
SOURCE CODE ONLINE

Pro jQuery in
Oracle Application
Express

Practical techniques to enhance your
APEX user interface
—
Scott Wesley

Building on your existing SQL skills, this book teaches you how to apply useful jQuery techniques
to applications developed using the Oracle Application Express (APEX) development tool.

Pro jQuery in Oracle Application Express covers the fundamentals you need to start enhancing
your applications, with some practical examples that you’ll want in your own applications
tomorrow. jQuery is a framework already utilized by APEX, and by learning the basics of
jQuery you can leverage the flexible dynamic actions provided and see your applications raise
the bar. Discover why you should embrace HTML5, CSS, and jQuery library capabilities, and
how they can enhance the user experience.

Oracle Application Express is a mature, browser-based, rapid-development environment with
a strong community base around the #orclapex tag. jQuery is a language for the browser, with
it you can treat your web page as if it were a database, interacting with a range of features
and functions that can make you into a more constructive, more efficient developer.

• Exemplifies how productive APEX, CSS, and jQuery can be
• Transforms your PL/SQL skills to CSS and jQuery
• Provides jQuery snippets to enhance your application UX

Pro jQuery in Oracle Application Express

www.apress.com

W
esley

Pro jQuery in Oracle Application Express

THE E XPER T ’S VOICE® IN OR ACLE

Shelve in:
Databases/Oracle

User level:
Beginning–Advanced

9 781484 209622

ISBN 978-1-4842-0962-2ISBN 978-1-4842-0962-2

www.allitebooks.com

http://www.allitebooks.org

Pro jQuery in Oracle
Application Express

Scott Wesley

www.allitebooks.com

http://www.allitebooks.org

Pro jQuery in Oracle Application Express

Copyright © 2015 by Scott Wesley

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0962-2

ISBN-13 (electronic): 978-1-4842-0961-5

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Jonathan Gennick
Technical Reviewer: Alex Fatkulin
Editorial Board: Steve Anglin, Louise Corrigan, Jim DeWolf, Jonathan Gennick, Robert Hutchinson,

Michelle Lowman, James Markham, Susan McDermott, Matthew Moodie, Jeffrey Pepper,
Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Jill Balzano
Copy Editor: Ann Dickson
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springer.com. Apress Media, LLC is a California LLC and the
sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance
Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to
readers at www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springer.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/
http://www.allitebooks.org

I would like to thank all the scientists and visionaries that make modern life possible.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author ��xix

About the Technical Reviewer ��xxi

Acknowledgments ��xxiii

Introduction ���xxv

 ■Part I: Getting Started ��� 1

 ■Chapter 1: CSS—The Secret �� 3

 ■Chapter 2: jQuery Fundamentals ��� 13

 ■Chapter 3: Browser Tools �� 23

 ■Part II: Integrating into APEX �� 29

 ■Chapter 4: Enlarging Content��� 31

 ■Chapter 5: Firing Dynamic Actions �� 43

 ■Chapter 6: Implementing jQuery Alternatives ��� 53

 ■Chapter 7: Highlighting Selected Row ��� 59

 ■Chapter 8: Adding Buttons to Reports ��� 65

 ■Part III: Playing with Processes ��� 75

 ■Chapter 9: Choosing Process Options ��� 77

 ■Chapter 10: Link a Check Box to a Collection �� 89

 ■Chapter 11: Using jQuery Dialogs �� 99

 ■Chapter 12: Using Modal Forms �� 107

 ■Chapter 13: Receiving Information from the Database ������������������������������������� 117

www.allitebooks.com

http://www.allitebooks.org

vi

■ Contents at a GlanCe

 ■Part IV: Reporting Options �� 129

 ■Chapter 14: Adding Visualization with JSON ��� 131

 ■Chapter 15: Applying jQuery Post Render ��� 147

 ■Chapter 16: Clicking Entire Rows �� 155

 ■Chapter 17: Customizing Pagination ��� 161

 ■Part V: Diversifying Techniques �� 167

 ■Chapter 18: Customizing Item Help ��� 169

 ■Chapter 19: File Browse Validation ��� 179

 ■Chapter 20: CSS Media Queries ��� 191

 ■Chapter 21: Coding for the Future ��� 205

Index ��� 217

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Author ��xix

About the Technical Reviewer ��xxi

Acknowledgments ��xxiii

Introduction ���xxv

 ■Part I: Getting Started ��� 1

 ■Chapter 1: CSS—The Secret �� 3

Understanding the Selector �� 3

The Web Page Is Hierarchical Data ��� 3

HTML, CSS & jQuery Syntax Examples ��� 5

SQL Analogy �� 6

Understanding Selectors �� 8

Tags, IDs, and Classes �� 8

Attributes and Operator �� 8

Pseudo-Selectors ��� 9

Browser Feedback �� 9

Events ��� 10

Translating PL/SQL to JavaScript ��� 11

What’s Available from the Box? �� 12

Summary �� 12

www.allitebooks.com

http://www.allitebooks.org

viii

■ Contents

 ■Chapter 2: jQuery Fundamentals ��� 13

Including jQuery in Your Page��� 13

Getting and Setting ��� 14

Traversing ��� 15

Siblings ��� 15

Ancestry ��� 16

Chaining ��� 17

Effects �� 18

Callbacks �� 19

AJAX Callbacks ��� 19

Dynamic Actions ��� 19

Summary �� 21

 ■Chapter 3: Browser Tools �� 23

Chrome vs� the Rest ��� 23

Developer Tools �� 23

Exploring the Contents of Your Page ��� 24

Console ��� 26

Mobile Emulator ��� 27

Summary �� 28

 ■Part II: Integrating into APEX �� 29

 ■Chapter 4: Enlarging Content��� 31

APEX Application �� 31

Enlarging the Region Title �� 31

Using Inspect Element to Find the Page Element ��� 31

Identifying CSS Selector for jQuery �� 33

Using a Static Region ID ��� 34

Inline CSS ��� 35

www.allitebooks.com

http://www.allitebooks.org

ix

■ Contents

Increase Font Sizes throughout the Page ��� 38

Enlarging Datepicker Elements �� 38

Summary �� 41

 ■Chapter 5: Firing Dynamic Actions �� 43

Creating a New Report Page �� 43

Refresh Report on Search �� 44

Search Field Listener �� 44

Submit page item ��� 45

Responding to Row Click �� 46

Option A: Invoke Custom Event ��� 47

Option B: Listen for Click Event �� 50

Summary �� 52

 ■Chapter 6: Implementing jQuery Alternatives ��� 53

jQuery in APEX �� 53

Why Not Use Dynamic Actions? �� 53

Where Do I Put My jQuery Code? �� 53

Resources ��� 54

Instrumentation �� 54

Naming Conventions ��� 55

jQuery Style Key Release ��� 55

Report Link Event Listener ��� 56

Simplify Anchor URL ��� 57

Define Row Click Listener ��� 57

Summary �� 57

 ■Chapter 7: Highlighting Selected Row ��� 59

jQuery Development Pattern �� 59

Using Inspect Element �� 59

Defining the CSS �� 61

www.allitebooks.com

http://www.allitebooks.org

x

■ Contents

Adding the Event Listener �� 61

Define the Highlight Function ��� 62

Summary �� 64

 ■Chapter 8: Adding Buttons to Reports ��� 65

Defining the Button �� 65

Deriving the Button Style �� 65

Generating the Button �� 66

Preparing the Dynamic Action �� 69

Gathering Information about the Row �� 69

Sending Discrete Values ��� 70

Using a Dynamic Action to Get Live Information from the Database �� 70

Dynamic Action Attributes �� 71

Traversing the Tree for Information �� 72

Using Data Attributes �� 72

Summary �� 73

 ■Part III: Playing with Processes ��� 75

 ■Chapter 9: Choosing Process Options ��� 77

A Brief History of AJAX ��� 77

Preparing the APEX Page �� 78

Choosing Process Options �� 79

The Old htmldb_Get �� 79

Declarative Dynamic Actions �� 81

Using apex�server�process �� 83

Async vs Sync �� 85

JSON Output ��� 86

Applying the Functionality �� 86

Summary �� 87

xi

■ Contents

 ■Chapter 10: Link a Check Box to a Collection �� 89

About APEX Collections �� 89

Extending the Report �� 89

Add Column to SQL ��� 89

Edit the Report Column ��� 90

Listening for the Click Event��� 90

Adding PL/SQL Processes �� 91

Create PL/SQL Callback �� 91

Debug Mode ��� 92

Initialise Collection ��� 93

Session Information �� 94

User Feedback�� 95

Summary �� 97

 ■Chapter 11: Using jQuery Dialogs �� 99

The Undo Alternative �� 99

The Browser Solution ��� 99

jQuery Dialogs �� 100

Priming the Dialog �� 101

Opening the Dialog ��� 101

Calling the Function �� 102

Focus the Button �� 103

Customizing with CSS �� 103

Sourcing a Message from the Database ��� 104

Defining a Generic Alert�� 106

Summary �� 106

xii

■ Contents

 ■Chapter 12: Using Modal Forms �� 107

A Brief History of Modal Forms in APEX ��� 107

jQuery Modal �� 107

APEX Region Modal �� 108

SkillBuilder’s Modal Page Plug-in��� 109

APEX 5 �� 110

Selecting the Right Modal �� 111

Using APEX Region Modals��� 112

Define Modal Region �� 112

Adding a Create Button ��� 112

Create Dynamic Action ��� 112

Modifying Report Button DA ��� 113

Saving the Data �� 113

Summary �� 115

 ■Chapter 13: Receiving Information from the Database ������������������������������������� 117

Using htp�prn �� 117

Processing Delimited Data ��� 118

Larger Data Using JSON ��� 119

Why Use JSON? �� 119

JSON Syntax ��� 120

Handling JSON within the AJAX Call ��� 120

Generating JSON �� 121

JavaScript APIs ��� 125

Validating JSON �� 125

Undocumented APIs �� 126

Summary �� 127

xiii

■ Contents

 ■Part IV: Reporting Options �� 129

 ■Chapter 14: Adding Visualization with JSON ��� 131

Why Visualizations? �� 131

Visualization Libraries �� 132

Preparing Data ��� 132

Preparing a Page �� 134

Create Collection �� 134

Create AJAX Callbacks �� 135

Page Properties �� 138

Handling Bugs �� 142

PL/SQL Errors ��� 143

JSON format errors ��� 143

Summary �� 145

 ■Chapter 15: Applying jQuery Post Render ��� 147

Check Static Region ID ��� 147

Customize “No Data Found” Message ��� 148

Include CSS Style ��� 148

Extend Dynamic Action ��� 149

Using jQuery after Refresh ��� 150

Customizing Report Totals �� 150

Add Report Totals �� 151

Identifying Page Components ��� 151

Highlighting Cell Backgrounds ��� 152

Identifying Report Cells �� 152

Identifying Cells with Certain Values �� 153

Applying Highlight after Refresh ��� 153

Summary �� 154

xiv

■ Contents

 ■Chapter 16: Clicking Entire Rows �� 155

Method A—Proactive ��� 155

Taking Care of Performance ��� 155

Add Column �� 157

Add Expression to Report Column �� 157

Define jQuery Function ��� 157

Method B—React, Respond ��� 158

Prerequisites��� 159

Add Listener to Region ��� 159

Summary �� 159

 ■Chapter 17: Customizing Pagination ��� 161

About Pagination �� 161

Prepare Report ��� 162

Upgrading Pagination ��� 163

Add JavaScript Function ��� 163

Invoke Function �� 164

Add CSS to Style Buttons ��� 165

Summary �� 166

 ■Part V: Diversifying Techniques �� 167

 ■Chapter 18: Customizing Item Help ��� 169

Define Help Data �� 169

Design Time �� 169

UI Defaults �� 170

Custom Tables �� 171

Column Comments ��� 171

Identifying the Table Name ��� 172

xv

■ Contents

Modify Label Template ��� 172

Replace Default Help with Event Listener �� 172

Load Static File ��� 172

Add Listener to Global Page�� 174

Define PL/SQL Process ��� 175

Runtime Test ��� 176

Performance ��� 176

Modifying Workflow �� 177

Modify Spinner ��� 177

Caching Information ��� 177

Touch Lag ��� 178

Summary �� 178

 ■Chapter 19: File Browse Validation ��� 179

Using Google to Find the Answer ��� 179

Gathering Information ��� 179

Using Google ��� 181

Exploring Viable Results ��� 183

Using Forums ��� 186

Stack Overflow ��� 186

OTN Forums �� 187

Translating to APEX �� 187

Validate File Extension Using File String �� 187

Validate File Extension Using Input Attribute �� 187

Validating File Size ��� 188

Multiple Files �� 188

Summary �� 189

xvi

■ Contents

 ■Chapter 20: CSS Media Queries ��� 191

What Is a CSS Media Query? �� 191

Identifying Device Type ��� 192

Applying jQuery Logic Based on Media Queries ��� 193

Using CSS to Configure Printer Layout ��� 194

Printer-Friendly Templates �� 194

Identifying Components for Exclusion �� 195

Adding Content for Printer �� 198

Add Media Queries ��� 198

Hiding Columns by Device Orientation ��� 201

Summary �� 203

 ■Chapter 21: Coding for the Future ��� 205

Embracing Versatility �� 205

Don’t Reinvent the Wheel ��� 208

Learning Process �� 209

Debugging �� 209

Processes ��� 210

Namespaces ��� 210

Performance ��� 211

Selectors ��� 211

Caching ��� 212

Chaining �� 213

Event Delegation ��� 213

Build Content into the Render ��� 213

Performance Testing ��� 214

Modularization �� 214

xvii

■ Contents

Resources��� 214

References�� 214

Assistance �� 215

New Information ��� 215

Summary �� 216

Index ��� 217

xix

About the Author

Scott Wesley has been working with Oracle development tools since
finishing a computer science degree in 2000. Since then Scott has actively
researched and applied cutting-edge technologies from the Oracle
product range in projects spanning retail, government, finance, and
construction sectors.

Based in Perth, Australia, Scott started on Oracle 8.1.7 with Oracle
Forms and Reports 6i, dabbled with mod_plsql, and now designs and
develops data-centric web applications using the Oracle APEX technology
stack. In addition to his consulting duties with SAGE Computing Services,
he also enjoys meeting and teaching students about APEX, PL/SQL, and
SQL. In 2014 he was recognized as an Oracle ACE.

Scott has been a regular presenter at Australian user-group events
since 2007. Aided with the fresh “prezi” delivery style, his passion for
presenting earned him Best Paper in 2011 for his presentation “APEX 4.1

Security.” In 2013 he published a video series titled “Oracle APEX Techniques” and finally experienced his
first Kscope in 2015, presenting an APEX best practices session and a popular deep dive on jQuery.

Scott combats geographic isolation by contributing to the community through various online
avenues such as his blog at grassroots-oracle.com. You’ll also find him on the OTN forums, Twitter
@swesley_perth, and more recently in the #orclapex channels at Slack. Given the chance, he will talk your
ear off with enthusiasm about science and skepticism, preferably while playing pool or eating a hot curry.

http:\\grassroots-oracle.com

xxi

About the Technical Reviewer

Alex Fatkulin is a master of the full range of Oracle technologies. His mastery has been essential in
addressing some of the greatest challenges his customers have met.

Alex draws on years of experience working with some of the world’s largest companies, where he has
been involved with almost everything related to Oracle databases, from data modeling to architecting
high-availability solutions to resolving performance issues of extremely large production sites.

Alex has a bachelor’s of computer science degree from Far Eastern National University in Vladivostok,
Russia. He is also an Oracle ACE and a proud OakTable member.

www.allitebooks.com

http://www.allitebooks.org

xxiii

Acknowledgments

I’d first like to acknowledge the broader development community—from my colleagues on software projects,
to bloggers I read, people I teach, delegates I meet at conferences, and technologists I interact with on
forums. We stand with some giants, and without this collaboration we wouldn’t be working with such a great
development tool today. I would like to encourage everyone to start with a small step toward getting more
involved in the Oracle community.

More specifically, I would like to thank Connor McDonald. Living in the same small city, we have
crossed paths on a few projects. While learning from the effective creativity that is his brain, I was also able to
find my path in my own career.

This path helped me end up working for Penny Cookson. She has generously provided me with the
support I need to learn, explore, share, and grow my career, all the while treating her team like family. To all
my fellow sagers, carry on.

I must thank my wife, Tracey, for accepting me as the nerd that I am and listening to me type away
during many evenings. And my youngest toddler for letting my brain ponder these little side projects while
walking through the bush.

And to my high school friend who showed me what a variable was in Pascal. That was the day I got bit
by the programming bug, pun intended. Thanks, mate.

xxv

Introduction

Building functional Oracle Application Express (APEX) application is relatively easy. APEX provides many
features out-of-the-box that help developers build good applications.

APEX also provides footholds that allow the developer to extend the product with third-party code,
producing more polished applications that users feel confident using. A stand-out example of this
extensibility are plug-ins, introduced in APEX 4.0.

Another marquee feature introduced in APEX 4.0 is Dynamic Actions. APEX developers whose main
skill is typically PL/SQL are now able to declaratively provide more interactive interfaces.

The trouble with Dynamic Actions is that making the most effective use of them requires a deeper
understanding of jQuery—the underlying infrastructure that made them tick.

The biggest hurdle with jQuery for PL/SQL developers is the fundamental differences with syntax and
semantics. I’ve met many developers who quickly embraced Dynamic Actions because they saved them
from having to learn too much JavaScript, but they only moved into second gear.

After undergoing the same journey myself, I found what I understood to be the secret for Oracle
Developers to learning jQuery—building an analogy between CSS and SQL and thus treating the web page
like a database.

What This Book Is About
Over the years, I’ve enjoyed sharing techniques I’ve learned through my blog and presentations at
user group events. However, I felt there was a need in the APEX community to help intermediate APEX
developers take their applications to the next level, to use a horrible cliché.

There are some great APEX books out there, but none targeting the use of jQuery within APEX. I’m not
aiming to replicate books dedicated to jQuery or JavaScript, rather introduce Oracle technologies to the
jQuery syntax and demonstrate how it integrates with APEX.

Many demonstrations in the book are bite-sized, applicable examples that you can start including in
your applications tomorrow.

I hope you find this book helpful and that you find a way to share your own discoveries with the
development community.

 ■ Note I encourage all readers to engage with the aPeX community to help all our applications raise the bar.
Participate in forums, blog about your experience, and attend conferences and talk with people.

xxvi

■ IntroduCtIon

Who Should Read This Book
You might say this book targets those people just above the beginner level, but it should also appeal to all
those wanting to give their users a better experience.

To get the most out of this book, the reader should have a basic familiarity with what seems like a
number of technologies, but you may be surprised how well they overlap.

Knowledge of PL/SQL—I’m talking fundamentals here, there is no need to be at the Steven Feuerstein
level, but I am using PL/SQL as a device to help the reader pick up jQuery.

Knowledge of SQL—As with PL/SQL I only expect general understanding. I’d like to think developers
are always open to expanding their knowledge of both over time.

APEX—Familiarity with APEX. I’m mainly talking about navigating around the Application Builder.
Versions differ, and I’ll be as specific but general as possible when describing how to apply code. Nobody
wants a book with a large percentage of wizard screenshots of an APEX version they don’t have when
reading the book. APEX 5.0 reduces this issue with its new Page Designer IDE.

HTML—For 90% of the content, only basic understanding of the use of tags such as and <table>
is necessary. Much of the time the type of tag is superfluous; it’s just a component in the overall page
hierarchy.

CSS—You can copy and paste CSS styling examples straight from this book without needing to
understand them, but most style is fairly self-explanatory. This book will teach you how to use CSS selectors
target components on the web page.

JavaScript—I would expect this to polarize readers. Some may be able to read or recognize standard
syntax, while others may be experienced Oracle APEX plug-in writers who know JavaScript much more
intimately than I. The book is about bridging this gap, and I’ll walk the reader through what is needed.
Knowing how the puzzle pieces in this list relate to each other will go a long way. While reading, you’ll learn
many of the patterns we regularly use within APEX.

Familiarity with resource materials—On this last point, I’m a big fan of documentation, particularly
when it’s light. Bookmark the right pages, and you’re one click away from 90% of what you’ll ever need
day-to-day. I have a more comprehensive list in the in the final chapter; the best pages are simple HTML
index pages.

For Oracle, I regularly use the SQL Reference manual https://docs.oracle.com/database/121/
SQLRF/toc.htm.

I use two for jQuery. One is a glossary of selectors: www.w3schools.com/jquery/jquery_ref_
selectors.asp.

The other is a cheat sheet of functions that point to api.jquery.com: http://oscarotero.com/jquery/.
Foe most things HTML/CSS-related, I like the simplicity of w3chools.com, but I recommend developer.

mozilla.org.
I also recommend familiarity with Google’s search aids that allow you to target certain blogs or forums.

Oracle’s OTN and stackoverflow is particularly good for jQuery and CSS questions:
site:community.oracle.com oracle apex “row template” performance
site:grassroots-oracle.com jQuery highlight

 ■ Note I encourage all readers to provide me with feedback on any examples you encounter, particularly in
relation to how I’ve applied selectors.

https://docs.oracle.com/database/121/SQLRF/toc.htm
https://docs.oracle.com/database/121/SQLRF/toc.htm
http://D:\\Sadam\\2015\\XML\\November\\20151124\\Wesley\\www.w3schools.com\\jquery\\jquery_ref_selectors.asp
http://D:\\Sadam\\2015\\XML\\November\\20151124\\Wesley\\www.w3schools.com\\jquery\\jquery_ref_selectors.asp
http://oscarotero.com/jquery/

xxvii

■ IntroduCtIon

How This Book Is Structured
Part I starts by introducing an analogy that pairs CSS with SQL. The aim is to help Oracle developers familiar
with PL/SQL translate these skills into jQuery. It also covers some jQuery fundamentals and the browser
tools you’ll need to continue the journey.

Part II explores the integration of jQuery with APEX by looking at Dynamic Actions, how they’re
invoked, and the balance that needs to be found when defining declarative dynamic actions versus writing
the equivalent JavaScript.

The ability for the browser to interact with the database is called AJAX. Part III starts detailing this
important communication channel by exploring options for invoking PL/SQL processes from the browser,
continuing with common patterns used for moving data in APEX applications.

Part IV looks specifically at reporting solutions, starting by adding visualisations to your pages by
generating JSON content and sending this to charting libraries. The examples in the book get progressively
more difficult, but chapter 14 in particular introduces some more complex JavaScript and jQuery concepts.

Part V finishes the book by describing some other uses for jQuery, illustrating how diverse jQuery
techniques can be. These final chapters aim to assist you converting fundamentals learned from the book
into more real world scenarios.

The final chapter is a brief introspective based on what has been learned and how it should be applied
within APEX. I include some suggestions on what to look out for in the future, since once book can’t cover
everything. My Journey

I’d like to say a few words about my own career and how I came to the point of writing this book.
I completing a computer science degree at university and started as an Oracle Forms and Reports developer
who came to understand PL/SQL very well. I then encountered Oracle Portal and mod_plsql, and I started
building basic web pages using the htp/htf packages.

Not long after joining Sage Computing Services, I dove into the world of APEX, starting at version 3.1.
After numerous blogs, presentations, and forum interaction, I was recognized as an Oracle ACE, but I was
still taking very tentative steps into the world of jQuery.

Even today I would not call myself a jQuery expert, but I’m now riding the bike without training wheels,
and I’m adapting my techniques as driven by the needs of the applications I’m building.

The decision to write this book was partially borne from the need to refine my skills and seek better
practices. It also comes off the back of designing and developing a successful application built specifically
for use on a 10” tablet. After dabbling with basic jQuery commands, I was quickly forced to expand my
repertoire and start thinking Mobile First. This accelerated my learning curve to a point where I saw a very
bright future in the world of web development, but with the awareness that other learning curves are to
come.

Figure 1 shows my mental image of the learning in my own career. It’s common to think of a learning
curve as being a smooth thing, but in reality many of us make large leaps during fits of activity, then calm
down and coast for a while, and then experience another large leap. The tablet application was my large leap
up the jQuery curve.

http://dx.doi.org/10.1007/978-1-4842-0961-5_14

xxviii

■ IntroduCtIon

With learning comes awareness, and I now have the fortunate advantage of knowing what the next
period of learning might entail. As I start this book I’m leveraging the world of JSON, which is a common
lightweight data-interchange format that allows developers to communicate data to contemporary web
components such as the following:

•	 Visualization libraries (Google, Vis.js, D3.js)

•	 node.js

•	 angular.js

•	 LESS/SASS

Understanding these technologies and those that will follow are vital to keeping up with development
in the “Internet of Things,” the heterogeneous world of smart devices.

Getting Started
To take advantage of the lessons demonstrated in this book, you won’t need much more than an Oracle
database running APEX 4.x or above, a good browser, and your favorite text editor. The following sections go
into more detail on precisely what you’ll need.

Figure 1. My jQuery learning curve

xxix

■ IntroduCtIon

Oracle Database
To utilize the examples in this book, you’ll obviously need an Oracle database running APEX.

There are several options to choose from if you don’t already have access to a development
environment:

apex.oracle.com: Oracle provides a free online instance of APEX for
development purposes. This book was written solely on an instance running in
“the cloud,” so you should encounter few issues with this option.

Oracle XE: Oracle also provides a free (for both commercial and personal use)
database edition with some size and functional limitations—none of which
should impact your ability to learn jQuery. It’s a relatively painless way to set up
an Oracle instance on your own PC or laptop. An open source project is available
to make the process even easier:

www.oraopensource.com/oxar/

Virtual Machine: Oracle provides a number of virtual machine images with APEX
ready to go. All you need is to install Oracle Virtual Box. This means you can get
quickly started on whichever operating system you happen to use. These images
can be downloaded from the OTN Developer Days page.

APEX Instance
Most examples are fairly independent of the APEX version. You can even run some of these examples on
APEX 3.x if you need to. APEX 5.0 was launched while this book was being written and all chapters have
differences between 4.x and 5.0 in mind, particularly related to the theme selection.

At the time of writing, the Oracle 11g XE environment came with APEX 4.0.2 pre-installed, which can be
upgraded to the 4.2 or the latest 5.0 release.

Development IDE
Most of the examples in this book require such little code that they can be easily included inline within the
APEX page attributes or Dynamic Actions. Ultimately it is better practice to contain such code within their
own CSS and JS files, so I recommend using your favorite text editor.

Free editors are available such as Atom or Notepad++, and others such as TextPad and Sublime have
nominal license fees.

Oracle provides a free PL/SQL and SQL IDE called SQL Developer. As per text editors, SQL Developer
provides syntax highlighting and allows you to browse database objects and debug code. Other third-party
tools are available such as Toad or PL/SQL Developer.

Web Browser
APEX officially supports relatively recent versions of the four major browsers— IE, Firefox, Chrome, and
Safari. Screenshots used in the examples in this book use Chrome as I personally find this the easiest
browser to inspect under the hood of the web page. Safari is quite similar, and Firefox with the Firebug
extension provides the same type of functionality.

http://www.oraopensource.com/oxar/

xxx

■ IntroduCtIon

Web Server
A web server is the gateway that allows your browser to communicate to the database and typically serve
JavaScript and CSS files to the browser. As part of the APEX installation process, some form of web server
will have been set up, but you don’t need to place external files on the server to try the book’s examples. Best
practice suggests this is done in a production instance, but deeper discussions on this topic have previously
been covered elsewhere and are beyond the intended scope of this book.

APEX Application
Finally, you’ll need an APEX application on which to experiment and try out the examples. The examples in
this book only need a simple framework of pages to get started. In fact, most of the examples are based on a
classic report page or an accompanying form. Others will require a basic page with a HTML region and a few
buttons.

I will start with a database application using the default options in the Create Application wizard:

 1� Desktop User Interface

 2� Include Home Page

 3� Universal Theme (Theme 42)

I will use the EMP table found in the sample SCOTT schema that comes with the default database install,
but any table will do—,and that’s the point. There is no reason why you can’t translate the examples found in
this book to your own data model.

No doubt the exact wizard process will change over time, but once you’ve decided what table to use,
create a new page selecting the following:

 1� Form

 2� Form on a Table with Report

 3� Implementation “Classic” (not Interactive) with a “Reports Region” template

 4� Page and region labeled “Employees”

 5� Select the EMP table

 6� Create a new navigation menu entry under Home

 7� Accept remaining defaults for the report

 8� Set the form to use Primary Key column EMPNO (as opposed to Manage by
Database ROWID)

 9� Use any existing sequence to populate the primary key

 10� Include all available columns in the form

You should end up with an application with four pages as shown in Figure 2.

xxxi

■ IntroduCtIon

Some chapters will build on these pages, while others will suggest you create a fresh page. There are no
prerequisite chapters for any examples, though I recommend reading the first six chapters before skipping
ahead to any practical examples.

Most examples could be applied to any theme, but Chapters 4 and 17 specifically mention Theme 25.
This is due in part since some examples aren’t really required in the Universal Theme, but past themes will
remain in use for some time. Realistically, it’s mostly class names that change between themes.

All examples can be easily translated to your own pages in your own applications, which is the concept
I want to iterate. This book aims to raise awareness of the capabilities of jQuery libraries and then show you
how easily it can be adopted to the APEX environment.

In the spirit of a social media mantra engineered by Joel Kallman,

#letswreckthistogether.

Figure 2. Suggested application page framework

http://dx.doi.org/10.1007/978-1-4842-0961-5_4
http://dx.doi.org/10.1007/978-1-4842-0961-5_17

Part I

Getting Started

3

Chapter 1

CSS—The Secret

You may wonder what a chapter about Cascading Style Sheets (CSS) is doing at the beginning of a book
about jQuery. In fact, I didn’t fully understand the connection until I drew the analogy between SQL and
jQuery. CSS selectors locate web page elements in a way analogous to the where clause of a SQL statement.

This chapter aims to help you understand this analogy and show you how to leverage your existing
SQL skills to locate page elements for jQuery to act upon. jQuery turns the analogy into a SQL update, and
JavaScript (where jQuery expressions live) has translations to PL/SQL.

First, you’ll see how selectors work and how you can use them to identify components of a web page,
just like you do with data in SQL. The chapter then describes events that can be placed on these selectors,
finishing the analogy by comparing JavaScript to PL/SQL.

Understanding the Selector
Before diving deeply into how the selector works, let’s look at how the web page is structured, see some basic
syntax examples, and explore the SQL analogy.

Fundamentally, it comes back to CSS selectors identifying page elements. Sizzle.js is the engine that
powers the jQuery library, and it extends the number of selectors available to provide more granular access
to elements on the page. jQuery extends this further by traversing the tree that represents the web page, and
visiting and acting upon a set of specified elements.

The Web Page Is Hierarchical Data
jQuery is a Document Object Model (DOM) manipulation library. What is a DOM? It’s an object model
that describes the logical structure of HTML (and XML) documents, and how they’re accessed and
manipulated.

The web page shown in Figure 1-1 and the underlying HTML in Listing 1-1 can be represented as a tree.
This web page will be used for coding examples throughout Part 1.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ CSS—the SeCret

4

Listing 1-1. Sample web page – sample.html

<HTML>
 <HEAD><TITLE>My home page</TITLE></HEAD>
 <BODY>
 <H1 id="demo1">jQuery Demos</H1>
 <P>Let me tell you about my favorite science communicators:
 <UL id="communicators">
 Carl Sagan
 Neil deGrasse Tyson
 Eugenie Scott

 </BODY>
</HTML>

 ■ Note the actual source contains a little bit more code that does not affect the tree representation, but has
been omitted for clarity.

The web page in Figure 1-1 can be mapped into a tree, as shown in Figure 1-2, though you might
visualize it sideways, as shown in the indented code. The HTML element is the hierarchical parent of all the
nodes. The list elements become siblings, all children to UL, grandchildren to BODY, and so on.

Figure 1-1. The sample page (also supplied as sample.html)

Chapter 1 ■ CSS—the SeCret

5

jQuery syntax is represented as $(selector).action(), and the elements selector component can be
used to identify parts of this tree. Attributes such as ID and CLASS can be used to filter specific nodes on the
document tree. The selectors used within the $ function are exactly why jQuery can be likened to SQL, with
further detail on that in the “SQL Analogy” section later in the chapter.

HTML, CSS & jQuery Syntax Examples
Once upon a time the main function of CSS was to provide a presentation overlay for a HTML page. Consider
a need to turn all H1 level HTML headings on the sample page to a red font.

<h1>jQuery Demos</h1>

CSS would use a selector to locate the page elements and then apply the relevant markup during the
page render, which reduces the repetition required to format an entire web site.

CSS is typically located either within a .css file included in the HTML page or as an inline style. The
following CSS uses the h1 element as the selector pattern to find any h1 tags on a web page and then sets the
color attribute as red:

h1 {
 color : red;
}

You can apply these attributes on demand with a click of a button. Everything in jQuery is done via
the $() factory function, extended to $(selector).action();.

Figure 1-2. jQuery traverses this tree to apply functions

Chapter 1 ■ CSS—the SeCret

6

The next statement is a simple example where jQuery identifies all h1 tags on the page and then applies
the CSS to turn all the text in those tags red:

$('h1').css('color','red');

The selector can become more elaborate and the actions can become robust and extensible. Actions
such as .fadeIn() introduce a page element with the fade effect. Attributes such as ID and CLASS can be
used to identify more specific elements of your document. The trick to learning how they work is comparing
selectors to SQL.

SQL Analogy
The best science communicators are those that find brilliant analogies that a layman can understand. As
database technologists, we are lucky that SQL provides us the perfect analogy for how jQuery modifies
elements within a web page.

Visualizing a web page, as shown in Figure 1-2, is the first step to understanding how this translates to SQL.
Now compare that hierarchy with the rows in Table 1-1.

To update SCOTT and improve his salary, the SQL statement identifies which row to update and then
changes the value of the column. For example, if you want to update a record in the database, you would run
a SQL statement like the following:

UPDATE employees
SET salary = salary * 1.5
WHERE name = 'SCOTT';

This statement locates the employee named SCOTT and adds 50% to the salary. Table 1-2 shows a
representation of the employees table and example data.

Table 1-1. Records within the EMP Table

ID NAME SALARY

100 SCOTT 5000

102 KYLIE 4000

102 EDDIE 3500

103 PENNY 8000

Table 1-2. Records within the EMP Table

ID NAME SALARY

100 SCOTT 5000

102 KYLIE 4000

102 EDDIE 3500

103 PENNY 8000

Chapter 1 ■ CSS—the SeCret

7

Compare the SQL statement with the following jQuery statement that locates a h1 tag with the ID
‘demo1’ and update the displayed text:

$('body h1#demo1').text('Hello Universe');

compares to the use of unique key indexes in SQL. This means there can be good, inefficient, and
potentially erroneous. The description of what the two statements do is similar. The following pseudo-SQL
demonstrates how the jQuery statement can be represented as a SQL statement. Even the use of an ID
element usage of selectors:

UPDATE html_page
SET text = 'Hello Universe'
WHERE id = 'demo1'
AND tag = 'h1';

Even the string literal is case sensitive, as it would be in the database.
Parallels between the two languages are summarized in Figure 1-3. The comparison is not exact as

jQuery offers a number of facilities for traversing nodes of the tree that don’t translate to SQL, but it shows
the syntax isn’t as foreign as it may first appear.

Figure 1-3. The SQL analogy

Chapter 1 ■ CSS—the SeCret

8

Understanding Selectors
Selectors are patterns that match tags and attributes to the HTML markup itself. Many are fundamental to
the CSS core, the Sizzle.js engine under $() provides extends selectors with more advanced features and
capabilities.

Selectors also represent the WHERE clause of the SQL analogy, so we need to understand their
capabilities and also consider that poorly written jQuery can affect browser performance.

Once you understand selectors, you understand jQuery. If you can identify the page elements you want
to change, you can apply any of a diverse set of functions to it. It will be like riding a bike—once you know
how, you want to go exploring.

 ■ Tip a concise reference to jQuery selectors can be found at the following address: www.w3schools.com/
jquery/jquery_ref_selectors.asp.

Tags, IDs, and Classes
The sample page offers two options to locate the h1 tag. All HTML tags can be identified by name, and
hierarchy can be signified within the selector. Any h1 tags within a bodynode would be returned using the
following:

$('body h1')

The other option is to use the element’s ID attribute to uniquely identify a page element. For example,
you can identify a specific element referring to the ID using the # symbol:

$('#demo1')

Classes are identified with the format tag.class. The class can be identified by itself with the .coolCat
dot notation. However, to aid performance in many cases, it’s recommended to precede it with the HTML
tag that would have that class. This selector locates any list items with the coolCat class.

li.coolCat

 ■ Tip ID and class selectors are case sensitive, as per the string comparisons in the SQL. tags, however,
tolerate either case.

Attributes and Operator
It’s possibly to identify elements by other attributes. A common example I use in APEX is to look in a report
identified with the id p2_emps and locate any cells for the ENAME column:

#p2_emps td[headers='ENAME']

http://www.w3schools.com/jquery/jquery_ref_selectors.asp
http://www.w3schools.com/jquery/jquery_ref_selectors.asp

Chapter 1 ■ CSS—the SeCret

9

This translates to the HTML typically generated for APEX classic report data columns:

<td headers="ENAME">

The earlier example of h1#demo1 could also be written in a similar way, but classes and IDs have their
own identifiers so the shortened form can be used instead:

h1[id="demo1"]

Searching for attribute values becomes more flexible with operator extensions similar to % and _
wildcards in SQL. The tilde in the following example looks for attributes beginning with the string "DATE".
As a result, the invocation of jQuery targets APEX columns such as DATE_CALLED, DATE_MODIFIED, and so
forth:

td[headers^="DATE"]

Pseudo-Selectors
Pseudo-selectors are used to identify information that is not in the document tree. A common example you
may have seen is:hover, typically applied on an anchor tag in the form a:hover.

Examples specific to jQuery include tr:even, to get all the even tr elements; or :contains('wesley'),
to return all those elements containing my name as text. Specific siblings such as list items in an unordered
list can be identified positionally like an array:

$("ul li:eq(1)")

 ■ Tip Web sites such as caniuse.com help determine why certain CSS or htML tags are not recognized in
your browser. Ie has a history of lagging behind in support due to longer release cycles.

Browser Feedback
You can ask your browser to provide immediate feedback as to how accurate your selectors are by opening
the browser’s Developer Tools JavaScript console. Do that by pressing Ctrl-Shift-J or F12, through the
browser menu, or via Inspect Element when right-clicking within the page. Figure 1-4 shows the sample
page with the Developer Tools docked to the bottom with the console tab shown. I manually entered $(‘h1’)
and the console returned the array of results.

Chapter 1 ■ CSS—the SeCret

10

Events
DOM selection and manipulation in jQuery is essential for identifying web page components. Event
handling facilitates interaction with these identified components by the end users by responding to their
input devices.

Touch screens have turned the user’s fingers into input devices and events such as those responding to
gestures are handled specifically with jQueryMobile—a framework for creating mobile applications. APEX
applications don’t need to include the mobile framework to handle standard tap and scrolling events. A
small library called Touch Punch can be included on a web page to make it respond to dragging gestures,
useful for slider items.

If you’ve ever defined a dynamic action on change of an item, you have applied an event listener to
your page. APEX provides the ability to define these events and subsequent actions declaratively. This book
gradually explores the balance between jQuery and dynamic actions.

To call a function as a result of an event on the page, define a listener for a given selector. The following
example calls myFunction on a click (or touch) on the page component with id demo1:

('#demo1').on('click', myFunction);

Functions invoked like this are called callbacks and will have access to contextual event information.
This information allows the code to make decisions based on the current state of the web page. This book
will demonstrate a number of examples applicable to the APEX environment.

Other major event types include on load of the page, before/after refresh of report regions, and
gesturing events similar to mouse interactions such as touchstart and touchend.

Figure 1-4. Chrome JavaScript console window

Chapter 1 ■ CSS—the SeCret

11

A proportion of PL/SQL developers will also be familiar with Oracle Forms—a development IDE now
superseded by jDeveloper ADF and APEX. Web page events can draw further analogies to Oracle Forms
events as mapped in Table 1-3.

Translating PL/SQL to JavaScript
The analogy connecting selectors to CSS doesn’t just extend to events. Table 1-4 and Table 1-5 respectively
map the syntax and data structures between PL/SQL and JavaScript.

Table 1-3. Forms Events and Their JavaScript Equivalent

Forms JavaScript

when-new-form-instance load

when-validate-item change

when-mouse-click
when-button-pressed

click

pre-query beforerefresh

when-mouse-down touchstart

Table 1-4. Typical PL/SQL Expressions and Their JavaScript Equivalent

PL/SQL JavaScript

concat ‘Hello ’||‘Universe’ ‘Hello ’+“Universe”

Built-ins UPPER(‘Hello’) “Hello”.toUpperCase()

length LENGTH(‘Hello’) “Hello”.length

conversion 2 = TO_NUMBER(2) 2 == parseInt(“2”)

Variables planet VARCHAR2(20) := ‘Earth’; var planet = ‘Earth’;

Output dbms_output.put_line(planet); console.log(planet);

If boolean If 1 = 2 then
end if;

if (1==2) {
}

Null function COALESCE(planet, ‘Mars’) planet == ‘’ ? ‘Mars’ : planet

Table 1-5. Forms Events and Their JavaScript Equivalent

PL/SQL JavaScript

records Me person%ROWTYPE;
me.name := ‘Scott’; me.vintage := 1979;

var me = { name : “Scott” ,vintage : 1979 }
console.log(me.name);

arrays type t_array is varray(3) of number; v_array t_array;
v_array := t_array(1, 2, 3);

var y = [1, 2, 3]
y[0] == 1 // true

loops for rec in 1..v_array.count loop dbms_output.put_
line(‘val:’||v_array(rec)); end loop;

For { var i=0; i<y.length; i++) { console.
log(‘val:’+y[i]); }

functions Function do_something(p_id number) return
number is begin … end;

function do_something(p_id) { … }

Chapter 1 ■ CSS—the SeCret

12

Note strings in JavaScript can use either single or double quotation marks to bound the string, and
nested strings can use alternating quotes:

$("#p2_emps td[headers='ENAME']")

Nulls are handled by JavaScript in its own peculiar way. It’s worth researching their behaviors in media
more specific to JavaScript itself. There are plenty of references available online for handling nulls in any
language.

JavaScript will also accept your concatenation attempt if you used 'Hello'||"Universe", though the
double pipe will be treated as an OR boolean expression and will only return the string ‘Hello’:

apex.debug('p1_value: ' || p1_value);

This slip up can make debugging harder as this expression is syntactically valid but will always return a
string that makes the parameter look empty:

What’s Available from the Box?
jQuery has been included by default in APEX applications since the advent of dynamic actions. The
application builder provided wizards to define event handlers that interact with page components.

In addition to dynamic actions, APEX provides the ability to utilize other jQuery features declaratively.
For instance, date pickers and autocomplete items use the jQuery framework. Many types of APEX plug-ins
also use the jQuery library to function.

APEX also provides a number of JavaScript APIs that wrap interactions that seem specific to APEX,
or emulate SQL style functions, such as $nvl() or $v(). Details on these can be found in the APEX API
reference documentation.

To keep the amount of JavaScript required to service the typical web page low, a number of jQuery
functions aren’t included by default.

APEX does include the necessary libraries in the /images folder. To include support for slider bars, type
the following in the page attribute JavaScript File URLs:

#IMAGE_PREFIX#libraries/jquery-ui/1.8/ui/minified/jquery.ui.slider.min.js

You can even include the jQuery core library in APEX 3.x and take advantage of examples in this book.
All this means you can start utilizing jQuery functionality straight away in versions APEX 4.x and up.

Summary
Oracle developers shouldn’t find themselves in a chasm when exploring the use of jQuery. A basic jQuery
command breaks down into two components, the first of which can be equated to the WHERE clause of a SQL
statement. The second is the function that applies the relevant effect or triggers a process.

Document manipulation and event handling are not only marquee components of the jQuery
framework, but are also fundamental to supporting effects and animations, AJAX, and data communication
using the JSON format. jQuery also provides extensibility through plug-ins. All these features will be
explored in later chapters.

13

Chapter 2

jQuery Fundamentals

Mastering the concept of selectors is a difficult part of learning jQuery. There are a number of methods to
identify the right page element to act upon. In addition to the selectors mentioned in Chapter 1, jQuery also
provides the ability to traverse up and down the HTML tree using specific functions.

More detailed examples of selectors will be introduced as the chapter details traversal methods in
addition to other fundamental concepts and common features. Just like SQL, a good percentage of what
you’ll ever need to do will already have an appropriate documented function.

This book mostly focuses on jQuery within APEX, but this chapter will help you find your bearings in
the new language. This chapter ends by introducing AJAX as the bridge to communicate with the database.

To get a deeper understanding of jQuery, I would recommend a book dedicated to the topic. Pro jQuery,
by Adam Freeman (Apress), provides a comprehensive introduction to the jQuery language.

Including jQuery in Your Page
For simplicity, the sample.html page introduced in Chapter 1 includes code that was not originally shown.
Listing 2-1 shows how a recent version of the jQuery library from a Content Delivery Network (CDN) can be
included on any page, in addition to a style definition used in the following examples.

Listing 2-1 Extend Sample Page to Include jQuery and Styling

<script type="text/javascript"
 src="https://code.jquery.com/jquery-1.11.1.js"></script>
<style>
.coolCat {
 font-weight:bold;
}
</style>

The supplied sample page places it between the closing body and HTML tags. The exact placement of
this code isn’t that important for a sample page like this one; HTML is interpreted with great tolerance by
many of the browsers. Normally, style content is placed in the HEAD tag, or preferably included as a .css style
sheet file separate from the HTML document.

The best placement for script content changes over time, but the current rule of thumb is to place or
include files near the closing BODY tag.

The examples in this chapter can be applied to the sample page via browser console, as shown in
Figure 2-1. The text with greater-than symbol (>) prefixes is what I typed into the console. From APEX 4.0,
pages have core jQuery libraries built in.

http://dx.doi.org/10.1007/978-1-4842-0961-5_1
http://dx.doi.org/10.1007/978-1-4842-0961-5_1
https://code.jquery.com/jquery-1.11.1.js%22%3E%3C/script

Chapter 2 ■ jQuery Fundamentals

14

Getting and Setting
The “Hello Universe” example in the SQL analogy used in Chapter 1 introduced a jQuery function that sets
a value. Typically, the types of functions that access attributes of page elements are overloaded such that
they will either show the current value of the specified attribute of those elements or set it if a parameter is
passed.

Often the difference between getting and setting a value is the presence of a parameter. The first
command in the following example gets a value. The second command sets the attribute to the actual
parameter value that is passed.

Enter the following commands in the Console tab and consider the output:

$('h1').text();
$('h1').text('Hello Universe');

In this case, the attribute is the text within the h1 element. Classes and height/width dimensions can
also be manipulated with jQuery.

The sample page will also includes a simple CSS class called coolCat that will apply boldness to any text
with that class. For example:

<li class="coolCat"> Neil deGrasse Tyson

Figure 2-1. Your first jQuery commands run in the browser console

http://dx.doi.org/10.1007/978-1-4842-0961-5_1

Chapter 2 ■ jQuery Fundamentals

15

jQuery provides the ability to apply the same attribute in response to whatever event you require. To
apply this class to all list item elements, use the .addClass() function. The selector is the LI tag, indicating
all such tags within the page. The function’s parameter indicates the class name to add to the selected
element:

$('li').addClass('coolCat');

The following are get/set functions you might find used within an APEX environment. You’ll see some
of them used in examples throughout the book.

•	 attr()

•	 prop()

•	 data()

•	 is()

•	 css()

•	 removeClass()

•	 toggleClass()

•	 height()

•	 width()

Traversing
jQuery provides a number of functions that allow you to traverse the DOM. This means that when starting
at one selector, you can move up the tree representing the web page, and down the tree, or even sideways
across list elements or table rows and cells.

Before you start traversing the DOM, it is good practice to specify the appropriate set of elements or
starting point. For instance, there may be more than one unordered list on a page, so specify the list with the
ID of the list in the selector:

$('#communicators li')

Siblings
The items inside the #communicators list are considered siblings to each other. To specify certain nodes
within a set of siblings such as list elements, a number of pseudo-selectors is available. These pseudo-
selectors can be applied within the selector or using jQuery functions defined for traversing.

To return the first list item in a set, you would use the selector :first. However, you could also use
the jQuery function first(). This means the following statements return Carl Sagan, though performance
may vary:

$('#communicators li:first').text()
$('#communicators li').first().text()

Carl Sagan

Chapter 2 ■ jQuery Fundamentals

16

To honor Neil deGrasse Tyson’s former dancing skills and make him the the coolCat while leaving
everyone else normal, jQuery can identify a specific element in the list. The items in the list can be treated
like an array with the function eq(), where the parameter is the position within the array:

$('#communicators li:eq(1)').addClass('coolCat');

Like JavaScript, arrays start counting from zero. Tyson is the second name in the list, and thus we refer
to him via the index value 1.

Using the coolCat class as the selector that identifies Tyson, return the set of list item siblings with the
following snippet:

$('.coolCat').siblings()

[Carl Sagan, Eugenie Scott]

Ancestry
The terminology used in traversing up and down the tree is the same as you’d use for your family. In
our sample page, we can start from UL using #communicators, or from the second list item with the class
attributed to Neil Tyson using li.coolCat.

List items are descendants of #communicators, accessible using functions like children() and find().
For example, you can retrieve the text of the list items in #communicators as follows:

$('#communicators').children()

[Carl Sagan,<li class="coolCat">Neil Tyson,Eugenie Scott]

The next example finds any elements underneath #communicators with the class .coolCat. This might
be the next level under as in the sample page, or it could be any number of nodes deep.

$('#communicators').find('.coolCat')

[<li class="coolCat">Neil Tyson]

When moving up the tree using functions closest() and parent(), the latter takes one step up the tree
at a time while the former will look for selectors anywhere in the ancestry, similar to find().

I prefer closest() as it’s less likely to break when the page is modified. If the target node is a few levels
higher, it saves chaining a number of parent() together. More on chaining in the next section.

Here jQuery starts at any list elements with the class .coolCat, and then traverses up to the closest
unordered list. In this case, parent() would accomplish the same task.

$('.coolCat').closest('ul')

[<ul id="communicators">...]

Chapter 2 ■ jQuery Fundamentals

17

Then you can move up another level with .parent():

$('.coolCat').closest('ul').parent()

[<body>...</body>]

BODY and HTML are considered ancestors to everything underneath them. In our example page, the
unnumbered list is immediately inside the HTML body. That’s why the BODY tag is returned as the parent of
the list.

These examples show jQuery and selectors can be interchanged in a number of different ways to
identify elements of the page. Finding the right balance can be difficult, particularly when learning. Some
will perform better, while others will seem more elegant. I’ll do my best to show the methods I’ve found that
work best for me in the given situation.

 ■ Note like pl/sQl, you will find selectors provide a number of ways to achieve the same task. We all find
ways to refine and improve our techniques as we learn. I’m happy to receive feedback on snippets you find in
this book, particularly those considering performance.

Chaining
Chaining is a natural part of jQuery that is utilized frequently to run multiple jQuery methods on the same
element with a single statement. This could be likened to updating multiple columns in a SQL update statement.

To add the class to Tyson and shorten his name, use a jQuery function to identify the node.
Instead of executing two separate statements—one to add a class and another to set the text—we

can chain the commands for efficiency and readability. Chaining simply means adding multiple function
notation calls to the selector. For example, to add the class to Tyson and shorten his name, you would use
the following:

$('#communicators li').eq(1).addClass('coolCat').text('Neil Tyson');

For readability—particularly with longer chains—you can format the statement over multiple lines, just
like in SQL:

$('#communicators li')
 .eq(1)
 .addClass('coolCat')
 .text('Neil Tyson');

The selector supplied to jQuery locates all list items within #communicators, and then filters the list to
just the second element. The class is then added and the element text modified.

The browser takes longer to complete the actions if written as multiple statements. jQuery needs
to locate the selector each time, and it won’t have the advantage of Oracle’s optimization techniques for
frequently accessed information. Therefore, the following two statements will take longer to complete than
the previous chained example:

$('#communicators li:eq(1)').addClass('coolCat')
$('#communicators li:eq(1)').text('Neil Tyson');

Chapter 2 ■ jQuery Fundamentals

18

Effects
The term effect in jQuery refers to what you want to have happen to the elements you’ve selected. Simple, yet
effective effects can be applied to whatever selector is used.

Some jQuery examples with obvious outcomes include the functions .hide() and .show(). These
effects set the display property of the selected elements to none, as in display: none.

You may have already utilized these effects with the corresponding APEX JavaScript APIs $x_Show() and
$x_Hide(). Other APIs also exist to traverse the tree. One example similar to .closest(), is $x_UpTill().

Other methods provide animated effects, such as .slideDown() and .fadeOut().
Visit the API documentation to determine the parameters available to these functions that I’ve

mentioned. For example, find the parameters to .slideDown() at the following URL:

http://api.jquery.com/slidedown/

The URL pattern is consistent. Replace slidedown in the URL with hide or show or the name of any
other function of interest.

Alternatively, you get help by quickly googling the function name, as in “jquery slidedown.”
Figure 2-2 shows the start of what is a concise documentation format; it’s the documentation for

.slideDown. Further down the page are details regarding available options along with a simple description
of what the function does with a basic example of the function in action.

Figure 2-2. jQuery documentation for slideDown()

http://api.jquery.com/slidedown/

Chapter 2 ■ jQuery Fundamentals

19

Sometimes related functions can be mentioned and linked to, particularly if deprecation has occurred
with a newer release of jQuery.

Callbacks
Note the description for the complete parameter in Figure 2-2. It’s a function that’s called once the
animation task has completed. These types of functions are called callbacks. They are used frequently within
the jQuery framework to ensure processes are executed only upon successful completion of the task.

Statements are processed in JavaScript without regard to whether the prior statement has been
executed. In this case, process B will start before process A may have finished:

processA;

processB;

Callbacks can ensure process B is only executed once process A finishes, typically by passing the second
function as a parameter to the first.

AJAX Callbacks
There is another type of callback, known as an AJAX callback, that allows us to call PL/SQL. AJAX callbacks
allow us to communicate between the JavaScript and database world.

Later in the book, I’ll go into further detail about the syntax variations available to bridge the gap
between the browser and the database, but for now I want to mention the two main methods of invoking PL/
SQL from the web page: dynamic actions and jQuery wrappers.

Dynamic Actions
You’ve actually defined an AJAX callback if you’ve ever defined a dynamic action that fires some PL/SQL as
the result of some interaction on the page. APEX provides a declarative format to execute these calls, but
JavaScript can provide added flexibility in more complex scenarios, in part since APEX doesn’t facilitate
conditional actions.

Figure 2-3 shows an APEX dynamic action invoking PL/SQL. APEX 5.0 also kindly indicates my sample
function does not exist in the database. The Page Items to Submit attribute indicates which items need
values sent from the web page to session state in the database. Comma separated items in Page Items to
Return will list which page items should be updated to reflect value from session state.

Chapter 2 ■ jQuery Fundamentals

20

APEX jQuery Wrapper
The same PL/SQL in the dynamic action can be invoked using JavaScript. In fact, APEX converts dynamic
actions to just that. The next example is representative of what APEX generates to serve the dynamic action.
Instead, this case invokes PL/SQL in an AJAX callback called “MY_CALLBACK.” It will also set the PL/SQL
package variable apex_application.g_x01 to whatever value is found in the browser for item P1_EMPNO.
From APEX 5 this information is also accessible using substitution strings APP_AJAX_01 through APP_
AJAX_10.

apex.server.process("MY_CALLBACK"
 , {x01 : $v('P1_EMPNO')}
).done(function(pData) {
 /* pData returned from database using htp package or proxy */
});

Embedding this as JavaScript provides advantages such as the ability to execute only under specific
conditions in a workflow. It will call certain code upon success or failure. Attributes APEX provides
declaratively are available as optional parameters, further explored in Chapter 9 on processes.

Figure 2-3. Dynamic action calling PL/SQL

http://dx.doi.org/10.1007/978-1-4842-0961-5_9

Chapter 2 ■ jQuery Fundamentals

21

Summary
jQuery is not that complicated. All you need to do is identify the part of the web page to update with a
selector and then apply a function to that page element.

You can chain functions together, applying all to the selected elements. You can also traverse the tree in
any direction from a given selector, perhaps locating a key node from a click event further down the tree.

Most importantly, you can execute PL/SQL on demand from within JavaScript and pass information
back and forth. This allows an integration between the browser and database that enriches the user
interfaces by minimizing the amount of entire page submissions required.

23

Chapter 3

Browser Tools

Familiarity with the browser is vital to a pain-free experience while tinkering with CSS and jQuery. Even
though browsers have a lot of cousins, certain tools are common to many and will be useful while you apply
examples from the book.

This will be the final chapter in Part 1, “Getting Started.” In Part 2, we will move on to APEX for context-
specific examples.

Chrome vs. the Rest
Once during a presentation, I showed a slide that stated, “Use Chrome or go home.” That slide got quite the
reaction at the time, and I’ve had a few comments since. I’m sure most developers have their preference in
browsers, and we’ve all heard the jokes about Internet Explorer (IE).

Chrome is a clear leader for web developers, with Firefox now a distant but clear second. Chrome also
happens to be my preference, so the examples and screenshots in this book will be Chrome. Chrome is a
light browser that includes everything a web developer needs straight out of the box. Other browsers will
have their own equivalent features.

Developer Tools
Open any web page in Chrome and press F12. Doing so will open up the browser tools that can be used to
look under the proverbial hood of any web page. Figure 3-1 shows what these tools look like.

Figure 3-1. Chrome browser tools

Chapter 3 ■ Browser tools

24

Other means to the same end include pressing Ctrl-Shift-J or right clicking within the web page and
selecting Inspect Element.

Most modern browsers include some form of browser tools off the shelf. Extensions also exist that offer
similar functionality and other features. This chapter covers the major functions you’re likely to frequent.

 ■ Caution while Chrome may be useful for development, be sure to test your site across all browsers and
major versions.

Exploring the Contents of Your Page
To inspect the properties of the list item for Neil Tyson, the quickest method would be to right click his
name on the web page and choose Inspect Element. Doing so will open the browser’s developer tools
(if not already open) and show the Elements panel.

You’ll spend much of your time within developer tools jumping between the Elements and Console
panels. Depending on how big your display is, it’s useful to split the windows using the Show Drawer icon.
That’s the fourth icon from top-right, shaded blue in Figure 3-2. The split window allows you to write and test
JavaScript while reviewing the internals of the page. Alternatively, you can undock the tools from the web page.

Figure 3-2. Browser tools split panel

www.allitebooks.com

http://www.allitebooks.org

Chapter 3 ■ Browser tools

25

The Elements panel illustrates the Document Object Model (DOM) tree. Bear in mind this tree is not
necessarily what was generated from APEX, nor is it the original source from a static HTML file. Consider
that the DOM is a live representation of the web page after the browser has processed the source and any
jQuery interactions have also been applied.

The fact that the browser renders based on the DOM also means developers have the ability to
manipulate the page and see the effects on the page straight away. In the Elements panel we can add,
modify, or remove nodes from the DOM. We could right click the <h1> tag and remove the node, edit the ID
attribute, or add another attribute.

 ■ Tip More detailed information on how to use Chrome’s developer tools can be found at
developer.chrome.com.

Styles
The Styles panel is ideal for testing CSS manipulations of a page. The Styles panel enables developers to do
the following:

•	 Identify where certain styles have come from, which could be the APEX template,
your project’s CSS or plug-in, inline CSS, or applied programmatically with jQuery

•	 See styles with lower CSS specificity that were overlooked and determine from which
CSS files, which can help developers determine where code needs to reside

•	 Add your own attributes on the fly, often to test their location and effectiveness
before applying within the page’s infrastructure

•	 Toggle element state, activating states such as :hover without the cursor needing to
be physically hovering over the element

Computed
The Computed panel is the place to look when you simply want to know the derived values of certain
attributes and where they came from. This panel consolidates the list shown in the Styles panel, detailing the
style each attribute utilized. Expanding each attribute will show which source was used, and list those with
lower precedence struck out underneath.

Figure 3-3 shows how a selected element is represented in the CSS Box Model. Any margin, border, or
padding is shown. Associated colors are replicated on the web page when the mouse hovers over the node in
the Elements panel. You can also see the resultant dimensions of the element.

Chapter 3 ■ Browser tools

26

Event Listeners
The sample page has no event listeners to display. However, when there are event listeners present, use the
panel of that same name to view them. This panel will be useful for examples later in the book.

Add a basic event listener on the sample page by executing the following code in the Console panel.
Then refresh the Event Listeners tab to see a click event added to ul#communicators.

$('ul').on('click', function() {console.log(this)});

If you don't see the click event shown in the Event Listeners tab, ensure the UL tag is selected in the
Elements tab.

Console
Click the Console tab to view the Console panel. Use the JavaScript console to monitor messages and feedback
from the browser. Also use it to execute JavaScript and test jQuery selectors and commands on the fly. This
book enables you to use the console to test jQuery selectors and look for instrumentation messages sent from
JavaScript using the console.log() debugging function.

Figure 3-3. Computed panel for web page elements

Chapter 3 ■ Browser tools

27

There are other methods available in the console object, which is a non-standard package not suitable
for production in all browsers—particularly not in older versions of IE. The console object is a great
debugging tool, however. And for APEX development, you can utilise apex.debug(), which will only write to
the console if debugging is enabled for the current page, using code relevant to the current browser.

 ■ Tip there is an open source console wrapper designed specifically for apeX. It’s available at
https://github.com/OraOpenSource/Logger.

Mobile Emulator
The Chrome Device Mode and Emulation panel is a brilliant resource for testing your pages against mobile
devices. Figure 3-3 shows the browser with the emulator turned on using the smartphone icon, which is
found between the search icon and Elements tab.

Chrome allows you to specify the device you would like to emulate from a decent range of
contemporary devices. This viewport can be easily scaled to suit whatever monitor you’re using.

Other features include a network throttler to simulate access speeds on a mobile network. The
Emulation tab can specify the media type used to render. Select Print as your CSS media type to see how
your page may change when printed.

The cursor also changes from the standard arrow to a semi-translucent circle. This indicates the
behavior will emulate the finger on a touchscreen. Touch and drag emulate perfectly—certain features will
not work on a browser without touch awareness defined on the page. More noticeable is the scrolling drift
when vertically scrolling large pages. Such drift is not present in a desktop environment. Figure 3-4 illustrates
Chrome emulating my current smartphone size in portrait.

https://github.com/OraOpenSource/Logger

Chapter 3 ■ Browser tools

28

Summary
The Chrome browser stands out when comparing standard built-in features to the other major players. This
doesn’t mean you can’t use your favorite browser’s developer tools—they all do the same job and may have
improved since I developed my browser preferences.

There are many other built-in browser tools in addition to a multitude of third-party extensions, but this
chapter has covered the basic components you’ll use most frequently. I recommend you take time to explore
tools to help support your task as a web developer.

Now that you know the fundamentals to jQuery and know how to utilize the browser’s toolkit, you can
start applying these skills with practical APEX examples. Part 2 will take a closer look at working with CSS
and discuss how to use selectors within the APEX environment.

Figure 3-4. Chrome Mobile Emulator

Part II

Integrating into APEX

31

Chapter 4

Enlarging Content

CSS is not only handy for dressing up applications, but it's also vital for identifying page components for
triggers and actions. In Part 2, we discuss how CSS is used as a tool and how it can be integrated with APEX
features, preparing you for more complicated jQuery activities.

Often when working on applications for smart devices, developers need to increase the size of
components to allow for large fingers and inaccurate taps, or even just to add extra spacing within data.
This chapter addresses this issue specifically and will introduce the use of browser tools in the APEX
environment.

APEX Application
Now is the time to open up your APEX application and make sure it's ready, as described in the introduction.
Most of the examples will be using one of two pages, a classic report or its form accompaniment. For the
examples in this book, I use Oracle's ubiquitous SCOTT.EMP table, but any table that includes at least one date
column should suffice.

The sample application described in the introduction has the following pages after creating a Form on a
Table with Report.

•	 Page 1 – Home

•	 Page 2 – Employees Report

•	 Page 3 – Employee DML Form

The examples in this chapter increase the font size of the region title in the DML form and all
the relevant fonts on the page. Finally, they enlarge the datepicker elements. These enlargements are
particularly beneficial for smaller, finger-operated devices.

Enlarging the Region Title
Making the region title font isn't a big task. In fact, in APEX 5, this might be a job for template options.
However, it does allow us to demonstrate all the key skills we'll be using with the browser developer tools.

Using Inspect Element to Find the Page Element
First, right click the Employee region title and choose Inspect Element. This will open the developer tools
right where they are needed.

Chapter 4 ■ enlarging Content

32

Different themes found in various versions of APEX will return different results. The Universal
Theme 42 in APEX 5.0 makes defining selectors slightly easier than adding classes to tags such as this,
identifying it with the class t-Region-title.

Click the top of the Styles panel in the area with element.style {} to add an attribute that will overrule
this size.

As Figure 4-2 shows, when you start typing “font,” a list of suggestions appears. This list is very useful
when looking for an attribute that will accomplish your desired task. The same drop-down appears for
enumerated attribute values. Numeric values can then be scaled up or down with the arrow keys.

Figure 4-1. Inspect element on region title

Figure 4-1 shows the region title highlighted as the cursor hovers over the <h2> element in APEX 4.2
using Theme 25. The Styles tab shows a font size of 12px, coming from a rule in the 4.2.css file.

Chapter 4 ■ enlarging Content

33

Figure 4-3. Elements panel breadcrumb trail

Increase the region title's size by setting the attribute as font-size: 150%. Note in the Elements tab the
DOM has also been updated to include an inline style in the H1 element.

Turn this feature off again by unchecking the attribute in the Styles panel. Since this will only last
until the page is reopened, the next step is to take note of what worked and then apply the same setting
using jQuery.

Identifying CSS Selector for jQuery
This particular element was fairly easy to locate, but you need to use the tool to determine what CSS selector
can be used to modify the element when using jQuery.

The bar at the bottom of the Elements panel shown in Figure 4-3 is the surrounding DOM hierarchy
that represents the selected node in blue. Click the immediate <div> parent of <h1> to highlight
div.uRegionHeading. This makes a great starting point for the selector as it can be used to limit which
headings are identified.

Figure 4-2. Adding custom style attribute

Open the Console tab and type $('div.uRegionHeading') in the console, as shown in Figure 4-4. The
browser returns any div on the page with that particular class and expands it to see everything underneath
that element.

Chapter 4 ■ enlarging Content

34

 ■ Tip i recommend experimenting with these selectors as you read through this book. For instance, try it
without the .uRegionHeading class.

jQuery selectors typically start with two components. The first identifies the general locale. In this case,
it's a div with a certain class. Here the second becomes the identifier to be modified.

It’s possible to just use h1 as the selector. However, to ensure it's only applied to titles of APEX regions,
the selector becomes either

$('div.uRegionHeading h1')
$('div.uRegionHeading > h1')

The first identifies any headings underneath the specified div, while the latter states the heading must
be the immediate child of the div.

The statement is extended to specify the function that applies the desired font size to H1 tags in APEX
regions with this application's theme:

$('div.uRegionHeading h1').css('font-size','150%');

There is an alternative way to send styles to the .css() function that utilizes JSON format to define
multiple attribute-value pairs. For instance, here we extend the parameter data set to include the font
color red:

$('div.uRegionHeading h1').css({'font-size' : '150%', 'color' : 'red'});

More about JSON can be found in Part 3 on processes.

Using a Static Region ID
Specifying a particular region is a common task when applying jQuery. In Figure 4-3 the grandparent of
h1 can be seen as #R18602627829881672. The number represents the surrogate key for the APEX metadata
record for the region.

APEX allows you to specify a particular ID to be used instead, applied via the region template. Click the
Employee report region and locate the Static ID field in the Advanced property group, as show in Figure 4-5.

Figure 4-4. Elements panel breadcrumb trail

Chapter 4 ■ enlarging Content

35

I recommend adopting the page number style prefix with a short alias that represents the region, similar
to table aliasing in SQL. Now the following selector can be used to identify headings in this particular region:

$('#p2_emps h1')

Inline CSS
Oracle developers may be aware of a general adage: If can be done in SQL, why invoke PL/SQL? Likewise,
unless you want to apply formatting on demand in response to an event using JavaScript, you should use CSS.

In APEX 4.2, the development team made it easy to include CSS within your APEX pages by including
specific attributes in the page properties. Edit the Page properties and scroll to the CSS section shown in
Figure 4-6, with inline CSS already applied.

Figure 4-5. Static ID in Region attributes

Chapter 4 ■ enlarging Content

36

 ■ Note prior to apeX 4.2, you can use the apeX Developer addon to add syntax markup to properties in the
application Builder. Visit apex.oracle.com/pls/apex/f?p=APEX_DEVELOPER_ADDON for more details.

The inline CSS shown in Figure 4-6 is the CSS equivalent of the previous jQuery statement using the
JSON format. Using the inline CSS attribute will suffice while experimenting with the examples in this book.
However, thanks to CSS specificity, in this case there are size and color settings that take precedence over
this definition.

CSS specificity can be likened to precedence used with mathematical operators. CSS with the highest
specificity is applied by the browser. Of the following two statements, the first is more specific so the font
would be red, not green:

div.uRegionHeading h1 {color : red;}
div h1 {color : green;}

Figure 4-6. Page CSS properties

Chapter 4 ■ enlarging Content

37

 ■ Tip Concise information on CSS specificity can be found in the W3C CSS Specification:
www.w3.org/TR/CSS2/cascade.html.

While parsing a web page, the last CSS to be specified has precedence. Even if the selector used in
Figure 4-6 was identical to that in 4_2.css, the inline CSS is defined in the page template first so that settings in
4_2.css are used instead. Figure 4-7 shows the inline CSS as struckthrough below the definition from the file.

The sledgehammer approach to overcoming this is to include the !important tag, as per Listing 4-1,
but this is not generally accepted as good practice. Defining CSS in the application's custom .css file
overcomes some specificity issues and adds other advantages. It helps maintenance, modularization, and
performance—the same reasons that PL/SQL should be specified in packages, limiting inline use.

Listing 4-1. Inline CSS for the Employee Report Page

div.uRegionHeading h1 {
 font-size : 150% !important;
 color : red !important;
}

There are identical jQuery and CSS properties at the page template level so you can apply these settings
once to influence multiple pages, though the ideal scenario is to ultimately put your CSS in a .css file and
include the file in the “File URLs.”

Figure 4-7. Style precedence

http://www.w3.org/TR/CSS2/cascade.html

Chapter 4 ■ enlarging Content

38

Increase Font Sizes throughout the Page
Web pages for a tablet-sized device would have different types of elements that need font-size increases.
Only a few selectors could identify the majority of those elements. Input fields also require the line height
attribute to be increased to accommodate the larger text.

Prior to APEX 5.0, CSS such as that shown in Listing 4-2 would be added to the application's CSS
library to cover the majority of components displayed on a page. With the advent of APEX 5.0, this is now
accomplished with ease using declarative Template Options.

Listing 4-2. Enlarging All Font Sizes

/* input items */
#uBodyContainer input{
 font-size:120%;
 line-height: 130%;
}
#modal_width input{
 font-size:140%;
 line-height: 130%;
}

#uBodyContainer textarea
,#modal_width textarea{
 font-size: 130%;
 line-height: 130%;
}

/* labels */
a.uHelpLink
,label.uRequired
,label.uOptional
,select.selectlist
,span.display_only
,fieldset.radio_group label
{
 font-size:130% !important;
}

Enlarging Datepicker Elements
Datepickers were the first widgets targeted for enlargement while navigating through a prototype application
for a tablet application. The individual dates were simply too small for large fingers to accurately touch, and
there is no granular Template Option specific to datepickers.

Chapter 4 ■ enlarging Content

39

Figure 4-8 shows the datepicker in its original format. The first step is to increase the font size for
components within the datepicker, though the exact selector varies across themes:

body .ui-datepicker table {
 font-size:200%;
}

As Figure 4-9 illustrates, increasing the font size is not enough. The CSS padding around each table cell
that represents a date also needs to be increased. Otherwise, the individual dates will still be difficult to tap
with a finger.

Figure 4-8. Original APEX 5.0 datepicker size

Figure 4-9. Datepicker with increased font size

Chapter 4 ■ enlarging Content

40

Figure 4-10 is the final product with all date cells padded. APEX 5.0 needed special treatment to match
datepicker width to padded cells using the following code:

/* Cell padding */
body .ui-datepicker td a.ui-state-default {
 padding:12px;
}
/* Picker width */
body .ui-datepicker {
 width: 406px;
}

Listing 4-3 is the complete listing for the Inline CSS page property in the Employee form.

Listing 4-3. Attributes to Enlarge Datepicker Components

/* Font size */
body .ui-datepicker table {
 font-size:200%;
}
/* Cell padding */
body .ui-datepicker td a.ui-state-default {
 padding:12px;
}
/* Picker width */
body .ui-datepicker {
 width: 406px;
}

Increase the size of the datepicker icon would be a separate task, tackled using the datepicker icon
attributes in the Theme properties.

Figure 4-10. Datepicker with cell padding

Chapter 4 ■ enlarging Content

41

Summary
While this chapter focused on using CSS commands to enlarge page content, it also demonstrated vital
techniques for using the browser tools to help identify page components to be manipulated. These tools also
allow testing of attribute settings that will ultimately be incorporated into the APEX code base.

The location of the code is important, not just for CSS selectivity but future re-use and performance.
More CSS selectors were also explored and the use of a static region ID will be particularly useful for jQuery
techniques.

Selectors will also vary across APEX themes, but the browser tools work consistently to help you identify
the selector relevant to your theme. Most of the time, it's a slight variation in class name.

43

Chapter 5

Firing Dynamic Actions

Dynamic actions are a marquee APEX 4.x feature readers should be aware of. In fact, if you’ve ever used a
dynamic action, you’ve already used some jQuery on your page, albeit declaratively. Understanding the
different options to invoke them is a key step to the use of CSS and jQuery.

This chapter demonstrates dynamic actions and relates them to the world of jQuery. We will provide
further insight into how to operate jQuery alternatives in Chapter 6.

The chapter’s example extends a classic report to include a Google-like auto filter. It then explores two
options for invoking a context-sensitive dynamic action when clicking a link for a particular row.

Creating a New Report Page
The example created in this chapter won’t open the form page; it will just demonstrate how dynamic actions
can interact with an APEX page. For this reason, you should create a separate classic report page and leave
the existing report/form combination alone.

To begin, create a new classic report page on the EMP table (your own table is fine). As a shortcut,
ensure you set the Enable Search option as shown in Figure 5-1.

http://dx.doi.org/10.1007/978-1-4842-0961-5_6

Chapter 5 ■ Firing DynamiC aCtions

44

Refresh Report on Search
Many people may have experiences with web sites that automatically refresh data as they type. It’s possible
to react to user typing with a dynamic action listening for change of the field. The action reacts by triggering
a partial page refresh of just the report.

Search Field Listener
First, create a dynamic action to listen for any key presses in the search field. This will trigger a refresh of the
report. The dynamic action event will be on Key Release and the selection type on the search field page item,
as shown in Figure 5-2.

Figure 5-1. Classic report attribute settings in creation wizard

Chapter 5 ■ Firing DynamiC aCtions

45

Submit page item
When the employee region is refreshed, the database needs to be aware of the updated value in the search
field within the browsers so that correct results can be returned. This is done by either a separate PL/SQL
action prior to the refresh or modifying the Page Item To Submit attribute in the region definition to
include the relevant page item, as seen in Figure 5-3.

Figure 5-2. Dynamic action to refresh report on key releasev

Chapter 5 ■ Firing DynamiC aCtions

46

Now run the page and start typing in the search field. The report will automatically refresh, highlighting
the characters typed within the report (if you used the “enable search” wizard option).

 ■ Note if the report still doesn't refresh, check the report attributes setting Enable Partial Page Refresh
is set to yes.

Responding to Row Click
In the original report/form combination, clicking the employee number would open the record in the APEX
form on another page. It’s possible to define dynamic actions that also respond to a click (or a tap), which
could then perform alternative actions rather than opening a page, such as opening a modal dialog.

There are two decent options when defining the dynamic actions. Both allow further information to be
gathered about which record was clicked, and both introduce a few more jQuery concepts.

Figure 5-3. Page item to submit within region definition

Chapter 5 ■ Firing DynamiC aCtions

47

Option A: Invoke Custom Event
Invoking a custom event can be likened to calling a process on demand. This option modifies the link
attributes to call a dynamic action directly.

First, change the EMPNO report column type to Link. Then set the column link properties, as per
Figure 5-4. Not yet available to the screenshot is the Link Text of #EMPNO#, prompted for once the target
is defined.

Edit link definition
The URL target is actually a JavaScript call to a function in the apex.event namespace. The JavaScript
namespace can be likened to a PL/SQL package since they’re both a collection of modules. This function is
made to invoke a dynamic action referencing the event empEvent.

javascript:$.event.trigger({ type:'empEvent', empno:'#EMPNO#', ename:'#ENAME#' });

The ability to pass further information about the record can be advantageous, particularly with modal
pop ups. A more basic call passing just one parameter can be defined as the following:

javascript:$.event.trigger('empEvent','#EMPNO#');

Define Dynamic Action
Now define a new dynamic action that defines the custom event invoked by the report anchor, as shown in
Figure 5-5. This dynamic action doesn’t use a pre-defined event, but is the definition of the custom event
invoked on demand when the user clicks a row.

Figure 5-4. Link properties for empno column

Chapter 5 ■ Firing DynamiC aCtions

48

The Custom Event name matches the type used when invoking JavaScript. In APEX 4.x, the Selection
Type was DOM Object, with the DOM Object attribute as “document”.

The responding action can reference information from the click event using this.browserEvent object.
Defined as a JavaScript action, it could output to the console the parameter values using this snippet:

console.log(this.browserEvent.empno);
console.log(this.browserEvent.ename);

Single parameter calls need only refer to this.data. Further information is available in the help text
accompanying the JavaScript Code attribute, shown in Figure 5-6. Any information about the row can be
sent to a process or be applied to a page item, depending on the page’s needs.

Figure 5-5. Dynamic action definition for custom event

Chapter 5 ■ Firing DynamiC aCtions

49

Rather than invoking a dynamic action directly, this option adds an event listener to certain page
elements. This adds more moving parts to the page and may be slower during page load, but it may be more
suitable in certain scenarios. Figure 5-7 shows the page at runtime in debug mode, with the browser console
open after clicking on an Empno link.

Figure 5-6. Custom dynamic action JavaScript event, with associated help

Figure 5-7. Debugging the row click event at runtime

Chapter 5 ■ Firing DynamiC aCtions

50

The browser console indicates the dynamic action fired, and then displays the output from the
JavaScript action. The console log output would display regardless if Debug were on.

Note the location of the code on the opposite side of the output. Click these to drill through to the
relevant line number in the underlying code.

Option B: Listen for Click Event
Rather than invoking a dynamic action directly, this option adds an event listener to certain page elements.
This adds more moving parts to the page and may be slower during page load, but it may be more suitable in
certain scenarios.

The example described here adds a listener for each row, but other definitions may listen for a click on
the region itself, and then work out if the object clicked has a related task.

First, disable the first option by setting the condition on the first “Click row” dynamic action to Never.
The Empno link now only needs to call javascript:void(0);, but it won’t impact the outcome if you don’t
amend it. Add a Static ID of p4_emps to the report region, which makes the selector in the dynamic action
more efficient by adding the region ID as the search boundary.

Create a dynamic action listening for click on the row anchor as shown in Figure 5-8. The jQuery
selector isolates anchor (link) in the column with the alias EMPNO, but only within the report region with
the id report_p4_emps.

#report_p4_emps td[headers="EMPNO"] a

Figure 5-8. Row click listener dynamic action

Chapter 5 ■ Firing DynamiC aCtions

51

Note this dynamic action uses a dynamic event scope. This means the listeners are reapplied upon
refresh of the region, such as when the user restricts records within a search. The static container specifies
tighter scope for the browser to search for matching selectors.

The JavaScript action in Figure 5-9 uses another dynamic action related attribute this.triggeringElement.
In this case, it returns the anchor, so further information about the row can be garnered when used as a jQuery
selector by traversing the DOM hierarchy.

console.log($(this.triggeringElement).text());

Figure 5-10 shows the runtime page with this dynamic action responding to the event.

Figure 5-9. Row click dynamic action JavaScript event

Chapter 5 ■ Firing DynamiC aCtions

52

Once again, the browser delivers the information requested, demonstrating there are always multiple
ways to solve problems with the toolkit at hand. One was proactive, the other reactive.

Summary
Dynamic actions are closely coupled with jQuery selectors and tree traversal. The two options described in
this chapter illustrate the basic mechanics of how page interaction by the user can be responded to by the
APEX application.

Dynamic actions give APEX developers plenty of declarative tools. Writing the same functionality
yourself using only jQuery can provide added flexibility.

Figure 5-10. Debugging the row listener event at runtime

53

Chapter 6

Implementing jQuery Alternatives

This chapter presents the final step on integrating jQuery into the APEX environment. In this chapter, we will
recreate the declarative examples from the previous chapter using jQuery.

Some may consider this process extra legwork, but with custom jQuery comes other advantages—it
comes down to finding a balance. More complex dynamic actions tend to read better as jQuery code.

Utilizing jQuery within APEX also brings other requirements and responsibilities, so this chapter will
aim to prepare you for the examples in the remainder of the book.

jQuery in APEX
In Chapter 4, I mentioned differences between using inline CSS and using external files to define styling.
JavaScript and jQuery face similar issues, some you would already be familiar with as a PL/SQL developer.

Why Not Use Dynamic Actions?
When building APEX applications, you don’t just use the wizards—the same can be said for dynamic actions
and JavaScript. Dynamic actions are great for simple tasks and learning capabilities; however, manually
written JavaScript can provide some benefits comparable to PL/SQL packages.

Finding the right balance is key, and a client of mine follows a mantra I agree with: “Complexity always
goes somewhere.” Dynamic actions are declarative and integrated within other product features, but
extensive use means many actions with code spaghettified throughout your page.

JavaScript contained within one file can provide modularization with function calls and flexibility with
conditional processing, but it requires a higher level of expertise. One size does not fit all cases, and it takes
time to find the balance for each project.

Where Do I Put My jQuery Code?
While experimenting with the examples in this book, place jQuery in either the Function and Global
Variable Declaration or Execute when Page Loads attribute in page properties, as shown in Figure 6-1.

http://dx.doi.org/10.1007/978-1-4842-0961-5_4

Chapter 6 ■ ImplementIng jQuery alternatIves

54

For larger projects, you should place jQuery within suitably modular .js files, just like you modularize
PL/SQL procedures in database packages. These supporting files would be included using the File URLs
attribute, at page, template, or User Interface level.

Since you may need to reference a number of files from the same location, you can define the JavaScript
file location within a substitution string in the application definition, and then refer to the location using
substitution string syntax. For example:

&JS_LOCATION.myapp_p5.css

Resources
I highly recommend familiarizing yourself with the Oracle Application Express API Reference, linked from
the main documentation page for your APEX version. Utilization of JavaScript within the APEX environment
is growing fast and the JavaScript APIs in particular are a good point of reference.

There are a number of APEX bloggers who are particularly generous with their posts on jQuery
functionality. Searching “jQuery” in the APEX blog aggregator at www.odtug.com/apex will return dozens of
results.

Instrumentation
The simplest form of instrumentation within JavaScript is the console.log() function, whose use is similar
to dbms_output.put_line(). It’s not supported by all browsers and calls shouldn’t remain in production
code. A better alternative is to use apex.debug(). It’s a wrapper provided by APEX that will output
information to the console only when in debug mode.

Figure 6-1. JavaScript attributes in APEX Page properties

http://www.odtug.com/apex

Chapter 6 ■ ImplementIng jQuery alternatIves

55

The most comprehensive option is Logger, an instrumentation utility originally written for PL/SQL by
Tyler Muth, but extended specifically for APEX and JavaScript by Martin Giffy D’Souza. The library can be
found at www.oraopensource.com/logger, a trustworthy open source project for Oracle products.

Whatever option you choose, I urge you to take instrumentation seriously and log function calls,
parameters, and key events. Doing so will make future debugging much simpler, and that debugger is often
your future self.

Naming Conventions
I’ve already suggested referring to the page number in the static region ID. I also recommend referring to
the page number when defining functions used as jQuery callbacks, particularly since many of them will be
specific to a particular page.

I tend to adopt coding convention in JavaScript that mirrors what I do in PL/SQL. This may ruffle
feathers of JavaScript purists and my APEX colleagues, but in the APEX world I find it provides normalcy and
consistency. Set standards that suit your team and apply them.

jQuery Style Key Release
Create a new page as a copy of the previous chapter, and then remove the three dynamic actions. Edit the
page properties and add Listing 6-1 to the Execute when Page Loads attribute.

 ■ Caution When utilizing code listings, always ensure the page numbers match up with the page numbers in
your application.

Listing 6-1. Refresh Region on Search

// refresh list on search
$('#P6_REPORT_SEARCH').keyup(
 function(evt) {

 // simple return of HTML ID that caused event
 console.log(evt.target.id);

 // jQuery wraps this DOM element to get info
 console.log('Value:'+$(this).val()); // item value

 // evt is equivalent to this.browserEvent in DA
 console.log('key:'+evt.keyCode); // which key pressed?

 // refresh report region
 $('#p6_emps').trigger('apexrefresh');
 }
);

The selector identifies the search item, and the .keyup() function is the same used by the key release
dynamic action event. The function accepts an event object that can be interrogated to obtain information
about the page component related to the event.

http://www.oraopensource.com/logger

Chapter 6 ■ ImplementIng jQuery alternatIves

56

The only requirement of this function is to trigger a refresh of the classic report region that supports a
partial page refresh. Therefore, the search field now has an extra listener applied on page load that can be
verifiedwithin the browser tools. Inspect the search item and view the event listeners as shown in Figure 6-2.

Figure 6-2. Browser tools indicating event listeners on an item, including results in console log

The keyup event has now been added to the list of event listeners for the input item. Also note the
onkeypress attribute, honouring an item attribute set to submit when enter pressed. The three units of
information in the console output represent key data that can influence logic typically placed throughout the
page. Further information can be found in the event and item objects and you’ll encounter more examples
through the book.

Report Link Event Listener
In Chapter 5, Option A executes JavaScript directly and doesn’t need a manual alternative. Option B adds a
listener to page elements and is a good candidate for demonstrating the manual alternative.

http://dx.doi.org/10.1007/978-1-4842-0961-5_5

Chapter 6 ■ ImplementIng jQuery alternatIves

57

Simplify Anchor URL
The anchor doesn’t need to perform an active operation and can be modified to a call similar to the null;
PL/SQL operation, or NOOP in the assembly world. Edit the EMPNO link column to modify the column link
URL to the following:

javascript:void(0);

Now clicking on the anchor does nothing, so another component is required to listen for such an event.

Define Row Click Listener
The listener for the report row anchor is analogous to the declarative dynamic action. The selector for the
anchor is supplied so some JavaScript can be called when the user clicks the anchor.

Extend the Execute when Page Loads attribute with code from Listing 6-2. This adds an on click
listener for anchors within the EMPNO column in the region.

Listing 6-2. Event Listener for Report Anchor

// on click of anchor
$('#p6_emps').on('click' // region
 ,'td[headers="EMPNO"] a' // element in region
 ,function(evt) {
 // $(this) = $(evt.target)
 console.log('html:'+$(this).text());
 }
);

The selector to the function only includes the region name, where the selector to the specific anchor
is supplied as the second parameter. This allows the listener to still work after a partial page refresh of the
region. If the entire selector were supplied, then the listener would need to be reapplied after refresh. Similar
functionality is applied by setting the Event Scope attribute in dynamic actions to Dynamic.

 ■ Note the .on() function has had incarnations in previous versions of jQuery as .bind(), live(),
and .delegate().

Summary
Dynamic actions are closely coupled with jQuery selectors and tree traversal. The two options described in
this chapter illustrate the basic mechanics of how page interaction by the user can be responded to by the
APEX application.

Dynamic actions give APEX developers plenty of declarative tools. However, writing the same
functionality yourself using only jQuery can provide added flexibility and re-use options. Common solution
patterns end up being written as library functions in your growing JavaScript repertoire, which is difficult to
replicate when defined solely as dynamic actions.

59

Chapter 7

Highlighting Selected Row

So far in the book I have covered the underlying principles behind utilizing jQuery within the Oracle APEX
environment and how CSS is closely integrated with how jQuery works, but we have yet to demonstrate truly
applicable examples.

Highlighting a row within a classic report after the row is clicked will bring together some fundamental
lessons learned so far, showing techniques that will be further expanded upon throughout the remainder of
the book.

This chapter introduces a development pattern that you will be able to apply to your own applications
and, as a result, not rely on copying code from the book.

jQuery Development Pattern
The key steps required to highlight a row illustrate the typical workflow required for many jQuery examples:

 1. Use the inspect element tool to locate the jQuery selector and test styling

 2. Define the CSS that will serve the highlighted row

 3. Define a jQuery function that will apply the highlight

 4. Add an even listener that will execute the function

 5. Traverse the DOM to remove existing highlighting, while using chaining to
improve performance

Practice each of these steps and you will be able to apply different combinations to solve different types
of problems. In this case, apply the highlight to your original classic report page.

Using Inspect Element
In Chapter 3, I described how to use the Inspect Element browser tool, a ubiquitous feature in web
development.

First, run the original employee report page and right click one of the employee records. Then select
Inspect Element to show the DOM in the Elements panel of the browser tools. To make things interesting, be
sure to select an even-numbered row (with the non-white background).

http://dx.doi.org/10.1007/978-1-4842-0961-5_3

Chapter 7 ■ highlighting SeleCted row

60

It’s likely the browser will highlight a specific <td> cell in the report. Select the parent <tr> as shown in
Figure 7-1 since this is what needs to be highlighted.

In the Styles panel, add a background colour to the row (in between the element.style brackets):

background-color: red;

On even-numbered rows, this will have no effect because the standard APEX report region alternates
the row color at cell level, which means it has a higher CSS specificity, even with the !important rule.

Odd-numbered rows have no such attribute so a row-level background color will affect the output, but
only when the mouse is not hovering in the row. Therefore, the row highlight will need to be applied at the
cell level.

A selector for cells within the report can be determined using the DOM breadcrumb trail at the bottom
of Figure 7-1. A few variations would be acceptable depending on what’s displayed on the page, though
readability and performance can vary.

The ideal selector often utilizes classes to be specific about which elements to include or exclude.
Without them, you may unwittingly include the header row or pagination elements:

p2_emps table. t-Report-report tr td

The .t-Report-report class wasn’t directly specified in the breadcrumb trail, but the attribute can
be seen in the parent table tag in Figure 7-1. Clicking the table node will list any classes for that tag in the
breadcrumb trail.

Figure 7-1. Inspect row properties of classic report

Chapter 7 ■ highlighting SeleCted row

61

 ■ Note the table’s class may vary if you haven’t used theme 42. themes 25 and 26 use ureport, even older
themes use theme number as prefix.

Not specifying enough components in the selector may also mean not enough nodes are snipped from
the DOM. For instance, excluding the report ID will mean tables with that class from other regions will also
be returned.

Defining the CSS
The selector currently locates all relevant cells within the specified report region. To transform this into CSS
that will conditionally apply a highlight, a new class needs to be conjured.

Listing 7-1 extends the selector to reference the class rowHighlightClassic. Only rows with this class
will be highlighted, and the click event will apply this class to the relevant row. Apply this listing to the page’s
Inline CSS attribute.

Listing 7-1. Row Highlight for Classic Reports

// clicked row
body table.t-Report-report tr.rowHighlightClassic td {
 background-color: #FFFFCC !important;
}
// overwrite existing definitions for hover
.t-Report--rowHighlight .t-Report-report tr:hover .t-Report-cell
,.t-Report--rowHighlight .t-Report-report tr:nth-child(odd):hover .t-Report-cell{
 background-color: #FFFF99 !important;
}

Also note the specific region ID has been replaced with the body tag. This means the styling is suitable
for any report regions in the application.

The second selector includes the :hover keyword, displaying a slightly different shade when the mouse
hovers over a row that has been highlighted. The specified colors are two light shades of yellow.

The !important rule ensures any localized highlighting is overwritten. The use of this rule is often
frowned upon as it can be highly abused, but it’s a fair implementation in this particular case. You can avoid
usage by adjusting selectors to match existing specificity.

Adding the Event Listener
The legwork has already been done in regard to the selector required for the listener on click of a
row, I’ve just removed the td from the end. When executed on load, the following code will add the
rowHighlightClassic class to the row clicked in the p2_emp report:

$('#p2_emps').on('click', 'table.t-Report-report tbody tr', function(index) {
 $(this).addClass("rowHighlightClassic");
});

Chapter 7 ■ highlighting SeleCted row

62

What it doesn’t do is remove any existing highlights that may have been applied. More code needs to be
added to the callback section to complete the requirements.

Note the code could have been written without the optional selector parameter, but the listener would
not be present after a refresh of the region unless the listeners were reapplied after refresh:

$('#p2_emps table.t-Report-report tbody tr').on('click', function(index) {
 $(this).addClass("rowHighlightClassic");
});

Figure 7-2 shows the page where multiple rows have been clicked, hence containing the
rowHighlightClassic class. The Styles panel indicates the yellow background color over overwriting that
was found in the supplied Vita.min.css file, thanks to the !important rule.

Define the Highlight Function
At this point, it’s worth defining the function separately so as not to embed too much code within the listener
definition. It also makes for good modularization as the function can be parameterized and used by other
pages.

You’ll find the function definition in Listing 7-2 comparable to a PL/SQL procedure. It accepts a loosely
typed parameter that, in this case, is jQuery object for the selected table row, referenced using this in the
listener callback.

Figure 7-2. Classic report after multiple rows selected

Chapter 7 ■ highlighting SeleCted row

63

Listing 7-2. Generic Highlight Row Function for Classic Reports

function highlightRowClassic(pElement){
 // remove highlight from other row
 $(pElement)
 .closest('tbody') // upto body
 .children('tr.rowHighlightClassic') // find row with class
 .removeClass("rowHighlightClassic"); // remove class

 // make sure done before adding new highlight
 $(pElement).addClass("rowHighlightClassic");
}

The function traverses up the DOM to first find the closest tbody tag above the row that was clicked.
It then locates all previously highlighted rows under that node using the .children() function.

Previously highlighted rows are identified with the class on the table row, which are subsequently
removed by the .removeClass function.

All function calls are chained and can be read chronologically from left to right. This allows jQuery to
apply these steps in one movement, hence improving performance.

Clearing existing highlighting is done before adding the highlight to the selected row using the
.addClass() function and using the selector supplied in the parameter.

Add Listing 7-2 to the Function and Global Declaration page attribute, and then modify the listener to
replace the .addClass() function with the following call. The JavaScript attributes in the page definition
should match Figure 7-3.

highlightRowClassic(this);

Now refresh the report page and click different rows. The last row clicked will be the only row
highlighted.

Figure 7-3. JavaScript page settings to highlight selected row

Chapter 7 ■ highlighting SeleCted row

64

Summary
This chapter has applied the basic steps required to investigate the elements of an APEX page before
defining appropriate CSS, and then leveraging information already garnered to define the required jQuery to
perform an action on the page in response to an event.

The individual steps required to complete this action will be useful in future chapters as needs vary and
the examples become more complex.

Subsequent chapters will use a similar format to guide you through more practical examples that you
can apply in your own applications.

65

Chapter 8

Adding Buttons to Reports

A common requirement in some form or another is to respond to a click somewhere on a particular record.
Mobile applications in particular respond better with buttons than old-fashioned anchor links.

Typically, a mouse click or finger tap would invoke some process that either manipulates the page or
communicates with the database. This chapter demonstrates the common framework required to facilitate
such a requirement and explores options to get information about the row.

In Chapter 9, we begin to explore the processes underneath these buttons and behaviors.

Defining the Button
There will always be a number of ways to style a button on the page. You can replicate the APEX button
templates, source specific CSS from the Web, define your own CSS, use an example from another
application, or simply use the HTML button tag.

The style used may also vary over time. In the past, the multidimensional skeuomorphic design
was popular, while contemporary web sites use a flattened user interface. The example in this chapter
demonstrates how you can replicate functionality from an existing packaged APEX application.

Deriving the Button Style
While exploring the APEX-packaged applications, I found that some (such as the Sample Database
Application) had buttons in reports that I wanted to replicate.

Using the inspect element tool in Figure 8-1, you can find button styling properties necessary to
replicate the button in your own application.

http://dx.doi.org/10.1007/978-1-4842-0961-5_9

Chapter 8 ■ adding Buttons to reports

66

Just the classes are required when using the same theme. Otherwise, properties would need to be
harvested from the Styles panel. In this case, the following classes will be copied:

t-Button t-Button--simple t-Button--hot

Generating the Button
In this case, the classes simply need to be added to a link defined in a Universal Themed report. Leave the
existing link to open the Employee Form and, instead, add another column to expand upon later.

Add a virtual column to the Employees report by right clicking within the report columns in the tree
pane, as shown in Figure 8-2. Virtual columns are available in 4.x in the right-hand task menu when editing
report attributes.

Figure 8-1. Styling from the pre-packaged Sample Database Application

Chapter 8 ■ adding Buttons to reports

67

Figure 8-2. Create virtual column in Page Designer

The link definition defines the details for the button, as shown in Figure 8-3. The link text will be the
button label, so the #EMPNO# substitution string is used to include report data as the label. The link attributes
are used to add the desired button classes to the generated anchor:

class="t-Button t-Button--simple t-Button--hot"

www.allitebooks.com

http://www.allitebooks.org

Chapter 8 ■ adding Buttons to reports

68

Figure 8-3. Column link definition for the button

Note all code referenced in this chapter is found in Listing 8-1 in the source code available online.
While invoking a custom event as described in Chapter 5 is the simplest way to pass a discrete amount

of information to the handler, I want to show how you can garner information directly from the row
definition using jQuery.

Specify javascript:void(0); as the link target to ensure the link does nothing on click. This is
JavaScript’s version of a NOOP or null; operation. Instead, we’ll define a dynamic action to listen for click
events on the report buttons.

http://dx.doi.org/10.1007/978-1-4842-0961-5_5

Chapter 8 ■ adding Buttons to reports

69

Preparing the Dynamic Action
Define a click dynamic action on the Employees page, listening for click on the report buttons using the
following jQuery selector:

#p2_emps a.t-Button

The rest of this chapter details options for the relevant action. For now, set it to run JavaScript that
outputs the triggering element using the following:

console.log(this.triggeringElement);

The runtime report will now look like Figure 8-4, with the result of a button click in the browser console.

Gathering Information about the Row
Information about the row can be used to make decisions about what actions are made available to the user.
A number of options are available for gathering further information about the row, and there are pros and
cons across all options.

The option utilized will depend on your requirement. The major difference relates to how up-to-date
the information needs to be. Some options utilize information that’s derived while rendering the page,
saving round trips to the database to gather more information about the row being acted upon.

Other situations require more dynamic access to related information. This could mean determining the
value from input items in a tabular form, or invoking a process to fetch fresh information from the database.

Figure 8-4. Classic report with buttons

Chapter 8 ■ adding Buttons to reports

70

Sending Discrete Values
Option A from Chapter 5 described how to use a custom event to pass information to the dynamic action
using a link definition such as

javascript:$.event.trigger('DAEvent', [['#EMPNO#','#ENAME#']]);

This option minimizes the amount of work required by the browser, but it is more suitable for a small
number values formulated during render of the page.

This option sends information from the anchor, while the other options described in this chapter obtain
all information from within the invoked dynamic action.

Using a Dynamic Action to Get Live Information from the Database
Discrete information such as the row’s primary key can be used as input to a PL/SQL action, obtaining live
information direct from the database. Often this is the most appropriate option as information on the page
generated on render is now stale and the user may need to make a decision based on live data.

APEX provides the ability to fetch information without submitting the page declaratively within the
dynamic action. More detailed information on called processes can be found in Chapter 9, but this section
shows how the dynamic action can operate.

Create two text items in the employee region called P2_EMPNO and P2_ENAME. Leave them as text items so
you can see how and when they’re populated.

Extend the JavaScript action to include the second line in the following code that sets the P2_EMPNO item
to the ID in the button clicked: Note the $s function behaves just like apex_item.set_session_state.

console.log(this.triggeringElement); $s('P2_EMPNO',$(this.triggeringElement).text());

Now define a second action that executes after the JavaScript, but this one executes PL/SQL. The final
outcome is shown in Figure 8-5. This action fetches the current name for the employee clicked and then
returns the value to the P2_ENAME item.

Figure 8-5. PL/SQL action that talks to the database from the browser

http://dx.doi.org/10.1007/978-1-4842-0961-5_5
http://dx.doi.org/10.1007/978-1-4842-0961-5_9

Chapter 8 ■ adding Buttons to reports

71

The browser is now aware what record was clicked thanks to $s() function setting P2_EMPNO. This
information is passed from the browser to the database thanks to the Page Items to Submit property. This
allows the PL/SQL to reference the value of the item set in the browser.

If the PL/SQL action updates session state for any page items, these values can be reflected in the
browser by specifying relevant fields in the Page Items to Return property.

Note when designing your UI that repeated trips to the database can decrease performance of the
application and introduce lag to the user, particularly on mobile networks where coverage is poor.

Dynamic Action Attributes
The JavaScript action in the dynamic action for the button click has access to a number of attributes made
available specifically for dynamic actions. Further information on such properties can be found by clicking
the Help tab in the middle pane of the Page Designer and placing the cursor in the relevant property field.
Clicking the JavaScript Code attribute will show the popup in Figure 8-6.

For the dynamic action on the report anchor, this.triggeringElement returned the anchor object
for the row clicked. Since this is a DOM object, surrounding it with the jQuery $() function allowed
interrogation of the textual content, hence the EMPNO value:

7698

Utilizing dynamic action attributes are fundamental to the following options.

Figure 8-6. Attribute help for the Code attribute in JavaScript actions

Chapter 8 ■ adding Buttons to reports

72

Traversing the Tree for Information
Clicking the button in the row may require obtaining information from other columns in the row,
particularly within tabular forms where the user may have modified the data.

Since this.triggeringElement returns the DOM object for the anchor, it’s possible to laterally traverse
the tree to return information from other columns.

For instance, to determine the salary of the relevant employee clicked chain, the following jQuery
functions together from the triggering element:

$(this.triggeringElement).closest('tr').find('td[headers="SAL"]').text()

The call climbs the tree to the closest table row, then locates the column with header property equal to SAL,
and, finally, returns the text shown in that column. Figure 8-7 shows the related DOM where the jQuery would
start at the button anchor, climb to the tr element, and then return the figure 5002 from the SAL column.

This method makes any information about the row accessible using the appropriate traversal functions
and selectors.

Using Data Attributes
Not all required information about a row may be displayed to the user, nor do you need to define them as
hidden items within the report, but you don’t want to make a round trip to the database. HTML5 provides
the ability to define your own custom attributes to tags with data-* attributes. Modify the button’s Link
Attributes to include the following:

data-ename="#ENAME#"

Doing so will extend the generated DOM to include data relevant for the row. For example:

<a href="javascript:void(0)" class="t-Button t-Button--simple t-Button--hot"
data-ename="KING">

Figure 8-7. DOM representation of a row in the report

Chapter 8 ■ adding Buttons to reports

73

These data attributes can be interrogated from the dynamic action using the .data() function,
accepting the suffix of the attribute as the parameter:

$(this.triggeringElement).data('ename');

This provides a lightweight method of including extra information about the row while the page is
generated, ready for instant access by JavaScript events instead of fetching fresh information across the
network from the database.

Summary
Adding buttons to reports is the one option to provide added functionality to users. This chapter has
provided a number of options to get information about the row clicked so the action button can make the
right decisions.

Selecting which option to use will depend on the requirements of the application and expectations of
the users, but APEX and jQuery combine to provide the flexibility to solve whatever scenario you encounter.

Part III

Playing with Processes

77

Chapter 9

Choosing Process Options

The time has come to investigate methods of how to communicate with the database without submitting
the page. Such techniques enable the developer to craft more responsive and user friendly applications by
giving the user context sensitive feedback and the ability to save information in response to a page event.

This chapter looks at the differences between four major alternatives to help you decide which might be
appropriate for you. I also explore an important option when executing these processes which may not have
an intuitive behaviour from the eyes of a PL/SQL developer.

The chapter finished by introducing JavaScript Object Notation (JSON) as a way to return
heterogeneous information back to the browser instead of returning a basic text string.

A Brief History of AJAX
The term “AJAX” was first publicly stated in 2005 by Jesse James Garrett in an article titled “Ajax: A New
Approach to Web Applications”. Garrett described it in relation to Google Suggest, a tool that started
providing suggestions as you type. This is exactly what’s going on in the employee search example shown in
Chapter 5.

 ■ Note A copy of the Garrett article can be found at www.adaptivepath.com/ideas/ajax-new-approach-
web-applications/

AJAX is short for aynchronous JavaScript and XML and it’s a combination technologies. Despite the
name AJAX doesn’t need to be asynchronous and the use of XML isn’t required. JSON is often used as an
alternative data transmission format. Both points are explored later in the chapter.

Google further pushed the technology with Gmail and Google Maps, but it’s precursor was Microsoft’s
ActiveX control in Internet Explorer 5. It’s now used heavily in tools such as APEX and a few options are
available to the developer.

http://dx.doi.org/10.1007/978-1-4842-0961-5_5
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications/
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications/

ChApter 9 ■ ChoosinG proCess options

78

Figure 9-1 illustrates the classic synchronous web application model with an AJAX call representing a
validation or extra fetch of data after the page has been loaded.

Preparing the APEX Page
The four options described below can all be demonstrated by executing a dynamic action on click of a
button that will fetch a value from the database based on a provided value. The page at runtime will look
similar to Figure 9-2, where a user can type an employee number, click a button and see the salary without
page submission.

Figure 9-1. Classic Synchronous Web Application Model

ChApter 9 ■ ChoosinG proCess options

79

 ■ Note i included some htML in the region definition as a reminder of some employee numbers and
modified the grid layout of the buttons to tidy the page

First create a new blank page with one HTML region called Process.
Now create two items to the region. If you’re using the EMP table create an P9_EMPNO and P9_SAL

field, alternatively any ID/value pair will do.
Finally create four buttons whose action will be Defined by Dynamic Action. The relevant dynamic

actions will be detailed in the next section so just leave default attributes for now, but name them Old, DA,
AJAX, JSON respectively.

All buttons will trigger a relevant dynamic action (defined below) that will invoke in some form what’s
termed a PL/SQL callback. This means it’s possible to execute some follow up JavaScript based on the
success or failure of the PL/SQL, but some options provide flexibility where others to not.

Choosing Process Options
A number of options for invoking AJAX are present in the APEX environment. All are worth noting as you
may encounter older code and it’s good to be aware of the options available to make the best decision for
your particular environment, though at times it’s solely up to developer preference.

The Old htmldb_Get
The htmldb_Get function was available since APEX 3.x and while undocumented it was generally accepted
as the method for invoking an APEX application process. Thanks to backwards compatibility you may find
this method still used in APEX applications.

Figure 9-2. Page UI to demonstrate options in this chapter

ChApter 9 ■ ChoosinG proCess options

80

Applying the Functionality
Create a dynamic action to execute JavaScript on click of the Old button, using Listing 9-1 as the source.
Ensure the Fire on Page Load property is unchecked.

Listing 9-1. Deprecated AJAX method

console.log('Old process');
var ajaxRequest = new htmldb_Get
 (null
 ,$v('pFlowId')
 ,'APPLICATION_PROCESS=CB_OLD'
 ,$v('pFlowStepId')
);
ajaxRequest.addParam('x01', $v('P9_EMPNO'));
var ajaxReturn = ajaxRequest.get();
console.log('Return:'+ajaxReturn);
$s('P9_SAL',ajaxReturn);

This JavaScript defines a new request the will invoke a PL/SQL application process called CB_OLD.
Line 8 adds the value from empno field into a pre-defined parameter x01 that will set an associated PL/SQL
package variable.

The JavaScript then executes the process and sets the return value to the salary field.
Now create an AJAX Callback process called CB_OLD ensuring the computation point is AJAX Callback,

using Listing 9-2 as the process source.

 ■ Note in versions prior to 4.x ApeX this would be an application level process defined in shared
Components.

Listing 9-2. PL/SQL Callback for the old button

begin
 apex_debug.message('x01:'||apex_application.g_x01);
 select sal
 into :P9_SAL
 from emp
 where empno = to_number(apex_application.g_x01);
 htp.prn(:P9_SAL);
exception when no_data_found then
 htp.prn('?');
end;

ChApter 9 ■ ChoosinG proCess options

81

The PL/SQL process will be similar across these options, but the method of receiving information can
vary. In this case the empno value added to parameter x01 is now accessible using the supplied package
variable apex_application.g_x01. There are 10 such variables available for static input all defined as
VARCHAR2(32767) so a an explicit conversion to number is appropriate.

The salary value is returned to the JavaScript call using the supplied API htp.prn(). Any data supplied
to this function accumulates in the returned result.

If the supplied employee number is not found then a PL/SQL exception is caught and in this case a
question mark is returned instead.

Problems with this htmldb_Get
The method is fully functional and handles a number of variations to inputting and outputting data, however
it’s deprecated and never officially supported and there are new purpose built handlers available.

Declarative Dynamic Actions
APEX 4.x made AJAX communication with the database declarative by introducing dynamic action
functionality. The same task can now be solved using more declarative attributes and a slightly modified
PL/SQL block.

Applying the Functionality
A PL/SQL action replaces the JavaScript call to a PL/SQL callback, so select accordingly when creating an on
click dynamic action for the DA button.

The declarative APEX functionality does all the hard work while you can define the incoming and
outgoing parameters of the AJAX call within the action definition, as represented in Figure 9-3. Note none of
the actions in this chapter need to Fire on Page Load.

ChApter 9 ■ ChoosinG proCess options

82

The Wait For Result attribute further down the property list defines whether this particular action is
synchronous or asynchronous. When checked, the subsequent action won’t execute until the PL/SQL has
finished.

The PL/SQL code used is available in Listing 9-3. The page item can be referenced directly as bind
variable, but the value is only passed to the database from the browser if listed in Page Items to Submit.

Therefore the page items to submit/return represent the input/output parameters respectively. Page
Items to Return will re-populate the browser with any variables updated within the PL/SQL block. Both can
be comma delimited lists.

If any output items have their own events, the Suppress Change Event property can stop them from
being invoked.

Listing 9-3. PL/SQL code for dynamic action

begin
 apex_debug.message('P9_EMPNO:'||:P9_EMPNO);
 select sal
 into :P9_SAL
 from emp
 where empno = :P9_EMPNO;
exception when no_data_found then
 :P9_SAL := '?';
end;

Figure 9-3. PL/SQL process called from dynamic action

ChApter 9 ■ ChoosinG proCess options

83

Finding Balance Between Dynamic Actions and jQuery
While dynamic actions make AJAX functionality accessible to even those learning APEX there are some
shortfalls. They provide the ability to alternate between JavaScript and PL/SQL, but the path is linear.
Control information needs to be included within parameter passing to conditionally execute code rather
than doing so with the native language, limiting flexibility.

In larger, more complex pages care needs to be taken to modularise the code, yet even so the developer
can waste time clicking through different action properties to read the flow of code. Compare this to
containing all logic within a block of jQuery.

At the end of the day, however, dynamic actions provide rapid development capability while
obfuscating complexity.

Using apex.server.process
APEX provides a wrapper to jQuery.ajax() as apex.server.process. All the features available via dynamic
action are available, but appease the control freak in you by making all parameters accessible.

Applying the Functionality
The JavaScript utilised for the click action on the AJAX button is found in Listing 9-4. The first parameter
represents the PL/SQL callback to be invoked.

The second parameter shows two options for sending information to the PL/SQL unit. Values can be
explicitly assigned to the application.g_x01 variables, or a comma delimited list of page items can be
supplied, identified using ID selectors.

An important parameter before JSON data is explored is the datatype. This parameter defines what
format information is returned. For single pieces of information or delimited strings, text is suitable.

The success function is only executed upon return from the PL/SQL function and sets the output
variable using the APEX supplied $s() function. A failure option is also available.

Listing 9-4. AJAX call using APEX supplied wrapper

console.log('Before');
apex.server.process
 ("CB_AJAX"
 ,{ // pData
 x01 : $v('P9_EMPNO')
 ,pageItems : '#P9_EMPNO'
 }
 ,{ // pOptions
 dataType:"text"
 // ,async:false // added in secondary example
 ,success:function(pData) {
 console.log('Success');
 $s('P9_SAL', pData);
 }
 }
);
console.log('After apex.server.process');

ChApter 9 ■ ChoosinG proCess options

84

The async parameter is true by default which means the last console.log() is executed before the one
within the success function. This can be a common trap while learning JavaScript callback behaviour. When
async is true, the output might not be as you first expect since the callback will take longer to execute than
the code subsequent to the apex.server.process process call.:

Before
After apex.server.process
Success

Listing 9-5 shows the PL/SQL callback invoked from apex.server.process, created as an on-demand
page process.

Data can be read from either the apex_application variables or from the page item bind variables,
depending on how the information was set in the jQuery call.

Listing 9-5. PL/SQL callback for the AJAX method

begin
 apex_debug.message('x01:'||apex_application.g_x01);
 apex_debug.message('P9_EMPNO:'||:P9_EMPNO);
 select sal
 into :P9_SAL
 from emp
 where empno = to_number(:P9_EMPNO);
 htp.prn(:P9_SAL);
exception when no_data_found then
 htp.prn('?');
end;

Once again information is returned by sending data using htp.prn(), which is sent to the success
function as the first parameter.

Alternatives
As apex.server.process is a wrapper to .ajax() and a shorthand version in .post(), you may encounter
calls that look similar but do the same thing.

var ajaxData =
 {"p_request" : "APPLICATION_PROCESS=CB_AJAX"
 ,"p_flow_id" : $v('pFlowId')
 ,"p_flow_step_id" : $v('pFlowStepId')
 ,"p_instance" : $v('pInstance')
 ,"x01" : $v('P9_EMPNO')
};

$.ajax({"url" : 'wwv_flow.show'
 ,"data" : ajaxData
 ,"settings" : {"type":"POST","dataType":"text json"}
 })

ChApter 9 ■ ChoosinG proCess options

85

 .done(function(pData){
 console.log('pData:'+pData);
 $s('P9_SAL', pData);
 }
);

Considerations Regarding Use of apex.server.process
A clear advantage of this method is the flexibility it provides, providing the developer complete control over
how and when code executes.

Another benefit is the program logic is available in the one location. The direct antithesis is the extra
skill set required to interpret and understand the surrounding JavaScript.

The trick is to find the right balance for your team and your application between dynamic actions and
explicit jQuery.

Async vs Sync
A frequent “gotcha” while learning JavaScript relates to the timing of callback behaviour. Modifying the
example in Listing 9-4 by setting the async parameter to false is equivalent to checking the Wait For Result
option in the dynamic action.

Synchronous behaviour modifies the output of the JavaScript by making execution more linear/
chronological, however it’s just likely the success function is logically considered as just a forked execution
block and doesn’t need to be synchronous.

console.log('Before');
apex.server.process
 ("CB_AJAX"
 ,{ // pData
 x01 : $v('P9_EMPNO')
 ,pageItems : '#P9_EMPNO'
 }
 ,{ // pOptions
 dataType:"text"
 ,async:false
 ,success:function(pData){
 console.log('Success');
 $s('P9_SAL', pData);
 }
 }
);
console.log('After apex.server.process');

Before
Success
After apex.server.process

For this reason code flow becomes more vividly apparent when written as jQuery instead of a set of
dynamic actions.

ChApter 9 ■ ChoosinG proCess options

86

Also note your browser may be returning the following warning regarding the usage of this parameter
which is now deprecated.

Synchronous XMLHttpRequest on the main thread is deprecated because of its detrimental
effects to the end user's experience. For more help, check http://xhr.spec.whatwg.org/.

Oracle will modify their underlying code for the dynamic action property accordingly over time, and for
a more detailed discussion on how this parameter affects the APEX environment visit John Snyders’ post.

http://hardlikesoftware.com/weblog/2015/04/15/apex-and-asynchronous-ajax/

JSON Output
Discrete units of output data is useful when defining workflow for user interface events, however larger data
sets are commonly fed to visual web component such as charts.

JSON is an object notation that’s so ubiquitous that it’s become further embedded in the API
frameworks supplied with APEX 5.

Prior to APEX 5 there were some undocumented but frequently used functions that made it easy to send
data from PL/SQL back to JavaScript as a JSON data object.

Applying the Functionality
The infrastructure is similar to the previous option. Listing 9-6 shows how a SQL query string can be
supplied to return the JSON object from the PL/SQL callback, so the code is used in the on-demand page
process.

The corresponding JavaScript in Listing 9-7 demonstrates how this data can be processed as an array,
and is the JavaScript action for the dynamic action on the JSON button.

Listing 9-6. PL/SQL callback “CB_JSON”

apex_debug.message(':P9_EMPNO => '||:P9_EMPNO);
apex_util.json_from_sql('select * from emp where empno = :P9_EMPNO');

Listing 9-7. Ajax call receiving JSON data

apex.server.process
 ("CB_JSON"
 ,{ // pData
 pageItems : '#P9_EMPNO'
 }
 ,{ // pOptions
 success:function(pData){
 console.log('Success');
 console.log(pData);
 console.log(pData.row[0]);
 console.log(pData.row[0].ENAME);
 console.log(pData.row[0].JOB);
 console.log(pData.row[0].HIREDATE);

http://xhr.spec.whatwg.org/
http://hardlikesoftware.com/weblog/2015/04/15/apex-and-asynchronous-ajax/

ChApter 9 ■ ChoosinG proCess options

87

 $s('P9_SAL', pData.row[0].SAL);
 }
 }
);
console.log('After apex.server.process');

Note the attributes of the record in the array are named after the columns in the query. JSON objects
can be constructed manually and may need to be referenced differently. Outputting the data object via
console.log will allow you to determine the layout of a given JSON object, as shown in Figure 9-4.

Further JSON examples can be found in Chapter 13 – Receiving information from the database, showing
how a function can quickly populate fields on page.

Summary
A number of options are available to the APEX developer to invoke PL/SQL from an event on the web page.
This allows the user to interact with the page in a powerful way.

The major decision lies in utilising declarative dynamic actions or coding the logic within jQuery.
Learning the balance between skillset, readability and maintenance does not happen overnight, but does
give the developer choice different scenarios.

Many factors may impact the decision from quantity of input & outputs; to layout of the page; to
business logic required upon return of the data. The JSON notation allows larger sets of data to be sent to
other frameworks such as those building charts.

Figure 9-4. Console log displaying JSON object

http://dx.doi.org/10.1007/978-1-4842-0961-5_13

89

Chapter 10

Link a Check Box to a Collection

This chapter presents the first practical application of the techniques explored so far. Consider adding
items to an online shopping cart. The list of items can have a check box, each allowing the user to add to
the data store.

The resulting APEX page will combine several fundamental components serving the AJAX mechanism,
allowing the report to insert a record into the database the moment the user clicks on the page.

This chapter also offers insight in the use of APEX debugging to track any runtime errors you may
encounter.

About APEX Collections
APEX collections provide the perfect mechanism for the cart. They are session-based tables ideal for
transient data with a variety of data APIs. Since global temporary tables do not work with the APEX session
pooling architecture, APEX collections are the ideal replacement. They are simply a pair of regular database
tables that include the APEX session ID.

This information is exposed to the developer with the dictionary view apex_collections. The view
combines a data-set name with a set of generically named columns with a variety of data types, 50 character
columns plus 5 dates, 5 numbers, and a CLOB.

PL/SQL APIs are used to populate the view. A variety of methods are available, depending on the
quantity and structure of the data being updated.

This example will use a check box as the mechanism to add or subtract from the APEX collection, which
is the shopping cart. This method shows how tightly coupled all the components can be, and I identify an
area that could be extended.

Extending the Report
Several methods are available for adding a check box to the Employees report page. The method described
in this chapter uses simple concepts and makes good use of the features of the database and the APEX
product.

Add Column to SQL
Edit the report region source to include a new column in the SQL. This column uses a scalar subquery to
read from the APEX dictionary view apex_collections. If the employee number from the table matches
data saved in the collection, then the checked attribute will be included in the render of the check box, as
shown in Listing 10-1.

Chapter 10 ■ Link a CheCk Box to a CoLLeCtion

90

Listing 10-1. Check Box Added to Report SQL

select "EMPNO",
"ENAME",
"JOB",
"MGR",
"HIREDATE",
"SAL",
"COMM",
"DEPTNO",
 -- set attribute if empno present in collection
 -- (see column html expression)
 (select 'checked="checked"'
 from apex_collections
 where collection_name = 'CHECKOUT'
 and n001 = empno) AS ajax_checkbox
from "#OWNER#"."EMP"

The collection name CHECKOUT represents the name used to identify the data set used for the cart.

Edit the Report Column
Edit the properties of the ajax_checkbox column and start by renaming the column heading to Add to Cart.

Set the HTML Expression of the column to form a check box input item, each with a value of the relevant
employee number substituted in with hash tags surrounding the column alias #EMPNO#:

<input type="checkbox" #AJAX_CHECKBOX# value="#EMPNO#" name="f42" id="f42_#ROWNUM#"/>

The check box is checked if the scalar subquery finds a record in the collection as the data returned is
embedded within the HTML expression as #AJAX_CHECKBOX#, referring to the relevant column alias.

To stay consistent with the format of APEX tabular forms, the name attribute is a number up to 200
prefixed with “f.” The Id is suffix with the row number to stay unique for the page. I choose 42 because it’s
usually out of the range of any declarative form columns that may already exist, and it has enough cultural
significance to allow code readers to join the dots, particularly in a small page like this one.

Listening for the Click Event
Add a dynamic action Toggle Check Box that listens for change on the following jQuery selector that
identifies the relevant classic report and only the check boxes within it:

#p2_emps :checkbox[name="f42"]

This simplified selector would also work, but it would not be selective enough if other check boxes are
added to the report:

#p2_emps :checkbox

Chapter 10 ■ Link a CheCk Box to a CoLLeCtion

91

The JavaScript action will invoke the PL/SQL process to manipulate the collection, ensure it’s not called
on page load.

Listing 10-2 describes a PL/SQL callback being invoked, sending the value of $(this.triggeringElement).
It’s an attribute supplied by the dynamic action that represents the check box that triggered the change event.

Listing 10-2. JavaScript Invoking AJAX Call to PL/SQL

// send the value of the checkbox (pk) and if it's checked
apex.server.process
 ("CB_CHECKOUT"
 ,{ // pData
 x01 : $(this.triggeringElement).val()
 ,x02 : $(this.triggeringElement).prop('checked')
 }
 ,{ // pOptions
 dataType:"text"
 ,success:function(pData){
 console.log('Return:'+pData);
 }
 }
);

The PL/SQL function can return information into pData using the htp API. This information could form
or dictate a response to the user.

Adding PL/SQL Processes
The listener on the check box will invoke a PL/SQL process that needs to toggle whether that item is
included in the collection. Doing so provides an opportunity to utilize the APEX debugging tools.

Create PL/SQL Callback
Create an AJAX callback named CB_CHECKOUT using the code in Listing 10-3. The parameters can be
referenced using global variables in the apex_application supplied package.

If the check box is checked and the property is true, an entry is added to the collection named
CHECKOUT. The first character and first number field in the collection are set to the value of the check box
and the empno respectively.

If the check box is not checked, an API is called to remove an entry with the first attribute equal to the
value supplied.

Listing 10-3. PL/SQL Process to Toggle Collection Membership

/* toggle collection membership */ apex_debug.message('CB_CHECKOUT');
apex_debug.message('CB_CHECKOUT');
apex_debug.message('CB_CHECKOUT');
apex_debug.message('Value:'||apex_application.g_x01);
apex_debug.message('Checked:'||apex_application.g_x02);

-- add member to collection if checked
-- else delete where c001 = value
if apex_application.g_x02 = 'true' then
 APEX_COLLECTION.ADD_MEMBER

Chapter 10 ■ Link a CheCk Box to a CoLLeCtion

92

 (p_collection_name => 'CHECKOUT'
 ,p_c001 => apex_application.g_x01
 ,p_n001 => apex_application.g_x01
);
 htp.prn('added:'||apex_application.g_x01);
else
 APEX_COLLECTION.DELETE_MEMBERS
 (p_collection_name => 'CHECKOUT'
 ,p_attr_number => 1
 ,p_attr_value => apex_application.g_x01
);
 htp.prn('removed:'||apex_application.g_x01);
end if;

At this point, these API calls will return an error since the collection has not yet been created, though it
does provide an opportunity to follow the debug trail.

Debug Mode
Run the page in debug mode and open the JavaScript console. Then click on a check box. The console in
Figure 10-1 indicates the dynamic action Toggle Check Box was executed. The following line shows an error
propogated from PL/SQL indicating the collection does not exist:

Return:sqlerrm:ORA-20102: Application collection CHECKOUT does not exist

Figure 10-1. Console window after clicking a check box

Click the View Debug link on the developer toolbar and open the debug entry that mentions CB_CHECKOUT
in the path info column. Scroll to the end and find the PL/SQL errors, as shown in Figure 10-2.

Chapter 10 ■ Link a CheCk Box to a CoLLeCtion

93

In larger applications, this provides an easy way to track where an error occurred and, perhaps,
determine why. Note the calls to apex_debug.message have noted what callback was invoked and what the
parameter values where.

Initialise Collection
To resolve the error, the collection must be created when the page loads, before the user starts interacting.

Create a Pre-Rendering PL/SQL process with processing point Before Header, using PL/SQL in
Listing 10-4. This creates the collection if it doesn’t already exist. The PL/SQL callback may now safely
manipulate the collection.

Listing 10-4. PL/SQL Initialization on Page Load

/* create empty collection if not already present */
if not apex_collection.collection_exists('CHECKOUT') then
 apex_collection.create_collection
 (p_collection_name => 'CHECKOUT');
end if;

 ■ Caution Be careful when selecting the api to do this task. a viable alternative would be apex_collection.
create_or_truncate_collection, but that would mean clearing the cart if the user refreshed the page.

Note in Figure 10-3 the APEX documentation describes the APIs clearly and concisely. It’s worth
familiarizing yourself with these pages as they provide a good resource.

Figure 10-2. Debug log indicating where the error occurred

Chapter 10 ■ Link a CheCk Box to a CoLLeCtion

94

Session Information
Click on the Session link in the developer bar and set the view on Collections. As shown in Figure 10-4, both
records checked are present in the collection, which is actually a table in the database.

Figure 10-3. Useful and concise APEX documentation

Chapter 10 ■ Link a CheCk Box to a CoLLeCtion

95

Uncheck one of the boxes and then refresh the collection list and see the instant feedback.

User Feedback
The success function from Listing 10-2 displays the information sent to htp.prn(), which is now available
via the success function’s input paramter pData.

success:function(pData){
 console.log('Return:'+pData);
 }

This information isn’t much use to the user in the JavaScript console, nor is it practical to reference in
any subsequent action in the dynamic actions since they are not conditional.

A common solution is to provide some form of messaging system to the user. There are a number of
jQuery frameworks, or you could import a notification APEX plug-in to display an alert if a hidden item is
changed on the page.

Figure 10-4. Collection data shown in Session State pop-up window

Chapter 10 ■ Link a CheCk Box to a CoLLeCtion

96

The following solution might not satisfy JavaScript purests, but it shows a method to convert the
callback output to a notification for the user that demonstrates related APEX mechanics. This example uses
tha native alert, but further exploration into client messaging continues in the next chapter.

Create Global Page (formerly known as Page Zero) in your application,and then add a Static Content
region using the Blank with Attributes template. Add a hidden item P0_SIGNAL and set Value Protected to No.

Create a dynamic action on change of P0_SIGNAL with a condition checking for not null. Create a new
dynamic action on the global page called Receive Signal, which runs JavaScript on change of P0_SIGNAL.
The JavaScript sends the signal value to the native alert, thereby allowing feedback of information from the
database process back to the browser:

alert($v('P0_SIGNAL'));

A subsequent action can clear the P0_SIGNAL item, but ensure Suppress Change Event is set to Yes.
Otherwise, the page will invoke an infinite loop as the dynamic action changes the value of the same item to
which it listens for change. (See Figure 10-5.)

Finally, return to the Employees page and append the following after the console.log in the success
function in the call to apex.server.process:

$s('P0_SIGNAL', pData);

Figure 10-5. Dynamic action listening for signal

Chapter 10 ■ Link a CheCk Box to a CoLLeCtion

97

Now clicking on a check box in the report invokes a set of activity:

•	 Dynamic action responds to check box change

•	 JavaScript action invokes AJAX callback

•	 PL/SQL function adds or removes entry from APEX collection

•	 Successful return from function call sets P0_SIGNAL

•	 Global page dynamic action converts signal to user feedback

You should also see success message in the browser console.

Summary
Now that you are aware of all the components necessary to allow the database to communicate, it’s a matter
of working out the best ways to apply these behaviors.

In this chapter, you added a check box column source from an APEX collection. You then added all the
components required to add or remove an element to the collection when the check box was toggled.

It doesn’t take much of a stretch of the imagination to transform any of these components into
something similar to manage other user interface scenarios.

99

Chapter 11

Using jQuery Dialogs

Since APEX delivers web pages, it naturally provides a simple interface to the browser dialogs and alerts;
however, they are bareboned. jQuery offers a more polished set of dialogs that facilitate alerts and questions
that can match the application’s theme.

This chapter shows how to replace the default Delete dialog in the Employees form with a jQuery style
dialog. The chapter concludes by demonstrating how the dialog text could be sourced from the database.

The Undo Alternative
A user interface design alternative for dialogs is to provide an undo feature. Trust the users in their actions,
but provide a temporary ability to undo. Figure 11-1 shows Gmail's option to undo deletes.

Figure 11-1. Gmail temporarily offers users the ability to undo their deletes

E-mail folder structure also offers deleted e-mails in the bin once the temporary message is left behind.
For some applications, undo behavior can be difficult or is out of context. Systems such as those involving
payments will have steps that cannot be undone.

A fuller discourse on the matter is beyond the scope of this book, but one can be found at
http://alistapart.com/article/neveruseawarning. I would add the recommendation that dialogs use
verbs on their buttons. In other words, use “doing words” such as Send or Discard, but not Okay.

The interface may not even call for a stop/continue request, but rather a decision between options.
Perhaps a formal acknowledgment might be required, or the user could be forced to change selection from
the default dialog button before continuing.

The Browser Solution
All browsers offer a simple, effective modal dialog box invoked with the confirm() command. Oracle APEX
provides a wrapper to this function, offering a second parameter to define request value used in page
processing.

apex.confirm('Delete this record?', 'DELETE');

http://alistapart.com/article/neveruseawarning

Chapter 11 ■ Using jQUery Dialogs

100

This is the same call used with the Delete button. It can be extended further to include other
documented options.

apex.confirm("Save Setting?", {
 request:"SAVE"
 ,set:{"P1_DEPTNO":10, "P1_EMPNO":1234}
 ,showWait:true
});

Dynamic actions include confirm and alert actions that will invoke the same APIs.
The rendering of the native dialog will vary depending on the browser. Because some wouldn't be

considered user friendly, they are in need of customization. Figure 11-2 shows the dialog shown when
invoking the Delete button on the Employee form. The only element that's customizable is the message text.
Also note that Chrome has flipped the position of the Cancel and OK buttons, shifting the default to OK.

Figure 11-2. Browser window.confim() method

Another consideration is, in my case, Chrome interrupted all tabs open within the browser, waiting for a
response. Some other browsers operate independently within the tab.

jQuery Dialogs
jQuery dialogs are coupled with the jQueryUI theme so they will match the interface and have a more
polished finish. They are heavily customizable and do not disrupt other browser tabs.

This section demonstrates a solution that could be customized to suit all the scenarios mentioned
earlier. At the conclusion of the chapter, we will provide a simpler, more generic solution.

Chapter 11 ■ Using jQUery Dialogs

101

Priming the Dialog
This method adds a DIV to the page body that will be transformed into a dialog box, ready to be invoked on
demand. Add Listing 11-1 as Executed when Page Loads for the Employee form.

Listing 11-1. On Load JavaScript for APEX Form Page

/* add catalyst div to page body */
$('body').append('<div id="confirm_delete" />')
/* turn div into dialog */
$("#confirm_delete").dialog(
 {modal : true
 ,title : 'Confirm delete'
 ,autoOpen:false
 ,resizable:false
 ,dialogClass: "no-close"
 ,width : '300px'
 ,closeOnEscape : false
 ,buttons : {
 "Cancel" : function () {
 $(this).dialog("close");
 }
 ,"Delete": function () {
 $(this).dialog("close");
 apex.submit('DELETE');
 }
 }
});

The dialog function has some relatively self-explanatory attributes, plus explicit instructions for each
button defined. Both close the dialog, and the latter also submits the page as DELETE.

No dialog is invoked at this point—it's just preparing the DOM for use.

Opening the Dialog
The call to invoke the dialog is not a function, but a method on the DIV. The HTML within the DIV forms the
dialog message, so it may be set at any time using .html(). The button's actions are defined as callbacks
within the dialog definition.

Listing 11-2 is a function that accepts a message parameter, sets the HTML, and then opens the dialog.
These actions are chained in the one statement for performance. This function is to be defined in the
Function and Variable Declaration section, but will be invoked from the Delete button.

Listing 11-2. Function Declaration for Form Page

/* open delete dialog */
function delete_dialog(p_msg) {
 $('#confirm_delete')
 .css('margin','12px') // tidy the messsage within the dialog
 .html(p_msg) // define the actual message
 .dialog('open'); // open the dialog
}

Chapter 11 ■ Using jQUery Dialogs

102

Also included is some styling for the DIV to add some whitespace around the message text.
Alternatively, a call could be made to a PL/SQL process to determine the message, much like a PL/SQL

validation Function Returning Error Text. This is demonstrated later in the chapter.

Calling the Function
The Delete button can now be modified to call the function, so modify the button's Target URL as the
following:

javascript:delete_dialog("About to delete '"+$v('P3_ENAME')+"'

Are you sure?");

The function is invoked, passing the desired message string. This message includes the current value
of the P3_ENAME field.

 ■ Note this sample code combines single and double quotes within strings. javascript accepts either
punctuation set and, when used together, they offer different context within the string. this code surrounds the
data in the employee name field with single quotes. the remainder of the literal text is surrounded with double
quotes. this could be the other way around, or you can use the escape character “\” for literal quotes.

Figure 11-3 shows what the dialog looks like with the relevant DOM components in the developer
toolbar.

Figure 11-3. jQuery dialog with underlying DOM elements

Chapter 11 ■ Using jQUery Dialogs

103

Focus the Button
The JavaScript that invokes the dialog can be extended to ensure a certain button is focused by default,
ready for the user. Currently the default is the Cancel button, which is ideal because it forces the user to
make a decision.

It's possible to dictate this focus. The following code could be added after the dialog is opened to focus on
the last button shown, ensuring the CSS class I spotted while tabbing through the buttons reflects the focus.

Reviewing Figure 11-3, you can see the class assigned to the button div container. Combining this with
a pseudo-selector that returns the last child in a set of siblings, the button on the far right is selected.

$('div.ui-dialog-buttonset button:last').focus().css('ui-state-focus')

Customizing with CSS
Other visual customizations are possible with jQuery dialog boxes. In this case, I've drafted adjustments that
will assist a user on a touch device.

Add Listing 11-3 to the page's Inline CSS attribute and adjustments are made as described in associated
comments.

Listing 11-3. CSS to Modify Aspects of the Dialog Box

/* change right hand button colour */
div.ui-dialog-buttonset button:last-child {
 background-color: #2578cf;
 color: white;
}

/* enlarge message font */
.ui-dialog-content {
 font-size:150%;
}
/* make buttons bolder and bigger (for fingers) */
div.ui-dialog-buttonset button {
 padding: 10px 14px;
}
div.ui-dialog-buttonset button span {
 font-weight:bold;
 font-size:150%;
}

/* give message text some elbow room */
div.ui-dialog {
 width: initial;

 ■ Tip these selectors were all found by navigating the elements of the dialog box using the browser tools,
and then modifying or adding attributes on the fly to find the right selector.

Figure 11-4 shows the dialog box with the CSS customizations. The larger buttons are perfect for a
touch-screen environment and the message is easier to read on a tablet.

Chapter 11 ■ Using jQUery Dialogs

104

The Close button on the top right could also be hidden with CSS, but care needs to be taken not to affect
other dialogs with such generic CSS.

Sourcing a Message from the Database
Before invoking the dialog, it is possible to source the displayed message from the database. Your business
logic may even dictate certain circumstances where the dialog box is not relevant and an alert is shown
instead when a particular record cannot be deleted.

The PL/SQL callback in Listing 11-4 demonstrates a hardcoded (naughty) check on the given employee
number to see if it can be deleted. Based on this check. The callback returns two values in the JSON notation:
an outcome and associated message. Use this code for an AJAX callback named CB_DELETE.

Listing 11-4. PL/SQL Callback for Delete Button

DECLARE
 l_outcome VARCHAR2(20);
 l_message VARCHAR2(200);
BEGIN
 apex_debug.message(':P3_EMPNO => '||:P3_EMPNO);

 IF :P3_EMPNO = 7839 THEN
 l_outcome := 'DENIED';
 l_message := 'Cannot delete the president';

 ELSE
 l_outcome := 'DELETE';

 SELECT 'Do you wish to delete '||ename||'?'
 INTO l_message
 FROM emp
 WHERE empno = :P3_EMPNO;

 END IF;

Figure 11-4. Customized jQuery dialog

Chapter 11 ■ Using jQUery Dialogs

105

 htp.p(
'{"output":[
 {"outcome":"'||l_outcome||'"
 ,"message":"'||l_message||'"
 }
]}'
);
END cb_delete;

The JavaScript in Listing 11-5 shows the delete employee function extended from a simple dialog
request to invoke AJAX in order to determine what should happen next. The value in P3_EMPNO is submitted
to session state and the JSON object is returned into pData.

The JSON object can be interrogated similar to an array that starts at index 0. In this case, there was only
one entry and the attribute outcome is tested to determine whether to display the dialog or an alert.

Listing 11-5. Function to Open the Dialog and Focus the Cursor

/* employee delete button click */
function delete_dialog() {
 apex.server.process
 ("CB_DELETE"
 ,{ // pData
 //pageItems : '#P3_EMPNO'
 }
 ,{ // pOptions
 loadingIndicatorPosition: "page" // we're waiting for message, ensure user knows
 }
).done(
 function(pData){
 if (pData.output[0].outcome === 'DELETE') {
 // Set dialog based on output then display
 $('#confirm_delete')
 .css('margin','12px')
 .html(pData.output[0].message)
 .dialog('open');
 $('div.ui-dialog-buttonset button:last-child').focus();
 }
 else if (pData.output[0].outcome === 'DENIED') {
 // Notify user delete not allowed in this case
 alert(pData.output[0].message);
 }
 }); // end done
} // end delete_dialog

If the outcome was to DELETE, then the dialog is still called, but the message is first set from the
returning value using the .htm() call. When DENIED, a browser alert is invoked instead with the returned
message.

Chapter 11 ■ Using jQUery Dialogs

106

Defining a Generic Alert
The solution for the Delete button demonstrates rather specific customizations. Listing 11-6 shows a
stand-alone function that displays a dialog, and executes a supplied callback function on click of the button.

Listing 11-6. Function to Display Generic Alert

/* display generic alert */
function get_alert (p_message, p_title, p_callback) {
 $("<div/>", { "html" : p_message})
 .attr({"title" : p_title})
 .css('margin','12px')
 .dialog({
 modal : true
 ,buttons : {
 "Oh dear" : function() {
 $(this).dialog("close");
 // invoke function sent by invoker
 p_callback();
 }
 } // buttons
 }); // dialog
} // get_alert

function do_something(){
 // callback used for dialog button
 console.log('called');
}

The dialog can be invoked at any time using the following syntax:

get_alert('Hello Universe','Attention', do_something);

This example further demonstrates the variety of ways that tasks can be accomplished in jQuery.

Summary
Your user feedback framework could revolve around two or three parameterized library calls instead of
native browser alerts. This allows for more flexible messages that fit with the style of your application.

Once again AJAX takes this concept even further by being able to interact with the database to help
determine where events on the page lead.

That being said, this is but one workflow to be considered when designing your application. The
alternative is to allow the users to undo their actions instead, pre-emptively warning them for a business rule
that will still need to be rechecked upon user confirmation anyway.

107

Chapter 12

Using Modal Forms

Modal forms are often useful in an enterprise setting to allow users to manage their data without traveling
too far from where they found the record. Consider a pop up in a report that allows basic maintenance of
record data.

The advent of APEX 5.0 revolutionizes the way complex modal forms are handled in APEX environments.
Of course, not everyone will adopt APEX 5.0 straight away (I know some clients who still use APEX 3.x), and
it’s not the panacea of modal forms.

This chapter covers the middle ground of modal forms where the APEX developer has control over a
simple set of items in a modal dialog to help manage application workflow.

A Brief History of Modal Forms in APEX
The usage of modal forms in APEX has changed as the product has matured. This doesn’t mean one size fits
all. There are still valid reasons to use each type of modal.

jQuery Modal
In the past, when using APEX 3.x the only way to show some form of dialog was to include the jQuery UI
libraries and invoke a jQuery dialog. The same feature can be used today, without the need to worry about
incorporating the libraries.

Figure 12-1 shows the example the website jQueryUI.com/dialog curated for modal forms. The sample
code on the site is thorough, even providing validation for the fields generated within the JavaScript call.

Chapter 12 ■ Using Modal ForMs

108

A problem with this solution is that it is JavaScript heavy. I have been encouraging you to find the right
balance with the use of jQuery in APEX, and I don’t recommend this as the first option to consider.

APEX Region Modal
Despite the wonderful improvements introduced with APEX 5 modal page types, APEX region modals are
still a lightweight solution that integrates well with the database product. They are simply APEX regions with
a specific template, hidden until invoked with a basic JavaScript call. APEX 5 made these regions easier to
incorporate, and template options in the Universal Theme make them simple to adjust.

A number of the Oracle APEX Packaged Applications provide examples of region modals in use
and are a great way to find suggested solutions for deconstruction. There is also a dedicated application
demonstrating modal page types and template reigon modals.

Figure 12-2 shows an example from the Bug Tracker application. It shows how the region modal looks
just like a standard form region, just within a modal dialog.

Figure 12-1. jQuery UI sample modal form

Chapter 12 ■ Using Modal ForMs

109

Instead of constructing your modal form with JavaScript, you define a region on the page and assign
a specific region template allowing the region to behave like a modal. Then you can allocate items to the
region, add buttons, and manage components just like a normal region.

Dynamic actions become involved to populate the region when invoked and process any data when
closing. (I’ll go into further detail later in the chapter.) Validation on closure is a disadvantage with this
solution since it’s not possible to use the page’s declarative page-processing features.

SkillBuilder’s Modal Page Plug-in
APEX plug-ins were introduced in APEX 4.0 as a way of extending the APEX product in a modularized
but integrated manner. A number of software companies provide well-constructed APEX plug-ins with
GPL/MIT licensing, which means you can utilize them within your projects free of charge. These plug-ins
not only promote their author’s brand but provide APEX developers with a greater set of resources.
The team at SkillBuilders offer a plug-in that allows the developer to invoke a modal form that embeds a
separate APEX page within the modal. At the time of writing, it is their most downloaded plug-in, though I
suspect this will fade as APEX 5 becomes more prevalent. Figure 12-3 shows how an Interactive Report could
be defined in the modal, since the modal is defined as a separate page.

Figure 12-2. Package Application Bug Tracker example modal form

Chapter 12 ■ Using Modal ForMs

110

While this solution has a number of moving parts and can take a while to master, it offers greater
flexibility in your applications and allows more complex modals to be constructed.

APEX 5
The ability to declaratively define modal dialogs has always been in the statement of direction for APEX 5,
thanks to popular demand. The APEX 5 solution is essentially a fully integrated version of the SkillBuilders
plug-in, where the APEX dev team have more flexibility.

Figure 12-4 shows a modal invoked within the APEX 5 sample application. When opened, you may
notice a slight lag as the underlying modal page is generated from the database. The first two solutions
would minimize any such lag as most of the rendering is done on the underlying page load.

Figure 12-3. SkillBuilder online demo

Chapter 12 ■ Using Modal ForMs

111

The solution is completely declarative and has many features that are beyond the scope of this book.
There will still be times where this solution may be considered overkill or APEX 5 may still be on the horizon
for your site.

Selecting the Right Modal
Each of the solutions mentioned have advantages and disadvantages that have been summarized
in Table 12-1.

Figure 12-4. APEX 5 declarative modal dialog

Table 12-1. Comparison of Modal Form Options

jQuery APEX Region Modal Plug-in APEX 5.0

Major Skillset JavaScript APEX Dynamic actions APEX

Declarative No Mostly To use Yes

Prerendered (fast) Yes Yes No No

APEX version 3+ 4+ 4.x 5+

Complexity High Medium Medium Low

Flexibility Low Medium High High

Utilize Page Processes No No Yes Yes

Chapter 12 ■ Using Modal ForMs

112

Using APEX Region Modals
A fine balance is provided by the APEX region solution. It is possible to render a report with a button that will
invoke the modal pop up for a particular record. Once the user is finished, the pop up can be closed and data
processed, and then onto the next record—all without submitting the page.

This section modifies the original Employees report page to move the EMPNO and ENAME fields defined
in Chapter 8 to reside in a modal region, populated on load and then any changes saved with the click of
a button.

Define Modal Region
Edit the Employees report page and create a new HTML region using the template Inline Dialog. Set the
Position to Inline Dialogs. Hopefully both are obvious selections and they result in the region appearing as
the modal pop up when invoked. Note the Template Options available to dialogs. I set mine to use the small
dialog size. Set the Static ID to p2_modal. This will be referenced to open the correct dialog.

Now drag and drop the EMPNO and ENAME fields from the Employees report region to the modal region.

Adding a Create Button
There may already be a Create button on the employees report so leave that one to it’s existing job of calling
the employee page. Duplicate the Create button and then rename the button name and label to MODAL.
It set the both to the Edit button position, as to place them in the regiontitle bar. Set both buttons to the Edit
position, as to place them in the region’s title bar. Set the Action to be defined by a dynamic action.

Create Dynamic Action
A JavaScript function has been provided in the theme library that displays the modal dialog on demand.
Open the JavaScript console and start typing “open”. An autocomplete tip should appear where you can
select the function openModal. Figure 12-5 shows the function definition. Chrome allows you click through
to see the file where the function is defined in the relevant JavaScript file.

Figure 12-5. JavaScript function definition for openModal

Notice how the function is just a wrapper to the .dialog() function. These modals are just a larger
version of the dialogs in Chapter 11.

Right-click the Modal button to create a new dynamic action for the Click event. Set the action to
execute the JavaScript in Listing 12-1.

http://dx.doi.org/10.1007/978-1-4842-0961-5_8
http://dx.doi.org/10.1007/978-1-4842-0961-5_11

Chapter 12 ■ Using Modal ForMs

113

Listing 12-1. Invoke the Modal Using JavaScript and Clear Values

openModal('p2_modal');
$('#P2_EMPNO').val('').focus(); // this will clear the empno without invoking a change event
$s('P2_ENAME',''); // this will clear the ename using a supplied API

There is no need for Selection Type, so clear if prompted. There is also no need to execute on page load.
The Modal button is now ready for use.

Modifying Report Button DA
The existing dynamic action for the Report button event can be extended to include a call to openModal() in
the JavaScript action. The placement may be before or after the $s() call.

Saving the Data
Now at runtime, an empty modal will be displayed when the Modal button is pressed, or the relevant record
displayed when pressing any of the Report buttons. Figure 12-6 shows the modal after a Record button is
pressed with the fields populated from the existing process.

Figure 12-6. Modal region template in action

Clicking the cross icon or pressing escape will close the modal. If you want to process any data changes,
a Save button is required on the modal region.

Add a hot Save button on the modal region in the Create region position. Set the button action to be
defined as dynamic action.

The corresponding dynamic action could execute the PL/SQL necessary to apply the data to the database,
remembering to utilize the Page Items To Submit property to send information the browser knows to the
database. Then another action could refresh the Employees region and another action to notify the user.

Alternatively, all this can be done using a JavaScript action calling an AJAX process, as shown in
Listing 12-2. This means the JavaScript does everything required in one place, and subsequent actions
conditional on successful update.

Chapter 12 ■ Using Modal ForMs

114

Listing 12-2. JavaScript Component of Save Button

/* invoke PL/SQL then close/refresh/alert upon return */
apex.server.process
 ("CB_SAVE" // AJAX callback (PL/SQL code)
 ,{ // pData
 pageItems : '#P2_EMPNO,#P2_ENAME'
 }
 ,{ // pOptions
 dataType:"text"
 }
).done(
 function(pData){
 closeModal('p2_modal');
 $('#p2_emps').trigger('apexrefresh');
 alert($v('P2_ENAME')+' saved');
});

Unfortunately, you cannot utilize APEX page-processing features with the Save button unless the page
is submitted, which defeats the main purpose of this modal template. Any validation of data needs to be
done prior to calling the AJAX process.

 ■ Note if the report fails to refresh, check thatenable partial page refresh is Yes in the region attributes.
if still a problem, enable debug and check that pl/sQl did not raise exception.

The PL/SQL callback needs to handle new or existing records, so a SQL MERGE can handle both
scenarios in one statement. The USING component can source information from session state by querying
from dual.

The :P2_EMPNO value is matched to existing data in emp table. If it’s found, an UPDATE is applied. When
no record exists, an INSERT is executed. Note the usage of table aliases to make it clear where data is sourced
in the query.

Listing 12-3. PL/SQL Callback for Save Button

MERGE INTO emp e
USING (select :P2_EMPNO empno, :P2_ENAME ename from dual) t
ON (e.empno = t.empno)
WHEN MATCHED THEN
 UPDATE SET ename = t.ename
WHEN NOT MATCHED THEN
 INSERT (empno, ename)
 VALUES (t.empno, t.ename);

The page is nearly complete. You may notice that after updating a record, the Row button no longer
works. This is because the region has been executed, but the click event on the button hasn’t been reapplied.

Edit the Row button dynamic action and modify the Event Scope attribute to Dynamic. An optional
Static Container attribute will apear, but can improve the performance of the page if supplied. Event
Scope should also be updated for the check box dynamic action.

Chapter 12 ■ Using Modal ForMs

115

Summary
When it comes to modal forms in APEX, many options are available and each option has strengths and
weaknesses. Care needs to be taken when selecting the appropriate solution for your circumstance.
A sledgehammer is not required when a basic form will do, but you also need to provide your users
with consistency.

APEX version, project size, and developer skill level are all major factors that should influence your
decision. Explore them all and see what works best for you.

117

Chapter 13

Receiving Information from the
Database

The information format to be returned usually takes one of a few forms, the first being basic textual
confirmation of an event. The second could be a small, discrete set of output given a specific input. Finally,
using JSON as the output format offers great flexibility since its structure is so dynamic. A common uses for
JSON-formatted data ranges from bundling a small set of discrete data to passing reportable information
from the database to a charting framework such as Google Visualizations.

While discussing processing in Chapter 9, we demonstrated receiving information from the database in
both a discrete format plus the heterogeneous JSON format. This chapter will dive deeper into what options
are available when sending information from the database to the browser to help you decide which option
suits your given situation.

Using htp.prn
A precursor to APEX was called mod_plslql, which was accompanied with the htp and htf packages to
produce HTML from PL/SQL. This still goes on under the hood of APEX and any time a dynamic PL/SQL
region is defined.

The procedure htp.prn is the mechanism to send information back to the JavaScript that invoked the
PL/SQL callback. All the examples used so far include such a call. For instance, this example returns the
literal string to calling JavaScript:

htp.prn('Hello Universe');

The JavaScript in Listing 13-1 makes this value available in the success function via the pData
parameter. In this example the data returned is expected in text format, thanks to the dataType parameter.

Listing 13-1. Basic AJAX Call

apex.server.process
 ("CB_BASIC"
 ,{ }
 ,{ dataType:"text" }
).done(
 function(pData){
 console.log(pData);

http://dx.doi.org/10.1007/978-1-4842-0961-5_9

Chapter 13 ■ reCeiving information from the Database

118

 // split string into an array
 var results = pData.split(':');
 console.log(results[0]);
 console.log(results[1]);
});

This simple yet effective pattern is useful for sending single pieces of information back to the browser.
This could be a descriptive value for a code, table attribute based on the provided key, or an indicator of
process completion such as PASS or FAIL.

Create a new page in your application with one HTML region. Then create a PL/SQL callback called
CB_BASIC that executes the following:

htp.prn('ABC');
htp.prn('123');

Create a button on the HTML region that will execute the JavaScript in Listing 13-1. Clicking the button
will display the following in the browser console window:

ABC123
ABC
123

Using a small string of text as output has been enough to manage the examples used so far and can be
useful for simple validation and user feedback.

Processing Delimited Data
Delimited strings can be a useful way to manage data across many programming languages. One of the most
ubiquitous spreadsheet formats (CSV) uses delimiters to separate data within a text file.

The delimited format can be useful when the amount of data is minimal and the code can be kept
relatively simple. Some examples have been available since APEX 3.1 that return delimited data in a text
string. The first I recall seeing related to cascading LOVs before they were declaratively available in 4.x.

Modify the PL/SQL in the CB_BASIC callback to include a colon as the delimiter. For example:

htp.prn('ABC:123');

JavaScript provides a function to split strings into constituent components into an array, which is
similar to the PL/SQL function apex_util.string_to_table(). Extend the success function in the AJAX call
to include the following:

var results = pData.split(':'); // split string into an array
console.log(results[0]);
console.log(results[1]);

Refresh the page and press the button to see the following output in the console window:

ABC:123
ABC
123

Chapter 13 ■ reCeiving information from the Database

119

The delimited result is followed with the individual elements from the generated array. This technique
can still be found in APEX plug-ins and scenarios where a fixed amount of values is expected such as
success/failure messaging with a supplied reason.

For instance, a PL/SQL block could return success indicator as the first value, and the relevant value or
error in the second position:

select value
into l_variable
from my_table;

htp.p('SUCCESS:'||l_variable);

exception when no_data_found then
 htp.prn('ERROR:'||sqlerrm);

The calling JavaScript can then respond based on this information from the database.

Larger Data Using JSON
JSON is a ubiquitous, lightweight data-interchange format used by many JavaScript libraries, such as those
that produce graphical representations of data such as Google Visualizations.

Why Use JSON?
While AJAX was emerging technology, JSON appeared as an alternative to XML and has since become
widely adopted as the protocol of choice for data communication.

JSON is a more prominent feature of the 12c database, and APEX 5.0 also sees the release of dedicated
APIs on the format to help receive and process JSON from external sources. Generating JSON can be done
from Oracle Rest Data Services (ORDS), a dedicated APEX API, or some clever SQL, which can then be
consumed by third-party JavaScript libraries included in your page.

A number of examples for using JSON include the following:

•	 A simple JSON string can replace the need for delimiting data.

•	 PL/SQL dynamic actions with Page Items to Return can be written manually using
JavaScript that processes JSON.

•	 ORDS web services use JSON as a format option.

•	 Libraries such as Google Visualizations, D3.js, and vis.js accept JSON data formatted
to their specification.

JSON is often useful when the data varies in quantity and/or structure. When used by libraries, you
typically do not process objects individually but rather pass them as a data set sent to APIs, information such
as a set of data points for a chart.

Chapter 13 ■ reCeiving information from the Database

120

JSON Syntax
JSON format is similar to XML in its structure of nested attribute-value pairs, though differences do exist.
JSON is a simpler format designed only for data representation, as shown in the following example:

{
 "firstName": "Scott"
 ,"lastName": "Wesley"
 ,"oracleACE": true
 ,"skillset": [
 {
 "tool": "forms",
 "yearStarted": 2000
 },
 {
 "tool": "apex",
 "yearStarted": 2008
 }
],
 "retired": null
}

JSON objects are surrounded by curly brackets, while JSON arrays also include square brackets. In the
example, the object is a person with a number of attributes, including an array of skills.

JSON recognizes basic datatypes of strings, numbers, and booleans, plus the ability to nest further
data as an array. There is no specific date format and their interpretation will be dependent on the library
consuming it. Nulls are represented with the word null.

You may have already encountered JSON when utilizing the .css() jQuery function:

$("p").css({"background-color": "red", "font-size": "150%"});

Here two value pairs are provided that describe the CSS attributes for the selector, surrounded by the
curly brackets.

Handling JSON within the AJAX Call
By default, the apex.server.process call expects output in JSON format unless the dataType parameter
specifies otherwise. The PL/SQL callback needs to generate a string in the JSON format, which is then
returned to JavaScript and perhaps sent to the relevant framework to render as a chart or specific
visualization.

Elements in the JSON output can be referenced in a manner similar to arrays, as seen in Chapter 9 using
the following:

pData.row[0].ENAME

However, the result is often sent as a full data set to the subsequent library. Chapter 14 will demonstrate
an example of this in further detail, building a timeline chart with vis.js.

http://dx.doi.org/10.1007/978-1-4842-0961-5_9
http://dx.doi.org/10.1007/978-1-4842-0961-5_14

Chapter 13 ■ reCeiving information from the Database

121

Generating JSON
A number of methods are available to produce JSON content. As Figure 13-1 shows, SQL Developer 4.1
allows you to generate JSON content on the fly, but this will not be enough to integrate with APEX and jQuery.

Figure 13-1. Generate JSON from ad hoc query in SQL Developer

However, you could use this output to help determine what your code should produce.

Generating JSON Using LISTAGG()
Since information for a JSON data set comes from the database, it’s possible to generate the string directly
from a SQL statement instead of generating it programmatically in PL/SQL with loops and conditions.

The Oracle database provides a number of dedicated functions for XML such as XMLELEMENT,
XMLFOREST, and XMLAGG. All queries needed for JSON is the analytical function LISTAGG(). XML functions can
technically achieve the same task, just a lot slower, as shown in Listing 13-2.

Listing 13-2. DDL and DML for LISTAGG Demonstration Tables

create table emp_skills
 (emp_id number not null
 ,tool varchar2(30) not null
 ,year number not null
);

create table employees
 (id number not null
 ,first_name varchar2(30)
 ,last_name varchar2(30)
 ,is_ace varchar2(1)
 ,retired varchar2(1)
);

insert into employees values (1, 'Scott', 'Wesley', 'Y', null);
insert into emp_skills values (1, 'Forms', 2000);
insert into emp_skills values (1, 'APEX', 2008);

Chapter 13 ■ reCeiving information from the Database

122

Create the tables as defined in Listing 13-2, and then create a new callback CB_LISTAGG using the PL/SQL
from Listing 13-3. This generates the same content as shown in the JSON syntax example. A single JSON
object is produced with a nested set of skills. The LISTAGG function concatenates records from the skills
query in the WITH statement, which is then included in the single main string, as shown in Listing 13-3.

Listing 13-3. PL/SQL to Generate Example JSON

/* CB_LISTAGG */
declare
 l_json varchar2(4000);
begin
with skills as
 (select '{ '
 ||' "tool":"'||s.tool||'"'
 ||',"yearStarted":"'||s.year||'"'
 ||'}' nested_json
 ,s.emp_id
 from emp_skills s)
select '{ '
 ||' "firstName":"'||e.first_name||'"'
 ||',"lastName":"'||e.last_name||'"'
 ||',"OracleACE":"'||nvl2(e.is_ace, 'true', 'false')||'"'
 ||',"skillset":'||(select '['||listagg(s.nested_json, ',')
 within group (order by null)
 ||']' as nested_data
 from skills s
 where s.emp_id = e.id
)
 ||',"retired":"'||nvl2(e.retired, '"Y"', 'null')||'"'
 ||'} ' json
into l_json
from employees e;

htp.p(l_json);
end;

Create a new button to invoke this callback using JavaScript in Listing 13-4, similar to the first example.

Listing 13-4. JavaScript Stub to Invoke Callback That Returns JSON Content

apex.server.process
 ("CB_LISTAGG"
 ,{ }
 ,{ dataType:"json" }
).done(
 function(pData){
 console.log(pData.emps[0]);
});

Chapter 13 ■ reCeiving information from the Database

123

A common consideration with this method is the size of the string produced and how it’s handled
within PL/SQL. Despite improvements string sizes in 12c, LISTAGG can still only handle 4,000 characters,
while variable length strings in PL/SQL scale to 32,767 characters.

For larger data sets, a custom aggregate function can be defined to output a CLOB use LISTAGG.
Carsten Czarski offers this solution at his blog:

http://sql-plsql-de.blogspot.com.au/2014/01/sql-listagg-mit-clob-ausgabe-kein.html

LISTAGG is fine for smaller data sets. It can also be adopted for CLOBs, as queries written this way can be
adapted to handle each row iteratively within a PL/SQL loop.

Oracle RESTful Data Services
While this book focuses on the use of jQuery within APEX, producing JSON is made even simpler with ORDS.

ORDS was formerly known as the Oracle APEX Listener, but now it includes more functionality than just
serving as the middle tier between the database and the browser.

If you’re using ORDS, you can find a simple tutorial on the topic at Dimitri Gielis’ blog:

http://dgielis.blogspot.com.au/2015/01/json-for-apex-developers-part-1.html

There is also a more extensive Oracle by Example (OBE) at http://www.oracle.com/webfolder/
technetwork/tutorials/obe/cloud/dbservice/restfulws/restfulws.html.

The functionality is declarative where you only need to provide a simple SQL statement. JavaScript can
request the JSON data with the following call:

$.getJSON("https://www.yourdomain.com/ords/module/emp_json/", function(json_data) {
 console.log(json_data);
});

Should you find yourself in an environment using ORDS, this solution offers an easy, declarative
method for producing JSON content.

Community APIs
Open source libraries aren’t limited to JavaScript frameworks. An Oracle PL/SQL library is also available
with the codename Alexandria. It can be found at https://code.google.com/p/plsql-utils/.

The suite of libraries includes a package, JSON_UTIL_PKG, which will generate JSON output from the
input of a REF CURSOR.

APEX 5.0 and Oracle 12c APIs
Due to the growing uptake of JSON as a communication format between organizations, the latest
releases of the Oracle database and APEX include their own APIs for reading and interpreting the data.
The JSON_TABLE database function allows JSON data to be queried like a relational view and database
tables can be configured for storing JSON text.

http://sql-plsql-de.blogspot.com.au/2014/01/sql-listagg-mit-clob-ausgabe-kein.html
http://dgielis.blogspot.com.au/2015/01/json-for-apex-developers-part-1.html
http://www.oracle.com/webfolder/technetwork/tutorials/obe/cloud/dbservice/restfulws/restfulws.html
http://www.oracle.com/webfolder/technetwork/tutorials/obe/cloud/dbservice/restfulws/restfulws.html
https://www.yourdomain.com/ords/module/emp_json/
https://code.google.com/p/plsql-utils/

Chapter 13 ■ reCeiving information from the Database

124

The APEX_JSON supplied package provides functions to interrogate properties of a JSON object and
write individual elements. This means you don’t need to worry about the quantity or placement of brackets
as the API handles this. The API could be used to create the elements individually:

begin
 apex_json.open_object;

 apex_json.write('firstName', 'Scott');
 apex_json.write('lastName', 'Wesley');
 apex_json.write('oracleACE', true);

 ...

 apex_json.close_object;
end;

The write procedure is heavily overloaded and will accept ref cursors. Listing 13-5 shows a query
reminiscent of the LISTAGG query producing almost identical JSON, though in this case it encases the result
within an emps object.

Listing 13-5. JavaScript Stub to Invoke Callback That Returns JSON Content

/* CB_APEX_JSON */
DECLARE
 c sys_refcursor;
BEGIN
 open c for
 select first_name, last_name, is_ace
 ,cursor(select tool
 ,year
 from emp_skills s
 where s.emp_id = e.id) skills
 ,retired
 from employees e;

 apex_json.open_object;
 apex_json.write('emps', c);
 apex_json.close_object;
END;

Feel free to incorporate this as the third example on your page. For this to be interpreted the same as
Listing 13-3, the JavaScript can refer to the first emps object using the following:

console.log(pData.emps[0])

Chapter 13 ■ reCeiving information from the Database

125

The following code will transform the JSON object back into a string in the console window:

console.log(JSON.stringify(pData));

Alternatively, the generated string could be logged from within the PL/SQL block and then harvested
for manual validation.

Conversely, the following JavaScript will transform a properly formatted string into a JSON object:

var jsonObj = JSON.parse(jsonStr);

Validating JSON
The structure of the JSON format makes it easy to validate. A number of online validators exist to help locate
any reported issues with the JSON string.

Figure 13-3 shows the example syntax with an errant comma added. The string is parsed and an error
is located and highlighted, much like SQL IDEs help locate errant syntax. While SQL Developer may help
ensure all quotes are paired correctly, it will not do the same for JSON formatting.

Figure 13-2. Uninformative JSON error

JavaScript APIs
A few functions are available on the JavaScript end that help deal with the JSON format. The most useful I
find relates to debugging the output.

It’s easy to miss a comma or bracket when first generating JSON to be supplied to a library. The
feedback is usually not very informative. A typical error is shown in Figure 13-2.

Chapter 13 ■ reCeiving information from the Database

126

Modifying the JSON text on the left-hand box will provide immediate feedback on the right. Note this
parser requires the JSON object is surrounded by square brackets.

Undocumented APIs
In Chapter 9, I demonstrated a procedure that would output JSON from a supplied string. While this
procedure is not formally documented, it was generally regarded as acceptable to use:

apex_util.json_from_sql('select * from emp where empno = :P6_EMPNO');

{"row":[{"EMPNO":7900,"ENAME":"JAMES","JOB":"CLERK","MGR":7698,"HIREDATE":"12\u002F03\
u002F1981","SAL":950,"COMM":"","DEPTNO":30}]}

One reason for the lack of documentation is due to the uncertainty of how JSON would be managed
in future releases, so these functions were put on hold. Now supplied package apex_json should be able to
replace these calls. Another procedure accepts a delimited list of items, and it will build the JSON string from
the session state values of those items:

apex_util.json_from_items('P6_ENAME');

{"item":[{"id":"P6_ENAME","value":"KING"}]}

Figure 13-3. Online JSON parser indicating syntax error

http://dx.doi.org/10.1007/978-1-4842-0961-5_9

Chapter 13 ■ reCeiving information from the Database

127

Undocumented JavaScript function json_SetItems exists to transform the item id/value pairs to
the relevant browser items. This provides a simple method of synchronizing values in session state to the
associated items in the browser, as opposed to assigning the attributes manually.

Summary
You don’t need dedicated APIs to generate JSON content, but the number of JSON-related APIs has grown
significantly in the latest Oracle software releases.

The method of generating JSON content will depend on the given situation, and this chapter has
outlined a variety of options available to the APEX developer.

The next step in understanding how JSON is used in APEX as a data communication catalyst is to
generate a soup-to-nuts example using JSON generated from the database to feed a charting library.

Part IV

Reporting Options

131

Chapter 14

Adding Visualization with JSON

There is a saying, “A picture paints a thousand words.” Built-in charting tools in the APEX environment help
paint those pictures. Sometimes the built-in libraries don’t have the features required to paint particular
pictures, so we need to rely on third-party libraries.

The example in this chapter will map the APEX support schedule across versions onto a visual timeline
using vis.js. Instructions will guide you through the process of including the library, communicating data
from the database to the library using JSON, and then rendering the visualization.

Why Visualizations?
This decade has seen prolific use of infographics to present information to an audience. Figure 14-1 shows a
chart generated from Google Trends representing the term’s use since 2007.

Figure 14-1. Use of term infographic on the Internet according to Google

Isn’t the picture it tells amazing? Online graphics have been very successful using this visual power
to communicate information that deserves a visual point of reference. Demonstrating a sense of scale is a
common example, one that webcomic XKCD does particularly well demonstrating the depths of the world’s
lakes and oceans.

www.xkcd.com/1040/

http://www.xkcd.com/1040/

Chapter 14 ■ adding Visualization with Json

132

Infographics need not be static images. Improvements in browser technologies allow infographics
to be interactive, such as one demonstrating the scale of the universe by Cary and Michael Huang at
htwins.net. I’ve noticed progressive television news broadcasts use infographics while telling key
stories. This method works well because our brains do better at comprehending information that is
sensory diverse and more engaging.

Given the right tools, we have a database of information that could be represented visually to
communicate information more effectively to the user.

Visualization Libraries
There are a number of third-party JavaScript libraries offering the ability to produce many types of
data visualization. Some readers may have seen Roel Hartman include Google Visualizations within
APEX applications, namely the organization chart. Figure 14-2 shows another example, the Google
Visualization Timeline.

Figure 14-2. Google Visualization Timeline

For timeline graphs, I’ve found the vis.js library more flexible and responsive than the Google
Visualization shown in the graphic. The vis output can be zoomed in and out, and the user can drag the chart
to move the timeframe. More advanced implementations can update the data based on user interaction.

The vis.js library also has a number of different styles available to choose from, depending on
specifically how you need to visualize date data. The example used in this chapter uses the Subgroups
format, demonstrated at the following URL:

http://visjs.org/examples/timeline/30_subgroups.html

Each format has a basic example that accompanies further documentation, which makes determining
how to format the data even easier.

Preparing Data
To utilize a timline report, you need date data. Listing 14-1 defines a table that defines the general availability
date for each APEX version and its associated end of support date, as provided by Oracle.

Listing 14-1. Define Supporting Table

CREATE TABLE apex_timeline
 (version VARCHAR2(10)
 ,ga_date DATE
 ,support_ends DATE
)
/

http://visjs.org/examples/timeline/30_subgroups.html

Chapter 14 ■ adding Visualization with Json

133

-- As sourced from http://www.oracle.com/us/support/library/lifetime-support-technology-069183.pdf
insert into apex_timeline (version,ga_date,support_ends)
 values ('1.6',date '2005-07-01',date '2008-12-01');
insert into apex_timeline (version,ga_date,support_ends)
 values ('2.2',date '2006-08-01',date '2009-08-01');
insert into apex_timeline (version,ga_date,support_ends)
 values ('3.1',date '2008-02-01',date '2011-02-01');
insert into apex_timeline (version,ga_date,support_ends)
 values ('3.2',date '2009-02-01',date '2012-02-01');
insert into apex_timeline (version,ga_date,support_ends)
 values ('4.1',date '2011-08-01',date '2016-08-01');
insert into apex_timeline (version,ga_date,support_ends)
 values ('4.2',date '2012-10-01',date '2017-10-01');
insert into apex_timeline (version,ga_date,support_ends)
 values ('5.0',date '2015-04-01',date '2020-04-01');

This format represents data that will be easily consumed by a timeline chart. It is possible to map less
normalized data to a timeline, for instance where each record has a number of date columns representing
the start/end dates for each timeline entry. The SQL UNPIVOT operation can be used in these cases to
transform the data.

Figure 14-3 shows how this information will look when mapped using the vis.js library.

Figure 14-3. Timeline as rendered by vis.js

The x-axis represent years over time, and the y-axis categorises major dot point releases. Each event
within the chart shows the support boundaries for specific versions. Colours are used to represent status.

http://www.oracle.com/us/support/library/lifetime-support-technology-069183.pdf

Chapter 14 ■ adding Visualization with Json

134

Preparing a Page
The page will need a region to house the timeline chart, plus some supporting components to complete
the solution.

Create a new page with a static content region. Update the region to include a Static ID of p14_timeline.
This should produce a basic DIV definition on the page, which the library will transform into a chart.
Alternatively, you can place the following code within your page where you see fit:

<div id="p14_timeline"></div>

Create a page item P14_ID in the region, which will be used to store which timeline event is clicked, allowing
for future extensions beyond the scope of this chapter. A dynamic action can be added on change of the item
to respond to a click on the data point, perhaps to open a dialog displaying details of the timeline event.

Page properties will be detailed once other components have been added.

Create Collection
To prepare data for the timeline, a number of passes through the relevant tables is often required.
Depending on your data source and level of interaction within the page, you may find it beneficial to page
performance to build a collection based on the data on page load. There is a trade-off in doing so, but it’s not
uncommon to do so when the same data set is used for multiple charts within a page, such as a dashboard.

The apex_timeline table of six rows won’t have any issue, but the pattern is worth demonstrating. It will
benefit larger examples, opening the opportunity for quicker refreshing of the timeline based on any criteria
managed within the page. Larger examples could mean aggregating a large data set into a smaller set of
records, or sourcing data from different tables and columns.

To create a collection, define a PL/SQL process to run on page load. Include the code in Listing 14-2 to
store data transformed in preparation for the timeline.

Listing 14-2. Create Collection of Data from Base Table

declare
 l_collection varchar2(20) :='TIMELINE';
 l_sql varchar2(32767);
begin

 apex_collection.create_or_truncate_collection(l_collection);

 for r_rec in (
 -- define a unique ID for each item produced
 select
 version
 ,ga_date -- based on official data for specific releases
 ,support_ends -- http://www.oracle.com/us/support/library/lifetime-support-

technology-069183.pdf
 -- slightly messy way of defining major groups given the basic data
 ,substr(version, 1, 1) group_id
 -- class for group background
 ,case substr(version,1,1)
 when '2' then 'teal'
 when '3' then 'green'
 when '4' then 'blue'
 when '5' then 'apex5'

www.allitebooks.com

http://www.oracle.com/us/support/library/lifetime-support-technology-069183.pdf
http://www.oracle.com/us/support/library/lifetime-support-technology-069183.pdf
http://www.allitebooks.org

Chapter 14 ■ adding Visualization with Json

135

 else 'htmldb'
 end group_background
 -- class is used to dress the timeline items
 ,case
 when support_ends < sysdate then 'desupported'
 when version like '5%' then 'ga_future'
 else 'ga_current'
 end item_class
 from apex_timeline t
 order by ga_Date
) loop

 apex_collection.add_member
 (p_collection_name => l_collection
 ,p_c001 => r_rec.version
 ,p_c002 => r_rec.group_id
 ,p_c003 => r_rec.group_background
 ,p_c004 => r_rec.item_class
 ,p_d001 => r_rec.ga_date
 ,p_d002 => r_rec.support_ends
);
 -- consider using create_collection_from_query_b

 end loop;

end populate_collection;

This listing will recreate the collection on each load of the page. Frequency of re-creation can be
adjusted for larger data sets.

The listing also adds members to the collection one at a time so column datatypes can be referenced
explicitly, hence keeping the code concise and reducing length for the book. For performance, it’s better
to use the apex_collection.create_collection_from_query_b API that builds the collection using bulk
operations, which can improve performance of larger data sets.

Comments on the columns in the query help describe their purpose, which will become clearer when
utilised in PL/SQL callbacks. When using collections, it can be beneficial to define a view over the collection
to help with field mapping.

Create AJAX Callbacks
AJAX callbacks allow communication to and from the database without submitting the page. Google Suggest
was an early example of AJAX in action. This ability enables web applications to become more user-friendly
by increasing interaction without needing cumbersome page submission.

The vis.js library will render the timeline via a JavaScript call. Prior to this two PL/SQL, callbacks will
be invoked, which will generate the JSON data used by the library.

 ■ Note if your environment uses ords, the Json could be generated via a web service.

You can use the documentation at visjs.org to see further details on how attributes in the JSON data
are utilized in the timeline as well as what other attributes are available.

Chapter 14 ■ adding Visualization with Json

136

getGroups
The timeline format I’ve chosen consists of groups of data that appear on the y-axis, along with dated events
within the timeline.

The first callback defines a JSON dataset that consists of groups representing the major point releases,
such as 3.x and 4.x. Use the code from listing 14-3 to create AJAX callback called getGroups.

Listing 14-3. PL/SQL Callback Returning Groups

/* getGroups */
declare
 c sys_refcursor;
begin
 open c for
 select group_id as "id"
 ,group_id||'.x' as "content"
 from (
 select distinct c002 group_id
 from apex_collections
 where collection_name = 'TIMELINE'
);

 apex_json.write(c);
end getGroups;

This procedure could use the LISTAGG technique for generating JSON data directly into a string, but it
was even simpler to send the SQL to the API.

getItems
Each box to display in the timeline is defined as an item that belongs to one of the defined groups. The
definition of subgroups allow the items to be in their own row within each group, as opposed to potentially
overlapping each other on the same row.

Create a second AJAX callback called getItems using Listing 14-4.

Listing 14-4. PL/SQL Callback to Return Items

/* getItems */
declare
 cursor c_sql is
select '{"id":"'||apex_version||'","group":"'||group_id||'"'
 ||',"content":"'||apex_version||'"'
 ||',"title":"'||apex_version||to_char(date1,' Mon-YY')||to_char(date2,' - Mon-YY')||'"'
 ||',"className":"'||item_class||'"'
 ||',"subgroup":"'||apex_version||'"'
 ||',"subgroupOrder":"'||rn||'"'
 ||',"release":'||'"'||apex_version||'"'
 ||',"start":'||'"'||to_char(date1,'""yyyy"-"mm"-"dd""')||'"'
 ||',"end":"'||to_char(date2,'""yyyy"-"mm"-"dd""')||'"}'
 AS json

Chapter 14 ■ adding Visualization with Json

137

from (
 select n001 id
 ,c001 apex_version
 ,c002 group_id
 ,d001 date1 -- GA date
 ,d002 date2 -- support ends
 ,c004 item_class
 -- order the items chronologically
 ,row_number() over (order by d001 desc) rn
 from apex_collections
 where collection_name = 'TIMELINE'
)
where date1 is not null;

 type t_data is table of c_sql%rowtype index by pls_integer;
 l_data t_data;
 l_background varchar2(2000);

begin
 -- Could not combine results with apex_json
 -- so building the string piecemeal
 sys.htp.prn('['); -- open the json string

 -- start by producing individual items to be shown in timeline
 open c_sql;
 loop
 -- process data in chunks, optimal limit size varies
 fetch c_sql bulk collect into l_data limit 10;

 for i in 1..l_data.count loop
 -- each json object separated by comma.
 sys.htp.prn(l_data(i).json||',');
 end loop;

 exit when c_sql%notfound;
 end loop c_sql;
 close c_sql;

 -- No need to trim final comma before output since
 -- a second set of json objects are being added.
 -- These represent the coloured backgrounds for the various eras of APEX

 -- The data set is small so listagg() ok
 select listagg('{"id":"background_'||apex_version||'"' -- IDs can be alphanumeric
 ||',"type":"background"'
 ||',"className":"'||group_background||'"'
 ||',"start":'||'"'||to_char(date1,'""yyyy"-"mm"-"dd""')||'"'
 ||',"end":"'||to_char(date2,'""yyyy"-"mm"-"dd""')||'"}'
 ,',') within group (order by date1) json
 into l_background
 from (

Chapter 14 ■ adding Visualization with Json

138

 select c002 group_id
 ,c001 apex_version
 ,d001 date1
 -- use the end date or the next start date, whatever started first
 ,least(d002, nvl(lead(d001) over (order by c002), d002)) date2
 ,c003 group_background
 from apex_collections
 where collection_name = 'TIMELINE'
);

 -- since JSON string in one variable it can be trimmed during output
 sys.htp.prn(rtrim(l_background,',')||']'); -- include closing square bracket

end getItems;

This procedure actually produces two sets of JSON objects. The first are the items in the timeline and
they are generated iteratively within a PL/SQL loop. Bulk processing has been added to demonstrate how
larger data sets could be processed more efficiently.

The second data set represents the background periods of time with a class to define its color. It also
uses LISTAGG to aggregate the data, and makes trimming the final comma simpler. APEX_JSON could not
be used in this case as the two queries could not be combined, nor would successive calls to the write()
procedure form the JSON required by the timeline library.

Page Properties
To complete the process you need to include the vis library in the page then invoke JavaScript on page load.
Also required are the classes utilized in the data to colour chart components.

Including vis Library
Edit page properties and add thefollowing URLs in the respective JavaScript and CSS File URL attributes:

//cdnjs.cloudflare.com/ajax/libs/vis/4.8.2/vis#MIN#.js

and

//cdnjs.cloudflare.com/ajax/libs/vis/4.8.2/vis#MIN#.css

The files are included via a shared Code Delivery Network (CDN) and the relative URL location is used
to leave the browser to decide which HTTP protocol to use. The inclusion of #MIN# means when running the
application in debug mode, the non-minified version will be used.

Dressing the Chart
Add Listing 14-5 as the Inline CSS for the page.

Chapter 14 ■ adding Visualization with Json

139

Listing 14-5. CSS to Set Background Colors

/* timeline items */
#p14_timeline div.vis-group div.vis-item.desupported {background-color:#F49AA1;}
#p14_timeline div.vis-group div.vis-item.ga_current {background-color:#9AF49F;}
#p14_timeline div.vis-group div.vis-item.ga_future {background-color:#F1F49A;}
/* background eras */
#p14_timeline div.vis-group div.vis-item.htmldb {background-color:lavenderblush;}
#p14_timeline div.vis-group div.vis-item.teal {background-color:#B6FACC;}
#p14_timeline div.vis-group div.vis-item.green {background-color:#D4F7CE;}
#p14_timeline div.vis-group div.vis-item.blue {background-color:#b9d6fc;}
/* JoelK says white represents APEX5, but that doesn't work well in this demo ;p */
#p14_timeline div.vis-group div.vis-item.apex5 {background-color:#D4E4F9;}

These classes will add background color to the items and background objects specified in the JSON
className attribute.

Render the Chart
Copy Listing 14-6 into the Function and Global Variable Declaration page attribute. There is a lot going on
in this block of code, but ultimately both PL/SQL callbacks are invoked, and the JSON responses are made
available to the charting engine to draw the chart.

The points of complexity with this logic mostly lie with the rendering of the chart being dependent
on the return of two AJAX calls. It’s easy to respond to only one AJAX event by using the .done() deferred
function, but in this case we use .then() to build a dependency chain.

This could be mitigated by generating the JSON as part of the page render, perhaps as a computed page
item. However the method used below provides an opportunity to demonstrate more jQuery features.

Further concepts will be summarised below the code, but I’ve included plenty of inline comments since
this provides the best context. I’ve also included some extra error handling since there are a few moving
parts in this chapter that could go wrong. More on debugging in a later section.

Listing 14-6. JavaScript Executed on Page Load

/* Define namespace to group related functions */
var p14_timeline = {

init: function() {
 // Display a spinner to show loading in progress
 lSpinner$ = apex.util.showSpinner($("#p14_timeline"));

 this.getGroups(); // 'this' namespace, the function within it
 // then getItems
 // then drawChart
}

// Get group information from the database
,getGroups: function() {
 apex.debug('fetch group list from DB');
 apex.server.process("getGroups") // name of AJAX callback in APEX page
 .done(// what happens on success
 function(pGroups) { // data returned from PL/SQL
 apex.debug('Number of groups: '+pGroups.length);

Chapter 14 ■ adding Visualization with Json

140

 // output shown in Figure 14-4
 apex.debug(pGroups);
 apex.debug(JSON.stringify(pGroups));

 // convert JSON object returned from PL/SQL into vis data set
 groupSet = new vis.DataSet(pGroups);
 }
).then(p14_timeline.getItems) // what happens next in the chain.
 .fail(// what happens if there is some form of failure?
 function(jqXHR, textStatus, errorThrown) { // parameters sent from framework
 p14_timeline.logFailure('getGroups', jqXHR, errorThrown);
 });
}

// Get item information from the database
,getItems: function() {
 apex.debug('fetch item list from db');
 apex.server.process("getItems"
).then(// callbacks: first parameter success, second parameter failure
 function(pItems) {
 apex.debug('Number of items: '+pItems.length);
 apex.debug(pItems);
 // convert JSON to vis object
 itemSet = new vis.DataSet(pItems);

 // now render the chart since both data sets returned
 p14_timeline.drawChart();
 }
 , // what happens if there is some form of failure?
 function(jqXHR, textStatus, errorThrown) {
 p14_timeline.logFailure('getItems', jqXHR, textStatus, errorThrown);
 }); // end then
}

// only attempt to draw chart once both methods to fetch data are completed
,drawChart: function() {

 // if any errors encountered, don't bother attempting to render chart
 if (p14_timeline.errorCnt != 0) {
 console.log('error:'+p14_timeline.errorCnt);
 }
 else {
 // good to go, let's render the chart
 apex.debug('create visualisation');

 // Further details avialable here
 // http://visjs.org/docs/timeline/#Configuration_Options
 var options = {
 editable: false // for another day
 ,min : new Date(2004, 1, 1) // bound the timeline display
 ,max : new Date(2017, 1, 1)

http://visjs.org/docs/timeline/#Configuration_Options

Chapter 14 ■ adding Visualization with Json

141

 ,zoomMin: 1000 * 60 * 60 * 24 * 31 * 12 *2 // about 2 years in milliseconds, depends
on chart pixel size

 ,zoomMax: 1000 * 60 * 60 * 24 * 31 * 12 *10 // about 10 years in milliseconds
 ,zoomable : true
 //,moveable : false // helps scrolling issues in large charts
 ,maxHeight : "1000px"
 ,stack : false
 ,dataAttributes: ['release'] // extra data attribute can be handy
 };

 apex.debug('do actual render, with data gathered from db');
 // identifies #p14_timeline div the native way, which returns the single entity, not an

array like $() does
 var timeline = new vis.Timeline(document.getElementById('p14_timeline'));
 timeline.setOptions(options);
 timeline.setGroups(groupSet);
 timeline.setItems(itemSet);

 // Spinner can be removed now
 lSpinner$.remove();

 // set item when user clicks on timeline entry
 timeline.on('select', function (params) {
 $s('P14_ID', params.items[0]);
 });

 } // end if (errors)

} // end draw chart

// count any errors encountered, like a persistent variable in a package
,errorCnt : 0

// some sort of error encountered
,logFailure: function(pProc, jqXHR, errorThrown) {
 // information helpful to debugging issue:
 console.log(pProc+' failure');
 console.log(jqXHR.responseText);
 console.log(errorThrown);

 // increment the count the old fashioned way
 this.errorCnt++;

 // the chart isn't going to render now, so update the region
 $('#p14_timeline div.t-Region-body').text('The chart failed to render.');
 // Remove spinner if error raised
 lSpinner$.remove();
}

} // end namespace

Chapter 14 ■ adding Visualization with Json

142

Set the Execute When Page Loads property to call the defined function:

// Initiate the processes to draw chart
p14_timeline.init();

Note how the init() function is invoked. It looks just like the dot notation used when invoking
procedures in PL/SQL packages. When will the parallels ever cease? In this case the p14_timeline JavaScript
namespace prefixes the function.

Namespaces are a way to organise your JavaScript code into a logical hierarchy, very similar to how
PL/SQL packages organise procedures and functions. Unfortunately it’s a diverse topic with plenty of
implementation variety, too much to cover in this book integrating jQuery with APEX.

However, in this case using a namespace was appropriate to group these methods served a worthy
demonstration, particularly since the vis.js library utilises a timespace namespace. In Listing 15-6, the
namespace is defined in the first line of the code, and functions are defined slightly differently within the code.

The init() function invoked on page load initiates the first process in the chain that ends with
vis.Timeline() turning the empty #p14_timeline div into a chart populated with JSON data. Before doing
so it renders a spinner to indicate loading status to the user.

The first process initiated gets the list of groups that form the x-axis. Upon completion of the PL/SQL,
the .done() function calls vis.DataSet() to convert the returned JSON dataset into the an object type
expected by the vis.js library.

The getGroups() function also includes two other deferred event definitions, also referred to as
Promises. Once the getGroups function completes, then() promises to execute getItems(). If something
goes wrong, fail() will execute in lieu of done().

The getItems() function repeats the decision making process, though the JavaScript is defined
differently, again demonstrating the variety of ways the same logic can be syntactically applied. One formal
definition of then() is simply

deferred.then(doneCallbacks, failCallbacks)

You could almost liken it to the difference between named parameters and positional notation in
PL/SQL, the only difference is readability. In both cases the fail callback echoes some information to the
browser console and increments a counter.

Before attempting to render the chart the final drawChart() method first checks the counter to
determine if any errors were encountered while fetching the JSON data. If all clear, some chart options are
set to configure the report, of which further details are available in the vis.js documentation.

Finally the empty div is converted to a timeline object, with the options and chart data added in calls
to the timeline namespace supplied by the vis.js library. The final act adds an event listener to populate the
P14_ID with the ID of the selected timeline entry.

Now run the page to see the timeline in action. Hover your mouse and scroll in/out to change the zoom.
Click and drag left and right to slide the window of time displayed.

Handling Bugs
Rarely does code like this come together the first time without some sort of syntax error, particularly when
attempting to format JSON data as a string. It can be easy to miss a comma or bracket that won’t be picked
up by the PL/SQL compiler, or maybe the PL/SQL raised an exception.

When all is going well, the output from the instrumentation of pGroups would like Figure 14-4,
outputting the JSON in native format plus the stringified version.

Chapter 14 ■ adding Visualization with Json

143

However, different symptoms appear when something goes wrong. The code already listens for these
errors and informs the user, now the developer needs the tools to resolve the issue.

PL/SQL Errors
To illustrate the outcome, raise a contrived exception to the getGroups AJAX Callback by adding the
following just after the begin.

raise_application_error(-20001,'This could be any exception'); -- add error

Save and refresh the timeline page to see the how the error manifests in your particular browser.
Exceptions raised in PL/SQL get added to the function output, thereby rendering the AJAX call a failure

as it does not form a valid JSON string. The fail() method executes, logging the output to the browser. The
code stops executing before attempting to getItems.

getGroups failure
sqlerrm:ORA-20001: This could be any exception
SyntaxError: Unexpected token s
 at Object.parse (native)
 at n.parseJSON (https://apex.oracle.com/i/libraries/jquery/2.1.3/jquery-2.1.3.min.js?

v=5.0.2.00.07:4:5309)
 at uc (https://apex.oracle.com/i/libraries/jquery/2.1.3/jquery-2.1.3.min.js?

v=5.0.2.00.07:4:7333)
 at x (https://apex.oracle.com/i/libraries/jquery/2.1.3/jquery-2.1.3.min.js?

v=5.0.2.00.07:4:10747)
 at XMLHttpRequest.n.ajaxTransport.k.cors.a.crossDomain.send.b (https://apex.oracle.com/

i/libraries/jquery/2.1.3/jquery-2.1.3.min.js?v=5.0.2.00.07:4:14577)

I’ve included the most pertinent information in the output. The jqXHR.responseText attribute
constitutes what would normally become the output. The error message in this case only includes the error
text since it was the first thing to happen, but it may include data already streamed.

The syntax error is raised by JavaScript while attempting to parse the output, complaining about the first
character in the return string, which should be a bracket.

JSON format errors
Remove the error you added and open the getItems AJAX Callback, then add the following as the
penultimate line, just before the end getItems;.

sys.htp.prn(']'); -- add error

Figure 14-4. Output of correctly formatted JSON

https://apex.oracle.com/i/libraries/jquery/2.1.3/jquery-2.1.3.min.js?v=5.0.2.00.07:4:5309
https://apex.oracle.com/i/libraries/jquery/2.1.3/jquery-2.1.3.min.js?v=5.0.2.00.07:4:5309
https://apex.oracle.com/i/libraries/jquery/2.1.3/jquery-2.1.3.min.js?v=5.0.2.00.07:4:7333
https://apex.oracle.com/i/libraries/jquery/2.1.3/jquery-2.1.3.min.js?v=5.0.2.00.07:4:7333
https://apex.oracle.com/i/libraries/jquery/2.1.3/jquery-2.1.3.min.js?v=5.0.2.00.07:4:10747
https://apex.oracle.com/i/libraries/jquery/2.1.3/jquery-2.1.3.min.js?v=5.0.2.00.07:4:10747
https://apex.oracle.com/i/libraries/jquery/2.1.3/jquery-2.1.3.min.js?v=5.0.2.00.07:4:14577
https://apex.oracle.com/i/libraries/jquery/2.1.3/jquery-2.1.3.min.js?v=5.0.2.00.07:4:14577

Chapter 14 ■ adding Visualization with Json

144

This will add an extra bracket to the JSON output, rendering it invalid. Figure 14-5 shows the output
received in the browser console from this JSON error.

Figure 14-6. JSON validator highlighting location of syntax error

Figure 14-5. Result of JSON error in AJAX call

The JSON string outputted as the response can be pasted into a JSON parser, many of which are available
for free online such as this URL that was mentioned in the previous chapter:

http://json.parser.online.fr

In this case the parser reports the error:

SyntaxError: Unexpected token]

The parser will also help identify where syntax errors are located in the JSON string, as shown
in Figure 14-6.

http://json.parser.online.fr/

Chapter 14 ■ adding Visualization with Json

145

The ability to debug and diagnose in this manner is a great supplement to the alternatives. You can
run the relevant queries in SQL Developer to help verify output but that doesn’t take into account brackets
and commas managed by any surrounding PL/SQL.

You can run the callback PL/SQL in SQL Workshop to see the generated JSON, but you will need to
amend the code to select from the base table instead of the collection. Otherwise, there will be no results as
the collection is available only to your APEX runtime session.

Other errors you may encounter include the following:

Invalid start "NaN"

This is from the vis library itself, complaining that records with no start date have been included in the
data set.

Summary
Oracle APEX offers a number of built-in visualisation options with AnyChart libraries, and from APEX 5.1
we are likely to see Oracle JavaScript Extension Toolkit (JET) incorporated as the primary charting engine.
If none of these suit your requirement, the Internet is full of visualization libraries, many of which can be
included in your APEX applications with only a few moving parts.

Data is extracted from the database and sent to the chart-rendering framework, but not transmitted
online. APEX provides features to furnish data in a variety of ways. This chapter demonstrated how you
could piece these components together for your own projects. The same techniques can be adopted for
other charting libraries.

147

Chapter 15

Applying jQuery Post Render

APEX is a rapid development tool that facilitates quick production of many reports. This part of the book
continues to explore options for embellishing these reports, thanks to useful jQuery patterns.

Interactive reports are even more attractive in APEX 5.0, but they aren’t the panacea for all problems.
Classic reports offer simple yet flexible options for delivering data. This chapter explores three common
examples that extend a simple classic report to give your users an impression of a more polished application.

The first example will customize the “no data found” message, the second will highlight cells containing
certain data, and the third will add some sparkle to the report totals.

Check Static Region ID
As with most jQuery examples, it’s beneficial to isolate the region in question by using a static region ID
instead of the surrogate region ID from the APEX metadata.

If you’re working through the examples in this book, you’ve probably already assigned a static ID to
the employee list region. Figure 15-1 shows the attribute in the region properties. You may need to show all
attributes to see it.

Figure 15-1. Static ID on the Employee List region

This enables you to be more specific with jQuery selectors, allowing the browser to only search for
elements within a certain region of the page, thus helping performance.

Chapter 15 ■ applying jQuery post render

148

Customize “No Data Found” Message
The default message shown on reports with no rows returned is a drab “no data found.” Figure 15-2 shows
the output from the page from Chapter 5 where dynamic actions drove search criteria. Not only is it possible
to add gloss to this display, the message can be customized at runtime to match entered criteria giving the
user a more informed experience.

Figure 15-2. Standard “no data found” message

CSS will be used to visually enhance the message, and jQuery will be applied any time the report is
rendered to change the text.

Include CSS Style
Place listing 15-1 in the Inline CSS page attribute, which will render a shaded box around the text and make
the text more prominent.

Listing 15-1. CSS to Dress the “No Data Found” Message

/* Add jazz to the no data found message */
span.nodatafound {
 font-size:120%;
 font-weight: bold;
 border: 1px solid #FC0;
 background: #FFC;
 display: block;
 margin: 2px auto 14px;
 padding: 15px;
 text-align: left;
}

Depending on the theme being used and where your CSS is located, you may need to include the
!important tag on certain attributes. Figure 15-3 shows how Theme 25 has overwritten attributes such as
font styling.

http://dx.doi.org/10.1007/978-1-4842-0961-5_5

Chapter 15 ■ applying jQuery post render

149

Without the important clause, the font styles and padding have been superseded by the more specific
attributes from 4.2.css.

Extend Dynamic Action
Add a JavaScript action to the dynamic action that refreshes the report.

Back in your application, modify the refresh report dynamic action on the search item and add a
JavaScript event after the refresh event that executes the following:

$('span.nodatafound').html('No rows found using criteria "'+$v('P4_REPORT_SEARCH')+'"');

Note double quotes are used within the outputted text, while single quotes delimit the literal string in
the jQuery command.

Figure 15-3. CSS precedence in action

Chapter 15 ■ applying jQuery post render

150

Customizing Report Totals
When using the declarative option to add report totals to classic reports, the output prior to APEX 5.0 looked
a little unprofessional, as shown in Figure 15-5.

However, there is a problem with adding JavaScript to this dynamic action. Even though the action
sequence might show the Refresh action occurring before the JavaScript, it’s probable the refresh will take
longer to complete and will overwrite the custom message when the partial page refresh of the report
is completed.

The JavaScript needs to be in a dedicated dynamic action using the After Refresh framework event, or
be included using your own jQuery.

Using jQuery after Refresh
Remove the JavaScript action you just added and replace functionality by including Listing 15-2 in the
Execute When Page Loads page attribute. If records are returned, the jQuery selector will return nothing,
hence no span is present to update.

Listing 15-2. Update “No Data Found” Message after Partial Page Refresh

// update no data found message after PPR of region
$('#p4_emps').on('apexafterrefresh', function() {
 $(this).find('span.nodatafound')
 .html('No rows found using criteria "'+$v('P4_REPORT_SEARCH')+'"');
});

The apexafterrefresh is an event defined by the APEX libraries that will be triggered after the refresh
of the given region ID. When triggered, it executes the inline function defined as the second parameter.
The final output when searching for a name that doesn’t exist will look something like Figure 15-4.

Figure 15-4. No data found with contextual message

Chapter 15 ■ applying jQuery post render

151

Figure 15-5. Report total in APEX 4.2

This output was improved in APEX 5.0 by capitalizing the “report total:” text; however, perhaps a
requirement is to italicize the totals rows and set the font red.

Add Report Totals
To include totals for Sal and Comm columns, set the Compute Sum attribute to “yes” for both columns.

 ■ Tip this declarative method should suffice for most reports, though rollup can be added to the sQl
statement group by clause as an alternative. doing so will change the required jQuery selectors.

Identifying Page Components
Identifying the final row can be done using a number of techniques. The three demonstrated below get
easier each time, but they demonstrate a few options that might be useful in the future.

Using :contains
The first option is to use the :contains selector to locate one of the cells using the text in the first column.
The selector is case sensitive, so care needs to be taken regarding APEX version. In APEX 5.0, the contains
selector should be ’initcap’.

$('#report_p4_emps table tbody tr td:contains("Report Total")')

The most important element of this selector in regard to browser performance is the starting ID
restricting DOM set to just the one report region named report_p4_emps. Then the selector examines each
table cell in that region looking for the provided text.

Since the selector identifies just the specific cell, chained jQuery functions need to be added to select all
cells from the totals row.

$('#report_p4_emps table tbody tr td:contains("Report Total")')
 .closest('tr').children().css({'font-style':'italic', 'color':'red'})

The first function locates the closest row for the given selector. Now that a component of the total row is
identified, we can find all its siblings.

The second function identifies all elements one level down in the DOM, hence all the sibling table cells.
The final function applies the CSS necessary for each of these cells and sets the font italic and red,

accepting those parameters as a JSON string.

Chapter 15 ■ applying jQuery post render

152

Using :last
The second option is to use the :last jQuery selector to identify the final row. The tags in the middle of the
selector become more important in this case since the following will actually locate the pagination:

$('#report_p4_emps table tbody tr:last td')

The Universal Theme 42 in APEX 5.0 would use the following selector:

$('#report_p4_emps table.t-Report-report tbody tr:last td')
 .css({'font-style':'italic', 'color':'red'})

In Theme 25, it is possible to use the class .uReport instead. The CSS function would still add the style
as per the previous example.

Using CSS
Just because two jQuery solutions are effective doesn’t mean you need to use jQuery. There is a purely CSS
substitute that will make the browser more efficient in rendering the text as desired. Listing 15-3 shows
Inline CSS for the page that will identify the last row using the CSS3 selector :last_child, which is
equivalent to the :last jQuery selector.

Listing 15-3. CSS Solution Trumps jQuery

/* Change font settings for totals row */
#report_p4_emps table.t-Report-report tbody tr:last-child td {
 font-weight : italic;
 color : red;
}

Highlighting Cell Backgrounds
Every good Oracle developer knows that generally the more processing that can fit into the SQL, the better.
APEX provides conduits for extra styling by allowing HTML expressions within report column definition,
allowing conditional formatting based on query content. jQuery offers extra flexibility and conditional
rendering options after the page is loaded or report refreshed.

This example will highlight all salaries of at least 3000.

Identifying Report Cells
Identifying cells to highlight is very similar to the report totals example. First, the relevant region is identified
and then cells within that region. APEX 5.0 offers particularly granular classes within the templates, so we
can specify just the data cells with the .t-Report-cell class.

Certain columns can be identified by locating cells with attributes of a certain value. In this case, it’s the
column alias defined in the SQL. The following jQuery returns all cells in that column, including the totals row:

$('#p4_emps td.t-Report-cell[headers="SAL"]')

Utilise the :not operator to exclude the last cell in the set, which is the totals row:

$('#p4_emps td.t-Report-cell[headers="SAL"]:not(:last)')

Chapter 15 ■ applying jQuery post render

153

Identifying Cells with Certain Values
The value within each DOM element returned can be tested as an integer to determine if the containing cell
needs to be highlighted.

Process each array element returned with the jQuery selector using the .each function and convert
the text of the cell to an integer before comparing to a numerical amount. $(this) is used to refer to each
element iterated, and it can also be referenced when applying the CSS function.

The following code locates the relevant cell elements in the report and then converts each text content
to an integer and locates any cells with value greater than or equal to 3000. It then applies a light green
background to any that match these criteria:

/* Highlight all salary values, excluding totals row */
$('#p2_emps td.t-Report-cell[headers="SAL"]:not(:last)').each(function(){
 if (parseInt($(this).text()) >= 3000)
 $(this).css({"background-color":"lightgreen"});
});

This code could be added to an after refresh dynamic action, with Fire on Page Load set to “yes.”
However, since this is a book about using jQuery in APEX, I’ll also demonstrate how to do this manually.

Applying Highlight after Refresh
Since the region can be refreshed without submitting the page, the jQuery to highlight cells needs to be
executed after each refresh of the region and apply on page load.

Listing 15-4 incorporates the “no data found” example above with the cell highlighting into one
function. This code is defined in the Function and Global Variable Declaration attribute.

Listing 15-4. Code Executed after Refresh of Region

function p2_emps_afterrefresh() {

 // update no data found message after PPR of region
 $('#p2_emps span.nodatafound').html('No rows found using criteria "'+$v('P2_REPORT_SEARCH')+'"');

 // Highlight all salary values, excluding totals row
 $('#p2_emps td.t-Report-cell[headers="SAL"]:not(:last)').each(function(){
 if (parseInt($(this).text()) >= 3000)
 $(this).css({"background-color":"lightgreen"});
 });
}

The function becomes the handler callback function as per Listing 15-5 to be used in Execute when
Page Loads. Not only does it bind the function to after refresh of the region, but it also primes the set of
results returned during page render.

Listing 15-5. Code Executed on Page Load

// Prime report region
p4_emps_afterrefresh();
// Bind to PPR
$('#p4_emps').on('apexafterrefresh', p4_emps_afterrefresh);

Chapter 15 ■ applying jQuery post render

154

The final output combining report total and cell highlighting will look like Figure 15-6, all applied
automatically after refreshing the region by typing the letter “d” in the search field.

Figure 15-6. Final outcome of post rendering

The “d” is highlighted because the region wizard applied &P4_REPORT_SEARCH. to the Highlight Words
column attribute, which highlights any content in the cell that matches the provided item.

Summary
While the examples in this chapter are useful in their own right, the coding patterns offer a variety of uses.
How you apply these techniques to your own projects is up to you and your creativity.

Finding the balance between including JavaScript in dynamic actions versus including your own jQuery
will depend on the page and the project. Be aware that both options exist and each will have their own
advantages given the circumstances.

155

Chapter 16

Clicking Entire Rows

During my involvement in developing an APEX application for a 10-inch tablet, one of my first observations
was the need to expand what areas responded to “clicks.” The application was designed to run on either a
desktop or tablet, but at the very least it had to be suitable for people selecting options with their fingers.

Our clients were construction workers and had big fingers, so action buttons on each row started to
get replaced by the ability to tap (or click) anywhere in the row of a list of records. The response would be to
navigate to the next page.

This chapter explores two methods of achieving this goal, once again showing that the development
world offers many ways to solve a given problem regardless of the technology.

Method A—Proactive
A blog post from Alex Nuijten inspired this method, which involves defining the given URL for each row, just
like you would a button, but then reassigning that link to a click event on the row.

The same employee search page as in Chapter 15 will be modified to navigate to the edit employee page
when the user taps on the row. This way the features previously added to the original employee list are not
disrupted.

The destination URL could be garnered from an Edit link, which could then be hidden. However, this
solution will generate the URL within the SQL.

This method will give an opportunity to demonstrate a simple but vital difference in the way URLs are
built from SQL statements. It’s a common task, so it’s important you don’t impact the performance of your
application by flooding the SQL Shared Pool with the SQL statement, only differing by session ID.

Taking Care of Performance
Modify the SQL in the employee list to include the API call to generate the URL, as shown in Listing 16-1.
Also include a comment hint at the start of the SQL to make it easier to identify later.

Listing 16-1. Modified Start of Employee List SQL

select /*+ qb_name(bad_sql) */
apex_util.prepare_url('f?p=&APP_ID.:3:&APP_SESSION.::::P3_EMPNO:'||empno) as lnk
,empno -- and the rest of your columns in the existing query...

http://dx.doi.org/10.1007/978-1-4842-0961-5_15

Figure 16-1. Shared pool results

Chapter 16 ■ CliCking entire rows

156

This example uses the substitution string syntax to refer to both application ID and session. It’s the
latter that will impact scalability of your application. To demonstrate, run the page in a number of different
sessions. Log out and log in again a few times, running the page each time.

If you leave the column shown in the report, you’ll see that each time the session ID is different:

f?p=1234:3:34876883201315::::P_EMPNO:7839

This is expected and required, but if you take a look at the shared pool, you’ll also find the statement
appears a number of times.

Now adjust the URL to use a bind variable for the session ID:

select /*+ qb_name(good_sql) */
apex_util.prepare_url('f?p=&APP_ID.:3:'||:APP_SESSION||'::::P3_EMPNO:'||empno) as lnk
,empno -- and the rest of your columns...

After refreshing the page five times each across three separate sessions, run the query from Listing 16-2.
The user will require DBA privileges to select from v$sqlarea, which represents the unique SQL statements
found in the shared pool. Since I can’t run this statement from apex.oracle.com, the output in Figure 16-1
was from a local instance, hence the different application and page numbers.

Listing 16-2. SQL Statements from the Shared Pool

select executions, substr(sql_text,122) sql_text
from sys.v$sqlarea
where sql_text like 'select%qb_name(%sql)%'
and module like '%APEX:APP 113%'
order by last_load_time

Note you’ll need to modify the where clause to suit how you’ve written your query, and modify the
module to reference your application ID. I’ve also modified the sql_text column to make the screenshot fit
nicely.

Figure 16-1 shows the list of queries found in the shared pool. Note the bad_sql query has three
separate entries, at least one for each session. Imagine this amplified with 100 users, compared to the good_
sql example where all five executions of the page used the same query.

The good_sql method drastically reduces the amount of hard parsing required by the database, which is
a very good thing for performance. As a general rule, avoid using the ampersand substitution syntax in SQL
and stick with bind variables. Care should also be taken with the user of v() and nv() function, which often
should be contained within scalar subqueries.

Chapter 16 ■ CliCking entire rows

157

Add Column
Retain the column from the good_sql example and hide the column in the report. The link column can also
be hidden since it will be replaced by the row click.

Add Expression to Report Column
The defined URL still needs to be included within the generated HTML so jQuery can refer to the value and
bind to a modified click event.

A number of methods exist to accomplish this, but the most painless is to select an untouched column
such as MGR and add a HTML expression, remembering to include the column’s data. The hash tags allow
substitution of data from the query into the expression that formulates HTML content:

#MGR#

In some cases, a column may already use a HTML expression that can just be extended with the anchor.
The anchor won’t be visible to the user, but will be located by a jQuery selector as the destination for the row
click event.

The empno is made available as a custom data attribute. This can make it easier to determine the
relevant ID compared to searching for content in another column within the row. It’s not used in this
particular example, but it is a reminder how useful data can be made readily accessible to the event.

Define jQuery Function
jQuery in this example will locate the URL in the report row and reassign the link to the entire table row tag.

First, define a function in the page Function and Global Declaration attribute, as shown in Listing 16-3.

Listing 16-3. Function to Reallocate URL

function enable_row_link(p_identifier) {
 // Convert the entire table row to be an anchor
 // <a class="rowlink" href="#THE_URL#"
 // add data="#ID" if you want to make extra information available
 // call: enable_row_click('a.rowlink');
 $(p_identifier).each(function(index) {
 lnk = $(this).attr('href');
 $(this).closest('tr')
 .data('href', lnk)
 .click(function(){
 window.location=$(this).data('href');
 })
 .mouseover(function(){
 $(this).css('cursor', 'pointer');
 })
 .mouseleave(function(){
 $(this).css('cursor', 'default');
 })
 });
}

Figure 16-2. New listeners present on each table row

Chapter 16 ■ CliCking entire rows

158

The function will take the identifier of the URL as described in the comments. It will iterate through
each element and firstly extract the URL from the anchor.

Next, the function locates the closest TR element, ready for modification via a set of chained functions.
It reassigns the URL as a data element to the TR and defines a click event to set the window location to the
relevant URL.

As a bonus, the mouse events are added to change the cursor in desktop environments as the mouse
hovers over the rows.

Invoke Function
Modify the after refresh function to also include the following:

enable_row_link('#p4_emps a.rowlink');

Run the page and then hover your mouse over one of the rows. The mouse will change into the pointer,
and clicking will open the employee form.

Use Inspect Element to check the table row. Figure 16-2 neatly shows the three event listeners added to
the table row.

Later versions of APEX may show more event listeners for that DOM element.

Method B—React, Respond
The first method works, but requires heavy post-processing. Each time the region refreshes, each row needs
processing to reapply the multiple click listeners.

jQuery provides a way to react to a click on a region, identify a specific component clicked, and resolve
the action from there.

Chapter 16 ■ CliCking entire rows

159

Prerequisites
The destination URL still needs to be defined for each row, so the method used in the previous example will
suffice.

Disable the dynamic action that applies the enable_row_link function. This method will replace that
function.

Add Listener to Region
Replace the call to enable_row_link() in the after refresh function with Listing 16-4. The on() function
will listen for clicks within the #p4_emps region and act only when a table row is clicked, as per the second
parameter. Using this parameter can be compared to defining a dynamic action on the region with an Event
Scope of Dynamic.

Listing 16-4. Listen for Click within Row

$('#p4_emps').on('click', 'tr', function(event) {
 l_target = $(event.target).closest('tr').find('a.rowlink').attr('href');
 if (l_target)
 window.location=l_target;
});

The callback function determines the URL by locating the closest TR based on whatever is clicked, and
then finding the URL defined in the anchor element with the rowlink class in that row. The function will only
change the window location if a URL was determined, thereby ignoring events on header rows, row totals,
and pagination.

Summary
I demonstrated two solutions in this chapter with the same outcome, but the method used in each one was
quite different. This highlights yet again how a working solution to a problem may not be the best one.

Choosing a suboptimal solution may impact performance on the page and/or scalability of your
application.

Elegance is often an attribute of efficiency, so if your jQuery is verbose and has many moving parts, you
may need to reconsider refactoring the code.

Ultimately, this chapter shows how functional APEX applications can be upgraded with minimal effort
to make them suitable for a touchscreen-based environment.

161

Chapter 17

Customizing Pagination

Search results in reports often span multiple pages. The APEX pagination options are too small for touch
devices, let alone some users of desktop machines.

In this chapter, the reader will learn how to upgrade the pagination in a classic report to behave
similarly to Google-style search engine pagination. The technique offered might also spur other ideas
regarding what can be done with jQuery.

About Pagination
Sets of data rarely fit on one page, which is why building a search page is a common task in APEX
development. APEX offers a variety of options for those records that do not fit on the first page of results.

Interactive reports offer basic next/previous links, but further customization requires more work.
Classic reports, however, offer the variety shown in Figure 17-1.

Figure 17-1. APEX pagination options

Chapter 17 ■ Customizing pagination

162

Figure 17-2 shows the default pagination mechanism used in Theme 25, with row ranges in a select list.
The UI features are fine for desktop use, but a large list of options in a select list next to short buttons is not
suitable for touchscreens.

The example in this chapter will use the search- engine-set-based pagination, which shows multiple
pages of results as links with sequential number labeling. The output shown in Figure 17-3 is from a Theme
25 classic report and it would be difficult for users to use effectively on a touchscreen.

The example in this chapter will turn those HTML anchors into large buttons suitable for touch
interfaces. I’ll use Theme 25 since the UI is particularly bad. The templates have improved in the Universal
Theme, as shown in Figure 17-4, where it may only require some CSS to add extra padding around the links.

Note that any style showing a known number of pages or the total number of rows (Z) will lengthen the
time required to render the page. This is because in addition to the actual result set, the exact number of
rows needs to be determined as to render the pagination set, which can be expensive.

For simple, orderable datasets where the total number of rows is less than 1000, pagination can be more
effective than scrolling a large page of results. Reports where fast results using selective criteria wins over
sifting through pages of results may be better suited to use the Ranges X–Y with no pagination setting.

Prepare Report
The sample employee table does not have enough rows for this demonstration, so instead create a new
report page using Listing 17-1. This SQL will return all the days in the current year that are not the weekend,
providing at least 250 rows.

Figure 17-2. Row ranges in select list

Figure 17-3. Theme 25 search engine style, pre-modification

Figure 17-4. Theme 42 search engine style

Chapter 17 ■ Customizing pagination

163

Listing 17-1. Generate Many Rows of Data

with this_year as
(select rownum rn, (trunc(sysdate,'yy')+rownum) dt
 from dual
 connect by level < 365
)
select rownum, dt, to_char(dt, 'fmDay')
from this_year
where to_char(dt,'DY') not in ('SAT','SUN')

Ensure the report type is classic and add a Static ID of “paginated.” Now modify the region attributes to
set pagination type to Search Engine 1,2,3,4.

You may be interested to note you can also inflate the number of rows returned in an existing report by
temporarily adding the following cross join to existing SQL:

select * from emp -- existing SQL
cross join (select null from dual connect by level <= 3)

The cross join is ANSI syntax that creates a Cartesian product of the two tables, so a query on EMP
joined with 3 rows from dual returns 42 rows. The keywords “cross join” could be replaced with a comma.
The “connect by” syntax produces the number of rows specified in the final expression, an effective way to
conjure data.

Upgrading Pagination
jQuery can be added to the page to convert the simple HTML anchors to larger buttons, with further button
styling added in a later step.

Add JavaScript Function
This function converts the basic links to buttons, using jQuery to identify the relevant components of
the pagination cells in the designated report. Add Listing 17-2 to the page Function and Global Variable
Declaration attribute.

As with other features, the class names and HTML structure have changed slightly between Themes 25
and 42. Uncomment the second variable definition to override the first if you’re using Theme 42.

Listing 17-2. Convert Links to Buttons

function apply_pagination(report_id) {
 // Note: selector differences across themes
 var selector = ' td.pagination span.fielddata'; // Theme 25
 // var selector = ' span.t-Report-paginationText'; // Theme 42

 // hide single number if one page of results shown
 if ($(report_id+selector+' a').size() == 0)
 $(report_id+selector).css('display','none');

Chapter 17 ■ Customizing pagination

164

 // transform each link found into a button, converting href to onclick
 $(report_id+selector+' a').each(function(){
 $(this).replaceWith('<button class="uButton" onclick="'+$(this).attr('href')+'"

type="button">'+$(this).text()+'</button>');
 });

 // Theme 25: Next/Prev when over ten pages identified separately, hence can be treated
independently

 $(report_id+' td a.uPaginationNext').text('(Next)');
 $(report_id+' td a.uPaginationPrev').text('(Prev)');
 // Hide in t42, though could differentiate with class suffix --next
 // or instead ask user to refine search so next() not needed
 $(report_id+' a.t-Report-paginationLink').hide();

}

If no more than one page of results is displayed, then the function will remove the pagination area.
Otherwise, the jQuery selector locates all pagination anchors and uses .replaceWith() replace with the
button alternative. Each anchor is processed where $(this) can be referenced to harvest the href attribute,
which is in turn inserted as the button’s onclick event.

The next and previous buttons that are shown when the results are over ten pages are classed
differently; hence, they can be handled separately. Harmonizing with the concept that the user may not
sift past the first few pages and adjust their criteria instead, you may choose to hide the options instead of
re-styling them.

Invoke Function
Convert the links to buttons by invoking the function on page load every time the report is refreshed, which
is normally done by navigating to a different page of results.

Without re-invoking the function on the apexafterrerfesh event on the report, the pagination area
links will remain displayed in the original format after the report is re-refreshed.

Listing 17-3 needs to be invoked on page load so can be done so using a dynamic action or using the
Execute when Page Loads attribute. Once applied, the output will look like Figure 17-5.

Listing 17-3. Convert Links to Buttons

// on page load
apply_pagination('#paginated');
// and each time the report is refreshed, typically via pagination
$('#paginated').on('apexafterrefresh', function(e) {
 // reapply conversion of links to buttons
 apply_pagination('#paginated');
});

Figure 17-5. Converted buttons, before styling

Chapter 17 ■ Customizing pagination

165

The list of pages in the report output have now been converted, but still require some extra styling to
ensure appropriate spacing around the digits and between the buttons.

Add CSS to Style Buttons
Values may vary depending on your theme, audience, and device. Use Listing 17-4 for your page’s inline CSS,
which covers Themes 25 and 42. The end result targets usage on touch devices.

Listing 17-4. CSS Styling for Pagination Buttons

/* some room below the report */
td.pagination {
 padding-top: 10px;
}
/* elbow room between buttons */
td.pagination button.uButton {
 margin:0 4px;
 padding: 0px;
}
/* make buttons bigger for tablet fingers */
td.pagination button.uButton span {
 font-size: 150%;
 padding: 10px 15px;
}
/* the 'current' page */
td.pagination b {
 padding: 20px;
 font-size: 200%;
}
/* When larger data sets - next/prev links */
td.pagination a.uPaginationNext
,td.pagination a.uPaginationPrev
,td.pagination t-Report-paginationLink /* Theme 42 */
{
 font-size: 200%;
}

The final result is shown in Figure 17-6. This design should make it easy for large fingers to distinguish
between links and clearly choose the desired button.

Figure 17-6. Updated pagination options

Chapter 17 ■ Customizing pagination

166

Tweak the numbers specified within the CSS to set sizes and padding to a desired level. Remember,
this is easiest done first by inspecting browser elements and modifying values in the browser directly. Then
copy your desired values into the embedded CSS.

Alternatively, you could use a more contemporary style, inspired by what’s available in the
Universal Theme.

Summary
The pagination widget is one of many areas in your applications that could be upgraded in some form to
cater for your intended device and/or audience.

Customizations in APEX come in many forms. In this case, instead of attempting to modify the report
template, jQuery can be added to respond to and convert outputs from their original form.

Part V

Diversifying Techniques

169

Chapter 18

Customizing Item Help

A simple but frequent request is for the ability to customize the help displayed when clicking on APEX item
labels. By default, this help comes from data set at design time by the developer. However, it’s possible to
allow users to maintain this data and display help source from custom content by combining jQuery with
database processes.

Define Help Data
A few options exist in regard to where to store help information for items. Each option has advantages and
disadvantages, so you need to decide what balance suits your project the best.

Design Time
The Help Text attribute for page items shown in Figure 18-1 is ideal for item help text as this is the source
used when the user clicks on the help icon for the relevant item, as shown in Figure 18-2.

Figure 18-1. Item help text in the page designer

Chapter 18 ■ Customizing item help

170

The main disadvantage of this location is the text is required at design time as there is no published
API to modify the content. Fickle users may also require updates to this text and this means a change by the
developer to the application.

In the Universal Theme, the help icon will only appear for items with help defined. In prior themes, this
link was the item label itself, and we’ll do the same in this example since all relevant fields will have a label.
However, we still need a place to store the column help where the user can maintain it.

UI Defaults
User Interface Defaults (UI Defaults) are attributes the developer can use to define the standard look and
feel for columns in the database prior to building an application. These attribute selections are carried
through as forms and reports are built, including item help.

APIs are available to update these defaults and, therefore, could be used as a location for storing
updatable help content. Pages could be built around maintaining help text and be exposed to end users,
but this would only impact pages yet to be built. Modifying UI Defaults will not affect existing pages, so this
process would need to be completed before building the application.

UI Defaults can be created through the SQL Workshop Utilities module. Once defined for a table, an API
call could be used to update the help text:

begin
APEX_UI_DEFAULT_UPDATE.UPD_ITEM_HELP (
 p_table_name => 'EMP'
 ,p_column_name => 'ENAME'
 ,p_help_text => 'Enter the employee name');
end;
/

The help text could then be queried using the APEX dictionary view APEX_UI_DEFAULTS_COLUMNS.

Figure 18-2. Item help text shown at runtime

Chapter 18 ■ Customizing item help

171

Custom Tables
Utilizing your own set of tables to store item help data is always a viable solution. Custom tables allow the
flexibility to define help at page level or a more generic column name level.

The custom table would need to record application and page number, which allows re-use across
applications. The item name in the data format P1_ITEM would be used as cross-reference when the user
clicks on the help link and, of course, a column for storing the help content:

create table item_help
 (app_id number not null
 ,page_id number not null
 ,item_name varchar2(30) not null
 ,help_text varchar2(400) not null
 ,constraint item_help_pk
 PRIMARY KEY (app_id, page_id, item_name)
);

There is no clear disadvantage to using this solution, but since every reader will have a different set of
application and page IDs, I will defer to the final option for the demonstration.

Depending on your application, there may be replication of help where the same logical item appears
across multiple pages, but a well-designed maintenance application can help mitigate that.

Column Comments
While not strictly meta-data, Oracle technologists favor database column comments as a semi-permanent
documentation location for database columns.

The comments could be worded with the end user in mind; however, updates to these comments are
done using data definition language (DDL), not with an SQL update. This may deter some DBAs when
defining boundaries of a help maintenance application.

Database column comments will be used as the help source for the demonstration in this chapter.
Listing 18-1 will apply help for many of the columns in the emp table.

Listing 18-1. Add Column Help for the Emp Table

comment on column emp.ename is 'Enter the employee name';
comment on column emp.job is 'What does the employee do?';
comment on column emp.mgr is 'Who is the employee''s manager?';
comment on column emp.hiredate is 'When was this person hired?';
comment on column emp.sal is 'What is this person''s monthly salary?';
comment on column emp.comm is 'How much commission do they receive?';

Comments defined like this can be queried from dictionary view USER_COL_COMMENTS. One
disadvantage of this method, however, is there may be additional fields on the page that don’t map to a
database column, which can also be true for UI Defaults.

Querying dictionary tables can also slow the user experience, but this can be mitigated with
materialized views.

Chapter 18 ■ Customizing item help

172

Identifying the Table Name
All solutions also have the issue of identifying the table relevant to the item, except the custom table
definition used, as described earlier.

A potential workaround might be to add the table name in the comments attribute of each item.
Another idea would be to populate a JavaScript variable on page load, which presumes all columns on the
page belong to a particular table, but it will suffice for this example.

Add the following to the Execute When Page Loads page attribute for the EMP form:

f_table_name = 'EMP';

Modify Label Template
It is not necessary to modify the label template in the APEX 5.0 Universe Theme 42 since no help icon is
displayed if no text is entered in the Item Help attribute. This example will use the item label to invoke help.

In earlier versions of APEX, the default help functionality needs to be disabled. One method of doing so
is to edit the label template and replace the call to the pop-up help function with the following:

javascript:void(0);

The customized event listener will replace this functionality.

Replace Default Help with Event Listener
The major jQuery component in this example is the event listener for the item label attribute. This will need
to respond to a click on the item label and show a pop up with the relevant help text.

The pop up could be an inline dialog with a simple report on where the help sourced, but that would
limit the fun in a book about jQuery.

Instead, it will behave similarly to the way the Theme 25 templates displayed help. The jQuery will call a
PL/SQL process to source the help text, and then a dialog will be rendered around on the content.

The function used to display the help would be useful across the application so it shouldn’t be included
in the page attributes. Instead, such JavaScript should reside in JavaScript files included in the application
via the User Interface Details in Shared Components.

This requirement is the perfect time to demonstrate how to store and refer to JavaScript files in your
application. This modularization process should be done with all your JavaScript and CSS, just like you
would move anonymous PL/SQL blocks to stored packages.

Load Static File
Listing 18-2 defines the function that sends the item and table name to a PL/SQL process in order to locate
the relevant help text. The label parameter will be used as the dialog title, invoked much the same way as
Theme 25 templates display help.

Chapter 18 ■ Customizing item help

173

Listing 18-2. Item Help JavaScript Function

// display help text for a given item
function item_help(p_item, p_table, p_label) {
 apex.debug('p_item:'+p_item);
 apex.debug('p_table:'+p_table);
 apex.server.process
 ("CB_ITEM_HELP"
 ,{ // pData
 x01 : p_item
 ,x02 : p_table
 }
 ,{ // pOptions
 dataType:"text"
 ,loadingIndicator : "#"+p_item+"_LABEL"
 }
).done(function(pData) {
 // invoke dialog with data PL/SQL returns
 d=$('<div id="apex_popup_help_area" style="margin:15px">'+pData+'</div>');
 d.dialog({title:p_label,width:500,height:350,show:"drop",hide:"drop"})
 });
}

The function sends the table and item name to the PL/SQL procedure that returns the help text.
A loading indicator will be shown next to the label while waiting for the database to respond. The defer
function executes upon completion of the PL/SQL. A DOM string is constructed surrounding the text, and
then it gets rendered as a jQuery dialog.

Use the relevant source file associated with this book, or save the source in an appropriately named
JavaScript file, such as item_help.js.

Load the file as a Static Application File in Shared Components, as shown in Figure 18-3.

Figure 18-3. JavaScript loaded as static file

The reference provided can then be inserted as a JavaScript URL in the User Interface Details of the
desktop theme, as shown in Figure 18-4.

Chapter 18 ■ Customizing item help

174

This file will now be included in all pages of the application. Hence, the function will also be available
for reference in all pages.

Add Listener to Global Page
Now all that remains for the help listener is to invoke the item help whenever any item labels are clicked.
Create a Page Load dynamic action that executes Listing 18-3 as JavaScript code, which adds an event
listener to click item labels.

Listing 18-3. Event Listener for Item Label

// add help listener on form labels
$('label.t-Form-label').on('click', function() {
 item_help
 ($(this).attr('for') // item, eg: P3_ENAME
 // table name, default to null if not defined at page level
 ,(typeof f_table_name === 'undefined' || f_table_name === null) ?

f_table_name = '' : f_table_name
 ,$(this).text() // item label
);
});

It’s worth noting the class selector may be .uHelpLink, .uRequired, or .uOptional, depending on the
application theme and item template used.

Figure 18-4. File included in desktop user interface

Chapter 18 ■ Customizing item help

175

The item_help() function’s actual parameter values come from information about the clicked label.
The second parameter looks the most complicated, but it’s like an NVL2 expression. If the f_table_name
hasn’t been defined or is null, then an empty string is passed. Otherwise, use the variable’s value. And you
may think Oracle doesn’t handle nulls well?

The first parameter extracts the item name from the for attribute in the label, as highlighted in Figure 18-5.

Figure 18-5. Using DOM attribute to mine data

The third parameter uses the clicked label text. This becomes the dialog title.
The labels will now respond to clicks, but the PL/SQL callback it invokes needs to be defined.

Define PL/SQL Process
The PL/SQL callback is invoked by the JavaScript to return the help text for the item label clicked. Since this
process would be applicable application-wide, define an Application Process via Shared Components and
set the processing point to On Demand.

Call the process CB_ITEM_HELP and use Listing 18-4 as the source.

Listing 18-4. PL/SQL Callback for Item Help

-- Fetch item help
declare
 l_item varchar2(30) := apex_application.g_x01;
 l_table varchar2(30) := apex_application.g_x02;
 l_help varchar2(512);
begin
 -- Fetch item help for provided table/column
 apex_debug.message('CB_ITEM_HELP => '||l_table||':'||l_item);
 select coalesce(comments, 'No help for this item.')
 into l_help
 from user_col_comments
 where (table_name, column_name)
 = (
 select l_table, item_source
 from apex_application_page_items
 where application_id = :APP_ID
 and item_name = l_item);

 htp.prn(l_help);
exception
 when no_data_found then
 htp.prn('Column not found.');
end fetch_help;

Chapter 18 ■ Customizing item help

176

Secondary to identifying the relevant table, the relevant column can be derived from the item source
in form—, for example translating the P3_ENAME item to the database source column needed to fetch the
comment. Since this example uses database columns to define help text, this harmonizes nicely with using
item source, but it would not be suitable for extra non-database items.

Runtime Test
Run the EMP form page and click on any of the item labels, not any help icons. A jQuery pop-up window will
slide in and display help text as derived from the column source, as shown in Figure 18-6.

Figure 18-6. Customized help output

Clicking on the DEPTNO column will state no help exists, not no data found. If another field were added,
no rows would be returned as the column would not map to a database field.

Performance
Performance is often on my mind, and there are few considerations to be made this this example.
Sometimes it’s also about giving the user immediate feedback instead of waiting for the AJAX call to return.
There are a few considerations in this example.

Chapter 18 ■ Customizing item help

177

Modifying Workflow
As previously mentioned, the pop up could be defined as an inline dialog on the global page and within
it a report could be formatted to show the help text. This means the pop up could be shown immediately
and a spinner shown while the report refreshes. The user is therefore given instant feedback that
something is happening.

Modify Spinner
A more prominent spinner could be shown, as explored in Chapter 9. Listing 18-5 modifies the item_help
function, removing the loadingIndicator and replacing it with the showSpinner() function. It returns an
object so it can be removed in the deferred function.

Listing 18-5. Item Help Update

// display help text for a given item
function item_help(p_item, p_table, p_label) {
 apex.debug('p_item:'+p_item);
 apex.debug('p_table:'+p_table);
 $loading = apex.util.showSpinner('body');
 apex.server.process
 ("CB_ITEM_HELP"
 ,{ // pData
 x01 : p_item
 ,x02 : p_table
 }
 ,{ // pOptions
 dataType:"text"
 }
).done(function(pData) {
 // invoke dialog with data PL/SQL returns
 $loading.remove();
 d=apex.jQuery('<div id="apex_popup_help_area" style="margin:15px">'+pData+'</div>');
 d.dialog({title:p_label,width:500,height:350,show:"drop",hide:"drop"})
 });
}

The need from showing a spinner can be mitigated if the information was available locally.

Caching Information
In a highly tuned Oracle Forms application, reference codes fetched from the database would be stored in
local data structures to hasten response when needed next time. This was often done using arrays indexed
by a variable character string.

The same can be done in JavaScript. Once help is fetched for an item, the help text could be stored in
an array. Indexed by the item name, it would be possible to retrieve if the user repeatedly opened help items
prior to submitting the page or moving on:

var arr = []; // array definition

arr[p_item] = pData; // assign result to element indexed by item

http://dx.doi.org/10.1007/978-1-4842-0961-5_9

Chapter 18 ■ Customizing item help

178

Then you can use that value if the index exists instead of invoking an AJAX call to fetch item help.
Alternatively, the JavaScript code could be generated from PL/SQL as part of the page render, so even the
first fetch for help is fast.

Touch Lag
The requirement of instant response is more pronounced in touch devices so you can indicate to the users
that their tap was effective. Due to the input method of touch devices, a small 300ms delay is experienced on
the touchscreen as it waits to determine if it was a tap or a drag.

Small libraries such as TouchPunch.js allow definition of events that ignore the delay, a useful feature in
APEX applications to reduce unnecessary lag. Including the Touch Punch JavaScript file on your page allows
immediate interaction through custom events such as touchstart, removing the 300ms delay as the device
waits to see if it was a touch or drag/hold.

Summary
Once again many options exist for defining a custom solution for a common problem. In this case, the
jQuery component is independent to the source of the data, which makes the solution more versatile.

The amount of code in this chapter was minimal, but it repeats a common pattern of JavaScript that
invokes some PL/SQL that returns fresh data from the database ready for the browser to act upon.

179

Chapter 19

File Browse Validation

Browsers offer native functionality for selecting files to upload. APEX then provides the smarts to convert the
incoming data into a BLOB ready for database storage with the File Browse item component.

A common request is to validate the file before the page is submitted—for instance, limiting uploadable
file size. Doing so can prevent excess network traffic if the page is prevented from loading the file until it
meets size and type requirements. There is no point validating something in the database when it can be
done on the web page.

This chapter not only applies this practical example, but it helps you locate the information you might
have needed to solve the problem yourself. As my high school teachers always requested, I will “show my
work,” with the aim to help you practice for the jQuery feature requests you may encounter in the future.

Using Google to Find the Answer
Internet search engines are an amazing tool, regardless of your profession, but the trick to using them
effectively is in knowing what the question is. To start with, let’s determine how to restrict the file browse
input to only images.

When looking for code snippets, knowing a related function name such as Oracle’s INSTR can help you
isolate results. However, in an unfamiliar language, it can be difficult to know what to search for and where
best to find results.

In this section, I share my thought processes when exploring the web for a solution.

Gathering Information
Before searching the vast Web, you should determine what information you have available. This process can
help isolate potential keywords or, at the very least, give forum volunteers the opportunity to know as much
about your problem beyond what you can describe. You may even stumble upon enough information to
solve the problem on the spot.

Gathering information starts by building a basic test case, which can help later on if using the forums.
Build a new blank page in your application and then add a static region. Add a button to this region to
submit the page and an item using the File Browse type.

Since it would be desirable to have this feature work on selection of a file, create a dynamic action on
the file browser item that executes JavaScript on change. Before attempting to solve the problem, output
relevant information available using the attributes described in the code help shown in Chapter 5:

console.log($(this.triggeringElement).val()); // item value
console.log(this.triggeringElement); // DOM element
console.log(this.browserEvent); // event details

http://dx.doi.org/10.1007/978-1-4842-0961-5_5

Chapter 19 ■ File Browse Validation

180

Figure 19-1 shows the output once the selection of a file has been made. The value simply results the
filename, which may be useful for file type validation. The fakepath prefix is due to the browser complying
with security principles.

Figure 19-1. Console log output after file selection

The triggeringElement syntax returns the DOM object for the input item, which has been useful in
previous examples used in this book.

I’ve expanded the event object to show note the target attribute. Not only is the P19_FILE input item
named, making it an obvious point of interest, experience tells me most of the required information for an
event can be found in that node.

When editing an APEX component like an item or region, then change the type, different attributes are
offered. You will find the same in browser events, and some of these attributes match back to declarative
settings within APEX.

Scanning through the attributes I found jackpot, shown in Figure 19-2. I drilled further to find the exact
information I would need to validate file selection, all accessible with JavaScript.

Chapter 19 ■ File Browse Validation

181

With this information you may not even need to hit the Web, though you may still need help bringing
this together in a solution for APEX. You may also wish to find out why files are represented as an array and if
this is something to consider.

Using Google
When I use Google, I expect the answer to be found within the first set of results, given the right criteria.
There are certain sites I’ve learned to look out for and others to ignore.

The pattern I use for searches typically involves three components, which is why it’s important to think
about what your question actually is:

 1. Technology

 2. Component

 3. Action

For example, when searching for a way to restrict the file input to images, I might combine variations of
the following:

 1. jQuery, or Oracle APEX, or both

 2. file browse

 3. validate file type, or

Figure 19-2. Drill down into browserEvent attributes

Chapter 19 ■ File Browse Validation

182

Without enough specificity, you can find yourself weeding out too much chaff. The day I wrote this
section, I found myself searching for a regular expression to return first element in a delimited string. I tried
variations of “regexp delimited string first word,” but it wasn’t until I added “oracle” did I find my answer in
the first result by a trusted forum contributor.

Since I’m not as familiar with jQuery as I am with PL/SQL, a concise search prefixed with jQuery will
suffice. To return the selected option within a select list, “jquery selected option” returns the effective-
looking results in Figure 19-3.

Figure 19-3. Google results for a common jQuery snippet

Chapter 19 ■ File Browse Validation

183

When searching for code snippets, I find Google does a good job at providing a variety of sites, which
also tends to improve the chance of finding exactly what you need. Documentation sites are always a good
source that may provide a simple description of the feature with a concise example.

I also find stackoverflow a reliable source as good answers bubble to the top fairly well—more on this in
the next section.

Exploring Viable Results
With the variation of searches, I came across a number of viable solutions that could be adopted for APEX,
some more ready to go than others. This selection of results came from different searches so I’ll highlight the
notable part of the page and provide the URL so you can see it all in context if you wish.

Ultimately, I find it once again demonstrates the diversity of solutions available. (Occasionally, you’ll
come across something so elegant and concise you may weep a little.) Whichever the choice, we can all still
learn from the discarded results.

How to Have jQuery Restrict File Types on Upload
Like many stackoverflow results for jQuery, this result can be applied regardless of backend. APEX item
#P19_FILE can be substituted in as #my_file_field so the snippet could be tested straight away. You could
also systematically remove each chained function to reverse engineer the solution, as shown in Figure 19-4.

Figure 19-4. http://bit.ly/1jMeQsh

I first came across $.inArray when looking for a jQuery equivalent to INSTR. I googled “jquery instr,”
crossing technologies to find an example. Interestingly, the top result did not mention INSTR within the page:

jsFiddle.net

Sites like jsFiddle allow a great platform to test solutions involving JavaScript, which makes it a great
tool for forums when demonstrating problems. Figure 19-5 shows how the fiddle creator defined a solution
that defines basic HTML and CSS, and then supplies a JavaScript snippet that could be pasted directly in
APEX page attribute with an adjustment to the #image reference to #P19_FILE.

http://bit.ly/1jMeQsh

Chapter 19 ■ File Browse Validation

184

The bottom right allows live testing of the code and this solution proves to be ready to go, bar defining
exactly what happens on success or failure. In this case, it you would probably clear the P19_FILE item
selection.

Show Only Image Files In Input Type File Browse Window [duplicate]
When a question is marked as [duplicate], it’s a sure sign you’re onto a common question with a good
answer not far away, often with commentary to help assess the code.

Figure 19-6 shows an accept attribute for the input item that could be injected from APEX using
the Custom Attributes item setting. This feature is particularly nifty as it also limits the files listed in
the dialog.

Figure 19-5. http://bit.ly/1jMgDgW

http://bit.ly/1jMgDgW

Chapter 19 ■ File Browse Validation

185

Figure 19-6. http://bit.ly/1Z6YScx (sans code)

Pay particular attention to the commentary by the author and contributors. You may find different
results depending on the browser being used. This is common for attributes newer to the HTML
specification, and Figure 19-7 shows how the site caniuse.com can provide details on compliance.

http://bit.ly/1Z6YScx

Chapter 19 ■ File Browse Validation

186

The author provides a link to solve the problem using JavaScript instead on the client side, but rightly
recommends validation on the server side as well. This should apply for any data being validated; there are a
variety of ways to circumnavigate any client validation.

Using Forums
Search results often provide links to questions already asked in forums, but feel free to ask your own if
you’re struggling to translate the examples to your own work or the examples are too old. Communities of
volunteers are waiting to give you assistance.

It is also important to know and describe what you are trying to solve. In the case of validating file type
it’s fairly clear, but the goal can be forgotten and you only describe what has been attempted.

This is known as the xy problem, described succinctly at http://xyproblem.info/, where attempting to
do x you ask for help with y, which may have nothing to do with x.

In addition to asking a question, you should also be prepared to provide a basic test case, which can be
vital in obtaining a speedy answer.

Stack Overflow
I find this particular forum useful for jQuery, JavaScript, CSS, and generally all things Web. New users
are given education on forum use and incrementally given more power to interact with the site, as your
experience grows and skills proven.

Figure 19-7. http://caniuse.com/#search=accept

http://xyproblem.info/
http://caniuse.com/#search=accept

Chapter 19 ■ File Browse Validation

187

The forum format established at stackoverflow is popular because it works well, saving future readers
from sifting through old, irrelevant discussions. Any reader of AskTom.oracle.com may have experienced this.

The example in Figure 19-6 shows an answer accepted by the original poster as signified by the green
tick. Other contributors have “up” or “down” voted the response, allowing better answers to bubble to the
top of the list.

Be aware the answer with the most votes might not be the best or most current. Pay attention to the
comments on each response, which can also be “up” voted for relevance.

Test cases in stackoverflow are best provided as a jsFiddle, but at the very least provide relevant
content from the DOM and what has been attempted.

OTN Forums
All APEX-related questions are best asked on the OTN forum. Some jQuery-related questions are also
addressed here, particularly when tightly coupled with the APEX product.

The forum infrastructure isn’t as sophisticated, but comes with the same basic premise. Ask good
questions, provide test cases where possible, and remember to provide details such as APEX version as this
will influence the answer.

Don’t be afraid to ask questions. You should find a positive feedback loop with your skill level increasing
as you become known in the forums.

Translating to APEX
The prospective solutions can be tested in APEX, but they are all applied slightly differently.

Validate File Extension Using File String
The example from Figure 19-4 has the smallest snippet that could be added for use in the dynamic action.
Listing 19-1 shows a slightly modified version that will also clear the selection if invalid.

Listing 19-1. ValidateFile Extension Using File String

// determine single file extension
var ext = $('#P19_FILE').val().split('.').pop().toLowerCase();

if($.inArray(ext, ['gif','png','jpg','jpeg']) == -1) {
 $('#P19_FILE').val(''); // clear selection
 alert('invalid extension ('+ext+')');
}

Validate File Extension Using Input Attribute
The accept attribute can be added to the Custom Attributes field in the P19_FILE file browse item, as shown
in Figure 19-8.

Chapter 19 ■ File Browse Validation

188

This solution would need to be tested on browsers your application may run on.

Validating File Size
None of the search results mentioned size, though Figure 19-2 showed it was available for use. Listing 19-2
shows JavaScript that could also be applied in the on change dynamic action to ensure file sizes are kept
under one million bytes (approximately 1mb).

Listing 19-2. Validate File Size

// validate single file size
var size = this.browserEvent.target.files[0].size;

if (size > 1000000) {
 $('#P19_FILE').val(''); // clear selection
 alert('too large ('+size+')');
}

This solution is presuming only one file can be selected, since only the first element in the array of files
is checked.

Multiple Files
File input items can be modified to accept multiple selections simply by adding the attribute multiple to the
same Custom Attributes field modified for the image type.

While the transmission of multiple files would be more complex, calculating the total size of the selected
files can be done by iterating the array of files. Up until now, we’ve only referred to the first (and only) array
element.

Listing 19-3 demonstrates a typical JavaScript loop, iterating through all file selections to derive a total
size for the file set.

Figure 19-8. File browse custom attributes

Chapter 19 ■ File Browse Validation

189

Listing 19-3. Total Multiple File Sizes

// add up size of multiple files
var totsize = 0;
for (var i = 0, f; f = this.browserEvent.target.files[i]; i++) {
 totsize = totsize + f.size;
}
console.log(this.browserEvent.target.files.length+' files, total size:'+totsize);

The output will include the number of files in addition to the total sum in bytes.

Summary
This chapter was more about learning to fish than accepting the gift of free meat. I offered an insight into the
process a developer may go through in deriving a solution from multiple technologies.

When you use these skills, the application is now capable of validating file data at the client, rather than
waiting until the page is submitted to validate the data. Client-side validation is a fair consideration and
offers advantages to the user and framework, but all data should still be re-validated at the server.

Community is important. I would love to see more developers appear on Oracle forums giving back
to the community while improving themselves at the same time. All it takes is a few minutes a day to skim
through current posts to find anything that may be relevant, and perhaps even contribute a response. Asking
questions even helps the Oracle team assess the types of problems developers typically experience.

191

Chapter 20

CSS Media Queries

The ability to discern between devices and hardware capabilities is a growing need as the smart-device
market expands from blackberries to mobiles, “phablets,” tablets, laptops, desktops, TVs, glasses, watches,
and cars. One aspect is responsiveness where you see web pages mold to the size available, but there are
other functions where media queries can aid the APEX developer to delivering a better user experience.

Simple yet effective solutions can be applied in APEX just using CSS media queries alone—you’ll see
some later in the chapter. However, since this book is all about integrating jQuery with APEX, I’ll start with
how you can use jQuery to make decisions based on the outcome CSS media queries.

What Is a CSS Media Query?
A CSS media query is an expression around standard CSS that can make it conditional based on the type
of media and attributes such as size and orientation. For example, the following snippet using the @media
syntax applies the CSS it surrounds only when the media expression identifies a computer screen (including
smartphones) in portrait orientation:

/* When in portrait, hide anything with given class */
@media screen and (orientation:portrait) {
 .landscape_only {
 display:none;
 }
}

If the content becomes large and you need to modularize, you can conditionally link style sheets
based upon criteria such as media type and orientation, media type and width, and so forth. The following
example links a style sheet in cases when a screen-oriented device is used with the screen held in portrait
orientation:

<link rel="stylesheet" type"text/css"
 media="screen and (orientation:portrait)"
 href="my-portrait.css" />

Note all CSS files still download, but only those relevant are applied to the page.
You can see the syntax is not foreign from CSS. The following site provides a clear illustration of what

attributes are available and when they return true:

cssmediaqueries.com

Chapter 20 ■ CSS Media QuerieS

192

The type of media is most accessibility related, and contemporary units are left wanting. For instance,
they are unable to differentiate between a computer screen and handheld device. Instead, developers need
to rely on comparing dimensions to known devices. Nuances aside, there are some clear, stable options to
help improve the user experience.

Identifying Device Type
It is not possible to identify device type directly using CSS media queries. Instead, it is derived by ratio and
size boundaries. If you need to target a specific device, the following site is a reference for major device types:

https://css-tricks.com/snippets/css/media-queries-for-standard-devices/

For instance, Figure 20-1 shows the CSS required to identify an Apple watch.

In most cases, coding to this granularity can be counterproductive. In reality, device width is typically
the only metric used to decide when to toggle style or modify functionality.

Native JavaScript can also determine width, but exact attributes differ between browsers. The following
jQuery wrapper handles the complexity:

$(window).width()

Alternatively, the user agent information can be farmed for details such as operating system and device
information. A jQuery library called Modernizr can deconstruct the string to provide a variety of information
about the device. A PL/SQL library called Categorizr has similar methods to do the same. Figure 20-2 shows
the string value returned from the native navigator.userAgent property.

Figure 20-1. css-tricks.com identifies Apple watch with CSS

https://css-tricks.com/snippets/css/media-queries-for-standard-devices/

Chapter 20 ■ CSS Media QuerieS

193

CSS media queries still make the ideal source of truth for information a typical APEX developer would
need, but often what we need is a way to interrogate this information within jQuery logic.

Applying jQuery Logic Based on Media Queries
While creating my submission for the ODTUG APEX Gaming Competition, I needed to execute some jQuery
only when the screen width became narrow enough that I needed to rearrange content. I set this boundary
at 400 pixels.

It’s not possible to use the media query as an expression in jQuery unless you’re using libraries like
Modernizr as a proxy to this information:

Modernizr.mq('(min-width: 400px)')

For smaller applications where you don’t want to incorporate another library, you can still communicate
media query outcomes by modifying a property in the media query for later interrogation by jQuery.

The jQuery width() wrapper seems appropriate. However, height and width browser dimensions do
not always match between CSS and JavaScript, where the latter differs between browsers. The particulars are
not worth going into detail here, but you should be aware of them since decisions often get made based on
browser size.

The following jQuery logic will often apply at a different browser width to the media query method:

if ($(window).width() <= 400)

The media query will be consistent across browsers:

@media screen and (max-width: 400px){
 /* CSS for thin devices here */
}

CSS is conditional on the media environment and jQuery returns these attributes, so consistency can be
achieved in the measurement by signaling jQuery through CSS properties.

Figure 20-2. User agent returned in console

Chapter 20 ■ CSS Media QuerieS

194

For instance, if a component property is set to LEFT on portrait and RIGHT in landscape, jQuery can
interrogate the component to determine the attribute value. This logic can be used to communicate
anything that CSS might detect to jQuery using a little ingenuity. The following CSS uses the content
property to set whatever value required to control jQuery logic on a component where the attributes have
no effect:

@media screen and (max-width: 400px){
 #t_Header { float : left; content : "handheld"; }
}
@media screen and (min-width: 401px){
 #t_Header { float : right; content : "I am > 400px"; }
}

The following expression compares the content attribute value based on the media query applied at
that moment:

if ($('#t_Header').css('content') == 'handheld') {
 // screen max width is 400px, do work for small device

}

I would recommend refactoring this expression into a function call so you can test the same condition
throughout your application without repeating code:

function is_handheld() {
 // usage: if (is_handheld()) {}
 return ($('#t_Header').css('content') == 'handheld');
}

Any code that may need to be repeated like this should be turned into some form of method, regardless
of language.

Using CSS to Configure Printer Layout
Despite decades dreaming of a paperless office, the ability to send a web page to a printer and have a
readable printout is still a must in an enterprise environment, This includes hiding components that don’t
belong on a piece of paper such as menus, buttons, and images in some cases.

Printer-Friendly Templates
There is a ninth parameter to the APEX page function that is not often mentioned. It requests APEX to
display the page in a printer-friendly mode. When applied, the document states that APEX suppresses
display tabs and navigation bars, and all items are displayed as text instead of form elements:

f?p=App:Page:Session:Request:Debug:ClearCache:itemNames:itemValues:PrinterFriendly

You will find page templates with a printer-friendly template class in many APEX themes that exclude
these components from the template definition. The Universal Theme currently has no such template but
does suppress some page elements, but you might like to get specific or target anything left behind.

Chapter 20 ■ CSS Media QuerieS

195

In addition to the declarative condition type shown in Figure 20-3, you can use a substitution string to
determine if the page is in printer-friendly mode.

The substitution string can be used like any other, shown here with the PL/SQL syntax:

V('PRINTER_FRIENDLY')

These features mean you don’t need to use a specific page template to remove content from the printer,
only adding conditions to components left by the APEX engine. However, this means the page needs to be
rendered in printer-friendly mode before invoking the print dialog. CSS media queries can mitigate this
need as they will apply as soon as the browser’s print preview is opened.

Identifying Components for Exclusion
Before going too much further, it’s worth having a look to see what may need to be hidden from the printed
output, but without the printer-friendly mode enabled. Figure 20-4 shows the Chrome browser print preview
using the Employee report in the Universal Theme application.

Figure 20-3. Declarative condition types

Chapter 20 ■ CSS Media QuerieS

196

Figure 20-4. Universal Theme print preview, sidebar menu open

Chapter 20 ■ CSS Media QuerieS

197

The output is not optimized for saving trees since one-third of the page is consumed by the navigation
menu. It would be nice to also exclude buttons and in some cases add information that would provide
context to the printed document.

Figure 20-5 shows a screenshot where I inspected part of the menu and moved my mouse up, hovering
over each parent element until I found the topmost menu tag.

Using this method, I found a collection of IDs and classes that I would like to not include on the
printed page:

•	 #t_Body_nav: This class represents the navigation menu.

•	 .t-Button: This class identifies buttons I found on the page.

•	 .t-Body-topButton: This class identifies the faint circular button that sends the user
back to the top of the page.

•	 .t-Header: This class could be used if you also want to remove the header bar across
the top.

•	 .t-Footer: Likewise, the footer text could also be hidden.

And since I used the Inspect Element tool and applied display:none to the page straight away to check
the output, I also found the body content margin needs to be restored after hiding the menu. In a later
section, I’ll transform this information into a CSS media query.

Figure 20-5. Inspecting the page

Chapter 20 ■ CSS Media QuerieS

198

Adding Content for Printer
In some cases, it may be desirable to add content to a page that will only be displayed. For reports, this might
be to include criteria used, or perhaps user and a timestamp if not typically included in the print margins.

To explore this scenario, add another classic report region to your page using Listing 20-1. Since there
are only three columns, modify the region attributes template to Value Attribute Pairs - Column, and hide
pagination. Drag the region above the Employees report.

Listing 20-1. SQL Query Returning Data to Be Added When Printing

select OWA_UTIL.get_cgi_env ('REQUEST_PROTOCOL') || '://'
 || OWA_UTIL.get_cgi_env ('HTTP_HOST') || ':'
 || OWA_UTIL.get_cgi_env ('SERVER_PORT')
 || OWA_UTIL.get_cgi_env ('SCRIPT_NAME')
 || OWA_UTIL.get_cgi_env ('PATH_INFO') || '?'
 || OWA_UTIL.get_cgi_env ('QUERY_STRING') url
 ,v('APP_USER') app_user
 ,systimestamp time
from dual

Add print-only to the CSS classes attribute on the region. By adding a class to such regions, we can
hide these using the not operand within a media query, which means you don’t need to do anything more to
hide this region.

Add Media Queries
Translating the identified IDs and classes into a media query is as simple as defining the CSS as you normally
would, and then wrapping the @media call around it with some more curly braces. Now add Listing 20-2 to
the Inline CSS for the page.

Listing 20-2. CSS to Hide Components from Print Preview

/* Hide components from print */
@media print {
 /* selected component types */
 #t_Body_nav /* nav menu */
 ,#apexDevToolbar
 ,.t-Header /* top bar */
 ,.t-Button /* buttons */
 ,.t-Body-topButton
 ,.t-Footer /* footer */
 { display : none !important}

Chapter 20 ■ CSS Media QuerieS

199

 /* Not only hide menu, but remove margin made for menu */
 form .t-Body .t-Body-main {
 margin-left: 0 !important;
 -webkit-transform: none;
 transform: none !important;
 }
 form .t-Body .t-Body-main>div {
 margin-left: 0 !important;
 }

 /* remove checkbox column from reoprt */
 #p2_emps td[headers=AJAX_CHECKBOX], #p2_emps #AJAX_CHECKBOX
 {display : none;}

}

/* Anything with print-only class
 is only shown when printed */
@media not print {
 .print-only
 { display : none; }
}

The second @media query in Listing 20-2 referred to a class that can be added to page components so
they are hidden when the device is not print media.

Despite trying to avoid the use of the !important attribute, in this case CSS specificity wasn’t enough.
Results may also vary across browsers, depending on how they honour the CSS. Chrome actually did not
remove the menu from the print preview, though it did so while emulating the printer. This was only after
refreshing the page as instructed to spoof the user agent, as shown in Figure 20-6.

Chapter 20 ■ CSS Media QuerieS

200

The best test is to print your page. You should note the final layout is cleaner and the extra region is
displayed, as per conditions in the supplied CSS.

Figure 20-6. Browser emulating print

Chapter 20 ■ CSS Media QuerieS

201

Figure 20-7. Columns with minimum width can impact portrait mode

Supplementary regions might also be hidden if they don’t adapt to the page and float below the report.
One option to conserve space for important information in portrait is to hide non-critical columns.

This can also apply when reducing screen width. Listing 20-3 hides the manager and hire date column when
either media query is true.

Listing 20-3. Media Query to Hide Column When Portrait or Thin Width

/* Hide columns when portrait or thin width screen */
@media (max-width: 800px), (orientation:portrait) {
 #p2_emps td[headers="HIREDATE"], #p2_emps #HIREDATE
 ,#p2_emps td[headers="MGR"], #p2_emps #MGR
 {display: none;}
}

Figure 20-8 highlights the hidden columns and shows the media query applied to the hire date column.

Hiding Columns by Device Orientation
You will need to start considering orientation as soon as your application is used on a handheld device.
Needs will all depend on the application, but you may need to remove non-critical columns from a report
when in portrait. Figure 20-7 demonstrates how basic geometry will force assessment of report layouts.

Chapter 20 ■ CSS Media QuerieS

202

Each column is identified by the header and the row cells. Interactive reports may have different
selectors.

Figure 20-8. Columns hidden thanks to max-width media query

Chapter 20 ■ CSS Media QuerieS

203

Summary
On their own, CSS media queries are a useful device for web development, and they will continue to be
important as the types of devices rendering web pages becomes more diverse.

This chapter showed how jQuery can interrogate the attributes set by the media conditions, allowing
developers to add device-specific logic in their web applications.

Even without jQuery, it’s easy to expand standard CSS to construct APEX applications that are more
responsive to their environment. Media queries can circumvent the need to open the page in printer-
friendly mode before printing, or simply respond to users rotating their device.

205

Chapter 21

Coding for the Future

My aim for this book has been to help provide the tools an APEX developer needs to create smarter, more
interactive applications using jQuery. I also hope to incite some ideas among the veterans.

I expect most readers to come from an Oracle background looking to learn how to adapt their skills
to jQuery. For this reason, I haven’t dived too deeply into the jQuery world, in part because I’m still on the
journey myself. This book is about integrating jQuery with APEX, not jQuery alone. Starting with essential
jQuery fundamentals, and then provided some practical examples with explanations of how APEX page
components piece together. All the while covering the important interaction between the browser and the
database.

If I had time for more content in the book I would have explored namespaces and instrumentation
(debugging), but since there is only so much that can be covered by a writer with a toddler, I would like to
conclude with some thoughts to keep in mind as you learn to interact with jQuery. All are patterns I would
hope developers apply, even in the language they’re most comfortable with, so the topics shouldn’t be too
unfamiliar. Of course, in this case, it will be with jQuery within APEX in mind.

Embracing Versatility
I use the term “embracing versatility” because jQuery is quite a flexible tool. It can and has been applied to
solve a variety of problems and, with basic understanding, you can produce more interactive applications.
For APEX developers, this often starts with more flexibility when defining dynamic actions, using jQuery
selectors instead of more declarative options. Then the magic of invoking PL/SQL callbacks from JavaScript
and everything in between and beyond.

However, there is a balance to be made. Developers must recognize over time not to confuse jQuery as
a hammer where your web page is full of nails. You can use jQuery for just about everything, but that doesn’t
mean you should.

There are questions out there that can be solved with a relatively simple line of jQuery. Recently a
question was asked on the OTN forum regarding placeholder text on the interactive report search bar. I
could find nothing declarative within APEX, so I used the browser tools to determine the identifier for the
field at runtime and then defined this to execute on page load:

$('.a-IRR-search-field').attr('placeholder','Hello universe');

Simple, effective, but often something that is offered declaratively within APEX. For instance, page items
offer the same setting as an attribute under the Appearance section shown in Figure 21-1.

Chapter 21 ■ Coding for the future

206

I always like to think of a mantra I learned from Tom Kyte many years ago: “if it can be done in SQL, do
it in SQL.” On a web page many things can be done once the page has been rendered, but generating HTML
pages with APEX means we have some manner of control and jQuery may not be necessary.

Sometimes the solution is somewhere in between, and this is where APEX has consistently provided
generic attributes to provide extra content during page render. Figure 21-2 shows how to provide extra
content to page components using Link Attributes, in this case adding classes to a report column link so it
will render like a template button.

Figure 21-1. Page item declarative attribute that sets ghost text for the item

Figure 21-2. Link Attributes in a link report column

Chapter 21 ■ Coding for the future

207

This attribute is available on many types of components. For instance, the button template incorporates
this information via the #BUTTON_ATTRIBUTES# substitution string. Unlike other strings such as #JAVASCRIPT#
and #BUTTON_ID#, it sits by itself so anything supplied will be rendered verbatim and should be syntactically
complete:

<button onclick="#JAVASCRIPT#"
 class="t-Button #BUTTON_CSS_CLASSES#"
 type="button"
 #BUTTON_ATTRIBUTES#
 id="#BUTTON_ID#">
#LABEL#
</button>

Another classic example is font colors in report columns, conditional by row. You could run a jQuery
command to test the rows and apply color when true, or you could build the condition into the SQL and
incorporate the color within the column HTML expression. The latter means all the work is done by the
database as it’s determining HTML content, not extra work done by the browser once the page has loaded.
The following example is direct from the help for HTML Expression attribute, in this case parameterising
classes for a span surrounding the employee status:

#EMPLOYEE_STATUS#

You embrace the versatility of such an adaptable feature by knowing when you don’t need to use it.
This also goes for APEX. Don’t define a PL/SQL action with a NULL; statement in a dynamic action just to use
the Page Items to Submit attribute, see Figure 21-3.

Instead the same attribute can be found on the report or chart you’re refreshing. This saves a round trip
to the database, which sounds like something I would have said when programming Oracle Forms.

Figure 21-3. Please avoid doing this

Chapter 21 ■ Coding for the future

208

Don’t Reinvent the Wheel
This old adage certainly applies in the world of jQuery. Many problems solved for development projects
are done so in a particular pattern, which lends to libraries being built for sharing and re-use. It’s so easy to
incorporate jQuery frameworks to your application, but don’t make the decision to do it lightly.

When looking to solve problems, think about how often that problem may have been encountered
before. If you need a function to perform a typical task, chances are there’s already a library function
available.

Often developers only need to go as far as the supplied APIs, so I highly recommend bookmarking the
APEX API Reference defined in the documentation. The APEX 5.0 documentation can be found with the
following shortcut, and the best books are linked on the landing page:

apex.oracle.com/doc50

However, sometimes the Oracle documentation needs supplementation by the jQuery documentation,
since methods such as apex.server.process() are simply wrappers to jQuery methods:

api.jquery.com/jquery.ajax/

For larger problems, it could be worth considering incorporating a third-party plug-in. In some cases,
you might find an APEX plug-in that bolts all the relevant features to and from the database into the jQuery
library. Charting solutions using the D3 framework is a good example. Such plug-ins can be found at a
community based repository:

apex-plugin.com

In October 2015, a site dedicated to community-based APEX development was launched. Plug-ins
hosted on GitHub can also be found:

apex.world

Oracle has also incorporated a number of plug-ins in the packaged applications. If you see anything
interesting while experimenting with these applications, they can be copied into your own applications for
use. The Plug-ins page in Shared Components also has a link to a repository of Oracle plug-ins.

In other cases, you may encounter a jQuery plug-in that you need to integrate yourself, the complexity
of which really depends on the plug-in. Typically, it would entail including supporting files and adding
JavaScript into your application, maybe generating JSON from the database, as I described in Chapter 14.
This doesn’t mean you need to define it as an APEX plug-in as it may only be required for one page in your
application, or it may be a menu that is integrated into a List template.

Either way, if you end up including a third-party library in your application, you’re trusting someone
else’s code. Granted, you may have saved development time in utilizing the library, saving a good percentage
of total coding effort, but what if it doesn’t work exactly how you require it? What if it breaks during the next
APEX upgrade? Can you wait for the original authors to supply an update, or can you fix the plug-in yourself?

By all means, incorporate plug-ins to your application. They will save time and help produce a better
application, but be prepared to take ownership and treat the code as your own.

http://dx.doi.org/10.1007/978-1-4842-0961-5_14

Chapter 21 ■ Coding for the future

209

Learning Process
Your code will get better over time. Mine certainly does. I’ve seen it improve during the course of writing this
book. I didn’t have to modify chapters just because of the APEX 5.0 release. I had to refactor JavaScript my
old-fashioned procedural brain wrote.

Consider the PL/SQL you wrote when you first started learning Oracle technology. Remember seeing it
again a few years in? It was terrible, or at least ugly. And since there are a number of different ways to solve
every jQuery problem, I expect to get critical but constructive feedback on some examples in the book.

Don’t expect to be able to conquer the world, but start small and stay close to what you’re familiar with.
Remember the continual parallels of jQuery to PL/SQL, and the web page to a relational but hierarchical
database.

JavaScript has some strange behaviors that are unfamiliar to Oracle developers. Basic syntactic
differences can hold basic traps, such as a boolean operator that looks like a PL/SQL concatenator. The
following statement will execute successfully but always just return ‘value:’ , seemingly with no value as in
JavaScript the double pipe || is really an OR, not a concatenation operand as it is in Oracle:

console.log('value:'||this.data);

Other JavaScript programming principles will take a little while getting used to, such as equality
operators and how JavaScript handles nulls. It’s also worth looking into some of the stranger JavaScript
behaviors such as hoisting in regard to variable scope.

Debugging
More formally known as instrumentation, logging information about the progress of your code should be
inherent to your project code. Without it we wouldn’t enjoy tools such as dictionary views and tracing. Tom
Kyte specifically addresses instrumentation in a 2005 blog post and frequently talks about it at conferences.

http://tkyte.blogspot.com.au/2005/06/instrumentation.html

Regarding the use of console.log(), realistically your applications will be using the supplied apex.
debug namespace, which at the very least means your debug logs will only appear whilst in debug mode.

You could enhance the value of your JavaScript debugging further with the use of a console wrapper
created by Martin D’Souza.

https://github.com/martindsouza/js-console-wrapper

The library behaves in a similar pattern to the PL/SQL precursor called Logger, which you should also
utilize in your PL/SQL. The JavaScript wrapper allows basic calls such as this one to automatically output all
parameters sent to a function.

$.console.logParams();

The PL/SQL version of the library is available at the OraOpenSource project site.

http://www.oraopensource.com/logger/

http://tkyte.blogspot.com.au/2005/06/instrumentation.html
https://github.com/martindsouza/js-console-wrapper
http://www.oraopensource.com/logger/

Chapter 21 ■ Coding for the future

210

Processes
Callback behavior will often trap newcomers to the language, particularly in our case as we’re often invoking
PL/SQL asynchronously from JavaScript. This means statements subsequent to the server process will
execute before the process returns:

apex.server.process
 ("CB_HELLO"
 ,{pageItems : '#P1_EMPNO'}
).done(function() {
 console.log('I will run second');
});
console.log('I will run first');

Some of the biggest traps in AJAX processing relate to how information is interchanged between the
browser and session state in the database, often using those Page Items to Submit/Return attributes.

Once you understand session state, the next hurdle becomes the asynchronous nature of these
processes in the web world. Read through chapters 9 and 14 carefully. Familiarize yourself well with regard
to how the .done() method delegates action upon return from PL/SQL, and the use of .then() to formulate
dependency chains.

Behavior regarding the Wait for Result attribute in PL/SQL events for dynamic actions will likely change
in APEX 5.1 as the team prepares to remove the use of the deprecated async parameter, so stay tuned for
information from Oracle.

Namespaces
I recommend learning to use namespaces in JavaScript. It’s a tough topic as there are many different ways to
code them, but they basically allow you to organize your code into logical blocks of functionality just like you
do with packages in the database.

I used this to encapsulate code from one page in chapter 14. This can be simplified to the following code
that wraps methods foo and bar within a named space:

var myApp_p2 = {

 foo: function() {
 }

 ,bar: function() {
 }
};

Individual functions can then be referred to using the following:

myApp_p2.foo();

JavaScript functions do not have the same checks and balances that stored PL/SQL procedures face in
the database to validate their definition, so namespaces can be vital in avoiding collisions with other objects
and variables in the global namespace, particularly with larger projects. Start doing this from the beginning,
because some projects tend to grow quickly.

http://dx.doi.org/10.1007/978-1-4842-0961-5_9
http://dx.doi.org/10.1007/978-1-4842-0961-5_14
http://dx.doi.org/10.1007/978-1-4842-0961-5_14

Chapter 21 ■ Coding for the future

211

Finally, in regard to your learning process, pay attention to the JavaScript frameworks that are delivering
successes in the community. For instance, Node.js now provides APEX developers vast array of functionality
along with strong community support from sites such as

jsao.io

Performance
I’m often thinking about performance when I write SQL and PL/SQL, particularly now with its integration
with the Internet of Things through technologies like Oracle APEX. jQuery also has performance aspects in
regard to how it locates page components and modifies the DOM.

The analogy to Oracle can still apply with respect to indexing and context switching. As Oracle
technologists, we can be aware of a few things to cover the most important aspects of jQuery performance,
and you may recall some of these concepts from Chapter 2.

Selectors
You need to ensure the selectors used are done so to minimize the work required by the browser to find your
DOM objects. Identifying components the right way with IDs, classes, and tags can make a difference when
traversing the DOM, much like querying a table with a selective index can make a query execute faster.

A few basic patterns can help you stay on course. In fact, applying a static ID to a region as per
Figure 21-4 so you can isolate your logic to a particular region is exactly what you need to comply with some
basic jQuery best practices.

The fastest selector in jQuery is the ID selector, so identifying the region using $('#p2_emps') is fast as
it maps directly to a native JavaScript method, getElementById().

Selecting multiple elements using classes is a useful utility, such as a jQuery selector for a dynamic
action listing for clicks on buttons in the report. However, selecting using just the class is slow, so to
minimize the performance hit always descent from the closest parent ID. In this case, the region makes a
convenient parent, saving jQuery from traversing the entire DOM:

$('#p2_emps .actionBtn')

Figure 21-4. Setting region static ID

http://dx.doi.org/10.1007/978-1-4842-0961-5_2

Chapter 21 ■ Coding for the future

212

This could be improved further by prefixing the class with the relevant tag:

$('#p2_emps input.actionBtn')

Don’t bother prefixing an ID with a tag name such as div#p2_emps as this can be likened to prefixing a
% in your SQL, such as WHERE indexed_column LIKE '%WESLEY'. The Oracle example will ignore the index,
whereas in jQuery it will locate all <div> elements on the page looking for the ID.

From a performance perspective, it’s redundant to include multiple IDs. However, it may be logically
accurate, such as identifying columns within a report region:

$('#p2_emps #ENAME')

The take away is to always prefix a class with a tag name, and remember to descend from an ID.

Caching
When I worked in Oracle Forms, I used to cache the pointer to certain items that were used all the time using
the following:

item_id ITEM := FIND_ITEM('EMP.ENAME');

This way every time I needed to be interactive with that item, I could do so in the fastest way possible,
similar to having the rowid of a record in a table. The same can be done in jQuery by caching jQuery objects
to a variable. The following code locates the jQuery objects three times to apply three different methods:

$('#p2_emps input.actionBtn').removeClass('t-Button--simple');
$('#p2_emps input.actionBtn').addClass('t-Button--hot');
$('#p2_emps input.actionBtn').text('Action');

Instead, first save the object to a local variable, using the $ as a prefix to indicate it’s a jQuery set.

var $report_buttons = $('#p2_emps input.actionBtn')
$report_buttons.removeClass('t-Button--simple');
$report_buttons.addClass('t-Button--hot');
$report_buttons.text('Action');

In reality, these references might be scattered around the page in different dynamic actions. The idea
here is to never repeat a jQuery selection operation. You can even write subqueries using these saved
objects:

$report_buttons.find('span')

Chapter 21 ■ Coding for the future

213

Chaining
A common technique to apply a number of methods to a jQuery selector is to chain the commands. If
required in one command, the previous example could be re-written in the following way:

$('#p2_emps input.actionBtn')
 .removeClass('t-Button--simple');
 .addClass('t-Button--hot');
 .text('Action');

It saves the browser extra work in finding the element each time, essentially removing the context
switching between JavaScript and interrogating the DOM, just like minimizing context switching in PL/SQL
using bulk binding.

The same context switching argument is made when manipulating the DOM. More advanced JavaScript
code may loop through to build HTML content. Instead of modifying the DOM within the loop, you should
build the string and then modify the DOM after the loop is complete.

Event Delegation
Event delegation is the technical term for an example I first mentioned in Chapter 6 in regard to defining a
click event in a report. You could start the on Click definition by selecting the buttons within a region:

$('#p2_emps input.actionBtn').on('click', function() { ...

Or you could set the event at the parent level and determine what was clicked within the region. jQuery
offers a selector parameter to filter descendants of the selected elements that will call the handler, much like
the WHEN clause in an Oracle table trigger can filter only modifications to a certain column:

$('#p2_emps').on('click', 'input.actionBtn', function() { ...

Not only is this more efficient, but the event is still relevant should the region be refreshed. The first
method would need to be reapplied after refresh of the region as the event is on the individual elements.
This concept relates to the Static/Dynamic Event Scope options in dynamic actions.

Build Content into the Render
The code executed in the hypothetical report button may need to make logic decisions on data not visible in
the report. As I described in Chapter 8, one method is to include this information as custom attributes on the
button. The HTML Expression or Link Attributes could include a custom data-* attribute:

data-mystatus="#MY_STATUS#"

Then the JavaScript event can read this information using the following:

$(this.triggeringElement).data('mystatus')

This saves another trip to the database when a click occurs, though be aware the data in the report may
be stale. This means another user may have updated it, so you should remember the optimistic nature of
APEX and respond to any final DML failure.

http://dx.doi.org/10.1007/978-1-4842-0961-5_6
http://dx.doi.org/10.1007/978-1-4842-0961-5_8

Chapter 21 ■ Coding for the future

214

Performance Testing
I suspect most of the jQuery APEX developers use do not need strenuous performance testing, but you can
load test variations of solutions to jQuery snippets at the following site:

jsperf.com

Modularization
I also count maintenance as performance cost. You should already be modularizing and encapsulating PL/
SQL within packages in the database. The same rings true for jQuery. A good portion of your jQuery should
probably live in .js files either in the APEX repository or on your web file server. This could be done at page,
user interface, theme, and/or project level depending on the intent of the jQuery.

Combined with the use of namespaces, your experience with jQuery libraries can be very similar to the
dot notation used in Oracle.

Resources
The Internet is a big place, so it goes without saying that there are multiple avenues available when looking
for resources online. For me, this information comes in three major avenues.

References
There are a number of documentation pages I bookmark and visit regularly as a quick lookup for syntax
and behaviors—one can’t remember everything. The beauty of many of these pages is the information you
need is at most one click away:

•	 SQL Reference (12c): Oracle manual that provides quick link to all single row
functions and DDL

https://docs.oracle.com/database/121/SQLRF/toc.htm

•	 APEX API Reference: Common libraries available to all developers

apex.oracle.com/doc50

•	 jQuery Selectors: Quick reference sheet

http://www.w3schools.com/jquery/jquery_ref_selectors.asp

•	 jQuery Cheat Sheet: Quick link to formal documentation for common jQuery
methods, grouped by category

http://oscarotero.com/jquery/

•	 Cross Browser Compatibility: For those occasions where you need to ensure the
attributes you use are available across all browsers you need to support

http://caniuse.com/

•	 JSON Parser: to help test the format

http://json.parser.online.fr/

https://docs.oracle.com/database/121/SQLRF/toc.htm
http://www.w3schools.com/jquery/jquery_ref_selectors.asp
http://oscarotero.com/jquery/
http://caniuse.com/
http://json.parser.online.fr/

Chapter 21 ■ Coding for the future

215

•	 Color Hexa: best site I’ve found to help make sensible color decisions

http://www.colorhexa.com/

•	 Icons: lookups for Font Awesome and jQuery icons respectively

http://fortawesome.github.io/Font-Awesome/icons/

http://roam.be/lab/jquery-ui-icon-name-map/

Note that when searching for HTML and CSS attributes, some people prefer the detail that Mozilla
Developer Network (MDN) provides over the lightweight W3Schools.

Assistance
Of course, there are times when documentation is not enough and we need assistance from others. If you do
not have colleagues with whom to talk problems through, I find two particular forums helpful depending on
the technology.

The OTN forums hosted by Oracle are the idea place for any Oracle-related question. A dedicated space
is available for APEX, and other spaces available for related technologies like ORDS, SQL Developer, SQL,
and PL/SQL:

community.oracle.com

jQuery questions related to APEX are also posed and answered here, but the jQuery specific questions
are best resolved at stackoverflow.com.

You’ll find many frequent questions have already been asked and the forum ensures the best responses
are emphasized, with pertinent comments nearby.

Twitter is also a tool I’ve used to ask for community comment, and you can find many of the Oracle
ACEs in this platform. An environment for more targeted community discussion can be found at the Oracle
APEX channel at Slack:

orclapex.slack.com

For those who do not want to register at these sites, you can information aggregated at apex.world.
There are plenty of developers out there willing to volunteer assistance, though I encourage you to learn

how to ask questions effectively and provide test cases where possible.

New Information
As an APEX developer, I can safely say it will be a long time before we stop learning and there’s only so much
we can do ourselves through experimentation. A number of APEX developers blog regularly about various
aspects of the tool, and many posts do relate to the progress of web technologies and how to apply them.
These posts are aggregated at odtug.com/apex.

You could use an RSS reader such as Feedly to organize your own selection of feeds and read them
at your leisure. Please add a positive comment when you find a blog post useful—such gratitude goes a
long way.

Also stay in touch with what developers around the world are accomplishing by hearing what they
have to say. This learning opportunity also applies to presentations at conferences that are often available to
either stream or download the related slides.

http://www.colorhexa.com/
http://fortawesome.github.io/Font-Awesome/icons/
http://roam.be/lab/jquery-ui-icon-name-map/

Chapter 21 ■ Coding for the future

216

Summary
Oracle APEX is a flexible development tool further enhanced by jQuery, the browser’s language. Like many
languages, if you find parallels to those you’re comfortable with, you’ll find them easier to learn.

I enjoy developing so much I have a passion for it. With geographic isolation, I need to find other ways
of sharing my experiences and I hope my enthusiasm comes across in this book. Now it’s up to you to learn
from the examples and then adapt and apply them to your niche set of problems.

Anyone who stops learning is old, whether at twenty or eighty. Anyone who keeps learning
stays young. The greatest thing in life is to keep your mind young. —Henry Ford

217

��������� A
AJAX, 77
AJAX callbacks creation, 19

getGroups, 136
getItems, 136–138

APEX
APIs, 208
appearance section, 205
applications, 12
assistance, 215
caching, 212
callback behavior, 210
chaining, 213
collections, 89
debugging, 209
DOM, 211–212
event delegation, 213
instrumentation, 54
JavaScript, 53–54
jQuery Wrapper, 20
link attributes, 206
modularization, 214
namespaces, 210
naming conventions, 55
performance testing, 214
PL/SQL concatenator, 209
PL/SQL packages, 53
plug-ins, 208
resources, 54
selectors, static ID region, 211–212
submit attribute, 207

APEX page, 78–79
APEX region modals

AJAX process, 114
button creation, 112
dialog() function, 112
dynamic action, 112
openModal, 112
P2_EMPNO value, 114
PL/SQL callback, 114

report button DA, 113
save button, JavaScript, 114
template, 113

apex.server.process
ajax(), 84
async parameter, 84
flexibility, 85
htp.prn(), 84
parameter, 83
success function, 83

apex_util.string_to_table(), 118
APIs, 208
Async vs Sync, 85

��������� B
Basic AJAX Call, 117–118
Browser tools

APEX template, 25
Chrome, 23
computed panel, 25–26
console panel, 26
developer tools, 23–24
DOM tree, 25
elements and console panels, 24
event listeners, 26
mobile emulator,

chrome, 27–28
split panel, 24
styles panel, 25

Browser window.confim() method, 100
Bugs handling

formatted JSON, output, 143
JSON format errors, 143–145
PL/SQL errors, 143

Buttons
class=t-“Button t-Button-simple

t-Button-hot”, 67
column link definition, 68
definition, 65
DOM representation, row, 72

Index

■ index

218

information, row
(see Row information)

javascript:void(0);, 68
style properties, 65–66
tree traversals information, 72
virtual column, employees report, 66–67

��������� C
Cascading style sheets (CSS)
browser tools (see Browser tools)

event listener, 61
events, 10–11
HTML page, 4
inspect element, 59
multiple rows selected, classic report, 62
PL/SQL to JavaScript

translation, 11–12
properties, 36
rowHighlightClassic class, 61
rowHighlightClassic, 61
selectors (see Selectors, CSS)
SQL

comparison with jQuery, 7
EMP table records, 6–7

t-Report-report class, 60
CB_BASIC, 118
CDN. See Content delivery

network (CDN)
Check box, APEX collection

activity, 97
ajax_checkbox column, 90
click event, 90
PL/SQL process

APEX documentation, 94
debug mode, 92–93
page load initialization, 93
PL/SQL callback, 91
session information, 94–95
toggle collection membership, 91

SQL report column, 89
Column addition, 157
Content delivery network (CDN), 13
CSS. See Cascading style sheets (CSS)
CSS Media Query

Apple watch, 192
device orientation, 201–202
hiding components, 198–199
jQuery logic, 193–194
Modernizr, 192
portrait orientation, 191
printer layout configuration

add content, 198
components identification, 195, 197

declarative condition types, 195
printer-friendly template, 194

screen-oriented device, 191

��������� D
Database information

delimited strings, 118
htp.prn, 117–118

Debugging
console.log(), 209
PL/SQL precursor, 209

Declarative dynamic actions
and jQuery, 83
APEX functionality, 81
PL/SQL process, 82
submit/return, 82

Delimited data processing, 118–119
Document object model (DOM), 3, 25
DOM breadcrumb, 60
Dynamic actions

attributes, JavaScript actions, 71
buttons, classic report, 69
classic report attribute settings, 44
database information, 70
definition, 47
EMP table, 43
P0_SIGNAL, 96
refresh report, search

page item, submit, 45–46
search field listener, 44–45

report buttons, 69
report page, 43
row click

APEX form, 46
custom event, 47–48
custom JavaScript event, 49
debugging, 49
event listener, 50
JavaScript event, 51
jQuery, 46
link properties, empno column, 47
listener dynamic action, 50
row listener event, debugging, 52
runtime page, 51
this.browserEvent object, 48

this.triggeringElement, 51, 71

��������� E
Enlarging content, CSS

APEX 5.0 datepicker size, 39
APEX application, 31
datepicker elements, 38, 40
font sizes, 38

Buttons (cont.)

■ Index

219

inline CSS, 35–37
region title

APEX 5.0, 32
CSS selector, jQuery, 33–34
custom style attribute, 33
elements panel breadcrumb trail, 33–34
inspect element, 31, 33

sledgehammer approach, 37
static region ID, 34
style precedence, 37

Event handling, 10–11
Event scope, 57

��������� F, G
File browse validation

browserEvent attributes, 181
console log output, file selection, 180
custom attributes item setting, 184–185
forums

OTN forums, 187
stack overflow, 187

Google results, 182
Internet search engines, 179
upload jQuery restrict file, 183–184
validate file extension

file size, 188
file string, 187
input attribute, 187
multiple file size, 188

��������� H
Help items customization

custom table, 171
database column comments, 171
event listener, 172

global page, 174–175
load static file, 172–174

help data, 169
help text attribute, 169
label template, 172
performance

catch information, 177
showSpinner() function, 177
touch lag, 178
workflow, 177

PL/SQL callback, 175
runtime test, 176
table name identification, 172
UI Defaults, 170

Highlight function
.children() function, 63
.function and global declaration

page attribute, 63

inspect element, 59–60
.JavaScript page settings, 63
PL/SQL procedure, 62
row function, classic reports, 63

htmldb_Get, 81
HTML expression, 157

��������� I
Inspect element browser tool, 59

��������� J, K
JavaScript Object Notation (JSON)

12c database and APEX 5.0, 119
ad hoc query, SQL developer, 121
AJAX Call, 120
APEX 5.0 and Oracle 12c APIs, 123–124
APEX_JSON, 124
CLOB, 123
community APIs, 123
css() jQuery function, 120
data communication, 119
DDL and DML, LISTAGG demonstration

tables, 121
delimiting data, 119
JavaScript APIs, 125
JavaScript Stub, invoke callback, 122
LISTAGG(), 121–122
Oracle RESTful data services, 123
ORDS, 119
output

infrastructure, 86
JavaScript action, 86
workflow, 86

parser indicating syntax error, 126
PL/SQL dynamic actions, 119, 122
syntax, 120
undocumented APIs, 126
uninformative error, 125
validation, 125–126

jQuery
anchor URL, 57
APEX applications, 53
browser tools, 56
callbacks

AJAX callback, 19
APEX jQuery Wrapper, 20
dynamic action, PL/SQL, 19–20

CDN, 13
chaining, 17
define row click listener, 57
development pattern, 59
get/set functions, 14–15
hide() and show(), 18

■ index

220

keyup() function, 55
pages with styles, 13
report link event listener, 56
running jQuery commands, browser, 14
slideDown(), 18
style key release, 55
traversing

ancestry, 16–17
siblings, 15

jQuery dialogs
AJAX, 105
cancel button, 103
CSS customizations, 103–104
cursor, 105
delete button, 102
DIV, 101
DOM elements, 102
function calling, 102
function declaration, form page, 101
generic alert, display, 106
JSON object, 105
on load JavaScript, APEX, 101
PL/SQL callback, 104–105
undo, 99

jQuery function, 157–158
jQuery post render

apexafterrefresh, 150
default message, 148
dynamic action, 149–150
highlighting cell backgrounds

cells values identification, 153
outcome, 153–154
report cells identification, 152

inline CSS page attribute, 148–149
report total customization, 151
static region ID, 147

jQuery selector, 151–152
JSON. See JavaScript Object Notation (JSON)

��������� L
Listener to region addition, 159

��������� M, N
Modal forms, APEX

APEX 5, 110–111
APEX plug-ins, 109
bug tracker application, 108
jQuery modal, 107
options, 111
region modal, 108–109
SkillBuilder’s modal page plug-in, 109

mod_plslql, 117

��������� O
old htmldb_Get, 79
Oracle APEX packaged applications, 108
Oracle rest data services (ORDS), 119

��������� P, Q
Pagination

42 search engine style, 162
Google-style search engine, 161
next/previous links, 161
orderable datasets, 162
pre-modification, 162
report preparation, 162–163
select list, 162
UI features, 162

Prerequisites, 159
Process options

AJAX, 79
dynamic action, 80
PL/SQL process, 81

��������� R
Refresh function, 158
Row information

APEX, 70
data attributes, 72–73
database information,

dynamic action, 70
discrete values, 70
P2_EMPNO and

P2_ENAME, 70
PL/SQL action, 70–71

��������� S, T
Selectors, CSS

attributes and actions, 6
attributes and operator, 8
browser feedback, 9
classes, 8
hierarchical model, 4–5
IDs, 8
pseudo-selectors, 9
tags, 8

SQL shared pool, 155

��������� U
Upgrading pagination

CSS to style buttons, 165–166
invoke function, 164–165
JavaScript Function, 163–164

jQuery (cont.)

■ Index

221

��������� V, W, X, Y, Z
Visualization, JSON

infographics, 131
timeline graphs creation

AJAX callbacks (see AJAX callbacks
creation)

background colors settings, 139
collection, 134–135

function and global variable
declaration, 139–142

page, 134
table creation, 132
vis.js, 133
vis library, 138

visualization libraries, 132

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Part I: Getting Started
	Chapter 1: CSS—The Secret
	 Understanding the Selector
	 The Web Page Is Hierarchical Data
	 HTML, CSS & jQuery Syntax Examples
	 SQL Analogy

	 Understanding Selectors
	 Tags, IDs, and Classes
	 Attributes and Operator
	 Pseudo-Selectors
	 Browser Feedback

	 Events
	 Translating PL/SQL to JavaScript
	 What’s Available from the Box?
	 Summary

	Chapter 2: jQuery Fundamentals
	 Including jQuery in Your Page
	 Getting and Setting
	 Traversing
	 Siblings
	 Ancestry

	 Chaining
	 Effects
	 Callbacks
	 AJAX Callbacks
	 Dynamic Actions
	APEX jQuery Wrapper

	 Summary

	Chapter 3: Browser Tools
	 Chrome vs. the Rest
	 Developer Tools
	 Exploring the Contents of Your Page
	Styles
	Computed
	Event Listeners

	 Console
	 Mobile Emulator

	 Summary

	Part II: Integrating into APEX
	Chapter 4: Enlarging Content
	 APEX Application
	 Enlarging the Region Title
	 Using Inspect Element to Find the Page Element
	 Identifying CSS Selector for jQuery
	 Using a Static Region ID
	 Inline CSS

	 Increase Font Sizes throughout the Page
	 Enlarging Datepicker Elements
	 Summary

	Chapter 5: Firing Dynamic Actions
	 Creating a New Report Page
	 Refresh Report on Search
	 Search Field Listener
	 Submit page item

	 Responding to Row Click
	 Option A: Invoke Custom Event
	Edit link definition
	 Define Dynamic Action

	 Option B: Listen for Click Event

	 Summary

	Chapter 6: Implementing jQuery Alternatives
	 jQuery in APEX
	 Why Not Use Dynamic Actions?
	 Where Do I Put My jQuery Code?
	 Resources
	 Instrumentation
	 Naming Conventions

	 jQuery Style Key Release
	 Report Link Event Listener
	 Simplify Anchor URL
	 Define Row Click Listener

	 Summary

	Chapter 7: Highlighting Selected Row
	 jQuery Development Pattern
	 Using Inspect Element
	 Defining the CSS
	 Adding the Event Listener
	 Define the Highlight Function
	 Summary

	Chapter 8: Adding Buttons to Reports
	 Defining the Button
	 Deriving the Button Style
	 Generating the Button
	 Preparing the Dynamic Action

	 Gathering Information about the Row
	 Sending Discrete Values
	 Using a Dynamic Action to Get Live Information from the Database
	 Dynamic Action Attributes
	 Traversing the Tree for Information
	 Using Data Attributes

	 Summary

	Part III: Playing with Processes
	Chapter 9: Choosing Process Options
	 A Brief History of AJAX
	 Preparing the APEX Page
	 Choosing Process Options
	 The Old htmldb_Get
	Applying the Functionality
	Problems with this htmldb_Get

	 Declarative Dynamic Actions
	Applying the Functionality
	Finding Balance Between Dynamic Actions and jQuery

	 Using apex.server.process
	Applying the Functionality
	Alternatives
	Considerations Regarding Use of apex.server.process

	 Async vs Sync
	 JSON Output
	 Applying the Functionality

	 Summary

	Chapter 10: Link a Check Box to a Collection
	 About APEX Collections
	 Extending the Report
	 Add Column to SQL
	 Edit the Report Column

	 Listening for the Click Event
	 Adding PL/SQL Processes
	 Create PL/SQL Callback
	 Debug Mode
	 Initialise Collection
	 Session Information

	 User Feedback
	 Summary

	Chapter 11: Using jQuery Dialogs
	 The Undo Alternative
	 The Browser Solution
	 jQuery Dialogs
	 Priming the Dialog
	 Opening the Dialog
	 Calling the Function
	 Focus the Button
	 Customizing with CSS
	 Sourcing a Message from the Database

	 Defining a Generic Alert
	 Summary

	Chapter 12: Using Modal Forms
	 A Brief History of Modal Forms in APEX
	 jQuery Modal
	 APEX Region Modal
	 SkillBuilder’s Modal Page Plug-in
	 APEX 5

	 Selecting the Right Modal
	 Using APEX Region Modals
	 Define Modal Region
	 Adding a Create Button
	 Create Dynamic Action
	 Modifying Report Button DA
	 Saving the Data

	 Summary

	Chapter 13: Receiving Information from the Database
	 Using htp.prn
	 Processing Delimited Data
	 Larger Data Using JSON
	 Why Use JSON?
	 JSON Syntax
	 Handling JSON within the AJAX Call
	 Generating JSON
	Generating JSON Using LISTAGG()
	 Oracle RESTful Data Services
	 Community APIs
	 APEX 5.0 and Oracle 12c APIs

	 JavaScript APIs
	 Validating JSON
	 Undocumented APIs

	 Summary

	Part IV: Reporting Options
	Chapter 14: Adding Visualization with JSON
	 Why Visualizations?
	 Visualization Libraries
	 Preparing Data
	 Preparing a Page
	 Create Collection
	 Create AJAX Callbacks
	getGroups
	getItems

	 Page Properties
	Including vis Library
	Dressing the Chart
	Render the Chart

	 Handling Bugs
	 PL/SQL Errors
	 JSON format errors

	 Summary

	Chapter 15: Applying jQuery Post Render
	 Check Static Region ID
	 Customize “No Data Found” Message
	 Include CSS Style
	 Extend Dynamic Action
	 Using jQuery after Refresh

	 Customizing Report Totals
	 Add Report Totals
	 Identifying Page Components
	Using:contains
	Using:last
	Using CSS

	 Highlighting Cell Backgrounds
	 Identifying Report Cells
	 Identifying Cells with Certain Values
	 Applying Highlight after Refresh

	 Summary

	Chapter 16: Clicking Entire Rows
	 Method A—Proactive
	 Taking Care of Performance
	 Add Column
	 Add Expression to Report Column
	 Define jQuery Function
	Invoke Function

	 Method B—React, Respond
	 Prerequisites
	 Add Listener to Region

	 Summary

	Chapter 17: Customizing Pagination
	 About Pagination
	 Prepare Report
	 Upgrading Pagination
	 Add JavaScript Function
	 Invoke Function

	 Add CSS to Style Buttons
	 Summary

	Part V: Diversifying Techniques
	Chapter 18: Customizing Item Help
	 Define Help Data
	 Design Time
	 UI Defaults
	 Custom Tables
	 Column Comments
	 Identifying the Table Name

	 Modify Label Template
	 Replace Default Help with Event Listener
	 Load Static File
	 Add Listener to Global Page

	 Define PL/SQL Process
	 Runtime Test
	 Performance
	 Modifying Workflow
	 Modify Spinner
	 Caching Information
	 Touch Lag

	 Summary

	Chapter 19: File Browse Validation
	 Using Google to Find the Answer
	 Gathering Information
	 Using Google
	 Exploring Viable Results
	How to Have jQuery Restrict File Types on Upload
	Show Only Image Files In Input Type File Browse Window [duplicate]

	 Using Forums
	 Stack Overflow
	 OTN Forums

	 Translating to APEX
	 Validate File Extension Using File String
	 Validate File Extension Using Input Attribute
	 Validating File Size
	 Multiple Files

	 Summary

	Chapter 20: CSS Media Queries
	 What Is a CSS Media Query?
	 Identifying Device Type
	 Applying jQuery Logic Based on Media Queries

	 Using CSS to Configure Printer Layout
	 Printer-Friendly Templates
	 Identifying Components for Exclusion
	 Adding Content for Printer
	 Add Media Queries

	 Hiding Columns by Device Orientation
	 Summary

	Chapter 21: Coding for the Future
	 Embracing Versatility
	 Don’t Reinvent the Wheel
	 Learning Process
	 Debugging
	 Processes
	 Namespaces

	 Performance
	 Selectors
	 Caching
	 Chaining
	 Event Delegation
	 Build Content into the Render
	 Performance Testing
	 Modularization

	 Resources
	 References
	 Assistance
	 New Information

	 Summary

	Index

