCollation
The UILocalizedIndexedCollation class provides some convenience functions that can help
create data structures for indexed tables. To quote Apple’s class reference:

The UILocalizedIndexedCollation class is a convenience for organizing,
sorting, and localizing the data for a table view that has a section index.

It provides a number of helper functions, including ones for sorting that you’ll use shortly;
and it works with an array of row objects, and sorts, organizes, and localizes the data into a
form that’s ready for the table view.

326 CHAPTER 11: Indexing, Grouping, and Sorting Tables

It’s a four-stage process:

1. Create an instance of a UILocalizedIndexCollation object. This
provides an array called sectionTitles that contains the alphabet for
the current locale setting. (This will automatically adjust, so you don’t
need to worry about what it contains.)

2. Create the array structure: an outer array for the sections, and an
inner array for each of your sectionTitles.

3. For each object in the array of row objects, use
UILocalizedIndexCollation’s sectionForObject method to
determine which inner array the object should be placed in.

4. After placing all the row objects into their respective inner arrays, use
the UILocalizedIndexCollation’s sortedArrayFromArray method to
sort the inner array into order.

In each case, UILocalizedIndexCollation will use the relevant locale to figure out how the
row objects should be organized and sorted, which means you don’t need to know your SS
from your ß…

LOCALIZATION IN PRACTICE

A the name suggests, the UILocalizedIndexedCollation class handles a lot of the heavy lifting involved
in localizing your app, and is dependent on the localization settings of your application bundle. This allows the
class to handle the different ordering requirements of various languages.

For example, an app that uses US English as its locale will return 27 results in its sectionTitles array: one
each for A to Z, and one for numbers that appear in the list as #. If you’re using one of the German locales,
however, you’ll also automatically get an entry for characters such as Ü character—so the class can save a lot
of time and effort.

iOS localization is even clever enough to support non-Latin character sets. When using the Traditional Chinese
locale, for example, the class will sort the entries by the number of strokes in the Chinese character.

There is extensive support for localization in iOS, but it’s a big topic in its own right. Check out the
Internationalization and Localization Guide in the iOS documentation for more details.

All this sounds like a lot of work, but it’s not bad as it seems. By using
UILocalizedIndexCollation, you’ll put the app in Figure 11-7 together in short order.

327CHAPTER 11: Indexing, Grouping, and Sorting Tables

Creating the All-Singing, All-Dancing Table
Creating the app is a four-step process:

1. Create a new app from the Single View Application template.

2. Create some data to display in the table. To provide a bit of variety,
you’ll use a plist file to provide the raw data.

3. Add the tableView to the Storyboard file and conform the view
controller class to UITableView’s delegate and dataSource protocols
(which will be very familiar by now).

4. Extend the view controller class to implement the additional methods
that handle the indexing and section handling for the table.

Creating the App from a Template
There’s nothing new here. In Xcode, create a new project by choosing File ➤ New ➤ New
Project, select the Single View Application template, and save the project somewhere
suitable.

This will give you an AppDelegate, a subclass of UIViewController called ViewController,
and a Storyboard file.

Creating Some Data in a plist File
If you haven’t met them before, property list (commonly abbreviated as plist) files are a
useful way of storing data in a key-value structure. They serve a practically identical purpose
to JavaScript Object Notation (JSON) files, but with a couple of iOS-specific advantages:

	Because plist files are a native iOS format, Xcode provides a nifty editor
that makes creating and editing them a snap.

	iOS can read and write to plist files significantly faster than it can to an
equivalent JSON file.

Plist files are stored in the application bundle, but you can create and edit them in much the
same way as you would a class or a XIB file. To create a new plist for the table data, choose
File ➤ New ➤ New File, and then select the Property List option from the Resource group,
as shown in Figure 11-12.

328 CHAPTER 11: Indexing, Grouping, and Sorting Tables

Call the file Names, and click Create to create the file.

If you click the Names.plist file in the Project Explorer, you’ll be presented with a blank file,
with headings for Key, Type, and Value.

To create a new key-value pair, select the Root entry and Ctrl-click in the Source Editor
before selecting the Add Row option, as shown in Figure 11-13.

Figure 11-12. Creating a new property list file

329CHAPTER 11: Indexing, Grouping, and Sorting Tables

Figure 11-13. Adding a new key-value pair

Figure 11-14. The new key-value pair

A new, empty Key item will be added, as shown in Figure 11-14.

Various types of key-value pairs can be created, but the key thing to remember (labored pun
intended) is that keys must be unique. You’re going to create a list of names, so rather than a
type string, you’re going to need an array.

Click the drop-down arrows next to String, and you’ll see a pop-up list of types, shown in
Figure 11-15.

330 CHAPTER 11: Indexing, Grouping, and Sorting Tables

Select the Array option, and the New Item key will change to an Array type. Double-click the
New Item title and replace it with names.

Now start adding Name values. Click the disclosure indicator in the Names row so that it’s
highlighted, and press Return. A new line with a name of Item 0 will appear underneath
Names, as shown in Figure 11-16.

Figure 11-15. The Types pop-up list

Figure 11-16. Adding a new value

In the Value field, type the first name. (I’ve used Aaron, but you use whatever takes your
fancy.) Then press Return to save the new value. Press Return again, and you’ll repeat the
process.

Now you have two options: continue typing, or use the plist file from the source code in the
project’s repository on GitHub. If you go for the second option, you’ll end up with a plist that
looks like Figure 11-17.

331CHAPTER 11: Indexing, Grouping, and Sorting Tables

Using the plist in Code
In order to use the data stored in the plist file, it has to be loaded and parsed before you can
use it as the data source for the table view.

In the ViewController class, add an Array called tableData as a property. Now update the
ViewController by adding the extension shown in Listing 11-12.

Figure 11-17. The source code’s plist file

332 CHAPTER 11: Indexing, Grouping, and Sorting Tables

Listing 11-12. ViewController Extension

extension ViewController {

 func parsePlist() {
 let bundle = NSBundle.mainBundle()

 if let plistPath = bundle.pathForResource("Names", ofType: "plist"),
 let namesDictionary = NSDictionary(contentsOfFile: plistPath),
 let names = namesDictionary["Names"] {
 tableData = names as! [String]
 }
 }

Now update the viewDidLoad method to call the parseList() function, as shown in Listing 11-13.

Listing 11-13. The Updated viewDidLoad() Method

override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view, typically from a nib.

 parsePlist()

}

This code performs three tasks:

	Locates the plist file in the application’s main bundle

	Creates an NSDictionary from the contents of the plist file

	Loads the values held in the plist’s Names array into the tableData
property

Sorting Out the User Interface
Having started the creation of the data, it’s time for a quick diversion into the user interface.
Open the Storyboard and drag a UITableView onto the view, then add AutoLayout
constraints so that it fills the full view. Then connect the delegate and dataSource outlets to
the View Controller.

You have the option of setting the table’s style to plain or grouped. Select the table view in
the Document Outline, and then switch to the Attributes Inspector if it isn’t already shown.

If you want a grouped style, you can select the Grouped option from the Table View section
at the top of the Attributes Inspector, as shown in Figure 11-18. By default, you get a
Plain table.

333CHAPTER 11: Indexing, Grouping, and Sorting Tables

Figure 11-18. Changing the tableView’s style to Grouped

Finally, you need to conform the ViewController class to the UITableViewDataSource
protocol. Switch to the ViewController file and add an extension at the bottom of the file:

extension ViewController: UITableViewDataSource {
}

Extending the ViewController Class
Now it’s time to start implementing the additional methods in the ViewController class to
set up the table.

The first step is to create another property, this time for the UILocalizedIndexedCollation
object. Add the following:

 var collation: UILocalizedIndexedCollation.currentCollation()

You also need properties for two other Arrays. The first will hold the table data that is loaded
from the plist file:

 var initialTableData: [String]!
 var sections: [[String]] = []

The second will hold the sorted data as an array of arrays, one for each element of the
collection, containing the sorted names. Note the double square brackets; you’re defining an
array of arrays here. You could also write this as:

 var sections: Array<Array<String>> = []

The end result is exactly the same, but you might find the second syntax a bit clearer.

Because there’s a fair amount of code involved to set up the UILocalizedIndexedCollation,
you’ll put this in its own function. Add this to the ViewController extension, as shown in
Listing 11-14.

334 CHAPTER 11: Indexing, Grouping, and Sorting Tables

Listing 11-14 The configureSectionData() Function

func configureSectionData() {

 let selector: Selector = "description"

 sections = Array(count: collation.sectionTitles.count, repeatedValue: [])

 let sortedObjects = collation.sortedArrayFromArray(tableData, collationStringSelector:
selector)

 for object in sortedObjects {
 let sectionNumber = collation.sectionForObject(object, collationStringSelector: selector)
 sections[sectionNumber].append(object as! String)
 }

}

And then call the configureSectionData() function at the end of viewDidLoad, which should
look like Listing 11-15.

Listing 11-15. The Full viewDidLoad Method

override func viewDidLoad() {

 super.viewDidLoad()

 parsePlist()

 configureSectionData()

}

Let’s look at the configureSectionData() function more closely.

Firstly, you’re creating a selector to use to sort the contents of the array that’s been loaded
from the plist (in this case, description):

 let selector: Selector = "description"

The UILocalizedIndexCollation class provides a sectionTitles property that returns an
NSArray of section titles relevant to the device’s locale. If the device locale is set to US
English, for example, sectionTitle will return the following:

 (A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,#)

Other locales will differ. Swedish, for example, has additional elements:

 (A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,Å,Ä,Ö,#)

335CHAPTER 11: Indexing, Grouping, and Sorting Tables

You use this to create the sections array with one element for each of the section titles that
the collation creates:

 sections = Array(count: collation.sectionTitles.count, repeatedValue: [])

Next, you create an Array based on the data that was loaded from the plist, but sorted
according to the selector:

 let sortedObjects = collation.sortedArrayFromArray(tableData, collationStringSelector:
selector)

Finally, you iterate across each element in the sortedObjects array, decide which section it
should be in based on the collation, and add it into the corresponding inner array:

 for object in sortedObjects {
 let sectionNumber = collation.sectionForObject(object,
 collationStringSelector: selector)
 sections[sectionNumber].append(object as! String)
 }

The sectionForObject:collationStringSelector function takes two arguments: the object
that you want to allocate to the appropriate inner array, and a collationStringSelector that
determines how each object should be evaluated.

Because the tableData array is full of String objects, you can use the lowercaseString
method as the selector.

It returns an Int that is the index of the inner array into which the object should be placed. If
the value of nameString that was being evaluated was Aaron, then this would return 0, while
a value of Baldric would return 1, Cadan would return 2, and so on.

Having obtained the sectionNumber, you use this to get a reference to the relevant inner
array and add the object object to it:

sections[sectionNumber].append(object as! String)

After you’ve iterated across each nameString object in the tableData array, each one will
have been placed into the relevant inner array.

Note If you were dealing with custom objects with their own properties, you would use one of
those instead. You’d need to ensure that the custom object had a String property that could be
used as the collation string selector. For example, if you had a Customer object with a range of
properties including a String called customerName, the call to the sectionForObject:colla
tionStringSelector method might look like the following:

 let sectionNumber = collation.sectionForObject(theCustomer,

 collationStringSelector:@selector(customerName))

336 CHAPTER 11: Indexing, Grouping, and Sorting Tables

Configuring the Sections
With the data organized into the required structure, you’re now in a position to set up the
sections. There are five functions you need to implement:

	numberOfSectionsInTableView returns an Int of the total number of
sections in the table (see Listing 11-16).

	titleForHeaderInSection returns an String that can be used as the title
for each section (see Listing 11-17).

	sectionIndexTitlesForTableView returns an Array containing Strings
for each title in the index displayed down the right-hand edge of the
table (see Listing 11-18).

	numberOfRowsInSection returns the number of rows in the given section
(in other words, the number of elements in the relevant inner array;
see Listing 11-19).

Listing 11-16. numberOfSectionsInTableView

func numberOfSectionsInTableView(tableView: UITableView) -> Int {
 return sections.count
}

This function returns the number of entries in the sections array, which was supplied by
UILocalizedIndexCollation’s sectionTitles method. If the device locale is set to US
English, for example, this would return 27 (the letters A to Z plus # for numbered titles).

Listing 11-17. tableView:titleForHeaderInSection

func tableView(tableView: UITableView, titleForHeaderInSection section: Int)
 -> String? {
 return "Name for the letter \(collation.sectionTitles[section])"
}

This function returns a String for each section, A through #.

Listing 11-18. sectionIndexTitlesForTableView

func sectionIndexTitlesForTableView(tableView: UITableView) -> [String]? {
 return collation.sectionTitles
}

This function returns an Array of the section index titles for the table view, which are
then displayed down the right-hand edge of the table. If you don’t need an index (if, for
example, you’re using a grouped-style table), you can omit this method and an index won’t
be displayed.

337CHAPTER 11: Indexing, Grouping, and Sorting Tables

Listing 11-19. numberOfRowsInSection

func tableView(tableView: UITableView, numberOfRowsInSection section: Int) -> Int {
 return sections[section].count
}

This method returns the number of rows that are required to be displayed in a given section.
This is the count of the number of elements in the appropriate inner array, so the first step
is to get a reference to the array that is the nth object in the outer array; and then return the
number of elements in the inner array.

Finally, you’ll need your old friend the tableView:cellForRowAtIndexPath method,
shown in Listing 11-20.

Listing 11-20. tableView:cellForRowAtIndexPath

func tableView(tableView: UITableView, cellForRowAtIndexPath indexPath: NSIndexPath)
 -> UITableViewCell {

 let cell = tableView.dequeueReusableCellWithIdentifier("CellIdentifier",
 forIndexPath: indexPath)

 let innerData = sections[indexPath.section]

 cell.textLabel!.text = innerData[indexPath.row]

 return cell

}

This gets the data for the row in two stages. First, it gets a reference to the array of content
for the section in question (the names for the letter), and then it gets the name string from
the array based on the row.

Put all these together, and you’ll end up with the table view in Figure 11-19.

338 CHAPTER 11: Indexing, Grouping, and Sorting Tables

Figure 11-19. The finished table view

Creating Table and Section Header and Footer Views
Up until now, you’ve been customizing the section headers with simple text strings,
but you don’t have to stop there. The tableView:viewForHeaderInSection and
tableView:viewForFooterInSection methods return UIViews, which means that anything
you can put in a UIView, you can put in a section’s header and footer.

Figure 11-20 shows a deliberately contrived and hideous example of where headers and
footers appear and how they’re repeated.

Listing 11-21 produces the section header shown in Figure 11-20.

339CHAPTER 11: Indexing, Grouping, and Sorting Tables

Figure 11-20. Section headers and footers

Listing 11-21. A Custom Section Header

func tableView(tableView: UITableView, viewForHeaderInSection section: Int) ->
 UIView? {

 let headerFrame = CGRectMake(0, 0, tableView.frame.size.width, 100.0)
 let headerView = UIView(frame: headerFrame)
 headerView.backgroundColor = UIColor(red: 0.5, green: 0.2, blue: 0.57, alpha: 1.0)

 let labelFrame = CGRectMake(15.0, 80.0, view.frame.size.width, 15.0)
 let headerLabel = UILabel(frame: labelFrame)
 headerLabel.text = "Section Header"
 headerLabel.font = UIFont(name: "Courier-Bold", size: 18.0)
 headerLabel.textColor = UIColor.whiteColor()

 headerView.addSubview(headerLabel)

 return headerView

}

340 CHAPTER 11: Indexing, Grouping, and Sorting Tables

If you’ve implemented custom header and footers, you need to inform the table of their
respective heights with the heightForHeaderInSection and heightForFooterInSection
methods:

func tableView(tableView: UITableView, heightForHeaderInSection section: Int)
 -> CGFloat {
 return 100.0
}

Table Headers and Footers
As well as adding headers and footers to sections, it’s also possible to add headers and footers
to the top and bottom of the entire table; these scroll with the entire table. Figure 11-21
shows a very simple example.

Tip If your header and footer view heights vary from section to section, you can improve
the performance of the table by implementing the tableView:estimatedHeightForHeaderI
nSection: and/or tableView:estimatedHeightForFooterInSection: functions
to defer the final calculation until the point where the header and/or footer is
actually needed.

341CHAPTER 11: Indexing, Grouping, and Sorting Tables

Because table and header footers only need to be configured once in the lifecycle of the
table, I tend to set them up in the view controller’s viewDidLoad method. Listing 11-22
shows the process of setting up this example.

Listing 11-22. Setting Up the Example Table Header and Footer

override func viewDidLoad() {

 super.viewDidLoad()

 let headerRect = CGRectMake(0, 0, tableView.frame.size.width, 50.0)
 let headerView = UIView(frame: headerRect)
 headerView.backgroundColor = UIColor.cyanColor()
 tableView.tableHeaderView = headerView

 let footerRect = CGRectMake(0, 0, tableView.frame.size.width, 75.0)
 let footerView = UIView(frame: footerRect)
 footerView.backgroundColor = UIColor.cyanColor()
 tableView.tableFooterView = footerView

}

Figure 11-21. Simple table header and footer

342 CHAPTER 11: Indexing, Grouping, and Sorting Tables

Because the table header and footers are plain ‘ole UIViews, you can add subviews and use
AutoLayout to your heart’s content.

Tidying the Bottom of Tables
A very common occurrence when you have a large table with a short amount of content is
“blank cell syndrome.” Figure 11-22 shows the effect.

Figure 11-22. Blank cells at the bottom of a table

These extra empty cells can look a little untidy. Fortunately, there’s a really easy way to clean
this up.

If you add a footer view with zero height to the table, the empty cells will magically disappear.
Just add this line to the viewDidLoad (or wherever you decide to set up your tableView):

tableView.tableFooterView = UIView(frame: CGRectZero)

The header will be unaffected, but you can see in Figure 11-23 that the extra blank rows
have now been removed.

343CHAPTER 11: Indexing, Grouping, and Sorting Tables

Moving the Table Programmatically
The table view scrolls around automatically in response to taps on an index entry, but it’s
also possible to move the table around programmatically.

There are three main methods that can be used:

	scrollToRowAtIndexPath:atScrollPosition:animated:

	scrollToNearestSelectedRowAtScrollPosition:animated:

	selectRowAtIndexPath:animated:scrollPosition:

Caution If you’re reacting to user input through UITableViewDelegate methods such as
viewDidScroll or tableView:didSelectRowAtIndexPath:, be aware that moving and
selecting the table programmatically won’t cause the delegate methods to be invoked, so you need
to trigger them manually.

Figure 11-23. The spare rows have been removed

344 CHAPTER 11: Indexing, Grouping, and Sorting Tables

scrollToRowAtIndexPath:atScrollPosition:animated:
This method takes an IndexPath position—section a, row b—and scrolls to the appropriate
place.

The second parameter controls where in the tableView the destination row should appear:
top, middle, or bottom. There’s a fourth option that aims to make the row visible with a
minimum of movement. If the row is already visible, the table won’t move at all. Otherwise,
it will be scrolled to the nearest of the three alternatives.

You select the desired behavior by providing one of the four UITableViewScrollPosition values:

	UITableViewScrollPositionNone

	UITableViewScrollPositionTop

	UITableViewScrollPositionMiddle

	UITableViewScrollPositionBottom

The final parameter determines whether the table “zooms” to the desired row with some
animation or moves there instantaneously. YES enables animations, and NO suppresses them.

scrollToNearestSelectedRowAtScrollPosition:animated:
This method is similar in terms of parameters, but will scroll the table to the nearest
already-selected row, either with or without animations.

selectRowAtIndexPath:animated:scrollPosition:
This method allows a row to be selected programmatically, and optionally scrolls the table
so that the selected row is located in the desired location in the tableView.

Passing in UITableViewScrollPositionNone has a different effect than with the previous two
methods—the table won’t scroll at all. If you want minimum scrolling, select the row with this
method and then call scrollToViewAtIndexPath.

Finding the Current Scroll Position in the Table
There are occasions when you need to figure out how far down a table the user has scrolled.
The solution to this task lies in the fact that UITableView is a subclass of UIScrollView, and
so inherits all the properties and methods that UIScrollView provides.

The contentOffset property exposes how far from the origin the scroll view (or in this case,
the table view) has been scrolled. If you had a table that was, say, 1000 pixels high when all
its data was fully loaded, the contentOffset’s y value would gradually increase as the user
scrolled down, until it reached a maximum of 1000 pixels.

Figuring out how tall the table is going to be is a little trickier, mainly because of the way that
the table view handles building rows and loading data without the need for much “manual”
intervention on your part when writing the code.

345CHAPTER 11: Indexing, Grouping, and Sorting Tables

The trick is to wait until the all the table’s data has been loaded. In other words, the table
view knows how many rows and sections it has (and therefore how tall the content is going
to be). Figuring out exactly when this has happened is difficult, especially if your table’s
data is very dynamic, but one option is to override the table view controller’s viewDidAppear
method something like this:

override func viewDidAppear(animated: Bool) {
 super.viewDidAppear(animated)

 maxTableHeight = tableView.contentSize.height;
 frameTableHeight = tableView.frame.size.height;

}

The table view’s contentSize property is a CGSize. The height value is the total height of the
table after all the rows have been loaded. The frame property is the size of the table in the
NIB itself.

After you have these three values, you can use them to calculate the Y position of the
timestamp and to update that as the table scrolls. UIScrollView has a series of delegate
properties, including scrollViewDidScroll:

func scrollViewDidScroll(scrollView: UIScrollView)

If you conform your table view’s controller to the UIScrollViewDelegate protocol and
implement this method, it’ll get called every time the table is scrolled. This is the point when
you can perform the calculations and redraw the UIView that’s moving around the screen.

Summary
In this chapter, you looked at a couple of methods to improve the visual presentation of
large amounts of data in table views. Breaking the data, and the table, into sections provides
additional structure to the table, and indexes provide a means of quick navigation between
sections.

Using the grouped table style further subdivides the information visually, which can help to
emphasize the sections when scrolling around. Groups can be enhanced with header and
footer views.

347

Chapter 12
Selecting and Editing Content
Although some situations can be handled with read-only tables or collection views, you don’t
need to look too far to find others where tables need to be adaptable. Building tables that
can handle selection and rearrangement—and can insert, update, and delete new rows—is a
common requirement.

In this chapter, you’ll look at

	How to handle selection of rows in your tables, or cells in your
collection views

	How tables and collection views can be built to handle rearrangement of
their data

	How tables and collection views can be used to create, edit, update,
and delete items from their underlying data models

	Adding custom menus to collection views

A Recap of the Model-View-Controller Pattern
Before getting into the mechanics of selecting, inserting, and deleting with a table or
collection view, you need to understand how these changes affect the underlying data that
the table or collection view displays.

This means understanding the model-view-controller (MVC) architecture pattern that you
met back in Chapter 5. Both UITableView and UICollectionView are examples of an MVC
architecture, which separates the front-end views from the back-end models.

http://dx.doi.org/10.1007/978-1-4842-1242-4_5

348 CHAPTER 12: Selecting and Editing Content

That separation is described by the MVC pattern, which divides the application into
three areas:

	Views: In iOS terms, these are the views (or interfaces) that are created
in Interface Builder or programmatically within the code. In UITableView
or UICollectionView terms, a view is the table or collection view itself,
and the cells that form the rows of the table, or items of the collection
view.

	Controllers: These represent the application’s internal logic. In other
words, the controller is the class or classes that controls the display
of data and interaction with the table—either because it’s an entire
subclass of UITableViewController or UICollectionView or because
it’s a UITableViewController or UICollectionView delegate and/or data
source.

	Models: These manage the data within the application. The model
can be as simple as an Array containing some Strings, or could be a
full-blown Core Data setup. However complex or simple, though, it’s
the model that supplies the data to be displayed in the tableView or
collectionView.

Figure 12-1 illustrates the MVC pattern, which you saw earlier in Chapter 5.

Figure 12-1. The model-view-controller pattern

http://dx.doi.org/10.1007/978-1-4842-1242-4_5

349CHAPTER 12: Selecting and Editing Content

As you can see, the controllers fetch and process data from the models that gets passed to
the views for consumption by the user. The user interacts with the views, and the controllers
handle the results of those interactions.

Why the Model-View-Controller Pattern Is Important
When working with tableViews or collectionViews that respond to user interaction in
some way, it’s important that you bear the MVC design pattern in mind. Cells have no
memory—effectively, they’re just envelopes for their contents. As soon as they’re scrolled
out of the visible view, they will either be recycled or will disappear entirely. Their state will
either be lost—or worse, be inappropriately applied to the contents of the recycled cell.

To the user, this will seem as if the state of the cell isn’t “sticky.” If the user taps a row or
item to set a value and display a check mark, the selection might change if the user scrolls
up or down.

This applies not just to selections, but also to insertions, deletions, and reordering. Take a
row deletion in a table, for example. Your user taps the Edit button on the navigation bar
and deletes a row. The tableView handles revealing the edit controls, removing the deleted
row, and animating the “closing of ranks” as the rows move up to fill the empty space. As far
as the user is concerned, the job is done—the row has gone, never to return.

But the underlying data in the model hasn’t yet been altered by any of the user interface
changes. If the table is reloaded (which is likely if it’s part of a UINavigationController, for
example), the original data will be reloaded, and the deleted row will appear again. Worse
still, if a new row was apparently inserted, the information that the user provided will be lost.

The bottom line is that any changes that your user—or your app—makes in the views must
be reflected in the model in order for them to persist. The tableView or collectionView
will handle the adding and deleting and moving of rows or items (and if you’ve enabled the
animations, it’ll do a graceful job of it), but it’s up to you to reflect the changes in your model.

Cell Selection in TableViews
Unless the tableView is being used to display static information, at some point the user will
interact with it and will need feedback. Cell selection is one part of providing that feedback.

Cell Selection Types
There are two types of cell selection that you may need to implement, depending on the
app’s functionality:

	Momentary selection, to provide feedback to the user about which row
or item they’re in the process of interacting with

	Persistent selection, where you want to show which rows in the table, or
items in the collection view, are displaying items from the data model with
a particular state (for example, objects that might have an “on” state)

350 CHAPTER 12: Selecting and Editing Content

Controlling Selection
You can control selection of rows and items in two ways: globally for the whole view or on a
row or item-specific basis.

Global Selection
UITableView has an allowsSelection property, which can be set either in Interface Builder as
you construct the view or programmatically at any point in the view’s life cycle.

Setting the allowsSelection property to false disables row selection completely, so the
view won’t react to touches (other than scrolling).

There are a couple of reasons why you might want to disable selection entirely:

	Your view is only displaying data rather than allowing interaction with it.

	The table rows or items are being edited or rearranged, and selection
would interfere with this process.

You can control the allowsSelection property by selecting the option in Interface Builder
(see Figure 12-2).

Figure 12-2. Setting the global selection property in Interface Builder

Alternatively, you can control it in code:

tableView.allowsSelection = false

Understanding How Selection Works for Tables
Managing selection in table views is the responsibility of the UITableViewDelegate object.
If the table view doesn’t have a delegate object set, selection events will be ignored.

There are four UITableViewDelegate functions that work together to provide selection
functionality:

	tableView:willSelectRowAtIndexPath:

This function is called after the user has touched down and lifted a finger
(a TouchUpInside action, in other words), but before the tableView:
didSelectRowAtIndexPath: function is called.

By default, this function isn’t implemented. Implementing this and
returning nil will prevent the row selection from taking place.

If you return an indexPath that refers to another row, that row will be
selected instead of the row that was tapped.

351CHAPTER 12: Selecting and Editing Content

	tableView:didSelectRowAtIndexPath:

Assuming that the tableView:willSelectRowAtIndexPath: function
didn’t return nil, this is where you can implement your custom behavior.

The behavior could be presentational (displaying a check mark, for
example) or can cause some kind of navigation action (for example, a
pushNavigationController action).

	tableView:willDeselectRowAtIndexPath:

This function is called only if an existing selection has been made. It
returns the indexPath of the row that should be deselected—and so
gives you the opportunity to deselect another row in place of the one
that is currently selected.

Try as I might, I’ve never been able to conjure up a scenario where this
was required, but your mileage may vary. If you return nil from this
function, the row won’t be deselected, which effectively means you can
“lock” selection if required.

	tableView:didDeselectRowAtIndexPath:

This function tells the delegate that the row is now deselected. It’s the
place where you want to reverse any custom selection traits that you
created.

If you have a custom cell that shows selection by turning the textLabel
green, for example, you would use the tableView:didDeselectRowAtIndex
Path: function to change it back to the normal color.

Managing Row-Specific Selection
In addition to enabling or disabling selection at the global tableView level, you may also
need to control it at the row level. For example, later in this chapter, you’ll build a table that
allows extra rows to be inserted by tapping an Add New row.

Depending on the requirements of your data model, you might want to disable this function.

By checking which row is being selected in the tableView:willSelectRowAtIndexPath:
function, you can add conditional code to allow the selection of some rows and prevent the
selection of others. This is shown in Listing 12-1.

Tip If cell selection appears to lag behind the user’s input, you might have inadvertently
implemented tableView:willDeselectRowAtIndexPath: instead of tableView:didSelect
RowAtIndexPath:. It’s surprisingly easy to be tripped up by Xcode's autocompletion, and once
the wrong function has been added to your code, it can be difficult to spot where the problem has
been introduced.

352 CHAPTER 12: Selecting and Editing Content

Listing 12-1. Checking Row Selection in tableView:willSelectRowAtIndexPath:

func tableView(tableView: UITableView, willSelectRowAtIndexPath
 indexPath: NSIndexPath) -> NSIndexPath? {

 let rowNotToSelect = 3

 if indexPath.row == rowNotToSelect {
 return nil
 }

 return indexPath

}

This code arbitrarily prevents the selection of row 3, and returns nil if it’s row 3 that’s being
checked.

You can also return an indexPath other than the value that was passed in if you wanted to
select another row, rather than the one that was tapped. I haven’t been able to think of any
situation where you’d actually want to do that, but it’s there if you need it.

Visualizing Selection
Visualizing the selection provides feedback to your user that their actions have been registered
by the app. It can also provide a cue that something is about to happen or is taking place.

When the user taps a table row, the standard behavior turns the row’s background light grey
and the textLabel black, as shown in Figure 12-3.

Figure 12-3. The default row selection style

You may also want to disable the selection highlight completely if it will interfere with any
custom selection behavior that you implement.

Somewhat counter-intuitively, setting the selectionStyle to None does not prevent cell selection,
so all the selection-related functions will fire. It just doesn’t provide any feedback to the user.

All styles are set by the cell’s selectionStyle property. In most scenarios, you’d set this in
the tableView:cellForRowAtIndexPath: function, for example:

cell.selectionStyle = UITableViewCellSelectionStyle.None

Alternatively, you can set the Selection property to None in Interface Builder.

353CHAPTER 12: Selecting and Editing Content

Customizing Selection
You’re not restricted to the standard white-on-blue or white-on-gray selection highlight
styles. If you’ve customized the tableView cells, this highlighting style probably won’t be
appropriate anyway.

By adding custom code, you can manipulate your cells as you see fit. You could do this as
cells are dequeued by using the tableView:didSelectRowAtIndexPath: function, or you can
manage this in a UITableViewCell subclass.

Figure 12-4 shows an example from one of my apps.

Figure 12-4. A custom cell in normal and highlighted state

The cell background and outlines are UIViews, so it’s possible to manipulate their
backgroundColor properties. They’re set to orange in the cell’s XIB file, and then switched to
blue in the tableView:didSelectRowAtIndexPath: function:

// Set cell highlight
let blueColor = UIColor(colorWithRed:0.08 green:0.4 blue:0.58 alpha:1.0)
cell.codeBackgroundView.backgroundColor = blueColor;
cell.frameTopView.backgroundColor = blueColor;
cell.frameBottomView.backgroundColor = blueColor;
cell.titleLabel.textColor = blueColor;

Tip One of the limitations of Interface Builder is that there’s no line tool (or shape tools of any
description, for that matter). This makes drawing lines awkward. One option is to include line
graphics as UIImageViews, but that’s quite expensive in rendering terms.

Another option is to place UIViews where the lines are required, and set the width (or height) to
a very small value—say, 1 or 2 points. You can use the UIView’s backgroundColor property to
set the color of your “line.” You’re restricted to solid lines of a single color, but it’s often a quicker
process than creating line graphics in another package and importing them as images.

354 CHAPTER 12: Selecting and Editing Content

Handling Deselection
If you stick with the default selection behavior, deselection is handled for you. The white-on-
gray cell style will revert back to the default black-on-white.

If there’s custom selection behavior in play, however, you need to handle that manually. This
need can arise in two situations:

	When another cell has been selected. In this situation, you can add your
deselection code to either the tableView:willDeselectRowAtIndexPath:
or tableView:didDeselectRowAtIndexPath: function.

	When the selection is now irrelevant because some action has been
performed, such as after returning to the tableView from a detail view.

	This pattern can be seen in the Mail app. Tapping an e-mail in the list
view slides in the e-mail content. After the content view is dismissed, the
highlight is removed—slowly enough that you can see which e-mail you
previously tapped, but not so slow that the selection lingers.

	In this situation, the selection is removed in the tableView’s
viewDidAppear function with UITableView’s deselectRowAtIndexPath:
animated: function.

Visualizing Persistent Selection
Visualizing persistent selection is required for one of two reasons:

	Your user is selecting multiple rows prior to some other action, such as
deleting records from the model.

	The selection reflects the underlying state of a property of the object
that the row represents, such as an item in a checklist has been
“checked off.”

Either way, you need a means of indicating selection that’s distinct from the momentary
selection indicating which row has been tapped.

Apple makes an overt point in the iOS Human Interface Guidelines that selection traits
associated with momentary selection shouldn’t be used to indicate state.

In other words, don’t use the default cell highlighting options to indicate the state of the
underlying data in the model. Doing so risks confusing your users, and also may get your
app rejected from the App Store.

To show persistent selection, a couple of options are available:

	Use UITableViewCell’s built-in accessoryView to show a selection mark.

	Create some other visual indication in a custom cell.

Your options in the second scenario are limited only by taste and what it’s possible to get a
cell to do, so I’ll concentrate on the first.

355CHAPTER 12: Selecting and Editing Content

Using Selection Marks to Indicate Multiple Selections
You’re not limited to selecting rows one at a time, although the table has to be configured to
permit it. The default is false, which restricts the selection of rows to one at a time. Setting
the value to true allows a number of rows to be selected simultaneously.

This is controlled at the table level. You can set the property in Interface Builder, as shown in
Figure 12-5.

Figure 12-5. Controlling table selection traits in Interface Builder

Or you can set the property programmatically:

tableView.setAllowsSelection = true

tableView.setAllowsMultipleSelection = false

If the allowsSelection property is false, the mutipleSelection setting is ignored.

Working with Selections
After selection has taken place, the row or rows that have been selected can be accessed
through two tableView properties:

	indexPathForSelectedRow

	indexPathsForSelectedRows

As their names suggest, they return indexPaths. The results returned are different, though,
so it’s important not to mix the two up (the names of the properties being so similar doesn’t
help here).

indexPathForSelectedRow returns a single indexPath. If only one cell is selected, this will be
the indexPath that’s returned, as you would expect.

If more than one row is selected, indexPathForSelectedRow will return the first row that
was selected.

indexPathsForSelectedRows returns an Array of indexPaths for all rows that are selected.
The indexPath objects in the array are in the order that the rows were selected—index 0 is
the first row, index 1 is the second, and so on.

If no rows are selected at all, both these properties will return nil.

356 CHAPTER 12: Selecting and Editing Content

Visualizing Multiple Row Selection
There are basically two options when it comes to visualizing multiple row selections: using
the default cell’s accessory view or customizing your cell.

Which option to use will depend first on whether your cell has an accessory view. If you’ve
created a custom subclass of UITableViewCell, it might not. Second, the option chosen
depends on whether showing an indicator at the right-hand end of the cell is visually
appropriate.

Using the Cell’s Accessory View to Show a Selection Mark
The default UITableViewCell (shown in Figure 12-6) has an accessory view at its right-hand
end, which is often used to indicate that selecting the row will cause some kind of action,
such as pushing in a detail view.

Figure 12-6. The default accessory view

The accessory view is exposed in two ways:

	As the cell’s accessoryType property, which can be set to one of the four
UITableViewCellAccessoryType values

	As a UIView property, which can be customized directly

Listing 12-2 shows how you could indicate selection in response to a selection.

Listing 12-2. An Example tableView:cellForRowAtIndexPath: Function

func tableView(tableView: UITableView, didSelectRowAtIndexPath indexPath: NSIndexPath) {

 let cell = tableView.cellForRowAtIndexPath(indexPath)
 cell?.accessoryType = UITableViewCellAccessoryType.Checkmark

}

For situations where you need to set the selection to match the properties of the
corresponding object in the tableView’s model, you need to set this up as the cell is dequeued.

Listing 12-3 is an example of a tableView:cellForRowAtIndexPath: function that displays
the default tick mark when an object property is set.

357CHAPTER 12: Selecting and Editing Content

Listing 12-3. An Example tableView:cellForRowAtIndexPath: Function

func tableView(tableView: UITableView, cellForRowAtIndexPath indexPath: NSIndexPath)
 -> UITableViewCell {

 let cell = tableView.dequeueReusableCellWithIdentifier("CellIdentifier",
 forIndexPath: indexPath)

 let theObject = tableData.objectAtIndex(indexPath.row)

 if theObject.isSelected == true {
 cell.accessoryType = UITableViewCellAccessoryCheckmark;
 } else {
 cell.accessoryType = UITableViewCellAccessoryNone;
 }

 cell.textLabel!.text = theObject.name

 return cell
}

Assuming that three of the objects have their selected property set to true, the result would
appear as in Figure 12-7.

Figure 12-7. The default selection tick mark

Using the Cell’s Accessory View to Show a Custom View
Because the accessory view is exposed as a UIView property, it can be manipulated
accordingly. Listing 12-4 is a code snippet showing how you can set the accessoryView
property to display an image.

Listing 12-4. Inserting an Image into the Accessory View

let accessoryImage = UIImage(name:"accessory")
let accessoryImageView = UIImageView(image:accessoryImage)
cell.accessoryView = accessoryImageView

358 CHAPTER 12: Selecting and Editing Content

Showing Selection in Other Ways
You’re not restricted to using accessory views to show selection, especially if you’re
implementing custom cells. Virtually any combination of images, text formatting, or area
highlighting can be used, depending on your inclination and the needs of the project.
Whatever you decide to do, you need to implement it in either tableView:willSelectRowAtIn
dexPath: or tableView:didSelectRowAtIndexPath:.

Handling Deselection After Selection
If you’ve implemented custom selection (either by an accessory view function or by
something more adventurous), you’re also responsible for handling the deselection process.

Basically, this means undoing whatever selection trait you supplied when the row was
selected. There are two places where this can be done: tableView:willDeselectRowAtIndex
Path: and tableView:didDeselectRowAtIndexPath:.

In either case, the row in question is located at the indexPath provided.

Here’s an example of how you might handle this to reverse the effect of the code in Listing 12-4:

func tableView(tableView: UITableView, didDeselectRowAtIndexPath
 indexPath: NSIndexPath) {

 let cell = tableView.cellForRowAtIndexPath(indexPath)
 cell.accessoryView = nil

}

Keeping the Data Model in Sync
If you need the cell selection to persist after the cell has been scrolled off the visible area,
you need to update the underlying data model that powers your table.

Obviously the detailed implementation will depend on the structure of the data that your
table is modeling, but here’s a very simple example to give you a structure to work with. The
table’s data is stored in the tableData property of the viewController, which is an Array that
stores Bools:

var tableData = Array<Bool>()

In the cellForRowAtIndexPath: function in the table’s dataSource you set the cell’s accessory
view to match the value of the selection flag in the tableData array (Listing 12-5).

Listing 12-5. The cellForRowAtIndexPath: Function

func tableView(tableView: UITableView, cellForRowAtIndexPath indexPath: NSIndexPath)
 -> UITableViewCell {

 let cell = tableView.dequeueReusableCellWithIdentifier("CellIdentifier",
 forIndexPath: indexPath)

359CHAPTER 12: Selecting and Editing Content

 let selectionFlag = tableData[indexPath.row]

 cell.textLabel?.text = "Row \(indexPath.row)"

 switch selectionFlag {

 case true:
 cell.accessoryType = UITableViewCellAccessoryType.Checkmark

 case false:
 cell.accessoryType = UITableViewCellAccessoryType.None

 }

 return cell

}

Then in the tableView’s delegate you handle selection (Listing 12-6).

Listing 12-6. Handling Selection

func tableView(tableView: UITableView, didSelectRowAtIndexPath indexPath: NSIndexPath) {

 let cell = tableView.cellForRowAtIndexPath(indexPath)

 cell!.accessoryType = UITableViewCellAccessoryType.Checkmark

 tableData[indexPath.row] = true

}

Here you get the cell for the selected row with the cellForRowAtIndexPath: function and
set the accessoryView to show a checkmark. Then you update the tableData array to store
whether the row has been selected or not.

Handling deselection is the reverse, shown in Listing 12-7.

Listing 12-7. Handling Deselection

func tableView(tableView: UITableView, didDeselectRowAtIndexPath indexPath:
 NSIndexPath) {

 let cell = tableView.cellForRowAtIndexPath(indexPath)

 cell!.accessoryType = UITableViewCellAccessoryType.None

 tableData[indexPath.row] = false

}

360 CHAPTER 12: Selecting and Editing Content

Once again, you get the cell for the selected row, but this time you remove the accessory view
checkmark. Then the tableData array is updated with the new value for the given item. The
effect of these three functions is that the selection will persist as the table is scrolled around.

Optimizing Selection Performance
Although the standard pattern of cell creation and configuration tends to use the
cellForRowAtIndexPath: function to dequeue and configure cells, there is an alternative
approach that can help eke out the last gram of performance from your table views.

The cellForRowAtIndexPath: function is called in advance of the cell being needed for
display in the table view, so the cells “hang around” for a while before they’re actually
displayed.

Just before the cell is drawn in the table view, the tableView:willDisplayCellAtIndexPath:
function is called on the tableView’s delegate. This is the last chance you have for the cell to
be updated in relation to the table view’s data model, before the internal cell functions such
as layoutSubviews take over.

If you have an expensive operation relating to the data model that you want to defer
to the last possible moment, you can move it from cellForRowAtIndexPath: to
willDisplayCellAtIndexPath:. Listing 12-8 shows how you could refactor the function from
Listing 12-7 to use this approach.

Listing 12-8. Using the willDisplayCellAtIndexPath: Function

func tableView(tableView: UITableView, willDisplayCell cell: UITableViewCell,
 forRowAtIndexPath indexPath: NSIndexPath) {

 let selectionFlag = tableData[indexPath.row]

 switch selectionFlag {

 case true:
 cell.accessoryType = UITableViewCellAccessoryType.Checkmark

 case false:
 cell.accessoryType = UITableViewCellAccessoryType.None

 }

}

Caution As with life, there are few miracle cures for sluggish table views. Implementing the will
DisplayCell:forRowAtIndexPath: might help to improve your table’s performance, but it’s
not a given. You will need to look closely using tools like Instruments to be sure.

361CHAPTER 12: Selecting and Editing Content

Selection Dos and Don’ts
There are a few of things to bear in mind when configuring row selection:

	Don’t use selection to indicate the state of the row’s object. Selection works
at the view level of the MVC hierarchy, so it’s independent of the model.

	Unless multiple selections are allowed, always programmatically
deselect the previously selected row before a new row is selected.

	If the response to the row selection is to push a new view onto the
display (for example, if you have a navigation controller that pushes
on a detail view), always programmatically deselect the previous rows
after the detail view is dismissed. This will ensure that the rows aren’t
still highlighted after the detail view is popped off the view stack, but
provides a visual cue as to which row the detail view referred to.

Responding to Selections with More Detail
Selection of a row by the user generally requires some kind of response in return. These can
be broadly categorized in one of two patterns:

	The selection results in the display of additional data, either by “drilling
down” into a navigation hierarchy or displaying some form of detail view.

	The selection reflects some kind of choice on the part of the user and
results in the update of a model.

A common pattern is to push in a new view of some description—a navigation view that
reveals another tableView enabling drill-down into the information hierarchy, for example, or
a detail view that contains more information about the row that was tapped.

Listing 12-9 is an example of that second process.

Listing 12-9. An Example of a tableView:didSelectRowAtIndexPath: Function

func tableView(tableView: UITableView, didSelectRowAtIndexPath indexPath: NSIndexPath) {

 let modelForDetailView = tableData[indexPath.row]

 let storyboard = UIStoryboard(name: "Main", bundle: nil)
 let detailVC =
 storyboard.instantiateViewControllerWithIdentifier("DetailViewController")
 as! DetailViewController

 detailVC.model = modelForDetailView

 tableView.deselectRowAtIndexPath(indexPath, animated: true)

 detailVC.modalTransitionStyle = UIModalTransitionStyle.FlipHorizontal
 self.presentViewController(detailVC, animated: true, completion: nil)

}

362 CHAPTER 12: Selecting and Editing Content

This is a UITableViewDelegate function that takes two parameters: a reference to the
tableView itself and the IndexPath that has been selected.

The first task is to get a reference to the object in the model that corresponds to the row
that’s been selected. Bear in mind that it’s the row that’s been selected, and not the model
object itself:

let modelForDetailView = tableData[indexPath.row]

In this situation, the table’s data model is an Array of Model objects, so it’s simply a case of
getting the model instance that resides at the corresponding index.

After you have a reference to the selected object, the code instantiates an instance
of a DetailViewController, having first deselected the row. It then sets the
DetailViewController’s model property, and pushes in the new view with a modal transition.

Design Patterns and UITableViews
In addition to architectural design patterns such as MVC, there are also interaction patterns.
Whereas architectural patterns help you consider how to structure and build an application,
interaction patterns can help to manage what you do with it.

After you’ve used the MVC pattern to build the table, the question arises, “What are you
going to do with the data that the table contains?” Clearly, the user will read the content of
the cells, but what then? What sort of user behaviors do you need to anticipate?

A useful pattern to use when thinking about data and how to work with it is create, read,
update, delete, or CRUD for short. This is most commonly used when working with records
in a database, but it’s also applicable when considering what might happen to a row in a
UITableView.

Read
In database terms, reading is concerned with retrieving records from the database, usually
with some kind of SQL SELECT query. In UITableView terms, you can think of reading as the
process of getting data out of the model and into the table itself through functions such as
tableView:cellForRowAtIndexPath:. We’ve covered this in detail elsewhere, so you don’t
need to trouble yourself much with the Read action.

Create
In addition to displaying information, table views are often used to enable the user to create
and enter new information. The Contacts app is a good example of this: tapping the + button
at the top of the list of names causes a modal view containing a form for a new contact to be
pushed in from the bottom of the screen. The form that arrives in response to tapping + isn’t
part of the tableView itself, but after the new Contact object has been created, the tableView
does have to react to that and insert the new row at the appropriate place.

363CHAPTER 12: Selecting and Editing Content

Update
The Contacts app allows existing contact information to be updated by selecting a contact
and then tapping the Edit button. Again, this isn’t, strictly speaking, a tableView concern
until the amended data is saved, at which point it may be necessary to rearrange the rows to
cope with the changed data.

A more tableView-specific action would be the user wanting to rearrange rows or sections.
The UITableView dataSource and delegate protocols provide a number of functions to
support this, which you’ll look at later in this chapter.

Delete
An equally common interaction pattern is deleting an entire record. The iPhone’s Reminders
app, shown in Figure 12-8, enables the deletion of notes by swiping left or right in the row to
reveal a Delete control. Tapping Delete animates the removal of the row, which slides away
to the left, after which the rows below are scrolled up to fill the gap.

Figure 12-8. Deleting a reminder

364 CHAPTER 12: Selecting and Editing Content

All these functions and animations come for free through the built-in UITableViewDelegate
functions. We’ll start by looking at the actions that have the greatest impact on the
tableView itself: inserting new rows and deleting existing ones.

Custom Row Actions
The standard row editing options can be further extended by using custom actions; you
can customize the text that’s displayed in the row while it’s being edited, as well as create
callback blocks to execute code in response to selecting one of the row actions.

To create custom actions, you need to implement the UITableViewDelegate function
tableView(tableView:editActionsForRowAtIndexPath:). This returns an Array of
UITableViewRowActions that you can customize.

Each row action has three properties:

	The UITableViewRowActionStyle–Default, Destructive (which is colored
red), or Normal–for the button that’s displayed inside the edited row

	The title, which is a String to display inside the button

	A function that can run a callback action. It takes two parameters: the
action that’s just been triggered, and the row that the action took place in.

In Listing 12-10, you can see how this fits together.

Listing 12-10. Setting Up the Custom Edit Actions

func tableView(tableView: UITableView, editActionsForRowAtIndexPath indexPath:
NSIndexPath) -> [UITableViewRowAction]? {

 let tweet = UITableViewRowAction(style: UITableViewRowActionStyle.Default,
 title: "Tweet") { action, index in
 print("selected tweet action")
 tableView.setEditing(false, animated: true)
 }

 tweet.backgroundColor = UIColor.lightGrayColor()

Note If your table view controller is a subclass of UITableViewController, you’ll get a lot of
insertion and deletion behavior for free courtesy of the UITableViewController superclass.
That’s great as far as implementing the functionality is concerned, but not that helpful if you’re
trying to figure out how things work so you can adapt them later. Therefore, I’m working through
this section with a generic UIViewController and adding the table view functionality in
manually.

365CHAPTER 12: Selecting and Editing Content

 let facebook = UITableViewRowAction(style: .Normal, title: "Facebook")
 { action, index in
 print("selected facebook action")
 tableView.setEditing(false, animated: true)
 }

 facebook.backgroundColor = UIColor.blueColor()

 let email = UITableViewRowAction(style: .Normal, title: "Email")
 { action, index in
 print("selected email action")
 tableView.setEditing(false, animated: true)
 }

 email.backgroundColor = UIColor.purpleColor()

 return [tweet, facebook, email]

}

This inserts three buttons into the row when it moves into edit mode, as shown in Figure 12-9.

Figure 12-9. Custom editing actions

If you want deselect the row after triggering the action, you need to call the
tableView.setEditing(false, animated: true) function. This will slide the action buttons
back out again, to reset the row.

Inserting and Deleting Rows
As you’ll probably be expecting by now, inserting and deleting rows is a multistage
process that involves the tableView, the delegate, and the dataSource working in tandem
with each other.

The process involves the following:

1. Putting the table into editing mode.

2. For each row, checking whether editing is allowed and displaying the
editing controls if it is.

366 CHAPTER 12: Selecting and Editing Content

3. Responding to the user’s touches on the editing controls by sending
a message to the dataSource.

4. Updating the model.

5. Updating the table’s rows.

The sequence of events, and the passing of messages between tableView, dataSource, and
delegate, is illustrated in Figure 12-10.

Figure 12-10. Messages passed during tableView editing

At first glance, this looks horrendously complicated. It’s actually not that bad, as you’ll see
as you step through it.

367CHAPTER 12: Selecting and Editing Content

THE SAMPLE APP

If you want to follow along with the upcoming examples, you will need a simple table to experiment with. I’m
not going to go into detail about how to do that (hopefully you can build a table after having read this far!) but a
couple of specifics are worth mentioning:

	Because tables with editing functions are often found in UINavigationControllers,
I’ve implemented the table view inside a navigation controller.

	The tableView’s data model is deliberately simple, so that the data doesn’t overshadow
the more relevant matters of editing, updating, and deleting.

CrEATing A UinAvigATionConTroLLEr-BASEd TABLE

To create the UINavigationController-based table, I’ve taken the standard Single View Application
template provided by Xcode, and embedded the View Controller inside a Navigation Controller.

CrEATing THE SAMPLE TABLE’S dATA ModEL

The data model for this app is very simple. It’s just an Array of Strings, which gets created in
ViewController’s viewDidLoad function:

override func viewDidLoad() {

 super.viewDidLoad()

 // Do any additional setup after loading the view, typically from a nib.

 self.navigationItem.title = "Row insertion"

 self.navigationItem.rightBarButtonItem = self.editButtonItem()

 for index in 0…100 {

 tableData.append("Row \(index)")

 }
}

There are a couple of other setup-related tasks in this function. The following sets up the title of the navigation bar:

self.navigationItem.title = @"Row insertion";

This code creates an Edit button:

self.navigationItem.rightBarButtonItem = self.editButtonItem;

The overall effect is shown in Figure 12-11.

Figure 12-11. The customized navigation bar

368 CHAPTER 12: Selecting and Editing Content

Putting the Table into Editing Mode
The first step is to put the table into editing mode, which is invoked by calling the
setEditing:animated function on the table view:

tableView.setEditing(true, animated:true)

Normally this would be done in response to a button tap. If you are using a
UINavigationController, the UINavigationBar at the top of your screen comes with a handy
Edit button baked in. You can set this up in the viewDidLoad function:

self.navigationItem.rightBarButtonItem = self.editButtonItem;

This gives you not only an Edit button at the top right of the navigation bar, but one that will
automatically toggle between Edit (before the table goes into editing mode) and Done (while
the table is in editing mode). The effect is shown in Figure 12-12.

Figure 12-12. The toggling Edit button

If you’re not using a UINavigationController, you need to add a button that calls the
setEditing:animated: selector, and then handles the toggling between Edit and Done
modes manually.

Listing 12-11 shows an example of adding an Edit button.

Listing 12-11. Adding an Edit Button

let editingButton = UIButton(type: UIButtonType.RoundedRect)
editingButton.frame = CGRectMake(0, 0, 60, 40)
editingButton.setTitle("Edit", forState: UIControlState.Normal)
editingButton.addTarget(self, action: "setEditing:", forControlEvents:
UIControlEvents.TouchUpInside)
self.view.addSubview(editingButton)

If you have a “standard” button, you need to implement the setEditing:animated function in
Listing 12-12.

Listing 12-12. The setEditing:animated: Function

override func setEditing(editing: Bool, animated: Bool) {
 tableView.setEditing(!tableView.editing, animated: true)
}

369CHAPTER 12: Selecting and Editing Content

Controlling Whether Rows Can Be Edited
After the table is in editing mode, the table view will then ask the data source whether each
row should be editable. If the tableView:canEditRowAtIndexPath: function is implemented,
this is called for each row in turn. Listing 12-13 shows how to use this function to prevent a
specific section and row from being edited.

Listing 12-13. Controlling Whether a Section or Row Can Be Edited

func tableView(tableView: UITableView, canEditRowAtIndexPath indexPath: NSIndexPath)
 -> Bool {

 if indexPath.section == 0 || indexPath.row == 3 {
 return false
 }

 return true;

}

If the tableView:canEditRowAtIndexPath: function returns false, the row won’t be indented.
Figure 12-13 shows the effect of this.

Figure 12-13. Preventing editing of an entire section

If the tableView:canEditRowAtIndexPath: isn’t implemented, the table view assumes that
each row can be edited. In effect, the default return value is true.

To temporarily disable editing of the table view as a whole, you can return false from the
canEditRowAtIndexPath: regardless of the indexPath being passed into the function.

370 CHAPTER 12: Selecting and Editing Content

Controlling Each Row’s Editing Style
Having established whether a row can be edited, the table view then asks the delegate
which editing style each row should use:

func tableView(tableView: UITableView, editingStyleForRowAtIndexPath indexPath:
 NSIndexPath) -> UITableViewCellEditingStyle {
 return UITableViewCellEditingStyle.Delete
}

If the tableView:editingStyleForRowAtIndexPath: function is implemented, it will return one
of three possible options:

	UITableViewCellEditingStyleDelete: This causes the deletion control to
be inserted at the left end of the cell.

	UITableViewCellEditingStyleInsert: This causes the insertion control
to be inserted at the left end of the cell.

	UITableViewCellEditingStyleNone: Somewhat unsurprisingly, this does
not insert an editing control.

As with tableView:canEditRowAtIndexPath:, if the tableView:editingStyleForRowAtIndex
Path: isn’t implemented, the tableView will assume that all cells will be deletable and return
UITableViewCellEditingStyleDelete as the default value.

Inserting additional rows is a little more involved, so we’ll cover that later in this chapter.

Dealing with Row Deletions
If you’ve been following along so far, your table will look like Figure 12-14, with an Edit
button, cells that display Delete controls when the table goes into editing mode, and a
Delete button that appears at the end of the row when the Delete control is tapped.

371CHAPTER 12: Selecting and Editing Content

However, tapping that Delete button is something of an anticlimax. Nothing happens.

When the Delete button is tapped, the tableView sends the tableView:commitEditingStyle:
forRowAtIndexPath: message to the data source. It takes three parameters:

	A reference to the tableView itself (in case the data source needs to
distinguish between a number of tableViews)

	The UITableViewCellEditingStyle of the control that’s just been
tapped, which in this case is UITableViewCellEditingStyleDelete

	An indexPath object locating the row in question

Figure 12-14. Progress so far

372 CHAPTER 12: Selecting and Editing Content

When the data source receives the commitEditingStyle:forRowAtIndexPath: message,
it needs to do two things:

1. Update the tableView’s model by deleting the object represented by
the row in the table. Remember that the table itself is just a view, and
unless you actually delete the object from the model, it will reappear
in the table the next time the table gets reloaded.

2. Send the tableView:deleteRowsAtIndexPath:withRowAnimation:
message to the tableView so that it updates the table display. In
this case, because you’re dealing with a Delete, it will animate the
deleted cell sliding off to the left, and then move the cells below it up
to close the gap.

Listing 12-14 shows how this might be done.

Listing 12-14. Implementing the commitEditingStyle: Function

forRowAtIndexPath indexPath: NSIndexPath) {

 if editingStyle == UITableViewCellEditingStyle.Delete {

 tableData.removeAtIndex(indexPath.row)

 tableView.deleteRowsAtIndexPaths([indexPath], withRowAnimation:
 UITableViewRowAnimation.Automatic)

 }

}

There’s a reasonable amount going on here. First, you need to check what kind of action is
required (you’ll be adding the insert action shortly).

If it’s a delete, you need to remove the object in question from the data model. In this simple
instance, it’s just a case of removing an object from an array, but in a more complex app,
this might require a database deletion:

tableData.removeAtIndex(indexPath.row)

Then you can send that delete message to the tableView, passing in the indexPaths to be
deleted as an Array:

tableView.deleteRowsAtIndexPaths([indexPath], withRowAnimation:
 UITableViewRowAnimation.Automatic)

There’s a range of table cell insertion and deletion animations to choose from. These are
listed in Table 12-1.

373CHAPTER 12: Selecting and Editing Content

It’s worth noting that the Top, Bottom, and Middle styles can produce some bizarre effects if
you try to apply them to rows at the very top or bottom of the tableView.

For that reason UITableViewRowAnimationAutomatic automatically applies the correct top,
bottom, or middle style depending on which row is being animated. This saves a lot of work,
so unless you have a very good reason to do otherwise, it’s the way to go.

Swipe-Style Row Deletions
In addition to the “tap-Edit-and-then-tap-the-Delete-control-and-then-tap-the-Delete-
button” approach to deleting rows, UITableView provides another option. Swiping from
side to side in the cell will cause a Delete button to slide in from the right side. Tapping the
button will then call the commitEditingStyle function as usual.

Because it’s a user-initiated action, the call to tableView:commitEditingStyle:forRowAtIndex
Path: is bracketed by two other calls: tableView:willBeginEditingRowAtIndexPath: and tab
leView:didEndEditingRowAtIndexPath:.

There are a couple of reasons why I think this is a Bad Idea, and you shouldn’t implement it:

	It is hidden functionality. Until the user swipes over the row, there’s no
indication that this action will trigger any effect. Neither is it intuitive how
to cancel the action. Tapping elsewhere in the cell will do so, but that
runs the risk of accidentally tapping the Delete button by mistake.

	Using a swipe in a row to trigger the Delete action means that this
action isn’t available for other, potentially more useful actions, such as
revealing controls “underneath” the row. (Yes, I know this contradicts my
first point, but if you’re going to use “hidden” gestures to trigger actions,
at least make the actions the most useful ones!).

Table 12-1. The UITableViewRowAnimation Options

UITableViewRowAnimation
Type

Effect

.Fade Rows fade in and out.

.Right Inserted rows slide in from the right; deleted rows slide out to the right.

.Left Inserted rows slide in from the left; deleted rows slide out to the left.

.Top Inserted rows slide down from the bottom of the row above; deleted
rows slide up toward the bottom of the row above.

.Bottom Inserted rows slide up from the top of the cell below; deleted rows
appear to be covered by the row below sliding up.

.None Inserted rows simply appear; deleted rows simply disappear.

.Middle Cells are inserted and deleted with an accordion-style effect.

.Automatic The tableView automatically chooses an appropriate animation style

374 CHAPTER 12: Selecting and Editing Content

There’s a counter-argument, of course. The swipe-to-delete approach is a standard part of
iOS table views that’s used extensively in apps such as Mail, so users may tend to expect it.
Apple’s user interface designers are very clever people, and they clearly think it’s okay.

However, if I have managed to convince you that enabling swipe-to-delete is a Bad Thing,
here’s how to disable it. Swiping in the cell triggers the tableView:editingStyleForRowAt
IndexPath: function. By default, this always returns UITableViewCellEditingStyle.Delete.
If you want to restrict cell editing unless the table is in editing mode, you can test for this
before returning the editing style. That’s what Listing 12-15 does.

Listing 12-15. Disabling Swipe-to-Delete

func tableView(tableView: UITableView, editingStyleForRowAtIndexPath indexPath:
 NSIndexPath) -> UITableViewCellEditingStyle {

 if tableView.editing {
 return UITableViewCellEditingStyle.Delete
 }

 return UITableViewCellEditingStyle.None

}

Unless the table is in editing mode (that is, tableView.editing == true), this function will
return UITableViewCellEditingStyle.None, preventing the Delete control from being shown.

Dealing with Row Insertions
If your app needs to handle row deletions, there’s a fair chance it will also need to deal with
row insertions. This process is not too dissimilar to dealing with deletions.

1. Put the table into editing mode.

2. Check whether the row can be edited.

3. Return the editing style for the row in question (in this case,
UITableViewEditingStyle.Insert).

4. Handle whatever actions are needed to create a new object
model—for example, presenting a modal data entry view.

5. Commit the editing action with tableView:commitEditingStyle:
forRowAtIndexPath: and then update the model.

6. Update the table by inserting a row with insertRowAtIndexPath:with
Animation:.

The first two steps we’ve already covered with the deletion process. The third is a little more
involved, so let’s look at it.

375CHAPTER 12: Selecting and Editing Content

A common requirement is a need to insert a new row to the end of a table or a section.
There are a couple of ways that this could be approached. One option is to place an Add
button onto the navigation bar in a similar way to the Edit/Done button that you saw earlier.

The downside to this approach is that you may already have an Edit button in place—or you
might not have a navigation bar at all. In this case, a different approach is needed: placing
the call to action into the table itself, as shown in Figure 12-15.

Figure 12-15. The call to action in the table

Tapping the Add New Row row when the table is not in editing mode will switch it into editing
mode. Tapping any other row will result in the “normal” row selection actions.

Regardless of how the table entered editing mode, the Add New Row row will show an Insert
control, while all the other rows will show a Delete control (shown in Figure 12-16).

376 CHAPTER 12: Selecting and Editing Content

Amending the Data Model
The Add New Row item needs to appear in the last row. One option is to add this to the data
model itself, but that would violate the separation of the model from the view.

The “cleaner” alternative is to add the row when the table gets reloaded. First, you need to
tell the table to expect an extra row, as shown in Listing 12-16.

Listing 12-16. The Updated tableView:numberOfRowsInSection: Function

func tableView(tableView: UITableView, numberOfRowsInSection section: Int) -> Int {
 return tableData.count + 1
}

And then add the extra row in the tableView:cellForRowAtIndexPath: function, as shown in
Listing 12-17.

Figure 12-16. The table in editing mode

377CHAPTER 12: Selecting and Editing Content

Listing 12-17. The Updated tableView:cellForRowAtIndexPath: Function

func tableView(tableView: UITableView, cellForRowAtIndexPath indexPath: NSIndexPath)
 -> UITableViewCell {

 let cell = tableView.dequeueReusableCellWithIdentifier("CellIdentifier",
 forIndexPath: indexPath)

 if indexPath.row == tableData.count {
 cell.textLabel?.text = "Add new row"
 cell.textLabel?.textColor = UIColor.darkGrayColor()
 } else {
 cell.textLabel?.text = tableData[indexPath.row]
 }

 return cell

}

The magic happens after the cell is created. If the function is dealing with the last row (in
other words, the indexPath’s row value is the same as the number of items in the data
model), then the cell.textLabel.text property is set to “Add New Row”.

Working with the New Row
Having created the new row, you now have to handle the user interaction. When the
row is tapped, you want the table to enter editing mode, which means revising the
tableView:didSelectRowAtIndexPath: function in Listing 12-18.

Listing 12-18. The tableView:didSelectRowAtIndexPath: Function

func tableView(tableView: UITableView, didSelectRowAtIndexPath indexPath: NSIndexPath) {

 if (indexPath.row == tableData.count) {

 // put table into edit mode
 tableView.setEditing(true, animated: true)

 } else {

 // Handle "normal" selection

 }

}

Note Bear in mind that while indexPath values start from 0, counting the number of elements
in the data model starts from 1. Hence—usually—the indexPath‘s row value for the final item in
the table will be (tableData.count – 1). If the indexPath’s row value equals tableData.
count, you’re actually one row beyond the end of the array, and therefore you need to insert the
Add New Row item here.

378 CHAPTER 12: Selecting and Editing Content

Again, you test to see whether the selected row is the one at the end of the table. If it is,
you override the default setEditing:animated: function to put the cell into editing mode, as
shown in Listing 12-19.

Listing 12-19. The Custom setEditing:animated: Function

override func setEditing(editing: Bool, animated: Bool) {
 tableView.setEditing(!tableView.editing, animated: true)
}

You will need to amend the tableView:editingStyleForRowAtIndexPath: function to supply
the insertion control to the last row (shown in Listing 12-20).

After the table is in editing mode, it’s up to the user to either edit something with the Delete
or Insert controls, or take the table out of editing mode.

If they do the latter, you don’t need to worry about responding to their action. The updated
setEditing:animated: function will handle that.

An editing action, on the other hand, is something you need to handle.

Listing 12-20. Handling an Editing Action

func tableView(tableView: UITableView, editingStyleForRowAtIndexPath indexPath:
 NSIndexPath) -> UITableViewCellEditingStyle {

 if tableView.editing {
 if (indexPath.row == tableData.count) {
 return UITableViewCellEditingStyle.Insert;
 } else {
 return UITableViewCellEditingStyle.Delete;
 }
 }

 return UITableViewCellEditingStyle.None

}

Tapping a row’s control will fire the tableView:commitEditingStyle:forRowAtIndexPath:
function, supplying references to the tableView itself, the row that was tapped, and the type
of control.

There are two possibilities here: a UITableViewCellEditingStyle.Delete or a
UITableViewCellEditingStyle.Insert. If it’s a delete, then you handle it as you did
previously: remove the object from the relevant index of the data model and then delete the
row from the table.

An insert, on the other hand, needs the opposite approach. First, you need a new object.
For demonstration purposes, create an NSString containing a date stamp:

let thingToInsert = "\(NSDate())"

379CHAPTER 12: Selecting and Editing Content

Then, this new object needs to be added to the data model. It’s important that this takes
place before the table gets updated, because the table will need to determine the number of
rows it now has in order to be able to insert the new row:

tableData.append(thingToInsert)

Array’s append function inserts the new object at the end of the existing array, but you could,
of course, insert it at a particular position with the append(:atIndex:) function.

Now that you have the new object safely stored in the data model, you can insert the new
row into the table. You’ll want this to appear in the penultimate row—above Add New Row,
but below the existing rows (along the lines of Figure 12-17).

Figure 12-17. The newly inserted row

UITableView’s insertRowsAtIndexPath:withRowAnimation: takes an Array of IndexPath
objects where new rows are required and calls the tableView’s cellForRowAtIndexPath:
function to fill them.

380 CHAPTER 12: Selecting and Editing Content

It’ll automatically shift existing rows down. Your table currently has ten rows, and your
indexPath.row value is 9 (remember, table rows are zero-indexed.) Inserting a new row
at indexPath.row 9 will cause whatever’s currently in that row to be shifted down to the
new indexPath.row 10.

tableView.insertRowsAtIndexPaths([indexPath], withRowAnimation:
 UITableViewRowAnimation.Automatic)

The UITableViewRowAnimation.Automatic value will force the tableView to take care of
moving existing rows around to keep the animation seamless.

Putting that all together (with a little bit of refactoring to keep the function tidy) looks like
Listing 12-21.

Listing 12-21. The Completed commitEditingStyle: Function

func tableView(tableView: UITableView, commitEditingStyle editingStyle:
 UITableViewCellEditingStyle, forRowAtIndexPath indexPath: NSIndexPath) {

 if (editingStyle == UITableViewCellEditingStyle.Delete) {

 tableData.removeAtIndex(indexPath.row)
 tableView.deleteRowsAtIndexPaths([indexPath], withRowAnimation:
 UITableViewRowAnimation.Automatic)

 } else if (editingStyle == UITableViewCellEditingStyle.Insert) {

 let thingToInsert = "\(NSDate())"
 tableData.append(thingToInsert)
 tableView.insertRowsAtIndexPaths([indexPath], withRowAnimation:
 UITableViewRowAnimation.Automatic)

 }

}

Rearranging Tables
In addition to inserting and deleting rows and sections, you can also rearrange them, both
programmatically and through user actions.

The rearrangement process is similar to the insertion and deletion process, as shown in
Figure 12-18.

1. The table enters editing mode.

2. The tableView’s delegate is consulted about the permissibility of
moving the row.

3. The row gets moved.

4. The data model is updated.

381CHAPTER 12: Selecting and Editing Content

Entering Editing Mode
In order to rearrange rows, the table needs to be in editing mode. As with deletions, there are
two ways of doing this. In the case of UITableViewController subclasses, the user can tap
the navigation bar’s Edit button or override the tableView’s setEditing:animated: function.

In order for the rearrange control to be displayed, you need to implement the tableView
(moveRowAtIndexPath:toIndexPath) function, as shown in Listing 12-22.

Listing 12-22. The Custom setEditing:animated: Function

func tableView(tableView: UITableView, moveRowAtIndexPath sourceIndexPath:
 NSIndexPath, toIndexPath destinationIndexPath: NSIndexPath) {
 //
}

This doesn’t do anything yet, but it’s necessary to get the table to show the
rearrangement control.

Checking Whether Rows Can Be Moved
As the tableView enters editing mode, it asks the delegate whether each visible row can be
moved by calling the tableView:canMoveRowAtIndexPath: function. This returns either true
or false. Returning false will enable you to “lock” particular rows into place.

Figure 12-18. The row rearrangement process

382 CHAPTER 12: Selecting and Editing Content

For example, if you have an “Add New Row” row at the bottom of the table, it doesn’t make
sense to be able to move this. Listing 12-23 shows how you’d “lock” this row into place.

Listing 12-23. The tableView:canMoveRowAtIndexPath: Function

func tableView(tableView: UITableView, canMoveRowAtIndexPath indexPath: NSIndexPath)
 -> Bool {

 if (indexPath.row == tableData.count) {
 return false
 }

 return true

}

Moving Rows Around
After the table is in editing mode and the rows are flagged as movable, the Reordering
control appears at the right end of the cell, as in Figure 12-19.

Figure 12-19. The table in editing mode (and rearranged)

383CHAPTER 12: Selecting and Editing Content

Touching the Reordering control will cause the row to be animated away from the table
and become draggable. As the row passes over other rows, the tableView will animate the
shuffling around to make room.

Can the Row Be Moved to Here?
In addition to controlling whether rows can be moved at all, UITableView’s delegate can also
control whether a row can be moved to a particular location.

As the row in motion passes over the static rows in the table, the tableView will call the
tableView:targetIndexPathForMoveFromRowAtIndexPath: toProposedIndexPath: function.
(This is probably the function that’s responsible for critics of iOS complaining about
long-winded function names.)

This function takes three parameters: a reference to the tableView itself, the original
indexPath of the row that’s being moved, and the indexPath that has just been moved over.
The tableView doesn’t know yet whether the user is going to release the Reordering control
and “drop” the cell into place, so this function will be called repeatedly as the row in motion
moves over indexPath positions as it travels up and down the table.

If the row can be moved to this position, the function simply returns the
proposedDestinationIndexPath to confirm that this move is permissible.

You can use this function to complement “freezing” the Add New Row row to the bottom of
the table. In addition to not wanting to move the Add New Row row, you also want to prevent
the user from moving another row to the very bottom. Figure 12-20 shows what you’re trying
to avoid.

384 CHAPTER 12: Selecting and Editing Content

You can implement this by checking whether the proposed indexPath is the end of the table.
If it is, you can “send” the row back to where it came from by returning sourceIndexPath. If
it isn’t, the move can be allowed by returning proposedDestinationIndexPath. Listing 12-24
shows this in action.

Listing 12-24. Preventing a Move to the End of the Table

func tableView(tableView: UITableView, targetIndexPathForMoveFromRowAtIndexPath
sourceIndexPath: NSIndexPath, toProposedIndexPath proposedDestinationIndexPath:
NSIndexPath) -> NSIndexPath {

 if proposedDestinationIndexPath.row == tableData.count {
 return sourceIndexPath
 }

 return proposedDestinationIndexPath
}

Figure 12-20. Not allowed!

385CHAPTER 12: Selecting and Editing Content

Updating the Model
After completing the shuffling of rows, the user will take the table out of editing mode either
by tapping the Done button on the navigation bar or by tapping whatever custom control you
implemented.

At this stage, it’s vital to remember that all the changes have taken place only in the view.
The underlying data model has not been updated with the changes. Unless you explicitly
update the model, the changes won’t persist.

This could manifest itself in a couple of ways. The next time the table is reloaded, the rows will
have reverted to their original ordering. Worse, if your table has more rows than can be displayed
at once, as the table scrolls, you’ll get some extremely weird ordering effects appearing.

If the delegate has allowed the move, the tableView will call its delegate’s
tableView:moveRowAtIndexPath:toIndexPath: function. This takes three parameters: the
usual reference to the tableView itself; the indexPath of the source row, and the indexPath
of the destination row.

How you go about rearranging the model is obviously dependent on how your model
is implemented. In this simple example, you can exploit Array’s insert:atIndex: and
removeAtIndex: functions, as shown in Listing 12-25.

Listing 12-25. Updating the Model with Rearranged Objects

func tableView(tableView: UITableView, moveRowAtIndexPath sourceIndexPath:
 NSIndexPath, toIndexPath destinationIndexPath: NSIndexPath) {

 tableData.insert(tableData[sourceIndexPath.row], atIndex:
 destinationIndexPath.row)

 tableData.removeAtIndex(sourceIndexPath.row + 1)

}

This function first grabs the object from the donor row and inserts it at the destination. If you
just left things there, you’d end up with two copies of the original object.

The insert:atIndex: function inserts a new index at the specified index, moves the other
objects beyond the insertion down by one, and inserts a copy of the object from the source
indexPath.

Enabling Batch Insertion and Deletion
In most user-controlled situations, rows will be affected one by one. You can, however,
combine a number of insertion or deletion commands by wrapping them into a block:

tableView.beginUpdates()

// do lots of
// insertions and deletions here

tableView.endUpdates()

386 CHAPTER 12: Selecting and Editing Content

This takes care of a lot of heavy lifting for you. The manipulation of the tableView and the
data model will take place in the sequence you specify, but you don’t need to worry about
tracking the changes as you go along.

This is quite subtle and quite powerful. If you delete row 1 of the table, then what was row 2
will move up to become row 1. So now you have to refer to row 1 to affect what was
previously row 2, and so on. The update block handles this for you. If you delete row 1 and
then delete row 2 within the block, row 2 will refer to the original row 2.

You mustn’t call any functions that will update the tableView within an update block
(reloadData and so on). If you do, you have to handle the animations yourself.

Batch Insertion and Deletion of Sections
As well as batch insertion of rows, it’s also possible to insert or delete entire sections.
The animations are handled for you.

Inserting sections is performed with the insertSections:withRowAnimation: function.
You pass an NSIndexSet containing the sections to insert, and the table view will call its
dataSource to obtain the necessary data before inserting the section.

If there’s already a section in the position you’re attempting to insert at, the existing section
will be moved down automatically.

The rowAnimation parameter allows you to control the type of animation that’s used to insert
the new section.

Deleting sections uses the deleteSections:withRowAnimation: function. Again, you need to
provide an NSIndexSet of the sections to remove, and a rowAnimation parameter to control
the animation. The table view will then handle removing the section and closing up the gap.

You need to be careful when constructing the NSIndexSet – if you attempt to insert or remove
a section that doesn’t exist in the underlying data model, you’ll get a runtime crash.

Selection in UICollectionViews
One way of thinking of a UICollectionView is as a two-dimensional UITableView–that is, a
control that manages cells but can scroll in x and y coordinates, rather than the up-down
direction of UITableView.

With that mental model in mind, it shouldn’t come as a surprise to learn that selection in
UICollectionViews is managed in very similar ways to selection in UITableViews.

The main difference is that because collection views can be implemented in radically different
ways to table views, they come with fewer built-in features such as in-cell controls. If you want
to add edit, delete, or rearrangement controls into cells, you need to handle this yourself.

387CHAPTER 12: Selecting and Editing Content

Cut, Copy, and Paste with Collection Views
Having said that collection views provide less out of the box, there are some neat features
that they provide. Support for displaying menus in response to long-presses in cells is one.

A common requirement is support for cut, copy, and paste options for content that
is displayed inside a collection view cell. The good news is that this is very simple to
implement.

Figure 12-21 shows the effect of implementing cut/copy/paste, in response to a long press
on cell 20.

Figure 12-21. Implementing cut/copy/paste

388 CHAPTER 12: Selecting and Editing Content

You need to implement three UICollectionViewDelegate functions:

	collectionView(shouldShowMenuForItemAtIndexPath:) -> Bool

	collectionView(canPerformAction:forItemAtIndexPath:
withSender: -> Bool

	collectionView(performAction:forItemAtIndexPath:withSender:)

The first function controls whether a menu should be displayed at all for the selected item;
return true if it should, or false if not (Listing 12-26).

Listing 12-26. The shouldShowMenuForItemAtIndexPath: Function

override func collectionView(collectionView: UICollectionView,
 shouldShowMenuForItemAtIndexPath indexPath: NSIndexPath) -> Bool {
 return true
}

The second controls whether a specific action can be performed for that item. This is where
you could disable the cut function, for example, with the code in Listing 12-27.

Listing 12-27. Disabling the Cut Function

override func collectionView(collectionView: UICollectionView, canPerformAction
 action: Selector, forItemAtIndexPath indexPath: NSIndexPath, withSender
 sender: AnyObject?) -> Bool {

 if action.description == "cut:" {
 return false
 }

 return true

}

There are a range of actions that you can respond to. If you check the description property
of the action when it’s passed into the function, you can see the full list.

Figure 12-22 shows the effect of the code in Listing 12-27.

Figure 12-22. Disabling cut

The final function is where you implement the action that you want to enable (Listing 12-28).

389CHAPTER 12: Selecting and Editing Content

Listing 12-28. Implementing the Action

override func collectionView(collectionView: UICollectionView, performAction
 action: Selector, forItemAtIndexPath indexPath: NSIndexPath, withSender
 sender: AnyObject?) {
 //

 switch action.description {

 case "copy:" :
 // Implement copy functionality

 case "paste:" :
 // Implement copy functionality

 }

}

Implementing Custom Menus in a Collection View
Although cut, copy, and paste are useful, you’re not restricted to these. You can add custom
items to the menu that is displayed in response to a long-press in the cell to implement your
own functionality.

Long-pressing on the cell will display your custom menu, which will then call a function in
the cell. If you need to manipulate the data model by, for example, deleting a cell, then you
need to get the cell to call back to the collection view’s controller. It can look something like
Figure 12-23.

Figure 12-23. The custom menu item

390 CHAPTER 12: Selecting and Editing Content

The process has several steps:

	Define a menu delegate protocol, and declare a function to handle your
custom action.

	Implement this custom function in your view controller, so that it
conforms to the menu delegate protocol.

	Create a custom subclass of UICollectionViewCell and add a delegate
property for an object that conforms to the menu delegate protocol.

	In the cell subclass, implement a function to call the delegate. The cell
will handle the initial menu press, and then call through to its delegate to
perform any action that’s required on the data model.

	Create a menu item for the new action, and assign it to the shared menu
controller.

	When dequeuing the cell, set the collection view controller as the
cell delegate.

	Optionally, update the UICollectionViewDelegate functions to restrict
the menu items that are displayed in the pop-over.

Defining the Custom Protocol
The protocol can be defined in the collection view’s view controller. Add the declaration at
the top of the file (Listing 12-29).

Listing 12-29. Declaring the Custom Menu Protocol

protocol CustomMenuDelegate {
 func performDestroy(sender: AnyObject, forCell:SelectionCell)
}

Implementing the Custom Protocol
Now you can implement the function so that the view controller conforms to the protocol.
Add this as an extension to the view controller, as shown in Listing 12-30.

Listing 12-30. The Protocol Extension

extension SelectionController : CustomMenuDelegate {

 func performDestroy(sender: AnyObject, forCell: SelectionCell) {
 print("Custom action for sender: \(sender) with cell \(forCell)")
 }

}

391CHAPTER 12: Selecting and Editing Content

Updating the Collection View Cell Subclass
If you don’t already have a custom UICollectionViewCell subclass, you need to implement
one. If you have one, you need to update it so that it has a delegate property and a function to
implement the action that’s called from the custom menu. An example is shown in Listing 12-31.

Listing 12-31. An Example Custom UICollectionViewCell

import UIKit

class SelectionCell: UICollectionViewCell {

 var delegate: CustomMenuDelegate?

 func performDestroy(sender: AnyObject) {
 if let delegate = delegate {
 delegate.performDestroy(sender, forCell: self)
 }
 }

}

Creating the Custom Menu Item
Now you can create the custom menu item. In the view controller, add the following code to
the viewDidLoad function:

let menuItem = UIMenuItem(title: "Destroy!", action: "performDestroy:")
UIMenuController.sharedMenuController().menuItems = [menuItem]

This creates a new menu item titled Destroy! that will call the performDestroy: function
when it’s tapped. The function will be called on the cell, because that’s the object that the
menu will be attached to.

It’s then added to the sharedMenuController so that it can be added to the cell in response
to a long press.

Linking the Cell to Its Delegate
Now you need to update the cellForItemAtIndexPath: function so that the cell’s delegate is
set as it’s dequeued. Add the following line to the cellForItemAtIndexPath: function, after
the cell is dequeued but before it’s returned:

cell.delegate = self

392 CHAPTER 12: Selecting and Editing Content

Updating the UICollectionViewDelegate Functions
The UICollectionViewDelegate functions that control the actions that can be performed
in response to a long press need to be updated. Assuming you only want to provide the
Destroy! menu option, update the collectionView(canPerformAction:forItemAtIndexPath:
withSender:) function as shown in Listing 12-32.

Listing 12-32. The Updated collectionView(canPerformAction:forItemAtIndexPath:withSender:) Function

override func collectionView(collectionView: UICollectionView, canPerformAction
action: Selector, forItemAtIndexPath indexPath: NSIndexPath, withSender
sender: AnyObject?) -> Bool {

 if action.description == "performDestroy:" {
 return true
 }

 return false

}

With these updates in place, you’re ready to run the app again, and try a long press action in
a cell. You should see the Destroy! item pop up, as shown in Figure 12-24.

Figure 12-24. The Destroy! menu item

Removing Cells in Response to the Menu Item
To complete this process, let’s implement the functionality needed to remove the cell item
in response to selecting the Destroy! option. Update the performDestroy function so that it
matches Listing 12-33.

393CHAPTER 12: Selecting and Editing Content

Listing 12-33. The Updated performDestroy Function

func performDestroy(sender: AnyObject, forCell: SelectionCell) {

 if let indexPath = collectionView?.indexPathForCell(forCell) {
 dataArray.removeAtIndex(indexPath.row)
 collectionView?.reloadData()
 }

}

This uses the cell that “owns” the menu to get the indexPath from the collection view,
and then deletes the object at that index. When the collection view’s data is reloaded, the
selected cell will have been removed, as shown in Figure 12-25.

Figure 12-25. Cell 7 has been removed

Implementing an “Add Cell” Option
Implementing the functionality to add a cell, instead of remove one, is a virtually
identical process.

Extending the Protocol to Add a Function to Insert a Cell
Update the protocol to add a definition for addItem(sender:atCell:):

protocol CustomMenuDelegate {
 func performDestroy(sender: AnyObject, forCell:SelectionCell)
 func addItem(sender: AnyObject, atCell: SelectionCell)
}

394 CHAPTER 12: Selecting and Editing Content

Adding the New Function to the Cell Subclass
Add the addItem function to the SelectionCell subclass:

func addItem(sender: AnyObject) {
 if let delegate = delegate {
 delegate.addItem(sender, atCell: self)
 }
}

Implementing the addItem Function in the Collection View Controller
Add the function to insert an item into the collection view’s data model, and refresh the data:

func addItem(sender: AnyObject, atCell: SelectionCell) {

 if let indexPath = collectionView?.indexPathForCell(atCell) {
 dataArray.insert("new cell)", atIndex: indexPath.row)
 collectionView?.reloadData()
 }

}

Adding a New Menu Item
Update the collection view controller to add another menu item:

let destroyMenuItem = UIMenuItem(title: "Destroy!", action: "performDestroy:")
let addMenuItem = UIMenuItem(title: "Add!", action: "addItem:")
UIMenuController.sharedMenuController().menuItems = [addMenuItem, destroyMenuItem]

Run the project again, and you’ll see a new item in the pop-up menu, as shown in Figure 12-26.

Figure 12-26. The new menu item

395CHAPTER 12: Selecting and Editing Content

Tap the Add! button, and you’ll see a new item appear in the collection view, as shown in
Figure 12-27.

Figure 12-27. The new cell

Rearranging UICollectionViews
A collection view is a great control for presenting data for your user to sort interactively–
rearranging the order of photos in an album, for example. UICollectionView makes it almost
trivial to implement this kind of feature.

To demonstrate this, you’ll create a very simple collection view that displays a number of
cells, and then you'll implement the functionality that allows them to be sorted by dragging
and dropping.

Implementing drag-and-drop reordering involves adding some UICollectionViewDelegate
functions to the collection view’s delegate object; the exact approach depends on whether
you’re using a subclass of UICollectionViewController or not. You’ll look at both processes
in turn.

Prerequisites
This process assumes that you’ve got a collection view that displays cells in a single section
based on the underlying data stored in a model. The source code for this chapter includes
two projects: one for the initial state to get you started, and one with the functionality fully
implemented.

Assuming you’re starting from the initial state, the app will look like Figure 12-28.

396 CHAPTER 12: Selecting and Editing Content

There are two tabs, one containing a UIViewController-based collection view, and one with
a UICollectionViewController subclass. Both have identical data structures: a Struct of
100 Strings, which are displayed in 100 x 100 cells under the control of a flow layout.

At the moment, the only interaction that’s possible is the default vertical scrolling behavior.
You’re going to enhance that by implementing drag-and-drop reordering of the collection view.

The process begins with a long press on the item; once that’s been detected, the delegate
is asked whether the item at that index path is allowed to move. If it is, the cell will follow the
pan gesture.

When the user lifts their finger and the pan gesture ends, the cell is inserted into the
collection view in the space that’s opened up, and a second delegate function is called to
allow the data source to be updated.

Adapting the UICollectionViewController-based collection view is the simpler of the two,
so you implement this first and then use it as the starting point for the same functionality in a
UIViewController.

Figure 12-28. The initial app

397CHAPTER 12: Selecting and Editing Content

Implementing Drag-and-Drop with UICollectionViewController
The process begins with updating the UICollectionViewController to set the
installsStandardGestureForInteractiveMovement property to true. Add this to viewDidLoad
function:

self.installsStandardGestureForInteractiveMovement = true

Adding UICollectionViewDelegate Functions
Next, there are two optional UICollectionViewDelegate functions that you need to
implement:

	collectionView(_:canMoveItemAtIndexPath:)

	collectionView(_:moveItemAtIndexPath:toIndexPath)

The first function simply controls whether the selected item can be moved or not, and is
called before the interaction begins. You may have items that must remain in place, in which
case you need to return false for those specific index paths.

In your case, you’re allowing all items to move, so you simply return true from the function,
as shown in Listing 12-34.

Listing 12-34. collectionView(_:canMoveItemAtIndexPath:)

override func collectionView(collectionView: UICollectionView, canMoveItemAtIndexPath
indexPath: NSIndexPath) -> Bool {
 return true
}

The second function is called once the interaction is completed. This is the point where you
can update the underlying data source to match the changes in the collection view.

This function takes three parameters: the collectionView itself, the indexPath that the item
came from, and the indexPath that it’s going to. Armed with this data, you can update the
data according, as shown in Listing 12-35.

Caution The action of rearranging the items in the collection view doesn’t update the underlying
data model; the changes only take place in the view. If you don’t update the data model to reflect
how the items have been moved, then the changes will disappear the next time the collection view
updates.

398 CHAPTER 12: Selecting and Editing Content

Listing 12-35. Updating the Data Model

override func collectionView(collectionView: UICollectionView, moveItemAtIndexPath
sourceIndexPath: NSIndexPath, toIndexPath destinationIndexPath: NSIndexPath) {

 // Find object to move
 let thingToMove = dataArray[sourceIndexPath.row]

 // Remove old object
 dataArray.removeAtIndex(sourceIndexPath.row)

 // insert new copy of thing to move
 dataArray.insert(thingToMove, atIndex: destinationIndexPath.row)

 // Reload the data
 collectionView.reloadData()

}

The final reloadData() call isn’t strictly necessary to update the view, but it means that the
collectionView and its underlying data are back in sync once the interaction is completed.

With those three changes implemented, you can now drag and drop cells around the
collection view with impunity!

Highlighting the Move
As things stand, it can be a little difficult to see what’s going on as you’re moving a cell
around, because the cell in motion looks the same as all the others. To make it stand out a
little more, you can tap into the two delegate functions you’ve just implemented to highlight
the cell while it’s in motion.

To begin with, let’s change the background color of the cell when the pan gesture starts.

Add a property to the class to hold a reference to the cell that’s in motion:

private var selectedCell: UICollectionViewCell?

Next, update the collectionView(_:cellForItemAtIndexPath:) function to set the cell’s
border when it’s dequeued, by adding these two lines after the label has been updated:

cell.contentView.layer.borderColor = UIColor.lightGrayColor().CGColor
cell.contentView.layer.borderWidth = 2.0

Now update the collectionView(_:canMoveAtIndexPath:) function so that it looks like
Listing 12-36.

399CHAPTER 12: Selecting and Editing Content

Listing 12-36. The Updated collectionView(_:canMoveAtIndexPath:) Function

override func collectionView(collectionView: UICollectionView, canMoveItemAtIndexPath
indexPath: NSIndexPath) -> Bool {

 selectedCell = collectionView.cellForItemAtIndexPath(indexPath)
 selectedCell?.contentView.layer.borderColor = UIColor.redColor().CGColor

 return true
}

This gets a reference to the cell that’s been selected, and changes the color of the border to
red as the interaction begins.

To set the border color back to its original value when the interaction ends, update the coll
ectionView(_:moveItemAtIndexPath:toIndexPath:) function by adding this line just before
the reloadData() call:

selectedCell?.contentView.layer.borderColor = UIColor.lightGrayColor().CGColor

Using Drag-and-Drop Interaction
With these updates in place, you can drag and drop cells to rearrange, as shown in
Figure 12-29.

400 CHAPTER 12: Selecting and Editing Content

Implementing Drag-and-Drop with UIViewController
If your collection view is managed by a UIViewController subclass rather than a
UICollectionViewController, there is slightly more involved in implementing drag-and-drop
interaction. The end result is exactly the same, however.

To begin with, follow the UICollectionViewController process shown above to add the
UICollectionViewDelegate functions and highlight the moving cell.

Adding Properties
Next, you need to add three properties to the view controller:

var longPressGesture: UILongPressGestureRecognizer!
var panGesture: UIPanGestureRecognizer!
var selectedIndexPath: NSIndexPath!

Figure 12-29. The drag-and-drop interaction in progress

401CHAPTER 12: Selecting and Editing Content

The longPressGesture property holds a reference to the gesture recognizer that controls the
start of the drag-and-drop process. panGesture holds a reference to the gesture recognizer
that handles the tracking of the cell underneath the touch point; and selectedIndexPath is a
reference to the cell that’s being manipulated.

Adding the Gesture Recognizers
Now you need to add the gesture recognizers to the collection view. This is done in
viewDidLoad, as shown in Listing 12-37.

Listing 12-37. The Updated viewDidLoad Function

override func viewDidLoad() {
 super.viewDidLoad()

 panGesture = UIPanGestureRecognizer(target: self, action: "handlePanGesture:")
 self.collectionView.addGestureRecognizer(panGesture)
 panGesture.delegate = self

 longPressGesture = UILongPressGestureRecognizer(target: self,
 action: "handleLongGesture:")
 self.collectionView.addGestureRecognizer(longPressGesture)
 longPressGesture.delegate = self

}

A new function is needed to handle the longGesture; add this as shown in Listing 12-38.

Listing 12-38. The handleLongGesture(_:) Function

func handleLongGesture(gesture: UILongPressGestureRecognizer) {

 switch(gesture.state) {

 case UIGestureRecognizerState.Began:
 selectedIndexPath = self.collectionView.indexPathForItemAtPoint
 (gesture.locationInView(self.collectionView))

 case UIGestureRecognizerState.Changed:
 break

 default:
 selectedIndexPath = nil

 }

}

402 CHAPTER 12: Selecting and Editing Content

This updates the selectedIndexPath in response to the UILongPressGesture starting; and
resets it when the gesture finishes.

The handlePanGesture(_:) function is responsible for passing the movement to the
collection view, so add the code shown in Listing 12-39.

Listing 12-39. The handlePanGesture(_:) Function

func handlePanGesture(gesture: UIPanGestureRecognizer) {

 switch(gesture.state) {

 case UIGestureRecognizerState.Began:
 collectionView.beginInteractiveMovementForItemAtIndexPath(selectedIndexPath!)

 case UIGestureRecognizerState.Changed:
 collectionView.updateInteractiveMovementTargetPosition
 (gesture.locationInView(gesture.view!))

 case UIGestureRecognizerState.Ended:
 collectionView.endInteractiveMovement()

 default:
 collectionView.cancelInteractiveMovement()

 }

}

There are three possible states of a pan gesture recognizer:

	Began is where you tell the collection view to begin moving the item at
the selected index path.

	Changed occurs as the touch point moves, so the collection view is told
to move the target to match the touch point.

	Finally, Ended occurs after the touch-up event, at which point the
collection view is told to cancel the movement. This causes the moving
element to “snap” into its new position.

Adding UIGestureRecognizerDelegate Functions
As you’ll have noticed in the updated viewDidLoad function, the two gesture recognizers
have delegates. These have both been set to the view controller. You need to add two
delegate functions. The easiest way to do this is to add an extension to the view controller,
as shown in Listing 12-40.

403CHAPTER 12: Selecting and Editing Content

Listing 12-40. The View Controller’s UIGestureRecognizerDelegate Extension

extension ViewController: UIGestureRecognizerDelegate {

 func gestureRecognizer(gestureRecognizer: UIGestureRecognizer,
 shouldRecognizeSimultaneouslyWithGestureRecognizer otherGestureRecognizer:
 UIGestureRecognizer) -> Bool {

 if gestureRecognizer == longPressGesture {
 return panGesture == otherGestureRecognizer
 }

 if gestureRecognizer == panGesture {
 return longPressGesture == otherGestureRecognizer
 }

 return true
 }

 func gestureRecognizerShouldBegin(gestureRecognizer: UIGestureRecognizer) -> Bool {

 guard gestureRecognizer == self.panGesture else {
 return true
 }

 return selectedIndexPath != nil
 }

}

Finishing Up
With the extension functions in place, you’re now ready to run the app, and see the drag-
and-drop interaction implemented in the view controller tab, as shown in Figure 12-30.

404 CHAPTER 12: Selecting and Editing Content

Summary
In this chapter, you looked at how tables and collection views can be extended from being
presenters of static, unreactive data to handle user input through selection traits. You saw how
they can be used to rearrange data and to facilitate the updating of the underlying data model.

Finally, you took things to their logical conclusion and extended them still further to allow
users to add, amend, and delete information from the data model—taking tables and
collection views from being a read-only views to a fully interactive components.

Figure 12-30. The drag-and-drop interaction in progress

405

Chapter 13
Static Tables
Many table views are built dynamically, populating instances of prototype cells on demand
as the data is displayed. But that’s not the only way of building them; static table views can
also be useful components of a user interface.

With a static table, you define the cells and their contents up front. This is useful in situations
where you know the content to be displayed won’t change, such as when displaying a list
of settings. Many parts of the built-in iOS Settings app are based on a static table view, as
shown in Figure 13-1.

406 CHAPTER 13: Static Tables

Static tables can also be used to take advantage of the layout flexibility that a table view offers,
even for static content, and even if the interface looks nothing like a table at first glance.

In this chapter, you’ll look at the process of building static tables, and some of the uses for
such tables.

How to Build Static Tables
When you add a table view object, either as a child of an existing view, or as the root object
of a table view controller scene, it appears with an area for prototype content, as shown in
Figure 13-2.

Figure 13-1. A static table used to display the Display & Brightness controls in the Settings app

407CHAPTER 13: Static Tables

In Chapter 7, you looked at how to add prototype cells that could then be used by the table
view’s dataSource as “templates” for cells that are created at runtime.

The table view controller control in a Storyboard or XIB can also be used to create static
cells; these are created and laid out up front, so they aren’t created dynamically at runtime.

Tip Static table view cells can only be created in a Storyboard when you are using a
UITableViewController. If you try to create static cells in a UITableView, Xcode will
complain.

Figure 13-2. The prototype content area

http://dx.doi.org/10.1007/978-1-4842-1242-4_7

408 CHAPTER 13: Static Tables

As soon as you change this, you’ll see that the table view updates to add a new section
containing three cells (you may need to expand the scene’s Hierarchy tree to expose the
new controls). See Figure 13-4.

Figure 13-4. The new section and static cells

Adding Static Cells to the Table View
Static cells are added as prototypes by switching the table view’s Content attribute from the
default Dynamic Prototype value to Static Cells. This is set in the Attributes Inspector, as
shown in Figure 13-3.

Figure 13-3. Switching to static cells

409CHAPTER 13: Static Tables

The new cells are the standard 44 points high with a transparent separator so it’s not
immediately apparent whether anything is there, but you can change this by playing around
with the attributes of the table, section, and cell in the Attributes Inspector.

Figure 13-5 shows an updated table that now includes some header and footer text,
together with a light gray cell separator. The three cells have been changed from Custom to
Default, and the title fields have been updated.

Figure 13-5. The updated cells

If you run the app now (shown in Figure 13-6), you’ll see that the table view appears with the
three cells, all without the need to implement any UITableViewDataSource methods!

410 CHAPTER 13: Static Tables

Fixing Scrolling
By default, the table view will scroll, even if there are not enough rows to fill the view. This
can look strange in a static table view, so if you’re sure that all your content will fit onto a
single screen even on smaller devices (and where appropriate, in landscape orientations)
then you may want to prevent the table from scrolling.

To prevent scrolling, select the TableView in the view hierarchy, and uncheck the Scrolling
Enabled setting in the Attributes Inspector (Figure 13-7).

Figure 13-6. The initial static table in action

Figure 13-7. Preventing the table from scrolling

411CHAPTER 13: Static Tables

Adding Controls to the Static Cells
With the static cells in place, you’re now ready to start customizing them. If you change the
cell types back to Custom, you can treat the content view of each cell as if it was an empty
UIView–placing other controls inside and positioning them with AutoLayout constraints.

Adjusting the Cell Heights
Before placing other controls in the cell, you’ll probably need to adjust the height. By default,
the empty custom cells have a height of 44 points. To change this, select the row in the
object hierarchy, then adjust the row height in the Size Inspector, as shown in Figure 13-8.

Figure 13-8. Adjusting the row height

Figure 13-9. Adding the object to the scene

Adding Interactive Controls
Linking controls to methods in a static table view is done in the standard way: the control
event is linked to an IBAction method in a controller, which is triggered by user interaction.

But you’ve added a UITableViewController scene without an associated UIViewController
subclass, so the question that arises is, link to an IBAction method where?

The answer is “In some controller class that does exist.” In this case, you could link the
buttons in the static table view to IBAction methods in a UIViewController subclass that
you either added previously, or create to handle this UITableViewController scene.

In order to connect this static table’s scene up to a view controller, you need to add a
reference to the view controller. To do this, select an object from the Object browser, and
drag this into the table view controller’s scene, as shown in Figure 13-9.

412 CHAPTER 13: Static Tables

This also now shows up as a placeholder in the scene’s header, as shown in Figure 13-10.

Figure 13-10. The object in the scene’s header

Figure 13-11. Setting the custom class

With the Object placeholder selected, switch to the Identity Inspector and update
the Custom Class value to the class that this will represent (in this case, add the
didTapStaticTableButton IBAction method to the ViewController class), as shown in
Figure 13-11.

With the class set, you can now Ctrl-drag from the control to the placeholder, where the
available IBAction methods will show up in the HUD, as shown in Figure 13-12.

413CHAPTER 13: Static Tables

Using Static Tables Inside Container Views
Up to now, you’ve been creating static table layouts inside UITableViewController
scenes placed in the Storyboard. That’s fine, but the UITableViewController scene makes
assumptions about how it’s going to be used, chiefly that it will be displayed full-screen.

So what can you do if you want to include a static table view inside another view controller
(if it doesn’t fill the full interface, for example)?

You could try adding a standard UITableView object into the view controller’s view as if you
were building a dynamic table view. Interface Builder will let you change the table view from
dynamic prototypes and static cells, and lay out the static cells, as you did earlier in this
chapter.

When you come to build the project, though, the compiler will refuse, with the error shown in
Figure 13-13.

That’s annoying, to say the least. So what’s the work-around?

The answer is to use a UITableViewController to create the static table layout as you have
done previously, and then embed this into a container inside the UIViewController.

Figure 13-12. Connecting controls to actions

Figure 13-13. The error that occurs if you try to build static cells in a standard UITableView

414 CHAPTER 13: Static Tables

Prerequisites
As the exact configuration will depend on the structure of your project, I’ll show a
hypothetical situation. I’ve assumed that you’ve built a static table layout using a
UITableViewController as described earlier in the chapter; but now you’ve realized that you
need to present this inside another view.

I’ve also assumed that your UITableViewController is the only scene inside a Storyboard,
so you’ll be starting with something that looks like Figure 13-14.

Figure 13-14. The UITableViewController configured, but alone in the Storyboard

415CHAPTER 13: Static Tables

At the moment, the UITableViewController is the Storyboard’s entry point, shown by
the grey entry point arrow pointing to the scene. You need to change this so that it’s the
view controller that’s loaded first, so select the View Controller Scene in the Stack, and
select the Is Initial View Controller checkbox in the Attributes Inspector, as shown in
Figure 13-16.

Figure 13-15. Adding a UIViewController scene to the Storyboard

Figure 13-16. Setting the UITableViewController as the initial view

Adding a UIViewController Scene
The first step is to drag in a UIViewController object from the Object browser, so you now
have two scenes in the Storyboard, as shown in Figure 13-15.

As soon as you do this, the entry point arrow switches to point to the UIViewController scene.

416 CHAPTER 13: Static Tables

Adding a Container View to the UIViewController
Now you need to add a container view into the UIViewController so that you can embed the
static table view inside.

Select a Container View from the Object browser, and drag this out into the view controller
scene’s view. As soon as you do so, you’ll see that it adds a third scene, a UIViewController
linked by an Embed segue, as shown in Figure 13-17.

Figure 13-17. The container view added to the first UIViewController scene

Since you want the static table to be shown full-screen, you need to add some AutoLayout
constraints to the Container view so that it fills the full view.

Select the Container view, then add top, bottom, leading, and trailing constraints as shown
in Figure 13-18.

417CHAPTER 13: Static Tables

With constraints added and the container view full-screen, you need to get rid of the spare
UIViewController scene that the Container object arrived with. Select the entire scene in
the object hierarchy on the left of the canvas and press delete. The scene and the segue will
disappear.

Embedding the Static Table View into the View Controller
Embedding the static table view into the view controller is the final step. Ctrl-click the
Container view in the object hierarchy, and drag the blue connection line to the table view
controller object in the table view controller scene. When you release the mouse button, a
HUD menu will appear next to the table view controller, as shown in Figure 13-19.

Figure 13-18. Adding AutoLayout constraints to the container view

418 CHAPTER 13: Static Tables

Select the Embed item, and a new Embed segue will be created to link the table view controller
scene with the Container, as shown in Figure 13-20.

Figure 13-19. Adding the embed segue

Figure 13-20. The static table view embedded in the UIViewController

Running the app now will show the static table inside the view controller. From a user
experience point of view, not a lot has changed, but by adjusting the constraints of the
container view, you now have the ability to control the placement of the static table as you wish.

419CHAPTER 13: Static Tables

Other Uses for Static Tables
The “canonical” use of a static UITableView is the Settings app, but it has uses beyond this
type of situation.

By taking advantage of UITableView’s vertical layout capabilities, you can use static tables
whenever you have a layout that looks like a stack of elements one on top of each other, and
need a greater level of control and flexibility than UIStackView.

Forms are basically a series of headings and text fields. By placing headings and textfields
into alternating rows, you can use the static table view to build the form and let the table
view handle the vertical scrolling.

Summary
In this chapter, you looked at the process of creating static table views, for use in situations
where the data to be displayed isn’t dynamic. It’s a simple process that can be used to
build views for features like preferences and settings, or for displaying static information in a
table-style layout.

421

Chapter 14
Tables in WatchKit
In this chapter, you’re going to look at how to create, configure, and use the table control
that forms part of WatchKit.

WatchKit is designed for the small, low-powered Apple Watch, so the WKInterfaceTable
control is much less powerful than UITableView, but nonetheless it can be used to present
table-based information and act as a navigation interface.

You’ll look at the following:

	The anatomy of the WatchKit table and the WKInterfaceTable class

	How to create and configure table rows in Storyboards

	How to create and configure row controller classes

	How to configure tables with data at runtime

	How to respond to user interaction with the WatchKit table

	How to use WatchKit tables as a navigation interface.

About WatchKit
While the power and complexity that’s been squeezed into the confines of the Apple Watch
is an impressive feat of engineering, there’s no getting away from the fact that the device is a
lot less powerful than an iPhone.

422 CHAPTER 14: Tables in WatchKit

To get the best out of WatchKit tables, there are a number of caveats and limitations that you
need to bear in mind:

	Apple Watch effectively acts as the view of the WatchKit extension
within the app on the paired iPhone, so all communication has to go
across the Bluetooth link. This can be slow, so it’s important to keep
interface updates as small as possible.

	The WKInterfaceTable control doesn’t use an on-demand caching
mechanism, unlike UITableView. All the rows that will be displayed in
the table have to be created and sent to the Watch before they can be
displayed. For this reason, it’s usually best to limit the number of rows in
a table to 20 or so.

	The Watch interface is small and is designed for quick glances. When
designing your table interface, it’s important to keep the information
density low and the controls large enough to be easily accessible.

	The WatchKit interface must be laid out in a Storyboard; there’s no
option to build it in code, or amend it at runtime other than changing the
content or visibility of controls.

	WatchKit interfaces don’t support AutoLayout.

The Anatomy of a WatchKit App
WatchKit apps have two parts: a WatchKit extension that runs on the paired iPhone, and
user interfaces that are installed on the Watch itself.

The WatchKit extension runs in the background to send updates to the user interface, and
react to user interaction with the Watch.

WatchKit apps have three kinds of interfaces: the full app user interface, which is where
WKInterfaceTables live; Glances, which provide quick access to read-only information; and
notifications.

Interface updates and user interactions are communicated between the iPhone and the
paired Watch over a Bluetooth connection.

What Are WatchKit Tables?
The WatchKit SDK includes WKInterfaceTable, a class that supports single column tables.
A table can consist of multiple types of rows. Each row type has its own row controller, which
is backed by a custom class that you need to create. The row controller contain the outlets to
connect to the interface elements, and (where needed) functions to handle interactions with
the controls.

The relationship between table, rows and row controllers is shown in Figure 14-1.

423CHAPTER 14: Tables in WatchKit

The process of creating a table-based WatchKit app has four steps.

1. Creating a table object in the Storyboard and laying out controls in
the rows.

2. Creating NSObject subclasses to act as controllers for each type
of row that will be displayed, with outlets to the controls in the
Storyboard.

3. Creating instances of the row controller classes and providing them
to the table at runtime.

4. Responding to user interaction with the rows.

Figure 14-1. The relationship between table, rows and row controllers

424 CHAPTER 14: Tables in WatchKit

WatchKit tables are instances of the WKInterfaceTable class. Conceptually, they’re similar to
UITableView, but with some significant differences:

	WKInterfaceTable doesn’t use a data source to create cells on demand.
Instead, you’re responsible for creating all the cells upfront before the
table is displayed in the interface.

	There is no delegate to handle interaction; that’s something you need to
implement yourself as well.

	Like the other WatchKit interface elements, there’s no support for
AutoLayout, and you need to use Storyboards to create the interfaces.

	The performance limitations of the current generation of Apple Watch
devices means that in practice you’re limited to around 20 rows before
performance drops off unacceptably.

Figure 14-2 shows how the row controller and rows relate together.

At runtime, you’re responsible for telling the table the type, number, and order of the rows,
and then creating instances of the row controllers before configuring their outlets. You have
two options here:

	If your table will only have one type of cell, you can use the
setNumberOfCells:withRowType function:

table.setNumberOfRows(5, withRowType: "ContactRow")

	If your table will have more than one type of cell, you need to pass
an array of cell identifier strings into the setRowTypes: function. For
example, if you have one header, two data and one footer row, you pass
in the array ["HeaderCell", "DataCell", "DataCell", "FooterCell"]:

table.setRowTypes(["HeaderCell", "DataCell", "DataCell", "FooterCell"])

Figure 14-2. How WKInterfaceTable objects fit together

425CHAPTER 14: Tables in WatchKit

Once you’ve told the table which row has which type of cell, you then need to get the row
controller for each row in turn with the rowControllerAtIndex: function. Now you’re able to
configure the outlets that you previously defined in the row controller class. An example of
this process is shown in Listing 14-1.

Listing 14-1. Configuring and Updating a Watch Table

func updateTable() {

 // Create array to hold the row types
 var rowsArray = [String]()

 // Add header row as the row 0
 rowsArray.append("HeaderRow")

 // Add a contact row for each object in the dataArray
 for index in 1...self.dataArray.count {
 rowsArray.append("ContactRow")
 }

 // Add a footer row as the last row
 rowsArray.append("FooterRow")

 // Configure the table to display the rows as defined in the rowsArray
 self.watchTable.setRowTypes(rowsArray)

 // Retrieve each contact row and set the contents from the dataArray
 // Start at row 1, because row 0 is the header row
 for index in 1...self.dataArray.count {

 var contactRow: ContactRowController =
 self.watchTable.rowControllerAtIndex(index) as! ContactRowController

 var rowContent = self.dataArray[index]

 contactRow.nameLabel!.setText(rowContent)

 }

 // Get the last row, and configure it as the footer

 let contactCount = self.dataArray.count

 var footerRow: FooterRowController =
 self.watchTable.rowControllerAtIndex(contactCount + 1) as! FooterRowController

 footerRow.footerLabel.setText("\(contactCount) messages")

}

426 CHAPTER 14: Tables in WatchKit

The Storyboard presents the table as one or more rows. Inside each row there’s a group,
which is where you add your custom controls, shown in Figure 14-3.

Figure 14-3. The groups inside each row

Controls in the group are connected to outlets in the same way as a normal Storyboard or Xib file.

Creating a Basic Table
In this section, you’ll go through the process of creating a demonstration WatchKit table.
It won’t be a fully-featured app with a dynamic data source, because that’s beyond the
scope of creating a table interface, but it will show you how to wire up a table that you can
extend further.

There are four steps involved, assuming you’re creating a new project from scratch:

	Create a new iPhone project to act as the host for the extension.

	Create a WatchKit app as a new target, to create the app that will run on
the watch and the extension that will configure the table.

	Lay out the table in the Storyboard.

	Create the functions to populate the table at runtime.

Creating the Project
To begin, you’ll need a new iPhone project. Create a new project in Xcode with File ➤ New ➤
Project and select the Single View Application template. Give the project a name (I’m calling
mine WatchTable), and save the project somewhere appropriate.

427CHAPTER 14: Tables in WatchKit

Adding the WatchKit Target
As you saw above, there are three components to a WatchKit app:

	The iPhone app, which handles the heavy lifting of things like
communicating with APIs, etc.

	The WatchKit app, which runs on the watch itself. This is where you’ll
lay out the table’s visual appearance in the Storyboard.

	The Watchkit extension, which runs on the iPhone and contains the
code for managing the content and interaction of the table.

All three components are bundled together into the app, and if a paired watch is present
as the app is installed, the user will be asked whether they want to install the WatchKit app
onto the watch itself.

To begin extending an iPhone app with watch functionality, you first need to create a new
target that adds the WatchKit app and extension.

From the File ➤ New ➤ Target menu, select the WatchKit App template, as shown in Figure 14-4.

Figure 14-4. Adding the WatchKit target

You’ll then be prompted to set the options for the new target. Most of these are read-only,
but you can select the language and whether you want to add Notification and Glance

428 CHAPTER 14: Tables in WatchKit

scenes to the target. You don’t, so change the options so they match those shown in
Figure 14-5, and select Finish.

Figure 14-5. Setting the target options

Figure 14-6. Activating the WatchTarget scheme

You may then be prompted to confirm whether you want to activate the WatchTarget app’s
scheme, as shown in Figure 14-6. You do, so select the Activate option.

429CHAPTER 14: Tables in WatchKit

You should now see that you’ve got two new folders in the Navigator, and two new Targets
in the Projects and Targets list, as shown in Figure 14-7.

Figure 14-7. The new targets

Building the Table Interface
You’re going to begin by building the table interface, so select the Interface.storyboard file
in the WatchTarget App folder so that it’s shown in the main pane, as shown in Figure 14-8.

430 CHAPTER 14: Tables in WatchKit

Figure 14-8. The Interface.storyboard file

To verify that everything is working correctly, let's get the app to fire up with a “Hello, world!”
message.

Start by selecting a Label object in the Object browser, and drag this onto the watch
interface. Then tweak the properties so that it looks like Figure 14-9.

Figure 14-9. The “Hello, world!” label

431CHAPTER 14: Tables in WatchKit

You’ll notice that the options are much more limited than you would see with a UILabel. The
Apple Watch doesn’t support AutoLayout, so there are only a few layout options available.

If you now select the WatchTarget app from the Schemes drop-down (shown in Figure 14-10)
and run the app, the iPhone and Watch simulators will start.

Figure 14-10. Selecting the WatchTarget to run the app in the Apple Watch Simulator

Figure 14-11. The “Hello, world!” app running on the Apple Watch

You’ll see the results as shown in Figure 14-11. This verifies that everything is running
correctly, and that the WatchKit app has been correctly installed.

Tip The default Apple Watch simulator doesn’t really give you much of a feel for how the app will
look when it’s running on an actual device. To get a better impression, I’m using an app called Bezel
(http://infinitapps.com/bezel), which displays the Simulator output inside a mocked-up
watch bezel. You can select the bezel type to use, so it’s definitely the cheapest option for testing on
an 18-karat Rose Gold Watch with a Link bracelet.

Having confirmed that the WatchKit app runs, you can start the process of building the table.

http://infinitapps.com/bezel

432 CHAPTER 14: Tables in WatchKit

Creating the Table
Switch back to the WatchKit app’s Interface.storyboard, delete the label that you created a
moment ago, and replace it with a table dragged from the Objects list. This will auto-size in
the frame to create a table with a single row (shown in Figure 14-12).

Figure 14-12. The table placed in the Watch interface

As well as rows containing actual data, you’re also going to add header and footer rows to
the table. Each type of row (header, data, and footer) will have its own row controller, which
will be an instance of a custom class that you’ll create in a moment.

Setting this up takes four steps:

	Increase the number of rows in the table so that there is a row for each
type of cell that will appear.

	Create the layout for each cell type in the Storyboard by adding controls.

	Create a custom class for each row type with outlets to connect to the
controls in the cell, and (if required) functions to handle user interaction
with those controls.

	Associate each row type with its custom class.

Remember that unlike UITableView, the cell layout takes place in the Storyboard.

Creating the Rows
To create the new rows, highlight the table in the Interface Controller scene, and switch to
the Attributes Inspector if it’s not already visible, as shown in Figure 14-13.

433CHAPTER 14: Tables in WatchKit

Figure 14-13. Setting the number of rows in the table

Increase the number of rows by updating the field in the Attributes Inspector. This will
add another row type in the Storyboard, and add another Interface Controller object in the
object hierarchy.

Your layout will need three row types; one for the header, one for data rows, and one for
the footer. Update the number of rows to 3, so that the object hierarchy looks like that in
Figure 14-14.

Figure 14-14. The three rows

Laying Out the Rows
With the three rows in place, you can now lay out the controls in each one. Figure 14-15
shows what my cells look like; you can play around with the layouts as you want (it’s good
practice!) but make sure that you’ve got a WKInterfaceImage and a WKInterfaceLabel in the
contact row, and a WKInterfaceLabel in the footer.

434 CHAPTER 14: Tables in WatchKit

Creating the Row Controller Classes
With the three rows laid out, now you can create the row controller classes that will handle
each row.

Each different type of row in your WatchKit table needs a custom class to act as its
controller; these are subclasses of NSObject, and are added to the WatchKit Extension (not
the WatchKit app).

The row controller class is responsible for managing the content of the controls in its row, so
it needs an outlet for every dynamic control. If the controls respond to user interaction, such
as a tap on a button control, then the row controller class needs to implement functions to
handle this.

The simplest type of row has only static controls and doesn’t respond to any user
interaction. That describes your header row, so you’ll create it first.

Select the WatchTarget Extension folder in the Navigator pane, and then add a new class
with File ➤ New ➤ File. In the list of templates, select the Source group, and the Cocoa
Touch Class. Click the Next button, and then name your class HeaderRowController. Make
sure that the subclass is set to NSObject, and check that you’re creating the class using the
correct language.

Tip The limitations of the WatchKit UI can make laying out interfaces tricky. To achieve the contact
row layout, select its Group, then change the layout to Vertical in the Attributes Inspector.

Figure 14-15. Laying out the interface

435CHAPTER 14: Tables in WatchKit

Click Next, and double-check that the new class will be created in the WatchKit Extension
Group and Target (see Figure 14-16). Then click Create to add the new class file(s).

Figure 14-16. Selecting the group and target for the new class

For the header row, that’s all you need to do. It doesn’t have any items that will be updated
at runtime, and it doesn’t react to any user interaction, so the class can remain as an empty
NSObject subclass.

The footer is slightly more sophisticated, in that it has one item that’s dynamically updated,
so you’ll create this next. Go through the same process as above to create an NSObject
subclass called FooterRowController.

This needs one outlet, an IBOutlet property for a WKInterfaceLabel called footerLabel. Add
this to the class as shown in Listing 14-2.

Listing 14-2. The FooterRowController Class

import UIKit
import WatchKit

class FooterRowController: NSObject {

 @IBOutlet var footerLabel: WKInterfaceLabel!

}

Note that you’ll need to import the WatchKit framework so that you can add the outlet to the
WKInterfaceLabel.

Finally, you can add the class for the ContactRowController. This has two outlets, one for
the image and one for the label, and one interaction function to handle taps on the cell.

Add a new NSObject subclass as before, and update it as show in Listing 14-3.

436 CHAPTER 14: Tables in WatchKit

Listing 14-3. The ContactRowController Class

import UIKit
import WatchKit

class ContactRowController: NSObject {

 @IBOutlet var nameLabel: WKInterfaceLabel!
 @IBOutlet var avatarImage: WKInterfaceImage!

 @IBAction func didTapDataRow(sender: WKInterfaceButton) {

 }

}

Connecting the Classes to the Rows
With the custom classes created, it’s time to link these to the controls in the Storyboard.
Switch back to the Storyboard in the WatchTarget, and expand the tree of controls so that
you can see all three rows. Then select the header row, and open the Identity Inspector in
the Utilities panel if it’s not visible. The top section allows you to define the custom class that
controls the row (see Figure 14-17).

Figure 14-17. Connecting the custom class with the row

Update this so that it shows HeaderRowController, and then select the Attributes Inspector.
Here, you need to provide an identifier for the row that will be used as the rows are
populated at runtime (it’s analogous to the rowIdentifier property used by UITableView).

This can be an arbitrary string, but to keep things neat, my approach is to use the name of
the custom class (in this case, HeaderRowController). It’s shown in Figure 14-18.

437CHAPTER 14: Tables in WatchKit

As this row is simply a text header, you don’t want it to be selectable, so uncheck the
Selectable box.

Now repeat the same process for the contact row; the custom class is
ContactRowController, and the identifier is ContactRow. This row will be selectable.

Finally, complete the process with the footer row. The custom class for this row is
FooterRowController, and the identifier is FooterRow. As with the header, this row shouldn’t
be selectable.

Connecting Outlets
With the rows connected to their custom classes, it’s possible to connect up the controls.
This is done in the usual Interface Builder way: Ctrl-clicking on the row in the object tree will
pop up a HUD window showing the outlets defined in the custom class, which you can then
connect by clicking and dragging over to the control.

You need to complete this process for the Contact and Footer rows. There are no outlets
defined in the Header, so there’s nothing connected. When it’s complete, the outlets for the
Contact row will look like Figure 14-19.

Figure 14-18. The row identifier

Figure 14-19. The connections to the Contact row

438 CHAPTER 14: Tables in WatchKit

While you’re in the process of connecting outlets, you also need to add one for the table itself.

In the InterfaceController.swift file, add an IBOutlet property for the table:

@IBOutlet var watchTable: WKInterfaceTable!

Then switch to the Storyboard and connect this outlet to the table, as shown in Figure 14-21:

Figure 14-20. The connection to the Footer row

Figure 14-21. Connecting the table

The Footer row should look like Figure 14-20.

Creating the Rows in Code
With the interface connections made and data set up, it’s time to start creating the code that
will populate the table with cells and data at runtime.

WKInterfaceTable differs significantly from UITableView in that it doesn’t operate in conjunction
with a datasource. All the rows have to be created upfront when the table is configured.

This means you’ll have to figure out how many rows of each type there will be, tell the table
about this, and then create the rows yourself.

If you have a simple table consisting of only one row type, then you can use the
setNumberOfRows:withRowType: function to tell the table how many rows of what type it
will be displaying. An example that you could use to display a table consisting only of
ContactRows is shown below:

self.watchTable.setNumberOfRows(self.dataArray.count, withRowType: "ContactRow")

In your case, things are more complex. You’ve got three row types, so there’s a bit more to do.

439CHAPTER 14: Tables in WatchKit

First, you need some dummy data. In this example, it’s an Array of four Strings,
corresponding to the name of some avatar images – add the function in Listing 14-4 to the
bottom of the InterfaceController:

Listing 14-4. The setupData() Function

func setupData() {
 dataArray.append("Bob")
 dataArray.append("Felix")
 dataArray.append("Jim")
 dataArray.append("Fred")
}

You can find the four sample images in this chapter’s code, or of course you’re free to add
your own.

Having added some dummy data, you’re now in a position to feed that data to the table.
Add the code in Listing 14-5 to the bottom of the InterfaceController class.

Listing 14-5. The updateTable() Function

private func updateTable() {

 // Create array to hold the row types
 var rowsTypes = [String]()

 // Add header row as the row 0
 rowsTypes.append("HeaderRow")

 // Add a contact row for each object in the dataArray
 for _ in dataArray {
 rowsTypes.append("ContactRow")
 }

 // Add a footer row as the last row
 rowsTypes.append("FooterRow")

 // Configure the table to display the rows as defined in the rowsArray
 watchTable.setRowTypes(rowsTypes)

 // Retrieve each contact row and set the contents from the dataArray
 // Start at row 1, because row 0 is the header row
 for index in 0..< dataArray.count {

 var contactRow = watchTable.rowControllerAtIndex(index+1)
 as! ContactRowController

 var rowContent = dataArray[index]

 contactRow.nameLabel!.setText(rowContent)

440 CHAPTER 14: Tables in WatchKit

 if let image = UIImage(named: rowContent) {
 contactRow.avatarImage.setImage(image)
 }

 }

 // Get the last row, and configure it as the footer

 let contactCount = dataArray.count

 let footerRow = watchTable.rowControllerAtIndex(contactCount + 1)
 as! FooterRowController

 footerRow.footerLabel.setText("\(contactCount) messages")

}

Walking through this code, you’re going to have three distinct types of row, so you can’t use
the one-shot setNumberOfCells:withRowType function. Instead, you create an array of the
cell types: first a header cell, then the same number of contact rows as you have elements in
the data array, and finally a footer cell. This array is used to tell the table what rows types it
will have to display.

The row types are created when the setRowTypes function is called, according to what
identifier has been provided in the row types array. If there are outlets in the row that you
need to update dynamically, it’s your responsibility to iterate over each row in turn and make
the necessary changes.

Each row can be accessed by asking the table, using the rowControllerAtIndex function,
and casting the type if necessary. Once you’ve got a reference to the cell, you can update it
with the corresponding data from the model.

In the case of contact rows, it’s the relevant element from the dataArray. In the case of the
footer, it’s done with a calculation based on the total number of elements in the dataArray.

Finishing up
To finish the process, you need to call the two new functions when the interface is loaded.
Update the awakeWithContext(:_) function to match Listing 14-6 – this is called when the
interface is loaded, equivalent to the viewDidLoad function in UIViewController.

Listing 14-6. The updated awakeWithContext() function

override func awakeWithContext(context: AnyObject?) {
 super.awakeWithContext(context)

 // Configure interface objects here.
 setupData()
 updateTable()

}

441CHAPTER 14: Tables in WatchKit

If you run the app in the Simulator, you’ll see the table being loaded and populated with
data, as shown in Figure 14-22.

Figure 14-22. The app running in the Apple Watch Simulator

Adding Interactivity
Just like a UITableView, rows in a WatchKit table can respond to user interaction. It’s limited
to simple taps in the current WatchKit SDK, but this may change in the future.

Unlike UITableView, a WKInterfaceTable doesn’t have a delegate object. Instead,
if the row has selection enabled, then the table will call the interface controller’s
table:didSelectRowAtIndex: function if that is implemented.

Listing 14-7 shows an example of a function that logs the index of the row that’s been
selected and then changes the color of the text in the row.

Listing 14-7. Handling Selection in WatchKit Tables with Swift

override func table(table: WKInterfaceTable, didSelectRowAtIndex rowIndex: Int) {

 print("Row \(rowIndex) selected")

 for index in 0..< dataArray.count {

 let contactRow: ContactRowController =
 self.watchTable.rowControllerAtIndex(index+1) as! ContactRowController

442 CHAPTER 14: Tables in WatchKit

 contactRow.nameLabel!.setTextColor(UIColor.whiteColor())

 }

 let selectedRow: ContactRowController =
 self.watchTable.rowControllerAtIndex(rowIndex) as! ContactRowController

 selectedRow.nameLabel.setTextColor(UIColor.redColor())

}

Caution The interface controller code is executed on the iPhone, and updates to the interface
are passed to the Apple Watch via Bluetooth. This can introduce a noticeable lag between taps and
interface updates.

Navigation with WatchKit Tables
UITableViews are often used as a navigation mechanism for “drilling down” into a hierarchy
of data. WKInterfaceTable can also be exploited for this purpose, albeit within the
constraints of a much smaller interface.

There are two ways of navigating between screens of content with WatchKit: page-based,
which is designed for moving between independent screens; and hierarchical, where new
screens are pushed into view together with an on-screen control for moving back through
the “tree.”

Although you can use other controls to control movement between screens in a
hierarchical-based app, doing so with a WKInterfaceTable is a very common interface pattern.

The transitions between screens are either segues, which you set up in Interface Builder, or
are triggered by calling the pushControllerWithName:context: function, which can be called
from the didSelectRowAtIndex: function in response to a tap on a row.

To pass information between screens, such as the object that’s displayed in the selected
row, so that the detail interface can show data about it, you pass a context object between
the two controllers. In your case, this would be the object from the dataArray at the index
corresponding to the selected row.

Extending the example app from the previous section to add hierarchical navigation isn’t
difficult. It takes three steps:

	Add a new interface controller class to manage the new screen.

	Add a new interface controller to the Storyboard, and lay out the controls.

	Implement the navigation, either by adding a push seque or extending
the didSelectRowAtIndex: function to push the new screen in response
to selection of the row.

443CHAPTER 14: Tables in WatchKit

Adding a New Interface Controller
The first step is to add a new class to act as the interface controller. To do this, add a
new file (File ➤ New ➤ File) and select the Cocoa Touch template. Create a subclass of
WKInterfaceController and call it DetailInterfaceController, as shown in Figure 14-23.

Figure 14-23. Creating the DetailInterfaceController

Make sure that the new file is created in the WatchTarget Extension, not the main or
WatchTable apps.

Adding a New Screen to the Storyboard
To add a new screen to the existing Storyboard, select the Interface Controller in the Object
browser and drag it out into the Storyboard, as shown in Figure 14-24.

444 CHAPTER 14: Tables in WatchKit

With the new Interface Controller in the Storyboard and selected, open the Identity Inspector
and update the class name. If you already created the DetailInterfaceController class, the
Class field will autofill after typing a couple of characters, as shown in Figure 14-25.

Figure 14-24. Adding the Interface Controller

Figure 14-25. Updating the class of the new Interface Controller in the Storyboard

445CHAPTER 14: Tables in WatchKit

Implementing the Navigation
There are two ways of implementing the push navigation between the two controllers:

	Adding a push segue in Interface Builder

	Extending the didSelectRowAtIndex: function in the interface controller class

The two approaches are identical in terms of end results, but have different implementations.

Adding a Push Segue
Adding a push seque has two steps:

	Adding the seque itself

	Optionally, implementing the contextForSegueWithIdentifier:inTable:
rowIndex: function in order to pass a data object to the next screen. In
most cases, you’ll want to do this in order to pass the object to be
displayed on the next screen.

Tip If you set up navigation using a push segue, the didSelectRowAtIndex function won’t be
called; you need to use the prepareForSegue function instead.

Adding a segue is simplicity itself. In the Storyboard, select the row that will trigger the
navigation and Ctrl-drag down to the Detail Interface scene, as shown in Figure 14-26.

446 CHAPTER 14: Tables in WatchKit

When you release the mouse button, the Selection Segue HUD will pop up: select the Push
option from the HUD, and the segue will be added, as shown in Figure 14-27.

Figure 14-26. Adding the seque

447CHAPTER 14: Tables in WatchKit

Finally, you need to add an identifier to the segue so that it can be identified in the
contextForSegueWithIdentifier function. Highlight the segue in Interface Builder, switch
to the Attributes Inspector, and add the segue identifier string in the field, as shown in
Figure 14-28.

Figure 14-27. The added segue

448 CHAPTER 14: Tables in WatchKit

If you run the app now, you’ll see that the detail screen is pushed in when you tap on a row,
and popped back if you tap on the back chevron at the top left of the screen (shown in
Figure 14-29).

Figure 14-28. Adding the segue identifier string in the field

449CHAPTER 14: Tables in WatchKit

Now add the contextForSegueWithIdentifier:table:rowIndex: function to the
InterfaceController class. This is shown in Listing 14-8.

Listing 14-8. The contextForSegueWithIdentifier:table:rowIndex: Function

override func contextForSegueWithIdentifier(segueIdentifier: String,
 inTable table: WKInterfaceTable, rowIndex: Int) -> AnyObject? {

 if segueIdentifier == "PushDetailScreenSegue" {
 return dataArray[rowIndex - 1]
 }

 return nil

}

This will return the name from the data array at the index corresponding to the selected row,
and pass it to the DetailInterfaceController in the context. Note that you’re subtracting 1
from the rowIndex that’s passed into the function, to compensate for the fact that the first
row of the table is actually the header row.

The context can be any object that will be used by the detail interface controller so will have
a type of AnyObject.

Figure 14-29. Pushing and popping between screens

450 CHAPTER 14: Tables in WatchKit

Here, you’re creating a dictionary containing the name of the person at the selected row.
Now let’s update the controller to use this.

In the DetailInterfaceController class, add an outlet for a WKInterfaceLabel called
nameLabel:

@IBOutlet var nameLabel: WKInterfaceLabel!

Then switch back to Interface Builder, and add a WKInterfaceLabel object to the
DetailInterfaceController, as shown in Figure 14-30.

Figure 14-30. The label

Set the label’s Lines property to 0 so that it will automatically wrap the content. Finally,
connect the outlet to the control by dragging and dropping in Interface Builder.

451CHAPTER 14: Tables in WatchKit

With the control connected, you can update the DetailInterfaceController class to use the
context object that will be passed to it from the InterfaceController.

When the detail interface is loaded, it will call the awakeWithContext: function. The context
object is passed in as a parameter, so it’s here that you can use the contents of the
dictionary that you created earlier.

Listing 14-9 shows the awakeWithContext: function.

Listing 14-9. The awakeWithContext Function

override func awakeWithContext(context: AnyObject?) {
 super.awakeWithContext(context)

 if let selectedName = context as? String {
 nameLabel.setText("You selected the row for \(selectedName)")
 }

}

If you run the app now and tap on a row, you’ll see the detail interface pushed in and
updated with the name of the person in the row that you tapped, as shown in Figure 14-31.

Figure 14-31. The detail view

This is a very simplistic implementation, but the context object allows you to pass
information between controllers to build up a drill-down style navigation journey.

452 CHAPTER 14: Tables in WatchKit

Adding Navigation in Code
In the previous section, you saw how to implement a navigation flow using Storyboards and
segues. You can also create the same end results by using code instead.

Instead of linking the two Storyboard scenes with a segue, you can rely on the
didSelectRowAtIndex function, and trigger the push of the detail controller with the
pushControllerWithName:context: function.

Listing 14-10 shows the updated didSelectRowAtIndex: function.

Listing 14-10. Pushing the Detail Controller in Code

override func table(table: WKInterfaceTable, didSelectRowAtIndex rowIndex: Int) {

 for index in 0..<dataArray.count {

 var contactRow: ContactRowController =
 watchTable.rowControllerAtIndex(index+1) as! ContactRowController

 contactRow.nameLabel!.setTextColor(UIColor.whiteColor())

 }

 let selectedRow: ContactRowController =
 watchTable.rowControllerAtIndex(rowIndex) as! ContactRowController

 selectedRow.nameLabel.setTextColor(UIColor.redColor())

 let contextDictionary = ["selectedName" : dataArray[rowIndex - 1]]

 self.pushControllerWithName("DetailInterface", context: contextDictionary)

}

Here you’re using the pushControllerWithName:context: function to perform the navigation.
It relies on the detail controller having its identifier set in the Attributes Inspector.
Figure 14-32 shows this for the DetailInterface scene.

453CHAPTER 14: Tables in WatchKit

Summary
In this chapter, you learned how to create, configure, and use the table control that forms
part of WatchKit.

WatchKit is designed for the small, low-powered Apple Watch, so the WKInterfaceTable
control is much less powerful than UITableView, but nonetheless, it can be used to present
table-based information and act as a navigation interface.

Figure 14-32. Setting the Interface controller’s identifier

455

Chapter 15
Collection View Flow Layouts
In this chapter, you’ll look at one of the most useful components of the UICollectionView
family, the flow layout. The flow layout allows you to build collection views containing rows
or columns of items with very little effort, but also provides some fine-grained control over
various attributes to allow you to fine tune its appearance.

The sample application code for this chapter implements a flow-based layout to illustrate
many of its features and to provide a template that you can adapt for your own purposes.

About Flow Layouts
A layout consisting of rows or columns of items is a very common user interface design.
It’s a staple of apps ranging from galleries to bookshelves. Some examples are shown in
Figures 15-1 through 15-3.

456 CHAPTER 15: Collection View Flow Layouts

Figure 15-1. A flow layout in action on an iPhone 6

457CHAPTER 15: Collection View Flow Layouts

Figure 15-3. A highly customized flow layout in the Artsy app

Figure 15-2. A simple flow layout in action in iBooks

458 CHAPTER 15: Collection View Flow Layouts

Although grid-style layouts can appear visually simple, when you consider the calculations
that are involved in figuring out aspects such as spacing of items, or where to wrap each
line, things get complex very quickly.

Fortunately, Apple recognized this and ships UICollectionView with a “canned” layout that
makes it very easy to create line-based interfaces. UICollectionViewFlowLayout can be used
to whip up grid layouts with very little configuration, but it allows a degree of customization
that allows you to create very sophisticated interfaces with a minimum of code.

The Characteristics of a Flow Layout
You can think of a flow layout as being like a sentence where words are arranged in rows
from one side to the other, and when the row reaches the side of the page, the line “wraps”
down to the next one.

In iOS terms, the page corresponds to the collection view’s bounds, and the words are
analogous to the collection view items. Each line of words corresponds to a collection view
row. See Figure 15-4.

Figure 15-4. How flow layouts operate

The analogy can be taken still further: flow layouts can be broken into sections, with headers
and footers, just as pages can be divided up into paragraphs with headings. And just as
individual words have different lengths, so flow layouts can display items of different sizes
(both horizontally and vertically).

459CHAPTER 15: Collection View Flow Layouts

UICollectionViewFlowLayout
A UICollectionViewFlowLayout is a concrete subclass of UICollectionViewLayout that
adds a number of attributes to control the flow of items. It handles most of the calculations
involved in figuring out item and line spacing, together with line wrapping.

Attributes that you can control are the following:

	The scroll direction (vertically or horizontally relative to the
collection view)

	Line and item spacing

	Item sizing

	Header and footer sizing

	Section insets

Once you’ve provided those values, the flow layout handles all the calculations involved in
figuring out how to position and space items, and when to break lines in order to fit all the
items neatly into the space available.

The size and spacing attributes of UICollectionViewFlowLayout apply globally to all items,
headers, footers, and sections, which is useful if the collection view’s items will be constant
sizes. If you need to display items with varying sizes, you need to implement an optional
delegate object that conforms to the UICollectionViewDelegateFlowLayout protocol.

The flow layout’s delegate object provides fine-grain control over the size of items, section
spacing, and the sizing of headers and footers. This is useful if your items will vary in size, such
as if you’re building a gallery that will display thumbnail images of different heights or widths.

The functions of the delegate protocol are all optional, so you do not need to implement
them unless you need to control the attribute in question.

Creating and Configuring Flow Layouts
You can create UICollectionViewFlowLayouts in code or in Interface Builder. Regardless of
which approach you take, there are six steps involved.

	Create an instance of UICollectionViewFlowLayout.

	Assign the flow layout to the collection view that will use it.

	Provide values for the height and width of the cells if the cells will all
be the same size. If your layout will have different sizes, you’ll need to
implement the collection view delegate’s collectionView(_:layout:size
ForItemAtIndexPath:) function.

	If required, set values for the item and line spacing (or implement the
delegate functions if they will vary).

460 CHAPTER 15: Collection View Flow Layouts

	Optionally, specify sizes for the section headers and footers (again
implementing the delegate functions for sizes that will vary).

	Set the layout’s direction of scrolling (either vertically or horizontally
relative to the collection view itself).

Instantiating a Flow Layout
To instantiate a flow layout, you have two options:

	Create and configure the flow layout in code.

	Configure the flow layout in Interface Builder.

Creating and Configuring a Flow Layout in Code
Creating a flow layout in code has two basic steps:

	Instantiating a flow layout object

	Setting this as the collection view’s layout

Once the flow layout is created and attached to the collection view, you have two options:

	Set the flow layout’s properties directly if all configurable values will be
static for the lifetime of the collection view, or

	Implement the relevant UICollectionViewDelegateFlowLayout functions
to dynamically configure the flow layout’s properties.

Creating the Flow Layout
Creating a flow layout object isn’t difficult. If the values will be static, then you don’t need to
create a property for it:

let flowLayout = UICollectionViewFlowLayout()

If the values will be set by UICollectionViewDelegateFlowLayout functions, you need to
declare a property before instantiating it, so that the delegate functions will have a reference
available:

let flowLayout = UICollectionViewFlowLayout()

Setting the Collection View’s Layout
Once there’s an instantiated flow layout, the next step is to set this as the collection view’s
layout. Assuming that you have a collection view called myCollectionView and a flow layout
called flowLayout, you would do this with

myCollectionView.collectionViewLayout = flowLayout

461CHAPTER 15: Collection View Flow Layouts

It’s possible to change a collection view’s layout at runtime, although this will cause the
items to be reloaded.

Configuring Static Flow Layout Values
If the items in your collection view will all have the same size, then you can set the flow
layout attributes globally. For example,

flowLayout.scrollDirection =.Vertical
flowLayout.itemSize = CGSizeMake(200, 100)
flowLayout.minimumInteritemSpacing = 10.0
flowLayout.minimumLineSpacing = 10.0
flowLayout.sectionInset = UIEdgeInsetsMake(25.0, 25.0, 25.0, 25.0)

Details of the various flow layout attributes that you can control are shown in the
following sections.

Configuring Flow Layout Values Dynamically
If elements such as items, headers, or footers will be updated dynamically in response to
the data model, then you can’t set attributes relating to dynamic item properties directly.
Instead, you’ll need to create an object to act as the flow layout’s delegate, and implement
the relevant UICollectionViewDelegateFlowLayout function(s). This is covered in detail in the
next section.

Configuring a Flow Layout in Interface Builder
When you drag a collection view or collection view controller out into a Storyboard or XIB, it
comes with a UICollectionViewFlowLayout attached, as shown in Figure 15-5.

462 CHAPTER 15: Collection View Flow Layouts

Figure 15-5. The flow layout attached to the collection view

Selecting this allows you to set the following basic properties statically for all items in the
collection view:

	The scroll direction, which is found in the Attributes inspector, as shown
in Figure 15-6.

Figure 15-6. Setting the scroll direction

463CHAPTER 15: Collection View Flow Layouts

Figure 15-7. Setting sizes

	Cell size and spacing, and header and footer sizes. These are found in
the Size inspector, shown in Figure 15-7.

If you need to set these values dynamically, you need connect the flow layout to an outlet in
your controller and manage the values in code.

To do this, first create an outlet for the flow layout:

@IBOutlet var flowLayout: UICollectionViewFlowLayout!

Then connect the outlet with the flow layout object in Interface Builder.

Once connected, you can set the values from within the controller, like so:

flowLayout.itemSize = CGSizeMake(100, 100)
flowLayout.scrollDirection = .Vertical

Customizing Flow Layouts
Despite implementing all the heavy lifting of figuring out where line breaks should occur,
UICollectionViewFlowLayout still allows for a high degree of customization within the
constraints of a line-based layout.

The attributes of UICollectionViewFlowLayout that you can customize are shown in
Figure 15-8.

464 CHAPTER 15: Collection View Flow Layouts

Figure 15-8. The UICollectionViewFlowLayout attributes

The attributes can be customised though a mix of directly setting the property
of the UICollectionViewFlowLayout object or by implementing the appropriate
UICollectionViewDelegateFlowLayout function.

Customizing with Attributes
The following attributes can be customized by directly setting the properties of the
UICollectionViewFlowLayout object, such as

collectionView.scrollingDirection = .Vertical

465CHAPTER 15: Collection View Flow Layouts

Property Value Effect

scrollDirection UICollectionViewScrollDirection.Vertical Forces the collection view to
scroll vertically and arrange
lines of items horizontally

UICollectionViewScrollDirection.Horizontal Forces the collection view to
scroll horizontally and
arrange lines of items vertically

Item Size
Item size determines the width and height of each collection view cell, regardless of the
intrinsic size of the cell contents. If left unset, it will default to (50.0, 50.0).

If the UICollectionViewDelegateFlowLayout collectionView:layout:sizeForItemAtIndexP
ath: function is implemented, this will override any item size value that is set directly on the
flow layout object.

Property Value Effect

itemSize CGSize Sets the size and width of each collection view item

Figure 15-9. Scroll direction

Scrolling Direction
Scrolling direction determines whether collection view scrolls vertically or horizontally. The lines
of items are laid out perpendicularly to the direction of scrolling, as shown in Figure 15-9.

466 CHAPTER 15: Collection View Flow Layouts

Estimated Item Size
If you implement per-item sizing, this imposes an additional processing load on the
UICollectionViewDataSource object. It is now responsible for calculating the size of every
item on demand.

Although that doesn’t sound like such a big deal for the fast processors in iOS devices,
bear in mind that for good scrolling performance, you need to get as close as possible to
rendering the views at 60 frames per second.

That means that all the calculations required to draw the visible elements of the collection
view have to complete in around 15 milliseconds. This includes everything from retrieving the
data from the model and setting up the cell controls, to calculating the size and positioning
of all elements on the screen.

To make matters harder, that calculation process also includes figuring out the total height of
the collection view’s content area, which means calculating the size of every cell in the entire
collection view, not just the visible area. It follows, then, that anything you can do to help the
collection view with the process will speed things up.

One way to do this is to provide an estimated item size, a hint about the likely size of
the items. If an estimated item size is set, then the collection view will assume that this
is the size of all cells that are not currently visible and not bother to calculate their sizes
individually. This can have a dramatic effect on collection view performance.

Property Value Effect

estimatedItemSize CGSize Sets an estimated item size, which will be used for calculations
involving cells that are not currently visible

Item Spacing
When laying out the collection view’s items, the flow layout uses the width of the collection
view’s bounds and the width of the collection view items to calculate the spacing between
each item.

The minimumInteritemSpacing property sets the lower limit on the spacing between items.
The collection view will not fit additional items onto a line if it would mean the spacing
between each item falls below this value. Left undefined, this value defaults to 10.0 points
(see Figure 15-10).

467CHAPTER 15: Collection View Flow Layouts

This spacing is applied perpendicularly to the collection view’s scroll direction. In other
words, if the collection view scrolls vertically, the minimum interitem spacing attribute
controls the horizontal space between items, and vice versa for a horizontally-scrolling
collection view.

If the UICollectionViewDelegateFlowLayout collectionView:layout:minimumInteritem
SpacingForSectionAtIndex: function is implemented, this will override any interitem spacing
value that is set directly on the flow layout object.

Property Value Effect

minimumInteritemSpacing CGFloat Sets the minimum spacing allowed between each item in
the section.

Line Spacing
The flow layout uses its lineSpacing attribute to control the minimum amount of space
between the bottom of the item in an upper line and the top of an item in the line below.

The actual value will depend on the height of the tallest item on each line, but is guaranteed
not to fall below the value you set for this attribute (see Figure 15-11).

Figure 15-10. Minimum interitem spacing

468 CHAPTER 15: Collection View Flow Layouts

Note that the default behavior of UICollectionViewFlowLayout is to vertically center all
items in the row; if you want to change this behavior, you need to create a subclass of
UICollectionViewFlowLayout and override it.

If the collection view’s scroll direction is vertical, this attribute controls the vertical spacing
between lines. If the scroll direction is horizontal, this attribute controls the horizontal spacing.

Note that this doesn’t affect the spacing between the bottom of the header and the top of
the first row in the section, or the spacing between the bottom of the last row and the top of
the footer. These values are controlled by the sectionInset property.

Property Value Effect

minimumLineSpacing CGFloat Sets the minimum spacing allowed between each line in the section.

Section Insets
Section insets control the amount of horizontal space between the frame of the collection
view and the items, as shown in Figure 15-12.

Figure 15-11. Minimum line spacing

469CHAPTER 15: Collection View Flow Layouts

It also controls the spacing between the header and footer views (if present) and the items
between the bottom of the header view and the top of the first row, and the bottom of the
last row and the top of the footer view.

Property Value Effect

sectionInset UIEdgeInset Sets the spacing between items and collection view frame, and
between header/footer and rows

Supplementary View Sizes
The two supplementary view size attributes control the size of the section’s header and
footer views. Setting these values fixes the header and footer sizes for all sections; if the
headers and footers need to vary in size per section, you have to implement the collection
View:layout:referenceSizeForHeaderInSection: function.

One important caveat to note is that the collection view will only apply the attribute that
applies in the scroll direction, as shown in Figure 15-13.

Figure 15-12. Section insets

470 CHAPTER 15: Collection View Flow Layouts

Property Value Effect

headerReferenceSize CGSize Sets the size of the header view; the attribute perpendicular to
the scroll direction is ignored.

footerReferenceSize CGSize Sets the size of the footer view; the attribute perpendicular to
the scroll direction is ignored.

Customizing with UICollectionViewDelegateFlowLayout
Setting the attributes of UICollectionViewFlowLayout directly has a “global” effect. If you
set the item size to 100 points wide by 200 points high, for example, then all cells will be
displayed with this size.

The same process also applies to insets, line spacing, headers, and footers for each section.
Set these values globally at the flow layout level, and all sections will use the same values.

If you want to vary these values (per-item for cells, and per-section for the other attributes),
then you can provide the UICollectionViewFlowLayout with a delegate object that handles
these calculations on its behalf. The UICollectionViewDelegateFlowLayout is the protocol
that defines the optional functions required to calculate these values on-demand.

There are six optional functions declared by UICollectionViewDelegateFlowLayout, and
each one takes a parameter for the UICollectionView and UICollectionViewFlowLayout.
This means you can implement a single delegate object that can work with multiple
collection views and/or flow layouts.

Figure 15-13. Applying supplementary view size attributes relative to scroll direction

471CHAPTER 15: Collection View Flow Layouts

Controlling Item Size
Item size is controlled by the collectionView(_:layout:sizeForItemAtIndexPath:) function.

Parameters
It takes three parameters for the collection view and layout objects, and the index path.

Parameter Type Purpose

collectionView UICollectionView A reference to the collection view that the delegate
is dealing with. This enables a single delegate
object to support multiple collection views.

Layout UICollectionViewFlowLayout A reference to the collection view flow layout that
the delegate is dealing with. This enables a single
delegate object to support multiple flow layouts.

indexPath NSIndexPath Identifies the section and item for which the
calculation should be performed.

Return Values
It returns the item size:

Return value Type Purpose

Item size CGSize The calculated size of the item at the specified index path

Example
Listing 15-1 shows an example implementation of the
collectionView(_:layout:sizeForItemAtIndexPath:) function.

Listing 15-1. An Example sizeForItemAtIndexPath: Function

func collectionView(collectionView: UICollectionView, layout
 collectionViewLayout: UICollectionViewLayout, sizeForItemAtIndexPath
 indexPath: NSIndexPath) -> CGSize {

 // Get the dictionary for this suit
 let suitDictionary = suitsArray[indexPath.section]

 // Get the array of cards in this suit
 let cardsArray = suitDictionary["cards"]

 // Get the dictionary for this card
 let cardDictionary: NSDictionary = cardsArray[indexPath.row] as! Dictionary

472 CHAPTER 15: Collection View Flow Layouts

 // Get the name of the card's image
 let cardImageName = cardDictionary["cardImage"] as! String

 // Load the image for this card
 let cardImage: UIImage? = UIImage(named: cardImageName)

 if let unwrappedCardImage = cardImage {
 // If the image was loaded successfully, return its size
 return unwrappedCardImage.size
 }

 // There was a problem finding the image, so return a zero size
 return CGSizeZero

 }

Managing Section Spacing
The UICollectionViewDelegateFlowLayout protocol defines three optional functions for
controlling section spacing:

collectionView(_:layout:insetForSectionAtIndex:)
This function takes parameters for the collection view and flow layout, and the index of the
section for which the insets should be calculated.

Parameter Type Purpose

collectionView UICollectionView A reference to the collection view that the delegate
is dealing with. This enables a single delegate
object to support multiple collection views.

Layout UICollectionViewFlowLayout A reference to the collection view flow layout that
the delegate is dealing with. This enables a single
delegate object to support multiple flow layouts.

Index Int Identifies the section for which the calculation
should be performed.

It returns a UIEdgeInsets struct:

Return value Type Purpose

Insets UIEdgeInsets CGFloat values for top, left, bottom, and left insets. Positive values
inset the items relative to the collection view’s frame; negative
values outset the items.

473CHAPTER 15: Collection View Flow Layouts

collectionView(_:layout:minimumLineSpacingForSectionAtIndex:)
This function takes parameters for the collection view and flow layout, and the index of the
section for which the minimum line spacing should be calculated.

Parameter Type Purpose

collectionView UICollectionView A reference to the collection view that the delegate
is dealing with. This enables a single delegate
object to support multiple collection views.

Layout UICollectionViewFlowLayout A reference to the collection view flow layout that
the delegate is dealing with. This enables a single
delegate object to support multiple flow layouts.

Index Int Identifies the section for which the calculation
should be performed.

It returns a CGFloat:

Return value Type Purpose

Minimum line
spacing

CGFloat A CGFloat value for the minimum line spacing of rows of items. Items
will never positioned closer together than this value, although they can
be further apart depending on their vertical (or horizontal) alignment.

collectionView(_:layout:minimumInteritemSpacingForSectionAtIndex:)
This function takes parameters for the collection view and flow layout, and the index of the
section for which the minimum interitem spacing should be calculated.

Parameter Type Purpose

collectionView UICollectionView A reference to the collection view that the delegate
is dealing with. This enables a single delegate
object to support multiple collection views.

layout UICollectionViewFlowLayout A reference to the collection view flow layout that
the delegate is dealing with. This enables a single
delegate object to support multiple flow layouts.

index Int Identifies the section for which the calculation
should be performed.

474 CHAPTER 15: Collection View Flow Layouts

It returns a CGFLoat:

Return value Type Purpose

Minimum interitem spacing CGFloat A CGFloat values for the minimum interitem spacing
of items in rows. Items will never be positioned closer
together than this value, although they can be further apart
depending on their vertical (or horizontal) alignment.

Managing Header and Footer Sizes
The UICollectionViewDelegateFlowLayout protocol defines two optional functions for
controlling header and footer sizes:

collectionView(_:layout:referenceSizeForHeaderInSection:)
This function takes parameters for the collection view and flow layout, and the index of the
section for which the header size should be calculated.

Parameter Type Purpose

collectionView UICollectionView A reference to the collection view that the delegate
is dealing with. This enables a single delegate
object to support multiple collection views.

layout UICollectionViewFlowLayout A reference to the collection view flow layout that
the delegate is dealing with. This enables a single
delegate object to support multiple flow layouts.

index Int Identifies the section for which the calculation
should be performed.

It returns a CGSize struct:

Return value Type Purpose

Header size CGSize The size of the header for this section.

475CHAPTER 15: Collection View Flow Layouts

collectionView(_:layout:referenceSizeForFooterInSection:)
This function takes parameters for the collection view and flow layout, and the index of the
section for which the footer size should be calculated.

Parameter Type Purpose

collectionView UICollectionView A reference to the collection view that the delegate
is dealing with. This enables a single delegate
object to support multiple collection views.

layout UICollectionViewFlowLayout A reference to the collection view flow layout
that the delegate is dealing with. This enables a
single delegate object to support multiple flow
layouts.

index Int Identifies the section for which the calculation
should be performed.

It returns a CGSize struct:

Return value Type Purpose

Footer size CGSize The size of the footer for this section.

Subclassing UICollectionViewFlowLayout
Used in conjunction with a UICollectionViewDelegateFlowLayout delegate, you can apply
fine-grained control to a line-based collection view without needing to implement the heavy
lifting involved in calculating line layouts.

Sometimes, though, you need to be able to customize the layout still further. In these
situations, you can still benefit from the behind-the-scenes calculations of the flow
layout, but implement further customizations, by creating a custom subclass of
UICollectionViewFlowLayout.

There are several scenarios where you might want to do this:

	You want to control layout attributes for items.

	You want to add custom layout attributes to items.

	You want to add new supplementary and/or decoration views.

	You want greater control over item insertion or deletion animations.

The process for subclassing UICollectionViewFlowLayout is identical to that for creating
custom layouts; this is covered in detail in Chapter 16.

http://dx.doi.org/10.1007/978-1-4842-1242-4_16

476 CHAPTER 15: Collection View Flow Layouts

Controlling Item Layout Attributes
Controlling layout attributes allows you to update values such as the item’s frame, bounds,
position, transform, z-index, and alpha properties.

You need to implement the flow layout’s layoutAttributesForElementsInRect: function to
override the desired attributes. Bear in mind that UICollectionViewFlowLayout normally figures
out the positioning of items for you, so updating these may result in unexpected results!

Adding Additional Custom Layout Attributes to Items
UICollectionView doesn’t restrict you to just the “standard” item layout attributes.
If needed, you can define your own. This involves creating custom subclasses of
UICollectionViewLayoutAttributes (you’ll look at this in Chapter 16).

Once you have a custom layout attributes class, you need to override
UICollectionViewLayout’s layoutAttributesClass function to return your custom attributes
class instead of the default.

Then, using layoutAttributesForElementsInRect:, you can apply the custom attributes to
items as required.

Adding New Supplementary Views
By default, UICollectionViewFlowLayout doesn’t support decoration views. If you want to
add additional supplementary and decoration views, you need to implement four functions:

	layoutAttributesForElementsInRect:

	layoutAttributesForItemAtIndexPath:

	layoutAttributesForSupplementaryViewOfKind:atIndexPath:

	layoutAttributesForDecorationViewOfKind:atIndexPath:

Controlling Insertion and Deletion Animations
The default insertion and deletion animation is a simple fade, but you can change these if
you want.

Creating new insertion effects is achieved by tweaking the item attributes when appearing
using one of these functions:

	initialLayoutAttributesForAppearingItemAtIndexPath:

	initialLayoutAttributesForAppearingSupplementaryElementOfKind:

atIndexPath:

	initialLayoutAttributesForAppearingDecorationElementOfKind:

atIndexPath:

http://dx.doi.org/10.1007/978-1-4842-1242-4_16

477CHAPTER 15: Collection View Flow Layouts

New deletion effects are obtainable using the corresponding removal functions:

	finalLayoutAttributesForDisappearingItemAtIndexPath:

	finalLayoutAttributesForDisappearingSupplementaryElementOf

Kind:atIndexPath:

	finalLayoutAttributesForDisappearingDecorationElementOf

Kind:atIndexPath:

Summary
In this chapter, you looked at one of the most useful parts of the UICollectionView family,
and you saw how it can allow you to rapidly create line-breaking layouts with a minimum of
configuration or code.

It’s also possible to get fine-grained control over many attributes of the layout by
implementing the UICollectionViewDelegateFlowLayout delegate functions, or go further by
subclassing to customize even more.

In the next chapter, you’ll take things further by implementing completely custom
layouts, many aspects of which are also relevant to creating fully-customized
UICollectionViewFlow layouts.

479

Chapter 16
Collection View Custom Layouts
Custom UICollectionView layouts allow you to take complete control over every aspect
of the look and feel of the collection view, and produce spectacular effects with visual
appearance and transitions. The downside to this is that you’re responsible for calculating
every aspect, so custom layouts are more complex to implement than flow layouts.

Don’t let that put you off, however. Custom layouts aren’t that complex to implement, and
the results are often worth the extra effort!

This chapter covers the process of creating custom layouts for UICollectionView. In the first
part of the chapter, I’ll introduce the processes that are involved in calculating the various
layout attributes that are required. Next, you’ll look in detail at the functions necessary to
create a completely custom layout.

In the next chapter, you’ll look at custom layouts in even more detail, using supplementary
and decoration views, animating simple layout changes, and creating complex custom
layout transitions.

The kind of custom layout you need to create is of course entirely dependent on the nature
of your projects, so it’s impossible to cover every combination in a book of a finite length.
To put what you’ll learn in the first section into practice, therefore, in the second part you’ll
work through a layout that is completely different in look and feel to anything you’ve seen
before. Instead of a grid of regular items, you’ll create a working collection view-based
analogue clock.

About Custom Layouts
Collection view layouts have the potential to get complex quickly, so Apple thoughtfully
provided a “canned” layout in the shape of UICollectionViewFlowLayout. This is based
around lines or columns of items, and takes care of the calculations involved in positioning
“line breaks” and spacing items for you. With a bit of judicious subclassing here and there,
you can go a long way without needing to create a layout of your own from scratch.

480 CHAPTER 16: Collection View Custom Layouts

Eventually, though, you’ll come across a situation where your collection view looks nothing
like a line or a grid, or you want to a fine degree of control over customizing attributes. In this
kind of situation, the line-breaking nature of UICollectionViewFlowLayout might not work, so
it becomes time to take complete control and implement a custom layout.

Figure 16-1 shows some possibilities: both apps are collection views, and both apps are
based on exactly the same source data.

Figure 16-1. Before and after

With a custom layout, you’re responsible for all the heavy lifting of figuring out
where each item and view should be placed. As an exercise, reimplementing
UICollectionViewFlowLayout yourself will quickly give you a newfound respect for the
amount of work that went into creating it!

Actually, though, this makes the task of creating custom layouts sound harder than it
really is. There’s a very clearly defined process that you’ll work through to perform these
calculations, so with a bit of practice you’ll find that you can create sophisticated-looking
layouts very quickly.

The process of creating a custom layout has six steps, two of which are optional:

	Create a custom subclass of UICollectionViewLayout.

	Decide whether your layout needs to compute the attributes of each
item on the fly, or whether it can do this en masse.

	Implement the four core functions to calculate the placement of each
item in the collection view.

481CHAPTER 16: Collection View Custom Layouts

	Optionally, implement custom subclasses of
UICollectionViewLayoutAttributes to customize additional attributes of
cells and views.

	Optionally, implement the supporting functions for things like
supplementary and decoration views, and animated insertion and
deletion of items.

	Create a new instance of your custom UICollectionViewLayout subclass
and set it as the collection view’s collectionViewLayout property.

With those steps in place, the collection view will interact with your custom collection view
layout in exactly the same way as it would with a UICollectionViewFlowLayout, with the
difference that you have complete control over the placement of all elements.

When to Create a Custom Collection View Layout
The question of when to create a custom collection view layout instead of relying
on a flow layout is a tricky one. There’s a trade-off between the convenience of
UICollectionViewFlowLayout’s calculations and the amount of work involved in getting it to
provide the effect that you’re after.

As a rule of thumb, if your intended layout doesn’t have a recognizable row-and-column feel
to it, then a custom layout is probably going to be easier to implement in the long run.

Creating a Custom Layout Subclass
Your collection view expects a layout that is a subclass of UICollectionViewLayout. This
is an abstract class that can’t be implemented as-is in the way that you could, say, a
UICollectionView itself. Instead, you have to create a subclass and implement the functions.

You can do this on the fly in your view controller, but it’s more common to create a separate
UICollectionViewLayout subclass.

Deciding When to Calculate Attributes
The collection view itself doesn’t care when the layout attributes are calculated; all that
matters is that they can be returned by the layout on demand when the collection asks
for them. Because the collection view will call layoutAttributesForItemsInRect: and
layoutAttributesForItemAtIndexPath:, you could calculate the attributes on the fly.
However, this might not be necessary.

If your layout is highly dynamic (it can scroll, or perhaps there are many items that will
change presence, size, or location), then you will most likely have to calculate layout
attributes when the collection view calls for them.

482 CHAPTER 16: Collection View Custom Layouts

If, on the other hand, you’ve got a layout that’s largely static, another option might be to
calculate the layout attributes up front in the prepareLayout function, and then simply return
the pre-calculated values in response to layoutAttributesForItemsInRect:.

Which approach to take is a balance between the effort involved in the calculations and the
frequency of updates. There’s no obviously right answer, unfortunately, other than to bear in
mind the saying “premature optimization is the root of all evil.”

What the Custom Layout Does
The custom layout has three main tasks that it carries out on behalf of the collection view.
These are

	Calculating the size of the collection view’s content area, that is,
how large the scrolling content area will be, based on the size and
position attributes for each item that the collection view will display.

	Calculating the layout attributes for the item at each index path.

	Returning an array of layout attributes for the items in a given area of
the collection view’s content area.

What Are Layout Attributes?
With all this talk of layout attributes, what exactly are they?

The UICollectionViewLayoutAttributes class defines a series of layout-related attributes
that can be applied to a collection view item (or supplementary or decoration view) to
customize the way in which it is displayed.

The class defines a number of “standard” attributes, but if these aren’t sufficient you can
create a subclass of UICollectionViewLayoutAttributes and create your own as required.

The standard attributes provided are

	frame, which determines where the item will be displayed within the
collection view. Changing this attribute also sets the item’s center and
size properties.

	bounds, which determines the bounds rectangle of the item relative to
its own coordinate system. Changing this attribute will also change the
size property.

	center, which locates the center of the item relative to the collection
view. Changing this attribute will also update the frame property.

	size, which determines the size of the item. Changing this attribute will
also cause the frame and bounds properties to be updated.

	transform3D, which allows the item to be transformed in the x, y, and z
planes to create 3D effects. Changing this attribute will also update the
transform property.

483CHAPTER 16: Collection View Custom Layouts

	transform, which allows the item to be transformed in the x and/or y
planes to get scale or skew effects. Changing this attribute will also
update the transform3D property.

	alpha, which controls the transparency of the item. By default, the item
is totally non-transparent with an alpha value of 1. Setting the alpha
value to 0 will make the item appear to vanish; setting it somewhere
between 1 and 0 will provide varying degrees of transparency. Note that
this isn’t the same as setting the hidden property to YES, as items with
an alpha property of 0 will always be created by the collection view.

	zIndex, which determines whether the item is displayed “above” or
“below” other items in the collection view. By manipulating the zIndex
for each item, you can get the appearance of items “stacking” or
overlapping. The higher the number, the closer to the “front” or “top” the
item will be.

	hidden, which controls the overall appearance of the item. If this is set
to YES or true, the item won’t be displayed. Note that this isn’t the same
as setting the alpha attribute to 0, because the collection view may
self-optimize and choose not to create items with hidden set to YES.

Custom Layout Attributes
If the standard set of layout attributes doesn’t give you the level of control that you need,
you can create your own custom attributes. These can control any other aspect of the item’s
visual appearance (text color, font, or orientation, for example), although the possibilities are
more or less limitless.

You can extend the standard attributes by subclassing UICollectionViewLayoutAttributes
and adding your own properties as required. If you do this, there are three additional steps
that you need to implement:

	A custom UICollectionViewLayoutAttributes subclass must conform
to the NSCopying protocol, so that the collection view can copy them as
and when it needs to.

	A custom UICollectionViewLayouAttributes subclass must override the
inherited isEqual: function so that any custom properties are checked.
The collection view won’t apply attributes to an item unless they’ve
changed, so if you’ve implemented your own custom attributes, the
collection view needs a way of determining whether they are the same
or not.

	Any items that have custom attributes applied to them (cells,
supplementary view, or decoration views) must implement the
applyLayoutAttributes: function. This function is where you take the
attribute (say text color, for example) and apply it (in this case, to a
UILabel in the item).

484 CHAPTER 16: Collection View Custom Layouts

The Four Key Functions to Implement
There are four key functions that you need to implement in your custom
UICollectionViewLayout in order to provide the collection view with the layout attributes
it needs:

	func prepareLayout()

	func collectionViewContentSize() -> CGSize

	func layoutAttributesForElementsInRect(_ rect: CGRect) ->

[UICollectionViewLayoutAttributes]?

	func layoutAttributesForItemAtIndexPath(_ indexPath:

NSIndexPath) -> UICollectionViewLayoutAttributes?

Let’s look at each one in turn.

prepareLayout
This function is called when the collection view first asks its layout object for attributes, and
again at any point where the layout is invalidated in response to a bounds change or an
explicit request.

Depending on the specific details of your custom layout, there may be values that it makes
most sense to calculate “globally” for the layout as a whole.

For example, the individual items might get placed relative to the center of the collection
view’s bounds. This center point won’t change unless the bounds of the collection view
change, so prepareLayout is a good place to calculate this and place it in a class property.

If you’ve got a relatively static layout, you could use prepareLayout to calculate all the
attributes for all the items and then store them in a property. If your layout is more dynamic,
however, this might not make sense.

By default, UICollectionViewLayout doesn’t implement prepareLayout, so if there aren’t any
preparations that need to occur, you can simply omit the function completely.

collectionViewContentSize
In order to figure out its scrolling behaviour, the collection view needs to know how big the
content size is going to be; remember that UICollectionView is a subclass of UIScrollView,
and the content view can be larger than the visible area within the collection view’s bounds.

It’s called early in the layout process as the collection view is drawn for the first time, and
then subsequently if the bounds of the collection view change or the invalidateLayout
function is called.

This function is mandatory, so you need to implement code that calculates the maximum size of
the content view for all the items that the collection view will display, and returns it as a CGSize.

485CHAPTER 16: Collection View Custom Layouts

Sometimes all the items will fit within the bounds of the collection view; for example, the
circular example you’ll see later in the chapter places all the items inside the visible area. In
this situation, the content size and the visible area are the same.

However, you always need to bear in mind that collectionViewContentSize is the size
required to display all the items in the collection view, not just the ones that are visible within
the collection view’s bounds.

The reason this value is calculated by the collection view layout rather than the collection
view’s view controller is that it’s the layout that controls the size of the items, and therefore
the size of the content view that’s going to be required.

You also need to be prepared to repeat the process if the bounds of the collection view
change, for example during device rotation.

layoutAttributesForElementsInRect
Once the collection view knows the content size, it can then start asking its layout object for
the attributes that it needs to display the items within a given rectangle.

Sometimes this rectangle will be the same as the collection view’s frame (which is the case
in the circular example later in the chapter).

In other situations, it may be different. A collection view that scrolls is likely to ask its layout
for attributes for items that aren’t actually being displayed yet, but may be scrolled into the
visible area depending on the user’s interaction. By asking for attributes items that aren’t yet
visible, the collection view can attempt to maximize scrolling performance.

In either situation, it’s your layout’s responsibility to do three things:

	Figure out which items appear within the rect that’s provided.

	For each of those items, create a UICollectionViewLayoutAttributes
object and set the attributes so that the item will be correctly placed in
the rectangle that the collection view asked for.

	Return those objects as an NSArray.

The detailed implementation of this is hidden from the collection view. All it is concerned
about is receiving the NSArray containing the UICollectionViewAttributes.

layoutAttributesForItemAtIndexPath
The role of the layoutAttributesForItemAtIndexPath: function is to return the
individual layout attributes for the item at the index path provided as an instance of
UICollectionViewLayoutAttributes. The index path acts as the “key” to link a specific
instance of UICollectionViewLayoutAttributes with a specific cell or view.

This function may or may not get called by the collection view, but it has to be implemented.
layoutAttributesForElementsInRect: is the main function that will be called by the
collection view, but it may need layout attributes on a per-item basis at certain times, for
example during insertion or deletion of items.

486 CHAPTER 16: Collection View Custom Layouts

Note that you shouldn’t use this function to calculate the attributes; this should already have
been done in either prepareLayout or layoutAttributesForElementsInRect. There’s no way
of knowing when the collection view will call this function on its datasource, so it’s possible
that recalculating attributes here may result in their values changing before the collection
view is ready to deal with this. While this probably won’t cause crashes, it has the potential
to create very hard-to-debug layout errors.

If you’ve stored the layout attributes in a property of the layout subclass, for example, you
need to retrieve the attribute with the matching indexPath value and return it.

Supplementary and Decoration View Attributes
Just as the collection view needs to know how to lay out items, so it will also need attributes
to figure out how to lay out supplementary and decoration views.

Whether you need to go through this process will depend on whether your custom layout
utilizes supplementary and decoration views. Clearly, if you’re not using decoration views,
for example, there’s no need to calculate attributes for them. All the supplementary and
decoration view functions are optional.

The process for calculating and returning supplementary and decoration view attributes is
almost identical to that for items, and has three steps:

	Figure out if supplementary and/or decoration views will be found within
the rect supplied to the layoutAttributesForElementsInRect: function.

	If required, calculate their attributes.

	Return their attributes from one of two functions available for the
purpose: layoutAttributesForSupplementaryViewsOfKind:AtIndexPath:
and/or layoutAttributesForDecorationViewOfKind:atIndexPath:.

Checking if Supplementary or Decoration Views Are Required
Supplementary or decoration views may not necessarily appear in the rect for which the
collection is requesting layout attributes; this will depend on the design of your layout, and
the size of the rect requested.

For example, if the rect in question only covers the middle area of a section, the headers
 and footers might not appear within the visible area. Similarly, decoration views may or may
not appear.

Calculating Supplementary and Decoration View Attributes
If supplementary and/or decoration views will appear in the rect, your custom layout is
responsible for calculating the necessary attributes.

As with attributes for items, you have the option of calculating these up front in
prepareLayout, or on demand during layoutAttributesForElementsInRect: The choice is a
balance between expense of calculation and frequency of need.

487CHAPTER 16: Collection View Custom Layouts

Supplementary and decoration views can also be demanded by the collection view at any
time, so you need to implement the two functions available for this:

	layoutAttributesForSupplementaryViewsOfKind:AtIndexPath:

	layoutAttributesForDecorationViewOfKind:atIndexPath:

Both functions take two parameters: the kind of view that’s being requested (for example,
UICollectionElementKindHeader or UICollectionElementKindFooter) and the associated
index path. Just as with items, you shouldn’t use these functions to change the attributes.

The kind and indexPath values enable you to determine which supplementary or decoration
view you’re dealing with.

kind is a string that acts in the same way as a cell identifier. For this reason, you should
define them as constants because they’ll be referred to in the collection view’s controller and
dataSource as well as the layout subclass.

As with cells, indexPath is the means of relating a given instance of
UICollectionViewLayoutAttributes to a supplementary or decoration view at a specific
index path.

Once you’ve retrieved the attributes, you need to return them as instances of
UICollectionViewLayoutAttributes.

This Chapter’s Project
In the rest of this chapter, you will implement a collection view with a custom layout. This
first example will be relatively static, in that the collection view’s frame encompasses the
whole of the content area.

SwiftClock: The “Static” Example
The “static” example is a working analogue clock that displays the current device time,
complete with ticking second hand. It uses a combination of supplementary and decoration
views to display the face and numerals, and cells for hour, minute, and second hands.

Having built a basic layout, you’ll then extend it to add the ability to swap between
different styles of clock faces, and change between time zones. All the changes will be
smoothly animated.

488 CHAPTER 16: Collection View Custom Layouts

The project is iPad-based, with a single view controller containing a UICollectionView that
fills the whole screen, shown in Figure 16-2.

Getting Started
To speed things up, I’ve created a project to act as a starting point. It implements the data
model and displays the twelve numerals in a grid with a basic flow layout. It also includes the
images assets that you’ll use later.

You’ll adapt this to use a custom circular layout by removing the flow layout and
implementing your own custom layout.

There are two reasons for taking this approach. First, it will speed things up by providing all
the collection view “plumbing” for you; and second, it reinforces the point that layouts are
independent of the data that feeds the collection view. You won’t change the initial data–just
the way it’s displayed.

The Initial Project
The initial project can be downloaded from the Apress website as part of this book’s source
code or directly from GitHub (this is more likely to be up-to-date; the latest version will be on
the master branch).

Figure 16-2. The UICollectionView clock

489CHAPTER 16: Collection View Custom Layouts

The initial project is available at

https://github.com/timd/InitialSwiftClock

The final version of the project is available at

https://github.com/timd/SwiftClock

Setup
The initial project is a straightforward collection view running full screen on an iPad. It has
a single view controller, ClockViewController, and a Storyboard that contains a full-screen
UICollectionView object.

To separate the elements controlling the collection view, the ClockViewController
has two extensions: one that implements the UICollectionViewDelegate and
UICollectionViewDataSource functions; and one for custom functions that support the
collection view.

The Data Model
The data model for the collection view lives in a property of the support class, and is an
array that contains two elements:

var dataArray: Array<Array<String>>!

The first element is an array that contains elements for each of the hands, and the second
is an array that contains elements for each of the hours. Figure 16-3 shows how the data
model is arranged as Arrays containing Strings.

https://github.com/timd/InitialSwiftClock
https://github.com/timd/SwiftClock

490 CHAPTER 16: Collection View Custom Layouts

The data model is set up in the setupData() function, which is shown in Listing 16-1.

Listing 16-1. The setupData Function

func setupData() {

 let hoursArray = ["12", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11"]
 let handsArray = ["hours", "minutes", "seconds"]

 dataArray = [handsArray, hoursArray]
}

Note The numbering of the hours array starts from 12. That’s because 12 is the first label that is
displayed at the top of the clock.

Figure 16-3. The data model

491CHAPTER 16: Collection View Custom Layouts

The cell that will contain the clock’s numerals is laid out in a nib file, ClockCell, and
contains a single label that displays the content of the data model for the relevant index
path (shown in Figure 16-4). The label has a tag of 1000 so that it can be accessed by the
UICollectionViewDatasource.

The data model is set up in the setupData() function, which is shown in Listing 16-1.

Listing 16-1. The setupData Function

func setupData() {

 let hoursArray = ["12", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11"]
 let handsArray = ["hours", "minutes", "seconds"]

 dataArray = [handsArray, hoursArray]
}

Note The numbering of the hours array starts from 12. That’s because 12 is the first label that is
displayed at the top of the clock.

Figure 16-4. The hour label cell

At the moment, the collection view is set up to use a simple UICollectionViewFlowLayout
that displays all the elements of the data model in a line, as shown in Figure 16-5. It’s not
pretty, but that doesn’t matter at this stage; the purpose of the initial project is to get things
wired up, ready to adapt to the custom layout.

492 CHAPTER 16: Collection View Custom Layouts

Updating the Project
You’re going to update the project so that the layout is transformed from the hideous flow
layout to a sleek analogue clock. The end result will look like Figure 16-6.

Figure 16-5. The initial state of the project

Figure 16-6. The finished clock

493CHAPTER 16: Collection View Custom Layouts

That’s going to involve three stages:

	Creating a custom layout class to replace the existing flow layout

	Creating new cells to display the clock’s hands

	Switching the collection view over to using the new custom class

The bulk of the work is contained in creating the new custom layout, so let’s get started
with that.

Adding the Custom Layout Class
A custom layout is a subclass of UICollectionViewLayout. Add a new file (File ➤ New ➤ File)
and give the class a name (I’ve called mine ClockLayout). Make it a subclass of
UICollectionViewLayout, as shown in Figure 16-7.

Figure 16-7. Creating a custom class for the layout

494 CHAPTER 16: Collection View Custom Layouts

Setting Up Properties
The position of the hands of the clock will obviously depend on the time, so you need a way of
passing that data around the layout. Create an NSDate property called let clockTime: NSDate!

There are several other properties that will be needed at various points, so you might as well
add them to the class while you’re setting it up. This is shown in Listing 16-2.

Listing 16-2. The Properties of the Class

private var clockTime: NSDate!
private let dateFormatter = NSDateFormatter()

private var timeHours: Int!
private var timeMinutes: Int!
private var timeSeconds: Int!

var minuteHandSize: CGSize!
var secondHandSize: CGSize!
var hourHandSize: CGSize!

private var hourLabelCellSize: CGSize!

private var clockFaceRadius: CGFloat!
private var cvCenter: CGPoint!

var attributesArray = [UICollectionViewLayoutAttributes]()

Working through these,

	The time that the clock displays is stored in the clockTime property.

	An NSDateFormatter is needed to calculate the time in the appropriate
format. Since these are expensive to create, you’ll create one as a class
property and change the date format each time you need to calculate
hours, minutes, or seconds.

	To move the individual hands, you need to calculate the separate hours,
minutes, and seconds.

	The cells will be created outside of the layout, so you need to be able
to pass the size of them into the layout class through the four size
properties.

	The clock face radius is derived from the size of the collection view; as
this is set up externally to the layout, you need to pass this value in.

	The center point of the layout is needed to fix the position of the hands
and the hour labels.

	The calculated attributes are stored in an Array of
UICollectionViewLayoutAttributes.

495CHAPTER 16: Collection View Custom Layouts

How the Custom Layout Will Operate
The custom layout is going to need to be able to calculate layout attributes for four elements:

	The numbers of the clock face, which will be arranged in a circle around
the center.

	The rotation of the cell containing the hour hand, which will be
dependent on the time being displayed. You also need to make an
adjustment to take into account of the number of minutes past the hour,
so that the hour hand moves smoothly during the course of the hour.

	The rotation of the cell containing the minutes hand, which is also
dependent on the time being displayed. This will also be adjusted as the
number of seconds increases.

	The rotation of the second hand.

Let’s break these calculations down into four stages:

	A “master” function called calculateAllAttributes that iterates across
the entire data model and calls the appropriate function to calculate the
attributes for each date item in turn.

	A function called calculateAttributesForItemAtIndexPath that takes
the indexPath for a data item, and calls the appropriate calculation
function depending on the type of item (hour, minute, or second hand) or
hour label.

	A function to calculate the position of the three hand cells:calculate
AttributesForHandCellAtIndexPath:

	A function to calculate the position of the hour labels:
calculateAttributesForHourLabelWithIndexPath:

The overall process will follow the flow shown in Figure 16-8.

496 CHAPTER 16: Collection View Custom Layouts

The rationale for separating out each stage of the calculation is two-fold:

	By breaking down the calculations into individual actions, the functions
become smaller, easier to read, and (if you’re using a test-driven
approach) easier to test.

	Later, you’ll be able to adapt the existing functions to extend the custom
layout to handle different display styles.

Implementing the Layout Functions
As well as the custom functions needed to calculate the placement of the numerals and hands,
there are a number of UICollectionViewLayout functions that you will need to implement.

Let’s start the process of building the custom layout by implementing the following:

	prepareLayout

	collectionViewContentSize

	layoutAttributesForElementsInRect:

	layoutAttributesForItemAtIndexPath:

The prepareLayout Function
As you saw earlier, the prepareLayout function is called when the layout is initialized for the
first time, and then subsequently as the layout is invalidated, either because you’ve called it
explicitly, or when the bounds of the collection view change.

It’s a good place to perform “global” calculations that affect the collection view as a whole.
In this project, it will be called every time you need to update the position of the hands, so
you can use this to calculate the hours, minutes, and seconds that will be displayed.

Listing 16-3 shows the prepareLayout function.

Figure 16-8. The layout process

497CHAPTER 16: Collection View Custom Layouts

Listing 16-3. The prepareLayout Function

override func prepareLayout() {

 cvCenter = CGPointMake(collectionView!.frame.size.width/2,
 collectionView!.frame.size.height/2)

 clockTime = NSDate()

 dateFormatter.dateFormat = "HH"
 let hourString = dateFormatter.stringFromDate(clockTime)
 timeHours = Int(hourString)!

 dateFormatter.dateFormat = "mm"
 let minString = dateFormatter.stringFromDate(clockTime)
 timeMinutes = Int(minString)!

 dateFormatter.dateFormat = "ss"
 let secString = dateFormatter.stringFromDate(clockTime)
 timeSeconds = Int(secString)!

 clockFaceRadius = min(cvCenter.x, cvCenter.y)

 calculateAllAttributes()

}

First, you calculate the center of the collection view and store that in the cvCenter property.
Then you take the current time and extract the hours, minutes, and seconds values by
passing the time property through an NSDateFormatter.

Next, you calculate the radius of the clock face (which is the smaller value of either the
cvCenter’s x or y coordinate) and then finally call the calculateAllAttributes function,
which you’ll create in a moment.

collectionViewContentSize
Because all the elements of the clock are going to be displayed within the visible bounds
of the collection view, the collectionView’s contentSize is going to be the same as the
bounds. This makes the collectionViewContentSize function very easy to implement,
as shown in Listing 16-4.

Listing 16-4. The collectionViewContentSize Function

override func collectionViewContentSize() -> CGSize {
 return collectionView!.frame.size
}

498 CHAPTER 16: Collection View Custom Layouts

layoutAttributesForElementsInRect:
The layoutAttributesForElementsInRect: function has to return an array of attributes for all
the elements that will appear either fully or partially within the given rect.

With a complex layout, you’re responsible for determining whether each element lies within
the rect, so you need to implement something like this for each item:

if CGRectIntersectsRect(item.frame, rect) {
 /*
 the item at least partially appears within the rect,
 so add its attributes to the array that will be returned
 */
}

The clock layout is simpler, though. Because all the elements lie within the collection view’s
bounds, you can return all the attributes that are stored in the attributesArray property.
This is shown in Listing 16-5.

Listing 16-5. The layoutAttributesForElementsInRect: Function

override func layoutAttributesForElementsInRect(rect: CGRect) ->
 [UICollectionViewLayoutAttributes]? {
 return attributesArray
}

layoutAttributesForElementAtIndexPath:
The layoutAttributeForElementAtIndexPath: function can be called by the collection view
at any time, and it’s expected to return a UICollectionViewLayoutAttributes object for the
item at the index path provided.

Often this function will be called during the insertion and deletion process. Because you
can’t guarantee the state that the collection view will be in at the time, it’s important that this
function doesn’t alter the attributes for the item. Instead, it should just return the attributes
that were calculated previously.

To do this, you find the UICollectionViewLayoutAttributes in the attributes array that has
an indexPath property that matches the indexPath supplied by the collection view, and
return it. This is shown in Listing 16-6.

Listing 16-6. The layoutAttributesForElementAtIndexPath: Function

override func layoutAttributesForItemAtIndexPath(indexPath: NSIndexPath) ->
UICollectionViewLayoutAttributes? {

 // return the item from attributesArray with the matching indexPath

 return attributesArray.filter({ (theAttribute) -> Bool in
 theAttribute.indexPath == indexPath
 }).first

}

499CHAPTER 16: Collection View Custom Layouts

Other UICollectionViewLayout Functions
There are three other UICollectionViewLayout functions that form part of the layout process,
but you don’t need to implement them. Two of them are related to supplementary and
decoration views, which you’re not using in this layout.

	layoutAttributesForSupplementaryViewOfKind(_:atIndexPath:)

	layoutAttributesForDecorationViewOfKind(_:atIndexPath:)

The third function controls if the layout should change in response to a bounds change of
the collection view, for example after a rotation event:

	shouldInvalidateLayoutForBoundsChange(_:)

If this function isn’t implemented, the layout will assume that the attributes won’t change.
This is fine for you, so you don’t need to explicitly implement it.

Implementing the Custom Layout Functions
Now that you’ve implemented the main layout functions, you can turn your attention to
the custom functions that will handle the heavy lifting of calculating the attributes for your
custom layout.

It’s worth noting at this point that you’re striking out on your own here. The way in which the
attributes are calculated isn’t defined by any of the UICollectionView protocols. How you go
about this is entirely dependent on the needs of your specific layout, so will vary greatly from
project to project.

As you saw earlier, you’re going to do this in four stages:

	Iterate across the entire data model to call the
calculateAttributesForItemAtIndexPath: function for each item in the
data model with calculateAllAttributes.

	Call the appropriate calculation function depending on the index path
that’s passed in with calculateAttributesForItemAtIndexPath:.

	Calculate the position of the hour labels with
calculateAttributesForHourLabelWithIndexPath:.

	Calculate the position of the three hand cells with
calculateAttributesForHandCellAtIndexPath:.

The position of the hands will depend on the time and their sizes.

You’ve exposed properties for the sizes of the hand and label cells. Although you don’t need
to make these dynamic right now because you’re building a single style of clock face, by
exposing the properties you’d be able to reuse this layout class for other face styles.

500 CHAPTER 16: Collection View Custom Layouts

They need to be declared as properties of the layout:

var minuteHandSize: CGSize!
var secondHandSize: CGSize!
var hourHandSize: CGSize!
var hourLabelCellSize: CGSize!

The calculateAllAttributes Function
This function exists so that you can quickly iterate across the whole of the collection view’s
data model and calculate the attributes for each item.

Recall that items and their attributes are connected by an indexPath property, so it follows
that if you iterate across all indexPaths, you’ll have calculated attributes for each element.

The function to do this is shown in Listing 16-7.

Listing 16-7. The calculateAllAttributes Function

func calculateAllAttributes() {

 for section in 0..<collectionView!.numberOfSections() {

 for item in 0..<collectionView!.numberOfItemsInSection(section) {

 // Create index path for this item
 let indexPath = NSIndexPath(forItem: item, inSection: section)

 // Calculate the attributes
 let attributes = calculateAttributesForItemAt(indexPath)

 // Update or insert the newAttributes into the attributesArray
 if let matchingAttributeIndex = attributesArray.indexOf({ (attributes:
 UICollectionViewLayoutAttributes) -> Bool in
 attributes.indexPath.compare(indexPath) ==
 NSComparisonResult.OrderedSame
 }) {

 // Attribute already existed, therefore replace it
 attributesArray[matchingAttributeIndex] = attributes

 } else {

 // New set of attributes required
 attributesArray.append(attributes)

 }

 }

 }

}

501CHAPTER 16: Collection View Custom Layouts

As you can see, there’s not a huge amount to this.

In this example, the collection view’s data model has two inner arrays inside an outer
array. You iterate across each element of the outer array in turn, and then iterate across the
inner array.

You’re not restricted to using arrays for the data model, of course – any model structure that
allows the section and rows to be determined can be utilized.

For each element of the inner array, you call the calculateAttributesForItemAtIndexPath:
function, which you’ll look at next. This returns an instance of
UICollectionViewLayoutAttributes for the item at this index path.

You then need to check if there are any pre-existing attributes for this indexPath that need
to be updated. If there are, the new attributes replace the old ones in the attributesArray;
if not, the new attributes are appended to those that are already stored.

The calculateAttributesForItemAtIndexPath: Function
The calculateAttributesForItemAtIndexPath: function is called by the
calculateAllAttributes function for each item in turn.

Because you’ve got four different types of items in your collection view (three types of hands
and the hour labels), this function uses the indexPath to decide which kind of item it is.

If it’s a hand cell, it will call calculateAttributesForHandCell(:_), and if it’s an hour label,
it will call calculateAttributesForHourLabelWith(:_). Both functions return a set of
UICollectionViewLayoutAttributes that will get returned. See Listing 16-8.

Listing 16-8. The calculateAttributesForItemAtIndexPath: Function

func calculateAttributesForItemAt(itemPath: NSIndexPath) -> UICollectionViewLayoutAttributes
{

 var newAttributes = UICollectionViewLayoutAttributes(forCellWithIndexPath: itemPath)

 if itemPath.section == 0 {
 newAttributes = calculateAttributesForHandCellAt(itemPath)
 }

 if itemPath.section == 1 {
 newAttributes = calculateAttributesForHourLabelWith(itemPath)
 }

 return newAttributes

}

502 CHAPTER 16: Collection View Custom Layouts

Calculating the Position of the Hour Labels
In your calculateAttributesForIndexPath: function you’re calling a function called
calculateAttributesForHourLabelWithIndexPath:. This is going to lay out the hour labels
around the center of the collection view, one for each element in the data model’s first section.

The full function is shown in Listing 16-9. It takes an NSIndexPath as the hourPath parameter,
and returns an instance of UICollectionViewLayoutAttributes.

Listing 16-9. The calculateAttributesForHourLabelWithIndexPath: Function

func calculateAttributesForHourLabelWith(hourPath: NSIndexPath) ->
UICollectionViewLayoutAttributes {

 let attributes = UICollectionViewLayoutAttributes(forCellWithIndexPath: hourPath)

 attributes.size = CGSizeMake(hourLabelCellSize.width, hourLabelCellSize.height)

 let angularDisplacement: Double = (2 * M_PI) / 12

 let theta = angularDisplacement * Double(hourPath.row)

 let xDisplacement = sin(theta) * Double(clockFaceRadius -
 (attributes.size.width / 2))

 let yDisplacement = cos(theta) * Double(clockFaceRadius -
 (attributes.size.height / 2))

 let xPosition = cvCenter.x + CGFloat(xDisplacement)

 let yPosition = cvCenter.y - CGFloat(yDisplacement)

 let center: CGPoint = CGPointMake(xPosition, yPosition)

 attributes.center = center

 return attributes

}

The attributes that you need to calculate for each hour label are the size and center.

Size isn’t a problem; this is passed into the layout’s hourLabelCellSize parameter, so you
can use that:

attributes.size = hourLabelCellSizeSize

Calculating the center of the label is a bit more involved, and is going to require some
trigonometry. Fear not if that’s a distant high school memory; I’ll explain it as we go.

The first thing you need to do is calculate how far around the clock face the label needs to
be placed, assuming that it’s a traditional clock with 12 at the top.

503CHAPTER 16: Collection View Custom Layouts

If there are 12 numerals, then the angle between each one is (360° ÷ 12) = 30°. iOS
measures angles in radians rather than degrees, so the calculation is actually

let angularDisplacement: Double = (2 * M_PI) / 12

The labels for the numerals are stored in the data model: row 0 holds “12”, row 1 holds “1”,
row 2 holds “2” and so on. By multiplying the angularDisplacement by the label’s index, you
can calculate how far around the clock face the label needs to be placed:

let theta = angularDisplacement * Double(hourPath.row)

Figure 16-9 shows how this calculation would work for 2 o’clock:

angularDisplacement = 360 ÷ 12 = 30
theta = 30 * 2 = 60°

Figure 16-9. Calculating theta

Once you know the value of theta for a given label, you can then calculate the position of its
center, as shown in Figure 16-10.

504 CHAPTER 16: Collection View Custom Layouts

This involves the high school trigonometry I mentioned earlier:

let xDisplacement = sin(theta) * Double(clockFaceRadius - (attributes.size.width / 2))
let yDisplacement = cos(theta) * Double(clockFaceRadius - (attributes.size.height / 2))

clockFaceRadius is a property on the layout that is passed in when the layout is instantiated,
which is derived from the size of the collection view. Let’s assume that the collection view is
500 points wide, so that means you’re dealing with a radius of 250 points.

To calculate the x displacement from the center, you use sin(theta) * clockFaceRadius and
then adjust that to account for the width of the hour label (remember that you’re calculating
the center point of the label).

Calculating the y displacement is exactly the same, but uses cos(theta), and adjusts for the
height of the label.

Once you’ve made those calculations, you can set the x and y position of the label through
its center attribute:

let xPosition = cvCenter.x + CGFloat(xDisplacement)

let yPosition = cvCenter.y - CGFloat(yDisplacement)

let center: CGPoint = CGPointMake(xPosition, yPosition)

attributes.center = center

Figure 16-10. Calculating the label’s center

505CHAPTER 16: Collection View Custom Layouts

Note that the xDisplacement is positive as it moves to the right, and the yDisplacement is
negative as it moves towards the top. This holds for all positions because the results of
sin(theta) and cos(theta) will change from positive to negative as the calculations move
round the circle.

Finally, having calculated all the attributes you need, they can be returned to the calling function:

return attributes;

Calculating the Position of the Hands
The final task in creating the custom layout is to calculate the position of the hands.
These are cells that have been set up in the ClockViewController, but there are some
layout-related things you need to set up, such as rotating the hands around the center of the
collection view to indicate the time.

The function that handles this is calculateAttributesForHandCellAtIndexPath: It’s not
dissimilar to the previous function you just built: it takes an indexPath parameter, and returns
a UILayoutViewAttributes object.

The full function is show in Listing 16-10.

Listing 16-10. The calculateAttributesForHandCell Function

func calculateAttributesForHandCellAt(handPath: NSIndexPath) ->
UICollectionViewLayoutAttributes {

 let attributes = UICollectionViewLayoutAttributes(forCellWithIndexPath: handPath)

 let rotationPerHour: Double = (2 * M_PI) / 12

 let rotationPerMinute: Double = (2 * M_PI) / 60.0

 switch handPath.row {

 case 0: // handle hour hands

 attributes.size = hourHandSize
 attributes.center = cvCenter

 let intraHourRotationPerMinute: Double = rotationPerHour / 60

 let currentIntraHourRotation: Double = intraHourRotationPerMinute *
 Double(timeMinutes)

 let angularDisplacement = (rotationPerHour * Double(timeHours)) +
 currentIntraHourRotation

 attributes.transform =
 CGAffineTransformMakeRotation(CGFloat(angularDisplacement))

506 CHAPTER 16: Collection View Custom Layouts

 case 1: // handle minute hands

 attributes.size = minuteHandSize
 attributes.center = cvCenter

 let intraMinuteRotationPerSecond: Double = rotationPerMinute / 60

 let currentIntraMinuteRotation: Double = intraMinuteRotationPerSecond *
 Double(timeSeconds)

 let angularDisplacement = (rotationPerMinute * Double(timeMinutes)) +
 currentIntraMinuteRotation

 attributes.transform =
 CGAffineTransformMakeRotation(CGFloat(angularDisplacement))

 case 2: // handle second hands

 attributes.size = secondHandSize
 attributes.center = cvCenter

 let angularDisplacement = rotationPerMinute * Double(timeSeconds)

 attributes.transform =
 CGAffineTransformMakeRotation(CGFloat(angularDisplacement))

 default:
 break

 }

 return attributes

}

The first step is to create an instance of UICollectionViewLayoutAttributes:

let attributes = UICollectionViewLayoutAttributes(forCellWithIndexPath: handPath)

Next, you calculate the rotation per hour (360° ÷ 12 for hours, 360° ÷ 60 for minutes):

let rotationPerHour: Double = (2 * M_PI) / 12
let rotationPerMinute: Double = (2 * M_PI) / 60.0

Then there are three cases you need to handle here, for hours, minutes, and seconds. They
are in rows 0, 1, and 2, respectively, of the handPath, so you can use a switch statement to
handle each one:

switch handPath.row {
 ...
}

507CHAPTER 16: Collection View Custom Layouts

Each case is very similar. First, set the size and center attributes:

attributes.size = hourHandSize;
attributes.center = cvCenter;

The size of the hands is passed into the layout as a property, so that it’s independent of the
image being used. You can change this at will without needing to update the layout class.

Then you calculate the rotation required for the current hour:

let intraHourRotationPerMinute: Double = rotationPerHour / 60

Because the hour hand starts at the one hour label, and gradually moves to the next one
during the course of the hour, you need to calculate how much adjustment is needed based
on the current minute:

let currentIntraHourRotation: Double = intraHourRotationPerMinute *
 Double(timeMinutes)

With both of these values, you can calculate the actual movement:

let angularDisplacement = (rotationPerHour * Double(timeHours)) +
 currentIntraHourRotation

Finally, the hands view can be rotated by setting its transform property:

attributes.transform = CGAffineTransformMakeRotation(CGFloat(angularDisplacement))

Next Steps
That completes all the steps for creating the custom layout. Now all that’s left is to build the
views for the clock’s hands, and wire the collection view up to use the custom class.

First, declare the clockLayout property:

var clockLayout: ClockLayout!

Before you start with the hands and numerals, update the ClockViewController's
configureCollectionView() function to instantiate and set the ClockLayout:

clockLayout = ClockLayout()
collectionView.setCollectionViewLayout(clockLayout, animated: false)

Displaying the Numerals and Hands
The clock’s numerals and hands are displayed in instances of UICollectionViewCells.
You create a custom UICollectionViewCell subclass for the hands, and use a XIB file for
the numerals.

508 CHAPTER 16: Collection View Custom Layouts

Creating a XIB File for the Hour Labels
To create a XIB file for the hour labels, select File ➤ New ➤ File, and select the User
Interface section in the sidebar. Then highlight the Empty item in the main section, as shown
in Figure 16-11.

Figure 16-11. Creating a XIB file

Name the file HandCell and click Create.

Now open the new XIB file in the Interface Builder, and drag out a Collection View Cell object
out into the main pane, as shown in Figure 16-12.

Figure 16-12. Adding a Collection View Cell object

509CHAPTER 16: Collection View Custom Layouts

Adjust the size so that the cell is 100 points wide by 100 points tall, and set its reuse
identifier to HourCellView.

Now drag a Label out into the cell, center it with AutoLayout constraints, and update the font
according to your preferences. The finished result will look something like Figure 16-13.

Figure 16-13. The updated label

Figure 16-14. Setting the label’s tag property

Finally, update the label’s tag property in the Attributes Inspector to 1000 so that it can be
accessed from within the view controller, as shown in Figure 16-14.

Now that you have your XIB file created, it’s time to switch back to the ClockViewController
and register this for use. In the configureCollectionView() function, add the following lines:

collectionView.registerNib(UINib(nibName: "HourCell", bundle: nil),
 forCellWithReuseIdentifier: HourCellView)

 clockLayout.hourLabelCellSize = CGSizeMake(100.0, 100.0)

510 CHAPTER 16: Collection View Custom Layouts

Creating a UICollectionView Subclass for the Clock Hands
Instead of creating the hands in nib files, you’ll take a different approach and create a
custom subclass of UICollectionViewCell. Both techniques are equivalent, but using a
custom subclass gives you the opportunity to configure various aspects of the cell in code.

The first step is to create a new UICollectionViewCell subclass as a new file. Select
File ➤ New ➤ File. Call the class HandCell, and change the Subclass Of field to choose
UICollectionViewCell. Selecting OK will create a new class files.

Now you need to register the class with the collection view as you did with the nib file. This
needs to be done three times, one each for the three types of hands, First, add the reuse
identifier declarations at the top of the class:

let HourCellView = "HourCellView"
let HourHandCell = "HourHandCell"
let MinsHandCell = "MinsHandCell"
let SecsHandCell = "SecsHandCell"

Next add the following code to the configureCollectionView function:

collectionView.registerClass(HandCell.self, forCellWithReuseIdentifier: HourHandCell)
collectionView.registerClass(HandCell.self, forCellWithReuseIdentifier: MinsHandCell)
collectionView.registerClass(HandCell.self, forCellWithReuseIdentifier: SecsHandCell)

You also need to set the sizes of the hand cells:

clockLayout.hourHandSize = CGSizeMake(10.0, 140.0)
clockLayout.minuteHandSize = CGSizeMake(10.0, 200.0)
clockLayout.secondHandSize = CGSizeMake(6.0, 200.0)

The rest of the process will be dealt with as you update the collection view’s view controller
in the next step.

Using the Custom Layout
With the layout in place, you now need to update the cellForItemAtIndexPath: function in
the collection view’s datasource object, as shown in Listing 16-11.

Listing 16-11. The updates collectionView:cellForItemAtIndexPath: Function

func collectionView(collectionView: UICollectionView, cellForItemAtIndexPath
 indexPath: NSIndexPath) -> UICollectionViewCell {

 var cell: UICollectionViewCell!

 // Handle time labels
 switch (indexPath.section) {

 case 0:

511CHAPTER 16: Collection View Custom Layouts

 // Handle hands

 switch (indexPath.row) {

 case 0:

 // Handle hour hands
 cell = collectionView.dequeueReusableCellWithReuseIdentifier
 (HourHandCell, forIndexPath: indexPath) as! HandCell
 let hourHandView = UIView(frame: CGRectMake(0, 0,
 clockLayout.hourHandSize.width, clockLayout.hourHandSize.height))
 hourHandView.backgroundColor = UIColor.blackColor()
 cell.contentView.addSubview(hourHandView)
 cell.layer.anchorPoint = CGPointMake(0.5, 0.9)

 case 1:

 // handle minute hands
 cell = collectionView.dequeueReusableCellWithReuseIdentifier
 (MinsHandCell, forIndexPath: indexPath) as! HandCell
 let minuteHandView = UIView(frame: CGRectMake(0, 0,
 clockLayout.minuteHandSize.width, clockLayout.minuteHandSize.height))
 minuteHandView.backgroundColor = UIColor.blackColor()
 cell.contentView.addSubview(minuteHandView)
 cell.layer.anchorPoint = CGPointMake(0.5, 0.9)

 default:

 // handle second hands
 cell = collectionView.dequeueReusableCellWithReuseIdentifier
 (SecsHandCell, forIndexPath: indexPath)
 let secondHandView = UIView(frame: CGRectMake(0, 0,
 clockLayout.secondHandSize.width, clockLayout.secondHandSize.height))
 secondHandView.backgroundColor = UIColor.redColor()
 cell.contentView.addSubview(secondHandView)
 cell.layer.anchorPoint = CGPointMake(0.5, 0.9)

 }

 default:

 // Handle hours labels
 cell = collectionView.dequeueReusableCellWithReuseIdentifier
 (HourCellView, forIndexPath: indexPath) as UICollectionViewCell

 let hourLabelsArray = dataArray[1]
 let hoursText = hourLabelsArray[indexPath.row]

 if let cellLabel: UILabel = cell.viewWithTag(1000) as? UILabel {
 cellLabel.text = hoursText
 }

512 CHAPTER 16: Collection View Custom Layouts

 }

 return cell

}

There are two parts to this: handling the hour labels, and dealing with the hands.

The first thing you do here is create an optional to hold the cell that will be returned:

var cell: UICollectionViewCell!

Now if you think back to how the data model is configured, elements in the first section of the
array contain placeholders for the hands, and the second section holds the numeral values.

By checking the indexPath parameter that’s passed into the function, you can take the
appropriate action with a switch statement:

switch (indexPath.section) {
 case 0: // handle hands
 ...

 default: // handle hour labels
 ...
}

An indexPath section of 1 means you need to dequeue and configure an hour cell:

default: // Handle hours labels

 cell = collectionView.dequeueReusableCellWithReuseIdentifier
 (HourCellView, forIndexPath: indexPath) as UICollectionViewCell

 let hourLabelsArray = dataArray[1]
 let hoursText = hourLabelsArray[indexPath.row]

 if let cellLabel: UILabel = cell.viewWithTag(1000) as? UILabel {
 cellLabel.text = hoursText
 }

Once the cell’s dequeued, you can access the label through its tag property and set the text
so that it shows the hour numeral.

An indexPath section of 0 means you’re dealing with hand cells. Again, the process is similar:

case 0: // Handle hands

 switch (indexPath.row) {

 case 0: // Handle hour hands

513CHAPTER 16: Collection View Custom Layouts

 cell = collectionView.dequeueReusableCellWithReuseIdentifier
 (HourHandCell, forIndexPath: indexPath) as! HandCell
 let hourHandView = UIView(frame: CGRectMake(0, 0,
 clockLayout.hourHandSize.width, clockLayout.hourHandSize.height))
 hourHandView.backgroundColor = UIColor.blackColor()
 cell.contentView.addSubview(hourHandView)
 cell.layer.anchorPoint = CGPointMake(0.5, 0.9)

 case 1: // handle minute hands

 cell = collectionView.dequeueReusableCellWithReuseIdentifier
 (MinsHandCell, forIndexPath: indexPath) as! HandCell
 let minuteHandView = UIView(frame: CGRectMake(0, 0,
 clockLayout.minuteHandSize.width, clockLayout.minuteHandSize.height))
 minuteHandView.backgroundColor = UIColor.blackColor()
 cell.contentView.addSubview(minuteHandView)
 cell.layer.anchorPoint = CGPointMake(0.5, 0.9)

 default: // handle second hands

 cell = collectionView.dequeueReusableCellWithReuseIdentifier
 (SecsHandCell, forIndexPath: indexPath)
 let secondHandView = UIView(frame: CGRectMake(0, 0,
 clockLayout.secondHandSize.width, clockLayout.secondHandSize.height))
 secondHandView.backgroundColor = UIColor.redColor()
 cell.contentView.addSubview(secondHandView)
 cell.layer.anchorPoint = CGPointMake(0.5, 0.9)

 }

There are three possible scenarios here. You’re dealing with an hour, a minute, or a second
hand, corresponding to rows 0, 1, or 2 in the index path.

Each process is virtually the same:

	First, you dequeue a cell with the appropriate reuseIdentifier.

	Next, you create a UIView for the hand, set the size, and color the
background black.

	Then you add the UIView into the cell.

	Finally, you adjust the cell’s anchorPoint property.

The last line of each section moves the anchor point for the rotation that the layout applies.
By default, a CAlayer's rotation point is at its center (or (0.5, 0.5) in coordinate terms), shown
in Figure 16-15.

514 CHAPTER 16: Collection View Custom Layouts

What you actually want to do is rotate around the bottom of the hand image, as shown in
Figure 16-16.

Figure 16-15. The default rotation point

Figure 16-16. Updated rotation

Since the rotation point is slightly “inside” the image, the offset is adjusted accordingly to
give the impression that the hands are rotating around fixed points.

With the cells configured, finally the function returns it to the collection view:

return cell

515CHAPTER 16: Collection View Custom Layouts

Getting the Clock to “Tick”
That’s all you need to do to display the hands and the hours, but the clock isn’t yet ready to
run. The last task is to get it to “tick.”

This involves invalidating the collection view’s layout to force it to recalculate the attributes
for each element. Because you set the time in the layout, every time the layout is invalidated,
it will calculate attributes for a new time; invalidate the layout once a second, and the clock
will appear to tick.

You can do this by adding an updateClock() function to the view controller, as shown in
Listing 16-12.

Listing 16-12. The updateClock() Function

func updateClock() {

 collectionView.collectionViewLayout.invalidateLayout()

}

With this function in place, you can now set up a timer to call it once per second. First, add a
property to the view controller:

var tickTimer: NSTimer!

Then update the viewDidLoad() function so that it looks like Listing 16-13.

Listing 16-13. The updated viewDidLoad() Function

override func viewDidLoad() {

 super.viewDidLoad()

 setupData()

 configureCollectionView()

 tickTimer = NSTimer.scheduledTimerWithTimeInterval(1.0, target: self,
 selector: "updateClock", userInfo: nil, repeats: true)

 NSRunLoop.currentRunLoop().addTimer(tickTimer, forMode: NSRunLoopCommonModes)

}

This creates an instance of NSTimer that fires once per second and calls the updateClock()
function. The timer is then added to the main run loop to create the illusion that time is passing.

Finally, it’s a good idea to clean up the NSTimer once the view is dismissed, so add the
viewWillDisappear() function to the view controller, as shown in Listing 16-14.

516 CHAPTER 16: Collection View Custom Layouts

Listing 16-14. The viewWillDisappear() Function

override func viewWillDisappear(animated: Bool) {
 super.viewWillDisappear(animated)

 tickTimer.invalidate()

}

If you run the project now you’ll see a ticking clock like Figure 16-17, built entirely from a
UICollectionView with a custom layout.

Figure 16-17. The finished UICollectionView clock

517CHAPTER 16: Collection View Custom Layouts

Summary
In this chapter, you looked at the process of going beyond the constraints of flow
layout to something that’s completely customized. You learned how to create custom
UICollectionViewFlowLayout classes and calculate the layout attributes needed to place
views according to your design.

Using combinations of all of these techniques, you can now create custom layouts. In the
next chapter, you’re going to take things a few stages further.

519

Chapter 17
Animated and Interactive
Collection Views
Combine the flexibility of the collection view with the tactile user interface of iOS devices,
and you’ve got a world of interface possibilities to explore. One of the most satisfying
approaches from a user interaction perspective is combining collection views with gesture
recognizers to build truly interactive interfaces.

So far, you’ve mainly looked at collection views with fairly static layouts, albeit with some
scrolling. But UICollectionView is capable of doing much more. It has sophisticated support
for reacting to user interaction through gesture; and by using custom layouts, you can bring
your collection views to life with animations.

In this chapter, you’ll look first at controlling collection views with gestures. By implementing
gesture recognizers that update layout attributes, you can make your collection views react
to user interaction in naturalistic ways.

You’ll also look at enhancing the user experience by animating collection view transitions
such as insertion and deletion. In conjunction with the powerful iOS animation APIs, you can
create fluid and engaging interfaces with ease.

Controlling Collection Views with Gestures
iOS devices are inherently interactive and tactile. The touch screens allow apps to create
interfaces that offer interaction possibilities much more flexible than anything that’s
achievable with a keyboard and mouse.

The family of UIGestureRecognizer classes provide easy but powerful ways to allow your
users to control apps with interactive gestures such as taps, pans, swipes, and pinches.
You can very easily combine UICollectionViewLayouts with gesture recognizers to build
immersive interfaces.

520 CHAPTER 17: Animated and Interactive Collection Views

In Chapter 12, you saw how to build collection views that allowed interactive ordering and
rearrangements. In this chapter, we’ll look at using gestures to directly control layout attributes.

Connecting Gestures with Layouts
You can very easily connect gesture recognizers to collection views. By receiving the gesture
events and using the values obtained to update layout attributes, you can make your layouts
interactive.

You’ll build two separate effects that use a pinch gesture to control a flow layout. In the first,
you’ll update the item spacing; in the second, you’ll control item sizing.

The basic approach is very simple:

	Create a UIGestureRecognizer to handle the type of interaction you
need, in this case a UIPinchGestureRecognizer.

	Install this gesture recognizer on the collection view controller.

	Implement the callback functions to receive the data relating to the
gestures.

	Use these values to update the attributes of the collection view’s layout.

To speed things up, you can use the base project from the Chapter 17 source code
in the book’s GitHub repo. This creates a UITabBarController-based project with
two tabs, each containing a collection view. Both display 20 items with a standard
UICollectionViewFlowLayout, as shown in Figure 17-1.

Figure 17-1. The base project with a flow layout

http://dx.doi.org/10.1007/978-1-4842-1242-4_12
http://dx.doi.org/10.1007/978-1-4842-1242-4_17

521CHAPTER 17: Animated and Interactive Collection Views

Adding the Gesture Recognizer
The gesture recognizer needs to be added to the collection view controller so that it can
intercept the gesture and then pass the data onto the collection view’s view controller class.

Add the following lines to the setupCollectionView function in the SpaceViewController class:

let pinchRecognizer = UIPinchGestureRecognizer(target: self, action:
 "didGetPinchGesture:")
collectionView.addGestureRecognizer(pinchRecognizer)

This creates an instance of a UIPinchGestureRecognizer and sets the target property to the
didGetPinchGesture: function. Then it adds the newly-created gesture recognizer to the
collection view.

Handling Gestures
You don’t yet have the function to handle the gestures when the gesture recognizer
intercepts them, so add the function in Listing 17-1 to the SpaceViewController.

Listing 17-1. The didGetPinchGesture: Function

func didGetPinchGesture(sender: UIPinchGestureRecognizer) {

 guard sender.numberOfTouches() == 2 else {
 return
 }

 let pointOne = sender.locationOfTouch(0, inView: collectionView)
 let pointTwo = sender.locationOfTouch(1, inView: collectionView)

 let dX = pointOne.x - pointTwo.x
 let dY = pointTwo.y - pointTwo.y

 let distance = sqrt(dX * dX + dY * dY)

 let layout = collectionView.collectionViewLayout as! UICollectionViewFlowLayout
 layout.minimumLineSpacing = distance / 5
 layout.minimumInteritemSpacing = distance / 5

 layout.invalidateLayout()

}

The first thing you need to do is make sure that you’re reacting to the right gesture.
UIGestureRecognizers has a numberOfTouches property that contains the number of contact
points that the gesture recognizer has detected. For a tap with a single finger, this would be 1.
If five fingers were on screen, the numberOfTouches would be 5.

522 CHAPTER 17: Animated and Interactive Collection Views

In this case, you’re only interested in two-fingered pinch gestures, so you can reject any
gesture that doesn’t have a numberOfTouches property of 2:

guard sender.numberOfTouches() == 2 else {
 return
}

Assuming that you do only have two touches, you can now start to use them to control the
collection view layout.

First, get the coordinates of the two touches relative to the collectionView:

let pointOne = sender.locationOfTouch(0, inView: collectionView)
let pointTwo = sender.locationOfTouch(1, inView: collectionView)

Tip The touch number refers to the order in which the touch was detected by the gesture
recognizer, not which finger is doing the touching!

Figure 17-2. Calculating the distance between the touches

Each touch point has an x and y coordinate, so you can use this to calculate the difference
between the two touches. This needs some trigonometry, as shown in Figure 17-2.

In code, this is expressed as

let distance = sqrt((dX * dX) + (dY * dY))

With the calculation out of the way, get a reference to the flow layout:

let layout = collectionView.collectionViewLayout as! UICollectionViewFlowLayout

And update the spacing-related attributes with the distance value:

layout.minimumLineSpacing = distance / 5
layout.minimumInteritemSpacing = distance / 5

523CHAPTER 17: Animated and Interactive Collection Views

Since the touch distance is relative to the collection view size, you need to scale it down a
bit so that the spacings don’t become too big.

Finally, you can force the layout to update itself:

layout.invalidateLayout()

The effect isn’t easy to reproduce on paper, but as the spacing between the touch points
increases, the spacing between the cells will increase as shown in Figure 17-3.

Figure 17-3. Increasing cell spacing

Collection Views and Animations
So far, the collection view layouts that you’ve built have relied on the in-built classes to
handle placement when inserting and deleting items. This saves a lot of time and effort, and
it’s fine if you’re happy with the basic effects. But if you need more control over the way
items are added and removed, you can exploit custom UICollectionViewLayouts to give you
complete control.

To illustrate this, you’re going to build a collection view that

	Arranges the items in a completely non-linear way; which means you will
be responsible for calculating their placements

	Inserts and removes items with animated transitions that you determine

524 CHAPTER 17: Animated and Interactive Collection Views

The end result will look like Figure 17-4. Cells are arranged in an even-spaced circle; they’re
inserted by flying out from the center to their place in the ring (while the existing cells shuffle
up to make space). They’ll be removed in the opposite direction: flying into the center, while
the remaining cells space themselves out.

Figure 17-4. The custom layout in action

To achieve this, you'll implement a custom UICollectionViewLayout. This isn’t the first time
you’ve done this, but in this example, you’ll take things one step further by calculating both
the initial and final layout attributes for an item. The collection view will then handle smoothly
animating the change between the initial and final positions.

The Process
In order to have the collection view animate the insertion and deletion of items, you need to
provide three sets of attributes for each item:

	The initial layout attributes, which the collection view uses to place the
item in the collection view when it first appears. In your example, this
will be the center of the circle.

	The layout attributes that determine the “final” home for the item. In
this example, each item will be at a point on a circle, with the spacing
between each item determined by the number of items in total.

	The final layout attributes, which the collection view uses as the final place
for the item before it’s removed. In this example, items will appear to fly
back to the center of the circle, fading and getting smaller as they go.

525CHAPTER 17: Animated and Interactive Collection Views

The other processes involved in setting up the custom layout are the same as you’ve seen
before, but you’ll work through them in detail.

Prerequisites
To begin with, you’re going to need a collection view, so to save some setup time, I’ve
created a stub project. It contains a single view controller that acts as the data source and
delegate for the collection view. The Storyboard contains a full-screen collection view and
two buttons to add and remove items.

The collection view’s data source is an Array of Strings, and the cells are very basic
75pt x 75pt UICollectionViewCells that display the String from the relevant row. Finally,
there’s a basic UICollectionFlowLayout that results in an app that looks like Figure 17-5.

Figure 17-5. The initial app

As you can see, it’s going to need a bit of work.

Creating the Custom Layout
The first thing you need is a custom layout. This will be a subclass of
UICollectionViewLayout, so create a new one with File ➤ New ➤ File, selecting the Cocoa
Touch item from the Source section, and then creating a subclass of UICollectionViewLayout
called BounceLayout.

526 CHAPTER 17: Animated and Interactive Collection Views

This creates a depressingly empty class, shown in Listing 17-2.

Listing 17-2. The Initial BounceLayout

import UIKit

class BounceLayout: UICollectionViewLayout {

}

There are three sets of functions you need to implement:

	Housekeeping functions that that handle preparing the layout

	Attributes functions, responsible for creating and vending the layout
attributes for each item to the collection view

	Custom functions, which are unique to your layout and will handle the
calculations required by the attributes functions

You’ll start with the basic housekeeping functions.

Housekeeping Functions
The first housekeeping function that you need is to return the collection view’s contentSize
to the collection view.

In this case, it’s quite simple. You’re going to use a contentSize that’s the same as the
collection view itself, so there will be no scrolling involved. Add the function in Listing 17-3.

Listing 17-3. The collectionViewContentSize Function

override func collectionViewContentSize() -> CGSize {

 super.collectionViewContentSize()
 return collectionView!.frame.size

}

This is very straightforward. After calling the superclass function, you return the size of the
collectionView’s frame.

Next, you need prepareLayout(). This is called at the start of each layout pass, and is an
opportunity to carry out any “bulk” operations that affect all items. There are several things
you need to do:

	Add some properties to the layout class to hold the calculated
attributes, and some values for dimensions.

	Remove all the existing layout attributes (adding or removing an item
will cause all the other items to move, so all existing attributes will
become invalid).

527CHAPTER 17: Animated and Interactive Collection Views

	Do some up-front calculations about the overall dimensions of the layout.

	Calculate the attributes for each item in turn..

First, add the properties shown in Listing 17-4.

Listing 17-4. The BounceLayout’s Properties

var layoutAttributes = [UICollectionViewLayoutAttributes]()
var cvCenterPoint: CGPoint!
var itemSize: CGSize!
var sidePadding: CGFloat!

The layout attributes will be stored in an Array of UICollectionViewLayoutAttributes. There
are some dimension-related properties that you’ll need: the center point of the collection
view, the size of each item, the padding between the edges of the item, and the edge of the
collection view.

Next, you need the prepareLayout() function. This is called at the start of the layout
process, after the layout has been invalidated. It’s both an opportunity to configure layout-
wide values, and the point where you can trigger the calculation of all the attributes required.

Add the function shown in Listing 17-5.

Listing 17-5. The prepareLayout() Function

override func prepareLayout() {

 super.prepareLayout()

 layoutAttributes.removeAll()

 // Figure out where the centre of the collection view is
 cvCenterPoint = CGPointMake(collectionView!.frame.size.width / 2,
 collectionView!.frame.size.height / 2);

 // Figure out the number of items that we're dealing with
 // Here, we assume that there is only one section in the collection view
 let numberOfItems = collectionView!.numberOfItemsInSection(0)

 calculateAllAttributes(numberOfItems)

}

Walking through this, you first call the superclass function. Then you remove all the existing
layout attributes; inserting or removing an item will cause all the other items to move, so all
attributes become invalid.

The center point of the circle will be important, as it’s both the origin of the calculation for
the position attributes for each item, and also the starting point of the insertion calculation.

cvCenterPoint = calculateCenterForFirstItem()

528 CHAPTER 17: Animated and Interactive Collection Views

This will be needed in several places later, so to reduce code duplication, add the function in
Listing 17-6.

Listing 17-6. Calculating the Center Point of the Collection View

func calculateCenterForFirstItem() -> CGPoint {
 return CGPointMake(collectionView!.frame.size.width / 2,
 collectionView!.frame.size.height / 2);
}

You also need the number of items that you’re dealing with to calculate the spacing.

let numberOfItems = collectionView!.numberOfItemsInSection(0)

Finally, you call the as-yet unimplemented calculateAllAttributes(:_) function for the
given number of items.

Calculating Attributes
This is where the real work starts. Add the function shown in Listing 17-7.

Listing 17-7. The calculateAllAttributes Function

func calculateAllAttributes(numberOfItems: Int) {

 // Create the attributes for each item in turn
 for index in 0..<numberOfItems {

 // Construct the index path for the item we're dealing with
 let itemIndexPath = NSIndexPath(forItem: index, inSection: 0)

 // Create a UICollectionViewLayoutAttributes item for this indexPath
 let attributes = UICollectionViewLayoutAttributes(forCellWithIndexPath:
 itemIndexPath)

 // Calculate where the centre of the item should be
 let center = calculateCenterForItemAtIndexPath(itemIndexPath)
 attributes.center = center

 // Set the item's size
 attributes.size = itemSize

 // Set the Z-index so they "stack" on top of each other
 attributes.zIndex = index + 1

 // Add our new set of attributes into the array
 layoutAttributes.append(attributes)

 }

}

529CHAPTER 17: Animated and Interactive Collection Views

This takes one Int parameter, the number of items in the collection view. It then repeats, in
order to calculate the attributes for each item.

First, you create an NSIndexPath for the item:

let itemIndexPath = NSIndexPath(forItem: index, inSection: 0)

Next, you use this indexPath to create an instance of UICollectionViewLayoutAttributes:

 let attributes = UICollectionViewLayoutAttributes(forCellWithIndexPath: itemIndexPath)

For this item, you now calculate where the center point should be, with the aid of a helper
function that you’ll implement in a moment:

let center = calculateCenterForItemAtIndexPath(itemIndexPath)
attributes.center = center

You set the item size. This is the same for all items.

attributes.size = itemSize

The Z-index of each item increases so that when they overlap, they’ll appear to stack:

attributes.zIndex = index + 1

With all the necessary attributes calculated, you can add them to the array:

layoutAttributes.append(attributes)

Now let’s add the function to calculate the center point of the item.

Calculating the Center Point
Calculating the center point of the item is the function that involves the most math, but it’s
not as intimidating as it looks. Add the function shown in Listing 17-8.

Listing 17-8. Calculating the Center for an Item

func calculateCenterForItemAtIndexPath(indexPath: NSIndexPath) -> CGPoint {

 // If there's only one item, then it should be centered
 if (collectionView!.numberOfItemsInSection(0) == 1) {
 return calculateCenterForFirstItem()
 }

 // Get angular displacement for this item
 let angularDisplacement: CGFloat = calculateRotationPerItem()

 // Calculate rotation required for this item
 let theta = (angularDisplacement * CGFloat(indexPath.row))

530 CHAPTER 17: Animated and Interactive Collection Views

 // Trig to calculate the x and y shifts required to
 // get the moved around a circle of diameter spoke radius
 let xDisplacement = CGFloat(sinf(Float(theta))) * calculateSpokeRadius()
 let yDisplacement = CGFloat(cosf(Float(theta))) * calculateSpokeRadius()

 // Make the centre point of the hour label block
 let xPosition = (collectionView!.bounds.size.width/2) + xDisplacement
 let yPosition = (collectionView!.bounds.size.width/2) - yDisplacement

 return CGPointMake(xPosition, yPosition)

}

First, you need to deal with a special case of only one item in the collection view. In this
situation, you want the item to be placed in the center of the collection view:

if (collectionView!.numberOfItemsInSection(0) == 1) {
 return CGPointMake(collectionView!.bounds.size.width / 2,
 collectionView!.bounds.size.height/2)
}

Now you can calculate the rotation around the center of the collection view for this item.

Figure 17-6 shows how the rotation is calculated.

Figure 17-6. Calculating angular rotation

531CHAPTER 17: Animated and Interactive Collection Views

This is implemented as a separate function, shown in Listing 17-9.

Listing 17-9. Calculating the Rotation Per Item

func calculateRotationPerItem() -> CGFloat {

 // Shouldn't rotate if there's only one item

 if (collectionView!.numberOfItemsInSection(0) == 1) {
 return 0.0;
 }

 // Otherwise, the rotation is given by 360 / number of items
 // (or 2Pi / number of items as we're dealing with radians here)

 return (CGFloat(2 * M_PI) / CGFloat(collectionView!.numberOfItemsInSection(0)))

}

Again, the situation with only one item in the collection view is a special case; there’s no
rotation involved.

Assuming there’s more than one item, then the rotation per item is 2p divided by the number
of items (2p is the number of radians in a full circle; iOS uses radians for trigonometric
calculations).

Looking back to the calculateCenterForItemAtIndexPath: function, you’ll see that there’s
another helper function you need to implement. It is to calculate the radius of the circle: the
smaller of the height or the width of the collection view.

Add the function in Listing 17-10.

Listing 17-10. Calculating the Circle Radius

func calculateSpokeRadius() -> CGFloat {

 // Calculates the radius of the 'spoke' connecting the item's center and the
 // center of the collectionView

 // Find out which is the shorter side, in case
 // the collectionView's not square
 let shorterSide = min(collectionView!.bounds.size.width,
 collectionView!.bounds.size.height)

 let collectionViewAllowance = shorterSide / 2
 let itemWidthAllowance = itemSize.width / 2

 // Adjust for side padding (if any)
 return (collectionViewAllowance - (itemWidthAllowance + sidePadding))

}

532 CHAPTER 17: Animated and Interactive Collection Views

Here, you get the length of the shorter side of the collection view, and then you adjust for the
width of the item and any padding between the item and the collection view frame.

The value returned by the calculateSpokeRadius function is used by
calculateCenterForItemAtIndexPath: to calculate the horizontal and vertical distance
between the center of the collection view and the center of the item:

let xDisplacement = CGFloat(sinf(Float(theta))) * calculateSpokeRadius()
let yDisplacement = CGFloat(cosf(Float(theta))) * calculateSpokeRadius()

This requires a bit of high school math, and uses the sinf and cosf trigonometry functions.
The angles involved form a right-angled triangle. This is the same technique you used in
Chapter 16, so check back there if you need a refresher.

With the distances calculated, you’re now in a position to calculate the center coordinates
for the item:

let xPosition = (collectionView!.bounds.size.width/2) + xDisplacement
let yPosition = (collectionView!.bounds.size.width/2) - yDisplacement

Now return the entire set of attributes back to the calling function:

return CGPointMake(xPosition, yPosition)

With all this in place, you can calculate the attributes for any item within the collection
view. Now you need to implement the functions to return them to the collection view when
they’re required.

Supplying Attributes to the Collection View
The process of supplying attributes for items to the collection view can take place in one of
four phases:

	En masse, where the collection view will ask for all attributes for items
in a given CGRect. Since your collection view will always be completely
visible, you’re effectively being asked for attributes for all the items.

	Individually, where the collection view supplies an NSIndexPath and
expects the attributes for the relevant item.

	During insertion of items, when the collection view will ask for initial
attributes for items that are appearing. The collection view will handle
interpolating between the initial attributes and those that the item will
use for the duration of its stay in the collection view.

	During removal of items, when the collection view will ask for final
attributes for items that are being removed. As with initial attributes, the
collection view will handle interpolating from the current state of the item
to its final values.

Let’s tackle these one by one.

http://dx.doi.org/10.1007/978-1-4842-1242-4_16

533CHAPTER 17: Animated and Interactive Collection Views

Supplying Attributes En Masse
The layout needs to implement the layoutAttributesForElementInRect: function,
which is passed a CGRect parameter and is responsible for figuring out which elements
fit within the rect and returning their attributes. These get returned as an Array of
UICollectionViewLayoutAttributes.

There are a couple of things to note about this function. Firstly, it’s your responsibility to
determine which elements appear in the supplied CGRect. The collection view doesn’t know
about this, and in any case it may ask the layout for this information repeatedly as it scrolls.

Secondly, elements refers to cells, supplementary views, and decoration views. If your
collection view uses these items, you need to figure out which are visible in the CGRect and
return their attributes.

In this case, things are a little simpler. You only have cells, and the collection view won’t
scroll. Therefore you can simply return all the attributes you have, as shown in Listing 17-11.

Listing 17-11. The layoutAttributesForElementsInRect: Function

override func layoutAttributesForElementsInRect(rect: CGRect)
 -> [UICollectionViewLayoutAttributes]? {

 // As all elements will be shown, return all of them
 return layoutAttributes

}

Supplying Individual Item Attributes
The contrasting function to layoutAttributesForElementsInRect is
layoutAttributesForItemAtIndexPath. It receives an NSIndexPath as a parameter. The
calling code will expect an optional UICollectionViewLayoutAttributes instance.

There are two ways to implement this function: either by calculating the attributes
on the fly when they’re requested, or calculating them upfront while preparing
the layout, storing them, and returning the pre-calculated values in response to
layoutAttributesForItemAtIndexPath.

Which approach is the right one will depend on the situation. If your layout is very dynamic
and the calculation isn’t too expensive, there may be no reason to prematurely optimize. The
flip side to this if the calculations require heavyweight calculations, or are simply not going to
change very often.

Bear in mind that this function is called by the collectionView while it’s drawing the items,
so a slow response could result in choppy scrolling. If you are having problems with scrolling
performance, you might want to take a closer look at this function.

You’re using the prepare-everything-upfront approach, so your function is simple and is
shown in Listing 17-12.

534 CHAPTER 17: Animated and Interactive Collection Views

Listing 17-12. The layoutAttributesForItemAtIndexPath

override func layoutAttributesForItemAtIndexPath(indexPath: NSIndexPath) ->
 UICollectionViewLayoutAttributes? {
 // Return the layout attributes for the specific item
 return layoutAttributes[indexPath.row]
}

Supplying Initial Layout Attributes
Up to now, you’ve been implementing required functions to return UILayoutAttributes to
the collection view. If you don’t supply initial attributes, then the collection view will use what
it’s given from the previous two functions to place the item. If the item is newly added, it will
appear in the correct place immediately.

If you want the initial attributes to differ–in your case, to have items appear at the center of the
collection view and be animated into position–then you need to supply a set of initial attributes
by implementing the initialLayoutAttributesForAppearingItemAtIndexPath function.

If you don’t implement this function, the collection view won’t get any initial attributes and
will go on to ask for attributes by calling the layoutAttributesForItemAtIndexPath function.

Any UICollectionViewLayoutAttribute, built-in or custom, can be included in the initial set.
In your case, you’re going to supply the center and alpha attributes, so that the item appears
in the center and appears to fade in as it animates out towards the circle.

Before the collection view asks for initial attributes, it will call the
prepareForCollectionViewUpdates function, supplying an Array of
UICollectionViewLayoutUpdateItems. Any item that will be affected by the update will have a
corresponding UICollectionViewLayoutUpdateItems, which has three properties:

	indexPathBeforeUpdate: This is an NSIndexPath that contains the index
path of the item at the start of the update.

In the case of an item being inserted, this will be empty. If the item is being
removed, it will contain the current index path.

	indexPathAfterUpdate: This is an NSIndexPath that contains the index
path of the item at the end of the update.

In the case of an item being removed, this will be empty. If the item is being
added, it will contain the target index path where the item will end up.

	updateAction: This contains a UICollectionUpdateAction constant
indicating the action that’s being performed on the item: Insert, Delete,
Reload, Move, or None.

You need to check what’s going on with the item being inserted or removed, so add a
property to store the details:

var indexPathsBeingUpdated = [UICollectionViewUpdateItem]()

535CHAPTER 17: Animated and Interactive Collection Views

Now add the function shown in Listing 17-13.

Listing 17-13. The prepareForCollectionViewUpdates Function

override func prepareForCollectionViewUpdates(updateItems:
[UICollectionViewUpdateItem]) {
 indexPathsBeingUpdated = updateItems
}

This simply copies the array and stores it in the indexPathsBeingUpdated property.

Now you’re ready to implement the initialLayoutAttributesForAppearingItemAtIndexPath,
as shown in Listing 17-14.

Listing 17-14. The initialLayoutAttributesForAppearingItemAtIndexPath Function

override func initialLayoutAttributesForAppearingItemAtIndexPath(itemIndexPath:
 NSIndexPath) -> UICollectionViewLayoutAttributes? {

 // Check to see if this indexPath is in the BeingUpdated list
 // if it isn't, we can just bail out
 let indexFound = indexPathsBeingUpdated.indexOf { (element) -> Bool in
 element.indexPathAfterUpdate == itemIndexPath
 }

 if indexFound == nil {
 return layoutAttributes[itemIndexPath.row]
 }

 let attributes = UICollectionViewLayoutAttributes(forCellWithIndexPath:
 itemIndexPath)

 // Test to see if we're dealing with a situation where we're removing
 // the second item - there will now only be 1 item, and the indexPath.row that we're
 // dealing with will be 0.
 //
 // In this situation the first item needs to start where it originated, at the top
 if (collectionView!.numberOfItemsInSection(0) == 1) && (itemIndexPath.row == 0) {
 attributes.center = calculateCenterForFirstItem()
 attributes.size = itemSize
 return attributes
 }

 // This is a brand new item, so we need to set its alpha, size, z-index and center
 attributes.center = CGPointMake(collectionView!.bounds.size.width / 2,
 collectionView!.bounds.size.height / 2)
 attributes.alpha = 0.0
 attributes.size = itemSize
 attributes.zIndex = 0

 return attributes;

}

536 CHAPTER 17: Animated and Interactive Collection Views

You begin by checking if the indexPath you’ve been passed is included in the
indexPathsBeingUpdated array:

let indexFound = indexPathsBeingUpdated.indexOf { (element) -> Bool in
 element.indexPathAfterUpdate == itemIndexPath
}

If it isn’t, then it’s an item that’s already present in the collection view. The initial attributes for
this will be the same as the calculated attributes, so you can return them:

if indexFound == nil {
 return layoutAttributes[itemIndexPath.row]
}

Assuming that the item is one you need to handle, you need a
UICollectionViewLayoutAttributes instance to configure:

let attributes = UICollectionViewLayoutAttributes(forCellWithIndexPath: itemIndexPath)

You need to handle the removal of the second item as a special case:

if (collectionView!.numberOfItemsInSection(0) == 1) && (itemIndexPath.row == 0) {
 attributes.center = calculateCenterForFirstItem()
 attributes.size = itemSize
 return attributes
}

Otherwise you’re dealing with a new item, so you need to set the attributes accordingly:

	The center at the middle of the collection view

	An alpha value of 0, so that the item will appear to fade in

	The correct size

	A zIndex of 0, so that the newest item is always on the top of the “pile”

 attributes.center = CGPointMake(collectionView!.bounds.size.width / 2,
 collectionView!.bounds.size.height / 2)
 attributes.alpha = 0.0
 attributes.size = itemSize
 attributes.zIndex = 0

Having set the attributes, you can return them:

return attributes;

537CHAPTER 17: Animated and Interactive Collection Views

Supplying Final Layout Attributes
Final layout attributes allow you to control how items are removed from the collection view. In
this situation, you want the item to move to the center of the collection view, fading as it goes.

These attributes are returned to the collection view by the
finalLayoutAttributesForDisppearingItemAtIndexPath function. This is very similar to
initialLayoutAttributesForAppearingItemAtIndexPath, but it returns the attributes for the
end of the removal process.

Add the function shown in Listing 17-15.

Listing 17-15. The finalLayoutAttributesForDisppearingItemAtIndexPath Function

override func finalLayoutAttributesForDisappearingItemAtIndexPath(itemIndexPath:
 NSIndexPath) -> UICollectionViewLayoutAttributes? {

 let attributes = UICollectionViewLayoutAttributes(forCellWithIndexPath:
 itemIndexPath)

 // Check to see if this indexPath is in the BeingUpdated list
 // if it isn't, we can just bail out
 let indexFound = indexPathsBeingUpdated.indexOf { (element) -> Bool in
 element.indexPathBeforeUpdate == itemIndexPath
 }

 if indexFound == nil {
 return super.finalLayoutAttributesForDisappearingItemAtIndexPath(itemIndexPath)
 }

 // Test to see if we're handling the removal of the first item as it moves to make
 // way for the second one. In this case, there will be 2 items, and the handling
 // indexPath.row of the item we're dealing with will be 0
 //
 // In this scenario, the item needs to end up back at the top center as the
 // only one

 if ((collectionView?.numberOfItemsInSection(0) == 2) &&
 (itemIndexPath.row == 0)) {
 attributes.center = calculateCenterForFirstItem()
 attributes.size = itemSize
 attributes.zIndex = 0
 return attributes;
 }

 // This is a disappearing item, so we need to set its alpha,
 // size, z-index and center so that it zooms into towards the centre

 attributes.center = calculateCenterForFirstItem()
 attributes.alpha = 0
 attributes.size = itemSize
 attributes.zIndex = 0
 return attributes;
}

538 CHAPTER 17: Animated and Interactive Collection Views

The difference here is that the center value is the middle of the collection view and the
alpha is 0.

That completes the implementation of your custom UICollectionViewLayout. Now it’s time
to finish wiring up the collection view.

Wiring Up the Collection View
Currently, the collection view is using a standard flow layout to arrange the items, as shown
in Figure 17-7.

Figure 17-7. The flow layout

You need to update the ViewController to create and apply the custom layout to the
collection view.

Update the setupCollectionView() function as shown in Listing 17-16.

Listing 17-16. The setupCollectionView() Function

func setupCollectionView() {

 let layout = BounceLayout()
 layout.itemSize = CGSizeMake(75,75)
 layout.sidePadding = 10
 collectionView.setCollectionViewLayout(layout, animated: false)

 collectionView.collectionViewLayout = layout

}

539CHAPTER 17: Animated and Interactive Collection Views

This isn’t especially complicated. You create an instance of the BounceLayout class and set
the item size and padding properties. Then it is assigned to the collection view as the layout.

If you run the project now, you’ll see that you’ve got a circular layout, as shown in Figure 17-8.

Figure 17-8. The newly-applied BounceLayout

Adding New Items
That’s good, but not quite what you were after. First, let’s reduce the number of items that
you start with to 1:

func setupData() {
 cvData.append("0")
}

Now let’s add functions to connect to the buttons. First, add the didTapAdd function, as
shown in Listing 17-17.

Listing 17-17. The didTapAdd Function

@IBAction func didTapAdd(sender: AnyObject) {

 // Get index of last item
 let index = cvData.count

 cvData.append("\(index)")

540 CHAPTER 17: Animated and Interactive Collection Views

 // Create an NSIndexPath object for the new item
 let newItemIndexPath = NSIndexPath(forItem: index, inSection: 0)

 // Now update the collection view
 collectionView.insertItemsAtIndexPaths([newItemIndexPath])

}

This isn’t too complex. You get the number of items that are currently in the data array:

let index = cvData.count

And use this to add a new entry:

cvData.append("\(index)")

Now you need an NSIndexPath object for the new item:

let newItemIndexPath = NSIndexPath(forItem: index, inSection: 0)

And you can tell the collection view to insert the new item:

collectionView.insertItemsAtIndexPaths([newItemIndexPath])

Removing Items
The didTapRemoveItem function is shown in Listing 17-17, and it’s very similar to the
didTapAdd function.

Listing 17-18. The didTapRemoveItemFunction

@IBAction func didTapRemoveItem(sender: AnyObject) {

 let itemIndex = cvData.count - 1

 removeItemAtIndexPath(NSIndexPath(forItem: itemIndex, inSection: 0))
}

It uses a helper function to remove the item from collection view, shown in Listing 17-19.

Listing 17-19. The removeItemAtIndexPath Function

func removeItemAtIndexPath(indexPath: NSIndexPath) {

 // Don't attempt to remove the last item!
 if cvData.count == 0 {
 return
 }

541CHAPTER 17: Animated and Interactive Collection Views

 // Remove it from the data array
 cvData.removeAtIndex(indexPath.row)

 // Now update the collection view
 collectionView.deleteItemsAtIndexPaths([indexPath])

}

Firstly, this prevents you from removing the last item. Assuming there is more than one item
left, you remove the corresponding entry from the dataArray, and then pass the indexPath to
be removed to the collection view’s deleteItemsAtIndexPaths function.

The final touch is to implement the UICollectionViewDelegate’s didSelectItemAtIndexPath
function so that you can tap items to delete them. Add this in an extension to the
viewController, as shown in Listing 17-20.

Listing 17-20. The didSelectItemAtIndexPath Function

extension ViewController: UICollectionViewDelegate {

 func collectionView(collectionView: UICollectionView, didSelectItemAtIndexPath
 indexPath: NSIndexPath) {

 switch indexPath.row {

 case 0:
 didTapAdd(indexPath)

 default:
 removeItemAtIndexPath(indexPath)
 }

 }

}

Selecting the item will trigger the removeItemAtIndexPath: function, and the item will fly out
of the collection view.

Connect the UIButtons in the Storyboard to their respective IBAction functions, run the
project again, and you’ll be able to tap the Add button to insert new items and tap either the
Remove button or on an item to remove it.

542 CHAPTER 17: Animated and Interactive Collection Views

Controlling Insertion and Removal Animations
Currently, the insertion and removal animations are controlled by the collection view itself. It
uses standard timing and easings. This might be fine for some projects, but it would be nice
to add a bit more control over them.

The key to this is to wrap the insertItemsAtIndexPaths and removeItemsAtIndexPaths
function inside a UIView animation block.

Listing 17-21 shows an example of the kind of effect that you can achieve.

Listing 17-21. Custom Insertion Animations

UIView.animateWithDuration(1.0,
 delay: 0.0,
 usingSpringWithDamping: 0.6,
 initialSpringVelocity: 0.0,
 options: UIViewAnimationOptions.CurveEaseIn,
 animations: { () -> Void in

 // Insert items into collection view
 self.collectionView.insertItemsAtIndexPaths([newItemIndexPath])

 }) { (finished) -> Void in

 // block to run when animations complete

 }

The syntax could perhaps be a little clearer, but what you’re doing here is

	Setting an animation duration of 1 second:
animateWithDuration(1.0

	Providing no delay before starting the animation:
delay: 0.0

	Using the spring capabilities of UIKitDynamics to add some bounce:
usingSpringWithDamping: 0.6,
initialSpringVelocity: 0.0

	Using a CurveEaseInOut easing curve to start the animation slowly,
speed it up, and then slow down again before it completes:
options: UIViewAnimationOptions.CurveEaseIn

It’s difficult to show the effect of animations on the printed page or static screen, but if you
run the project now, you’ll see that the items appear with a smooth animation and a very
satisfying bounce effect.

Beware–it’s possible to spend hours tweaking animations to get that perfect bounce!

543CHAPTER 17: Animated and Interactive Collection Views

Summary
Gestures and animations can be used to bring your collection views to life, both deepening
the interactions available and enhancing the user experienced with animations.

By creating gesture recognizers that capture user input, it’s possible to interactively update
collection views by manipulating layout attributes. This provides the possibility for interfaces
that allow users to interact directly with data and controls.

By adding animation effects to insertion and deletions, the user experience delivered by your
collection views can be enhanced. This can also be used as a tool to emphasize information
and interaction possibilities. The powerful iOS animation APIs allow you to create fluid and
engaging interfaces with ease.

545

 ■A
addButtonToCell Method, 243–245, 252
All-singing, all-dancing table

adding, new value, 330
App creation, 327
creating, new property list file, 328
four-step process, 327
JSON files, 327
new key-value pair, 329
plist file, 331–332
pop-up list, 330
sorting, user interface, 332–333
ViewController class

(see ViewController class)
AppDelegate updation, 305
Apple watch simulator, 441
AutoLayout constraints, 39, 73, 203
awakeFromNib() function, 250

 ■B
ButtonCell’s didTapButton function, 250

 ■C
Canvas, 148
Card files, 60
Card images, 59
cellForItemAtIndexPath

methods, 71, 128, 268
cellForRowAtIndexPath

Function, 218, 221, 252, 265
Cell in editing mode, basic layout, 143
Cell in normal mode, basic layout, 143
Cells

contentView, 175
casting controls, 183
cell’s layout, 177

content updation, 178, 181
dataSource’s tableView, 179
structure creation, 178
subView array, 179
superView, 178
tagging controls, 181–183
view hierarchy, 178

customizing methods, 175–176
Interface Builder (see Interface Builder)
resizing

setEditing, 201
deletion/insertion controls, 202
event types, 201
normal to editing mode, 202

in Storyboard, 176
subclass and override

layoutSubviews, 176
in XIB, 176

Cell’s interaction
cached cells, 268–269
cell heights, 269
embedding custom controls

functions, 242
row-specific alertView, 247
UIButton, 242
UITableViewCell, 242

gesture addition, 252–253
layer with transparent pixels, 269
opaque interface, 269

collection sections and rows, 65
collectionView:cellForItem

AtIndexPath: Function, 77
Collection views

in action, 46
adding items, 539–540
anatomy, 48, 50, 87
architecture, 84
application, 56

Index

546 Index

attributes
final layout attributes, 537–538
initial layout attributes, 534–536
layoutAttributesFor

ElementsInRect: Function, 533
layoutAttributesFor

ItemAtIndexPath, 534
phases, 532

BounceLayout, 539
card images, 58
cells, 49
completed app, 55
contentView, 48
custom layout

BounceLayout, 526
calculateAllAttributes

Function, 528–529
center point calculation, 528–532
contentSize, 526
prepareLayout(), 526
UICollectionViewLayout, 524

data source object, 52, 94
data structure, 64
delegate, 53, 94
didSelectItemAtIndexPath Function, 541
didTapRemoveItem function, 540
frame and content view, 88
flow layout, 538
gestures (see Gestures,

collection views control)
insertion and deletion, items, 524
item cells, 89
layouts, 45, 47, 53–54, 91
metadata, 83
model, 52, 93
prerequisites, 525
removeItemAtIndexPath Function, 540
setupCollectionView() function, 538–539
spacing values, 80
Storyboard Scene, 97
style collection, 54
supplementary views, 89
and supporting

objects, 47, 51–52, 93
table view control, 45, 83
template chooser, 99
Xcode view, 58

Collection View’s cellFor
ItemAtIndexPath, 228–229

configureCollectionView Function, 76
ContactCell Class, 233
contentOffset, 38
Content selection and editing

cell selection
accessory view, 357
cellForRowAt

IndexPath, 356, 358–359
controlling table selection traits,

Interface Builder, 355
customization, 353
default row selection style, 352
default selection tick mark, 357
default UITableViewCell, 356
deselection, 354
global, 350
indexPathForSelected

Row returns, 355
momentary selection, 349
persistent selection, 349, 354
tableView, 349–351, 357–358

configuration, row selection, 361
MVC pattern (see Model-view-

controller (MVC) pattern)
optimizing selection

performance, 360
responses, 361–362
row-specific selection

checking, 352
control row level, 351

UICollectionViews (see
UICollectionViews)

contentSize, 38
Conveyor belt

cellForRowAtIndexPath method, 170
cellIdentifier, 171
cell production process, 169
code, 170
tableView, 169

Custom cell subclass
cell design, 207
cell heights, 216
creation, 206–207
Interface Builder

cell conformation, 213
controls, 212

Collection views (cont.)

547Index

custom controls link, 214
four-stage process, 210
nib file creation, 210

OddCell and EvenCell, 208, 215
selection, 220
“standard” UITableViewCell, 208
view controller, 217
visual approach, 206
XCode, 208

Custom collection view layout
class, 482
creation

steps, 480
subclass, 481

custom layout attributes, 483
definition, 482
functions (see Functions, view layout)
layoutAttributeForElement

AtIndexPath: function, 498
layoutAttributesForItem

AtIndexPath function, 481
layoutAttributesFor

ItemsInRect: function, 481
standard attributes, 482–483
tasks, 482
UICollectionView clock, 488

Custom Subview
UICollectionView, 180–181
UITableView, 180

Custom UITableViewCell subclass, 248

 ■D
Data feeding

Actual numberOfRowsInSection
Function, 317

index construction, 319
index matching

elements, 319
indexed table without section

headings, 321
sections with indexes, 322
simple indexed table, 320
tableView, 319

numberOfRowsInSection Method, 317
numberOfSectionsIn

TableView Function, 318
section header creation, 318

tableView:cellForRow
AtIndexPath function, 317

Data sources
cellForRowAt

IndexPath method, 122, 126
key information, 122, 127
numberOfRows

InSection method, 122, 126
numberOfSections

InTableView method, 121, 126
dealloc message, 111
Decoration views, 45, 49, 89
Delegates and memory management, 110
Dependency injection technique, 296
Design Patterns and UITableViews

creation, 362
deletion, 363–364
reading, 362
updation, 363

DetailInterfaceController, 443–444
didDoubleTapCell method, 253
didTapButton function, 250
didTapButtonInCell Function, 250–251
didTapButtonInCell method, 243
Double-tap recognizer, 253
Dummy data

nonsense data, 284
random data creation, 286
random names creation, 285–286
TableViewController, 284

 ■E
EvenCell, 215
EvenCell Subclass, 216

 ■F
Flow layout

Artsy app, 457
characteristics, 458
iBooks, 457
iPhone 6, 456

Footers view, 338, 340–342
Functions, view layout

collectionViewContentSize, 485
layoutAttributesForElementsInRect, 485
layoutAttributesForItemAtIndexPath, 485
prepareLayout, 484

548 Index

 ■G
Gesture recognizer, 252
Gestures, collection views control

cell spacing incrementation, 523
connecting with flow layout, 520
didGetPinchGesture: Function, 521
gesture recognizer, 521
touches distance calculation, 522

Grouped tables, 34, 312

 ■H
heightForRowAtIndexPath, 216

 ■I
iBooks app, 91
Indexed tables, 32–33

array of strings, 311
bottom of table

blank cells, 342
removal, spare rows, 343

Contacts app, 311
creation, 313
data feeding (see Data feeding)
plain-style table, 311
setting

adding prototype cell, 315
changes, prototype cell, 315
single view application, 314
tableView, 314

simple, 313
source data

updated viewDidLoad() function, 316
update to the View Controller, 315–316
View Controller extension, 316

tapping, 311
Interface Builder

multistage cell creation process, 192
NIB file creation, 194–197

Item cells, 49

 ■J
JSON file, 60–61

 ■K
kCellControl.NameLabel, 182

 ■L
layoutSubviews method, 228–229

 ■M
Model-view-controller

design (MVC) pattern
closing of ranks, 349
collection view, 347, 349
controllers, 133
description, 348
efficiencies, 135
front-end views, 347
iOS, 135
models, 133
modularity, 135
multiple views, 135
pattern, 133–134
programming analogy, 134
reloaded data, 349
tableViews, 136
user interface, 133
views, 133

MyCollectionViewController, 98

 ■N
Name Class

BNName.h file, 283
derivation, 280
gender, 280
iconName, 280
nameText, 280
new class files, 283
notes, 280
template, Xcode, 281

nameLabel, 188
NSDictionary, 63
numberOfItemsInSection, 70
numberOfRowsInSection Function, 265
numberOfSectionsInCollectionView, 70

 ■O
Object Browser, 148
OddCell Class, 209–210
OddCell XIB in progress, 212
Outlets HUD, 215

549Index

 ■P, Q
Password app, 30
Plain table, 32
popToRootControllerAnimated method, 276
Prototype cells

creating and configuring cells, 149
in code, 158–159
layout, 148–149
setting up, 153
standard cells, 145
in storyboards, 150–151
Table View, 149, 153–154, 156
UITableView, 145
in XIB files, 146–148

pullToRefresh Function, 256
pushViewController:animated method, 276

 ■R
Table’s reloadData() function, 264
Row controller classes,

WatchKit tables
creation, 434–436
interface elements, 422
rowControllerAtIndex, 425

Rows
custom editing actions, 365
editing options, 364
insertion and delection

Add New Row, 376
call to action in table, 375
cell.textLabel.text property, 377
commitEditingStyle function, 372
Completed commitEditingStyle, 380
control, editing, 369
editing action, 378
editing mode, 368, 376–377
editing style, 370
manipulation,

table View and data model, 386
NSIndexSet, 386
parameters, 371
prevention, editing, 369
process, 365, 374
progress, 371
sample table’s data model, 367
Custom setEditing, 378

messages passed
during tableView editing, 366

tableView, 373, 377
updated tableView, 377
UINavigation

Controller-Based Table, 367
UITableViewCellEditingStyle, 374
UITableViewRowAnimation

Options, 373
UITableView’s

insertRowsAtIndexPath, 379
user interaction, 377

movement
editing mode, 382
parameters, 383
proposedDestinationIndexPath, 384
tableView, 382–383
updating the model, rearranged

objects, 385
properties, 364
rearrangement process, 381
Setting Up the Custom Edit Actions, 364

 ■S
searchBarCancelButton

Clicked Function, 266
Sectioned tables, 32

all-singing, all-dancing tables, 323
construction, simple table, 322
data structure, 312
grouped table styles, 312
groups splitting, 312

Section header
custom, 339
and footers, 339

setupData() function, 62, 66, 232
setupViews() Function, 226
SimpleCV application, 56–57
Standard cellForRowAtIndexPath, 234
Static cells

height adjust, 411
interactive controls, 411, 413
switching, 408
table view, 408
UITableViewDataSource

methods, 409–410
updated cells, 409

550 Index

Static tables
cells adding, 408–410
container views

UITableViewController scenes, 413
UIViewController scene, 415–416

custom class setting, 412
display & brightness controls, 406
embedding, view controller, 417–418
headings and textfields, 419
IBAction methods, 411–412
prototype content area, 407
scene’s header, 412
scrolling enabled setting, 410
table view, 408
UITableViewController scene, 411
UITableViewController, 407
uses, 419

Stub awakeFromNib() Function, 249
subView array, 179
Supplementary and

decoration view attributes, 49
attributes calculation, 486–487
process steps, 486

SwiftClock, custom view layout
layoutAttributesForElements

InRect:function, 498
calculateAllAttributes function, 500–501
calculateAttributesFor

HandCell function, 505–507
calculateAttributesFor

HourLabelWithIndexPath, 502–505
calculateAttributes

ForItemAtIndexPath, 501
cellForItemAtIndexPath, 510–511
class properties, 494
clock hands,

UICollectionViewCell subclass, 510
collectionViewContentSize function, 497
custom circular layout, 488
custom class creation, 493
data model, 489–490, 492
hour labels

collection view cell object, 509
labels tag property, 509
XIB file creation, 508

layout process, 496
prepareLayout function, 496–497
rotation point

default, 514
updated, 514

settings, 489
setupData Function, 490
switch statement, 512
UICollectionView clock, 516
updateClock() function, 515
updated viewDidLoad() function, 515
viewWillDisappear() function, 516

 ■T
Table headers and footers

ole UIViews, 342
process of setting, 341
simple table, 341

Table interface, WatchKit
apple watch simulator, 431
ContactRowController class, 436
FooterRowController class, 435
Hello, world! label, 430
row controller classes, 434–435
rows creation, 432–433
storyboard file, 430
UITableView, 432
Watch interface, 432
WKInterfaceImage, 433

Table views
action on iPhone, 3
adding view, 287
anatomy, 3–4
application

initial Xcode view, 7–8
options, 6–7
Xcode, Single View

Application template, 5–6
app delegate, 298
app’s objects, 25–26
AutoLayout constraints, 288, 290
basic detail view, 296
BNDetailViewController, 294
cellIdentifier, 291
cell configuration, 21
cellForRowAtIndexPath: function, 18
constraints, 12
contentOffset, 344
contentSize, 345
controller’s viewDidAppear method, 345

551Index

creation and management, 29
current initial view code, 297
Custom Class property, 295
data array, 8, 10
dataSource and delegate, 15, 291, 293
detail and back again, 302
detail view link, 305, 307–309
didSelectRowAtIndexPath method, 301
dimension setting, 36–37
grouped table, 34
indexed table, 33
interface design, 29
iPad’s Mail app, 1–2
numberOfSectionsInTableView(), 17
Path app, 30
plain table, 32
protocols, 14–15
prototype cells, 19–20, 292
rootViewController property, 298
scrollToNearestSelected

RowAtScrollPosition, 344
scrollToRowAtIndexPath, 344
sectioned table, 34
selectRowAtIndexPath, 344
simple, 5
simulator, 13–14
Storyboard file, Interface Builder, 10
table inside, 300
table replete with content, 21–22
tableView:didSelect

RowAtIndexPath, 23–24
tableView:numberOfRowsInSection(), 17
Table View properties HUD, 15
tapping, row, 24–25
The scene’s Document Outline, 11
UIScrollView, 344
UK Train Times app, 30
updated code, 299
ViewController.swift file, 9
viewDidAppear method, 302
viewDidLoad method, 300

Table with sections and indexes
arrays of arrays, 325
data creation, 324
data sets, 323
inner arrays, 324
outer array, 323

UILocalizedIndexedCollation
data structures, 325
four-stage process, 326
languages, 326

textDidChange Function, 263

 ■U
UICollectionView, 67, 85, 96
UICollectionViewCell, 72, 177
UICollectionView DataSource, 69, 86, 126

number of sections, table, 126
UICollectionViewDelegate protocol, 119
UICollectionViewDelegateFlowLayout

header and footer sizes, 474–475
item size control, 471–472
section space management, 472–474

UICollectionViewFlowLayout
attributes, customization

estimatedItemSize, 466
item size, 465
lineSpacing, 467–468
minimumInteritemSpacing, 466–467
scroll direction, 465
section insets, 469
supplementary view size, 470

configuration
interface builder, 461–463
static flow layout values, 461

creation
code, 460
collection view layout, settings, 460
object, 460
steps, 459

custom layout
attributes, addition, 476

insertion and deletion animation, 476
layout attributes control, 476
supplementary and

decoration views, 476
UICollectionView in Code, 102
UICollectionViewLayout functions, 79, 499
UICollectionViewLayout. See Custom

collection view layout
UICollectionViewLayoutAttributes, 94
UICollectionViewLayouts.

See Collection views

552 Index

UICollectionViews, 95
cut, copy and paste implementation, 387
disable, cut function, 388
shouldShowMenuForItem

AtIndexPath: fuction, 388
two-dimensional, 386

UINavigationcontroller
built-in iPhone Contacts app, 273
components, 276
creation

back-to-basics approach, 277
TableViewController, 279
Xcode dialog, 278
Xcode ship, 277

embedding, table view, 303
fits into picture, 299
groups apps, 279
interface pattern, 274–275
optional toolbar, 276
page history,forward

and back buttons, 274
popToRootController

Animated: method, 276
popToViewController:

animated method, 276
pushing and popping views, 275
segues, 303
space bar, 276
stack view, 275
steps, 274
top navigation bar, 276
UIViewControllers, 277
user interface pattern, 273

UIScrollView’s frame, 199
UISearchBarDelegate Functions, 263–264
UITableView, 30, 94, 287, 422, 424, 438, 441

background image setting, 37
class hierarchy, 31
contentOffset, 38
contentSize, 38
Interface Builder

full-screen UITableView, 40–41
objects browser, 39
placing, another view, 39

and delegation
application design pattern, 106
cellForRowAtIndexPath, 107

delegate-dataSource
interaction, 113–114

didSelectRowAtIndexPath, 107
indexPaths, 132
object wiring up, 109
pattern, 106
protocols, 111
setting, 108
UITableViewDelegate

protocol methods, 115
programmatically creating, 41
scrollViewWill

BeginDragging, 38
UIScrollView, 38
UIScrollViewDelegate methods, 38
UITableViewController, 42–43

UITableViewCell, 177
anatomy, 141
basic structure, 142–143
cellForRowAtIndexPath, 173
cell’s background views, 143–144
class hierarchy of, 142
content and accessory, 145
conveyor belt. Conveyor belt
default cell content, 163–164
just-in-time, 168
memory limitations, 168
prepareForReuse, 173
speed and smoothness, 168
UITableViewCellStyleDefault, 160
UITableViewCellStyleSubtitle, 162
UITableViewCellStyleValue1, 161
UITableViewCellStyleValue2, 162
willDisplayCell, 173
working with accessory views

cellForRowAtIndex
Path method, 167

custom accessory views, 167
DetailDisclosureIndicator, 165
didSelectRowAt

IndexPath method, 167
DisclosureIndicator, 164
listOfPlayers, 167
model-view-controller pattern, 166
setting, 166
tableView, 164
toggling, 167

553Index

UITableViewCell
AccessoryCheckmark, 165

UITableViewCell
AccessoryNone, 165

UITableViewCellAccessoryDetail
DisclosureIndicator, 165

UITableViewCellAccessory
DisclosureIndicator, 164

UITableViewCellAccessoryNone, 165
UITableViewCellBasic

style in Interface Builder, 161
UITableViewCellStyleDefault, 160
UITableViewCellStyleSubtitle

with image, 162
UITableViewCell subclasses, 220
UITableViewController, 42, 185, 277

container view, 416–417
IBAction method, 411

UITableViewController in Storyboard, 254
UITableViewDataSource methods

cell,section and
row methods, 124, 129

dataSource methods, 130
title and index-related

method, 124–125
UITableViewDelegate’s, 200
UITableViews

custom menu
“add cell”option, 393–395
cells removal, 392
cell subclass, 391
creation, 391
delegation, 391
process, 390
protocol, 390
updation, 392

rearrangement, 395–396,
398, 400, 402–403

UIView animation
insertItemsAtIndexPaths, 542
removeItemsAtIndexPaths, 542

UIViewController, 186, 411, 413, 415, 418
Updated awakeFromNib() Function, 249
Updated cellForRow

AtIndexPath Function, 235, 251
Updated CustomCell Class, 237
Updated SCVViewControllerC, 69
Updated viewDidLoad() Function, 65, 76

 ■V
ViewController class

collationStringSelector, 335
configureSectionData() Function, 334
finished table view, 338
full viewDidLoad Method, 334
nameString object, 335
NSArray, 334
numberOfRowsInSection, 337
numberOfSectionsInTableView, 336
sectionIndexTitlesForTableView, 336
sortedObjects, 335
tableView:cellForRowAtIndexPath, 337
tableView:titleForHeaderInSection, 336
UILocalizedIndexedCollation object, 333
UILocalizedIndexedCollation, 333

View controller’s viewDidLoad
function., 75, 257

viewWithTag function, 183

 ■W
WatchKit app

bluetooth connection, 422
components, 427
Interface.storyboard, 432
iPhone app, 427
table creation, 423
template, 427
Watchkit extension, 422, 427
WKInterfaceTables, 422

WatchKit tables
awakeWithContext(:_) function, 440
configuration and update, 425
connections

contact row, 437
footer row, 438

creation
new targets, 429
project, 426
target options setting, 428
WatchKit target, 427
WatchTarget scheme

activation, 428
custom classes, 422

ContactRowController, 437
creation, 436
FooterRowController, 437

554 Index

groups, 426
handling selection, 441
HeaderRowController, 436
limitations, 422
navigation interface

awakeWithContext: function, 451
contextForSegue

WithIdentifier function, 447
contextForSegue

WithIdentifier:table:rowIndex, 449
DetailInterfaceController class, 450
detail view, 451
didSelectRowAtIndex: function, 452
hierarchical, 442
interface controller, 443–444
pushControllerWith

Name:context, 452
pushing and popping, 449

push segue adding, 445–448
segue identifier, 448
storyboards and segues, 452
UITableViews, 442
WKInterfaceTable, 442

rowControllerAtIndex function, 425, 440
row controllers, 422–424
row identifier, 437
setRowTypes function, 440
setupData() function, 439
updateTable() function, 439–440
WKInterfaceTable class, 424
WKInterfaceTable control, 422
WKInterfaceTable objects, 424

 ■X, Y, Z
Xcode app, 277
XIB file, 101

WatchKit tables (cont.)

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Chapter 1: Table Views Quick Start
	 What Are Table Views?
	 The Anatomy of a Table View
	 Creating a Simple Table View App
	 Creating the Application Skeleton
	 Generating Some Data
	 Creating the Table View
	 Conforming to the Table View Protocols
	 Wiring Up the Data Source and Delegate
	 Displaying the Data
	 numberOfSectionsInTableView(:)
	 tableView:numberOfRowsInSection(:)
	 Creating Cells
	 Creating a Prototype Cell
	 Configuring the Cell
	 Running the App

	 Adding Some Interactivity
	 tableView:didSelectRowAtIndexPath:

	 Understanding How the App’s Objects Fit Together
	 Summary

	Chapter 2: How the Table View Fits Together
	 Understanding Table Views
	 Working with the UITableView Family
	 The UITableView Class Hierarchy

	 Choosing the Type of Table View
	 The Plain Table
	 The Indexed Table
	 The Sectioned Table
	 The Grouped Table

	 Setting TableView Dimensions
	 Controlling the Background of a UITableView
	 What UITableView Inherits from UIScrollView
	 Creating UITableViews
	 Creating a UITableView in Interface Builder
	Placing a UITableView into Another View
	Placing a Full-Screen UITableView

	 Creating a UITableView Programmatically
	 Creating a UITableView with UITableViewController
	Connecting UITableViewController Outlets

	 Summary

	Chapter 3: Collection Views Quick Start
	 What Are Collection Views?
	 The Anatomy of a Collection View
	 The Collection View Itself
	 Collection View Cells
	 The Supporting Objects
	The Collection View’s Model
	The Collection View’s Datasource
	The Collection View’s Delegate
	The Collection View’s Layout

	 Creating a Simple Collection View App
	 Creating the Application Skeleton
	 Creating Some Data
	 Adding the Card Images
	 Building the Model
	 Setting Up the Collection View in the Storyboard
	 Setting Up the delegate and dataSource Funtions
	The numberOfSectionsInCollectionView: Function
	The collectionView: numberOfItemsInSection: Function
	The collectionView:cellForItemForIndexPath: Function
	Configuring the Layout of the Collection View

	 The App in Action

	 Summary

	Chapter 4: How The Collection View Fits Together
	 What Are Collection Views?
	 The Architecture of a Collection View
	 The Anatomy of a Collection View
	 The Collection View Itself
	 Collection View Items
	 Collection View Layouts
	 The Supporting Objects in Detail
	The Collection View’s Model
	The Collection View’s Data Source
	The Collection View’s Delegate
	The Collection View’s Layout

	 Creating Collection Views
	 Creating a UICollectionView with Interface Builder
	Embedding a UICollectionView into an Existing View
	Adding a UICollectionView as a Storyboard Scene
	Adding a UICollectionViewController Subclass to the Project

	 Creating a UICollectionView in Code

	 Summary

	Chapter 5: Feeding Data to Your Views
	 UITableView, UICollectionView, and Delegation
	 Understanding Delegation
	A Delegate Example: collectionView(_:didSelectItemAtIndexPath:)
	A dataSource Example: tableView: cellForRowAtIndexPath

	 Setting Delegates
	 Wiring Up an Object with a Delegate
	Delegates and Memory Management

	 Defining Protocols
	 Using UITableView’s Delegate Methods
	 Using UITableViewDelegate Methods
	 Using UICollectionViewDelegate Methods

	 Datasources
	 The UITableView dataSource
	Getting the Number of Sections in the Table
	Getting the Number of Rows in the Section
	Getting Cells That Belong in This Row of This Section
	 How the Key Information Is Obtained by the Table
	 Cell-, Section-, and Row-Related UITableViewDataSource Methods
	 Title- and Index- Related UITableViewDataSource Methods
	 Insertion-, Removal-, and Reordering-Related UITableViewDataSource Methods

	 The UICollectionView dataSource
	Getting the Number of Sections in the Table
	Getting the Number of Items in the Section
	Getting Cells That Belong To This Item of This Section
	Getting Supplementary Views That Belong To This Index Path
	 How the Key Information Is Obtained by the Collection View
	 Which configuration method should I use?
	The datasource’s cellForItemAtIndexPath: function
	The delegate’s willDisplayCellAtIndexPath: function

	 Cell-, Section-, and Item-Related UICollectionViewDataSource Methods

	 The Thing to Bear in Mind About dataSource Methods
	 Implementing the dataSource and delegate Protocols
	 All About indexPaths
	 The Model-View-Controller Design Pattern
	 Why Use the Model-View-Controller Pattern?
	 MVC and iOS
	 MVC, tableViews, and collectionViews

	 Improving the App Structure
	 How to Split Out Datasources and Delegates
	Step 1: Create a Separate Class
	Step 2: Link the Table View to the New Class

	 Summary

	Chapter 6: How the Table Cell Fits Together
	 Understanding the Anatomy of a UITableViewCell
	 Basic Structure of the Cell
	 The Cell’s Background Views
	 Content and Accessory Views

	 Designing Prototype Cells
	The Code for This Chapter
	 Creating Prototype Cells in XIB Files
	Creating the XIB File
	Adding the Cell Object to the XIB
	Laying Out the Prototype Cell
	Telling the Table View About the XIB
	 Creating and Configuring Cells

	 Creating Prototype Cells in Storyboards
	Creating Prototype Cells
	 Setting Up the Prototype Cells
	Telling the Table View About the Prototype Cells
	Creating and Configuring Cells

	 Creating Prototype Cells in Code
	Registering the Cell Class with the Table View
	Creating and Configuring Cells

	 Working with Standard Cell Types
	 Using UITableViewCellStyleDefault
	 Using UITableViewCellStyleValue1
	 Using UITableViewCellStyleValue2
	 Using UITableViewCellStyleSubtitle

	 Configuring the Default Cell’s Content
	 textLabel
	 detailTextLabel
	 imageView
	 contentView
	 Formatting Text in Default Cell Types

	 Working with Accessory Views
	 Using UITableViewCellAccessoryDisclosureIndicator
	 Using UITableViewCellAccessoryDetailDisclosureIndicator
	 Using UITableViewCellAccessoryCheckmark
	 Using UITableViewCellAccessoryNone
	 Setting the Accessory View Type
	 Using an Accessory View to Show Cell Selection State
	 Creating Custom Accessory Views

	 Creating and Reusing Cells
	 Memory Limitations
	 Speed and Smoothness
	 Just-in-Time Creation and Recycling
	 The Table View’s “ Conveyor Belt ”
	How the “Conveyor Belt” Process Is Built in Code
	Identifying Cells with the cellIdentifier

	 Side Effects of Cell Reuse and Caching

	 Summary

	Chapter 7: Improving the Look of Cells
	 Customizing Cells
	 Which Function Should I Use?

	 Adding Subviews to the Cell’s contentView
	 Creating the Elements in the Cell
	Updating the Content in a Customized Cell
	 Tagging Controls in the Cell
	 Casting Controls

	 Creating Custom Cells Visually As Prototypes In A Storyboard
	 Creating Prototype Dynamic Cells
	Customizing Prototype Table View Cells
	Prototype Cells and Custom UITableViewCell Subclasses
	Setting Prototype Cell Heights
	Setting Variable Cell Heights
	Customizing Prototype Collection View Cells
	Setting the Size of Prototype Collection View Cells

	 Creating Custom Cells Visually Using Interface Builder
	 The Stages of Creating Cells Visually
	 Creating a New XIB File
	Setting Up the Cell’s Identifier

	 Creating the Cell’s Content
	Assigning Tags to Controls

	 Registering the Cell
	 Controlling Cell Sizes
	Collection View Cell Sizes
	Table View Cell Sizes
	Setting a Fixed Height
	Setting Variable Row Heights

	 Handling Cell Resizing in Tables
	 Summary

	Chapter 8: Creating Custom Cells with Subclasses
	 Why Create a Custom Cell Subclass?
	 The Process of Creating Custom Cells

	 Custom Cells with XIBs
	 Designing Your Cell
	 Creating the Class for the Custom Cell
	Creating the Subclasses

	 Building the Cell in Interface Builder
	Creating the XIB File
	Laying Out Controls in Interface Builder
	Conforming the Cell to the Custom Class
	Linking Up Custom Controls
	Creating the EvenCell
	Setting the Cell Heights

	 Creating Instances of the Custom Cells

	 Handling Selection in Custom Cells
	 Custom Cells in Code
	 The Process of Custom Cells in Code
	 Creating Custom Subclasses
	Creating the Classes
	Registering Custom Classes with the Table or Collection View
	The init Functions
	The Table View Cell’s init Function
	The Collection View’s init Function

	 Overriding the layoutSubviews Function
	 Overriding the prepareForReuse Function

	 Improving the App’s Architecture with MVVM
	 The Model-View-View Model Approach
	 Advantages and Disadvantages of MVVM
	 Implementing the MVVM Approach
	 Converting the Project to an MVVM Approach

	 Summary

	Chapter 9: Improving Interaction
	 Embedding Custom Controls into Cells
	 A Simple Approach – Adding a Button Directly To The Cell
	Creating an Alert View

	 Creating the Buttons
	 Adding the Buttons to Cells
	 Reacting to Individual Controls
	 A More Robust Subclass-based Approach
	Declaring the Protocol
	Implementing the Custom UITableViewCell
	Adding the Button to the Cell’s ContentView
	Adding a Delegate Property
	Adding the Code to Handle a Button Tap
	Updating the Storyboard
	Updating the View Controller

	 Adding Gestures to Cells
	 Adding Pull-to-Refresh to Table Views
	 Implementing Pull-to-Refresh with UITableViewController
	Adding the Refresh Control

	 Implementing the pullToRefresh Function
	 Adding a UIRefreshControl to a Table View
	Adding the UIRefreshControl Property
	Instantiating the Refresh Control

	 Searching in Tables and Collection Views
	 Adding a Search Bar to the Table
	 How Search Works
	 Implementing Search
	Implementing the UISearchBarDelegate Functions
	Updating the UITableViewDatasource Functions

	 Happy, Healthy Tables
	 Background, Background, Background
	 Are the Cells Cached ?
	 Do Your Table Cells Have Varying Heights ?
	 Cutting the Cost of Compositing
	Checking Transparency in the Simulator

	 Summary

	Chapter 10: Using Tables for Navigation
	 The Navigation Controller Interface Pattern
	 Introducing the UINavigationController
	 Creating a Navigation Controller App
	 Creating the Name Class
	 Creating Some Dummy Data
	 Connecting Up the Table View
	 Building the Detail View
	 Passing Data into the Detail View
	 Implementing the Navigation Controller
	 How the Navigation Controller Is Wired Up
	 Linking the Navigation Controller and Detail Views Together

	 Building Navigation Structure with Segues
	 Embedding the Table View in a Navigation Controller
	 Updating the App Delegate
	 Linking the Detail View to the Table View

	 Summary

	Chapter 11: Indexing, Grouping, and Sorting Tables
	 Using Indexed Tables
	 Using Sectioned and Grouped Tables
	 Creating a Simple Indexed Table
	 Setting Up the Basic Table
	 Creating the Source Data
	 Feeding the Table with Data
	Returning the Number of Sections in the Table
	Creating the Title for the Section Header
	Building the Index
	Matching the Index to the Section

	 Building Practical Sectioned Tables
	 Creating the Data for a Table with Sections and Indexes
	 Arrays of Arrays
	 UILocalizedIndexedCollation
	LOCALIZATION IN PRACTICE

	 Creating the All-Singing, All-Dancing Table
	 Creating the App from a Template
	 Creating Some Data in a plist File
	Using the plist in Code

	 Sorting Out the User Interface
	 Extending the ViewController Class
	Configuring the Sections

	 Creating Table and Section Header and Footer Views
	 Table Headers and Footers
	 Tidying the Bottom of Tables

	 Moving the Table Programmatically
	 scrollToRowAtIndexPath:atScrollPosition:animated:
	 scrollToNearestSelectedRowAtScrollPosition:animated:
	 selectRowAtIndexPath:animated:scrollPosition:

	 Finding the Current Scroll Position in the Table
	 Summary

	Chapter 12: Selecting and Editing Content
	 A Recap of the Model-View-Controller Pattern
	 Why the Model-View-Controller Pattern Is Important
	 Cell Selection in TableViews
	 Cell Selection Types
	Controlling Selection
	Global Selection

	Understanding How Selection Works for Tables
	Managing Row-Specific Selection

	 Visualizing Selection
	Customizing Selection
	Handling Deselection
	Visualizing Persistent Selection
	Using Selection Marks to Indicate Multiple Selections
	Working with Selections
	Visualizing Multiple Row Selection
	Using the Cell’s Accessory View to Show a Selection Mark
	Using the Cell’s Accessory View to Show a Custom View
	Showing Selection in Other Ways

	Handling Deselection After Selection
	Keeping the Data Model in Sync

	 Optimizing Selection Performance

	 Selection Dos and Don’ts
	 Responding to Selections with More Detail
	 Design Patterns and UITableViews
	 Read
	 Create
	 Update
	 Delete

	 Custom Row Actions
	 Inserting and Deleting Rows
	 Putting the Table into Editing Mode
	 Controlling Whether Rows Can Be Edited
	 Controlling Each Row’s Editing Style
	 Dealing with Row Deletions
	Swipe-Style Row Deletions

	 Dealing with Row Insertions
	Amending the Data Model
	Working with the New Row

	 Rearranging Tables
	Entering Editing Mode
	Checking Whether Rows Can Be Moved

	 Moving Rows Around
	Can the Row Be Moved to Here?
	Updating the Model

	 Enabling Batch Insertion and Deletion
	 Batch Insertion and Deletion of Sections

	 Selection in UICollectionViews
	 Cut, Copy, and Paste with Collection Views
	 Implementing Custom Menus in a Collection View
	Defining the Custom Protocol
	Implementing the Custom Protocol
	Updating the Collection View Cell Subclass
	 Creating the Custom Menu Item
	Linking the Cell to Its Delegate
	 Updating the UICollectionViewDelegate Functions
	 Removing Cells in Response to the Menu Item
	Implementing an “Add Cell” Option
	Extending the Protocol to Add a Function to Insert a Cell
	Adding the New Function to the Cell Subclass
	Implementing the addItem Function in the Collection View Controller
	Adding a New Menu Item

	 Rearranging UICollectionViews
	 Prerequisites
	 Implementing Drag-and-Drop with UICollectionViewController
	Adding UICollectionViewDelegate Functions
	Highlighting the Move
	Using Drag-and-Drop Interaction

	 Implementing Drag-and-Drop with UIViewController
	Adding Properties
	Adding the Gesture Recognizers
	Adding UIGestureRecognizerDelegate Functions
	Finishing Up

	 Summary

	Chapter 13: Static Tables
	 How to Build Static Tables
	 Adding Static Cells to the Table View
	 Fixing Scrolling
	 Adding Controls to the Static Cells
	Adjusting the Cell Heights
	Adding Interactive Controls

	 Using Static Tables Inside Container Views
	 Prerequisites
	 Adding a UIViewController Scene
	 Adding a Container View to the UIViewController
	 Embedding the Static Table View into the View Controller

	 Other Uses for Static Tables
	 Summary

	Chapter 14: Tables in WatchKit
	 About WatchKit
	 The Anatomy of a WatchKit App
	 What Are WatchKit Tables?
	 Creating a Basic Table
	 Creating the Project
	 Adding the WatchKit Target
	 Building the Table Interface
	 Creating the Table
	Creating the Rows
	Laying Out the Rows
	 Creating the Row Controller Classes
	Connecting the Classes to the Rows
	Connecting Outlets
	Creating the Rows in Code
	Finishing up
	Adding Interactivity

	 Navigation with WatchKit Tables
	 Adding a New Interface Controller
	 Adding a New Screen to the Storyboard
	 Implementing the Navigation
	Adding a Push Segue

	 Adding Navigation in Code

	 Summary

	Chapter 15: Collection View Flow Layouts
	 About Flow Layouts
	 The Characteristics of a Flow Layout
	 UICollectionViewFlowLayout
	 Creating and Configuring Flow Layouts
	 Instantiating a Flow Layout
	Creating and Configuring a Flow Layout in Code
	Creating the Flow Layout
	Setting the Collection View’s Layout
	Configuring Static Flow Layout Values
	Configuring Flow Layout Values Dynamically

	Configuring a Flow Layout in Interface Builder

	 Customizing Flow Layouts
	 Customizing with Attributes
	Scrolling Direction
	Item Size
	Estimated Item Size
	Item Spacing
	Line Spacing
	Section Insets
	Supplementary View Sizes

	 Customizing with UICollectionViewDelegateFlowLayout
	Controlling Item Size
	Parameters
	Return Values
	Example

	Managing Section Spacing
	collectionView(_:layout:insetForSectionAtIndex:)
	collectionView(_:layout:minimumLineSpacingForSectionAtIndex:)
	collectionView(_:layout:minimumInteritemSpacingForSectionAtIndex:)

	Managing Header and Footer Sizes
	collectionView(_:layout:referenceSizeForHeaderInSection:)
	collectionView(_:layout:referenceSizeForFooterInSection:)

	 Subclassing UICollectionViewFlowLayout
	 Controlling Item Layout Attributes
	 Adding Additional Custom Layout Attributes to Items
	 Adding New Supplementary Views
	 Controlling Insertion and Deletion Animations

	 Summary

	Chapter 16: Collection View Custom Layouts
	 About Custom Layouts
	 When to Create a Custom Collection View Layout
	 Creating a Custom Layout Subclass
	 Deciding When to Calculate Attributes
	 What the Custom Layout Does
	 What Are Layout Attributes?
	Custom Layout Attributes

	 The Four Key Functions to Implement
	 prepareLayout
	 collectionViewContentSize
	 layoutAttributesForElementsInRect
	 layoutAttributesForItemAtIndexPath

	 Supplementary and Decoration View Attributes
	 Checking if Supplementary or Decoration Views Are Required
	 Calculating Supplementary and Decoration View Attributes

	 This Chapter’s Project
	 SwiftClock: The “Static” Example
	 Getting Started

	 The Initial Project
	Setup
	The Data Model

	 Updating the Project
	 Adding the Custom Layout Class
	Setting Up Properties
	How the Custom Layout Will Operate

	 Implementing the Layout Functions
	The prepareLayout Function
	collectionViewContentSize
	layoutAttributesForElementsInRect:
	layoutAttributesForElementAtIndexPath:
	Other UICollectionViewLayout Functions

	 Implementing the Custom Layout Functions
	The calculateAllAttributes Function
	The calculateAttributesForItemAtIndexPath: Function
	Calculating the Position of the Hour Labels
	Calculating the Position of the Hands

	 Next Steps
	 Displaying the Numerals and Hands
	Creating a XIB File for the Hour Labels
	Creating a UICollectionView Subclass for the Clock Hands
	Using the Custom Layout
	Getting the Clock to “Tick”

	 Summary

	Chapter 17: Animated and Interactive Collection Views
	 Controlling Collection Views with Gestures
	 Connecting Gestures with Layouts
	Adding the Gesture Recognizer
	Handling Gestures

	 Collection Views and Animations
	The Process
	Prerequisites
	 Creating the Custom Layout
	Housekeeping Functions
	Calculating Attributes
	Calculating the Center Point
	Supplying Attributes to the Collection View
	Supplying Attributes En Masse
	Supplying Individual Item Attributes
	Supplying Initial Layout Attributes
	Supplying Final Layout Attributes

	 Wiring Up the Collection View
	Adding New Items
	Removing Items

	 Controlling Insertion and Removal Animations

	 Summary

	Index

