Join the discussion @ p2p.wror.com Wrox Programmer to Programmer™

Professional

DNN/

Open Source .NET CMS Platform

Shaun Walker, Bruce Chapman, Cathal Connolly, Peter Donker, Israel Martinez, Charles Nurse, Chris Paterra, Clinton Bland,
Ashish Prasad, Nathan Rover, Mitchel Sellers, Dennis Shiao, Will Strohl, Erik van Ballegoij, Scott Willhite, Ralph Williams, Jr.

Table of Contents
Introduction
Who This Book Is For
What This Book Covers
How This Book Is Structured
What You Need to Use This Book
Conventions

Source Code

Errata
DP2D.WIrox.com

Chapter 1: An Inside Look at the Evolution of DNN

From Humble Beginnings...
The Dot-Com Era

IBuySpy Portal
ASP.NET

IBuySpy Portal Forum

IBuySpy Workshop
Subscription Fiasco

Microsoft
DotNetNuke
Licensing
Core Team
XX1, Fork
Trademarks

Sponsorship
Enhancements

Security Flaw
DotNetNuke 2.0
DotNetNuke.com Website
Provider Model

kindle:embed:000R?mime=image/jpg

Open Source Philosophy
Stabilization

Third-Party Components

Core Team Reorganization
Microsoft Membership API

“Breaking” Changes
Web Hosters
DotNetNuke 3.0
Release Schedule
DotNetNuke Projects

Intellectual Property
Marketing

Microsoft Hosting Program
Infrastructure

Branding

Tech Ed

Credibility

Trademark Policy
ASP.NET 2.0
Reorganization
Microsoft Conferences
DotNetNuke 4.0
Slashdotted

Benefactor Program
Opportunists

Yin and Yang

A New Company

Larry Augustin
Performance
DotNetNuke Marketplace
Free Module Promotion

Conferences

Microsoft Valuable Professionals
Fundraising

Awards and Accolades
DotNetNuke OpenForce 07

SLA Program

More Fundraising

CodePlex

Security Issues

IP Disputes

Term Sheets
DotNetNuke OpenForce 08
DotNetNuke Professional
Series A Announcement
Physical Offices
DotNetNuke 5.0

Day of DotNetNuke
DNN-Europe
Snowcovered Acquisition
Telerik Partnership
Series B

Open-DocumentLibrary Acquisition
DotNetNuke Enterprise Edition
POET Vulnerability
DotNetNuke.com Overhaul

Active Modules Acquisition

Nik Kalyani Leaves DNN Corp
Cloud. Mobile. Social.

DotNetNuke 6.0

DotNetNuke World 2011
DotNetNuke Gets Social

Microsoft Azure Partnership
DNN World 2012
DotNetNuke 7.0
iFinity Acquisition
10-Year Anniversary
DNN Social
DotNetNuke.com Hacked
Rebranding
DNNCon
Scott Willhite Moves On
DNN 7.x Releases
My Departure from DNN Corp
Summary
Chapter 2: Installing DNN Version 7
What You Need To Install DNN Platform Version 7

Upgrading the DNN Platform to Version 7
Getting a Trial Version of Evoq Content
Common Installation Issues
Summary

Chapter 3: DNN Platform Overview
Core Platform Objects

Security
Summary

Chapter 4: Site Administration
Wrox.com Code Downloads for this Chapter

What Is Site Administration?
Common Administrative Tasks

Admin Menu Features
Best Practices for Site Administrators

Summary
Chapter 5: Host Administration

Why Do You Need the Host?
What Is Host Administration?

Host Menu Pages

Additional Host Features on Admin Site Settings
Additional Host Features on the Control Panel

Host Options on the Module Actions Menu

Integrating with a Third-Party Provider

Summary
Chapter 6: Modules

What Is a Module?

Where Do Modules Live on a Page?
Adding a Module to a Page

One Module Across Multiple Pages
One Module Across Multiple Sites
Working with Modules

Where to Get Modules

Viewing Modules and Extensions
Installing Modules into DNN

The Extension Verification System
In Depth with the HTML Module

Summary
Chapter 7: System Architecture

Patterns and Concepts
Architectural Overview
Namespace Overview

Summary
Chapter 8: Core DNN APIs

The CBO Class

Caching

Event Logging
Exception Management

Scheduler
Module Interfaces

Summary
Chapter 9: Membership Security

Wrox.com Code Downloads for this Chapter
DNN Membership Overview
Membership Provider

Authentication Providers

Membership Management Enhancements
Summary

Chapter 10: Localization
Locales in DNN

Resource Files
The API

Localizing Modules
Summary
Chapter 11: Search

History
Objectives of the New Search Functionality

Apache Lucene
Search Architecture
Platform Features

Evoq Features

Administration
Search Phases

Module Integration

Entities
APIs
Writing a New Crawler

Troubleshooting
Summary

Chapter 12: URL Management
The History of DNN URL Schemes

Understanding URL Structure in DNN
URL Configuration and Customization

Summary
Chapter 13: Beginning Module Development

Wrox.com Code Downloads for this Chapter

A Guided Tour of Your Work Environment
Your Toolbox

The Environment

Organizing Your Project

Module Design Considerations
About Modules, TabModules, Module Definitions

A Guestbook Module

Wrapping It Up
Summary

Chapter 14: Developing Modules: User Interfaces
Wrox.com Code Downloads for this Chapter
Understanding DNN and Module Interactions

Dialogs and AJAX Support
JavaScript, jQuery, and Custom Scripts

DNN jQuery Plugins
Implementing Consistent Design
Summary

Chapter 15: Developing Modules: Business Logic
Wrox.com Code Downloads for this Chapter
Navigating with the DNN API
Using Common DotNetNuke Controls
Leveraging Web API
Controlling Navigation and Module Views

Summary

Chapter 16: Developing Modules: Best Practices and Moving Forward
Wrox.com Code Downloads for this Chapter
Managing DNN References and Versions

Managing External Dependencies
Future-Proofing Data Interactions

Extension Verification Service (EVS)

Getting Prepared for DNN neXt
Summary
Chapter 17: Skinning
Wrox.com Code Downloads for this Chapter

Skinning by Today's Standards
Parts of a DNN Skin

Skinning Approaches
Preparing to Create a Skin

Creating Your First Skin
Basic Layout

Document Setup
Skin Objects

Navigation
Creating Alternate Skins
Creating Containers
Custom 404 and Pop-up Skins
Skin Thumbnails
Creating an Installable Skin Package
Advanced Skinning Techniques
Summary

Chapter 18: Packaging and Distribution
The New Extensions Model

Creating New Extensions
Using the Wizard to Create Packages

Building Packages with Manifest Files

Summary
Chapter 19: Commercial Philosophy

The Fundamentals
Technology
Market Conditions
Distribution Model
Branding
Results
SUMMARY

Chapter 20: Evoq Content

Content Creation

Permissions, Workflow, and Versioning
Optimization
Integrations
Summary
Chapter 21: Evoq Engage
Management Tools
Community Modules
Summary
Chapter 22: The DNN Store

Buying from the Store
The Referral Program
Selling on the Store

Summary
Chapter 23: DNN on Microsoft Azure

Wrox.com Code Downloads for this Chapter

Azure Deployment Scenarios

Installing DNN on Azure Websites
Remote Connections to Azure Websites

Backing Up Your Azure Website
Upgrading to a New DNN Version

Moving an Existing DNN Site to Azure Websites
Managing and Troubleshooting Your Azure Website

Summary
Appendix A: Resources

Appendix B: System Message Tokens
Advertisement

End User License Agreement

List of lllustrations

Chapter 1: An Inside Look at the Evolution of DNN

Figure 1.1
Figure 1.2
Figure 1.3
Figure 1.4
Figure 1.5
Figure 1.6
Figure 1.7
Figure 1.8
Figure 1.9
Figure 1.10
Figure 1.11
Figure 1.12
Figure 1.13
Figure 1.14
Figure 1.15
Figure 1.16
Figure 1.17
Figure 1.18
Figure 1.19
Figure 1.20
Figure 1.21
Figure 1.22
Figure 1.23
Figure 1.24
Figure 1.25

Figure 1.26
Chapter 2: Installing DNN Version 7
Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 2.9
Figure 2.10
Figure 2.11
Figure 2.12
Figure 2.13
Figure 2.14
Chapter 3: DNN Platform Overview
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10

Figure 3.11
Chapter 4: Site Administration
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10
Figure 4.11
Figure 4.12
Figure 4.13
Figure 4.14
Figure 4.15
Figure 4.16
Figure 4.17
Figure 4.18
Figure 4.19
Figure 4.20
Figure 4.21
Figure 4.22
Figure 4.23
Figure 4.24
Figure 4.25

Figure 4.26

Figure 4.27
Figure 4.28
Figure 4.29
Figure 4.30
Figure 4.31
Figure 4.32
Figure 4.33
Figure 4.34
Figure 4.35
Figure 4.36
Figure 4.37
Figure 4.38
Figure 4.39
Figure 4.40
Figure 4.41
Figure 4.42
Figure 4.43
Figure 4.44

Figure 4.45
Figure 4.46

Chapter 5: Host Administration

Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5

Figure 5.6

Figure 5.7

Figure 5.8

Figure 5.9

Figure 5.10
Figure 5.11
Figure 5.12
Figure 5.13
Figure 5.14
Figure 5.15
Figure 5.16
Figure 5.17
Figure 5.18
Figure 5.19
Figure 5.20
Figure 5.21
Figure 5.22
Figure 5.23
Figure 5.24
Figure 5.25
Figure 5.26
Figure 5.27
Figure 5.28
Figure 5.29
Figure 5.30
Figure 5.31
Figure 5.32

Chapter 6: Modules

Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5
Figure 6.6
Chapter 7: System Architecture

Figure 7.1
Chapter 9: Membership Security
Figure 9.1
Figure 9.2
Figure 9.3
Figure 9.4
Figure 9.5
Figure 9.6
Figure 9.7
Figure 9.8

Chapter 10: Localization

Figure 10.1
Figure 10.2
Figure 10.3
Figure 10.4
Figure 10.5
Figure 10.6
Figure 10.7
Figure 10.8

Chapter 11: Search

Figure 11.1
Figure 11.2
Figure 11.3
Figure 11.4
Figure 11.5
Figure 11.6
Figure 11.7
Figure 11.8
Figure 11.9
Figure 11.10
Figure 11.11
Figure 11.12
Figure 11.13
Figure 11.14
Figure 11.15
Figure 11.16
Figure 11.17
Figure 11.18
Figure 11.19
Figure 11.20
Figure 11.21
Figure 11.22
Figure 11.23
Figure 11.24
Figure 11.25
Figure 11.26

Figure 11.27
Figure 11.28
Figure 11.29
Figure 11.30
Figure 11.31
Figure 11.32
Figure 11.33
Figure 11.34
Figure 11.35
Figure 11.36
Figure 11.37
Figure 11.38
Figure 11.39
Figure 11.40
Figure 11.41
Figure 11.42
Figure 11.43
Figure 11.44
Chapter 12: URL Management

Figure 12.1

Figure 12.2

Figure 12.3

Figure 12.4

Figure 12.5

Figure 12.6

Figure 12.7
Chapter 13: Beginning Module Development

Figure 13.1
Figure 13.2
Figure 13.3
Figure 13.4
Figure 13.5
Figure 13.6
Figure 13.7
Figure 13.8
Figure 13.9
Figure 13.10
Figure 13.11
Figure 13.12
Figure 13.13
Figure 13.14
Figure 13.15
Figure 13.16
Figure 13.17
Figure 13.18
Figure 13.19
Chapter 14: Developing Modules: User Interfaces
Figure 14.1
Figure 14.2
Chapter 15: Developing Modules: Business Logic
Figure 15.1
Figure 15.2
Figure 15.3
Figure 15.4

Figure 15.5
Chapter 16: Developing Modules: Best Practices and Moving Forward
Figure 16.1

Figure 16.2
Figure 16.3

Chapter 17: Skinning
Figure 17.1
Figure 17.2
Figure 17.3
Figure 17.4
Figure 17.5
Figure 17.6
Figure 17.7
Figure 17.8
Figure 17.9
Figure 17.10

Figure 17.11

Figure 17.12
Chapter 18: Packaging and Distribution
Figure 18.1
Figure 18.2
Figure 18.3
Figure 18.4
Figure 18.5

Figure 18.6

Figure 18.7
Chapter 20: Evoq Content

Figure 20.1
Figure 20.2
Figure 20.3
Figure 20.4
Chapter 21: Evoq Engage
Figure 21.1
Figure 21.2
Figure 21.3
Figure 21.4
Figure 21.5
Figure 21.6
Figure 21.7
Figure 21.8
Figure 21.9
Chapter 23: DNN on Microsoft Azure
Figure 23.1
Figure 23.2
Figure 23.3
Figure 23.4
Figure 23.5
Figure 23.6
Figure 23.7
Figure 23.8
Figure 23.9
Figure 23.10
Figure 23.11
Figure 23.12

Figure 23.13
Figure 23.14
Figure 23.15
Figure 23.16
Figure 23.17
Figure 23.18
Figure 23.19
Figure 23.20
Figure 23.21
Figure 23.22
Figure 23.23
Figure 23.24
Figure 23.25
Figure 23.26
Figure 23.27
Figure 23.28
Figure 23.29
Figure 23.30
Figure 23.31
Figure 23.32
Figure 23.33
Figure 23.34
Figure 23.35
Figure 23.36
Figure 23.37
Figure 23.38
Figure 23.39

Figure 23.40

Figure 23.41
Figure 23.42
Figure 23.43
Figure 23.44
Figure 23.45
Figure 23.46
Figure 23.47
Figure 23.48

List of Tables

Chapter 4: Site Administration
Table 4.1 Digital Asset Manager Control Panel

Table 4.2 Folder Menu Options
Table 4.3 DNN Platform Folder Providers

Table 4.4 Folder Permissions

Table 4.5 Pages Module Context Menu Options

Table 4.6 Built-in Security Roles

Table 4.7 Edit Security Roles Settings

Table 4.8 Page Management Settings
Table 4.9 User Registration Options

Table 4.10 Display Name Format Tokens

Chapter 8: Core DNN APIs
Table 8.1 The CBO Hydration Methods
Table 8.2 Selected Public Methods in DataCache
Table 8.3 Properties of the CacheltemArgs Class
Table 8.4 The LogController Class
Table 8.5 Properties of the LogInfo Class
Table 8.6 Helper Methods in the Exceptions Class
Table 8.7 Members of the IModuleControl Interface
Table 8.8 Members of the ModuleAction Class

Chapter 10: Localization

Table 10.1 Localization Methods

Table 10.2 GetString Parameters
Table 10.3 GetSystemMessage Parameters

Table 10.4 Objects Available for Token Replacement
Table 10.5 Wrapping a String with a Web Control

Table 10.6 Adding a Resource Key
Table 10.7 Default Localized Attributes

Chapter 11: Search
Table 11.1 Site Crawler's Tasks

Table 11.2 Steps in Content Indexing
Table 11.3 searchType Properties

Table 11.4 searchDocument Properties

Table 11.5 Property Boost Levels

Table 11.6 searchouery Properties

Table 11.7 searchResult Properties

Table 11.8 Indexing APIs

Table 11.9 Administration APIs
Table 11.10 Lucene Internal APIs

Chapter 12: URL Management
Table 12.1 URL Mode Comparison
Table 12.2 DNN URL Types
Table 12.3 Create URL Fields

Table 12.4 Rewriting Test Result Fields

Table 12.5 Installation-Level Configuration Options
Table 12.6 Example Site Aliases

Table 12.7 Site Alias Configuration
Table 12.8 Site Alias Values

Table 12.9 SSL Settings
Table 12.10 Evoq Advanced URL Settings

Table 12.11 Advanced URL Management Options

Table 12.12 Creating DNN Page URLs
Table 12.13 Common HTTP Response Codes

Table 12.14 URL Debug Response Header Data
Chapter 13: Beginning Module Development

Table 13.1 Major Directories in a New DNN Installation

Table 13.2 Major DNN Releases between 2011 and 2014

Table 13.3 View.ascx.resx Entries

Table 13.4 Edit.ascx.resx entries

Chapter 15: Developing Modules: Business Logic
Table 15.1 Common Methods
Table 15.2 Helpful Host Object Properties

Table 15.3 Helpful PortalSettings Properties

Table 15.4 RegisterRoutes Method Parameters
Chapter 17: Skinning

Table 17.1 CSS File Priorities

Table 17.2 JavaScript File Priorities

Chapter 18: Packaging and Distribution
Table 18.1 Package Settings Attributes

Table 18.2 Configuration Options for Module Extensions
Table 18.3 Module Control Definition Attributes

Table 18.4 Wrox.Suggestion Module Definitions Module Controls

Table 18.5 Configuration Options for Skin Object Extensions

Table 18.6 Configuration Options for Authentication System
Extensions

Table 18.7 Package Elements and Attributes
Table 18.8 Node Action Types
Appendix A: Resources

Table A.1 Developer Tools

Table A.2 Popular Extensions

Table A.3 dnnsoftware.com resources

Appendix B: System Message Tokens

Table B.1 Standard HostSettings Properties
Table B.2 Standard PortalSettings Properties
Table B.3 Standard UserInfo Properties

Table B.4 Standard UserMembership Properties
Table B.5 Standard UserProfile Properties

Introduction

DNN7 is an open source CMS platform developed using Microsoft's ASP.NET
technology. It can be used by end users and administrators as an advanced
content management system for the creation and management of dynamic
websites. It can also be used by software developers as a platform for building

sophisticated ASP.NET web applications.

Who This Book Is For

This book is suitable for all audiences. It contains content for end users and
administrators who are interested in learning how to utilize the software to
create and maintain advanced websites. It also contains technical content for
software developers and web designers who want to build custom extensions
or skins for the platform.

What This Book Covers

This book is focused on the functionality that is present in the DNN7 product
editions. Users of earlier product editions may also find this book useful, as
many concepts and features that existed in previous versions have remained
consistent over time. This book also includes a complete history of the open
source project and business model, as well as dedicated coverage of the
features and functionality of the commercial Evoq solutions.

How This Book Is Structured

This book is logically divided into four sections. The first section explores the
history of the open source project, explains how to download and install the
product, and describes how to manage and administrate a DNN website. The
second section explores the application architecture and its major application
programming interfaces (APIs). The third section of the book demonstrates
how you can extend the platform by developing and distributing modules and
skins that integrate seamlessly with your DNN website. The final section
explains the open source business model and describes the advanced features
of the commercial Evoq solutions, which are built on top of the DNN
platform.

What You Need to Use This Book

To utilize DNN, you need any of Windows 2008/2012 Server, Windows 7, or
Windows 8 (the latter two for development only). This book relies on SQL
Server as the database provider. You must have access to SQL Server 2008 or
above or an equivalent version of SQL Express Edition (development only) on
the same machine or remotely over the network. To participate in the
development chapters, you will need Visual Studio 2010 or above or an
equivalent version of the free Visual Studio Express or Visual Web Developer.
DNN7 runs on the .NET Framework 4.0 and above.

Conventions

To help you get the most from the text and keep track of what's happening,
we've used a number of conventions throughout the book.

|
WARNING

Boxes like this one hold important, not-to-be forgotten information that
is directly relevant to the surrounding text.

|
NOTE

Notes, tips, hints, tricks, and asides to the current discussion are offset
like this.

As for styles in the text:
e We italicize new terms and important words when we introduce them.
e We present keyboard strokes like this: Ctrl+A.
e We show URLs and code within the text like so: persistence.properties.
e We present code in the following way:

We use a monofont type with no highlighting for most code examples.

We use bold to emphasize code that is particularly important in the
present context or to show changes from a previous code snippet.

Source Code

As you work through the examples in this book, you may choose either to
type in all the code manually, or to use the source code files that accompany
the book. All the source code used in this book is available for download at
www . wrox . com. Specifically for this book, the code download is on the
Download Code tab at:

WWW.Wrox.com/go/prodnn?/

You can also search for the book at www.wrox.com by ISBN (the ISBN for this
book is 978-1-118-85084-8) to find the code. And a complete list of code
downloads for all current Wrox books is available at

WWwW.wrox.com/dynamic/books/download.aspx.

Each chapter that contains downloadable code or other support files will
indicate so in the text at the beginning of the chapter.

Most of the code on www.wrox.com is compressed in a .ZIP, .RAR archive or
similar archive format appropriate to the platform. Once you download the
code, just decompress it with an appropriate compression tool.

http://www.wrox.com
http://www.wrox.com/go/prodnn7
http://www.wrox.com
http://www.wrox.com/dynamic/books/download.aspx
http://www.wrox.com

|
NOTE

Because many books have similar titles, you may find it easiest to search
by ISBN; this book's ISBN is 978-1-118-85084-8.

Once you download the code, just decompress it with your favorite
compression tool. Alternately, you can go to the main Wrox code download
page at www.wrox.com/dynamic/books/download.aspx to see the code available

for this book and all other Wrox books.

http://www.wrox.com/dynamic/books/download.aspx

Errata

Every effort is made to ensure that there are no errors in the text or in the
code. However, no one is perfect, and mistakes do occur. If you find an error
in one of our books, like a spelling mistake or faulty piece of code, your
feedback is welcome. By sending in errata, you may save other readers hours
of frustration and at the same time you will be helping us provide even higher
quality information.

To find the errata page for this book, go to www.wrox.com and locate the title
using the Search box or one of the title lists. Then, on the book's detail page,
click the Book Errata link. On this page, you can view all errata that has been
submitted for this book and posted by Wrox editors. A complete book list
including links to each book's errata is also available at www.wrox.com/misc-
pages/booklist.shtml.

If you don't spot “your” error on the Book Errata page, go to
www.wrox.com/contact/techsupport.shtml and complete the form there to
send us the error you have found. After the information is checked, a message
is posted to the book's errata page, and the problem is fixed in subsequent
editions of the book.

http://www.wrox.com
http://www.wrox.com/misc-pages/booklist.shtml
http://www.wrox.com/contact/techsupport.shtml

p2p.wrox.com

For author and peer discussion, join the P2P forums at p2p.wrox.com. The
forums are a web-based system for you to post messages relating to Wrox
books and related technologies and interact with other readers and
technology users. The forums offer a subscription feature to e-mail you topics
of interest of your choosing when new posts are made to the forums. Wrox
authors, editors, other industry experts, and your fellow readers are present
on these forums.

At p2p.wrox.com you can find a number of different forums that can help you
not only as you read this book but also as you develop your own applications.
To join the forums, follow these steps:

1. Go 10 p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join, as well as any optional
information you want to provide, and click Submit.

4. You will receive an e-mail with information describing how to verify your
account and complete the joining process.

http://p2p.wrox.com
http://p2p.wrox.com
http://p2p.wrox.com
http://p2p.wrox.com

|
NOTE

You can read messages in the forums without joining P2P, but to post
your own messages, you must join.

After you join, you can post new messages and respond to messages other
users post. You can read messages at any time on the web. If you would like
to have new messages from a particular forum e-mailed to you, click the
Subscribe to This Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the
P2P FAQs for answers to questions about how the forum software works, as
well as many common questions specific to P2P and Wrox books. To read the
FAQs, click the FAQ link on any P2P page.

Chapter 1

An Inside Look at the Evolution of DNN

By Shaun Walker
DotNetNuke Creator and DNN CORP Cofounder

What You Will Learn in this Chapter

¢ Following the behind-the-scenes story of one of the most-loved
community technology projects

¢ Discovering the legal, licensing, and IP business realities of open
source software

¢ Understanding the branding evolution of DotNetNuke to DNN

e Exploring how open source and commercial business models can work
together

e Learning about start-ups, strategic marketing, partnerships,
acquisitions, and venture capital funding

As much as DNN is an open source software application written for the
Microsoft ASP.NET platform, it is also an online community with developers,
end users, vendors, and volunteers—all working together collaboratively in a
rich and diverse ecosystem. This chapter attempts to capture the essence of
the project, expose its humble beginnings, provide insight into its evolution,
and document its many achievements, but not shy away from some of the
hard lessons learned in the process. The lifeblood of any community is its
people; therefore, it is a distinct honor and privilege to be able to share some
of the emotion and passion that have gone into the DNN project so that you
may be able to establish a personal connection with the various stakeholders,
which may ultimately motivate you to join this vibrant ecosystem.

From Humble Beginnings...

In 1979, when I was 9 years old, my family relocated from Kelowna, British
Columbia, Canada, to Ashcroft, a tiny community in the south-central interior
of British Columbia with a population of approximately 1,500 people. We
relocated with a grand vision—to start a commercial vineyard. My grandfather
had owned a vineyard in Kelowna and he had sold it with the idea that the hot
arid climate in Ashcroft, combined with cheap abundant land, would be a
perfect environment for him and his children to establish a large, successful
vineyard.

My mother and father, grandparents, and two uncles bought approximately
200 acres of sagebrush-covered land about 30 minutes outside Ashcroft, an
area known as Basque Siding that was only accessible by navigating 5 miles of
unpaved roads. We each had our own 50-acre parcel of land but the family all
worked together to establish the infrastructure to develop our vineyards. We
installed power, irrigation systems, cleared land, and built houses. Then we
planted seedling grapes, and grew alfalfa and other crops to provide some
initial income, as a vineyard takes five years before it reaches full production.
We were extremely self-sufficient and raised our own cows, pigs, turkeys, and
chickens, as well as our own fruits and vegetables.

When I was 12 years old we visited my cousins in Kelowna and I was
introduced to the Commodore VIC-20 for the first time. My cousins were
using it to play games but my parents clearly saw my fascination in this little
machine. Money was scarce, so I am not sure what ultimately motivated their
decision, but they decided to purchase a base model VIC-20, which came with
an integrated keyboard, a cassette tape drive, and a user manual. They also
had one stipulation—the only games I could play were games I created
myself.

So I spent a lot of time typing BASIC code into the computer and storing the
programs on cassette tape. My parents got me a subscription to COMPUTE!
magazine, which provided source code listings for more advanced games.
Pretty soon I started to recognize the patterns and techniques required to
write programs, and I started building my own applications. Living on a
remote farm created a perfect environment for investing myself in computers,
as there were few distractions—I was either outside working in the vineyard
(pruning, weeding, picking, cultivating) or I was inside the house typing code.
My two younger brothers were more than happy to play the games that I

created for them.

When I saw the movie War Games in 1983 starring Mathew Broderick, I
really got excited about the potential of computers as more than just
standalone devices. In the movie, the character played by Broderick hacks
into the NORAD super computer nicknamed “Joshua” using a backdoor
password and mistakenly invokes Global Thermonuclear War. In the climax,
the supercomputer is tricked into playing Tic-Tac-Toe against itself until it
reaches a draw and declares that “the only winning move is not to play.” After
watching this movie numerous times I was convinced that I wanted to be a
“hacker” and I sent off handwritten letters to many of the vendors listed in
COMPUTE! magazine asking how I could become a programmer.

In the summer of 1983 we took a long road trip to Disneyland in California
and spent some time visiting my uncle in the Bay Area. During this trip my
parents finally caved in to my demands for a computer upgrade. The
Commodore 64 was a large enhancement over the VIC-20, and we were able
to get a good deal on a Commodore 64 package, a 1702 color monitor, and a
1541 floppy disk drive. I could not wait to get home and plug in these amazing
new devices.

The following winter my family suffered a significant setback. Some
exceptionally cold weather killed all of our grape plants, which ended my
parents' dream of operating a large commercial vineyard. They did not have
the resources to replant the vineyard, so they both had to work traditional
jobs while continuing to operate the farm by selling fruits and vegetables to
the local markets to try to make ends meet. This was very hard work, and
without any opportunity for vacations as the farm demanded the family's full
attention almost year round. The entire family pitched in to keep the farm
afloat as my parents tried valiantly to preserve their investment.

When I reached high school, I was allowed to participate in an accelerated
learning program that allowed me to take computer science courses that were
two grade levels higher than my current grade. This exposed me to IBM PCs
and Apple II computers and some new programming languages. I loved the
challenge of solving problems and got a lot of satisfaction out of being able to
tell the computer to follow my specific instructions. I had found my passion,
and I knew at that point that my future career would involve software
development. This was well before the Internet was invented—in fact, my
household was still on a party line for phone service that we shared with four
other families. It was also well before graphical user interfaces, cell phones,

and other technology that we take for granted now.

When I was 17 years old my family had another major setback. My father
collapsed at work and was rushed to the hospital in Kamloops. The doctor
discovered that he had suffered a brain aneurysm—at the age of 37. The high
stress of trying to keep the farm afloat was identified as one of the potential
causes for the aneurysm, which finally prompted my parents to make the
decision to cut their losses and get rid of the farm immediately. Because there
were no interested buyers, my parents decided to walk away from it with only
two vehicles and enough money to put a minimum down payment on a small
house in Ashcroft. Financially, this was an extremely challenging time for the
family.

As ironic as it sounds, moving into Ashcroft was like moving into a big city, as
previously it required a 30—45 minute drive to get even basic necessities such
as groceries. I got a job as a dishwasher at one of the few local restaurants and
worked 20—30 hours a week during my final years of high school. In addition
to working, I also played competitive ice hockey on a rep team and probably
could have pursued a scholarship if I had taken it more seriously. I graduated
with honors in 1989 from Ashcroft Secondary School. My graduating class
had only 30 students, most of whom left town almost immediately to find
suitable work.

The opportunities for scholarships in a small town were rather slim, and
because my parents were in the process of starting over financially, they did
not have the resources to help me with my education. So I decided to take a
year off from school and focus on working and saving some money. I moved
to Sunnyvale, California, to work in residential construction with my uncle. I
got an apartment with two friends from high school. This was a huge culture
shock moving from a town of 1,500 people to an apartment building in Silicon
Valley that had almost 1,500 people. I grew up quickly that year, taking care
of myself and learning about life and responsibilities. But I knew after 1 year
that I needed to get back to my true passion of software development.

I decided to go to Okanagan College in Kelowna and take a 2-year diploma
program. I would have considered taking a university degree program, but the
cost was too prohibitive for my meager financial means at the time (I was
denied access to student loans because of a technicality in the application
process). I got a job at the Keg Restaurant in Kelowna and worked full-time as
a dishwasher, cook, and server while I was going to college so that I could
make ends meet. The Computer Information Systems program had a co-op

option that allowed me to get some work experience at a small software
company in Mission, British Columbia, which was a provider of financial
products for school districts and municipalities. This was a great launch pad
for my career as a software developer, as I was given a lot of freedom and
authority to build and enhance enterprise products. I graduated from college
in late 1992 with a CIS diploma and entered the workforce as a software
developer.

One thing that my family always emphasized to me was to focus on solving
problems in a repeatable manner. It is not a good use of time to have to
reinvent the wheel each time you encounter a problem—it is better to build a
solution that you can utilize over and over. In my early software career this
served me well, as it is a mind-set that is essential to building software
products. And going beyond single-use applications, my passion was on
building tools that could be utilized to build many types of software products.
Essentially, this involved creating libraries or frameworks that could be the
building blocks for larger applications. Between 1993 and 2001 I worked in a
variety of private and public software product environments, creating many
tools and frameworks in different languages, in different environments, and
on different hardware platforms.

The Dot-Com Era

In 2001—2002, I was working for a medium-sized software consulting
company in Abbotsford, British Columbia, that was providing outsourced
software development services to a variety of large U.S. clients specializing
primarily in e-learning initiatives. The internal push was to achieve CMM 3.0
on a fairly aggressive schedule so that we could compete with the emerging
outsourcing powerhouses from India and China. As a result there was an
incredible amount of focus on process and procedure and somewhat less
focus on the technical aspects of software engineering. Because the majority
of the client base was interested in the J2EE platform, the company primarily
hired resources with Java skills—leaving me with my legacy Microsoft
background to assume more of an internal-development and project-
management role. The process improvement exercise consumed a lot of time
and energy for the company, attempting to better define roles and
responsibilities and ensuring proper documentation throughout the project
life cycle. Delving into CMM and the PMBOK were great educational benefits
for me—skills that would prove to be invaluable in future endeavors.
Ultimately, the large U.S. clients decided to test the overseas outsourcing
options anyway, which resulted in severe downsizing for the company. It was
during these tumultuous times that I recognized the potential of the newly
released .NET Framework (beta) and decided that I would need to take my
own initiative to learn this exciting new platform to preserve my long-term
employment outlook.

For a number of years, I had been maintaining an amateur hockey statistics
application as a sideline hobby business. The client application was written in
Visual Basic 6.0 with a Microsoft Access backend and I augmented it with a
simplistic web publishing service using Active Server Pages 3.0 and SQL
Server 7.0. However, better integration with the World Wide Web was quickly
becoming the most highly requested enhancement, and I concluded that an
exploration into ASP.NET was the best way to enhance the application and at
the same time acquire the skills necessary to adapt to the changing landscape.
My preferred approach to learning new technologies is to experience them
firsthand rather than through theory or traditional education. It was during a
Microsoft Developer Days conference in Vancouver, British Columbia, in
2001 that I became aware of a reference application known as the IBuySpy
Portal.

IBuySpy Portal

Realizing the educational value of sample applications, Microsoft built a
number of source projects that were released with the NET Framework 1.0
Beta to encourage developers to cut their teeth on the new platform. These
projects included full source code and a liberal End User License Agreement
(EULA), which provided nearly unrestricted usage. Microsoft co-developed
the IBuySpy Portal with Vertigo Software and promoted it as a “best practice’
example for building applications in the new ASP.NET environment. Despite
its obvious shortcomings, the IBuySpy Portal had some strong similarities to
both the Microsoft SharePoint Portal and Content Management Server, as
well as other open source CMS applications on the
Linux/Apache/mySQL/PHP (LAMP) platform. The portal allowed you to
create a completely dynamic website consisting of an unlimited number of
virtual “tabs” (pages). Each page had a standard header and three content
panes—a left pane, middle pane, and right pane (a standard layout for most
portal sites). Within these panes, the administrator could dynamically inject
“modules”—essentially mini-applications for managing specific types of web
content. The IBuySpy Portal application shipped with six modules designed to
cover the most common content types (announcements, links, images,
discussions, html/text, and XML) as well as a number of modules for
administrating the portal site. As an application framework, the IBuySpy
Portal (see Figure 1.1) provided a mechanism for managing users, roles,
permissions, tabs, and modules. With these basic services, the portal offered
just enough to whet the appetite of many aspiring ASP.NET developers.

H

a1 portal - Macrosolt Intermet Explores

h L& Yew Fgeotes Jook e
| ac - = - QD A Dowwtr aifevtes Jrey 3 D w R
{l m-u 1] et {focathost Port shvBDesbaophel skt ssp

Welc prme dair@anppages.coml Ferial Hoepe Portal Decwmeniation | m;nil -

IBH‘,‘S]'H;" Portal rm

Employoe It Product Info Dlscussdons About the Portal Admin

Welcome to the IBuySpy Portal et This Week's Special a2

Quick Lawnch Add Link

& 450 NET Sitn Welcoene to e [fuySpy Portal, the Irtranet Horme for 1[BaySpry's The QLTI112 Bocument Tranwpartation

. das. - corporate srrplorest, Thes dite serves o the hub spplication for Systom i of dpacisl this waak 1o dlaar 44
[+ P
GoDettist.com 18U Soy's crtwrnal operations, 1t provides onling naws, svant and ,“_"?‘"I"o'-."_ p_"‘"{"‘l'_' rs of :h‘! P30 Escape
& LEP NET on MEDN sales informalion, alsng wih interactive ducytisen forume and VNG LAF] Tevee ofw irel

employes cantact inferrnabon, In & nutsheli, everything needed to
GuckStart Samples . mamtan snd run the fast-gromng lBuy Spy commeros! empire.

Faal fres to browie Bhe d88 a0 axplora. Saas in b abtach sdR
ACOREE to differant modyles mitfun the framewnnk, & well 53 vaw
the restrcted decbong of the e ——

News and Features Add New Announcement l
04 Sales Rise Z00% Over Last Year ja "

[BiypSpy s daled Mo the crucesl Taurth quirter of ladt year rede fmaddy 200% aver
this frdvadnk pear, Seipie & lackdaates hohday saled averall, read Mo

Upcoming Events Add New Event
o b e Top Movers Eda
Thws m.—,r;u, ey cecrel Bme and Disce i
IT'e back! The premier regonsl swag meet for sy paraphernahs of every desconpban Product Revenue Growth
II5:-:4:» warly for some BMATAD Darging Cotegory {Mitlions)

Dark Bps Sock Wop | 0
Saturday, £pm 1o 3, Dark Ops Cafe frav s s
Back by popular demand! Fractce your surveillance of the opposie sex, and dance LT E g a5 Th

5 h e LA
some teo. Grest cpportunity for 8 brush passt D ; 10 & A
RS 4

&l [T ¥ Local miranet

Figure 1.1

ASP.NET

The second critical item that Microsoft delivered at this point in time was a
community forums page on the www.asp.net website (see Figure 1.2). This
forum provided a focal point for Microsoft developers to meet and collaborate
on common issues in an open, moderated environment. Prior to the release of
the forums on www.asp.net, there was a real void in terms of Microsoft
community participation in the online or global sphere, especially when
compared to the excellent community environments on other platforms.

2 ASPNET Forums (Logged in as: sbwalker) - Microsoft Internet Explorer

File Edit View Favortes Tools Help a'!sg.d
d=Back - = - @ 2] | Qoearch [ifFavorites Wreda (P - S H H 4
Address IE] hitkp: ffwwen asp et iForums j oGO

Micros) Search For ASP.NET Answers
L

% Forums © Knowiedys Base

Home Forume Condrol Galery | Tutorials Web Mainix Mobile Downloads Resowrces Starter Mgz 1=

ASP.NET Fﬂrumﬁ :‘:iIEcme gﬁo_lrch @-’-‘wf'le :EELGQO-R @Myl’orum: El’uodurﬂ'cn

Source Discussions

J Source Discussions

(Jawy Quickstarts 01-25-2005 11147 PM
137 288 =
Discuss the ASPNET Quickstart sample applications. by juzcuba¥
Iﬂuﬁm Store 676 2,307 D2-01-2005 E?.siu__loa M
Discussing the IBuySpy storefront e-commerce sample solution, IBS Home Email List by wladi%=
Tewy 1BuySpy Portal |
o D2-01-2005 11:48 AM
= Ciscussing the IBuySpy portal sample solution, [BS Home Email List 3,441 13,914 by ghalia®el
{sub-forums: Custom Modules) .
p s |
Fosh, ASPE.NET Forums Discussions 02-01-2005 11101 AM
Discuss the ASP.MET Forums bugs, ete, 2, 4BE T,ET4 b e
(sub-forums: LT L
Hewy Cassini Sample Web Server e 1419 D1725-2008 11,05 AM |
"7/ Discuss the source code to the Cassini Sample Web Server, i by imieaay |
DaotHetMuke
02-01-2005 11;42 PM
Forum for discussing Dothethuke, DNH Home Ernail List LLEESE (Ferd by arikuh 4]
(sub-forums: Getting Started, Core Framework, Resources, Custom Modules) |
7 Intemet Explorer Web Controls 62-01-2005 07,59 PM
[l 2,296 7,298
Q General discussion of the Intermet Explorer Web Controls source package. by yasstrd |
] Done [

Figure 1.2

One discussion forum on the www.asp.net site was dedicated to the discussion
of the IBuySpy Portal application, and it soon became a hotbed for developers
to discuss their enhancements, share source code enhancements, and debate
IT politics. I became involved in this forum early on and gradually increased
my community participation as my confidence in ASP.NET and the IBuySpy
Portal application grew.

To appeal to the maximum number of community stakeholders, the IBuySpy

http://www.asp.net
http://www.asp.net
http://www.asp.net

Portal was available in a number of different source-code release packages.
There were VB.NET and C#.NET language versions, each containing its own
VS.NET and SDK variants. Although Microsoft was aggressively pushing the
newly released C# language, I did not feel a compelling urge to abandon my
familiar Visual Basic roots. In addition, my experience with classic ASP 3.0
allowed me to conclude that the new code-behind model in VS.NET was far
superior to the inline model of the SDK. As luck would have it, I was able to
get access to Visual Studio.NET through my employer. So as a result, I moved
forward with the VB.NET/VS.NET version as my baseline framework. This
decision ultimately proved to be extremely important in terms of community
acceptance, as I explain later.

When I first started experimenting with the IBuySpy Portal application, I had
some specific objectives in mind. To support amateur sports organizations, I
had collected a comprehensive set of end-user requirements based on actual
client feedback. However, after evaluating the IBuySpy Portal functionality, it
quickly became apparent that some significant enhancements were necessary
if I hoped to achieve my goals. My early development efforts, although
certainly not elegant or perfectly architected, proved that the IBuySpy Portal
framework was highly adaptable for building custom applications and could
be successfully used as the foundation for my amateur sports hosting
application.

The most significant enhancement I made to the IBuySpy Portal application
during these early stages was a feature that is now referred to as “multi-
portal” or “site virtualization.” Effectively, this was a fundamental
requirement for my amateur sports hosting model. Organizations wanted to
have a self-maintained website, but they also wanted to retain their individual
identity. A number of vendors emerged with semi-self-maintained web
applications, but nearly all of them forced the organization to adopt the
vendor's identity (that is, www.vendor.com/clientname rather than
www.clientname.com). Although this may seem like a trivial distinction for
some, it has some major effects in terms of brand recognition, site discovery,
search engine ranking, and so on. The IBuySpy Portal application already
partitioned its data by portal (site), and it had a field in the Portals database
table named PortalAlias that was a perfect candidate for mapping a specific
domain name to a portal. It was as if the original creators (Microsoft and
Vertigo) considered this use case during development but did not have
enough time to complete the implementation, so they simply left the “hook”

http://www.vendor.com/clientname
http://www.clientname.com

exposed for future development. I immediately saw the potential of this
concept and implemented some logic that allowed the application to serve up
custom content based on domain name. Essentially, when a web request was
received by the application, it would parse the domain name from the URL
and perform a lookup on the PortalAlias field to determine the content that
should be displayed. This site virtualization capability would ultimately
become the “killer” feature that would allow the application to achieve
immediate popularity as an open source project.

Over the next 8 to 10 months, I continued to enhance and refactor the
IBuySpy Portal application as I created my own custom implementation (now
code-named SportsManager.Net). I added numerous features to improve the
somewhat limited portal administration and content management aspects. At
one point, I enlisted the help of another developer, John Lucarino, and
together we steadily improved the framework using whatever spare time we
were able to invest. Unfortunately, because all of this was going on outside of
regular work hours, there was little time that could be focused on building a
viable commercial venture. So at the end of 2002, it soon became apparent
that we did not have enough financial backing or a business model to take the
amateur sports venture to the next level. This brought the commercial nature
of the endeavor under scrutiny. If the commercial intentions were not going
to succeed, I at least wanted to feel that my efforts were not in vain. This
forced me to evaluate alternative noncommercial uses of the application.
Coincidentally, I had released the source code for a number of minor
application enhancements to the www.asp.net community forum during the
year, and I began to hypothesize that if I abandoned the amateur sports
venture altogether, it was still possible that my efforts could benefit the larger
ASP.NET community.

The fundamental problem with the IBuySpy Portal community was the fact
that there was no central authority in charge of managing its growth.
Although Microsoft and Vertigo developed the initial code base, there was no
public commitment to maintain or enhance the product in any way. Basically
the product was a static implementation, frozen in time, an evolutionary
dead-end. However, the IBuySpy Portal EULA was extremely liberal, which
meant that developers were free to enhance, license, and redistribute the
source code in an unrestricted manner. This led to many developers creating
their own customized versions of the application, sometimes sharing discrete
patches with the general community, but more often keeping their

http://www.asp.net

enhancements private, revealing only their public-facing websites for
community recognition (one of the most popular threads at this time was
titled “Show me your Portal”). In hindsight, I really don't understand what
each developer was hoping to achieve by keeping his enhancements private.
Most probably thought there was a commercial opportunity in building a
portal application with a richer feature set than their competitors. Or perhaps
individuals were hoping to establish an expert reputation based on their
public-facing efforts. Either way, the problem was that this mind-set was
really not conducive to building a community but rather to fragmenting it—a
standard trap that tends to consume many things on the Microsoft platform.
The concept of sharing source code in an unrestricted manner was really a
foreign concept, which is obviously why nobody thought to step forward with
an organized open source plan.

I have to admit I had a limited knowledge of the open source philosophy at
this point because all of my previous experience was in the Microsoft
community. However, there was chatter in the forums at various times
regarding the organized sharing of source code, and there was obviously some
interest in this area. The concept of incorporating the best enhancements into
a rapidly evolving open source application made a lot of sense because it
benefited the entire community and created a wealth of opportunities for
everyone. Coincidentally, a few open source projects had recently emerged on
the Microsoft platform to imitate some of the more successful open source
projects in the LAMP community. In evaluating my amateur sports
application, I soon realized that nearly all of my enhancements were generic
enough that they could be applied to nearly any website—they were not
sports-related whatsoever. I concluded that I should release my full
application source code to the ASP.NET community as a new open source
project. So, as a matter of fact, the initial decision to open source what would
eventually become DotNetNuke happened more out of frustration of not
achieving my commercial goals rather than true philanthropic intentions.

IBuySpy Portal Forum

On December 24, 2002, I released the full open source application by creating
a simple website with a Zip file for download. The lack of foresight of what
this would become was extremely evident when you consider the casual
nature of this original release. However, as luck would have it, I did do a few
things right. First, I thought I should leverage the IBuySpy brand in my own
open source implementation so that it would be immediately obvious that the
code base was a hybrid of the original IBuySpy Portal application, an
application with widespread recognition in the Microsoft community. The
name I chose was IBuySpy Workshop because it seemed to summarize the
evolution of the original application. Rather than assume individual
responsibility for the project, I released IBuySpy Workshop as a product of
Perpetual Motion Interactive Systems Inc., my personal consulting company.
Ironically, I did not even have the domain name resolution properly
configured for www.ibuyspyworkshop.com When I released (the initial
download links were based on an IP address,
http://65.174.86.217/ibuyspyworkshop). The second thing I did right was to
require people to register on my website before they were able to download
the source code. This allowed me to track the actual interest in the application
at a more granular level than simply by the total number of downloads. Third,
I publicized the availability of the application in the IBuySpy Portal Forum on
wuw.asp.net (see Figure 1.3). This particular forum was extremely popular at
this time; and as far as I know, nobody had ever released anything other than
small code snippet enhancements for general consumption. The original post
was made on Christmas Eve, December 24, 2002, which had excellent
symbolism in terms of the application being a gift to the community.

http://www.ibuyspyworkshop.com
http://65.174.86.217/ibuyspyworkshop
http://www.asp.net

| Thread: Merry Christrnas! - Ho! Ho! Ho! - FREE 15S Multi-Portal Impdementation

o shwalker

Merry Christmas! - Hol Hol Hol - FREE 1BS Multi-Portal Implementation
Posted: 12-24-2002 02147 PM

A FREE multi-portal implementation based on the 1BuySpy Portal Solution Kit was released today. The code allows you to run multiple portals
from a single codebase/database { portals are identified by their uniqgue demain names). Effectively this allows you to run multiple
independent websites from a single ASP NET/SQL Server hosted account.

The code base incorporates a wide variety of custom software enhancements implemented over the past year, Although too numerous to
mention, these include many back-end "plumbing® enhancements to improve the overall design and object-oriented nature of the IBS
reference implementation.

In order to gain access to the source code { VB.NET only at this point), vou simply need to Register on the following site:

1BuySpy Workshop

This is my way of giving back to the community..,

Merry Christmas & Happy New Year!

Shaun Walker
Perpetual Mation Interactive Systems Ine

postreply) (Ceditpost)

| Moderate Post: 111390 [beiete Post | £dit Bost | Modaration History | Mous Fost

Figure 1.3

IBuySpy Workshop

The public release of the IBuySpy Workshop (see Figure 1.4) created such a
surge in forum activity that it was all I could do to keep up with the feedback,
especially because this all occurred during the Christmas holidays. I had a
family vacation booked for the first two weeks of January, and I left for
Mexico on January 2, 2003 (one week after the initial IBuySpy Workshop
release). At the time, the timing of this family vacation seemed poor because
the groundswell of interest in the IBuySpy Workshop seemed like it could
really use my dedicated focus. However, in hindsight the timing could not
have been better because it proved that the community could support itself—a
critical element in any open source project. When I returned home from
vacation, I was amazed at the massive response the release achieved. The
IBuySpy Portal Forum became dominated with posts about the IBuySpy
Workshop, and my Inbox was full of messages thanking me for my efforts
and requesting me to provide support and enhancements. This certainly
validated my decision to release the application as an open source project but
also emphasized the fact that I had started a locomotive down the tracks and
it was going to take some significant engineering to keep it on the rails.

'a IBuySpy Workshop - Microsoft Internet Explorer 1 =-|0] x|

|'Fla Edk Wiew Fawvortes Took Help Fend |-
wBack » = -) 7] | Qoearch [BfFavortes @Media (4 BN S S 5 2l .
Address I hitp: [flocahost {IBuySpyWorkshap El PG | Lnks *| & Snaglt = _

® =
Igé ;'

Workshop

Home

February 02, 2005

Account Login Welcome to the IBuySpy Workshop... =
Email: Administrator Login:
I Email: demo
Password: dema
Password: * Select the Admin tab to manage the portal settings as the Administrator
| Super User Lagin:
Ernail: supar
™ Remerber Login Password: super
L: R
il * Select the Super User Ink. { below the Logoff link) ta manage multiple portals as the Super User
ke

Ciriginal IBuySpy Portal source code modified by Shaun Waker of Perpetual Motion Interactive Svstems Inc,

Source code is provided without Warranty or Support

Copyright 2002 [BuySpy Workshop

Powered by IBuySpy Workshop Terms Of Use Privacy Statement

& [BE Localntranet

Figure 1.4

Over the next few months, I frantically attempted to incorporate all
community suggestions into the application while at the same time keep up
with the plethora of community support questions. Because I was working a
day job that prevented effort on the open source project, most of my evenings
were consumed with work on the IBuySpy Workshop, which definitely caused
some strain on my marriage and family life. Four hours of sleep per night is
not conducive to a healthy lifestyle, but, like I said, the train was rolling, and I
had a feeling the project was destined for bigger things.

Supporting a user base through upgrades is fundamental in any software
product. This is especially true in open source projects where the application
can evolve quickly based on community feedback and technical
advancements. The popular software notion is that “no user should be left on
an evolutionary dead end.” As luck would have it, I had designed a reliable

upgrade mechanism in the original sports management application that I
included in the IBuySpy Workshop code base. This feature enabled users of
the application to easily migrate from one release version to the next—a
critical factor in keeping the community engaged and committed to the
evolution of the product.

In February 2003, the IBuySpy Portal Forum had become so congested with
IBuySpy Workshop threads that it started to become difficult for the two
communities to coexist peacefully. At this point, I sent an email to the
webmaster address posted at the bottom of the forums page on the
www.asp.net Site with a request to create a dedicated forum for the IBuySpy
Workshop. Because the product functionality and source code of the two
applications diverged so significantly, my intent was to try to keep the forum
posts for the two applications separated, providing both communities the
means to support their membership. I certainly did not have high hopes that
my email request was even going to be read—let alone granted. But to my
surprise, I received a positive response from none other than Rob Howard (an
ASP.NET icon), which proved to be a great introduction to a long-term
partnership with Microsoft. Rob created the forum and even went a step
further and added a link to the Source Download page of the www.asp.net site,
an event that would ultimately drive a huge amount of traffic to the emerging
IBuySpy Workshop community.

There are a number of reasons why the IBuySpy Workshop became so
immediately popular when it was released in early 2003. The obvious reason
is because the base application contained a huge number of enhancements
over the IBuySpy Portal application, and people could immediately leverage
them to build more powerful websites. From a community perspective, the
open source project provided a central management authority that was
dedicated to the ongoing growth and support of the application framework, a
factor that was definitely lacking in the original IBuySpy Portal community.
This concept of open source on the Microsoft platform attracted many
developers—some with pure philosophical intentions, and others who viewed
the application as a vehicle to further their own revenue-generating interests.
Yet another factor, which I think is often overlooked, relates to the
programming language on which the project was based. With the release of
the .NET Framework 1.0, Microsoft spent a lot of energy promoting the
benefits of the new C# programming language. The C# language was
intended to provide a migration path for C++ developers as well as a means to

http://www.asp.net
http://www.asp.net

entice Java developers working on other platforms to switch. This left the
Visual Basic and ASP 3.0 developer communities feeling neglected and
somewhat unappreciated. The IBuySpy Workshop, with its core framework in
VB.NET, provided an essential community ecosystem where legacy VB
developers could interact, learn, and share.

Subscription Fiasco

In late February 2003, the lack of sleep, family priorities, and community
demands finally came to a head and I decided that I should reach out for help.
I contacted a former employer and mentor, Kent Alstad, with my dilemma,
and we spent a few lengthy telephone calls brainstorming possible outcomes.
However, my personal stress level at the time and my urgency to change
direction on the project ultimately caused me to move too fast and with more
impulsiveness than I should have. I announced that the IBuySpy Workshop
would immediately become a subscription service where developers would
need to pay a monthly fee to get access to the latest source code. From a
personal perspective, the intent was to generate enough revenue that I could
leave my day job and focus my full energy on the management of the open
source project. And with 2,000 registered users, a subscription service
seemed like a viable model (see Figure 1.5).

m Thread: Subseription Model for IBSW

@ | Subscription Model for IBSW
sbualker Posted: 02-25-2003 12149 AM

Dear User,

With the latest release, 1BuySpy Worlkishop has undergone some serious changes in
terms of its revenue model. Having evolved as a free developer-oriented site,

the IBSW has outgrown s limited resources and simply can not continue without
some type of formalized cash flow. As a result, IBEW is being migrated to &
subscription based model where users must pay & monthly fee to gein aceess to
the product/services, Pleass nots this change doss not mean the project is
dropping its Open Source philosophy, as the full source version will still be
available for dewnload,

with careful consideration the currant users of the IBSW have been categorized
into two distnct groups, The Standard group has downloaded the applicabtion and
is using its features to operate Internet/Intranst websites { which may include
lewveraging the multi-portal capability to sell subhosting sarvices). The
Developer group is more interested in examining/modifying the source code with
the purpose of gaining insight/education into the new MET platform ., Although
both of these groups have different perspectives, they both feel there 1=
significant value in the current product and have & desire to be active in the
EMerging community .

Having researched the current market, there 15 significant demand for an sntry
laval portal/CMS application to cater to small to madium sized clients, The
1BuySpy Workshop is well positioned to satisfy this market niche so long as the
current momentum continues. And when you take into consideration the price tag
for some of the commercial products in this area { 12, SharePoint = §30,000, M=
Content Management Server = $50,000) the proposed subscription fee seems
reasonable,

Standard Membership = $19.95/manth { full-featured application does not include
source code)

Developar Membership = $29.95/month (full-featured spplication incleding source
code)

Lifetime Membership { contributing members receive free access to all resources

)

There are already those in the community who have created Custom Modules for
IBSW and are in the process of offering them for sale, It is not surprising that
there is a significant opportunity for developers to generate revenue from their
efforts, We are currently working on addressing some of the architectural
liritations of the anginal IBS Portal so that Custorn Modules can be offered as
seamless plug-ins { without dealing with recompilation or datzbase scripting
issues). IBEW is a managed code base and will not be limited by the static
problems imposed by the original 1BS Portal.

1 am sure the change in revenue model will likely aliensts sorme developers who
feel the intentions of IBSW have been misrepresented in some way, But the fact
is commercialization is somatimas & necessary avil in order to ba able to
achieve higher goals, As a result of the changes, IBSW will remain community
funded, community focussed, and community driven,

Thank you, we appreciate your support.,.

1BuySpy Workshop

Shaun Walker
Perpetual Motion Interactive Systems Inc
htto iff www. perpetualmeotion.ca

(postreply) (editpost)

| Moderate Post: 155889 [Dalete Post | Edit Fost | Moderation Histary | Mows Post] |

Figure 1.5

However, the true philosophy of the open source model immediately came to
light, and I had to face the wrath of a scorned community. Among other
things, I was accused of misleading the community, lying about the open
source nature of the project, and letting my personal greed cloud my vision.

For every one supporter of my decision, there were 10 more who publicly
crucified me as the evil incarnate. Luckily for me, Kent had a trusted work
associate named Andy Baron, a senior consultant at MCW Technologies and a
Microsoft Most Valuable Professional since 1995, who has incredible wisdom
when it comes to the Microsoft development community. Andy helped me
craft a public apology message (see Figure 1.6) that managed to appease the
community and restore the IBuySpy Workshop to full open source status.

Previous Thread :: Mest Thread

o sbwalker And now the good news...
e Posted: 02-25-2003 10:52 PM

Weall, I guess I've done a pretty good job of proving that I'm a much worse businessman than developer.

Thi€ad: And 00w the §0od news...

I'm thankful to the community that the overwhelming tone of your response has been supportive and forgiving. But I realize now that I made a
big mistake by proposing a subscription madel, It wasn't fair, and it probably wouldn't have worked anyway.

1 wish I could just roll back time, but I'm doing the next bast thing: 1 humbly withdraw the proposed change to a subseription model. If you
paid for & subscription, I'll gladly refund your money. In the future, if you wish to contribute financially, I will implement & donations option on
the site,

I'm considering all the suggestions that carme in, and maybe I'll implement some of therm, But the only suggestons 1'm considenng are things
like providing a way to make voluntary contribubions, or offering optional modules or services for sale,

I've completely abandoned any thought of demanding payment from those who want to continue participating in this great community project.
I'm also pleased to report that Microsoft has offered to kick in to support the continued growth of the IBSW community. We haven't worked out
the details, and I'm not even sure it'll come to anything, but I"ve seen that they want to keep this open process going, and I'm committed to
making that happen,

So, please forgive me, and let's get back to talking about code not money. I promise not to screw up like that again!

And last, but not least, the latest Open Source release (wersion 1,04)15 now available on the site for download by Registered Users,

Bhaun Walker
Parpatual Motion Interactive Systems Inc
beep v e, pa rpatu s Faati on, 25

(Cpostreply) [edit post)

| Moderate Post: 157019 [Delste Post | Edit Post | Modaration History | Move Post]

Figure 1.6

Microsoft

Coincidentally, the political nightmare I created in the IBuySpy Workshop
Forum with my subscription announcement resulted in some direct attention
from the Microsoft ASP.NET product team (the maintainers of the
www.asp.net Site). Still trying to recover from the damage I incurred to the
goodwill of the project, I received an email from none other than Scott
Guthrie (co-founder of the Microsoft ASP.NET Team), asking me to
reexamine my decision on the subscription model and making suggestions on
how the project could continue as a free, open source venture. It seemed that
Microsoft was protective of its evolving community and did not want to see
the progress in this area splinter and dissolve just as it seemed to be gaining
momentum. Scott Guthrie made no promises at this point, but he did open a
direct dialogue that ultimately led to some fundamental discussions on
sponsorship and collaboration. In fact, this initial email led to a number of
telephone conversations and ultimately an invitation to Redmond to discuss
the future of the IBuySpy Workshop.

I still remember the combination of nerves and excitement as I drove from
my home in Abbotsford, British Columbia, to Microsoft's head office in
Redmond, Washington (about a 3-hour trek). I really did not know what to
expect, and I tried to strategize all possible angles. Essentially all of my
planning turned out to be moot because my meeting with Scott Guthrie
turned out to be far more laidback and transparent than I could have ever
imagined. Scott took me to his unassuming office, and we spent the next 3
hours brainstorming ideas about how the IBuySpy Workshop fit into the
current ASP.NET landscape. Much of this centered on the evolving vision of
ASP.NET 2.0—an area where I had little or no knowledge prior to the meeting
(the Whidbey Alpha had not even been released at this point).

At the beginning of the meeting, Scott had me demonstrate the current
version of the IBuySpy Workshop, explaining its key features and benefits.
We also discussed the long-term goals of the project as well as my proposed
roadmap for future enhancements. Scott's knowledge of both the technical
and community aspects of the ASP.NET platform really amazed me—I guess
that's why he is the undisputed “Father of ASP.NET.” In hindsight, I can
hardly believe my good fortune to have received three dedicated hours of his
time to discuss the project—it really changed my “ivory tower” perception of
Microsoft and forged a strong relationship for future collaboration.

http://www.asp.net

Upon leaving Redmond, I had to stifle my excitement as I realized that,
regardless of the direct interaction with Microsoft, I personally was still in the
same situation as before the subscription model announcement. Because the
subscription model failed to generate the much-needed revenue that would
have allowed me to devote 100 percent of my time to the project, I was forced
to examine other possible alternatives. There were a number of suggestions
from the community and the concept that seemed to have the most potential
was related to web hosting.

In these early stages, there were few economical Microsoft Windows hosting
options available that offered an SQL Server database—a fundamental
requirement for running the IBuySpy Workshop application. Coincidentally, I
had recently struck up a relationship with an individual from New Jersey who
was active in the IBuySpy Workshop forums on www.asp.net. This individual
had a solid background in web hosting and proposed a partnership whereby
he would manage the web hosting infrastructure, and I would continue to
enhance the application and drive traffic to the business. Initially there were a
lot of community members who signed up for this service—some because of
the low-cost hosting option, others because they were looking for a way to
support the open source project. It soon became obvious that the costs to
build and support the infrastructure were consuming the majority of the
revenue generated. And over time the amount of effort to support the growing
client base became more intense. Eventually it came to a point where it was
intimated that my contributions to the web hosting business were not
substantial enough to justify the current partnership structure. I was
informed that the partnership should be dissolved. This is where things got
complicated because there was never any formal agreement signed by either
party to initiate the partnership. Without documentation, it made the
negotiation for a fair settlement difficult and resulted in some bad feelings on
both sides. This was unfortunate because I think the relationship was formed
with the best intentions, but the demands of the business resulted in a poor
outcome. Regardless, this ordeal was an important lesson I needed to learn:
regardless of the open source nature of the project, it was imperative to have
all contractually binding items properly documented.

http://www.asp.net

DotNetNuke

One of the topics that Scott Guthrie and I discussed in our early
conversations was the issue of product branding. IBuySpy Workshop achieved
its early goals of providing a public reference to the IBuySpy Portal
community. This resulted in an influx of ASP.NET developers who were
familiar with the IBuySpy Portal application and were interested in this new
open source concept. But as the code bases diverged, there was a need for a
new project identity—a unique brand that would differentiate the community
and provide the mechanism for building an internationally recognized
ecosystem. Research of competing portal applications on other platforms
revealed a strong tendency toward the “nuke” slogan.

The “nuke” slogan was originally coined by Francisco Burzi of PHP-Nuke
fame (a pioneering open source content management system). Over the
years, a variety of other projects adopted the slogan as well—so many that the
term had obtained industry recognition in the portal-application genre. To my
surprise, a WHOIS search revealed that dotnetnuke.com, .net, and .org were
not registered and, in my opinion, seemed to be the perfect identity for the
project. Again emphasizing the bare-bones resources under which the project
was initiated, my credit card transaction to register the three domain names
was denied, and I was only able to register dotnetnuke.com (in the long run an
embarrassing and contentious issue as the .net and . org domain names were
immediately registered by other individuals). Equally as spontaneous, I did an
Internet search for images containing the word “nuke” and located a three-
dimensional graphic of a circular gear with a nuclear symbol embossed on it. I
contacted the owner of the site and was given permission to use the image (it
was, in fact, simply one of many public domain images they were using for a
fictitious storefront demonstration). A new project identity was born—version
1.0.5 of the IBuySpy Workshop was rebranded as DotNetNuke, which the
community preferred to abbreviate to “DNN” for simplicity (see Figure 1.7).

http://dotnetnuke.com
http://dotnetnuke.com

| Thread: Community Re-branding...

o sbwalker

Figure 1.7

Community Re-branding...

Postad: 03-02-2003 10116 AM

1BuySpy is an industry recognized brand for the Microsoft platform and has proven to be a good marketing tool for getting the the new
workshop open source community off the ground. However, moving forward I am proposing we drop the IBuySpy branding to
differentiste our community from the other reference implementations { IBuySpy, Starter Kits),

I recently purchased the www.dotnetnuke.com damain. The Nuke brand has significant industry recognition in the PHR/MySOLLINU: open
SOUrCE community in regards to Portal/Content Management Systems, With derivatives such as PHP-Nuke, MyPHFMuke, and Posthuke it
has achieved considerable success during its short lifetime. Market competitors such as Java are also planning on leveraging this brand to
promote their platfiorm { www.javanuke,com). I think this i a great opportunity for our community (both [BSW and Windows) to
distinguish ourselves.

Here is a preliminary look at a conceptual logo:

Laotiethuke

‘What are your thoughts??

Shaun Walker
Parpatual Motion Interactive Systems Inc

(postreply) (edit post)

| Moderate Post: 160986 [Daiste Post | Edit Post | Modaration History | Mowe Past]

Licensing

A secondary issue that was not addressed during the early stages of the
project was licensing. The original IBuySpy Portal was released under a liberal
Microsoft EULA license that allowed for unrestricted usage, modification, and
distribution. However, the code base underwent such a major transformation
that it could hardly be compared with its predecessor. Therefore, when the
IBuySpy Workshop application was released, I did not include the original
Microsoft EULA, nor did I include any copyright or license of my own.
Essentially this meant that the application was in the public domain. This is
certainly not the most accepted approach to an open source project, and
eventually some of the more legal-savvy community members brought the
issue to a head. I was forced to take a hard look at open source licensing
models to determine which license was most appropriate for the project.

In stark contrast to the spontaneous approach taken to finding a project
identity, the licensing issue had much deeper ramifications. Had I not
performed extensive research on this subject, I would have likely chosen a
GPL license because it seemed to dominate the vast majority of open source
projects in existence. However, digging beneath the surface, I quickly realized
that the GPL did not seem to be a good candidate for my objectives of
allowing DotNetNuke to be used in both commercial and noncommercial
environments. Ultimately, the selection of a license for an open source
project is largely dependent upon your business model, your product
architecture, and understanding who owns the intellectual property in your
application. The combination of these factors prompted me to take a hard
look at the open source licensing options available.

For those of you who have not researched open source software, you would
be surprised at the major differences between the most popular open source
licensing models. It is true that these licenses all meet the standards of the
Open Source Definition, a set of guidelines managed by the Open Source
Initiative (OSI) at opensource.org. These principles include the right to use
open source software for any purpose, the right to make and distribute copies,
the right to create and distribute derivative works, the right to access and use
source code, and the right to combine open source and other software. With
such fundamental rights shared among all open source licenses, it probably
makes you wonder why there is need for more than one license at all. Well,
the reason is because each license has the ability to impose additional rights

http://opensource.org

or restrictions on top of these base principles. The additional rights and
restrictions have the effect of altering the license so that it meets the specific
objectives of each project. Because it is generally bad practice to create brand-
new licenses (based on the fact that the existing licenses have gained industry
acceptance as well as a proven track record), people generally gravitate toward
either a GPL or BSD license.

The GPL License (or GNU General Public License) was created in 1989 by
Richard Stallman, founder of the Free Software Foundation. The GPL License
is what is now known as a “copyleft” license, a term coined based on its
controversial reciprocity clause. Essentially, this clause stipulates that you are
allowed to use the software on the condition that any derivative works that
you create from it and distribute must be licensed to all under the same
license. This is intended to ensure that the software and any enhancements to
it remain in the public domain for everyone to share. Although this is a great
humanitarian goal, it seriously restricts the use of the software in a
commercial environment.

The MIT License (a variation of the Berkeley Software Distribution License)
was created by the University of California and was designed to permit the
free use, modification, and distribution of software without any return
obligation on the part of the community. The MIT License is essentially a
“copyright” license, meaning that you are free to use the software on the
condition that you retain the copyright notice in all copies or derivative
works. The MIT License is also known as an “academic” license because it
provides the highest degree of intellectual property sharing.

Ultimately, I settled on a standard MIT License for DotNetNuke—a license
that allows the maximum licensing freedom in both commercial and
noncommercial environments with only minimal restrictions to preserve the
copyright of the project. The change in license went widely unnoticed by the
community because it did not impose any additional restrictions on usage or
distribution. However, it was a fundamental milestone in establishing
DotNetNuke as a true open source project:

DotNetNuke (r) - http://www.dotnetnuke.com

Copyright (c) 2002-2003 by Perpetual Motion Interactive Systems Inc.
(http://www.perpetualmotion.ca)

Permission is hereby granted, free of charge, to any person obtaining
a copy of

this software and associated documentation files (the "Software"), to
deal in

the Software without restriction, including without limitation the
rights to

use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies

of the Software, and to permit persons to whom the Software is
furnished to do

so, subject to the following conditions: The above copyright notice
and this

permission notice shall be included in all copies or substantial
portions of

the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO

EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES

OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE,

ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER

DEALINGS IN THE SOFTWARE.

Core Team

The next major milestone in the project's open source evolution occurred in
the summer of 2003. Up until this point, I had been acting as the sole
maintainer of the DotNetNuke code base, a task that was consuming 110
percent of my free time as I feverishly fixed bugs and enhanced the
framework based on community feedback. Still, I felt more like a bottleneck
than a provider in spite of the fact that I was churning out at least one
significant release every month leading up to this point. The more active
community members were becoming restless due to a lack of direct input into
the progress of the project. In fact, a small faction of these members even
went so far as to create their own hybrid or “fork” of the DotNetNuke code
base that attempted to forge ahead and add features at a more aggressive pace
than I was capable of on my own. These were challenging times from a
political standpoint because I was eventually forced to confront all of these
issues in a direct and public manner—flexing my “benevolent dictator”
muscles for the first time—an act I was not the least bit comfortable
performing. Luckily for me, I had a number of loyal and trustworthy
community members who supported my position and ultimately provided the
backing to form a strong and committed Core Team.

Most successful open source projects are comprised of a number of
community volunteers who earn their positions of trust and authority within
the community based on their specific expertise or community support
activities. This is known as a meritocracy, a term that means that an
individual's influence is directly proportional to the ability that the individual
demonstrates within the project. It's a well-observed fact that individuals with
more experience and skills have less time to devote to volunteer activities;
however, their minimal contributions prove to be incredibly valuable.
Similarly, individuals with less experience may be able to invest more time
but may only be capable of performing the more repetitive, menial tasks.
Building a healthy balance of these two roles is exactly what is required in
every successful open source project and, in fact, is one of the more
challenging items to achieve from a management perspective.

The original DotNetNuke Core Team members were selected based on their
participation and dedication to the DotNetNuke project in the months leading
up to the team's formation. In most cases, this was solely based on an
individual's public image and reputation established in the DotNetNuke

Forum on the www.asp.net website. And in fact, in these early stages, the
online persona of each individual proved to be a good indicator of the specific
skills he or she could bring to the project. Some members were highly skilled
architects, others were seasoned developers, and others were better at
discussing functionality from an end-user perspective and providing quality
support to their community peers.

To establish some basic structure for the newly formed Core Team, I
attempted to summarize some basic project guidelines. My initial efforts
combined some of the best Extreme Programming (XP) rules with the
principles of other successful open source projects. This became the basis of
the DotNetNuke Manifest document:

¢ Development is a team effort. The whole is exponentially greater than
the sum of its parts. Large-scale open source projects are viable only if a
large enough community of highly skilled developers can be amassed to
attack a problem. Treating your users as co-developers is your most
effective option for rapid code improvement and effective debugging.

¢ Build the right product before you build the product right. Focus
should be directed at understanding and implementing the high-level
business requirements before attempting to construct the perfect
technical architecture. Listen to your customers.

¢ Incremental development. Every software product has infinite growth
potential if managed correctly. Functionality should be added in
incremental units rather than attempting a monolithic implementation.
Release often but with a level of quality that instills confidence.

¢ Law of diminishing return. The majority of the effort should be
invested in implementing features that have the most benefit and widest
general usage by the community.

DotNetNuke version 1.0.10 was the proving grounds for the original Core
Team. The idea was to establish the infrastructure to support disconnected
team development by working on a stabilization release of the current
product. A lot of debate went into the selection of the appropriate source-
control system because, ironically enough, many of the Core Team had never
worked with a formal source control process in the past (a fact that certainly
emphasized the varied professional background of the Core Team members).
The debate centered on which source control system to use and ultimately the
familiarity with the Microsoft model won out. We decided to use the free

http://www.asp.net

WorkSpaces service on the GotDotNet website (a developer community site
supported by Microsoft). GotDotNet also provided a simplistic Bug Tracker
application that provided us with a means to manage the tracking of issues
and enhancement requests. With these infrastructure components in place,
we were able to focus on the stabilization of the application, correcting known
defects and adding some minor usability enhancements. It was during this
time that Scott Willhite stepped forward to assume a greater role of
responsibility in the project: assisting in management activities,
communication, prioritization, and scheduling.

A significant enhancement that was introduced in this stabilization release
came from a third party who had contacted me with some specific
enhancements they had implemented and wanted to contribute. The
University of Texas at El Paso had done extensive work making the
DotNetNuke application compliant with the guidelines of the American
Disabilities Association (ADA) and Section 508 of the United States
Rehabilitation Act. The U.S. government made compliancy mandatory for
most public organizations; therefore, this was a great enhancement for
DotNetNuke because it allowed the application to be used in government,
educational, and military scenarios. Bruce Hopkins became the Core Team
owner of this item in these early stages, a role that required a great deal of
patience as the rest of the team came to grips with the new concept.

Establishing and managing a team was no small challenge. On one hand,
there were the technical challenges of allowing multiple team members, all in
different geographic regions, to communicate and collaborate in a cost-
effective, secure environment. Certainly this would have never been possible
without the Internet and its vast array of online tools. On the other hand,
there was the challenge of identifying different personality types and
channeling them into areas where they would be most effective. Because
there are limited financial motivators in the open source model, people must
rely on more basic incentives to justify their volunteer efforts. Generally this
leads to a paradigm where contributions to the project become the de facto
channel for building a reputation within the community—a primary motivator
in any meritocracy. As a result of working with the team, it soon became
obvious that there were two extremes in this area: those who would selflessly
sacrifice all of their free time (often to their own detriment) to the open
source project, and those who would invest the minimal effort and expect the
maximum reward. As the creator and maintainer of the project it was my duty

to remain objective and put the interests of the community first. This often
caused me to become frustrated with the behavior of specific individuals, but
in nearly all cases these issues could be resolved without introducing any
hard feelings on either side. This is true in all cases except one.

XXL Fork

Early in the project history, I was approached by an individual from Germany
with a request to maintain a localized DotNetNuke site for the German
community. I was certainly not naive to the risks of another source code
distribution at this point, and I told him that it would be fine so long as the
site stayed consistent with the official source code base, which was under my
jurisdiction. This was agreed upon, and in the coming months I had periodic
communication with this individual regarding his localization efforts.
However, as time wore on he became critical of the manner in which the
project was being managed, in particular the sole maintainer aspect, and
began to voice his disapproval in the public forum. There was a group who
believed that there should be a greater degree of transparency in the project—
that developers should be able to get access to the latest development source
code at any time and that the maintenance of the application should be
conducted by a team rather than an individual. He was able to convince a
number of community members to collaborate with him on a modified
version of DotNetNuke, a version that integrated a number of the more
popular community enhancements available, and called it DotNetNuke XXL.

Now I have to admit that much of this occurred due to my own inability to
respond quickly and form a Core Team. In addition, I was not providing
adequate feedback to the community regarding my goals and objectives for
the future of the project. The reality is that the background management
tasks of creating the DotNetNuke Core Team and managing the myriad other
issues had undermined my ability to deliver source code enhancements and
support to the community. The combination of these factors resulted in an
unpleasant situation, one that I should have mitigated sooner but was afraid
to act upon due to the fragility of the newly formed community. And you also
need to remember that the creator of the XXL variant had broken no license
agreement by creating a “fork” (a distribution)—it was completely legal based
on the freedom of the MIT open source license.

Eventually the issue came to a head when members of the XXL group began
promoting their full-source-code hybrid in the DotNetNuke Forum.
Essentially piggybacking on the primary promotion channel for the
DotNetNuke project, they were able to convince many people to switch to the
XXL code base. This had some bad consequences for the DotNetNuke
community. Mainly it threatened to splinter the emerging community on

territorial boundaries—an event I wanted to avoid at all costs. This situation
was the closest attempt of project hijacking that I can realistically imagine.
The DotNetNuke XXL fork seemed to be fixated on becoming the official
version of DotNetNuke and assuming control of the future project roadmap.
The only saving grace was that I personally managed the DotNetNuke
infrastructure and therefore had some influence over key aspects of the open
source environment.

In searching for an effective mechanism to protect the integrity of the
community and prevent the XXL fork from gaining momentum, some basic
business fundamentals came into play. Any product or service is only as
successful as its promotion or marketing channel. The DotNetNuke Forum on
the www.asp.net website was the primary communication hub to the
DotNetNuke community. Therefore, it was not difficult to realize that
restricting discussion on XXL in the forum was the simplest method to
mitigate its growth. In probably the most aggressive political move I have
ever been forced to make, I introduced some bold changes to the DotNetNuke
project. I established some guidelines for Core Team conduct that included,
among other things, restrictions on promoting competing open source
distributions of the DotNetNuke application. I also posted some policies on
the DotNetNuke Forum that emphasized that the forum was dedicated solely
to the discussion of the official DotNetNuke application and that discussion
of third-party commercial or open source products was strictly forbidden.
This was an especially difficult decision to make from a moral standpoint as I
was well aware that the DotNetNuke application had been introduced to the
community via the IBuySpy Portal Forum. Nonetheless, the combination of
these two announcements resulted in both the resignation of the XXL project
leader from the Core Team as well as the end of discussion of the XXL fork in
the DotNetNuke Forum. It is important to note that such a defensive move
would not have been possible without the loyalty and support of the rest of
the Core Team in terms of enforcing the guidelines.

The unfortunate side effect, one about which I had been cautioning members
of the community for weeks, was that users who had upgraded to the XXL
fork were effectively left on an evolutionary dead end—a product version with
no support mechanism or promise of future upgrades. This is because many
of the XXL enhancements were never going to be integrated into the official
DotNetNuke code base (either due to design limitations or inapplicability to
the general public). This situation, as unpleasant as it may have been for

http://www.asp.net

those caught on the dead-end side of the equation, was a real educational
experience for the community in general as they began to understand the
longer-term and deeper implications of open source project philosophy. In
general, the community feedback was positive to the project changes, with
only occasional flare-ups in the weeks following. In addition, the Core Team
seemed to gel more as a result of these decisions because it provided some
much-needed policies on conduct, loyalty, and dedication as well as a concrete
example of how inappropriate behavior would be penalized.

Trademarks

Emerging from the XXL dilemma, I realized that I needed to establish some
legal protection for the long-term preservation of the project. Because
standard copyright and the MIT license offered no real insurance from third-
party threats, I began to explore intellectual property law in greater detail.
After much research and legal advice, I decided that the best option was to
apply for a trademark for the DotNetNuke name. Registering a trademark
protects a project's name or logo, which is often a project's most valuable
asset. After the trademark was approved, it would mean that although an
individual or company could still create a fork of the application, they legally
could not refer to it by the DotNetNuke name. This appeared to be an
important distinction, so I proceeded with trademark registration in Canada
(because this was the country in which Perpetual Motion Interactive Systems
Inc. was incorporated).

I must admit the entire trademark approval process was quite an educational
experience. Before you can register your trademark, you need to define a
category and description of your wares and/or services. This can be
challenging, although most trademark agencies now provide public access to
their database where you can browse for similar items that have been
approved in the past. You pay your processing fee when you submit the initial
application, but the trademark agency has the right to reject your application
for any number of reasons whereby you need to modify your application and
submit it again. Each iteration can take a couple of months, so patience is
indeed a requirement. After the trademark is accepted, it must be published
in a public trademark journal for a specified amount of time, providing third
parties the opportunity to contest the trademark before it is approved. If it
makes it through this final stage, you can pay your registration fee for the
trademark to become official. To emphasize the lengthy process involved, the
DotNetNuke trademark was initially submitted on October 9, 2003, and was
finally approved on November 15, 2004.

Sponsorship

In August 2003, I came to an agreement with Microsoft regarding a
sponsorship proposal for the DotNetNuke project. In a nutshell, Microsoft
wanted DotNetNuke to be enhanced in a number of key areas with the intent
being to use the open source project as a means of demonstrating the
strengths of the ASP.NET platform. Because these enhancements were
completely congruent with the future goals of the project, there was little
negative consequence from a technical perspective. In return for
implementing the enhancements, Microsoft would provide a number of
sponsorship benefits to the project including web hosting for the
www.dotnetnuke . com website, weekly meetings with an ASP.NET Team
representative (Rob Howard), continued promotion via the www.asp.net
website, and more direct access to Microsoft resources for mentoring and
guidance. It took five months for this sponsorship proposal to come together,
which demonstrates the patience and perseverance required to collaborate
with such an influential partner as Microsoft. Nonetheless, this was
potentially a one-time offer, and at such a critical stage in the project
evolution it seemed too important to ignore.

An interesting perception that most people have in the IT industry is that
Microsoft is morally against the entire open source phenomenon. In my
opinion, this is far from the truth—the reality is so much more simplistic.
Like any other business that is trying to enhance its market position,
Microsoft is merely concerned about competition. This is nothing new. In the
past, Microsoft faced competitive challenges from many sources—companies,
individuals, and governments. However, the environment at the time made it
much more emotional and newsworthy to suggest that Microsoft was pitted
against a grassroots community movement rather than a business or legal
concern. And it took some time and effort for Microsoft to adapt to the
changing landscape, but in recent years Microsoft has now embraced open
source to remain competitive.

When it comes to DotNetNuke, many people probably questioned why
Microsoft would be interested in assisting an open source project where it
receives no direct benefit. And it may be perplexing why Microsoft would
sponsor a product that competes to some degree with several of its own
commercial applications. But you do not have to look much further than the
obvious indirect benefits to see why this relationship has tremendous value.

http://www.dotnetnuke.com
http://www.asp.net

First and foremost, the DotNetNuke application was only designed for use on
the Microsoft platform. This meant that in order to use DotNetNuke, you
needed to have valid licenses for a number of Microsoft infrastructure
components (Windows operating system, database server, and so on). So this
provided the financial value. In addition, DotNetNuke promoted the benefits
of the NET Framework and encouraged developers to migrate to Microsoft's
development platform. This provides the educational value. Finally, it
cultivated an active and passionate community—a network of loyal supporters
who were motivated to leverage and promote Microsoft technology on an
international scale. This provided the marketing value.

Enhancements

In September 2003, with the assistance of the newly formed Core Team, we
embarked on an ambitious mission to implement the enhancements to
DotNetNuke suggested by Microsoft. The problem at this point was that in
addition to the Microsoft enhancements, there were some critical community
enhancements, which I ultimately perceived as an even higher priority if the
project should hope to grow to the next level. So the scope of the
enhancement project began to snowball, and estimated release dates began to
slip. The quality of the release code was also considered to be so crucial a
factor that early beta packages were not deemed worthy of distribution.
Ultimately, the code base evolved so much that there was little question the
next release would need to be labeled version 2.0. During this phase of
internal development, some members of the Core Team did an outstanding
job of supporting the 1.x community and generating excitement about the
next major release. This was critical in keeping the DotNetNuke community
engaged and committed to the evolving project.

A number of excellent community enhancements for the DotNetNuke 1.0
platform also emerged during this stage. This sparked an active third-party
reseller and support community, establishing yet another essential factor in
any largely successful open source project. Unfortunately, at this point the
underlying architecture of the DotNetNuke application was not particularly
extensible, which made the third-party enhancements susceptible to upgrade
complications and somewhat challenging to integrate for end users. As a Core
Team, we recognized this limitation and focused on full modularity as a
guiding principle for all future enhancements.

Modularity is an architecture principle that basically involves the creation of
well-defined interfaces for the purpose of extending an application. The goal
of any framework should be to provide interfaces in all areas that are likely to
require customization based on business requirements or personalization
based on individuality. DotNetNuke provides extensibility in the area of
modules, skins, templates, data providers, and localization. And DotNetNuke
typically goes one step beyond defining the basic interface: it actually
provides the full spectrum of related resource services including creation,
packaging, distribution, and installation. With all of these services available, it
makes it extremely easy for developers to build and share application
extensions with other members of the community.

One of the benefits of working on an open source project is the fact that there
is a high priority placed on creating the optimal solution or architecture. This
goal often results in more preliminary analysis and design that tends to
elongate the schedule but also results in a more extensible and adaptable
architecture. This differs from traditional application development that often
suffers from time and budget constraints, resulting in shortcuts, poor design
decisions, and delivery of functionality before it is validated. Another related
benefit is that the developers of open source software also represent a portion
of its overall user community, meaning they actually “eat their own dog food”
so to speak. This is really critical when it comes to understanding the
business requirements under which the application needs to operate. Far too
often you find commercial vendors who build their software in a virtual
vacuum, never experiencing the fundamental application use cases in a real-
world environment.

One of the challenges in allowing the Core Team to work together on the
DotNetNuke application was the lack of high-quality infrastructure tools.
Probably the most fundamental elements from a software development
standpoint were the need for a reliable source-code-control system and issue-
management system. Because the project had little to no financial resources
to draw upon, we were forced to use whatever free services were available in
the open source community. And although some of these services are
leveraged successfully by other open source projects, the performance,
management, and disaster recovery aspects are sorely lacking. This led to a
decision to approach some of the more successful commercial vendors in
these areas with requests for pro-bono software licenses. Surprisingly, these
vendors were more than happy to assist the DotNetNuke open source project
in exchange for some minimal sponsorship recognition. This model has
ultimately been carried on in other project areas to acquire the professional
infrastructure, development tools, and services necessary to support our
growing organization.

As we worked through the enhancements for the DotNetNuke 2.0 project, a
number of Core Team members gained considerable respect within the
project based on their high level of commitment, unselfish behavior, and
expert development skills. Joe Brinkman, Dan Caron, Scott McCulloch, and
Geert Veenstra sacrificed a lot of personal time and energy to improve the
DotNetNuke open source project. And the important thing to realize is that
they did so because they wanted to help others and make a difference, not

because of self-serving agendas or premeditated expectations. The
satisfaction of working with other highly talented individuals in an open,
collaborative environment is reward enough for some developers. And it is
this particular aspect of open source development that continues to confound
and amaze people as time goes on.

In October 2003, there was a Microsoft Professional Developers Conference
(PDC) in Los Angeles, California. The PDC is the premier software
development spectacle for the Microsoft platform; it's an event that occurs
only every two years. About a month prior to the event Cory Isakson, a
developer on the Rainbow Portal open source project (another derivative of
the IBuySpy Portal based on C#), contacted me, saying that “Open Source
Portals” had been nominated as a category for a “Birds of Feather” session at
the event. I posted the details in the DotNetNuke Forum, and soon the item
had collected enough community votes that it was approved as an official
BOF session. This provided a great opportunity to meet with DotNetNuke
enthusiasts and critics from all over the globe. It also provided a great
networking opportunity to chat with the most influential commercial
software vendors in the .NET development space (contacts made with
SourceGear and MaximumASP at this event proved to be important to
DotNetNuke, as time would tell).

Security Flaw

In January 2004, another interesting dilemma presented itself. I received an
email from an external party, a web application security specialist who
claimed to have discovered a severe vulnerability in the DotNetNuke
application (version 1.0). Upon further research, I confirmed that the security
hole was indeed valid and immediately called an emergency meeting of the
more trusted Core Team members to determine the most appropriate course
of action. At this point, we were fully focused on the DotNetNuke 2.0
development project but also realized that it was our responsibility to serve
and protect the growing DotNetNuke 1.0 community. From a technical
perspective, the patch for the vulnerability proved to be a simple code
modification.

The more challenging problem was related to communicating the details of
the security issue to the community. On the one hand we needed the
community to understand the severity of the issue so that they would be
motivated to patch their applications. On the other hand, we did not want to
cause widespread alarm, which could lead to a public perception that
DotNetNuke was an insecure platform. Exposing too many details of the
vulnerability would be an open invitation for hackers to try to exploit
DotNetNuke websites, but revealing too few details would downplay the
severity. And the fact that the project is open source meant that the
magnitude of the problem was amplified. Traditional software products have
the benefit of tracking and identifying users through restrictive licensing
policies. Open source projects have licenses that allow for free redistribution,
which means the maintainer of the project has no way to track the actual
usage of the application and no way to directly contact all community
members who are affected.

The whole situation really put security issues into perspective for me. It's one
thing to be an outsider, expressing your opinions on how a software vendor
should or should not react to critical security issues in its products. It's quite
another thing to be an insider, stuck in the vicious dilemma between
divulging too much or too little information, knowing full well that both
options have the potential to put your customers at even greater risk.
Ultimately, we created a new release version and issued a general security
alert that was sent directly to all registered users of the DotNetNuke
application by email and posted in the DotNetNuke Forum on www.asp.net:

http://www.asp.net

Subject: DotNetNuke Security Alert Yesterday we became aware of a
security
vulnerability in DotNetNuke. It is the immediate recommendation of
the DotNetNuke
Core Team that all users of DotNetNuke based systems download and
install this

security patch as soon as possible. As part of our standard security
policy, no

further detailed information regarding the nature of the exploit will
be provided

to the general public. This email provides the steps to immediately
fix existing
sites and mitigate the potential for a malicious attack. Who is

vulnerable? --

Any version of DotNetNuke from version 1.0.6 to 1.0.10d What is the
vulnerability? A malicious user can anonymously download files from
the server.

This is not the same download security issue that has been well
documented in the

past whereby an anonymous user can gain access to files in the
/Portals directory

if they know the exact URL. This particular exploit bypasses the file
security

mechanism of the IIS server completely and allows a malicious user to
download

files with protected mappings (ie. *.aspx). The vulnerability
specifically *does
not* enable the following actions: -- A hacker *cannot* take over

the server
(e.g. it does not allow hacker code to be executed on the server)
How to fix the

vulnerability? For Users: { Instructions on where to download the
latest release
and how to install } For Developers: { Instructions with actual

source code

snippets for developers who had diverged from the official DotNetNuke
code base

and were therefore unable to apply a general release patch } Please
note that

this public service announcement demonstrates the professional
responsibility of

the Core Team to treat all possible security exploits as serious and
respond in a

timely and decisive manner. We sincerely apologize for the
inconvenience that

this has caused. Thank you, we appreciate your support.. DotNetNuke
- The Web

of the Future

The security dilemma brings to light another often misunderstood paradigm
when it comes to open source projects. Most open source projects have a

license that explicitly states that there is no support or warranty of any kind
for users of the application. And while this may be true from a purely legal
standpoint, it does not mean that the maintainer of the open source
application can ignore the needs of the community when issues arise. The
fact is, if the maintainer did not accept responsibility for the application, the
users would quickly lose trust and the community would dissolve. This
implicit trust relationship is what all successful open source communities are
based upon. So in reality, the open source license acts as little more than a
waiver of direct liability for the maintainer. The DotNetNuke project certainly
conforms to this model because we take on the responsibility to ensure that
all users of the application are never left on an evolutionary dead end and
security issues are always dealt with in a professional and expedient manner.

DotNetNuke 2.0

After six months of development, including a full month of public beta
releases and community feedback, DotNetNuke 2.0 was released on March
23, 2004. This release was significant because it occurred at VS Live! in San
Francisco, California, a large-scale software development event sponsored by
Microsoft and Fawcette publications. Due to our strong working relationship
with Microsoft, I was invited to attend official press briefings conducted by
the ASP.NET Team. Essentially, this involved up to eight private sessions with
the leading press agencies (Fawcette, PC Magazine, Computer Wire, Ziff
Davis, and so on) where I was able to summarize the DotNetNuke project,
show them a short demonstration, and answer their specific questions. The
event proved to be spectacularly successful and resulted in a surge of new
traffic to the community (now totaling more than 40,000 registered users).

DotNetNuke 2.0 was a hit. We had successfully delivered a high-quality
release that encapsulated the majority of the most requested product
enhancements from the community. And we had done so in a manner that
allowed for clean customization and extensibility. In particular, the skinning
solution in DotNetNuke 2.0 achieved widespread critical acclaim.

In DotNetNuke 1.X, the user interface of the application allowed for little
personalization—essentially all DNN sites looked much the same, a negative
restriction considering the highly creative environment of the World Wide
Web. DotNetNuke 2.0 removed this restriction and opened the application to
a whole new group of stakeholders: web designers. As the popularity of portal
applications had increased in recent years, the ability for web designers to
create rich, graphical user interfaces had diminished significantly. This is
because the majority of portal applications were based on platforms that did
not allow for clear separation between form and function or were architected
by developers who had little understanding of the creative needs of web
designers. DotNetNuke 2.0 focused on this problem and implemented a
solution where the portal environment and creative design process could be
developed independently and then combined to produce a stunningly
harmonious end-user experience. The process was not complicated and did
not require the use of custom tools or methodologies. It did not take long
before we began to see DotNetNuke sites with richly creative and highly
graphical layouts emerge, proving the effectiveness of the solution and
creating a “Can you top this?” community mentality for innovative portal

designs.

DotNetNuke.com Website

To demonstrate the effectiveness of the skinning solution, I commissioned a
local web design company, Circle Graphics in Abbotsford owned by Brad
Haima, to create a compelling design for the www.dotnetnuke.com website (see
Figure 1.8). As an open source project, I felt that I could get away with an
unorthodox, somewhat futuristic site design, and I was impressed by some of
Circle Graphics' futuristic, industrial concepts I had seen.

£} DotNetMuke - The Web of the Future > Home { DNN 3.0,9) - Microsoft Internet Explorer =10] x|
Fle Edl View Favarkes Tools Heb JSend | | = |
siack - = - D A | Dsearch GiFavortes fveds B | By 5 50 - & 2
Bcidress [{@] hetp e, dotmetruke. comf ~] 6o ‘l.hts »| @snagit L'
X == y il G —
= | Search | Register | Login
| : AGE of wab space
Im=|
me| MaximumASP oo ot wanser B00ME SOL
- sn . uperior ,
| Dawnisad the Coede 501 Reporting Services Supserior Support
-
Support = ' DotNetNuke e Members =
Advertising & Sponsorship Since its rglease in Januwary 2002, the 1BuySpy Partal ﬂ Membership:
Solution Kit has bean embraced by the Microsoft \NET Latest:
T e development community as an sssential refererce FeliceDParaGuruy
g implementation for building ASP.NET applications. New Today: 338
5 : Affectionately known a5 IBS, the original portal included New Yesterday; 312
iammunity Events framework for constructing data-driven intranet and overall: 124325
: Internet portal applications, However, as time goes by, its
Discussion Forum rmiain imitation lies in the fact that the onginal codebase
is cornpletely static, T
CMN Resource Directary
The basic idea behind Open Sourcs is very simple: When
kinning programmers can read, redistribute, and modify the -— ——
source code for & pisce of software, the software e e s
) evolves, Peaple improve it, people adapt it, people fix Llnks a
bugs, And this can happen at a speed that, if one is used _
to the slow pace of conventional software development,
£ P seems astonishing. Aids b Goodle
= Dathetiuke is an Open Source hybrid of the [BuySpy te Business
Resources Portal. Its managernent team is dedicated to the ongeing Corporg
management of core portal application enhancements. Paortal :
Enhance Your Portal: Dathethuke provides autornated content managemeant Low Cost, Simple, &
capabilities and tools to maintan & dynamic and 100% Secure Fartals, Upin
interactiva data-driven web site, minutes, 30 Days Fraal
Snowm%- T1 wiing HyparDfioe com
b |
€] L e et 4

Figure 1.8

It turned out that the designer who had created these visuals, Anson Vogt,
had since moved on but was willing to take on a small contract as a personal

http://DotNetNuke.com
http://www.dotnetnuke.com

favor to the owner. He created a skin that included some stunning 3-D
imagery including the now infamous “nuke-gear” logo, circuit board, and
plenty of twisted metallic pipes and containers. The integration with the
application worked flawlessly, and the community was wildly impressed with
the stunning result. Coincidentally, Anson Vogt later worked with musician
Eminem as the Art Director for 3-D animation on the critically acclaimed
Mosh video.

Provider Model

One of the large-scale enhancements that Microsoft insisted on for
DotNetNuke 2.0 also proved to be popular. The Data Access Layer in
DotNetNuke had been rearchitected using an abstract factory model that
effectively allowed it to interface with any number of relational databases.
Microsoft coined the term “provider model” and emphasized it as a key
component in the future ASP.NET 2.0 framework. Therefore, getting a
reference implementation of this pattern in use in ASP.NET 1.x had plenty of
positive educational benefits for Microsoft and DotNetNuke developers.
DotNetNuke 2.0 included both a fully functional SQL Server and Microsoft
Access version, and the community soon stepped forward with mySQL and
Oracle implementations as well. Again, the extensibility benefits of good
architecture were extremely obvious and demonstrated the direction we
planned to pursue in all future product development.

Upon review of the DotNetNuke 2.0 code base, it was obvious that the
application bore little resemblance to the original IBuySpy Portal application.
This was a good thing because it raised the bar significantly in terms of n-
tiered, object-oriented, enterprise-level software development. However, it
was also bad in some ways because it alienated some of the early DotNetNuke
enthusiasts who were in fact “hobby programmers,” using the application
more as a learning tool than a professional product. This is an interesting
paradigm to observe in many open source projects. In the early stages, the
developer community drives the feature set and extensibility requirements
that, in turn, results in a much higher level of sophistication in terms of
system architecture and design. However, as time goes on, this can
sometimes result in the application surpassing the technical capabilities of
some of its early adopters. DotNetNuke had ballooned from 15,000 lines of
managed code to 46,000 lines of managed code in a little more than six
months. The project was getting large enough that it required some serious
effort to understand its organizational structure, dependencies, and
development patterns.

Open Source Philosophy

When researching the open source phenomenon, there are a few fundamental
details that are often ignored in favor of positive marketing rhetoric. I would
like to take the opportunity to bring some of these to the surface because they
provide some additional insight into some of the issues we face in the
DotNetNuke project.

The first myth surrounds the belief that open source projects basically have
an unlimited resource pool at their immediate disposal. Although this may be
true from a purely theoretical perspective, the reality is that you still require a
dedicated management structure to ensure that all of the resources are
channeled in an efficient and productive manner. An army of developers
without some type of central management authority will never consistently
produce a cohesive application; and more likely, their efforts will result in
total chaos. As much as the concept is often despised by hard-core
programmers, dedicated management is absolutely necessary to set
expectations and goals, ensure product quality, mitigate risk, recognize
critical dependencies, manage scope, and assume ultimate responsibility. You
will find no successful open source project that does not have an efficient and
highly respected management team.

Also with regard to the unlimited resourcing myth, there are in fact few
resources who become involved in an open source project that possess the
level of competency and communication skills required to earn a highly
trusted position in the meritocracy. More often, the resources who get
involved are capable of handling more consumer-oriented tasks such as
testing, support, and minor defect corrections. This is not to say that these
resources do not play a critical role in the success of the project—every
focused ounce of volunteer effort certainly helps sustain the health of the
project. But my point is that there is usually a relatively small group on most
open source projects who are responsible for the larger-scale architectural
enhancements.

Yet another myth is related to the belief that anyone can make a direct and
immediate impact on an open source project. Although this may be true to
some degree, you generally need to build a trusted reputation within the
community before you are granted any type of privilege. And there are few
individuals who are ever awarded direct write access to the source code
repository. Anyone has the ability to submit a patch or enhancement

suggestion; however, there's no guarantee that it will be added to the open
source project code base. In fact, all submissions are rigorously peer-reviewed
by trusted resources, and only when they have passed all validation criteria
are they introduced to the source code repository. In addition, although a
specific submission may appear to be quite useful when judged in isolation,
there may be higher-level issues to consider in terms of upgrade support (a
situation that can lead to submitter frustration if the issues are not fully
explained). From a control standpoint, this is not much different than source
control management on a traditional software project. However, the open
source model does significantly alter this paradigm in that everyone is able to
review the source code. As a result, the sheer volume of patches submitted to
this process can be massive.

Stabilization

Following the success of DotNetNuke 2.0, we focused on improving the
stability and quality of the application. Many production issues were
discovered after the release that we would have never anticipated during
internal testing. As an application becomes more extensible, people find
ingenious new ways to apply it, which often produces unexpected results. We
also integrated some key Roadmap enhancements that were developed in
isolation by Core Team members. These enhancements were actually quite
advanced because they added a whole new level of professional features to
the DotNetNuke code base, transforming it into a viable enterprise
application framework.

It was during this time that Dan Caron single-handedly made a significant
impact on the project. Based on his experience with other enterprise
applications, he proceeded to add integrated exception handling and event
logging to DotNetNuke. This provided stability and “auditability”—two major
factors in most professional software products. He also added a complex,
multi-threaded scheduler to the application. The scheduler was not just a
simple hard-coded implementation like I had seen in other ASP.NET projects,
but rather it was fully configurable via an administrative user interface. This
powerful new feature could be used to run background housekeeping jobs as
well as long-running tasks. With this in place, the extensibility of the
application improved yet again.

Third-Party Components

An interesting concern that came to our attention at this time was related to
our dependence on external components. To provide the most powerful
application, we had leveraged a number of rich third-party controls for their
expert functionality. Because each of these controls was available under its
own open source license, they seemed to be a good fit for the DotNetNuke
project. But the fact is there are some major risks to consider. Some open
source licenses are viral in nature and have the potential to alter the license
of the application with which they are combined. In addition, there is nothing
that prevents third parties from changing their licensing policy at any time. If
this situation occurs, then it is possible that all users of the application who
reference the control could be in violation of the new license terms. That's a
fairly significant issue and certainly not something that can be taken lightly.
Based on this knowledge, we quickly came up with a strategy that was aimed
at minimizing our dependency on third-party components. We constructed a
policy whereby we would always focus on building the functionality ourselves
before considering an external control. And in the cases where a component
was too elaborate to replicate, we would use a provider model, much like we
had in the database layer, to abstract the application from the control in such
a way that it would allow for a plug-in replacement. This strategy protects the
community from external license changes and also provides some additional
extensibility for the application.

With the great publicity on the www.asp.net website following VS Live! and
the consistent release of powerful new enhancements, the spring of 2004
brought a lot of traffic to the dotnetnuke.com community website. At this
point, the site was poorly organized and sparse on content due to a lack of
dedicated effort. Patrick Santry had been on the Core Team since its
inception, and his experience with building websites for the ASP.NET
community became valuable at this time. We managed to make some fairly
major changes to improve the site, but I soon realized that a dedicated
resource would be required to accomplish all of our goals. Without the

funding to secure such a resource, many of the plans had to unfortunately be
shelved.

http://www.asp.net
http://dotnetnuke.com

Core Team Reorganization

The summer of 2004 was a restructuring period for DotNetNuke. Thirty new
community members were nominated for Core Team inclusion, and the Core
Team itself underwent a reorganization of sorts. The team was divided into an
Inner Team and an Outer Team. The Inner Team designation was reserved for
those original Core Team individuals who had demonstrated the most loyalty,
commitment, and value to the project over the past year. The Outer Team
represented individuals who had earned recognition for their community
efforts and were given the opportunity to work toward Inner Team status.
Among other privileges, write access to the source code repository is the
pinnacle of achievement in any source code project, and members of both
teams were awarded this distinction to varying degrees.

In addition to the restructuring, a set of Core Team guidelines was
established that helped formalize the expectations for team members. Prior to
the creation of these guidelines, it was difficult to isolate nonperformers
because there were no objective criteria by which they could be judged. In
addition to the new recruits, a number of inactive members from the original
team were retired, mostly to demonstrate that Core Team inclusion was a
privilege, not a right. The restructuring process also brought to light several
deficiencies in the management of intellectual property and confidentiality
among team members. As a result, all team members were required to sign a
retroactive nondisclosure agreement as well as an intellectual property
contribution agreement. All of the items exemplified the fact that the project
had graduated from its “hobby” roots to a professional open source project.

Microsoft Membership API

During these formative stages, I was once again approached by Microsoft with
an opportunity to showcase some specific ASP.NET features. Specifically, a
Membership API had been developed by Microsoft for Whidbey (ASP.NET
2.0), and it was planning on creating a backported version for ASP.NET 1.1
that we could leverage in DotNetNuke. This time the benefits were not so
immediately obvious and required some thorough analysis. This is because
DotNetNuke already had more functionality in these areas than the new
Microsoft API could deliver. So to integrate the Microsoft components
without losing any features, we would need to wrap the Microsoft API and
augment it with our own business logic. Before embarking on such an
invasive enhancement, we needed to understand the clear business benefit
provided.

Well, you can never discount Microsoft's potential to impact the industry.
Therefore, being one of the first to integrate and support the new Whidbey
APIs would certainly be a positive move. In recent months there had been
numerous community questions regarding the applicability of DotNetNuke
with the early Whidbey Beta releases now in active circulation. Early
integration of such a core component from Whidbey would surely appease
this group of critics. From a technology perspective, the Microsoft industry
had long been awaiting an API to converge upon in this particular area,
making application interoperability possible and providing best practice due
diligence in the area of user and security information. Integrating the
Microsoft API would allow DotNetNuke to “play nicely” with other ASP.NET
applications—a key factor in some of the larger-scale extensibility we were
hoping to achieve. Last, but not least, it would further our positive
relationship with Microsoft—a factor that was not lost on most as the key
contributor to the DotNetNuke project's growth and success.

The reorganization of the Core Team also resulted in the formation of a small
group of highly trusted project resources that, for lack of a better term, we
named the Board of Directors. The members included myself, Scott Willhite,
Dan Caron, Joe Brinkman, and Patrick Santry. The purpose of this group was
to oversee the long-term strategic direction of the project. This included
discussion on confidential issues pertaining to partners, competitors, and
revenue. In August 2004, we scheduled our first general meeting for
Philadelphia, Pennsylvania. With all members in attendance, we made some

excellent progress on defining action items for the coming months. This was
also a great opportunity to finally meet in person some of the individuals with
whom we had experienced only Internet contact in the past. With the first day
of meetings behind us, the second day was dedicated to sightseeing in the
historic city of Philadelphia. The parallels between the freedom symbolized by
the Liberty Bell and the software freedom of open source were not lost on any
of us that day.

Returning from Philadelphia, I knew that I had some significant deliverables
on my plate. We began the Microsoft Membership API integration project
with high expectations of completion within three months. But as before,
there were a number of high-priority community enhancements that had
been promised prior to the Microsoft initiative, and as a result the scope
snowballed. Scope management is an extremely difficult task when you have
such an active and vocal community.

“Breaking” Changes

The snowball effect soon revealed that the next major release would need to
be labeled version 3.0. This is mostly because of “breaking” changes:
modifications to the DotNetNuke core application that changed the primary
interfaces to the point that plug-ins from the previous version 2.0 release
would not integrate without at least some minimal changes. The catalyst for
this was due to changes in the Membership API from Microsoft, but this only
led to a decision of “If you are forced to break compatibility, introduce all of
your breaking changes in one breaking release.” The fact is there was a lot of
baggage preserved from the IBuySpy Portal that we were restricted from
removing due to legacy support considerations. DotNetNuke 3.0 provided the
opportunity to reexamine the entire project from a higher level and make
some of the fundamental changes we had been delaying for years in some
cases. This included the removal of a lot of dead code and deprecated methods
as well as a full namespace reorganization that finally accurately broke the
project API into logical components.

DotNetNuke 3.0 also demonstrated another technical concept that would
both enrich the functionality of the application framework as well as improve
the extensibility without the threat of breaking binary compatibility. Up until
version 3.0, the service architecture for DotNetNuke was completely
unidirectional. Custom modules could consume the resources and services
offered by the core DotNetNuke framework but not vice versa. So although
the application managed the secure presentation of custom modules within
the portal environment, it could not get access to the custom module content
information. Optional interfaces were added to enable custom modules to
provide plug-in implementations for defined core portal functions. They also
provided a simple mechanism for the core framework to call into third-party
modules, providing a bidirectional communication channel so that modules
could finally offer resources and services to the core.

Web Hosters

Along with its many technological advances, DotNetNuke 3.0 was also being
groomed for use by entirely new stakeholders: web hosters. For a number of
years, the popularity of Linux hosting has been growing at a far greater pace
than Windows hosting. The instability arguments of early Microsoft web
servers were beginning to lose their weight as Microsoft released more
resilient and higher-quality server operating systems. Windows Server 2003
had finally shed its clunky Windows NT 4.0 roots and was a true force to be
reckoned with. Aside from the obvious economic licensing reasons, there was
another clear reason why hosters were still favoring Linux over Windows for
their clients: the availability of end-user applications.

The Linux platform had long been blessed with a plethora of open source
applications running on the Apache web server, built with languages such as
PHP, Perl, and Python, and leveraging open source databases such as mySQL.
(The combination of these technologies is commonly referred to as LAMP.)
The Windows platform was really lacking in this area and was desperately in
need of applications to fill this void.

For DotNetNuke to take advantage of this opportunity, it needed a usability
overhaul to transform it from a niche developer—oriented framework to a
polished end-user product. This included a usability enhancement from both
the portal administration as well as the web host perspectives. Since Rob
Howard left Microsoft in June 2004, my primary Microsoft contact was
Shawn Nandi. Shawn did a great job of drawing upon his usability background
at Microsoft to come up with suggestions to improve the DotNetNuke end-
user experience. Portal administrators received a multilingual user interface
with both field-level and module-level help. Enhanced management functions
were added in key locations to improve the intuitive nature of the application.
Web hosters received a customizable installation mechanism. In addition, the
application underwent a security review to enable it to run in a Medium Trust
—Code Access Security (CAS) environment. The end result was a powerful
open source, web-application framework that could compete with the open
source products on other platforms and offer web hosters a viable Windows
alternative for their clients.

DotNetNuke 3.0

Much of the integration work on the Membership API and usability
improvements were fueled by a much larger hosting initiative that Microsoft
was preparing to unleash in May 2005. This initiative included a
comprehensive program aimed at increasing awareness for Windows-based
hosting solutions on an international level. Based on its strength as a
framework for building consumer websites, Microsoft invited DotNetNuke to
participate in the program as long as it could meet a defined set of technical
criteria, including Membership API integration, Medium Trust CAS
compliance, localization, and usability improvements. Nearly all of the
enhancements were already identified on the product roadmap, so the
opportunity to be included in the hosting program was really a win-win
proposition for the project and the community. In addition, we believed that
the benefit of participating in such a large-scale initiative would be enormous
in terms of lending credibility to the DotNetNuke product, introducing the
project to influential new stakeholders, and helping to build brand equity.

Core Team members made significant contributions during the development
of DotNetNuke 3.0. Scott McCulloch, with the assistance of Jeremy White,
implemented a full-featured URL rewriting component that allowed
DotNetNuke to use standard URLs. Vicen¢ Masanas was instrumental in
working on localization, templating, and stabilization tasks. Joe Brinkman
implemented search-engine architecture, enabling content indexing across all
modules in a portal instance. Jon Henning introduced a Client API library,
enabling powerful client-side behavior in DotNetNuke modules. Perhaps the
greatest code contributions were made by Charles Nurse. Realizing the
massive amount of work that would be required to deliver the enhancements
for the hosting program (and knowing that using only volunteer efforts would
not hit the schedule deadlines), I hired the first full-time DotNetNuke
contract resource. Charles was immediately put to work abstracting all of the
core modules into independent private assemblies. At the same time, he
reorganized entry fields in all application user interfaces and added full
localization capabilities, including field-level online help.

The concept of localization was one of the most commonly requested
enhancements for the DotNetNuke application. Localization actually has
multiple meanings when it comes to software applications because there is a
distinct difference between static and dynamic content. Static content is

information that is delivered as part of the core application typically
implemented by developers. Dynamic content is information that is provided
by users of the application and is typically entered by knowledge workers or
webmasters. In DotNetNuke 3.0, we delivered full static localization for all
administrative interfaces. This meant that all labels, messages, and help text
could be translated and displayed in different languages based on the
preference of the user. Developing a scalable architecture in this area turned
out to be a challenging task because the solutions offered by Microsoft as part
of the ASP.NET 1.x framework were better suited for desktop applications and
had serious deficiencies and limitations for web applications. Instead, we
decided to target the ASP.NET 2.0 localization architecture, which better
addressed the web scenario. However, due to the specific business
requirements of DotNetNuke, we soon realized that we were going to have to
take some liberties with the proposed ASP.NET 2.0 localization architecture
to enable us to achieve our goals for runtime updatability and scalability in a
shared hosting environment. In the end, we were able to deliver a powerful
solution that satisfied our business needs and provided forward compatibility
to the upcoming ASP.NET 2.0 release.

The optional interface architectural model described earlier reaped rewards in
DotNetNuke 3.0 in a number of key application areas. Registration of module
actions in earlier versions of DotNetNuke was always less than optimal
because they were dependent on page life-cycle events that were difficult to
manage in a variety of scenarios. Optional interfaces finally provided a clean
mechanism for the core framework to programmatically call into modules
and retrieve their module actions. Other new features based on optional
interfaces included content indexing, import, and export. In each of these
cases, the core framework could rely on modules to provide content in a
specific format that then allowed the core framework to provide advanced
portal services.

After multiple beta releases (some of which were deemed not fit for public
consumption), DotNetNuke 3.0 was officially released on March 12, 2005.
Although there were breaking changes between DotNetNuke 2.0 and
DotNetNuke 3.0, a number of modules were immediately available for
DotNetNuke 3.0 due to the success of a pilot program named “30 for 3.0.”
This program was the shrewd strategy of Scott Willhite and allowed a serious
group of commercial module developers to have early access to beta releases
of the DotNetNuke 3.0 product, enabling them to deal with any compatibility

issues before the core framework became publicly available. Aside from the
obvious benefits of having “applications” immediately available for the new
platform, this program also provided some excellent business intelligence. It
proved one of Scott's earlier assumptions that the vocal forums community
represented only a small portion of the overall DotNetNuke user community.
It also exposed the fact that DotNetNuke had found its way into Fortune 500
companies, military applications, government websites, international
software vendors, and a variety of other high-profile installations.

DotNetNuke 3.0 was released with two supported languages: English and
German. Delivering two complete language packs adhered to one of our
newer philosophies of always attempting to provide multiple functional
examples to prove the effectiveness of a particular extensibility model. Before
long, community members began submitting new language packs in their
native dialects that were posted on the dotnetnuke. com site for download. The
total number of supported language packs soon surpassed 30. This resulted in
incredible growth and adoption for the DotNetNuke framework on an
international basis.

http://dotnetnuke.com

Release Schedule

A common open source concept is referred to as “release early, release often.”
The justification is that the sooner you release, the sooner the open source
community can validate the functionality, and the sooner you get feedback—
good and bad—which helps improve the overall product. This concept is often
combined with a “public daily build” paradigm, where continuous integration
is used to automatically build, package, and publish a new application version
every day. These concepts make a lot of sense for single-purpose applications,
that is, applications that have closed APIs and have no external dependencies.
But plug-in platforms such as DotNetNuke possess a different set of
requirements, many of which are not complementary with the “release early,
release often” model.

Consider the case of any entity that has developed plug-in resources for the
DotNetNuke framework. These could include modules, language packs, skins,
or providers. Every time a new core version is released, each of these
resources needs to be validated to ensure that it functions correctly. In many
cases, this involves extensive testing, packaging a new version of the specific
resource, publishing compatibility information, updating related
documentation, communicating availability and/or issues to users, servicing
compatibility support requests, updating commercial product listings, and so
on. You must also consider the issues for the resource consumer. Consumers
need to feel confident in the acquisition and installation of application
resources. They are not keen on analyzing complicated compatibility matrices
to manage their investment. And resellers such as hosters represent an even
larger superset of application consumers. The effort involved to perform
application upgrades becomes more complicated and costly as the release
frequency increases. This is clearly a case where “release early, release often”
can lead to issues for framework consumers and suppliers.

For these reasons, DotNetNuke has always tried to follow a fairly well-
structured release cycle. This has resulted in fewer major public releases but a
much higher-quality, more stable, core application. In general, it has enabled
DotNetNuke resource suppliers and consumers to participate in a functional
product ecosystem. However, as the number of serious platform adopters
increased, so did the demands for better core-release communication.

DotNetNuke Projects

One of the goals of the DotNetNuke 3.0 product release that had tremendous
value for the community at large was the abstraction of the modules that
were traditionally bundled with the core framework. The core modules were
neglected in favor of adding more functionality to the core framework
services. This resulted in a set of modules that demonstrated limited
functionality and were not evolving at the same pace as the rest of the project.
The abstraction of the modules from the core framework led to the formation
of the DotNetNuke Projects program: a new organizational concept modeled
after the Apache Foundation that allowed many complementary open source
projects to thrive within the DotNetNuke ecosystem. From a technical
perspective, the modules were abstracted in a manner that conformed to our
extensibility model for building “private assembly” modules and allowed each
module to be managed as its own independent project. The benefit was that
each module could form its own team of developers, with its own roadmap for
enhancements, and its own release schedule. As a governing entity,
DotNetNuke would provide infrastructure services such as a source code
repository, issue tracker, project home page, and email services for the project
as well as a highly visible and respected distribution and marketing channel.

Obviously, there are trade-offs that need to be accepted when decomposing a
monolithic system into its constituent components, but the overall benefits of
this approach reaped substantial rewards for the project. For one thing, it
provided a new opportunity for developer participation—basically providing a
sandbox where developers could demonstrate their skills and passion for the
DotNetNuke project. This helped promote the “meritocracy” model and aided
in our Core Team recruitment efforts. The community benefited through the
availability of powerful, free, open source components that were licensed
under the standard DotNetNuke MIT license. It also allowed the modules to
evolve much more rapidly and with more focus than they ever received as
part of the monolithic DotNetNuke application. Abstracting the core set of
modules was a good start; however, the platform was lacking some other
essential modules—modules that were well integrated and provided the
common functionality required by most consumer websites. These items
included a discussion forum, blog, and photo gallery.

Early in the DotNetNuke 3.0 life cycle, there were discussions with a high-
profile third-party software development company that was actively

developing an integrated suite of components with forum, blog, and gallery
functionality. Although early indications seemed to be positive regarding
collaboration, they unfortunately did not value the opportunity of working
with the DotNetNuke community and ultimately decided to instead focus
their efforts on constructing their own proprietary solution. Because this
decision was not communicated to us until late in the DotNetNuke 3.0
development cycle, it meant that we had to scramble to find a suitable
alternative. Luckily, two of our own Core Team members—Tam Tram Minh of
TTT Corporation and Bryan Andrews of AppTheory—had been collaborating
on a comparable set of modules and had already been offering them for free
download to the DotNetNuke community. Discussions with them led to the
creation of three powerful new DotNetNuke Projects: the DotNetNuke
Forums, Blog, and Gallery.

Integrating third-party modules is not without its share of challenges. An
“incubation” period is required to make the module conform to the official
DotNetNuke project standards. An official marketing name had to be defined
for the project and all references to the old module name need to be updated.
This included namespaces, folder names, filenames, code comments,
database object names, release package metadata, and documentation. To
allow legacy users of the contributed module to be able to migrate to the new
DotNetNuke project, a robust upgrade mechanism had to be created. The
module also needed to be reviewed to ensure that it does not contain any
security flaws or serious defects that could affect the general community.
From an infrastructure perspective, the code needed to be uploaded to a
dedicated source code repository, an issue tracker project had to be created,
and a project home page completed with discussion forum and blog created
on dotnetnuke.com. These tasks represented the technical integration issues
that needed to be addressed; but an item of even greater importance for third-
party modules was management of the associated intellectual property.

http://dotnetnuke.com

Intellectual Property

There are two main contributing factors when it comes to intellectual
property: copyright and licensing. The copyright holder is the person who
owns the rights to the intellectual property. Normally this is the creator;
however, copyright can also be transferred to other individuals or companies.
The copyright holder has the right to decide how his intellectual property can
be used by others. When it comes to software, these usage details are
generally published as a license agreement. License agreements can vary a
great deal depending on the environment, but they generally resemble a
standard legal contract, explicitly outlining the rights and responsibilities of
each party. Copyright holders also have the right to change the license for the
intellectual property at their discretion. It is this scenario that requires the
most due diligence when dealing with third-party contributions.

Anybody who contributes source code to the DotNetNuke project must
submit a signed Contributor License Agreement. This document ensures that
the individual has the right to contribute intellectual property to the project
without any type of encumbrance. It also transfers copyright for any
contributed intellectual property to the project. This is important because
DotNetNuke needs to be able to ensure all of its intellectual property is
licensed consistently throughout the entire application. It protects the
community from a situation where an individual copyright holder could
change the license restrictions for a specific piece of intellectual property,
forcing the entire community into a reactive situation (a situation we have
already seen multiple times in the still nascent Microsoft open source
community).

In the case of third-party modules that are fully functional applications with
an existing and active user base, the intellectual property rights are owned by
the external party. Under this scenario, we could adopt the intellectual
property into the DotNetNuke project because it would mean that we would
have no control over its licensing. Even if the contributor agreed to license
the intellectual property under a complementary MIT open source license,
the original copyright holder would still have the ability to change the license
at any time in the future, which would put all users of the module in
jeopardy. To mitigate this risk, we required that DotNetNuke must have
sufficient rights to the intellectual property so that the community is
adequately protected. However, we did not feel it would be fair to force

contributors to release all of the rights to their own intellectual property.
Therefore, we created a Software Grant Agreement that provides both parties
with full copyright to the specified intellectual property. Essentially this
means that the intellectual property was split into two independent versions.
The contributor owns one version and is allowed to license it or modify it as
he or she sees fit. DotNetNuke owned the other version and licenses it under
the standard DotNetNuke MIT License for distribution and enhancement.
The end result is a win-win situation for both parties as well as the
community.

Marketing

The success of any serious initiative must begin with the formulation of
specific goals and the ability to measure progress as you work toward those
goals. In terms of measuring the growth of the DotNetNuke project, we had
traditionally monitored the total number of registered users on the
dotnetnuke.com Website, the number of new users per month, and the
number of downloads per month. These metrics revealed some definite
trends but were rather myopic in terms of providing a relative comparison to
other open source or commercial products. As a result, we looked for some
other indicators that we could use to measure our overall market impact.

SourceForge was the world's largest development and download repository of
open source code and applications. Early in its project history, DotNetNuke
had established a presence on SourceForge.Net

(httD: sourceforge.net/projects/dnn as Shown in Figure 1.9) and
continued to leverage its mirrored download infrastructure and bandwidth for
hosting all project release packages. Because SourceForge.Net contained
listings for all of the largest and most successful open source projects in
existence, it also provided a variety of comparison and ranking statistics that
could be used to judge activity and popularity. This seemed to be another
good KPI to measure the project's impact in the open source realm. In April
2005, the DotNetNuke project had an overall project ranking of 1,271.

http://dotnetnuke.com
http://sourceforge.net/projects/dnn

W SourceForge.net: DotNetNuke - Microsolt Internet Explorer I] 1
| File. Edit Wiew: Favortes Tools Halp &5end | |-

[oot - > - @) @] Qoo GlFevoies Brwos BB B3 - 8

Jnd:ira:;'&] bt ffsowrcaforge, netfprojectsfdnn ;I (}G\'.t “ ﬂ] -
SOURCER RGE —
Jnet " Log In - Create Account Q Ii Search | [+
SF net w Projecis » Dothlethuke » Sumimany QR 9
DotNetNuke M stats [EE

Summary | Admin | Home Page | Forums | Tracker | Bugs | Support Requests | Pstches | Feature Requests | Mail | Tasks
Docs | Screenshots | News | CWS | Files

An open source Web Portal Framework / Content Management System application
written in ASF NET / WB.NET for the Windows O3 platform.

‘ Download DotNetNuke |

Project Adming. mrewoop, shvalker
Operating Systemn: 32-bit M= Windows (NTR2000P), Al 32-hit M5 Window s (9598 NT200006R),
WK, WinXP

License B=0 Licenzs

DotNeiNuke? 3.2 and 4.0 Released... Project Admins | mrswoop ./,
2005-11-07 sbwalker /

Linked by asp.net zoozo04nz Developers : 2

Database Ervironment @ SGL-
Mews archive » based

Development Status - 5-
Production/Stable, & - Mature

ﬁf ' ==
AMDO (] rackspace Intended Audience :
a Developers, End

Users/Desktop, Education,
Government, Information

wllL

/&] Done || Intemet

Figure 1.9

One of the items that had been neglected over the life of the project was the
dotnetnuke.com Website. It had long been a goal to build this asset into a
content-rich communication hub for the DotNetNuke community. Patrick
Santry made some early progress in this area but recently found his volunteer
time diminishing due to personal and family commitments. Because a
website is largely an extension of product marketing (another function that
had long been ignored) the dotnetnuke.com website suffered from sparse
content, poor organization, and inconsistent focus. After the release of
DotNetNuke 3.0, a significant effort was invested in improving all aspects of
the website. Much of the initial improvements came as a result of evaluating

http://dotnetnuke.com
http://dotnetnuke.com

websites of other open source projects. After extensive deliberation, we
decided to organize the site information into three functional areas: user-
oriented information, community collaboration, and developer information.
New “sticky” content areas were added for project news and community
events. The Home Page was completely revamped to provide summary
marketing information and project metrics.

In March 2005, another significant milestone occurred in DotNetNuke
history. Dan Egan, a passionate DotNetNuke community member, wrote a
book for Packt Publishing entitled Building Websites with VB.NET and
DotNetNuke 3.0. This was the first book published about DotNetNuke and
was essential in proving the demand for the product, paving the way for
future DotNetNuke books from a variety of other publishers. In addition, a
handful of Core Team members, including me, were also collaborating on a
book for WROX Press during this time frame, but the demands of getting the
DotNetNuke 3.0 product ready for release forced us to slip the publication
date. Regardless, any technical content that makes it to mass publication
through traditional channels lends an incredible amount of credibility and
equity to the project or technology for which it is written. In addition, books
can have a positive marketing impact, especially if they reach wide circulation
through online retailers and brick-and-mortar bookstores.

In May 2005, Core Team member Jim Duffy was successful in securing a
DotNetNuke session on DotNetRocks!, an Internet radio talk show hosted by
Carl Franklin and Richard Campbell. This was our second appearance on the
show (the first being in August 2004), and it was a lot of fun to talk about
DotNetNuke in such a relaxed and open atmosphere. The show focused on
the recent DotNetNuke 3.0 release and proved to be a great way to promote
some of the incredible new application features. It is hard to estimate the
impact of the appearance on the DotNetRocks! show, but it certainly made
me a firm believer in the benefits of podcasting as a powerful broad
distribution marketing medium.

Microsoft Hosting Program

Throughout the month of May 2005, Microsoft launched the aforementioned
hosting program. The purpose of the program was to encourage shared
hosting providers to take advantage of Windows technology to grow their
hosting businesses. The primary benefit of this program was the Service
Provider License Agreement (SPLA), which allowed hosting companies to
avoid large capital expenditures and pay their licensing fees based on actual
usage. This lowered the barrier of entry in terms of cost and provided a risk-
free model to test the demand for services. In addition to the SPLA, Microsoft
recognized the value of end-user applications and included substantial
promotion of DotNetNuke in the hosting seminars encompassing 30 cities
around the world. I was fortunate enough to attend the first seminar in
Redmond, Washington, which provided an excellent opportunity to network
with the Microsoft Hosting Evangelists, a group of hard-working individuals
who were dedicated to the growth of Windows web hosting on an
international basis. At the beginning of June, I was also privileged to attend a
WSHA seminar in Amsterdam, Netherlands. The invitation was extended by
Microsoft Europe, which was especially interested in the localization
capabilities of the DotNetNuke application. This trip gave me a deeper
understanding of the localization challenges of the international community
and also provided me the opportunity to meet Geert Veenstra and Leigh
Pointer—two Core Team members who actively participated in and
evangelized DotNetNuke since its creation.

Although the Microsoft Hosting program did not reap any direct financial
rewards for DotNetNuke, it provided a number of powerful benefits. It
exposed the application to an influential group of organizations: large-scale
web hosting companies that dominate the shared hosting market in terms of
customer base and annual revenues. Companies such as GoDaddy, Pipex, and
1and1 began offering DotNetNuke as part of their Windows hosting plans.
The hosting program also caught the attention of the largest hosting control
panel vendors. Companies such as SW-Soft (Plesk), WebHostAutomation
(Helm), and Ensim added integrated installation support for the DotNetNuke
application within their control panel applications. All of these strategic
partnerships exposed DotNetNuke to a much larger consumer audience and
would not have been possible had it not been for the Microsoft Hosting
program.

Collaboration with web hosts also resulted in new application features that
were added to satisfy some of their specific business requirements. The
ability for DotNetNuke to run in a web farm environment was one such
feature that really addressed the application scalability questions beyond a
single web server configuration. Dan Caron stepped up yet again to champion
these enhancements, producing an architecture with two different caching
providers to satisfy the widest array of use cases. Charles Nurse also
completed the abstraction of all modules into isolated components that could
be optionally installed and uninstalled from the core framework. This change
provided additional flexibility for web hosters in terms of being able to
customize their offering for clients.

Infrastructure

One of the benefits of the original sponsorship agreement with Microsoft was
a free shared hosting account on the servers managed by the ASP.NET team
at OrcsWeb. This arrangement served us well in the early stages but the fact
that we had extremely limited access (that is, FTP) to the account and
absolutely no control over the associated infrastructure services eventually
created some challenges for the project. In addition, we had long been
leveraging services from PortalWebHosting for back-office items such as
DNS, source control, issue tracking, and email, but a recent change in
ownership created some friction in regard to legacy promises and agreements.
Approaching premium hosting provider MaximumASP in the fall of 2004, we
were able to secure a generous formal sponsorship agreement that paved the
way for a more centralized and professionally managed project infrastructure.

Initially, MaximumASP provided us with two dedicated servers and a Virtual
Private Server (VPS) account on a shared server. One of the dedicated servers
was configured as an SQL Server database server and the other as a back-
office server. The VPS account was provisioned as a web account for our
public website. This configuration served us well initially, but the rapid
growth of membership and the lack of control over the web server soon
forced us to look for other options. Further discussions with MaximumASP
resulted in the allocation of a dedicated web server for our public website. The
combination of a dedicated web server and a dedicated database server proved
flexible enough to handle our full website requirements. It was not until we
added discussion forums to our site and pushed our traffic past 4 million page
views a month that we felt the need to consider a web farm configuration.

The physical abstraction of the core application into a more modular
organization had a direct impact on our back office project infrastructure.
Rather than simply managing a single source code repository and issue
tracking database, we now had to deal with many Project sandboxes—each
with its own membership and security considerations. In addition,
establishing effective communication channels for different stakeholder
groups was critical for managing the project. This is one of the reasons why
the DotNetNuke Forums Project played such a significant role in the
evolution of the DotNetNuke projects. It allowed for a variety of discussion
forums to be created, some public and some private, providing focused
communication channels for project members.

During 2005, Scott Willhite also made some huge contributions to the project
in terms of infrastructure management. In a project of this size with so many
active participants, there is an incredible amount of administrative work that
goes on behind the scenes to keep the project moving forward. As most
people know, administrative tasks are largely unappreciated and only seem to
get attention when there is a problem. Scott did his best to keep the endless
stream of infrastructure tasks flowing, receiving little or no recognition for
his efforts but playing an instrumental role in the success of the DotNetNuke
project.

Branding

One of the things that became obvious during the writing of Professional
DotNetNuke ASP.NET Portals (Wiley Publishing, Inc., 2005) was that our
branding message was not clear. Although our trademark and domain name
reflected “DotNetNuke,” our logo contained an abbreviated terminology of
“netnuke.” This led to confusion for authors of the book as well as the
publisher in terms of what was the correct product branding. As I mentioned
earlier in this chapter, the initial branding was constructed with little or no
foresight; therefore, it came as no surprise that a major overhaul was
necessary.

Initial conversations within the Core Team offered some interesting and
sometimes surprising opinions on the DotNetNuke brand. When discussion
came to a stalemate, the topic was raised in the public forums that resulted in
a similar scenario. Some folks considered the “nuke” term to be too offensive,
unprofessional, or shocking to be used as a serious brand name. Others
placed a significant metaphorical value in the current logo, which contained a
gear embossed with a nuclear symbol. Some preferred a transition to the
“DNN” acronym that was often used as a shorthand reference in various
communication channels. Further debate ensued over the category we
occupied (portal, content management system, framework, and so on) and
the clear marketing message we wanted to convey.

As the project founder, I had my own opinions on the brand positioning and
ultimately decided to resort to an authoritarian model rather than a
committee model so that we could make a decision and move forward. From
my perspective, when it comes to technology companies, there is a lot of
acceptance for nontraditional brand names (consider Google, Yahoo!, Go
Daddy, and so on). In addition, due to the press coverage of the Microsoft
Hosting program, the DotNetNuke name achieved a significant amount of
exposure; therefore, a complete change in brand would impose a serious
setback in terms of brand acceptance and market reach. Taking into
consideration the valued perspectives of the Core Team and community, I felt
there should be a way to provide a win-win solution for everyone.

I first tried working with a local design company (the same company that

produced the DotNetNuke 2.0 site skin), and although it had a real talent for
brand identity services, there were no concepts produced that really grabbed
my attention or satisfied my goals for the project. Perhaps I was being overly

critical in my judgment of various designs, but I knew that I absolutely did
not want to settle for a concept unless I thought it met 100 percent of my
criteria. Although Nik Kalyani had been on the Core Team for eight months
and had even expressed a serious interest in the marketing activities of the
project, it was not until the rebranding exercise where his talents were truly
exemplified.

Nik and I started an offline dialogue where we quickly established some
complementary goals, at least at a conceptual level. The basic decision was
that we wanted to retain the full “DotNetNuke” brand name and strengthen
rather than dilute its brand emphasis. We also wanted to reduce or eliminate
the negative imagery associated with the nuclear warning symbol in the
current logo. Although the abbreviated form of the word “nuke” tended to
evoke a negative response from the general population (relating it to bombs
and radiation), the expanded form of “nuclear” and “nucleus” had a much
more positive response (related to science, energy, and power). The word
“nucleus” also had some complementary terms associated with it such as
“core,” “kernel,” and so on that worked well with the open source project
philosophy. The trick was to find a way to emphasize one aspect over another.

Nik spent countless hours designing alternative logo concepts. From a
typeface perspective, he suggested using the Neuropol font, and I really liked
the fact that it had a strong technical overtone but not so much that it could
not be used effectively in other mainstream media applications. To achieve a
uniform appearance for the typeface, we decided to use all capital letters even
though the standard format for the brand name in regular print would
continue to be mixed case. Nik included a unique customization for the “E”
and the “T” letters that resulted in a distinctive, yet professional, styling for
the word-mark contained within the logo.

Creating the graphical element for the logo was a much bigger challenge
because we were looking for a radically new design that exemplified so many
diverse project attributes. To summarize some of the more important criteria,
we were looking for something simple yet distinctive, with at least some
elements that provided a visual reference to the old logo for continuity. It
needed to be scalable and adaptable to a wide range of media (both digital and
print) and cost-effective to reproduce. And perhaps the most subjective item I
promoted was that the logo should be stylish with my acceptance criteria
being, “Would my wife permit me to wear clothing embossed with the logo
when we went out in public together?” Nik created more than 40 unique logo

concepts before arriving at a design that seemed to catch the full essence of
what we were trying to accomplish (see Figure 1.10). After working at this for
so long and dealing with the discouragement and frustration, it was a
euphoric moment to discover the proverbial “love at first sight.”

N 3
e DOTNETNUKE

Figure 1.10

It is amazing how many diverse concepts can be represented in a single
image. The saying “a picture is worth a thousand words” is cliché, but in this
case, it certainly summarized the final product. The new logo had the basic
shape of a nuclear atom. The nucleus of the atom was shaped like a gear to
retain its heritage to the previous project logo. The logo was two basic colors
—red and black (using shades of gray to achieve a 3-D effect)—making it
much more adaptable and simple to reproduce in a wide variety of media
formats than the previous logo (which used shadows and gradients for 3-D
effects). The gear had 12 teeth (a number considered to be lucky in many
cultures). The intersection of the three revolving electron trails (referred to as
the “triad”) could still be subtly viewed as a nuclear symbol reference. With
some creative inference, they could also be viewed as the three-letter project
acronym: DNN. Later, someone on the Core Team mentioned that the triad
bore some resemblance to the Perpetual Motion Interactive Systems Inc.
“infinity” logo, a reference I had never formally recognized but something
that I am sure played a subliminal role in my selection.

In terms of brand acceptance, we realized there may be significant
community backlash related to the new creative brand, especially from
companies who were currently leveraging the existing DotNetNuke branding
in their marketing materials. Therefore, we were pleasantly surprised at the
overwhelming positive feedback we received regarding the new brand
identity. Our goal was to roll out the brand in progressive stages with the
DotNetNuke 3.1 product release representing the official brand launch to the
general community.

With the creative elements out of the way, it was time to finalize the rest of
the branding process. Because DotNetNuke serves many stakeholder groups,

it was difficult to come up with a product category that was focused but not
too limiting in scope. From a marketing perspective, the board agonized over
the optimal brand message. “Content management” was a powerful industry
buzzword, but if you compared the capabilities of DotNetNuke in this area
with other enterprise software offerings, it became obvious that it would be
some time before we could be considered a market leader. The term “portal”
had been so overused in recent years that it became severely diluted and lost
its clarity as an effective marketing message. Conversely, the emerging term
“framework” began to surface more regularly and was starting to gain
industry acceptance with both developers and management groups as a
powerful software development category. Because DotNetNuke's architectural
principles were predicated on simplicity and extensibility, the framework
category seemed to be a natural fit. The next step involved clarifying the type
of framework. DotNetNuke was primarily designed for use in a web
environment and its breadth of features made it well suited for building
advanced data-driven Internet applications. The resulting “web application
framework” was an emerging industry category in which DotNetNuke could
take an immediate leadership role. Where applicable, we could also leverage
our “open source” classification to emphasize our community philosophy and
values.

One of the toughest parts of any rebranding exercise involves updating all
existing brand references to reflect the new identity. In DotNetNuke's case,
this affected the content and design of the dotnetnuke.com website, the
marketing references in the DotNetNuke release package, and all technical
and user documentation. Compared to the time it took to construct the new
logo, the time it took Nik Kalyani to create a new site design was minimal
(which is truly amazing considering the amount of time and effort that
typically goes into a custom site design). I had long been a fan of Nik's
minimalist style, which emphasized clean presentation, lightweight graphics,
and plenty of whitespace. Nik's expert grasp of the DotNetNuke skinning
architecture enabled him to create a combination of skins and containers that
were applied in a matter of minutes to completely transform the entire
website. The new site design was creative yet professional and eliminated the
“cartoonish” criticisms of the previous site design (see Figure 1.11). Nik also
created our first professional document templates that would provide
consistency and emphasis of our branding elements within our technical and
user documentation.

http://dotnetnuke.com

3 DotNethuke - Web Application Framewaork > Home { DNN 3.2.2) - Microsoft Internet Explorer

=101 x]
JFle Edit ‘iew Favorites Tools Help Send i
| wBack » = - QD 2] A Qoearch [EjFovorites @reda B - Sb = - 1= 4

J.Ad\i'ussl hitp: fwawe, dotnetnuke .com j % |J‘m N

R e L 1 -
ENE 3 | I Saarch 5

Home About Community Development

A% DOTNETNUKE
B 2

Cownloads Curectary Forums FProjects Blogs

Fegizter | Login

Quick Links Eamw |
ARG . Windows Server 2003
Bug Tracker ASP, SQL, PHP, PERL, SharePoint, Control Panel and more!

Community Events

Community Modules

DNN™ Forums = DotNetNuke Benefactor Program Announced = <<
DMN™ Forums on ASP.Net

Diothethuke Online Help

DotNetNuke® is an Open

Project Blogs -
[ty Source Framework ideal for

Security Polcy

, B creating professional Web L};
web Hosting Benefits
tht 1s DAAP=? Applications

MNews ¢ =

Tal I_|
CIMMN w4 .0 Webcasts Loy L~ ‘I | .
Developing Custam Apps : Mare G:chaj sk kel Download
Infarmnation our Sites Feature Shast

DMM %3.2.2 8 4.0.2 Released

Benefactor Program

&) Done || | inteme
Figure 1.11

» il

Tech Ed

At the beginning of June, there was a massive Microsoft technology
conference, Tech Ed, in Orlando, Florida. Based on a generous invitation from
the International .NET Association (INETA), Scott Willhite and I were
provided with an opportunity to attend the event as special guests. The timing
was perfect because Professional DotNetNuke ASP.NET Portals was officially
released at this event, as was the new project branding. Joe Brinkman and
Dan Caron were able to attend some aspects of the book launch festivities,
and we managed to jam a substantial amount of marketing activities into the
five-day event. We had a dedicated Birds of Feather session, two community
focus sessions at the INETA booth, a guest appearance at an INETA User
Group workshop related to building effective websites (where we learned 9o
percent of .NET user groups were already using DotNetNuke), and a number
of book signings scheduled by WROX Press at the Tech Ed bookstore. The
DotNetNuke book was the top-selling developer book at the Tech Ed
bookstore for the event—a fact that emphasized the growing popularity of the
project. We also distributed official DotNetNuke T-shirts that showcased the
new project branding, a popular item amid all the typical free swag provided
at these events.

Seizing the opportunity of having the majority of the DotNetNuke board of
directors together in one place, we had our second official board meeting, an
all-day session in the conference room of our hotel in Orlando. On the agenda
was a serious discussion related to Core Team reorganization and key project
roles. For quite some time, we had realized that the current flat
organizational structure was somewhat dysfunctional and that we ultimately
needed more dedicated management resources to accomplish our goals.
However, to support these resources, we needed a sufficient financial model.
Discussion focused on the pros and cons of various revenue opportunities,
their revenue potential, and their perceived effect on the community
ecosystem. We also talked about what it would take for the current board
members to commit to full-time dedicated roles in the organization and the
associated financial and security implications. A lot of really deep discussion
ensued, which gave us a much better mental picture of the challenges that lay
ahead if we truly wanted to take the project to the next level.

Following the publication of Professional DotNetNuke ASP.NET Portals,
there was a bit of a media frenzy around the relationship between Microsoft

and the open source phenomenon. Some of my personal opinions and quotes
from the book found their way into an article published on CNET (one of the
leading mainstream news sites), resulting in a lot of additional exposure for
the project. It was interesting to see the power of the media at work, where a
reference in a highly visible and trusted journalism channel can lead to broad
distribution of a particular message (much like a stone in a pond leads to a
concentric series of expanding ripples). For the most part, large companies
are the most successful at leveraging these medial channels, but special-
interest organizations also have the opportunity to make a significant
impression.

Credibility

Although DotNetNuke had experienced a healthy growth rate through its
open source philosophy, it had largely done so by appealing to the needs of
grass-roots developers. Although these stakeholders represent an integral
part of the high-tech marketplace, there is another group that is far more
influential in terms of market impact. The so-called “decision-makers”
represent the management interests in serious enterprise-level business
organizations. For DotNetNuke to make the transition from a developer-
oriented open source project to a serious enterprise software contender, it
needed to appeal to the decision-maker.

Where developers think in terms of short-term technical decisions (that is,
“What tool can I use to get this job done as quickly as possible so that I can
impress my boss?”), decision-makers think in terms of long-term business
decisions. They are interested in the future support of a platform or product.
They consider solutions in terms of “investments,” “security,” and how much
“risk” is associated with adopting a particular technology as part of their
company infrastructure. And regardless of the technical superiority of a
software solution, the adoption criteria always come down to basic trust and
consumer confidence. So the challenge for an open source project like
DotNetNuke is establishing the necessary level of credibility to be taken
seriously.

In the commercial world, customers get a sense of confidence based on the
fact that they have paid licensing fees to a vendor that generally provides
them with a certain level of future support. Obviously nothing is guaranteed,
but this financial model provides both parties with a sense of security and
responsibility. Another thing that the financial model affords is the ability to
market the product through traditional channels—channels that decision-
makers tend to monitor on a regular basis.

In the open source world, there are no licensing fees, which helps contribute
to the lower cost of ownership but also leaves the investment/security aspect
somewhat lacking. If you look at Linux, for example, you will notice that the
broad industry buy-in for the operating system did not occur until after some
serious market vendors (Sun and IBM) pledged their support. As soon as this
happened, many medium-large companies began to take Linux more
seriously. And this was not because Linux received any product
improvements through these relationships, but rather because it reduced its

risk perception in the general marketplace. And without traditional licensing
fees, open source products generally do not have the budget to leverage
traditional marketing channels and must instead rely on grassroots and viral
marketing techniques.

So let's consider some of the ways in which an open source product can
improve its credibility and reduce its risk perception for decision-makers.
Clearly one way is that it can align itself with large, respected vendors who
lend credibility (that is, “If vendor X thinks it's good, then so do we”). Another
way is to have mainstream books, magazines, and mass media distributors
publish information about the product, contributing to the overall community
knowledge base and providing recognition. Yet another option is to identify
reference implementations that exemplify the best qualities of the product
and impress people with their performance, elegance, or extensibility.
Another way is to demonstrate a proven track record and history for
supporting the community, especially through platform transitions where the
likelihood of project failure is high. The overall size of the community
ecosystem, including the open source participants, consumers, and third-
party service providers, is another critical aspect in demonstrating credibility.

DotNetNuke definitely made some significant advancements in credibility in
2005. The strong working relationship with Microsoft reaped rewards with
the hosting program. The publication of Professional DotNetNuke ASP.NET
Portals by Wiley Publishing, Inc. and Building Websites with VB.NET and
DotNetNuke 3.0 by Packt Press provided some excellent recognition through
traditional publishing channels. Articles and references in mainstream
magazines such as Visual Studio Magazine, ASP.NET Pro, CoDe Magazine,
and .NET Developers Journal also provided some great benefits. The
showcase on dotnetnuke.com contained many diverse reference
implementations, and we had proven through three years of product upgrades
that we were committed to supporting the community. The membership and
download metrics continued to grow exponentially, as did the number of
independent software vendors (ISVs) providing products or services within
the DotNetNuke ecosystem.

Trademark Policy

Unfortunately, an unexpected issue arose in the summer of 2005 that
immediately put the project into crisis mode. Based on some invalid
assumptions, a software consultant from Australia recommended that his
client register a trademark for the DotNetNuke name in Australia. Aside from
the obvious ethical implications, the immediate reaction was that this move
was based on ulterior motives that could potentially hold the entire
Australian DotNetNuke community hostage. Further communication
revealed that the Australian company had concerns over the official
trademark registered in Canada, specifically in regard to the fact it was
embedded within the application source code and binaries and that its
business investment could be compromised if restrictions were ever put on
trademark usage. Ultimately this whole situation revealed a number of
critical issues when it comes to trademarks. First, the holder of the trademark
must publish a policy that clearly defines the allowable usage of the mark
under a wide range of use cases. Second, the trademark holder must make
every attempt to enforce the policy so that the mark does not become a
common term and lose its value as a protected asset. Third, a trademark must
be registered in every jurisdiction where it intends to be used.

To satisfy the first requirement, I firmly believe in the philosophy of
“standing on the shoulders of giants.” Research revealed that Mozilla had
recently gone through a similar project challenge, so we decided to use its
recently published trademark policy as a template for our own. The political
ramifications of introducing the policy at this point seemed controversial but
absolutely necessary if we intended to protect our brand. After extensive
research, review, and legal advice, we finally announced the trademark policy
in conjunction with the logo guidelines in July 2005. The overall community
feedback was quite positive because the policy made every effort to
emphasize our open source roots and strong community ideals.

To satisfy the second requirement, all marketing materials were updated to
reflect the trademark policy guidelines, and many community sites made
changes to bring their use of the trademark into compliance. We also
obtained legal advice on the creation of a Trademark License Agreement to be
used in situations where third parties required the right to use the
DotNetNuke trademarks for specific business purposes.

The third requirement was somewhat more challenging to deal with because

it had substantial financial implications. The cost to register an individual
trademark in a specific jurisdiction (country) can cost anywhere from $2,000
to $5,000. As an organization, we simply do not have the financial means to
support such a large expenditure. So instead of considering all jurisdictions,
we decided to focus on those jurisdictions that had a large project following.
These included the United States, Canada, Australia, Japan, and the European
Union. This whole experience gave me a much deeper understanding of the
financial commitment required by large multinational companies that want
to protect their brand around the world.

ASP.NET 2.0

In July 2005, we recognized that we had approximately four months to
prepare for the launch of Microsoft's next-generation software development
platform. ASP.NET 2.0 had been under development for three years and had
finally reached the point where it was ready for public release. Aside from
reading the standard marketing propaganda in the various trade magazines
catering to the Windows platform, I had not done significant research into the
specific challenges DotNetNuke faced as a product related to this platform
upgrade. And, as is usually the case, we quickly found out it was going to be
some of the unpublicized platform changes that were going to cause us the
most difficulty.

Based on early community feedback for the ASP.NET 1.0 release, Microsoft
decided to completely overhaul the way web projects operated, including
substantial changes to the underlying compilation model. Because
DotNetNuke's advanced modular architecture strayed so far from the
traditional monolithic ASP.NET application model, these platform changes
had a significant impact on the project. Our solid working relationship with
Microsoft reaped benefits in that we were able to engage in some focused
dialogue and onsite meetings in Redmond with the Microsoft product
managers who understood the nuances of the new ASP.NET 2.0 platform
better than anyone. Scott Guthrie, Simon Calvert, Omar Khan, and a number
of other key Microsoft resources got personally involved in assisting us to
find a suitable migration path.

I have to admit I was a vocal critic during these early discussions because I
could not understand the business cases that precipitated some of the major
architectural changes. But after working closely with the Microsoft product
managers, I began to warm up to the benefits of the new model and started to
envision how we could leverage its capabilities to expose some powerful new
options to the DotNetNuke community. But before we could focus on these
new options, our most critical requirement was that we could not have
breaking changes in the DotNetNuke framework in our ASP.NET 2.0 release.
The main business criteria driving this requirement was the fact we had just
had a major release with significant breaking changes in March 2005, and we
could not risk an all-out community revolt (or product fork) based on
compatibility issues.

Research and discussion proceeded throughout the months of July and

August as we worked with Microsoft to find an optimal solution. Feedback
from the community seemed to be mixed. People who were victims of the
Microsoft propaganda machine seemed to think that the release of ASP.NET
2.0 would signal the end of DotNetNuke, because it promised to deliver so
many overlapping application features. Other people who had adopted
DotNetNuke as part of their business infrastructure expressed apprehension
and fear regarding ASP.NET 2.0, based on their past experience that a
significant platform upgrade usually resulted in a costly migration effort.
Surprisingly, out of all the feedback collected, it appeared that nobody was
making a serious attempt to perform the upgrade on their own and that they
were waiting for us to provide a migration path (as we had always done in the
past). This element of trust was not lost on me, and I did my best to blog on a
regular basis to provide public communication of our progress.

Reorganization

Throughout the summer and fall of 2005 there was ongoing discussion
related to Core Team reorganization. Based on the guidelines that had been
created when individuals were invited to join the team in the summer of
2004, there was clearly a group of members who had not lived up to their
commitments. The list of responsibilities included staying involved in Core
Team business through the private discussion forum; participating in weekly
Core Team chats; contributing bug fixes, enhancements, or documentation to
the core product; and being active in community support channels. There
were many legitimate reasons, both personal and business-related, which led
to inactivity for team members. However, the unfortunate side effect is that it
led to a community perception that based on the total number of Core Team
members, we were underachieving in terms of our capabilities as a whole.
The Core Team reorganization meant that a number of team members needed
to be retired to make way for some new members who had earned the right to
participate based on their community accomplishments over the past year.
The project had never had to deal with a situation like this in the past, and it's
safe to say that as software developers, we are much more adept at solving
technical problems than human-resources issues. So the dilemma was how to
break the news to the inactive members in a professional and courteous
manner that still respected their past accomplishments and left the door open
for future participation. It was Scott Willhite who demonstrated the most
experience and wisdom in this area, as we worked on establishing effective
human resources processes for the organization.

Since the original formation of the Core Team, all members had received
equal rights in terms of project participation. This included not only
communication channels but also permissions to the product source code
repository. This model worked well when the team was small and all
members were on equal footing in terms of their technical abilities. However,
it proved to be a challenge when the team grew in size and members were
added with varying technical backgrounds. DotNetNuke had grown into a
mission-critical web application framework that many businesses now relied
on for rock-solid performance and reliability. We could no longer accept the
risk of inexperienced team members checking in code that could compromise
the stability of the application. As a result, we needed to refactor our project
roles to reflect the new project requirements.

A common theme that helped drive the refactoring of the project roles was
accountability. In the past, we had witnessed the fact that without
accountability, an individual would not exhibit the same level of
commitment, dedication, or passion for the project. As a result, it was
important to provide Core Team members with areas of accountability where
their contributions would be highly visible and easily recognized by the
general public. This public aspect provided them with a much greater benefit
in terms of visibility in the community, but it also made them a target for
criticism if they were inactive because they were personally responsible for
specific areas of the project.

Using the Apache Foundation as a meritocracy reference, we made some
significant changes to the organizational model of the project. The old “Inner
Team” designation was abolished in favor of a new “Core Team Trustee” role.
Scott Willhite came up with this new name based on the desire for industry-
accepted terminology and the fact that this innermost project role assumed
the highest level of trust from a development perspective. Core Team
Trustees had multiple years of experience on the project, had successfully
demonstrated their technical aptitude, and as a result were granted write
access to the core repository. The old “Outer Team” designation was
simplified to “Core Team Member”—a role that was able to participate in all
Core Team communication channels but was only provided read access to the
source code repository. In addition, we added a role for the DotNetNuke
Projects of “Project Team Lead.” This role was responsible for managing the
project infrastructure and communicating project status to the Core Team.

Microsoft Conferences

The month of September 2005 began with the Professional Developer
Conference (PDC) in Los Angeles, California. Based on a kind gesture from
Microsoft, a large number of Core Team members were provided with free
registration for the event in exchange for analysis of key ASP.NET 2.0
features that could be used in the DotNetNuke framework. Scott Willhite,
Dan Caron, Nik Kalyani, Jon Henning, John Mitchell, Charles Nurse, and I
were all able to attend the event, bringing together in one place the largest
group of Core Team members ever. It was an excellent opportunity to get to
know one another, and we spent a lot of time hanging out together, exploring
the exhibitor area, hosting a Birds of Feather session, visiting Universal
Studios, and attending a variety of conference sessions.

The DotNetNuke board of directors, with the recent inclusion of Nik Kalyani,
also took the opportunity to have some serious meetings regarding the
progress of the revenue opportunities discussed at TechEd. The summer had
not been productive in getting any programs launched other than advertising
and sponsorship, and Nik took a lead role in attempting to clarify both our
marketing and financial initiatives for the next 12 months. Specific board
members were assigned to each major opportunity, and projections were
presented and discussed in terms of assumptions, benefits, and execution
tasks. We had a lot of work ahead of us, including a major platform transition,
now firmly scheduled for November 7, 2005.

Later in September, Microsoft hosted a three-day summit for its Most
Valuable Professional (MVP) community members. Based on public
achievements, a number of DotNetNuke Core Team members earned this
award of distinction in 2005. Bruce Hopkins (Georgia, USA), Phil Beadle
(Australia), Cathal Connolly (Ireland), Jim Duffy (USA), and I (Canada) were
all able to attend the private summit in Redmond, Washington. The summit
provided the opportunity to get to know these Core Team members on a more
personal level, including their appetite for social festivities. I was also able to
spend some time with a number of prominent ASP.NET personalities and
DotNetNuke evangelists whom I greatly respected in terms of their
contributions to the community. In addition, there was also a large
representation of Microsoft employees at the MVP summit that resulted in
some excellent networking opportunities and offline discussions. Steve
Balmer's keynote address provided some valuable insight into the roadmap

for Microsoft's products and revealed areas where DotNetNuke could focus its
efforts to strengthen its market position in the coming year.

Directly following the MVP summit, I had the privilege of attending my first
ASPInsiders summit as well. The ASPInsiders represent a group of well-
respected industry leaders in the Microsoft ASP.NET community. I had
recently been inducted as an official member and appreciated the opportunity
to be included in such an elite group of professionals. Perhaps the most
important benefit of being an ASPInsider was that it provided representation
for the DotNetNuke development community and validation of our extensive
contributions to the industry. Due to its small focused membership, the
ASPInsiders summit had a personal and direct interaction with Microsoft
employees, allowing its members to provide feedback on a number of exciting
new technologies. The networking opportunity was incredible, and the
intricate dynamics of the various personalities and companies represented
were especially interesting.

DotNetNuke 4.0

Throughout the months of September and October, Charles Nurse was
instrumental in working on the migration to the ASP.NET 2.0 platform. He
invested a massive amount of time researching compatibility issues, creating
various proof of concepts, and communicating regularly with Microsoft. He
actually pursued two different agendas simultaneously: the upgrade of
DotNetNuke 3.0 to ASP.NET 2.0 from a runtime perspective and the creation
of a new web project model for DotNetNuke 4.0 that provided a development
strategy for the future.

To support the community, we concluded that we would need to support two
parallel code bases for an undetermined period of time: DotNetNuke 3.x
(ASP.NET 1.1) and DotNetNuke 4.0 (ASP.NET 2.0). Obviously, a more optimal
solution would have been a single code base that worked on both platforms;
however, this simply was not possible based on the platform compilation
changes in ASP.NET 2.0. In addition, we did not know what to expect in terms
of the adoption rate for the new Microsoft platform. Therefore, it seemed
natural that we focus on developing for both ASP.NET 1.1 and 2.0 in the short
term. An unfortunate side effect of this model involved a general
recommendation to develop to the lowest common denominator (that is, not
leverage ASP.NET 2.0-specific technology) and synchronizing all fixes and
enhancements across the two code bases.

One of the greatest achievements in the platform migration was that we were
able to fully satisfy our business requirement for no breaking changes.
DotNetNuke modules and skins developed on ASP.NET 1.1 could be installed
directly into the ASP.NET 2.0 environment without any changes whatsoever.
This had massive benefits for the commercial DotNetNuke ecosystem
because vendors could continue developing their modules as a single code
base on the ASP.NET 1.1 platform but offer their packaged products for sale in
both channels.

The only item that remained outstanding right up until the week before the
November 7 launch was how to develop DotNetNuke 4.0 modules on the
ASP.NET 2.0 platform. The new dynamic compilation model in ASP.NET 2.0
created some challenges for many of our runtime extensibility features,
especially where they relied on object instantiation through reflection. As is
often the case with technical problems, the answer is out there—it's just a
matter of finding the right person to ask. As luck would have it, a Microsoft

developer (Ting-Hao Yang) who was copied on some of the communication
between our team and the Microsoft ASP.NET Product Manager group finally
responded with details on a new ASP.NET 2.0 framework method that
ultimately solved all of our remaining reflection issues. In the end, all that
was required was a change to a single method in the DotNetNuke 4.0 core
framework (to use BuildManager.GetType).

One of the benefits of the new ASP.NET 2.0 platform was that Microsoft had
put a lot of focus on making the technology more accessible to the general
developer community. A key deliverable in this strategy was the release of an
entire suite of free “Express” tools. Included in the Express line was a tool
named “Visual Web Developer” that provided a functional Integrated
Development Environment (IDE) for ASP.NET 2.0. Leveraging the benefits of
this powerful new tool, we created a DotNetNuke 4.0 Starter Kit that enabled
a developer to configure a fully functional development environment within
minutes. This had significant implications on the DotNetNuke development
community because it lowered the barrier of entry and now made it possible
for any aspiring software developer, from beginner to advanced, to be
instantly productive with the DotNetNuke web application framework.
Combine this with the free SQL Server 2005 Express database engine and you
have a zero cost development environment. Visual Web Developer could not
be used to develop server controls or class libraries; however, the fact that the
DotNetNuke extensibility architecture was based on user controls made it a
perfect fit.

Not wanting to neglect the existing DotNetNuke 3.0 community by focusing
solely on ASP.NET 2.0 migration, we decided to integrate a few powerful new
features that had long been requested by the general community. Core Team
member Tam Tran Minh had been developing an Active Directory integration
component for a number of years and agreed to contribute it as a fully
supported core framework component. Additionally, Jon Henning had been
busy working on a full-featured JavaScript API that would allow developers to
leverage powerful client-side behavior in their modules. This included a new
menu control, the DNN Menu, and an implementation of the popular
Asynchronous JavaScript for XML (or Ajax) technology. Ajax technology had
become one of the hottest new trends for web development, and it is
important to note that DotNetNuke included a powerful Ajax library well
before the announcement of ASP.NET Ajax by Microsoft. The combination of
these features offered benefits to both platform consumers and application

developers, and further strengthened our core platform offering.

The official Microsoft launch date for ASP.NET 2.0 was set for November 7,
2005. We knew if we could release DotNetNuke 4.0 to coincide with this
event, we would be able to ride the huge marketing wave created by
Microsoft. Because we had always advocated “releasing software when it is
ready,” this hard deadline imposed some serious challenges on our meager
project resources. Aside from the obvious technical deliverables, we had
communication and marketing deliverables that also needed to roll out in
unison. Nik Kalyani showed his ability to pull things together on a tight
schedule, and we launched our first monthly newsletter to the entire
DotNetNuke registered user base (now 200,000 registered users) on
November 7. The response was overwhelmingly positive as the significance of
the achievement began to sink in. In the month of November, we recorded
165,000 downloads, far eclipsing any previous monthly download total in the
history of the project.

An interesting aspect to consider in the ASP.NET 2.0 migration was that we
delivered a fully managed upgrade to users of the DotNetNuke web
application framework. Anyone who has ever attempted a major platform
upgrade on his or her own should recognize the incredible value of this
accomplishment. We had effectively eliminated a budget line item of
considerable cost and effort from thousands of IT departments and business
entities around the world. Compare this to scenarios where companies create
their own custom ASP.NET 1.1 applications. In these cases, each company
would need to invest significant resources and funding to work out its own
web application migration strategy. Or compare this to another scenario
where you adopt another web application framework, commercial or open
source, which had not even considered the upgrade challenges posed by
ASP.NET 2.0 and were going to force you to postpone your upgrade until it fit
their own release schedule. In either case, the decision to adopt DotNetNuke
as part of an organization's business infrastructure had certainly paid
dividends worthy of the attention of any business decision-maker.

Immediately following the DotNetNuke 4.0 release, we focused on
stabilization issues that were exposed through testing by a larger community
audience. Another area that received dedicated focus was the Module Item
Template feature of the DotNetNuke 4.0 Starter Kit. Through research and
persistence, we were able to construct a DotNetNuke Module Template that
could automatically create all of the development resources required to build

a fully functional module in DotNetNuke 4.0. It even had some
parameterization capabilities so that the template could be customized at
runtime to meet the needs of the developer. I wrote an article describing the
Starter Kit and Module Template and posted it on the public forums on
www.asp.net. The article proved to be popular, with nearly 30,000 views
recorded in the six weeks following its publication. It turned out that the
changes in ASP.NET 2.0 resulted in some decent productivity benefits for
module developers, further improving the capabilities of the DotNetNuke
framework.

An interesting event occurred in December 2005, well after the official launch
of ASP.NET 2.0. Based largely on the feedback that we provided Microsoft
during our product migration efforts, Microsoft announced some add-ons for
Visual Studio 2005 that added back ASP.NET 1.1 development support
through Web Application Projects as well as compilation and merge support
through Web Deployment Projects. Based on its superior architecture and
incredible popularity, DotNetNuke was able to unite a significant portion of
the Microsoft developer community and create a much stronger voice and
more compelling argument in favor of specific platform features than would
have ever been possible for individual developers. Besides the fact that these
add-ons provided some critical options for web application developers, it was
really gratifying to see that our direct feedback could have such an immediate
and influential effect on the industry.

http://www.asp.net

Slashdotted

In October 2005, I wrote a blog titled “No Respect for Windows Open
Source.” The blog was a political rant based on the fact that because
DotNetNuke did not run on a fully open source stack of software components
(that is, Linux/Apache/MySQL/PHP or LAMP), it did not get any respect from
the general open source community. Further, it argued that all open source
projects regardless of platform should be judged solely on the validity of their
open source license and ideals. The blog was picked up by Slashdot, the
largest independent news site for information technology and resulted in a lot
of exposure for the project. The posting on Slashdot generated more than 500
comments, each with a unique perspective on the Windows open source
paradigm.

In October, we were approached by .NET Developers Journal (.NETD/J) to do
a series of articles on the DotNetNuke project. This was an excellent
opportunity to showcase various aspects of the project in a mainstream
magazine. A number of Core Team members were identified as potential
authors and the first article in a series of six was published in the November
edition of .NETDJ. Forging relationships with publishers is a great way to
raise the profile of the project and open doors for future opportunities. In this
case, working with SYS-CON (the publisher of .NETDJ) reaped rewards in
terms of being approved as a featured speaker in the upcoming SYS-CON
Enterprise Open Source conference in June 2006.

By the end of 2005, our SourceForge.Net ranking had climbed to #75 (out of
all the open source projects in the world). We were consistently getting
15,000 new registered users per month, and our project downloads averaged
120,000 per month. The dotnetnuke.com site was now serving 4.5 million
page views per month, and every indication was pointing to even more
improvement in 2006.

Benefactor Program

As much as there is a romantic notion regarding a distributed group of purely
volunteer resources working together in their free time to produce an
enterprise-level software product, it does not represent reality. To effectively
manage all of the aspects of a professional software product, dedicated
management is an absolute requirement. This does not just entail the
standard project management principles for software development, but also
the legal and marketing aspects of managing a high-profile technology asset.
Since the project inception I had been able to commit 100 percent of my time
to the project only because there was a sufficient stream of project revenue to
support my needs. And throughout the life of the project, a number of team
members had been financially compensated for various deliverables so that
we could meet obligations and scheduled deadlines. The financial resources
came from a variety of sources, including third-party sponsorship,
advertising, and custom consulting opportunities. Unfortunately, the revenue
streams were not sizable or stable in terms of securing multiple resources for
long-term engagements. Essentially, we were trying to operate a product
company without any direct product revenue. And with the constant growth
of the project, the demands were increasing rather than decreasing, putting
even more pressure on the minimal set of project resources.

Back in July 2005, I concluded that without a dedicated sales effort, the
dotnetnuke.com Website was never going to reach its full potential as a
revenue-generating asset. (We had published ad rates on the site months
earlier and had not received many serious inquiries.) I decided it was time to
more actively cultivate our advertising and sponsorship revenue streams and
that it was going to require spending some money to make money. Armed
with a huge number of industry contacts collected at Tech Ed, I hired a full-
time resource to actively manage the advertising and sponsorship program.
Due to major content improvements made in the previous four months, the
dotnetnuke.com Website became a targeted channel for the Microsoft
development community. I hired my brother, Bill Walker, full time to act as
the DotNetNuke advertising manager, and despite his lack of knowledge of
the product or industry, he hit the ground running. By simplifying the
advertising rate sheet and employing traditional sales techniques, we were
successfully able to substantially grow this revenue stream in a relatively
short time. However, it was still not a model that would scale to supporting
the large successful organization we wanted to become.

http://dotnetnuke.com
http://dotnetnuke.com

In the fall of 2005, while driving home from a business trip, I spent some
dedicated time immersing myself in the revenue model dilemma. Over the
years, I did a lot of research on business models for open source projects, and
the big question was, “How do you sustain an open source organization while
still adhering to its open source ideals?” There were obviously a number of
companies that had demonstrated their ability to succeed in this area by
employing a variety of financial options; however, I was keenly aware that
each model had its own set of disadvantages.

One of the other recurring themes I kept thinking about is “who we serve.” In
a traditional business model, you serve your customers—but this generally
assumes that some money is changing hands. For DotNetNuke, I would like
to think that our open source community is who we serve, but because they
are essentially using the product for free, it becomes challenging when other
stakeholders step forward with financial support.

Examining each of the more popular open source revenue models based on
this theme proved to be a useful exercise.

A pure volunteer option has no revenue model. As a result, it has no resource
cost—but at the same time it has no accountability, responsibility, or
dedicated management. It could be argued that although it is supposed to
serve the open source community, it really does not because there are no
motivating factors driving the development and support.

A dual license model had been effective for a number of open source projects
because it allowed for an open source version as well as a commercial version
of the same product. This is possible only if the project owner has clear
ownership of the copyright for the code. The commercial version provides
traditional licensing revenue that helps sustain dedicated management and
developer resources, resulting in improved accountability. Unfortunately, it
tends to lead to a number of conflict-of-interest scenarios within the
ecosystem. For one thing, there is a constant problem of deciding which
features belong in the open source version of the product and which in the
commercial version. The commercial license often eliminates many of the
advantages that are fundamental to a customer choosing an open source
solution. Extensibility options are sometimes throttled as the company
attempts to control the financial ecosystem around the product. And the
company is often forced to show favoritism through support and marketing
channels to its paying commercial customers over the organic open source
community.

A sponsorship model involves utilizing a revenue stream from one or more
third-party funding sources. Although this revenue model results in funding
for dedicated management, it often compromises the project ideals as the
sponsor attempts to exert its influence over the project roadmap and
marketing goals. It also results in a revenue stream that is variable, creating
challenges in terms of cash-flow requirements. In addition, the project needs
to be extremely diligent regarding the ownership of the intellectual property
so as not to put itself in a situation where the third party could sue the project
for copyright infringement or affect the open source project licensing.

A professional services model is based on a concept where the platform
maintainer does a significant amount of custom consulting for a third-party
client. The revenue from the custom consulting is used to fund the dedicated
management for the open source product. Unfortunately, this model tends to
consume a high level of resources to qualify leads, formulate contracts,
manage accounts, obtain signoff, and keep the pipeline full of revenue
opportunities. The revenue stream is variable, affecting cash flow, and key
project resources are often required to focus on specific client requirements
rather than supporting and improving the open source product.

A charitable donations model is a popular concept in the traditional open
source world because it involves voluntary community financial support of
the project. The problem is that it does not generate a consistent, sustainable
revenue stream, which means it is unable to secure dedicated management
resources. In addition, there is a tendency for community members to
assume that other members are making financial donations, when in reality
the project is receiving no financial contributions from anyone.

A vertical application model leverages the open source product to create a
highly specialized, commercial, vertical market application. The vertical
market application typically generates revenue through an application service
provider (ASP) revenue model, which contributes funding back to the open
source project. The challenge is that it requires focused management and
marketing in the vertical market, complete with domain challenges,
competition, legal considerations, and political constraints. The open source
application also tends to cater the product roadmap to the needs of the
vertical market application, resulting in a less robust application framework.

Because each of the common revenue models has its own set of issues, it
made me brainstorm what I would consider to be an optimal open source
revenue model. The main criterion is that the project should serve the open

source community (“by the people, for the people”). It should be objective
and open, avoiding conflict of interest and adhering to open source ideals.
Finally, the revenue stream must be consistent and sustainable, capable of
sustaining multiple dedicated resources.

An interesting economics philosophy that Scott Willhite turned me on to was
the concept of the “abundance mentality.” In terms of business value, an
“abundance mentality” refers to an attitude of growth. Essentially, it means
that the overall size of the ecosystem becomes larger as the number of
opportunities within the ecosystem increases. By working together with
various stakeholders in the ecosystem, all members of the collective group
benefit through a greater abundance of revenue-generating opportunities.
The opposite of the “abundance mentality” is the “scarcity mentality,” where
participants consider the size of the ecosystem to be constrained and the goal
is to capture as much of the market share as possible (choking out the
smaller competitors in the process). DotNetNuke's extensible architecture
and open source philosophy constantly push the envelope in terms of creating
new business opportunities within the community. It was another principle
that needed to be adhered to in our quest for a suitable revenue model.

With all of these ideas swirling in my head, I concluded that a membership
subscription concept could be an effective revenue model for advancing our
goals. It would mean that the open source project was funded by the
community. It would also mean that the project was accountable and
responsible to the community. Through the creation of new benefits, we
would be able to provide more opportunities for community members to
participate in the project ecosystem. From a public perspective, it would
provide a defined method for any supporter, big or small, to contribute to the
project. And we would not need to compromise any of our open source ideals.
Membership would be available by subscription that would create an ongoing,
consistent revenue stream.

The DotNetNuke Benefactor Program (see Figure 1.12) was officially
launched in December 2005. Nik Kalyani came up with the marketing term
“benefactor” because it clearly communicated the financial support goal of
the program. The program had four levels of participation to cater to the
needs of various stakeholders in the community, from individual developers
to enterprise business organizations. The initial set of benefits was targeted to
each program level, and the administrative aspects of the program were
automated as much as possible to provide a seamless user experience. The

overall response to the program was positive and paved the way for future
revenue opportunities.

3 Benefactor Program - Microsoft Internet Explorer

| Fie Edit Vew Favorites Tools Heb FSend [%

| wBack v @ - D) A Qe Feodtes PMede B Y- S A - 5 4

JAdcl'ms I&‘] b {fvesive, doknetriske comtabed f694)/ Def auk, aspe

=] oo | & -

L33 l_ I Search

Home About Community Development

¥ B R

Drownloads Direc Forums

V¢ DOTNETNUKE

Projects Blogs

Benefactor Program Registar | Login

" ALLFOR ONLY

l 5495 7 webhosﬂﬁfe W

MONTH ASP, SQL, PHP, PERL, SharePoint, Control P

#anel and

DotNetMNulke Benefactor Program

The DotMathiuke® praject was founded on pura apan sourca ideals, These principles permeats svery aspact of the project and
are fundamental to our business philosophy. &t our core, we believe that every organization, company, or individual should have
access to high quality, functional software under the most liberal license possible, regardless of their industry focus, geographical
location, size, technical aptitude, or financial capabilities, But the freedom does not stop there. We beliave that our valued
merbers should have the right to aptionally chooss to suppart the project, by participating in premium service programs which
are focused on their spedfic needs. The combination of these influences provide the basis for a strang and healthy care
faundation, resulting in a vibrant community ecosystem that is ultimmately supported by the people, for the people.

Benefactor Program Goals

The Dothethuke Benefactor Program was created with the intent to preserve the delicate balance between the needs of the open
source community, the serious business ecosystem it has fostered, and the on-going management of the project,

The Benefactor Program provides the ability for community rrlembers to gain access to a premium set of layered

benefit packages; with each level designed to satisfy the neads of 3 specific stakeholder group. In order to appreciate each of the
Benefactor Program levels being offered, it is first necessary to understand the specific requirements of each group.

&

|| | ntemet

B

Figure 1.12

Opportunists

In the fall of 2005, DotNetNuke was starting to gain considerable
momentum. The open source community was growing, and the commerecial
ecosystem was becoming stronger and more diverse. DotNetNuke was being
used in more enterprise deployments than ever before, and the brand was
beginning to become more recognized and respected in the industry. A huge
opportunity began to emerge, and this caught the attention of a number of
serial entrepreneurs who were eager to capitalize on it.

One entrepreneur in particular was especially aggressive in the manner in
which he approached the DotNetNuke community. With significant exits
under his belt from a number of previous business ventures, he had the
connections and proven track record of being able to take an emerging
opportunity to market. Without prior introduction, he called me on the
telephone one afternoon, and we had a casual conversation about the state of
the DotNetNuke project and some of the areas in which we were planning on
offering professional services to the community. Later, at his request, we had
a face-to-face meeting in Seattle near Pikes Place Market, where he told me
some of his own business ideas and informed me that he would like to
contribute to the financial health of the project so that it could achieve even
greater growth. Offers such as this do not come without strings attached, so I
warily kept my distance as I tried to learn more about his philosophy and
values to determine if they were in alignment with the project.

Much to my surprise in March 2006, a press release was issued that
announced that his company had raised $1.75 million in seed venture capital
based on a concept of providing an “economic platform” for developers
leveraging the DotNetNuke framework. Clearly some of this so-called
“economic platform” overlapped the professional services that we ourselves
had begun to provide, and as a result the situation became complicated. At
their insistence, a business meeting was scheduled in April at the Westin
Towers in Seattle where some of their high-level business goals were
presented to Scott Willhite and myself. Clearly the goal of the meeting was to
convince us to make a commitment to formulating a deeper partnership.
However, the meeting offered few tangible details on how our organizations
were going to work together, other than the fact they wanted us to continue
focusing on the technology while they focused on commerce.

It takes more than a few meetings or conversations to establish the trust

required to form a business partnership, and as a result we really did not feel
comfortable moving forward at this juncture. The fact is, the DotNetNuke
Board had been working very hard on the project for a number of years, and it
was not clear to me how the members of our team were going to be included
in the venture. In addition, some of the stories the entrepreneur had shared
in an attempt to demonstrate his past business prowess had actually left an
unpleasant taste in my mouth, as they appeared to not be aligned with the
community ideals on which the DotNetNuke project was founded. When they
realized that their open wallet was not going to result in open arms, I believe
they were genuinely surprised and disappointed. However, this simply echoed
the fact that they did not understand or share our philosophies or values. We
advised them that they should first become contributing citizens to the
community, establish a positive reputation, and then we could consider
cultivating a deeper relationship. They agreed to act on this advice and so
began a rather tenuous relationship in the months following.

I do think it is important to give credit where it is due. This serial
entrepreneur saw the potential in DotNetNuke and was effective in painting a
large vision for the project. He had some very solid business ideas that were
based on his real-world experience in monetizing other technology platforms
and industries. He was a skilled speaker, a tenacious salesman, buzz-word
compliant, and knowledgeable on most of the hot technology and
globalization concepts promoted through books such as The World is Flat,
The Tipping Point, and The Long Tail. Like any good student, I absorbed as
much of his wisdom as I could, and it really precipitated a change in my
perspective from always looking at the project from a technical viewpoint to
focusing more on the business model and broader ecosystem benefits.

The most important thing I realized from this experience was what a
tremendous opportunity DotNetNuke represented and that we had reached a
critical inflection point—if we did not take steps on our own to take the
project to a higher level, somebody else would do it without our participation.
Scott Willhite's wisdom and experience were instrumental throughout this
process in terms of keeping us focused on the primary goals, which included
building the DotNetNuke economy to its fullest potential, preserving the
cultural roots of DotNetNuke and its universal accessibility, and rewarding
those who have contributed (and continue to contribute) to its success.

Yin and Yang

In June 2006, I attended my first non-Microsoft technology conference, SYS-
CON Enterprise Open Source in New York. I had been selected as a speaker,
and my session focused on open source software on the Microsoft platform.
Going in, I thought this was going to be hostile territory, but I soon realized
that the “enterprise” focus resulted in the conference being technology-
agnostic for the most part. The big news at the conference was that Marc
Fleury, who was scheduled to do the keynote, was unable to attend because
his company, JBoss, had just been acquired by Red Hat. SugarCRM, who had
already completed a Series C round of financing, was a major sponsor of the
event, and I spent a fair amount of time talking to its founders, recognizing
the many similarities that existed between our platforms. Overall, the
conference was a good experience and gave me a better sense of open source
commercialization, especially in regard to high-tech start-ups and venture
financing.

In the summer of 2006, we had our third annual board meeting, and one of
most significant themes at the meeting was the concept of “balance.” In the
past, we had always taken what we thought was an objective stance on the
separation between the open source project and its commercial ecosystem.
Because we were the stewards of the core project, we tried to avoid anything
that could lead to potential conflict-of-interest scenarios. Generally this
involved focusing on the open source community and avoiding direct
interaction with commercial stakeholders. Interestingly, the commercial
ecosystem seemed to thrive almost in spite of the fact that we were trying to
ignore it. Gradually, we came to the realization that there were actually two
very powerful influences in the project and that both were essential to its
long-term stability—the “yin” and “yang” of DotNetNuke. These
complementary forces needed to be embraced in order to preserve the
delicate balance within the project and ensure its future.

Up until this point the DotNetNuke board had been serving the project in an
unofficial capacity for a number of years, dealing with the various
management tasks as best it could. Other than myself, the other members of
the board either were self-employed entrepreneurs or were employed by
other companies, which made it difficult to function as a cohesive team. Dan
Caron had stepped down from the board in December 2005 due to the time
commitment and amount of strain it was putting on his family. This left Scott

Willhite, Joe Brinkman, Nik Kalyani, and myself remaining as board
members. As the months went by it became apparent that the project needed
a different corporate structure and a full-time management team, but in order
to support such an organization financially, it needed an adequate revenue
base. And because the current services revenue was not scalable or
predictable, it left little choice but to pursue alternative funding sources.

A New Company

It so happened that Scott Willhite had a good friend named Blair Garrou.
Blair was managing director at DFJ Mercury, a seed and early-stage venture
capital fund based in Houston, Texas. We had a conference call with Blair,
and he indicated that although the DotNetNuke opportunity was not the right
fit for his firm, that he would make some strategic introductions.

The first introduction he made was to Mark Radcliffe, a partner with DLA
Piper who operates out of its Palo Alto office in California. Mark specializes in
strategic intellectual property advice, private financing, corporate partnering,
software licensing, and copyright and trademark matters. In the open source
software realm, he is one of the most widely recognized and respected
attorneys. After an initial meeting with Mark, we signed an engagement letter
where DLA Piper agreed to defer billing for its services up to a certain
threshold in exchange for a warrant to purchase stock in the company when it
reached specific trigger conditions. DLA Piper was going to help us form an
open source company that could better manage the needs of the DotNetNuke
community and provide a solid business foundation for future growth.

DotNetNuke Corporation was formed September 21, 2006. Rather than
coming up with a brand-new company name, we took the simpler approach,
which had the benefit of providing a direct link between the open source
project and the company (see Figure 1.13). The purpose of the new company
was to assume a stewardship role and provide infrastructure, management,
and support to the open source project as part of its regular operations. The
previous board members, Scott Willhite, Joe Brinkman, and Nik Kalyani, all
came aboard as official cofounders in the new entity. A commitment was
made to transfer all of the existing intellectual property from Perpetual
Motion Interactive Systems Inc. to DotNetNuke Corporation. A public press
release was issued, and great care was taken to educate the community about
the structural change to the project. Although there was some initial concern
raised in regard to the “Corporation” branding, the community was
overwhelmingly receptive to the change, and the transition created no serious
disruption to the ecosystem. At this time the number of registered users on
the dotnetnuke.com website was 335,000 members, and 2 million downloads
had been recorded all time.

http://dotnetnuke.com

5. ¢ Favorites 6:’

Address] http:/jwww dotnetnukecarp.com, v aﬁﬂ Links (& Sneglt '

ceDDTN&TNLJI(E

Register Login

Subscription LEARN more about DotNetNuke

Program Visit the DotNetNuke Open

source project website
Business customers can
now get Professional

Support through the
DotMetMuke Subscription

GET technical support for
DotNetNuke

Program. Click here fo Signup for the DotNetMuke
more information. Subscription Program: Owerview
FAQ, Packages. Signup
' SELL products to DotNetNuke
users
T m—_ We make DotNetNuke
The #1 Open Source Web Application Framework start selling your products for
for the Microsoft® technology platform DothetNuke quickly and essily on the »
2] @ Internet

Figure 1.13

DotNetNuke's first challenge was constructing a business plan that would
provide the foundation enough to sustain the project long term. The
Benefactor program had been successful in providing members of the
ecosystem with an opportunity to support the project and receive some
additional benefits. Unfortunately, the number of participants in the program
was not enough to generate sufficient revenue. In addition, we realized that
the benefits being offered did not meet the needs of all community members.
Specifically, there was a group of serious users of the platform who were in
need of more professional support services, which were not offered through
the program.

The week following the public announcement of the formation of
DotNetNuke Corporation came news of another DotNetNuke event. The
company that had its eyes set on creating an “economic platform” for
DotNetNuke was hosting a private mini-conference in Las Vegas, Nevada. It
had approached the majority of commercial vendors in the DotNetNuke
ecosystem and had offered to pay for their expenses to attend the event. This

turned out to be a self-serving effort, as the main goal was to demonstrate
and collect feedback in regard to module licensing opportunities. Ironically,
even though the entire event was predicated on modular software leveraging
the DotNetNuke platform, DotNetNuke Corporation had not been invited.
This sent a clear message that we were not working together, and the
unfortunate side effect was that the commercial vendors were caught in the
middle. This would prove to be a challenging situation in the coming months,
as much time and effort were spent on cultivating relationships and
preserving the integrity of the ecosystem.

Larry Augustin

As part of his high-profile practice in the Bay Area, Mark Radcliffe had access
to an enviable list of influential personal contacts in the software and venture
financing industry. One of the first individuals he introduced us to in the fall
of 2006 was Larry Augustin. Larry Augustin is an angel investor and adviser
to early-stage technology companies. A member of the group that coined the
term “open source,” he had written and spoken extensively on the topic
worldwide. In 1993 he founded VA Linux (now GeekNet, NASDAQ:LNUX),
parent company of Slashdot and SourceForge, where he led the company
through an IPO in 1999 and served as CEO until August 2002. He is currently
the CEO of SugarCRM and has advised and served on the boards of directors
of a number of commercial open source companies including Appcelerator,
Fonality, Hyperic, Medsphere, Pentaho, and XenSource.

I flew down to San Francisco in November 2006 and met with Larry at DLA
Piper's offices in Palo Alto. We had a great conversation about the
DotNetNuke community, the commercial ecosystem for extensions, and open
source business models. Given Larry's background in enterprise Linux, I was
initially curious as to why he would be interested in an open source project on
the Microsoft platform. However, I soon realized that as a veteran
entrepreneur, Larry was interested in any software ecosystem where open
source was being leveraged as a disruptive business advantage. Larry had
relationships with the majority of top-tier venture capital firms in Silicon
Valley and specifically with the general partners who were receptive to open
source business models. This initial meeting provided the foundation for a
mutually beneficial and productive relationship between Larry and
DotNetNuke.

Performance

Based on the feedback from hosting providers participating in the Microsoft
Windows Shared Hosting Accelerator program, scalability and performance
became a high priority in the fall of 2006. After many discussions, Microsoft
actually allocated one of its experts on ASP.NET and Windows Server
performance to work with us on optimizing the DotNetNuke application for
the shared hosting environment. Charles Nurse spent a week in Redmond
working side-by-side with this expert in the Patterns & Practices testing lab to
learn how to effectively simulate load and performance test the application.

The scalability of the DotNetNuke application improved dramatically over
this time frame, and the end result was released as DotNetNuke 4.4 in
November 2006 to an overwhelmingly appreciative community. From this
point forward, we had a regression baseline that could be used to compare
new versions of the product in order to determine if performance had been
degraded by new enhancements to the platform. As part of this process we
also learned that there were very few developers in the Microsoft ecosystem
who truly understood the ASP.NET/IIS/Windows Server dependencies or
constraints from a performance perspective. We shared a lot of great
knowledge with the general Microsoft developer community, and
DotNetNuke's reputation as an enterprise web platform was bolstered.

In December 2006, more than a year after DotNetNuke 4.0 and ASP.NET 2.0
were released, we made the decision to sunset the DotNetNuke 3.x product.
DotNetNuke 3.x was based on ASP.NET 1.1, and we had seen interest in this
legacy platform drop off to the point where it no longer made sense to
continue actively maintaining a parallel code base. Determining how and
when to drop support for legacy versions of the Microsoft platform would
continue to be a difficult challenge on an ongoing basis for the DotNetNuke
project.

DotNetNuke Marketplace

The extensibility model in DotNetNuke had spawned a very active
commercial ecosystem. By the end of 2006, hundreds of commercial modules
and skins were available for the DotNetNuke platform. In addition, many
companies were providing business services exclusively to the DotNetNuke
market. This dynamic ecosystem was helping propel the growth of the project,
but it was not without its share of issues.

Early in the project's history, a third party created a reseller environment that
allowed developers and designers to sell their DotNetNuke products to
consumers. This made it extremely easy for anyone, from a hobbyist
developer to a serious independent software vendor, to get involved in the
DotNetNuke commercial ecosystem. In the early stages, the existence of an
established business environment for commercial components was critical to
the growth of the project and adoption by business users. However, one of the
most common types of feedback that we overheard related to this
environment was about the questionable quality of third-party products and
services.

Based on the reseller environment's low barrier of entry, the quality of
commercial DotNetNuke components was extremely inconsistent. Some
vendors were providing high-quality components, with professional support
and explicit licensing terms. Others were essentially providing basic HTML
scripts at a minimal fee with no support or licensing considerations. The
combination of these polar opposites posed issues in terms of our goals to
promote DotNetNuke as a professional framework. Effectively, the existing
reseller environment was promoting a “Buyer Beware” mentality that was not
complementary with our goals for taking the project to a higher level of
business acceptance. In fact, some of the more serious independent software
vendors told us that in order for them to get involved in the ecosystem, a
more professional reseller channel would need to be made available.

To deal with the quality issue, we believed that a product review service could
solve a number of problems. Although a comprehensive product review could
provide great value, it would not be cost effective to perform, and therefore
the review criteria would need to focus on some of the more fundamental
product attributes such as whether the product installs and uninstalls
properly. Although minimalist, such a review program would still provide
value to the ecosystem. First, it would provide consumers with confidence

that the product they are purchasing is fully functional. It also would provide
educational guidance to software vendors in terms of project standards and
expectations.

We had approached the current reseller a number of times in the past with
hopes that we could form a business partnership. The main benefit was if the
reseller became a contributing citizen of the DotNetNuke community, we
could work together to elevate the ecosystem to a higher level. It would also
provide us with critical business intelligence related to the usage of the
product. For us to effectively manage the product roadmap, it was becoming
increasingly more important that we get in touch with our entire user
community. The discussion forums represented a small but vocal group of
community members who offered feedback, but there was a much larger
group of users with whom we had absolutely no contact. Unfortunately, the
reseller was not interested in working with us in this capacity, which left us
with a single alternative: establishing our own reseller channel.

Combining the concepts of the review program with a reseller channel
seemed to be a great way to satisfy a variety of project goals. Initially our
reseller channel would only sell components that passed our review program.
This would improve the overall perception of quality and confidence in the
community and provide a new revenue stream to help us secure more
dedicated project resources.

The development process of the reseller channel took longer than expected.
In reviewing the requirements we recognized that there were no products
with e-commerce functionality within the DotNetNuke ecosystem that could
satisfy our needs. Therefore, we had to look elsewhere, and we were pleased
to work out an agreement with AspDotNetStoreFront, an established product
vendor providing a robust e-commerce solution to the Microsoft market.
AspDotNetStoreFront was even interested in migrating a version of its
software to the DotNetNuke platform, so we forged an agreement with them
in hope of establishing a long-term business relationship.

The DotNetNuke Marketplace was launched in January 2007 (see Figure
1.14). Similar to dotnetnuke.com it took a minimalist approach to the website
design. And one of the design goals was to ensure a consistent, professional
user experience, as we felt it would be a good differentiator from the other
reseller site. The number of products available grew slowly as awareness of
the Marketplace grew in the vendor community, and product reviews were
completed.

http://dotnetnuke.com

Ale Edit Wew Hstory Bookmarks Took Help
& - - = o 1 fmarkstplsce. dotretrke com/ | b G
“E L < Lp [hetp:ffmar tplace. dotne icom| i | | u
L
“ Home Account Info Customer Service
« s
Marketplace {e &
['I-nalured Modules |
Product Search 5 - >
Premium Products r c Ba
Enter your search terms From Ciata Spring
£99.99
:I napnmm E‘-:mtthﬁli 'DNN v7.0 va IFrame 2.0.0 - DN 3.3
[y ey ﬁ - i From
aspijinetstorefront ol
) We are proud to bring our industry leading] P = ecthook Pro 4.1
[em | AspDetMetStorefront shopping cart platform to the DNN et
£ community. Hundreds of features, no menthly fees, source .| - £9.90
DotMethuke User Manual 4.8 code sveilable, C= or VB.NET, Google Checkout, PayPal, Real ’ -
Time shipipng, unilmited pmduct; & categeries, unlimited topic | HM a E
a pages, one page checkout, SEQ friendly, Google Site maps, Edition
and Iterally every feature you will need to run a professional % From Duats S
e-commerce web site on the DNN platform. "'L- $349.99
L, NEMHIC c Ead
PRI L) In ON from Diats S 1
ity e niot f uoelsale) from: $1,495.00 $129.00
. From Cothys
Featured Products £10.00
Il =d &
Cutopia Store Locator US Pagelings 1.0.0 Google Custom Search 1.0 s r
Edition 1.0.02 from fiors e p— from Spired
riesrdg ot 619,99
From ke
: g E 0307 . — 600,95 b
Done o

Figure 1.14

It did not take long before we learned a variety of valuable lessons. First, we
had underestimated the first-mover advantage that the incumbent reseller
had in our ecosystem. Without an incentive there was no motivating factor to
encourage vendors to list their products in our marketplace. Without
products, there was also no incentive for consumers to browse our
marketplace and make purchases. The review program that we had assumed
would be a great benefit actually became a barrier to entry, as we discovered
that most vendors were not keen on paying a fee, no matter how minimal, to
have their product reviewed. In hindsight this made perfect sense, because
unless consumers are specifically demanding reviewed products, there is no
motivation for vendors to invest in the program. In addition, our initial
process for listing products was cumbersome, especially in comparison to the
incumbent reseller. This resulted in some hesitation on the part of vendors to
list their products and keep them regularly updated.

Another mistake we made was to maintain too much parity with the
incumbent reseller in terms of the features and business model. In order to

be truly competitive, we needed to introduce some disruptive concepts and
differentiate ourselves. As we learned these valuable lessons we adapted the
Marketplace and slowly began to garner a greater inventory of products and
consumer traffic, but still continued to lag behind the incumbent reseller. The
most significant problem we faced was in regard to resources. Without start-
up capital there was not enough revenue to allow for dedicated management
of the Marketplace, and as a result it did not get the attention it deserved or
required to achieve momentum.

Free Module Promotion

Without a working relationship with DotNetNuke Corporation, the funded
entity that had promised to create an “economic platform” for DotNetNuke
was aggressively trying to establish a foothold in the e-commerce portion of
the ecosystem throughout the latter half of 2006. In July 2006, it had
provided us with a proposal where it would pay us a royalty if we made it the
exclusive e-commerce partner for the DotNetNuke ecosystem. However,
based on the fact we were already establishing our own reseller marketplace
coupled with the fact that we did not see eye-to-eye on many business
practices, we decided not to move forward with this opportunity.

In December 2006, with participation from a number of commercial module
vendors, it launched a promotion where a variety of the most popular
modules were offered as a free subscription package for one year to
DotNetNuke users. The package was mainly offered through hosting
providers and community sites and was ultimately an attempt to build a large
user base and validate their proprietary software licensing solution. Although
the concept of a recurring revenue stream for commercial module vendors
seemed attractive, it did not take long before a few critical problems came to
the surface; the most significant was that commercial module vendors found
themselves providing support services to users who had not paid for their
products. This was not a viable model, and within a few months the majority
of the module vendors pulled out of the promotion.

In April 2007 the company announced that it had received another $5 million
in venture capital funding and was expanding its vision to include commercial
software outside the DotNetNuke ecosystem. We did not hear from them
again, and by 2008 their focus appeared to have shifted away from software
licensing and DotNetNuke as they worked on developing a website that
provided product reviewers with tools to critique technology-based products
and consumers the ability to browse the reviews.

Conferences

The first DotNetNuke conference occurred in May 2006 in Papendal,
Netherlands. It was hosted by the Software Developer Network (SDN), which
had recently added DotNetNuke as an officially recognized technology in its
user group organization (based largely on the fact that Core Team member
Leigh Pointer had successfully built a DotNetNuke user group of more than
300 members in the Netherlands). I was offered an all-expenses-paid trip to
come and speak at the event, which I gratefully accepted. The DotNetNuke
track ran in parallel with the other Software Developer Conference (SDC)
tracks and featured sessions by Core Team member Vicen¢ Masanas as well
as DotNetNuke experts from the Dutch community.

In October 2006, David Walker from Tulsa, Oklahoma, organized the first of
what was to become an annual community technology event, which he named
Tulsa TechFest. It was an ambitious conference, free to attendees, and funded
by sponsors with many parallel tracks and notable speakers. Because he was a
fan of the DotNetNuke platform, David reserved a track for DotNetNuke and
invited me to come and speak. I had the honor of doing my first-ever
conference keynote at this event, and it was a great experience to meet in
person a number of Core Team members for the first time (John Mitchell,
Chris Hammond, and Shawn Mehaffie) as well as a number of Microsoft
MVPs.

Based on the rapid growth of the DotNetNuke ecosystem, by the end of 2006
we thought the community was ready for a dedicated DotNetNuke conference
event. Conferences involve a significant amount of time, effort, and expertise
to manage, so we recognized that our best approach would be to partner with
an established conference organizer and potentially co-locate with an existing
technology event. Initially we approached SYS-CON Media, but after a couple
months of trying to work through contract logistics, we realized that some
chemistry was missing from the relationship and that we would be better off
looking for a different partner.

We approached a variety of other conference organizers and quickly learned
that the majority of them either were already at capacity or were not willing

to take a risk on a DotNetNuke conference event. Rather frustrated, we were
at the point of giving up on the conference idea entirely when Joe Brinkman
made contact with Shirley Brothers from DevConnections.

DevConnections is one of the longest-running independent developer

conferences focused on Microsoft technology and a perfect fit for the
DotNetNuke platform. It turned out that Brian Goldfarb and Scott Guthrie
from Microsoft had put in a good word for us with Shirley, and she was
willing to entertain a DotNetNuke event that would be co-located with
DevConnections at Mandalay Bay in Las Vegas in the fall of 2007. Working
through the contract details with Shirley was a positive experience, and we
ultimately agreed on two DotNetNuke conference tracks: one for developers
and the other for designers and administrators.

One of the most significant benefits of co-locating with DevConnections was
the fact that attendees were not restricted to only DotNetNuke sessions but
were free to take advantage of any DevConnections content being presented
in any track including ASP.NET, Visual Studio, and SQL Server. Nik Kalyani
came up with a DotNetNuke conference brand of “OpenForce,” and Joe
Brinkman took ownership of managing the conference logistics and spent
considerable time in the months leading up to the event recruiting speakers,
managing interactions with DevConnections, scheduling sessions, and
leading marketing activities.

Based on the agreement struck with DevConnections, in the summer of 2007
we decided to approach the Software Developer Network in the Netherlands
with a proposal of more officially partnering for its next SDC event, by using
the “OpenForce” brand and assisting with marketing activities. An agreement
was reached to provide two dedicated DotNetNuke tracks at the SDC event,
and our first official European conference was scheduled for September 2007.

Microsoft Valuable Professionals

As the size and influence of the DotNetNuke ecosystem had grown, so had the
visibility of its participants in the Microsoft community. Microsoft had a
program called the Microsoft Valuable Professional (or MVP) program, which
was designed to recognize individuals who made significant community
contributions. Between the years 2005 and 2007, nearly 20 DotNetNuke Core
Team members achieved this level of distinction.

In the spring of 2007, Microsoft held a global summit in Redmond for all
MVPs worldwide, and this provided an excellent opportunity for our team to
get together face-to-face. Because the majority of interaction between our
geographically dispersed team occurs online, it was a great way to get to know
one another and socialize. We booked a conference room at our temp office at
Two Union Square and had team meetings during the week, including some
entrepreneurial community members such as Lino Tadros from Falafel
Software. We also treated the team to a group dinner at an Italian restaurant
in downtown Seattle where the beer (micro-brew of course) and conversation
flowed freely.

Fundraising

By the spring of 2007, DotNetNuke Corporation had prepared a business plan
and was ready to present it to potential investors. Rather than leveraging
friends and family, or even angel investors, we decided that professional or
institutional investors should be our primary target. Nik Kalyani's past
experience with fundraising was valuable in this process, and we felt
confident that the product adoption and size of the community would be
significant assets for our pitch.

Our relationship with Larry Augustin proved to be very valuable at this point,
as he had many connections on Sand Hill Road. Larry was instrumental in
setting up meetings for us with many of the top-tier venture firms in Silicon
Valley. We met with Sequoia Capital, Accel Partners, Azure Capital, O'Reilly
Alpha Tech Ventures, New Enterprise Associates, and Draper Fisher
Jurvetson (DFJ).

Unfortunately, none of the firms we met with was interested in committing to
DotNetNuke at this time. In a number of cases we had repeat meetings with
the same VC, progressing from an initial meeting with an associate, to a
general partner, and then to an all-partners Monday meeting. In general, the
meetings were always positive; the VCs were courteous, thoughtful, and more
than willing to provide advice on how we should capitalize on the
opportunity. However, the most common piece of feedback was that we had
not yet demonstrated a financial model that would create a “large company”
opportunity. When VCs say “large company” they mean a company that can
potentially reach a valuation of $100 million dollars in five years. The
frustrating part was that if we had already proven the financial model, there
would be no need for investment capital at all. Other feedback included a
preference for us to have a presence in the Bay Area because VCs prefer to
have their portfolio companies nearby. And there was also some question
about level of business leadership experience in the company. All of these
items would need to be addressed one way or another in order for us to be
successful in our fundraising efforts.

Awards and Accolades

The summer of 2007 was significant for DotNetNuke as the project received
some recognition from a number of notable third parties. Visual Studio
Magazine selected DotNetNuke as its Editor's Choice Winner for 2007, an
award that had previously been given to Microsoft SharePoint in 2006. A
month later, Info-Tech, an independent research group, selected DotNetNuke
as a Leader in its Decision Diamond for Web Content Management for the
small enterprise. The Info-Tech Decision Diamond award recognizes vendors
that provide products and services of outstanding quality, with a strong
enterprise strategy and high levels of customer satisfaction and retention.
Both of these awards were unexpected and highly appreciated.

Later in the summer, we issued a release of DotNetNuke that contained
support for the new OpenID authentication system. Because we were one of
the first open source projects to implement OpenID, we received a cash award
bounty of $5,000. Dick Hardt, CEO of SXIP and a legend in the open source
Perl community based on his tenure at ActiveState, was able to gain us passes
to OSCON in Portland, Oregon, where the bounty award was presented. Other
recipients of the bounty included Drupal and Plone.

Based on the publicity provided by the OpenID bounty, we were contacted by
Microsoft with a proposal to integrate Windows LivelD support into the
platform. This seemed to be a good fit, as many developers in the Microsoft
world have become comfortable with the LiveID single-sign-on system.
Integration also provided a sponsorship opportunity with the Microsoft Live
team, a relationship that would reap rewards in the future.

DotNetNuke OpenForce 07

In September 2007, we had our first official European DotNetNuke
conference in Papendal. The conference was branded DotNetNuke OpenForce
Europe and had 80 registered attendees, each paying about €700. The
conference attracted users from the United Kingdom, Ireland, France,
Belgium, Spain, Portugal, Switzerland, Germany, Italy, Austria, Sweden,
Norway, Denmark, and even from as far away as South Africa and Aruba. Joe
Brinkman, Charles Nurse, and I attended the event from DotNetNuke
Corporation and a number of Core Team members and Project Leads led
sessions as well. The conference was a great success and established a solid
working relationship with the Software Development Network for future
events.

In November 2007, we had our first official North American DotNetNuke
conference, co-located as planned with DevConnections at the Mandalay Bay
Hotel and Casino in Las Vegas, Nevada. The conference managed to attract
225 registered attendees at $1,500 and had two dedicated tracks spanning
three days. Two vendors from the DotNetNuke ecosystem, Active Modules
and R2Integrated, opted to become exhibitors in the DevConnections exhibit
hall. The visibility that the project received at this event was incredible, as the
DotNetNuke logo was displayed on all conference marketing materials
alongside Microsoft products such as ASP.NET, Visual Studio, and SQL
Server. Carl Franklin and Richard Campbell from the DotNetRocks! podcast
helped host the final panel discussion for DotNetNuke Corporation, and at
the conclusion the Core Team members in attendance finally got some of the
public recognition they so generously deserved.

One of the ideas we had for OpenForce was to allow other Microsoft platform
open source projects to participate at the event, and we were successful in
attracting a number of distinguished guests including Scott Hanselman, Phil
Haack, and Rob Connery. The ironic thing that happened, however, is that in
the months leading up to the conference, each of these guests announced that
he had accepted employment offers with Microsoft to work on the new
ASP.NET MVC team. So when the conference finally arrived, we had an open
source panel discussion, but the independent nature of it had definitely lost
some of its impact. Regardless, we were still pleased to have been able to
provide visibility and insight into a variety of open source projects on the
Microsoft platform.

At the keynote for OpenForce North America we announced “Cambrian” as
the new marketing codename for DotNetNuke 5.0. Nik Kalyani had come up
with the name in reference to the “Cambrian Explosion,” a period in the
earth's evolution where there was a dramatic increase in more complex life
forms. We announced a roadmap that included the major features we were
planning on implementing in the coming year as well as a tentative release
schedule. We also mentioned that we were actively pursuing funding
opportunities and shared some details on the current business model for
DotNetNuke Corporation. Overall, this conference had a very strong business
influence and demonstrated the momentum the project had achieved in
professional and enterprise environments.

SLA Program

Initially mentioned at OpenForce North America and later rolled out publicly
in January 2008, the DotNetNuke SLA program was a professional support
offering available on an annual subscription basis by DotNetNuke
Corporation. The program was introduced in response to community demand
for professional support services for the DotNetNuke product and
DotNetNuke Corporation offered a Bronze and Silver level to cater to the
needs of different customers. The fact that open source projects make their
source code available to everybody does not make everybody an expert. The
fact that the open source software is offered for free doesn't mean that
commercial services are irrelevant. In fact, open source software requires a
dependable commercial ecosystem and a reputable vendor that stands behind
its software and provides consumer confidence.

The SLA program was successful in engaging a variety of large customers who
were using DotNetNuke in mission-critical deployments. For a long time we
had relied solely on users communicating their issues through online
channels, and as the software became more complex, it became increasingly
more difficult to reproduce issues occurring in the wild. The information
received through diagnosing customer problems directly in enterprise
environments was essential in identifying and solving deficiencies in the
software and building a higher-quality product. At this point it definitely
became obvious that a healthy balance between open source users and
professional customers was the optimal mix to create a powerful platform.
With the introduction of the program, the legacy Benefactor program was
phased out (it had never proven itself to be a scalable revenue generator) with
some customers migrating to the new Sponsorship program, which provided
visibility and marketing benefits, while others moved to the SLA program.

Although the program was successful, we also learned some unanticipated
valuable lessons. First, because the only benefit being offered through the
program was technical support, there was no incentive to purchase a
subscription unless you were experiencing a problem and were in need of
immediate assistance. Because the DotNetNuke software was so mature and
stable, many companies had no immediate support requirement; therefore,
the lack of a sales trigger significantly reduced our opportunity to engage with
customers in a meaningful way. Second, we discovered that the vendors
within our own ecosystem became our largest source of competition. As soon

as we announced our SLA offering, a number of vendors published their own
SLA offerings at a lower price, undercutting our program and, in at least one
instance, making an attempt to discredit the reputation of DotNetNuke
Corporation. Obviously, these vendors had no way to support the
DotNetNuke product itself as they had no ability to affect changes in the
source code, but it did not stop them from getting some traction, albeit at the
expense of the platform.

More Fundraising

In the fall of 2007, we had reorganized the management team and appointed
Nik Kalyani as CEO. The changes were made in order to better reflect the
roles we were playing in the organization and address some internal issues
regarding vision and business leadership. We all agreed that Nik should focus
his time and effort almost exclusively on fundraising, and he even
volunteered to move himself and his family to California as he felt that we
would have a better probability of getting funded if we had a person “on the
ground” in the Bay Area. Due to a number of personal reasons, Nik had to
delay his move until January 2008, but once there, it became obvious that his
presence in Silicon Valley was definitely going to reap rewards for the
company.

Following the success of the conferences, we made contact with a number of
VCs (mostly via introductions from Larry Augustin). Firms we met with
included Azure Capital and Benchmark Capital, both of whom allowed us to
present to all of their general partners at an all-partners meeting. Although
our pitch was much more refined by this time, we still had difficulty getting
the VCs to believe in the revenue potential of the opportunity. One of the
specific pieces of feedback was in regard to the “exit” potential. In a tech
market where very few IPOs were occurring, the focus shifts to merger and
acquisition (M&A) outcomes, and the VCs wanted to know who specifically
would be interested in acquiring DotNetNuke in the future. This is obviously
a hypothetical question, as nobody has a crystal ball, but we were still
expected to have some solid defensible answers.

Another piece of feedback we received was that a “platform” was too broad of
a category and was not focused enough to reveal a distinct monetization
strategy. This led us to consider a more focused approach, and out of
frustration we actually tried pitching an Enterprise 2.0 social networking
application at one point to gauge the interest in it versus our platform
approach. This was likely an unwise decision as the VC we pitched to was
already familiar with our previous messaging and to shift gears so abruptly
left them questioning the focus of our management team. Ultimately we
reverted to the platform approach for future VC interactions, as regardless of
the allergic reaction that some folks had, it was more closely aligned and
fundamental to the success of the project to date.

In January 2008, a couple of significant events occurred. Larry Augustin ran

into an experienced entrepreneur named Navin Nagiah at a software
conference. At the time, Navin was employed by Cignex, a successful systems
integrator for open source content management systems including Alfresco,
LifeRay, and Plone. Navin was looking for a start-up product opportunity with
large potential, and Larry mentioned that he may want to take a look at
DotNetNuke. Larry made the introductions via email and Nik followed up. In
the same month, we received an anonymous solicitation through our website
from Hummer Winblad Venture Partners, a respected VC from San Francisco.
This was the first time a VC had come directly to us, and Nik worked very
hard to close a deal with Hummer Winblad, doing many presentations and
staying constantly engaged in the coming months.

When you get to the point of VCs wanting to call business references, you
know you are getting close to a term sheet. Hummer Winblad asked if it could
contact some of our references, and we supplied a number of enterprise
customers and partners. This process was drawn out over a number of weeks,
and we were even lucky enough to get some notable folks from Microsoft to
speak with them about the DotNetNuke opportunity. In the end, Hummer
Winblad's general partners could not get past their objection that Microsoft's
volume pricing model makes it difficult for a company on the Microsoft
platform to get larger enterprise sales deals. They indicated that greater sales
potential was available on the J2EE platform, and it is these basic business
principles, not the open source angle, which results in fewer investments in
Microsoft platform vendors.

CodePlex

For a long time we had been looking for an organized way to allow
community members to share their open source offerings with the
community. Taking on the burden of managing the infrastructure for ad hoc
projects was not something DotNetNuke Corporation could provide, as
managing our own DNN projects had become enough of a challenge on their
own.

In 2006, Microsoft had launched a new developer community site to replace
the ill-fated GotDotNet. The new site was called CodePlex, and it provided a
robust set of tools (based on the Microsoft Team Foundation Server
architecture) that developers could use to manage their open source projects.
The site was not solely available to Microsoft platform developers, but
because of its close association to Microsoft, it soon developed into the go-to
place for Microsoft platform open source projects. It provided some nice
marketing capabilities, which provided projects with visibility and
accessibility within the Microsoft ecosystem. And the fact that some teams
from Microsoft Corporation were using CodePlex to manage and distribute
their own out-of-band releases meant that there was commitment from the
company to ensure the site was regularly maintained and innovated (a
fundamental failing of its predecessor GotDotNet).

In late 2007, we approached Microsoft with a collaboration proposal where
we offered to push our community members to CodePlex for managing its
DotNetNuke open source projects. In exchange, CodePlex would contribute
the infrastructure and also provide the DotNetNuke projects with some
unique visibility to differentiate them from the other ASP.NET projects on the
site. We worked closely with CodePlex team member Jonathan Wanagel on
the integration, and in February 2008, the DotNetNuke Forge was
announced.

In April 2008, there was another Microsoft Global MVP Summit in Seattle,
which provided a great opportunity for the team to get together. We also
leveraged the opportunity to invite a group of the more prominent vendors in
the DotNetNuke ecosystem to participate in an information-gathering
meeting to determine the most important attributes for a successful Partner
program. Attendees included AppTheory, Seablick Consulting, T-Worx,
Cybreze, Inspector-IT, R2Integrated, and Data Springs. Navin Nagiah
attended the event to gain some familiarity and insight into the various

players in the DotNetNuke commercial ecosystem. And Jeff Loomans, a
general partner from Sierra Ventures, a venture capital firm from Silicon

Valley, flew up to Seattle to meet with us as well and discuss the DotNetNuke
opportunity.

Security Issues

In the early spring of 2008, the project experienced a number of security
issues that required our immediate attention as well as strategic management
to ensure the reputation of the project was not tarnished. When it comes to
security vulnerabilities in software, it is not always the technical issues that
are the primary challenge but rather the motivations of the parties involved
that play a significant role in defining an appropriate solution.

The first security issue was reported to us by Will Morgenweck of Active
Modules, a well-known and respected vendor in our ecosystem. He indicated
that his own site had been compromised, and he sent us his IIS logs in order
to help us identify the problem. However, deep analysis of the logs and the
application source code in the area targeted did not reveal the vulnerability.
Without the ability to replicate the problem, it would be impossible to fix;
therefore, we had to try to get to the bottom of it. When the third party had
compromised Will's system, it had used a login account that provided some
clue about its identity. I decided to take a chance and reach out to it via email;
however, I was not confident that I would receive any response. Luckily, the
third party did respond, and over the coming weeks I was able to establish a
relationship through a series of email conversations.

It turned out we were dealing with a 22-year-old Iranian student named
Morteza Kermani who was a member of the DotNetNuke Iran User Group.
He indicated that he had not meant to cause any harm and would be willing
to help us solve the problem. He explained the actions he had taken to bypass
the security mechanisms, and this provided us with the detail we needed to
replicate the problem locally. It turned out that he was relying on an
undocumented behavior within the .NET Framework, which DotNetNuke had
not taken into consideration. Basically, if a person specified a trailing period
for a filename, the .NET Framework would not throw an Invalid Filename
error but would instead strip the trailing period from the filename and then
create the file on the disk. This vulnerability allowed Morteza to bypass
DotNetNuke's file extension security, upload a shell script to the server, and
then browse to it directly from a web browser, where he could then navigate
the server file system. I would personally consider this .NET Framework
behavior to be a bug; however, because we have no control over the
underlying logic, we had to implement our own security mechanisms to
prevent this type of exploit in the future. The patch was made available as

soon as we successfully validated our solution, and very few sites were
affected.

The second security issue occurred in May and was much less severe in terms
of the potential damage to the user's system; however, it was much worse in
terms of public visibility. A group from Iran calling itself the ISCN, or Iran
Security Center Networks, had discovered a vulnerability in the third-party
FCKEditor rich text editor control that allowed an anonymous user to upload
a file to a public website. The DotNetNuke file upload mechanism did have
preventive code in place to prevent them from uploading malicious files;
therefore, in most instances they simply uploaded a basic text file named
ISCN.txt, which contained the following text:

'l Persian Gulf For Ever !!! Owned By : Magic-Boy , ImmO2tal ,
Mormoroth
Contact Us : ISCNltd@GMail.coM ISCN Team !!! Persian Gulf For

Ever !!!

Although the text file did not represent a threat to a user's site, the ISCN
group also posted links to every system it was able to successfully
compromise on a security site called Zone-H. As the list grew, we knew we
had to move very quickly to issue a patch or the reputation of the project as a
secure platform would be affected. Tomotoshi Sugishita of the DotNetNuke
Japan User Group and Mitchel Sellers were both extremely helpful in
identifying and resolving the vulnerability.

The third security issue was discovered by a hosting provider within our
ecosystem. In this case, the vulnerability was again not severe; however, it
was the actions taken by the hosting provider that resulted in some serious
problems. Rather than reporting the problem to our security alias and
working with us to create a patch for the community, the hosting provider
decided the security vulnerability represented a revenue opportunity for its
business. It quickly created a “patch” support service that users could
purchase to have the security problem immediately resolved on their sites.
And then it issued a public press release on PRWEB announcing the existence
of the vulnerability. This unprofessional behavior was not well received
within the DotNetNuke developer community, and there was considerable
backlash. Ultimately, the hosting provider did finally submit the problem to
us and we were able to analyze its impact. In this case, the problem was
related to manually invoking the install wizard, which could cause problems
for some installations, as not all installation tasks are designed to be re-

executable. We were able to successfully resolve the problem almost
immediately and issue a new general release.

IP Disputes

In April 2008, I received an unsolicited phone call from a person in San
Francisco indicating that he owned the dnn.com domain name and was
wondering if we were interested in acquiring it. Interestingly, the dnn.com
domain name had previously been owned by media titan Knight Ridder
Digital, and I had spoken to one of its attorneys in 2005 to determine if they
were willing to part with the domain name but was told that they wanted to
retain it. Somehow in early 2008, a domain name trader had managed to
acquire the name from Knight Ridder, and he had decided to contact us
because a vendor in the DotNetNuke ecosystem had expressed an interest in
purchasing the name but had notified him that there may be trademark
implications. Events transpired very quickly in the coming week, as the
domain name trader tried to create a bidding war between ourselves and the
vendor. Ultimately the price was too high, and we had to resort to legal means
to try to acquire the domain name.

ICANN has a formal process known as the Uniform Domain-Name Dispute-
Resolution Policy (UDRP). This policy is designed for situations that involve
trademark-based domain-name disputes, typically where a complainant wants
to acquire the domain name rights for one of its trademarks. The fact that we
owned a trademark for the term “DNN,” coupled with the fact that the domain
name trader had approached us and tried to extort a significant sum of
money, led us to believe that we had a strong UDRP case. We hired an IP
attorney and filed the necessary motions with ICANN.

The UDRP process is rather rigid, and what we discovered is that it tends to
favor the domain name owner. It is up to the trademark holder to present a
strong case in accordance with the UDRP criteria in order to try to convince a
panel of judges that it should be the rightful owner to the domain in question.
Demonstrating ownership of a trademark is fairly straightforward; however,
demonstrating that an owner of a domain name is using it or plans to use it in
bad faith to disparage your trademark is not easy. And this is not a legal
proceeding; the decision is final—there is no provision for appeals.

In our situation, the domain name trader made a case that he was planning
on using the domain name to create a custom website and had not had
sufficient time to complete its construction. This seemed a bit far-fetched,
given how eager he had been to try to sell the domain name to multiple
parties. Unfortunately, the UDRP panel accepted this story and allowed the

http://dnn.com
http://dnn.com

domain name trader to retain ownership. Within a week of the decision he
sold the domain name to the “Domain News Network” for an undisclosed
sum of money. We were highly disappointed with the outcome and also
learned a valuable lesson about the realities of the legal system.

Compounding our legal issues (and consuming our financial resources), in
the summer of 2008 we received a notice from the United States Patent and
Trademark Office (USPTO) informing us that a third party had filed a Notice
of Opposition to our most recent application for the “DotNetNuke”
trademark, as well as a Petition for Cancellation to the previously registered
“DotNetNuke” trademark. The notices were filed by a hosting provider within
our own ecosystem (the same one involved in the previous security
vulnerability issue), and the basis of the complaints was that the DotNetNuke
name was generic and “used in the computer industry to reference open
source web content management systems.” This argument was flattering but
far from reality, as DotNetNuke had clearly not reached the level of ubiquity
where the term was being used in a generic way to describe various open
source content management systems. In fact, DotNetNuke had never even
been marketed as a CMS, but rather as a web application framework.
Regardless of the frivolous nature of the dispute, as trademark owners we
were required to defend ourselves or risk losing ownership of the mark
entirely. The irony of this whole situation is that the freedoms we had
provided to the community in regard to the use of our trademarks were now
being used as a weapon by an individual against the community itself.

So again, we were forced into a complicated legal proceeding, a proceeding
where the USPTO defined a schedule for submissions and disclosures that
would take 13 months from start to finish. The only alternative to following
the complete USPTO process was to come to a settlement agreement, and this
was the solution recommended by our attorney. Through direct discussion
with the hosting provider we realized that the biggest problem leading up to
the legal filing was a lack of communication and understanding on the goals
and motivations of each party. The hosting provider had built a business and
was afraid of how changes in the trademark policy could potentially affect its
livelihood. From our perspective this appeared rather paranoid, as this hoster
was only one of many organizations that were conducting business in the
DotNetNuke ecosystem, and we understood that ensuring the viability and
longevity of all of these entities was definitely vital to the success of the
project. Regardless, we were able to successfully structure an agreement that

dealt with their concerns and allowed us to avoid a lengthy and costly legal
process.

Term Sheets

Throughout the late spring and summer of 2008, Nik Kalyani worked closely
with Navin Nagiah to get him up to speed on the DotNetNuke ecosystem.
Navin had already quit his job at Cignex, and he was eager to join the team;
however, from a cash flow perspective, we were not able to accommodate his
needs. We constructed an agreement where he would act as a business
adviser to the company and commit 100 percent of his time to fundraising. In
exchange, we agreed that he would come aboard as CEO post-funding.

Navin had worked in the Bay Area for quite some time and had his own
network of trusted business advisers and associates that he was able to
leverage for VC introductions. Navin got to work immediately, setting up
meetings with investors and pitching the DotNetNuke opportunity. In the late
spring and summer of 2008, Navin made contact with many reputable firms
including Sigma Partners, El Dorado Ventures, Charles River Ventures, SAP
Ventures, Walden International, Emergence Capital, Matrix Partners, Trinity
Ventures, and Menlo Ventures. In most cases, Nik accompanied Navin for the
in-person meetings, and I participated via conference call. Sometimes we
were dismissed after an introductory conversation, and in other cases we did
presentations in all-partner meetings. By this time our pitch was becoming
very clear and consistent. But although the interest among these firms was
high, there was still something holding them back from taking the next step.
The biggest issue still seemed to be a lack of confidence in whether an open
source company could reach critical mass on the Microsoft platform. And
although we could provide metrics and indicators to help mitigate this risk, it
ultimately came down to a gut reaction that left the VCs feeling uneasy.

By midsummer 2008, we had reduced our list of seriously interested firms
down to three: Onset Ventures, August Capital, and Highland Capital
Partners. In the case of Onset, we had met with it repeated times, with our
introductory session occurring through Navin back in February 2008. Onset
had been a great firm to work with through the process, as its team had
provided a great deal of advice and guidance that helped us clarify our
message as well as our market opportunity. Our interactions with August
Capital were through general partner Vivek Mehra, whom we found to be very
direct and insightful, and the fact that one of August Capital's co-founders,
David Marquardt, had been on the Microsoft board of directors since 1981
was a definite plus. Navin flew to Boston to meet with Highland and had a

productive meeting, but because it was an East Coast firm, it made follow-up
communications and in-person meetings with the partnership a bit more
challenging. Although each of these firms showed significant interest, had
met with us repeatedly, and had spoken to our business references; none of
them was making a funding decision. We felt that we needed a catalyst of
some sort to bring the process to a climax. That catalyst came in a most
unlikely form.

At the MVP Global Summit in the spring I had promised Oliver Nguyen that I
would do a DotNetNuke presentation at his BAY.NET User Group the next
time he had an opening for a speaker. The user group meeting was scheduled
for August 27, and it provided a great opportunity to give the investors some
real-world exposure to the DotNetNuke project and community. The event
attracted about 50 members, and general partners from August Capital, Onset
Ventures, and Highland Capital were all in attendance. This was one of the
most nerve-wracking presentations I have ever done, and I was very relieved
to be able to pull it off without a hitch. Nik Kalyani provided me with support
during the Q&A section, and Oliver Nguyen and the BAY.NET User Group
leadership were great hosts of the event. It turned out that this meeting
created the additional motivation we were looking for, as two of the investors
decided they wanted to move forward, and we received two competing term
sheets. And thus began the real education when it comes to venture capital
funding.

All things being equal, the term sheets we received were similar in a number
of ways. The pre-money valuation (the current value of the company) and the
investment amount offered were identical, as was the amount of equity in the
company the investors were demanding for themselves and the portion of
equity they wanted to carve out for an options pool. Both term sheets were
also based on syndicated deals, where the investor needed another VC partner
to come aboard to complete the deal (unfortunately, however, the two firms
did not want to work together or else it would have potentially made the
entire process much easier). This is how a VC reduces risk in an early-stage
investment, but it definitely added a dilemma for us, as signing a term sheet
with only a 50 percent commitment does not guarantee that you will find a
partner for the other 50 percent. Items that differed in the term sheets were
that one firm was offering funding in “tranches,” basically meaning that the
investment amount would be provided in multiple installment payments
when specific milestones had been reached. This “tranched” approach

coincided with their opinion that we were missing some key business
leadership in the company, which meant that we would immediately have to
perform an executive search to bring in a heavy hitter. And where one term
sheet had a “no shop” clause preventing us from shopping around for better
terms, the other term sheet had no restriction in this area.

After much deliberation (and day and night conference calls), we decided to
accept the term sheet from August Capital near midnight on September 2,
2008 (the other term sheet was scheduled to expire on September 3). The
reasons for this decision were that we felt most comfortable with the style
and approach of Vivek Mehra, the general partner on the deal; the reputation
and pedigree of August Capital would ensure higher-quality advice and
strategic opportunities; the chemistry of the current management team could
be maintained; and we could focus immediately on executing the business
plan rather than performing an executive search; and given the uncertainty of
the global economy, we wanted to get the entire investment amount into our
bank account in one lump sum. In addition, this term sheet did not have a no-
shop clause and would have provided some flexibility if things went sideways.

Although we had accepted a term sheet, it did not mean we had completed the
funding process. We still needed to find a partner to join August Capital on
the deal. Our earlier relationship with Sierra Ventures from the Global MVP
Summit became advantageous at this point, because based on its previous
interest in the opportunity, coupled with our signed term sheet with August
Capital, Sierra invited us to an all-partners meeting in the morning on
Monday, September 8. At the conclusion of the meeting, they asked us to
stick around, and within half an hour we received confirmation that they
wanted to become the syndicate partner on the deal. The next decision we had
regarded which partner from Sierra would manage the investment, as we had
previously engaged with two members of their team, Jeff Loomans and Tim
Guleri. We went out for a celebratory dinner with August Capital and Sierra
Ventures the next evening, and afterward, based on Tim's more extensive
open source experience with commercial open source start-up, SourceFire, we
concluded that he would be the better candidate.

After signing the final version of the term sheet on September 11, we moved
on to the due diligence stage. Due diligence involves the disclosure of every
legal contract or agreement that has a bearing on the company's assets or
liabilities. Essentially, the investors are acquiring partial ownership of the
company and need to ensure that everything is in order from a financial and

legal perspective. Because of the maturity and complexity of the DotNetNuke
open source project, the due diligence process in our situation was more
complicated than average. We needed to dig up executed copies of all
Contributor License Agreements, Software Grants, Non-Disclosure
Agreements, third-party consulting contracts, sponsorship agreements,
advertising agreements, independent contractor agreements, trademark
registrations, domain registrations, financial records, tax returns,
incorporation documents, and so on. At one point I realized that I had spent
three full weeks doing nothing but collecting paperwork, signing it, faxing it
to our attorney, and then couriering the physical documents.

DotNetNuke OpenForce 08

As is customary for the month of June every year, Microsoft was hosting the
TechEd conference in Orlando, Florida. However, for the first time in 2008,
Microsoft decided to split the Developer and IT Pro tracks into two
consecutive weeks. This left the convention center empty over the weekend
between the two weeks, and Microsoft graciously made the space available to
community groups.

A couple of eager members from the DotNetNuke community in Florida,
Brian Scarbeau and Michael Webb, convinced Joe Healy from Microsoft that
DotNetNuke could leverage a room for its own developer event. With the
assistance of DotNetNuke Corporation and especially from advertising
manager Bill Walker, OpenForce Connect became a reality. A large contingent
of vendors from the DotNetNuke ecosystem stepped forward to sponsor the
event, and a variety of prizes were donated to be distributed among attendees.
Overall, the mini-conference was a great success, and the thing I found most
interesting was the fact that many attendees had traveled long distances to
attend OpenForce Connect, even though they had no intentions of attending
TechEd.

In October 2008, we had our second annual DotNetNuke OpenForce Europe
conference in the Netherlands. Co-located with the SDC, this time the event
was moved to Noordwijkerhout, which is located near Amsterdam. The
overall attendance to this conference was down slightly from the previous
year, but this was not surprising given the current state of the global
economy. We had two tracks spanning two days, and the conference once
again provided a great opportunity to network with members of the European
community.

November 10—14 we had our second annual DotNetNuke OpenForce North
America conference (see Figure 1.15), once again co-located with
DevConnections at Mandalay Bay in Las Vegas, Nevada. We had two tracks
spanning three days, and we added a DotNetNuke training day as well that
was hosted by our official training partner, Engage Software. Overall
attendance to the conference was down, but the number of vendors who
participated in the exhibitor area increased dramatically. In addition to
DotNetNuke Corporation, there was representation from Active Modules,
Data Springs, lowaComputerGurus, Seablick Consulting, R2Integrated,
AppTheory, Engage Software, inostase.net, and PowerDNN. This

http://iHOSTASP.net

participation definitely increased the visibility and impact of DotNetNuke at
the conference over the previous year, as I overheard more than one
conference attendee proclaim “DotNetNuke is everywhere this year!”

A} Onen Force U8 Confarance Webeite ~MICTosort Intarnet Laplarar -
Fle Edl Vew Favorites Tools Help s
i A , - A g Eannri | - & o
l*; Back x] | {g) | g Search avorites {_r-‘ " i 3 | "o “"

Address | @] hitto:/fwe,cpenforces. com/ ot E] Go Links (snaglt |

S

ﬁ You are here: HOMe Regisier Logw

‘08

orth. - .. N S
erica %Europe” Connect

e Yo LR |~

Am
@] @ Internet

Figure 1.15

Bill Walker worked closely with Will Morgenweck to schedule a community
event one evening where attendees of OpenForce could get together and
socialize in a casual setting, and people would be eligible for prizes donated by
vendors. With more than $80,000 in prizes up for grabs, it actually convinced
a number of DevConnections conference attendees to switch their
registration to the OpenForce track so they could attend the community
night. In addition to the community night, R2Integrated also created a social
networking site at dnnconnections.com, which transmitted live podcasts,
news, and interviews from the conference so that the community could feel
more connected.

We had hoped to make a funding announcement at the conference so that it
would have the greatest impact; however, the due diligence took longer than

http://dnnconnections.com

expected, and we missed our window by a couple weeks. Although we could
not mention the imminent investment, we did take the opportunity to make
another major announcement during the keynote.

DotNetNuke Professional

As we worked through our business plan, we had looked at a variety of
business models that other open source companies were using to successfully
balance the requirements of commerce and community. In many cases,
companies were making a commercial version of their open source product
available under a commerecial license with a yearly subscription model. The
commercial version provided access to expert technical support and value-
added network services that simplified and optimized the development and
maintenance of the product. In fact, serious business users of the
DotNetNuke platform had been demanding this for quite some time. In some
ways, it was simply a repackaging of our existing SLA program, but in others
it was a completely new strategy and direction for the project, including a new
focus on positioning ourselves as a content management system (CMS).

DotNetNuke Professional Edition was announced at the OpenForce North
America conference and was promised to be available in Q1 2009 (see Figure
1.16). It would be based on the mature DotNetNuke 4.9 code base and would
include the essential modules for building a robust site. In keeping with the
spirit of the open source development model, we promised to work
continually to provide new innovation and increased value in the free, open
source core product, which would also benefit customers of the commercial
edition.

g DOTNETNUKE

* saacissicas

You are here: Home

Stable
Secure
Certified
Supported

COMMUNITY

CONFERENCES

Learn. Share. Connect

D)
14 DOTNETNUKE

DotNetNuke”
Professional Edition

P

SYNDICATED FEEDS

Get the |atest
DotMNetNuk
nfarmatio

syndicated feeds

MARKETPLACE

Register | Login

Figure 1.16

Series A Announcement

The due diligence ended up taking 10 weeks to complete (it usually takes 4—6
weeks) but also served a useful purpose in terms of getting all of the legal
artifacts within the company in order. Aside from the internal due diligence,
there was also the funding documentation itself as well as the related filings
to provide preferred shares to the investors. Our legal team at DLA Piper
worked very hard to ensure that all bases were covered, and we successfully
closed the deal. The actual funding hit our bank account on November 20,
2008 (see Figure 1.17), and we made our public Series A announcement on
November 25, 2008 (see Figure 1.18).

Bulletin Help Contact Us
g T vols y 11 " .
SVB>SiliconValley Bank
; . Main Menu Account Rupurl,'mg Transfers Wires Stop Payments FX Logout
SVBeCONNECT™
Bill Pay Business Credit Card Merchant/Card Services SVE Securities
: @
Account Reporting
v Account Summary Account Summary
» Account Details
= Transaction Details Client Services Team: MNorthwest Region (Seattle)
» Download Details
Special Reports
. Stataments SVB Deposit and Other Accounts
Account Account Title Previous Day Balance m Current Day Balance
OPERATING 5 441.63 % 4,000,441.35
SVB Total: 5 441,63 5 4,000,441.35

Figure 1.17

"2 DGtNEENORE Corporation Hafses Series A'Capital ™ MIcrosoft Tnternet Bplorer

fle Edit View Favontes Tools Help |f,'
- - N | L] ’ . = = p. 2
€L) 6 (@ @ P Trree=s @ | < 5y = 3
Address EII'\trp:_.","\.-m-n.Eame!nul'_e.:nmﬁ-le:\e."t-‘ledaﬂeleageg,ﬂoﬁet‘kketa'pﬁrawnmses&ewcapual,fmd;1155}DeFauI'.'.a;rw w | ﬂﬁﬂ Links 65nﬂn1t [=a
Cweb & site 2
'l Products Resources Programs Community News About
B e &G
Mews & MadiyRalssses r DafieciukeTarparetion Falaes Senes A Caplts Joln A Uzed Group Tods

Enhance your DotNetNuke
portal with quality, reviewed
modules and skins

Visit (4% DOTNETNUKE
Marketplace

DotMetNuke Corporation Raises Series A Capital

world's most widely adopted web application framework takes next step towards growth!

Seattle, Washington - Nov 25, 2008 - DotMethiuke Corporation, trusted creator & steward of the most sucoessful open source web application framework for the
Microsoft technology platform, today announced that it has secured Series A financing from top tiar Silicon Valley venture firms, August Capital and Sierra Ventures.
The new funds will be used to accelerate product development and expand marketing, sales and support infrastriscture to meet the growing enterprise demand for
DothetNuke® products and services,

The financing follows a penod of impressive growth for DotNetNuke Corporation, whose core DothetNuke product offering has achieved unparalleled professional
acceptance in small, medium and enterpnse Microseft environments. Downloaded more than 5.6 million tmes to date, DotNetNuke's level of adoption exceeds that of
any web apphcation framework on any platform, DotNetMNuke Carporation has dnven innovation in the cpen source arena through conbinued development of the
DotNetNuke product, a cansistant and balanced approach to community ideals and commercialization, and the forging of key relationships with respected companies
including Microsoft Corporation.

“We have seen that open source seftware iz changing the face of the established business apphcations industry. 1t i clear to us that DetNetMuke has the nght team,
the right product and the market momentum to become & dominant company.” says Vivek Mehra, Ganeral Partner at August Capital, who joins the Company's Soard
of Directors, "We are excited to work with them as they take the next step on their jourmey.”

*This nitial funding comes at & key juncture for DotNetNulke Corporation, as the use of DotNetNuke continues to accelerate and we must scale to meet the needs of
our rapidly growing community and ecosystem,” said Shaun Walker, Chief Architect of DotNetNuke Corporation and original creator of DotNetNuke. "With an

impressive track record of growing early stage companies into market leaders, August Capital and Sierra Ventures represent valuable partners and resources for
DotNethuks Corporation. We look forward to working closely with thesa firms to build en our past success and strenathen our position in tha Microsoft scosystem,” 135

€] B B Internet

Figure 1.18

The following week, we announced that Navin Nagiah was officially joining
the company as CEO. It had been a long journey for Navin, as he had
originally been introduced to us in January 2008 and had worked full time
with us for four months without any compensation as we tried to close our
round of funding. Navin had certainly demonstrated his commitment and
faith in the opportunity, and we were glad to have him come aboard. There
was a lot of work to be done on an aggressive schedule, but we finally felt like
we had all the pieces of the puzzle in place to start the next step of our
journey.

The new board of directors consisted of Navin, myself, Vivek Mehra from
August Capital, and Tim Guleri from Sierra Ventures. We needed one more
external party to join the board of directors, and Larry Augustin was the
obvious candidate. Because Larry was already involved in so many other high-
profile, funded open source companies, it took some arm twisting to convince
him to come aboard. But ultimately he agreed to join the team, and a public

press release soon followed.

Physical Offices

For the prior three years DotNetNuke Corporation had been operating as a
purely virtual company, with all employees working remotely from their
home offices. With funding completed, we were finally able to set up some
actual brick-and-mortar headquarters. Based on the fact that Charles Nurse
and myself were based in British Columbia, Canada, we decided to establish
the technical engineering office near Vancouver. We chose Abbotsford, a city
that is one hour east of Vancouver in the Fraser Valley, as that was the city
where I currently lived (and it was only a 30-minute drive for Charles).

I secured a lease in an old office building that offered us about 1,000 square
feet of usable space. We had a local contractor do some renovations to make
it more applicable to a start-up software company (the original space had
been used as a retail space for selling bridal gowns, and, in fact, my office had
previously been used as a fitting room). Based on its age, the office building
had a lot of “character,” and some of the original employees will fondly
remember the uneven flooring, which was spongy to walk on; the bathrooms
with unreliable pipes and no heating; the wooden deck at the back, which was
so rotted that I only ever saw one brave soul attempt to stand on it; and the
family of squirrels that lived inside the ceiling and occasionally dropped in
through a hole for a brief visit. Some of the first employees hired during this
first year were Sarah Darkis, John Lucarino, Israel Martinez, Rob Chartier,
Candice Whyte, and Ken Grierson. Within a year we quickly outgrew the
space in Abbotsford and moved to a more modern office building in Langley,
British Columbia, in Walnut Grove near the intersection of the #1 freeway
and 200th street exit.

At the same time that the office was established in Abbotsford, we secured
some co-located space in a building in San Jose where one of August Capital's
portfolio companies, a start-up company named Sky Pilot, had extra capacity.
This space served our needs until we secured a more permanent space of our
own in San Mateo, in the Crossroads Towers off near the interaction of the
101 and 92 freeway, near salesrorce.con's headquarters.

We chose California as our business headquarters for a couple of reasons.
Navin Nagiah and co-Founder Nik Kalyani were both living in the Bay Area,
and there was a lot of sales and marketing talent available to help us establish
our business presence. And the fact that both August Capital and Sierra
Ventures were based in Palo Alto made it easy to accommodate board

http://SalesForce.com

meetings and other interactions with our investors.

DotNetNuke 5.0

After the initial announcement of Cambrian at OpenForce North America 07,
not much news had been shared with the community about its ongoing
development. Our roadmap slipped behind schedule due to our focus on
fundraising, and we made a number of releases to the 4.x product to deal with
some security issues and improve the overall stability of the application based
on insight gained through the SLA program.

Meanwhile, Charles Nurse continued to work diligently on DotNetNuke 5.0,
and by the summer of 2008 we had reached a point where we believed we
were code complete on all of the major enhancements that had been
introduced to the platform in this iteration. We had not tackled all of the
features promised in the Cambrian roadmap, but we had implemented a lot of
fundamental changes that would be essential to delivering future
functionality.

DotNetNuke 5.0 may not have appeared to be a significant release on the
surface, but once you dug a little deeper, you quickly realized that there were
a ton of major enhancements. The entire packaging format for extensions had
been overhauled, security had been improved through Deny permissions and
other refactoring, performance had been optimized with a brand-new data
caching pattern, the administrative area had been opened up to allow for
complete flexibility, page creation and management had been streamlined,
the skinning engine received some designer-friendly new concepts, and,
perhaps most importantly, the overall stability and quality of the application
was maintained.

Keeping with tradition, DotNetNuke 5.0 was publicly released on December
24, 2008, six years from the date that IBuySpy Workshop had originally been
released.

Day of DotNetNuke

In June 2009, we also had the first of many community organized events
under the brand name of “Day of DotNetNuke.” Day of DotNetNuke was the
inspiration of Will Strohl, a loyal DNN evangelist and supporter from Florida.
The concept behind Day of DotNetNuke was that it was a free event,
completely organized by community volunteers and funded through
sponsorship, which usually took place on a Saturday. The event provided an
educational opportunity for users to attend sessions related to the
DotNetNuke platform, presented by volunteer community experts. And it also
provided the ability for members of the ecosystem to network with one
another and promote their products and services.

The first event occurred in Tampa, Florida, and was a huge success (largely
because of Will's exceptional commitment and charisma in leading the
event). This, of course, led to more Day of DotNetNuke events worldwide in
the years to follow, including Chicago, Nova Scotia, Paris, Orlando, and
Charlotte.

The event in Charlotte in the spring of 2013 was especially ambitious,
organized by the Queen City DotNetNuke User Group (QCDUG) and using a
unique theme of “Southern Fried DNN.” Clint Patterson, Allen Foster, Robb
Bryn, Fred Ellise, and Ryan Moore did an amazing job of both evangelizing
DotNetNuke as well as showing people Southern culture and hospitality.

DNN-Europe

DotNetNuke had always enjoyed a very loyal group of users in Europe. In fact,
the original Core Team had a significant representation of European
members, and they were very active in all of the community channels.
Eventually, this group decided to establish a more formal organization, and
Sebastian Leupold from Germany took the initiative in terms of creating a
membership-based website at dnn-europe.net for the Network of
DotNetNuke Professionals.

DNN-Europe provided a website for European users to congregate and
collaborate on DotNetNuke issues and business opportunities. DNN-Europe
was especially involved in the localization of the DotNetNuke application, as
well as with the creation language packs so that users could utilize the
administrative user interface in their native language. It also resulted in the
creation of an annual retreat where members could get together in person.
The retreats occurred in many different countries as different members
stepped forward to act as hosts. DNN-Europe was also heavily involved in
official DotNetNuke conferences in both Paris, France, and Hamburg,
Germany.

DNN-Europe would later be replaced by DNN-Connect, an official nonprofit
organization registered in Switzerland and founded by Peter Donker, Vicenc
Masanas, and Philipp Becker.

http://dnn-europe.net

Snowcovered Acquisition

In 2009, we were trying to make some decisions on what to do with the
DotNetNuke Marketplace. We had invested a lot of time and energy into
creating a marketplace for vendors selling commercial third-party extensions
to the open source platform, but from a business perspective we could not
convince vendors to switch from using the original DotNetNuke marketplace

at snowcovered. com.

We decided to reach out to the owner of Snowcovered, an individual named
Brice Snow who lived in Paris, Tennessee. I made contact with him via email
and introduced Navin who then flew to Paris to meet Brice in person. Brice
was a very down-to-earth entrepreneur who had grown his marketplace from
scratch into a very profitable business. However, as is sometimes the case
with success, operating the marketplace had become a 24/7/365
responsibility for Brice, and it was beginning to take a toll on him. He had not
been able to take a vacation in years, and he was even starting to feel like his
health was being affected from the lack of sleep and exercise. So it turned out
that Brice was quite interested in exploring the concept of selling the
Snowcovered marketplace.

Navin worked with Brice to establish a suitable business arrangement, and in
September 2009 we made the announcement that we had acquired
Snowcovered (see Figure 1.19). Brice joined our board of advisers and
committed to helping us with the transition. We shut down our own
marketplace and focused our efforts on taking over the operations of
Snowcovered. Snowcovered was a sophisticated e-commerce platform that
was built on top of the DotNetNuke platform, and it took many months
before we felt fully comfortable with it. We decided that it made sense to
retain the Snowcovered brand following the acquisition so that there was no
disruption in the ecosystem. The brand was maintained for a few additional
years until we eventually did a rewrite of the e-commerce codebase so that we
could upgrade a more modern DNN version and rebranded it as the DNN
Store.

http://Snowcovered.com

SH‘P POST d'Ca't @Heb N«wdf *Prurms
SNOWCOVERED i Ooue Sty Suleiod et e St
Search DotNethuke5 v | ||Go]
EEN vodules Spotlight English v Go
Bulk Emailer - Advanced DNN Email
DothetNuke 5 (2499) !nhh- Most Popular in Modules »
Dotiethuke 4 (6426) ' mﬂﬂmulg.ﬂh Inttractrvaneby Com by Suptralip
DothetMuke 3 (2410)
e _ Buk Emader for DNN 4 and 5 & an advanced Emal module with some
Dothethuke 2 (527) nteresting freatures. Relable and now with the abiity to send
Dothethuke 1 (71) drectly from MS Word. ... rgad more
SharePoint (26)
Graphics & Jmages (5) | (i DNN SilverLight Video Library 3.0 b, inesctoesbscon
Web Server (5) = e
By Site Type (25) iy ool
(17 - Play .wmw files directly in your DothetNuke webste with the most
Windows (17) advanced Siveright module avaiable for DNN. ... read more
by Invenmanager.com

Add Reviews 3. Ultra Media Gallery 5.5

Bargains @ See more new in Modules by BizMadules.netr Salutions

Figure1.19

Telerik Partnership

A hot trend in 2009 was related to user experience, as developers and
customers were increasingly looking for ways to utilize more client-side
technology that produced a more responsive experience in their web
applications.

We evaluated a number of options, and unfortunately at the time there were
not many good open source Ul frameworks that would allow us to accomplish
our goals. So that meant we needed to consider commercial UI frameworks,
and we met with the leading ASP.NET UI vendors at the time, including
Infragistics and Telerik. Based on our observations at the time, it appeared
that Telerik had the most comprehensive UI control suite for ASP.NET, and it
was willing to work with us to establish a model where we could distribute its
commercial controls with both our commercial and open source editions.

We announced a partnership with Telerik in September 2009, which allowed
DNN developers to leverage the RAD Controls for ASP.NET Ajax. This
provided a huge amount of value to folks in our ecosystem as they no longer
needed to purchase developer licenses for these controls from Telerik. And it
also provided benefit to us, as we were able to utilize these controls in our
own development efforts to improve the overall user experience of the DNN
application.

Series B

In early 2010, our commercial business results were looking very positive, as
we had achieved our revenue goals every quarter since we launched our
commercial product edition. One of our board members, Tim Guleri (from
Sierra Ventures), was singing our praises to other venture capitalists, and a
firm from Utah named UVP (Utah Venture Partners) became interested.

At this point we were managing our Series A investment very wisely and were
not in a position where we needed to raise additional funds. However, given
the global economic climate at that time, we knew that we should not ignore
any opportunity to improve our financial position. So when UVP contacted us,
we quickly put together an investor deck, and Navin and I flew to Salt Lake
City to meet with the UVP partnership.

The meeting went well, and in sharp contrast to our earlier experiences with
fund raising, progress moved very quickly, and we were soon entertaining
another term sheet—this time offering a more substantial round of funding.
The amount was in excess of $8 million dollars and was comprised of
investment from UVP as well as from August Capital and Sierra Ventures who
both wanted to exercise their pro-rata rights to avoid dilution and retain their
equity stake in DotNetNuke (see Figure 1.20).

- -~ — — . - —|-,:,@ S
® 12 L m

———

G I S, hrtpeSfw --U.*'-"Mf'"-'“-(w'"" wiPress: O~ B G X :| i3 DotMetMNuke Corp. 5. |I d +*
oo s
- Store Download Support Blogs Forums Contact

B
-
DOTN&TNUKE Intro Products Community Resources Partners News App Gallery
-

ATTEND A WEBINAR & ‘

TAKE AN ONLINE TOUR I ‘

' DOWNLOAD TRIAL b
Press Releases DotNetNuke Corp. Lands $8 Million Series B Funding
. CONTACT ME NOW ks
Is and Recognitior UV Partners Joins August Capital and Sierra Ventures in
Helping Leading Web Content Management Platform Company Snowcovered.com
Meet Growing Demand Offers Over 8,000
Meweletiars DotNetNuke Apps

WS A Dannér year 1o -_r".'-."\IL';l;'_'.\'.' LOrp., wWich nec el L
v SO0 paying customers and 50 certified commercial partners followng its

ch in February of 2009

R1% -

Figure 1.20

The financing round closed fairly quickly this time, and Chris Cooper from
UVP joined our board of directors. In order to keep the distribution of the
board in check, we also added another outside board member at this time,
Frank Artale, an entrepreneur with some successful open source companies
to his credit, including most recently the acquisition of XenSource by Citrix.

Open-DocumentLibrary Acquisition

The initial model of selling a commercial edition of DotNetNuke, which was
essentially the same product as the open source edition except with a
commercial license and professional support, was going well. However, our
VP of Sales, Tom Kress, felt that we may be able to improve our conversion
model if we offered some exclusive features in the commercial edition that
differentiated it from the open source edition. We were operating with
minimal engineering resources and managing our cash wisely, so we thought
that the quickest way to add advanced functionality to the commercial edition
was to acquire some complementary technology from within the DotNetNuke
ecosystem.

One of the features that many customers needed was a professional
document management solution. There were two dominant commercial
document management options for DotNetNuke at the time: DMX and Open-
DocumentLibrary. We reached out to the owners of these companies to
explore the potential of an acquisition. Both vendors were interested, and
after much analysis and negotiation, we ultimately decided that Open-
DocumentLibrary was the best option for our requirements.

Open-DocumentLibrary was owned by Xepient Solutions, a company based in
Spain, and we worked closely with it to integrate the technology into the
DotNetNuke Professional Edition. This relationship with Xepient would
ultimately turn into a long-term successful relationship between the
organizations, as Xepient continued to be a valuable off-shore
implementation partner for DNN Corp in the years to follow.

The acquisition of a commercial solution from the ecosystem was not without
its share of controversy. Customers who had previously purchased Open-
DocumentLibrary were concerned about future upgrades and support. And
users of the Community Edition were concerned that the only way to get
access to the Open-DocumentLibrary functionality was by purchasing the
DotNetNuke Professional Edition—at a significant price increase over the cost
of Open-DocumentLibrary on its own. Ultimately the continued availability of
DMX provided another viable option for Community Edition users needing
document management, and the owner of DMX benefited from us removing
his main source of competition from the marketplace. However, the challenge
of acquiring companies and technology from within the ecosystem would
continue to be a recurring issue in the future.

DotNetNuke Enterprise Edition

By 2010, DotNetNuke was being utilized by companies of all sizes to develop
websites and web applications. And although DotNetNuke Professional
Edition was selling very well, it was a “one-size-fits-all” approach and did not
address the specific needs of larger enterprise organizations. So in July 2010,
we introduced DotNetNuke Enterprise Edition to address this market need.

DotNetNuke Enterprise Edition provided a number of benefits over the
Professional Edition product offering. In addition to online trouble ticket
support, it also offered telephone support for the first time, essentially the
ability for a customer to pick up the phone and speak to a customer support
representative in real time. In addition, we included some feature
differentiation over the Professional Edition. A feature that was in high
demand in enterprise environments was Content Staging, and we offered an
initial version of this feature in the Enterprise Edition. The Enterprise Edition
was priced at a significant margin above the Professional Edition, creating a
couple of commercial options for customers to consider.

Sales of the Enterprise Edition were strong, and we made an interesting
business observation in the process: Enterprise customers often choose the
“enterprise” edition, not because they need the support or features, but
simply because it has “enterprise” in the name. The logic is that if you are a
large business, then just to be safe you should probably consider purchasing
the most capable product edition because you may need some of its
capabilities at some point, and it's much easier to deal with this at the initial
point of procurement rather than in the future.

POET Vulnerability

In September 2010, we had to deal with a security vulnerability that was not
specifically related to DotNetNuke, but rather affected all web applications
that were based on Microsoft ASP.NET technology. The unfortunate situation
for us is that the group who discovered the vulnerability used a DotNetNuke
website as its example during an Ekoparty conference in Argentina to
demonstrate how to exploit the weakness. As a result, many people were
under the mistaken impression that this was a DotNetNuke vulnerability,
which ended up having a negative impact on the reputation of the product.

The vulnerability was commonly referred to as “POET,” which was actually an
acronym referring to a Padding Oracle Exploit Tool that was developed to
break an algorithm used in the encryption of information within ASP.NET.
The exploit demonstrated how someone could forge his own cookie, which
would make DotNetNuke think that the user was a super user, which would
obviously provide him with privileged access to all site functionality. As
mentioned already, although DotNetNuke was the example application used
in the exploit, this vulnerability affected all ASP.NET applications including
those built on Web Forms or MVC and including Microsoft's own products
such as SharePoint and Dynamics CRM.

We worked closely with the Microsoft ASP.NET team to create a patch, which
blocked this attack vector and published a new version of DotNetNuke.
However, we later learned that this exploit was even more fundamental to
ASP.NET and that the webresource.axd was vulnerable, which meant that
malicious folks could even download your web.config file if they knew how to
leverage the vulnerability. In the end, the only way to protect your website
was to apply a service pack for the .NET Framework from Microsoft, and we
encouraged all DotNetNuke users to do so as soon as possible.

DotNetNuke.com Overhaul

The potNetNuke.com website had not been updated with a new visual identity
for quite some time, so in 2010 we decided that we needed to modernize our
online presence. Scott Willhite managed the project, and we worked closely
with one of the premiere system integration companies in the DNN
ecosystem, R2I, to update dotnetnuke.comn.

A massive amount of work went into creating a new skin and information
architecture for the site, and we managed to accomplish it without causing a
major disruption in website operations or community services. At the same
time that the website overhaul was going on, our director of marketing, Terry
Erisman, commissioned a design firm to create a slightly modernized version
of the DotNetNuke logo, and we rolled this out in conjunction with the new
website (see Figure 1.21).

http://DotNetNuke.com
http://DotNetNuke.com
http://dotnetnuke.com

O
.Q(DoTNeTNuKke

The Leading Open Source

Web Content Management

Platiom for ASP NET [

Explore DotNetNuke®

Descover Dothethiuke

MNews

DotNetNuke Corporation

LUrser Group Mesetmgs

[Ficao
? B Ea

Comimundy Spotigh
' l_‘ '
Y
w

-

Figure 1.21

The community feedback was very positive, and this created a lot of
excitement and energy in the DotNetNuke ecosystem. Our website was finally
a good working example of how you could build a modern, visually appealing
website using DotNetNuke technology. The website capped off a very
successful year for DotNetNuke where both the business and technology felt

like they were riding the crest of a wave.

Active Modules Acquisition

Leading up to 2011 there was a lot of disruption occurring in the CMS
landscape. Website builders that had previously been used only by very small
businesses were becoming more powerful and starting to penetrate the mid-
market. Convenience was becoming one of the most powerful forces driving
procurement of software, and those CMS solutions offering capable
infrastructure in addition to software were becoming a very compelling value
proposition to customers. A lot of consolidation was occurring amongst the
large enterprise CMS products as they struggled to maintain their dominance
in an increasingly commoditized market. And the trend toward leveraging
multiple devices and channels and creating an engaging customer experience
was beginning to take shape. If it wanted to remain strong, DotNetNuke
needed a way to differentiate itself from the rest of the CMS vendors.

Many CMS vendors had already started to introduce features related to
marketing automation and analytics, so it appeared that this space was going
to become crowded very quickly. Because one of DotNetNuke's strengths over
its history had been related to managing online communities, focusing on the
market trend around “social” appeared to be a way to stand out from the
crowd and at the same time capitalize on a large industry trend.

Rather than develop a lot of social functionality from scratch, it made sense
to evaluate the offerings that were already available in the DotNetNuke
ecosystem, and one particular solution stood out from the rest. That solution
was called Active Social, and it was developed by a company from Charleston,
South Carolina, named Active Modules. Active Modules was owned by Will
Morgenweck, an entrepreneur who had been creating commercial modules
for DotNetNuke for many years.

After some initial conversations, we were able to determine that Will was
interested in having DotNetNuke Corporation acquire Active Modules for its
intellectual property. The plan was to integrate the Active Social product into
the DotNetNuke CMS platform so that it could become a “Social CMS.” As
part of the acquisition, Will Morgenweck also joined DotNetNuke
Corporation as a product manager.

The official announcement occurred in January 2011, and once again it
created a lot of controversy in the DotNetNuke ecosystem. Active Module's
products were very popular, and there were a lot of loyal customers that were
now uncertain about their future. We did our best to try to alleviate their

fears by being transparent with our plans, but unfortunately it took longer
than expected to integrate the Active Social technology, which reduced some
of the goodwill we could have achieved.

Nik Kalyani Leaves DNN Corp

One of the original cofounders of DotNetNuke Corporation, Nik Kalyani, was
based in the California office and played a key role in getting the company off
the ground during the start-up phase. Nik was a veteran entrepreneur and a
visionary when it came to recognizing and developing high-tech business
opportunities, and he had been involved in the DotNetNuke ecosystem for
many years.

In the early stages after DotNetNuke Corporation received funding, there was
a lot of operational effort required to scale up the company, and everyone was
expected to fulfill multiple roles. Based on the fact that he was located in the
business headquarters, Nik ended up focusing a lot of his efforts in the sales
and marketing areas. This was somewhat unfortunate as it meant that the
company lost some of the benefit of his skills being utilized in the product
and technology area. And it also meant that he felt less satisfied with his role
at DotNetNuke Corporation.

After a few years, Nik knew that he wanted to get more involved with creating
new technology, and unfortunately the company was not yet in a position
where it could satisfy his needs. In the end, he decided to move on to explore
other opportunities, although he continued to remain actively engaged as an
adviser for many years to come. However, as a consequence of Nik's
departure, we lost a highly creative, visionary talent who had played an
important role in DotNetNuke's market success.

Cloud. Mobile. Social.

After spending so much time evaluating the CMS market landscape, we had
begun to establish ourselves as thought leaders in the space. The three largest
trends impacting the market at the time were cloud infrastructure, mobile
devices, and social engagement. Cathal Connolly, a DotNetNuke Corporation
employee and one of the original Core Team members, was the first to notice
that the first letter of each of these industry terms conveniently spelled
C.M.S. So we were able to come up with a clever marketing slogan, “CMS
Redefined: Cloud. Mobile. Social.”

This marketing slogan got us a lot of traction, and I was ultimately invited to
blog about it on CMS Report and do a presentation about it at CMS Expo in
Chicago in May 2011. This was the first time that our efforts were getting
industry recognition outside of the software developer community. Business
professionals and marketers were starting to take notice of DotNetNuke, and
we were beginning to attract a new audience of users and customers.

DotNetNuke 6.0

After many successful releases of DotNetNuke 5, we knew we needed to do
something bold to energize the platform and developer ecosystem. So in 2011
we set out to do exactly that.

Over the past 5 years we had noticed that the C# programming language was
becoming more and more popular amongst Microsoft developers. This was
reinforced by the fact that Microsoft itself provided most of its code samples
and demonstrations in C#. Interestingly, a software developer from China,
Ben Zhong, had utilized a language translation tool to convert the
DotNetNuke application from VB to C# and had published his work on
CodePlex. Due to trademark issues, we could not allow him to publish it in
this manner, but rather than getting rid of it entirely, we asked him if he
would be willing to maintain the C# version and continue doing the
translation for each release going forward, if we agreed to publish it as an
official download package from our project page. Ben agreed to this proposal,
and this allowed us to gauge the interest in a C# version of DotNetNuke. The
interest turned out to be very high, which ultimately resulted in us making a
decision that we should adopt the C# code base as our official development
branch for DotNetNuke 6.0 and for the future.

We made an announcement about the switch to C# during a Microsoft MVP
conference, and it generated a lot of controversy. Some highly respected folks
at Microsoft were not pleased that we created such a polarized conversation
about C# versus VB, as they had been trying hard to mitigate the “language
war” discussion for many years. In reality, based on the extensibility model in
DotNetNuke, software developers were still free to create their extensions in
either VB or C#, so were still very supportive of both communities. But
switching to C# for the core framework certainly did provide some business
benefits for us, as it had long been one of the blocking factors for adoption by
a number of large enterprise organizations worldwide.

DotNetNuke 6 also had a full overhaul of the user experience. It adopted
modal pop-ups for administrative functionality, which helped emphasize the
“in-context” editing experience. And every administrative user interface was
modified to use DIVs rather than TABLESs, and a whole new form pattern was
introduced to provide a modern styling for the application. Cuong Dang, Ian
Robinson, and Chris Paterra were instrumental in revolutionizing the
DotNetNuke user experience in DotNetNuke 6.0.

DotNetNuke World 2011

In the years prior to 2011, DotNetNuke had hosted an annual user conference
in Las Vegas, partnered with DevConnections. These conferences had been
very successful in terms of providing exposure for the product to software
developers and allowing vendors in our ecosystem to showcase their products
and services. However, we felt that we may be able to achieve greater benefit
and attract more attendees if we hosted our own independent user
conference. We felt this was possible because we would be able to more easily
cater to both a software developer and business user audience, and we would
be able to charge a registration fee that was substantially less than the cost of
the DevConnections event. So in November 2011 we hosted our first
DotNetNuke World event.

DotNetNuke World was located in Orlando, Florida—a location chosen for its
favorable weather, its abundance of conference venues, its accessibility from
both North America and Europe, and its reputation as a popular tourist
destination for attractions like DisneyWorld and Universal Studios. The
conference took place at a popular resort hotel, and the marketing group from
DotNetNuke Corporation, particularly Richard Sumas, did an outstanding job
to create a larger-than-life conference experience. The conference was able to
attract more attendees than in the past and generated a huge amount of
excitement. However, we also gained some insight into the costs of hosting
our own conference event, and the jury would be out on whether this would
be something we could continue to deliver on an annual basis in the long
term.

DotNetNuke 6.1 was launched during this event, and it focused on delivering
advanced support for mobile devices—a capability that was becoming
increasingly important for businesses catering to an online audience. The
mobile device support was provided by a mobile device detection library, and
DotNetNuke was one of the first CMSs to ship with this as a native feature.
Initially this was based on an open source project named WURFL; however,
when it adopted a commercial license with terms that were not favorable to
DotNetNuke users, we switched to a library from 51Degrees.mobi.

The DotNetNuke World conference also provided a venue to showcase our
many industry accomplishments and accolades we had received in 2011. We
had been recognized by the Visual Studio Magazine Readers Choice Awards,
Gartner Magic Quadrant for Horizontal Portals, Open Source CMS Market

Survey, DevProConnections Community Choice Awards, Packt Press Open
Source Awards, and we had even reached #228 on the 2011 Inc. 500!

Providing some great entertainment, and a total surprise to myself, was the
unveiling at the end of the keynote of a “bobblehead” doll in my likeness,
complete with camouflage shorts, a black tank top, flip flops, and a puka shell
necklace! (See Figure 1.22.) Mitch Bishop, the chief marketing officer at
DotNetNuke, revealed that they had made a limited-edition run of 50
bobblehead dolls, and conference attendees were told that they could win
them by doing wild and crazy antics. One person, Malik Khan from PointClick
Technologies, even stripped off his clothes and dove into a pool to retrieve a
bobblehead.

.......

Figure 1.22

DotNetNuke Gets Social

After our acquisition of Active Modules in 2011, there were many questions
on how we intended to utilize the technology as part of the DotNetNuke
platform. The initial integration was delayed while we focused on overhauling
the platform in DotNetNuke 6.0 and implementing the mobile device
capabilities in DotNetNuke 6.1. So it was not until DotNetNuke 6.2, which
was released in May 2012, that we were able to deliver the social functionality
we had promised. This was unfortunate as we ultimately missed a window of
opportunity where the social capability could have generated a more
significant impact in the CMS market.

DotNetNuke 6.2 was a substantial release that included a variety of new
platform features. A new Social API that was derived in a large part from
Active Social offered a huge increase in functionality. Features such as social
groups, friends, followers, activity stream, messaging and notifications, and
an advanced user profile offered new opportunities for users and customers
to build powerful community websites. These social capabilities also provided
the foundation for a variety of new modules focused on user engagement.

The product launch for DotNetNuke 6.2 occurred at a DNN Partner
conference event in Napa Valley, California, and was live streamed to people
worldwide. Mitch Bishop, CMO of DotNetNuke Corporation at the time, had
really stepped up our game from a messaging and positioning perspective and
this was very obvious in the product launch presentation. Mitch had come up
with the unique “Social CMS” slogan, and it resonated well with our target
audience and the market in general. I presented the product slides at the
launch, and Will Morgenweck demonstrated the actual product in action. We
were extremely optimistic about the future of DotNetNuke and Social as an
integrated product solution.

Microsoft Azure Partnership

Since 2007, we had been well aware of the industry trend toward cloud
computing. It was hard to discount the convenience and benefits of leveraging
a third-party infrastructure provider, and IT departments worldwide were
recognizing that in most cases it did not make sense for them to procure and
manage their own hardware or data centers.

In 2008, we had attempted to establish an arrangement with a large hosting
provider in the DotNetNuke ecosystem that would enable us to offer a hosted
DotNetNuke service. Scott Willhite was very close to formalizing this
partnership; however, we had been forced to put it on hold when we secured
our Series A round of funding.

In 2010, we revisited the opportunity of offering a hosted DotNetNuke
solution, and Navin and Joe Brinkman visited a variety of DotNetNuke
hosting providers to determine their capabilities and interest in forming a
strategic partnership. Based on our long relationship with MaximumASP and
its reputation as a premiere Microsoft hosting provider, we decided to utilize
its infrastructure for our hosted offering. Soon after the partnership was
formed, MaximumASP was acquired by CBEYOND, which resulted in some
complications as CBEYOND was more focused on integrating the
MaximumASP data centers and customers into its portfolio than it was in
developing a white-labeled hosting service for us.

During this time, the “cloud” had become a mainstream technology trend, and
a few companies were focused on providing commoditized cloud
infrastructure. Amazon was offering AWS, which were essentially on-demand
virtual machines that you could provision instantly and utilize as part of your
business operations. Microsoft was a bit late to the game, and it was focused
on delivering a specialized cloud platform named Azure that was highly
scalable and capable.

Because things were not progressing as expected with CBEYOND, we decided
to explore other options. Navin, Joe, and myself visited Amazon in Seattle and
Microsoft in Redmond to familiarize ourselves with their offerings and road
maps and determine if they were interested in partnering with us on a
DotNetNuke Cloud offering.

Ultimately, Microsoft proved to be the most eager to work with us. This was
driven in a large part by our participation in a Microsoft marketing program

where it was trying to improve awareness and growth of Windows-based CMS
offerings. Gavin Warrener was our Microsoft contact for this program, and he
played a significant role in helping us establish a strategic partnership with
Microsoft based on Windows Azure. Microsoft was interested in increasing
the volume of customers using Windows Azure, so it wanted us to make the
Community Edition available as a cloud offering.

The partnership was officially announced in October 2012. It offered us a
generous discount on Azure services, direct communication with the
Windows Azure team, and assistance in promoting our cloud offering once it
was available. We began working on our cloud offering and were able to hire
David Rodriguez, an Azure expert based in the Canary Islands who had
previously created an open source DotNetNuke Azure Accelerator product.

Making a traditional ASP.NET application like DotNetNuke function on the
Azure PaaS platform was not straightforward, and we encountered many
obstacles along the way. This was coupled with the fact that Microsoft was
still actively developing the Azure platform, so we would run into breaking
changes and compatibility issues on a regular basis. Ultimately, this is the
price you pay for adopting technology early, but it did have an effect on our
ability to deliver DotNetNuke in the cloud on our expected schedule.

DNN World 2012

In late October 2012, we hosted our second DNN World conference. Based on
our positive experience the previous year, we again chose Orlando, Florida, as
the location, but this time we held the event at a different resort hotel and
conference facility.

Again, the DotNetNuke Corporation marketing team did a phenomenal job of
creating the atmosphere of a huge technology event. And because the
conference occurred near Halloween, a DNN Super Heroes theme was
chosen, which created a lot of interesting opportunities for marketing
collateral, evening events, and so on.

The conference occurred over two days with a variety of different tracks going
on in parallel catering to different audiences. Scott Hunter, principal program
manager for Microsoft ASP.NET, was a guest presenter for one of the keynote
sessions, and Navin and I also presented keynotes.

The conference also provided a venue to announce the new DotNetNuke MVP
Program. The Core Team model had served us well for many years, but it had
become rather static in its membership, and there was not a well-defined
process for identifying community members who deserved recognition. The
DotNetNuke MVP program was modeled after the Microsoft MVP Program
and was based on community contributions, primarily for activities occurring
on dnnsoftware.com. The initial inductees included Stefan Cullman, Ernst
Peter Tamminga, Brian Dukes, Vicen¢c Masanas, Clint Patterson, Ingo
Herbote, Sebastian Leupold, Mitchel Sellers, Brandon Haynes, and Peter
Donker.

http://dnnsoftware.com

DotNetNuke 7.0

After a number of successful DotNetNuke 6 releases, it was time for another
major increment in version number. In the past, we had typically migrated
DotNetNuke to the next major version number at around the same time that
Microsoft introduced new versions of its operating systems and frameworks.
In this case, Microsoft had released a whole wave of new technologies,
including Windows 8, Windows Server 2012, IIS 8.0, Visual Studio 2012, and
ASP.NET 4.5 were released in November 2012. So it certainly made sense for
us to migrate to DotNetNuke 7.

Beyond ensuring compatibility for the latest Microsoft technologies, we also
introduced some new capabilities in DotNetNuke 7, which ensured that it
continued to remain relevant in the market. The most impactful of these
changes were related to the product installation and administration
experience.

A new installer was introduced, which took inspiration from WordPress's “5
minute install” and streamline the installation experience by reducing the
amount of information and the number of steps required to get your
DotNetNuke installation up and running. And a totally new Control Panel was
introduced that was designed to look very modern and familiar, and make it
more intuitive to discover the many advanced application features. The ability
to personalize the Control Panel using bookmarks was added so that users
could organize their most frequently utilized features in one convenient area.
And the process for adding modules to a page became much simpler through
the use of drag and drop.

IFinity Acquisition

Discussions had begun at the initial DNN World conference in 2011 with one
of the vendors in our ecosystem about a potential technology acquisition. The
product was called Url Master, and it had been developed by Bruce Chapman
of iFinity based in Australia. Discussions were put on hold for an extended
period of time but resumed at the second DNN World conference in 2012.
URL rewriting was becoming a critical feature for web marketing

professionals, so it was definitely a technology that we needed to incorporate
into the platform at some point in time.

After DNN World, Bruce took the initiative to fly to San Mateo and meet with
us in an attempt to move the negotiations forward. This provided a good
opportunity to discuss the opportunity, and it ultimately resulted in us
acquiring the iFinity intellectual property, with Bruce agreeing to join our
team as a product manager.

The acquisition was announced in December 2012, and the amount of angst it
created in the ecosystem was much greater than expected. This was mostly
due to the fact that we announced publicly that nearly all of the advanced
functionality was going to be reserved exclusively for the commercial
DotNetNuke product editions. These product editions were substantially
more expensive than what you were currently able to purchase Url Master for
on its own. Based on the feedback, we made a concession that customers
could continue to purchase Url Master as a standalone product until such
time as we had fully integrated it into DotNetNuke and made it publicly
available in our commercial product edition. And Bruce agreed to continue to
provide support and maintenance to his existing customer base.

10-Year Anniversary

December 24, 2012, was an important date in the history of DotNetNuke. It
represented the 10-year anniversary since I officially announced the open
source project on the ASP.NET Forums (originally named the IBuySpy
Workshop). Much had changed since those humble beginnings, and I felt
exceptionally blessed for all of the friendships I had made and the impact that
DotNetNuke had made on the world in the previous decade.

Chris Hammond wanted to do something special in commemoration of the
big event, and I worked with him and a design firm to create an infographic
(see Figure 1.23). The infographic had a theme of “metamorphosis” and
showed a caterpillar evolving through the various life cycle stages and
eventually emerging as a beautiful butterfly. We included a variety of
significant historical events on the infographic and even embedded a few
“Easter Eggs” for those people who had more intimate knowledge of the
project evolution.

DorTNeTNuke

The evolution of DotNetNuke from

the open source project released by
Shaun Walker on December 24th,

2002 has been an amazing journey.

Please foin us in cefebrating these

>

F TRANSFORMATION

Figure 1.23

DNN Social

With the CMS space becoming so saturated with competition we decided that
we needed to create additional specialized solutions based on DotNetNuke
that could differentiate our offering. The obvious first candidate was a social
solution, which leveraged the Social APIs added to the platform previously
and added a variety of additional social capabilities targeted at organizations
who wanted to build customer communities.

DNN Social was introduced as a commercial solution in March 2013 and
included a whole suite of Social modules that could be integrated with the
DotNetNuke platform. There were advanced modules that provided support
for social content creation through blogging, ideation, discussions, question
and answers, and events, all built on top of an analytics engine that tracked all
user activities, and a gamification system that allowed you to encourage and
reward community behavior. It was an impressive product release, and Chris
Paterra had invested a significant amount of time and energy into bringing it
to market.

However, perhaps even more challenging than creating the DNN Social
product was defining the business model for it. How would it be priced? How
would it be marketed? What was the customer acquisition strategy? DNN
Social represented an opportunity to appeal to buyers outside of the
traditional DotNetNuke ecosystem. But as most entrepreneurs know, it is a
significant challenge for any company to expand from being a single product
company to becoming a multiple product company. It often requires a totally
different sales and marketing strategy for each product. We experienced some
of these challenges almost immediately, which greatly affected the growth
and success of the product in these early stages.

DotNetNuke.com Hacked

One of the challenges with managing a large community website is that it gets
a lot of attention, and not just attention from people who are interested in
contributing but also folks who have a more malicious intent.

In the spring of 2013 we had the misfortune of discovering that the
dotnetnuke.com Website had been compromised. It was difficult to determine
the extent of the security breach, but based on our investigation, it appeared
that some unknown hackers from Iran had managed to upload a sophisticated
shell script to our servers. This had allowed them to elevate their user
account privilege to superuser status and then utilize those privileges to gain
access to other areas of our infrastructure. This was not the work of
amateurs, as they covered their tracks very well. For example, they were able
to bypass our IP filtering by remotely logging in to various zombie servers
around the world to spoof their IP addresses. And they masked their exploits
by naming their backdoor entry points as files that normally exist as part of a
DotNetNuke installation and by carefully cleaning up the evidence of their
handiwork as they navigated our internal infrastructure. Ultimately, it was
only through careful forensic examination of our web server logs that we
were able to identify and track their activities.

Our investigation revealed that it was possible that the hackers may have
gained access to some of the user information on dotnetnuke.com. As a result,
we decided that we needed to take immediate action to protect our
community. We blocked all of the unauthorized access so that the hackers
could no longer access our infrastructure. And because we had been using
encrypted passwords since the website had first been launched, we decided
that it was time to harden our security model, so we developed a utility that
allowed us to migrate all user accounts to hashed passwords—a much more
secure password protection method where there is no possible way to ever
reverse engineer a string of text back into a user's password. Once this was
done, we issued a bulletin to our 1 million registered users to explain the
situation, urging them to change their passwords immediately.

It is important to note that the security breach was ultimately not a result of a
vulnerability in the DotNetNuke application itself but rather because of an
unsecure configuration in our infrastructure. We tried to be very clear about
this in our public communications because we did not want to affect the
reputation of DotNetNuke as a highly secure web platform.

http://DotNetNuke.com
http://dotnetnuke.com
http://dotnetnuke.com

Rebranding

In late 2012, a decision had been made that in order to redefine our identity
in the market as a business solutions provider, we needed to do some
substantial rebranding. The common buzzword in Silicon Valley to describe a
major shift in business approach is “pivot,” and in the first half of 2013 we
worked with a number of third-party consultants from the Bay Area who
helped us with our overall brand strategy and execution.

The rebranding project was a massive undertaking. It included everything
from our company name and logo, to our website and email domain names,
to our product names, marketing collateral, website content, and visual
appearance. A lot of time and energy went into this activity, but in order for it
to not be a disruptive distraction while the work was in progress, very little
information was shared either internally or externally while it was going on.

From a high level, the most fundamental change was moving away from the
“DotNetNuke” brand and fully embracing “DNN.” The rationale was that the
“nuke” reference has never been particularly positive or professional, and it
made sense to distance ourselves from legacy systems that shared the
common branding bond, such as PHP-Nuke. In addition, there was
uncertainty about how long Microsoft would continue to utilize the “NET”
branding as part of its own technology platform (after more than a decade,
there were some rumors circulating that a new brand strategy might emerge).
We already owned the trademarks for DNN, and it was already getting
widespread usage throughout the ecosystem, so it made sense for us to
concentrate our efforts on this brand. As a result we needed to migrate all
references of DotNetNuke to DNN, including critical infrastructure items
such as our website and email domain names. We were able to acquire the
domain dnnsoftware.com from a member of our ecosystem, and this would
become our new online identity going forward. We also officially changed the
name of the company from DotNetNuke Corporation to DNN Corp.

When the decision was made to utilize DNN for our branding, it also
prompted a decision to create a new logo. The current logo had been in use
since Nik Kalyani created it back in 2005, and it was time for a significant
overhaul. Parker Moore, a creative firm from the Bay Area that had previously
worked with Apple among many others, came up with a variety of logo
concepts before we chose a simple “D” design. The new logo was simple, yet
modern, and very adaptable to a variety of visual treatments. It also included

http://dnnsoftware.com

a new color palette that would need to be utilized in all of our future
marketing collateral. See Figure 1.24.

From a product perspective, the move away from DotNetNuke meant that all
product editions also needed to be rebranded. The feedback from the
consultants was that the commercial editions needed to have a brand that was
differentiated from the open source platform. So we embarked on an
exhaustive journey to come up with a new commercial product brand. The
goal was to come up with a brand that emphasized the “genuinely
empowering” theme that had come out of earlier brand identity strategy
discussions. Many names were suggested, but after doing research we would
find trademark issues or other conflicts. In the end we chose the name Evoq,
a unique spelling variation of the word evoke that means “to call up or
produce (memories, feelings, and so on).” So the commercial products would
be branded as Evoq X, where “X” would refer to a specific business solution,
while the open source product edition would be branded DNN Platform.

F1 ure 1.2

At the same time that the branding and logo activities were going on, a major
overhaul of our website was also underway. The goal of this overhaul was to
better promote the commercial solutions while still maintaining a strong
community presence. A totally new information architecture was developed,
and once the new logo and color palette were approved, work also began on a
modern new skin. The approach with this website overhaul (which was
different than what we had ever done in the past) was that rather than
upgrading the existing site, we were going to create a completely new
installation and only migrate the content that made sense as part of the new
information architecture. The logic was that over the course of a decade, the
DNN website had acquired a lot of “baggage,” and a lot of benefit could be
obtained by starting with a fresh new website foundation.

The website was launched in July 2013 (see Figure 1.25), which also served as
the promotional vehicle for announcing the rest of the rebranding changes. In
general, the community response was very positive, especially from those

folks who relied on DNN for their livelihoods (as they had long been the
people telling us that the “nuke” name often caused them difficulties in
business engagements). However, there was also fear and uncertainty
expressed by a number of longtime community members who did not feel
comfortable with the DNN Platform branding and who felt the rebranding
represented a shift away from treating the open source project as a first class
citizen. Ultimately, this would result in the formation of DNN-Connect, a
European nonprofit group whose public mandate is to ensure the longevity of
the DNN open source platform.

=)

D DNM Software: Open Sour

&~ C [5 www.dnnsoftware.com

h
Dnn Solutions Platform Partners Community Support About Store L m ", Q

o

The
POSSIBILITIES ARE

ENDLESS

Everything you need to create rich,
rewarding online experiences
for customers, partners
and employees.

TRY IT FREE

Figure 1.25

One of the unfortunate side effects of the rebranding and approach taken
with the website overhaul was that we lost significant SEO and web traffic.
Specifically, the change in website domain name and the new information
architecture resulted in a lot of broken links for visitors coming to the site
from search engine referrals. In addition, a lot of historical content about
DNN from the past decade was not included in the new website and therefore
started to be flushed from the search engine indexes. To some extent these
side effects were expected; however, the magnitude of the impact on traffic

was much larger than expected.

DNNCon

After reviewing the financial aspects of the DNN World conference events,
DNN Corp determined that it was not viable to host another DNN World
conference event in 2013. We announced this news publicly and hoped that
the void could be filled by some community events.

Arrow Consulting and Design, a DNN Partner and solutions provider based in
West Palm Beach, Florida, graciously stepped up and volunteered to host a
large scale DNN event in November 2013 in its home city. The principal
owners at Arrow, Ryan Morgan and Raul Rodilla, had long been proud
supporters of DNN and based on the recent branding changes in the
ecosystem, they spoke to Will Strohl and the Day of DotNetNuke events were
rebranded to DNNCon.

DNNCon was a very successful user conference. It had a full day of training
followed by a full day of conference sessions. It also had the ever popular
DNN After Dark, an evening social event where conference attendees could
get together, socialize, and get to know one another better. The sponsorships
were so generous for the event that Arrow was able to donate more than
$10,000 to a local charity called Place of Hope at the conclusion of the
conference.

DNNCon (and its sister event in Europe, DNN-Connect) provided the perfect
venue to publicize and reward each batch of DNN MVPs. In 2013 and 2014,
the following MVPs received recognition for their exemplary community
contributions: David Lee, Gilles Le Pigocher, Jason Brunken, Michael
Tobisch, Roger Selwyn, Scott McCulloch, William Severance, Chris
Hammond, Gifford Watkins, Robb Bryn, Allen Foster, Peter Donker, Ernst
Peter Tamminga, Brian Dukes, Vicen¢c Masanas, Mitchel Sellers, Sebastian
Leupold, Matthias Schlomann, Timo Breumelhof, Torsten Weggen, Oliver
Hine, Wes Tatters, Sacha Trauwaen, Will Strohl, Jay Mathis, Geoff Barlow,
Julien Girerd, Bogdan Litescu, Daniel Mettler, Erik van Ballegoij, Richard
Howells, Scott Wilkinson, and myself.

Scott Willhite Moves On

In December 2013, another cofounder decided to move on from the company.
Scott Willhite was one of the original Core Team members and had worked
closely with me ever since 2003, providing valuable wisdom and leadership to
the project as well as shouldering a significant portion of the workload. Scott
was based in Seattle, Washington, and due to personal commitments, he
continued to work remotely even after the company received funding. This
was challenging for him, but he still made many significant contributions to
the company.

Over the course of a decade, Scott played a key role in the success of the DNN
project. He was not a person who ever looked for individual recognition or
gratitude but preferred to work behind the scenes and take responsibility for
any area that was being neglected or underserved. This character trait meant
that he often ended up volunteering for time-consuming, operational tasks
that were essential to the company and project but provided very little
personal satisfaction or reward. He also felt very strongly about community
and the role that DNN Corp played as stewards within the open source
ecosystem.

Scott's official title was director of community relations, and as the company
grew and adapted to the changing market landscape, the focus on community
also began to change. The new model for managing community no longer
aligned as closely with Scott's personal perspective, motivations, or strengths.
As a result, he felt that it was time to move on and he tendered his
resignation. And although I knew it was the right decision for Scott, I still had
a very difficult time dealing with it because of our long-term friendship and
trusted working relationship.

DNN 7.x Releases

Throughout 2013 and 2014, DNN Corp continued to deliver new major
versions of DNN on roughly a six-month release cadence. These releases
followed the DNN 7 naming convention and included many new features for
both the commercial editions as well as the open source platform. Integration
of the intellectual property acquired through the iFinity Url Master
acquisition occurred in DNN 7.1, which greatly improved the support for SEO
friendly URLs. Advanced digital asset management was added to the platform
and security improvements in regard to user passwords were introduced to
improve the default product configuration. A new architecture for indexing
site content was added to DNN based on the popular Lucene open source
project. The user experience received some important updates in
administrative scenarios so that it could better accommodate the large
volumes of information that our users and customers were managing. And a
large focus was placed on improving the overall performance of the
application, resulting in significant gains in page load times and reduction of
HTML payload sent to the browser.

During the development of DNN 7.x, major changes also occurred in the
product infrastructure. From a source code management perspective, we had
been using Team Foundation Server for a number of years, and although it
met our needs for internal development, it did not support an open source
development model. Specifically, it did not provide a mechanism for allowing
people to browse the source code in real time or a way for people to make
source code contributions that could be easily integrated with the platform.
Recently, a new source code management system named Git had become the
de facto standard for managing open source projects, and we decided that it
made sense to migrate our code base to Git and host our open source project
repository on GitHub. From an issue management perspective, we had been
using Countersoft's Gemini product for many years, but it had a variety of
limitations, and upon review it became obvious that there were other
software products that were much more popular and better suited for open
source style development. We chose to migrate to Atlassian's JIRA product
and utilize its hosted offering.

My Departure from DNN Corp

In August 2014 I made an announcement that shocked many folks within the
DNN ecosystem. In some ways, it was even a shock to myself. DNN Corp and
I had decided to part ways. As is common in these types of situations, the
public details surrounding my departure were purposely kept to a minimum.
The final farewell blog post I wrote was reviewed and edited extensively by
the company prior to its publication to ensure that it was professional and
consistent with the messaging that was agreed upon by both the company and
myself. As a result, it was one of the shortest and most impersonal blog posts
I had published over the lifetime of the project. So, not surprisingly, it fueled
further discussion and speculation by the community in regard to the real
story behind my withdrawal from the company.

The reality is that I had been feeling frustrated for quite some time. I was not
frustrated by the progress on the open source project but rather by the
challenges of trying to preserve the delicate balance between the open source
ecosystem and the commercial needs of the company. As project founder and
steward, I shouldered the majority of the responsibility over the years in
terms of trying to ensure harmony between the various stakeholders and
their competing interests. This responsibility put me in the middle of every
debate and every conflict, which ultimately weighed on my conscience and
was extremely draining from an emotional perspective. Basically, the main
challenge in trying to ensure a balanced approach is that there is never truly a
win/win outcome for all parties. In every instance there is at least one party
who feels that its perspective or needs were not fully realized. So in trying to
please everyone, you usually feel like you are pleasing no one, and you start
to feel increasingly isolated and alone. The key, of course, is to not focus on
each instance but rather to look at things from a higher level and try to
ensure that the net result of all of the decisions combined are balanced. Over
time, if stakeholders feel like they lost some battles but won others, it will
preserve their faith and trust in the environment. However, it is next to
impossible to satisfy everyone. The only thing you can do is develop a “thick
skin” and objectively try to constantly live up to the fundamental community
ideals. This is all easier said than done, and over time I felt like the
philosophical divide between the open source community and commercial
interests of the company were becoming wider and that I had begun to lose
my influence on the tug-of-war between the various stakeholders in the DNN
ecosystem.

Another challenge faced by many organizations is related to creating a
winning culture. The ultimate goal is to create an environment where
everyone understands the guiding principles and vision and are all working
together in unison toward achieving that vision. In the early stages of DNN
there was a strong founding leadership group who had been together from the
very beginning of the open source project. And based on our publicized
community ideals as well as our track record of how we had conducted
ourselves over time, we had created an almost cult-like atmosphere within
the DNN ecosystem. Very few technology companies can rival the number of
loyal followers that DNN had attracted in the first five to six years of the open
source project—the passion and enthusiasm of our third-party evangelists
was unparalleled. One key to creating this environment was the “abundance
mentality”’—the belief that the project and organization would be successful
only if the other members of the ecosystem were also successful. This is an
extremely powerful concept, as once the trust and credibility had been
established, it created an army of loyal followers who helped facilitate the
viral growth that followed. Word spread that the DNN ecosystem had no
barrier to entry and was ripe with opportunities for everyone, regardless of
their background.

When DNN Corp received venture capital funding in late 2008, we were lucky
enough to be able to hire many key evangelists from the community. This
further strengthened the core of the company, both technically and culturally.
People were excited to work for DNN Corp because they wanted to be able to
contribute in a meaningful way to the ecosystem that they already knew and
loved. DNN Corp benefited from this atmosphere and achieved a couple years
of phenomenal commercial growth and success. However, it is very difficult
for any organization to sustain this type of momentum in the long term. The
biggest challenge is related to employee turnover. As founders and employees
that had been recruited from within the DNN community moved on to other
opportunities, the focus of the organization began to change. It became more
commercially oriented, and new employees entered into a new culture with
different priorities. In addition, the leadership of the company changed a
number of times, and each transition brought new personalities who wanted
to make an impact on the organization—sometimes in ways that realigned the
organization's goals. This created challenges and shifted the company's
identity.

This was difficult for me, as I felt that my role and perspective during this

time were often misunderstood. My heart and passion had never wavered
from the open source DNN project; however, I also wanted the company to be
successful. I had opinions on where I felt the opportunities existed for DNN
to move forward so that it could continue to serve both the community and
commercial goals. And although my thoughts were not always consistent with
other folks on the leadership team, I did my best to support the ultimate
direction of the organization. I felt that the most important contribution I
could make was to try to ensure that the organization maintained the most
positive aspects of its historical identity so that the community would feel
comfortable in the transition and the company could retain its hard-earned
goodwill and reputation. I was still seen as the public face of the company and
the spokesperson of the DNN community, so I knew I would assume the
primary responsibility of communicating our intentions and goals clearly and
transparently to the ecosystem. This was more challenging than it sounds,
mainly due to the fact that my own personal identity and reputation had
become so intertwined with the open source project. In the end, we did
succeed in establishing a new project identity, and I am proud of my
contributions toward that achievement. However, in the process I had
succeeded in straining a number of critical relationships that resulted in me
feeling less connected with the team. This ultimately led to the
announcement on August 12, 2014 (see Figure 1.26), that the company and I
had agreed to part ways. I gave up my role as CTO and also resigned my seat
as a member of the DNN board of directors.

Solutions

Turning The Page To Begin A New
Chapter In I\/Iy Life...

Avg | FIEIEIEEY Comments (29), Permalink
There is a famous quaote that "it vou love something, set it free", so it is with immense pride and emotion that | acknowledge that
U Y . F g

Lis time for me o step aside from the open source project, company, and legacy that | helped create and transition my

responsibilities at DNMN Corp.

After nearly 14 years of working on one of the most widely deployed open source CMS platferms, the company and | have
concluded that it's time for me to seek new opportunities that build on these experiences. My passion for building products and
ecosystemns that make an impact on the world is as strong as ever and | look forward focusing my energy and creativity along

similar lines

During my tenure at DNN, the open source project and company achieved great success and received many industry accolades
some af which | would have never dreamed remotely possible at its humble inception. The company has grown into a mature
anterprise with high guality preducts that are mission critical to customers worldwide. | have also been blessed with establishing
many genuine relationships and trusted friendships within the DMN ecosystem which | know will endure forever.

Figure 1.26

There is one last point of distinction in regard to my departure that I think is
important to understand. Similar to any standard working relationship, my
association with DNN Corp was based on an employment agreement that had
a specific start date and, upon my departure, an end date. As a founder, I did
have equity in the company, and I continue to own those shares as they were
fully vested during my tenure with the organization. On the other hand, the
DNN open source project existed prior to the formation of DNN Corp, and
based on its open source license, it will continue to exist indefinitely. So
although I left DNN Corp, I have not left DNN. My heart and passion remain
committed to this vibrant open source community that I started over a decade
ago and that will always remain a proud part of my legacy. As a community
member I am free to contribute to the open source project and ecosystem in
the same capacity as every other community member, and I intend to do so as
much as my new life and responsibilities allow. I continue to be thankful and
grateful every day for the positive impact I was able to make on this world
and for all of the sincere, lasting personal friendships I have earned as a
result of this open source community. At the end of the day, these are the

most valuable riches I could ever hope to receive.

Summary

DNN is an evolving open source .NET CMS platform. The organic community
ecosystem around DNN is vibrant and dynamic, providing the essential
environment for long-term growth and prosperity. You will always be able to
get the latest high-quality product release, including full source code, from

http: www.dnnsoftware.com.

http://www.dnnsoftware.com

Chapter 2
Installing DNN Version 7

What You Will Learn In This Chapter

Preparing your system to install DNN version 7

Installing DNN version 7

Upgrading from previous versions of DNN

Getting a trial version of Evoq Content

This chapter reviews the installation process of the DNN Platform and shows
how to get a trial version of Evoq Content. If you want to create a website, you
have different options to get started.

e The Install Package contains only the files needed to run a website in IIS
(Internet Information Services). These files are compatible with SQL
Server and SQL Express.

e The Source Package contains the source code of the application including
every module included in the DNN Platform.

e The Deploy Package is used by the Web Platform Installer and includes
the necessary files you need to deploy to a web server. The Web Platform
Installer also verifies and installs additional dependencies to get the
website up and running with little effort and knowledge.

e The Upgrade Package contains only the files needed for an upgrade of an
existing website. Your previous edition for the upgrade must be version 6
or higher. Notes on upgrading from earlier versions are available at

http://www.dnnsoftware.com/wiki/page/suggested upgrade path.

e Evoq Content Trials are hosted in Microsoft's Azure servers and are the
best way for you to test the advanced functionality without having your
own infrastructure or involving your IT department.

There are four options to install the DNN Platform, and you're probably
wondering, which one is for me? If you're a developer interested in extending
the functionality of the application, you may be interested in the Source
Package; however, you should start investigating creating DNN extensions
(modules, providers, etc.) before modifying DNN's core code. If you have a
server ready to host your website, the Install Package is your best option; if
you have a new server and you're not sure if you have all the dependencies to

http://www.dnnsoftware.com/wiki/page/suggested_upgrade_path

successfully run a website, you can try the Deploy Package; and finally, if you
have an existing website and you want to upgrade to the latest version of the
DNN Platform, you should use the Upgrade Package.

When do you use an Evoq Content Trial? Evoq Content includes advanced
functionality like workflow, digital assets management, and advanced
permissions among other features. If you want to run a professional website,
you may want to try Evoq Content in the cloud, which takes seconds to get set

up.

What You Need To Install DNN Platform Version 7

The two basic ways to install DNN Platform 7 are using the installation
package or using the Web Platform Installer. Before you begin, make sure
your system requirements are sufficient for the installation.

e Web Server: IIS 7.0 or higher (contained in Windows Vista and later for
desktops, and Windows Server 2008 and later for servers)

e Microsoft .NET Runtime: ASP.NET 4.0 or higher

e Database: Microsoft SQL Server 2008 or greater

Installing the DNN Platform Using the Installation Package

If you want to install the DNN Platform 7 Install Package, follow these steps:
1. Download the Install Package.

Unzip the package.

Create a database in SQL Server.

Create a database account.

Configure IIS.

Set file and folder permissions.

N o bk WD

Perform the installation.

Step 1: Download the Software

Navigate to http://www.dnnsoftware.com/Community/Download, which is
under the Community section of DNN's website, as shown in Figure 2.1. Click
the Download button under the Install Package section. This redirects you to
https://dotnetnuke.codeplex.com/, and the install package starts
downloading automatically.

http://www.dnnsoftware.com/Community/Download
https://dotnetnuke.codeplex.com/

Build amazing websites.
Download the Free,
Open Source

DNN Platform!

STAATARD PCE W e ARATR

Or just download the open source files you want.

METALL FACEAGE Sl -

iamd i s mmdd b o S e e s L Tl B

L N Jeriand F yum. s irirnlh dimealinger b oursed in hw EHM Pimbwmn
T
i RSE1ED b S Y BB SR H [e
ke e marknge. 15 ungriels am privieg ietielmis ten e
PRI A CKALS T
N e A ke e g iGN v s Sl e (0 UM & rEupe hop P ek DM A e prmeny
s [dhaad amad mt i darem o b Bt
Dbl W s s o bt bt S il ol s splleale R AP

And then install some extensions!

Al

g o LM mart g gy

LETTAE P

'
- chor M i

The DNMN Promise.

Figure 2.1

Step 2: Unzip the Package

Extract the entire contents of the Zip file to your chosen installation
directory. To install on your local system, you can place your website under
the C:\inetpub\wwwroot folder, like in this folder:
C:\inetpub\wwwroot\DNN7. If you have a hosting account and you want to
install the DNN Platform on your new server, make sure you read the
instructions of your hosting provider and follow the steps to upload the
package.

Step 3: Create a Database in SQL Server

If you're using a hosting service, your hosting service very likely comes with a
preconfigured SQL Server database, and your provider will give you detailed
instructions on how to connect and use it.

Otherwise, open SQL Management Studio, right-click Database, and select
New Database, as shown in Figure 2.2.

File Edt View Tools Window Community Help
IR NewQuery |y | |65 M S B

Connect (M1 %) m T A DB
5 (B \SQLExpress (SQL Server 10.0.2531 - DNNCORP

MNew Database...

Attach...

= [Replicatic Restore Database...
@ 3 Managen

Restore Files and Filegroups...

Start PowerShell

Reports
Refresh

Figure 2.2

Give the database a name and click OK.

Step 4: Create a Database Account
There are two main options for creating an account in SQL.

e Windows Security: This method uses the account under which your
website is running. This option is very secure, but it's often not supported
in hosting environments.

e SQL Server Security: Access the database using a username and a
password.

Step 5: Configure IIS

The next step is to create a website pointing at the DNN Platform installation
files. Follow these instructions to complete the configuration.

Click the Start icon, type inetmgr in the search box, select Internet
Information Services (IIS) Manager, and open the program. You can create a
new site, which would have its own URL, or you can create an application
under Default Web Site, which will have a URL under http://localnost (e.g.,
http://localhost/dnn). Many in the DNN community use the URL
http://dnndev.me (Oor a subdomain, like http://mysite.dnndev.me), which is
set up to point to your local computer. In that case, you can right-click the
Sites folder and click Add Website. Here you can enter the site name (e.g.,
dnndev.me), the physical path to the website (e.g.,
C:\inetpub\wwwroot\DNN7), and the host name (e.g., dnndev.me). Notice
that a new application pool based on your entered site name is automatically
created, though you can choose an existing one if you want.

Alternatively, if you want to create an application under Default Web Site, you
can click to expand Sites, right-click Default Web Site, and click Add
Application. Type the alias of the site (e.g., dnn for http://localhost/dnn),
select an application pool (ASP.NET v4.0 or .NET v4.5 would be good
choices), and select the physical path to the DNN Platform location.

Step 6: Set File and Folder Permissions

To use IIS you need to set file permissions on the folder where you plan to
install the DNN Platform. To set file permissions, you need to know the

http://localhost
http://localhost/dnn
http://dnndev.me
http://mysite.dnndev.me
http://localhost/dnn

identity used by the process to run your site so that you can give the
permissions to the correct identity. In IIS, select Application Pools to view a
listing of the available application pools. Find the pool assigned to the website
or application you created in step 5. If its Identity column says
ApplicationPoolldentity, this means a new identity was created just for that
application pool (e.g., the application pool dnndev.me has an identity of IIS
AppPool\dnndev.me). Otherwise, it lists the name of the identity used by that
application pool's worker process (probably NetworkService).

Once you know the identity to assign permissions to, you can right-click the
website's folder (e.g., C:\inetpub\wwwroot\DNN7) and click Properties. Now
click the Security tab. See Figure 2.3.

[onwr Pm_ et S |

 General [Shanng | Securty | Previous Versons | Customize |

Object name: Chinetpub®swwwoot \DNNT

Group or user names;
R ACREATOR OWNER -
B2, SYSTEM |

&%, NETWORK SERVICE

R bAvimistrstass IDKMNDCT T Advinistestans)
L] 1} b

To change pemissions, click Edi. l_?l;'ﬁdﬂ]
Permissions for CREATOR '
OWNER Alow Deny

Full control =
Mody

Read & execute =
List folder conterts

Fead

White i

For special pemissions or advanced settings Ady
click Advanced. [Advanced |

| aam shout sccess contml and CETISEIGNS

OK || Cancel

Figure 2.3

Click Edit ¢, Add. If the application pool is using ApplicationPoolldentity,
make sure the local computer is selected as the location; then enter the full
identity name (IIS AppPool\ and then the application pool name). If a
different identity is used, you can enter it (add a space in “Network Service”)

or click Advanced and click Find Now to pick from a list (the IIS AppPool
identities are “virtual accounts” and don't show in that list). Highlight the
identity you just added, check the box at the intersection of Allow and Modify,
and then click OK three times. This configures IIS to be able to modify files in
the website folder when DNN wants to do so.

Step 7: Perform the Installation

In the Internet Information Services Manager, right-click the newly created
website or application, scroll down to Manage Web Site, and select Browse
from the secondary menu. See Figure 2.4.

< nemet nformason senices 05 Marager it |

&J) [ONNPCT b Sees » DefauktWebSte + DNN » s @

File View Help

Connections. Actions
e & /DNN Home : |

"4 %5 DNN-PCIT (DNNCORP israel

i Filter: - B G - g Show All | G by
) Application Peols nih oo o e A i
a @ Sites ASP NET =

4 g} Default Web Sete . ¥ - 3 !

lierit = o _4.._%‘ u | q’ = il f{

| aspnet_clie B = Manage Application ~
¥ DM MET JMET MET Emor NET MET Profile .MET Trust Application Connection Machine Key =
Ung u Explare fpilation ~ Pages Globalization Levels Settings Strings Browse Application
Edit P! = &| Br - -
& Fermiszions, : Y
B 3

¥ Add Application..,

ign State SMTP E-mail
Add Virtual Directory... tl Dieploy [}
E e & + &
Manage Application v |[§] Browse o ;
1 &
i FRefresh Advanced Settings... & = d= E_ L i:ri‘
A4 4 =
&K Remove R - : e ¥
pression Default Directory Ertor Pages Handler HTTP Logging MIME Types
Deplay v Decument Browsng Mappings Rezpon... o -
| -
Switch to Content Vi o =
watch to Content View H__ = ?|
Modules Cutput Request 550 Settings
Caching Filtesing
r-.1.1r|ng¢mcn'.
Configurat...
Edigor
m b F | Features View || - Content Veew
Ready L
°
Figure 2.4

When the browser opens, you'll see the installation screen. See Figure 2.5. In
this screen you have the options described next.

¢ Administrative Information: Here you need to provide the username and
password for the initial host user (i.e., a user with unlimited permissions
to the entire DNN installation).

e Website Information: In this section, you can provide some custom

options for your website, such as website name, website template, and
administration language. The administration language is the one used
when working on the website.

Database Information: If you decide to use the default option, your
website will be using an SQL Express database included in the installation
package. But you can also create your own SQL Server or SQL Express
databases and provide the information needed for the system to connect
to it.

EwmiIni=
Donn

. Installation

o Enter Your Account Information o Procesd with Instaliation F” View Website

To setup your Installation, enfer the following information. E View Installation Video

Administrative Information

Usemame * §§ host
Password = €

Confirm *)

Website Information

Website Name ™ @ My Website
Template € | Defautt Template =

Language €h English (United States) -

Database Information

Dalabase Setup & Defaull @ Custom

Database Type @ @ 350L Server Express File SOL Server/SQL Server Exprass Dalabase

ServerMame " @ | \SOLEwpress
Filename * €0 | Database.mdf
Object Qualifier

Run Dalabase As «| Database Owner

Figure 2.5

After entering the information, click Continue, and the system shows you the
Installation In Progress screen. See Figure 2.6. The installation usually takes
less than a minute, and then the Visit Website button becomes active and you
have a new website. See Figure 2.7.

Installation

€ enter vour Account informat o Proceed with Installation
The product is being installed. Thanks for your patience
0:02 Mnutes 15% Msfaling Defabase Sonpt DodMeiNibke, Sohoma
' File and Folder Permissions Check
[
b Database Installation

E) onn

Figure 2.6

Welcome to Your Installation

Way to go! You just completed your installation. What would you like to do next?

Already an expert?
What's new with 7.0 Learn the basics of working with DNN

Satup your emall, install languages, and othar

rabon Settngs

Locking for answers?

e vicden below will halp get you siarted bulding
wour new site. Using ONM is fast and easy and you
Gan have your ne'w site up and running with real wWe always apprectate YDUf feadback
content in sl a matter of minutas.
culd love to hear how we're doing

Viateh the Gatting Started Vidao L&t e At it

Figure 2.7

Installing the DNN Platform Using the Web Platform Installer

Installing the DNN Platform 7 using the Web Platform Installer is fairly easy.
First you download the software, and then you install the DNN Platform and
configure your website.

Downloading the Software

The Microsoft Web Platform Installer (Web PI) is a free tool that makes
getting the latest components of the Microsoft Web Platform, including IIS,
SQL Express, and every other component, easy. At the same time, the Web PI
makes it easy for you to download and install free web applications like the
DNN Platform.

On the DNN Software website you can find a link that points to the Web PI
download and preselects the DNN Platform for installation. You can go to the

downloads section at http://www.dnnsoftware.com/Community/Download and
click the Download DNN Platform button under the standard process. This
takes you to the Microsoft website, as shown in Figure 2.8.

M ichSOft f'web English {United States) |= E

Home Platform Get Started Get Web Apps Get Hosting Join Programs Downloads

You are about to install:

8y downlgading and using the Web

|)
Platform Installer (Web PI), you agree
o the license terms for the Web PI -
DNN Platform
ONN is the |eading web content management
(CMS) for building professiona
Please leave this window cpen until the Microsoft Web Platform Installer starts. snamic content and interactive

th owver 700,000 web sites deployed

g c
System requirements an and thousands of third-party

Supported Oparating Systems are W sta SP2 extensions available for immediate installation,
ndows XP SP24, Windows Serve rnver 2008, Windows DNMNE® makes it guick and affordable to develop
Server 2008 A2, Windows Server 2012 a commercial website, a community portal, or
. an intfranet solubion
You must have a live Internet connection
You must have administrator privileges on your computer te run the Web Platform
Installer

Figure 2.8
On Microsoft's website click Install Now to start the download of

dotnetnuke iis.exe.
Installing the DNN Platform

In the previous step, you downloaded the Web PI from Microsoft's website. In
this step, you're going to run the Web PI and install the DNN Platform.

To start, run the newly downloaded software to launch the Web PI with the
DNN Platform, and click Install, as shown in Figure 2.9.

http://www.dnnsoftware.com/Community/Download

© DNN Platform

DMM is the leading web content management platform { CMS) for building professional websites with dynamic content
and interactive features, With over 700,000 web sites deployed in preduction and thousands of third-party edensions
available for immediate installation, DNME makes it quick and affordable to develop @ commercial website, a
community portal, or an intranet sclution.

D pnn More information

Publisher: DotMetMuke Corporation
Download Size: 43.55 MB

Version: 7.1.1 Platform

Release date: July-23-13

1 ltemsto beinstalled

Figure 2.9
A pop-up with the list of prerequisites opens, as shown in Figure 2.10.

PREREQUISITES INSTALL CONFIGURE FINISH

Review the following list of third party application software, Microsoft products and components to be installed and
Windows components to be turned on. Third party applications and products are provided by the third parties listed
here; Microsoft grants you no rights for third party software. ¥You are responsible for and must separately locate, read
and accept these third party license terms.

X' DNN Platform 45.55 MB
Direct Download Link
Total file download size: 45.55 MB

By clicking "1 Accept” you agree to the license terms for the third party and Microsoft software listed above. ¥ you do
not agree to all of the license terms, click "l Decline.

1Pecline I Accept

Figure 2.10

On this screen click I Accept, and the DNN Platform package, along with any
prerequisites, will be installed. Then, a new pop-up appears where you can
choose a name of your application, as shown in Figure 2.11.

‘Web Platform Installer 4.6 o

PREREQUISITES INSTALL CONFIGURE FINISH

Web Site:
| Defaust Web Ste ~|

‘DNN Platform' application name:
dotnetnuke

http-/Aocalhost: 80/doinetnuke

Web Site Name:
Default Web Ste

Physical path:
Chinetpub ‘wwwroot

IP address: Port:
All Unassigned - 80

Host Mam.e:

Example: localhost or application cortoso com

Cancel | Continue

Figure 2.11

Click Continue to start the configuration of your website. You'll see a pop-up
with a Finish button, as shown in Figure 2.12.

[Web Phﬂm
FINISH

PREREQUISITES INSTALL CONFIGURE

v/ The following products were successfully installed.

(Launch DMN Platform |

Finish

Figure 2.12
Click Finish and to launch the installation of your site as described in the
“Step 7: Perform the Installation” section. Follow the directions in that

section, and your site will be ready to go.

Upgrading the DNN Platform to Version 7

Upgrading the DNN Platform is even easier than installing it. The Upgrade
Package contains the new files and a very simple flow that will guide you
during the upgrade process. This section helps you upgrade from the DNN
Platform version 6 to 7.

First, create a backup of your website. We recommend that you back up your
website files along with your entire database. Always back up your site before
any system changes to be able to recover from any possible errors.

Download the software from the DNN Software website

(htto ://www.dnnsoftware.com/Community Download). As described earlier in
this chapter, go to the website, register or log in, and download the package
under the upgrade section.

After you download the upgrade package, unzip it and copy the files over your
existing installation. If Windows prompts you, select the Overwrite option.

Load your site by navigating to the URL. You'll see a screen that prompts you
for a host username and password, as shown in Figure 2.13. Type the
credentials and click Upgrade Now.

http://www.dnnsoftware.com/Community/Download

Upgrade

Current Version - 06.02.09
Upgrade - Version 07.01.02

ensure that:
= you have made plans to first attempt this process in a staging environment

using

o Account Info e Upgrade F2 View Website

You are about to upgrade your websit2 to a maore recent version of the application. Applying upgrades on a consistent basis is the best way to ensure that you
are protecting the integrity of your investment and the security of your users and assets. Before proceeding with the automated upgrade process please

you have documented your curreént installation charactenistics including doing research on the compatbility of any third party modules which you may be

you have created the necessary backups of your environment so that you will be able to restore your website in the event of an unexpected upgrade failure.

Host (SuperUser) Usemame:

Password. "

Upgrade Now

Figure 2.13

Your website starts updating, and you are redirected to a screen that shows

the progress of the upgrade, as shown in Figure 2.14.

Upgrade

Current Version - 06.02.09
Upgrade - Version 07.01.02

o Account Info e Upgrade B view Website

0:03 Minutes | 1% Applying Upgrade Senpd O7.00.04
b Updating Database
[

Figure 2.14

When the upgrade is complete, the progress bar shows 100%, and the View
Website button will be enabled. Click it and your site will be ready.

Getting a Trial Version of Evoq Content

Evoq Content is a product built on top of the DNN Platform, and it is targeted
to organizations with advanced content management needs. For more
information about the features, see Chapter 20.

In this section, you go through the process of getting a 30-day trial version of
Evoq Content running on DNN's Cloud Environment. DNN's Cloud Trials
offers the same infrastructure and reliability as production websites, and a
trial version can evolve into the production website, which means that the
time invested in testing the product can be used in the production website.

The process of getting your trial version takes just a few minutes. Navigate to
the DNN Software website and log in or register if you don't have an account
yet. After you log in, navigate to
http://www.dnnsoftware.com/Solutions/Try-DNN and click Get Started under
the Evoq Content section. The trial registration form appears, and your
information is prepopulated. Review that your information is correct, enter
anything that may be missing, and click Start My Free Trial Now. The system
will trigger the creation of a new instance of Evoq Content, and you'll be
redirected to your site in just a few seconds.

http://www.dnnsoftware.com/Solutions/Try-DNN

Common Installation Issues

Installing the DNN Platform is a relatively simple process. Although very few
things can go wrong, problems can appear at times. The two main causes for
failure are

e An invalid connection string to the database, which means that the
information for the database entered during installation is not correct. To
fix the problem, verify the information and try again.

¢ Insufficient file permissions. This happens when the user under which the
website is running does not have the appropriate permissions to the root
folder of your website. Make sure you follow the instructions found earlier
in this chapter for setting file permissions.

Finally, the DNN Platform has a large community of users. If you experience
more problems, go to the DNN Software website and search for forums or
enter questions to get additional help. One of the thousands of passionate
users will be happy to assist you.

Summary

The DNN Platform has a few packages to choose from.

The Install Package contains only the files needed to deploy a new site on
a web server.

The Source Package contains the application code including every module
distributed with the Install Package.

The Deploy Package contains the files needed to deploy a new site using
Microsoft's Web Platform Installer.

The Upgrade Package contains only the files needed to upgrade your
existing website to the latest version.

Evoq Content Trial is a cloud-hosted environment for you to test the
advanced content management features built on top of the DNN Platform.

This chapter covered the different packages and the necessary steps to install
a DNN Platform website.

Chapter 3
DNN Platform Overview

What You Will Learn in this Chapter

e Understanding the basic concepts of the DNN Framework

e Introduction to DNN security

This chapter introduces you to some of the core concepts of the DNN
Platform and provides an overview of how these fit together. Over the years,
DNN has evolved and changed appearance considerably, but the overall
structure has remained the same. What you have installed through the
previous chapter is an extensible “web application framework.” You can use it
to create all kinds of web-based applications. But to do so you need to
understand some of its underpinning core concepts. And to complicate things
a little bit, the terminology has evolved over the years as well. This means
that some concepts have a different name in the UI than they have in code
(and in SQL) purely because at one point it was decided that the old term was
confusing or too “techie,” so it was dropped for something more easily
understandable. Because this is a largely technical book, we will stick to the
terms used in the DNN API, but we will note if they have another name in the
UL

Core Platform Objects

In this section, the basic building blocks of DNN and how they fit together are
examined from a technical perspective.

Sites (Portals)

DNN is a powerful engine for creating websites. That is websites, plural and
not singular. One of DNN's core features is what is known as “portal
virtualization,” which means a single DNN instance can serve multiple
discrete websites. Here, an instance is synonymous with a DNN installation.
Here, an instance is synonymous with a DNN installation, meaning the files
you've copied to your server's DNN folder with a web.config in the root.

|
TIP

A universal way to spot a .net web application is the web.config file in its
root directory.

The aforementioned websites are known as portals. Portal is the DNN API
name for what you call a website or simply a site. It stems from the very first
version of DNN and an era where you had several popular Internet portals
like Yahoo that aggregated content from other websites. The visual and
textual language of DNN is rooted in this time, which is why the term portal
is used to describe a site.

So, DNN can have multiple sites. Each site is accessible through a URL
consisting of a domain (www.acme.com) and optionally a path. This URL is
referred to as a portal alias. And in DNN a single site can have multiple
aliases. So, a single site can appear as http://www.acme.com and
http://acme.com as Well as http://public.acme.com. Whenever a request is
made to your server, IIS is responsible for routing the various URLSs (or
domains as they're often called) to the correct applications. Your server's
administrator would be responsible for making sure all these URLs map to
the DNN instance. After that, it's DNN that must decide which portal to serve
based on the incoming URL. So, you can specify multiple aliases for each
portal to let DNN route multiple URLSs to the same website.

If you look at the page where you specify a new portal (you find this under
Site Management on the Host menu), you notice that there are two types of
portal (Site Type): parent and child. See Figure 3.1. These terms can be
somewhat confusing, as the child portal is not embedded within the parent
portal at all. Instead, the only difference is in the form of the portal alias.
Parent portals have at least one unique domain, so the URLs mentioned
previously are all for parent portals. Child portals, on the other hand, are
defined like subdirectories of a domain. So, a child portal given the previous
installation could be nttp://www.acme.com/public. Now the “public” portal is
defined as a child portal. Still, all its data is kept strictly separate from
http://www.acme.com (if that were a parent portal on the same installation).

http://www.acme.com
http://www.acme.com
http://acme.com
http://public.acme.com
http://www.acme.com/public
http://www.acme.com

Test DNN Site > Site Management > Add Site

Site Type: &b
® Parent Child

o I L=
Site Ahas i www secondsite dev

Hame Directory: =
Customize

itle: ™)

Description:
Keywords: €

Template: @ Default Website - English (United States)

Default Website Template

Use Current User as Administrator.)

Cancel

Figure 3.1

So, why would you use child portals? There are a couple of scenarios where
this is useful. The first concerns cookies. Browsers typically protect the user's
privacy by blocking any website from accessing cookies set by other websites.
A cookie set by Google cannot be read by Apple and vice versa. You can see
where I'm going with this. The child portal's cookies will be accessible by the
parent portal and vice versa. Crucially, this makes it possible to keep a user
logged in (login status relies on cookies). So if a user has been shared
between a parent and a child portal, that user could navigate between the two
sites and not have to log in every time he or she switches (so-called single
sign-on). Another reason for using child portals is using them to separate
departments of an organization. So, acme.com/dept1 is a different site from
acme.com/dept2. This allows the departments to manage their own site with
the all the benefits that brings. A third reason to use child portals could be

http://acme.com/dept1
http://acme.com/dept2

one of access rights. For a new parent portal you need to add the new domain
to IIS and to a DNS record. The person who is allowed to create new portals
might very well not have that authority/access. In that case, a child portal is
an alternative to create a new site without the necessity to access other
company resources.

The data for each portal can be divided into database data and file data.
Database data is stored in the various tables of your DNN database and file
data, which is stored in some file-based storage location and called the home
directory. By default, this is found in the directory portals/[PortalID] of your
installation. You can specify another location on your server's hard drive.
Since version 7.3 of DNN, you can specify alternate (cloud-based) locations
for this storage. (You can even extend the framework and build your own
provider for this.) The point of this paragraph is that you realize that the files
for each portal are stored in discrete folders somewhere. And DNN makes
sure that no files “leak” from one portal to another. Your portals are thus
really discrete entities inside the framework. This is crucial if you think of the
following use case. As a successful developer, you have created a DNN
installation that is perfectly tuned to serve small businesses in your local area
with a website. For each customer you create a new portal:
http://www.joeplumbing.com, http://www.jilldrycleaning.com, and so on.
But you need to have peace of mind that the content of these sites is secured
from each other. Knowing how DNN organizes content gives you this peace of
mind.

Finally, you should know that each portal has a unique portal ID and GUID.
The GUID (Globally Unique IDentifier) is a relatively new addition, but it's
the portal ID that is used throughout the framework to identify a portal.
Numerous tables in SQL have a column portal ID that refers back to the
portal (stored in the Portals table). By default, the portal ID is used in the
creation of the subdirectory under Portals for the Portal home directory. See

Figure 3.2.

http://www.joeplumbing.com
http://www.jilldrycleaning.com

4 |, WROXDEMO A Name : Date modified Type
drmi
SanE Cache
App_Browsers
Images
App_Data
App_GlobalResources
bin

Cormponents

Templates

Users 4
g . favicon.ico
,._-" GettingStarted.css <

Confi
Sl !LL‘ILngcCLpng

controls

DesktopModules

Documentation

EmailQut

leons

images

Install

Is

Licenses

Portals [_3-
_default

F 0

[

Cache
Pages
Images
Templates
Users
0-System

Providers

Resources

Figure 3.2

Pages (Tabs)

Each website consists of a number of pages. Or to put it in DNN parlance:
each portal has a number of tabs. The word tab stems from the project from
which DNN was originally derived: IBuySpy. In that sample project, Microsoft
demonstrated how you could build a website using a tabbed layout. The term
for page is thus tab in the DNN API. Back in the bad old days of static
websites (before the widescale adoption of CMSs), the pages of a website
were all discrete files (often HTML files) on your web server. So, there
typically would be a file index.html that would be served by the web server
when the browser was first directed at the site. Then any page would simply
point to a file on the web server. We parted with this way of doing websites
after the introduction of web applications like DNN. Instead, the HTML that
is served to the browser is built up on the fly by the web application on the
server and sent immediately to the client. No HTML file exists any longer that
stores that HTML that was served. Instead, the application typically uses
some form of templates that are subsequently filled with data from a
database. In this way we can show a “Hello Peter” page when Peter is logged

in and a “Hello Shaun” page when Shaun is logged in.

The various tabs are stored in the Tabs table in the SQL database. And just
like portals, tabs have a unique tab ID (an auto-incrementing integer) and
GUID (called UniquelD in the table), but the tab ID is used throughout the
framework to identify them. See Figure 3.3.

PETERDOMNKERD(3 ... XDEMO - dbo.Tabs > il Sl =g bl 111

TabiD TabOrder PortallD TabMame IsVisible Parentld lconFile i
] E 1 NULL Host False NULL Fal
1 NULL Host Settings True T ~{lcons/Sigma... Fal
7 3 NULL Site Manageme... True T ~/lcens/Sigma... Fal
T NULL Vendors True T ~fleons/Sigma... Fal

9 NULL SQL True T ~f{lcons/Sigma... Fal

" NULL Schedule True T ~flcons/Sigma... Fal

13 NUL Lists True [~flcons/Sigma... Fal

15 NULL Superuser Acco... True T ~/lcans/Sigma... Fal

17 NULL Extensions True T ~flconsfSigma... Fal

19 NULL Dashboard True T ~flcons/Sigma... Fal

23 NULL Configuration ... True ¥ ~{lcons/Sigma... Fal

3 1 0 Home True NULL NULL Fal
56 3 0 Module True MNULL NULL Fal
5 9 0 Activity Feed False NULL NULL Fal
5 n 0 Admin False NULL NULL Fal
. 13 0 Search Results False NULL NULL Fal
b 1 0 Wy Profile True =T NULL Fal
3 0 Friends True 57 NULL Fal

3 0 Messages True 57 NULL Fal

1 0 Advanced Seth... True 58 ~flcons/Sigma... Fal

b 3 0 Site Settings True 38 ~flcons/Sigma... Fal

Figure 3.3

A web application like DNN includes logic to generate and interpret URLs
because the pages are no longer files on the drive. This is not a trivial matter.
URLs are crucial to SEO, for example, so you'll find many are very
opinionated about this aspect of the framework. To cater for any scenario,
DNN has detached this part of the application so anyone can write his or her
own version. The generic term for this is URL rewriter. A URL rewriter
constructs URLs that are displayed in the application that can then be
subsequently interpreted by it and mapped to a specific tab ID. The first
versions of DNN did not include much URL rewriting, and you would have
seen URLs like this: http://www.acme.com?tabid=32. As you can probably
guess, this URL would show the tab with ID 32. But in essence all URL

http://www.acme.com?tabid=32

rewriters that exist even today just translate the incoming URL (for example,
http://www.acme.com/products/dynamite) to something similar to that raw
URL with tabid=xyz that is then used internally to find the right tab.

Pages are organized in a tree. See Figure 3.4. That is, they can be nested. In
the Tabs table the ParentID value points to the TabID value of the parent tab.
This is how most modern websites are currently structured. Any page sits
somewhere in a tree hierarchy. And ideally the URL rewriter uses this
hierarchy to create “human-friendly” URLs that reflect this by using the titles
as if they were subdirectories. The aforementioned URL would point to a page
with the title “dynamite” underneath the page with the title “products.” Not
only does this make sense to humans, but it's greatly rewarded by Google in
your ranking.

s~ = Test DNN Site
{2} Home
g Medule
SL Guestbook
2, Razor
-4 S Activity Feed)
2, My Profile
& Friends
3L Messages
3 .Eja Admin o
&l Advanced Settings
Pﬁ Site Settings
Eﬁ Pages
Eﬁ Extensions
Ea Languages
Eﬁ Skins
Sk Security Roles
Eﬁ User Accounts

Figure 3.4

Theme (Skin)

Every page tells DNN which theme (until version 7.4 the term skin was used
for theme, and you'll still find it in various places in the API) to load to
display it. The theme defines how various elements are positioned on the
page and how they look. The DNN Platform aims to separate the concerns of

http://www.acme.com/products/dynamite

programmers, designers, and content managers as much as possible. So,
designers should be able to do their jobs independently from programmers,
for example. What this means is that you can change the look and feel of a
site without changing its functionality or content.

A theme is typically comprised of some HTML template file (.ascx),
JavaScript files, and CSS files. And a single theme package can contain
multiples of these theme templates. Often you'll find a template for the home
page, for an admin page, and for a regular (default) page. The home page
would then include some extra space for a banner/image slider, for example.
In the site settings you can specify the default skin to use for the site, but any
page can override this setting and specify its own special skin to use.

The most important element on a page is undoubtedly the one responsible for
navigation—the menu. Other common elements are the login button, the
logo, and the banner for the site, as well as the footer elements such as
copyright messages and disclaimers. Obviously, DNN also needs to know
where to put the page's contents. For this, the skin template defines a set of
panes. Panes are essentially div elements that have been given meaningful
names by the designer: LeftPane, RightPane, BannerPane, and so on. See
Figure 3.5. These names appear in the Ul and allow the user to specify where
something will be added on the page. If you switch to layout mode (use the
top-right menu on the control bar), you'll see all these panes light up, and you
will see how the designer has subdivided the page for you.

Edit Page

D Ppnn Home

(8] +]
AP ane rightFane E]

P are L owearLef It Pare_owwerRight

efiFaneBottom

footerleftOuterPane faoterLeftPane footerCenterPapa forterRightPane footerRight DuterFane

Figure 3.5

Modules

Each tab in DNN displays any number of modules. Modules are basically the
rectangular blobs you see spread on the page's surface. Each one has a small
menu when you switch to edit mode (to switch the mode, go to the top-right
side of the page on the control bar). See Figure 3.6.

= i] Superiisar Account Logout Saarch aQ,

D (=131] Home

< Gk

& EdE Content Jlrv]

Every journey begins with the first step.

DNN® makes it easy for you to install and use the DMN® Platform. We have multiple

options to suit your needs, whether you want to try the CMS out in the cloud, install
it on your own server, or use it on your desktop for development. You are just a click
away from getting started with DNN®.

Keep in touch with DNN

Join the Community to Interact and Learn (f Nin Qv i)
n. E evoq SOCIAL
Figure 3.6

These modules are what make the site tick. They are the fundamental
building blocks of functionality of your site. You can have a module that
displays a block of text (the most common module by far), but you can also
have a module that shows a small calendar with events or a module that
displays a list of (recent) news articles. And it all began with what has been
dubbed “Web 2.0.” That is, the web is no longer a collection of static text and
images but rather an interactive surface that allows people to modify its
contents. Modules are the “apps” of the web. They perform a particular
function (for example, manage an event calendar). And it is one of the most
important extension points of DNN: you can create your own modules
(explained elsewhere in this book) and let the users stick that on any page of

their site. And the ease with which this can be done and the power it provides
the developer is the top reason for DNN's success.

Modules are instantiated on a page through the Modules tab on the control
panel. See Figure 3.7. If you click Add Module, a list of installed modules
appears, and you can drag and drop them onto your page surface. Typically,
you then set some parameters such as who can edit its contents and some
generic parameters that concern the specifics of the module (for example,
whether to render a calendar or a chronological list of events). This is
commonly referred to as the Module Settings and can be accessed through
the little menu that appears when you are in edit mode (see Figure 3.6).

pnn Modules : . # Edil Page

Every iourneyv beains with the first step.

Figure 3.7

The installed modules on your DNN installation are managed on the
Extensions page on the Host menu. Here you see what is installed and what is
ready to install (has already been downloaded), and you can access the DNN
Store for more modules (both free and commercial). See Figure 3.8.

Host » EXtensinns

Extensions

[GEEVNSCNCEORITFET N Create New Extension Create New Module

Installed Extenslons Avallable Extenslons Purchazed Fxtenslons | Maore Extensions

This application contains an Lipdate Senice which displays an icon when a new werzion of an Extension is availsble. The icon displayed will contain a visual indication if 3
currently installed Extansion contains a potential secunty vulnerability. If & securty wulnerability 15 identified, it i1s highly recommended that you upgrade to the newar
version of the Exdension. Clicking the icon will redwact you te a locaton where you will be able te acquire the Extension for immediate nstafiahon

Modules -
Name Description Version In Use Upgrade?
* AdvancedSettings 1.0.0
‘ Auihentication Allows you 1o manage authentication setlings T.1.0 o
I+ for sites using Windows Authentication

II_—- Banners Banner advertising is managed through the 7110 Mo
\endors module in the Admin tab. You can
select the number of banners to display as wall
as the bannar lype

Configuration Manager 7.10
—E Console Display children pages as icon links for 710
3 niEvigation
:'— ContentList This module displays a list of content by tag 71.0 Ha
3 —
Dashbosrd Prowdes a snapshot of your DotNetMNeke 7.10
Apglication
* DOR Menu DatMeatMuke Nawgsation Frovider 734 Ha
Device Preview The Dewce Prevew Management module allows
Managemant users o manage therr mobide praview profiles

Figure 3.8

The first time you see the list of installed modules, it may seem
overwhelming. But most of those are administrative modules that you cannot
(and should not) delete. They are part of the framework. Click the Install
Extension Wizard button at the top of the page to also install modules that
you've downloaded (or created) and bypass the DNN Store. This is not a
closed system like most mobile platforms, and you'll find hundreds of free
(and often open source) modules on sites like CodePlex and GitHub. A
module is delivered as a Zip file. All you need to do is upload the Zip file
through the Extensions page, and DNN takes care of the rest. This process has
been made as easy as possible for both the administrator and the developer.

Even upgrades are taken care of automatically. Just upload the Zip file you've
downloaded, and the module appears on the control bar so it can be dropped
onto a page.

When a module is added to a pane, it is wrapped inside what is known as a
container. This is similar to a skin in that it is defined by the designer and is a
template file that tells DNN how the module is wrapped. The container
typically determines how the title of the module is rendered. It can be used to
draw a border around a module or give it an alternate background color.
Containers are typically distributed along with the skin, and just like the skin,
you have a default container for the site and the ability to override the default
for each module.

Security

Security is an integral part of web applications, and DNN has many features
built in to it that allow you to create advanced applications. Module
developers can leverage this and not be concerned with authentication and/or
authorization at all. Instead, they can leave this to the framework and focus
on their application. In turn, DNN devolves this to components that can be
switched out. This is a very powerful feature that allows you to use Active
Directory authentication or to leverage OAuth providers like Facebook.

Users

It should come as no surprise that users are individual login accounts in
DNN. You find them in the Users table in SQL and on the User Accounts page
on the Admin menu. See Figure 3.9. Each user is uniquely identified through
a username for authentication purposes. In data, however, users are
identified through an auto-incrementing integer user ID similar to tabs and
portals. Whenever a user account is created, that user will only be able to log
in to the portal in which it was created. But the user can be shared between
portals (UserPortals table in SQL) although there is no proper Ul for that
right now.

im » |iser Accounts

User Accounts

Usemams - Search

aoulernouseTs Albracht Culterhousze 111142014 15:08:04
atmin Aaministrator Accournt 111142014 14:00:25

3s0igrkod2 Andria Sokyriko 142014 15:03.:04

Il a48 garl Momura 11142014 15:02:04

Kingands Claire Kingan 11142014 15.08.04

ddadadadaad

caydonkes laudelle Sydoryc MA42014 150804

dgodimngton20 Uenna Godlington TMH42014 15:08:04

4 4

W dsloand Dwrich Sloan 11/14/2014 15:08:04

Remove Deleted Users | Delete Unauthorized Users

Figure 3.9

Roles

Roles are what drive security in the platform. See Figure 3.10. A user can
belong to one or more roles, and these roles are used throughout the
application to set permissions. This is similar to what you'd see on your
Windows machine. There are several roles that are installed by default:
Administrators, Registered Users, Subscribers, and Unverified Users.
Administrators have access to all aspects of a portal. Registered Users is a role
that is assigned automatically to any new account. Subscribers is a role to
which users can opt in voluntarily. Finally, Unverified Users is used for those
users who have enlisted but have not yet verified (through an email link) that
they are who they say they are. The thinking behind this last role is that you
can accept a registration but exclude those from certain functionalities, as the
registration would have already given that user the Registered Users role.

Admin » Securty Robes

Security Roles

Mame Descriplion Fee Every Period Tris Every Period Pul Al
F1s Adrministrator Administrators of this Website 0.00 00D 1
A Registered Uisers Reqgistered LUsears 0.00 oo 41
Fiy Subscribers A public role for site subscriptions: 0.00 0.0 41
A Translator (en-US) A role for English [United States) translators 0.00 00D o

F L Unvenfied Users Urrvenfied Users 0.00 (ERELE o

PN LR Add New Role Group

Figure 3.10

These roles are specific to the portal. They have a unique role ID (again an
auto-incremented integer) that is used to refer to them throughout the
framework. There are two virtual roles that are worth mentioning here. They
are virtual in the sense that they do not exist in the Roles table in SQL but are
used in the API for specific cases. These virtual roles are All Users and
Unauthenticated Users. The first (RoleID = -1) you will use to allow both
authenticated and unauthenticated users access to something. The second is
to target unauthenticated users only. So, you could show a login panel or
some explanatory text to those users only, for example.

You see the roles come back whenever you edit permissions for specific part
of the website. Both pages and modules on those pages have permissions.

Figure 3.11 is a screenshot from a module's permission screen. You can add
roles and/or users to the grid and set permissions by checking the boxes.
What these permissions do depends very much on the module and is
discussed in later chapters.

Module Settings Permissions Page Settings HTML Module Settings

= olact Rols Jecribers Add

R

Administrators
All Users
Reglstered Lisers

Translator {en-U3)
Unauthenticated Usars
Unverified Usars

Add

v | Inhent View permissions from Page

m Delate Cancel

Figure 3.11
Host

Upon installation, DNN will create a first user account that is the host
account. This account has administrative privileges in all portals as well as
the ability to access all resources that are common to all portals. Host is
synonymous with superuser in DNN. You can add as many host accounts as
you want. These accounts are the only ones able to create and delete portals,
install and delete modules, and so on. You will immediately notice you're
logged in as superuser by the appearance of the Host menu in the control bar.

Admin

Admins are regular user accounts that have been added to the Administrators
role. Admins will see the Admin menu on the control bar and have the ability
to change the portal, such as adding and removing pages, creating and
deleting users, creating and deleting roles, and so on. Admins cannot install

components to the system such as modules, nor can they alter files that run
code on the server. Care has been taken to make sure that admins are
sandboxed to allow them only the ability to change the content and
appearance of a portal.

Summary

In this chapter, you looked at DNN from 30,000 feet high. You saw the
hierarchy of the DNN instance, portals/sites, tabs/pages, and finally modules.
You now have a rough idea of where your data is stored and that DNN uses
this to construct the pages that are being served to the client's browser. You
also learned how DNN organizes security using users and roles.
Understanding this chapter is key to being able to comprehend more in depth
how DNN works and how you can create your own website or web application
with it.

Chapter 4
Site Administration

What You Will Learn in This Chapter

Exploring administration features

Taking first-time steps to set up your site

Delegating administration duties

Delegating content editing tasks

Wrox.com Code Downloads for this Chapter

The wrox.com code downloads for this chapter are found at
www.wiley.com/go/prodnn? on the Download Code tab. The code is in the
Chapter 4 download and individually named according to the names
throughout the chapter.

In the previous chapter, you learned what DNN is and what it can do for you.
This and subsequent chapters will continue to build on that knowledge to
ensure that you're the most productive and knowledgeable DNN user
possible.

Starting with this chapter, we will teach you what you need to know in order
to efficiently run your DNN site using the best practices we have learned over
a decade of managing DNN sites over a multitude of use cases and
deployment scenarios.

http://Wrox.com
http://wrox.com
http://www.wiley.com/go/prodnn7

What Is Site Administration?

Site administration in DNN is quite simply the process, tasks, and features
that equate to “running” a DNN website. This could include managing end
users, security, site settings, configuration, and even managing content.
However, for the purposes of this chapter, we will primarily focus on the
Admin menu that's found in the Control Panel feature of DNN.

Site administration can take on many forms, but there are two use cases that
you should be familiar with. First, there's site administration as defined by
DNN. You enable this by adding the Administrators security role as one of the
assigned roles for the account. That way, all “admin” features will be available
for that user across that specific site.

|
NOTE

Security roles are being discussed at a very high and conceptual level
right now but will be discussed in greater detail later in this chapter.

Site administration can take on a hybrid of another sort as well, but this is not
defined by DNN. Instead, you as the site administrator can define a different
kind of administration for your site. This would be a kind of administration
where you define a subset of administration capabilities and assign them to
more privileged users to avoid having to make them an actual administrator.

As