

Table of Contents
Introduction

Who This Book Is For
What This Book Covers
How This Book Is Structured
What You Need to Use This Book
Conventions
Source Code
Errata
p2p.wrox.com

Chapter 1: An Inside Look at the Evolution of DNN
From Humble Beginnings…
The Dot-Com Era
IBuySpy Portal
ASP.NET
IBuySpy Portal Forum
IBuySpy Workshop
Subscription Fiasco
Microsoft
DotNetNuke
Licensing
Core Team
XXL Fork
Trademarks
Sponsorship
Enhancements
Security Flaw
DotNetNuke 2.0
DotNetNuke.com Website
Provider Model

kindle:embed:000R?mime=image/jpg

Open Source Philosophy
Stabilization
Third-Party Components
Core Team Reorganization
Microsoft Membership API
“Breaking” Changes
Web Hosters
DotNetNuke 3.0
Release Schedule
DotNetNuke Projects
Intellectual Property
Marketing
Microsoft Hosting Program
Infrastructure
Branding
Tech Ed
Credibility
Trademark Policy
ASP.NET 2.0
Reorganization
Microsoft Conferences
DotNetNuke 4.0
Slashdotted
Benefactor Program
Opportunists
Yin and Yang
A New Company
Larry Augustin
Performance
DotNetNuke Marketplace
Free Module Promotion

Conferences
Microsoft Valuable Professionals
Fundraising
Awards and Accolades
DotNetNuke OpenForce 07
SLA Program
More Fundraising
CodePlex
Security Issues
IP Disputes
Term Sheets
DotNetNuke OpenForce 08
DotNetNuke Professional
Series A Announcement
Physical Offices
DotNetNuke 5.0
Day of DotNetNuke
DNN-Europe
Snowcovered Acquisition
Telerik Partnership
Series B
Open-DocumentLibrary Acquisition
DotNetNuke Enterprise Edition
POET Vulnerability
DotNetNuke.com Overhaul
Active Modules Acquisition
Nik Kalyani Leaves DNN Corp
Cloud. Mobile. Social.
DotNetNuke 6.0
DotNetNuke World 2011
DotNetNuke Gets Social

Microsoft Azure Partnership
DNN World 2012
DotNetNuke 7.0
iFinity Acquisition
10-Year Anniversary
DNN Social
DotNetNuke.com Hacked
Rebranding
DNNCon
Scott Willhite Moves On
DNN 7.x Releases
My Departure from DNN Corp
Summary

Chapter 2: Installing DNN Version 7
What You Need To Install DNN Platform Version 7
Upgrading the DNN Platform to Version 7
Getting a Trial Version of Evoq Content
Common Installation Issues
Summary

Chapter 3: DNN Platform Overview
Core Platform Objects
Security
Summary

Chapter 4: Site Administration
Wrox.com Code Downloads for this Chapter
What Is Site Administration?
Common Administrative Tasks
Admin Menu Features
Best Practices for Site Administrators
Summary

Chapter 5: Host Administration

Why Do You Need the Host?
What Is Host Administration?
Host Menu Pages
Additional Host Features on Admin Site Settings
Additional Host Features on the Control Panel
Host Options on the Module Actions Menu
Integrating with a Third-Party Provider
Summary

Chapter 6: Modules
What Is a Module?
Where Do Modules Live on a Page?
Adding a Module to a Page
One Module Across Multiple Pages
One Module Across Multiple Sites
Working with Modules
Where to Get Modules
Viewing Modules and Extensions
Installing Modules into DNN
The Extension Verification System
In Depth with the HTML Module
Summary

Chapter 7: System Architecture
Patterns and Concepts
Architectural Overview
Namespace Overview
Summary

Chapter 8: Core DNN APIs
The CBO Class
Caching
Event Logging
Exception Management

Scheduler
Module Interfaces
Summary

Chapter 9: Membership Security
Wrox.com Code Downloads for this Chapter
DNN Membership Overview
Membership Provider
Authentication Providers
Membership Management Enhancements
Summary

Chapter 10: Localization
Locales in DNN
Resource Files
The API
Localizing Modules
Summary

Chapter 11: Search
History
Objectives of the New Search Functionality
Apache Lucene
Search Architecture
Platform Features
Evoq Features
Administration
Search Phases
Module Integration
Entities
APIs
Writing a New Crawler
Troubleshooting
Summary

Chapter 12: URL Management
The History of DNN URL Schemes
Understanding URL Structure in DNN
URL Configuration and Customization
Summary

Chapter 13: Beginning Module Development
Wrox.com Code Downloads for this Chapter
A Guided Tour of Your Work Environment
Your Toolbox
The Environment
Organizing Your Project
Module Design Considerations
About Modules, TabModules, Module Definitions
A Guestbook Module
Wrapping It Up
Summary

Chapter 14: Developing Modules: User Interfaces
Wrox.com Code Downloads for this Chapter
Understanding DNN and Module Interactions
Dialogs and AJAX Support
JavaScript, jQuery, and Custom Scripts
DNN jQuery Plugins
Implementing Consistent Design
Summary

Chapter 15: Developing Modules: Business Logic
Wrox.com Code Downloads for this Chapter
Navigating with the DNN API
Using Common DotNetNuke Controls
Leveraging Web API
Controlling Navigation and Module Views
Summary

Chapter 16: Developing Modules: Best Practices and Moving Forward
Wrox.com Code Downloads for this Chapter
Managing DNN References and Versions
Managing External Dependencies
Future-Proofing Data Interactions
Extension Verification Service (EVS)
Getting Prepared for DNN neXt
Summary

Chapter 17: Skinning
Wrox.com Code Downloads for this Chapter
Skinning by Today's Standards
Parts of a DNN Skin
Skinning Approaches
Preparing to Create a Skin
Creating Your First Skin
Basic Layout
Document Setup
Skin Objects
Navigation
Creating Alternate Skins
Creating Containers
Custom 404 and Pop-up Skins
Skin Thumbnails
Creating an Installable Skin Package
Advanced Skinning Techniques
Summary

Chapter 18: Packaging and Distribution
The New Extensions Model
Creating New Extensions
Using the Wizard to Create Packages
Building Packages with Manifest Files

Summary
Chapter 19: Commercial Philosophy

The Fundamentals
Technology
Market Conditions
Distribution Model
Branding
Results
SUMMARY

Chapter 20: Evoq Content
Content Creation
Permissions, Workflow, and Versioning
Optimization
Integrations
Summary

Chapter 21: Evoq Engage
Management Tools
Community Modules
Summary

Chapter 22: The DNN Store
Buying from the Store
The Referral Program
Selling on the Store
Summary

Chapter 23: DNN on Microsoft Azure
Wrox.com Code Downloads for this Chapter
Azure Deployment Scenarios
Installing DNN on Azure Websites
Remote Connections to Azure Websites
Backing Up Your Azure Website
Upgrading to a New DNN Version

Moving an Existing DNN Site to Azure Websites
Managing and Troubleshooting Your Azure Website
Summary

Appendix A: Resources
Appendix B: System Message Tokens
Advertisement
End User License Agreement

List of Illustrations
Chapter 1: An Inside Look at the Evolution of DNN

Figure 1.1

Figure 1.2

Figure 1.3

Figure 1.4

Figure 1.5

Figure 1.6

Figure 1.7

Figure 1.8

Figure 1.9

Figure 1.10

Figure 1.11

Figure 1.12

Figure 1.13

Figure 1.14

Figure 1.15

Figure 1.16

Figure 1.17

Figure 1.18

Figure 1.19

Figure 1.20

Figure 1.21

Figure 1.22

Figure 1.23

Figure 1.24

Figure 1.25

Figure 1.26

Chapter 2: Installing DNN Version 7

Figure 2.1

Figure 2.2

Figure 2.3

Figure 2.4

Figure 2.5

Figure 2.6

Figure 2.7

Figure 2.8

Figure 2.9

Figure 2.10

Figure 2.11

Figure 2.12

Figure 2.13

Figure 2.14

Chapter 3: DNN Platform Overview

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

Figure 3.7

Figure 3.8

Figure 3.9

Figure 3.10

Figure 3.11

Chapter 4: Site Administration

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8

Figure 4.9

Figure 4.10

Figure 4.11

Figure 4.12

Figure 4.13

Figure 4.14

Figure 4.15

Figure 4.16

Figure 4.17

Figure 4.18

Figure 4.19

Figure 4.20

Figure 4.21

Figure 4.22

Figure 4.23

Figure 4.24

Figure 4.25

Figure 4.26

Figure 4.27

Figure 4.28

Figure 4.29

Figure 4.30

Figure 4.31

Figure 4.32

Figure 4.33

Figure 4.34

Figure 4.35

Figure 4.36

Figure 4.37

Figure 4.38

Figure 4.39

Figure 4.40

Figure 4.41

Figure 4.42

Figure 4.43

Figure 4.44

Figure 4.45

Figure 4.46

Chapter 5: Host Administration

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

Figure 5.6

Figure 5.7

Figure 5.8

Figure 5.9

Figure 5.10

Figure 5.11

Figure 5.12

Figure 5.13

Figure 5.14

Figure 5.15

Figure 5.16

Figure 5.17

Figure 5.18

Figure 5.19

Figure 5.20

Figure 5.21

Figure 5.22

Figure 5.23

Figure 5.24

Figure 5.25

Figure 5.26

Figure 5.27

Figure 5.28

Figure 5.29

Figure 5.30

Figure 5.31

Figure 5.32

Chapter 6: Modules

Figure 6.1

Figure 6.2

Figure 6.3

Figure 6.4

Figure 6.5

Figure 6.6

Chapter 7: System Architecture

Figure 7.1

Chapter 9: Membership Security

Figure 9.1

Figure 9.2

Figure 9.3

Figure 9.4

Figure 9.5

Figure 9.6

Figure 9.7

Figure 9.8

Chapter 10: Localization

Figure 10.1

Figure 10.2

Figure 10.3

Figure 10.4

Figure 10.5

Figure 10.6

Figure 10.7

Figure 10.8

Chapter 11: Search

Figure 11.1

Figure 11.2

Figure 11.3

Figure 11.4

Figure 11.5

Figure 11.6

Figure 11.7

Figure 11.8

Figure 11.9

Figure 11.10

Figure 11.11

Figure 11.12

Figure 11.13

Figure 11.14

Figure 11.15

Figure 11.16

Figure 11.17

Figure 11.18

Figure 11.19

Figure 11.20

Figure 11.21

Figure 11.22

Figure 11.23

Figure 11.24

Figure 11.25

Figure 11.26

Figure 11.27

Figure 11.28

Figure 11.29

Figure 11.30

Figure 11.31

Figure 11.32

Figure 11.33

Figure 11.34

Figure 11.35

Figure 11.36

Figure 11.37

Figure 11.38

Figure 11.39

Figure 11.40

Figure 11.41

Figure 11.42

Figure 11.43

Figure 11.44

Chapter 12: URL Management

Figure 12.1

Figure 12.2

Figure 12.3

Figure 12.4

Figure 12.5

Figure 12.6

Figure 12.7

Chapter 13: Beginning Module Development

Figure 13.1

Figure 13.2

Figure 13.3

Figure 13.4

Figure 13.5

Figure 13.6

Figure 13.7

Figure 13.8

Figure 13.9

Figure 13.10

Figure 13.11

Figure 13.12

Figure 13.13

Figure 13.14

Figure 13.15

Figure 13.16

Figure 13.17

Figure 13.18

Figure 13.19

Chapter 14: Developing Modules: User Interfaces

Figure 14.1

Figure 14.2

Chapter 15: Developing Modules: Business Logic

Figure 15.1

Figure 15.2

Figure 15.3

Figure 15.4

Figure 15.5

Chapter 16: Developing Modules: Best Practices and Moving Forward

Figure 16.1

Figure 16.2

Figure 16.3

Chapter 17: Skinning

Figure 17.1

Figure 17.2

Figure 17.3

Figure 17.4

Figure 17.5

Figure 17.6

Figure 17.7

Figure 17.8

Figure 17.9

Figure 17.10

Figure 17.11

Figure 17.12

Chapter 18: Packaging and Distribution

Figure 18.1

Figure 18.2

Figure 18.3

Figure 18.4

Figure 18.5

Figure 18.6

Figure 18.7

Chapter 20: Evoq Content

Figure 20.1

Figure 20.2

Figure 20.3

Figure 20.4

Chapter 21: Evoq Engage

Figure 21.1

Figure 21.2

Figure 21.3

Figure 21.4

Figure 21.5

Figure 21.6

Figure 21.7

Figure 21.8

Figure 21.9

Chapter 23: DNN on Microsoft Azure

Figure 23.1

Figure 23.2

Figure 23.3

Figure 23.4

Figure 23.5

Figure 23.6

Figure 23.7

Figure 23.8

Figure 23.9

Figure 23.10

Figure 23.11

Figure 23.12

Figure 23.13

Figure 23.14

Figure 23.15

Figure 23.16

Figure 23.17

Figure 23.18

Figure 23.19

Figure 23.20

Figure 23.21

Figure 23.22

Figure 23.23

Figure 23.24

Figure 23.25

Figure 23.26

Figure 23.27

Figure 23.28

Figure 23.29

Figure 23.30

Figure 23.31

Figure 23.32

Figure 23.33

Figure 23.34

Figure 23.35

Figure 23.36

Figure 23.37

Figure 23.38

Figure 23.39

Figure 23.40

Figure 23.41

Figure 23.42

Figure 23.43

Figure 23.44

Figure 23.45

Figure 23.46

Figure 23.47

Figure 23.48

List of Tables
Chapter 4: Site Administration

Table 4.1 Digital Asset Manager Control Panel

Table 4.2 Folder Menu Options

Table 4.3 DNN Platform Folder Providers

Table 4.4 Folder Permissions

Table 4.5 Pages Module Context Menu Options

Table 4.6 Built-in Security Roles

Table 4.7 Edit Security Roles Settings

Table 4.8 Page Management Settings

Table 4.9 User Registration Options

Table 4.10 Display Name Format Tokens

Chapter 8: Core DNN APIs

Table 8.1 The CBO Hydration Methods

Table 8.2 Selected Public Methods in DataCache

Table 8.3 Properties of the CacheItemArgs Class

Table 8.4 The LogController Class

Table 8.5 Properties of the LogInfo Class

Table 8.6 Helper Methods in the Exceptions Class

Table 8.7 Members of the IModuleControl Interface

Table 8.8 Members of the ModuleAction Class

Chapter 10: Localization

Table 10.1 Localization Methods

Table 10.2 GetString Parameters

Table 10.3 GetSystemMessage Parameters

Table 10.4 Objects Available for Token Replacement

Table 10.5 Wrapping a String with a Web Control

Table 10.6 Adding a Resource Key

Table 10.7 Default Localized Attributes

Chapter 11: Search

Table 11.1 Site Crawler's Tasks

Table 11.2 Steps in Content Indexing

Table 11.3 SearchType Properties

Table 11.4 SearchDocument Properties

Table 11.5 Property Boost Levels

Table 11.6 SearchQuery Properties

Table 11.7 SearchResult Properties

Table 11.8 Indexing APIs

Table 11.9 Administration APIs

Table 11.10 Lucene Internal APIs

Chapter 12: URL Management

Table 12.1 URL Mode Comparison

Table 12.2 DNN URL Types

Table 12.3 Create URL Fields

Table 12.4 Rewriting Test Result Fields

Table 12.5 Installation-Level Configuration Options

Table 12.6 Example Site Aliases

Table 12.7 Site Alias Configuration

Table 12.8 Site Alias Values

Table 12.9 SSL Settings

Table 12.10 Evoq Advanced URL Settings

Table 12.11 Advanced URL Management Options

Table 12.12 Creating DNN Page URLs

Table 12.13 Common HTTP Response Codes

Table 12.14 URL Debug Response Header Data

Chapter 13: Beginning Module Development

Table 13.1 Major Directories in a New DNN Installation

Table 13.2 Major DNN Releases between 2011 and 2014

Table 13.3 View.ascx.resx Entries

Table 13.4 Edit.ascx.resx entries

Chapter 15: Developing Modules: Business Logic

Table 15.1 Common Methods

Table 15.2 Helpful Host Object Properties

Table 15.3 Helpful PortalSettings Properties

Table 15.4 RegisterRoutes Method Parameters

Chapter 17: Skinning

Table 17.1 CSS File Priorities

Table 17.2 JavaScript File Priorities

Chapter 18: Packaging and Distribution

Table 18.1 Package Settings Attributes

Table 18.2 Configuration Options for Module Extensions

Table 18.3 Module Control Definition Attributes

Table 18.4 Wrox.Suggestion Module Definitions Module Controls

Table 18.5 Configuration Options for Skin Object Extensions

Table 18.6 Configuration Options for Authentication System
Extensions

Table 18.7 Package Elements and Attributes

Table 18.8 Node Action Types

Appendix A: Resources

Table A.1 Developer Tools

Table A.2 Popular Extensions

Table A.3 dnnsoftware.com resources

Appendix B: System Message Tokens

Table B.1 Standard HostSettings Properties

Table B.2 Standard PortalSettings Properties

Table B.3 Standard UserInfo Properties

Table B.4 Standard UserMembership Properties

Table B.5 Standard UserProfile Properties

Introduction
DNN7 is an open source CMS platform developed using Microsoft's ASP.NET
technology. It can be used by end users and administrators as an advanced
content management system for the creation and management of dynamic
websites. It can also be used by software developers as a platform for building
sophisticated ASP.NET web applications.

Who This Book Is For
This book is suitable for all audiences. It contains content for end users and
administrators who are interested in learning how to utilize the software to
create and maintain advanced websites. It also contains technical content for
software developers and web designers who want to build custom extensions
or skins for the platform.

What This Book Covers
This book is focused on the functionality that is present in the DNN7 product
editions. Users of earlier product editions may also find this book useful, as
many concepts and features that existed in previous versions have remained
consistent over time. This book also includes a complete history of the open
source project and business model, as well as dedicated coverage of the
features and functionality of the commercial Evoq solutions.

How This Book Is Structured
This book is logically divided into four sections. The first section explores the
history of the open source project, explains how to download and install the
product, and describes how to manage and administrate a DNN website. The
second section explores the application architecture and its major application
programming interfaces (APIs). The third section of the book demonstrates
how you can extend the platform by developing and distributing modules and
skins that integrate seamlessly with your DNN website. The final section
explains the open source business model and describes the advanced features
of the commercial Evoq solutions, which are built on top of the DNN
platform.

What You Need to Use This Book
To utilize DNN, you need any of Windows 2008/2012 Server, Windows 7, or
Windows 8 (the latter two for development only). This book relies on SQL
Server as the database provider. You must have access to SQL Server 2008 or
above or an equivalent version of SQL Express Edition (development only) on
the same machine or remotely over the network. To participate in the
development chapters, you will need Visual Studio 2010 or above or an
equivalent version of the free Visual Studio Express or Visual Web Developer.
DNN7 runs on the .NET Framework 4.0 and above.

Conventions
To help you get the most from the text and keep track of what's happening,
we've used a number of conventions throughout the book.

WARNING

Boxes like this one hold important, not-to-be forgotten information that
is directly relevant to the surrounding text.

NOTE

Notes, tips, hints, tricks, and asides to the current discussion are offset
like this.

As for styles in the text:

We italicize new terms and important words when we introduce them.

We present keyboard strokes like this: Ctrl+A.

We show URLs and code within the text like so: persistence.properties.

We present code in the following way:

We use a monofont type with no highlighting for most code examples.
We use bold to emphasize code that is particularly important in the
present context or to show changes from a previous code snippet.

Source Code
As you work through the examples in this book, you may choose either to
type in all the code manually, or to use the source code files that accompany
the book. All the source code used in this book is available for download at
www.wrox.com. Specifically for this book, the code download is on the
Download Code tab at:
www.wrox.com/go/prodnn7

You can also search for the book at www.wrox.com by ISBN (the ISBN for this
book is 978-1-118-85084-8) to find the code. And a complete list of code
downloads for all current Wrox books is available at
www.wrox.com/dynamic/books/download.aspx.

Each chapter that contains downloadable code or other support files will
indicate so in the text at the beginning of the chapter.

Most of the code on www.wrox.com is compressed in a .ZIP, .RAR archive or
similar archive format appropriate to the platform. Once you download the
code, just decompress it with an appropriate compression tool.

http://www.wrox.com
http://www.wrox.com/go/prodnn7
http://www.wrox.com
http://www.wrox.com/dynamic/books/download.aspx
http://www.wrox.com

NOTE

Because many books have similar titles, you may find it easiest to search
by ISBN; this book's ISBN is 978-1-118-85084-8.

Once you download the code, just decompress it with your favorite
compression tool. Alternately, you can go to the main Wrox code download
page at www.wrox.com/dynamic/books/download.aspx to see the code available
for this book and all other Wrox books.

http://www.wrox.com/dynamic/books/download.aspx

Errata
Every effort is made to ensure that there are no errors in the text or in the
code. However, no one is perfect, and mistakes do occur. If you find an error
in one of our books, like a spelling mistake or faulty piece of code, your
feedback is welcome. By sending in errata, you may save other readers hours
of frustration and at the same time you will be helping us provide even higher
quality information.

To find the errata page for this book, go to www.wrox.com and locate the title
using the Search box or one of the title lists. Then, on the book's detail page,
click the Book Errata link. On this page, you can view all errata that has been
submitted for this book and posted by Wrox editors. A complete book list
including links to each book's errata is also available at www.wrox.com/misc-
pages/booklist.shtml.

If you don't spot “your” error on the Book Errata page, go to
www.wrox.com/contact/techsupport.shtml and complete the form there to
send us the error you have found. After the information is checked, a message
is posted to the book's errata page, and the problem is fixed in subsequent
editions of the book.

http://www.wrox.com
http://www.wrox.com/misc-pages/booklist.shtml
http://www.wrox.com/contact/techsupport.shtml

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The
forums are a web-based system for you to post messages relating to Wrox
books and related technologies and interact with other readers and
technology users. The forums offer a subscription feature to e-mail you topics
of interest of your choosing when new posts are made to the forums. Wrox
authors, editors, other industry experts, and your fellow readers are present
on these forums.

At p2p.wrox.com you can find a number of different forums that can help you
not only as you read this book but also as you develop your own applications.
To join the forums, follow these steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join, as well as any optional
information you want to provide, and click Submit.

4. You will receive an e-mail with information describing how to verify your
account and complete the joining process.

http://p2p.wrox.com
http://p2p.wrox.com
http://p2p.wrox.com
http://p2p.wrox.com

NOTE

You can read messages in the forums without joining P2P, but to post
your own messages, you must join.

After you join, you can post new messages and respond to messages other
users post. You can read messages at any time on the web. If you would like
to have new messages from a particular forum e-mailed to you, click the
Subscribe to This Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the
P2P FAQs for answers to questions about how the forum software works, as
well as many common questions specific to P2P and Wrox books. To read the
FAQs, click the FAQ link on any P2P page.

Chapter 1
An Inside Look at the Evolution of DNN

By Shaun Walker
DotNetNuke Creator and DNN CORP Cofounder

What You Will Learn in this Chapter

Following the behind-the-scenes story of one of the most-loved
community technology projects

Discovering the legal, licensing, and IP business realities of open
source software

Understanding the branding evolution of DotNetNuke to DNN

Exploring how open source and commercial business models can work
together

Learning about start-ups, strategic marketing, partnerships,
acquisitions, and venture capital funding

As much as DNN is an open source software application written for the
Microsoft ASP.NET platform, it is also an online community with developers,
end users, vendors, and volunteers—all working together collaboratively in a
rich and diverse ecosystem. This chapter attempts to capture the essence of
the project, expose its humble beginnings, provide insight into its evolution,
and document its many achievements, but not shy away from some of the
hard lessons learned in the process. The lifeblood of any community is its
people; therefore, it is a distinct honor and privilege to be able to share some
of the emotion and passion that have gone into the DNN project so that you
may be able to establish a personal connection with the various stakeholders,
which may ultimately motivate you to join this vibrant ecosystem.

From Humble Beginnings…
In 1979, when I was 9 years old, my family relocated from Kelowna, British
Columbia, Canada, to Ashcroft, a tiny community in the south-central interior
of British Columbia with a population of approximately 1,500 people. We
relocated with a grand vision—to start a commercial vineyard. My grandfather
had owned a vineyard in Kelowna and he had sold it with the idea that the hot
arid climate in Ashcroft, combined with cheap abundant land, would be a
perfect environment for him and his children to establish a large, successful
vineyard.

My mother and father, grandparents, and two uncles bought approximately
200 acres of sagebrush-covered land about 30 minutes outside Ashcroft, an
area known as Basque Siding that was only accessible by navigating 5 miles of
unpaved roads. We each had our own 50-acre parcel of land but the family all
worked together to establish the infrastructure to develop our vineyards. We
installed power, irrigation systems, cleared land, and built houses. Then we
planted seedling grapes, and grew alfalfa and other crops to provide some
initial income, as a vineyard takes five years before it reaches full production.
We were extremely self-sufficient and raised our own cows, pigs, turkeys, and
chickens, as well as our own fruits and vegetables.

When I was 12 years old we visited my cousins in Kelowna and I was
introduced to the Commodore VIC-20 for the first time. My cousins were
using it to play games but my parents clearly saw my fascination in this little
machine. Money was scarce, so I am not sure what ultimately motivated their
decision, but they decided to purchase a base model VIC-20, which came with
an integrated keyboard, a cassette tape drive, and a user manual. They also
had one stipulation—the only games I could play were games I created
myself.

So I spent a lot of time typing BASIC code into the computer and storing the
programs on cassette tape. My parents got me a subscription to COMPUTE!
magazine, which provided source code listings for more advanced games.
Pretty soon I started to recognize the patterns and techniques required to
write programs, and I started building my own applications. Living on a
remote farm created a perfect environment for investing myself in computers,
as there were few distractions—I was either outside working in the vineyard
(pruning, weeding, picking, cultivating) or I was inside the house typing code.
My two younger brothers were more than happy to play the games that I

created for them.

When I saw the movie War Games in 1983 starring Mathew Broderick, I
really got excited about the potential of computers as more than just
standalone devices. In the movie, the character played by Broderick hacks
into the NORAD super computer nicknamed “Joshua” using a backdoor
password and mistakenly invokes Global Thermonuclear War. In the climax,
the supercomputer is tricked into playing Tic-Tac-Toe against itself until it
reaches a draw and declares that “the only winning move is not to play.” After
watching this movie numerous times I was convinced that I wanted to be a
“hacker” and I sent off handwritten letters to many of the vendors listed in
COMPUTE! magazine asking how I could become a programmer.

In the summer of 1983 we took a long road trip to Disneyland in California
and spent some time visiting my uncle in the Bay Area. During this trip my
parents finally caved in to my demands for a computer upgrade. The
Commodore 64 was a large enhancement over the VIC-20, and we were able
to get a good deal on a Commodore 64 package, a 1702 color monitor, and a
1541 floppy disk drive. I could not wait to get home and plug in these amazing
new devices.

The following winter my family suffered a significant setback. Some
exceptionally cold weather killed all of our grape plants, which ended my
parents' dream of operating a large commercial vineyard. They did not have
the resources to replant the vineyard, so they both had to work traditional
jobs while continuing to operate the farm by selling fruits and vegetables to
the local markets to try to make ends meet. This was very hard work, and
without any opportunity for vacations as the farm demanded the family's full
attention almost year round. The entire family pitched in to keep the farm
afloat as my parents tried valiantly to preserve their investment.

When I reached high school, I was allowed to participate in an accelerated
learning program that allowed me to take computer science courses that were
two grade levels higher than my current grade. This exposed me to IBM PCs
and Apple II computers and some new programming languages. I loved the
challenge of solving problems and got a lot of satisfaction out of being able to
tell the computer to follow my specific instructions. I had found my passion,
and I knew at that point that my future career would involve software
development. This was well before the Internet was invented—in fact, my
household was still on a party line for phone service that we shared with four
other families. It was also well before graphical user interfaces, cell phones,

and other technology that we take for granted now.

When I was 17 years old my family had another major setback. My father
collapsed at work and was rushed to the hospital in Kamloops. The doctor
discovered that he had suffered a brain aneurysm—at the age of 37. The high
stress of trying to keep the farm afloat was identified as one of the potential
causes for the aneurysm, which finally prompted my parents to make the
decision to cut their losses and get rid of the farm immediately. Because there
were no interested buyers, my parents decided to walk away from it with only
two vehicles and enough money to put a minimum down payment on a small
house in Ashcroft. Financially, this was an extremely challenging time for the
family.

As ironic as it sounds, moving into Ashcroft was like moving into a big city, as
previously it required a 30–45 minute drive to get even basic necessities such
as groceries. I got a job as a dishwasher at one of the few local restaurants and
worked 20–30 hours a week during my final years of high school. In addition
to working, I also played competitive ice hockey on a rep team and probably
could have pursued a scholarship if I had taken it more seriously. I graduated
with honors in 1989 from Ashcroft Secondary School. My graduating class
had only 30 students, most of whom left town almost immediately to find
suitable work.

The opportunities for scholarships in a small town were rather slim, and
because my parents were in the process of starting over financially, they did
not have the resources to help me with my education. So I decided to take a
year off from school and focus on working and saving some money. I moved
to Sunnyvale, California, to work in residential construction with my uncle. I
got an apartment with two friends from high school. This was a huge culture
shock moving from a town of 1,500 people to an apartment building in Silicon
Valley that had almost 1,500 people. I grew up quickly that year, taking care
of myself and learning about life and responsibilities. But I knew after 1 year
that I needed to get back to my true passion of software development.

I decided to go to Okanagan College in Kelowna and take a 2-year diploma
program. I would have considered taking a university degree program, but the
cost was too prohibitive for my meager financial means at the time (I was
denied access to student loans because of a technicality in the application
process). I got a job at the Keg Restaurant in Kelowna and worked full-time as
a dishwasher, cook, and server while I was going to college so that I could
make ends meet. The Computer Information Systems program had a co-op

option that allowed me to get some work experience at a small software
company in Mission, British Columbia, which was a provider of financial
products for school districts and municipalities. This was a great launch pad
for my career as a software developer, as I was given a lot of freedom and
authority to build and enhance enterprise products. I graduated from college
in late 1992 with a CIS diploma and entered the workforce as a software
developer.

One thing that my family always emphasized to me was to focus on solving
problems in a repeatable manner. It is not a good use of time to have to
reinvent the wheel each time you encounter a problem—it is better to build a
solution that you can utilize over and over. In my early software career this
served me well, as it is a mind-set that is essential to building software
products. And going beyond single-use applications, my passion was on
building tools that could be utilized to build many types of software products.
Essentially, this involved creating libraries or frameworks that could be the
building blocks for larger applications. Between 1993 and 2001 I worked in a
variety of private and public software product environments, creating many
tools and frameworks in different languages, in different environments, and
on different hardware platforms.

The Dot-Com Era
In 2001–2002, I was working for a medium-sized software consulting
company in Abbotsford, British Columbia, that was providing outsourced
software development services to a variety of large U.S. clients specializing
primarily in e-learning initiatives. The internal push was to achieve CMM 3.0
on a fairly aggressive schedule so that we could compete with the emerging
outsourcing powerhouses from India and China. As a result there was an
incredible amount of focus on process and procedure and somewhat less
focus on the technical aspects of software engineering. Because the majority
of the client base was interested in the J2EE platform, the company primarily
hired resources with Java skills—leaving me with my legacy Microsoft
background to assume more of an internal-development and project-
management role. The process improvement exercise consumed a lot of time
and energy for the company, attempting to better define roles and
responsibilities and ensuring proper documentation throughout the project
life cycle. Delving into CMM and the PMBOK were great educational benefits
for me—skills that would prove to be invaluable in future endeavors.
Ultimately, the large U.S. clients decided to test the overseas outsourcing
options anyway, which resulted in severe downsizing for the company. It was
during these tumultuous times that I recognized the potential of the newly
released .NET Framework (beta) and decided that I would need to take my
own initiative to learn this exciting new platform to preserve my long-term
employment outlook.

For a number of years, I had been maintaining an amateur hockey statistics
application as a sideline hobby business. The client application was written in
Visual Basic 6.0 with a Microsoft Access backend and I augmented it with a
simplistic web publishing service using Active Server Pages 3.0 and SQL
Server 7.0. However, better integration with the World Wide Web was quickly
becoming the most highly requested enhancement, and I concluded that an
exploration into ASP.NET was the best way to enhance the application and at
the same time acquire the skills necessary to adapt to the changing landscape.
My preferred approach to learning new technologies is to experience them
firsthand rather than through theory or traditional education. It was during a
Microsoft Developer Days conference in Vancouver, British Columbia, in
2001 that I became aware of a reference application known as the IBuySpy
Portal.

IBuySpy Portal
Realizing the educational value of sample applications, Microsoft built a
number of source projects that were released with the .NET Framework 1.0
Beta to encourage developers to cut their teeth on the new platform. These
projects included full source code and a liberal End User License Agreement
(EULA), which provided nearly unrestricted usage. Microsoft co-developed
the IBuySpy Portal with Vertigo Software and promoted it as a “best practice”
example for building applications in the new ASP.NET environment. Despite
its obvious shortcomings, the IBuySpy Portal had some strong similarities to
both the Microsoft SharePoint Portal and Content Management Server, as
well as other open source CMS applications on the
Linux/Apache/mySQL/PHP (LAMP) platform. The portal allowed you to
create a completely dynamic website consisting of an unlimited number of
virtual “tabs” (pages). Each page had a standard header and three content
panes—a left pane, middle pane, and right pane (a standard layout for most
portal sites). Within these panes, the administrator could dynamically inject
“modules”—essentially mini-applications for managing specific types of web
content. The IBuySpy Portal application shipped with six modules designed to
cover the most common content types (announcements, links, images,
discussions, html/text, and XML) as well as a number of modules for
administrating the portal site. As an application framework, the IBuySpy
Portal (see Figure 1.1) provided a mechanism for managing users, roles,
permissions, tabs, and modules. With these basic services, the portal offered
just enough to whet the appetite of many aspiring ASP.NET developers.

Figure 1.1

ASP.NET
The second critical item that Microsoft delivered at this point in time was a
community forums page on the www.asp.net website (see Figure 1.2). This
forum provided a focal point for Microsoft developers to meet and collaborate
on common issues in an open, moderated environment. Prior to the release of
the forums on www.asp.net, there was a real void in terms of Microsoft
community participation in the online or global sphere, especially when
compared to the excellent community environments on other platforms.

Figure 1.2

One discussion forum on the www.asp.net site was dedicated to the discussion
of the IBuySpy Portal application, and it soon became a hotbed for developers
to discuss their enhancements, share source code enhancements, and debate
IT politics. I became involved in this forum early on and gradually increased
my community participation as my confidence in ASP.NET and the IBuySpy
Portal application grew.

To appeal to the maximum number of community stakeholders, the IBuySpy

http://www.asp.net
http://www.asp.net
http://www.asp.net

Portal was available in a number of different source-code release packages.
There were VB.NET and C#.NET language versions, each containing its own
VS.NET and SDK variants. Although Microsoft was aggressively pushing the
newly released C# language, I did not feel a compelling urge to abandon my
familiar Visual Basic roots. In addition, my experience with classic ASP 3.0
allowed me to conclude that the new code-behind model in VS.NET was far
superior to the inline model of the SDK. As luck would have it, I was able to
get access to Visual Studio.NET through my employer. So as a result, I moved
forward with the VB.NET/VS.NET version as my baseline framework. This
decision ultimately proved to be extremely important in terms of community
acceptance, as I explain later.

When I first started experimenting with the IBuySpy Portal application, I had
some specific objectives in mind. To support amateur sports organizations, I
had collected a comprehensive set of end-user requirements based on actual
client feedback. However, after evaluating the IBuySpy Portal functionality, it
quickly became apparent that some significant enhancements were necessary
if I hoped to achieve my goals. My early development efforts, although
certainly not elegant or perfectly architected, proved that the IBuySpy Portal
framework was highly adaptable for building custom applications and could
be successfully used as the foundation for my amateur sports hosting
application.

The most significant enhancement I made to the IBuySpy Portal application
during these early stages was a feature that is now referred to as “multi-
portal” or “site virtualization.” Effectively, this was a fundamental
requirement for my amateur sports hosting model. Organizations wanted to
have a self-maintained website, but they also wanted to retain their individual
identity. A number of vendors emerged with semi-self-maintained web
applications, but nearly all of them forced the organization to adopt the
vendor's identity (that is, www.vendor.com/clientname rather than
www.clientname.com). Although this may seem like a trivial distinction for
some, it has some major effects in terms of brand recognition, site discovery,
search engine ranking, and so on. The IBuySpy Portal application already
partitioned its data by portal (site), and it had a field in the Portals database
table named PortalAlias that was a perfect candidate for mapping a specific
domain name to a portal. It was as if the original creators (Microsoft and
Vertigo) considered this use case during development but did not have
enough time to complete the implementation, so they simply left the “hook”

http://www.vendor.com/clientname
http://www.clientname.com

exposed for future development. I immediately saw the potential of this
concept and implemented some logic that allowed the application to serve up
custom content based on domain name. Essentially, when a web request was
received by the application, it would parse the domain name from the URL
and perform a lookup on the PortalAlias field to determine the content that
should be displayed. This site virtualization capability would ultimately
become the “killer” feature that would allow the application to achieve
immediate popularity as an open source project.

Over the next 8 to 10 months, I continued to enhance and refactor the
IBuySpy Portal application as I created my own custom implementation (now
code-named SportsManager.Net). I added numerous features to improve the
somewhat limited portal administration and content management aspects. At
one point, I enlisted the help of another developer, John Lucarino, and
together we steadily improved the framework using whatever spare time we
were able to invest. Unfortunately, because all of this was going on outside of
regular work hours, there was little time that could be focused on building a
viable commercial venture. So at the end of 2002, it soon became apparent
that we did not have enough financial backing or a business model to take the
amateur sports venture to the next level. This brought the commercial nature
of the endeavor under scrutiny. If the commercial intentions were not going
to succeed, I at least wanted to feel that my efforts were not in vain. This
forced me to evaluate alternative noncommercial uses of the application.
Coincidentally, I had released the source code for a number of minor
application enhancements to the www.asp.net community forum during the
year, and I began to hypothesize that if I abandoned the amateur sports
venture altogether, it was still possible that my efforts could benefit the larger
ASP.NET community.

The fundamental problem with the IBuySpy Portal community was the fact
that there was no central authority in charge of managing its growth.
Although Microsoft and Vertigo developed the initial code base, there was no
public commitment to maintain or enhance the product in any way. Basically
the product was a static implementation, frozen in time, an evolutionary
dead-end. However, the IBuySpy Portal EULA was extremely liberal, which
meant that developers were free to enhance, license, and redistribute the
source code in an unrestricted manner. This led to many developers creating
their own customized versions of the application, sometimes sharing discrete
patches with the general community, but more often keeping their

http://www.asp.net

enhancements private, revealing only their public-facing websites for
community recognition (one of the most popular threads at this time was
titled “Show me your Portal”). In hindsight, I really don't understand what
each developer was hoping to achieve by keeping his enhancements private.
Most probably thought there was a commercial opportunity in building a
portal application with a richer feature set than their competitors. Or perhaps
individuals were hoping to establish an expert reputation based on their
public-facing efforts. Either way, the problem was that this mind-set was
really not conducive to building a community but rather to fragmenting it—a
standard trap that tends to consume many things on the Microsoft platform.
The concept of sharing source code in an unrestricted manner was really a
foreign concept, which is obviously why nobody thought to step forward with
an organized open source plan.

I have to admit I had a limited knowledge of the open source philosophy at
this point because all of my previous experience was in the Microsoft
community. However, there was chatter in the forums at various times
regarding the organized sharing of source code, and there was obviously some
interest in this area. The concept of incorporating the best enhancements into
a rapidly evolving open source application made a lot of sense because it
benefited the entire community and created a wealth of opportunities for
everyone. Coincidentally, a few open source projects had recently emerged on
the Microsoft platform to imitate some of the more successful open source
projects in the LAMP community. In evaluating my amateur sports
application, I soon realized that nearly all of my enhancements were generic
enough that they could be applied to nearly any website—they were not
sports-related whatsoever. I concluded that I should release my full
application source code to the ASP.NET community as a new open source
project. So, as a matter of fact, the initial decision to open source what would
eventually become DotNetNuke happened more out of frustration of not
achieving my commercial goals rather than true philanthropic intentions.

IBuySpy Portal Forum
On December 24, 2002, I released the full open source application by creating
a simple website with a Zip file for download. The lack of foresight of what
this would become was extremely evident when you consider the casual
nature of this original release. However, as luck would have it, I did do a few
things right. First, I thought I should leverage the IBuySpy brand in my own
open source implementation so that it would be immediately obvious that the
code base was a hybrid of the original IBuySpy Portal application, an
application with widespread recognition in the Microsoft community. The
name I chose was IBuySpy Workshop because it seemed to summarize the
evolution of the original application. Rather than assume individual
responsibility for the project, I released IBuySpy Workshop as a product of
Perpetual Motion Interactive Systems Inc., my personal consulting company.
Ironically, I did not even have the domain name resolution properly
configured for www.ibuyspyworkshop.com when I released (the initial
download links were based on an IP address,
http://65.174.86.217/ibuyspyworkshop). The second thing I did right was to
require people to register on my website before they were able to download
the source code. This allowed me to track the actual interest in the application
at a more granular level than simply by the total number of downloads. Third,
I publicized the availability of the application in the IBuySpy Portal Forum on
www.asp.net (see Figure 1.3). This particular forum was extremely popular at
this time; and as far as I know, nobody had ever released anything other than
small code snippet enhancements for general consumption. The original post
was made on Christmas Eve, December 24, 2002, which had excellent
symbolism in terms of the application being a gift to the community.

http://www.ibuyspyworkshop.com
http://65.174.86.217/ibuyspyworkshop
http://www.asp.net

Figure 1.3

IBuySpy Workshop
The public release of the IBuySpy Workshop (see Figure 1.4) created such a
surge in forum activity that it was all I could do to keep up with the feedback,
especially because this all occurred during the Christmas holidays. I had a
family vacation booked for the first two weeks of January, and I left for
Mexico on January 2, 2003 (one week after the initial IBuySpy Workshop
release). At the time, the timing of this family vacation seemed poor because
the groundswell of interest in the IBuySpy Workshop seemed like it could
really use my dedicated focus. However, in hindsight the timing could not
have been better because it proved that the community could support itself—a
critical element in any open source project. When I returned home from
vacation, I was amazed at the massive response the release achieved. The
IBuySpy Portal Forum became dominated with posts about the IBuySpy
Workshop, and my Inbox was full of messages thanking me for my efforts
and requesting me to provide support and enhancements. This certainly
validated my decision to release the application as an open source project but
also emphasized the fact that I had started a locomotive down the tracks and
it was going to take some significant engineering to keep it on the rails.

Figure 1.4

Over the next few months, I frantically attempted to incorporate all
community suggestions into the application while at the same time keep up
with the plethora of community support questions. Because I was working a
day job that prevented effort on the open source project, most of my evenings
were consumed with work on the IBuySpy Workshop, which definitely caused
some strain on my marriage and family life. Four hours of sleep per night is
not conducive to a healthy lifestyle, but, like I said, the train was rolling, and I
had a feeling the project was destined for bigger things.

Supporting a user base through upgrades is fundamental in any software
product. This is especially true in open source projects where the application
can evolve quickly based on community feedback and technical
advancements. The popular software notion is that “no user should be left on
an evolutionary dead end.” As luck would have it, I had designed a reliable

upgrade mechanism in the original sports management application that I
included in the IBuySpy Workshop code base. This feature enabled users of
the application to easily migrate from one release version to the next—a
critical factor in keeping the community engaged and committed to the
evolution of the product.

In February 2003, the IBuySpy Portal Forum had become so congested with
IBuySpy Workshop threads that it started to become difficult for the two
communities to coexist peacefully. At this point, I sent an email to the
webmaster address posted at the bottom of the forums page on the
www.asp.net site with a request to create a dedicated forum for the IBuySpy
Workshop. Because the product functionality and source code of the two
applications diverged so significantly, my intent was to try to keep the forum
posts for the two applications separated, providing both communities the
means to support their membership. I certainly did not have high hopes that
my email request was even going to be read—let alone granted. But to my
surprise, I received a positive response from none other than Rob Howard (an
ASP.NET icon), which proved to be a great introduction to a long-term
partnership with Microsoft. Rob created the forum and even went a step
further and added a link to the Source Download page of the www.asp.net site,
an event that would ultimately drive a huge amount of traffic to the emerging
IBuySpy Workshop community.

There are a number of reasons why the IBuySpy Workshop became so
immediately popular when it was released in early 2003. The obvious reason
is because the base application contained a huge number of enhancements
over the IBuySpy Portal application, and people could immediately leverage
them to build more powerful websites. From a community perspective, the
open source project provided a central management authority that was
dedicated to the ongoing growth and support of the application framework, a
factor that was definitely lacking in the original IBuySpy Portal community.
This concept of open source on the Microsoft platform attracted many
developers—some with pure philosophical intentions, and others who viewed
the application as a vehicle to further their own revenue-generating interests.
Yet another factor, which I think is often overlooked, relates to the
programming language on which the project was based. With the release of
the .NET Framework 1.0, Microsoft spent a lot of energy promoting the
benefits of the new C# programming language. The C# language was
intended to provide a migration path for C++ developers as well as a means to

http://www.asp.net
http://www.asp.net

entice Java developers working on other platforms to switch. This left the
Visual Basic and ASP 3.0 developer communities feeling neglected and
somewhat unappreciated. The IBuySpy Workshop, with its core framework in
VB.NET, provided an essential community ecosystem where legacy VB
developers could interact, learn, and share.

Subscription Fiasco
In late February 2003, the lack of sleep, family priorities, and community
demands finally came to a head and I decided that I should reach out for help.
I contacted a former employer and mentor, Kent Alstad, with my dilemma,
and we spent a few lengthy telephone calls brainstorming possible outcomes.
However, my personal stress level at the time and my urgency to change
direction on the project ultimately caused me to move too fast and with more
impulsiveness than I should have. I announced that the IBuySpy Workshop
would immediately become a subscription service where developers would
need to pay a monthly fee to get access to the latest source code. From a
personal perspective, the intent was to generate enough revenue that I could
leave my day job and focus my full energy on the management of the open
source project. And with 2,000 registered users, a subscription service
seemed like a viable model (see Figure 1.5).

Figure 1.5

However, the true philosophy of the open source model immediately came to
light, and I had to face the wrath of a scorned community. Among other
things, I was accused of misleading the community, lying about the open
source nature of the project, and letting my personal greed cloud my vision.

For every one supporter of my decision, there were 10 more who publicly
crucified me as the evil incarnate. Luckily for me, Kent had a trusted work
associate named Andy Baron, a senior consultant at MCW Technologies and a
Microsoft Most Valuable Professional since 1995, who has incredible wisdom
when it comes to the Microsoft development community. Andy helped me
craft a public apology message (see Figure 1.6) that managed to appease the
community and restore the IBuySpy Workshop to full open source status.

Figure 1.6

Microsoft
Coincidentally, the political nightmare I created in the IBuySpy Workshop
Forum with my subscription announcement resulted in some direct attention
from the Microsoft ASP.NET product team (the maintainers of the
www.asp.net site). Still trying to recover from the damage I incurred to the
goodwill of the project, I received an email from none other than Scott
Guthrie (co-founder of the Microsoft ASP.NET Team), asking me to
reexamine my decision on the subscription model and making suggestions on
how the project could continue as a free, open source venture. It seemed that
Microsoft was protective of its evolving community and did not want to see
the progress in this area splinter and dissolve just as it seemed to be gaining
momentum. Scott Guthrie made no promises at this point, but he did open a
direct dialogue that ultimately led to some fundamental discussions on
sponsorship and collaboration. In fact, this initial email led to a number of
telephone conversations and ultimately an invitation to Redmond to discuss
the future of the IBuySpy Workshop.

I still remember the combination of nerves and excitement as I drove from
my home in Abbotsford, British Columbia, to Microsoft's head office in
Redmond, Washington (about a 3-hour trek). I really did not know what to
expect, and I tried to strategize all possible angles. Essentially all of my
planning turned out to be moot because my meeting with Scott Guthrie
turned out to be far more laidback and transparent than I could have ever
imagined. Scott took me to his unassuming office, and we spent the next 3
hours brainstorming ideas about how the IBuySpy Workshop fit into the
current ASP.NET landscape. Much of this centered on the evolving vision of
ASP.NET 2.0—an area where I had little or no knowledge prior to the meeting
(the Whidbey Alpha had not even been released at this point).

At the beginning of the meeting, Scott had me demonstrate the current
version of the IBuySpy Workshop, explaining its key features and benefits.
We also discussed the long-term goals of the project as well as my proposed
roadmap for future enhancements. Scott's knowledge of both the technical
and community aspects of the ASP.NET platform really amazed me—I guess
that's why he is the undisputed “Father of ASP.NET.” In hindsight, I can
hardly believe my good fortune to have received three dedicated hours of his
time to discuss the project—it really changed my “ivory tower” perception of
Microsoft and forged a strong relationship for future collaboration.

http://www.asp.net

Upon leaving Redmond, I had to stifle my excitement as I realized that,
regardless of the direct interaction with Microsoft, I personally was still in the
same situation as before the subscription model announcement. Because the
subscription model failed to generate the much-needed revenue that would
have allowed me to devote 100 percent of my time to the project, I was forced
to examine other possible alternatives. There were a number of suggestions
from the community and the concept that seemed to have the most potential
was related to web hosting.

In these early stages, there were few economical Microsoft Windows hosting
options available that offered an SQL Server database—a fundamental
requirement for running the IBuySpy Workshop application. Coincidentally, I
had recently struck up a relationship with an individual from New Jersey who
was active in the IBuySpy Workshop forums on www.asp.net. This individual
had a solid background in web hosting and proposed a partnership whereby
he would manage the web hosting infrastructure, and I would continue to
enhance the application and drive traffic to the business. Initially there were a
lot of community members who signed up for this service—some because of
the low-cost hosting option, others because they were looking for a way to
support the open source project. It soon became obvious that the costs to
build and support the infrastructure were consuming the majority of the
revenue generated. And over time the amount of effort to support the growing
client base became more intense. Eventually it came to a point where it was
intimated that my contributions to the web hosting business were not
substantial enough to justify the current partnership structure. I was
informed that the partnership should be dissolved. This is where things got
complicated because there was never any formal agreement signed by either
party to initiate the partnership. Without documentation, it made the
negotiation for a fair settlement difficult and resulted in some bad feelings on
both sides. This was unfortunate because I think the relationship was formed
with the best intentions, but the demands of the business resulted in a poor
outcome. Regardless, this ordeal was an important lesson I needed to learn:
regardless of the open source nature of the project, it was imperative to have
all contractually binding items properly documented.

http://www.asp.net

DotNetNuke
One of the topics that Scott Guthrie and I discussed in our early
conversations was the issue of product branding. IBuySpy Workshop achieved
its early goals of providing a public reference to the IBuySpy Portal
community. This resulted in an influx of ASP.NET developers who were
familiar with the IBuySpy Portal application and were interested in this new
open source concept. But as the code bases diverged, there was a need for a
new project identity—a unique brand that would differentiate the community
and provide the mechanism for building an internationally recognized
ecosystem. Research of competing portal applications on other platforms
revealed a strong tendency toward the “nuke” slogan.

The “nuke” slogan was originally coined by Francisco Burzi of PHP-Nuke
fame (a pioneering open source content management system). Over the
years, a variety of other projects adopted the slogan as well—so many that the
term had obtained industry recognition in the portal-application genre. To my
surprise, a WHOIS search revealed that dotnetnuke.com, .net, and .org were
not registered and, in my opinion, seemed to be the perfect identity for the
project. Again emphasizing the bare-bones resources under which the project
was initiated, my credit card transaction to register the three domain names
was denied, and I was only able to register dotnetnuke.com (in the long run an
embarrassing and contentious issue as the .net and .org domain names were
immediately registered by other individuals). Equally as spontaneous, I did an
Internet search for images containing the word “nuke” and located a three-
dimensional graphic of a circular gear with a nuclear symbol embossed on it. I
contacted the owner of the site and was given permission to use the image (it
was, in fact, simply one of many public domain images they were using for a
fictitious storefront demonstration). A new project identity was born—version
1.0.5 of the IBuySpy Workshop was rebranded as DotNetNuke, which the
community preferred to abbreviate to “DNN” for simplicity (see Figure 1.7).

http://dotnetnuke.com
http://dotnetnuke.com

Figure 1.7

Licensing
A secondary issue that was not addressed during the early stages of the
project was licensing. The original IBuySpy Portal was released under a liberal
Microsoft EULA license that allowed for unrestricted usage, modification, and
distribution. However, the code base underwent such a major transformation
that it could hardly be compared with its predecessor. Therefore, when the
IBuySpy Workshop application was released, I did not include the original
Microsoft EULA, nor did I include any copyright or license of my own.
Essentially this meant that the application was in the public domain. This is
certainly not the most accepted approach to an open source project, and
eventually some of the more legal-savvy community members brought the
issue to a head. I was forced to take a hard look at open source licensing
models to determine which license was most appropriate for the project.

In stark contrast to the spontaneous approach taken to finding a project
identity, the licensing issue had much deeper ramifications. Had I not
performed extensive research on this subject, I would have likely chosen a
GPL license because it seemed to dominate the vast majority of open source
projects in existence. However, digging beneath the surface, I quickly realized
that the GPL did not seem to be a good candidate for my objectives of
allowing DotNetNuke to be used in both commercial and noncommercial
environments. Ultimately, the selection of a license for an open source
project is largely dependent upon your business model, your product
architecture, and understanding who owns the intellectual property in your
application. The combination of these factors prompted me to take a hard
look at the open source licensing options available.

For those of you who have not researched open source software, you would
be surprised at the major differences between the most popular open source
licensing models. It is true that these licenses all meet the standards of the
Open Source Definition, a set of guidelines managed by the Open Source
Initiative (OSI) at opensource.org. These principles include the right to use
open source software for any purpose, the right to make and distribute copies,
the right to create and distribute derivative works, the right to access and use
source code, and the right to combine open source and other software. With
such fundamental rights shared among all open source licenses, it probably
makes you wonder why there is need for more than one license at all. Well,
the reason is because each license has the ability to impose additional rights

http://opensource.org

or restrictions on top of these base principles. The additional rights and
restrictions have the effect of altering the license so that it meets the specific
objectives of each project. Because it is generally bad practice to create brand-
new licenses (based on the fact that the existing licenses have gained industry
acceptance as well as a proven track record), people generally gravitate toward
either a GPL or BSD license.

The GPL License (or GNU General Public License) was created in 1989 by
Richard Stallman, founder of the Free Software Foundation. The GPL License
is what is now known as a “copyleft” license, a term coined based on its
controversial reciprocity clause. Essentially, this clause stipulates that you are
allowed to use the software on the condition that any derivative works that
you create from it and distribute must be licensed to all under the same
license. This is intended to ensure that the software and any enhancements to
it remain in the public domain for everyone to share. Although this is a great
humanitarian goal, it seriously restricts the use of the software in a
commercial environment.

The MIT License (a variation of the Berkeley Software Distribution License)
was created by the University of California and was designed to permit the
free use, modification, and distribution of software without any return
obligation on the part of the community. The MIT License is essentially a
“copyright” license, meaning that you are free to use the software on the
condition that you retain the copyright notice in all copies or derivative
works. The MIT License is also known as an “academic” license because it
provides the highest degree of intellectual property sharing.

Ultimately, I settled on a standard MIT License for DotNetNuke—a license
that allows the maximum licensing freedom in both commercial and
noncommercial environments with only minimal restrictions to preserve the
copyright of the project. The change in license went widely unnoticed by the
community because it did not impose any additional restrictions on usage or
distribution. However, it was a fundamental milestone in establishing
DotNetNuke as a true open source project:

DotNetNuke(r) - http://www.dotnetnuke.com
Copyright (c) 2002-2003 by Perpetual Motion Interactive Systems Inc.
(http://www.perpetualmotion.ca)
Permission is hereby granted, free of charge, to any person obtaining
a copy of
this software and associated documentation files (the "Software"), to
deal in

the Software without restriction, including without limitation the
rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies
of the Software, and to permit persons to whom the Software is
furnished to do
so, subject to the following conditions: The above copyright notice
and this
permission notice shall be included in all copies or substantial
portions of
the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO
EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES
OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER
DEALINGS IN THE SOFTWARE.

Core Team
The next major milestone in the project's open source evolution occurred in
the summer of 2003. Up until this point, I had been acting as the sole
maintainer of the DotNetNuke code base, a task that was consuming 110
percent of my free time as I feverishly fixed bugs and enhanced the
framework based on community feedback. Still, I felt more like a bottleneck
than a provider in spite of the fact that I was churning out at least one
significant release every month leading up to this point. The more active
community members were becoming restless due to a lack of direct input into
the progress of the project. In fact, a small faction of these members even
went so far as to create their own hybrid or “fork” of the DotNetNuke code
base that attempted to forge ahead and add features at a more aggressive pace
than I was capable of on my own. These were challenging times from a
political standpoint because I was eventually forced to confront all of these
issues in a direct and public manner—flexing my “benevolent dictator”
muscles for the first time—an act I was not the least bit comfortable
performing. Luckily for me, I had a number of loyal and trustworthy
community members who supported my position and ultimately provided the
backing to form a strong and committed Core Team.

Most successful open source projects are comprised of a number of
community volunteers who earn their positions of trust and authority within
the community based on their specific expertise or community support
activities. This is known as a meritocracy, a term that means that an
individual's influence is directly proportional to the ability that the individual
demonstrates within the project. It's a well-observed fact that individuals with
more experience and skills have less time to devote to volunteer activities;
however, their minimal contributions prove to be incredibly valuable.
Similarly, individuals with less experience may be able to invest more time
but may only be capable of performing the more repetitive, menial tasks.
Building a healthy balance of these two roles is exactly what is required in
every successful open source project and, in fact, is one of the more
challenging items to achieve from a management perspective.

The original DotNetNuke Core Team members were selected based on their
participation and dedication to the DotNetNuke project in the months leading
up to the team's formation. In most cases, this was solely based on an
individual's public image and reputation established in the DotNetNuke

Forum on the www.asp.net website. And in fact, in these early stages, the
online persona of each individual proved to be a good indicator of the specific
skills he or she could bring to the project. Some members were highly skilled
architects, others were seasoned developers, and others were better at
discussing functionality from an end-user perspective and providing quality
support to their community peers.

To establish some basic structure for the newly formed Core Team, I
attempted to summarize some basic project guidelines. My initial efforts
combined some of the best Extreme Programming (XP) rules with the
principles of other successful open source projects. This became the basis of
the DotNetNuke Manifest document:

Development is a team effort. The whole is exponentially greater than
the sum of its parts. Large-scale open source projects are viable only if a
large enough community of highly skilled developers can be amassed to
attack a problem. Treating your users as co-developers is your most
effective option for rapid code improvement and effective debugging.

Build the right product before you build the product right. Focus
should be directed at understanding and implementing the high-level
business requirements before attempting to construct the perfect
technical architecture. Listen to your customers.

Incremental development. Every software product has infinite growth
potential if managed correctly. Functionality should be added in
incremental units rather than attempting a monolithic implementation.
Release often but with a level of quality that instills confidence.

Law of diminishing return. The majority of the effort should be
invested in implementing features that have the most benefit and widest
general usage by the community.

DotNetNuke version 1.0.10 was the proving grounds for the original Core
Team. The idea was to establish the infrastructure to support disconnected
team development by working on a stabilization release of the current
product. A lot of debate went into the selection of the appropriate source-
control system because, ironically enough, many of the Core Team had never
worked with a formal source control process in the past (a fact that certainly
emphasized the varied professional background of the Core Team members).
The debate centered on which source control system to use and ultimately the
familiarity with the Microsoft model won out. We decided to use the free

http://www.asp.net

WorkSpaces service on the GotDotNet website (a developer community site
supported by Microsoft). GotDotNet also provided a simplistic Bug Tracker
application that provided us with a means to manage the tracking of issues
and enhancement requests. With these infrastructure components in place,
we were able to focus on the stabilization of the application, correcting known
defects and adding some minor usability enhancements. It was during this
time that Scott Willhite stepped forward to assume a greater role of
responsibility in the project: assisting in management activities,
communication, prioritization, and scheduling.

A significant enhancement that was introduced in this stabilization release
came from a third party who had contacted me with some specific
enhancements they had implemented and wanted to contribute. The
University of Texas at El Paso had done extensive work making the
DotNetNuke application compliant with the guidelines of the American
Disabilities Association (ADA) and Section 508 of the United States
Rehabilitation Act. The U.S. government made compliancy mandatory for
most public organizations; therefore, this was a great enhancement for
DotNetNuke because it allowed the application to be used in government,
educational, and military scenarios. Bruce Hopkins became the Core Team
owner of this item in these early stages, a role that required a great deal of
patience as the rest of the team came to grips with the new concept.

Establishing and managing a team was no small challenge. On one hand,
there were the technical challenges of allowing multiple team members, all in
different geographic regions, to communicate and collaborate in a cost-
effective, secure environment. Certainly this would have never been possible
without the Internet and its vast array of online tools. On the other hand,
there was the challenge of identifying different personality types and
channeling them into areas where they would be most effective. Because
there are limited financial motivators in the open source model, people must
rely on more basic incentives to justify their volunteer efforts. Generally this
leads to a paradigm where contributions to the project become the de facto
channel for building a reputation within the community—a primary motivator
in any meritocracy. As a result of working with the team, it soon became
obvious that there were two extremes in this area: those who would selflessly
sacrifice all of their free time (often to their own detriment) to the open
source project, and those who would invest the minimal effort and expect the
maximum reward. As the creator and maintainer of the project it was my duty

to remain objective and put the interests of the community first. This often
caused me to become frustrated with the behavior of specific individuals, but
in nearly all cases these issues could be resolved without introducing any
hard feelings on either side. This is true in all cases except one.

XXL Fork
Early in the project history, I was approached by an individual from Germany
with a request to maintain a localized DotNetNuke site for the German
community. I was certainly not naïve to the risks of another source code
distribution at this point, and I told him that it would be fine so long as the
site stayed consistent with the official source code base, which was under my
jurisdiction. This was agreed upon, and in the coming months I had periodic
communication with this individual regarding his localization efforts.
However, as time wore on he became critical of the manner in which the
project was being managed, in particular the sole maintainer aspect, and
began to voice his disapproval in the public forum. There was a group who
believed that there should be a greater degree of transparency in the project—
that developers should be able to get access to the latest development source
code at any time and that the maintenance of the application should be
conducted by a team rather than an individual. He was able to convince a
number of community members to collaborate with him on a modified
version of DotNetNuke, a version that integrated a number of the more
popular community enhancements available, and called it DotNetNuke XXL.

Now I have to admit that much of this occurred due to my own inability to
respond quickly and form a Core Team. In addition, I was not providing
adequate feedback to the community regarding my goals and objectives for
the future of the project. The reality is that the background management
tasks of creating the DotNetNuke Core Team and managing the myriad other
issues had undermined my ability to deliver source code enhancements and
support to the community. The combination of these factors resulted in an
unpleasant situation, one that I should have mitigated sooner but was afraid
to act upon due to the fragility of the newly formed community. And you also
need to remember that the creator of the XXL variant had broken no license
agreement by creating a “fork” (a distribution)—it was completely legal based
on the freedom of the MIT open source license.

Eventually the issue came to a head when members of the XXL group began
promoting their full-source-code hybrid in the DotNetNuke Forum.
Essentially piggybacking on the primary promotion channel for the
DotNetNuke project, they were able to convince many people to switch to the
XXL code base. This had some bad consequences for the DotNetNuke
community. Mainly it threatened to splinter the emerging community on

territorial boundaries—an event I wanted to avoid at all costs. This situation
was the closest attempt of project hijacking that I can realistically imagine.
The DotNetNuke XXL fork seemed to be fixated on becoming the official
version of DotNetNuke and assuming control of the future project roadmap.
The only saving grace was that I personally managed the DotNetNuke
infrastructure and therefore had some influence over key aspects of the open
source environment.

In searching for an effective mechanism to protect the integrity of the
community and prevent the XXL fork from gaining momentum, some basic
business fundamentals came into play. Any product or service is only as
successful as its promotion or marketing channel. The DotNetNuke Forum on
the www.asp.net website was the primary communication hub to the
DotNetNuke community. Therefore, it was not difficult to realize that
restricting discussion on XXL in the forum was the simplest method to
mitigate its growth. In probably the most aggressive political move I have
ever been forced to make, I introduced some bold changes to the DotNetNuke
project. I established some guidelines for Core Team conduct that included,
among other things, restrictions on promoting competing open source
distributions of the DotNetNuke application. I also posted some policies on
the DotNetNuke Forum that emphasized that the forum was dedicated solely
to the discussion of the official DotNetNuke application and that discussion
of third-party commercial or open source products was strictly forbidden.
This was an especially difficult decision to make from a moral standpoint as I
was well aware that the DotNetNuke application had been introduced to the
community via the IBuySpy Portal Forum. Nonetheless, the combination of
these two announcements resulted in both the resignation of the XXL project
leader from the Core Team as well as the end of discussion of the XXL fork in
the DotNetNuke Forum. It is important to note that such a defensive move
would not have been possible without the loyalty and support of the rest of
the Core Team in terms of enforcing the guidelines.

The unfortunate side effect, one about which I had been cautioning members
of the community for weeks, was that users who had upgraded to the XXL
fork were effectively left on an evolutionary dead end—a product version with
no support mechanism or promise of future upgrades. This is because many
of the XXL enhancements were never going to be integrated into the official
DotNetNuke code base (either due to design limitations or inapplicability to
the general public). This situation, as unpleasant as it may have been for

http://www.asp.net

those caught on the dead-end side of the equation, was a real educational
experience for the community in general as they began to understand the
longer-term and deeper implications of open source project philosophy. In
general, the community feedback was positive to the project changes, with
only occasional flare-ups in the weeks following. In addition, the Core Team
seemed to gel more as a result of these decisions because it provided some
much-needed policies on conduct, loyalty, and dedication as well as a concrete
example of how inappropriate behavior would be penalized.

Trademarks
Emerging from the XXL dilemma, I realized that I needed to establish some
legal protection for the long-term preservation of the project. Because
standard copyright and the MIT license offered no real insurance from third-
party threats, I began to explore intellectual property law in greater detail.
After much research and legal advice, I decided that the best option was to
apply for a trademark for the DotNetNuke name. Registering a trademark
protects a project's name or logo, which is often a project's most valuable
asset. After the trademark was approved, it would mean that although an
individual or company could still create a fork of the application, they legally
could not refer to it by the DotNetNuke name. This appeared to be an
important distinction, so I proceeded with trademark registration in Canada
(because this was the country in which Perpetual Motion Interactive Systems
Inc. was incorporated).

I must admit the entire trademark approval process was quite an educational
experience. Before you can register your trademark, you need to define a
category and description of your wares and/or services. This can be
challenging, although most trademark agencies now provide public access to
their database where you can browse for similar items that have been
approved in the past. You pay your processing fee when you submit the initial
application, but the trademark agency has the right to reject your application
for any number of reasons whereby you need to modify your application and
submit it again. Each iteration can take a couple of months, so patience is
indeed a requirement. After the trademark is accepted, it must be published
in a public trademark journal for a specified amount of time, providing third
parties the opportunity to contest the trademark before it is approved. If it
makes it through this final stage, you can pay your registration fee for the
trademark to become official. To emphasize the lengthy process involved, the
DotNetNuke trademark was initially submitted on October 9, 2003, and was
finally approved on November 15, 2004.

Sponsorship
In August 2003, I came to an agreement with Microsoft regarding a
sponsorship proposal for the DotNetNuke project. In a nutshell, Microsoft
wanted DotNetNuke to be enhanced in a number of key areas with the intent
being to use the open source project as a means of demonstrating the
strengths of the ASP.NET platform. Because these enhancements were
completely congruent with the future goals of the project, there was little
negative consequence from a technical perspective. In return for
implementing the enhancements, Microsoft would provide a number of
sponsorship benefits to the project including web hosting for the
www.dotnetnuke.com website, weekly meetings with an ASP.NET Team
representative (Rob Howard), continued promotion via the www.asp.net
website, and more direct access to Microsoft resources for mentoring and
guidance. It took five months for this sponsorship proposal to come together,
which demonstrates the patience and perseverance required to collaborate
with such an influential partner as Microsoft. Nonetheless, this was
potentially a one-time offer, and at such a critical stage in the project
evolution it seemed too important to ignore.

An interesting perception that most people have in the IT industry is that
Microsoft is morally against the entire open source phenomenon. In my
opinion, this is far from the truth—the reality is so much more simplistic.
Like any other business that is trying to enhance its market position,
Microsoft is merely concerned about competition. This is nothing new. In the
past, Microsoft faced competitive challenges from many sources—companies,
individuals, and governments. However, the environment at the time made it
much more emotional and newsworthy to suggest that Microsoft was pitted
against a grassroots community movement rather than a business or legal
concern. And it took some time and effort for Microsoft to adapt to the
changing landscape, but in recent years Microsoft has now embraced open
source to remain competitive.

When it comes to DotNetNuke, many people probably questioned why
Microsoft would be interested in assisting an open source project where it
receives no direct benefit. And it may be perplexing why Microsoft would
sponsor a product that competes to some degree with several of its own
commercial applications. But you do not have to look much further than the
obvious indirect benefits to see why this relationship has tremendous value.

http://www.dotnetnuke.com
http://www.asp.net

First and foremost, the DotNetNuke application was only designed for use on
the Microsoft platform. This meant that in order to use DotNetNuke, you
needed to have valid licenses for a number of Microsoft infrastructure
components (Windows operating system, database server, and so on). So this
provided the financial value. In addition, DotNetNuke promoted the benefits
of the .NET Framework and encouraged developers to migrate to Microsoft's
development platform. This provides the educational value. Finally, it
cultivated an active and passionate community—a network of loyal supporters
who were motivated to leverage and promote Microsoft technology on an
international scale. This provided the marketing value.

Enhancements
In September 2003, with the assistance of the newly formed Core Team, we
embarked on an ambitious mission to implement the enhancements to
DotNetNuke suggested by Microsoft. The problem at this point was that in
addition to the Microsoft enhancements, there were some critical community
enhancements, which I ultimately perceived as an even higher priority if the
project should hope to grow to the next level. So the scope of the
enhancement project began to snowball, and estimated release dates began to
slip. The quality of the release code was also considered to be so crucial a
factor that early beta packages were not deemed worthy of distribution.
Ultimately, the code base evolved so much that there was little question the
next release would need to be labeled version 2.0. During this phase of
internal development, some members of the Core Team did an outstanding
job of supporting the 1.x community and generating excitement about the
next major release. This was critical in keeping the DotNetNuke community
engaged and committed to the evolving project.

A number of excellent community enhancements for the DotNetNuke 1.0
platform also emerged during this stage. This sparked an active third-party
reseller and support community, establishing yet another essential factor in
any largely successful open source project. Unfortunately, at this point the
underlying architecture of the DotNetNuke application was not particularly
extensible, which made the third-party enhancements susceptible to upgrade
complications and somewhat challenging to integrate for end users. As a Core
Team, we recognized this limitation and focused on full modularity as a
guiding principle for all future enhancements.

Modularity is an architecture principle that basically involves the creation of
well-defined interfaces for the purpose of extending an application. The goal
of any framework should be to provide interfaces in all areas that are likely to
require customization based on business requirements or personalization
based on individuality. DotNetNuke provides extensibility in the area of
modules, skins, templates, data providers, and localization. And DotNetNuke
typically goes one step beyond defining the basic interface: it actually
provides the full spectrum of related resource services including creation,
packaging, distribution, and installation. With all of these services available, it
makes it extremely easy for developers to build and share application
extensions with other members of the community.

One of the benefits of working on an open source project is the fact that there
is a high priority placed on creating the optimal solution or architecture. This
goal often results in more preliminary analysis and design that tends to
elongate the schedule but also results in a more extensible and adaptable
architecture. This differs from traditional application development that often
suffers from time and budget constraints, resulting in shortcuts, poor design
decisions, and delivery of functionality before it is validated. Another related
benefit is that the developers of open source software also represent a portion
of its overall user community, meaning they actually “eat their own dog food”
so to speak. This is really critical when it comes to understanding the
business requirements under which the application needs to operate. Far too
often you find commercial vendors who build their software in a virtual
vacuum, never experiencing the fundamental application use cases in a real-
world environment.

One of the challenges in allowing the Core Team to work together on the
DotNetNuke application was the lack of high-quality infrastructure tools.
Probably the most fundamental elements from a software development
standpoint were the need for a reliable source-code-control system and issue-
management system. Because the project had little to no financial resources
to draw upon, we were forced to use whatever free services were available in
the open source community. And although some of these services are
leveraged successfully by other open source projects, the performance,
management, and disaster recovery aspects are sorely lacking. This led to a
decision to approach some of the more successful commercial vendors in
these areas with requests for pro-bono software licenses. Surprisingly, these
vendors were more than happy to assist the DotNetNuke open source project
in exchange for some minimal sponsorship recognition. This model has
ultimately been carried on in other project areas to acquire the professional
infrastructure, development tools, and services necessary to support our
growing organization.

As we worked through the enhancements for the DotNetNuke 2.0 project, a
number of Core Team members gained considerable respect within the
project based on their high level of commitment, unselfish behavior, and
expert development skills. Joe Brinkman, Dan Caron, Scott McCulloch, and
Geert Veenstra sacrificed a lot of personal time and energy to improve the
DotNetNuke open source project. And the important thing to realize is that
they did so because they wanted to help others and make a difference, not

because of self-serving agendas or premeditated expectations. The
satisfaction of working with other highly talented individuals in an open,
collaborative environment is reward enough for some developers. And it is
this particular aspect of open source development that continues to confound
and amaze people as time goes on.

In October 2003, there was a Microsoft Professional Developers Conference
(PDC) in Los Angeles, California. The PDC is the premier software
development spectacle for the Microsoft platform; it's an event that occurs
only every two years. About a month prior to the event Cory Isakson, a
developer on the Rainbow Portal open source project (another derivative of
the IBuySpy Portal based on C#), contacted me, saying that “Open Source
Portals” had been nominated as a category for a “Birds of Feather” session at
the event. I posted the details in the DotNetNuke Forum, and soon the item
had collected enough community votes that it was approved as an official
BOF session. This provided a great opportunity to meet with DotNetNuke
enthusiasts and critics from all over the globe. It also provided a great
networking opportunity to chat with the most influential commercial
software vendors in the .NET development space (contacts made with
SourceGear and MaximumASP at this event proved to be important to
DotNetNuke, as time would tell).

Security Flaw
In January 2004, another interesting dilemma presented itself. I received an
email from an external party, a web application security specialist who
claimed to have discovered a severe vulnerability in the DotNetNuke
application (version 1.0). Upon further research, I confirmed that the security
hole was indeed valid and immediately called an emergency meeting of the
more trusted Core Team members to determine the most appropriate course
of action. At this point, we were fully focused on the DotNetNuke 2.0
development project but also realized that it was our responsibility to serve
and protect the growing DotNetNuke 1.0 community. From a technical
perspective, the patch for the vulnerability proved to be a simple code
modification.

The more challenging problem was related to communicating the details of
the security issue to the community. On the one hand we needed the
community to understand the severity of the issue so that they would be
motivated to patch their applications. On the other hand, we did not want to
cause widespread alarm, which could lead to a public perception that
DotNetNuke was an insecure platform. Exposing too many details of the
vulnerability would be an open invitation for hackers to try to exploit
DotNetNuke websites, but revealing too few details would downplay the
severity. And the fact that the project is open source meant that the
magnitude of the problem was amplified. Traditional software products have
the benefit of tracking and identifying users through restrictive licensing
policies. Open source projects have licenses that allow for free redistribution,
which means the maintainer of the project has no way to track the actual
usage of the application and no way to directly contact all community
members who are affected.

The whole situation really put security issues into perspective for me. It's one
thing to be an outsider, expressing your opinions on how a software vendor
should or should not react to critical security issues in its products. It's quite
another thing to be an insider, stuck in the vicious dilemma between
divulging too much or too little information, knowing full well that both
options have the potential to put your customers at even greater risk.
Ultimately, we created a new release version and issued a general security
alert that was sent directly to all registered users of the DotNetNuke
application by email and posted in the DotNetNuke Forum on www.asp.net:

http://www.asp.net

 Subject: DotNetNuke Security Alert Yesterday we became aware of a
security
vulnerability in DotNetNuke. It is the immediate recommendation of
the DotNetNuke
Core Team that all users of DotNetNuke based systems download and
install this
security patch as soon as possible. As part of our standard security
policy, no
further detailed information regarding the nature of the exploit will
be provided
to the general public. This email provides the steps to immediately
fix existing
sites and mitigate the potential for a malicious attack. Who is
vulnerable? --
Any version of DotNetNuke from version 1.0.6 to 1.0.10d What is the
vulnerability? A malicious user can anonymously download files from
the server.
This is not the same download security issue that has been well
documented in the
past whereby an anonymous user can gain access to files in the
/Portals directory
if they know the exact URL. This particular exploit bypasses the file
security
mechanism of the IIS server completely and allows a malicious user to
download
files with protected mappings (ie. *.aspx). The vulnerability
specifically *does
not* enable the following actions: -- A hacker *cannot* take over
the server
(e.g. it does not allow hacker code to be executed on the server)
How to fix the
vulnerability? For Users: { Instructions on where to download the
latest release
and how to install } For Developers: { Instructions with actual
source code
snippets for developers who had diverged from the official DotNetNuke
code base
and were therefore unable to apply a general release patch } Please
note that
this public service announcement demonstrates the professional
responsibility of
the Core Team to treat all possible security exploits as serious and
respond in a
timely and decisive manner. We sincerely apologize for the
inconvenience that
this has caused. Thank you, we appreciate your support… DotNetNuke
- The Web
of the Future

The security dilemma brings to light another often misunderstood paradigm
when it comes to open source projects. Most open source projects have a

license that explicitly states that there is no support or warranty of any kind
for users of the application. And while this may be true from a purely legal
standpoint, it does not mean that the maintainer of the open source
application can ignore the needs of the community when issues arise. The
fact is, if the maintainer did not accept responsibility for the application, the
users would quickly lose trust and the community would dissolve. This
implicit trust relationship is what all successful open source communities are
based upon. So in reality, the open source license acts as little more than a
waiver of direct liability for the maintainer. The DotNetNuke project certainly
conforms to this model because we take on the responsibility to ensure that
all users of the application are never left on an evolutionary dead end and
security issues are always dealt with in a professional and expedient manner.

DotNetNuke 2.0
After six months of development, including a full month of public beta
releases and community feedback, DotNetNuke 2.0 was released on March
23, 2004. This release was significant because it occurred at VS Live! in San
Francisco, California, a large-scale software development event sponsored by
Microsoft and Fawcette publications. Due to our strong working relationship
with Microsoft, I was invited to attend official press briefings conducted by
the ASP.NET Team. Essentially, this involved up to eight private sessions with
the leading press agencies (Fawcette, PC Magazine, Computer Wire, Ziff
Davis, and so on) where I was able to summarize the DotNetNuke project,
show them a short demonstration, and answer their specific questions. The
event proved to be spectacularly successful and resulted in a surge of new
traffic to the community (now totaling more than 40,000 registered users).

DotNetNuke 2.0 was a hit. We had successfully delivered a high-quality
release that encapsulated the majority of the most requested product
enhancements from the community. And we had done so in a manner that
allowed for clean customization and extensibility. In particular, the skinning
solution in DotNetNuke 2.0 achieved widespread critical acclaim.

In DotNetNuke 1.X, the user interface of the application allowed for little
personalization—essentially all DNN sites looked much the same, a negative
restriction considering the highly creative environment of the World Wide
Web. DotNetNuke 2.0 removed this restriction and opened the application to
a whole new group of stakeholders: web designers. As the popularity of portal
applications had increased in recent years, the ability for web designers to
create rich, graphical user interfaces had diminished significantly. This is
because the majority of portal applications were based on platforms that did
not allow for clear separation between form and function or were architected
by developers who had little understanding of the creative needs of web
designers. DotNetNuke 2.0 focused on this problem and implemented a
solution where the portal environment and creative design process could be
developed independently and then combined to produce a stunningly
harmonious end-user experience. The process was not complicated and did
not require the use of custom tools or methodologies. It did not take long
before we began to see DotNetNuke sites with richly creative and highly
graphical layouts emerge, proving the effectiveness of the solution and
creating a “Can you top this?” community mentality for innovative portal

designs.

DotNetNuke.com Website
To demonstrate the effectiveness of the skinning solution, I commissioned a
local web design company, Circle Graphics in Abbotsford owned by Brad
Haima, to create a compelling design for the www.dotnetnuke.com website (see
Figure 1.8). As an open source project, I felt that I could get away with an
unorthodox, somewhat futuristic site design, and I was impressed by some of
Circle Graphics' futuristic, industrial concepts I had seen.

Figure 1.8

It turned out that the designer who had created these visuals, Anson Vogt,
had since moved on but was willing to take on a small contract as a personal

http://DotNetNuke.com
http://www.dotnetnuke.com

favor to the owner. He created a skin that included some stunning 3-D
imagery including the now infamous “nuke-gear” logo, circuit board, and
plenty of twisted metallic pipes and containers. The integration with the
application worked flawlessly, and the community was wildly impressed with
the stunning result. Coincidentally, Anson Vogt later worked with musician
Eminem as the Art Director for 3-D animation on the critically acclaimed
Mosh video.

Provider Model
One of the large-scale enhancements that Microsoft insisted on for
DotNetNuke 2.0 also proved to be popular. The Data Access Layer in
DotNetNuke had been rearchitected using an abstract factory model that
effectively allowed it to interface with any number of relational databases.
Microsoft coined the term “provider model” and emphasized it as a key
component in the future ASP.NET 2.0 framework. Therefore, getting a
reference implementation of this pattern in use in ASP.NET 1.x had plenty of
positive educational benefits for Microsoft and DotNetNuke developers.
DotNetNuke 2.0 included both a fully functional SQL Server and Microsoft
Access version, and the community soon stepped forward with mySQL and
Oracle implementations as well. Again, the extensibility benefits of good
architecture were extremely obvious and demonstrated the direction we
planned to pursue in all future product development.

Upon review of the DotNetNuke 2.0 code base, it was obvious that the
application bore little resemblance to the original IBuySpy Portal application.
This was a good thing because it raised the bar significantly in terms of n-
tiered, object-oriented, enterprise-level software development. However, it
was also bad in some ways because it alienated some of the early DotNetNuke
enthusiasts who were in fact “hobby programmers,” using the application
more as a learning tool than a professional product. This is an interesting
paradigm to observe in many open source projects. In the early stages, the
developer community drives the feature set and extensibility requirements
that, in turn, results in a much higher level of sophistication in terms of
system architecture and design. However, as time goes on, this can
sometimes result in the application surpassing the technical capabilities of
some of its early adopters. DotNetNuke had ballooned from 15,000 lines of
managed code to 46,000 lines of managed code in a little more than six
months. The project was getting large enough that it required some serious
effort to understand its organizational structure, dependencies, and
development patterns.

Open Source Philosophy
When researching the open source phenomenon, there are a few fundamental
details that are often ignored in favor of positive marketing rhetoric. I would
like to take the opportunity to bring some of these to the surface because they
provide some additional insight into some of the issues we face in the
DotNetNuke project.

The first myth surrounds the belief that open source projects basically have
an unlimited resource pool at their immediate disposal. Although this may be
true from a purely theoretical perspective, the reality is that you still require a
dedicated management structure to ensure that all of the resources are
channeled in an efficient and productive manner. An army of developers
without some type of central management authority will never consistently
produce a cohesive application; and more likely, their efforts will result in
total chaos. As much as the concept is often despised by hard-core
programmers, dedicated management is absolutely necessary to set
expectations and goals, ensure product quality, mitigate risk, recognize
critical dependencies, manage scope, and assume ultimate responsibility. You
will find no successful open source project that does not have an efficient and
highly respected management team.

Also with regard to the unlimited resourcing myth, there are in fact few
resources who become involved in an open source project that possess the
level of competency and communication skills required to earn a highly
trusted position in the meritocracy. More often, the resources who get
involved are capable of handling more consumer-oriented tasks such as
testing, support, and minor defect corrections. This is not to say that these
resources do not play a critical role in the success of the project—every
focused ounce of volunteer effort certainly helps sustain the health of the
project. But my point is that there is usually a relatively small group on most
open source projects who are responsible for the larger-scale architectural
enhancements.

Yet another myth is related to the belief that anyone can make a direct and
immediate impact on an open source project. Although this may be true to
some degree, you generally need to build a trusted reputation within the
community before you are granted any type of privilege. And there are few
individuals who are ever awarded direct write access to the source code
repository. Anyone has the ability to submit a patch or enhancement

suggestion; however, there's no guarantee that it will be added to the open
source project code base. In fact, all submissions are rigorously peer-reviewed
by trusted resources, and only when they have passed all validation criteria
are they introduced to the source code repository. In addition, although a
specific submission may appear to be quite useful when judged in isolation,
there may be higher-level issues to consider in terms of upgrade support (a
situation that can lead to submitter frustration if the issues are not fully
explained). From a control standpoint, this is not much different than source
control management on a traditional software project. However, the open
source model does significantly alter this paradigm in that everyone is able to
review the source code. As a result, the sheer volume of patches submitted to
this process can be massive.

Stabilization
Following the success of DotNetNuke 2.0, we focused on improving the
stability and quality of the application. Many production issues were
discovered after the release that we would have never anticipated during
internal testing. As an application becomes more extensible, people find
ingenious new ways to apply it, which often produces unexpected results. We
also integrated some key Roadmap enhancements that were developed in
isolation by Core Team members. These enhancements were actually quite
advanced because they added a whole new level of professional features to
the DotNetNuke code base, transforming it into a viable enterprise
application framework.

It was during this time that Dan Caron single-handedly made a significant
impact on the project. Based on his experience with other enterprise
applications, he proceeded to add integrated exception handling and event
logging to DotNetNuke. This provided stability and “auditability”—two major
factors in most professional software products. He also added a complex,
multi-threaded scheduler to the application. The scheduler was not just a
simple hard-coded implementation like I had seen in other ASP.NET projects,
but rather it was fully configurable via an administrative user interface. This
powerful new feature could be used to run background housekeeping jobs as
well as long-running tasks. With this in place, the extensibility of the
application improved yet again.

Third-Party Components
An interesting concern that came to our attention at this time was related to
our dependence on external components. To provide the most powerful
application, we had leveraged a number of rich third-party controls for their
expert functionality. Because each of these controls was available under its
own open source license, they seemed to be a good fit for the DotNetNuke
project. But the fact is there are some major risks to consider. Some open
source licenses are viral in nature and have the potential to alter the license
of the application with which they are combined. In addition, there is nothing
that prevents third parties from changing their licensing policy at any time. If
this situation occurs, then it is possible that all users of the application who
reference the control could be in violation of the new license terms. That's a
fairly significant issue and certainly not something that can be taken lightly.
Based on this knowledge, we quickly came up with a strategy that was aimed
at minimizing our dependency on third-party components. We constructed a
policy whereby we would always focus on building the functionality ourselves
before considering an external control. And in the cases where a component
was too elaborate to replicate, we would use a provider model, much like we
had in the database layer, to abstract the application from the control in such
a way that it would allow for a plug-in replacement. This strategy protects the
community from external license changes and also provides some additional
extensibility for the application.

With the great publicity on the www.asp.net website following VS Live! and
the consistent release of powerful new enhancements, the spring of 2004
brought a lot of traffic to the dotnetnuke.com community website. At this
point, the site was poorly organized and sparse on content due to a lack of
dedicated effort. Patrick Santry had been on the Core Team since its
inception, and his experience with building websites for the ASP.NET
community became valuable at this time. We managed to make some fairly
major changes to improve the site, but I soon realized that a dedicated
resource would be required to accomplish all of our goals. Without the
funding to secure such a resource, many of the plans had to unfortunately be
shelved.

http://www.asp.net
http://dotnetnuke.com

Core Team Reorganization
The summer of 2004 was a restructuring period for DotNetNuke. Thirty new
community members were nominated for Core Team inclusion, and the Core
Team itself underwent a reorganization of sorts. The team was divided into an
Inner Team and an Outer Team. The Inner Team designation was reserved for
those original Core Team individuals who had demonstrated the most loyalty,
commitment, and value to the project over the past year. The Outer Team
represented individuals who had earned recognition for their community
efforts and were given the opportunity to work toward Inner Team status.
Among other privileges, write access to the source code repository is the
pinnacle of achievement in any source code project, and members of both
teams were awarded this distinction to varying degrees.

In addition to the restructuring, a set of Core Team guidelines was
established that helped formalize the expectations for team members. Prior to
the creation of these guidelines, it was difficult to isolate nonperformers
because there were no objective criteria by which they could be judged. In
addition to the new recruits, a number of inactive members from the original
team were retired, mostly to demonstrate that Core Team inclusion was a
privilege, not a right. The restructuring process also brought to light several
deficiencies in the management of intellectual property and confidentiality
among team members. As a result, all team members were required to sign a
retroactive nondisclosure agreement as well as an intellectual property
contribution agreement. All of the items exemplified the fact that the project
had graduated from its “hobby” roots to a professional open source project.

Microsoft Membership API
During these formative stages, I was once again approached by Microsoft with
an opportunity to showcase some specific ASP.NET features. Specifically, a
Membership API had been developed by Microsoft for Whidbey (ASP.NET
2.0), and it was planning on creating a backported version for ASP.NET 1.1
that we could leverage in DotNetNuke. This time the benefits were not so
immediately obvious and required some thorough analysis. This is because
DotNetNuke already had more functionality in these areas than the new
Microsoft API could deliver. So to integrate the Microsoft components
without losing any features, we would need to wrap the Microsoft API and
augment it with our own business logic. Before embarking on such an
invasive enhancement, we needed to understand the clear business benefit
provided.

Well, you can never discount Microsoft's potential to impact the industry.
Therefore, being one of the first to integrate and support the new Whidbey
APIs would certainly be a positive move. In recent months there had been
numerous community questions regarding the applicability of DotNetNuke
with the early Whidbey Beta releases now in active circulation. Early
integration of such a core component from Whidbey would surely appease
this group of critics. From a technology perspective, the Microsoft industry
had long been awaiting an API to converge upon in this particular area,
making application interoperability possible and providing best practice due
diligence in the area of user and security information. Integrating the
Microsoft API would allow DotNetNuke to “play nicely” with other ASP.NET
applications—a key factor in some of the larger-scale extensibility we were
hoping to achieve. Last, but not least, it would further our positive
relationship with Microsoft—a factor that was not lost on most as the key
contributor to the DotNetNuke project's growth and success.

The reorganization of the Core Team also resulted in the formation of a small
group of highly trusted project resources that, for lack of a better term, we
named the Board of Directors. The members included myself, Scott Willhite,
Dan Caron, Joe Brinkman, and Patrick Santry. The purpose of this group was
to oversee the long-term strategic direction of the project. This included
discussion on confidential issues pertaining to partners, competitors, and
revenue. In August 2004, we scheduled our first general meeting for
Philadelphia, Pennsylvania. With all members in attendance, we made some

excellent progress on defining action items for the coming months. This was
also a great opportunity to finally meet in person some of the individuals with
whom we had experienced only Internet contact in the past. With the first day
of meetings behind us, the second day was dedicated to sightseeing in the
historic city of Philadelphia. The parallels between the freedom symbolized by
the Liberty Bell and the software freedom of open source were not lost on any
of us that day.

Returning from Philadelphia, I knew that I had some significant deliverables
on my plate. We began the Microsoft Membership API integration project
with high expectations of completion within three months. But as before,
there were a number of high-priority community enhancements that had
been promised prior to the Microsoft initiative, and as a result the scope
snowballed. Scope management is an extremely difficult task when you have
such an active and vocal community.

“Breaking” Changes
The snowball effect soon revealed that the next major release would need to
be labeled version 3.0. This is mostly because of “breaking” changes:
modifications to the DotNetNuke core application that changed the primary
interfaces to the point that plug-ins from the previous version 2.0 release
would not integrate without at least some minimal changes. The catalyst for
this was due to changes in the Membership API from Microsoft, but this only
led to a decision of “If you are forced to break compatibility, introduce all of
your breaking changes in one breaking release.” The fact is there was a lot of
baggage preserved from the IBuySpy Portal that we were restricted from
removing due to legacy support considerations. DotNetNuke 3.0 provided the
opportunity to reexamine the entire project from a higher level and make
some of the fundamental changes we had been delaying for years in some
cases. This included the removal of a lot of dead code and deprecated methods
as well as a full namespace reorganization that finally accurately broke the
project API into logical components.

DotNetNuke 3.0 also demonstrated another technical concept that would
both enrich the functionality of the application framework as well as improve
the extensibility without the threat of breaking binary compatibility. Up until
version 3.0, the service architecture for DotNetNuke was completely
unidirectional. Custom modules could consume the resources and services
offered by the core DotNetNuke framework but not vice versa. So although
the application managed the secure presentation of custom modules within
the portal environment, it could not get access to the custom module content
information. Optional interfaces were added to enable custom modules to
provide plug-in implementations for defined core portal functions. They also
provided a simple mechanism for the core framework to call into third-party
modules, providing a bidirectional communication channel so that modules
could finally offer resources and services to the core.

Web Hosters
Along with its many technological advances, DotNetNuke 3.0 was also being
groomed for use by entirely new stakeholders: web hosters. For a number of
years, the popularity of Linux hosting has been growing at a far greater pace
than Windows hosting. The instability arguments of early Microsoft web
servers were beginning to lose their weight as Microsoft released more
resilient and higher-quality server operating systems. Windows Server 2003
had finally shed its clunky Windows NT 4.0 roots and was a true force to be
reckoned with. Aside from the obvious economic licensing reasons, there was
another clear reason why hosters were still favoring Linux over Windows for
their clients: the availability of end-user applications.

The Linux platform had long been blessed with a plethora of open source
applications running on the Apache web server, built with languages such as
PHP, Perl, and Python, and leveraging open source databases such as mySQL.
(The combination of these technologies is commonly referred to as LAMP.)
The Windows platform was really lacking in this area and was desperately in
need of applications to fill this void.

For DotNetNuke to take advantage of this opportunity, it needed a usability
overhaul to transform it from a niche developer–oriented framework to a
polished end-user product. This included a usability enhancement from both
the portal administration as well as the web host perspectives. Since Rob
Howard left Microsoft in June 2004, my primary Microsoft contact was
Shawn Nandi. Shawn did a great job of drawing upon his usability background
at Microsoft to come up with suggestions to improve the DotNetNuke end-
user experience. Portal administrators received a multilingual user interface
with both field-level and module-level help. Enhanced management functions
were added in key locations to improve the intuitive nature of the application.
Web hosters received a customizable installation mechanism. In addition, the
application underwent a security review to enable it to run in a Medium Trust
—Code Access Security (CAS) environment. The end result was a powerful
open source, web-application framework that could compete with the open
source products on other platforms and offer web hosters a viable Windows
alternative for their clients.

DotNetNuke 3.0
Much of the integration work on the Membership API and usability
improvements were fueled by a much larger hosting initiative that Microsoft
was preparing to unleash in May 2005. This initiative included a
comprehensive program aimed at increasing awareness for Windows-based
hosting solutions on an international level. Based on its strength as a
framework for building consumer websites, Microsoft invited DotNetNuke to
participate in the program as long as it could meet a defined set of technical
criteria, including Membership API integration, Medium Trust CAS
compliance, localization, and usability improvements. Nearly all of the
enhancements were already identified on the product roadmap, so the
opportunity to be included in the hosting program was really a win-win
proposition for the project and the community. In addition, we believed that
the benefit of participating in such a large-scale initiative would be enormous
in terms of lending credibility to the DotNetNuke product, introducing the
project to influential new stakeholders, and helping to build brand equity.

Core Team members made significant contributions during the development
of DotNetNuke 3.0. Scott McCulloch, with the assistance of Jeremy White,
implemented a full-featured URL rewriting component that allowed
DotNetNuke to use standard URLs. Vicenç Masanas was instrumental in
working on localization, templating, and stabilization tasks. Joe Brinkman
implemented search-engine architecture, enabling content indexing across all
modules in a portal instance. Jon Henning introduced a Client API library,
enabling powerful client-side behavior in DotNetNuke modules. Perhaps the
greatest code contributions were made by Charles Nurse. Realizing the
massive amount of work that would be required to deliver the enhancements
for the hosting program (and knowing that using only volunteer efforts would
not hit the schedule deadlines), I hired the first full-time DotNetNuke
contract resource. Charles was immediately put to work abstracting all of the
core modules into independent private assemblies. At the same time, he
reorganized entry fields in all application user interfaces and added full
localization capabilities, including field-level online help.

The concept of localization was one of the most commonly requested
enhancements for the DotNetNuke application. Localization actually has
multiple meanings when it comes to software applications because there is a
distinct difference between static and dynamic content. Static content is

information that is delivered as part of the core application typically
implemented by developers. Dynamic content is information that is provided
by users of the application and is typically entered by knowledge workers or
webmasters. In DotNetNuke 3.0, we delivered full static localization for all
administrative interfaces. This meant that all labels, messages, and help text
could be translated and displayed in different languages based on the
preference of the user. Developing a scalable architecture in this area turned
out to be a challenging task because the solutions offered by Microsoft as part
of the ASP.NET 1.x framework were better suited for desktop applications and
had serious deficiencies and limitations for web applications. Instead, we
decided to target the ASP.NET 2.0 localization architecture, which better
addressed the web scenario. However, due to the specific business
requirements of DotNetNuke, we soon realized that we were going to have to
take some liberties with the proposed ASP.NET 2.0 localization architecture
to enable us to achieve our goals for runtime updatability and scalability in a
shared hosting environment. In the end, we were able to deliver a powerful
solution that satisfied our business needs and provided forward compatibility
to the upcoming ASP.NET 2.0 release.

The optional interface architectural model described earlier reaped rewards in
DotNetNuke 3.0 in a number of key application areas. Registration of module
actions in earlier versions of DotNetNuke was always less than optimal
because they were dependent on page life-cycle events that were difficult to
manage in a variety of scenarios. Optional interfaces finally provided a clean
mechanism for the core framework to programmatically call into modules
and retrieve their module actions. Other new features based on optional
interfaces included content indexing, import, and export. In each of these
cases, the core framework could rely on modules to provide content in a
specific format that then allowed the core framework to provide advanced
portal services.

After multiple beta releases (some of which were deemed not fit for public
consumption), DotNetNuke 3.0 was officially released on March 12, 2005.
Although there were breaking changes between DotNetNuke 2.0 and
DotNetNuke 3.0, a number of modules were immediately available for
DotNetNuke 3.0 due to the success of a pilot program named “30 for 3.0.”
This program was the shrewd strategy of Scott Willhite and allowed a serious
group of commercial module developers to have early access to beta releases
of the DotNetNuke 3.0 product, enabling them to deal with any compatibility

issues before the core framework became publicly available. Aside from the
obvious benefits of having “applications” immediately available for the new
platform, this program also provided some excellent business intelligence. It
proved one of Scott's earlier assumptions that the vocal forums community
represented only a small portion of the overall DotNetNuke user community.
It also exposed the fact that DotNetNuke had found its way into Fortune 500
companies, military applications, government websites, international
software vendors, and a variety of other high-profile installations.

DotNetNuke 3.0 was released with two supported languages: English and
German. Delivering two complete language packs adhered to one of our
newer philosophies of always attempting to provide multiple functional
examples to prove the effectiveness of a particular extensibility model. Before
long, community members began submitting new language packs in their
native dialects that were posted on the dotnetnuke.com site for download. The
total number of supported language packs soon surpassed 30. This resulted in
incredible growth and adoption for the DotNetNuke framework on an
international basis.

http://dotnetnuke.com

Release Schedule
A common open source concept is referred to as “release early, release often.”
The justification is that the sooner you release, the sooner the open source
community can validate the functionality, and the sooner you get feedback—
good and bad—which helps improve the overall product. This concept is often
combined with a “public daily build” paradigm, where continuous integration
is used to automatically build, package, and publish a new application version
every day. These concepts make a lot of sense for single-purpose applications,
that is, applications that have closed APIs and have no external dependencies.
But plug-in platforms such as DotNetNuke possess a different set of
requirements, many of which are not complementary with the “release early,
release often” model.

Consider the case of any entity that has developed plug-in resources for the
DotNetNuke framework. These could include modules, language packs, skins,
or providers. Every time a new core version is released, each of these
resources needs to be validated to ensure that it functions correctly. In many
cases, this involves extensive testing, packaging a new version of the specific
resource, publishing compatibility information, updating related
documentation, communicating availability and/or issues to users, servicing
compatibility support requests, updating commercial product listings, and so
on. You must also consider the issues for the resource consumer. Consumers
need to feel confident in the acquisition and installation of application
resources. They are not keen on analyzing complicated compatibility matrices
to manage their investment. And resellers such as hosters represent an even
larger superset of application consumers. The effort involved to perform
application upgrades becomes more complicated and costly as the release
frequency increases. This is clearly a case where “release early, release often”
can lead to issues for framework consumers and suppliers.

For these reasons, DotNetNuke has always tried to follow a fairly well-
structured release cycle. This has resulted in fewer major public releases but a
much higher-quality, more stable, core application. In general, it has enabled
DotNetNuke resource suppliers and consumers to participate in a functional
product ecosystem. However, as the number of serious platform adopters
increased, so did the demands for better core-release communication.

DotNetNuke Projects
One of the goals of the DotNetNuke 3.0 product release that had tremendous
value for the community at large was the abstraction of the modules that
were traditionally bundled with the core framework. The core modules were
neglected in favor of adding more functionality to the core framework
services. This resulted in a set of modules that demonstrated limited
functionality and were not evolving at the same pace as the rest of the project.
The abstraction of the modules from the core framework led to the formation
of the DotNetNuke Projects program: a new organizational concept modeled
after the Apache Foundation that allowed many complementary open source
projects to thrive within the DotNetNuke ecosystem. From a technical
perspective, the modules were abstracted in a manner that conformed to our
extensibility model for building “private assembly” modules and allowed each
module to be managed as its own independent project. The benefit was that
each module could form its own team of developers, with its own roadmap for
enhancements, and its own release schedule. As a governing entity,
DotNetNuke would provide infrastructure services such as a source code
repository, issue tracker, project home page, and email services for the project
as well as a highly visible and respected distribution and marketing channel.

Obviously, there are trade-offs that need to be accepted when decomposing a
monolithic system into its constituent components, but the overall benefits of
this approach reaped substantial rewards for the project. For one thing, it
provided a new opportunity for developer participation—basically providing a
sandbox where developers could demonstrate their skills and passion for the
DotNetNuke project. This helped promote the “meritocracy” model and aided
in our Core Team recruitment efforts. The community benefited through the
availability of powerful, free, open source components that were licensed
under the standard DotNetNuke MIT license. It also allowed the modules to
evolve much more rapidly and with more focus than they ever received as
part of the monolithic DotNetNuke application. Abstracting the core set of
modules was a good start; however, the platform was lacking some other
essential modules—modules that were well integrated and provided the
common functionality required by most consumer websites. These items
included a discussion forum, blog, and photo gallery.

Early in the DotNetNuke 3.0 life cycle, there were discussions with a high-
profile third-party software development company that was actively

developing an integrated suite of components with forum, blog, and gallery
functionality. Although early indications seemed to be positive regarding
collaboration, they unfortunately did not value the opportunity of working
with the DotNetNuke community and ultimately decided to instead focus
their efforts on constructing their own proprietary solution. Because this
decision was not communicated to us until late in the DotNetNuke 3.0
development cycle, it meant that we had to scramble to find a suitable
alternative. Luckily, two of our own Core Team members—Tam Tram Minh of
TTT Corporation and Bryan Andrews of AppTheory—had been collaborating
on a comparable set of modules and had already been offering them for free
download to the DotNetNuke community. Discussions with them led to the
creation of three powerful new DotNetNuke Projects: the DotNetNuke
Forums, Blog, and Gallery.

Integrating third-party modules is not without its share of challenges. An
“incubation” period is required to make the module conform to the official
DotNetNuke project standards. An official marketing name had to be defined
for the project and all references to the old module name need to be updated.
This included namespaces, folder names, filenames, code comments,
database object names, release package metadata, and documentation. To
allow legacy users of the contributed module to be able to migrate to the new
DotNetNuke project, a robust upgrade mechanism had to be created. The
module also needed to be reviewed to ensure that it does not contain any
security flaws or serious defects that could affect the general community.
From an infrastructure perspective, the code needed to be uploaded to a
dedicated source code repository, an issue tracker project had to be created,
and a project home page completed with discussion forum and blog created
on dotnetnuke.com. These tasks represented the technical integration issues
that needed to be addressed; but an item of even greater importance for third-
party modules was management of the associated intellectual property.

http://dotnetnuke.com

Intellectual Property
There are two main contributing factors when it comes to intellectual
property: copyright and licensing. The copyright holder is the person who
owns the rights to the intellectual property. Normally this is the creator;
however, copyright can also be transferred to other individuals or companies.
The copyright holder has the right to decide how his intellectual property can
be used by others. When it comes to software, these usage details are
generally published as a license agreement. License agreements can vary a
great deal depending on the environment, but they generally resemble a
standard legal contract, explicitly outlining the rights and responsibilities of
each party. Copyright holders also have the right to change the license for the
intellectual property at their discretion. It is this scenario that requires the
most due diligence when dealing with third-party contributions.

Anybody who contributes source code to the DotNetNuke project must
submit a signed Contributor License Agreement. This document ensures that
the individual has the right to contribute intellectual property to the project
without any type of encumbrance. It also transfers copyright for any
contributed intellectual property to the project. This is important because
DotNetNuke needs to be able to ensure all of its intellectual property is
licensed consistently throughout the entire application. It protects the
community from a situation where an individual copyright holder could
change the license restrictions for a specific piece of intellectual property,
forcing the entire community into a reactive situation (a situation we have
already seen multiple times in the still nascent Microsoft open source
community).

In the case of third-party modules that are fully functional applications with
an existing and active user base, the intellectual property rights are owned by
the external party. Under this scenario, we could adopt the intellectual
property into the DotNetNuke project because it would mean that we would
have no control over its licensing. Even if the contributor agreed to license
the intellectual property under a complementary MIT open source license,
the original copyright holder would still have the ability to change the license
at any time in the future, which would put all users of the module in
jeopardy. To mitigate this risk, we required that DotNetNuke must have
sufficient rights to the intellectual property so that the community is
adequately protected. However, we did not feel it would be fair to force

contributors to release all of the rights to their own intellectual property.
Therefore, we created a Software Grant Agreement that provides both parties
with full copyright to the specified intellectual property. Essentially this
means that the intellectual property was split into two independent versions.
The contributor owns one version and is allowed to license it or modify it as
he or she sees fit. DotNetNuke owned the other version and licenses it under
the standard DotNetNuke MIT License for distribution and enhancement.
The end result is a win-win situation for both parties as well as the
community.

Marketing
The success of any serious initiative must begin with the formulation of
specific goals and the ability to measure progress as you work toward those
goals. In terms of measuring the growth of the DotNetNuke project, we had
traditionally monitored the total number of registered users on the
dotnetnuke.com website, the number of new users per month, and the
number of downloads per month. These metrics revealed some definite
trends but were rather myopic in terms of providing a relative comparison to
other open source or commercial products. As a result, we looked for some
other indicators that we could use to measure our overall market impact.

SourceForge was the world's largest development and download repository of
open source code and applications. Early in its project history, DotNetNuke
had established a presence on SourceForge.Net
(http://sourceforge.net/projects/dnn as shown in Figure 1.9) and
continued to leverage its mirrored download infrastructure and bandwidth for
hosting all project release packages. Because SourceForge.Net contained
listings for all of the largest and most successful open source projects in
existence, it also provided a variety of comparison and ranking statistics that
could be used to judge activity and popularity. This seemed to be another
good KPI to measure the project's impact in the open source realm. In April
2005, the DotNetNuke project had an overall project ranking of 1,271.

http://dotnetnuke.com
http://sourceforge.net/projects/dnn

Figure 1.9

One of the items that had been neglected over the life of the project was the
dotnetnuke.com website. It had long been a goal to build this asset into a
content-rich communication hub for the DotNetNuke community. Patrick
Santry made some early progress in this area but recently found his volunteer
time diminishing due to personal and family commitments. Because a
website is largely an extension of product marketing (another function that
had long been ignored) the dotnetnuke.com website suffered from sparse
content, poor organization, and inconsistent focus. After the release of
DotNetNuke 3.0, a significant effort was invested in improving all aspects of
the website. Much of the initial improvements came as a result of evaluating

http://dotnetnuke.com
http://dotnetnuke.com

websites of other open source projects. After extensive deliberation, we
decided to organize the site information into three functional areas: user-
oriented information, community collaboration, and developer information.
New “sticky” content areas were added for project news and community
events. The Home Page was completely revamped to provide summary
marketing information and project metrics.

In March 2005, another significant milestone occurred in DotNetNuke
history. Dan Egan, a passionate DotNetNuke community member, wrote a
book for Packt Publishing entitled Building Websites with VB.NET and
DotNetNuke 3.0. This was the first book published about DotNetNuke and
was essential in proving the demand for the product, paving the way for
future DotNetNuke books from a variety of other publishers. In addition, a
handful of Core Team members, including me, were also collaborating on a
book for WROX Press during this time frame, but the demands of getting the
DotNetNuke 3.0 product ready for release forced us to slip the publication
date. Regardless, any technical content that makes it to mass publication
through traditional channels lends an incredible amount of credibility and
equity to the project or technology for which it is written. In addition, books
can have a positive marketing impact, especially if they reach wide circulation
through online retailers and brick-and-mortar bookstores.

In May 2005, Core Team member Jim Duffy was successful in securing a
DotNetNuke session on DotNetRocks!, an Internet radio talk show hosted by
Carl Franklin and Richard Campbell. This was our second appearance on the
show (the first being in August 2004), and it was a lot of fun to talk about
DotNetNuke in such a relaxed and open atmosphere. The show focused on
the recent DotNetNuke 3.0 release and proved to be a great way to promote
some of the incredible new application features. It is hard to estimate the
impact of the appearance on the DotNetRocks! show, but it certainly made
me a firm believer in the benefits of podcasting as a powerful broad
distribution marketing medium.

Microsoft Hosting Program
Throughout the month of May 2005, Microsoft launched the aforementioned
hosting program. The purpose of the program was to encourage shared
hosting providers to take advantage of Windows technology to grow their
hosting businesses. The primary benefit of this program was the Service
Provider License Agreement (SPLA), which allowed hosting companies to
avoid large capital expenditures and pay their licensing fees based on actual
usage. This lowered the barrier of entry in terms of cost and provided a risk-
free model to test the demand for services. In addition to the SPLA, Microsoft
recognized the value of end-user applications and included substantial
promotion of DotNetNuke in the hosting seminars encompassing 30 cities
around the world. I was fortunate enough to attend the first seminar in
Redmond, Washington, which provided an excellent opportunity to network
with the Microsoft Hosting Evangelists, a group of hard-working individuals
who were dedicated to the growth of Windows web hosting on an
international basis. At the beginning of June, I was also privileged to attend a
WSHA seminar in Amsterdam, Netherlands. The invitation was extended by
Microsoft Europe, which was especially interested in the localization
capabilities of the DotNetNuke application. This trip gave me a deeper
understanding of the localization challenges of the international community
and also provided me the opportunity to meet Geert Veenstra and Leigh
Pointer—two Core Team members who actively participated in and
evangelized DotNetNuke since its creation.

Although the Microsoft Hosting program did not reap any direct financial
rewards for DotNetNuke, it provided a number of powerful benefits. It
exposed the application to an influential group of organizations: large-scale
web hosting companies that dominate the shared hosting market in terms of
customer base and annual revenues. Companies such as GoDaddy, Pipex, and
1and1 began offering DotNetNuke as part of their Windows hosting plans.
The hosting program also caught the attention of the largest hosting control
panel vendors. Companies such as SW-Soft (Plesk), WebHostAutomation
(Helm), and Ensim added integrated installation support for the DotNetNuke
application within their control panel applications. All of these strategic
partnerships exposed DotNetNuke to a much larger consumer audience and
would not have been possible had it not been for the Microsoft Hosting
program.

Collaboration with web hosts also resulted in new application features that
were added to satisfy some of their specific business requirements. The
ability for DotNetNuke to run in a web farm environment was one such
feature that really addressed the application scalability questions beyond a
single web server configuration. Dan Caron stepped up yet again to champion
these enhancements, producing an architecture with two different caching
providers to satisfy the widest array of use cases. Charles Nurse also
completed the abstraction of all modules into isolated components that could
be optionally installed and uninstalled from the core framework. This change
provided additional flexibility for web hosters in terms of being able to
customize their offering for clients.

Infrastructure
One of the benefits of the original sponsorship agreement with Microsoft was
a free shared hosting account on the servers managed by the ASP.NET team
at OrcsWeb. This arrangement served us well in the early stages but the fact
that we had extremely limited access (that is, FTP) to the account and
absolutely no control over the associated infrastructure services eventually
created some challenges for the project. In addition, we had long been
leveraging services from PortalWebHosting for back-office items such as
DNS, source control, issue tracking, and email, but a recent change in
ownership created some friction in regard to legacy promises and agreements.
Approaching premium hosting provider MaximumASP in the fall of 2004, we
were able to secure a generous formal sponsorship agreement that paved the
way for a more centralized and professionally managed project infrastructure.

Initially, MaximumASP provided us with two dedicated servers and a Virtual
Private Server (VPS) account on a shared server. One of the dedicated servers
was configured as an SQL Server database server and the other as a back-
office server. The VPS account was provisioned as a web account for our
public website. This configuration served us well initially, but the rapid
growth of membership and the lack of control over the web server soon
forced us to look for other options. Further discussions with MaximumASP
resulted in the allocation of a dedicated web server for our public website. The
combination of a dedicated web server and a dedicated database server proved
flexible enough to handle our full website requirements. It was not until we
added discussion forums to our site and pushed our traffic past 4 million page
views a month that we felt the need to consider a web farm configuration.

The physical abstraction of the core application into a more modular
organization had a direct impact on our back office project infrastructure.
Rather than simply managing a single source code repository and issue
tracking database, we now had to deal with many Project sandboxes—each
with its own membership and security considerations. In addition,
establishing effective communication channels for different stakeholder
groups was critical for managing the project. This is one of the reasons why
the DotNetNuke Forums Project played such a significant role in the
evolution of the DotNetNuke projects. It allowed for a variety of discussion
forums to be created, some public and some private, providing focused
communication channels for project members.

During 2005, Scott Willhite also made some huge contributions to the project
in terms of infrastructure management. In a project of this size with so many
active participants, there is an incredible amount of administrative work that
goes on behind the scenes to keep the project moving forward. As most
people know, administrative tasks are largely unappreciated and only seem to
get attention when there is a problem. Scott did his best to keep the endless
stream of infrastructure tasks flowing, receiving little or no recognition for
his efforts but playing an instrumental role in the success of the DotNetNuke
project.

Branding
One of the things that became obvious during the writing of Professional
DotNetNuke ASP.NET Portals (Wiley Publishing, Inc., 2005) was that our
branding message was not clear. Although our trademark and domain name
reflected “DotNetNuke,” our logo contained an abbreviated terminology of
“.netnuke.” This led to confusion for authors of the book as well as the
publisher in terms of what was the correct product branding. As I mentioned
earlier in this chapter, the initial branding was constructed with little or no
foresight; therefore, it came as no surprise that a major overhaul was
necessary.

Initial conversations within the Core Team offered some interesting and
sometimes surprising opinions on the DotNetNuke brand. When discussion
came to a stalemate, the topic was raised in the public forums that resulted in
a similar scenario. Some folks considered the “nuke” term to be too offensive,
unprofessional, or shocking to be used as a serious brand name. Others
placed a significant metaphorical value in the current logo, which contained a
gear embossed with a nuclear symbol. Some preferred a transition to the
“DNN” acronym that was often used as a shorthand reference in various
communication channels. Further debate ensued over the category we
occupied (portal, content management system, framework, and so on) and
the clear marketing message we wanted to convey.

As the project founder, I had my own opinions on the brand positioning and
ultimately decided to resort to an authoritarian model rather than a
committee model so that we could make a decision and move forward. From
my perspective, when it comes to technology companies, there is a lot of
acceptance for nontraditional brand names (consider Google, Yahoo!, Go
Daddy, and so on). In addition, due to the press coverage of the Microsoft
Hosting program, the DotNetNuke name achieved a significant amount of
exposure; therefore, a complete change in brand would impose a serious
setback in terms of brand acceptance and market reach. Taking into
consideration the valued perspectives of the Core Team and community, I felt
there should be a way to provide a win-win solution for everyone.

I first tried working with a local design company (the same company that
produced the DotNetNuke 2.0 site skin), and although it had a real talent for
brand identity services, there were no concepts produced that really grabbed
my attention or satisfied my goals for the project. Perhaps I was being overly

critical in my judgment of various designs, but I knew that I absolutely did
not want to settle for a concept unless I thought it met 100 percent of my
criteria. Although Nik Kalyani had been on the Core Team for eight months
and had even expressed a serious interest in the marketing activities of the
project, it was not until the rebranding exercise where his talents were truly
exemplified.

Nik and I started an offline dialogue where we quickly established some
complementary goals, at least at a conceptual level. The basic decision was
that we wanted to retain the full “DotNetNuke” brand name and strengthen
rather than dilute its brand emphasis. We also wanted to reduce or eliminate
the negative imagery associated with the nuclear warning symbol in the
current logo. Although the abbreviated form of the word “nuke” tended to
evoke a negative response from the general population (relating it to bombs
and radiation), the expanded form of “nuclear” and “nucleus” had a much
more positive response (related to science, energy, and power). The word
“nucleus” also had some complementary terms associated with it such as
“core,” “kernel,” and so on that worked well with the open source project
philosophy. The trick was to find a way to emphasize one aspect over another.

Nik spent countless hours designing alternative logo concepts. From a
typeface perspective, he suggested using the Neuropol font, and I really liked
the fact that it had a strong technical overtone but not so much that it could
not be used effectively in other mainstream media applications. To achieve a
uniform appearance for the typeface, we decided to use all capital letters even
though the standard format for the brand name in regular print would
continue to be mixed case. Nik included a unique customization for the “E”
and the “T” letters that resulted in a distinctive, yet professional, styling for
the word-mark contained within the logo.

Creating the graphical element for the logo was a much bigger challenge
because we were looking for a radically new design that exemplified so many
diverse project attributes. To summarize some of the more important criteria,
we were looking for something simple yet distinctive, with at least some
elements that provided a visual reference to the old logo for continuity. It
needed to be scalable and adaptable to a wide range of media (both digital and
print) and cost-effective to reproduce. And perhaps the most subjective item I
promoted was that the logo should be stylish with my acceptance criteria
being, “Would my wife permit me to wear clothing embossed with the logo
when we went out in public together?” Nik created more than 40 unique logo

concepts before arriving at a design that seemed to catch the full essence of
what we were trying to accomplish (see Figure 1.10). After working at this for
so long and dealing with the discouragement and frustration, it was a
euphoric moment to discover the proverbial “love at first sight.”

Figure 1.10

It is amazing how many diverse concepts can be represented in a single
image. The saying “a picture is worth a thousand words” is cliché, but in this
case, it certainly summarized the final product. The new logo had the basic
shape of a nuclear atom. The nucleus of the atom was shaped like a gear to
retain its heritage to the previous project logo. The logo was two basic colors
—red and black (using shades of gray to achieve a 3-D effect)—making it
much more adaptable and simple to reproduce in a wide variety of media
formats than the previous logo (which used shadows and gradients for 3-D
effects). The gear had 12 teeth (a number considered to be lucky in many
cultures). The intersection of the three revolving electron trails (referred to as
the “triad”) could still be subtly viewed as a nuclear symbol reference. With
some creative inference, they could also be viewed as the three-letter project
acronym: DNN. Later, someone on the Core Team mentioned that the triad
bore some resemblance to the Perpetual Motion Interactive Systems Inc.
“infinity” logo, a reference I had never formally recognized but something
that I am sure played a subliminal role in my selection.

In terms of brand acceptance, we realized there may be significant
community backlash related to the new creative brand, especially from
companies who were currently leveraging the existing DotNetNuke branding
in their marketing materials. Therefore, we were pleasantly surprised at the
overwhelming positive feedback we received regarding the new brand
identity. Our goal was to roll out the brand in progressive stages with the
DotNetNuke 3.1 product release representing the official brand launch to the
general community.

With the creative elements out of the way, it was time to finalize the rest of
the branding process. Because DotNetNuke serves many stakeholder groups,

it was difficult to come up with a product category that was focused but not
too limiting in scope. From a marketing perspective, the board agonized over
the optimal brand message. “Content management” was a powerful industry
buzzword, but if you compared the capabilities of DotNetNuke in this area
with other enterprise software offerings, it became obvious that it would be
some time before we could be considered a market leader. The term “portal”
had been so overused in recent years that it became severely diluted and lost
its clarity as an effective marketing message. Conversely, the emerging term
“framework” began to surface more regularly and was starting to gain
industry acceptance with both developers and management groups as a
powerful software development category. Because DotNetNuke's architectural
principles were predicated on simplicity and extensibility, the framework
category seemed to be a natural fit. The next step involved clarifying the type
of framework. DotNetNuke was primarily designed for use in a web
environment and its breadth of features made it well suited for building
advanced data-driven Internet applications. The resulting “web application
framework” was an emerging industry category in which DotNetNuke could
take an immediate leadership role. Where applicable, we could also leverage
our “open source” classification to emphasize our community philosophy and
values.

One of the toughest parts of any rebranding exercise involves updating all
existing brand references to reflect the new identity. In DotNetNuke's case,
this affected the content and design of the dotnetnuke.com website, the
marketing references in the DotNetNuke release package, and all technical
and user documentation. Compared to the time it took to construct the new
logo, the time it took Nik Kalyani to create a new site design was minimal
(which is truly amazing considering the amount of time and effort that
typically goes into a custom site design). I had long been a fan of Nik's
minimalist style, which emphasized clean presentation, lightweight graphics,
and plenty of whitespace. Nik's expert grasp of the DotNetNuke skinning
architecture enabled him to create a combination of skins and containers that
were applied in a matter of minutes to completely transform the entire
website. The new site design was creative yet professional and eliminated the
“cartoonish” criticisms of the previous site design (see Figure 1.11). Nik also
created our first professional document templates that would provide
consistency and emphasis of our branding elements within our technical and
user documentation.

http://dotnetnuke.com

Figure 1.11

Tech Ed
At the beginning of June, there was a massive Microsoft technology
conference, Tech Ed, in Orlando, Florida. Based on a generous invitation from
the International .NET Association (INETA), Scott Willhite and I were
provided with an opportunity to attend the event as special guests. The timing
was perfect because Professional DotNetNuke ASP.NET Portals was officially
released at this event, as was the new project branding. Joe Brinkman and
Dan Caron were able to attend some aspects of the book launch festivities,
and we managed to jam a substantial amount of marketing activities into the
five-day event. We had a dedicated Birds of Feather session, two community
focus sessions at the INETA booth, a guest appearance at an INETA User
Group workshop related to building effective websites (where we learned 90
percent of .NET user groups were already using DotNetNuke), and a number
of book signings scheduled by WROX Press at the Tech Ed bookstore. The
DotNetNuke book was the top-selling developer book at the Tech Ed
bookstore for the event—a fact that emphasized the growing popularity of the
project. We also distributed official DotNetNuke T-shirts that showcased the
new project branding, a popular item amid all the typical free swag provided
at these events.

Seizing the opportunity of having the majority of the DotNetNuke board of
directors together in one place, we had our second official board meeting, an
all-day session in the conference room of our hotel in Orlando. On the agenda
was a serious discussion related to Core Team reorganization and key project
roles. For quite some time, we had realized that the current flat
organizational structure was somewhat dysfunctional and that we ultimately
needed more dedicated management resources to accomplish our goals.
However, to support these resources, we needed a sufficient financial model.
Discussion focused on the pros and cons of various revenue opportunities,
their revenue potential, and their perceived effect on the community
ecosystem. We also talked about what it would take for the current board
members to commit to full-time dedicated roles in the organization and the
associated financial and security implications. A lot of really deep discussion
ensued, which gave us a much better mental picture of the challenges that lay
ahead if we truly wanted to take the project to the next level.

Following the publication of Professional DotNetNuke ASP.NET Portals,
there was a bit of a media frenzy around the relationship between Microsoft

and the open source phenomenon. Some of my personal opinions and quotes
from the book found their way into an article published on CNET (one of the
leading mainstream news sites), resulting in a lot of additional exposure for
the project. It was interesting to see the power of the media at work, where a
reference in a highly visible and trusted journalism channel can lead to broad
distribution of a particular message (much like a stone in a pond leads to a
concentric series of expanding ripples). For the most part, large companies
are the most successful at leveraging these medial channels, but special-
interest organizations also have the opportunity to make a significant
impression.

Credibility
Although DotNetNuke had experienced a healthy growth rate through its
open source philosophy, it had largely done so by appealing to the needs of
grass-roots developers. Although these stakeholders represent an integral
part of the high-tech marketplace, there is another group that is far more
influential in terms of market impact. The so-called “decision-makers”
represent the management interests in serious enterprise-level business
organizations. For DotNetNuke to make the transition from a developer-
oriented open source project to a serious enterprise software contender, it
needed to appeal to the decision-maker.

Where developers think in terms of short-term technical decisions (that is,
“What tool can I use to get this job done as quickly as possible so that I can
impress my boss?”), decision-makers think in terms of long-term business
decisions. They are interested in the future support of a platform or product.
They consider solutions in terms of “investments,” “security,” and how much
“risk” is associated with adopting a particular technology as part of their
company infrastructure. And regardless of the technical superiority of a
software solution, the adoption criteria always come down to basic trust and
consumer confidence. So the challenge for an open source project like
DotNetNuke is establishing the necessary level of credibility to be taken
seriously.

In the commercial world, customers get a sense of confidence based on the
fact that they have paid licensing fees to a vendor that generally provides
them with a certain level of future support. Obviously nothing is guaranteed,
but this financial model provides both parties with a sense of security and
responsibility. Another thing that the financial model affords is the ability to
market the product through traditional channels—channels that decision-
makers tend to monitor on a regular basis.

In the open source world, there are no licensing fees, which helps contribute
to the lower cost of ownership but also leaves the investment/security aspect
somewhat lacking. If you look at Linux, for example, you will notice that the
broad industry buy-in for the operating system did not occur until after some
serious market vendors (Sun and IBM) pledged their support. As soon as this
happened, many medium-large companies began to take Linux more
seriously. And this was not because Linux received any product
improvements through these relationships, but rather because it reduced its

risk perception in the general marketplace. And without traditional licensing
fees, open source products generally do not have the budget to leverage
traditional marketing channels and must instead rely on grassroots and viral
marketing techniques.

So let's consider some of the ways in which an open source product can
improve its credibility and reduce its risk perception for decision-makers.
Clearly one way is that it can align itself with large, respected vendors who
lend credibility (that is, “If vendor X thinks it's good, then so do we”). Another
way is to have mainstream books, magazines, and mass media distributors
publish information about the product, contributing to the overall community
knowledge base and providing recognition. Yet another option is to identify
reference implementations that exemplify the best qualities of the product
and impress people with their performance, elegance, or extensibility.
Another way is to demonstrate a proven track record and history for
supporting the community, especially through platform transitions where the
likelihood of project failure is high. The overall size of the community
ecosystem, including the open source participants, consumers, and third-
party service providers, is another critical aspect in demonstrating credibility.

DotNetNuke definitely made some significant advancements in credibility in
2005. The strong working relationship with Microsoft reaped rewards with
the hosting program. The publication of Professional DotNetNuke ASP.NET
Portals by Wiley Publishing, Inc. and Building Websites with VB.NET and
DotNetNuke 3.0 by Packt Press provided some excellent recognition through
traditional publishing channels. Articles and references in mainstream
magazines such as Visual Studio Magazine, ASP.NET Pro, CoDe Magazine,
and .NET Developers Journal also provided some great benefits. The
showcase on dotnetnuke.com contained many diverse reference
implementations, and we had proven through three years of product upgrades
that we were committed to supporting the community. The membership and
download metrics continued to grow exponentially, as did the number of
independent software vendors (ISVs) providing products or services within
the DotNetNuke ecosystem.

Trademark Policy
Unfortunately, an unexpected issue arose in the summer of 2005 that
immediately put the project into crisis mode. Based on some invalid
assumptions, a software consultant from Australia recommended that his
client register a trademark for the DotNetNuke name in Australia. Aside from
the obvious ethical implications, the immediate reaction was that this move
was based on ulterior motives that could potentially hold the entire
Australian DotNetNuke community hostage. Further communication
revealed that the Australian company had concerns over the official
trademark registered in Canada, specifically in regard to the fact it was
embedded within the application source code and binaries and that its
business investment could be compromised if restrictions were ever put on
trademark usage. Ultimately this whole situation revealed a number of
critical issues when it comes to trademarks. First, the holder of the trademark
must publish a policy that clearly defines the allowable usage of the mark
under a wide range of use cases. Second, the trademark holder must make
every attempt to enforce the policy so that the mark does not become a
common term and lose its value as a protected asset. Third, a trademark must
be registered in every jurisdiction where it intends to be used.

To satisfy the first requirement, I firmly believe in the philosophy of
“standing on the shoulders of giants.” Research revealed that Mozilla had
recently gone through a similar project challenge, so we decided to use its
recently published trademark policy as a template for our own. The political
ramifications of introducing the policy at this point seemed controversial but
absolutely necessary if we intended to protect our brand. After extensive
research, review, and legal advice, we finally announced the trademark policy
in conjunction with the logo guidelines in July 2005. The overall community
feedback was quite positive because the policy made every effort to
emphasize our open source roots and strong community ideals.

To satisfy the second requirement, all marketing materials were updated to
reflect the trademark policy guidelines, and many community sites made
changes to bring their use of the trademark into compliance. We also
obtained legal advice on the creation of a Trademark License Agreement to be
used in situations where third parties required the right to use the
DotNetNuke trademarks for specific business purposes.

The third requirement was somewhat more challenging to deal with because

it had substantial financial implications. The cost to register an individual
trademark in a specific jurisdiction (country) can cost anywhere from $2,000
to $5,000. As an organization, we simply do not have the financial means to
support such a large expenditure. So instead of considering all jurisdictions,
we decided to focus on those jurisdictions that had a large project following.
These included the United States, Canada, Australia, Japan, and the European
Union. This whole experience gave me a much deeper understanding of the
financial commitment required by large multinational companies that want
to protect their brand around the world.

ASP.NET 2.0
In July 2005, we recognized that we had approximately four months to
prepare for the launch of Microsoft's next-generation software development
platform. ASP.NET 2.0 had been under development for three years and had
finally reached the point where it was ready for public release. Aside from
reading the standard marketing propaganda in the various trade magazines
catering to the Windows platform, I had not done significant research into the
specific challenges DotNetNuke faced as a product related to this platform
upgrade. And, as is usually the case, we quickly found out it was going to be
some of the unpublicized platform changes that were going to cause us the
most difficulty.

Based on early community feedback for the ASP.NET 1.0 release, Microsoft
decided to completely overhaul the way web projects operated, including
substantial changes to the underlying compilation model. Because
DotNetNuke's advanced modular architecture strayed so far from the
traditional monolithic ASP.NET application model, these platform changes
had a significant impact on the project. Our solid working relationship with
Microsoft reaped benefits in that we were able to engage in some focused
dialogue and onsite meetings in Redmond with the Microsoft product
managers who understood the nuances of the new ASP.NET 2.0 platform
better than anyone. Scott Guthrie, Simon Calvert, Omar Khan, and a number
of other key Microsoft resources got personally involved in assisting us to
find a suitable migration path.

I have to admit I was a vocal critic during these early discussions because I
could not understand the business cases that precipitated some of the major
architectural changes. But after working closely with the Microsoft product
managers, I began to warm up to the benefits of the new model and started to
envision how we could leverage its capabilities to expose some powerful new
options to the DotNetNuke community. But before we could focus on these
new options, our most critical requirement was that we could not have
breaking changes in the DotNetNuke framework in our ASP.NET 2.0 release.
The main business criteria driving this requirement was the fact we had just
had a major release with significant breaking changes in March 2005, and we
could not risk an all-out community revolt (or product fork) based on
compatibility issues.

Research and discussion proceeded throughout the months of July and

August as we worked with Microsoft to find an optimal solution. Feedback
from the community seemed to be mixed. People who were victims of the
Microsoft propaganda machine seemed to think that the release of ASP.NET
2.0 would signal the end of DotNetNuke, because it promised to deliver so
many overlapping application features. Other people who had adopted
DotNetNuke as part of their business infrastructure expressed apprehension
and fear regarding ASP.NET 2.0, based on their past experience that a
significant platform upgrade usually resulted in a costly migration effort.
Surprisingly, out of all the feedback collected, it appeared that nobody was
making a serious attempt to perform the upgrade on their own and that they
were waiting for us to provide a migration path (as we had always done in the
past). This element of trust was not lost on me, and I did my best to blog on a
regular basis to provide public communication of our progress.

Reorganization
Throughout the summer and fall of 2005 there was ongoing discussion
related to Core Team reorganization. Based on the guidelines that had been
created when individuals were invited to join the team in the summer of
2004, there was clearly a group of members who had not lived up to their
commitments. The list of responsibilities included staying involved in Core
Team business through the private discussion forum; participating in weekly
Core Team chats; contributing bug fixes, enhancements, or documentation to
the core product; and being active in community support channels. There
were many legitimate reasons, both personal and business-related, which led
to inactivity for team members. However, the unfortunate side effect is that it
led to a community perception that based on the total number of Core Team
members, we were underachieving in terms of our capabilities as a whole.
The Core Team reorganization meant that a number of team members needed
to be retired to make way for some new members who had earned the right to
participate based on their community accomplishments over the past year.
The project had never had to deal with a situation like this in the past, and it's
safe to say that as software developers, we are much more adept at solving
technical problems than human-resources issues. So the dilemma was how to
break the news to the inactive members in a professional and courteous
manner that still respected their past accomplishments and left the door open
for future participation. It was Scott Willhite who demonstrated the most
experience and wisdom in this area, as we worked on establishing effective
human resources processes for the organization.

Since the original formation of the Core Team, all members had received
equal rights in terms of project participation. This included not only
communication channels but also permissions to the product source code
repository. This model worked well when the team was small and all
members were on equal footing in terms of their technical abilities. However,
it proved to be a challenge when the team grew in size and members were
added with varying technical backgrounds. DotNetNuke had grown into a
mission-critical web application framework that many businesses now relied
on for rock-solid performance and reliability. We could no longer accept the
risk of inexperienced team members checking in code that could compromise
the stability of the application. As a result, we needed to refactor our project
roles to reflect the new project requirements.

A common theme that helped drive the refactoring of the project roles was
accountability. In the past, we had witnessed the fact that without
accountability, an individual would not exhibit the same level of
commitment, dedication, or passion for the project. As a result, it was
important to provide Core Team members with areas of accountability where
their contributions would be highly visible and easily recognized by the
general public. This public aspect provided them with a much greater benefit
in terms of visibility in the community, but it also made them a target for
criticism if they were inactive because they were personally responsible for
specific areas of the project.

Using the Apache Foundation as a meritocracy reference, we made some
significant changes to the organizational model of the project. The old “Inner
Team” designation was abolished in favor of a new “Core Team Trustee” role.
Scott Willhite came up with this new name based on the desire for industry-
accepted terminology and the fact that this innermost project role assumed
the highest level of trust from a development perspective. Core Team
Trustees had multiple years of experience on the project, had successfully
demonstrated their technical aptitude, and as a result were granted write
access to the core repository. The old “Outer Team” designation was
simplified to “Core Team Member”—a role that was able to participate in all
Core Team communication channels but was only provided read access to the
source code repository. In addition, we added a role for the DotNetNuke
Projects of “Project Team Lead.” This role was responsible for managing the
project infrastructure and communicating project status to the Core Team.

Microsoft Conferences
The month of September 2005 began with the Professional Developer
Conference (PDC) in Los Angeles, California. Based on a kind gesture from
Microsoft, a large number of Core Team members were provided with free
registration for the event in exchange for analysis of key ASP.NET 2.0
features that could be used in the DotNetNuke framework. Scott Willhite,
Dan Caron, Nik Kalyani, Jon Henning, John Mitchell, Charles Nurse, and I
were all able to attend the event, bringing together in one place the largest
group of Core Team members ever. It was an excellent opportunity to get to
know one another, and we spent a lot of time hanging out together, exploring
the exhibitor area, hosting a Birds of Feather session, visiting Universal
Studios, and attending a variety of conference sessions.

The DotNetNuke board of directors, with the recent inclusion of Nik Kalyani,
also took the opportunity to have some serious meetings regarding the
progress of the revenue opportunities discussed at TechEd. The summer had
not been productive in getting any programs launched other than advertising
and sponsorship, and Nik took a lead role in attempting to clarify both our
marketing and financial initiatives for the next 12 months. Specific board
members were assigned to each major opportunity, and projections were
presented and discussed in terms of assumptions, benefits, and execution
tasks. We had a lot of work ahead of us, including a major platform transition,
now firmly scheduled for November 7, 2005.

Later in September, Microsoft hosted a three-day summit for its Most
Valuable Professional (MVP) community members. Based on public
achievements, a number of DotNetNuke Core Team members earned this
award of distinction in 2005. Bruce Hopkins (Georgia, USA), Phil Beadle
(Australia), Cathal Connolly (Ireland), Jim Duffy (USA), and I (Canada) were
all able to attend the private summit in Redmond, Washington. The summit
provided the opportunity to get to know these Core Team members on a more
personal level, including their appetite for social festivities. I was also able to
spend some time with a number of prominent ASP.NET personalities and
DotNetNuke evangelists whom I greatly respected in terms of their
contributions to the community. In addition, there was also a large
representation of Microsoft employees at the MVP summit that resulted in
some excellent networking opportunities and offline discussions. Steve
Balmer's keynote address provided some valuable insight into the roadmap

for Microsoft's products and revealed areas where DotNetNuke could focus its
efforts to strengthen its market position in the coming year.

Directly following the MVP summit, I had the privilege of attending my first
ASPInsiders summit as well. The ASPInsiders represent a group of well-
respected industry leaders in the Microsoft ASP.NET community. I had
recently been inducted as an official member and appreciated the opportunity
to be included in such an elite group of professionals. Perhaps the most
important benefit of being an ASPInsider was that it provided representation
for the DotNetNuke development community and validation of our extensive
contributions to the industry. Due to its small focused membership, the
ASPInsiders summit had a personal and direct interaction with Microsoft
employees, allowing its members to provide feedback on a number of exciting
new technologies. The networking opportunity was incredible, and the
intricate dynamics of the various personalities and companies represented
were especially interesting.

DotNetNuke 4.0
Throughout the months of September and October, Charles Nurse was
instrumental in working on the migration to the ASP.NET 2.0 platform. He
invested a massive amount of time researching compatibility issues, creating
various proof of concepts, and communicating regularly with Microsoft. He
actually pursued two different agendas simultaneously: the upgrade of
DotNetNuke 3.0 to ASP.NET 2.0 from a runtime perspective and the creation
of a new web project model for DotNetNuke 4.0 that provided a development
strategy for the future.

To support the community, we concluded that we would need to support two
parallel code bases for an undetermined period of time: DotNetNuke 3.x
(ASP.NET 1.1) and DotNetNuke 4.0 (ASP.NET 2.0). Obviously, a more optimal
solution would have been a single code base that worked on both platforms;
however, this simply was not possible based on the platform compilation
changes in ASP.NET 2.0. In addition, we did not know what to expect in terms
of the adoption rate for the new Microsoft platform. Therefore, it seemed
natural that we focus on developing for both ASP.NET 1.1 and 2.0 in the short
term. An unfortunate side effect of this model involved a general
recommendation to develop to the lowest common denominator (that is, not
leverage ASP.NET 2.0–specific technology) and synchronizing all fixes and
enhancements across the two code bases.

One of the greatest achievements in the platform migration was that we were
able to fully satisfy our business requirement for no breaking changes.
DotNetNuke modules and skins developed on ASP.NET 1.1 could be installed
directly into the ASP.NET 2.0 environment without any changes whatsoever.
This had massive benefits for the commercial DotNetNuke ecosystem
because vendors could continue developing their modules as a single code
base on the ASP.NET 1.1 platform but offer their packaged products for sale in
both channels.

The only item that remained outstanding right up until the week before the
November 7 launch was how to develop DotNetNuke 4.0 modules on the
ASP.NET 2.0 platform. The new dynamic compilation model in ASP.NET 2.0
created some challenges for many of our runtime extensibility features,
especially where they relied on object instantiation through reflection. As is
often the case with technical problems, the answer is out there—it's just a
matter of finding the right person to ask. As luck would have it, a Microsoft

developer (Ting-Hao Yang) who was copied on some of the communication
between our team and the Microsoft ASP.NET Product Manager group finally
responded with details on a new ASP.NET 2.0 framework method that
ultimately solved all of our remaining reflection issues. In the end, all that
was required was a change to a single method in the DotNetNuke 4.0 core
framework (to use BuildManager.GetType).

One of the benefits of the new ASP.NET 2.0 platform was that Microsoft had
put a lot of focus on making the technology more accessible to the general
developer community. A key deliverable in this strategy was the release of an
entire suite of free “Express” tools. Included in the Express line was a tool
named “Visual Web Developer” that provided a functional Integrated
Development Environment (IDE) for ASP.NET 2.0. Leveraging the benefits of
this powerful new tool, we created a DotNetNuke 4.0 Starter Kit that enabled
a developer to configure a fully functional development environment within
minutes. This had significant implications on the DotNetNuke development
community because it lowered the barrier of entry and now made it possible
for any aspiring software developer, from beginner to advanced, to be
instantly productive with the DotNetNuke web application framework.
Combine this with the free SQL Server 2005 Express database engine and you
have a zero cost development environment. Visual Web Developer could not
be used to develop server controls or class libraries; however, the fact that the
DotNetNuke extensibility architecture was based on user controls made it a
perfect fit.

Not wanting to neglect the existing DotNetNuke 3.0 community by focusing
solely on ASP.NET 2.0 migration, we decided to integrate a few powerful new
features that had long been requested by the general community. Core Team
member Tam Tran Minh had been developing an Active Directory integration
component for a number of years and agreed to contribute it as a fully
supported core framework component. Additionally, Jon Henning had been
busy working on a full-featured JavaScript API that would allow developers to
leverage powerful client-side behavior in their modules. This included a new
menu control, the DNN Menu, and an implementation of the popular
Asynchronous JavaScript for XML (or Ajax) technology. Ajax technology had
become one of the hottest new trends for web development, and it is
important to note that DotNetNuke included a powerful Ajax library well
before the announcement of ASP.NET Ajax by Microsoft. The combination of
these features offered benefits to both platform consumers and application

developers, and further strengthened our core platform offering.

The official Microsoft launch date for ASP.NET 2.0 was set for November 7,
2005. We knew if we could release DotNetNuke 4.0 to coincide with this
event, we would be able to ride the huge marketing wave created by
Microsoft. Because we had always advocated “releasing software when it is
ready,” this hard deadline imposed some serious challenges on our meager
project resources. Aside from the obvious technical deliverables, we had
communication and marketing deliverables that also needed to roll out in
unison. Nik Kalyani showed his ability to pull things together on a tight
schedule, and we launched our first monthly newsletter to the entire
DotNetNuke registered user base (now 200,000 registered users) on
November 7. The response was overwhelmingly positive as the significance of
the achievement began to sink in. In the month of November, we recorded
165,000 downloads, far eclipsing any previous monthly download total in the
history of the project.

An interesting aspect to consider in the ASP.NET 2.0 migration was that we
delivered a fully managed upgrade to users of the DotNetNuke web
application framework. Anyone who has ever attempted a major platform
upgrade on his or her own should recognize the incredible value of this
accomplishment. We had effectively eliminated a budget line item of
considerable cost and effort from thousands of IT departments and business
entities around the world. Compare this to scenarios where companies create
their own custom ASP.NET 1.1 applications. In these cases, each company
would need to invest significant resources and funding to work out its own
web application migration strategy. Or compare this to another scenario
where you adopt another web application framework, commercial or open
source, which had not even considered the upgrade challenges posed by
ASP.NET 2.0 and were going to force you to postpone your upgrade until it fit
their own release schedule. In either case, the decision to adopt DotNetNuke
as part of an organization's business infrastructure had certainly paid
dividends worthy of the attention of any business decision-maker.

Immediately following the DotNetNuke 4.0 release, we focused on
stabilization issues that were exposed through testing by a larger community
audience. Another area that received dedicated focus was the Module Item
Template feature of the DotNetNuke 4.0 Starter Kit. Through research and
persistence, we were able to construct a DotNetNuke Module Template that
could automatically create all of the development resources required to build

a fully functional module in DotNetNuke 4.0. It even had some
parameterization capabilities so that the template could be customized at
runtime to meet the needs of the developer. I wrote an article describing the
Starter Kit and Module Template and posted it on the public forums on
www.asp.net. The article proved to be popular, with nearly 30,000 views
recorded in the six weeks following its publication. It turned out that the
changes in ASP.NET 2.0 resulted in some decent productivity benefits for
module developers, further improving the capabilities of the DotNetNuke
framework.

An interesting event occurred in December 2005, well after the official launch
of ASP.NET 2.0. Based largely on the feedback that we provided Microsoft
during our product migration efforts, Microsoft announced some add-ons for
Visual Studio 2005 that added back ASP.NET 1.1 development support
through Web Application Projects as well as compilation and merge support
through Web Deployment Projects. Based on its superior architecture and
incredible popularity, DotNetNuke was able to unite a significant portion of
the Microsoft developer community and create a much stronger voice and
more compelling argument in favor of specific platform features than would
have ever been possible for individual developers. Besides the fact that these
add-ons provided some critical options for web application developers, it was
really gratifying to see that our direct feedback could have such an immediate
and influential effect on the industry.

http://www.asp.net

Slashdotted
In October 2005, I wrote a blog titled “No Respect for Windows Open
Source.” The blog was a political rant based on the fact that because
DotNetNuke did not run on a fully open source stack of software components
(that is, Linux/Apache/MySQL/PHP or LAMP), it did not get any respect from
the general open source community. Further, it argued that all open source
projects regardless of platform should be judged solely on the validity of their
open source license and ideals. The blog was picked up by Slashdot, the
largest independent news site for information technology and resulted in a lot
of exposure for the project. The posting on Slashdot generated more than 500
comments, each with a unique perspective on the Windows open source
paradigm.

In October, we were approached by .NET Developers Journal (.NETDJ) to do
a series of articles on the DotNetNuke project. This was an excellent
opportunity to showcase various aspects of the project in a mainstream
magazine. A number of Core Team members were identified as potential
authors and the first article in a series of six was published in the November
edition of .NETDJ. Forging relationships with publishers is a great way to
raise the profile of the project and open doors for future opportunities. In this
case, working with SYS-CON (the publisher of .NETDJ) reaped rewards in
terms of being approved as a featured speaker in the upcoming SYS-CON
Enterprise Open Source conference in June 2006.

By the end of 2005, our SourceForge.Net ranking had climbed to #75 (out of
all the open source projects in the world). We were consistently getting
15,000 new registered users per month, and our project downloads averaged
120,000 per month. The dotnetnuke.com site was now serving 4.5 million
page views per month, and every indication was pointing to even more
improvement in 2006.

Benefactor Program
As much as there is a romantic notion regarding a distributed group of purely
volunteer resources working together in their free time to produce an
enterprise-level software product, it does not represent reality. To effectively
manage all of the aspects of a professional software product, dedicated
management is an absolute requirement. This does not just entail the
standard project management principles for software development, but also
the legal and marketing aspects of managing a high-profile technology asset.
Since the project inception I had been able to commit 100 percent of my time
to the project only because there was a sufficient stream of project revenue to
support my needs. And throughout the life of the project, a number of team
members had been financially compensated for various deliverables so that
we could meet obligations and scheduled deadlines. The financial resources
came from a variety of sources, including third-party sponsorship,
advertising, and custom consulting opportunities. Unfortunately, the revenue
streams were not sizable or stable in terms of securing multiple resources for
long-term engagements. Essentially, we were trying to operate a product
company without any direct product revenue. And with the constant growth
of the project, the demands were increasing rather than decreasing, putting
even more pressure on the minimal set of project resources.

Back in July 2005, I concluded that without a dedicated sales effort, the
dotnetnuke.com website was never going to reach its full potential as a
revenue-generating asset. (We had published ad rates on the site months
earlier and had not received many serious inquiries.) I decided it was time to
more actively cultivate our advertising and sponsorship revenue streams and
that it was going to require spending some money to make money. Armed
with a huge number of industry contacts collected at Tech Ed, I hired a full-
time resource to actively manage the advertising and sponsorship program.
Due to major content improvements made in the previous four months, the
dotnetnuke.com website became a targeted channel for the Microsoft
development community. I hired my brother, Bill Walker, full time to act as
the DotNetNuke advertising manager, and despite his lack of knowledge of
the product or industry, he hit the ground running. By simplifying the
advertising rate sheet and employing traditional sales techniques, we were
successfully able to substantially grow this revenue stream in a relatively
short time. However, it was still not a model that would scale to supporting
the large successful organization we wanted to become.

http://dotnetnuke.com
http://dotnetnuke.com

In the fall of 2005, while driving home from a business trip, I spent some
dedicated time immersing myself in the revenue model dilemma. Over the
years, I did a lot of research on business models for open source projects, and
the big question was, “How do you sustain an open source organization while
still adhering to its open source ideals?” There were obviously a number of
companies that had demonstrated their ability to succeed in this area by
employing a variety of financial options; however, I was keenly aware that
each model had its own set of disadvantages.

One of the other recurring themes I kept thinking about is “who we serve.” In
a traditional business model, you serve your customers—but this generally
assumes that some money is changing hands. For DotNetNuke, I would like
to think that our open source community is who we serve, but because they
are essentially using the product for free, it becomes challenging when other
stakeholders step forward with financial support.

Examining each of the more popular open source revenue models based on
this theme proved to be a useful exercise.

A pure volunteer option has no revenue model. As a result, it has no resource
cost—but at the same time it has no accountability, responsibility, or
dedicated management. It could be argued that although it is supposed to
serve the open source community, it really does not because there are no
motivating factors driving the development and support.

A dual license model had been effective for a number of open source projects
because it allowed for an open source version as well as a commercial version
of the same product. This is possible only if the project owner has clear
ownership of the copyright for the code. The commercial version provides
traditional licensing revenue that helps sustain dedicated management and
developer resources, resulting in improved accountability. Unfortunately, it
tends to lead to a number of conflict-of-interest scenarios within the
ecosystem. For one thing, there is a constant problem of deciding which
features belong in the open source version of the product and which in the
commercial version. The commercial license often eliminates many of the
advantages that are fundamental to a customer choosing an open source
solution. Extensibility options are sometimes throttled as the company
attempts to control the financial ecosystem around the product. And the
company is often forced to show favoritism through support and marketing
channels to its paying commercial customers over the organic open source
community.

A sponsorship model involves utilizing a revenue stream from one or more
third-party funding sources. Although this revenue model results in funding
for dedicated management, it often compromises the project ideals as the
sponsor attempts to exert its influence over the project roadmap and
marketing goals. It also results in a revenue stream that is variable, creating
challenges in terms of cash-flow requirements. In addition, the project needs
to be extremely diligent regarding the ownership of the intellectual property
so as not to put itself in a situation where the third party could sue the project
for copyright infringement or affect the open source project licensing.

A professional services model is based on a concept where the platform
maintainer does a significant amount of custom consulting for a third-party
client. The revenue from the custom consulting is used to fund the dedicated
management for the open source product. Unfortunately, this model tends to
consume a high level of resources to qualify leads, formulate contracts,
manage accounts, obtain signoff, and keep the pipeline full of revenue
opportunities. The revenue stream is variable, affecting cash flow, and key
project resources are often required to focus on specific client requirements
rather than supporting and improving the open source product.

A charitable donations model is a popular concept in the traditional open
source world because it involves voluntary community financial support of
the project. The problem is that it does not generate a consistent, sustainable
revenue stream, which means it is unable to secure dedicated management
resources. In addition, there is a tendency for community members to
assume that other members are making financial donations, when in reality
the project is receiving no financial contributions from anyone.

A vertical application model leverages the open source product to create a
highly specialized, commercial, vertical market application. The vertical
market application typically generates revenue through an application service
provider (ASP) revenue model, which contributes funding back to the open
source project. The challenge is that it requires focused management and
marketing in the vertical market, complete with domain challenges,
competition, legal considerations, and political constraints. The open source
application also tends to cater the product roadmap to the needs of the
vertical market application, resulting in a less robust application framework.

Because each of the common revenue models has its own set of issues, it
made me brainstorm what I would consider to be an optimal open source
revenue model. The main criterion is that the project should serve the open

source community (“by the people, for the people”). It should be objective
and open, avoiding conflict of interest and adhering to open source ideals.
Finally, the revenue stream must be consistent and sustainable, capable of
sustaining multiple dedicated resources.

An interesting economics philosophy that Scott Willhite turned me on to was
the concept of the “abundance mentality.” In terms of business value, an
“abundance mentality” refers to an attitude of growth. Essentially, it means
that the overall size of the ecosystem becomes larger as the number of
opportunities within the ecosystem increases. By working together with
various stakeholders in the ecosystem, all members of the collective group
benefit through a greater abundance of revenue-generating opportunities.
The opposite of the “abundance mentality” is the “scarcity mentality,” where
participants consider the size of the ecosystem to be constrained and the goal
is to capture as much of the market share as possible (choking out the
smaller competitors in the process). DotNetNuke's extensible architecture
and open source philosophy constantly push the envelope in terms of creating
new business opportunities within the community. It was another principle
that needed to be adhered to in our quest for a suitable revenue model.

With all of these ideas swirling in my head, I concluded that a membership
subscription concept could be an effective revenue model for advancing our
goals. It would mean that the open source project was funded by the
community. It would also mean that the project was accountable and
responsible to the community. Through the creation of new benefits, we
would be able to provide more opportunities for community members to
participate in the project ecosystem. From a public perspective, it would
provide a defined method for any supporter, big or small, to contribute to the
project. And we would not need to compromise any of our open source ideals.
Membership would be available by subscription that would create an ongoing,
consistent revenue stream.

The DotNetNuke Benefactor Program (see Figure 1.12) was officially
launched in December 2005. Nik Kalyani came up with the marketing term
“benefactor” because it clearly communicated the financial support goal of
the program. The program had four levels of participation to cater to the
needs of various stakeholders in the community, from individual developers
to enterprise business organizations. The initial set of benefits was targeted to
each program level, and the administrative aspects of the program were
automated as much as possible to provide a seamless user experience. The

overall response to the program was positive and paved the way for future
revenue opportunities.

Figure 1.12

Opportunists
In the fall of 2005, DotNetNuke was starting to gain considerable
momentum. The open source community was growing, and the commercial
ecosystem was becoming stronger and more diverse. DotNetNuke was being
used in more enterprise deployments than ever before, and the brand was
beginning to become more recognized and respected in the industry. A huge
opportunity began to emerge, and this caught the attention of a number of
serial entrepreneurs who were eager to capitalize on it.

One entrepreneur in particular was especially aggressive in the manner in
which he approached the DotNetNuke community. With significant exits
under his belt from a number of previous business ventures, he had the
connections and proven track record of being able to take an emerging
opportunity to market. Without prior introduction, he called me on the
telephone one afternoon, and we had a casual conversation about the state of
the DotNetNuke project and some of the areas in which we were planning on
offering professional services to the community. Later, at his request, we had
a face-to-face meeting in Seattle near Pikes Place Market, where he told me
some of his own business ideas and informed me that he would like to
contribute to the financial health of the project so that it could achieve even
greater growth. Offers such as this do not come without strings attached, so I
warily kept my distance as I tried to learn more about his philosophy and
values to determine if they were in alignment with the project.

Much to my surprise in March 2006, a press release was issued that
announced that his company had raised $1.75 million in seed venture capital
based on a concept of providing an “economic platform” for developers
leveraging the DotNetNuke framework. Clearly some of this so-called
“economic platform” overlapped the professional services that we ourselves
had begun to provide, and as a result the situation became complicated. At
their insistence, a business meeting was scheduled in April at the Westin
Towers in Seattle where some of their high-level business goals were
presented to Scott Willhite and myself. Clearly the goal of the meeting was to
convince us to make a commitment to formulating a deeper partnership.
However, the meeting offered few tangible details on how our organizations
were going to work together, other than the fact they wanted us to continue
focusing on the technology while they focused on commerce.

It takes more than a few meetings or conversations to establish the trust

required to form a business partnership, and as a result we really did not feel
comfortable moving forward at this juncture. The fact is, the DotNetNuke
Board had been working very hard on the project for a number of years, and it
was not clear to me how the members of our team were going to be included
in the venture. In addition, some of the stories the entrepreneur had shared
in an attempt to demonstrate his past business prowess had actually left an
unpleasant taste in my mouth, as they appeared to not be aligned with the
community ideals on which the DotNetNuke project was founded. When they
realized that their open wallet was not going to result in open arms, I believe
they were genuinely surprised and disappointed. However, this simply echoed
the fact that they did not understand or share our philosophies or values. We
advised them that they should first become contributing citizens to the
community, establish a positive reputation, and then we could consider
cultivating a deeper relationship. They agreed to act on this advice and so
began a rather tenuous relationship in the months following.

I do think it is important to give credit where it is due. This serial
entrepreneur saw the potential in DotNetNuke and was effective in painting a
large vision for the project. He had some very solid business ideas that were
based on his real-world experience in monetizing other technology platforms
and industries. He was a skilled speaker, a tenacious salesman, buzz-word
compliant, and knowledgeable on most of the hot technology and
globalization concepts promoted through books such as The World is Flat,
The Tipping Point, and The Long Tail. Like any good student, I absorbed as
much of his wisdom as I could, and it really precipitated a change in my
perspective from always looking at the project from a technical viewpoint to
focusing more on the business model and broader ecosystem benefits.

The most important thing I realized from this experience was what a
tremendous opportunity DotNetNuke represented and that we had reached a
critical inflection point—if we did not take steps on our own to take the
project to a higher level, somebody else would do it without our participation.
Scott Willhite's wisdom and experience were instrumental throughout this
process in terms of keeping us focused on the primary goals, which included
building the DotNetNuke economy to its fullest potential, preserving the
cultural roots of DotNetNuke and its universal accessibility, and rewarding
those who have contributed (and continue to contribute) to its success.

Yin and Yang
In June 2006, I attended my first non-Microsoft technology conference, SYS-
CON Enterprise Open Source in New York. I had been selected as a speaker,
and my session focused on open source software on the Microsoft platform.
Going in, I thought this was going to be hostile territory, but I soon realized
that the “enterprise” focus resulted in the conference being technology-
agnostic for the most part. The big news at the conference was that Marc
Fleury, who was scheduled to do the keynote, was unable to attend because
his company, JBoss, had just been acquired by Red Hat. SugarCRM, who had
already completed a Series C round of financing, was a major sponsor of the
event, and I spent a fair amount of time talking to its founders, recognizing
the many similarities that existed between our platforms. Overall, the
conference was a good experience and gave me a better sense of open source
commercialization, especially in regard to high-tech start-ups and venture
financing.

In the summer of 2006, we had our third annual board meeting, and one of
most significant themes at the meeting was the concept of “balance.” In the
past, we had always taken what we thought was an objective stance on the
separation between the open source project and its commercial ecosystem.
Because we were the stewards of the core project, we tried to avoid anything
that could lead to potential conflict-of-interest scenarios. Generally this
involved focusing on the open source community and avoiding direct
interaction with commercial stakeholders. Interestingly, the commercial
ecosystem seemed to thrive almost in spite of the fact that we were trying to
ignore it. Gradually, we came to the realization that there were actually two
very powerful influences in the project and that both were essential to its
long-term stability—the “yin” and “yang” of DotNetNuke. These
complementary forces needed to be embraced in order to preserve the
delicate balance within the project and ensure its future.

Up until this point the DotNetNuke board had been serving the project in an
unofficial capacity for a number of years, dealing with the various
management tasks as best it could. Other than myself, the other members of
the board either were self-employed entrepreneurs or were employed by
other companies, which made it difficult to function as a cohesive team. Dan
Caron had stepped down from the board in December 2005 due to the time
commitment and amount of strain it was putting on his family. This left Scott

Willhite, Joe Brinkman, Nik Kalyani, and myself remaining as board
members. As the months went by it became apparent that the project needed
a different corporate structure and a full-time management team, but in order
to support such an organization financially, it needed an adequate revenue
base. And because the current services revenue was not scalable or
predictable, it left little choice but to pursue alternative funding sources.

A New Company
It so happened that Scott Willhite had a good friend named Blair Garrou.
Blair was managing director at DFJ Mercury, a seed and early-stage venture
capital fund based in Houston, Texas. We had a conference call with Blair,
and he indicated that although the DotNetNuke opportunity was not the right
fit for his firm, that he would make some strategic introductions.

The first introduction he made was to Mark Radcliffe, a partner with DLA
Piper who operates out of its Palo Alto office in California. Mark specializes in
strategic intellectual property advice, private financing, corporate partnering,
software licensing, and copyright and trademark matters. In the open source
software realm, he is one of the most widely recognized and respected
attorneys. After an initial meeting with Mark, we signed an engagement letter
where DLA Piper agreed to defer billing for its services up to a certain
threshold in exchange for a warrant to purchase stock in the company when it
reached specific trigger conditions. DLA Piper was going to help us form an
open source company that could better manage the needs of the DotNetNuke
community and provide a solid business foundation for future growth.

DotNetNuke Corporation was formed September 21, 2006. Rather than
coming up with a brand-new company name, we took the simpler approach,
which had the benefit of providing a direct link between the open source
project and the company (see Figure 1.13). The purpose of the new company
was to assume a stewardship role and provide infrastructure, management,
and support to the open source project as part of its regular operations. The
previous board members, Scott Willhite, Joe Brinkman, and Nik Kalyani, all
came aboard as official cofounders in the new entity. A commitment was
made to transfer all of the existing intellectual property from Perpetual
Motion Interactive Systems Inc. to DotNetNuke Corporation. A public press
release was issued, and great care was taken to educate the community about
the structural change to the project. Although there was some initial concern
raised in regard to the “Corporation” branding, the community was
overwhelmingly receptive to the change, and the transition created no serious
disruption to the ecosystem. At this time the number of registered users on
the dotnetnuke.com website was 335,000 members, and 2 million downloads
had been recorded all time.

http://dotnetnuke.com

Figure 1.13

DotNetNuke's first challenge was constructing a business plan that would
provide the foundation enough to sustain the project long term. The
Benefactor program had been successful in providing members of the
ecosystem with an opportunity to support the project and receive some
additional benefits. Unfortunately, the number of participants in the program
was not enough to generate sufficient revenue. In addition, we realized that
the benefits being offered did not meet the needs of all community members.
Specifically, there was a group of serious users of the platform who were in
need of more professional support services, which were not offered through
the program.

The week following the public announcement of the formation of
DotNetNuke Corporation came news of another DotNetNuke event. The
company that had its eyes set on creating an “economic platform” for
DotNetNuke was hosting a private mini-conference in Las Vegas, Nevada. It
had approached the majority of commercial vendors in the DotNetNuke
ecosystem and had offered to pay for their expenses to attend the event. This

turned out to be a self-serving effort, as the main goal was to demonstrate
and collect feedback in regard to module licensing opportunities. Ironically,
even though the entire event was predicated on modular software leveraging
the DotNetNuke platform, DotNetNuke Corporation had not been invited.
This sent a clear message that we were not working together, and the
unfortunate side effect was that the commercial vendors were caught in the
middle. This would prove to be a challenging situation in the coming months,
as much time and effort were spent on cultivating relationships and
preserving the integrity of the ecosystem.

Larry Augustin
As part of his high-profile practice in the Bay Area, Mark Radcliffe had access
to an enviable list of influential personal contacts in the software and venture
financing industry. One of the first individuals he introduced us to in the fall
of 2006 was Larry Augustin. Larry Augustin is an angel investor and adviser
to early-stage technology companies. A member of the group that coined the
term “open source,” he had written and spoken extensively on the topic
worldwide. In 1993 he founded VA Linux (now GeekNet, NASDAQ:LNUX),
parent company of Slashdot and SourceForge, where he led the company
through an IPO in 1999 and served as CEO until August 2002. He is currently
the CEO of SugarCRM and has advised and served on the boards of directors
of a number of commercial open source companies including Appcelerator,
Fonality, Hyperic, Medsphere, Pentaho, and XenSource.

I flew down to San Francisco in November 2006 and met with Larry at DLA
Piper's offices in Palo Alto. We had a great conversation about the
DotNetNuke community, the commercial ecosystem for extensions, and open
source business models. Given Larry's background in enterprise Linux, I was
initially curious as to why he would be interested in an open source project on
the Microsoft platform. However, I soon realized that as a veteran
entrepreneur, Larry was interested in any software ecosystem where open
source was being leveraged as a disruptive business advantage. Larry had
relationships with the majority of top-tier venture capital firms in Silicon
Valley and specifically with the general partners who were receptive to open
source business models. This initial meeting provided the foundation for a
mutually beneficial and productive relationship between Larry and
DotNetNuke.

Performance
Based on the feedback from hosting providers participating in the Microsoft
Windows Shared Hosting Accelerator program, scalability and performance
became a high priority in the fall of 2006. After many discussions, Microsoft
actually allocated one of its experts on ASP.NET and Windows Server
performance to work with us on optimizing the DotNetNuke application for
the shared hosting environment. Charles Nurse spent a week in Redmond
working side-by-side with this expert in the Patterns & Practices testing lab to
learn how to effectively simulate load and performance test the application.

The scalability of the DotNetNuke application improved dramatically over
this time frame, and the end result was released as DotNetNuke 4.4 in
November 2006 to an overwhelmingly appreciative community. From this
point forward, we had a regression baseline that could be used to compare
new versions of the product in order to determine if performance had been
degraded by new enhancements to the platform. As part of this process we
also learned that there were very few developers in the Microsoft ecosystem
who truly understood the ASP.NET/IIS/Windows Server dependencies or
constraints from a performance perspective. We shared a lot of great
knowledge with the general Microsoft developer community, and
DotNetNuke's reputation as an enterprise web platform was bolstered.

In December 2006, more than a year after DotNetNuke 4.0 and ASP.NET 2.0
were released, we made the decision to sunset the DotNetNuke 3.x product.
DotNetNuke 3.x was based on ASP.NET 1.1, and we had seen interest in this
legacy platform drop off to the point where it no longer made sense to
continue actively maintaining a parallel code base. Determining how and
when to drop support for legacy versions of the Microsoft platform would
continue to be a difficult challenge on an ongoing basis for the DotNetNuke
project.

DotNetNuke Marketplace
The extensibility model in DotNetNuke had spawned a very active
commercial ecosystem. By the end of 2006, hundreds of commercial modules
and skins were available for the DotNetNuke platform. In addition, many
companies were providing business services exclusively to the DotNetNuke
market. This dynamic ecosystem was helping propel the growth of the project,
but it was not without its share of issues.

Early in the project's history, a third party created a reseller environment that
allowed developers and designers to sell their DotNetNuke products to
consumers. This made it extremely easy for anyone, from a hobbyist
developer to a serious independent software vendor, to get involved in the
DotNetNuke commercial ecosystem. In the early stages, the existence of an
established business environment for commercial components was critical to
the growth of the project and adoption by business users. However, one of the
most common types of feedback that we overheard related to this
environment was about the questionable quality of third-party products and
services.

Based on the reseller environment's low barrier of entry, the quality of
commercial DotNetNuke components was extremely inconsistent. Some
vendors were providing high-quality components, with professional support
and explicit licensing terms. Others were essentially providing basic HTML
scripts at a minimal fee with no support or licensing considerations. The
combination of these polar opposites posed issues in terms of our goals to
promote DotNetNuke as a professional framework. Effectively, the existing
reseller environment was promoting a “Buyer Beware” mentality that was not
complementary with our goals for taking the project to a higher level of
business acceptance. In fact, some of the more serious independent software
vendors told us that in order for them to get involved in the ecosystem, a
more professional reseller channel would need to be made available.

To deal with the quality issue, we believed that a product review service could
solve a number of problems. Although a comprehensive product review could
provide great value, it would not be cost effective to perform, and therefore
the review criteria would need to focus on some of the more fundamental
product attributes such as whether the product installs and uninstalls
properly. Although minimalist, such a review program would still provide
value to the ecosystem. First, it would provide consumers with confidence

that the product they are purchasing is fully functional. It also would provide
educational guidance to software vendors in terms of project standards and
expectations.

We had approached the current reseller a number of times in the past with
hopes that we could form a business partnership. The main benefit was if the
reseller became a contributing citizen of the DotNetNuke community, we
could work together to elevate the ecosystem to a higher level. It would also
provide us with critical business intelligence related to the usage of the
product. For us to effectively manage the product roadmap, it was becoming
increasingly more important that we get in touch with our entire user
community. The discussion forums represented a small but vocal group of
community members who offered feedback, but there was a much larger
group of users with whom we had absolutely no contact. Unfortunately, the
reseller was not interested in working with us in this capacity, which left us
with a single alternative: establishing our own reseller channel.

Combining the concepts of the review program with a reseller channel
seemed to be a great way to satisfy a variety of project goals. Initially our
reseller channel would only sell components that passed our review program.
This would improve the overall perception of quality and confidence in the
community and provide a new revenue stream to help us secure more
dedicated project resources.

The development process of the reseller channel took longer than expected.
In reviewing the requirements we recognized that there were no products
with e-commerce functionality within the DotNetNuke ecosystem that could
satisfy our needs. Therefore, we had to look elsewhere, and we were pleased
to work out an agreement with AspDotNetStoreFront, an established product
vendor providing a robust e-commerce solution to the Microsoft market.
AspDotNetStoreFront was even interested in migrating a version of its
software to the DotNetNuke platform, so we forged an agreement with them
in hope of establishing a long-term business relationship.

The DotNetNuke Marketplace was launched in January 2007 (see Figure
1.14). Similar to dotnetnuke.com it took a minimalist approach to the website
design. And one of the design goals was to ensure a consistent, professional
user experience, as we felt it would be a good differentiator from the other
reseller site. The number of products available grew slowly as awareness of
the Marketplace grew in the vendor community, and product reviews were
completed.

http://dotnetnuke.com

Figure 1.14

It did not take long before we learned a variety of valuable lessons. First, we
had underestimated the first-mover advantage that the incumbent reseller
had in our ecosystem. Without an incentive there was no motivating factor to
encourage vendors to list their products in our marketplace. Without
products, there was also no incentive for consumers to browse our
marketplace and make purchases. The review program that we had assumed
would be a great benefit actually became a barrier to entry, as we discovered
that most vendors were not keen on paying a fee, no matter how minimal, to
have their product reviewed. In hindsight this made perfect sense, because
unless consumers are specifically demanding reviewed products, there is no
motivation for vendors to invest in the program. In addition, our initial
process for listing products was cumbersome, especially in comparison to the
incumbent reseller. This resulted in some hesitation on the part of vendors to
list their products and keep them regularly updated.

Another mistake we made was to maintain too much parity with the
incumbent reseller in terms of the features and business model. In order to

be truly competitive, we needed to introduce some disruptive concepts and
differentiate ourselves. As we learned these valuable lessons we adapted the
Marketplace and slowly began to garner a greater inventory of products and
consumer traffic, but still continued to lag behind the incumbent reseller. The
most significant problem we faced was in regard to resources. Without start-
up capital there was not enough revenue to allow for dedicated management
of the Marketplace, and as a result it did not get the attention it deserved or
required to achieve momentum.

Free Module Promotion
Without a working relationship with DotNetNuke Corporation, the funded
entity that had promised to create an “economic platform” for DotNetNuke
was aggressively trying to establish a foothold in the e-commerce portion of
the ecosystem throughout the latter half of 2006. In July 2006, it had
provided us with a proposal where it would pay us a royalty if we made it the
exclusive e-commerce partner for the DotNetNuke ecosystem. However,
based on the fact we were already establishing our own reseller marketplace
coupled with the fact that we did not see eye-to-eye on many business
practices, we decided not to move forward with this opportunity.

In December 2006, with participation from a number of commercial module
vendors, it launched a promotion where a variety of the most popular
modules were offered as a free subscription package for one year to
DotNetNuke users. The package was mainly offered through hosting
providers and community sites and was ultimately an attempt to build a large
user base and validate their proprietary software licensing solution. Although
the concept of a recurring revenue stream for commercial module vendors
seemed attractive, it did not take long before a few critical problems came to
the surface; the most significant was that commercial module vendors found
themselves providing support services to users who had not paid for their
products. This was not a viable model, and within a few months the majority
of the module vendors pulled out of the promotion.

In April 2007 the company announced that it had received another $5 million
in venture capital funding and was expanding its vision to include commercial
software outside the DotNetNuke ecosystem. We did not hear from them
again, and by 2008 their focus appeared to have shifted away from software
licensing and DotNetNuke as they worked on developing a website that
provided product reviewers with tools to critique technology-based products
and consumers the ability to browse the reviews.

Conferences
The first DotNetNuke conference occurred in May 2006 in Papendal,
Netherlands. It was hosted by the Software Developer Network (SDN), which
had recently added DotNetNuke as an officially recognized technology in its
user group organization (based largely on the fact that Core Team member
Leigh Pointer had successfully built a DotNetNuke user group of more than
300 members in the Netherlands). I was offered an all-expenses-paid trip to
come and speak at the event, which I gratefully accepted. The DotNetNuke
track ran in parallel with the other Software Developer Conference (SDC)
tracks and featured sessions by Core Team member Vicenç Masanas as well
as DotNetNuke experts from the Dutch community.

In October 2006, David Walker from Tulsa, Oklahoma, organized the first of
what was to become an annual community technology event, which he named
Tulsa TechFest. It was an ambitious conference, free to attendees, and funded
by sponsors with many parallel tracks and notable speakers. Because he was a
fan of the DotNetNuke platform, David reserved a track for DotNetNuke and
invited me to come and speak. I had the honor of doing my first-ever
conference keynote at this event, and it was a great experience to meet in
person a number of Core Team members for the first time (John Mitchell,
Chris Hammond, and Shawn Mehaffie) as well as a number of Microsoft
MVPs.

Based on the rapid growth of the DotNetNuke ecosystem, by the end of 2006
we thought the community was ready for a dedicated DotNetNuke conference
event. Conferences involve a significant amount of time, effort, and expertise
to manage, so we recognized that our best approach would be to partner with
an established conference organizer and potentially co-locate with an existing
technology event. Initially we approached SYS-CON Media, but after a couple
months of trying to work through contract logistics, we realized that some
chemistry was missing from the relationship and that we would be better off
looking for a different partner.

We approached a variety of other conference organizers and quickly learned
that the majority of them either were already at capacity or were not willing
to take a risk on a DotNetNuke conference event. Rather frustrated, we were
at the point of giving up on the conference idea entirely when Joe Brinkman
made contact with Shirley Brothers from DevConnections.

DevConnections is one of the longest-running independent developer

conferences focused on Microsoft technology and a perfect fit for the
DotNetNuke platform. It turned out that Brian Goldfarb and Scott Guthrie
from Microsoft had put in a good word for us with Shirley, and she was
willing to entertain a DotNetNuke event that would be co-located with
DevConnections at Mandalay Bay in Las Vegas in the fall of 2007. Working
through the contract details with Shirley was a positive experience, and we
ultimately agreed on two DotNetNuke conference tracks: one for developers
and the other for designers and administrators.

One of the most significant benefits of co-locating with DevConnections was
the fact that attendees were not restricted to only DotNetNuke sessions but
were free to take advantage of any DevConnections content being presented
in any track including ASP.NET, Visual Studio, and SQL Server. Nik Kalyani
came up with a DotNetNuke conference brand of “OpenForce,” and Joe
Brinkman took ownership of managing the conference logistics and spent
considerable time in the months leading up to the event recruiting speakers,
managing interactions with DevConnections, scheduling sessions, and
leading marketing activities.

Based on the agreement struck with DevConnections, in the summer of 2007
we decided to approach the Software Developer Network in the Netherlands
with a proposal of more officially partnering for its next SDC event, by using
the “OpenForce” brand and assisting with marketing activities. An agreement
was reached to provide two dedicated DotNetNuke tracks at the SDC event,
and our first official European conference was scheduled for September 2007.

Microsoft Valuable Professionals
As the size and influence of the DotNetNuke ecosystem had grown, so had the
visibility of its participants in the Microsoft community. Microsoft had a
program called the Microsoft Valuable Professional (or MVP) program, which
was designed to recognize individuals who made significant community
contributions. Between the years 2005 and 2007, nearly 20 DotNetNuke Core
Team members achieved this level of distinction.

In the spring of 2007, Microsoft held a global summit in Redmond for all
MVPs worldwide, and this provided an excellent opportunity for our team to
get together face-to-face. Because the majority of interaction between our
geographically dispersed team occurs online, it was a great way to get to know
one another and socialize. We booked a conference room at our temp office at
Two Union Square and had team meetings during the week, including some
entrepreneurial community members such as Lino Tadros from Falafel
Software. We also treated the team to a group dinner at an Italian restaurant
in downtown Seattle where the beer (micro-brew of course) and conversation
flowed freely.

Fundraising
By the spring of 2007, DotNetNuke Corporation had prepared a business plan
and was ready to present it to potential investors. Rather than leveraging
friends and family, or even angel investors, we decided that professional or
institutional investors should be our primary target. Nik Kalyani's past
experience with fundraising was valuable in this process, and we felt
confident that the product adoption and size of the community would be
significant assets for our pitch.

Our relationship with Larry Augustin proved to be very valuable at this point,
as he had many connections on Sand Hill Road. Larry was instrumental in
setting up meetings for us with many of the top-tier venture firms in Silicon
Valley. We met with Sequoia Capital, Accel Partners, Azure Capital, O'Reilly
Alpha Tech Ventures, New Enterprise Associates, and Draper Fisher
Jurvetson (DFJ).

Unfortunately, none of the firms we met with was interested in committing to
DotNetNuke at this time. In a number of cases we had repeat meetings with
the same VC, progressing from an initial meeting with an associate, to a
general partner, and then to an all-partners Monday meeting. In general, the
meetings were always positive; the VCs were courteous, thoughtful, and more
than willing to provide advice on how we should capitalize on the
opportunity. However, the most common piece of feedback was that we had
not yet demonstrated a financial model that would create a “large company”
opportunity. When VCs say “large company” they mean a company that can
potentially reach a valuation of $100 million dollars in five years. The
frustrating part was that if we had already proven the financial model, there
would be no need for investment capital at all. Other feedback included a
preference for us to have a presence in the Bay Area because VCs prefer to
have their portfolio companies nearby. And there was also some question
about level of business leadership experience in the company. All of these
items would need to be addressed one way or another in order for us to be
successful in our fundraising efforts.

Awards and Accolades
The summer of 2007 was significant for DotNetNuke as the project received
some recognition from a number of notable third parties. Visual Studio
Magazine selected DotNetNuke as its Editor's Choice Winner for 2007, an
award that had previously been given to Microsoft SharePoint in 2006. A
month later, Info-Tech, an independent research group, selected DotNetNuke
as a Leader in its Decision Diamond for Web Content Management for the
small enterprise. The Info-Tech Decision Diamond award recognizes vendors
that provide products and services of outstanding quality, with a strong
enterprise strategy and high levels of customer satisfaction and retention.
Both of these awards were unexpected and highly appreciated.

Later in the summer, we issued a release of DotNetNuke that contained
support for the new OpenID authentication system. Because we were one of
the first open source projects to implement OpenID, we received a cash award
bounty of $5,000. Dick Hardt, CEO of SXIP and a legend in the open source
Perl community based on his tenure at ActiveState, was able to gain us passes
to OSCON in Portland, Oregon, where the bounty award was presented. Other
recipients of the bounty included Drupal and Plone.

Based on the publicity provided by the OpenID bounty, we were contacted by
Microsoft with a proposal to integrate Windows LiveID support into the
platform. This seemed to be a good fit, as many developers in the Microsoft
world have become comfortable with the LiveID single-sign-on system.
Integration also provided a sponsorship opportunity with the Microsoft Live
team, a relationship that would reap rewards in the future.

DotNetNuke OpenForce 07
In September 2007, we had our first official European DotNetNuke
conference in Papendal. The conference was branded DotNetNuke OpenForce
Europe and had 80 registered attendees, each paying about €700. The
conference attracted users from the United Kingdom, Ireland, France,
Belgium, Spain, Portugal, Switzerland, Germany, Italy, Austria, Sweden,
Norway, Denmark, and even from as far away as South Africa and Aruba. Joe
Brinkman, Charles Nurse, and I attended the event from DotNetNuke
Corporation and a number of Core Team members and Project Leads led
sessions as well. The conference was a great success and established a solid
working relationship with the Software Development Network for future
events.

In November 2007, we had our first official North American DotNetNuke
conference, co-located as planned with DevConnections at the Mandalay Bay
Hotel and Casino in Las Vegas, Nevada. The conference managed to attract
225 registered attendees at $1,500 and had two dedicated tracks spanning
three days. Two vendors from the DotNetNuke ecosystem, Active Modules
and R2Integrated, opted to become exhibitors in the DevConnections exhibit
hall. The visibility that the project received at this event was incredible, as the
DotNetNuke logo was displayed on all conference marketing materials
alongside Microsoft products such as ASP.NET, Visual Studio, and SQL
Server. Carl Franklin and Richard Campbell from the DotNetRocks! podcast
helped host the final panel discussion for DotNetNuke Corporation, and at
the conclusion the Core Team members in attendance finally got some of the
public recognition they so generously deserved.

One of the ideas we had for OpenForce was to allow other Microsoft platform
open source projects to participate at the event, and we were successful in
attracting a number of distinguished guests including Scott Hanselman, Phil
Haack, and Rob Connery. The ironic thing that happened, however, is that in
the months leading up to the conference, each of these guests announced that
he had accepted employment offers with Microsoft to work on the new
ASP.NET MVC team. So when the conference finally arrived, we had an open
source panel discussion, but the independent nature of it had definitely lost
some of its impact. Regardless, we were still pleased to have been able to
provide visibility and insight into a variety of open source projects on the
Microsoft platform.

At the keynote for OpenForce North America we announced “Cambrian” as
the new marketing codename for DotNetNuke 5.0. Nik Kalyani had come up
with the name in reference to the “Cambrian Explosion,” a period in the
earth's evolution where there was a dramatic increase in more complex life
forms. We announced a roadmap that included the major features we were
planning on implementing in the coming year as well as a tentative release
schedule. We also mentioned that we were actively pursuing funding
opportunities and shared some details on the current business model for
DotNetNuke Corporation. Overall, this conference had a very strong business
influence and demonstrated the momentum the project had achieved in
professional and enterprise environments.

SLA Program
Initially mentioned at OpenForce North America and later rolled out publicly
in January 2008, the DotNetNuke SLA program was a professional support
offering available on an annual subscription basis by DotNetNuke
Corporation. The program was introduced in response to community demand
for professional support services for the DotNetNuke product and
DotNetNuke Corporation offered a Bronze and Silver level to cater to the
needs of different customers. The fact that open source projects make their
source code available to everybody does not make everybody an expert. The
fact that the open source software is offered for free doesn't mean that
commercial services are irrelevant. In fact, open source software requires a
dependable commercial ecosystem and a reputable vendor that stands behind
its software and provides consumer confidence.

The SLA program was successful in engaging a variety of large customers who
were using DotNetNuke in mission-critical deployments. For a long time we
had relied solely on users communicating their issues through online
channels, and as the software became more complex, it became increasingly
more difficult to reproduce issues occurring in the wild. The information
received through diagnosing customer problems directly in enterprise
environments was essential in identifying and solving deficiencies in the
software and building a higher-quality product. At this point it definitely
became obvious that a healthy balance between open source users and
professional customers was the optimal mix to create a powerful platform.
With the introduction of the program, the legacy Benefactor program was
phased out (it had never proven itself to be a scalable revenue generator) with
some customers migrating to the new Sponsorship program, which provided
visibility and marketing benefits, while others moved to the SLA program.

Although the program was successful, we also learned some unanticipated
valuable lessons. First, because the only benefit being offered through the
program was technical support, there was no incentive to purchase a
subscription unless you were experiencing a problem and were in need of
immediate assistance. Because the DotNetNuke software was so mature and
stable, many companies had no immediate support requirement; therefore,
the lack of a sales trigger significantly reduced our opportunity to engage with
customers in a meaningful way. Second, we discovered that the vendors
within our own ecosystem became our largest source of competition. As soon

as we announced our SLA offering, a number of vendors published their own
SLA offerings at a lower price, undercutting our program and, in at least one
instance, making an attempt to discredit the reputation of DotNetNuke
Corporation. Obviously, these vendors had no way to support the
DotNetNuke product itself as they had no ability to affect changes in the
source code, but it did not stop them from getting some traction, albeit at the
expense of the platform.

More Fundraising
In the fall of 2007, we had reorganized the management team and appointed
Nik Kalyani as CEO. The changes were made in order to better reflect the
roles we were playing in the organization and address some internal issues
regarding vision and business leadership. We all agreed that Nik should focus
his time and effort almost exclusively on fundraising, and he even
volunteered to move himself and his family to California as he felt that we
would have a better probability of getting funded if we had a person “on the
ground” in the Bay Area. Due to a number of personal reasons, Nik had to
delay his move until January 2008, but once there, it became obvious that his
presence in Silicon Valley was definitely going to reap rewards for the
company.

Following the success of the conferences, we made contact with a number of
VCs (mostly via introductions from Larry Augustin). Firms we met with
included Azure Capital and Benchmark Capital, both of whom allowed us to
present to all of their general partners at an all-partners meeting. Although
our pitch was much more refined by this time, we still had difficulty getting
the VCs to believe in the revenue potential of the opportunity. One of the
specific pieces of feedback was in regard to the “exit” potential. In a tech
market where very few IPOs were occurring, the focus shifts to merger and
acquisition (M&A) outcomes, and the VCs wanted to know who specifically
would be interested in acquiring DotNetNuke in the future. This is obviously
a hypothetical question, as nobody has a crystal ball, but we were still
expected to have some solid defensible answers.

Another piece of feedback we received was that a “platform” was too broad of
a category and was not focused enough to reveal a distinct monetization
strategy. This led us to consider a more focused approach, and out of
frustration we actually tried pitching an Enterprise 2.0 social networking
application at one point to gauge the interest in it versus our platform
approach. This was likely an unwise decision as the VC we pitched to was
already familiar with our previous messaging and to shift gears so abruptly
left them questioning the focus of our management team. Ultimately we
reverted to the platform approach for future VC interactions, as regardless of
the allergic reaction that some folks had, it was more closely aligned and
fundamental to the success of the project to date.

In January 2008, a couple of significant events occurred. Larry Augustin ran

into an experienced entrepreneur named Navin Nagiah at a software
conference. At the time, Navin was employed by Cignex, a successful systems
integrator for open source content management systems including Alfresco,
LifeRay, and Plone. Navin was looking for a start-up product opportunity with
large potential, and Larry mentioned that he may want to take a look at
DotNetNuke. Larry made the introductions via email and Nik followed up. In
the same month, we received an anonymous solicitation through our website
from Hummer Winblad Venture Partners, a respected VC from San Francisco.
This was the first time a VC had come directly to us, and Nik worked very
hard to close a deal with Hummer Winblad, doing many presentations and
staying constantly engaged in the coming months.

When you get to the point of VCs wanting to call business references, you
know you are getting close to a term sheet. Hummer Winblad asked if it could
contact some of our references, and we supplied a number of enterprise
customers and partners. This process was drawn out over a number of weeks,
and we were even lucky enough to get some notable folks from Microsoft to
speak with them about the DotNetNuke opportunity. In the end, Hummer
Winblad's general partners could not get past their objection that Microsoft's
volume pricing model makes it difficult for a company on the Microsoft
platform to get larger enterprise sales deals. They indicated that greater sales
potential was available on the J2EE platform, and it is these basic business
principles, not the open source angle, which results in fewer investments in
Microsoft platform vendors.

CodePlex
For a long time we had been looking for an organized way to allow
community members to share their open source offerings with the
community. Taking on the burden of managing the infrastructure for ad hoc
projects was not something DotNetNuke Corporation could provide, as
managing our own DNN projects had become enough of a challenge on their
own.

In 2006, Microsoft had launched a new developer community site to replace
the ill-fated GotDotNet. The new site was called CodePlex, and it provided a
robust set of tools (based on the Microsoft Team Foundation Server
architecture) that developers could use to manage their open source projects.
The site was not solely available to Microsoft platform developers, but
because of its close association to Microsoft, it soon developed into the go-to
place for Microsoft platform open source projects. It provided some nice
marketing capabilities, which provided projects with visibility and
accessibility within the Microsoft ecosystem. And the fact that some teams
from Microsoft Corporation were using CodePlex to manage and distribute
their own out-of-band releases meant that there was commitment from the
company to ensure the site was regularly maintained and innovated (a
fundamental failing of its predecessor GotDotNet).

In late 2007, we approached Microsoft with a collaboration proposal where
we offered to push our community members to CodePlex for managing its
DotNetNuke open source projects. In exchange, CodePlex would contribute
the infrastructure and also provide the DotNetNuke projects with some
unique visibility to differentiate them from the other ASP.NET projects on the
site. We worked closely with CodePlex team member Jonathan Wanagel on
the integration, and in February 2008, the DotNetNuke Forge was
announced.

In April 2008, there was another Microsoft Global MVP Summit in Seattle,
which provided a great opportunity for the team to get together. We also
leveraged the opportunity to invite a group of the more prominent vendors in
the DotNetNuke ecosystem to participate in an information-gathering
meeting to determine the most important attributes for a successful Partner
program. Attendees included AppTheory, Seablick Consulting, T-Worx,
Cybreze, Inspector-IT, R2Integrated, and Data Springs. Navin Nagiah
attended the event to gain some familiarity and insight into the various

players in the DotNetNuke commercial ecosystem. And Jeff Loomans, a
general partner from Sierra Ventures, a venture capital firm from Silicon
Valley, flew up to Seattle to meet with us as well and discuss the DotNetNuke
opportunity.

Security Issues
In the early spring of 2008, the project experienced a number of security
issues that required our immediate attention as well as strategic management
to ensure the reputation of the project was not tarnished. When it comes to
security vulnerabilities in software, it is not always the technical issues that
are the primary challenge but rather the motivations of the parties involved
that play a significant role in defining an appropriate solution.

The first security issue was reported to us by Will Morgenweck of Active
Modules, a well-known and respected vendor in our ecosystem. He indicated
that his own site had been compromised, and he sent us his IIS logs in order
to help us identify the problem. However, deep analysis of the logs and the
application source code in the area targeted did not reveal the vulnerability.
Without the ability to replicate the problem, it would be impossible to fix;
therefore, we had to try to get to the bottom of it. When the third party had
compromised Will's system, it had used a login account that provided some
clue about its identity. I decided to take a chance and reach out to it via email;
however, I was not confident that I would receive any response. Luckily, the
third party did respond, and over the coming weeks I was able to establish a
relationship through a series of email conversations.

It turned out we were dealing with a 22-year-old Iranian student named
Morteza Kermani who was a member of the DotNetNuke Iran User Group.
He indicated that he had not meant to cause any harm and would be willing
to help us solve the problem. He explained the actions he had taken to bypass
the security mechanisms, and this provided us with the detail we needed to
replicate the problem locally. It turned out that he was relying on an
undocumented behavior within the .NET Framework, which DotNetNuke had
not taken into consideration. Basically, if a person specified a trailing period
for a filename, the .NET Framework would not throw an Invalid Filename
error but would instead strip the trailing period from the filename and then
create the file on the disk. This vulnerability allowed Morteza to bypass
DotNetNuke's file extension security, upload a shell script to the server, and
then browse to it directly from a web browser, where he could then navigate
the server file system. I would personally consider this .NET Framework
behavior to be a bug; however, because we have no control over the
underlying logic, we had to implement our own security mechanisms to
prevent this type of exploit in the future. The patch was made available as

soon as we successfully validated our solution, and very few sites were
affected.

The second security issue occurred in May and was much less severe in terms
of the potential damage to the user's system; however, it was much worse in
terms of public visibility. A group from Iran calling itself the ISCN, or Iran
Security Center Networks, had discovered a vulnerability in the third-party
FCKEditor rich text editor control that allowed an anonymous user to upload
a file to a public website. The DotNetNuke file upload mechanism did have
preventive code in place to prevent them from uploading malicious files;
therefore, in most instances they simply uploaded a basic text file named
ISCN.txt, which contained the following text:

 !!! Persian Gulf For Ever !!! Owned By : Magic-Boy , Imm02tal ,
Mormoroth
 Contact Us : ISCNltd@GMail.coM ISCN Team !!! Persian Gulf For
Ever !!!

Although the text file did not represent a threat to a user's site, the ISCN
group also posted links to every system it was able to successfully
compromise on a security site called Zone-H. As the list grew, we knew we
had to move very quickly to issue a patch or the reputation of the project as a
secure platform would be affected. Tomotoshi Sugishita of the DotNetNuke
Japan User Group and Mitchel Sellers were both extremely helpful in
identifying and resolving the vulnerability.

The third security issue was discovered by a hosting provider within our
ecosystem. In this case, the vulnerability was again not severe; however, it
was the actions taken by the hosting provider that resulted in some serious
problems. Rather than reporting the problem to our security alias and
working with us to create a patch for the community, the hosting provider
decided the security vulnerability represented a revenue opportunity for its
business. It quickly created a “patch” support service that users could
purchase to have the security problem immediately resolved on their sites.
And then it issued a public press release on PRWEB announcing the existence
of the vulnerability. This unprofessional behavior was not well received
within the DotNetNuke developer community, and there was considerable
backlash. Ultimately, the hosting provider did finally submit the problem to
us and we were able to analyze its impact. In this case, the problem was
related to manually invoking the install wizard, which could cause problems
for some installations, as not all installation tasks are designed to be re-

executable. We were able to successfully resolve the problem almost
immediately and issue a new general release.

IP Disputes
In April 2008, I received an unsolicited phone call from a person in San
Francisco indicating that he owned the dnn.com domain name and was
wondering if we were interested in acquiring it. Interestingly, the dnn.com
domain name had previously been owned by media titan Knight Ridder
Digital, and I had spoken to one of its attorneys in 2005 to determine if they
were willing to part with the domain name but was told that they wanted to
retain it. Somehow in early 2008, a domain name trader had managed to
acquire the name from Knight Ridder, and he had decided to contact us
because a vendor in the DotNetNuke ecosystem had expressed an interest in
purchasing the name but had notified him that there may be trademark
implications. Events transpired very quickly in the coming week, as the
domain name trader tried to create a bidding war between ourselves and the
vendor. Ultimately the price was too high, and we had to resort to legal means
to try to acquire the domain name.

ICANN has a formal process known as the Uniform Domain-Name Dispute-
Resolution Policy (UDRP). This policy is designed for situations that involve
trademark-based domain-name disputes, typically where a complainant wants
to acquire the domain name rights for one of its trademarks. The fact that we
owned a trademark for the term “DNN,” coupled with the fact that the domain
name trader had approached us and tried to extort a significant sum of
money, led us to believe that we had a strong UDRP case. We hired an IP
attorney and filed the necessary motions with ICANN.

The UDRP process is rather rigid, and what we discovered is that it tends to
favor the domain name owner. It is up to the trademark holder to present a
strong case in accordance with the UDRP criteria in order to try to convince a
panel of judges that it should be the rightful owner to the domain in question.
Demonstrating ownership of a trademark is fairly straightforward; however,
demonstrating that an owner of a domain name is using it or plans to use it in
bad faith to disparage your trademark is not easy. And this is not a legal
proceeding; the decision is final—there is no provision for appeals.

In our situation, the domain name trader made a case that he was planning
on using the domain name to create a custom website and had not had
sufficient time to complete its construction. This seemed a bit far-fetched,
given how eager he had been to try to sell the domain name to multiple
parties. Unfortunately, the UDRP panel accepted this story and allowed the

http://dnn.com
http://dnn.com

domain name trader to retain ownership. Within a week of the decision he
sold the domain name to the “Domain News Network” for an undisclosed
sum of money. We were highly disappointed with the outcome and also
learned a valuable lesson about the realities of the legal system.

Compounding our legal issues (and consuming our financial resources), in
the summer of 2008 we received a notice from the United States Patent and
Trademark Office (USPTO) informing us that a third party had filed a Notice
of Opposition to our most recent application for the “DotNetNuke”
trademark, as well as a Petition for Cancellation to the previously registered
“DotNetNuke” trademark. The notices were filed by a hosting provider within
our own ecosystem (the same one involved in the previous security
vulnerability issue), and the basis of the complaints was that the DotNetNuke
name was generic and “used in the computer industry to reference open
source web content management systems.” This argument was flattering but
far from reality, as DotNetNuke had clearly not reached the level of ubiquity
where the term was being used in a generic way to describe various open
source content management systems. In fact, DotNetNuke had never even
been marketed as a CMS, but rather as a web application framework.
Regardless of the frivolous nature of the dispute, as trademark owners we
were required to defend ourselves or risk losing ownership of the mark
entirely. The irony of this whole situation is that the freedoms we had
provided to the community in regard to the use of our trademarks were now
being used as a weapon by an individual against the community itself.

So again, we were forced into a complicated legal proceeding, a proceeding
where the USPTO defined a schedule for submissions and disclosures that
would take 13 months from start to finish. The only alternative to following
the complete USPTO process was to come to a settlement agreement, and this
was the solution recommended by our attorney. Through direct discussion
with the hosting provider we realized that the biggest problem leading up to
the legal filing was a lack of communication and understanding on the goals
and motivations of each party. The hosting provider had built a business and
was afraid of how changes in the trademark policy could potentially affect its
livelihood. From our perspective this appeared rather paranoid, as this hoster
was only one of many organizations that were conducting business in the
DotNetNuke ecosystem, and we understood that ensuring the viability and
longevity of all of these entities was definitely vital to the success of the
project. Regardless, we were able to successfully structure an agreement that

dealt with their concerns and allowed us to avoid a lengthy and costly legal
process.

Term Sheets
Throughout the late spring and summer of 2008, Nik Kalyani worked closely
with Navin Nagiah to get him up to speed on the DotNetNuke ecosystem.
Navin had already quit his job at Cignex, and he was eager to join the team;
however, from a cash flow perspective, we were not able to accommodate his
needs. We constructed an agreement where he would act as a business
adviser to the company and commit 100 percent of his time to fundraising. In
exchange, we agreed that he would come aboard as CEO post-funding.

Navin had worked in the Bay Area for quite some time and had his own
network of trusted business advisers and associates that he was able to
leverage for VC introductions. Navin got to work immediately, setting up
meetings with investors and pitching the DotNetNuke opportunity. In the late
spring and summer of 2008, Navin made contact with many reputable firms
including Sigma Partners, El Dorado Ventures, Charles River Ventures, SAP
Ventures, Walden International, Emergence Capital, Matrix Partners, Trinity
Ventures, and Menlo Ventures. In most cases, Nik accompanied Navin for the
in-person meetings, and I participated via conference call. Sometimes we
were dismissed after an introductory conversation, and in other cases we did
presentations in all-partner meetings. By this time our pitch was becoming
very clear and consistent. But although the interest among these firms was
high, there was still something holding them back from taking the next step.
The biggest issue still seemed to be a lack of confidence in whether an open
source company could reach critical mass on the Microsoft platform. And
although we could provide metrics and indicators to help mitigate this risk, it
ultimately came down to a gut reaction that left the VCs feeling uneasy.

By midsummer 2008, we had reduced our list of seriously interested firms
down to three: Onset Ventures, August Capital, and Highland Capital
Partners. In the case of Onset, we had met with it repeated times, with our
introductory session occurring through Navin back in February 2008. Onset
had been a great firm to work with through the process, as its team had
provided a great deal of advice and guidance that helped us clarify our
message as well as our market opportunity. Our interactions with August
Capital were through general partner Vivek Mehra, whom we found to be very
direct and insightful, and the fact that one of August Capital's co-founders,
David Marquardt, had been on the Microsoft board of directors since 1981
was a definite plus. Navin flew to Boston to meet with Highland and had a

productive meeting, but because it was an East Coast firm, it made follow-up
communications and in-person meetings with the partnership a bit more
challenging. Although each of these firms showed significant interest, had
met with us repeatedly, and had spoken to our business references; none of
them was making a funding decision. We felt that we needed a catalyst of
some sort to bring the process to a climax. That catalyst came in a most
unlikely form.

At the MVP Global Summit in the spring I had promised Oliver Nguyen that I
would do a DotNetNuke presentation at his BAY.NET User Group the next
time he had an opening for a speaker. The user group meeting was scheduled
for August 27, and it provided a great opportunity to give the investors some
real-world exposure to the DotNetNuke project and community. The event
attracted about 50 members, and general partners from August Capital, Onset
Ventures, and Highland Capital were all in attendance. This was one of the
most nerve-wracking presentations I have ever done, and I was very relieved
to be able to pull it off without a hitch. Nik Kalyani provided me with support
during the Q&A section, and Oliver Nguyen and the BAY.NET User Group
leadership were great hosts of the event. It turned out that this meeting
created the additional motivation we were looking for, as two of the investors
decided they wanted to move forward, and we received two competing term
sheets. And thus began the real education when it comes to venture capital
funding.

All things being equal, the term sheets we received were similar in a number
of ways. The pre-money valuation (the current value of the company) and the
investment amount offered were identical, as was the amount of equity in the
company the investors were demanding for themselves and the portion of
equity they wanted to carve out for an options pool. Both term sheets were
also based on syndicated deals, where the investor needed another VC partner
to come aboard to complete the deal (unfortunately, however, the two firms
did not want to work together or else it would have potentially made the
entire process much easier). This is how a VC reduces risk in an early-stage
investment, but it definitely added a dilemma for us, as signing a term sheet
with only a 50 percent commitment does not guarantee that you will find a
partner for the other 50 percent. Items that differed in the term sheets were
that one firm was offering funding in “tranches,” basically meaning that the
investment amount would be provided in multiple installment payments
when specific milestones had been reached. This “tranched” approach

coincided with their opinion that we were missing some key business
leadership in the company, which meant that we would immediately have to
perform an executive search to bring in a heavy hitter. And where one term
sheet had a “no shop” clause preventing us from shopping around for better
terms, the other term sheet had no restriction in this area.

After much deliberation (and day and night conference calls), we decided to
accept the term sheet from August Capital near midnight on September 2,
2008 (the other term sheet was scheduled to expire on September 3). The
reasons for this decision were that we felt most comfortable with the style
and approach of Vivek Mehra, the general partner on the deal; the reputation
and pedigree of August Capital would ensure higher-quality advice and
strategic opportunities; the chemistry of the current management team could
be maintained; and we could focus immediately on executing the business
plan rather than performing an executive search; and given the uncertainty of
the global economy, we wanted to get the entire investment amount into our
bank account in one lump sum. In addition, this term sheet did not have a no-
shop clause and would have provided some flexibility if things went sideways.

Although we had accepted a term sheet, it did not mean we had completed the
funding process. We still needed to find a partner to join August Capital on
the deal. Our earlier relationship with Sierra Ventures from the Global MVP
Summit became advantageous at this point, because based on its previous
interest in the opportunity, coupled with our signed term sheet with August
Capital, Sierra invited us to an all-partners meeting in the morning on
Monday, September 8. At the conclusion of the meeting, they asked us to
stick around, and within half an hour we received confirmation that they
wanted to become the syndicate partner on the deal. The next decision we had
regarded which partner from Sierra would manage the investment, as we had
previously engaged with two members of their team, Jeff Loomans and Tim
Guleri. We went out for a celebratory dinner with August Capital and Sierra
Ventures the next evening, and afterward, based on Tim's more extensive
open source experience with commercial open source start-up, SourceFire, we
concluded that he would be the better candidate.

After signing the final version of the term sheet on September 11, we moved
on to the due diligence stage. Due diligence involves the disclosure of every
legal contract or agreement that has a bearing on the company's assets or
liabilities. Essentially, the investors are acquiring partial ownership of the
company and need to ensure that everything is in order from a financial and

legal perspective. Because of the maturity and complexity of the DotNetNuke
open source project, the due diligence process in our situation was more
complicated than average. We needed to dig up executed copies of all
Contributor License Agreements, Software Grants, Non-Disclosure
Agreements, third-party consulting contracts, sponsorship agreements,
advertising agreements, independent contractor agreements, trademark
registrations, domain registrations, financial records, tax returns,
incorporation documents, and so on. At one point I realized that I had spent
three full weeks doing nothing but collecting paperwork, signing it, faxing it
to our attorney, and then couriering the physical documents.

DotNetNuke OpenForce 08
As is customary for the month of June every year, Microsoft was hosting the
TechEd conference in Orlando, Florida. However, for the first time in 2008,
Microsoft decided to split the Developer and IT Pro tracks into two
consecutive weeks. This left the convention center empty over the weekend
between the two weeks, and Microsoft graciously made the space available to
community groups.

A couple of eager members from the DotNetNuke community in Florida,
Brian Scarbeau and Michael Webb, convinced Joe Healy from Microsoft that
DotNetNuke could leverage a room for its own developer event. With the
assistance of DotNetNuke Corporation and especially from advertising
manager Bill Walker, OpenForce Connect became a reality. A large contingent
of vendors from the DotNetNuke ecosystem stepped forward to sponsor the
event, and a variety of prizes were donated to be distributed among attendees.
Overall, the mini-conference was a great success, and the thing I found most
interesting was the fact that many attendees had traveled long distances to
attend OpenForce Connect, even though they had no intentions of attending
TechEd.

In October 2008, we had our second annual DotNetNuke OpenForce Europe
conference in the Netherlands. Co-located with the SDC, this time the event
was moved to Noordwijkerhout, which is located near Amsterdam. The
overall attendance to this conference was down slightly from the previous
year, but this was not surprising given the current state of the global
economy. We had two tracks spanning two days, and the conference once
again provided a great opportunity to network with members of the European
community.

November 10–14 we had our second annual DotNetNuke OpenForce North
America conference (see Figure 1.15), once again co-located with
DevConnections at Mandalay Bay in Las Vegas, Nevada. We had two tracks
spanning three days, and we added a DotNetNuke training day as well that
was hosted by our official training partner, Engage Software. Overall
attendance to the conference was down, but the number of vendors who
participated in the exhibitor area increased dramatically. In addition to
DotNetNuke Corporation, there was representation from Active Modules,
Data Springs, IowaComputerGurus, Seablick Consulting, R2Integrated,
AppTheory, Engage Software, iHOSTASP.net, and PowerDNN. This

http://iHOSTASP.net

participation definitely increased the visibility and impact of DotNetNuke at
the conference over the previous year, as I overheard more than one
conference attendee proclaim “DotNetNuke is everywhere this year!”

Figure 1.15

Bill Walker worked closely with Will Morgenweck to schedule a community
event one evening where attendees of OpenForce could get together and
socialize in a casual setting, and people would be eligible for prizes donated by
vendors. With more than $80,000 in prizes up for grabs, it actually convinced
a number of DevConnections conference attendees to switch their
registration to the OpenForce track so they could attend the community
night. In addition to the community night, R2Integrated also created a social
networking site at dnnconnections.com, which transmitted live podcasts,
news, and interviews from the conference so that the community could feel
more connected.

We had hoped to make a funding announcement at the conference so that it
would have the greatest impact; however, the due diligence took longer than

http://dnnconnections.com

expected, and we missed our window by a couple weeks. Although we could
not mention the imminent investment, we did take the opportunity to make
another major announcement during the keynote.

DotNetNuke Professional
As we worked through our business plan, we had looked at a variety of
business models that other open source companies were using to successfully
balance the requirements of commerce and community. In many cases,
companies were making a commercial version of their open source product
available under a commercial license with a yearly subscription model. The
commercial version provided access to expert technical support and value-
added network services that simplified and optimized the development and
maintenance of the product. In fact, serious business users of the
DotNetNuke platform had been demanding this for quite some time. In some
ways, it was simply a repackaging of our existing SLA program, but in others
it was a completely new strategy and direction for the project, including a new
focus on positioning ourselves as a content management system (CMS).

DotNetNuke Professional Edition was announced at the OpenForce North
America conference and was promised to be available in Q1 2009 (see Figure
1.16). It would be based on the mature DotNetNuke 4.9 code base and would
include the essential modules for building a robust site. In keeping with the
spirit of the open source development model, we promised to work
continually to provide new innovation and increased value in the free, open
source core product, which would also benefit customers of the commercial
edition.

Figure 1.16

Series A Announcement
The due diligence ended up taking 10 weeks to complete (it usually takes 4–6
weeks) but also served a useful purpose in terms of getting all of the legal
artifacts within the company in order. Aside from the internal due diligence,
there was also the funding documentation itself as well as the related filings
to provide preferred shares to the investors. Our legal team at DLA Piper
worked very hard to ensure that all bases were covered, and we successfully
closed the deal. The actual funding hit our bank account on November 20,
2008 (see Figure 1.17), and we made our public Series A announcement on
November 25, 2008 (see Figure 1.18).

Figure 1.17

Figure 1.18

The following week, we announced that Navin Nagiah was officially joining
the company as CEO. It had been a long journey for Navin, as he had
originally been introduced to us in January 2008 and had worked full time
with us for four months without any compensation as we tried to close our
round of funding. Navin had certainly demonstrated his commitment and
faith in the opportunity, and we were glad to have him come aboard. There
was a lot of work to be done on an aggressive schedule, but we finally felt like
we had all the pieces of the puzzle in place to start the next step of our
journey.

The new board of directors consisted of Navin, myself, Vivek Mehra from
August Capital, and Tim Guleri from Sierra Ventures. We needed one more
external party to join the board of directors, and Larry Augustin was the
obvious candidate. Because Larry was already involved in so many other high-
profile, funded open source companies, it took some arm twisting to convince
him to come aboard. But ultimately he agreed to join the team, and a public

press release soon followed.

Physical Offices
For the prior three years DotNetNuke Corporation had been operating as a
purely virtual company, with all employees working remotely from their
home offices. With funding completed, we were finally able to set up some
actual brick-and-mortar headquarters. Based on the fact that Charles Nurse
and myself were based in British Columbia, Canada, we decided to establish
the technical engineering office near Vancouver. We chose Abbotsford, a city
that is one hour east of Vancouver in the Fraser Valley, as that was the city
where I currently lived (and it was only a 30-minute drive for Charles).

I secured a lease in an old office building that offered us about 1,000 square
feet of usable space. We had a local contractor do some renovations to make
it more applicable to a start-up software company (the original space had
been used as a retail space for selling bridal gowns, and, in fact, my office had
previously been used as a fitting room). Based on its age, the office building
had a lot of “character,” and some of the original employees will fondly
remember the uneven flooring, which was spongy to walk on; the bathrooms
with unreliable pipes and no heating; the wooden deck at the back, which was
so rotted that I only ever saw one brave soul attempt to stand on it; and the
family of squirrels that lived inside the ceiling and occasionally dropped in
through a hole for a brief visit. Some of the first employees hired during this
first year were Sarah Darkis, John Lucarino, Israel Martinez, Rob Chartier,
Candice Whyte, and Ken Grierson. Within a year we quickly outgrew the
space in Abbotsford and moved to a more modern office building in Langley,
British Columbia, in Walnut Grove near the intersection of the #1 freeway
and 200th street exit.

At the same time that the office was established in Abbotsford, we secured
some co-located space in a building in San Jose where one of August Capital's
portfolio companies, a start-up company named Sky Pilot, had extra capacity.
This space served our needs until we secured a more permanent space of our
own in San Mateo, in the Crossroads Towers off near the interaction of the
101 and 92 freeway, near SalesForce.com's headquarters.

We chose California as our business headquarters for a couple of reasons.
Navin Nagiah and co-Founder Nik Kalyani were both living in the Bay Area,
and there was a lot of sales and marketing talent available to help us establish
our business presence. And the fact that both August Capital and Sierra
Ventures were based in Palo Alto made it easy to accommodate board

http://SalesForce.com

meetings and other interactions with our investors.

DotNetNuke 5.0
After the initial announcement of Cambrian at OpenForce North America 07,
not much news had been shared with the community about its ongoing
development. Our roadmap slipped behind schedule due to our focus on
fundraising, and we made a number of releases to the 4.x product to deal with
some security issues and improve the overall stability of the application based
on insight gained through the SLA program.

Meanwhile, Charles Nurse continued to work diligently on DotNetNuke 5.0,
and by the summer of 2008 we had reached a point where we believed we
were code complete on all of the major enhancements that had been
introduced to the platform in this iteration. We had not tackled all of the
features promised in the Cambrian roadmap, but we had implemented a lot of
fundamental changes that would be essential to delivering future
functionality.

DotNetNuke 5.0 may not have appeared to be a significant release on the
surface, but once you dug a little deeper, you quickly realized that there were
a ton of major enhancements. The entire packaging format for extensions had
been overhauled, security had been improved through Deny permissions and
other refactoring, performance had been optimized with a brand-new data
caching pattern, the administrative area had been opened up to allow for
complete flexibility, page creation and management had been streamlined,
the skinning engine received some designer-friendly new concepts, and,
perhaps most importantly, the overall stability and quality of the application
was maintained.

Keeping with tradition, DotNetNuke 5.0 was publicly released on December
24, 2008, six years from the date that IBuySpy Workshop had originally been
released.

Day of DotNetNuke
In June 2009, we also had the first of many community organized events
under the brand name of “Day of DotNetNuke.” Day of DotNetNuke was the
inspiration of Will Strohl, a loyal DNN evangelist and supporter from Florida.
The concept behind Day of DotNetNuke was that it was a free event,
completely organized by community volunteers and funded through
sponsorship, which usually took place on a Saturday. The event provided an
educational opportunity for users to attend sessions related to the
DotNetNuke platform, presented by volunteer community experts. And it also
provided the ability for members of the ecosystem to network with one
another and promote their products and services.

The first event occurred in Tampa, Florida, and was a huge success (largely
because of Will's exceptional commitment and charisma in leading the
event). This, of course, led to more Day of DotNetNuke events worldwide in
the years to follow, including Chicago, Nova Scotia, Paris, Orlando, and
Charlotte.

The event in Charlotte in the spring of 2013 was especially ambitious,
organized by the Queen City DotNetNuke User Group (QCDUG) and using a
unique theme of “Southern Fried DNN.” Clint Patterson, Allen Foster, Robb
Bryn, Fred Ellise, and Ryan Moore did an amazing job of both evangelizing
DotNetNuke as well as showing people Southern culture and hospitality.

DNN-Europe
DotNetNuke had always enjoyed a very loyal group of users in Europe. In fact,
the original Core Team had a significant representation of European
members, and they were very active in all of the community channels.
Eventually, this group decided to establish a more formal organization, and
Sebastian Leupold from Germany took the initiative in terms of creating a
membership-based website at dnn-europe.net for the Network of
DotNetNuke Professionals.

DNN-Europe provided a website for European users to congregate and
collaborate on DotNetNuke issues and business opportunities. DNN-Europe
was especially involved in the localization of the DotNetNuke application, as
well as with the creation language packs so that users could utilize the
administrative user interface in their native language. It also resulted in the
creation of an annual retreat where members could get together in person.
The retreats occurred in many different countries as different members
stepped forward to act as hosts. DNN-Europe was also heavily involved in
official DotNetNuke conferences in both Paris, France, and Hamburg,
Germany.

DNN-Europe would later be replaced by DNN-Connect, an official nonprofit
organization registered in Switzerland and founded by Peter Donker, Vicenç
Masanas, and Philipp Becker.

http://dnn-europe.net

Snowcovered Acquisition
In 2009, we were trying to make some decisions on what to do with the
DotNetNuke Marketplace. We had invested a lot of time and energy into
creating a marketplace for vendors selling commercial third-party extensions
to the open source platform, but from a business perspective we could not
convince vendors to switch from using the original DotNetNuke marketplace
at Snowcovered.com.

We decided to reach out to the owner of Snowcovered, an individual named
Brice Snow who lived in Paris, Tennessee. I made contact with him via email
and introduced Navin who then flew to Paris to meet Brice in person. Brice
was a very down-to-earth entrepreneur who had grown his marketplace from
scratch into a very profitable business. However, as is sometimes the case
with success, operating the marketplace had become a 24/7/365
responsibility for Brice, and it was beginning to take a toll on him. He had not
been able to take a vacation in years, and he was even starting to feel like his
health was being affected from the lack of sleep and exercise. So it turned out
that Brice was quite interested in exploring the concept of selling the
Snowcovered marketplace.

Navin worked with Brice to establish a suitable business arrangement, and in
September 2009 we made the announcement that we had acquired
Snowcovered (see Figure 1.19). Brice joined our board of advisers and
committed to helping us with the transition. We shut down our own
marketplace and focused our efforts on taking over the operations of
Snowcovered. Snowcovered was a sophisticated e-commerce platform that
was built on top of the DotNetNuke platform, and it took many months
before we felt fully comfortable with it. We decided that it made sense to
retain the Snowcovered brand following the acquisition so that there was no
disruption in the ecosystem. The brand was maintained for a few additional
years until we eventually did a rewrite of the e-commerce codebase so that we
could upgrade a more modern DNN version and rebranded it as the DNN
Store.

http://Snowcovered.com

Figure 1.19

Telerik Partnership
A hot trend in 2009 was related to user experience, as developers and
customers were increasingly looking for ways to utilize more client-side
technology that produced a more responsive experience in their web
applications.

We evaluated a number of options, and unfortunately at the time there were
not many good open source UI frameworks that would allow us to accomplish
our goals. So that meant we needed to consider commercial UI frameworks,
and we met with the leading ASP.NET UI vendors at the time, including
Infragistics and Telerik. Based on our observations at the time, it appeared
that Telerik had the most comprehensive UI control suite for ASP.NET, and it
was willing to work with us to establish a model where we could distribute its
commercial controls with both our commercial and open source editions.

We announced a partnership with Telerik in September 2009, which allowed
DNN developers to leverage the RAD Controls for ASP.NET Ajax. This
provided a huge amount of value to folks in our ecosystem as they no longer
needed to purchase developer licenses for these controls from Telerik. And it
also provided benefit to us, as we were able to utilize these controls in our
own development efforts to improve the overall user experience of the DNN
application.

Series B
In early 2010, our commercial business results were looking very positive, as
we had achieved our revenue goals every quarter since we launched our
commercial product edition. One of our board members, Tim Guleri (from
Sierra Ventures), was singing our praises to other venture capitalists, and a
firm from Utah named UVP (Utah Venture Partners) became interested.

At this point we were managing our Series A investment very wisely and were
not in a position where we needed to raise additional funds. However, given
the global economic climate at that time, we knew that we should not ignore
any opportunity to improve our financial position. So when UVP contacted us,
we quickly put together an investor deck, and Navin and I flew to Salt Lake
City to meet with the UVP partnership.

The meeting went well, and in sharp contrast to our earlier experiences with
fund raising, progress moved very quickly, and we were soon entertaining
another term sheet—this time offering a more substantial round of funding.
The amount was in excess of $8 million dollars and was comprised of
investment from UVP as well as from August Capital and Sierra Ventures who
both wanted to exercise their pro-rata rights to avoid dilution and retain their
equity stake in DotNetNuke (see Figure 1.20).

Figure 1.20

The financing round closed fairly quickly this time, and Chris Cooper from
UVP joined our board of directors. In order to keep the distribution of the
board in check, we also added another outside board member at this time,
Frank Artale, an entrepreneur with some successful open source companies
to his credit, including most recently the acquisition of XenSource by Citrix.

Open-DocumentLibrary Acquisition
The initial model of selling a commercial edition of DotNetNuke, which was
essentially the same product as the open source edition except with a
commercial license and professional support, was going well. However, our
VP of Sales, Tom Kress, felt that we may be able to improve our conversion
model if we offered some exclusive features in the commercial edition that
differentiated it from the open source edition. We were operating with
minimal engineering resources and managing our cash wisely, so we thought
that the quickest way to add advanced functionality to the commercial edition
was to acquire some complementary technology from within the DotNetNuke
ecosystem.

One of the features that many customers needed was a professional
document management solution. There were two dominant commercial
document management options for DotNetNuke at the time: DMX and Open-
DocumentLibrary. We reached out to the owners of these companies to
explore the potential of an acquisition. Both vendors were interested, and
after much analysis and negotiation, we ultimately decided that Open-
DocumentLibrary was the best option for our requirements.

Open-DocumentLibrary was owned by Xepient Solutions, a company based in
Spain, and we worked closely with it to integrate the technology into the
DotNetNuke Professional Edition. This relationship with Xepient would
ultimately turn into a long-term successful relationship between the
organizations, as Xepient continued to be a valuable off-shore
implementation partner for DNN Corp in the years to follow.

The acquisition of a commercial solution from the ecosystem was not without
its share of controversy. Customers who had previously purchased Open-
DocumentLibrary were concerned about future upgrades and support. And
users of the Community Edition were concerned that the only way to get
access to the Open-DocumentLibrary functionality was by purchasing the
DotNetNuke Professional Edition—at a significant price increase over the cost
of Open-DocumentLibrary on its own. Ultimately the continued availability of
DMX provided another viable option for Community Edition users needing
document management, and the owner of DMX benefited from us removing
his main source of competition from the marketplace. However, the challenge
of acquiring companies and technology from within the ecosystem would
continue to be a recurring issue in the future.

DotNetNuke Enterprise Edition
By 2010, DotNetNuke was being utilized by companies of all sizes to develop
websites and web applications. And although DotNetNuke Professional
Edition was selling very well, it was a “one-size-fits-all” approach and did not
address the specific needs of larger enterprise organizations. So in July 2010,
we introduced DotNetNuke Enterprise Edition to address this market need.

DotNetNuke Enterprise Edition provided a number of benefits over the
Professional Edition product offering. In addition to online trouble ticket
support, it also offered telephone support for the first time, essentially the
ability for a customer to pick up the phone and speak to a customer support
representative in real time. In addition, we included some feature
differentiation over the Professional Edition. A feature that was in high
demand in enterprise environments was Content Staging, and we offered an
initial version of this feature in the Enterprise Edition. The Enterprise Edition
was priced at a significant margin above the Professional Edition, creating a
couple of commercial options for customers to consider.

Sales of the Enterprise Edition were strong, and we made an interesting
business observation in the process: Enterprise customers often choose the
“enterprise” edition, not because they need the support or features, but
simply because it has “enterprise” in the name. The logic is that if you are a
large business, then just to be safe you should probably consider purchasing
the most capable product edition because you may need some of its
capabilities at some point, and it's much easier to deal with this at the initial
point of procurement rather than in the future.

POET Vulnerability
In September 2010, we had to deal with a security vulnerability that was not
specifically related to DotNetNuke, but rather affected all web applications
that were based on Microsoft ASP.NET technology. The unfortunate situation
for us is that the group who discovered the vulnerability used a DotNetNuke
website as its example during an Ekoparty conference in Argentina to
demonstrate how to exploit the weakness. As a result, many people were
under the mistaken impression that this was a DotNetNuke vulnerability,
which ended up having a negative impact on the reputation of the product.

The vulnerability was commonly referred to as “POET,” which was actually an
acronym referring to a Padding Oracle Exploit Tool that was developed to
break an algorithm used in the encryption of information within ASP.NET.
The exploit demonstrated how someone could forge his own cookie, which
would make DotNetNuke think that the user was a super user, which would
obviously provide him with privileged access to all site functionality. As
mentioned already, although DotNetNuke was the example application used
in the exploit, this vulnerability affected all ASP.NET applications including
those built on Web Forms or MVC and including Microsoft's own products
such as SharePoint and Dynamics CRM.

We worked closely with the Microsoft ASP.NET team to create a patch, which
blocked this attack vector and published a new version of DotNetNuke.
However, we later learned that this exploit was even more fundamental to
ASP.NET and that the WebResource.axd was vulnerable, which meant that
malicious folks could even download your web.config file if they knew how to
leverage the vulnerability. In the end, the only way to protect your website
was to apply a service pack for the .NET Framework from Microsoft, and we
encouraged all DotNetNuke users to do so as soon as possible.

DotNetNuke.com Overhaul
The DotNetNuke.com website had not been updated with a new visual identity
for quite some time, so in 2010 we decided that we needed to modernize our
online presence. Scott Willhite managed the project, and we worked closely
with one of the premiere system integration companies in the DNN
ecosystem, R2I, to update dotnetnuke.com.

A massive amount of work went into creating a new skin and information
architecture for the site, and we managed to accomplish it without causing a
major disruption in website operations or community services. At the same
time that the website overhaul was going on, our director of marketing, Terry
Erisman, commissioned a design firm to create a slightly modernized version
of the DotNetNuke logo, and we rolled this out in conjunction with the new
website (see Figure 1.21).

http://DotNetNuke.com
http://DotNetNuke.com
http://dotnetnuke.com

Figure 1.21

The community feedback was very positive, and this created a lot of
excitement and energy in the DotNetNuke ecosystem. Our website was finally
a good working example of how you could build a modern, visually appealing
website using DotNetNuke technology. The website capped off a very
successful year for DotNetNuke where both the business and technology felt

like they were riding the crest of a wave.

Active Modules Acquisition
Leading up to 2011 there was a lot of disruption occurring in the CMS
landscape. Website builders that had previously been used only by very small
businesses were becoming more powerful and starting to penetrate the mid-
market. Convenience was becoming one of the most powerful forces driving
procurement of software, and those CMS solutions offering capable
infrastructure in addition to software were becoming a very compelling value
proposition to customers. A lot of consolidation was occurring amongst the
large enterprise CMS products as they struggled to maintain their dominance
in an increasingly commoditized market. And the trend toward leveraging
multiple devices and channels and creating an engaging customer experience
was beginning to take shape. If it wanted to remain strong, DotNetNuke
needed a way to differentiate itself from the rest of the CMS vendors.

Many CMS vendors had already started to introduce features related to
marketing automation and analytics, so it appeared that this space was going
to become crowded very quickly. Because one of DotNetNuke's strengths over
its history had been related to managing online communities, focusing on the
market trend around “social” appeared to be a way to stand out from the
crowd and at the same time capitalize on a large industry trend.

Rather than develop a lot of social functionality from scratch, it made sense
to evaluate the offerings that were already available in the DotNetNuke
ecosystem, and one particular solution stood out from the rest. That solution
was called Active Social, and it was developed by a company from Charleston,
South Carolina, named Active Modules. Active Modules was owned by Will
Morgenweck, an entrepreneur who had been creating commercial modules
for DotNetNuke for many years.

After some initial conversations, we were able to determine that Will was
interested in having DotNetNuke Corporation acquire Active Modules for its
intellectual property. The plan was to integrate the Active Social product into
the DotNetNuke CMS platform so that it could become a “Social CMS.” As
part of the acquisition, Will Morgenweck also joined DotNetNuke
Corporation as a product manager.

The official announcement occurred in January 2011, and once again it
created a lot of controversy in the DotNetNuke ecosystem. Active Module's
products were very popular, and there were a lot of loyal customers that were
now uncertain about their future. We did our best to try to alleviate their

fears by being transparent with our plans, but unfortunately it took longer
than expected to integrate the Active Social technology, which reduced some
of the goodwill we could have achieved.

Nik Kalyani Leaves DNN Corp
One of the original cofounders of DotNetNuke Corporation, Nik Kalyani, was
based in the California office and played a key role in getting the company off
the ground during the start-up phase. Nik was a veteran entrepreneur and a
visionary when it came to recognizing and developing high-tech business
opportunities, and he had been involved in the DotNetNuke ecosystem for
many years.

In the early stages after DotNetNuke Corporation received funding, there was
a lot of operational effort required to scale up the company, and everyone was
expected to fulfill multiple roles. Based on the fact that he was located in the
business headquarters, Nik ended up focusing a lot of his efforts in the sales
and marketing areas. This was somewhat unfortunate as it meant that the
company lost some of the benefit of his skills being utilized in the product
and technology area. And it also meant that he felt less satisfied with his role
at DotNetNuke Corporation.

After a few years, Nik knew that he wanted to get more involved with creating
new technology, and unfortunately the company was not yet in a position
where it could satisfy his needs. In the end, he decided to move on to explore
other opportunities, although he continued to remain actively engaged as an
adviser for many years to come. However, as a consequence of Nik's
departure, we lost a highly creative, visionary talent who had played an
important role in DotNetNuke's market success.

Cloud. Mobile. Social.
After spending so much time evaluating the CMS market landscape, we had
begun to establish ourselves as thought leaders in the space. The three largest
trends impacting the market at the time were cloud infrastructure, mobile
devices, and social engagement. Cathal Connolly, a DotNetNuke Corporation
employee and one of the original Core Team members, was the first to notice
that the first letter of each of these industry terms conveniently spelled
C.M.S. So we were able to come up with a clever marketing slogan, “CMS
Redefined: Cloud. Mobile. Social.”

This marketing slogan got us a lot of traction, and I was ultimately invited to
blog about it on CMS Report and do a presentation about it at CMS Expo in
Chicago in May 2011. This was the first time that our efforts were getting
industry recognition outside of the software developer community. Business
professionals and marketers were starting to take notice of DotNetNuke, and
we were beginning to attract a new audience of users and customers.

DotNetNuke 6.0
After many successful releases of DotNetNuke 5, we knew we needed to do
something bold to energize the platform and developer ecosystem. So in 2011
we set out to do exactly that.

Over the past 5 years we had noticed that the C# programming language was
becoming more and more popular amongst Microsoft developers. This was
reinforced by the fact that Microsoft itself provided most of its code samples
and demonstrations in C#. Interestingly, a software developer from China,
Ben Zhong, had utilized a language translation tool to convert the
DotNetNuke application from VB to C# and had published his work on
CodePlex. Due to trademark issues, we could not allow him to publish it in
this manner, but rather than getting rid of it entirely, we asked him if he
would be willing to maintain the C# version and continue doing the
translation for each release going forward, if we agreed to publish it as an
official download package from our project page. Ben agreed to this proposal,
and this allowed us to gauge the interest in a C# version of DotNetNuke. The
interest turned out to be very high, which ultimately resulted in us making a
decision that we should adopt the C# code base as our official development
branch for DotNetNuke 6.0 and for the future.

We made an announcement about the switch to C# during a Microsoft MVP
conference, and it generated a lot of controversy. Some highly respected folks
at Microsoft were not pleased that we created such a polarized conversation
about C# versus VB, as they had been trying hard to mitigate the “language
war” discussion for many years. In reality, based on the extensibility model in
DotNetNuke, software developers were still free to create their extensions in
either VB or C#, so were still very supportive of both communities. But
switching to C# for the core framework certainly did provide some business
benefits for us, as it had long been one of the blocking factors for adoption by
a number of large enterprise organizations worldwide.

DotNetNuke 6 also had a full overhaul of the user experience. It adopted
modal pop-ups for administrative functionality, which helped emphasize the
“in-context” editing experience. And every administrative user interface was
modified to use DIVs rather than TABLEs, and a whole new form pattern was
introduced to provide a modern styling for the application. Cuong Dang, Ian
Robinson, and Chris Paterra were instrumental in revolutionizing the
DotNetNuke user experience in DotNetNuke 6.0.

DotNetNuke World 2011
In the years prior to 2011, DotNetNuke had hosted an annual user conference
in Las Vegas, partnered with DevConnections. These conferences had been
very successful in terms of providing exposure for the product to software
developers and allowing vendors in our ecosystem to showcase their products
and services. However, we felt that we may be able to achieve greater benefit
and attract more attendees if we hosted our own independent user
conference. We felt this was possible because we would be able to more easily
cater to both a software developer and business user audience, and we would
be able to charge a registration fee that was substantially less than the cost of
the DevConnections event. So in November 2011 we hosted our first
DotNetNuke World event.

DotNetNuke World was located in Orlando, Florida—a location chosen for its
favorable weather, its abundance of conference venues, its accessibility from
both North America and Europe, and its reputation as a popular tourist
destination for attractions like DisneyWorld and Universal Studios. The
conference took place at a popular resort hotel, and the marketing group from
DotNetNuke Corporation, particularly Richard Sumas, did an outstanding job
to create a larger-than-life conference experience. The conference was able to
attract more attendees than in the past and generated a huge amount of
excitement. However, we also gained some insight into the costs of hosting
our own conference event, and the jury would be out on whether this would
be something we could continue to deliver on an annual basis in the long
term.

DotNetNuke 6.1 was launched during this event, and it focused on delivering
advanced support for mobile devices—a capability that was becoming
increasingly important for businesses catering to an online audience. The
mobile device support was provided by a mobile device detection library, and
DotNetNuke was one of the first CMSs to ship with this as a native feature.
Initially this was based on an open source project named WURFL; however,
when it adopted a commercial license with terms that were not favorable to
DotNetNuke users, we switched to a library from 51Degrees.mobi.

The DotNetNuke World conference also provided a venue to showcase our
many industry accomplishments and accolades we had received in 2011. We
had been recognized by the Visual Studio Magazine Readers Choice Awards,
Gartner Magic Quadrant for Horizontal Portals, Open Source CMS Market

Survey, DevProConnections Community Choice Awards, Packt Press Open
Source Awards, and we had even reached #228 on the 2011 Inc. 500!

Providing some great entertainment, and a total surprise to myself, was the
unveiling at the end of the keynote of a “bobblehead” doll in my likeness,
complete with camouflage shorts, a black tank top, flip flops, and a puka shell
necklace! (See Figure 1.22.) Mitch Bishop, the chief marketing officer at
DotNetNuke, revealed that they had made a limited-edition run of 50
bobblehead dolls, and conference attendees were told that they could win
them by doing wild and crazy antics. One person, Malik Khan from PointClick
Technologies, even stripped off his clothes and dove into a pool to retrieve a
bobblehead.

Figure 1.22

DotNetNuke Gets Social
After our acquisition of Active Modules in 2011, there were many questions
on how we intended to utilize the technology as part of the DotNetNuke
platform. The initial integration was delayed while we focused on overhauling
the platform in DotNetNuke 6.0 and implementing the mobile device
capabilities in DotNetNuke 6.1. So it was not until DotNetNuke 6.2, which
was released in May 2012, that we were able to deliver the social functionality
we had promised. This was unfortunate as we ultimately missed a window of
opportunity where the social capability could have generated a more
significant impact in the CMS market.

DotNetNuke 6.2 was a substantial release that included a variety of new
platform features. A new Social API that was derived in a large part from
Active Social offered a huge increase in functionality. Features such as social
groups, friends, followers, activity stream, messaging and notifications, and
an advanced user profile offered new opportunities for users and customers
to build powerful community websites. These social capabilities also provided
the foundation for a variety of new modules focused on user engagement.

The product launch for DotNetNuke 6.2 occurred at a DNN Partner
conference event in Napa Valley, California, and was live streamed to people
worldwide. Mitch Bishop, CMO of DotNetNuke Corporation at the time, had
really stepped up our game from a messaging and positioning perspective and
this was very obvious in the product launch presentation. Mitch had come up
with the unique “Social CMS” slogan, and it resonated well with our target
audience and the market in general. I presented the product slides at the
launch, and Will Morgenweck demonstrated the actual product in action. We
were extremely optimistic about the future of DotNetNuke and Social as an
integrated product solution.

Microsoft Azure Partnership
Since 2007, we had been well aware of the industry trend toward cloud
computing. It was hard to discount the convenience and benefits of leveraging
a third-party infrastructure provider, and IT departments worldwide were
recognizing that in most cases it did not make sense for them to procure and
manage their own hardware or data centers.

In 2008, we had attempted to establish an arrangement with a large hosting
provider in the DotNetNuke ecosystem that would enable us to offer a hosted
DotNetNuke service. Scott Willhite was very close to formalizing this
partnership; however, we had been forced to put it on hold when we secured
our Series A round of funding.

In 2010, we revisited the opportunity of offering a hosted DotNetNuke
solution, and Navin and Joe Brinkman visited a variety of DotNetNuke
hosting providers to determine their capabilities and interest in forming a
strategic partnership. Based on our long relationship with MaximumASP and
its reputation as a premiere Microsoft hosting provider, we decided to utilize
its infrastructure for our hosted offering. Soon after the partnership was
formed, MaximumASP was acquired by CBEYOND, which resulted in some
complications as CBEYOND was more focused on integrating the
MaximumASP data centers and customers into its portfolio than it was in
developing a white-labeled hosting service for us.

During this time, the “cloud” had become a mainstream technology trend, and
a few companies were focused on providing commoditized cloud
infrastructure. Amazon was offering AWS, which were essentially on-demand
virtual machines that you could provision instantly and utilize as part of your
business operations. Microsoft was a bit late to the game, and it was focused
on delivering a specialized cloud platform named Azure that was highly
scalable and capable.

Because things were not progressing as expected with CBEYOND, we decided
to explore other options. Navin, Joe, and myself visited Amazon in Seattle and
Microsoft in Redmond to familiarize ourselves with their offerings and road
maps and determine if they were interested in partnering with us on a
DotNetNuke Cloud offering.

Ultimately, Microsoft proved to be the most eager to work with us. This was
driven in a large part by our participation in a Microsoft marketing program

where it was trying to improve awareness and growth of Windows-based CMS
offerings. Gavin Warrener was our Microsoft contact for this program, and he
played a significant role in helping us establish a strategic partnership with
Microsoft based on Windows Azure. Microsoft was interested in increasing
the volume of customers using Windows Azure, so it wanted us to make the
Community Edition available as a cloud offering.

The partnership was officially announced in October 2012. It offered us a
generous discount on Azure services, direct communication with the
Windows Azure team, and assistance in promoting our cloud offering once it
was available. We began working on our cloud offering and were able to hire
David Rodriguez, an Azure expert based in the Canary Islands who had
previously created an open source DotNetNuke Azure Accelerator product.

Making a traditional ASP.NET application like DotNetNuke function on the
Azure PaaS platform was not straightforward, and we encountered many
obstacles along the way. This was coupled with the fact that Microsoft was
still actively developing the Azure platform, so we would run into breaking
changes and compatibility issues on a regular basis. Ultimately, this is the
price you pay for adopting technology early, but it did have an effect on our
ability to deliver DotNetNuke in the cloud on our expected schedule.

DNN World 2012
In late October 2012, we hosted our second DNN World conference. Based on
our positive experience the previous year, we again chose Orlando, Florida, as
the location, but this time we held the event at a different resort hotel and
conference facility.

Again, the DotNetNuke Corporation marketing team did a phenomenal job of
creating the atmosphere of a huge technology event. And because the
conference occurred near Halloween, a DNN Super Heroes theme was
chosen, which created a lot of interesting opportunities for marketing
collateral, evening events, and so on.

The conference occurred over two days with a variety of different tracks going
on in parallel catering to different audiences. Scott Hunter, principal program
manager for Microsoft ASP.NET, was a guest presenter for one of the keynote
sessions, and Navin and I also presented keynotes.

The conference also provided a venue to announce the new DotNetNuke MVP
Program. The Core Team model had served us well for many years, but it had
become rather static in its membership, and there was not a well-defined
process for identifying community members who deserved recognition. The
DotNetNuke MVP program was modeled after the Microsoft MVP Program
and was based on community contributions, primarily for activities occurring
on dnnsoftware.com. The initial inductees included Stefan Cullman, Ernst
Peter Tamminga, Brian Dukes, Vicenç Masanas, Clint Patterson, Ingo
Herbote, Sebastian Leupold, Mitchel Sellers, Brandon Haynes, and Peter
Donker.

http://dnnsoftware.com

DotNetNuke 7.0
After a number of successful DotNetNuke 6 releases, it was time for another
major increment in version number. In the past, we had typically migrated
DotNetNuke to the next major version number at around the same time that
Microsoft introduced new versions of its operating systems and frameworks.
In this case, Microsoft had released a whole wave of new technologies,
including Windows 8, Windows Server 2012, IIS 8.0, Visual Studio 2012, and
ASP.NET 4.5 were released in November 2012. So it certainly made sense for
us to migrate to DotNetNuke 7.

Beyond ensuring compatibility for the latest Microsoft technologies, we also
introduced some new capabilities in DotNetNuke 7, which ensured that it
continued to remain relevant in the market. The most impactful of these
changes were related to the product installation and administration
experience.

A new installer was introduced, which took inspiration from WordPress's “5
minute install” and streamline the installation experience by reducing the
amount of information and the number of steps required to get your
DotNetNuke installation up and running. And a totally new Control Panel was
introduced that was designed to look very modern and familiar, and make it
more intuitive to discover the many advanced application features. The ability
to personalize the Control Panel using bookmarks was added so that users
could organize their most frequently utilized features in one convenient area.
And the process for adding modules to a page became much simpler through
the use of drag and drop.

iFinity Acquisition
Discussions had begun at the initial DNN World conference in 2011 with one
of the vendors in our ecosystem about a potential technology acquisition. The
product was called Url Master, and it had been developed by Bruce Chapman
of iFinity based in Australia. Discussions were put on hold for an extended
period of time but resumed at the second DNN World conference in 2012.
URL rewriting was becoming a critical feature for web marketing
professionals, so it was definitely a technology that we needed to incorporate
into the platform at some point in time.

After DNN World, Bruce took the initiative to fly to San Mateo and meet with
us in an attempt to move the negotiations forward. This provided a good
opportunity to discuss the opportunity, and it ultimately resulted in us
acquiring the iFinity intellectual property, with Bruce agreeing to join our
team as a product manager.

The acquisition was announced in December 2012, and the amount of angst it
created in the ecosystem was much greater than expected. This was mostly
due to the fact that we announced publicly that nearly all of the advanced
functionality was going to be reserved exclusively for the commercial
DotNetNuke product editions. These product editions were substantially
more expensive than what you were currently able to purchase Url Master for
on its own. Based on the feedback, we made a concession that customers
could continue to purchase Url Master as a standalone product until such
time as we had fully integrated it into DotNetNuke and made it publicly
available in our commercial product edition. And Bruce agreed to continue to
provide support and maintenance to his existing customer base.

10-Year Anniversary
December 24, 2012, was an important date in the history of DotNetNuke. It
represented the 10-year anniversary since I officially announced the open
source project on the ASP.NET Forums (originally named the IBuySpy
Workshop). Much had changed since those humble beginnings, and I felt
exceptionally blessed for all of the friendships I had made and the impact that
DotNetNuke had made on the world in the previous decade.

Chris Hammond wanted to do something special in commemoration of the
big event, and I worked with him and a design firm to create an infographic
(see Figure 1.23). The infographic had a theme of “metamorphosis” and
showed a caterpillar evolving through the various life cycle stages and
eventually emerging as a beautiful butterfly. We included a variety of
significant historical events on the infographic and even embedded a few
“Easter Eggs” for those people who had more intimate knowledge of the
project evolution.

Figure 1.23

DNN Social
With the CMS space becoming so saturated with competition we decided that
we needed to create additional specialized solutions based on DotNetNuke
that could differentiate our offering. The obvious first candidate was a social
solution, which leveraged the Social APIs added to the platform previously
and added a variety of additional social capabilities targeted at organizations
who wanted to build customer communities.

DNN Social was introduced as a commercial solution in March 2013 and
included a whole suite of Social modules that could be integrated with the
DotNetNuke platform. There were advanced modules that provided support
for social content creation through blogging, ideation, discussions, question
and answers, and events, all built on top of an analytics engine that tracked all
user activities, and a gamification system that allowed you to encourage and
reward community behavior. It was an impressive product release, and Chris
Paterra had invested a significant amount of time and energy into bringing it
to market.

However, perhaps even more challenging than creating the DNN Social
product was defining the business model for it. How would it be priced? How
would it be marketed? What was the customer acquisition strategy? DNN
Social represented an opportunity to appeal to buyers outside of the
traditional DotNetNuke ecosystem. But as most entrepreneurs know, it is a
significant challenge for any company to expand from being a single product
company to becoming a multiple product company. It often requires a totally
different sales and marketing strategy for each product. We experienced some
of these challenges almost immediately, which greatly affected the growth
and success of the product in these early stages.

DotNetNuke.com Hacked
One of the challenges with managing a large community website is that it gets
a lot of attention, and not just attention from people who are interested in
contributing but also folks who have a more malicious intent.

In the spring of 2013 we had the misfortune of discovering that the
dotnetnuke.com website had been compromised. It was difficult to determine
the extent of the security breach, but based on our investigation, it appeared
that some unknown hackers from Iran had managed to upload a sophisticated
shell script to our servers. This had allowed them to elevate their user
account privilege to superuser status and then utilize those privileges to gain
access to other areas of our infrastructure. This was not the work of
amateurs, as they covered their tracks very well. For example, they were able
to bypass our IP filtering by remotely logging in to various zombie servers
around the world to spoof their IP addresses. And they masked their exploits
by naming their backdoor entry points as files that normally exist as part of a
DotNetNuke installation and by carefully cleaning up the evidence of their
handiwork as they navigated our internal infrastructure. Ultimately, it was
only through careful forensic examination of our web server logs that we
were able to identify and track their activities.

Our investigation revealed that it was possible that the hackers may have
gained access to some of the user information on dotnetnuke.com. As a result,
we decided that we needed to take immediate action to protect our
community. We blocked all of the unauthorized access so that the hackers
could no longer access our infrastructure. And because we had been using
encrypted passwords since the website had first been launched, we decided
that it was time to harden our security model, so we developed a utility that
allowed us to migrate all user accounts to hashed passwords—a much more
secure password protection method where there is no possible way to ever
reverse engineer a string of text back into a user's password. Once this was
done, we issued a bulletin to our 1 million registered users to explain the
situation, urging them to change their passwords immediately.

It is important to note that the security breach was ultimately not a result of a
vulnerability in the DotNetNuke application itself but rather because of an
unsecure configuration in our infrastructure. We tried to be very clear about
this in our public communications because we did not want to affect the
reputation of DotNetNuke as a highly secure web platform.

http://DotNetNuke.com
http://dotnetnuke.com
http://dotnetnuke.com

Rebranding
In late 2012, a decision had been made that in order to redefine our identity
in the market as a business solutions provider, we needed to do some
substantial rebranding. The common buzzword in Silicon Valley to describe a
major shift in business approach is “pivot,” and in the first half of 2013 we
worked with a number of third-party consultants from the Bay Area who
helped us with our overall brand strategy and execution.

The rebranding project was a massive undertaking. It included everything
from our company name and logo, to our website and email domain names,
to our product names, marketing collateral, website content, and visual
appearance. A lot of time and energy went into this activity, but in order for it
to not be a disruptive distraction while the work was in progress, very little
information was shared either internally or externally while it was going on.

From a high level, the most fundamental change was moving away from the
“DotNetNuke” brand and fully embracing “DNN.” The rationale was that the
“nuke” reference has never been particularly positive or professional, and it
made sense to distance ourselves from legacy systems that shared the
common branding bond, such as PHP-Nuke. In addition, there was
uncertainty about how long Microsoft would continue to utilize the “.NET”
branding as part of its own technology platform (after more than a decade,
there were some rumors circulating that a new brand strategy might emerge).
We already owned the trademarks for DNN, and it was already getting
widespread usage throughout the ecosystem, so it made sense for us to
concentrate our efforts on this brand. As a result we needed to migrate all
references of DotNetNuke to DNN, including critical infrastructure items
such as our website and email domain names. We were able to acquire the
domain dnnsoftware.com from a member of our ecosystem, and this would
become our new online identity going forward. We also officially changed the
name of the company from DotNetNuke Corporation to DNN Corp.

When the decision was made to utilize DNN for our branding, it also
prompted a decision to create a new logo. The current logo had been in use
since Nik Kalyani created it back in 2005, and it was time for a significant
overhaul. Parker Moore, a creative firm from the Bay Area that had previously
worked with Apple among many others, came up with a variety of logo
concepts before we chose a simple “D” design. The new logo was simple, yet
modern, and very adaptable to a variety of visual treatments. It also included

http://dnnsoftware.com

a new color palette that would need to be utilized in all of our future
marketing collateral. See Figure 1.24.

Figure 1.24

From a product perspective, the move away from DotNetNuke meant that all
product editions also needed to be rebranded. The feedback from the
consultants was that the commercial editions needed to have a brand that was
differentiated from the open source platform. So we embarked on an
exhaustive journey to come up with a new commercial product brand. The
goal was to come up with a brand that emphasized the “genuinely
empowering” theme that had come out of earlier brand identity strategy
discussions. Many names were suggested, but after doing research we would
find trademark issues or other conflicts. In the end we chose the name Evoq,
a unique spelling variation of the word evoke that means “to call up or
produce (memories, feelings, and so on).” So the commercial products would
be branded as Evoq X, where “X” would refer to a specific business solution,
while the open source product edition would be branded DNN Platform.

At the same time that the branding and logo activities were going on, a major
overhaul of our website was also underway. The goal of this overhaul was to
better promote the commercial solutions while still maintaining a strong
community presence. A totally new information architecture was developed,
and once the new logo and color palette were approved, work also began on a
modern new skin. The approach with this website overhaul (which was
different than what we had ever done in the past) was that rather than
upgrading the existing site, we were going to create a completely new
installation and only migrate the content that made sense as part of the new
information architecture. The logic was that over the course of a decade, the
DNN website had acquired a lot of “baggage,” and a lot of benefit could be
obtained by starting with a fresh new website foundation.

The website was launched in July 2013 (see Figure 1.25), which also served as
the promotional vehicle for announcing the rest of the rebranding changes. In
general, the community response was very positive, especially from those

folks who relied on DNN for their livelihoods (as they had long been the
people telling us that the “nuke” name often caused them difficulties in
business engagements). However, there was also fear and uncertainty
expressed by a number of longtime community members who did not feel
comfortable with the DNN Platform branding and who felt the rebranding
represented a shift away from treating the open source project as a first class
citizen. Ultimately, this would result in the formation of DNN-Connect, a
European nonprofit group whose public mandate is to ensure the longevity of
the DNN open source platform.

Figure 1.25

One of the unfortunate side effects of the rebranding and approach taken
with the website overhaul was that we lost significant SEO and web traffic.
Specifically, the change in website domain name and the new information
architecture resulted in a lot of broken links for visitors coming to the site
from search engine referrals. In addition, a lot of historical content about
DNN from the past decade was not included in the new website and therefore
started to be flushed from the search engine indexes. To some extent these
side effects were expected; however, the magnitude of the impact on traffic

was much larger than expected.

DNNCon
After reviewing the financial aspects of the DNN World conference events,
DNN Corp determined that it was not viable to host another DNN World
conference event in 2013. We announced this news publicly and hoped that
the void could be filled by some community events.

Arrow Consulting and Design, a DNN Partner and solutions provider based in
West Palm Beach, Florida, graciously stepped up and volunteered to host a
large scale DNN event in November 2013 in its home city. The principal
owners at Arrow, Ryan Morgan and Raul Rodilla, had long been proud
supporters of DNN and based on the recent branding changes in the
ecosystem, they spoke to Will Strohl and the Day of DotNetNuke events were
rebranded to DNNCon.

DNNCon was a very successful user conference. It had a full day of training
followed by a full day of conference sessions. It also had the ever popular
DNN After Dark, an evening social event where conference attendees could
get together, socialize, and get to know one another better. The sponsorships
were so generous for the event that Arrow was able to donate more than
$10,000 to a local charity called Place of Hope at the conclusion of the
conference.

DNNCon (and its sister event in Europe, DNN-Connect) provided the perfect
venue to publicize and reward each batch of DNN MVPs. In 2013 and 2014,
the following MVPs received recognition for their exemplary community
contributions: David Lee, Gilles Le Pigocher, Jason Brunken, Michael
Tobisch, Roger Selwyn, Scott McCulloch, William Severance, Chris
Hammond, Gifford Watkins, Robb Bryn, Allen Foster, Peter Donker, Ernst
Peter Tamminga, Brian Dukes, Vicenç Masanas, Mitchel Sellers, Sebastian
Leupold, Matthias Schlomann, Timo Breumelhof, Torsten Weggen, Oliver
Hine, Wes Tatters, Sacha Trauwaen, Will Strohl, Jay Mathis, Geoff Barlow,
Julien Girerd, Bogdan Litescu, Daniel Mettler, Erik van Ballegoij, Richard
Howells, Scott Wilkinson, and myself.

Scott Willhite Moves On
In December 2013, another cofounder decided to move on from the company.
Scott Willhite was one of the original Core Team members and had worked
closely with me ever since 2003, providing valuable wisdom and leadership to
the project as well as shouldering a significant portion of the workload. Scott
was based in Seattle, Washington, and due to personal commitments, he
continued to work remotely even after the company received funding. This
was challenging for him, but he still made many significant contributions to
the company.

Over the course of a decade, Scott played a key role in the success of the DNN
project. He was not a person who ever looked for individual recognition or
gratitude but preferred to work behind the scenes and take responsibility for
any area that was being neglected or underserved. This character trait meant
that he often ended up volunteering for time-consuming, operational tasks
that were essential to the company and project but provided very little
personal satisfaction or reward. He also felt very strongly about community
and the role that DNN Corp played as stewards within the open source
ecosystem.

Scott's official title was director of community relations, and as the company
grew and adapted to the changing market landscape, the focus on community
also began to change. The new model for managing community no longer
aligned as closely with Scott's personal perspective, motivations, or strengths.
As a result, he felt that it was time to move on and he tendered his
resignation. And although I knew it was the right decision for Scott, I still had
a very difficult time dealing with it because of our long-term friendship and
trusted working relationship.

DNN 7.x Releases
Throughout 2013 and 2014, DNN Corp continued to deliver new major
versions of DNN on roughly a six-month release cadence. These releases
followed the DNN 7 naming convention and included many new features for
both the commercial editions as well as the open source platform. Integration
of the intellectual property acquired through the iFinity Url Master
acquisition occurred in DNN 7.1, which greatly improved the support for SEO
friendly URLs. Advanced digital asset management was added to the platform
and security improvements in regard to user passwords were introduced to
improve the default product configuration. A new architecture for indexing
site content was added to DNN based on the popular Lucene open source
project. The user experience received some important updates in
administrative scenarios so that it could better accommodate the large
volumes of information that our users and customers were managing. And a
large focus was placed on improving the overall performance of the
application, resulting in significant gains in page load times and reduction of
HTML payload sent to the browser.

During the development of DNN 7.x, major changes also occurred in the
product infrastructure. From a source code management perspective, we had
been using Team Foundation Server for a number of years, and although it
met our needs for internal development, it did not support an open source
development model. Specifically, it did not provide a mechanism for allowing
people to browse the source code in real time or a way for people to make
source code contributions that could be easily integrated with the platform.
Recently, a new source code management system named Git had become the
de facto standard for managing open source projects, and we decided that it
made sense to migrate our code base to Git and host our open source project
repository on GitHub. From an issue management perspective, we had been
using Countersoft's Gemini product for many years, but it had a variety of
limitations, and upon review it became obvious that there were other
software products that were much more popular and better suited for open
source style development. We chose to migrate to Atlassian's JIRA product
and utilize its hosted offering.

My Departure from DNN Corp
In August 2014 I made an announcement that shocked many folks within the
DNN ecosystem. In some ways, it was even a shock to myself. DNN Corp and
I had decided to part ways. As is common in these types of situations, the
public details surrounding my departure were purposely kept to a minimum.
The final farewell blog post I wrote was reviewed and edited extensively by
the company prior to its publication to ensure that it was professional and
consistent with the messaging that was agreed upon by both the company and
myself. As a result, it was one of the shortest and most impersonal blog posts
I had published over the lifetime of the project. So, not surprisingly, it fueled
further discussion and speculation by the community in regard to the real
story behind my withdrawal from the company.

The reality is that I had been feeling frustrated for quite some time. I was not
frustrated by the progress on the open source project but rather by the
challenges of trying to preserve the delicate balance between the open source
ecosystem and the commercial needs of the company. As project founder and
steward, I shouldered the majority of the responsibility over the years in
terms of trying to ensure harmony between the various stakeholders and
their competing interests. This responsibility put me in the middle of every
debate and every conflict, which ultimately weighed on my conscience and
was extremely draining from an emotional perspective. Basically, the main
challenge in trying to ensure a balanced approach is that there is never truly a
win/win outcome for all parties. In every instance there is at least one party
who feels that its perspective or needs were not fully realized. So in trying to
please everyone, you usually feel like you are pleasing no one, and you start
to feel increasingly isolated and alone. The key, of course, is to not focus on
each instance but rather to look at things from a higher level and try to
ensure that the net result of all of the decisions combined are balanced. Over
time, if stakeholders feel like they lost some battles but won others, it will
preserve their faith and trust in the environment. However, it is next to
impossible to satisfy everyone. The only thing you can do is develop a “thick
skin” and objectively try to constantly live up to the fundamental community
ideals. This is all easier said than done, and over time I felt like the
philosophical divide between the open source community and commercial
interests of the company were becoming wider and that I had begun to lose
my influence on the tug-of-war between the various stakeholders in the DNN
ecosystem.

Another challenge faced by many organizations is related to creating a
winning culture. The ultimate goal is to create an environment where
everyone understands the guiding principles and vision and are all working
together in unison toward achieving that vision. In the early stages of DNN
there was a strong founding leadership group who had been together from the
very beginning of the open source project. And based on our publicized
community ideals as well as our track record of how we had conducted
ourselves over time, we had created an almost cult-like atmosphere within
the DNN ecosystem. Very few technology companies can rival the number of
loyal followers that DNN had attracted in the first five to six years of the open
source project—the passion and enthusiasm of our third-party evangelists
was unparalleled. One key to creating this environment was the “abundance
mentality”—the belief that the project and organization would be successful
only if the other members of the ecosystem were also successful. This is an
extremely powerful concept, as once the trust and credibility had been
established, it created an army of loyal followers who helped facilitate the
viral growth that followed. Word spread that the DNN ecosystem had no
barrier to entry and was ripe with opportunities for everyone, regardless of
their background.

When DNN Corp received venture capital funding in late 2008, we were lucky
enough to be able to hire many key evangelists from the community. This
further strengthened the core of the company, both technically and culturally.
People were excited to work for DNN Corp because they wanted to be able to
contribute in a meaningful way to the ecosystem that they already knew and
loved. DNN Corp benefited from this atmosphere and achieved a couple years
of phenomenal commercial growth and success. However, it is very difficult
for any organization to sustain this type of momentum in the long term. The
biggest challenge is related to employee turnover. As founders and employees
that had been recruited from within the DNN community moved on to other
opportunities, the focus of the organization began to change. It became more
commercially oriented, and new employees entered into a new culture with
different priorities. In addition, the leadership of the company changed a
number of times, and each transition brought new personalities who wanted
to make an impact on the organization—sometimes in ways that realigned the
organization's goals. This created challenges and shifted the company's
identity.

This was difficult for me, as I felt that my role and perspective during this

time were often misunderstood. My heart and passion had never wavered
from the open source DNN project; however, I also wanted the company to be
successful. I had opinions on where I felt the opportunities existed for DNN
to move forward so that it could continue to serve both the community and
commercial goals. And although my thoughts were not always consistent with
other folks on the leadership team, I did my best to support the ultimate
direction of the organization. I felt that the most important contribution I
could make was to try to ensure that the organization maintained the most
positive aspects of its historical identity so that the community would feel
comfortable in the transition and the company could retain its hard-earned
goodwill and reputation. I was still seen as the public face of the company and
the spokesperson of the DNN community, so I knew I would assume the
primary responsibility of communicating our intentions and goals clearly and
transparently to the ecosystem. This was more challenging than it sounds,
mainly due to the fact that my own personal identity and reputation had
become so intertwined with the open source project. In the end, we did
succeed in establishing a new project identity, and I am proud of my
contributions toward that achievement. However, in the process I had
succeeded in straining a number of critical relationships that resulted in me
feeling less connected with the team. This ultimately led to the
announcement on August 12, 2014 (see Figure 1.26), that the company and I
had agreed to part ways. I gave up my role as CTO and also resigned my seat
as a member of the DNN board of directors.

Figure 1.26

There is one last point of distinction in regard to my departure that I think is
important to understand. Similar to any standard working relationship, my
association with DNN Corp was based on an employment agreement that had
a specific start date and, upon my departure, an end date. As a founder, I did
have equity in the company, and I continue to own those shares as they were
fully vested during my tenure with the organization. On the other hand, the
DNN open source project existed prior to the formation of DNN Corp, and
based on its open source license, it will continue to exist indefinitely. So
although I left DNN Corp, I have not left DNN. My heart and passion remain
committed to this vibrant open source community that I started over a decade
ago and that will always remain a proud part of my legacy. As a community
member I am free to contribute to the open source project and ecosystem in
the same capacity as every other community member, and I intend to do so as
much as my new life and responsibilities allow. I continue to be thankful and
grateful every day for the positive impact I was able to make on this world
and for all of the sincere, lasting personal friendships I have earned as a
result of this open source community. At the end of the day, these are the

most valuable riches I could ever hope to receive.

Summary
DNN is an evolving open source .NET CMS platform. The organic community
ecosystem around DNN is vibrant and dynamic, providing the essential
environment for long-term growth and prosperity. You will always be able to
get the latest high-quality product release, including full source code, from
http://www.dnnsoftware.com.

http://www.dnnsoftware.com

Chapter 2
Installing DNN Version 7

What You Will Learn In This Chapter

Preparing your system to install DNN version 7

Installing DNN version 7

Upgrading from previous versions of DNN

Getting a trial version of Evoq Content

This chapter reviews the installation process of the DNN Platform and shows
how to get a trial version of Evoq Content. If you want to create a website, you
have different options to get started.

The Install Package contains only the files needed to run a website in IIS
(Internet Information Services). These files are compatible with SQL
Server and SQL Express.

The Source Package contains the source code of the application including
every module included in the DNN Platform.

The Deploy Package is used by the Web Platform Installer and includes
the necessary files you need to deploy to a web server. The Web Platform
Installer also verifies and installs additional dependencies to get the
website up and running with little effort and knowledge.

The Upgrade Package contains only the files needed for an upgrade of an
existing website. Your previous edition for the upgrade must be version 6
or higher. Notes on upgrading from earlier versions are available at
http://www.dnnsoftware.com/wiki/page/suggested_upgrade_path.

Evoq Content Trials are hosted in Microsoft's Azure servers and are the
best way for you to test the advanced functionality without having your
own infrastructure or involving your IT department.

There are four options to install the DNN Platform, and you're probably
wondering, which one is for me? If you're a developer interested in extending
the functionality of the application, you may be interested in the Source
Package; however, you should start investigating creating DNN extensions
(modules, providers, etc.) before modifying DNN's core code. If you have a
server ready to host your website, the Install Package is your best option; if
you have a new server and you're not sure if you have all the dependencies to

http://www.dnnsoftware.com/wiki/page/suggested_upgrade_path

successfully run a website, you can try the Deploy Package; and finally, if you
have an existing website and you want to upgrade to the latest version of the
DNN Platform, you should use the Upgrade Package.

When do you use an Evoq Content Trial? Evoq Content includes advanced
functionality like workflow, digital assets management, and advanced
permissions among other features. If you want to run a professional website,
you may want to try Evoq Content in the cloud, which takes seconds to get set
up.

What You Need To Install DNN Platform Version 7
The two basic ways to install DNN Platform 7 are using the installation
package or using the Web Platform Installer. Before you begin, make sure
your system requirements are sufficient for the installation.

Web Server: IIS 7.0 or higher (contained in Windows Vista and later for
desktops, and Windows Server 2008 and later for servers)

Microsoft .NET Runtime: ASP.NET 4.0 or higher

Database: Microsoft SQL Server 2008 or greater

Installing the DNN Platform Using the Installation Package
If you want to install the DNN Platform 7 Install Package, follow these steps:

1. Download the Install Package.

2. Unzip the package.

3. Create a database in SQL Server.

4. Create a database account.

5. Configure IIS.

6. Set file and folder permissions.

7. Perform the installation.

Step 1: Download the Software

Navigate to http://www.dnnsoftware.com/Community/Download, which is
under the Community section of DNN's website, as shown in Figure 2.1. Click
the Download button under the Install Package section. This redirects you to
https://dotnetnuke.codeplex.com/, and the install package starts
downloading automatically.

http://www.dnnsoftware.com/Community/Download
https://dotnetnuke.codeplex.com/

Figure 2.1

Step 2: Unzip the Package

Extract the entire contents of the Zip file to your chosen installation
directory. To install on your local system, you can place your website under
the C:\inetpub\wwwroot folder, like in this folder:
C:\inetpub\wwwroot\DNN7. If you have a hosting account and you want to
install the DNN Platform on your new server, make sure you read the
instructions of your hosting provider and follow the steps to upload the
package.

Step 3: Create a Database in SQL Server

If you're using a hosting service, your hosting service very likely comes with a
preconfigured SQL Server database, and your provider will give you detailed
instructions on how to connect and use it.

Otherwise, open SQL Management Studio, right-click Database, and select
New Database, as shown in Figure 2.2.

Figure 2.2

Give the database a name and click OK.

Step 4: Create a Database Account

There are two main options for creating an account in SQL.

Windows Security: This method uses the account under which your
website is running. This option is very secure, but it's often not supported
in hosting environments.

SQL Server Security: Access the database using a username and a
password.

Step 5: Configure IIS

The next step is to create a website pointing at the DNN Platform installation
files. Follow these instructions to complete the configuration.

Click the Start icon, type inetmgr in the search box, select Internet
Information Services (IIS) Manager, and open the program. You can create a
new site, which would have its own URL, or you can create an application
under Default Web Site, which will have a URL under http://localhost (e.g.,
http://localhost/dnn). Many in the DNN community use the URL
http://dnndev.me (or a subdomain, like http://mysite.dnndev.me), which is
set up to point to your local computer. In that case, you can right-click the
Sites folder and click Add Website. Here you can enter the site name (e.g.,
dnndev.me), the physical path to the website (e.g.,
C:\inetpub\wwwroot\DNN7), and the host name (e.g., dnndev.me). Notice
that a new application pool based on your entered site name is automatically
created, though you can choose an existing one if you want.

Alternatively, if you want to create an application under Default Web Site, you
can click to expand Sites, right-click Default Web Site, and click Add
Application. Type the alias of the site (e.g., dnn for http://localhost/dnn),
select an application pool (ASP.NET v4.0 or .NET v4.5 would be good
choices), and select the physical path to the DNN Platform location.

Step 6: Set File and Folder Permissions

To use IIS you need to set file permissions on the folder where you plan to
install the DNN Platform. To set file permissions, you need to know the

http://localhost
http://localhost/dnn
http://dnndev.me
http://mysite.dnndev.me
http://localhost/dnn

identity used by the process to run your site so that you can give the
permissions to the correct identity. In IIS, select Application Pools to view a
listing of the available application pools. Find the pool assigned to the website
or application you created in step 5. If its Identity column says
ApplicationPoolIdentity, this means a new identity was created just for that
application pool (e.g., the application pool dnndev.me has an identity of IIS
AppPool\dnndev.me). Otherwise, it lists the name of the identity used by that
application pool's worker process (probably NetworkService).

Once you know the identity to assign permissions to, you can right-click the
website's folder (e.g., C:\inetpub\wwwroot\DNN7) and click Properties. Now
click the Security tab. See Figure 2.3.

Figure 2.3

Click Edit Add. If the application pool is using ApplicationPoolIdentity,
make sure the local computer is selected as the location; then enter the full
identity name (IIS AppPool\ and then the application pool name). If a
different identity is used, you can enter it (add a space in “Network Service”)

or click Advanced and click Find Now to pick from a list (the IIS AppPool
identities are “virtual accounts” and don't show in that list). Highlight the
identity you just added, check the box at the intersection of Allow and Modify,
and then click OK three times. This configures IIS to be able to modify files in
the website folder when DNN wants to do so.

Step 7: Perform the Installation

In the Internet Information Services Manager, right-click the newly created
website or application, scroll down to Manage Web Site, and select Browse
from the secondary menu. See Figure 2.4.

Figure 2.4

When the browser opens, you'll see the installation screen. See Figure 2.5. In
this screen you have the options described next.

Administrative Information: Here you need to provide the username and
password for the initial host user (i.e., a user with unlimited permissions
to the entire DNN installation).

Website Information: In this section, you can provide some custom

options for your website, such as website name, website template, and
administration language. The administration language is the one used
when working on the website.

Database Information: If you decide to use the default option, your
website will be using an SQL Express database included in the installation
package. But you can also create your own SQL Server or SQL Express
databases and provide the information needed for the system to connect
to it.

Figure 2.5

After entering the information, click Continue, and the system shows you the
Installation In Progress screen. See Figure 2.6. The installation usually takes
less than a minute, and then the Visit Website button becomes active and you
have a new website. See Figure 2.7.

Figure 2.6

Figure 2.7

Installing the DNN Platform Using the Web Platform Installer
Installing the DNN Platform 7 using the Web Platform Installer is fairly easy.
First you download the software, and then you install the DNN Platform and
configure your website.

Downloading the Software

The Microsoft Web Platform Installer (Web PI) is a free tool that makes
getting the latest components of the Microsoft Web Platform, including IIS,
SQL Express, and every other component, easy. At the same time, the Web PI
makes it easy for you to download and install free web applications like the
DNN Platform.

On the DNN Software website you can find a link that points to the Web PI
download and preselects the DNN Platform for installation. You can go to the

downloads section at http://www.dnnsoftware.com/Community/Download and
click the Download DNN Platform button under the standard process. This
takes you to the Microsoft website, as shown in Figure 2.8.

Figure 2.8

On Microsoft's website click Install Now to start the download of
dotnetnuke_iis.exe.

Installing the DNN Platform

In the previous step, you downloaded the Web PI from Microsoft's website. In
this step, you're going to run the Web PI and install the DNN Platform.

To start, run the newly downloaded software to launch the Web PI with the
DNN Platform, and click Install, as shown in Figure 2.9.

http://www.dnnsoftware.com/Community/Download

Figure 2.9

A pop-up with the list of prerequisites opens, as shown in Figure 2.10.

Figure 2.10

On this screen click I Accept, and the DNN Platform package, along with any
prerequisites, will be installed. Then, a new pop-up appears where you can
choose a name of your application, as shown in Figure 2.11.

Figure 2.11

Click Continue to start the configuration of your website. You'll see a pop-up
with a Finish button, as shown in Figure 2.12.

Figure 2.12

Click Finish and to launch the installation of your site as described in the
“Step 7: Perform the Installation” section. Follow the directions in that
section, and your site will be ready to go.

Upgrading the DNN Platform to Version 7
Upgrading the DNN Platform is even easier than installing it. The Upgrade
Package contains the new files and a very simple flow that will guide you
during the upgrade process. This section helps you upgrade from the DNN
Platform version 6 to 7.

First, create a backup of your website. We recommend that you back up your
website files along with your entire database. Always back up your site before
any system changes to be able to recover from any possible errors.

Download the software from the DNN Software website
(http://www.dnnsoftware.com/Community/Download). As described earlier in
this chapter, go to the website, register or log in, and download the package
under the upgrade section.

After you download the upgrade package, unzip it and copy the files over your
existing installation. If Windows prompts you, select the Overwrite option.

Load your site by navigating to the URL. You'll see a screen that prompts you
for a host username and password, as shown in Figure 2.13. Type the
credentials and click Upgrade Now.

http://www.dnnsoftware.com/Community/Download

Figure 2.13

Your website starts updating, and you are redirected to a screen that shows
the progress of the upgrade, as shown in Figure 2.14.

Figure 2.14

When the upgrade is complete, the progress bar shows 100%, and the View
Website button will be enabled. Click it and your site will be ready.

Getting a Trial Version of Evoq Content
Evoq Content is a product built on top of the DNN Platform, and it is targeted
to organizations with advanced content management needs. For more
information about the features, see Chapter 20.

In this section, you go through the process of getting a 30-day trial version of
Evoq Content running on DNN's Cloud Environment. DNN's Cloud Trials
offers the same infrastructure and reliability as production websites, and a
trial version can evolve into the production website, which means that the
time invested in testing the product can be used in the production website.

The process of getting your trial version takes just a few minutes. Navigate to
the DNN Software website and log in or register if you don't have an account
yet. After you log in, navigate to
http://www.dnnsoftware.com/Solutions/Try-DNN and click Get Started under
the Evoq Content section. The trial registration form appears, and your
information is prepopulated. Review that your information is correct, enter
anything that may be missing, and click Start My Free Trial Now. The system
will trigger the creation of a new instance of Evoq Content, and you'll be
redirected to your site in just a few seconds.

http://www.dnnsoftware.com/Solutions/Try-DNN

Common Installation Issues
Installing the DNN Platform is a relatively simple process. Although very few
things can go wrong, problems can appear at times. The two main causes for
failure are

An invalid connection string to the database, which means that the
information for the database entered during installation is not correct. To
fix the problem, verify the information and try again.

Insufficient file permissions. This happens when the user under which the
website is running does not have the appropriate permissions to the root
folder of your website. Make sure you follow the instructions found earlier
in this chapter for setting file permissions.

Finally, the DNN Platform has a large community of users. If you experience
more problems, go to the DNN Software website and search for forums or
enter questions to get additional help. One of the thousands of passionate
users will be happy to assist you.

Summary
The DNN Platform has a few packages to choose from.

The Install Package contains only the files needed to deploy a new site on
a web server.

The Source Package contains the application code including every module
distributed with the Install Package.

The Deploy Package contains the files needed to deploy a new site using
Microsoft's Web Platform Installer.

The Upgrade Package contains only the files needed to upgrade your
existing website to the latest version.

Evoq Content Trial is a cloud-hosted environment for you to test the
advanced content management features built on top of the DNN Platform.

This chapter covered the different packages and the necessary steps to install
a DNN Platform website.

Chapter 3
DNN Platform Overview

What You Will Learn in this Chapter

Understanding the basic concepts of the DNN Framework

Introduction to DNN security

This chapter introduces you to some of the core concepts of the DNN
Platform and provides an overview of how these fit together. Over the years,
DNN has evolved and changed appearance considerably, but the overall
structure has remained the same. What you have installed through the
previous chapter is an extensible “web application framework.” You can use it
to create all kinds of web-based applications. But to do so you need to
understand some of its underpinning core concepts. And to complicate things
a little bit, the terminology has evolved over the years as well. This means
that some concepts have a different name in the UI than they have in code
(and in SQL) purely because at one point it was decided that the old term was
confusing or too “techie,” so it was dropped for something more easily
understandable. Because this is a largely technical book, we will stick to the
terms used in the DNN API, but we will note if they have another name in the
UI.

Core Platform Objects
In this section, the basic building blocks of DNN and how they fit together are
examined from a technical perspective.

Sites (Portals)
DNN is a powerful engine for creating websites. That is websites, plural and
not singular. One of DNN's core features is what is known as “portal
virtualization,” which means a single DNN instance can serve multiple
discrete websites. Here, an instance is synonymous with a DNN installation.
Here, an instance is synonymous with a DNN installation, meaning the files
you've copied to your server's DNN folder with a web.config in the root.

TIP

A universal way to spot a .net web application is the web.config file in its
root directory.

The aforementioned websites are known as portals. Portal is the DNN API
name for what you call a website or simply a site. It stems from the very first
version of DNN and an era where you had several popular Internet portals
like Yahoo that aggregated content from other websites. The visual and
textual language of DNN is rooted in this time, which is why the term portal
is used to describe a site.

So, DNN can have multiple sites. Each site is accessible through a URL
consisting of a domain (www.acme.com) and optionally a path. This URL is
referred to as a portal alias. And in DNN a single site can have multiple
aliases. So, a single site can appear as http://www.acme.com and
http://acme.com as well as http://public.acme.com. Whenever a request is
made to your server, IIS is responsible for routing the various URLs (or
domains as they're often called) to the correct applications. Your server's
administrator would be responsible for making sure all these URLs map to
the DNN instance. After that, it's DNN that must decide which portal to serve
based on the incoming URL. So, you can specify multiple aliases for each
portal to let DNN route multiple URLs to the same website.

If you look at the page where you specify a new portal (you find this under
Site Management on the Host menu), you notice that there are two types of
portal (Site Type): parent and child. See Figure 3.1. These terms can be
somewhat confusing, as the child portal is not embedded within the parent
portal at all. Instead, the only difference is in the form of the portal alias.
Parent portals have at least one unique domain, so the URLs mentioned
previously are all for parent portals. Child portals, on the other hand, are
defined like subdirectories of a domain. So, a child portal given the previous
installation could be http://www.acme.com/public. Now the “public” portal is
defined as a child portal. Still, all its data is kept strictly separate from
http://www.acme.com (if that were a parent portal on the same installation).

http://www.acme.com
http://www.acme.com
http://acme.com
http://public.acme.com
http://www.acme.com/public
http://www.acme.com

Figure 3.1

So, why would you use child portals? There are a couple of scenarios where
this is useful. The first concerns cookies. Browsers typically protect the user's
privacy by blocking any website from accessing cookies set by other websites.
A cookie set by Google cannot be read by Apple and vice versa. You can see
where I'm going with this. The child portal's cookies will be accessible by the
parent portal and vice versa. Crucially, this makes it possible to keep a user
logged in (login status relies on cookies). So if a user has been shared
between a parent and a child portal, that user could navigate between the two
sites and not have to log in every time he or she switches (so-called single
sign-on). Another reason for using child portals is using them to separate
departments of an organization. So, acme.com/dept1 is a different site from
acme.com/dept2. This allows the departments to manage their own site with
the all the benefits that brings. A third reason to use child portals could be

http://acme.com/dept1
http://acme.com/dept2

one of access rights. For a new parent portal you need to add the new domain
to IIS and to a DNS record. The person who is allowed to create new portals
might very well not have that authority/access. In that case, a child portal is
an alternative to create a new site without the necessity to access other
company resources.

The data for each portal can be divided into database data and file data.
Database data is stored in the various tables of your DNN database and file
data, which is stored in some file-based storage location and called the home
directory. By default, this is found in the directory portals/[PortalID] of your
installation. You can specify another location on your server's hard drive.
Since version 7.3 of DNN, you can specify alternate (cloud-based) locations
for this storage. (You can even extend the framework and build your own
provider for this.) The point of this paragraph is that you realize that the files
for each portal are stored in discrete folders somewhere. And DNN makes
sure that no files “leak” from one portal to another. Your portals are thus
really discrete entities inside the framework. This is crucial if you think of the
following use case. As a successful developer, you have created a DNN
installation that is perfectly tuned to serve small businesses in your local area
with a website. For each customer you create a new portal:
http://www.joeplumbing.com, http://www.jilldrycleaning.com, and so on.
But you need to have peace of mind that the content of these sites is secured
from each other. Knowing how DNN organizes content gives you this peace of
mind.

Finally, you should know that each portal has a unique portal ID and GUID.
The GUID (Globally Unique IDentifier) is a relatively new addition, but it's
the portal ID that is used throughout the framework to identify a portal.
Numerous tables in SQL have a column portal ID that refers back to the
portal (stored in the Portals table). By default, the portal ID is used in the
creation of the subdirectory under Portals for the Portal home directory. See
Figure 3.2.

http://www.joeplumbing.com
http://www.jilldrycleaning.com

Figure 3.2

Pages (Tabs)
Each website consists of a number of pages. Or to put it in DNN parlance:
each portal has a number of tabs. The word tab stems from the project from
which DNN was originally derived: IBuySpy. In that sample project, Microsoft
demonstrated how you could build a website using a tabbed layout. The term
for page is thus tab in the DNN API. Back in the bad old days of static
websites (before the widescale adoption of CMSs), the pages of a website
were all discrete files (often HTML files) on your web server. So, there
typically would be a file index.html that would be served by the web server
when the browser was first directed at the site. Then any page would simply
point to a file on the web server. We parted with this way of doing websites
after the introduction of web applications like DNN. Instead, the HTML that
is served to the browser is built up on the fly by the web application on the
server and sent immediately to the client. No HTML file exists any longer that
stores that HTML that was served. Instead, the application typically uses
some form of templates that are subsequently filled with data from a
database. In this way we can show a “Hello Peter” page when Peter is logged

in and a “Hello Shaun” page when Shaun is logged in.

The various tabs are stored in the Tabs table in the SQL database. And just
like portals, tabs have a unique tab ID (an auto-incrementing integer) and
GUID (called UniqueID in the table), but the tab ID is used throughout the
framework to identify them. See Figure 3.3.

Figure 3.3

A web application like DNN includes logic to generate and interpret URLs
because the pages are no longer files on the drive. This is not a trivial matter.
URLs are crucial to SEO, for example, so you'll find many are very
opinionated about this aspect of the framework. To cater for any scenario,
DNN has detached this part of the application so anyone can write his or her
own version. The generic term for this is URL rewriter. A URL rewriter
constructs URLs that are displayed in the application that can then be
subsequently interpreted by it and mapped to a specific tab ID. The first
versions of DNN did not include much URL rewriting, and you would have
seen URLs like this: http://www.acme.com?tabid=32. As you can probably
guess, this URL would show the tab with ID 32. But in essence all URL

http://www.acme.com?tabid=32

rewriters that exist even today just translate the incoming URL (for example,
http://www.acme.com/products/dynamite) to something similar to that raw
URL with tabid=xyz that is then used internally to find the right tab.

Pages are organized in a tree. See Figure 3.4. That is, they can be nested. In
the Tabs table the ParentID value points to the TabID value of the parent tab.
This is how most modern websites are currently structured. Any page sits
somewhere in a tree hierarchy. And ideally the URL rewriter uses this
hierarchy to create “human-friendly” URLs that reflect this by using the titles
as if they were subdirectories. The aforementioned URL would point to a page
with the title “dynamite” underneath the page with the title “products.” Not
only does this make sense to humans, but it's greatly rewarded by Google in
your ranking.

Figure 3.4

Theme (Skin)
Every page tells DNN which theme (until version 7.4 the term skin was used
for theme, and you'll still find it in various places in the API) to load to
display it. The theme defines how various elements are positioned on the
page and how they look. The DNN Platform aims to separate the concerns of

http://www.acme.com/products/dynamite

programmers, designers, and content managers as much as possible. So,
designers should be able to do their jobs independently from programmers,
for example. What this means is that you can change the look and feel of a
site without changing its functionality or content.

A theme is typically comprised of some HTML template file (.ascx),
JavaScript files, and CSS files. And a single theme package can contain
multiples of these theme templates. Often you'll find a template for the home
page, for an admin page, and for a regular (default) page. The home page
would then include some extra space for a banner/image slider, for example.
In the site settings you can specify the default skin to use for the site, but any
page can override this setting and specify its own special skin to use.

The most important element on a page is undoubtedly the one responsible for
navigation—the menu. Other common elements are the login button, the
logo, and the banner for the site, as well as the footer elements such as
copyright messages and disclaimers. Obviously, DNN also needs to know
where to put the page's contents. For this, the skin template defines a set of
panes. Panes are essentially div elements that have been given meaningful
names by the designer: LeftPane, RightPane, BannerPane, and so on. See
Figure 3.5. These names appear in the UI and allow the user to specify where
something will be added on the page. If you switch to layout mode (use the
top-right menu on the control bar), you'll see all these panes light up, and you
will see how the designer has subdivided the page for you.

Figure 3.5

Modules
Each tab in DNN displays any number of modules. Modules are basically the
rectangular blobs you see spread on the page's surface. Each one has a small
menu when you switch to edit mode (to switch the mode, go to the top-right
side of the page on the control bar). See Figure 3.6.

Figure 3.6

These modules are what make the site tick. They are the fundamental
building blocks of functionality of your site. You can have a module that
displays a block of text (the most common module by far), but you can also
have a module that shows a small calendar with events or a module that
displays a list of (recent) news articles. And it all began with what has been
dubbed “Web 2.0.” That is, the web is no longer a collection of static text and
images but rather an interactive surface that allows people to modify its
contents. Modules are the “apps” of the web. They perform a particular
function (for example, manage an event calendar). And it is one of the most
important extension points of DNN: you can create your own modules
(explained elsewhere in this book) and let the users stick that on any page of

their site. And the ease with which this can be done and the power it provides
the developer is the top reason for DNN's success.

Modules are instantiated on a page through the Modules tab on the control
panel. See Figure 3.7. If you click Add Module, a list of installed modules
appears, and you can drag and drop them onto your page surface. Typically,
you then set some parameters such as who can edit its contents and some
generic parameters that concern the specifics of the module (for example,
whether to render a calendar or a chronological list of events). This is
commonly referred to as the Module Settings and can be accessed through
the little menu that appears when you are in edit mode (see Figure 3.6).

Figure 3.7

The installed modules on your DNN installation are managed on the
Extensions page on the Host menu. Here you see what is installed and what is
ready to install (has already been downloaded), and you can access the DNN
Store for more modules (both free and commercial). See Figure 3.8.

Figure 3.8

The first time you see the list of installed modules, it may seem
overwhelming. But most of those are administrative modules that you cannot
(and should not) delete. They are part of the framework. Click the Install
Extension Wizard button at the top of the page to also install modules that
you've downloaded (or created) and bypass the DNN Store. This is not a
closed system like most mobile platforms, and you'll find hundreds of free
(and often open source) modules on sites like CodePlex and GitHub. A
module is delivered as a Zip file. All you need to do is upload the Zip file
through the Extensions page, and DNN takes care of the rest. This process has
been made as easy as possible for both the administrator and the developer.

Even upgrades are taken care of automatically. Just upload the Zip file you've
downloaded, and the module appears on the control bar so it can be dropped
onto a page.

When a module is added to a pane, it is wrapped inside what is known as a
container. This is similar to a skin in that it is defined by the designer and is a
template file that tells DNN how the module is wrapped. The container
typically determines how the title of the module is rendered. It can be used to
draw a border around a module or give it an alternate background color.
Containers are typically distributed along with the skin, and just like the skin,
you have a default container for the site and the ability to override the default
for each module.

Security
Security is an integral part of web applications, and DNN has many features
built in to it that allow you to create advanced applications. Module
developers can leverage this and not be concerned with authentication and/or
authorization at all. Instead, they can leave this to the framework and focus
on their application. In turn, DNN devolves this to components that can be
switched out. This is a very powerful feature that allows you to use Active
Directory authentication or to leverage OAuth providers like Facebook.

Users
It should come as no surprise that users are individual login accounts in
DNN. You find them in the Users table in SQL and on the User Accounts page
on the Admin menu. See Figure 3.9. Each user is uniquely identified through
a username for authentication purposes. In data, however, users are
identified through an auto-incrementing integer user ID similar to tabs and
portals. Whenever a user account is created, that user will only be able to log
in to the portal in which it was created. But the user can be shared between
portals (UserPortals table in SQL) although there is no proper UI for that
right now.

Figure 3.9

Roles
Roles are what drive security in the platform. See Figure 3.10. A user can
belong to one or more roles, and these roles are used throughout the
application to set permissions. This is similar to what you'd see on your
Windows machine. There are several roles that are installed by default:
Administrators, Registered Users, Subscribers, and Unverified Users.
Administrators have access to all aspects of a portal. Registered Users is a role
that is assigned automatically to any new account. Subscribers is a role to
which users can opt in voluntarily. Finally, Unverified Users is used for those
users who have enlisted but have not yet verified (through an email link) that
they are who they say they are. The thinking behind this last role is that you
can accept a registration but exclude those from certain functionalities, as the
registration would have already given that user the Registered Users role.

Figure 3.10

These roles are specific to the portal. They have a unique role ID (again an
auto-incremented integer) that is used to refer to them throughout the
framework. There are two virtual roles that are worth mentioning here. They
are virtual in the sense that they do not exist in the Roles table in SQL but are
used in the API for specific cases. These virtual roles are All Users and
Unauthenticated Users. The first (RoleID = -1) you will use to allow both
authenticated and unauthenticated users access to something. The second is
to target unauthenticated users only. So, you could show a login panel or
some explanatory text to those users only, for example.

You see the roles come back whenever you edit permissions for specific part
of the website. Both pages and modules on those pages have permissions.

Figure 3.11 is a screenshot from a module's permission screen. You can add
roles and/or users to the grid and set permissions by checking the boxes.
What these permissions do depends very much on the module and is
discussed in later chapters.

Figure 3.11

Host
Upon installation, DNN will create a first user account that is the host
account. This account has administrative privileges in all portals as well as
the ability to access all resources that are common to all portals. Host is
synonymous with superuser in DNN. You can add as many host accounts as
you want. These accounts are the only ones able to create and delete portals,
install and delete modules, and so on. You will immediately notice you're
logged in as superuser by the appearance of the Host menu in the control bar.

Admin
Admins are regular user accounts that have been added to the Administrators
role. Admins will see the Admin menu on the control bar and have the ability
to change the portal, such as adding and removing pages, creating and
deleting users, creating and deleting roles, and so on. Admins cannot install

components to the system such as modules, nor can they alter files that run
code on the server. Care has been taken to make sure that admins are
sandboxed to allow them only the ability to change the content and
appearance of a portal.

Summary
In this chapter, you looked at DNN from 30,000 feet high. You saw the
hierarchy of the DNN instance, portals/sites, tabs/pages, and finally modules.
You now have a rough idea of where your data is stored and that DNN uses
this to construct the pages that are being served to the client's browser. You
also learned how DNN organizes security using users and roles.
Understanding this chapter is key to being able to comprehend more in depth
how DNN works and how you can create your own website or web application
with it.

Chapter 4
Site Administration

What You Will Learn in This Chapter

Exploring administration features

Taking first-time steps to set up your site

Delegating administration duties

Delegating content editing tasks

Wrox.com Code Downloads for this Chapter
The wrox.com code downloads for this chapter are found at
www.wiley.com/go/prodnn7 on the Download Code tab. The code is in the
Chapter 4 download and individually named according to the names
throughout the chapter.

In the previous chapter, you learned what DNN is and what it can do for you.
This and subsequent chapters will continue to build on that knowledge to
ensure that you're the most productive and knowledgeable DNN user
possible.

Starting with this chapter, we will teach you what you need to know in order
to efficiently run your DNN site using the best practices we have learned over
a decade of managing DNN sites over a multitude of use cases and
deployment scenarios.

http://Wrox.com
http://wrox.com
http://www.wiley.com/go/prodnn7

What Is Site Administration?
Site administration in DNN is quite simply the process, tasks, and features
that equate to “running” a DNN website. This could include managing end
users, security, site settings, configuration, and even managing content.
However, for the purposes of this chapter, we will primarily focus on the
Admin menu that's found in the Control Panel feature of DNN.

Site administration can take on many forms, but there are two use cases that
you should be familiar with. First, there's site administration as defined by
DNN. You enable this by adding the Administrators security role as one of the
assigned roles for the account. That way, all “admin” features will be available
for that user across that specific site.

NOTE

Security roles are being discussed at a very high and conceptual level
right now but will be discussed in greater detail later in this chapter.

Site administration can take on a hybrid of another sort as well, but this is not
defined by DNN. Instead, you as the site administrator can define a different
kind of administration for your site. This would be a kind of administration
where you define a subset of administration capabilities and assign them to
more privileged users to avoid having to make them an actual administrator.

As an example, there may be times when you want to create a security role
that might be named something like Site Admin. You would then create a
page or pages on the site that contain some of the Admin modules, assigning
permission to the newly created Site Admin security role so that only
participants of that security role can see them. In these areas, you can also
add references or links to features that normally require Administrator
permissions, provided you set up your permissions properly in those other
areas and that the chosen feature(s) allows this.

In summary, you can perform all of the configuration and content-
management tasks that you need to in order to run your own site. This does
not include installation of extensions or high-level configuration options such
as the ones you will learn about in Chapter 5.

Common Administrative Tasks
As an administrator in DNN, there are a great number of things that you are
able to do. Since there could be a book written on that topic alone, this
chapter focuses on the most common and useful things that you need to
know in order to get started and be productive.

In many cases, there are differences between the DNN Platform and other
commercial versions of DNN, such as Evoq Content or Evoq Social. When
such differentiators are present, they will be mentioned. If you want to
understand all of the features that make the commercial editions of DNN
different, be sure to read Chapters 20 and 21.

Control Panel Sections
When managing your DNN site as an administrator, you will most likely be
doing most of your daily work in the Control Panel. As an administrator, you
will be able to use nearly every part of the Control Panel. The only part
missing is the Host menu, which is covered in Chapter 5.

TIP

You do not need to actually click any of the menu sections in the Control
Panel. Simply hover over a menu item to expand that section of the
Control Panel if it is a menu.

Those with content management permissions in DNN are often referred to as
“content editors.” Content editors can typically view only some of the Control
Panel—the parts that are required in order to perform other related tasks,
such as adding a module to a page.

It is worth noting that the Control Panel you'll be using is the one that ships
“out of the box” with DNN. However, it is one of numerous extension points
in DNN. Like modules, skins, and other extensions, the Control Panel can be
replaced with a custom or third-party alternative.

Admin

The Admin section of the Control Panel is actually a menu that will drop
down when your mouse hovers over it. If you click it, you will be brought to a
page that lists all of the Admin pages similarly to how the admin pages were
displayed in earlier versions of DNN. Don't get used to clicking this menu
item to see the contents of the Admin menu, because the click-through might
not be retained in future versions of DNN.

The Admin menu will list any pages that appear in the hierarchy of the site,
but under the page named “Admin.” If you add your page as a child to the
Admin page, it will appear in the Admin menu, in the Advanced Settings
section in alphabetical order.

The Common Settings section first appears when the Admin menu drops
down. It contains all the common menu options that site administrators need
to access on a regular basis. Assuming you didn't click the menu itself, this
means that these options are literally one click away. Figure 4.1 shows the
Admin menu portion of the Control Panel; it's specifically showing the
Common Settings section.

Figure 4.1

The Advanced Settings portion of the Admin menu (see Figure 4.2) is the next
tab below the blue one. The “Advanced Settings” label might deceiving to
some people. The menu options in this portion of the menu are not really
advanced at all. They're just less commonly required. They're all features of
DNN that you don't need to access very often or are set-it-and-forget-it kind
of features.

Figure 4.2

There is a bookmark section next. If you bookmark a menu item in the
Common or Advanced Settings section of the Admin menu, those
bookmarked features will appear here. You can always remove them by
clicking the icon next to the feature name, which will keep the feature but
remove it as a bookmark.

Tools

The Tools menu will look a bit bare to you as a site administrator. This menu
is mostly useful only to a host or superuser account, where it displays more
options. However, if you want a shortcut way to quickly upload a file, you can
do so from here with a single click.

While this might appear to be convenient, it is much more common to upload
files from other features and views in DNN.

Help

If you need help while logged in as an administrator, the Help menu is not a
bad place to start (see Figure 4.3). It allows you to access the Online Help and
Getting Started view. Online Help can also be accessed from the Community

 Learn section on the DNNSoftware.com website. The Getting Started view
aggregates some helpful information and links to help you learn the basics
about DNN so that you can do some of the most common tasks. It also has
shortcut links to places like the Community Exchange and Community Voice
sections on DNNSoftware.com. These are areas where you can get a question-
and-answer form of help and submit enhancement ideas to DNN Corp.

Figure 4.3

Modules and Pages

The Modules and Pages menus are the same ones that you see as a user with
page-level editing permissions. Refer to Chapter 3 for more information
about these menus.

Users

One of your primary responsibilities as the site administrator will likely be to
manage users on your site. You might need to create, edit, or delete users.
You might also be required to add and remove abilities from users on your
site. Everything that you need to do in these examples can be done from this
one menu.

We'll discuss the features of the menu options in great detail later in this
chapter, but the options you have in the Users menu include the following
(see Figure 4.4):

Add New User: Add New User is exactly what it sounds like. If you click
this option, a pop-up window will appear where you can create a new user
account. If pop-ups are disabled for your site, this same view will open,

http://DNNSoftware.com
http://DNNSoftware.com

but in a new page.

Manage Users: You will want to use the Manage Users feature if you
want to search for, edit, delete, or otherwise manage any user account on
your site.

Manage Roles: When you manage roles, you can of course create, edit,
and delete roles. However, using either Manage Roles or Manage Users,
you can also assign and revoke security roles from user accounts.

Figure 4.4

Edit Page

As with Modules and Pages, the Edit Page menu in the Control Panel is no
different for administrators. Refer to Chapter 3 for more information about
the options.

All other portions of the content-editing experience will be consistent
between administrators and content editors of the site. The only time there
are differences is when the content editor has a limited number of capabilities
assigned through permissions, which should be something you enforce as a
best practice anyway.

Admin Menu Features
The Admin menu is loaded with features that are meant to make your job as a
site administrator fast and easy, starting from the moment you are given the
ability to log in to your DNN site. Everything that you need is literally one or
two mouse clicks away. In this section, we discuss each of the most common
and useful features in the Admin menu.

Common Settings
It was mentioned previously, but the first section of the Admin menu consists
of views and features that are categorized as Common Settings. These are the
settings and site management tools that you need to access on a regular basis.
These features are only a click away since they're in this section.

Event Viewer

The Event Viewer (see Figure 4.5) allows you to know what's happening on
your website at all times. You may see this feature sometimes referred to as
Event Log in older documentation and community resources. There have
been some releases where it was indeed called Event Log in the Admin menu,
the API, and the database. Also, the same name is used for the event viewing
utility in Microsoft Windows. If you see or hear either term and the person is
referring to DNN, it's likely that they're talking about the Event Viewer.

Figure 4.5

There are a lot of events that are relevant to site administrators that will be
stored in the Event Viewer for you to see at any given time. If you're logged in
as a host/superuser account, you can see the events for all sites on the same
installation of DNN (should they exist). However, site administrators will see
the events only for their own site that they manage, and even then, the
messages you see will be filtered to show you messages that are relevant only
to the site administrator.

On the surface, the Event Viewer may seem very simple, and it is. You have a
listing of the most recent events immediately visible on page load. This list is
going to be any number of pages with 25 events on each page of results. A
paging feature at the bottom of the list allows you to move from page to page.

If you want to filter the events to see more or fewer events, you have two
controls at the top of the listing to help you. First, you can filter by the type of
event that you want to see. For example, you might be interested only in
seeing instances of site users attempting to log in and failing. To see this,
simply change the Type drop-down list to Login Failure, and only those
events will be shown to you.

In other cases, you might want to see a larger list of events. There are many
reasons for this. One reason might be searching for something specific using
built-in features of your web browser, such as using Ctrl+F to “find”
something in the page. As an example, you could switch the Event Viewer to
show 100 or 250 events by changing the Records Per Page drop-down list. The
page will reload with your preference chosen and applied.

The Event Viewer also has a legend at the bottom that explains the colors that
are applied to various events.

The final feature that is on the surface of this module is the Send Log Entries
section (see Figure 4.6). You'll find it at the bottom of the page, and it will be
collapsed by default. When you expand it, you can select any number of
events in the listing and then send them all at once to the specified email
address. It also allows you to send a message with the events you send. This
feature is useful for sending errors to a support resource to inform them to
get more details on how to respond to events that you may be concerned
about.

Figure 4.6

Additional Event Viewer Actions (Host/Superuser Only)

There are a handful of additional features that the Event Viewer has that you
might not know about or even discover unless someone told you that they
existed. These additional features allow you to delete any selected events
from the listing, clear the entire list of events, and edit the log (viewer)

settings (see Figure 4.7).

Figure 4.7

While you can delete individual events from the Event Viewer, there generally
isn't an actual reason to do this on a production website. However, if you're
developing DNN extensions, this feature could be useful for removing
duplicate errors or other events to make it easier during your development
process.

The Clear Log button is a useful feature if you don't already have a process in
place to clear the events from your system. This is important because the
Event Viewer can fill up with events quite quickly. The more events you have
logged, the slower your site will be. For example, any average site will likely
see a noticeable delay in pages loading when there are 100,000 or more
events saved. The Clear Log button is a quick way to remedy any performance
issues arising from this issue, but it is not a best practice in most
environments. A more business- and process-friendly approach to keeping the
Event Viewer clean and to keep the number of logged events to a minimum in
the production database is to have a regular process created and running in
your database, use a different logging provider, or use a DNN scheduler item.

In some cases, your organization might create a routine in SQL Server to
move events to another database for archiving.

Edit Log Settings is a useful tool that allows you to edit any of the individual
types of events that can be logged. You can enable or disable them to prevent
or allow them to be logged and subsequently appear in the Event Viewer,
limit the sites that can log the specific event, determine how many to save,
and send the events to an email address when they occur. Most of these
options should be self-explanatory. As an example, the default settings will
create an event when a folder is moved. However, you won't see an event
entry when a folder is deleted. If you want to see when this happens, you now
know where you can enable this.

The most compelling feature in this view is the Email Notification Settings
section, as shown in Figure 4.8. This allows you to choose to subscribe an
email address to the event. Whenever the event occurs, it will be sent to the
specified email address. This is useful for many functions. Imagine your
support team automatically getting an email when errors begin to occur or
your security team getting notified upon unsuccessful login attempts. Or,
maybe you want to know whenever another user updates the site settings or
deploys a module to a page. These things are all possible, but again this
feature is available only to host/superuser accounts.

Figure 4.8

File Management

If you have been using DNN for any length of time, you may have noticed that
File Management recently received a major makeover. This wasn't just a
makeover, it was a full on re-write and re-imagining of the feature. The
module that was formerly on this page was called the File Manager module.
The new module is named the Digital Asset Manager (DAM) module, and it
boasts a ton of new features that will definitely make document management
easier.

NOTE

This module has a commercial counterpart in the commercial versions of
DNN known as Evoq Content and Evoq Content Enterprise. See Chapter
20 for more information on the differences of this feature.

Nearly everything you could need to do with files and folders in DNN can be
done from this view. You have the ability to upload, edit, copy, move, and
delete files and folders. You can also control where files are stored and what
permissions should be applied to which folders.

The DAM module has its own Control Panel of sorts in that there are a few
features in the header area of the module that are intended to help you
manage your files and folders. When no files are selected, it will appear as
shown in Figure 4.9. When one file is selected, a handful of buttons will
appear to help you manage that file, as shown in Figure 4.10. Finally, if you
select more than one file, Figure 4.11 shows you the subset of those same file
management buttons that remain.

Figure 4.9

Figure 4.10

Figure 4.11

Table 4.1 explains what each button allows you to do.

Table 4.1 Digital Asset Manager Control Panel

Number Name Description

1 Search The search allows you to filter the listed results when
you're looking for specific files in a folder that has too
many to glance through easily.

2 Toggle Clicking this button will hide or show the folder
panel that's on the left side of the DAM module,
depending on whether it was already hidden.

3 Icons This button will display the listing of files in an icon
view. This is useful if you prefer to look at your files
in a “Large Icon” style of view, similar to Windows. If
any files are selected prior to clicking this button, the
selection will remain.

4 List The list view is the alternative view to the icons view.
This is the default way that files are displayed and
shows more files and information at a glance. Also, in
Evoq solutions, this view may display information
such as subscriptions or workflow.

5 Refresh
Folder/Sync

This button is actually a menu. When you click it,
you'll be given three options. Refresh and Sync this
Folder will simply scan the selected folder and update
the DNN database with any file changes found on the
server. If you choose Sync this Folder & Subfolders,
all the subfolders of the selected folder will be
synchronized as well.

6 Create New
Folder

Clicking this button will open a dialog box that will
allow you to specify the details for the new folder you
want to create. This option is discussed in more detail
later in this chapter.

7 Upload
Files

When you choose to upload files, this button will
open a pop-up window where you can either drag and
drop the files you want to upload or select the files
the traditional way by browsing the file system on
your computer.

Context Menus

You don't have to do it for most actions, but whenever you want to manage a
file or folder, it's usually easiest to simply right-click the file or folder in

question. This will result in a menu appearing that's usually referred to as a
context menu, like shown in Figure 4.12.

Figure 4.12

If you right-click any folder other than the Root folder, you will get a menu
that allows you to do the tasks listed in Table 4.2.

Table 4.2 Folder Menu Options

Menu
Option

Description

Create
Folder

This allows you to create a new folder that will branch off of the
folder that you chose to right-click.

Refresh
Folder

DNN will look in the folder on the file system to update the view
with any changes that might have been made outside of DNN.

Rename
Folder

You can give the folder a new name. Be sure to do this as little as
possible, as it will likely result in broken links and images.

Move This allows you to move the folder to another location in the file
structure. As with renaming, you should be aware that this action
might result in broken file paths.

Delete
Folder

Deleting the folder should be self-explanatory. If you choose to do
this, you again should be aware of potential broken links. This is a
permanent action.

View
Folder
Properties

A pop-up will appear where you can edit the various options for
the folder. In DNN Platform, that includes renaming the folder
and modifying the permissions for the folder.

File Synchronization

Files are synchronized automatically over time with the default configuration
of DNN. However, you can use the DAM module Refresh Folder feature to
make this happen immediately. This is a useful feature if you're uploading
files by any means outside of DNN, including Windows XCOPY, file server
operations, WebDAV, and FTP. If the synchronization hasn't happened either
manually or by way of the scheduled job in the background, any file or folder
changes made outside of DNN will not be reflected in the views that display
files and folders to content editors.

NOTE

XCOPY is a technical term to describe the process that uses XCOPY or
similar operations to automatically move files from one location to
another by Windows or a Windows application. FTP is a common way to
transfer files from a computer to a server at a remote location.

The synchronization and display/selection of files depend on your host
settings, discussed in Chapter 5. If a file type is not specified in the Allowable
File Extensions setting, then the file type will never be shown in the DAM
module or in any other view in DNN. This feature is often referred to as the
file's “white list.”

Uploading Files

Using any option to upload files to the DAM module will display the same
upload window (see Figure 4.13). This window allows you to drag and drop
multiple files to upload them to DNN in a single action. You can also upload
files one-by-one by clicking the Choose Files button.

Figure 4.13

If you choose to upload any archive files, there is a checkbox that asks you
how you want the upload to occur. Archive files are also known as ZIP files
and the filename will end with .zip.

DNN has long supported something called the “bulk upload” by adding
multiple files to an archive file. If you select Decompress Zip Files, the ZIP
file will be uploaded, but it will also unzip it and put all of the contents of the
ZIP file into the same folder. Otherwise, the ZIP file will be uploaded like any
other file, as shown in Figure 4.14.

Figure 4.14

Creating Folders

When creating a folder, you see three fields—Parent Folder, Folder Name, and
Folder Type. The latter two options are configurable. The Parent Folder is
decided for you based upon the folder you chose to create the new folder
under. The name of the folder should be self-explanatory. Give your folder
whatever name you like, but be sure to name it logically so that the content
editors can easily tell what it's for.

The other option you can edit when creating a folder is Folder Type. You have
three options for this field out of the box, and they include Standard, Secure,
and Database. They are defined for you in Table 4.3. That being said, this is
one of numerous extension points.

Table 4.3 DNN Platform Folder Providers

Folder
Provider

Description

Standard This folder provider works the same way that any typical folder
works for any website. The path to files in this folder is easily read
by humans, and access to the files is very straightforward. You can
apply permissions to this folder, but there are certain use cases
where direct access to the files can be guessed and therefore
bypass any permissions you assign. This is the most common
folder provider you would want to use in most instances.

Secure This folder will continue to store files in the DNN file system just
like the Standard folder provider. However, this folder will
rename the files in the file system itself, which will obscure the
location of the file from people and apps that might be reading the
links generated for the file. This new filename is seen and used
only by DNN. People managing the files in DNN will continue to
see the original filename. Also, these files will be accessible only
using an obscured URL and not a human- or SEO-friendly URL.
This folder type allows you to ensure that any permissions
assigned to this folder are used in all use cases.

Database The Database folder provider works in a similar manner as the
Secure folder provider with a specific exception. The files that you
save and access will be stored in your database. While this is the
most secure option available, it has trade-offs. File access will be
slower and the size of your database will grow quite quickly. If
either of these things is an issue, it may be more logical to use the
Secure folder provider.

If you want another way or place to store your DNN files, you can upgrade to
an Evoq solution or find a third-party option in the DNN Store or Community
Forge. There are many types of folder providers out there, with more being
created regularly. The folder provider might allow you to save files in a shared
network folder or in one of many cloud storage services (such as Box,
Dropbox, and so on). Regardless of the type of folder you choose to use, you'll
work with the new option the same way. The only difference is where or how
the file is stored, but you will generally not know any different.

WARNING

Once you create a folder using a specific folder provider, you cannot
switch to another type of provider. The folder must be deleted and re-
created using the intended folder provider.

Folder Permissions

You can view and change the permissions of any folder (provided that you
have the permission to do so) by right-clicking the folder and choosing View
Folder Properties from the context menu. The permissions grid will be on the
second tab, labeled Permissions (see Figure 4.15). This permissions grid
works the same way as all other permissions grids in DNN.

Figure 4.15

Folder permissions allow you to determine who can see folders and files and
who is allowed to modify the contents of a folder. In DNN Platform, the
permissions are not granular, so you have three options when modifying the

permissions of any folder. Also, permissions can be assigned only at the
folder level, and not for individual files. Table 4.4 explains what each column
will allow a user or group of users to do, if allowed.

Table 4.4 Folder Permissions

Permission Description
Open Files
in Folder

This allows the specified user(s) to view the files when they are
displayed on the site in any way. When you first install DNN,
“All Users” will be able to do this from the Root folder by
default. This also allows users to access the files directly if they
know the URL to the file.

Browse Files
in Folder

Users included in this permission are allowed to browse
through the folder to select files in the DNN views for things
like creating links in HTML and other features. Each user is
provided with his own personal folder upon account creation.
This user folder will automatically have this permission
applied to that folder for him.

Write to
Folder

When users are granted this permission, they are able to
perform all file and folder management tasks on the respective
folder. Think of this as a “full control” kind of permission. The
folder can be renamed, moved, and copied; subfolders can be
created; files can be managed; and so on.

Evoq Version of the DAM Module

While the DAM module found in DNN Platform should work for the majority
of sites, there is a more advanced version of this module found in Evoq
Content and Evoq Content Enterprise. In addition to what we've already
discussed, the commercial version of the DAM module includes

Granular folder permissions

Workflow to approve files

Versioning of files

Tagging of files

Expiration of files

File and folder subscriptions

Additional folder providers (Windows Azure, Amazon S3, and UNC file
share)

Page Management

Pretty much every website starts out as one thing first and foremost: a
collection of pages that constitute a web presence. Each page will have a
purpose (we hope) and serve it well. As you have seen after the default
installation of DNN, you are even given a home page to work with on the first
load of your new site. Your next step might be to create additional pages, such
as About Us, Contact Us, and more.

As your site continues to become successful and grows to meet the needs of
your customers and other visitors, you will undoubtedly begin to have more
and more pages on your site. You'll have so many that at some point you will
need to manage them from a centralized location. In other cases, you might
have pages that are hidden from the menu and are not easily accessible. This
is where the Page Management feature comes in (see Figure 4.16).

Figure 4.16

The Pages module is found in the Admin menu on the Page Management
page. It includes three areas for easy management of your pages.

If you're not already using the Page Management module regularly, you
should consider doing so. This module makes common and repetitive tasks
painless. It allows you to manage any page on the site from a single place,
without having to navigate to each individual page, thus saving you time. That
being said, page management from the page level is not dead. There are still
plenty of reasons and use cases where it will remain necessary to navigate to
an individual page to manage its settings, or you might already be there and
navigating to the Page Management page would be an extra step.

TIP

This is a great module to consider opening up for non-Admins who have
a global scope of content-management tasks. An example of this is an
SEO expert or consultant. This kind of content editor will likely spend a
lot of time in this module.

Navigation

The Navigation area of the Pages module allows you to search for and choose
pages to manage. This is presented to you in a format known as a “tree view.”
It allows you to drag and drop pages and expand or collapse certain sections
of the site. Expanded areas will be visually indicated by a minus icon and the
child pages being indented from the parent page. When a section is collapsed,
the minus icon will switch to a plus icon and the child pages will be hidden
from the view.

You can choose pages that will load the page settings for the chosen page on
the right pane. You can drag and drop pages to move where they appear in the
site hierarchy. Finally, you can also right-click any page to perform quick
administrative tasks without having to waste time looking through settings or
views for the same feature.

NOTE

As of DNN 7.1, you can safely drag and drop pages in the site hierarchy
without worrying about the URL changing and ruining your SEO work.
The original URL will be retained and properly redirected if inbound
links are still using it.

Legend

The legend shows you some of the iconography with a description of what the
various icons mean. This area has no additional features, but it is helpful to
understand why your pages might have different icons next to them.

Page Settings Pane

The Page Settings pane covers most of the right side of the Pages module and
will simply be “whitespace” until you select a page from the navigation area.
Once you select a page, this area will be loaded with the settings of the chosen
page.

The Page Settings pane is reorganized in a contextual way within the Pages
module to make settings easier to find for those folks who just manage pages.

NOTE

When using this module, you will notice that some features are missing
from the Page Management module that appear in the actual Page
Settings view. This includes the Copy Permissions to Descendants setting,
URL management, and more. In these cases, you might want to right-
click the page to see the Page Settings pop-up or navigate to the page and
edit its settings there.

Context Menu

A context menu appears when you right-click a page in the navigation area of
the module. This context menu was designed to save you time. For example,
creating your home page might not have been intuitive. This context menu
now makes that task a simple click.

There are a number of actions that are available in this menu, depending on
the selected page. As an example, you no longer see the Make Homepage
option if you right-click the home page itself—it wouldn't make any sense.
Another example of this is the Hide in Navigation option. When the page is
already hidden, the context menu will switch that menu option to Show in
Navigation. Table 4.5 provides more insight into each option.

NOTE

Many of the actions that you take on pages in the Pages module use a
technology called AJAX. This allows you to save your changes quickly
and not have to worry about the page reloading. However, this also will
require you to navigate to another page or manually refresh the page in
some cases to see your changes take effect. The primary example of this is
when you add, delete, or move pages in the navigation.

Table 4.5 Pages Module Context Menu Options

Name Description
View Page This is shown on all pages and allows you to navigate directly to

the chosen page in the same window.
Page
Settings

Like View Page, all pages get this option. Choosing this option
will open the settings for the chosen page in a pop-up window
instead of loading it in the Page Settings area of the Pages
module. This is essentially the same view you see if you navigate
to the page directly to edit its settings.

Delete
Page

This option is shown to all pages except for Admin and the page
that's selected as the site home page. When selected, DNN will
attempt to delete the page, but not before prompting you with a
confirmation window.

Add
Page(s)

You can add pages from any page, including the top-level website
node. This feature is discussed in detail later in this chapter.

Hide from
Navigation

When a page is shown in navigation, you will see this menu
option. Selecting this option is the same as checking the
checkbox for the Include in Menu setting in Page Settings. When
this option is chosen, the page will be hidden from the site
navigation, but any users who are allowed to view the page will
still be able to see the page.

Show in
Navigation

This menu option appears if the page is hidden from the menu. It
is the opposite of the Hide from Navigation option. When
selected, the chosen page will appear in the site navigation.
Again, this feature is directly linked to the Include in Menu
setting of Page Settings.

Disable
Link in
Navigation

If you want to disable a page from being viewed but still show it
in the navigation, select this option. This is useful when you
want to use a page to anchor other pages for a drop-down list
effect in your navigation. Only administrators can view this page
if chosen. This feature is directly linked to the Disabled setting in
Page Settings.

Enable
Link in
Navigation

This menu option is the opposite of the previous setting and will
be shown only if the page is already “disabled” from the site
navigation.

Make
Homepage

Great care and consideration should be taken before selecting
this option. Changing a page to be the home page has effects that
could spread across more areas than you realize. Changing the
home page will affect where users end up when certain pages are
not found and when clicking the site's logo. Generally, this
setting is used only once during the lifetime of a website.

Evoq Version of the Page Management Module

The Pages module does not have an equivalent module in the commercial
editions of DNN, nor does it have any features reserved for commercial
editions.

Recycle Bin

The Recycle Bin is a very useful and often overlooked feature of DNN,
especially for new users. Oftentimes, a newly designated administrator for a
site will simply assume that when something is deleted, it is gone. The next
logical step would probably be to re-create the content that was just deleted.
This could lead to frustrations with DNN. The Recycle Bin allows you to
restore the content in most cases, which can save you time and frustration.

As of the writing of this book, the Recycle Bin will seem quite simplistic.
There are suggested updates to this module in Community Voice that will
make it look far better and offer more capabilities than what is currently
available.

TIP

The updated version of the Recycle Bin is likely to be a community
contribution and originated as an idea in Community Voice. Anyone can
add their own ideas for enhancements to DNN. Simply go to
www.DNNSoftware.com/Voice to submit your idea.

The Recycle Bin (shown in Figure 4.17) has two types of objects that can be
restored—Pages and Modules. When you delete a page or a module, it will
show up in the respective list. You can switch which list you're looking at by
clicking the tabs. Clicking one of the pages or modules will allow you to
restore the selected item(s) to their original place in your site.

http://www.DNNSoftware.com/Voice

NOTE

You cannot restore files or users from this view. Restoration of users will
be discussed later in this chapter, and restoring deleted files is not
supported at this time. However, files can be restored from a site backup
if you have a backup plan in place. You should check with your system
administrator and/or web host to ensure that you do have a backup
plan.

Figure 4.17

Restoring Pages and Modules

When you're on the Pages tab, the two buttons below the selected list will be
labeled Restore Selected Page(s) and Delete Selected Page(s). When the
Modules tab is selected, these buttons will instead delete or restore the select
module(s). This is dependent on there being pages or modules selected to
begin with. If no pages are selected and you click the Restore or Delete
button, nothing will happen. This happens on the Modules tab as well.

When you choose to restore a page or module, DNN restores it to the original
place. In the case of pages, the page will be restored to the same place in the
site hierarchy. In the case of modules, the module will be restored to the page
from which it was deleted. Any content or settings associated with the module
or page will also be restored.

If you want to restore a module that was on a page that was also deleted, you
need to first restore the page. If you do not, DNN will prompt you to do so.
Once you restore the deleted page, you can then restore the modules.

It will be fairly easy to recognize the page that a module is associated with by
looking at its description in the listing, as shown in Figure 4.18. The page
name precedes the module name, followed by the date that the module
settings were last modified.

Figure 4.18

Pages are listed in a similar manner as the modules. However, the page name
is preceded by an ellipsis for each level down in the site hierarchy that the
page sits in the site. The page is also followed by a date, which indicates the
last time the page settings were modified.

TIP

The Recycle Bin is only one of countless areas where the importance of a
naming convention becomes clear. Be sure to always name everything
that you create, even if the title of the object isn't immediately visible to
the public. Make sure that the naming convention you use is obvious to
anyone who might be managing your site.

Empty Recycle Bin

It is common for content editors to continuously create and delete pages and
modules on a site. Over time, this will result in the contents of the Recycle
Bin becoming quite large. While there is no built-in process that
automatically empties your Recycle Bin, there is a simple button that you can
click from time to time to permanently delete the contents.

Deleting the contents of your Recycle Bin on a regular interval is considered a
best practice. This ensures that the feature continues to be usable, but it also
allows content editors to create new pages that would otherwise not be
possible if the name matches one in the Recycle Bin. Many organizations
simply send a Friday email to content editors about emptying the Recycle
Bins. Unless someone responds, the administrator will empty the Recycle Bin
before leaving for the weekend.

Deletion of Pages and Related Content

Pages have modules associated with them. Modules on the pages have
content associated with them as well. Both modules and pages have settings
that are unique to each respective instance of the page or module. When you
delete a module, any content or settings associated with that module will
typically be deleted as well. When you delete a page, any instances of modules
and the settings for the page will also be deleted. Since the module is being
deleted, its contents and settings will also be deleted.

When you delete a page by selecting it from the listing and clicking the Delete
Selected Page(s) button, DNN will delete the page and any modules on that
page that are not shared with other pages. If that page has any child pages
associated with it—that is, any pages that sit beneath that page in the site
hierarchy—you will receive a warning message and the page will not be

deleted. The warning will tell you that there are child pages assigned to this
page and that those pages need to be deleted first. If you instead choose to
delete everything using the Empty Recycle Bin button, all pages are deleted
without prompting, including the child pages.

NOTE

The cascade effect of module contents being deleted when the respective
page or module is deleted is directly dependent on the developer or
vendor of that module following best practices and/or where the
contents of that module are stored.

Evoq Version of the Recycle Bin Module

The Recycle Bin module does not have an equivalent module in the
commercial editions of DNN, nor does it have any features reserved for
commercial editions.

Security Roles

Security Roles in DNN are nothing more than a grouping of one or more
users for a purpose. That purpose is up to you. The purpose could be to see
exclusive content in a specific area of the site or on specific pages in the site.
It could also be to have the ability to edit content on one or more pages or to
create content in a specific module, like a blog. We could go on and on. Just
remember that Security Roles can be used for content targeting, editing, and
hiding sections of your site.

Security Roles work the same as most permissions-based systems, such as
Windows. You first create a Security Role if it doesn't already exist to create a
grouping of users. Then, you add one or more people to that group. Once you
do that minimal setup, you can apply that group to various capabilities,
permissions, and features.

NOTE

At the time of this writing, this is one of the few modules in the Admin
menu that cannot be delegated. As a result, only administrators can
manage users at this time. You will not be able to allow other Security
Roles in your site to manage this feature.

Security Role vs. Social Group

As of DNN 6.2, Security Roles received some work behind the scenes to
accommodate the needs of social community websites. In this kind of site, it
is necessary to group people together for content-related features instead of
content-editing capabilities. If there was not a distinction made in this way,
your site could quickly become unmanageable and easily compromised. You
would end up with far too many groups to sift through, and you would likely
run into instances where groups of people were being used for permissions
when that was not their intent.

Security Roles now have a very similar sibling in DNN called Social Groups.
The main difference is that Security Roles appear in the permissions grids
discussed in Chapter 3. Social Groups will not appear in the permissions grids
and will be used only in modules that make use of them, such as the Journal,
Social Groups, and Member Directory modules. Social Groups are specifically
for social or community content.

TIP

If you're a DNN developer, it would be useful to know that a Social
Group is simply a re-purposed Security Role. They're the same entity and
have all of the same API endpoints. However, with 6.2 you now also have
metadata that you can assign and reuse for development with roles like
you do with module settings.

You now know that Security Roles and Social Groups each have a slightly
different purpose. One gets assigned to capabilities in DNN and the other is
related to social content. Both roles are a grouping of users. If you need to
have any Security Role also serve as a Social Group or vice versa, a role can
indeed function as both, as you'll see later in the chapter.

Security Roles (see Figure 4.19) can be found in the Admin menu under the
same name, but the Control Panel also displays this same view in the Users
menu as Manage Roles. Except with Social Groups, DNN will refer to a
grouping of users as either Security Roles or Roles.

Figure 4.19

Built-In Security Roles

DNN comes pre-installed with a few Security Roles for your convenience.
With few exceptions, these roles cannot be deleted. Some of these Security

Roles are considered default roles and others are virtual roles. The default
roles allow you to add and remove users. Virtual roles are applied based on
matching conditions for the user on the site. The Security Roles are explained
in Table 4.6.

Table 4.6 Built-in Security Roles

Name Type Description
Administrators Default The Administrators role should be reserved only

for those people who you want to have full access
to all administrative features on your site.
Basically, they can do anything that's not reserved
for the host/superuser account.

All Users Virtual This role is shown only in permissions grids, and it
contains anyone viewing the site. If you're using
this role for a purpose, just remember that it
contains anonymous users. This is a role that's
used for all public pages on your site.

Registered
Users

Default This role contains all users who have successfully
logged in. This does not include Unverified Users.
If you want to show exclusive content or sections
of your site to “members” of the site, this is a
commonly used role. All new user accounts are
automatically assigned to this role.

Subscribers Default Mostly used as an example of a Security Role that
doesn't necessarily need to be used for
permissions-related activities. It's meant to be
used together with the Newsletter module. It also
shows how a role can be created for users to allow
them the ability to add and remove themselves
from it. All new user accounts are automatically
assigned to this role. Feel free to delete this role if
you are not actively using it.

Translator (en-
US)

Default This role may vary if you installed DNN using any
language other than English. For example, if you
installed DNN using Spanish, this role might have
en-ES in its title instead of en-US. This role is

useful if you're creating a multilingual site and is
intended for those translating your content.

Unverified
Users

Default This group of users includes anyone who has
created a user account but either hasn't verified
their account through their email or has been
unauthorized by the administrator. The
Administrator can unverify this user by clicking
the Authorize User button in the user's profile.

Unauthenticated
Users

Virtual If you want to target anonymous visitors
specifically, this role is built for that purpose. A
great example of this use might be to have one set
of modules visible to Registered Users on a page
and another set of modules available to
Unauthenticated Users. The latter set of modules
would include a value proposition of why someone
should log in or create an account.

You shouldn't expect to rely on the built-in Security Roles alone. You should
instead create Security Roles for each specific grouping of users for either
content targeting or permissions as you see fit. The number of Security Roles
that you need to have on your site will be directly dependent on the number
of tasks, capabilities, targets, and experience levels of users that you need to
manage. On some sites this may mean you have to create between 5–10
Security Roles. On other sites, this might end up being over 100 roles.

Role Groups

The previous example mentioned a site with hundreds of Security Roles. This
is not uncommon on enterprise-level websites. Once you have a certain
number of Security Roles, managing permissions or the roles themselves will
become a cumbersome or downright impossible task. This is exactly why Role
Groups was introduced to DNN. This is a feature shown only to
administrators and content editors, and its only purpose is to help you
organize Security Roles into categories so that they become easier to use and
find. Basically, the only way you will know if a Role Group exists is if you
manage users or roles or you use a permissions grid.

A Role Group should be created only if you need it. This is primarily because
once you have at least one Role Group, the permissions grids and Security
Roles views will all change to have a drop-down list above them to filter the

roles shown based on the Role Group selected.

Creating a Role Group is as simple as clicking the Add New Role Group
button below the Security Roles grid. There are two values available to you, a
Group Name and a Description (see Figure 4.20). The Name should be
created in a very intuitive manner so that anyone who sees it will instantly
know what the grouping is for. The description will not be seen by anyone
except when in this view, so it's optional.

Figure 4.20

Now that your Role Group is created, you can create any number of Security
Roles for grouping.

Creating Roles

Creating a role involves looking at several more options, but is just as simple.
We already discussed why a Security Role is necessary, so we will now focus
on the act of creating one. You begin just like you did with a Role Group. Click
the Add New Role button below the Security Roles grid.

TIP

It is very common to click accidentally the wrong button here for either
purpose. For example, you might accidentally choose to create a Role
Group when you intended to create a new Security Role. Just make sure
that you look at which view you are working on before saving your
changes.

Figure 4.21 shows the edit view where a new Security Role is created. There
are two sections of settings—Basic and Advanced. The Advanced Settings are
rarely used and are discussed only briefly in this section.

Figure 4.21

Every role needs a name. In fact, this is the only setting that requires
management when creating a new role. The Role Name will be visible to
anyone who can assign permissions. This includes not only administrators
but anyone who has Edit permissions to any modules, pages, or folders.

Just be sure that you institute and follow a naming convention that makes
sense to everyone who manages the site when naming roles. Common
conventions include prefixes to note group hierarchy and tasks. Some
examples of this include CompanyName-Marketing, Customers-Standard,
Customers-VIP, and Bloggers. Some characters such as spaces and periods
are not allowed. The Role settings are described in Table 4.7.

Table 4.7 Edit Security Roles Settings

Name Description
Role Name This is the name of the role that content editors and

administrators will see in all permissions grids. The name
should easily identify the purpose that the Security Role serves.

Description The description is not a required field, but you should treat it as
such. Over time, most sites will end up with roles that have
names that appear to be so similar that content editors or even
administrators won't know what they're intended for. A
description will help you identify the purpose without much
effort.

Role Group The only option here will be selected for you unless you have
created one or more Role Groups. By default, all roles in DNN
are Global Roles until they're assigned to a Role Group.

Public Role If checked, the role you're creating will be available for a user to
add or remove from their profile. They can do this in their user
profile page, if the feature is enabled. This is useful for opt-in or
opt-out Security Roles, like those that you might use for
newsletter email lists. The built-in Subscribers role is an
example of this type of role.

Auto
Assignment

If you require that users be automatically assigned to a Security
Role, check this checkbox. The built-in Subscribers and
Registered Users roles are great examples of this. Other useful
examples that you might need in your own site include
customers or community members.

Security
Mode

This is a setting where you can determine what kind of role you
want this to be. It can be changed after creation as well. If
SecurityRole or Both is chosen, this role will appear on
permissions grids. Otherwise, it will not and will strictly

function as a Social Group.
Status Status is a state that only really applies to the role when it's

saved as a Social Group. Social Groups can be created and
require moderation before they appear to the creator. This is
one way to approve the Social Group.

While in the edit view of a Security Role, you can choose Update, Manage
Users in this Role, and Cancel. Clicking Update saves your changes. Manage
Users in this Role allows you to choose which users are assigned to this role.
Cancel disregards any changes you made and returns you to the Security
Roles page.

In the case of any Security Roles you create, there is another button available,
labeled Delete. This button allows you to permanently delete the Security
Role. If you delete the Security Role, any areas where it is used to define
content targeting or permissions will no longer respect that assignment since
the role no longer exists.

The Advanced Settings tab holds two types of settings: payment and RSVP. It
is possible to use the payment settings to manage the Security Roles in a way
that allows you to charge a fee to be part of the role. While it is convenient
that this feature is built-in, you will have a better user experience and less
effort to manage this by using a third-party ecommerce module.

There is an RSVP setting in Advanced Settings that is often useful. This
feature allows you to assign a code to the Security Role. When it's saved,
there will be a unique URL that you forward to users that allows them to click
to add themselves to the Security Role, as shown in Figure 4.22. This would
be useful for a situation such as adding customers to a Security Role using a
link in an email.

Figure 4.22

Assignment of Roles

There are two distinct ways to assign Security Roles to users. This is one and
the other will be mentioned later when we discuss user management. When
you're in the Security Roles view, you use the aforementioned button when
editing or adding new Security Roles or by clicking the respective people icon
for the role that you want to manage the membership of. This icon will open a
view similar to the one shown in Figure 4.23.

Figure 4.23

The Manage Users in Role view does a very good job of offering you quite a
few options in a concise way without making it look difficult. You have only a
few options, including when to be assigned to the role, when to be removed
from the role, and whether or not an email is generated to notify them of
their new assignment or revocation of that assignment.

The first field allows you to choose a user from the site using a drop-down list
or to enter the username into a textbox for verification. It is very common on
sites with a large number of members to have this view configured to use a
textbox instead of a drop-down list. The drop-down list is displayed by default.

You can optionally choose to assign a date for the role assignment to become
effective and determine when it should expire. If left blank, the assignment
will happen immediately upon clicking the Add User to Role button and never
expire. These fields are incredibly useful for many scenarios, including
temporary staff, contract workers, subscription-based customers, and more.

You have a checkbox near the assignment fields that allows you to determine
whether DNN attempts to email the user when you take an action. It is very
common to uncheck this checkbox prior to adding a user to a role or
removing them from a role. This allows you to send your own personalized
email, if you wish, or simply never notify the user. Oftentimes, it's not
necessary to let users know that their access to a site has been revoked.

The bottom portion of the Manage Users in Role view shows which users are
currently assigned to the role, if any. As you add users in the top of this view,

this bottom area will continue to update. Each row in the list will display the
user's name linked to their profile, the expiration and effective dates (if
assigned), and a link to remove the user from the role on the left side of the
grid. Once you have over a certain number of users in the role, it will begin to
show only a specific number per page and offer a way to navigate at the
bottom of the listing. The number per page is 10 by default, but this can be
changed in the module settings.

Evoq Version of the Security Roles Module

The Security Roles module does not have an equivalent module in the
commercial editions of DNN, nor does it have any features reserved for
commercial editions.

Site Settings

The Site Settings pane contains a large number of settings that you can use to
perform high-level administrative configuration for your site. These settings
include default metadata, user profile fields, URLs, and much more. There are
too many settings to cover in this book. Therefore, several less useful or
uncommon settings are skipped or only briefly covered.

TIP

If you want a complete reference to each feature, please reference the
online help section on the DNN Software website at www.DNNSoftware.com.

Basic Settings

Basic Settings mostly contains set-it-and-forget it options that should be
managed once when you build your site. Some of these settings include the
default look and feel for new pages created on your site, your site logo, the
copyright, and default metadata for pages.

Site Details

The Site Details page shown in Figure 4.24 includes default metadata and
copyright information. With the exception of the copyright, these are some of
the few settings that are often managed over the lifetime of your site.

Figure 4.24

The Title, Description, and Keywords fields should sound familiar if you've
managed a website for any length of time. These fields are also found in the

http://www.DNNSoftware.com

Page Settings for each individual page in your site. These are often referred to
as metadata, or descriptive information for the page. In this case, the values
are saved at the site level. This is because these values will be used in the
event that you create a page that fails to have any of these values. For
example, if you create a new page and forget to put in a title, the Title in Site
Settings will be used on the page. This is a safeguard for those of you who
need to focus on search engine optimization (SEO). These values will fill in
the blanks and therefore help to prevent empty metadata from being seen by
search engines.

The next setting is the copyright. This should be changed when you begin
building your site, or at least before you release it. Note the [year] text in the
default copyright. This is something that's often referred to in DNN as a
token. This token will be replaced with the current year if your designer is
using the Copyright skin object in your skin. Your site will always look fresh
and updated if you use this token. You can learn more about skin objects and
how they're used in Chapter 17.

Site Marketing

Site Marketing allows you to manage details and actions related to getting
your website discovered or managed by a major search engine. Here, you have
options to submit your website to Google, Bing, or Yahoo. Submitting your
site this way will simply takes you to the respective submission page on the
search provider's website. Figure 4.25 shows you the Site Marketing features
we're discussing.

Figure 4.25

Every DNN site already has an XML sitemap created and dynamically updated
for your convenience. XML sitemaps are used by search providers such as
Google to help define the hierarchy and importance of pages on your site. If

you have a public-facing website, you really should be managing your XML
sitemap already. The URL for your XML sitemap is defined in a way that
allows to you to copy and paste it to a service provider or to simply submit it
to the Google Webmaster Tools using the Submit button. The domain name
that's used for the XML sitemap URL is defined by the Site Alias that your
site is using as the default. Read more about site aliases in Chapter 5 and URL
management in Chapter 20.

The Verification setting is specific to one of the ways that Google allows you
to verify that you are the owner of a website. This is a process that you
normally have to go through to use services like Google Webmaster Tools or
Google Analytics. Google will give you a name of an HTML file to create on
your site. Once you have that, you can paste that name into this setting and
click the Create button. Your HTML file will be created, and you can then be
validated as an owner of the site.

Banners is a feature that's not as well used as it could be, but it works in
conjunction with the Vendors feature at the site and/or host levels. If you
choose to use the banner advertising functionality in DNN, this setting helps
to define the way you want your banners to load. If you choose Site, banners
will be loaded from the Vendors module in the Admin menu. Choosing Host
will load from the respective module in the Host menu.

Appearance

The Appearance section includes settings that help you define the default
look and feel of your site as new pages are added by content editors (see
Figure 4.26). These settings begin with the Logo setting. Even though it's not
a best practice, a designer will include the logo as part of the design itself—
known as the skin or skin package. However, if you use the Logo skin object,
this setting will allow you to change the logo. This is very useful for sites or
branding initiatives where the logo changes often, as the site administrator
can manage the logo without having to know HTML. This is also useful for
instances of DNN with multiple sites that need to reuse a design but need for
the design to have a different logo on each site.

Figure 4.26

NOTE

You will see the word “skin” in all published materials released prior to
this book. The word “theme” will soon replace “skin” because it's a more
common and familiar naming convention for designers and
administrators alike. Nothing about this feature is expected to change
except for the name.

Branding on your site doesn't begin and end with the design. DNN also allows
you to upload and specify a favicon for your site. Once this setting is saved,
your site will display the saved favicon to users in their browser tabs and
bookmarks.

Skin Widgets are client-side applications that are similar to modules but
generally only consist of JavaScript and jQuery. Skin Widgets are another
often overlooked extension point in DNN but can be incredibly useful. These
widgets allow you to do useful things such as switch stylesheets, rotate
images, relocate blocks of HTML, and much more. However, if your site is not
using them, this setting should be unchecked. You might sometimes see
minor performance benefits, as it means a little bit less JavaScript being
loaded into the web browser.

The remaining settings of this section (seen in Figure 4.27) allow you to
define the default skins and containers for your site. These default design
choices will be used by pages and modules on your site, unless they override
these defaults in their respective Page Settings or Module Settings. There are
two types of choices shown for your skins and containers, Site and Edit. The
skin and container chosen for Site will be applied to all pages that do not
define their own defaults, as previously noted. The Edit skin and container
will be used when you enter into an edit view where all of the modules but
one is removed from the page. For example, some modules will enter into an
edit view when you choose to edit settings or manage its content. Skins and
containers will be explained in more detail in Chapter 17.

NOTE

This edit view is more commonly referred to as module isolation for
developers. It is a common way for developers to show only the edit
options or features for their module. The alternative to this view is the
pop-up view, which is the default. When a pop-up is used, the skin and
container settings are not used, as they are no longer necessary.

Figure 4.27

Advanced Settings

The Advanced Settings section contains settings that are not commonly
changed. In fact, more so than the rest of Site Settings, the settings on this tab
really are considered to be set-it-and-forget-it settings. This section of settings
includes system page management, administrator assignment, and usability
settings.

If you were logged in using a host/superuser account, the Advanced Settings
tab also includes sections that are only shown to a host/superuser. Those
settings are explained in Chapter 5.

Page Management

The Page Management section allows you to set system pages, as shown in
Figure 4.28. The specified pages are used by DNN to help properly navigate

users to the right pages when certain system actions take place. Such actions
could include clicking the site logo, logging in, registering, or simply
performing a search. These pages tell DNN where that functionality exists to
ensure a consistent user experience for your site visitors.

Figure 4.28

Table 4.8 describes the Page Management settings and specifies as well the
pages that are assigned to these settings when DNN is first installed. These
pages might not still exist on your current DNN site.

Table 4.8 Page Management Settings

Setting Default
Page

Description

Splash Page <None
Specified>

Splash pages really aren't used much anymore, but
this setting will allow you to intercept a user before
they arrive at your home page the first time to show
them a different page. This could be useful for
things like product sales, value propositions for user
registration, and more. However, most visitors find
the splash page an annoyance.

Home Page Home This setting tells DNN which page should be the
home page. This page will be shown when the site
logo is clicked and when someone visits the root
URL of your site, such as www.domain.com. If, for
some reason, this setting is left as <None
Specified>, the first page in your site hierarchy will
be used.Login Page <None

Specified>
DNN technically doesn't have a login page out-of-
the-box. It's dynamically generated for you. If you
want to change this to have a specific page for login
to ensure a secure login or to wrap the login with
benefits, advertisements, or value propositions, or
you want to use a third-party login module, this
setting will be very useful.

Registration
Page

<None
Specified>

Works the same way as Login Page, only it's used to
register new user accounts instead of accepting login
information. This also is a useful setting if you are
using a custom registration module instead of the
default registration process.

User Profile
Page

Activity
Feed

This page is where users are sent if they choose to
view any user profile, including their own. This page
generally should have at least one View Profile
module on it. This module allows the user to edit
their profile. A profile page is created for you by
default. It is not considered a best practice to create
your own user profile page except in instances
where they didn't already exist.

Search
Results
Page

Search
Results

DNN comes to you with a robust search engine that
will index the content of your site. The default
design will also include a search box. This setting
will determine which page on your site a user will be
sent to when executing a search. The landing page
chosen here should have a Search Results module
on it.

404 Error
Page

404 Error
Page

This is the page that all traffic will be sent to when
the page is either not found or, in some cases, when
the page is not accessible to the visitor due to

http://www.domain.com

permissions.
500 Error
Page

<None
Specified>

When unrecoverable errors are experienced, you can
send the visitor to this page to give a more user-
friendly user experience. One example for this might
be to have a comment or survey to get more
information about how the error might have
happened.

Security Settings

The Security Settings section allows you to designate a specific administrator
account as the administrator as well as determine whether you want to hide
the login link from users (see Figure 4.29).

Figure 4.29

There can be many user accounts with administrative rights on your site, but
only one can be considered to be the administrator. This setting allows the
site to know which user account to use for high-level tasks. Probably the most
significant purpose behind using a specific account as the administrator is
that emails sent by DNN from your site will use the email address assigned to
this user account as the From address in the email. This means that you want
to be aware of which email address this account uses. Anyone who chooses to
reply to an email from your site will respond to that email address.

NOTE

You definitely want to be aware of the email address of your chosen
administrator, but you should probably also consider the Username and
Display Name of the user account that's chosen as the administrator.
Either value could potentially be visible to website visitors at various
times of administration and moderation.

The Hide Login Control setting is pretty self-explanatory. The Login link will
no longer be visible on your site. This is useful for many websites, but it
should be noted that this does not prevent anyone from logging in
completely. If the user can discover the login URL in some way, they will still
be able to log in.

TIP

Completely removing the ability to log in is outside of the scope of this
book, but it is a moderately advanced task that can be achieved. Some
uses cases would be unique in this regard, so it is recommended that you
seek guidance for this in the DNN forums to learn how to do this for
your specific site at www.DNNSoftware.com/forums.

Payment Settings

The payment settings found in this section allow you as a site owner to accept
payment to have access to Security Roles. This is useful for sites that might
have exclusive content. You can save your payment gateway information here
and then allow users to subscribe to the content, which will result in them
being added to one or more Security Roles. These same Security Roles should
then be used for view permissions on the modules or pages that are part of
the exclusive areas of the site.

It is worth noting that while this capability is built-in and it works, there are a
number of third-party extensions that work very well to provide this
functionality in ways that will be easier for you, your team, and your
customers to manage. The third-party extensions will also support more than
one payment provider. DNN ships only with a PayPal payment provider.

Usability Settings

Usability Settings allow you to adjust some of the ways that DNN presents
itself to visitors, content editors, and administrators. Usability goes beyond
things as obvious as pop-up windows. It includes the Site TimeZone setting
shown in Figure 4.30.

http://www.DNNSoftware.com/forums

Figure 4.30

DNN was originally born as a universally adopted web application framework
in most countries around the world. It has a high adoption rate in Europe,
South America, Australia, and of course North America. As such, it
incorporates a lot of different languages and time zones. The Site TimeZone
setting allows you to set the time zone of the site, as it clearly states. DNN
will store times in the database using UTC or the Universal Time Coordinated
format. The time zone setting allows you to set the time zone so that times
presented in areas such as the Event Viewer are relative to your location, even
when your web server is in another time zone.

NOTE

Dates are not actually stored in UTC in many areas of the database at the
time of this writing. However, this is something that is actively changing
and should be complete soon.

The rest of the usability settings revolve around how DNN might react to
actions users take, primarily as a content editor or administrator, with a
couple of exceptions.

If you choose to uncheck the Enable Pop-Ups setting, it will disable pop-ups
from appearing throughout DNN, except for the case of confirmation prompts
and when third-party or custom modules might explicitly create pop-ups.

DNN has an inline editor that is primarily present for module titles and the
HTML and HTML Pro modules. This setting is enabled by default, and it will
allow you to perform quick edits to the module title and HTML-based
content. This is convenient for many users, but on some sites you might want
to disable this feature. Disabling this feature could increase usability in some
cases, and it would reduce the number of resources loaded for content
editors, resulting in minor page load improvements. Disabling this setting
would not result in faster page loads for other kinds of site visitors, though.

NOTE

You might see the HTML module referred to as the Text/HTML module
in older documentation and community articles. The HTML and HTML
Pro modules are the same module, except that the HTML Pro module is
found only in the commercial editions of DNN. Both modules work the
same way, but HTML Pro includes more features, such as content
workflow, auto-save, content versioning, and side-by-side version
compare.

The remaining usability settings are present for backward compatibility for
those sites that are using an older Control Panel version.

User Account Settings

The User Account Settings area consists of all of the high-level settings that
will help you adjust the login, registration, and profile functionality of your
site for your visitors. Over the last few years, this area has been enhanced a
great deal to put all of these settings in one place and to make it flexible
enough to serve most registration or login scenarios without having to
customize an underlying provider.

NOTE

This section alone could easily fill its own chapter. In the interest of
brevity, only the most common and useful settings are discussed. You
can discover more about the remaining settings by visiting the DNN
Online Help at www.dnnsoftware.com/Help.

Registration Settings

The process of creating a user account is usually referred to as registration.
The Registration Settings shown in Figure 4.31 govern the way new users join
your website. It should be immediately obvious when looking at the number
of possible configuration options that you can customize the registration
process in a multitude of ways.

Figure 4.31

The User Registration setting is perhaps the most common setting used when
visiting this area. It allows you to change the workflow used to onboard a

http://www.dnnsoftware.com/Help

visitor into their new user account on your website. You have four options,
described in Table 4.9.

Table 4.9 User Registration Options

Option Description
None Visitors to your site will not be allowed to create a new user account

in any way. Only administrators can create new user accounts. This
will remove the login link from all DNN skin objects and will even
redirect the users if they happen to know the original registration
URL. This is the most common option for private sites, or sites that
are using alternative authentication providers such as Active
Directory.

Private This is the default workflow that is enabled on a new installation of
DNN. When selected, new user accounts must be approved by an
administrator in the Admin User Accounts or Manage Users area
of the Control Panel. This is the most common option for intranet
and extranet sites that use the default authentication provider.

Public This registration workflow should not be used on most sites. There
are no features that allow you to verify the user in any way. Once
the user account is created, the user is immediately logged in. This
often results numerous accounts created by spammers and results
in many more support requests related to non-verified email
addresses.

Verified The most commonly used option for public-facing websites. This
option allows users to create their own user accounts, but they
cannot log in until they verify their email addresses. There will be
an email sent to them with verification instructions. This option
does not prevent spam accounts from being created.

Use Authentication Providers

Many sites will want to provide more than a single way for a new user to log
in and register on your site. This is especially popular since major social sites
like Twitter and Facebook have made login mechanisms that any site owner
can implement with a bit of code. You have these options available to you out
of the box with Twitter, Microsoft Live, Google, and Facebook options
available for host/superusers to install. They are not installed by default. See

Chapter 5 for more information about these additional providers.

If you have any additional authentication providers installed and enabled, this
feature will display those other options to users on the login form when this
checkbox is checked.

Excluded Terms

Your site might need to prevent new users from creating user accounts with
certain terms in its username. This is very common and a best practice for
sites with a high volume of users, social features, or any other branding
concerns. Imagine if your site is being implemented for a brand as
recognizable and valuable as Microsoft. You might want to prevent users from
including product or trademarked terms like “Microsoft” or “Azure” in their
usernames. To do this, enter each of the words you want to prevent from
being part of the username, separated by a comma. In this case, you would
use microsoft,azure.

TIP

You should be careful when using this feature, as it might cause
unintended consequences. Avoid using common words and words that
might get formed incidentally from two other words being side by side.
One final note is that if you're too restrictive with settings like this, you
could also have an unintended side effect of preventing site registrations
altogether.

Use Profanity Filter

This checkbox allows you to filter out profane language from usernames.
Essentially, when enabled, the users cannot create an account with any
profane words in it. Checking this checkbox alone will do nothing. You also
need to define the profane words that you want to prevent from appearing in
a username. This is done in the Admin Advanced Settings Lists feature.
This feature is discussed later in this chapter.

Registration Form Type

You've been using standard registration forms if you've been using DNN at
all. This option simply displays the default fields and options for a new user
to fill in when they want to create a user account on your site. The default
form is somewhat verbose for most sites. It might be a good idea to consider a
custom registration form, which allows you to specify the fields you want to
show. Figure 4.32 shows what the difference could be when using this option
along with one of the next settings, Display Name Format.

Figure 4.32

In the registration form on the left, you can see that there are five different
fields that have to be successfully filled out in order for the user to simply
proceed to the next step. If you've ever performed usability testing, you
probably already know that the success rate of users getting past this view is
not optimal.

Now compare the registration on the left to the one on the right. This
example combines the Custom Registration Form Type with the Display
Name format to require only three pieces of information for a new user to
create their user account.

Use Email Address as Username

If you want to remove the option of users creating their own username or you
simply want to make it easier for users to log in and remember their
username, this option is one of the most ideal ways to achieve those goals. It
greatly reduces support issues related to user registration and authentication.
If you want your users to use their email address as their username, this
option should be used instead of trying to do the same thing with the Custom
Registration Form Type.

When using this feature, it is most ideal to only be used on new websites.
Existing sites will have a slight usability issue, in that existing users will still

use their existing username and not their email address. This could cause
confusion and support issues. In addition, since the email address would be
the username, email addresses would need to be unique on the site.

Require Unique Display Name

Display Name is the primary field that nearly all modules use when
displaying user-generated content in places like the Journal, blog comments,
and social groups. The Display Name can be duplicated by default. In sites
that have social features such as the previous examples, it might be a good
idea to require a unique Display Name. If enabled, the Display Name will be a
required field on the user registration form. Anyone who attempts to create a
user account with an existing Display Name will be asked to create a different
Display Name before their account can be created.

Display Name Format

Every user account has a Display Name as discussed in the previous setting.
This is the chance for the user to create a potentially unique way to express
themselves to others on your site for personal branding purposes or to convey
their personality. On many sites, such a field can be very important to the
user's online identity. If you want users to be able to express themselves in
this way, leave this field empty. Otherwise, you can enter a value known as a
token to define a format for users. If you enter anything into this field, DNN
will attempt to use it, and the Display Name will no longer be an option on
the registration and profile pages. Table 4.10 outlines the tokens that this
setting accepts.

TIP

If at any point in your site's existence, you decide to use this feature,
attempt to do so at an off-peak time. Changing this setting will cause
DNN to iterate through each user account and update it individually. On
a site with a large number of users, this could potentially cause the site to
load slowly until all users are updated.

Table 4.10 Display Name Format Tokens

Token Description
[USERID] Replaced by the user account's unique UserID number
[FIRSTNAME] Replaced by the First Name defined in the user's profile
[LASTNAME] Replaced by the Last Name defined in the user's profile
[USERNAME] Replaced by the username chosen by the user

Use Random Password

As of DNN 7.1, this setting should no longer be used. This setting was useful
only when a password could be sent to a user during the password recovery
process. Password recovery is no longer supported in DNN due to the security
standards defined by the DNN Corp. security team. You can only reset
passwords now, so this setting will actually prevent users from being able to
log in until they reset their passwords.

Require a Valid Profile for Registration

You'll find that this setting is disabled by default on new installs of DNN. This
is for very good reason. Most sites have at least a few fields in the user profile
that are required. If you checked this setting, all of those required fields
would need to be properly filled out prior to the user being allowed to
complete the registration. Having this option enabled would have a direct
impact on how many people you lose during the registration process. This
setting should be used only on sites where your users have no choice but to
register, such as partner or affiliate programs, intranets/extranets, and some
membership groups.

NOTE

DNN's default settings will force users to fill out any required fields in
their profile when they come back to log in on your site. Keeping this
setting unchecked will allow you to capture your user's registration
information, without discouraging them from completing the
registration.

Redirect After Registration

When a new user registers on a DNN site, the user will be sent back to the
page where the registration link was clicked. If you want the user to be sent
anywhere else, select that page here. This setting can become a very
interesting option if you were to combine it with redirection settings in the
Page Settings, a content-targeting redirection module from the DNN Store, or
content-targeting through security roles on the resulting page. This would
allow you to route new users through some kind of additional workflow or to
customize a thank you or other value proposition.

Read-Only Settings

There are quite a few settings that are presented to you in a read-only way,
meaning that you cannot edit them. These settings are kept in a configuration
file that only a host/superuser can edit. This kind of protection is required
because changing these features could result in a security risk, a broken
website, or a user experience that would deter potential and existing users
from coming back. In some cases, ASP.NET prevents even DNN from
changing the setting in a view like this. Chapter 9 discusses these settings in
more detail.

Login Settings

The last section clearly allowed you to configure how new users are
onboarded. This section allows you to configure the user experience while an
existing user is attempting to log in on your site. Unlike registration, there are
a minimal number of settings to configure.

There are two settings that allow you to enable CAPTCHA—for associating
logins and for retrieving the password. Associating logins is the process when
you have two or more kinds of authentication enabled and you want them to

be associated with each other. In either case, CAPTCHA can help improve the
security of your site and prevent spammers.

NOTE

CAPTCHA was a setting in Registration Settings as well, although not
discussed. This acronym stands for Completely Automated Public Turing
Test to Tell Computers and Humans Apart. It is that generally annoying
feature that asks you to enter the letters and numbers inside of an
obscured image. As annoying as it may be to you, it can be highly
effective at preventing malicious programs (bots) from attacking
websites.

Requiring a valid profile for login is a default setting, and it is good to enable
it throughout the lifecycle of your site. This forces users to fill in any required
profile fields following registration or at any point if you determine that you
need to introduce a newly required profile field. The user needs to save a valid
value before being allowed to complete the login process.

The redirect settings work the same way as the setting discussed in the
previous section, but for two distinct login actions, logon and logoff. The
default behavior for login redirect is to send the user back to the page where
the login link was clicked. The default behavior is a bit more complex for
logoff. DNN will attempt to send the user back to the page where the logoff
link was clicked. However, if users are not allowed to view that page for any
reason (such as due to permissions), they will instead be sent to the home
page. For either setting, you will be able to change this default behavior.

Profile Settings

Profile Settings exposes one of the more powerful and under-appreciated
features that DNN has to offer. The Profile Settings expose to you a few
features, but the primary feature is the Profile Editor, which allows you to
customize completely the profile fields that a user account has in nearly every
way possible. This is the backbone of all of the user profile features in DNN.

Vanity URLs

Vanity URLs are somewhat new to DNN but are a very welcome feature that
improves the user experience on sites that are trying to build a community of
users. Members of your site now have a user-friendly and personalized way to
share their profiles with other users either on the same site, or elsewhere if

you're building an external community. Vanity URLs are discussed in Chapter
21, but we'll review the features shown in Figure 4.33 in this section.

Figure 4.33

The first option allows you to redirect old profile URLs. This is very useful if
you're upgrading from an older version of DNN that didn't have vanity URLs
as an option. This allows users to be redirected to the right page if they have
an old link or bookmarked profile page.

Your next option is the vanity URL prefix. This allows you to customize the
value that becomes the folder path after your domain name. This path will be
“Users” by default, but this option allows you to customize it. Some obvious
examples include Fans, Customers, or Members, but imagine having a
community that has a specific name for its members. You may have noticed
the term DNNizen on the DNNSoftware.com site. If desired, this could be a
term used in this setting (but it isn't). If a user were named Jane Doe and she
used a URL associated with her name, the resulting URL might look like this:
http://www.dnnsoftware.com/DNNizen/Jane-Doe

Profile Visibility

Profile visibility is likely to be a feature that is important to any DNN site that
allows visitors to have their own user accounts in any way, especially for user
content generation features, such as blogs, comments, and other social
features. When these kinds of features are present, their profiles will be
shown to other visitors as they contribute content. Therefore, you might want
to know about and determine whether you want to make adjustment to the
profile visibility settings on your site.

The first of two settings that we'll talk about is Default Profile Visibility

http://DNNSoftware.com
http://www.dnnsoftware.com/DNNizen/Jane-Doe

Mode. It has a drop-down list where you can decide between four different
options. Each of them should be self-explanatory, as their labels are pretty
well defined (see Figure 4.34). When you choose any of these options, you are
deciding the default setting of the visibility of all profile properties for
members of your site. This will not override any values in the grid below it,
nor will it override the values that a user might change in their own profile.
For example, in a clean installation, you can change the default of Admin
Only to anything else, and if a member had changed the value of a field from
Admin Only to Members Only, their setting will override yours. This
highlights an important point of managing a DNN site with a membership of
users: have a plan before you release your site so that you can hopefully get
this setting right the first time, if possible.

Figure 4.34

The second setting we'll discuss is called Display Profile Visibility. This
feature is checked by default. When checked, it allows the members of your
site to be able to override the privacy settings of any individual profile field.
This is useful if you want to allow this level of granular control to be given to
users. However, in practice, this can potentially create a lot more work for site
administrators, designers, and module developers since they cannot know for
sure which profile settings will be visible. Unless you have legal obligations to
do otherwise, you may want to instead set this at the administrator level and
then make it clear to your members what fields will be shown to other
members or to the public. Figure 4.35 shows the icon that is displayed next to
profile fields when this feature is enabled.

Figure 4.35

Profile Editor

The Profile Editor is the last setting in this tab that we'll discuss. It does
exactly what its name suggests. It allows you to edit features of profiles on
your website. Using this editor, you can create profile properties of nearly any
kind, to be used with all kinds of profile scenarios and integrations. Profile
properties support a wide array of options, including multiple languages (or
localization), validation, and more. You can also group together the profile
properties so that they are shown to website users in a way that's better for
usability.

You'll notice that there are a handful of features of each profile property, as
shown in Figure 4.36. First, you can edit any of them by clicking the edit icon.
When you do, you'll see a pop-up appear if it's enabled or be taken to a new
view altogether. This allows you to change all aspects of the profile property,
including the grouping, how it's named, how it's validated, how a user
interacts with it, what kind of field it is, and more.

Figure 4.36

Next, you can delete most of them. If you choose to do this, you'll be able to
re-create the profile property if you want, but the real reason you might want
to do this is to reduce the number of fields available to website users, thus
encouraging more complete profiles.

The profile properties that do not have a delete option are those that are
directly tied to authentication and/or overall site membership. Deleting them
would cause some features to either not work or become unusable, which is
why you are not given the opportunity to delete them.

Perhaps in an update to this feature, you'll be able to drag and drop each
profile property to re-order them as you desire, but until then you'll find up
and down arrows that allow you to re-order by clicking.

The last two features that are editable through this view include the Required

and Visible columns. These settings have a checkbox associated with them
and allow you to turn the feature on or off. These each can be set when
editing the profile property as well.

In the case of Required, this allows you to define whether the profile property
is required to have a valid value. When enabled, this option can work together
with the features in the Registration and Login Settings sections to ensure
these values are populated.

Visible simply allows you to define whether the profile property is visible to
users or only to administrators. Having hidden profile properties is useful to
keep information about members of your site, without them being able to see
or edit them. A great example of this might be a “Report To” profile property
in an intranet where you select the manager that a user reports to.

Creating New Profile Properties

When you decide to create a new profile property, many of the fields and
values available should be self-explanatory, as you will walk through a short
wizard-based edit view. You simply need to click the Add New Profile Property
button at the bottom of the profile properties grid. Each step in the profile
property wizard has all of the same fields that will be present if you were
editing an existing profile property.

You might want to consider having another web browser tab open that has an
existing profile property open in its respective edit view for comparison when
creating your first profile property.

One of the things to note about creating or editing of a profile property is that
you'll have a list of 17 options to choose from when deciding what the data
type is, as shown in Figure 4.37. The data type will determine how the profile
property is displayed to members of your website. For example, if you choose
Page, they will be shown a field that allows them to select a page from the
site. If you choose Date, they will be given a field that allows them to select a
date from a date picker, enter one manually, and so on.

Figure 4.37

Stylesheet Editor

You might have already guessed, but the Stylesheet Editor allows you to enter
and maintain CSS (Cascading Style Sheets) code on your website. When you
install DNN or create a new site as a superuser/host, this field will contain
some placeholder CSS.

NOTE

How to write CSS is beyond the scope of this chapter. Chapter 17 covers
CSS briefly, but if you're really interested in learning CSS, a great online
resource is www.w3schools.com/css.

If you were to enter valid CSS into this field and save it, a file will be created
in the respective site folder for the current website, called Portal.css. This is
the last CSS file that will be loaded into the HTML on page loads, which
should theoretically allow your CSS to override any other CSS in the site.
While this sounds convenient and powerful, you should avoid using this
feature at all costs. There is potential for your changes to be completely
deleted on accident, and it lacks versioning and rollback features to recover
from these and other situations.

You'll never know who applied a CSS setting or why. If that weren't enough,
CSS is something that only designers and some front-end web developers
should be managing. There are too many issues that can arise from others
changing the CSS of the website.

http://www.w3schools.com/css

NOTE

It is highly recommended that you delete all CSS from this setting and/or
delete the Portal.css file from the file system entirely. Your site will still
run just fine if it is missing, and it may even load faster in some
scenarios.

Advanced URL Settings

If you are using DNN Platform, your view in this area might look a bit slim.
This is because only one feature of this section is exposed to the open source
edition of DNN. Those of you using Evoq solutions will likely see an
additional section here that allows you to manage how URLs in DNN are put
together and responded to. See Chapters 20 and 21 for more information
about the Evoq solutions.

The remaining section will be consistent across all editions of DNN, which is
the Extension URL Providers (see Figure 4.38). There is nothing to manage
here. However, some extensions that you might have built or otherwise
installed on your DNN site might include a URL provider for it to help the
dynamic URLs it generates to be more human-friendly and SEO-friendly. If
you have any URL providers installed, they'll automatically show in this list,
and when they do, you'll have an opportunity to enable and disable them as
you desire. DNN will not have any URL providers installed by default, so your
site will probably have no providers listed.

Figure 4.38

Evoq Version of the Site Settings Module

The Site Settings module does not have an equivalent module in the
commercial editions of DNN. However, the Advanced URL Settings section
does expose more functionality in Evoq Content, Evoq Content Enterprise,
and Evoq Suite. You'll find more information about this in Chapters 20 and
21.

User Accounts

Part of the power of DNN is having a robust user management system. In
fact, in many ways DNN's user management features are unrivaled across the
industry without some considerable modifications and/or installation of
third-party plugins. If you are using DNN to manage your website users, you
have probably selected the right platform for that reason alone.

When you first look at the User Accounts page, you will notice a familiar grid
view that lists all of the users in your site (see Figure 4.39). This grid is
deceivingly powerful with there being some very useful and lesser known
capabilities.

Figure 4.39

You'll be able to discover most of the features pretty easily on your own, so
we'll focus solely on some of the key features and tricks that you can use to
make your life easier.

First, notice the search textbox. This works just as you might imagine. You
can enter a search term, choose how you are searching, and click the button
or press the Enter key on your keyboard. You'll be shown the results of your
search immediately. But what if you have partial information or want to
intentionally search using a partial term? A previously undocumented feature
of this search is to use the % symbol as a wildcard. Now, if you want to search
for all users of a company, you might choose to search the email field of all
profiles for the domain using %@companyname.com. This will return any user
accounts that have an email address that ends with @companyname.com.

Next, you'll notice a row of filter options above the grid. They work just like
you think that they would. Click the filter and see the results. However, the
most useful filters is Unauthorized. Unauthorized allows you to see any user
accounts that have been created but not yet verified, or have been marked as
unauthorized by a site administrator. This is a very useful filter when looking
for users who are having issues activating their account.

The last thing to talk about in this view is one of the buttons on the bottom,
Delete Unauthorized Users. This is a great one-click tool to clean up your site.

Over time, the number of both the deleted and unauthorized users will grow.
In the case of unauthorized users, it might be growing at a high rate due to
spam bots. In just one click, you can delete all unauthorized user accounts.

Deleting users using this button or the other delete action provided will not
permanently delete the user, but rather “soft delete” the user. This keeps the
user account in the database for referential integrity but removes all other
capabilities from the user. Once deleted, you'll have the option to either
permanently delete the user or restore the user if the deletion was a mistake.
In some situations, it may be a legal requirement to either always soft delete
users or vice versa. You should be careful to know this requirement for the
specific site you're responsible for prior to permanently deleting users.

User Account Settings

It would be useful to know how you can configure how the Security Roles
module works before we discuss using them. The Security Roles module has
settings unique to it, like many modules do. Figure 4.40 shows the User
Account Settings view. It is the fourth tab after choosing Module Settings.

NOTE

This module has had a few different names over the years. As a result,
you'll see this module referred to as any one of these names in various
community resources and documents and even in the various
administrative views. The actual name of this module in the core of DNN
is Users and Roles. You'll notice that in the Control Panel, it's referred to
as Manage Users and User Accounts.

Figure 4.40

User Account Settings allows you to alter how the module displays the
columns and a few other features. You can check and uncheck the various
columns that you would like to have shown in the default view. For example,
you may not want to have the telephone or address columns shown in the
users grid, even though this is a default setting. You might want to show the
email address, though. This is a checkbox away for you.

The next useful feature to explain is the Default Display Mode. This drop-

down list allows you to determine how the users grid is shown on the first
page load. Do you want to list all users in a paged format, or do you want to
display none and rely on the search and filters? Most sites tend to use the
latter.

Display Manage Services may not make much sense to you at first. That
makes sense because it doesn't really have anything to do with this module
but instead is a setting to show or hide the ability for members of your site to
see and manage any public roles that they're a part of. Unchecking this setting
will remove this capability from their profile.

The final setting we'll discuss here is the User Display Mode in Manage Roles
setting. This setting will default to providing a drop-down list populated with
users in the respective view. When a site first goes live, this is not a problem,
since there are not that many users to scroll through. However, once you
begin to approach 100 or more users, the drop-down list is no longer usable.
In this scenario, you would want to switch the setting to TextBox. Doing so
will replace the drop-down list with a textbox and a validation button. Now,
you'll be able to enter the username and click a button to verify that you
entered a correct user, as shown in Figure 4.41.

Figure 4.41

Evoq Version of the User Accounts Module

The User Accounts module does not have an equivalent module in the
commercial editions of DNN, nor does it have any features reserved for

commercial editions.

Advanced Settings
As discussed earlier, the Admin menu of the Control Panel splits the various
settings and views into two categories. You just learned about the common
settings, so now you can learn more about the Advanced Settings section.
Advanced Settings is a deceiving label, though. There's nothing advanced
about these settings at all. They're simply uncommon settings. Don't let the
label deter you from exploring the various views in this section of the Admin
menu. There are a lot of useful features here.

The Advanced Settings sections contain a lot of features that are infrequently
used. They either are set-it-and-forget type of things or require management
maybe as often as once a year. As a result, you'll notice two things. First, we
will not discuss all of these settings in detail. Second, some of these
settings/views are likely to be removed from the platform in the near future
and placed into the open source DNN Forge
(http://www.dnnsoftware.com/forge). This allows those features to be more
easily maintained by the community, while still allowing them to be used on
sites that need them without adversely impacting the sites that don't. Another
side effect of this will be that the Admin menu will be cleaner and more
streamlined.

Advanced Configuration Settings

This is still a relatively new feature in the life span of DNN. If you've been
around more than a few years, you'll recognize what this feature is
immediately. If you haven't, you should know that this feature contains the
common setup steps that used to be part of the installation wizard that runs
when you install DNN. In the interest of usability during the installation
process, these steps were removed from the wizard and placed in this module.
This allows administrators to quickly make these adjustments to their sites,
but after installation has already occurred.

http://www.dnnsoftware.com/forge

NOTE

If you are logged in as a host/superuser, you will see six tabs of settings
to manage. As an administrator, you will see only one tab because the
other features require a higher level of permissions.

While this feature is very convenient because it places a large number of
common configuration options in one place, these configuration options are
all available in their respective setting views as well. It's probably a good idea
to manage these settings there and not in this module. It is likely that this
module will be removed in a future release.

Evoq Version of the Advanced Configuration Settings Module

The Advanced Configuration Settings module does not have an equivalent
module in the commercial editions of DNN, nor does it have any features
reserved for commercial editions.

Device Preview Management

You may not be aware of this, but DNN has a very useful Mobile Preview
feature in the Control Panel that allows you to view pages on your site as a
mobile visitor might see them. You can choose the device you want to preview
as, switch to landscape mode, and more. Figure 4.42 shows where this feature
can be found.

Figure 4.42

The Device Preview Management page manages this feature. When you arrive

at this page, you'll be able to see, manage, and add devices to preview pages
as.

While this sounds like a lot to manage, you don't have much to worry about.
The back-end of this feature contains data that is managed and imported
regularly for you. The device data is automatically updated on a quarterly
basis from 51Degrees (http://51degrees.com). However, new products will
not show in the list of default devices automatically. You'll need to add them
yourself, but the data will be there.

http://51degrees.com

NOTE

If you want the data to be updated more often, 51Degrees sells a
subscription to their data in the DNN Store. Just search for 51Degrees,
and you'll find it. See http://store.dnnsoftware.com.

Evoq Version of the Device Preview Management Module

The Device Preview Management module does not have an equivalent
module in the commercial editions of DNN. In fact, this module used to be in
Evoq Content only but was later added to all DNN editions.

The commercial versions of DNN will update your device data on a weekly
basis, versus a quarterly basis as discussed previously. If you are an Evoq
customer, you don't have to purchase the 51Degrees subscription.

Extensions

If you have host/superuser access, you might already be confused about there
being an Extensions page in the Admin menu. This is because this Extensions
page has a different purpose and exposes different features than what is in
the Host menu. This instance of the Extensions page allows you to manage
who is allowed to add the individual modules to pages on the site. By default,
only administrators can add modules to pages.

If you want others on your site to be allowed to add specific modules to a
page, you'll first need to have those users in a security role and then apply
that security role to a page so that it has page-level edit permissions. This is
labeled either Edit Page or Full Control in the page permissions, depending
on the edition of DNN you're using. Everything else about this feature should
be self-explanatory.

Your site might have additional authentication providers installed. An
authentication provider is simply an additional way for a user to log in on
your site. Your site might have only one or many authentication providers.
Another use of this page is to enable, disable, and configure any installed
authentication providers, since they generally work on a site-level basis.

All other extensions and extension types are listed here too, but you'll only
get a read-only view of who made them and how to get support—if the vendor

http://store.dnnsoftware.com

provided that information.

Evoq Version of the Extensions Module

The Extensions module does not have an equivalent module in the
commercial editions of DNN, nor does it have any features reserved for
commercial editions.

Google Analytics

Google Analytics is probably the most popular way to add and manage the
statistics about traffic coming to, spending time on, and leaving your site. It's
for this reason that this third-party service is a built-in feature in DNN. You
can easily copy and paste your Google Analytics ID into the given setting and
automatically have the required scripts added to all pages. This feature is
incredibly simple and generally only needs to be set once for the duration of a
website.

Evoq Version of the Google Analytics Module

In the Evoq solutions, you'll find this page labeled as Google Analytics Pro
instead of simply Google Analytics. You have several additional features that
may be of use to you, including advanced parameters and segmentation rules
to track groups of people differently. If you don't know what those features
are, chances are that you won't use or need these features anyway.

Languages

DNN has pretty much always been a great platform if you want to support
more than one language on your website. There has been a strong focus on
the multilingual features for a very long time. While English is of course the
primary supported language, German, Dutch, French, Italian, and Spanish are
all officially supported languages on every release. That being said, you
technically can support any other language that you want as long as you have
or create the appropriate translations.

On most sites, you'll first install DNN using the primary or fallback language.
This is the language that you'll be looking at the majority of the time. Once
you install one or more additional languages, you'll see them listed on the
Languages view. When you look at each language, you'll notice that you have
some editing capabilities (see Figure 4.43).

Figure 4.43

First, you can see whether the language is enabled. Installing a language
alone does not make it available for use. You need to enable it. Next, you can
also edit the language, but the only real use for this is when dealing with
additional languages. You will want to make another language the fallback
language. This is useful when language translation is not available, because
the fallback language will be used.

Next, notice the editing features for Static Resources, where you can edit
System, Host, and Site. These editing areas allow you to browse through and
manage the translations for that language on the level that you choose. You
should be careful about which level you choose when adding or editing
translations.

System allows you to edit the default language files for the installation of
DNN. Host and Site allow you to override the System translations for either
the host or site level. If you manage translations at the host level, those
changes will be reflected on each site if you have multiple sites on your
instance of DNN. Editing the site language files will affect only the site that
you're on. The other sites will continue to use either their site- or host-level
translation.

At the bottom of this module, you'll see several buttons that allow you add
and manage languages in other ways. Most of these are outside of the scope

of this chapter, but you can learn more about them in Chapter 10. However,
the most useful button to mention right now is the Install Available
Languages button. Clicking this button will take you directly to the
Extensions page, where you can install one of the previously mentioned
languages that ship with DNN. Within a few clicks, you'll be able to install
and enable one of these other common languages.

Evoq Version of the Languages Module

The Languages module does not have an equivalent module in the
commercial editions of DNN, nor does it have any features reserved for
commercial editions.

Lists

Out of the box, this feature is used for two things that a site administrator
will be concerned about, which are to manage the banned passwords and the
profanity list. When you ban passwords, they should be put into this list, and
the same for any profanity words that you want to include in DNN's profanity
filters. You'll find that managing these lists is incredibly simple.

You can create your own lists as well, which comes in handy for features that
require a reusable and manageable list of information. While you can do this
yourself and you'll be able to manage and create lists, this feature is mostly
populated by developers through their modules. For example, some third-
party modules might store their categories and other information in this
module. Now you know where to go to manage their lists.

Evoq Version of the Lists Module

The Lists module does not have an equivalent module in the commercial
editions of DNN, nor does it have any features reserved for commercial
editions.

Newsletters

The Newsletters module provides a very simplistic way to generate emails to
members of your website. You can easily create a plain-text or HTML email
for members of your site and even include an attachment. However, it lacks
many of the features that even a low-cost email marketing solution offers,
such as link tracking, campaigns, templates, and reports. For these reasons
and more, you should consider using a third-party solution to generate your

email campaigns.

NOTE

This feature is one of those that will likely be removed from the core of
DNN and placed into DNN Forge in the future.

Evoq Version of the Newsletters Module

The Newsletters module does not have an equivalent module in the
commercial editions of DNN, nor does it have any features reserved for
commercial editions.

Search Admin

It wasn't until recent versions of DNN that this feature became useful again.
Since version 7.1.0, the search engine has been replaced with a much more
functional alternative that's based on the very popular Lucene.Net search
engine. It unleashes a lot of power and capabilities that were not before
available to all editions of DNN.

http://Lucene.Net

NOTE

Lucene.Net is a very popular search engine that is used on a large
number of websites worldwide and provides a world-class onsite search
experience. Chapter 11 will discuss this in more detail.

The first thing that you can do in this module is reindex the site. As the
module shows you, this feature deletes the existing site index, and a new
index will be created the next time the site is indexed by the search crawler.
When that happens depends on your Scheduler settings in the Host menu.
This sounds great on the surface, but you should know that doing so could
create a potential performance impact on your site, making it unusable to
your visitors. This of course depends on the size of your site and how much
traffic you have.

You can add synonyms to your site, which allow the search to be more flexible
for members of your site. The example of a synonym that's included is a great
one. It has DNN and DotNetNuke listed. If anyone searches for either term,
the search engine knows that the term is interchangeable and will index those
terms appropriately. Another example, for a recipe site this time, is “hotcakes”
and “pancakes.” Essentially, the person searching for either of those terms
gets similar results.

“Ignore words” are also known as “stop words” in the technical community.
These are common words that should not be used as part of a search because
the results would be too broad and not at all useful. You should feel free to
add your own if your industry has words that work the same way, but it's not
a good idea to delete any that are in the default list. This is a common practice
that's used by even the major search engines, such as Google, Bing, and
Yahoo.

Evoq Version of the Search Admin Module

In Evoq Content, Evoq Content Enterprise, and Evoq Suite, you'll find that
this feature also includes a section for Advanced Crawlers. This feature allows
you to manage some of the more advanced features such as duplicate results,
additional web properties to crawl and index, included/excluded file
extensions, and more. The Evoq solutions also come with additional crawlers.
You can find out more about this topic in Chapter 20.

http://Lucene.Net

Search Engine Site Map

A very nice feature of DNN is that it ships with an XML sitemap. The reason
that this is so nice is that search engine tools such as Google Webmaster
Tools use XML sitemaps to help manage the way a site is indexed. From the
moment you install DNN, you not only have an XML sitemap, but your
sitemap is constantly updated for you. That being said, you do have some
configuration options available to you to help you manage how your sitemap
is generated.

While there are a handful of settings here to possibly configure, the main
thing is how much you want to manage your XML sitemap on your pages and
for how long those settings should be cached. The larger your site, the more
important it will be for your SEO strategy to enable Page Level Based
Priorities. This allows you to define the importance of a page in the respective
page settings, which will then be reflected in the resulting XML sitemap.

There aren't any wrong ways to set up this feature as long as you plan and
measure your impact regularly.

Evoq Version of the Search Engine Site Map Module

The Search Engine Site Map module does not have an equivalent module in
the commercial editions of DNN, nor does it have any features reserved for
commercial editions.

Site Log

This page is a legacy feature and should be turned off on every site. While
Google Analytics (Pro) is a great replacement for this feature, using any other
analytics service other than the Site Log is highly recommended.

The Site Log does not include the granular detailed information, reports, or
other features that you might be looking for in an onsite analytics tool. Also,
enabling this feature can cause a significant adverse impact on the overall
performance of your site.

NOTE

This feature is one of those that will likely be removed from the core of
DNN and placed into DNN Forge in the future.

Evoq Version of the Site Log Module

The Site Log module does not have an equivalent module in the commercial
editions of DNN, nor does it have any features reserved for commercial
editions.

Site Redirection Management

Site Redirection Management is another companion module to the previously
discussed Device Preview Management module and the Mobile Preview
feature. This specific module allows you to manage how mobile visitors are
targeted and/or redirected when they arrive on your site.

Every site owner has a decision to make, when they decide that they want to
cater to their mobile traffic. Are you going to use a technique like responsive
design, or are you going to have a mobile-specific site? There are plenty of
reasons to choose either option, depending on the type of site you are running
and the type of visitors you're catering to. Debating those pros and cons is
outside of the scope of this book, but do know that you can do both—
responsive/adaptive design and a mobile-specific website? This feature will
aid you in doing the latter.

When first entering this module, you're given two choices. Do you want to
create a simple mobile site redirection rule, or do you want to create one from
scratch and define exactly what and how you want your mobile traffic
redirected? In either case, you can end up creating similar redirection rules
for a multitude of devices. If you want to create a single rule to redirect all
mobile traffic to another version of the site, such as m.yourdomain.com, you
can do that. Also, if you had different sites that each target and render content
to Windows Phone, Android, and iPhone differently, you can do that too—and
more.

Evoq Version of the Site Redirection Management Module

The Site Redirection Management module does not have an equivalent

http://m.yourdomain.com

module in the commercial editions of DNN. However, it does have a larger
subset of data. The data that is included from 51Degrees on DNN Platform
has only 51 of the 125 different properties that you might want to target on
various devices. One of those properties is the ability to target a tablet
differently than mobile and desktop visitors. To learn more about your
options with 51Degrees, refer to the section earlier in this chapter called
“Device Preview Management.”

Site Wizard

The Site Wizard is one of those features that you might use only once
throughout the entire lifetime of your website. It allows you to use a site
template (discussed in Chapter 5) to create a new website—at least that's the
intention. In short, this module will use a site template as part of an overall
wizard process to select default skins, containers, and more to create your
website.

TIP

If you're going to use this feature, it is highly suggested that you first
play with this feature on a local instance of DNN that you can delete and
re-create. It is very easy to completely delete a site if you're not familiar
with how this feature works.

If you're careful, you can also use this feature to create an entirely new
section of your website. How well it works depends on the quality of the
extensions you have installed on your site, because some will move content
and settings better than others. Prior to using this module, you should ensure
that all the extensions in the site template are installed and upgraded to the
same versions in the new site. Also, any modules that do not support an API
technology known as IPortable will not be able to import content. This is
something to note if content is part of the site template.

NOTE

This feature is one of those that will likely be removed from the core of
DNN and placed into DNN Forge in the future.

Evoq Version of the Site Wizard Module

The Site Wizard module does not have an equivalent module in the
commercial editions of DNN, nor does it have any features reserved for
commercial editions.

Skins

The Skins page is not used that often. Generally, it's used during the
development of a new site and sometimes is used during the rollout of a new
site brand. It allows you to view the available skins and containers that have
been installed in your site and then apply them as the default for new and
existing pages and modules. You might remember a similar feature from the
Site Settings discussed earlier. You can use that too, but the Skins page is
much more visual and results in a much more usable experience.

There are a couple of notable differences with the settings found in Site
Settings. When looking through the various skins and containers that might
be available, you'll be shown thumbnails of what the skin or container might
look like on the page (in addition to the preview button).

The other difference is that you can override the settings specified in the skin
objects that are in the skin or container. For example, if the TITLE skin object
is applying a CSS class that you don't like, you can use the feature shown in
Figure 4.44 to apply a new class name of your choice. You should use this
feature carefully, as the changes you make here will potentially impact other
sites in your DNN instance. You'll find this at the bottom of the page, but its
features are available only to host/superusers.

Figure 4.44

Evoq Version of the Skins Module

The Skins module does not have an equivalent module in the commercial
editions of DNN, nor does it have any features reserved for commercial
editions.

Taxonomy

The Taxonomy module has been very creatively used by people in the DNN
ecosystem for more than just tagging. Those who think creatively have used
this feature to create some amazing solutions, including one by DNN Corp.
co-founder Nik Kalyani, who used this feature to create an open source
mobile solution that content editors can use, called Druid
(http://druid.hypercrunch.com). Anyhow, such uses are more advanced and
are outside how you might be using this feature.

The Taxonomy module allows you to create one or many vocabularies that
can then be used for any number of purposes. The most common purposes
include tags for social features, and you'll also be able to manage the module
categories that appear in the Control Panel from this feature. If you're
working with multiple modules that have tagging features, chances are that
each of them is storing its tags here.

http://druid.hypercrunch.com

Evoq Version of the Taxonomy Module

The Taxonomy module does not have an equivalent module in the
commercial editions of DNN, nor does it have any features reserved for
commercial editions.

Vendors

The Vendors module has always done a great job of providing banner
advertising of various kinds on your DNN site, but it has always been lacking
in usability and improvements over the years. That, coupled with third-party
or offsite advertising solutions, has ensured that this feature hasn't been as
highly adopted in recent years. That being said, it is the easiest way to manage
onsite advertising and value propositions if you're not using an offsite service
like DoubleClick.

If you want to serve your own banners and other ads from affiliate programs
like Amazon, you only need to add a vendor for each entity that will have its
own banners. Then, you'll be able to add as many banners as you would like
for each vendor of various types. When you add banners, you have the ability
to define groupings for them. When used this way, it's easier to display
advertisements of similar contexts and sizes using the Banners module and
Banner skin object.

NOTE

This feature is one of those that will likely be removed from the core of
DNN and placed into DNN Forge in the future.

Evoq Version of the Vendors Module

The Vendors module does not have an equivalent module in the commercial
editions of DNN, nor does it have any features reserved for commercial
editions.

Best Practices for Site Administrators
This section is meant to give you some insight into how other people run
their DNN sites using techniques that have been developed over time on
production sites, both small and large. It should be noted that although this
section is clearly labeled in a way that best practices will be discussed here,
numerous best practices have been discussed in previous sections that site
administrators should learn and implement. Also, as your site needs and
complexities grow, you may find that you'll need to make adjustments to how
you adopt best practices such as these.

Getting User Registration Right
As a rule of thumb, keep registration set to None unless you absolutely need
to allow visitors to create accounts on your website. The moment you open
registration to anonymous visitors, you are entering an entirely new level of
issues. The most obvious issue is the creating of spam accounts. There are an
unknown number of bots out there that specifically target DNN sites to create
new user accounts that contain spam content. The more popular your site, the
more accounts will be created. Some sites have reported to have as many as
three spam accounts created per second, but this is an extreme example.

You shouldn't be afraid of allowing visitors to create new accounts. However,
if you do allow this, consider the following options for the best user
experience for all parties:

Block requests in Internet Information Services (IIS) 7 for the path
ctl=Register.

Block requests to the default registration page and create your own.

Use a third-party registration module instead of the default.

Add a new required profile property to your registration form.

Regularly delete all unauthorized user accounts.

Having a Naming Convention
There are many repetitive tasks in DNN that require labels, such as security
roles, module titles, and more. Having a naming convention saves time in
creating and managing the various objects you're dealing with. It also makes
it easier to define and enforce process for others that may be contributing to

the site management. Overall, a naming convention policy will make
everyone's lives easier.

First, objects should always have a title. If they don't have a title, there are
numerous usability issues that may be created as a result, not the least of
which is how to handle items in the Recycle Bin. If you don't want to display
the title, nearly every feature has a way for you to hide it.

Outside of that, everything in your environment should have a common
naming convention where it makes sense. A prime example of this for site
administrators is security roles. You should consider a naming convention
that prefixes all similar objects. The Security Roles section earlier in this
chapter gives you a great example of this. Figure 4.45 shows how clean this
can look.

Figure 4.45

Never Sharing User Accounts
This is something that is unfortunately an incredibly common thing to come
across. People who maintain content or configuration responsibilities may be

sharing the same login credentials. There might be several or an entire
company of people using the same admin or host/superuser account. This is
not only bad practice, but it's much more trouble than it's worth.

What if you have to let someone go or they quit? What if someone writes
down their credentials somewhere? What happens when someone finally
changes it and doesn't tell anyone or something happens to them? What if
someone changes a configuration option that they weren't supposed to touch?
How do you apply accountability?

Yes, there are ways to deal with these and other similar problems, but you can
prevent them altogether by never sharing user accounts.

Everyone with content editing, administration, or host/superuser
permissions should not share their user account. Every user account should
be unique to a specific person. This seemingly small rule can prevent a
multitude of troubling issues.

Editing as a Content Editor
If you speak to security experts in any technology, one of the most common
things they'll tell you is to lower the surface area of attack. This means reduce
the number of ways that someone can potentially penetrate your defenses.
Imagine being an archer and being told to hit the target while it's turned
sideways. It's a similar principle.

You should never perform content-editing tasks when you're logged in as a
privileged user, even on closed networks. Security vulnerabilities and other
exploits have been found in even the most secure networks.

If you are charged with the responsibility for maintaining the site on an
administrator or host/superuser level as well as content editing, you should
have a second user account that does not have your higher-level privileges.
Not only is this more secure since your day-to-day account will not have the
higher privileges, but it will also prevent you from circumventing processes
just because you can.

Fewer Administrators, Not More
Whether you're talking about site administrators or host/superusers, you
should never have more than you need. The fewer people you give the ability
to manage the site's configuration, the better off the overall health of your

website will be over time. Never promote someone to site administrator or
higher simply to save time. This little shortcut will end up giving you many
more headaches later.

In general, most sites have up to three host/superusers and about the same
number of site administrators. Even though you can create as many as you
want of each, three is a good rule of thumb. This is certainly one of those
areas where the phrase “less is more” truly shines. The fewer the number of
privileged users, the lower your long-term support costs will be.

Fewer Permissions, Not More
Something that happens more often than anyone would like to admit is that
they promote a poweruser to administrator because they need to create a lot
of content that includes pages and dropping multiple modules on the site. It's
far more simple and faster to make them an administrator than to create
permissions and content for them to manage. This is true, at least initially.

No matter how innocent a poweruser's intentions, eventually this scenario
leads to trouble. Even though they were told not to do so, they'll slowly begin
to administrate configuration and content in areas of the site that they
shouldn't touch. Sooner or later, you'll need to revoke their administrator
access and do what you were supposed to do previously, but at this point the
damage is already done.

When you need to give a poweruser more privileges, you need to do the
following:

Define the scope of their planned changes.

Create a new security role for them (if necessary) and add them to it.

Create the pages for them.

Assign them page-level edit permissions (only if absolutely necessary).

Add the necessary modules to the new pages.

If you didn't give them page-level permissions, give them permissions to
edit the necessary modules on the page.

Yes, this process will take a bit of time on your part, but such a thing is
necessary to ensure that your site lives a long and trouble-free life. The less
someone can do to your site, the less they will do to your site.

Never Using “User” Permissions
User Permissions is another shortcut method that seems convenient but is
much more trouble than it's worth in practice (see Figure 4.46). It's far too
easy to assign permissions to a person than to do the extra step of creating a
security role for them. If you've done this even once, you should instead
consider creating a security role for them, even if you don't anticipate ever
adding anyone to that security role in the future.

Figure 4.46

What happens if that person quits, is promoted, or is asked to leave their job?
How do you re-apply their security settings to the next person who replaces
them? How do you revoke the permissions you've already applied? Simply
put, in most cases you can't—not without getting someone more technical
involved. How much does that cost the company versus saving the five extra
minutes it would have taken to do it right the first time?

Permissions audits are already a complicated thing to do. Adding a user to the
permissions grid directly instead of using security roles only further
complicates this process.

Basically, whenever you need to allow a person to do something that they're
not already doing, use a security role, every time. You never know when you
need to replace someone, add someone, or extend their permissions to other
areas.

Having a Process and Standards
If you've followed any of the previous advice and instructions on how to
administrate your website, you are probably already thinking about this topic.
You need to have well-defined processes and standards. The process and
standards need to be universally distributed to all site contributors and
enforced judiciously and equally across all stakeholders. Doing anything else
will only create more of the issues you've read about.

You should create your standards in the most user-friendly way possible.
Probably the best examples are short, 10-slide presentations that show what
everyone is supposed to do and not do. If you need to use a few more slides, it
will still be okay. However, you should refrain from issuing a long document
with lots of text. No one will read the document, and your proposed standards
will not be adopted.

Getting to Know Your Features
If there is any weakness found in any site administrator, it's that they don't
know what's possible. The fact that you're reading this book puts you ahead of
the crowd and instantly raises your level of awareness to help administrate
your website using as many best practices as possible. However, this book
cannot go into the level of detail necessary to teach you everything that you
need to do. It also can't teach you everything within the context of what's
important to you and your organization.

In order to get to know what's possible and how DNN can best be leveraged to
get the most value for your organization, you need to spend time getting to
know the features. Try to have a local instance of the site to play with and
then explore it.

Don't just look at the descriptions and labels and assume you know what's
going to happen. Try something new. Check the checkbox and see what
happens. Change that drop-down list you've always been wondering about
and see what changes. Install the latest releases and take a look at the various
new features. What do they do? Can you use them on your new site? Will any

of these things help you with the next phase of updates for your site? Can
they reduce the amount of development necessary?

Don't be afraid…click away!

Summary
In this chapter, you learned what it means to be an administrator, and you
received an overview of some of the most common features. In doing so,
you've drilled down into DNN a bit more and highlighted key features that
can reduce the time and headaches in managing your DNN site. We discussed
numerous best practices and even went over some of the more common
scenarios that you might run into. At this point of the book, you should feel
more comfortable with the options at your disposal and how they will help
you run the best DNN site possible.

Chapter 5
Host Administration

What You Will Learn In This Chapter

Discovering the host's unique privileges

Extending the DNN instance

Changing sites and new site defaults

Integrating with external services

Entertaining development efforts

In Chapter 4, “Site Administration,” you learned a great deal about
administration of a site in your DNN instance. In this chapter, you're going to
learn about administering the greater environment in which sites operate.
The host user has the highest possible level of permissions in a DNN instance
and can manage any individual site, set defaults for the creation of new sites,
and manage additional configurations that support all sites. Most of these
features are operational in nature, but some of them are oriented toward
support of the developer community.

As the DNN host (or any user with superuser permissions), you need to have
a working grasp of all the features and configuration options available to you.
Throughout this chapter, you will learn about those options and features, gain
insight into just how extensible and flexible DNN truly is, and learn to do a
few things you didn't know how to do!

NOTE

DNN Corp. provides user and superuser manuals in the form of PDF files
free from their website. An online version can be consulted at
http://help.dnnsoftware.com. These manuals are extremely detailed and
illustrate virtually every administrative page and function—content that
we will not duplicate here. However, while these manuals detail what is
available, they don't provide explanations as to why they are used, how
they work, or what is wise or unwise to do. This is why you're reading
this book, and the following pages focus primarily on those subjects.

http://help.dnnsoftware.com

Why Do You Need the Host?
This may seem a basic question, but its answer is an essential prerequisite for
appreciating the significance of the information in the following pages.

One of the most powerful features of DNN is its ability to serve up multiple
websites while existing as just a single application in IIS (Microsoft's Internet
Information Services). When a traditional application serves only one
website, the security model is pretty simple; one administrative user can do
pretty much everything. But because a single instance of DNN can serve (or
“host”) multiple sites, it's organized around a security model that separates
administration duties at the level of each site (or group of sites) and provides
a higher level of security for actions that can impact other sites. Simply
stated, site administrators cannot take actions that would impact other sites
(such as recycling the IIS application domain) or otherwise change the
runtime environment of the site they administer (for example, changing the
application's web.config file) because that runtime environment is shared
among all sites in the instance. Those privileges belong solely to the DNN
host or the superuser.

NOTE

From here on out, we'll simply refer to any user with superuser privileges
as the “host.” Although there are a few minor attributes unique to the
designated host of a DNN instance, they don't impact operations that any
superuser can perform.

What Is Host Administration?
You learned that a DNN site administrator is primarily concerned with the
look, feel, functionality, and content of a site. A host is more concerned with
the configuration, performance, monitoring, and support of the entire DNN
instance.

A host logs into a DNN site just like any other user. But as you learned in
Chapter 4, users with different security roles can have slightly different views
of a site, including its menus, Control Panel, and so on. This behavior applies
to the host as well, revealing additional menus, menu options, and controls
on various pages.

NOTE

Technically speaking, host privileges are not established by security roles
as they are for administrators and other users. A host is actually a
completely different kind of user recognized in code, although apart from
access to some additional features they behave almost exactly the same.
The IsSuperUser flag on the Users table denotes a host as opposed to an
entry in the UserRoles table.

Chapter 4 introduced the primary means by which administrative features are
revealed, specifically the Control Panel and associated menus. There are a few
additional places where host-level functionality is exposed, and we'll go
through each of those so you know where to find all the features.

Host Attributes
Before moving on, I want to clarify something. There is a difference between
a host user and the designated “host” of a DNN instance. This chapter focuses
on the host user (a superuser) and the things that user can do. A later section
of this chapter also covers host details. These details don't have anything to
do with a particular user; they have to do with designating one site in your
instance as default and a few details such as the email address from which the
host communications are sent.

NOTE

Host attributes are necessary to establish a distinction between attributes
of your DNN installation and attributes of a particular superuser. These
things are initially populated on install with the information collected to
create the default superuser, but they are not associated.

Host Menu Pages
When the host logs in, the only immediately visible difference in the user
interface is the Host menu option added to the Control Panel. See Figure 5.1.

Figure 5.1

The Host menu has two sections, Common Settings and Advanced Settings.
We'll go through each of the features in those menu sections in sufficient
detail for you to utilize them. In later sections, you will revisit some of these
features to consider more detailed use cases or to accomplish more specific
objectives.

NOTE

Based on the previous tip, if you have direct access to the database, you
can update the IsSuperUser flag for any user. This can be extremely
handy during development if you forget the login credentials for a local
install. Simply register a new user whose password you know and then
flip the IsSuperUser flag in the database. Log in with that user's
credentials, update the password of your forgotten superuser account,
log in again with your restored credentials, and return the new user to
normal by changing the IsSuperUser flag back to false.

Dashboard
The Dashboard page is exactly what it sounds like—an information center
that provides a substantial amount of meaningful data “at a glance” about the
DNN instance. It includes information gathered from the Web and database
servers as well as specific DNN configuration information and listings of
installed modules and skins. Figure 5.2 demonstrates the default view of the
Dashboard, opened to the Web Server tab on a test site, displaying detailed
information about the configuration of that web application.

Figure 5.2

Dashboard information can also be exported directly into an XML file at the

push of a button as an aid for sharing information with technical support
personnel. Exported files will be stored in the “host root” folder, which is a
folder in your installation's directory structure called
<Root>/Portals/_default (also accessible from the File Management page in
the Host menu).

Like most aspects of DNN, the Dashboard was built with extensibility in
mind, and it can be customized with the addition of more Dashboard controls.
A new instance of the Dashboard can even have completely different controls.
You can construct your own Dashboard control to convey the status of
virtually anything, even querying outside systems if you want to consolidate
your systems information in one easy place.

NOTE

Because Dashboard controls tend to be very personalized, there are not
many examples available in the public domain. However, there is an open
source project at https://socialdashboard.codeplex.com where author
Bruce Chapman provides a coding example of a Dashboard control to
display social activity in an installation. Bruce blogs about that example
project here:
http://www.ifinity.com.au/2012/09/21/New_DotNetNuke_Social_Dashboard_Module_Available

The Dashboard is designed to produce a static display of information, but that
display may be a “snapshot” of a dynamic process. Consider, for example, an
instance of the Dashboard with custom controls that are relevant to a
business user or manager, informing her on status of multiple business
processes like transactions in pending status, open/closed issues, stock levels,
and so on. When there isn't a comprehensive reporting system or when users
lack access or training on comprehensive systems, the Dashboard can provide
a simple means of conveying essential status information to site users.

Extensions
The Extensions page is the entry point to a comprehensive system of
acquiring, installing, managing, and even creating extensions of all kinds. For
the sake of brevity here, this section focuses on understanding the Extensions
page and identifying the extension types and functionality available to the
host when managing them. But you'll come back to this issue later in this
chapter with a working example.

Let's start by looking at the content of the tabs on the Extensions page.

Tab: Installed Extensions

Figure 5.3 illustrates the layout of the Installed Extensions tab of the
Extensions page. It contains a complete list of extensions of every type that
are currently present in the instance. Because DNN is built with an extension
model, its own features are also implemented as extensions. So even in a
brand new instance, you'll notice that there are many extensions of many
types already listed. Each extension type is displayed in a list that can be
expanded or collapsed for increased readability.

https://socialdashboard.codeplex.com
http://www.ifinity.com.au/2012/09/21/New_DotNetNuke_Social_Dashboard_Module_Available

Figure 5.3

One helpful piece of information available on this page is the In Use report. If
there is a Yes beneath the In Use column, clicking it will invoke a window
that lets you select a site on your install to see what pages are using that
module. Links to the pages are also provided. This is particularly helpful
when you're considering module upgrades, replacement, or retirement

because it allows you to see the impact of the prospective changes.

DNN's extensibility model includes the following types:

Modules are chunks of application functionality that can range in
complexity from a simple image rotator to a complete Customer
Relationship Management system. Modules are covered in more detail in
Chapter 6, “Modules.”

Authentication systems provide the functionality that implements access
security for a site. For example, permitting login by means of Facebook,
Twitter, Active Directory, and so on. Authentication systems and security
issues are explained in more detail in Chapter 9, “Membership Security.”

NOTE

Authentication systems are really just another type of “provider” and
could have been listed in that section. The primary difference from
other providers is the inclusion of UI components (for login and
such). They have historically had their own section in the Extensions
area for clarity.

Core language packs contain all of the string resources to change the
language of a base DNN install to another language. Note this does not
affect user-developed content, just the language of the administrative
interfaces and user-facing controls (the Login control).

Extension language packs are very similar to core language packs, except
they are specific to installed third-party modules. Consult Chapter 10,
“Localization,” for a comprehensive discussion of core and extension
language packs.

Dashboard controls, discussed in the previous section, are static
information displays that can be plugged into instances of the Dashboard.

JavaScript libraries are exactly what they sound like—third-party
JavaScript libraries packaged for installation in DNN. Many JS libraries
are available today for development, but rather than require developers to
include them with each module, the site needs to support the JS library
only once across the entire installation.

Libraries refer to shared .NET assemblies. Like JavaScript libraries, they
are shared across the entire installation and so are installed in such a way
that they are not just associated directly with an individual extension that
might leverage them.

Providers include functional components that are implemented using
Microsoft's Provider design pattern, which DNN utilizes in multiple areas.
The areas currently supported by providers include: Caching, Client
Capabilities, Cryptography, Data, Friendly URL, Folder, HTML Editor,
Logging, Menu, Navigation, Permissions, Profile, Role, Scheduling, Search.
and Sitemap. You'll learn about a few of these provider types in greater
detail later in this chapter.

Skins and containers are UI resources applied to sites and modules to

accomplish a specific look and feel or a “theme.” This subject is covered in
detail in Chapter 17, “Skinning.”

NOTE

Skins are installed with “scope.” A skin that is installed in the context
of a site administrator is visible only to that site. The host can install
skins that are available to all sites.

Skin objects are .NET user controls that offer functionality that can be
embedded in the skin of a site. This functionality is different than
modules as it doesn't relate to content, but rather functionality delivered
through the user interface. For example, breadcrumbs, search boxes,
current date, and even rendering of dynamic menus are all accomplished
using skin objects.

Widgets are client-side “mini applications” written in JavaScript that can
leverage installed JavaScript libraries to dynamically inject content into a
skin or module UI.

NOTE

The widget framework was developed by Nik Kalyani, one of the original
founders of DotNetNuke. His comprehensive four-part blog is still the
ultimate resource for understanding and developing widgets. Read it
here: http://kalyani.com/2009/12/dotnetnuke-widgets-guide-part-1-
of-4.

Tab: Available Extensions

This tab is organized similarly to the Installed Extensions tab, with
expandable/collapsible sections for resources that are available to install.
“Available” has one of two meanings. Either a file is already “staged” on your
instance and available for install or it is available on a trusted server and
ready to copy to your instance and then install.

http://kalyani.com/2009/12/dotnetnuke-widgets-guide-part-1-of-4

NOTE

When DNN is initially installed, any resource file named *.zip and
found in the <Root>/Install/<type> folders will automatically be
included in the process. Files named *.resources will not be
automatically included but are staged for future use.

A “staged” resource is simply a file that exists in the proper location,
specifically your <Root>/Install/<type> directory, with an extension of
.resources or .zip. If you take a “deploy” action in any of the areas where it
is available to you, files are deposited in these directories, which stages them
for later installation at your convenience. The second meaning of “available”
is that an extension has a trusted external host that is publishing the
resource, which you can “deploy” and then install. Only core language packs
(maintained by third parties on behalf of DNN Corp.) are distributed in this
manner at the present time, which explains the availability of the Deploy
action in this area (see Figure 5.4).

NOTE

In a local instance it would probably not be necessary to stage resource
files (if you're running as a local admin). DNN's Install Extension wizard
will permit selection of a resource file from any known disk location.
However, in a production environment, it might be desirable to limit
write permissions from the browser for non-user directories (that is,
anything outside of <Root>\Portals). In this case, resource files must be
placed in the staging area on the server either by direct server access or
by using the Deploy method.

Figure 5.4

You can also retrieve staged files for local inspection using the Download
button.

Tab: Purchased Extensions

This area permits you to gain quick access to resources that you purchased in
the DNN Store (http://store.dnnsoftware.com). This is covered in greater
detail in Chapter 22, “The DNN Store.”

http://store.dnnsoftware.com

Tab: More Extensions

As the name implies, features on this tab help you find more DNN extensions.
This service is connected to both the DNN Store and the DNN Forge (the open
source repository for community projects). This is by no means the only way
to find DNN extensions, but many third-party vendors and open source
developers take advantage of this service to promote their DNN wares.

Buttons: Install Extension Wizard

This button invokes the Install Extension wizard. It is not necessary for you
to know what type of extension is in a resource file. DNN supports a unified
manifest file in resource packaging, which permits the wizard to inspect the
resource and install it appropriately. The manifest is covered in detail in
Chapter 18, “Packaging and Distribution.”

NOTE

Staged resources (in the <Root>/Install/<type> folders) can be named
either *.resources or *.zip, but the Installation wizard accepts only
*.zip files.

The wizard will progress through a number of dialogs during the installation
process, including:

Upload New Extension Package: Permits selection of the install file

Package Information: Permits review of the extension definition as
specified in the manifest, including type, vendor, version, and so on

Release Notes: Permits review of any release notes specified by the
vendor

Review/Accept License: Displays the vendor-supplied license and an
Accept checkbox, required to proceed

Package Installation Report: Provides a text-based report of all the
actions performed by the installer, ultimately indicating success or failure
of the install

Buttons: Create New Extension and Create New Module

These buttons are used in support of development and are covered in detail in
Chapter 18.

File Management
Chapter 4 provided a comprehensive description of the File Management page
and use of the Digital Asset Manager (DAM). The only difference between the
administrator and host views of File Management is the root directory of the
DAM. Where the administrator's “root” is associated with the site root
directory (<Root>\Portals\<site dir>), the host's “root” is associated with
the default site root directory (<Root>\Portals_default). This directory will
contain user storage for superusers, site-creation templates, and some
resources common to all sites. Two examples of this include host-installed
skins and containers (visible to all sites) and, in a default instance, a folder
called <Root>\Portals_default\Smileys and utilized by the

RadEditorProvider.

Host Settings
This is the primary menu from which the host will perform configuration for
the DNN instance. The settings represented here are not configured on a per-
site basis (except where noted). They are configured for the instance overall,
affecting all the sites they contain.

NOTE

We're not going to cover every setting. Many DNN settings are self-
explanatory and/or the associated help for them is comprehensive. We
do, however, provide explanations for how some things work, non-
obvious impacts of setting choices, and use cases where they may not be
obvious.

In Figure 5.5 you'll see that the Host Settings page has four tabs and four
buttons. Each tab is further organized into a series of expandable and
collapsible sections containing relevant options and settings.

Figure 5.5

The Buttons

The page's default button is Update, which performs as expected, saving the
changes you have made to any settings. If you don't click Update, your
changes will not be saved. And if you do click Update, depending on the
changes you've made, you might force an application restart. If you're in a
production environment, that's not something you'll want to do without a
little care, planning, and notification to users.

The Upload Skin/Container button invokes the Install Extension wizard
covered in the previous section. It's provided mostly as a convenience, since

clearly it doesn't restrict your uploading to just skins and containers. Be sure,
however, to recall that skins and containers uploaded by the host are visible
to every site. So if your intent is to upload only for a specific site, you'll want
to do that from the Site Settings, not from the Host Settings.

The Restart Application button causes DNN to “touch” the web.config file (no
changes are made, but the file modification date is updated). IIS responds to
this by restarting the application domain of the site in question. The effects of
an app domain restart include reloading and “re-JITing” all of the assemblies
that make up the application as well as loss of any in-process variables
(session, application, and cache). Since DNN doesn't use session state, that's
OK, but the application and cache values must be rebuilt on the restart. Some
of this impact could be partially mitigated by removing state information to
an out-of-process option (such as StateServer) and alternative cache
mechanisms (such as AppFabric).

The Restart Application button can be particularly helpful when a site is
behaving strangely and an errant application is suspected, especially when
you are in development. However, in a production scenario, using this button
is staunchly frowned upon, as an App Restart is highly disruptive to users.
Not only will all users be disconnected from every site in the instance, but any
in-process context information (the default configuration in DNN) will also
be lost.

NOTE

Just to be clear, Restart Application is like the nuclear defense option of
production maintenance. In a large website with many users and
assemblies, a full restart and repopulation of cache could take several
minutes…a lifetime in web operations terms.

The Clear Cache button instructs DNN to unload all “non-essential” data
currently in the cache. Non-essential is relative to the application, referring
specifically to cached items that are not part of the configuration. So in
general, performing a Clear Cache operation should not adversely affect the
operation of the site, although it can adversely affect some users who might
be in the middle of multi-step processes (where cache is essentially holding
their current “state”) and all users in terms of site delay where previously
cached objects need to be retrieved from the database again.

NOTE

Consider that some things that are harmless in a development
environment can be quite disruptive in production. For example, the
impact of clearing the cache on a developer machine is almost nil, as IIS
is processing only one user's requests. However, in a production instance
there might be thousands of requests in the queue, which would cause
the application to try to rebuild virtually all of its cached items at once.
This could result in resource bottlenecks, CPU spiking, and poor
responsiveness for users while the site tries to go from “0 to 60” in an
instant.

Although the number of items unaffected by Clear Cache can vary slightly, it
is typically less than 100. Given a few seconds, that number will climb to
about 300 as various helpful items are loaded into cache, such as site
navigation structure and menus, CSS and JS files, various additional host,
site, page, and module settings, and so on. But on a large and/or busy site,
cache can easily grow to a few thousand items or more. Multiply this for each
web head if a web farm is involved.

NOTE

The professional edition of DNN, called Evoq, has an additional host
feature that reveals current memory usage and permits inspection and
selective expiry of cache items.

Basic: Configuration

Like the Dashboard, Configuration reveals some interesting information
about the current configuration, including DNN version, physical path on the
file system, identification, permissions of the ASP.NET identity for the site,
and so on. It has only one setting—Check for Upgrades. What exactly does
this button do?

DNN releases new versions of its software fairly regularly with various fixes
and minor enhancements, and it can be very helpful to know when new
versions are available. This setting affects not only the DNN Platform
notification on this page but also the new version notification for entries on
the Host Extensions page. It does this by pinging back to DNN the version
that you are running and the extension versions that are installed. This
pingback does not contain any personally identifying information,
configuration, or content; it is purely for comparative purposes (much like
other applications that gather usage data to aid in improving the app
experience).

In a managed environment, such as a production installation, this feature is
not necessary and should be turned off; updates are planned, scheduled, and
practiced. However, during development the usefulness of new version
notifications far outweigh any perceived cost (the occasional pingback and
response).

Basic: Host Details

As discussed earlier, host “details” are not associated with a user. The
attributes (Title, URL, and Email) are most commonly surfaced in an email
sent by the site for things like notification of new superuser accounts,
sending of host information (such as logs), or through various skin objects.

NOTE

Host details are infrequently used but can be helpful. Consider the case of
a small business that provides hosting for customer sites through one or
more DNN installs. These details can easily be referenced in skin objects
to reveal contact information for a “Powered By” type link.

The checkbox for Enable Remember Me does as you'd expect, enabling this
option on the login window. It is a host setting because security and
authentication configuration is implemented across an entire instance rather
than on a site-by-site basis.

Basic: Appearance

The Show Copyright Credits option is a legacy setting that impacts only
certain skin objects and injection of a comment in the HTML source of your
rendered pages. You should uncheck this option to make it less obvious to
spiders or others what application your web server is running.

Unchecking Use Custom Error Messages is advisable only for development
environments, although even in these conditions you might choose to leave
the option enabled. It simply suppresses raw ASP.NET error handling in favor
of more gracious error handling to the user. Admin and host users will still
see the inner stack trace message. If you disable custom error messages, DNN
will not catch the exception, and it will bubble up to the application level, at
which point it will respect the customErrors settings in web.config.

NOTE

Don't expect this setting to have any impact on capturing 404 Page Not
Found errors. DNN includes a special 404 Page not Found page, which
you can update in Admin Page Management.

Basic: Payment Settings

This is one area of legacy functionality that we discourage you from using.
The DNN Platform is simply not an ecommerce system; however, there are
many available extensions to provide ecommerce capability. The few settings
available specifying hosting space and page and user quotas can be somewhat
helpful, as they are enforced on newly created sites. However, we're more
fans of managing these items relationally with clients rather than through
hard limits, which can impact site experience.

Advanced: Friendly URL Settings

It's important to know that most of the rules provided in the default instance
have historical value relative to upgrades. They help redirect links that
worked in older versions of DNN to their newer DNN equivalents. For
example, the rule [^?]*/TabId/(\d+)(.*) specifically maps an old URL
“machine-friendly” format back to an internal format that any new friendly
URL provider can utilize.

If you're not planning to install any enhanced URL management providers,
you can do some basic URL crafting here, although an understanding of
Regex (regular expressions) syntax is required. However, it should be noted
that friendly URLs are not a substitute for advanced URL management; they
have no support for situational routing, nor any concept of URL indexing, and
so on.

The underpinnings for advanced URL management were added to DNN in
version 7.1 and are exposed in the Evoq professional offerings. However, new
third-party extensions leveraging that built-in capability should be
forthcoming soon. One example of this is a community-supported open
source project called DnnUrlManagement
(https://dnnurlmanagement.codeplex.com).

https://dnnurlmanagement.codeplex.com

Advanced: Proxy Settings

Depending upon your configuration and usage of third-party modules, the
DNN instance may be reliant upon some server to server interconnectivity.
Examples of features that might display this reliance include the critical
updates notification in Host Settings Basic Settings Configuration or
when referencing RSS feeds, FTP, NNTP, or web services. If your DNN
instance is separated from a direct connection to the Internet by a proxy
server, you should consult with your network administrator about the
appropriate settings.

Advanced: SMTP Server Settings

The DNN instance sends outbound email for a variety of reasons, from the
host or site admin or in the form of password reminders, event notifications,
newsletters, or other business-specific use cases. A valid SMTP server is
required for this to work; you should consult your network administrator for
the appropriate credentials to use in a production configuration.

Most non-Exchange Server SMTP hosts will require “Basic” authentication
and a valid username/password combination. Some will also require that SSL
be enabled. For example, Figure 5.6 illustrates a proper configuration for a
small business using Gmail as part of Google Apps for Work. If you are in a
development configuration and your ISP does not permit access to port 25
(the default for SMTP), an alternative port can be specified (such as smtp-
mail.outlook.com:587).

Figure 5.6

This setting is for the host SMTP server and the default for new sites. You
should note that the host can also set up SMTP server settings for each site, if
preferred. This setting is located in the Admin Site Settings page but is
visible only to a superuser. It can also be reached from the Host Site
Management feature.

NOTE

Although it's beyond the scope of this book, it is essential that email
coming from your site be properly identified by recipients to avoid the
dreaded SPAM filter. Your site DNS should contain properly formatted
PTR, SPF, and DKIM records for your domain.

Advanced: Performance Settings

The Memory option for Page State Persistence is unreliable in combination
with Ajax; it's even noted in the user interface. This might seem unfortunate
because it means that your browser payload is going to include a block for
_VIEWSTATE, but there is good news! First, the use of view state is 100%
reliable. Second, and more importantly, recent versions of DNN have
undergone massive efforts to reduce the size of view state, resulting in a
payload of about 160 bytes (yes bytes, not kilobytes) for an anonymous user
and generally less than 1KB for a user who is logged in. This is nominal
payload impact, even at its worst. The only reason this option originally
existed was to contend with the size of view state; expect it to be deprecated
in some future version.

The out-of-the-box choices for Module Cache Provider are Memory (the
default) and File. Memory utilizes the standard ASP.NET in-process cache
object. The File-based caching provider utilizes a custom approach, relying on
an ASP.NET File System watcher to trigger updates during runtime.
Traditional wisdom says that Memory is the better option unless you are
resource-constrained.

The Cache setting affects how long objects remain in cache when unused (the
longer they are in cache, the less likely they are to be reloaded). Again, unless
you are resource-constrained there is no reason not to rely on “heavy”
caching. Some modules also override these settings, as caching opportunities
are limited for dynamic content.

NOTE

The settings for module caching can actually be overridden at the
module level. So, if it makes sense to keep some large static text content in
File-based cache rather than memory, you can simply override this on
the Module settings. An interesting side effect of File-based caching is
that, unlike Memory, it can persist between restarts (depending on the
expiry settings).

Authenticated Cacheability is an ASP.NET feature that refers to whether a
page can be cached on a downstream device during the page response
lifecycle. Devices that can cache pages include the browser, web server, and
any other cache-capable devices, such as proxy servers, and so on, between
the web server and the client. The default setting, ServerAndNoCache, simply
enforces that only the web server hosting the DNN instance is permitted to
maintain the cache.

Advanced: jQuery Settings

jQuery libraries are included with DNN for reference by extensions, whether
in production use or in development. This information panel identifies the
jQuery version and jQuery UI version that are currently active in the instance.
Libraries periodically change. They are sometimes updated, expanded, or
patched at unannounced intervals. DNN provides a means by which the host
can always point to a “current” jQuery version rather than the installed one (if
so desired). We'll cover that in the following section on CDN Settings.

Advanced: CDN Settings

CDN stands for Content Delivery Network. The CDN settings determine how
your site will incorporate certain content that supports CDN options. By
default, a new DNN instance will include its own local copies of specific
versions of the MS Ajax, Telerik, and JavaScript libraries.

Enabling the MS Ajax CDN will instruct DNN to refer to those hosted at
ajax.aspnetcdn.com. For more information on the MS Ajax CDN, refer to
http://www.asp.net/ajax/cdn. The JavaScript Libraries CDN option behaves
similarly, retrieving libraries from CDNs hosted by googleapis.com and
jquery.code.com, with fallback to the local versions.

http://ajax.aspnetcdn.com
http://www.asp.net/ajax/cdn
http://googleapis.com
http://jquery.code.com

Telerik also maintains a CDN for its resources (JavaScript, CSS, and images),
which is the DNN default. However, if desired, DNN also supports the ability
to override that CDN and point to a custom URL. This might be desired if, for
example, you were supporting a development team utilizing a pre-release
version of Telerik UI for a future deployment.

NOTE

There are distinct advantages to referencing reliable CDNs in a
production environment. CDN contents are cached on servers around the
world, which means they may be able to reach a user's browser much
faster than the copies on your web server. In addition, a CDN enables
browsers to reuse cached third-party JavaScript files that may have
already been loaded while browsing other websites. On the other hand,
no CDN can match the delivery performance of a local intranet, and any
CDN reference means that a live Internet connection is always necessary.
Consider your relevant trade-offs.

Developers should be aware of which libraries they are building against and
which deployment targets they are building for.

Advanced: Client Resource Management

Client resources (stylesheets, images, scripts, and so on) are one of the
primary sources of poor client-side performance, so anything you can do to
improve that is a good thing. Because DNN is so modularly constructed, many
resources are provided in “chunks” relative to the modules in use. Without
optimization, this results in multiple resources referenced on the page and
multiple HTTP requests for those resources. Client Resource Management
options provide mitigation of this issue through the use of three methods—
versioning, compositing, and minification.

The Enable Composite Files option combines the contents of disparate files of
the same type into a single file (or in some cases, just fewer files), which
reduces the number of HTTP resource requests made by the page. By way of
comparison, loading the home page of a default instance while logged in as
host generates references to 13 CSS files, reduced to one when compositing is
enabled. Note that authenticated user page requests generate more resource
references than unauthenticated due simply to the additional page controls.

Script and stylesheet files often contain unnecessary whitespace and/or
comments. Although they might be helpful to the developer, they have
absolutely no value to the browser and can be safely “removed.” The Minify
CSS and Minify JS options perform this function for their associated file
types. Figure 5.7 illustrates the CRM section with all of the options in effect.

Figure 5.7

Finally, DNN also supports versioning of composited/minified files. This is
necessary for forcing downstream devices (including the browser) to reload
resources that it might otherwise not recognize as having changed. Some
operations cause the CRM version to increment automatically (such as
updating the portal.CSS), but it can also be done manually as necessary.

NOTE

CRM is awesome but not foolproof. Compositing and minification can
have adverse effects on some modules; JavaScript in particular can be
susceptible to errors from compression. A host should verify in a staging
environment that the positive impacts of these features are not
outweighed by errant behavior anywhere in the site. Similarly,
developers should test their stylesheet and JavaScript code for CRM
safety.

Advanced: Membership Management

In this area, the host can set parameters governing authentication. These
settings apply to all sites, as changing the security parameters for one site
would effectively change the security status of the entire DNN instance.

There are two settings for timeout values related to password-reset links. The
Reset Link Timeout setting refers to user-initiated password resets and is
typically a lower value, as it assumes that the users will be anxiously awaiting
the reset they've just requested. The Administer Reset Link Timeout setting
refers to password changes initiated by the host or administrator. These
values are typically longer, as they might sit in a user's inbox a while before
they are received.

NOTE

All of the password-management features (reset, expiry, history, ban,
and strength check) are applicable only to DNN's standard
authentication. If you're using a different authentication provider such
as Facebook, these attributes are effectively outsourced to that provider.

The checkbox for Enable IP Address Checking must be enabled for Login IP
Filters to be in effect.

Advanced: Login IP Filters

Login IP Filters enable creation of rules to permit or deny host/admin access
by IP or IP range. Users attempting to log in will be greeted by a system
message indicating that login is not permitted from their IP address.

IP filters can be used to enforce simple physical security rules that might, for
example, limit administrative access to a particular subnet within an intranet.
The checkbox for Enable IP Address Checking in Membership Management
must be enabled for Login IP Filters to be in effect.

Though it might be tempting to utilize this feature to limit access during an
upgrade process, this configuration is untested and not advised.

NOTE

The IP Filters feature has been tagged for deprecation in a future release,
so it should be avoided. The Request Filters feature is capable of handling
this case by examining the REMOTE_ADDR server variable. Similarly, IIS
request filters can be coded directly into the web.config file via Host
Configuration Manager.

Advanced: Search Settings

Lucene-based search capability was added to DNN in version 7.1.
Administrators can now manage a great deal of search behavior for their
particular site; see Chapter 4 for information. There are, however, still a
couple of search-related details that are managed at the host level.

An in-depth discussion of Lucene is beyond the scope of this book, but it is
important to understand that it utilizes “analyzers” to parse content for
indexing. DNN contains a variety of analyzers, including a number of foreign
language parsers, defaulting to the general-purpose “Standard Analyzer.” Two
additional interesting general-purpose analyzers are also included—the
Whitespace Analyzer, which simply separates content tokens by whitespace,
and the Stop Analyzer, which removes common English words typically not
useful for indexing (although this can also be somewhat accomplished by an
administrator utilizing the Ignore Words option).

Since search data is logically segmented by site, the Re-Index Host Content
button literally pertains just to content that is found under the Host menu.
However, the Compact Index option is available only to the host, as it affects
the physical data store containing all of the site indexes. If you have a large
site (or many sites), this is an operation that you would be wise not to
perform during peak hours. It is resource intensive and can be invasive to site
users.

Other: Request Filters

Request filters provide a mechanism for intercepting and redirecting page
requests based on any criteria that can be found in the request header. This
can be powerful and helpful functionality but should be used sparingly. Recall
that there are other processes that also act on page requests that might be

affected by your rules (such as friendly URLs, advanced URL management,
device detection, and so on).

One common use of Request filters is temporary blocking of malicious users
by IP address. While this is not a permanent solution, a quick Request filter
can thwart a bot, thereby giving you time to work with network support on a
more appropriate solution. This is accomplished by inspecting the
REMOTE_ADDR server variable for the IP in question (or using Regex to discern a
range of IPs).

Be advised that this kind of functionality is provided in great depth by IIS via
the requestFiltering node in web.config, which can be directly edited from
the Host Configuration Management page.

Other: Site Log

The Site Log and associated settings should be left at their default values,
which essentially turn it off. This legacy functionality will be deprecated soon.

Other: Auto-Unlock Accounts After

This feature impacts user authentication but is not part of the authentication
provider interface, hence its location in the Other Settings area.

Secure authentication contends with brute force attacks (password cracking)
by disabling user accounts with a certain number of failed login attempts in a
given time period. Note these settings can be changed only in web.config, as
illustrated in Figure 5.8.

Figure 5.8

This feature provides a means of recovery for users from this “locked” state,
enabling them to attempt to log in again after a certain amount of time has
elapsed since their last failed login attempt.

Other: Allowable File Extensions

As mentioned in Chapter 4, the Allowable File Extensions option functions as
a white list for file handling in DNN. Files cannot be uploaded to DNN unless
their extension type is included in this list. Similarly, if files are placed
manually on the file system, they will be ignored by the Digital Asset Manager
and Auto-Sync unless their extensions are present on this list.

Other: Auto-Sync File System

If files are added to the file system using DNN features (such as uploading
from the DAM, adding a profile picture, and so on), they are handled at that
point in time by the application and properly recognized. However, files added
by other means (such as FTP, direct server access, and so on) are not
immediately recognized. The process of resolving this discrepancy is called
“file synchronization” and can be performed manually from the DAM or

automatically by DNN on a periodic basis.

Other: Allow Content Localization

Chapter 10 explains the concepts behind this seemingly innocent button in
depth, but this section gives you enough information to convince you of the
potential impact of this setting.

NOTE

This is one little checkbox with one very large impact. Before changing
this setting, be 100% confident that you know what you are doing
because it enables site administrators to perform actions that cannot be
undone!

There is a difference between core localization and content localization. Core
localization provides for multiple languages in the host, admin, and public-
facing controls of the DNN application and is basically accomplished by
including additional resource files and switching between them.

Content localization refers to the translation of user-supplied content in the
site, for example, the verbiage on the typical About Us page. Multiple
languages are supported by creating new versions of every page for each
additional language, beneath a language “branch” (such as /en-US/AboutUs).
Once the decision to change this site structure is made, it cannot easily be
rolled back.

Figure 5.9 illustrates the additional functionality that is exposed to the site
administrator by enabling this feature.

Figure 5.9

The Enable Localized Content button pictured in Figure 5.9 converts the site
to use the localized branch structure.

Site Management
The Site Management page provides an inventory of all the sites in a DNN

instance and quick access to the Site Settings functionality for each. In the
default install, the site settings accessed this way appear in a modal dialog as
opposed to the normal page rendering when accessed through the Admin
Site Settings menu.

Additional functionality on this page includes creation and deletion of sites as
well as the ability to export a particular site as a template. The Export
Template feature is useful for creating your own default site template, with
options to include or ignore various resources.

The host's view of the Site Settings menu is different than the administrator's
view, with many more site-specific features. We'll go over these features in
detail in another section later in this chapter.

Configuration Manger
This feature puts every DNN configuration file at your fingertips in a capable
editor with syntax highlighting. It also includes a utility for merging XML
scripts, which is not only a handy maintenance tool but is also an integral part
of DNN extension packaging, which you'll learn about in Chapter 18.

An example of merge scripts can be found in the <Root>\Install\Config\
directory. The Net40.config file was executed by DNN at the time of setup to
adjust default environment settings for use with ASP.NET 4.0 (if required).

Device Detection Management
Device detection was added to DNN in version 6.1 to facilitate adaptive design
and provide increased support for mobile devices. DNN Corp. partnered with
51Degrees (http://51degrees.com) to embed a Lite (free) version of their
managed device library and a simple version of their detection API for use in
DNN. Device detection must be enabled by the host to function in any site in
the instance.

http://51degrees.com

NOTE

51Degrees offers premium and enterprise editions of this library,
featuring over 100 properties for over 20,000 devices and daily updates
of the device database.

Only the Width, Height, and User Agent properties are exposed in the free
version. This information is sufficient to establish a reliable mobile solution,
but for finer grain adaptive design, the device properties available in the
premium version are highly desirable. DNN's partnership with 51Degrees
adds significant capability to the platform and is a great option for easily
improving on it, if necessary, for your specific purposes.

HTML Editor Manager
The HTML editor, like most things in DNN, is implemented using the
provider pattern. So the functionality exposed on this page will be subject to
the capabilities of the underlying HTML editor and the features exposed
through the specific provider. By default DNN will be configured with the
RadEditorProvider, which implements the Telerik Rad Editor.

Figures 5.10 and 5.11 illustrate some of the differences between settings
available for the Telerik Rad Editor and the CKEditor, respectively.

Figure 5.10

Figure 5.11

Bear in mind that the HTML editor is by far the most utilized feature of any
DNN site. All content editors, be they marketing personnel writing page copy,
bloggers, or forum posters, use one. Many modules reference the configured
HTML provider and so your settings choices will matter a great deal. It is
worth spending some time to consider the best settings configurations for
your users.

NOTE

The CKEditor provider is an open source project maintained and freely
distributed by members of the DNN community (led by Ingo Herbote).
You can get it here: http://dnnckeditor.codeplex.com.

Lists
Lists were introduced in Chapter 4, as administrators are able to manage
Banned Password and Profanity Filter lists specific to their sites. List
functionality for hosts is exactly the same, just with different scope. The lists
managed by the host include one containing options like Country, State,
Image Types, and so on, where lists are used in the UI. User registration, for
example, makes use of the Country list.

http://dnnckeditor.codeplex.com

NOTE

When building your own applications, remember the lists functionality
built into DNN; there's no need to need to re-create it for your own
modules.

Schedule
The Schedule page enables you to manage what is essentially recurring,
scheduled batch processing for DNN. Batch processing is a bit of a non
sequitur in the typical web environment, but it's actually a very powerful
feature in DNN, enabled in large part by the workings of ASP.NET.

Figure 5.12 illustrates a default Schedule page. Notice that some jobs run
every minute, whereas others run only once a day.

Figure 5.12

The Scheduler simply initiates processes to run on a host-defined schedule. It
supports recurrence, retry, catch-up, event triggers (currently only app
restart), dependencies on other scheduled processes so they don't run
concurrently, and even specification of which server to run on. This last item

is important in the context of a web farm, as some jobs make sense to run on
every server, whereas others must run only once against business
information. If two web heads run from the same configuration, it's necessary
to ensure that they know which one is responsible for running the job.

The Scheduler can be disabled or set to run in one of two modes: Timer or
Request method. These options are tied to an understanding of how “batch
processing” is accomplished on a web server. In IIS, a site (or in our case, a
DNN instance) is loaded into memory when it receives page requests. The
application is kept in memory while it is being used and for some time after,
but if a site is quiet for too long, IIS will recycle those resources and remove it
from memory. This is why batch processing is not a typical feature in web
environments; when the site goes away, so does the batch processor.

DNN provides two ways of contending with this limitation. The Timer method
assumes that the site is always loaded into memory, and the Request method
relies on the site being “woken” by page requests, whereupon the Scheduler
runs. Each has its limitations, but the preferred method is Timer, which turns
your attention to the means necessary to keep a site “awake.”

All it takes to keep a site awake is for traffic to occur before IIS recycles the
ASP.NET worker process. A busy global site likely has enough traffic to keep it
loaded in memory, but for many sites this can't be counted on. However,
there are many services that can be used to periodically “ping” a site. In fact,
these are quite common now and often part of a comprehensive site health-
monitoring approach.

NOTE

Consider the use of a service like Pingdom, CopperEgg, Uptime Robot, or
StatusCake to provide site-monitoring and “keep alive” services for your
site. Each of these vendors has free offerings.

Additionally, the Delay Schedule at Start setting can be managed on this page.
When a site is recycled, a lot of work goes on when it starts to “warm up”
again (building the cache and such). This setting will cause the Scheduler to
wait the specified number of minutes before triggering its first job on app
start.

Schedule Item Details

Figure 5.13 illustrates the detail page for a Scheduler entry, namely, the Purge
Schedule History job. You may recall that one of the settings in Host Settings
was the number of days of Schedule History to maintain. This job's function
is to trim the Schedule History each day to conform to those settings.

Figure 5.13

Let's take a quick look at some of these fields.

For the developers, the Full Class Name and Assembly option refers to an
assembly in the <Root>/bin directory that inherits from
DotNetNuke.Services.Scheduling.SchedulerClient. Any extension could
include and set up a scheduled job as part of its installation script, if desired.
The Start Date/Time is optional, and if it's not supplied, the job timer will
simply start from the creation of the Scheduler entry.

NOTE

Developers should note that the Scheduler is a host service, running
outside of HttpContext. That means PortalSettings are not available. If
site context is needed, it must be garnered in an alternative way.

The Object Dependencies field permits specification of one or more string
values that are meant to serve as semaphores between jobs to avoid potential
deadlock conditions. Consider, for example, two jobs that both update the
Folders table. By placing the same arbitrary string value on both jobs, say
“FileLock,” the Scheduler will not permit both to run at the same time. It will
delay the second job until the first has completed.

Configuration

The Scheduler also has a couple of settings in the web.config file that are
useful for development and/or troubleshooting, as follows:

debug—When this is set to true, the Scheduler becomes verbose,
generating a substantial amount of EventLog table entries. Debugging
multithreaded applications is challenging, and this can be very helpful in
development of scheduler jobs.

maxThreads—Any number greater than -1 will enforce a maximum number
of threads that can be utilized by the Scheduler. A value of -1 will leave
thread management to the Scheduler itself (which currently causes it to
use a single thread).

SQL
The SQL console permits database access directly from inside DNN. So the
host, even if it's not near an instance of SQL Server Management Studio, still
has access to a powerful database tool. Files containing SQL commands can
be imported from disk and also saved in DNN for later use. Figures 5.14 and
5.15 illustrate the SQL console editor and the tabbed query results with
paging.

Figure 5.14

Figure 5.15

Note the ability to search a large returned dataset and buttons that support
copying results to the clipboard and exporting results to CSV, Excel, or PDF
formats.

Vendors

You were introduced to the concept of vendors and their association with
banner advertising in Chapter 4. Host vendors are simply a collection of
vendors that belong to the host rather than to a specific site. When
implementing a banner module, you may specify whether it is associated with
host or site vendor listings.

Additional Host Features on Admin Site Settings
In addition to his own menu of features, the host also has access to site-
specific settings. As mentioned earlier, these settings can be reached via the
Host Site Management feature, but it's generally better to navigate directly
to them in the context of the site you are updating. The Site Switch option
under the Tools menu will provide a quick means to switch between sites.

So let's look again at the Admin menu you were introduced to in Chapter 4,
where you will now find all the same pages but several new categories and
settings within them.

Event Viewer
You learned about the Event Viewer in Chapter 4, even about the additional
functionality available to the host: clearing the log, changing log settings, and
email notification on selected event types. One additional host feature simply
provides the host a view of the Event Log entries by site. This view can be
particularly helpful when investigating the source of errant behavior in order
to note whether errors are coming predominantly from one site or another.

Site Settings
The majority of new categories are found on Site Settings. Let's explore these.

Advanced: Site Aliases

Site aliases tell DNN what domain names a site should respond to. You will
recall that DNN supports the concept of virtualized sites within a single
instance. This means that multiple sites, each potentially with multiple
unique URLs, can exist in one instance of DNN, that is, one set of files and
one database. For DNN to know what site a request should load, it uses a
system of site aliases. When a page request is received from IIS, it extracts
the domain name portion, compares against the list of site aliases, and then
redirects to the relevant site to load the appropriate page.

NOTE

Developers should note that it's very helpful to work with a site with a
legitimate domain name rather than simply localhost or an IP address,
especially when trying to debug or investigate issues in a staging
environment. Domain names can be easily “spoofed” on your local
machine with a simple entry in the
c:\windows\system32\drivers\etc\hosts file (note that the hosts file has
no file extension and requires Windows Administrator privileges to edit).
The following entry will enable the dnndev.me domain to be treated, on
your machine, as if it were registered in DNS.

127.0.0.1 dnndev.me

Figure 5.16 illustrates a local install with two aliases for the same site in the
same domain. The primary address has the form of a “child site” (a
subdirectory beneath a fully qualified domain name—FQDN), while the other
is its own FQDN.

Figure 5.16

It is not uncommon for work on new sites to begin under a localhost or a
locally established FQDN (like dnndev.me), even with a “child” configuration.
A child site can be “promoted” simply adding an FQDN alias, ensuring IIS is
properly configured to direct those requests to the DNN instance, and
removing the physical directory that was created for the child alias (such as
<Root>\site2). Don't worry, there's nothing in the directory that can't be
simply deleted.

NOTE

Note that use of aliases in multiple domains for the same site can have
significant impacts on cookie handling, SEO, and SSL certificates. Be sure
to develop your domain strategy and review it for potential pitfalls
before you get started.

In a final word on site aliases, we recommend that your default choice of
Mapping Mode always be Redirect. Search engines like Google don't like
duplicate content, and pages with duplicate content don't rank well.

DNN site pages are dynamically generated, and there is a risk of generating
duplicate content where the same page is served with a variety of URLs. Take
these cases, for example:

dnndev.me

www.dnndev.me/default.aspx

dnndev.me/home.aspx

www.dnndev.me/home/tabid/56/default.aspx

Each of these URLs might easily resolve to the same content—the home page
of a DNN site. Compound this problem with duplicates generated from a
third-party module (like a blog or forum), and you could have hundreds or
even thousands of duplicate URLs on a DNN site.

You can set the site alias Mapping Mode to establish either primary or
canonical domain behavior. Primary behavior (the “Redirect” option) means
that when a non-primary alias is received, a 301 redirect is issued to the
primary site alias. The implication is that over time, search engines will start
recognizing that all those entry points to your site represent one set of
content and stop splitting your search ranking points among the various
URLs.

Canonical behavior means that requests to valid site aliases will be respected
(without redirection), but a Canonical Link element will be generated in the
page's HTML header. In general, the “Redirect” is preferred, but you might
have a particular strategy for leveraging multiple aliases to show the same
content, in which case the “Canonical” option will work better.

http://www.dnndev.me/default.aspx
http://dnndev.me/home.aspx
http://www.dnndev.me/home/tabid/56/default.aspx

Advanced: SMTP Server Settings

We went over SMTP Server Settings earlier in the chapter, and there's no
reason to go over them again here. Just recall that the host settings determine
the default for new site creation, whereas selecting “portal” (or “site”) mode
in the site settings allows for site-specific SMTP server settings. In this way,
each site can be configured to use the appropriate SMTP server for its
domain's mail services.

NOTE

Sharing SMTP services among multiple domains is a good way to get
your SMTP server blacklisted, ensuring your mail always winds up in
your users' SPAM folders.

On somewhat of a side note, if you're doing a lot of work on outbound mail,
say configuring email layouts, generating outbound messages, and so on, you
might not want to use an actual SMTP server. PaperCut, an open source
community project, is a simplified SMTP server designed for exactly this
purpose. It permits you to intercept “sent” mail and examine its contents
without it leaving your machine. You can get PaperCut at
https://papercut.codeplex.com.

Advanced: SSL Settings

These days, sites that don't implement SSL, at least for login and registration,
are frowned upon. But you can configure DNN to utilize a site-specific or
shared SSL certificate.

https://papercut.codeplex.com

NOTE

You can test SSL behavior by creating your own local certificate to use in
IIS. It won't have a certifying authority, of course (so you will get a
warning), but it will behave correctly. The MakeCert.exe (Certificate
Creation) tool is included in the .NET Framework SDK.

The SSL Enabled checkbox tells DNN that when pages are specified as
“secure” in their page settings that it can utilize the HTTPS protocol with the
additional settings to follow. Note that when this setting is not enabled, the
Secure option is not available.

Without the SSL Enforced option enabled, pages that are not marked as
“secure” cannot be accessed under HTTPS. You may want to turn this on if
you're using a specific URL for HTTPS traffic that you don't want users to see
on other pages (such as secure.example.com).

The SSL URL is typically used only in a shared hosting scenario where
individual sites cannot implement their own certificates. This URL would be
provided by the hosting provider; but you should also ensure it is added to the
site as a legitimate site alias.

The standard URL is required when using the alternate SSL URL. It specifies
a return page (on your site), where users will be directed when they move
from secure to unsecure pages.

http://secure.example.com

NOTE

Don't lock yourself out! It is quite possible to set up SSL incorrectly on
your first try, resulting in some odd behavior and even the potential to
lock yourself out of your site by making login pages inaccessible. If this
happens, you might need to remove the “secure” page settings directly in
the database to recover. The following SQL will reset all the pages in a
specific site, removing any “secure” settings (clear the cache or restart the
website after running this script):
UPDATE TabsSET IsSecure = 0WHERE IsSecure = 1AND PortalID = <your

site id #>

Advanced: Messaging Settings

Messaging Settings govern the internal sending of messages by site users.
Figure 5.17 illustrates a User Profile page with one “message” in the inbox.
These settings are used primarily to guard against potential abuses of the
messaging system by spammers or otherwise malicious users.

Figure 5.17

These options are pretty straightforward, and the help is comprehensive.

Advanced: Host Settings

The Host Settings were discussed earlier in the chapter, but there is one item
in the Host Settings that merits pointing out, as shown in Figure 5.18.

Figure 5.18

The Available Modules selector indicates which installed modules are
accessible for the site administrators to deploy on their site. You'll notice in
Figure 5.18 that there are “35 items checked” and some of those items don't
really look appropriate to be deployed without some oversight (such as
AdvancedSettings, CKEditor.EditorConfigManager, ConfigurationManager,
and so on).

By default, installed modules are all available for new site admins to deploy
and use, even admin modules! You might want to change this. Simply
uncheck items from this list that you don't want site administrators to be able
to deploy without consulting the host.

Page Management
When logged in as the host, Page Management now includes a selector to
distinguish between host and site pages; otherwise, it functions in the same
way as explained in Chapter 4. See Figure 5.19 for the host user view.

Figure 5.19

Advanced Configuration Settings
There are a number of additional tabs on this page that are visible to the host.
However, they are all simply alternative methods of accessing functionality
that is discussed elsewhere. Specifically, the following additional tabs are
visible:

SMTP Server: As discussed in Host Settings SMTP Server Settings

Language Packs: As discussed in Host Extensions Available
Extensions, although limited to the Language Packs category alone

Authentication Systems: As discussed in Host Extensions Available

Extensions, although limited to the Authentication Providers category
alone

Providers: As discussed in Host Extensions Available Extensions,
although limited to the Providers category alone

Optional Modules: As discussed in Host Extensions Available
Extensions, although limited to the Modules category alone

Languages
You may recall that Figure 5.9 illustrated the effects of enabling the Enable
Localized Content checkbox. Figure 5.20 identifies the additional features
available to the host from the Language Management page.

Figure 5.20

We'll leave the buttons for discussion in Chapter 10. But let's have a closer
look at the new static resources available to the host for edit: System and
Host.

Resource files utilize a fallback structure, which means that only changes
from base files are required for customization. DNN searches first in Site
resources, then in Host resources, and finally in System resources to locate
the strings it will use. The system file is considered the root file and should
remain unchanged unless you're planning to customize an install procedure.
Changes to the system resource files essentially cannot be undone because
the original values are overwritten. This differs from the host and site
resource files, which are constructed as deltas from the system- and host-

level resources files, respectively.

Let's say, for example, that I change the password reminder email (resource
name: EMAIL_PASSWORD_REMINDER_BODY.Text) in the host resource file. This
creates a new default inherited by every site in the DNN instance. Where the
original file in <Root>\App_GlobalResources was named
GlobalResources.resx, the new host-level file is named
GlobalResources.Host.resx. It does not contain all the entries from the
system file, only the changes made to personalize it.

Then, a site admin decides she would like to make the password reminder
even more personalized for the site, so she changes the resource, which
produces a new file named GlobalResources.Portal-0.resx. The site ID is
appended to Portal- to distinguish it from resource files customized for other
sites in the instance. A quick look at the <Root>/App_GlobalResources folder
in Figure 5.21 illustrates the result.

Figure 5.21

Additional Host Features on the Control Panel
So far we've examined an entire menu structure dedicated specifically to host
features. And we've re-examined the site administrators feature menu to see
what additional features have been revealed for the host. Now, we turn our
attention to the remaining menus of the control panel.

Tools Menu
A couple of additional items appear on the Tools menu when you are logged
in as host. The Clear Cache and Recycle Application Domain buttons were
discussed previously under the Host Settings topic. These shortcuts perform
in exactly the same way and are placed here as a convenience. Recall the
caveats of utilizing these two commands in a production environment!

A handy additional feature on the Tools menu is the Site Switcher (see Figure
5.22). This feature allows the host to quickly change context.

Figure 5.22

In order to make site-specific changes, a host can utilize the Host Manage
Sites page and update settings in that manner. Alternatively, a host can
simply navigate to that site, sign in, and use the Site Settings pages of that
specific site. The Site Switcher simply makes it easy to navigate between sites,
switching to their primary alias by clicking Go.

Modules Menu
Two new items are added to the Modules menu for the host. The first item,
called Find More Modules, is simply a direct shortcut to the Host
Extensions page featuring the More Extensions tab.

The second item is an additional shortcut called Create Module, and it's a
single-step operation that puts the current page into Edit mode and opens the
module list to the developer category, by default featuring the Module
Creator. This is a handy shortcut for adding developer components to a page
without going through too many steps.

Host Options on the Module Actions Menu
Finally, the last host-only feature appears on the Module Actions menu. This
menu is associated with every module instance, as illustrated in Figure 5.23.
The new option on this menu is called Develop.

Figure 5.23

If you're not a developer, this feature may not be of interest to you, but if you
are, you may wind up referencing it extensively. Selecting the Develop action
results in loading of the module's ASCX file into an editor, where it can be
modified on the fly as necessary. Other files associated with the module can
also be opened and edited, including the code-behind (if it's present in a
source code deployment).

This is very powerful capability and strong support for developers, making it
entirely possible to build and package complete applications from within
DNN. This is discussed in Chapter 13. The View Source editor is illustrated in
Figure 5.24.

Figure 5.24

Integrating with a Third-Party Provider
Well, now that you've learned where all the interesting bits are, it's time to
put some of them to work. In the next couple of pages, you'll learn how the
host can extend the DNN instance by installing third-party modules and
integrating with external services such as Facebook, Google, and Twitter.

Technically, the only part of this operation that cannot be performed by a site
administrator is installing the providers, but for that reason this kind of
configuration usually falls to a host to complete.

Installing the Facebook Provider
Authenticating site access with third parties like Facebook, Google, or Twitter
has become almost an expectation on the Web today, and DNN includes
authentication providers to support each of these. Navigate to the Host
Extensions page and then scroll down and expand the Authentication Systems
section. As you can see in Figure 5.25, the Facebook Provider is ready to be
installed!

Figure 5.25

Clicking Install, you can proceed through the Install wizard. You can view
details and release notes and accept the license, as illustrated in Figure 5.26.
Figure 5.27 shows the successful Package Installation Report.

Figure 5.26

Figure 5.27

When you return to the list of available authentication providers, note that
Facebook is no longer present. That's because it is now located on the
Installed Extensions tab.

Setting Up the Facebook Application
Setting up the DNN Facebook Provider requires a Facebook application to
connect to. Despite how it sounds, this does not require any coding. You
simply fill out some information in the developer area of Facebook, which
defines a new application to generate the keys required for your DNN
instance to “talk” to Facebook.

Navigate to https://developers.facebook.com and log in. From the My Apps
menu, select Add a New App, as illustrated in Figure 5.28. When you're
prompted for your platform, look at the bottom of the dialog and select
Advanced Setup. This will take you straight to the Create a New App ID
window. Simply give the ID a friendly name and select a category, as shown in
Figure 5.29. Finally, click Create App ID.

https://developers.facebook.com

NOTE

Be advised that Facebook likes changing its interfaces frequently, so your
experience may vary. But in the end, you just need to acquire a new app
ID.

Figure 5.28

Figure 5.29

After clicking the Create App ID button, you should return to the Dashboard
of your new Facebook App, complete with its own App ID and App Secret (see

Figure 5.30). You need these keys to configure DNN in the next step.

Figure 5.30

Activating the Facebook Provider
Now that you have an installed provider and a viable Facebook application,
you're ready to activate the provider for use on your site!

Back in your DNN instance, you'll want to navigate to the Admin Extensions
page of the site you want to support Facebook authentication. In the
Authentication Providers section, click the pencil icon on the far right so that
the Facebook Authentication Provider opens its settings. See Figure 5.31.

Figure 5.31

Add the App ID and App Secret you just created and check the Enabled

checkbox. Finally, click the Update Authentication Settings button. On your
next login attempt, you'll be greeted with a slightly different page, as
illustrated in Figure 5.32!

Figure 5.32

Summary
Well, congratulations! In this chapter you've learned just about everything
there is to know about managing a DNN instance. As you have observed, the
host user really is a superuser, with all the privileges of the site administrator
you learned about in Chapter 4 as well as a slew of additional features. In
many cases the host has access to advanced features on admin pages not
visible to the site admin, as well as completely new functionality via the Host
menu options. DNN is capable of handling the simplest to the most complex
of site designs, and—with a little practice—you'll be able to configure,
monitor, troubleshoot, and optimize them all.

Chapter 6
Modules

What You Will Learn In This Chapter

Adding modules to pages

Sharing modules across multiple pages

Configuring module permissions

Scheduling module visibility by date and time

Installing modules

Configuring the HTML rich-text editor

DNN can be extended in several ways. The areas where DNN can be extended
are known as extension points. DNN has several extension points such as
authentication providers, skins/themes, and language packs just to name a
few. Probably the most popular extension point, however, is the one known as
“modules.” DNN is built on a modular architecture, and as such, developers
can leverage the platform architecture to create reusable, modular units of
functionality. This chapter provides a high-level overview of modules. If you
are looking for more in-depth information and guides for creating your own
custom module, check out Chapters 13 through 16.

What Is a Module?
A module is a reusable, plug-and-play piece of functionality. We often use the
analogy of a module being to DNN what an app is to an iPhone. It's a way to
extend the functionality of the framework with whatever functionality you
desire. Examples of modules could be photo galleries, blogs, rotators, forms,
and so on. There can be multiple modules on a page and even multiple
instances of the same module on a page. It's very common to see multiple
HTML modules on a single page.

From a developer's perspective, a module is generally comprised of a set of
user controls along with the associated files, scripts, and images needed to
carry out the module's functionality. ASP.NET developers are familiar with
user controls and commonly use them when creating bits of code that can be
reused. For this reason, the learning curve and entry into module
development for ASP.NET developers is short and easy.

When you install DNN, the platform ships with a base set of modules already
installed in the system. There are too many that come with the solution out of
the box to list here, but suffice it to say that all modules needed for basic
functionality within a website come with the solution.

Where Do Modules Live on a Page?
Modules are placed onto pages in locations called “panes.” These panes are
defined by the skin/theme's designer. The “skin” dictates the overall look and
feel of your site and is usually created by a front-end designer. Panes can span
the full width of the page or be positioned in a columnar fashion. It may be
helpful to think of panes as windows in the design of the site where you can
drop in modules. If a pane does not have a module placed in it, then the pane
simply does not display when the page is loaded. Figure 6.1 shows a skin's
panes. This view is attainable by hovering over the Edit Page menu and
clicking View in Layout Mode.

Figure 6.1

Adding a Module to a Page
In order to add a module to a page, simply hover over the Modules menu in
the Control Panel at the top of the page and then click Add New Module. A
drop-down menu that spans the width of the screen appears. This menu
shows all available modules that exist in your site. Your cursor defaults to the
module search bar where you can easily search for modules by typing in the
first few letters of your module's name. This list can also be filtered by
category by clicking the Category drop-down list just to the left of the search
box.

The categories by which you can filter modules exist in the system by default,
and host users can add additional categories if they so choose. A small
horizontal scroll bar is present at the bottom of the module drop-down menu
that users can click and slide to the right and left to quickly find the module
for which they are looking. Hovering your mouse over any of the modules
turns the module blue, and a pop-up message is displayed indicating that you
can drag and drop the module onto the page. Figure 6.2 shows the Modules
drop-down menu that a user sees when adding a module to a page.

Figure 6.2

DNN version 7+ provides drag-and-drop functionality for adding modules to
pages. After you select a module, simply click the module and start dragging it

onto the page below. As you drag the module down, the page's light blue
regions come into view. These are the panes mentioned previously. The
pane's name also comes into focus so that you know exactly on which pane
you are focusing when hovering over it. While drag and drop is usually the
easiest option, it is not the only option for getting a module onto the page.
Users can also hover over the top-right corner of the modules in the drop-
down menu where a small crosshairs icon is located. Hovering over this icon
presents a different drop-down menu that lists all the panes that exist in the
current page. To add the module to any specific pane, simply select the pane
and click it.

One Module Across Multiple Pages
As noted earlier, modules are reusable pieces of functionality, and as such a
single module can be inserted across multiple pages in a site. Say, for
example, you have an HTML module that holds a banner image and you want
that banner image to also exist on five specific pages in your site. Instead of
adding a new module to all five of those pages and then inserting the same
image, you can simply hover over the Modules menu item in the Control
Panel and then click Add an Existing Module to the page. Adding already
existing modules or sharing modules across multiple pages makes managing
content that's repeated much more efficient. A content manager can then
make edits in one module and instantly have those edits reflected across
every page on which the module is shared.

When a user hovers over the Modules menu item just below the Add New
Module option is the Add Existing Module option. This is the option you
select when you want to add a module that already exists in the site to a
different page. When opting to use Add Existing Module, you must first select
the page to copy a module from, which will populate the drop-down list of
modules. You can then follow the same process of adding a module to the
page.

Also notable is that users can also elect to, at the point of adding an already
existing module to the page, create a copy of the module so that the changes
made in one module are not reflected in the original (and other shared
instances of the module). When a user clicks Add Existing Module, a small
checkbox at the top of the menu drop-down becomes visible that has the
words Make a Copy beside it. Making a copy does exactly as it indicates and
makes a copy of the module and in the process creates the module as a new
instance of the module. By being a completely new instance, the module has
its own settings and configurations, and its content is independent of the
original version of the module.

One Module Across Multiple Sites
Just as you can share modules across multiple pages in a site, you can also
share modules across multiple sites. DNN's Evoq Content solution has a
feature called Site Groups, which allows host users to put multiple sites in a
group. The Site Groups feature allows for single sign-on as well as a concept
referred to as cross-site content sharing. Cross-site content sharing is
essentially the act of sharing modules across totally different sites that exist
in your instance of DNN. Once the host user creates a site group, you can go
to Add Existing Module where you previously had to pick the page on which
the module you wanted to add resided. You now have to start at the site level
and pick the site in which the module you want to add resides. After picking
the site, you follow the same process for picking the page and then adding the
module to the page. In Figure 6.3, you can see the interface that is presented
when adding a module that exists across multiple sites.

Figure 6.3

Working with Modules
I've previously discussed what a module is, how modules can be added to
pages, and how you can share them across pages and even sites. In this
section, I focus on how you work with and configure modules once they're on
the page.

In order to access a module's settings, you must be in Edit mode. To get into
Edit mode, simply hover over the Edit Page menu item in the top-right corner
of the Control Panel and click Edit this Page. This puts you into Edit mode
where you will see small black icons in the top-right corner of every module
on the page. These small black icons allow you to move the module on the
page, access the module's settings, edit the module, delete the module, and
access any specific functionality related to the module.

Once in Edit mode you will notice that DNN uses a very user-friendly and
intuitive approach to managing content. This approach is called in-context
content management, which means that whenever you want to edit content in
DNN, you go to the location where the content resides and edit it right there
in place. There's no “back office” or “content administration” area that you
must go to in order to manage your content.

Moving Modules
Once a module is on the page, you can move its location again if needed. You
can easily drag and drop the module to a new pane in a very similar fashion to
how the modules are initially dragged and dropped on the page. You can also
hover over the small black crosshairs icon in the top-right corner of the
module action menu. When you hover over this menu, you see a list of panes
that exist in the skin. To move the module, select the destination pane and
click it. Your module is instantly moved to the new pane.

Module Settings and Action Menus
The small black icon that resembles a gear provides access to the module's
settings menu. It also gives you access to import and export content (if the
specific module supports importing and exporting), some help information,
access to modify the module's code, the means to refresh the module, and the
ability to delete the module. You will use several items in the settings menu,
but you will probably access the module's settings more frequently than the
others, so let's dive into the module settings a little more in depth.

When you click the Module Settings button, a pop-up window appears (unless
the site's host user has disabled pop-ups). The pop-up window has three tabs
that are always visible: Module Settings, Permissions, and Page Settings, as
shown in Figure 6.4. Most modules have a module-specific settings tab that
appears as a fourth tab. Note that there can be more tabs if your site has been
localized to handle multiple languages, at which point a Localization tab will
appear.

Figure 6.4

The Module Settings Tab

We won't cover every specific detail of the module settings as several of the
settings are straightforward, but I will discuss some of the more frequently
used settings. In the basic settings area of the module's Settings tab, you can
update the module's title, associate any tags you want with the module, and
denote the module's culture in the case that your site has been localized.

In the Advanced Settings panel, you can select the Display on All Pages
checkbox to have the module appear on every page in the site. If you check

this box, another checkbox will appear asking if you want to add the module
on new pages only.

The Allow Indexing checkbox indicates that you want the contents of this
module to be indexed by the search indexer so that the contents of the
module appear in the site's search results. The Allow Indexing option is
selected by default.

The next setting, Is Shareable, indicates whether you want to allow this
module to be shared across multiple sites (as you previously walked through).

The View Only checkbox is visible only when the module's Is Shareable
option is enabled. This box, when selected, enforces that the module is
shareable only as a “view mode” of the module, meaning that the module
cannot be edited on the other sites in which it is shared.

The Hide Admin Border option removes the admin border that's displayed
around a module when the module is visible only to Admin users. When
permissions are configured to where only Administrators can see the module,
a light blue box with the message “Visible By Administrators Only” is
displayed. This permission configuration is typical for the Administrative
modules in the system. The Hide Admin Border option removes this message,
which makes for better spacing on pages and eliminates the repeated
messages about visibility.

The next two options, Header and Footer, provide an area where text or code
can be placed just before or after the module's content. The last two options
in the Advanced Settings area are the Start date and End date. You can set a
date and even a time when you want the specific module's content to appear
or to disappear. The scheduling of content is helpful whenever content is time
sensitive in scenarios such as offering special content during the holidays,
leading up to events, or for promotional time periods.

Just beneath Advanced Settings is the Added to Pages panel. This area shows
the pages on which the module appears, which is important when a module is
shared across multiple sites and/or pages. It gives you instant insight into the
locations where the module is visible so that you know that any edits to this
module will affect more than just the page currently being viewed.

The Permissions Tab

The Permissions tab displays the permissions grid. See Figure 6.5. The

permissions grid gives administrators (and users with appropriate privileges)
the ability to set permissions on the module. All modules have “Edit” and
“View” permission, and some modules might provide additional items such as
the Forms and Lists module, which adds granular editing options for its rows.

Figure 6.5

You may notice that some settings are locked by default (visualized by a lock
item), which includes the Admins row (admins always have all permission).
The lock icons are present because the Inherit View Permissions from Page
setting is enabled. By default, the view permissions for every module are set
to inherit the view permissions from the page on which the module resides.
This setting can be easily disabled if desired, and when disabled, the lock
items are removed.

In order to add other security roles into the grid, click the drop-down menu in
the Select Role area, select a security role, and click the Add button. This adds
the security role into the grid, and you can configure permissions for that
security role. If desired, individual users can also be added into the
permissions grid by typing a user's display name in the Display Name input

box just below the permissions grid. Clicking Add will inject the individual
user into the grid, and then you can configure permissions for that individual
user.

Remember that in DNN the permissions are set both at the page level as well
as at the module level. Having the combination of permissions set at the page
and module levels provides very granular permissions capabilities, as admin
users can allow specific users or groups of users (security roles) to see or not
see, and edit or not edit, the entire page or even specific modules on the page.
This is helpful in scenarios where you need specific users to have rights to
edit certain pages or even modules on the pages. Content editors then log in
to the site and have access to edit only the regions of the site where they have
been granted edit permissions.

DNN provides additional permissions, which are not exposed by default in
DNN Platform. To display them, you will need to install a Granular
Permission Provider, like the one included with Evoq Content.

The Page Settings Tab

The Page Settings tab provides several other settings for the module, which
are specific just for the current page. When modules are shared across
multiple pages, these settings allow for overriding the settings from the
original module. We won't cover every specific setting in this section in detail
as some settings are straightforward. Here are the options of the Page
Settings tab of the module. Also, note that while this list is present and visible
in the user interface, some of these options have been deprecated. I've noted
the items that are deprecated.

Icon: Controls the icon displayed for containers that implement the icon
token.

Alignment: Controls the alignment of a module's contents. (deprecated)

Color: Controls the background color to be applied to a module's
contents. (deprecated)

Border: Controls the width of the border around the module's contents.
(deprecated)

Collapse/Expand: Controls the default visibility of the module—
whether it is collapsed or expanded.

Display Container: Allows you to indicate whether the module's

container is shown.

Allow Print: Controls the display of the print icon for each module.
(deprecated)

Allow Syndicate: Controls the setting to allow RSS feeds to be generated
for modules that implement the ISearchable interface. (deprecated)

Is a WebSlice: Allows you to make the module an IE8 webslice.
(deprecated)

Module Container: Allows users with edit permissions to choose the
container for the module. If left to the default, the module will display the
parent page's or site default container.

You can use the Display Container setting to indicate whether you want the
module's container to be shown. Modules are wrapped in something called a
container, which is usually part of a skin/theme package. Containers might do
things like add a title, border, background, or specific text font to the module.
Using the Display Container setting, you can hide the container's styles and
effects. Generally speaking, it is preferred to change the container to a
different container rather than hide the module's container.

The last option in the Basic Settings area is the Module Container drop-down
menu. The default container is set at a site-wide, global level, but you can
override this at the page level and at the individual module level, which is the
very reason this setting is available. An example scenario where this may be
useful is that when you need to display a warning, you could override the
module container at the module level and make use of a container that
displays a red frame around the module.

Just below the Basic Settings panel is the Cache Settings panel where you can
set the module's cache provider. Available options for this are File and
Memory. This chapter is not designed to explain cache in depth, but at a high
level we can all agree we want our websites to load quickly, and this is where
caching becomes beneficial. Caching allows us to store objects so that we can
reduce the number of calls to the database, thus making our pages load more
quickly. Content that doesn't change frequently such as a list of countries or
states is a great candidate for being cached. Choosing the File option stores
cached objects in a physical file on the server, whereas choosing the Memory
option holds the cache in the server memory. Generally speaking, if your
DNN site is hosted in a web farm you would opt for the “file” option and if

your DNN site is hosted on a single server, then you would opt for “memory.”

After you select your caching provider, you can then set the Cache Duration
time in the Cache Duration text box just beneath the caching provider.

Where to Get Modules
Now that you're familiar with what a module is, it's helpful to know where
modules can be found online and how you can also custom develop your own
modules. I'll first discuss some online locations where you can access
modules.

The DNN Store
The most common place that people look for modules is on the DNN Store
(http://Store.DNNSoftware.com). The store is an online marketplace where
module and skin/theme vendors sell their modules and skins/themes. There
are thousands of modules and skins available for you in the store. The
selection of modules in the store is very robust, and also notable is that not
only do many module vendors allow you to buy the install package for the
module, but some also let you purchase the source code for their modules.
Not all vendors have this option, but a good number of them do. This allows
you to further extend and customize a module's functionality to meet your
specific requirements. Also, by having the source code for the module, you
don't have to worry if something happens and the vendor vanishes. By having
the source code, you are able to further develop the code if needed in the
future. The store also has “review” functionality that allows people who
purchased modules to review and rate the modules. When looking to
purchase a module, it's usually helpful to look at the rating and reviews.

Forge
While module vendors run businesses and make their livings by selling
modules, some module developers will give you their modules for free. You
can even find some free modules in the store as well. Often developers create
modules for personal use, and they don't mind allowing others to use the
module, but they just don't want to charge money for it or provide overly
extensive support for the module. This type of occurrence is common for an
open source project like DNN. People want to contribute back, and donating
modules is one way this giving back occurs. Modules are not the only
extension type found in the Forge. You can also download skins/themes and
providers from the Forge. Also, all of what were previously known as the
“core modules” are now listed on the Forge. You can find the Forge at
www.dnnsoftware.com/forge. So if you're looking for some functionality, you

http://Store.DNNSoftware.com
http://www.dnnsoftware.com/forge

should definitely check out the Forge, as you may be able to find a helpful
module there. A host user can browse both the store and the Forge from
within the DNN site. A host user who travels to Host Extensions More
Extensions can search for and instantly deploy modules from the store or
Forge.

Developing Your Own Modules
Developers love DNN because they can quickly get to the heart of their
custom functionality and business logic by leveraging DNN's core capabilities.
Developers need not worry about coding out authentication, permissions,
security, and so on, because all that is handled by DNN. This reduces the time
it takes to deploy custom applications because developers can focus on their
specific module's requirements and functionality while inheriting the rest of
the functionality from DNN. Once developed, a module can be easily installed
into the site via DNN's extension installer.

The only requirements for developing your own module are the knowledge of
ASP.NET and the DNN API. Modules are usually built inside of Visual Studio,
and templates that can speed up this process for developing a module are also
available. We're not going to delve into the details of module development as
that is covered Chapters 13 through 16. Ultimately, the thing to know is that
with knowledge of ASP.NET and DNN and with the Visual Studio software, a
developer can create a custom module.

Viewing Modules and Extensions
Selecting Host Extensions opens the Extensions page. The Extensions page
has the Installed Extensions tab where lists of all extensions are visible in the
system. There are various extension types visible such as authentication
systems, providers, language packs, skins, widgets, and modules. These
various extension types are organized in panels, and the Modules panel is
expanded by default. When you click a panel, it expands to show all installed
extensions of that specific type. All modules shown on this tab are already
installed into your site.

The next tab, Available Extensions, shows extensions that are available to be
installed but are not yet currently deployed in your site. In this tab, various
extension types are presented, again organized by type.

The third tab, Purchased Extensions, displays a list of modules that you have
purchased from the store. You also can download and install to your site from
this view.

Finally, the More Extensions tab shows the interface where you can search
for modules from both the Store and the Forge directly from within your site.

Installing Modules into DNN
Regardless of whether you custom developed your module, bought it from the
DNN Store, or downloaded it from the DNN Forge, eventually you have to
install the module into your site. Since DNN is built with modular
functionality in mind, you can install the module into any DNN site and use
it. This is a benefit of the modular architecture of DNN and the reusable
nature of modules; you can develop a module once and install it into any
number of DNN sites.

Typically, a module install package comes in the form of a Zip file. In order to
install this into your site, you need to be logged in as the host user. After
authenticating as the host user, you should access Host Extensions, which
was discussed in the previous section. On that page you'll see the Install
Extension Wizard menu item just above the tabs of the page. This button is
generally highlighted in blue. Just click Install Extension Wizard and walk
through the process of installing the module. This process consists of a few
screens where you must accept license terms as well as the final screen where
you can see the results of the module's install into your site. If all goes well, a
Successful message appears at the bottom of the install script and then a
button that says Return. Clicking Return recycles the site's application pool
because at this point DNN recognizes that the just installed module placed a
new .dll file in the site's bin folder. (The application pool is a group of one or
more URLs that are served by a worker process. Your DNN site has its own
app pool.) DNN automatically recycles the app pool for the site. For this
reason the next page load after clicking Return can sometimes be a little
slower than simply navigating around the pages of the site.

The Extension Verification System
The Extension Verification System (EVS) (http://EVS.DnnSoftware.com) is a
relatively new service from DNN that helps extension developers and any
users who are thinking of installing an extension into their site test the
extension before installing. The EVS tests any type of extension, but the focus
here is on the module extension type in this chapter.

Upon uploading a module into EVS, the service puts the module through an
extensive set of tests to determine any errors or issues the module may have.
Once the system completes the verification process, a view with all results is
shown. The EVS results denote several properties of the module such as the
minimum version of DNN the module can run on, whether the module is
Azure compatible, and whether the module has errors present. EVS also has
panels that can be expanded to show even more information about any errors
or warnings that EVS may have found while processing the module.

EVS is a great resource for those who may be thinking of buying a module
and installing into their site because you can run the module through EVS
before installing into your site and denote if the module is capable of running
on your site's version of DNN. Likewise for developers, EVS can be beneficial
because it may find some issues in a module of which the developer may not
have been aware. To help communicate the benefit of the EVS service we
have described the EVS printout as being similar to a Carfax that is often
requested before buying a car.

http://EVS.DnnSoftware.com

In Depth with the HTML Module
There are thousands of modules that we could review, but in this section we
review the most commonly used module across the majority of DNN
websites: the HTML module. Typically, there will be some HTML content
displaying images and/or text on nearly every page, and this is where the
HTML module comes into play. It should be easy to see why it's important to
have a very flexible, powerful, and robust feature set in the HTML module.

By default, any time you create a new page in DNN there is automatically one
HTML module placed on the page. As soon as you go into Edit mode on the
page, you will see the HTML module on the page. Typically, you'll see the
black module action menu icons as well as the text Enter Title on the page
indicating that there is an HTML module awaiting configuration and content.

Hovering over the left-most module action menu icon (the pencil icon)
option, Edit Content becomes visible. Click Edit Content to open a pop-up
window, and a rich-text editor is loaded into the pop-up. The editor gives an
accurate representation of what the content will look like once placed on the
page and thus makes it easy for content managers to manage content. Figure
6.6 illustrates the text editor of the HTML module.

Figure 6.6

The HTML editor allows content managers to easily add and update content
through inserting text, inserting images, creating tables, creating hyperlinks,
using templates, spell-check, find and replace, and much more. With
appropriate permissions configured, content managers can easily upload new
images and documents right from within the editor. There is also an HTML
view (sometimes referred to as “code” view) that content managers can toggle
into if they want to see the code created by their content. Some content
managers feel more comfortable with code and use code view to get in and
update their HTML code from the code view perspective.

Administrating the HTML Module
Some modules have so many options and configuration possibilities that they
merit their own administrative area. The HTML module is one of these types
of highly configurable modules. Only the host user has the permissions to
create a new configuration for the HTML module.

As previously shown, the HTML editor has several options available to

content managers. However, sometimes site managers have specific security
roles or specific pages where they don't want users to have all editing
capabilities. A common usage of this is to restrict some users from being able
to upload documents and images while others have the ability to upload these
types of files. Through the HTML Editor Manager option of the Host menu's
Advanced menu, host users can remove any specific functionality that they
want from the HTML editor.

By default, there is an editor configuration for Everyone that exists in your
DNN site. To create a new configuration, simply click the Everyone
configuration and at the bottom click Copy. Clicking Copy starts the process
of creating a new HTML configuration. The first step you must take is to
select the configuration's binding. The host user can bind this configuration
to a specific page, to a specific security role, or across the whole site.

Once the new HTML editor configuration is created, the host user can
configure several settings within the newly created configuration. There are
too many settings to explain here, but a few of these settings are editor's skin,
edit modes (Design, HTML, Preview), the option to automatically remove
scripts, usage of specific styles within the editor, the maximum file size for
uploaded images and documents, as well as restricting specific file extensions
that can be uploaded. Beyond the settings, the host user can also remove any
HTML editor functionality from the editor's user interface. Typically a
content editor sees two rows of icons representing the edit functionality
within the HTML editor. However, the host user can remove any of these
items and show the specific icons (functionality) only to the desired users.

HTML Pro Module Features in Evoq Content
The aforementioned capabilities exist within the HTML module in the DNN
Platform out of the box. Additionally there are advanced features of the
HTML module that are available only in the Evoq Content solution. The
features that are unique to the Evoq Content solution are mentioned more in-
depth in Chapter 20.

Summary
This chapter has explored modules, the most popular extension point in DNN,
at a high level. You should now understand what a module is, where modules
can be purchased and from where they can be downloaded, how to install
them in your site, how to add them to pages in your site, and how to work
with modules on your pages. You've also seen the most commonly used
module in DNN, the HTML module. You should now feel confident in your
ability to work with modules and be able to manage basic content on your
site.

Chapter 7
System Architecture

What's in this chapter?

Delving into patterns

Examining the DNN architecture

Exploring the basic layers in DNN

The initial version of DNN (or DotNetNuke) was derived from the IBuySpy
Portal starter kit that was released in both a C# version and a VB.NET
version. IBuySpy was designed to provide a real-world example of some of the
new development concepts of the ASP.NET platform.

While DotNetNuke 7 still retains some of the core principles that were
introduced in IBuySpy Portal, if you look at the source of DNN today, it
doesn't really resemble IBuySpy. Actually, DNN 7 bears little resemblance to
the earliest versions of DNN. Since DNN 6, the application is written in C#,
while earlier versions were written in VB.NET.

The key technologies used in DNN have changed over the years. DNN 7 uses
the following technologies in its supported architecture:

Microsoft Internet Information Services (IIS) version 7 or later running in
Integrated Pipeline mode.

An operating system that supports IIS 7 (that is, Windows Vista, Windows
7 or Windows 8, Windows 2008 Server, or Windows Server 2012).

The ASP.NET framework. (Early versions of DNN ran on the then-current
version of ASP.NET. DotNetNuke version 7 requires ASP.NET version 4.0
or later for both runtime and development.)

C# (Visual Basic.NET or any other CLR-compliant language can be used to
write extensions to the platform.)

ASP.NET Web forms.

ASP.NET Web API.

WebFormsMVP framework.

PetaPoco micro-ORM.

JQuery, JQuery-UI, and Knockout JavaScript frameworks.

Microsoft SQL Server 2008 (Express, Standard or Enterprise) or Microsoft
SQL Server 2012 (Express, Standard or Enterprise).

In addition, DotNetNuke uses a number of key design patterns and concepts:

Provider Pattern

Service Locator Pattern

Inversion of Control Container

Repository Pattern using Entities and Controllers

Centralized Custom Business Object Hydration

Model View Presenter and Module View Controller Patterns

Patterns and Concepts
DNN uses a number of key concepts and patterns. Patterns are architectural
recipes that help developers to write certain types of functionality in a reliable
fashion. For example the Provider Pattern is used to provide a way to extend
the DNN Platform. The Service Locator Pattern and Inversion of Control
Container are used to provide dependency inversion, which allows the
platform to be built in a modular fashion and supports testability.

Provider Pattern
The Provider Pattern is a design pattern that was formalized in ASP.NET 2.0
to provide extension points for an application. DNN has adopted this pattern
throughout the framework. In the Provider Pattern, the API (Application
Programming Interface) itself is separated from the implementation of the
API. The basic functionality is defined in an interface or more commonly an
abstract base class. The actual implementation is then defined in a concrete
implementation.

This fundamental design concept is not new. The Provider Pattern allows for
a default implementation, but it also allows developers to create alternate
implementations.

Several areas in DNN use the Provider Pattern:

Data Provider

Membership Provider

Profile Provider

Roles Provider

Navigation Provider

Caching Provider

Scheduling Provider

Logging Provider

HTML Editor Provider

Search Provider

Friendly URL Provider

Folder Provider

Most providers use configuration to determine the default implementation.
This configuration information is usually placed in the web.config file,
although some providers use more advanced configuration.

An example of the Folder Provider configuration section follows:

<folder defaultProvider="StandardFolderProvider">
 <providers>
 <clear/>
 <add name="StandardFolderProvider"
 type="DotNetNuke.Services.FileSystem.StandardFolderProvider,
DotNetNuke"/>
 <add name="SecureFolderProvider"
 type="DotNetNuke.Services.FileSystem.SecureFolderProvider,
DotNetNuke"/>
 <add name="DatabaseFolderProvider"
 type="DotNetNuke.Services.FileSystem.DatabaseFolderProvider,
DotNetNuke"/>
 </providers>
</folder>

The Provider API requires that providers define a name and type. In addition,
a default provider must be defined. The Folder Provider is quite simple, but
some providers require additional settings. An example of a provider that
requires such additional settings is the Data Provider.

<data defaultProvider="SqlDataProvider">
 <providers>
 <clear/>
 <add name="SqlDataProvider"
 type="DotNetNuke.Data.SqlDataProvider, DotNetNuke"
 connectionStringName="SiteSqlServer"
 upgradeConnectionString=""
 providerPath="˜\Providers\DataProviders\SqlDataProvider\"
 objectQualifier="dnn_"
 databaseOwner="dbo"/>
 </providers>
</data>

Providers are called using an Instance method on the base type:

var defaultProvider = DataProvider.Instance();

This Instance method returns the default provider. If a specific instance is
required, then the Instance method has an overload that takes the name of
the instance:

var secureProvider = FolderProvider.Instance("SecureFolderProvider");

Prior to DNN 5, the providers were loaded when first referenced using a
Singleton pattern, but since DNN 5, the providers have been loaded on
Application Start and loaded into an Inversion of Control (IoC) container. The
Instance methods then retrieve the appropriate instance from the container.

Service Locator Pattern
The Service Locator Pattern is similar to the Provider Pattern. In the Service
Locator Pattern, an interface is used to define the API. As an example, Listing
7.1 shows the IJavaScriptLibraryController interface that defines the API
used to access JavaScriptLibrary entities.

Listing 7.1: The IJavaScriptLibraryController Interface

public interface IJavaScriptLibraryController
{
 void DeleteLibrary(JavaScriptLibrary library);

 JavaScriptLibrary GetLibrary(Func<JavaScriptLibrary, bool>
predicate);

 IEnumerable<JavaScriptLibrary>
GetLibraries(Func<JavaScriptLibrary,
 bool> predicate);

 IEnumerable<JavaScriptLibrary> GetLibraries();

 void SaveLibrary(JavaScriptLibrary library);
}

Unlike with the Provider Pattern, there really isn't any intention to support
multiple implementations of the interface, except that the implementation as
used in DNN 7 supports the concept of a testable instance so that the
developer can write code that is testable.

As with the Provider Pattern, the Service Locator Pattern provides an
Instance method (actually the ServiceLocator base class implements this as
a property, but the concept is the same) so developers can make calls like

var libraries = JavaScriptLibraryController.Instance.GetLibraries();

Listing 7.2 shows the JavaScriptLibraryController class. The Service Locator

Pattern also provides a GetFactory factory method that determines the
instance returned. Under the covers the ServiceLocator base class manages a
Singleton instance, and the GetFactory method is called if there is no instance
to return.

There is no configuration required for the Service Locator Pattern and so it is
used in situations where extensibility is not required.

Listing 7.2: The JavaScriptLibraryController Class

public class JavaScriptLibraryController
 : ServiceLocator<IJavaScriptLibraryController,
JavaScriptLibraryController>
 , IJavaScriptLibraryController
{
 protected override Func<IJavaScriptLibraryController>
GetFactory()
 {
 return () => new JavaScriptLibraryController();
 }
}

In order to support testing, the ServiceLocator base class also provides a
SetTestableInstance method. This allows Unit Test writers to create a mock
of the interface and use it in the unit test.

var mockSearchHelper = new Mock<ISearchHelper>();
SearchHelper.SetTestableInstance(_mockSearchHelper.Object);

Inversion of Control (IoC) Container
DNN includes a simple Inversion of Control Container. In simplest terms, an
Inversion of Control Container is an in-memory store of objects that can be
accessed at any time. As the Provider Pattern supports multiple
implementations, the different implementations are loaded into the container
on application start.

Developers don't need to worry about explicit dependencies. They can
program against an interface or abstract base class, and the Inversion of
Control Container takes care of determining which implementation to return.

Let's look at how the Provider Pattern uses the IoC Container to return the
correct provider instance. During application start the container is created:

ComponentFactory.Container = new SimpleContainer();

Next, the providers are instantiated based on the web.config settings:

ComponentFactory.InstallComponents(new ProviderInstaller("data",

typeof(DataProvider),

typeof(SqlDataProvider)));

Under the covers the InstallComponents method registers all the providers
that implement the Data Provider API. Finally, the DataProvider class's
Instance method retrieves the default DataProvider instance by calling the
GetComponent method of the ComponentFactory class:

public static DataProvider Instance()
{
 return ComponentFactory.GetComponent<DataProvider>();
}

Repository Pattern
When dealing with the objects of the business layer, DNN uses a variation of
the Repository Pattern. DNN's objects are lightweight—they are a blueprint or
representation of an entity that is important to the application. These entities
have properties, but most of the time they have no methods. The business
logic in DNN is encapsulated in additional classes. These are often called
repositories, but DNN uses the name “Controller” to refer to the business
logic classes. This naming is historical, but the Controller classes are
essentially Repository classes.

You have already seen an example of a DNN Controller class
(JavaScriptLibraryController and its companion interface
IJavaScriptLibraryController), which contains the methods that
manipulate JavaScriptLibrary entities.

Listing 7.3 shows the JavaScriptLibrary entity class.

Listing 7.3: The JavaScriptLibrary Class

[Serializable]
public class JavaScriptLibrary : IXmlSerializable
{
 public int JavaScriptLibraryID { get; set; }
 public int PackageID { get; set; }

 public string LibraryName { get; set; }
 public Version Version { get; set; }
 public string ObjectName { get; set; }
 public string FileName { get; set; }
 public ScriptLocation PreferredScriptLocation { get; set; }
 public string CDNPath { get; set; }
 #region IXmlSerializable Implementation
 public XmlSchema GetSchema()
 {
 throw new NotImplementedException();
 }
 public void ReadXml(XmlReader reader)
 {
 while (reader.Read())
 {
 if (reader.NodeType == XmlNodeType.EndElement)
 {
 break;
 }
 if (reader.NodeType == XmlNodeType.Whitespace)
 {
 continue;
 }
 else
 {
 switch (reader.Name)
 {
 case "javaScriptLibrary":
 break;
 case "libraryName":
 LibraryName =
reader.ReadElementContentAsString();
 break;
 case "objectName":
 ObjectName =
reader.ReadElementContentAsString();
 break;
 case "fileName":
 FileName =
reader.ReadElementContentAsString();
 break;
 case "preferredScriptLocation":
 var location =
reader.ReadElementContentAsString();
 switch (location)
 {
 case "BodyTop":
 PreferredScriptLocation =
ScriptLocation.BodyTop;
 break;
 case "BodyBottom":

 PreferredScriptLocation =
ScriptLocation.BodyBottom;
 break;
 default:
 PreferredScriptLocation =
ScriptLocation.PageHead;
 break;
 }
 break;
 case "CDNPath":
 CDNPath =
reader.ReadElementContentAsString();
 break;
 default:
 var content =
reader.ReadElementContentAsString();
 break;
 }
 }
 }
 }
 public void WriteXml(XmlWriter writer)
 {
 writer.WriteStartElement("javaScriptLibrary");
 writer.WriteElementString("libraryName", LibraryName);
 writer.WriteElementString("fileName", FileName);
 writer.WriteElementString("objectName", ObjectName);
 writer.WriteElementString("preferredScriptLocation",
 PreferredScriptLocation.ToString());
 writer.WriteElementString("CDNPath", CDNPath);
 writer.WriteEndElement();
 }
 #endregion
}

While it is not true that the JavaScriptLibrary class has no methods, the
only methods it contains are methods that implement the IXmlSerializable
interface.

Architectural Overview
By using a multitiered architecture, the application can be distributed across
the web server and the database server, as shown in Figure 7.1.

Figure 7.1

The web server contains the Presentation, Business, and Data Access Layers,
and part of the Data Layer. The database server contains the rest of the Data
Layer.

Data Layer
The Data Layer sits at the bottom of the multilayer framework. As DNN uses
the Provider Model extensively (see earlier discussion), and in particular it
includes an abstract Data Provider, in theory the Data Layer could be
implemented for many different databases. In practice, while there have been
MySQL and Oracle implementations, the only Data Provider that has been
supported continuously is a Microsoft SQL Server implementation of the
Data Provider API.

DNN includes a number of script files that are executed during installation or
upgrade. These scripts can be found in the folder
Providers/DataProviders/SqlDataProvider. The actual scripts executed
depend on the version of DotNetNuke being installed. These scripts create the
database tables, stored procedures, and data necessary to run DNN. There are
two classes of scripts: install scripts and upgrade scripts.

Install Scripts

There are two installation scripts that are run only during a new installation.
These scripts are as follows:

DotNetNuke.Schema.SqlDataProvider: Installs the tables, views,
and stored procedures

DotNetNuke.Data.SqlDataProvider: Fills the tables with any default
data

These scripts are updated only at major versions (for example, DNN 5.0, DNN
6.0, and DNN 7.0).

Upgrade Scripts

The second group of scripts are upgrade scripts. These scripts make any
changes to the schema or base data that are required to upgrade from one
version to the next. The file-naming convention includes the version of the
script expressed in the format 0x.0y.0z followed by the SqlDataProvider
extension.

For example, the script to upgrade from 7.0.0 to 7.0.1 is named 07.00.01.
SqlDataProvider.

As the install scripts are updated only at major versions, these upgrade scripts
may be executed during either install or upgrade.

For example, installing DNN version 7.0.3 executes the following scripts:

DotNetNuke.Schema.SqlDataProvider

DotNetNuke.Data.SqlDataProvider

07.00.01.SqlDataProvider

07.00.02.SqlDataProvider

07.00.03.SqlDataProvider

Upgrading from version DNN 6.2.8 (the last version prior to the release of
DNN 7) to the same version executes the following scripts:

07.00.00.SqlDataProvider

07.00.01.SqlDataProvider

07.00.02.SqlDataProvider

07.00.03.SqlDataProvider

Script Syntax

SQL Data Provider scripts are written in T-SQL, but there are two important
non-SQL tokens used in them:

{databaseOwner} defines the database owner to append to data objects in
the scripts.

{objectQualifier} defines a string to prefix the data objects within the
scripts.

Both of these tokens represent a programmatically replaceable element of the
script. They are defined in the data element of the web.config file, which you
saw previously but is reproduced here:

 <data defaultProvider="SqlDataProvider">
 <providers>
 <clear/>
 <add name="SqlDataProvider"
 type="DotNetNuke.Data.SqlDataProvider, DotNetNuke"
 connectionStringName="SiteSqlServer"
 upgradeConnectionString=""

providerPath="˜\Providers\DataProviders\SqlDataProvider\"
 objectQualifier="dnn_"
 databaseOwner="dbo"/>
 </providers>
 </data>

For example, the T-SQL code in Listing 7.4 from the
07.00.06.SqlDataProvider script shows how the GetDatabaseInstallVersion
stored procedure is created.

Listing 7.4: The Script to Create the
GetDatabaseInstallVersion Stored Procedure

IF EXISTS (SELECT * FROM dbo.sysobjects WHERE id =
object_id(N'{databaseOwner}
[{objectQualifier}GetDatabaseInstallVersion]')
AND OBJECTPROPERTY(id, N'IsPROCEDURE') = 1)
 DROP PROCEDURE {databaseOwner}
[{objectQualifier}GetDatabaseInstallVersion]
GO
CREATE PROCEDURE {databaseOwner}

[{objectQualifier}GetDatabaseInstallVersion]
AS
 SELECT TOP 1
 Major,
 Minor ,
 Build
 FROM {databaseOwner}{objectQualifier}Version V
 WHERE VersionId IN
 (SELECT MAX(VersionId) AS VersionID
 FROM {databaseOwner}[{objectQualifier}Version]
 GROUP BY CONVERT(NVARCHAR(8), CreatedDate,
112)
)
GO

This code looks like T-SQL with the addition of the two non-SQL tags. The
first block of T-SQL checks if the stored procedure exists, and if it does, the
stored procedure is dropped. The check for existence is important: DNN
developers try to ensure that the scripts can be reexecuted, so checking for
the existence of an object before deletion makes the code more resilient.

The next line creates the new stored procedure:

CREATE PROCEDURE {databaseOwner}
[{objectQualifier}GetDatabaseInstallVersion]

The new stored procedure is created in the context of the databaseOwner as
defined in web.config, and the name of the stored procedure is prefixed by the
objectQualifier value from web.config.

If you replace the tokens with the values from the example web.config code
(seen previously), then the previous code would be converted to

CREATE PROCEDURE dbo[dnn_GetDatabaseInstallVersion]

The objectQualifier attribute is useful when you have only one database but
want to support more than one application. As many applications have the
same names for database objects, this allows you to separate the DotNetNuke
database objects from the other application's objects.

Data Access Layer
The Data Access Layer provides the interface between the Data Layer and the
Business Layer. It allows for data to flow to and from the data store.

As mentioned previously, the Data Access Layer uses the Provider Pattern.

The Data Access Layer consists of two classes:

DataProvider: An abstract base class that establishes the contract that the
implementation of the API must fulfill

SqlDataProvider: A concrete class that inherits from the abstract
DataProvider class and fulfills the contract by overriding the necessary
members and methods

The core DNN release provides a Microsoft SQL Server implementation of the
Data Provider API.

Methods in the DataProvider class are called by using the Instance method to
return the concrete instance, so let's look at the method that retrieves a Host
setting of GetHostSetting. The following code is used to call the
GetHostSetting method:

DataProvider.Instance().GetHostSetting(settingName)

The GetHostSetting method is defined in the abstract DataProvider base
class. The Instance method on the DataProvider class is used to return an
instance of the actual implementation in SqlDataProvider.

Prior to DNN version 7.0, the DataProvider method was defined as follows:

public abstract IDataReader GetHostSetting(string settingName);

with the actual concrete implementation in SqlDataProvider being defined as
follows:

public override IDataReader GetHostSetting(string settingName)
{
 return SqlHelper.ExecuteReader(ConnectionString, DatabaseOwner +
 ObjectQualifier + "GetHostSetting",
settingName);
}

There are a couple of things to note here. First, the contract returns an
interface—IDataReader. This is a very common practice in the Provider Model
that either the parameters or the return type is an interface.

In addition, the concrete implementation shows a reference to the SqlHelper
class. SqlHelper is part of the Microsoft Data Access Application Block
(DAAB). Prior to version 7, DNN used this library to improve performance
and reduce the amount of custom code required for data access. The DAAB is
a .NET component that uses ADO.NET to call stored procedures and execute

SQL commands on Microsoft SQL Server.

In version 7 of DNN there was a significant refactoring of the Data Access
Layer. Several versions ago the development team introduced some generic
methods.

 public abstract void ExecuteNonQuery(string procedureName,
 params object[] commandParameters);
 public abstract IDataReader ExecuteReader(string
procedureName,
 params object[] commandParameters);
 public abstract object ExecuteScalar(string procedureName,
 params object[] commandParameters);
 public abstract T ExecuteScalar<T>(string procedureName,
 params object[] commandParameters);
 public abstract DataSet ExecuteDataSet(string procedureName,
 params object[] commandParameters);

These methods allowed developers to write code in the Business Layer like
the following code (without the need to create their own Data Access Layer):

var taskId = DatatProvider.Instance.ExecuteScalar<int>("CreateTask",
taskName);

Prior to DNN 7, it had been the practice to create a new DataProvider method
for each new stored procedure created in the database. In DNN 7, the practice
changed to use these generic methods. While the existing DataProvider
methods needed to be retained, as they were considered part of the core API,
they were refactored to use these new generic methods.

For example, the GetHostSetting method described earlier in this section was
refactored to

public virtual IDataReader GetHostSetting(string settingName)
{
 return ExecuteReader("GetHostSetting", settingName);
}

Note that for backward compatibility the method was converted to a virtual
method (rather than abstract) once the SqlDataProvider implementation of
the method was removed.

There was a second major change made to the Data Access Layer in DNN 7.
The SqlDataProvider methods were refactored to use PetaPoco—a newer,
more flexible replacement for SqlHelper.

NOTE

Peta Poco is micro-ORM released under an open source license by Top
Ten Software. For more information, see
http://www.toptensoftware.com/petapoco/.

Data Access Layer (DAL) 2

In addition to the changes identified in the previous section, DNN 7
introduced a completely new Data Access Layer—DAL 2. The concept of the
DAL 2 was twofold:

Make it easier for developers to work with the data layer by removing the
need for developers to write T-SQL

Introduce best practices that have been identified in the last few years for
working with data

After much research it was decided that the new Data Access Layer would be
based on PetaPoco. As mentioned previously, PetaPoco can be thought of as a
second-generation Data Access Block, but it is much more than that. Whereas
the Data Access Block deals with low-level data objects—IDataReader and
DataSet—PetaPoco works with Plain Old CLR Objects (POCOs).

For example, the ExecuteReader method in the SqlHelper class that is used in
the Microsoft DAAB returns an IDataReader. This is demonstrated in the
GetTabs method in the SqlDataProvider class in DNN 6.

public override IDataReader GetTabs(int portalId)
{
 return SqlHelper.ExecuteReader(ConnectionString,
 DatabaseOwner + ObjectQualifier + "GetTabs",
GetNull(portalId));
}

Because an IDataReader is returned, the GetTabs method in TabController
still needs to create TabInfo objects from the returned IDataReader.

var tabs = CBO.FillCollection<TabInfo>(Provider.GetTabs(portalID));

Using the DAL 2 in the Business Layer could be rewritten as shown by the
following code:

http://www.toptensoftware.com/petapoco/

using (IDataContext ctx = DataContext.Instance())
{
 var rep = ctx.GetRepository<TabInfo>();
 tabs = rep.Get<int>(portalId);
}

There is no need to write an additional Data Access Layer method to return an
IDataReader, and there is no need to call a helper class to hydrate the tabs.
The core DAL 2 classes working with PetaPoco do all the grunt work for you.
For most scenarios you no longer need to write stored procedures, although
there are still valid reasons to do so—for instance to improve performance.

Business Layer
Sitting on top of the Data Access Layer, the Business Layer provides the
business logic for all core site activity. This layer exposes many services to the
DNN core as well as to third-party extensions. These services include

Page management

File management

Localization

Caching

Exception management

Event logging

Personalization

Search

Installation and upgrades

Membership, roles, and profile

Security permissions

The JavaScriptLibraryController class described earlier in the discussion of
the Service Locator Pattern provides an excellent example of a Business Layer
Controller. Listing 7.5 shows the complete class listing.

Listing 7.5: The JavaScriptLibraryController Class

public class JavaScriptLibraryController

 : ServiceLocator<IJavaScriptLibraryController,
 JavaScriptLibraryController>
 , IJavaScriptLibraryController
{
 private void ClearCache()
 {

DataCache.RemoveCache(DataCache.JavaScriptLibrariesCacheKey);
 }
 protected override Func<IJavaScriptLibraryController>
GetFactory()
 {
 return () => new JavaScriptLibraryController();
 }
 #region IJavaScriptController Implementation
 public void DeleteLibrary(JavaScriptLibrary library)
 {

DataProvider.Instance().ExecuteNonQuery("DeleteJavaScriptLibrary",

library.JavaScriptLibraryID);
 ClearCache();
 }
 public JavaScriptLibrary GetLibrary(Func<JavaScriptLibrary,
bool> predicate)
 {
 return GetLibraries().SingleOrDefault(predicate);
 }
 public IEnumerable<JavaScriptLibrary>
GetLibraries(Func<JavaScriptLibrary,
 bool>
predicate)
 {
 return GetLibraries().Where(predicate);
 }
 public IEnumerable<JavaScriptLibrary> GetLibraries()
 {
 return CBO.GetCachedObject<IEnumerable<JavaScriptLibrary>>
(
 new
CacheItemArgs(DataCache.JavaScriptLibrariesCacheKey,

DataCache.JavaScriptLibrariesCacheTimeout,

DataCache.JavaScriptLibrariesCachePriority),
 c =>
CBO.FillCollection<JavaScriptLibrary>(

DataProvider.Instance().ExecuteReader("GetJavaScriptLibraries")));
 }
 public void SaveLibrary(JavaScriptLibrary library)

 {
 library.JavaScriptLibraryID =
 DataProvider.Instance().ExecuteScalar<int>
("SaveJavaScriptLibrary",

library.JavaScriptLibraryID,
 library.PackageID,

library.LibraryName,

library.Version.ToString(3),
 library.FileName,

library.ObjectName,

library.PreferredScriptLocation,
 library.CDNPath);
 ClearCache();
 }
 #endregion
}

This is a simple repository class that provides the so-called CRUD (Create,
Retrieve, Update, and Delete) operations, but it demonstrates a couple of
important practices.

Simplicity: Where possible, the DotNetNuke API aims for simplicity.
This is not always possible, and sometimes APIs need to be extended. But
this API covers all aspects of manipulating the JavaScriptLibrary object
with five simple methods. This is achieved by providing two very flexible
Get methods that take a LINQ predicate.

Caching: No single DNN install should have more than 100 JavaScript
Libraries, and in general the set of JavaScript Libraries will be constant for
large periods of time, so JavaScript libraries are a great candidate for
caching.

Constants: Note the use of constants for the caching properties. This
ensures that spelling mistakes in so-called magic strings don't cause the
application to misbehave.

ClearCache: The class provides a private ClearCache method so that both
the DeleteLibrary and SaveLibrary methods can ensure the cache is
cleared when the collection is changed for any reason.

GetCachedObject: The GetLibraries method uses the core

GetCachedObject method, which provides a thread-safe mechanism to
manage the cache.

Presentation Layer
At the top of the stack is the Presentation Layer. The Presentation Layer
provides the interface for users to access the application. This layer consists
of the following elements:

Web Forms: The main web form is Default.aspx. This page is the
principle entry point to the application. It is responsible for dynamically
loading the other elements of the Presentation Layer. Default.aspx is in
the root installation directory.

Skins: The Default.aspx web form loads the skin for the page based on
the settings for each page and site. The base Skin class is in the
DotNetNuke.UI.Skins namespace. You can find the base Skin class in the
/Library/UI/Skins/Skin.cs file.

Panes: The Pane class was introduced in DNN 5. A skin can contain
multiple content panes, which form a collection of pane objects based on
the design and settings for each skin, page, and site. The Pane class is
located in the DotNetNuke.UI.Skins namespace. You can find the base Pane
class in the /Library/UI/Skins/Pane.cs file.

Containers: The pane object loads the container for each module based
on the settings for each module, page, and site. The base Container class is
located in the DotNetNuke.UI.Containers namespace. You can find the
base Container class in the /Library/UI./Containers/Container.cs file.

Module controls: All modules have at least a single control that is the
user interface for the module. These controls are loaded by a container
object based on the settings for each module, page, and site. The module
user controls are in .ascx files in /DesktopModules/[module name].

Client-side scripts: There are several client-side JavaScript files that are
used by the core user-interface framework. For example, the
/DotNetNuke/js/dnn.controls.dnnmenu.js script file is used by the
DNNMenu control. Custom modules can include and reference JavaScript
files as well. Client-side JavaScript files that are used by the core are in the
/js folder or in the /resources folder. Some skins may use client-side
JavaScript, in which case the scripts are in the skin's installation directory.

Any client-side scripts used by modules are located under the module's
installation directory.

Services Framework endpoints: DNN 7 introduced a Services
Framework based on ASP.NET Web API. This provides REST-like
endpoints that can be called from client-side code. In general, these
services consume or return JSON-formatted data.

When a visitor first browses to a DNN site, the web form that loads is
Default.aspx. The code behind for that page is Default.ascx.cs and is found in
the website's root folder. The code behind file loads the selected skin for the
current page.

The skin is a custom user control that must inherit from the base Skin class.
Prior to DNN 5 the Skin class was where most of the code that handled the
loading of modules and containers was located. In DNN 5, the code was
refactored, and the Pane class introduced.

The Skin class processes the skin file, instantiates a Pane object for each pane
defined in the skin, and places them into a Panes collection. Next, the skin
iterates through the list of modules that are part of the current page and
passes the module to the appropriate Pane object. If there is more than one
module in the same pane, then the pane in turn has a collection of Modules.

Next, each Pane object determines which Container is assigned to each
module. The Pane instantiates a Container object for each module and passes
the module to the appropriate Container object.

Skins, containers, and modules can all include their own style sheets, and
each one determines if the file exists; if it does, it registers the file with the
ClientResourceManager. The ClientResourceManager class ensures that any
client resources (CSS files or JS files) are rendered only once in a page and
are rendered in the correct order and in the correct location. See Chapter 17,
“Skinning,” for more information about skinning.

Namespace Overview
DNN 7 is quite a large framework, but it is organized into a coherent
collection of namespaces and classes. Namespaces are a way to group classes
that are related to one another. For example, all the classes that are used to
manage pages (tabs) are located in the DotNetNuke.Entities.Tabs namespace.
By grouping related classes together, developers need to use only a single
using statement to be able to reference all the classes in the same namespace.

Using DotNetNuke.Entities.Tabs;

Most of the namespaces that are relevant to the third-party DNN developer
are located in two assemblies: DotNetNuke.dll and DotNetNuke.Web.dll.

DotNetNuke.dll
Here is a brief description of the namespaces found in the main assembly
DotNetNuke.dll:

DotNetNuke.Collections: This namespace is used for the thread-safe
collections (and their supporting classes) that are used in DNN: for
example, SharedList and SharedDictionary.

DotNetNuke.Common: The common namespace is primarily used for
static helper classes like Globals, CBO, XmlUtils, and so on.

DotNetNuke.ComponentModel: The ComponentModel namespace is
used for the IoC Container and its supporting classes.

DotNetNuke.Data: This namespace is used for all classes that make up
the Data Access Layer.

DotNetNuke.Entities: This namespace is used for classes that make up
the core entities of DNN, e.g., PortalInfo, TabInfo.

DotNetNuke.ExtensionPoints: This namespace is new in version 7.1
of DNN and provides classes that support new MEF (Managed
Extensibility Framework) endpoints.

DotNetNuke.Framework: This namespace provides classes that
provide support for the DNN Framework itself.

DotNetNuke.Modules: This namespace is the home of modules that
are included as part of DNN.

DotNetNuke.Security: This namespace provides classes that are
involved in securing DNN; for example, roles and permissions.

DotNetNuke.Services: This namespace is the largest namespace and
provides a home for all the services provided by DNN. These include
caching, localization, logging, and so on.

DotNetNuke.UI: This namespace includes all the classes that are part of
the web UI—Skin, Pane, Container, and some module base classes and
interfaces; for example, ModuleUserControlBase, IActionControl,
ISkinControl.

DotNetNuke.Web.dll
DotNetNuke.Web mainly contains classes there are used in the Presentation
Layer, including a lot of web controls based on Telerik RAD Controls as well
as the Services Framework classes. All namespaces in this assembly are part
of the DotNetNuke.Web namespace.

DotNetNuke.Web.Api: This namespace includes classes that support
the new Web API–based Services Framework.

DotNetNuke.Web.InternalServices: This namespace includes the
internal Web API–based services used within the platform.

DotNetNuke.Web.Mvp: This namespace includes classes that support
DNN's implementation of the Model-View-Presenter pattern based on
WebFormsMVP.

DotNetNuke.Web.UI: This namespaces includes web controls used by
module controls. It is mainly made up of lightweight wrappers for the
Telerik RAD Controls.

DotNetNuke.Web.Validators: This namespace includes attribute-
based validators used by the MVP implementation.

Summary
In this chapter you have reviewed the major components of the DNN
Architecture as found in DNN 7. You have reviewed the common patterns and
best practices as well as the different layers found in DNN. Finally you have
reviewed the most commonly used namespaces that are of interest to third-
party developers. In the next chapter you will look at some of the most
common APIs and how they can be used.

Chapter 8
Core DNN APIs

What's in this chapter?

Using hydration methods

Caching data

Logging events

Managing exceptions

Scheduling tasks

Examining module interfaces

DNN provides significant capability straight out of the box. You just have to
install and go. Sometimes, however, you may need to extend the base
framework. DNN provides a variety of integration points from HTTP handlers
to custom modules. To take full advantage of the framework, it is important
to understand some of the base services and APIs provided.

This chapter examines some of the core services provided by DNN. You can
use these services in your own code. As many of the services are built using
the Provider model, you can also provide alternate implementations to swap
out the base functionality for your own version. For example, if you want
your events logged to a custom database or to the Windows Event Logs, just
create your own Logging Provider.

The CBO Class
If you are fetching data from the database, then you may be interested in
what the CBO class has to offer. CBO stands for Custom Business Object, and
the class is designed to serialize and de-serialize objects.

The CBO methods can be broken down into three groups.

Methods that are used to “create” (or hydrate) business objects from
readers returned from the database

Methods that are used to serialize a business object into XML

Methods that are used to de-serialize XML into a business object

The first group of methods are the ones that are used most by third-party
developers while the serialization and de-serialization methods are primarily
used by the core extension package creator and extension installer.

Hydration Methods
Table 8.1 shows the list of hydration methods provided by the CBO class. There
are a lot of methods that you can use, and the choice of method depends
primarily on what type of collection you want to use. Internal APIs that have
been around since the early days of DNN are more likely to use methods that
return an ArrayList, while APIs that have been developed in the last few
years predominantly use the generic forms of the methods.

Table 8.1 The CBO Hydration Methods

Method Description
CreateObject

(3 overloads)
Technically this method is not a hydration method. The
CreateObject method can be used to create new business
objects.

FillObject (4
overloads)

The FillObject methods are used to create a single object
from a data reader. These days the two generic
FillObject<T> methods are probably used most of the time.

FillCollection

(8 overloads)
The FillCollection methods are used to create a collection
from a data reader. Again, the generic methods
FillCollection<T> methods are probably used most of the
time.

FillDictionary

(5 overloads)
The FillDictionary methods are used to create a dictionary
from a data reader. You can provide the name of a property
to use as the dictionary key or a default field will be used.FillQueryable The FillQueryable method is used to create a Queryable
collection from a data reader.

FillSortedList The FillSortedList method is used to create a
SortedList<TKey, TValue> collection from a data reader.

Let's look at a simple example of the use of the FillCollection method.

IDataReader reader =
DataProvider.Instance().ExecuteReader("GetTasks");
IList<Task> tasks = CBO.FillCollection<Task>(reader);

The DataProvider's ExecuteReader method returns an IDataReader that is
converted by FillCollection into a List<Task>.

The IHydratable Interface
The CBO hydration methods use reflection to map the data in the data reader.
Reflection is not always the fastest way to do this mapping so DNN includes a
mechanism to delegate the mapping to the object itself.

This is accomplished using the IHydratable interface. The IHydratable
interface contains two members.

 public interface IHydratable
 {
 int KeyID { get; set; }
 void Fill(IDataReader dr);
 }

Module developers can implement this interface in their own objects, and the
Fill method would then do the mapping. The advantage here is that the
module developer knows the structure of the data being returned and does
not need to do any reflection.

The ModuleControlInfo class provides an example of a Fill method
implementation.

 public void Fill(IDataReader dr)
 {
 ModuleControlID = Null.SetNullInteger(dr["ModuleControlID"]);
 FillInternal(dr);
 ModuleDefID = Null.SetNullInteger(dr["ModuleDefID"]);
 ControlTitle = Null.SetNullString(dr["ControlTitle"]);

 IconFile = Null.SetNullString(dr["IconFile"]);
 HelpURL = Null.SetNullString(dr["HelpUrl"]);
 ControlType = (SecurityAccessLevel) Enum.Parse(typeof
 (SecurityAccessLevel),
Null.SetNullString(dr["ControlType"]));
 ViewOrder = Null.SetNullInteger(dr["ViewOrder"]);
 SupportsPopUps = Null.SetNullBoolean(dr["SupportsPopUps"]);
 //Call the base classes fill method to populate base class
properties
 base.FillInternal(dr);
 }

In this case, the method maps specific columns to the relevant properties but
also calls a method in the base class to map the columns that are relevant to
the base class.

The KeyID property is used only by the FillDictionary method. It is used to
identify the “value” to be used as the key in the Dictionary for each instance.
Usually the KeyID implementation just returns the value of the property that
is used as the primary key in the database. For example, the KeyID property in
ModuleControlInfo is as follows:

 public int KeyID
 {
 get
 {
 return ModuleControlID;
 }
 set
 {
 ModuleControlID = value;
 }
 }

Implementing this interface is quite simple and ensures that the hydration of
your objects is as fast as it can be. It also ensures that the mapping is done
correctly, especially when using enum-type properties.

Caching
Database access can be relatively expensive, especially if the database does
not reside on the same server as the web server. While, ultimately, everything
has to be retrieved and persisted to a database, you can use caching to save
some data in memory for fast access.

ASP.NET provides an in-process cache, but in a cloud or web-farm scenario it
is often better to use a shared out-of-process cache. For that reason, DNN
uses a Provider model to implement caching.

The DataCache Class
In a similar way to the CBO class, the DataCache class works as a helper class to
DNN's caching framework. Table 8.2 lists the important methods of the
DataCache class.

Table 8.2 Selected Public Methods in DataCache

Method Description
ClearXXXCache()

(16 variants)
This group of methods allows developers to clear groups
of cached items. For example,
ClearFolderCache(portalId) allows the developer to pass
the current portal ID and clear all folder-related caches for
that portal.

GetCache() (2
overloads)

GetCache allows a developer to retrieve a specific cached
object based on its key.

GetCachedData<T>
()

This method allows the developer to provide a callback to
reload the cache if the item is not present in the cache.

RemoveCache() RemoveCache allows a developer to clear a specific cached
object from the cache based on its key.

SetCache (6
overloads)

SetCache allows a developer to save an item in the cache.
The different overloads allow the developer to set a cache
dependency, a priority, or an expiry time.

GetCachedData

The most important of all the methods in this class is GetCachedData. One of
the challenges with caching is that the ASP.NET cache is not inherently

thread-safe. This means that as developers we need to ensure that multiple
ASP.NET requests do not try to modify the cache at the same time.

GetCachedData<T> ensures that cached data is managed in a thread-safe
manner. This method is so important in caching data that it also can be found
in the CBO class—GetCachedObject<T>. CBO.GetCachedObject<T> simply wraps
GetCachedData<T>, so any discussion of one applies to both methods.

Look an example of the method's use.

public IEnumerable<JavaScriptLibrary> GetLibraries()
{
 var cacheArgs = new
CacheItemArgs(DataCache.JavaScriptLibrariesCacheKey,
 DataCache.JavaScriptLibrariesCacheTimeout,
 DataCache.JavaScriptLibrariesCachePriority);
 return CBO.GetCachedObject<IEnumerable<JavaScriptLibrary>>
(cacheArgs,
 c => CBO.FillCollection<JavaScriptLibrary>
(DataProvider.Instance()
 .ExecuteReader("GetJavaScriptLibraries")));
}

In this case, we are using the version in CBO. The GetCachedObject<T> method
takes two parameters. The first is an instance of CachedItemArgs. The
CacheItemArgs class provides information about how the object is cached.
Table 8.3 describes the main properties of the CacheItemArgs class.

Table 8.3 Properties of the CacheItemArgs Class

Property Description
CacheCallback This property defines the CacheItemRemovedCallback

delegate, which is called when ASP.NET removes the
cached item from cache.

CacheDependency This property defines the DNNCacheDependency property.
This class wraps the ASP.NET CacheDependency class and
identifies whether the cached object is removed if a
dependent object changes (for example, a cached version of
an XML file should be removed from the cache if the XML
file is modified).

CacheKey A unique string that identifies the object in the cache.
CachePriority An enumeration that identifies the priority of the object.

This is used by the ASP.NET cache to determine which

objects to remove from the cache when resources are tight.
CacheTimeOut A multiplier that is used to determine how long the object

should be cached. The multiplier is used in combination
with a Host Setting (None - 0, Low - 1, Medium - 3, High -
6) to calculate for how many minutes the item is cached.
The expiry time is a sliding expiry and represents the time
since the object was last referenced.

Params An array of parameters that can be used by the callback
method.

ParamList The same array converted into an ArrayList.

The second parameter is a delegate of type Func<CacheItemArgs, TObject>. In
the example, the delegate is written in the form of a lambda expression. The
delegate takes a CacheItemArgs as a parameter and returns an object of the
same type of the original call to GetCachedObject<TObject>—in this case an
IEnumerable<JavaScriptLibrary>.

There are a lot of examples of the use of this method in the core, and
developers should take advantage of this important method when
implementing caching.

Event Logging
DNN provides a rich logging API. It is designed to handle a wide variety of
logging needs including exception logging, event auditing, and security
logging. Like many of DNN's services, it uses the Provider model. The default
logging provider saves the logs in the main DNN database, but in theory a
developer could create a provider that saves the logs in the Windows Event
Log, for example.

There are two major logging use cases for developers.

Creating new logging types

Logging an event using the logging API

Creating New Logging Types
While the logging system in DNN provides a lot of logging types, the system is
extensible and allows developers to add new logging types. For example, if
you are creating a module to manage a task list, then you may want to log
when a user creates, updates, or deletes a task.

Adding a new log type is a two-step task. I first need to create a new
LogTypeInfo object and save it to the database. The code to add a “CreateTask”
log type is shown in the following code snippet:

var logController = new LogController();
var logTypeInfo = new LogTypeInfo
 {
 LogTypeKey = "CreateTask",
 LogTypeFriendlyName = "Task Created",
 LogTypeDescription = "A new task was created",
 LogTypeCSSClass = "ItemCreated",
 LogTypeOwner = "DotNetNuke.Logging.EventLogType"
 };
logController.AddLogType(logTypeInfo);

Once you add a new log type to the system, you have to configure how it
behaves. This is also configurable by the administrator in the Event Viewer.

var thresholdType =
LogTypeConfigInfo.NotificationThresholdTimeTypes.Seconds;
var logTypeConf = new LogTypeConfigInfo
 {
 LoggingIsActive = true,
 LogTypeKey = "CreateTask",

 KeepMostRecent = "100",
 NotificationThreshold = 1,
 NotificationThresholdTime = 1,
 NotificationThresholdTimeType = thresholdType,
 MailFromAddress = Null.NullString,
 MailToAddress = Null.NullString,
 LogTypePortalID = "*"
 };
LogController.Instance.AddLogTypeConfigInfo(logTypeConf);

Note that both of the methods to add the type and the configuration
information are found in the LogController class. LogController is the main
entry point into the logging API. Table 8.4 shows a list of the methods of this
class.

Table 8.4 The LogController Class

Method Description
AddLog(LogInfo) Adds a new LogInfo instance

to the database.
AddLogType(LogTypeInfo) Adds a new LogTypeInfo

instance to the database.
AddLogTypeConfigInfo(LogTypeConfigInfo) Adds a new

LogTypeConfigInfo instance
to the database.

ClearLog() Clears the log.
DeleteLog(LogInfo) Deletes a specific LogInfo

instance from the database.
DeleteLogType(LogTypeInfo) Deletes a specific

LogTypeInfo instance from
the database.

DeleteLogTypeConfigInfo(LogTypeConfigInfo) Deletes a specific
LogTypeConfigInfo instance
from the database.

GetLogs(int, string, int, int, ref int) Retrieves a page of log
records from the database.

GetLogTypeConfigInfo() Retrieves all the
LogTypeConfigInfo instances
from the database.

GetLogTypeConfigInfoByID(int) Retrieves a single
LogTypeConfigInfo instance
from the database.

GetLogTypeInfoDictionary() Retrieves a dictionary of all
the LogTypeInfo instances
from the database. The
dictionary uses the
LogTypeKey property of the
LogTypeInfo object as the
dictionary key.

PurgeLogBuffer() Purges any in-memory log
records to the database.

UpdateLogType(LogTypeInfo) Updates a specific
LogTypeInfo instance in the
database.

UpdateLogTypeConfigInfo(LogTypeConfigInfo) Updates a specific
LogTypeConfigInfo instance
in the database.

Logging an Event Using the Logging API
Now that you know how to add custom log types to the database, you can
review how to use the logging API to add events. This section reviews how to
log audit type events. Later, we review how to use the logging API to log
exceptions.

To add a new log entry, you need to create a new LogInfo instance and call the
AddLog method of LogController. For example:

var logTypeKey =
EventLogController.EventLogType.TABMODULE_DELETED.ToString();
var log = new LogInfo { LogTypeKey = logTypeKey };
log.LogProperties.Add(new LogDetailInfo("tabId", tabId.ToString()));
log.LogProperties.Add(new LogDetailInfo("moduleId",
moduleId.ToString()));
LogController.Instance.AddLog(log);

In this example, a LogInfo instance of type TabModule Deleted is created.
Two properties are added to the LogProperties collection, and then the log
entry is added to the database.

Table 8.5 shows the properties of the LogInfo class.

Table 8.5 Properties of the LogInfo Class

Property Description
LogGUID A globally unique identifier
LogTypeKey The key that represents the type (LogTypeInfo instance) of

this log entry
LogUserID The ID of the user who was responsible for this log entry
LogUserName The username of the user who was responsible for this log

entry
LogPortalID The ID of the portal (site) where this log entry originated
LogPortalName The name of the portal (site) where this log entry

originated
LogCreateDate The date (and time) the log entry was created
LogProperties A collection of properties associated with this log entry
BypassBuffering A flag that indicates whether this log entry should be

persisted immediately, bypassing any buffering that may be
configured

LogServerName The name of the server where this log entry was created
LogConfigID The ID of the configuration info (LogTypeConfigInfo

instance) that controls the behavior of this log type

The EventLogController Class

While the LogController class provides an AddLog method to add a LogInfo
instance, the EventLogController extends that class with a number of helper
methods.

For example, if all you want to do is log that a property was changed, you can
use the following code:

var eventLogController = new EventLogController();
var eventLogType = EventLogController.EventLogType.ADMIN_ALERT;
eventLogController.AddLog("Username", user.Username, eventLogType);

Another commonly used overload takes an object as the first parameter.

var eventLogController = new EventLogController();

var eventLogType = EventLogController.EventLogType.
DESKTOPMODULE_CREATED;
var portalSettings = PortalController.GetCurrentPortalSettings();
var userID = UserController.GetCurrentUserInfo().UserID;

eventLogController.AddLog(desktopModule, portalSettings, userID, "",
eventLogType);

When this overload is used, the object that is passed in (in this case an
instance of DesktopModuleInfo) is serialized to XML and the XML is stored in
the LogProperties.

Exception Management
Exceptions are events. They are a special class of events, but at their most
fundamental level they are events. DNN recognizes this by using the same
mechanism to log handled exceptions.

DNN supports six main exception event types.

ModuleLoadException: An exception type for exceptions thrown
within modules

PageLoadException: An exception type for exceptions thrown within
pages

SchedulerException: An exception type for exceptions thrown within
the Scheduler

SearchException: An exception type for exceptions thrown within the
search engine

SecurityException: An exception type for security exceptions

GeneralException: All other exceptions

The Exceptions Class
DNN provides a helper class to help developers use the Exceptions API. This
class provides a number of helper methods, as described in Table 8.6.

Table 8.6 Helper Methods in the Exceptions Class

Method Description
ProcessHttpException (5
overloads)

This method is used to log HTTP exceptions.
These are usually 404s - Page Not Found, but
maybe 500s - Internal Server Error. Unlike
other exceptions, these are logged as Host
Alerts.

ProcessModuleLoadException

(7 overloads)
These methods are used to log exceptions that
are part of the module load process. In
addition to logging the exception, these
methods inject a message into the page to
inform the user of the exception.

ProcessPageLoadException These methods are used to log exceptions that

(2 overloads) occur during the page load process. As with
module exceptions, these methods also inject a
message into the page to inform the user of
the exception.

LogException (5 overloads) These methods are used to simply log an
exception.

ProcessShedulerException This method logs a scheduler exception.
LogSearchException This method logs a search exception.

The following snippet shows an example of how these methods can be used:

protected override void OnLoad(EventArgs e)
{
 base.OnLoad(e);
 try
 {
 … Code that causes an exception to be thrown
 }
 catch (Exception exc)
 {
 Exceptions.ProcessModuleLoadException(this, exc);
 }
}

Scheduler
DNN provides a Scheduler component. This is a mechanism that enables
administrators to schedule tasks to run at defined intervals. As with most
services, the DNN Scheduler is implemented using the Provider pattern, so it
can easily be replaced without modifying core code.

From a developer's perspective there is an API that allows developers to
create their own scheduled task. This is a fairly simple process.

However, before looking at the Scheduler API, it's important to understand
which types of tasks are suitable for the Scheduler.

The Scheduler is run under the context of the web application. Therefore, it is
prone to the same types of application recycles as a web application. For
example, every time the application is recycled by recycling the worker
process, the Scheduler will stop running. Tasks run by the Scheduler
therefore do not run 24 hours a day, 7 days a week—they are executed
according to a defined schedule—but they can be triggered only when the
worker process is alive. Therefore, you cannot specify that a task should run
every night at midnight. It is not possible in the web environment to meet
this type of use case. You can, however, specify how often a task is run by
defining the execution frequency for each task. The execution frequency is
defined as every x minutes/hours/days.

To create a scheduled task, you must create a class that inherits from
DotNetNuke.Services.Scheduling.SchedulerClient. This class must provide a
constructor and a DoWork method. An example of a scheduled task's DoWork
method is shown in the following code:

public override void DoWork()
{
 try
 {
 string str = CachingProvider.Instance().PurgeCache();
 ScheduleHistoryItem.Succeeded = true; //REQUIRED
 ScheduleHistoryItem.AddLogNote(str);
 }
 catch (Exception exc) //REQUIRED
 {
 ScheduleHistoryItem.Succeeded = false; //REQUIRED
 ScheduleHistoryItem.AddLogNote(string.Format("Purging cache task
failed: {0}.",
 exc.ToString()));
 //notification that we have errored

 Errored(ref exc); //REQUIRED
 //log the exception
 Exceptions.Exceptions.LogException(exc); //OPTIONAL
 }
}

This scheduled task is part of the core and purges (clears) the cache. Many
scheduled tasks in the core are marked with “//Required” comments and
“Optional” comments. This indicates the pieces of code that should be
implemented in the scheduled task for consistency, and you can use this as a
guide when writing your own tasks.

For example, the task is built using the try/catch pattern and the value of the
Succeeded property of the ScheduleHistoryItem property of the base class is
set to true or false.

Module Interfaces
Interfaces provide a way for the core to communicate with the module. You
have already seen an example of one of the interfaces that Module developers
can implement—IHydratable. IHydratable can be implemented by the
module's entity classes to allow the module developer more control over how
the entity is hydrated with data from the database.

Although there are others, the main interfaces that module developers can
use are as follows:

IModuleControl: All module controls must implement this interface
(usually through inheriting from a base class).

IActionable: This interface provides the ability for module developers to
define action menu items.

IPortable: This interface provides support for exporting and importing
module content.

IModuleCommunicator: This interface is used to support sending messages
to other modules.

IModuleListener: This interface is the complement of the previous
interface and is used to support receiving messages from other modules.

IUpgradeable: This interface is used to identify code that should be
executed when the module is upgraded (or installed for the first time).

ISearchable: This legacy interface was used to allow modules to
participate in DNN's legacy Search capabilities. It has been replaced by a
new Search API, which is discussed in Chapter 11.

The chapters on module development later in this book explore the interfaces
in more detail, so just a few of the interfaces are briefly explored here.

IModuleControl
The IModuleControl interface has five members.

public interface IModuleControl
{
 Control Control { get; }
 string ControlPath { get; }
 string ControlName { get; }
 string LocalResourceFile { get; set; }

 ModuleInstanceContext ModuleContext { get; }
}

Table 8.7 provides more detail about the members of the interface.

Table 8.7 Members of the IModuleControl Interface

Method Description
Control This property returns the underlying control—most of

the time this control is a UserControl, but it can (rarely)
be a WebControl.

ControlPath The path to the control. For a UserControl this is
something like DesktopModules/Admin/SQL/SQL.ascx.
For a WebControl it is the fully qualified class name for
the control.

ControlName The name of the control.
LocalResourceFile The path to the associated default local resource file.

Most of the time the name of the local resource file will
be the same as the module control itself, with an
additional .resx extension. It will also be stored in the
App_LocalResources folder for the module.

ModuleContext This property provides access to the detailed context of
the module.

In addition, DNN provides a number of base classes that implement this
interface.

PortalModuleBase: This is the original class that implements the interface.
It inherits from UserControl. In addition to the five members, it provides a
number of helper properties that expose specific properties of the
ModuleContext property.

ModuleUserControlBase: This newer class also inherits from UserControl
and provides a cleaner implementation. It provides only one additional
member—the LocalizeString method.

ModuleControlBase: This class inherits from Control and can be used to
create fully compiled server controls.

CachedModuleControl: This class inherits from Literal and is used by the
DNN core to model “cached” module controls.

IActionable
When DNN is in Edit mode, every module has an Action menu that provides a
list of actions. Many of these actions are provided by the DNN core. The
IActionable interface allows module developers to add their own custom
actions to this menu.

public interface IActionable
{
 ModuleActionCollection ModuleActions { get; }
}

The interface has a single member—the ModuleActions property. This
property returns a list of custom actions defined for the module.

The following code shows an example usage as implemented in the Banners
module. ModuleActions is a read-only method, so you only need to provide the
get function. The first step is to create a new collection to hold the custom
actions. Then you use the collection's Add method to create a new action item
in the collection. Finally, you return the new collection.

public ModuleActionCollection ModuleActions
{
 get
 {
 var Actions = new ModuleActionCollection();
 Actions.Add(GetNextActionID(),
 Localization.GetString(ModuleActionType.AddContent,
LocalResourceFile),
 ModuleActionType.AddContent,
 "",
 "",
 EditUrl(),
 false,
 SecurityAccessLevel.Edit,
 true,
 false);
 return Actions;
 }
}

The ModuleAction class is the heart of this API. Table 8.8 shows the members
available in this class. Each item in the module action menu is represented by
a single ModuleAction instance.

Table 8.8 Members of the ModuleAction Class

Method Description
Actions Contains the collection of module action items that can be

used to form hierarchical menu structures. Every skin
object that inherits from ActionBase may choose how to
render the menu based on the capability to support
hierarchical items. For example, the default skin object
supports submenus, whereas the DropDownActions skin
object supports only a flat menu structure.

ID Every module action for a given module instance must
contain a unique Id. The PortalModuleBase class defines
the GetNextActionId method, which can be used to
generate unique module action IDs.

CommandName Distinguishes which module action triggered an action
event. DNN includes a number of standard
ModuleActionTypes that provide access to standard
functionality. Custom module actions can use their own
string to identify commands recognized by the module.

CommandArgument Provides additional information during action event
processing. For example, the DNN core uses
CommandArgument to pass the module ID for common
commands like DeleteModule.Action.

Title Sets the text that is displayed in the module action menu.
Icon Name of the Icon file to use for the module action item.
Url When set, this property allows a menu item to redirect the

user to another web page.
ClientScript JavaScript to run during the menu's click event in the

browser. If the ClientScript property is present, it is called
prior to the postback occurring. If the ClientScript returns
false, the postback is canceled.

UseActionEvent Causes the site to raise an action event on the server and
notify any registered event listeners. If UseActionEvent is
false, the site handles the event but does not raise the
event back to any event listeners. The following
CommandNames prevent the action event from firing:
ModuleHelp, OnlineHelp, ModuleSettings, DeleteModule,
PrintModule, ClearCache, MovePane, MoveTop, MoveUp,

MoveDown, and MoveBottom.
Secure Determines the required security level of the user. If the

current user does not have the necessary permissions, the
module action is not displayed.

Visible If set to false, the module action will not be displayed. This
property enables you to control the visibility of a module
action based on custom business logic.

NewWindow Forces an action to open the associated URL in a new
window. This property is not used if UseActionEvent is true
or if the following CommandNames are used:
ModuleHelp,Online Help, ModuleSettings, orPrintModule.

IPortable
DNN provides the ability for modules to be able to import and export their
content. The IPortable interface defines the methods that a module
developer must implement to enable this.

public interface IPortable
{
 string ExportModule(int ModuleID);
 void ImportModule(int ModuleID, string Content, string Version, int
UserID);
}

This is a pretty simple interface to implement. ExportModule allows modules
to export their content by serializing it as XML, and ImportModule allows
modules to import content serialized as XML. (Actually, as ExportModule
returns a string and ImportModule accepts a string, it is up to the developer to
determine how to serialize the content, but as the core uses XML for
serializing the module settings, it is better to play along and use XML.)

The following code is the IPortable implementation of the HTML module:

public string ExportModule(int moduleId)
{
 string xml = "";
 ModuleInfo module = ModuleController.Instance.GetModule(moduleId,
 Null.NullInteger, true);
 int workflowID = GetWorkflow(moduleId, module.TabID,
module.PortalID).Value;
 HtmlTextInfo content = GetTopHtmlText(moduleId, true, workflowID);
 if ((content != null))

 {
 xml += "<htmltext>";
 xml += "<content>" +
XmlUtils.XMLEncode(TokeniseLinks(content.Content,
 module.PortalID)) + "</content>";
 xml += "</htmltext>";
 }
 return xml;
}
public void ImportModule(int ModuleID, string Content, string
Version, int UserId)
{
 ModuleInfo module = ModuleController.Instance.GetModule(ModuleID,
 Null.NullInteger, true);
 var workflowStateController = new WorkflowStateController();
 int workflowID = GetWorkflow(ModuleID, module.TabID,
module.PortalID).Value;
 XmlNode xml = Globals.GetContent(Content, "htmltext");
 var htmlContent = new HtmlTextInfo();
 htmlContent.ModuleID = ModuleID;
 // convert Version to System.Version
 var objVersion = new Version(Version);
 if (objVersion >= new Version(5, 1, 0))
 {
 // current module content
 htmlContent.Content =
DeTokeniseLinks(xml.SelectSingleNode("content")
 .InnerText, module.PortalID);
 }
 else
 {
 // legacy module content
 htmlContent.Content =
DeTokeniseLinks(xml.SelectSingleNode("desktophtml")
 .InnerText, module.PortalID);
 }
 htmlContent.WorkflowID = workflowID;
 htmlContent.StateID = workflowStateController
 .GetFirstWorkflowStateID(workflowID);
 // import
 UpdateHtmlText(htmlContent,
GetMaximumVersionHistory(module.PortalID));
}

The HTML module's data model is simple, so the resulting implementation is
also quite simple. If your data model is more complex, then the
implementation will also be more complex. The SerializeObject and
DeserializeObject methods of the CBO class can help with the serialization
and de-serialization.

Summary
This chapter examined many of the core APIs that provide the true power
behind DNN. By leveraging common APIs, you can extend DNN in almost any
direction. You can replace core functions or just add a custom module. The
core APIs are what makes it all possible.

Chapter 9
Membership Security

What You Will Learn in This Chapter

Creating a membership provider

Creating authentication providers

Managing membership security

Wrox.com Code Downloads for this Chapter
The wrox.com code downloads for this chapter are found at
www.wiley.com/go/prodnn7 on the Download Code tab. The code is in the
Chapter 9 download and individually named according to the names
throughout the chapter.

DNN has a mature, robust membership-management system that has worked
well for many years and supported many use cases and extension scenarios.
However, as with all code, time moves on and new requirements surface that
the existing codebase struggles to support. From a security perspective, this is
particularly critical, with changes in the security landscape necessitating
changes in DNN's membership system. These changes led to a large-scale
review of the Membership Security surface in DNN and the 7.1.0 release,
which resulted in considerable change. In this chapter, you'll look at the most
common extension scenarios as well as the recent changes in the
Membership Security model.

http://Wrox.com
http://wrox.com
http://www.wiley.com/go/prodnn7

DNN Membership Overview
Since its inception as the IBuySpy site, DNN has contained rich member, role,
and profile support. In the earliest days this involved its own API, custom
tables, and stored procedures. However, when Microsoft announced their
intention to introduce its own controls, SQL Server entities, and API to
manage these areas in ASP.NET 2.0, DNN decided to move from their custom
solution to Microsoft's version. By doing so, DNN benefited in many ways,
from reducing code to leveraging documentation to working seamlessly in
shared hosting environments.

The analysis at the time showed that some elements could easily be reused,
others required some work, and others were not appropriate.

In ASP.NET 3.5, several new security enhancements expand on these services
in three distinct ways.

Login and user controls: ASP.NET 2.0 introduced new controls for
login and user management. However, as DNN already had similar
controls in place, these were skipped for the initial DNN 3.0 code. Later,
DNN introduced authentication providers as a first-class extension to the
platform that allows login controls to be replaced and added to (this is
covered in more detail later in this chapter).

ASP.NET Web Configuration: Each ASP.NET 3.5 application can be
accessed through a special set of administrative pages that enable an
authorized user to create new users, assign users to roles, and store user
information. Again, as DNN had these items in place, DNN skipped this
integration.

Membership/Roles Provider: The membership feature creates a link
between the front-end features (login controls and user-management site)
and the persistence mechanism. A Membership Provider encapsulates all
the data access code that is required to store and retrieve users and roles.
Thanks to the Provider model, this component can easily be replaced with
a provider that supports your particular data source. This was the area of
greatest integration. Our analysis showed that we would have to substitute
the MemberRole application ID with a DNN portal ID.

Although many elements (membership, roles, and profiles) use the Provider
model and can be swapped out, in practice the default implementations work
for most people. In this chapter, you'll look at the areas that are most

commonly changed—the Membership Provider and authentication providers.

Membership Provider
As previously mentioned, DNN does not use ASP.NET's Membership Provider
functionality directly. Instead, it uses its own AspNetMembershipProvider
(found in the DotNetNuke.Security.Membership namespace), which handles
writing data to the relevant Microsoft tables as well as DNN's custom tables.
In this way DNN can leverage much of Microsoft's work, while adding its own
custom logic where required. Although the default DNN implementation
meets the majority of a site's needs, it also acts as an extension point for sites
with their own custom requirements.

Prior to the DNN 7.1.0 release, the full list of DNN abstract provider
membership methods and properties that could be overwritten with a custom
implementation was as follows:

MinPasswordLength: Minimum length required for a password

MinNonAlphanumericCharacters: Number of non-alphanumeric characters
required in a user's password

PasswordFormat: How the passwords are stored in the data store; the
options are Clear, Hashed, or Encrypted

PasswordStrengthRegularExpression: A regular expression each password
is passed through to verify it meets additional criteria

RequiresQuestionAndAnswer: Determines if users are required to have a
question and answer for accessing their password

ChangePassword: Changes a user's password

ChangePasswordQuestionAndAnswer: Changes a user's password question
and answer

CreateUser: Creates a single user

DeleteUser: Deletes a single user

GetPassword: Returns the password of a user

GetUser: Returns a single user

GetUserByUserName: Returns a single user by the username

GetUserMembership: Returns all the membership-specific information for a
single user

GetUsers: Returns a list of users

GetUsersByEmail: Returns a list of users by email address

GetUsersByUserName: Returns a list of users by username

GetUsersByProfileProperty: Returns a list of users who meet criteria by
various profile properties

ResetPassword: Resets a user's password

UnLockUser: Unlocks user accounts so they can log in to the site

UpdateUser: Updates a single user

UserLogin: Authenticates a single user

MaxInvalidPasswordAttempts: Property that contains the maximum
number of invalid login attempts before locking a user out

In DNN 7.1.0, the following methods/properties were added as virtual
methods to allow better support for hashed passwords, as well as to support
vanity URLs and unique display names:

GetUserByVanityUrl: Returns a single user by its vanity URL

GetUserByDisplayName: Returns a single user by the display name

ResetAndChangePassword: Resets and changes a user's password

ChangeUsername: Changes a user's username

AddUserPortal: Adds a user to another site

All of these new functions are virtual functions; if you want to implement
your own UI that doesn't utilize these functions (such as a custom
authentication provider), your provider does not need to provide
implementations. If they are accessible via the UI, an exception will be
thrown.

On the surface there seems to be nothing surprising here; it's simply a set of
new methods that allow for enhancements in the Membership Security area.
One of these methods is ResetAndChangePassword, and it's important because
of a change in DNN's default security model.

In versions of DNN prior to 7.1.0, the default password format was encrypted.
This meant that all passwords stored in the system used Triple-DES
encryption (with a custom salt per user) to store users' passwords. This can

be seen in the standard definition in web.config, as shown in Listing 9.1.

Listing 9.1: Pre-DNN 7.1.0 Membership Configuration

<add name="AspNetSqlMembershipProvider"
type="System.Web.Security.SqlMembershipProvider"
connectionStringName="SiteSqlServer"
enablePasswordRetrieval="false"
enablePasswordReset="true" requiresQuestionAndAnswer="false"
minRequiredPasswordLength="7"
minRequiredNonalphanumericCharacters="0"
requiresUniqueEmail="false" passwordFormat="Encrypted"
applicationName="DotNetNuke" description="Stores and retrieves
membership data from the local Microsoft SQL Server database"/>

DNN 7.1.0 changed the password format setting for new installs to be Hashed,
as shown in Listing 9.2.

Listing 9.2: DNN 7.1.0 Membership Configuration

<add name="AspNetSqlMembershipProvider"
type="System.Web.Security.SqlMembershipProvider"
connectionStringName="SiteSqlServer"
enablePasswordRetrieval="false"
enablePasswordReset="true" requiresQuestionAndAnswer="false"
minRequiredPasswordLength="7"
minRequiredNonalphanumericCharacters="0"
requiresUniqueEmail="false" passwordFormat="Hashed"
applicationName="DotNetNuke" description="Stores and retrieves
membership data from the local Microsoft SQL Server database"/>

This change was a response to a series of attacks against poorly secured user
passwords in other (non-DNN) sites, such as the PlayStation Network,
Gawker, LinkedIn, and Yahoo. In many cases, those sites used encryption and
assumed that it would be sufficient to protect users. However, recent
advances in a number of areas including using cloud computing resources
and graphical processing units (GPUs) to decrypt passwords from stolen
databases meant that hashing became the minimum default.

When changing to hashing we found that a number of DNN user functions
were not supported well by Microsoft's MembershipProvider. One example of
this is the ability of the administrator to change a user's password. As hashing

is a one-way operation, an administrator cannot retrieve a user's password.
However, the user's password was needed to change the password, so in the
absence of this, we added ResetAndChangePassword to work around this
limitation. This leverages the API to change the password to a new random
one, which is then used to change to the desired new password.

Authentication Providers
Authentication providers were added as an extension type shortly after the
current membership structure was added. Unlike most other providers, their
configuration is not set in web.config, but rather uses the Authentication
table in DNN. This table contains details of the authentication provider type,
such as whether it is enabled and controls for the login, logoff, and settings.
The folder structure of the provider looks something similar to Figure 9.1.

Figure 9.1

DNN ships with a pre-configured forms-based authentication provider, and
the extension model makes it easy to add other custom authentication
providers.

Although the design of authentication providers means you aren't tied to any
particular authentication scheme (indeed the page at
http://www.dnnsoftware.com/wiki/page/Authentication_Providers has
many provider links that cover a broad range of third-party systems), one
particular area of growth that we have seen is providers that connect to
OAuth endpoints.

As the web grew, more and more sites relied on distributed services and cloud
computing, along with the increased popularity of integrating these third-
party services (aka “mash-ups”). In this case, a site might integrate with a
third-party site such as Flickr to display photos in a gallery, or perhaps
connect to a cloud device such as OneDrive to host content files.

The problem is that, in order for these applications to access user data on
other sites, they ask for usernames and passwords. Not only does this require
exposing user passwords to someone else—often the same passwords used for

http://www.dnnsoftware.com/wiki/page/Authentication_Providers

online banking and other site—it also provides these applications with
unlimited access to do as they wish. They can do anything, including changing
the passwords and locking the users out.

OAuth provides a standard method for users to grant third-party access to
their resources without sharing their passwords. It also provides a way to
grant limited access (in scope, duration, and so on). At the time of writing,
over 60 OAuth service providers can be found at
http://en.wikipedia.org/wiki/OAuth#List_of_notable_OAuth_service_providers

with many more out there not listed. (Many of these service providers
implement OAuth for many products. Google supports OAuth 2.0 as the
recommend authentication mechanism for all its APIs.)

Due to the popularity of OAuth-integrated systems, DNN has a number of
utility classes that further simplify the creation of OAuth-based
authentication providers. You should review the
DotNetNuke.Services.Authentication.OAuth namespace, which has a lot of
code that can reduce what you'll need to write when writing a custom OAuth
provider.

As an example of this, you'll use some of these utilities classes to write a
provider for the popular source code repository GitHub. For the sake of
brevity, we've described only a few of these classes. The full source code copy
of this provider can be found at https://github.com/cathalconnolly/DNN-
GitHub-Authentication.

The first and most important class is OAuthClientBase. To use it, you just
have to create a custom class and inherit from this abstract class, as shown in
Listing 9.3.

Listing 9.3: GitHub Provider Base Class

public class GithubClient : OAuthClientBase
{
 public GithubClient(int portalId, AuthMode mode)
 : base(portalId, mode, "Github")
 {
 TokenEndpoint = new
Uri("https://github.com/login/oauth/access_token");
 AuthorizationEndpoint =
 new Uri("https://github.com/login/oauth/authorize");
 MeGraphEndpoint = new Uri("https://api.github.com/user");

http://en.wikipedia.org/wiki/OAuth#List_of_notable_OAuth_service_providers
https://github.com/cathalconnolly/DNN-GitHub-Authentication

 AuthTokenName = "GithubUserToken";
 OAuthVersion = "2.0";

 LoadTokenCookie(String.Empty);
 }
}

You use this to set up the custom URLs to generate the OAuth tokens and
return the authenticated user graph, which you can then later use to create a
DNN user. It's also important at this point to set the AuthTokenName to a value
that ends in “UserToken”—we'll discuss the reason behind this later.

To map the user graph to a DNN user, you have to set up a class to capture
the serialized data returned from the OAuth service. In this case, you inherit
from UserData and use DataMember attributes to map the JSON data to them.
You can then use these to populate the fields the UserData class expects, as
shown in Listing 9.4.

Listing 9.4: GitHub Provider UserData Class

[DataContract]
public class GithubUserData : UserData
{
 #region Overrides
 public override string Locale
 {
 get { return Location; }
 set { }
 }
 public override string ProfileImage
 {
 get { return AvatarUrl; }
 set { }
 }
 public override string DisplayName
 {
 get { return GitName; }
 set { }
 }
 #endregion

 [DataMember(Name = "avatar_url")]
 private string AvatarUrl { get; set; }
 [DataMember(Name = "location")]
 private string Location { get; set; }
 [DataMember(Name = "name")]

 private string GitName { get; set; }
}

Now that you have the structure in place for an OAuth provider, you need to
go ahead and create the login control. A login control normally has to inherit
from AuthenticationLoginBase, which handles actions common to logging in
(such as deciding if the user is authenticating as part of registering as a new
user or is authenticated as an existing user). Again, you can leverage the
utility classes to reduce the amount of boilerplate code required for an OAuth
provider. See Listing 9.5.

Listing 9.5: GitHub Provider Login Control

public partial class Login : OAuthLoginBase
{
 protected override string AuthSystemApplicationName
 {
 get { return "Github"; }
 }
 public override bool SupportsRegistration
 {
 get { return true; }
 }
 protected override UserData GetCurrentUser()
 {
 return OAuthClient.GetCurrentUser<GithubUserData>();
 }
 protected override void OnInit(EventArgs e)
 {
 base.OnInit(e);
 loginButton.Click += loginButton_Click;
 registerButton.Click += loginButton_Click;
 OAuthClient = new GithubClient(PortalId, Mode);
 loginItem.Visible = (Mode == AuthMode.Login);
 registerItem.Visible = (Mode == AuthMode.Register);
 }
 private void loginButton_Click(object sender, EventArgs e)
 {
 OAuthClient.Authorize();
 }
}

In this case, the login class inherits from OAuthLoginBase. You then provide
implementations of its methods to set whether you support registration and

which class to map user graph data to. In addition, you identify the
authentication system name.

Now that you've created the login class, you need to create a settings control.
For a standard OAuth-based provider, you again have a base class that you
inherit from—in this case OAuthSettingsBase. The OAuthSettingsBase class
uses the AuthSystemApplicationName value to load the API key and API secret
and set whether the key is enabled. It displays those values to the users,
allowing them to edit/update. See Listing 9.6.

Listing 9.6: GitHub Provider Settings Control

public partial class Settings : OAuthSettingsBase
{
 protected override string AuthSystemApplicationName
 {
 get { return "Github"; }
 }
}

To ensure that the settings can be displayed and edited, you need to ensure
that the settings control has a propertyeditcontrol with a fixed name, as
shown here:

<dnn:propertyeditorcontrol id="SettingsEditor" runat="Server"
 helpstyle-cssclass="dnnFormHelpContent dnnClear"
 labelstyle-cssclass="SubHead"
 editmode="Edit"
 SortMode="SortOrderAttribute"
/>

NOTE

Although authentication providers support login, logoff, and settings
pages, for an OAuth-based provider you can use configuration to remove
the need for a logoff page. If you recall earlier in the GitHubClient class,
you set the AuthTokenName property to GithubUserToken. This is important
as the base logoff functionality in DNN contains code that loops over the
cookie collection and will expire any cookie that ends with “UserToken.”
By leveraging this convention, you can avoid the need to write a custom
logoff control to simply expire the GithubUserToken.

Now you simply package the extension using the standard DNN manifest file
structure. To use it, you install it via the Host Extensions menu. Once
installed, go to Host Extensions and expand Authentication System. Click
the pencil icon beside GitHub and ensure Enabled is selected. See Figure 9.2.

Figure 9.2

Now that you've enabled it at the host level, you can configure any site that
requires it. To do so, go to Admin Extensions, click the pencil icon, and
provide the APP ID and APP Secret you got when you registered the

application with the OAuth source. See Figure 9.3.

Figure 9.3

When you log in to the DNN site now, you'll see a new button to authenticate
with GitHub. See Figure 9.4.

Figure 9.4

Clicking the button redirects to GitHub, where you can provide a valid user.
See Figure 9.5.

Figure 9.5

Once the user is authenticated, GitHub will redirect him to the application, at
which point the provider registers the user. See Figure 9.6.

Figure 9.6

Membership Management Enhancements
Along with any other technical implementation, security needs to evolve to
address changing needs. This tends to be the emergence of new types of
threats, but another important case involves technical changes that reduce or
nullify the security of previously secure areas. The most apparent of these in
recent memory is the change in processing power (and the ability to delegate
to larger engines such as cloud services), as well as the use of cheap graphical
processing units (GPUs). As you've already seen, DNN's using hashed
passwords is a response to this issue, but as part of the security team review,
other enhancements were deemed necessary to adjust to the changing
landscape. All of the following changes were added in the DNN 7.1.0 release.

One of the largest security risks related to users' passwords are the users
themselves. Users often choose short or easily guessable passwords. With the
7.1.0 release, DNN added some functionality to try to address this situation.

Log in as a superuser (such as host) and go to Host Host Settings. Click the
Advanced Settings page and then scroll down and click Membership
Management. You'll find a number of settings that affect various member-
related activities. See Figure 9.7.

Figure 9.7

The first of these is Reset Link Timeout. As hashing is a one-way operation—
and once it's stored a user's hashed password, it cannot be retrieved (such as
to send out in a password reminder)—DNN had to make changes to the
platform to support password resets via reset links. Rather than have two
systems—one that emailed passwords (via SMTP in cleartext) for sites that
used encryption and one that sent out password reset links for sites that used
hashing—the product team made the decision to only use password reset

links as they are more secure. Now, when a user initiates an action that used
to send out a password (such as when registering or needing a password
reminder), an email is sent with a password reset link. This link is unique to
the user, can be used only once, and has an expiration to ensure that it is valid
for only a short period of time. If someone were to access your email, reset
links that have been used or expired can no longer be used.

The first setting on this page controls the duration and defaults to 1 hour (60
minutes). It's important to note that this value applies only to actions the
user initiates. When an administrator/host creates a new account or resets a
user's password, those links expire after 24 hours. This longer period allows
users a better opportunity to respond to the mail by clicking the reset link. If
the link expires, users can request a new one (which will then be valid for the
new Reset Link Timeout duration that's specified under Membership
Management). The larger timeout for admin/host-initiated actions improves
the chances that the users will respond in time to the original email.

NOTE

If you happen to be running a site that uses a language pack that doesn't
have the updated entries, or if you create a site-specific version of the
GlobalResources.resx file, you might need to update the relevant keys
for your site. To do so, open the
App_GlobalResources\GlobalResources.resx file and look for the
EMAIL_PASSWORD_REMINDER_BODY and
EMAIL_USER_REGISTRATION_PUBLIC_BODY keys. Edit the file to use the new
PasswordResetToken value, as shown in Listing 9.7.

Listing 9.7: Example of Correctly Formatted Password
Resource File

Link to reset password: http://[Portal:URL]/default.aspx?
ctl=PasswordReset&
resetToken=[Membership:PasswordResetToken]
If you do not know or cannot remember your password, please go to
http://[Portal:URL]/default.aspx?ctl=PasswordReset&resetToken=
[Membership:PasswordResetToken] to reset it.

The second setting, Enable Password History, was added in 7.1.0 to allow sites
to record users' previous passwords. When users try to change their
passwords, DNN will create a hash of the new password and compare it to
previous passwords. If a match is found, users cannot reuse this recently used
password. This setting allows site administrators to decide whether to enable
this functionality. It works in concert with the next setting, which is called
Number of Passwords to Store. This defaults to five, which means that users
can reuse passwords after they have cycled through five previous unique
ones. Although five is a sensible default, some more sensitive sites may want
to increase this.

NOTE

Password history entries are created only when users change their
passwords (via either a change password or reset password function),
and not when the users are initially created, either by themselves (when
registering) or by a site administrator (via the Admin Users screen).

The next setting, called Enable Password Banned List, was also added in 7.1.0.
Since its introduction in DNN 3.0, web.config has contained
minRequiredPasswordLength (the minimum password length with a default
value of seven) and minRequiredNonalphanumericCharacters (minimum
number of non-alphanumeric characters with a default value of zero). In
addition, as DNN implements the Microsoft Membership Provider, a third-
property was available, although it was not used in the default configuration.
This property is passwordStrengthRegularExpression, and it allows a site to
set a .NET regular expression to evaluate password complexity. These
properties offered a certain amount of security, but it recently became
apparent that they were not enough. A number of high-profile sites such as
the PlayStation Network, Gawker, LinkedIn, and Yahoo suffered from
security breaches where the hackers were able to steal user information.
Although some of these did not follow best practices, such as using password
salt values, some of them were using hashing with salt values and believed
that their users' passwords were reasonably safe.

Historically, hackers have been able to “crack” salted password hashes by
creating a hash of a password and salt and comparing it to the user's password
ciphertext. If the two matched, the hacker knew the user's password and
could then try to use it to log into a website. If they have the user's username,
they may try the username/password combination on sites such as Amazon,
PayPal, and so on. As many users re use the same credentials on multiple
sites, a hacker may gain access to the new site and use that access to steal
money/order products/impersonate the user.

The computational power required to crack a single user's password used to
be substantial (typically available only to governments or major academic
institutions). However, with the advent of cloud computing resources and the
ability to use cheap graphical processing units (GPUs) in parallel, the ability
to crack hashed passwords is now available to a much wider set of people.

In addition, hackers have generated pre-computed tables of common terms
hashed against common algorithms. These “rainbow tables” allow for brute-
force dictionary attacks that can crack commonly used passwords easily.
Taking all of this into account, DNN decided to introduce support for “banned
common passwords” in DNN 7.1.0.

To generate a list of common passwords, the DNN platform team examined
the cracked passwords list from attacks on Gawker, LinkedIn, and Yahoo.
These entries were merged with the list of passwords from Conficker, a virus
“worm” that infected millions of computers and was the largest worm
infection since 2003. The team then filtered out entries shorter than six
characters and finally ordered them by how common they were. During
installation of 7.1.0, approximately 250 of these are added as a host-level list
that will be used when the Enable Password Banned List option is enabled. As
a list, hosts can add/edit/delete any entry they like. In addition, empty
placeholder lists with the name BannedPasswords<portalid> (for example,
BannedPasswords0 for site 0) are created for each site. Additional banned
passwords can be added to these, and they will be merged with the host list
when a user attempts to register for a particular site. This allows site
administrators to add banned passwords for one site that do not apply to
another, which is particularly useful when you have sites that use different
locales, as different languages will usually have different common passwords.

NOTE

If the “banned password” list is enabled, DNN will no longer allow users
to use their usernames as their passwords.

The next setting, called Enable Password Strength Check, differs from
previous settings in that it tries to encourage good practice rather than
enforce it. It displays a rich control when users try to set their passwords
(such as during registration or password reset), rather than the simple
textbox. As the user enters their proposed password, a “traffic light” indicator
will indicate whether the password is poor (red), somewhat secure (yellow),
or very secure (green). Text is also shown so the user can see how the
password is rated. If they hover over the password control, a tooltip will
appear that details how this password is scored. This scoring system uses a
system of rules, some configurable and some that apply best practices.

These rules are as follows:

When the password contains one or more lowercase characters, it receives
one point.

When the password contains one of more uppercase characters, it receives
one point.

When the password contains one or more numeric characters, it receives
one point.

When the password contains special characters (equal to or greater than
the value set by the minRequiredNonalphanumericCharacters property in
web.config), it receives one point.

When the password is greater than or equal to the length set by the
minRequiredPasswordLength property in web.config, it receives one point.

When the password is greater than or equal to the length plus three
characters set by the minRequiredPasswordLength property in web.config,
it receives one point. For example, if the minRequiredPasswordLength
property is set to 7, the password must be 10 or more characters to score
this point.

The final checkbox allows host users to enable IP address checking. This
check occurs when the admin or host attempts to log in. If the IP address is

blocked or the IP is not allowed (this can be individual IPs or ranges of IP
addresses), the user cannot login.

If you enable IP blocking, all users will still be able to access the site as IP
blocking contains a single allow entry (“*”) that tells DNN to allow all IP
address ranges. This is intended to ensure that site administrators do not
accidentally lock themselves out.

IP blocking is intended for scenarios where a network has a public IP address
(such as 82.24.96.98) and a private IP address (such as 192.168.27.0/24) and
you want to ensure that only the users on the private IP address range can log
in. In this case, you would access the site from an internal address
(192.168.27.0/24) and then set 82.24.96.98 as a deny (you can now remove
the *). This configuration will mean that admin/host users can log in only
when they're on the 192.168.27.0/24 private network.

There is no current way to block an IP address you are accessing (such as
192.168.27.0/24), as that would stop you from logging in and changing the
settings. (This differs from the IP restrictions in IIS, which do allow you to
block your current IP address.)

NOTE

It also supports allowing only certain public IP addresses. For example, if
you accessed your site via your IP (82.24.96.98), you could set an allow
rule for that IP address and then delete the *. Now you can log in as
admin/host only via 82.24.96.98. No other public or private addresses or
ranges ranges can log in.

To configure this setting, enable IP address checking. Then browse to Host
Host Settings Advanced Settings Login IP Filters and configure your
required settings. By default, all IP addresses are allowed (represented by the
use of the asterisk). As you add rules, DNN will determine whether the IP
addresses you are currently on would be blocked and, if so, will not allow that
rule. See Figure 9.8.

Figure 9.8

Summary
This chapter provided some background regarding the major changes in
DNN's Membership Security model, as well as illustrated the most common
security extension points. These details will help ensure that your DNN sites
are protected against potential security issues, as well as allow you to extend
and customize DNN's Membership Security model for any custom needs you
have.

Chapter 10
Localization

What You Will Learn in This Chapter

Configuring different languages

Using the localization API in your own modules

Managing static resources

The World Wide Web is an international network that must accommodate
users from hundreds of cultures, speaking many different languages. This
poses a significant challenge for every web application that is targeted at a
worldwide audience. To address this challenge, DNN provides a built-in
localization framework that addresses many of the issues required to make
DNN usable by a global audience. This framework is built to take advantage of
the ASP.NET localization features while tackling some of its shortcomings.

This chapter covers how DNN detects languages and locales and then
provides instruction for using the API to implement localization in your
modules. You will work with resource files (*.resx) to store strings that are
used to localize strings of text directly in the HTML of your modules and with
method calls from code-behind. You also learn about the token replacement
engine and a technique for localizing images using dynamically selected CSS
stylesheets.

DNN builds on the localization API in the .NET Framework to make the
functionality easier to implement and manage in core and third-party
modules. DNN provides localization for static text in module user interfaces
and system messages and also features the ability to localize website content
stored in modules dynamically. Combining these two capabilities, DNN is
equipped to serve the needs of almost any international website.

Locales in DNN
A locale is the combination of a country code and a language code. In DNN,
you will see the words locale, culture, and language used as synonyms. For
the sake of accurate translations, it is important to use both a language code
and a country code to perform localization. Many languages are spoken in
more than one country, and dialects may differ from country to country. For
example, a banking website that operates in the United States and Great
Britain that needs to display “check” or “cheque” changes its interface
language depending on whether the user's locale code is for English in the
United States (en-US) or Great Britain (en-GB). This is the RFC 1766 standard.

Locale Detection
In order to support localization throughout the application, DNN has its own
locale detection process, which is a bit more advanced than what is available
in standard ASP.NET. Locale detection is important because DNN deals with
both anonymous and authenticated users, and it acknowledges user
preferences, either through browser settings or through user profile
preferences in DNN.

Even though major refactoring was done in DNN 6 and DNN 7, locale
detection has changed little since the early releases of DNN version 3.
Understanding the sequence of how locales are detected can help in
troubleshooting and designing localization in your modules. The OnInit event
sets the current culture of the thread using the GetPageLocale method in
DotNetNuke.Services.Localization.Localization by running through a
sequence of detection starting with the language parameter of the request and
finishing with the default language of en-US as stored in the
DotNetNuke.Services.Localization.Localization.SystemLocale constant if
no other setting is found. The exact order of detection is defined as this:

1. Querystring parameter (language)

2. Cookie value (name = language)

3. User profile (for authenticated users)

4. Browser preference

5. Site default locale

6. System locale

In this list, an item higher on the list takes precedence over an item lower on
the list. For instance, if a user is authenticated but there is also an explicit
culture code present in the querystring, the culture code in the querystring is
used.

During steps 1 through 4 of the locale detection process, DNN will first try for
an exact match of language code and country code. If an exact match is not
found, it will try to find a language code match. This part is essential with
languages like Spanish, which is spoken in many countries with slightly
different dictionaries. If a site is designed in the Spanish language for Mexico
(es-MX), a website visitor from Bolivia (es-BO) would be able to make much
more sense of the Mexican Spanish dictionary than the default United States
English (en-US).

The real utility of this process is that by the time the page begins its load
process, a valid culture that is supported by the installation has been
intentionally set. With DNN as a base framework, module developers can
implement interface and dynamic content localization without having to
manage any of the particulars of detecting and managing locales. Instead, the
work is already done, and developers simply use the selected locale made
available to every page, module, and skin.

Sometimes DNN cannot set the locale in this manner. Most notably this
happens when code is executed by the Task Scheduler. Since this happens on
a background thread, with no HTTP context available, DNN is not able to set
the locale. As a good practice, if you need your module to run in different
cultures, you should always test your code using more than one culture.

Content Localization
Since version 5.3, DNN also supports localization of site contents. This
feature has impact on which locale is available to the module running on a
page. Standard ASP.NET features two different culture settings:
CurrentCulture and CurrentUICulture (in
System.Globalization.CultureInfo). In DNN, usually the values of these
culture settings are equal; however, under content localization, they can be
different. There is a setting available for this in the Language Management
module (Admin Languages). The setting is named “Allow Users to Choose
Interface Language?” This setting is especially useful when a content editor is
required to manage content for a language he does not understand.

Figure 10.1 shows the setting; the default is unchecked. Once it is turned on, a
new drop-down menu becomes available in the Tools menu, allowing the end
user to select a different UI language. The benefit of this setting is that if the
user is editing the site for a language he does not understand, he can show
the user interface of the site in one language and store contents in another
one. Figure 10.2 shows the drop-down menu for this feature.

Figure 10.1

Figure 10.2

For a module developer, this setting is important, as it means a distinction
needs to be made between CurrentCulture and CurrentUICulture. The first

should be used when displaying content, the latter for displaying UI elements.

Resource Files
To align closely to the ASP.NET localization implementation, DNN uses the
Windows Resource Files (RESX) format to store translations. This file format
uses XML tags to store key/value pairs of string values.

Here's an example format of a resource file's data elements shown with the
Data Provider form fields on the Host Settings page:

. . .
 <data name="plDataProvider.Text">
 <value>Data Provider:</value>
 </data>
 <data name="plDataProvider.Help">
 <value>The provider name which is identified as the default
data
 provider in the web.config file</value>
 </data>
. . .

The corresponding markup in the .ascx file looks like this:

. . .
 <dnn:label id="plDataProvider" controlname="lblDataProvider"
 runat="server"/>
. . .

This is the markup for the DNN Label control. This control displays both a
label and help text, accessible through an “i” icon. The control uses the
[controlname].Text value to render the label text and the
[controlname].Help value to render the help text.

Each name attribute is referred to as a resource key. Notice that the two
resource keys in this example have extensions. DNN uses a number of
extensions that help identify translations more easily. Resource keys should
always use an extension, otherwise they will not be recognized.

.Text: Used for the text properties of controls (used as the default if not
included in resource key in code)

.Help: Used for help text of the DNN Label control

.Header: Used for the HeaderText properties of DataGrid columns

.EditText: Used for the EditText properties of DataGrids

.ErrorMessage: Used for the ErrorMessage property of Validator controls

Whereas .Text relates directly to the Text property of an ASP.NET control,
the other extensions are there to instruct DNN on how to use the string for
other controls.

There is one other special type of resource key, which is used by DNN to
automatically localize titles of module controls. The special key has the
format ControlTitle_[ModuleControlKey].Text, where [ModuleControlKey] is
the control key with which the control is registered in the module definition.
In the special case of the default view control, which has an empty key, the
resource key would equal ControlTitle_.Text. However, due to the way DNN
works, the title of the default view control can always be edited by the end
user. Only modules that are placed on Admin pages will use this control key
to define a value for the module title.

There are three types of resource files in DNN: Application Resources, Local
Resources, and Global Resources. These are defined in the following sections.

Application Resources
Application Resources translations are shared throughout many controls in
DNN. Application Resources files are the storage area for generic translations.
For example, to localize the words “True” and “False,” you would store the
translations in the Application Resources files. Other examples of Application
Resources are Yes, No, Submit, and Continue.

Application Resources are stored in the App_GlobalResources directory, which
is directly under the DNN root installation directory. The filename for the
system locale en-US for Application Resources is SharedResources.resx. The
filenaming convention for other locales is SharedResources.[locale].resx.
For example, the German language Application Resources file for Germany
would be named SharedResources.de-DE.resx.

Global Resources
Global Resources translations are for localizing strings from components that
do not have Local Resource files, are not necessarily shared translations, and
don't fit in the first two categories. Because all Local Resources are associated
with a user control or a page, there is no place to store translations for
components. For this reason, there's this other category for resource files. For
example, almost all emails that are sent out by the DNN core framework work
with templates that are stored in Global Resources. The keys for these

templates are usually prefixed with EMAIL_.

Global Resources are stored in the same directory as Application Resources
(/App_Resources). The filename for the system default locale is
/App_Resources/GlobalResources.resx. For locales other than the system
default, the naming convention is as follows:
/App_Resources/GlobalResources.[locale].resx.

Local Resources
Local Resources translations are usually unique to a user control. For
example, to localize the HTML module's user control, you would store the
translations in a Local Resources file that lives in a child directory beneath
the HTML module's directory.

NOTE

If a module has static translations that are generic in nature (such as
True and False), the translations should be gathered from Application
Resources.

Local Resources files are stored in a directory named App_LocalResources.
Each directory that contains localized user controls must have a directory
named App_LocalResources. The filename for the System Locale follows this
naming convention:

[control_directory]/App_LocalResources/[user_control_file_name].resx

An example, for the en-US locale in the resource file for the HTML module
would be as follows:

HTML/App_LocalResources/HtmlModule.ascx.resx

The filename for other locales follows this naming convention:

[control_directory]/App_LocalResources/[control_files_name].
[locale].resx

A module will often use the same resource strings in multiple controls. In
order to make housekeeping of these strings easier, a special file is available
for such resources: the shared resources file. The contents of this file will
always be available to all controls that belong to the module. The file must be
named SharedResources.resx, and if a file with that name exists, it will
automatically be picked up by DNN.

Resource File Handling
DNN uses an extensive fallback scheme to read from resource files, which
allows for a very granular control of resources; however, it can also cause
some headaches, as it is sometimes not clear from which file a specific
resource value is loaded. The fallback scheme is reflected in the naming
conventions of resource files. DNN will try to read a resource value first from
the most specific file, and if not found, it will keep trying until the least
specific file is reached. Specificity is defined not only by the language (culture
code) but also by application scope: Site (portal), Application (host), and
System. In order to accommodate fallback from site to system, DNN uses the

following file formats:

Site specific: [ResourceFileName].Portal-[PortalId].resx

Application specific: [ResourceFileName].Host.resx

System specific: [ResourceFileName].resx

In real-life situations this type of fallback is very useful, as it allows site
administrators to change resource values without running the risk of the
changed values to be overwritten with an application upgrade.

Figure 10.3 shows the built-in Language Editor, where the host user can
choose at which level he wants to edit resources (mode selector). For site
administrators, only the Site option will be available.

Figure 10.3

The language fallback is customizable by the administrator: each language
that is added to DNN can be configured with a custom fallback language (the
standard fallback language is the System Language, en-US).

Figure 10.4 shows the Edit Language option, where host users can choose a
fallback language. In this case, German (Germany) is chosen as a fallback for
German (Austria).

Figure 10.4

Let's look at two examples of the fallback scheme. First a simple one. Assume

a single-language environment and one site, where a resource key is
requested for a module control. DNN starts at the most specific file and ends
up with the least specific one. If a key is not found in any of the files, it will be
reported missing (using a log entry), and an empty value will be used. This is
the order at which files will be tried:

Control specific:

/DesktopModules/ModuleName/ControlName.Portal-1.resx

/DesktopModules/ModuleName/ControlName.Host.resx

/DesktopModules/ModuleName/ControlName.resx

Module shared resources:

/DesktopModules/ModuleName/SharedResources.Portal-1.resx

/DesktopModules/ModuleName/SharedResources.Host.resx

/DesktopModules/ModuleName/SharedResources.resx

Application shared resources:

/App_GlobalResources/SharedResources.Portal-1.resx

/App_GlobalResources/SharedResources.Host.resx

/App_GlobalResources/SharedResources.resx

The next example assumes Austrian (de-AT) as the requested language,
having German (de-DE) defined as the fallback language. The fallback
language of German is en-US (the System Language). The total number of
fallback steps become much more complex now:

Control specific

Requested language

/DesktopModules/ModuleName/ControlName.de-AT.Portal-1.resx

/DesktopModules/ModuleName/ControlName.de-AT.Host.resx

/DesktopModules/ModuleName/ControlName.de-AT.resx

Fallback language

/DesktopModules/ModuleName/ControlName.de-DE.Portal-1.resx

/DesktopModules/ModuleName/ControlName.de-DE.Host.resx

/DesktopModules/ModuleName/ControlName.de-DE.resx

System language

/DesktopModules/ModuleName/ControlName.Portal-1.resx

/DesktopModules/ModuleName/ControlName.Host.resx

/DesktopModules/ModuleName/ControlName.resx

Module shared resources

Requested language

/DesktopModules/ModuleName/SharedResources.de-AT.Portal-

1.resx

/DesktopModules/ModuleName/SharedResources.de-AT.Host.resx

/DesktopModules/ModuleName/SharedResources.de-AT.resx

Fallback language

/DesktopModules/ModuleName/SharedResources.de-DE.Portal-

1.resx

/DesktopModules/ModuleName/SharedResources.de-DE.Host.resx

/DesktopModules/ModuleName/SharedResources.de-DE.resx

System language

/DesktopModules/ModuleName/SharedResources.Portal-1.resx

/DesktopModules/ModuleName/SharedResources.Host.resx

/DesktopModules/ModuleName/SharedResources.resx

Application shared resources

Requested language

/App_GlobalResources/SharedResources.de-AT.Portal-1.resx

/App_GlobalResources/SharedResources. de-AT.Host.resx

/App_GlobalResources/SharedResources. de-AT.resx

Fallback language

/App_GlobalResources/SharedResources.de-DE.Portal-1.resx

/App_GlobalResources/SharedResources. de-DE.Host.resx

/App_GlobalResources/SharedResources. de-DE.resx

System language

/App_GlobalResources/SharedResources.Portal-1.resx

/App_GlobalResources/SharedResources.Host.resx

/App_GlobalResources/SharedResources.resx

As you see, reading from resource files in a multi-lingual environment is
quite complex. Even so, the performance of all this is still good, as DNN uses
a cached dictionary that is used to keep track of whether or not a resource file
actually exists. So even though the fallback scheme is very complex, a file gets
tried only once. And in real-life situations it is quite rare for a site to have so
many actual fallback files defined. Also, the contents of each resource file will
be cached, so per file, there will be only one disk operation.

The Resource File Editor
DNN comes with its own resource file editor, which automatically keeps track
of the System – Host – Site fallback scheme. It is a useful tool for site admins
and translators alike to update resources or to create new translations of
existing resources.

Figure 10.5 shows how to access the editor from the Language Management
module (located at Admin Languages).

Figure 10.5

Clicking the edit pencil for the System, Host, or Site option will open a new
screen that gives a full view of all resource files for the chosen language (see
Figure 10.6).

Figure 10.6

Missing Resource Keys
Keeping track of resource keys can be a daunting task, especially since there
is no feedback in the UI about whether or not static text is properly localized.
DNN offers different tools that give you more information about this.

The first tool is Log4Net, which is a logging tool. Whenever a request is made
to the API to retrieve a string from a resource file, a warning is logged in the
log file if the requested key was not found. In order to see these warnings, the
Log4Net log level needs to be set to at least WARN. An example of such a
warning is this:

2014-07-1 14:51:43,238 [DNNTEST][Thread:8][WARN]
DotNetNuke.Services.Localization.
LocalizationProvider - Missing localization key.

key:ControlTitle_.Text
resFileRoot:/DesktopModules/DNNTest/DNNTestModule/App_LocalResources/View

threadCulture:en-US userlan:

This message contains all the information a developer needs to add the
missing key to the resource file.

The second tool is something that is built into the framework and allows you
to see localization information in the UI. The setting for this is called
ShowMissingKeys, and it is located in the appSettings section of web.config.
When set to true, you will see one of the following effects in the HTML
output of the site, on every static text element:

No difference: Text is not localizable.

[L]: prefixed to text: Text is localizable, and value was read from resource
file.

RESX:[KEY]: Text is localizable; however, the key was not found in the
resource file.

Sometimes functionality may be impacted by turning on ShowMissingKeys.
You can counteract that in your code by using an API method that will ignore
the ShowMissingKeys setting. This API method is called GetStringURL. You'll
learn more about that in the next section.

The API
The main class that is used for localization-related tasks is
DotNetNuke.Services.Localization.Localization. The most common
methods are listed in Table 10.1.

Table 10.1 Localization Methods

Method Description
GetResourceFile Returns the path and filename of the resource file for

a specified control.
GetString Returns the localized string based on the specified

resource key.
GetStringUrl Returns the localized string based on the specified

resource key but ignores the ShowMissingKeys setting.
GetSafeJSString Returns the localized, and escaped, string based on the

specified resource key, specifically to be used in
JavaScript.

GetSystemMessage Localizes a string and replaces system tokens with
personalized strings.

LocalizeDataGrid Localizes the headers in a DataGrid control.
LocalizeGridView Localizes the headers in a GridView control.
LocalizeDetailsView Localizes the headers in a DetailsView control.
SetThreadCultures Sets the culture code for the current thread. This needs

to be done for pages that do not derive from PageBase.

The GetString Method
Of the methods in Table 10.1, the most widely used is GetString. It performs
a localized lookup based on the resource key passed into it. GetString has
eight overloaded methods:

 public static string GetString(string key)
 public static string GetString(string key, Control ctrl)
 public static string GetString(string key, PortalSettings
portalSettings)
 public static string GetString(string key, string
resourceFileRoot)
 public static string GetString(string key, string

resourceFileRoot,
 bool disableShowMissingKeys)
 public static string GetString(string key, string
resourceFileRoot,
 string language)
 public static string GetString(string key, string
resourceFileRoot,
 PortalSettings portalSettings, string language)
 public static string GetString(string key, string
resourceFileRoot,
 PortalSettings portalSettings,
 string language, bool disableShowMissingKeys)

The overloads work from generic to specific. If no resourceFileRoot is passed
in, DNN will only try to get the requested key from the application-level
shared resources file (/App_GlobalResources/SharedResources.resx).
Normally you should not have to use an overload that requires a
PortalSettings instance; the other overloads always use the current
PortalSettings object. This does however mean that it is not safe to use any
of these methods when no site context is available (for instance, from a
scheduled task).

Table 10.2 lists all possible parameters and their descriptions.

Table 10.2 GetString Parameters

Parameter Type Description
Ctrl Control This is the object representing an

ASCX user control and is passed as
this in C# or Me in VB.NET.

disableShowMissingKeys Boolean Allows for overriding the setting to
display missing localization keys.

Key String The key for which a resource value
is requested.

Language String The name of the language used to
look up the string.

portalSettings PortalSettings The PortalSettings object for the
current context. It is used to
determine the default locale used
for anonymous users.

resourceFileRoot String The value of a module's

LocalResourceFile property. It is
used to derive the resource file to be
used for the translation.

The GetSystemMessage Method
The GetSystemMessage method is used throughout the core code to produce
localized and personalized strings. For example, it is frequently used to send
email to users who register on a site. The user registration page calls
GetSystemMessage to retrieve the language-appropriate welcome content of
the email and then replaces tokens for site- and user-specific personalization.
GetSystemMessage gives developers a tool for localization and token
replacement personalization with just one method call.

GetSystemMessage has 10 overloaded methods:

public static string GetSystemMessage(PortalSettings portalSettings,
 string messageName)
public static string GetSystemMessage(PortalSettings portalSettings,
 string messageName, UserInfo userInfo)
public static string GetSystemMessage(string strLanguage,
PortalSettings
 portalSettings, string messageName, UserInfo
userInfo)
public static string GetSystemMessage(PortalSettings portalSettings,
 string messageName, string resourceFile)
public static string GetSystemMessage(PortalSettings portalSettings,
 string messageName, UserInfo userInfo,
 string resourceFile)
public static string GetSystemMessage(PortalSettings portalSettings,
 string messageName, string resourceFile,
 ArrayList custom)
public static string GetSystemMessage(PortalSettings portalSettings,
 string messageName, UserInfo userInfo,
 string resourceFile, ArrayList custom)
public static string GetSystemMessage(string strLanguage,
PortalSettings
 portalSettings, string messageName, UserInfo
userInfo,
 string resourceFile, ArrayList custom)
public static string GetSystemMessage(string strLanguage,
PortalSettings
 portalSettings, string messageName, UserInfo
userInfo,
 string resourceFile, ArrayList custom, string
 customCaption, int accessingUserID)
public static string GetSystemMessage(string strLanguage,
PortalSettings

 portalSettings, string messageName, UserInfo
userInfo,
 string resourceFile, ArrayList customArray,
IDictionary
 customDictionary, string customCaption,
 int accessingUserID)

Table 10.3 lists all possible parameters and their descriptions.

Table 10.3 GetSystemMessage Parameters

Parameter Type Description
portalSettings PortalSettings The PortalSettings object for the current

context. It is used to derive any
personalized content in the localized
system message string.

messageName String The resource key used to get the localized
system message from the resource file.
Because no user information is included in
this overload, “User:” MessageName types
are not supported.

userInfo UserInfo The UserInfo object for the current
context. It is used to derive any
personalized content in the localized
system message string.

strLanguage String The name of the language used to look up
the string.

resourceFile String The resource file that the localized system
message is stored in.

custom ArrayList A collection of strings that can be used for
personalizing the system message.

customCaption String Property to override the default text used
to access custom properties.

accessingUserID Integer The user ID of the user accessing the
system message—used to restrict
unauthorized access to profile properties
during the token replacement process.

customDictionary IDictionary A custom dictionary that can be used

instead of the custom parameter.
The method can be used to parse custom message templates against both
system tokens and custom tokens. Internally, a call is made to the DNN
TokenReplace engine. When you use GetSystemMessage, you can specify
several system tokens in the localized string. The tokens are used as keys to
render property values from the UserInfo or PortalSettings objects. Here's
an example:

body = Localize.GetSystemMessage(locale, settings, body, user,
 Localize.GlobalResourceFile, custom, "",
settings.AdministratorId);

where Localize is an alias to
DotNetNuke.Services.Localization.Localization. This code calls the
GetSystemMessage method to generically localize and personalize the body of
email messages that can be sent to users for a variety of reasons. The code is
from the SendMail method of the DotNetNuke.Services.Mail class.

The method is used to handle different types of messages. Let's look at one
example, for emails sent to verify user registrations. The different parameters
of the call to GetSystemMessage are initialized with these values:

body = "EMAIL_USER_REGISTRATION_VERIFIED_BODY";
var propertyNotFound = false;
if (HttpContext.Current != null)
{
 var server = HttpContext.Current.Server;
 custom = new ArrayList
 {

server.HtmlEncode(server.UrlEncode(user.Username)),

server.UrlEncode(user.GetProperty("verificationcode",
 String.Empty, null, user, Scope.SystemMessages,
 ref propertyNotFound))
 };
}

EMAIL_USER_REGISTRATION_VERIFIED_BODY is the resource key to look up the
system message in the resource file. The resource key and associated
translation from the global resource file
/App_GlobalResources/GlobalResources.resx are shown in the following
code:

<data name="EMAIL_USER_REGISTRATION_VERIFIED_BODY.Text"

xml:space="preserve">
 <value>Dear [User:DisplayName],
We are pleased to advise that you have been added as a Registered
User to
[Portal:PortalName]. Please read the following information carefully
and be
sure to save this message in a safe location for future reference.
Portal Website Address: [Portal:URL]
Username: [User:UserName]
You can use the following link to complete your verified
registration:
Error! Hyperlink reference not valid.;
verificationcode=[Custom:1]
Thank you, we appreciate your support…
[Portal:PortalName]
 </value>
</data>

GetSystemMessage first localizes the string in the <value> XML node. Then it
iterates through the system tokens (enclosed in brackets), replacing the
tokens with the appropriate property values. For example, in the following
code example, you can see the token [User:DisplayName]. This will be
replaced with the DisplayName property value of the User object. In this case,
the User object is the user object passed into the GetSystemMessage method.
There is also an array being passed into the method, the contents of which are
accessed through these tokens: [Custom:0] and [Custom:1].

The following code shows that the system message has been personalized and
localized with the en-US locale:

Dear John Doe,

We are pleased to advise that you have been added as a Registered
User to
My Website. Please read the following information carefully and be
sure
to save this message in a safe location for future reference.

Portal Website Address: test.dnndev.me/en-us
Username: JohnDoe

You can use the following link to complete your verified
registration:

http:// test.dnndev.me/en-us/default.aspx?ctl=Login&username=JohnDoe&
verificationcode=IeOYlcFhJGg_

Thank you, we appreciate your support…

My Website

Token Replacement Engine
DNN features a token replacement engine that offers functionality to
personalize localized templates. This is used in several areas of the DNN
Platform, but it can also be leveraged in your modules. The engine goes
beyond simple token replacement to add formatting and analysis that allows
administrators to have more control over the display of token replaced values.
A few examples of module that use this feature are the core Newsletters and
Text/HTML modules, Forms & Lists, and Announcements. Another module
that leverages token replacement is the Blog module. The Blog module,
however, builds on token replacement to make it better suited for template
handling.

To use tokens in system messages and the modules that implement the
service, add the token to your text in the [Object:Property] format. For
example, to display a user's display name in an email message, you add
[User:DisplayName]. Formatting and conditional replacement can be done
using one of the following syntax options:

[Object:Property]

[Object:Property|Format]

[Object:Property|Format|IfEmptyReplacement]

Consider the following salutation from an email sent through the Newsletters
module:

 [Profile:Region|Dear {0} Resident|Dear Valued Member]

Users with a value stored in the Region property of their Profile framework
object would be saluted as Dear Florida Resident, whereas users who have no
value in the Region property would be saluted as Dear Valued Member.

Properties are formatted with the ability to use the same methods found in
the .NET Framework for Date, String, and Integer types. This allows for
arguments to be passed as formatting conditions. Consider the following text
that can be used to show the current site's logo with the time displayed
directly beneath:

<img src="http://[Portal:Url][Portal:HomeDirectory][Portal:LogoFile]"
alt="[Portal:PortalName]""/> [Date:Now|MM-dd-yyy h:mm:ss]

Table 10.4 lists all the objects that are available for token replacement.
Appendix B includes lists all accessible properties for these objects.

Table 10.4 Objects Available for Token Replacement

Object Class/Data Source Returns
Host System.Collection.Hashtable Secure

HostSettings

Portal DotNetNuke.Entities.Portals.PortalSettings Current
PortalSettings

Tab DotNetNuke.Entities.Tabs.TabInfo Current TabInfo
Module DotNetNuke.Entities.Modules.ModuleInfo Current Module
Culture System.Globalization.CultureInfo Current Culture
User DotNetNuke.Entities.Users.UserInfo Current User
Profile DotNetNuke.Entities.Profile Current

User.Profile

Membership DotNetNuke.Entities.Users.Membership Current
User.Membership

Role DotNetNuke.Security.Roles.RoleInfo Current Role
Date,
DateTime,
Time

System.DateTime Current
DateTime

Ticks System.Int64 (Long) Current
DateTime in ticks

Row, Field System.Data.DataRow Not applicable

Custom1 System.Collections.ArrayList Not applicable

Custom1 Any System.Collection.IDictionary Not applicable
User
Defined
Token

Any Object by Reflection Not applicable

* Custom can be replaced with custom text, passed as a separate parameter.

Localizing Modules
The current version of DNN supports localizing any static text in the user
interface of a module. When you are distributing your modules publicly, it is
important to prepare the UI of your module for localization so that it can be
used for non–English-speaking sites. Imagine the frustration of your users if
all the content for their site is written in Spanish, yet all of the static text in
your module is written in English.

Though the localization API is very powerful, it would add a lot of work for
module developers if it were the only mechanism for localization. To simplify
the job for developers, DNN includes a localization framework that applies
localization using declarative markup in the ASCX or ASPX files. This
approach provides a couple of benefits:

It simplifies the programming model because the developer adds a single
attribute/value pair to the server control markup, and the framework
handles calling the appropriate localization APIs.

It allows localization to be applied or changed without recompiling the
application.

So look at what it takes to provide localization for your module.

After all of the static strings have been identified, you must determine the
best approach for localizing each individual string. Each string should be
categorized into one of four cases depending on how the string is used within
a module:

Text placed directly into the HTML in the ASCX files

Text declaratively set in a server control in the ASCX files

Text modified or set in the source code for the module

Text embedded in images

The following sections show you how to use the localization framework and
localization API to correct each of these potential problem areas.

Case 1: Handling Static Strings in the ASCX File
The key to resolving the problem of text placed directly into the HTML in the
ASCX files is to understand that localization is handled programmatically.
Whether it is your code or framework code, you need to have the string in an

element that is easily accessed programmatically. This means that you must
make sure that the code-behind file and the DNN framework are aware of the
string's existence. This is actually quite easy to fix; just wrap the string in an
HTML control. Essentially, this step transforms the problem into Case 2 and
enables you to use a common approach for all strings in the ASCX file. Table
10.5 shows an example of applying this step to a simple string.

Table 10.5 Wrapping a String with a Web Control

Before After
<div

class="SubHead">
Title: </div>

<div class="SubHead"> <asp:Label
id="lblTitle"runat="server">- Title: </asp:Label>
</div>

At this point, your strings are ready to be localized.

Case 2: Handling Static Text in Server Controls
After all of your static strings are encapsulated in server controls, it is easy to
tell the localization framework how to localize your strings. To localize a
control, add a resourcekey attribute with a value that tells the framework
which string resource to use for this control. Table 10.6 takes the previous
example and makes this additional change.

Table 10.6 Adding a Resource Key

Before After
<div class="SubHead">
<asp:Label id="lblTitle"
runat="server" Title:-
</asp:Label></div>

<div class="SubHead"> <asp:Label
id="lblTitle" runat="server"
resourcekey="TestLabel"> Title:-
</asp:Label></div>

Now, the framework has all of the information it needs to find your string
resources and localize this content.

As mentioned earlier in the chapter, your module should include the
App_LocalResources directory with a resource file named after the user
control that is being localized.

To verify that you have applied the localization settings correctly, ensure that
the web.config file's AppSettings section includes the following line:

 <add key="ShowMissingKeys" value="true"/>

If you have applied the resourcekey and set ShowMissingKeys correctly, you
should see the image in Figure 10.7, the localized string with a missing value.

Figure 10.7

Notice that the text shows you that it is looking for TestLabel.Text. This
makes it easy to see where you have localized a control and where you still
need to create the localized version of the string.

A Label control shows how easy it can be to localize a web control. But each
control is different and contains different attributes that might need to be
localized. Table 10.7 shows which attribute will be localized using the default
behavior.

Table 10.7 Default Localized Attributes

Control Type Localized Attribute
System.Web.UI.WebControls Label Text

Button Text
LinkButton Text
ImageButton AlternateText
Hyperlink Text
Image AlternateText
CheckBox Text
BaseValidator ErrorMessage
BulletedList Items[i].Text
CheckBoxList Items[i].Text
DropDownList Items[i].Text
ListBox Items[i].Text
RadioButtonList Items[i].Text

System.Web.UI.HtmlControls HtmlImage Alt
HtmlButton Title

If the web control you are localizing is not listed in Table 10.7, you need to
localize a different attribute, or if you need to localize multiple attributes for
the same control, you must use the localization techniques shown in Case 3.

Case 3: Handling Static Text Programmatically
You will find several cases where text cannot be localized using a declarative
approach. This will require programmatically setting the text using the
localization API. The API section outlines the most frequently used methods
of the API.

Continuing with the same example, take a look at how to handle localizing
the ToolTip attribute for the label you created. Notice that this attribute is not
the default attribute for the Label control listed in Table 10.7. To localize the
attribute, add the following line of code to the code-behind:

 lblTitle.Tooltip = LocalizeString("TestLabel.ToolTip")

This will use the shortcut to Localization.GetString, available at the level of
a module control. This will use the automatically generated filename for your
module control, which is
ControlPath/App_LocalResources/ControlName.ascx.resx. If you are writing
code that is not placed inside a DNN module control, then you will have to
define your own file path for the resource file and use a version of GetString
from the Localization class.

Because this is a new control, you are safe adding it to the Page_Load event. As
you will see shortly, this is not always the appropriate spot for localizing
strings. Now that you have the code, the only step left is to add the localized
value to the resource file. This example uses LocalResourceFile because it is
specific to the module. Also note that although the key is named
TestLabel.ToolTip, you are free to use whatever key makes sense to you.
Because you're using the API, you have much more control over how the keys
are named.

If your key does not include a period (.), the framework will automatically
add .Text to your key and use that as the key for looking up the localized
value. Keep this in mind when creating your keys. Assuming that you have
named your key appropriately, you should see something like the localized
tooltip shown in Figure 10.8 when you compile and navigate to a page with
your module.

Figure 10.8

There are many instances where you might have embedded strings in your
code that are changed depending on the application state. A good example of
this is the Login skin object. This skin object changes between Login and
Logout depending on the authentication state of the current user. To localize
this control, just replace all the references to the static text with a call to one
of the GetString methods described earlier.

Images are a special case. It is recommended that you never include text in
your images because it complicates localization and can usually be avoided
through the use of background images and CSS. If your design requires you to
embed text in an image, you need to make a few changes to make it easier to
localize the image. To embed text into images and switch them with CSS,
override the styles from the base module.css stylesheet in a separate
stylesheet and switch them dynamically using the following code in the
OnInit event handler of your user control. You should use the
ClientResourceManager to do so, to make sure that registration takes place in
the head of the HTML output:

ClientResourceManager.RegisterStyleSheet(Page,
 string.Format("{0}CSS/languagespecific-{1}.css",
 ControlPath, CultureInfo.CurrentUICulture.Name));

For the links module, this would render like this with the default U.S. English
language:

<link href="#/DesktopModules/Links/CSS/languagespecific-en-US.css?
cdv=1"
media="all" type="text/css" rel="stylesheet"/>

No module will ever include localized resources for every language supported
by DNN. The effort to maintain the resource files would greatly exceed the
cost for all other development. Most module developers will include resource
files for their native language and maybe one or two other languages
depending on the language skills of the module development staff. This
means that many users will be forced to create the resource files for their own

language. That's not usually a significant problem.

If an image file contains embedded text, though, the user is forced to re-
create the image with a localized version of the text. To ease the burden for
the user, include the base image without text so that the user can easily create
the text label in his language. Keep in mind that different languages have
different space requirements. Just because a word or phrase is short in one
language does not mean that it will be equally short in another language.
That's one of the reasons for avoiding embedded text.

When your users have the image file with the localized text, they can use the
standard GetString methods to set the ImageUrl attribute to the appropriate
image filename, depending on the language they select.

Summary
In this chapter, you learned how resource strings are stored and used for the
core framework and for each module. You reviewed how locale and language
detection work in the DNN framework to provide a base for modules to build
upon to provide localized interfaces.

Chapter 11
Search

What's in this Chapter?

Learning about Lucene

Discovering new features in search

Understanding search entities and APIs

Integrating with modules

Writing a new crawler

Search was built from the ground up in DNN 7.1. The main objective was to
provide Google-type search capabilities in the DNN platform and the
extensions that were built on top of that. Some of the key features of search
were speed, relevance, and security.

History
The DNN Platform has had search functionality since the early versions.
Search functionality was based on the ISearchable interface, where a
scheduled task was present to periodically probe modules implementing this
interface. The interface allowed the platform to extract information from
modules and store it in a common store. Search storage happened to use SQL
Server, which provided a good centralized location for storing and querying
content. Although SQL Server provided decent search capabilities, it had
many problems such as speed, accuracy, and result highlighting.

When the commercial editions were initially launched around DNN 5.x, they
included the File Crawler and URL Crawler. These were also implemented as
scheduled tasks. The File Crawler allowed indexing of Office and PDF
documents. The URL Crawler was more like a typical web crawler and
traversed from one link to another on the site, thereby parsing and indexing
the content.

Objectives of the New Search Functionality
Supporting two different search architectures across editions was very taxing.
Differentiation makes a lot of sense at the feature level, but not at the
architecture level. There was also need for a more efficient search API for
modules. For example, the concept of deltas was introduced, where modules
can recognize changes in content since the last indexing run, as opposed to
indexing the entire content all of the time. Several of the key objectives of the
new search functionality included:

Handling diverse content (CMS content, social content, localized content,
and third-party modules)

Providing a consistent user experience across various solutions

Providing simplicity for module developers

Using a uniform architecture with differentiation based on feature, not
architecture

Apache Lucene
Apache Lucene has been the de facto open source search engine for many
years. It is written in Java and therefore can be run on a variety of platforms,
including Windows. More information about Lucene can be obtained at
http://lucene.apache.org/. Figure 11.1 shows Lucene's logo. The DNN
platform does not use the Java version of Lucene.

Figure 11.1

Lucene.Net
Lucene.Net is a line-by-line C# port of the original Java-based Lucene. It is
open source as well and is part of the Apache Foundation. Similar to the
original Lucene, the .Net version is also a very efficient searching library.
More information about Lucene.Net can be obtained at
http://lucenenet.apache.org/. The DNN platform uses Lucene.Net and
ships the necessary DLLs in its installation package. Figurer 11.2 shows
Lucene.Net's logo.

Figure 11.2

Lucene: A Document Store
Internally, Lucene is a document store consisting of a collection of
documents. Each document consists of a collection of fields. In comparison
with a typical relational database, a document can be compared to a table and
a field to a column. A document does not have a name per se; however, a field
has a name, type, and value. Lucene, in fact, supports a flexible schema,
meaning there is no requirement for two different documents to have the
same set of fields.

Although Lucene is not marketed as NoSQL, it is indeed a NoSQL database on
the inside. People at Lucene prefer that Lucene be known for its search
capabilities and not necessarily as a document store or a NoSQL database.

Many organizations (for example, Facebook, LinkedIn, and Netflix) utilize

http://lucene.apache.org/
http://lucenenet.apache.org/

Lucene or a variant of it to provide search capabilities in their applications.
Lucene is so powerful as a document store that RavenDB
(http://ravendb.net/), a NoSQL database for .Net, uses Lucene.Net as its
backend.

Lucene versus Lucene.Net
One thing that's very important to note is that Lucene.Net and Lucene are not
the same. The concepts behind them are the same; in fact, the .Net version is
a direct port of the Java version.

Besides the fact that the programing languages are different, the release
schedule is vastly different as well. The Java version ships more frequently
than the .Net version. The latest version of Lucene.Net, 3.0.3, was released in
October 2010, whereas the latest version of Lucene, 4.9.0, was released in
June 2014. It is also to be noted that the Java version of 3.0.3 was released in
March 2011, which means that the .Net version was behind by close to 18
months. According to Lucene.Net's wiki, the next two releases are going to be
3.6 and 4.0. No dates have been specified.

Although the Lucene.Net 3.0.3 version may look older compared to Lucene,
3.0.3 is still a very good release of Lucene.Net. In fact, there is a very popular
book written on version 3.0: Lucene in Action, Second Edition: Covers
Apache Lucene 3.0. The book has about 500 pages and provides discussions
on many aspects of Lucene. This book was extensively referenced in building
search functionality in DNN 7.1.0.

Lucene.Net Contrib
Besides Lucene.Net, there are a few helper DLLs (Contrib) available to
perform specialized functionality outside of the core Lucene.Net. Both
Lucene.Net and the Contrib DLLs can be downloaded from NuGet, but they
are also included in the DNN platform package. Similar to Lucene.Net, the
Contrib DLLs are also part of the Apache Software Foundation.

DNN currently ships version 3.0.3 of Lucene.Net.dll as well as
Lucene.Net.Contrib.Analyzers.dll and
Lucene.Net.Contrib.FastVectorHighlighter.dll. As shown in Figure 11.3, the
three DLLs are relatively small in size, yet they are extremely powerful.

http://ravendb.net/

Figure 11.3

Search Architecture
As shown in Figure 11.4, Lucene is located at the very bottom of the
architecture stack of search. DNN developers usually don't need to know
much about this layer as the layer above it abstracts Lucene technicalities
away.

Figure 11.4

The DNN search APIs layer provides a way to store, delete, and find content
from the Lucene index. The APIs work as a shim between Lucene and DNN.
The APIs and their associated entities are DNN-friendly and are very easy to
use.

Content gets added to the index through crawlers, which in turn are executed
through the scheduler. The DNN Platform comes bundled with Site Crawler;
the Evoq products have additional File and URL Crawlers. Site Crawler is
responsible for calling into modules to get their content and store it in the
search index. Each of the crawlers implements BaseResultController (BRC),
which essentially is an abstract class containing two abstract methods
—HasViewPermissions and GetDocUrl.

Site visitors perform searches on the site through either the search skin
object or the Search Results module. Both of them in turn call into search-
specific Web APIs available in the platform to retrieve search results. These
Web APIs can be called from outside of DNN as well. Many of the modules in
the Evoq products implement their own querying user interface and call into
search APIs directly.

Platform Features
The majority of the search features such as the use of Lucene.Net, near real-
time querying, the ability to ignore words, synonyms, and re-indexing were
incorporated into the base 7.1 platform itself. On top of the platform, the 7.1
Evoq modules took advantage of these functionalities and built additional
module-specific search capabilities. The older crawlers in the commercial
products were enhanced to take advantage of the new search functionality as
well.

Site Crawler
Site Crawler is the scheduled task responsible for indexing the items
presented in Table 11.1. The indexed content is added to the Lucene data
store. By default, the task runs every minute to ensure new content is indexed
with very little latency. Figure 11.5 shows the task listed in Host Schedule.
Further, Figure 11.6 indicates the output once the task is completed. It shows
the count of the items processed, which are explained in Table 11.1. Site
Crawler actually replaces the old Search Engine Scheduler task that was
present in the platform prior to 7.1.

Table 11.1 Site Crawler's Tasks

Crawler Task
Module's
content

Indexes content from the module that implements either the old
ISearchable or the new ModuleSearchBase. Also indexes content
inside HTML tag attributes such as ALT and TITLE to search
images, videos, and links.

Module's
metadata

Indexes metadata for all the modules defined across pages on Sites
and Host. Metadata includes module name, culture, header, footer,
and taxonomy tags.

Tab's
metadata

Indexes metadata for all the pages defined across Sites and Host.
Metadata includes page name, title, description, headers,
keywords, and taxonomy tags.

User's
content

Indexes profile properties of all users including super users. This
is introduced in version 7.2.

Journal's
content

Indexes the journal. This is introduced in version 7.3.

Figure 11.5

Figure 11.6

Near Real-Time Searching
Lucene's near real-time functionality allows searching of documents within
milliseconds of the documents getting added to the index. This feature is part
of Lucene itself. There are two reasons why the prefix “near” is appropriate.
First, Lucene is not truly real-time, and second, the crawling is done through
a scheduled task, which has inherent delays. However, there are unsupported
APIs in the DNN Platform to remove dependency of the scheduler and update

the index virtually in real time. These unsupported APIs have some
limitations in a web farm. The initial indexing or re-indexing of a site can take
longer; however, after that, it should be very quick as only new or changed
content will be added to the Lucene store in the subsequent runs.

Speed
The new search functionality is extremely fast as it does not rely on SQL or
out-of-process calls. Although Lucene does not market itself as NoSQL, it
indeed is a NoSQL database. In fact, RavenDB, a document database, uses
Lucene.Net as its backend. Because Lucene.Net ships as a DLL and runs as
part of the DNN application, the calls for search are all in-process, which
significantly increases performance as compared with the previous SQL
implementation.

Auto-Preview
Both the search skin object and the Search Results module show search
results as soon as the user starts to type search queries. Searching can be
performed using partial words; the user doesn't need to type the entire word
or phrase to get results. The main idea is to let users type a query, have a
quick look at the results via a preview, and tweak the query as needed until
they find the content they are looking for. Figure 11.7 shows a user typing the
partial word “awe” and the previews showing results.

Figure 11.7

Site-Scoped Search
Although the DNN Platform supports the creation of more than one site in a
given installation, search is scoped to one site at a time. The principles behind
this feature are the same as those of the very sites themselves, where a given
site is not supposed to know about the other sites due to security reasons.
The Evoq products, however, have a feature called Site Groups that allows
one site to be designated as a parent site and others to be child sites. In such a
scenario, search can also be extended to cover the child sites. As shown in
Figure 11.8, administrators can select whether to scope the search to the
current site or extend it to the child sites as well.

Figure 11.8

Module-Scoped Search
Results can also be scoped to specific modules. Module developers can easily
integrate search into their modules; see the section “Module Integration” for
more details. Figure 11.9 shows an example of search integration in an Evoq
product where the search is restricted to the Discussions module.

Figure 11.9

Advanced Search
Often the search skin object is sufficient for performing a basic search, given
it has the auto-preview feature. However, advanced search is available to
further narrow down the search results by different criteria such as how
recent the results are, tags, and so on. The advanced search can be accessed by
going into the Search Results module and clicking the Advanced button on
the right. Figure 11.10 shows the Advanced button. The various advanced
options are additive, meaning the user can narrow down results by a specific
tag and limit them to a certain number of days.

Figure 11.10

Filtering by Tags

One or more taxonomy tags (see Figure 11.11) can be specified to limit search
results by tags. Many of the Evoq modules require users to supply a tag while

creating content (for example, a blog, a question, or an idea). This feature
allows users to limit the search results to one or more tags across one or
more modules.

Figure 11.11

Filtering by Content's Modification Time

Results can be restricted based on content's modification time. There are
several options available out of the box (see Figure 11.12). This feature
becomes handy when a user wants to search content created within a
specified number of days. Users often have a vague idea when the content
they are searching for was created; playing with this option helps them easily
find their content.

Figure 11.12

Filtering by Search Types

Results can be restricted by search types. The Filter drop-down in Figure 11.13
shows the list of such items. The content in the search index is organized by
search type (see the section “Entities” for more details on SearchType).
Within the Search Type module, the content is further organized by Module
Definition ID.

Figure 11.13

Each module that implements ISearchable or ModuleSearchBase is shown in
this list for filtering. The HTML module's content is bundled in the Pages
item, which also includes the page's name, its metadata, its module name,
and its metadata.

The items under the Filter drop-down can be reduced through the module
settings of the Search Results module. This provides control to administrators
to hide the content of certain modules from searching. Users can further
reduce the scope by unselecting a few more modules from the list.

Locale-Aware Search
Recent editions of the DNN Platform have made internalization and
localization a high priority. There are about six language packs available out
of the box starting with version 6.2. The current search functionality has been
written with that in mind. Content stored in the search index has a culture
code defined. This allows easy segregation of search results based on the
current culture of a page.

As an example, if a site utilizes content localization and has made the site
available in three languages—English, French, and Spanish—a French user
will likely be viewing pages in the French language and will be interested in
seeing search results from French pages only. The localization feature of
Search is designed very well to handle this requirement. The upfront
segregation of content in the index based on culture makes it very fast and
easy to limit results to a specific language. One thing to note is that the

culture-neutral pages can be found for any language.

Delta Indexing
Search includes the concept of deltas, which allows modules to return only
the changed content since the last time the platform probed it for content.
This makes the system very efficient for indexing and reduces the burden on
the server.

Ranking
Lucene is well-known for providing ranking of search results based on its own
algorithm. Lucene gives higher ranks to the keywords that are used more
frequently. It also considers the distance between different words to find the
relevance of one keyword with respect to the other. These are just two
examples of how Lucene does its ranking; there are other factors also.
Module developers usually do not need to understand any of those.

While Lucene does its best to rank content, it also provides APIs that can
increase ranking of specific content. See the section “SearchDocument” to
learn different ranking options.

Lucene's Native Syntax
Lucene has its own native syntax to perform queries, which includes Boolean
search, fuzzy search, wildcard search, and so on. A good portion of that syntax
is available in DNN as well. Figure 11.14 shows examples of how to create
queries using Lucene's native syntax.

Figure 11.14

Fuzzy search is an interesting example. Fuzzy search can be executed by
providing a tilde (˜) after the keyword. For example, typing “kountry˜” will
also find “country”. Lucene applies a unique algorithm to treat words that
sound similar as if they were the same word and uses that information to
handle fuzzy searches.

Ignore Words
You can have Lucene ignore words that you don't want it to index even
though modules or other sources send them for indexing. These words can be
the typical stop words such as “a”, “the”, “not”, and so on, or they can be your
competitor's name or just plain profane words that you don't want to index.
DNN provides the standard English stop words in the list. The list can be
easily modified by going into Admin Search Admin Ignore Words. These
words can be configured per site and per language. See Figure 11.15 for
examples.

Figure 11.15

Synonyms
Synonyms refer to two or more words that have similar meanings, such as
“understand” and “comprehend”. Lucene provides a way for administrators to
introduce a group of words that mean the same thing. This can be done by
going into Admin Search Admin Synonyms. See Figure 11.16 for examples.
In this case, searching for the word “DNN” will find not only “DNN” but also

“DotNetNuke” and vice versa because they are configured as synonyms.

Figure 11.16

Evoq Features
Evoq products have two additional crawlers, which are URL and File
Crawlers. Both of these crawlers have been part of the commercial offerings
from the very beginning; however, they have been modified to take advantage
of the new architecture. Similar to the platform's Site Crawler, both URL and
File Crawlers are configured as scheduled tasks. Figure 11.17 shows the URL
and File Crawlers' scheduled frequencies.

Figure 11.17

URL Crawler
As the name suggests, the URL Crawler is driven by starting with one URL
and traversing from one link to another. The site administrator can configure
one or more URLs to be crawled. The crawler downloads the content of a URL
first and then parses the HTML to obtain text to be sent to search index and
obtain links for further crawling. Crawling continues this way until no new
links are found. Figure 11.18 shows the main setting for URL Crawler.

Figure 11.18

Scoping Below a URL

Crawling is restricted to the URLs below the starting URL. For example, if the
starting URL is http://www.mysite.com/site1, then crawling will be done to
the following example URLs:

http://www.mysite.com/site1

http://www.mysite.com/site1/page1

http://www.mysite.com/site1/page2

http://www.mysite.com/site1/page1/sub/page

It is important to note that the all of the URLs listed above have /site1 as the
root-level folder. As can be seen, none of the URLs listed here contain the
folder /site1 in its name. As a result, crawling will not be done to them:

http://www.mysite.com

http://www.mysite.com/site1
http://www.mysite.com/site1
http://www.mysite.com/site1/page1
http://www.mysite.com/site1/page2
http://www.mysite.com/site1/page1/sub/page
http://www.mysite.com

http://www.mysite.com/page1

http://www.mysite.com/site2

http://www.mysite.com/site3

http://www.mysite.com/site2/page1

DNN Role Impersonation

DNN's security model supports various roles, and in turn pages can have
access defined per these roles. One set of roles may have access to certain sets
of pages, whereas other roles may have access to other pages. It is very
important to understand this concept and configure the URL Crawler to
traverse the site as a specific role.

While configuring a URL for the current site, the administrator can specify
different levels of roles, which include None, Administrators, Registered
Users, Subscribers, and so on. The setting allows limiting of pages to crawl.
For example, the setting None limits crawling to the anonymous pages.
Unregistered users can search for content located in those pages only.
Likewise, the setting of Registered Users limits crawling to pages that are
accessible to both anonymous users and registered users.

Windows Authentication

This option allows the crawling of URLs protected by Windows
authentication such as Active Directory. This option is used mostly for
external sites in the intranet that are protected by user's role in the network.
It is also used when the given DNN site uses Windows authentication.
Domain information including username and password must be supplied
while using this option.

No Duplication with Site Crawler

URL Crawler is smart enough to exclude content already indexed by the Site
Crawler. When Site Crawler is enabled on a site, URL Crawler discards
content generated by modules that participate in Site Crawler (that is, the
ones that implement either ISearchable or ModuleSearch).

There are additional settings (see Figure 11.19) to handle duplicate URLs that
point to the same page. These settings are complicated regular expressions
that are used to determine whether two URLs point to the same content.

http://www.mysite.com/page1
http://www.mysite.com/site2
http://www.mysite.com/site3
http://www.mysite.com/site2/page1

Ideally, the default settings are enough to handle most of the duplicates.

Figure 11.19

A good example is the tabid. A tabid in the query string such as tabid=99 or
tabid/99 generally refers to the same URL and should thus be treated as a
duplicate by URL Crawler.

File Crawler
File Crawler, as the name suggests, goes through files associated with Sites
and Host and adds them to the index. In addition to indexing filenames and
parent folders, a file's content is also indexed. Beyond that, you can also
choose to exclude files.

Scoping by Folders

One or more folders can be specified (see Figure 11.20) for crawling.
Subfolders are automatically included when a folder is selected. By default,
the entire Site Root is selected.

Figure 11.20

Scoping by File Extension

File Crawler includes only those files that are defined under the Allowable
File Extensions setting in Host Host Settings Other Settings (see Figure
11.21).

Figure 11.21

Crawling a File's Content

Along with indexing a file's metadata, File Crawler can also index the text
portion of its content. Prior to 7.1, PDFBox and IKVM library for .Net were
used for content checking. Starting in 7.1, this has been replaced by iFilters.
An IFilter is a generic way to allow Windows's search engine to extract
content from different file types. There are specific iFilters for 32-bit and 64-
bit versions of Windows. The main purpose of iFilter is to extract textual data
from files. For example, in order to index PDF files, an iFilter from Adobe
must be installed.

The iFilter must be installed on the server where DNN is running. Microsoft's
iFilter for Office documents is usually installed by default. The Advanced
Crawlers section of the Search Admin UI can be easily used to find out
whether an iFilter is installed on the server. The Content Crawling column in
the UI has a tick mark for a given file extension to indicate that the iFilter is
installed (see Figure 11.22).

Figure 11.22

Excluding by Extension

File extensions can also be added to be excluded from search functionality
(see Figure 11.23). Although image files (.png, .jpg, and so on) are not part of
the default settings, many customers exclude these extensions to avoid
having a standard site's images and icons discovered by the search feature.

Figure 11.23

Administration
The most important aspect for search functionality that site administrators or
super users need to know is the default location of the search files, the
scheduled tasks, and the re-indexing option. When in doubt about something
not getting indexed or found, it's often a good idea to delete the entire search
folder, issue a re-index command, and start over. There are special
considerations to be made when running a site in a web farm. Additional
configuration may be needed to perform search in languages with complex
alphabets such as Chinese.

Default Index File Location
By default, the Lucene index files are stored in the App_Data\Search folder
(see Figure 11.24). This path can be modified by changing a host setting in the
database using SQL. This folder can easily grow large over a period of time;
compacting can be used to periodically shrink the files.

Figure 11.24

Web-Farm Configuration
While operating under a web farm, the search-related scheduled tasks (Site,
URL, File, or any other search crawler) must run on just one web server. The
setting can be set under Host Schedule Schedule Name Edit Run on
Servers.

Lucene may run into locking issues when more than one process tries to
write to the same index file. Although there is enough protection available in
both the DNN and Lucene APIs to protect from locking within the same IIS

instance, there is no easy way to synchronize write operations across process
or machine boundaries.

In any case, search-related scheduled tasks can run at the same time on the
same web server.

Re-Indexing
There may be need to re-index the entire site. The platform provides re-
indexing at site levels as well as at host level. While site-level re-indexing
instructs crawlers to re-index just a site, host-level re-indexing re-indexes just
the content specific to the host. It is important to note that the host content is
searchable by super users only.

Re-indexing happens the next time crawlers are run. With regular indexing,
the regular crawler gathers only changes in content since the last run. In
contrast, the re-indexing start date for data gathering is set to the beginning
of time.

If re-indexing is to be performed on all the sites and at the host level as well,
it may be beneficial to delete the content of the App_Data\Search folder.

Depending on the size of the site, crawling after issuing re-indexing can cause
CPU spikes, as it will be querying a potentially much larger amount of data.

Re-indexing at the site level is triggered by clicking the Re-Index Content
button under Admin Search Admin General Re-Index Content (see
Figure 11.25).

Figure 11.25

Reindexing at the host level is triggered by clicking the Re-Index Host
Content button under Host Host Settings Advanced Settings Search
Settings (see Figure 11.26).

Figure 11.26

Getting Lucene Stats
One way to gauge the size of Lucene's index is to take a look at the size of the
App_Data\Search folder. The other way is to click the Get More Information
link under Host Host Settings Advanced Settings Search Settings (see
Figure 11.27). Information such as size, number of active or deleted
documents, and last modified date is presented here.

Figure 11.27

Compacting
When a document is deleted from Lucene, it is not physically removed from
the database. Instead, a flag is set that the document is deleted so it is not
referenced in querying. To reclaim the space of deleted documents from
Lucene, click the Compact Index button under Host Host Settings
Advanced Settings Search Settings (see Figure 11.28). The compacting is
done the next time the Site Crawler scheduled task runs.

Figure 11.28

Custom Analyzer
By default, Lucene uses the standard analyzer to perform text analysis on the
content. The platform ships with more advanced analyzers, which are usually
built on top of the standard analyzer. One common use-case is the
Lucene.Net.Analysis.Cn.ChieneAnalyzer, which is used on sites in the
Chinese language. A custom analyzer can be set by selecting Custom Analyzer
Type under Host Host Settings Advanced Settings Search Settings (see
Figure 11.29).

Figure 11.29

Search Phases
Search in DNN consists of three phases: content acquisition, content
indexing, and content searching (see Figure 11.30). Content acquisition
happens first and refers to the gathering of content from various sources.
Content indexing is the second phase where acquired content is processed
and stored in the Lucene store. The content search phase is the last step
where content is searched by the end users.

Figure 11.30

Content Acquisition
The goal of content acquisition is to crawl various content sources and
generate SearchDocuments to be stored in the index. The SearchDocuments are
generated by the crawlers such as Site, File, and URL Crawlers. The Site
Crawler in the platform probes modules implementing the ISearchable
interface or ModuleSearchBase abstract class to acquire their content and store
it in the Lucene store.

Content Indexing
The content indexing stage is responsible for performing text analysis,
ranking, applying of synonyms, ignore words, stemming, and so on. All of
these activities are performed using Lucene APIs. Table 11.2 describes the
steps involved in content indexing. All of these steps are performed one by
one in the platform. Module developers do not have to specifically implement

any of these steps. However, is helpful to understand how content gets
transformed into Lucene objects. As described in the “Troubleshooting”
section, Luke (a Java-based standalone tool) can be used to see more such
details.

Table 11.2 Steps in Content Indexing

Step Description
Text
Analysis

Text analysis breaks a sentence into individual words. There are
various analyzers available in Lucene to perform this task. More
than one analyzer can be used in a daisy-chain form. The
following analyzers are used in the platform:

Standard: Identifies email, acronyms, and so on.

Length: Skips words that are shorter than two characters.

Lowercase: Converts to lowercase.

StopFilter: Removes Ignore Words.

SynonymFilter: Applies synonyms.

ASCIIFoldingFilter: Removes accents from non-English
words.

Ranking Lucene uses Boost for ranking content. Documents as well as
fields can be boosted higher.

Synonyms Synonyms are words that mean same thing; for example,
“notebook” and “laptop”. Ideally, a search for “notebook” should
also find “laptop”. Another use is abbreviations; for example, a
search for “DotNetNuke” should also find “DNN” and vice versa.
Lucene places synonyms at the same position as the original
word.

Ignore
Words

Ignored Words are removed from the index. The platform ships
with 20 standard English words to be ignored such as “a”, “an”,
“and”, “the”, and so on. These words are removed while indexing.

Stemming Stemming converts a word to its root and stores just the root in
the index. For example “breathe”, “breathes”, “breathing”, and
“breathed” are all stored as “breath”. Searching for one will find
the others. DNN uses PorterStemFilter to perform stemming.
There are also other stemming filters available in Lucene. Tests

indicated Porter to be better suited for non-English stemming.

Figure 11.31 shows how a statement is first broken down into individual
words and then the ignored words (for example, “a” and “is”) are removed. It
also shows how synonyms (for example, “notebook” is the same as “laptop”)
are applied.

Figure 11.31

Content Searching
Content searching is the last phase of searching, where users actually perform
searches. All the standard Lucene boolean syntax is supported. Sorting can be
performed based on relevance or date. Filtering can also be applied based on
SearchType or module. Two important aspects of content searching are
highlighting and security trimming:

Highlighting: The output from querying consists of a snippet of the
content where it's found. The hit is highlighted in the result, also.

Security trimming: It is very important for the querying phase to return
only those results to which a caller has access. Standard page and module
permissions are applied on the results to trim out access-restricted items
prior to returning back to the caller. Modules can have custom
permissions applied on top of standard DNN permissions.

Module Integration
Modules can easily integrate with search functionality by implementing the
ModuleSearchBase abstract class in their BusinessController class. The main
purpose of this abstract class is to help modules easily send their new content
for indexing into the Lucene store. Once content is added to the Lucene store,
it can be searched by users through the search skin object or search results
module. This is a simple use case where the module is interested in simply
providing content to Lucene. In addition to this, module developers can also
provide custom querying functionality in their modules by taking advantage
of the SiteSearch and ModuleSearch APIs.

ModuleSearchBase
The Search in 7.1 introduced a new abstract class, ModuleSearchBase, to help
modules easily integrate with search. The old ISearchable interface has been
marked as obsolete, although it still works. ModuleSearchBase is more
efficient as it uses the concept of deltas. ISearchable required modules to
provide all their content all the time. ModuleSearchBase only asks for a
difference in content since the last run.

ModuleSearchBase should be implemented in the BusinessControllerClass in
the module's manifest. Figure 11.32 shows a portion of a manifest from the
HTML module. As always, you must provide Searchable as one of the
SupportedFeatures.

Figure 11.32

Figure 11.33 shows the ModuleSearchBase implementation in the HTML
module. As can be seen, the module implements a
GetModifiedSearchDocuments method that returns a list of SearchDocument
objects. This method in turn calls into its own controller methods to query
content that has been changed since the beginDate was passed as a
parameter. The parameter modInfo is used to pinpoint to the correct module

for its content.

Figure 11.33

GetModifiedSearchDocuments
GetModifiedSearchDocuments is the only method in ModuleSearch. Modules
participating in a search should implement this method and return
SearchDocuments for new, changed, and deleted content in the module. This
method accepts ModuleInfo and BeginDate as parameters. The BeginDate is in
the UTC format.

The GetModifiedSearchDocuments method is called periodically by Site
Crawler, and it is called for each and every module instance that implements
either ISearchable or ModuleSearchBase. There is some intelligence built into
the Site Crawler so that it calls only those modules whose
LastContentModifiedOnDate property from the ModuleInfo object is later than
the last crawler run date time. Not all modules implement this behavior. As of
this writing, only the HTML module updates its LastContentModifiedOnDate.
This helps a lot from a performance point of view as the HTML module is the
most commonly used module on sites.

You need to be careful with packages that have more than one module
definition in the manifest having SupportedFeature as Searchable. In such
situations, this will be called for all module definitions defined in that
manifest. In most of these modules (for example, the Blogs module), there is
usually one main module with other helper modules.

The module should inspect the supplied ModuleInfo object to ensure that it
points to the main module definition and then only return content; otherwise
it should return an empty collection. Not doing this may result in duplicate
content being indexed. The old ISearchable worked this way as well.

Entities
The new search functionality primarily defines four entities—SearchType,
SearchDocument, SearchResult, and SearchQuery. Figure 11.34 shows the
places where these entities are used. SearchType is used to distinguish the
different types of content stored in Lucene, such as content from modules,
metadata about pages, information about users, and so on. SearchDocument is
the general-purpose object to be used to send a piece of content for indexing
into Lucene.

Figure 11.34

SearchQuery and SearchResult are used in the querying part of Search.
SearchQuery is the object to build a simple or complex query to run against
Lucene, and SearchResult is the object that is returned from Lucene once the
query is executed. The three DNN entities SearchDocument, SearchQuery, and
SearchResult correspond to Lucene's native Document, Query, and ScoreDoc
entities, respectively. There is no equivalent of SearchType in Lucene; it's a
DNN platform-specific entity.

SearchType
Search in DNN is written with extensibility in mind. SearchType provides
developers the ability to control certain aspects of the search results—
primarily custom permissions and custom URLs. Most module developers do

not need to work with SearchType. However, SearchType is handy when new
crawlers are to be written or default behavior around search permission or
URL needs to be changed in the platform.

The DNN platform ships with Site Crawler, whereas Evoq products ship with
URL and File Crawlers. All three crawlers are implemented as scheduled
tasks, and each has one or more search types. For example, the Site Crawler
in the DNN platform has three: module, tab, and user. The URL and File
Crawlers define one SearchType each. Table 11.3 explains the SearchType
properties.

Table 11.3 SearchType Properties

Property Description
SearchTypeId Search Type ID.
SearchTypeName Search type name.
SearchResultClass A class implementing BaseResultController. This class

will be invoked by reflection.
IsPrivate Content from this SearchType will normally not be

searched while performing site or module search.

SearchDocument
SearchDocument is the object that is transformed into a native Lucene
document and is stored in its NoSQL database. The properties from
SearchDocument are transformed into native Lucene fields. Table 11.4 explains
the SearchDocument properties.

Table 11.4 SearchDocument Properties

Property Description
UniqueKey A key to uniquely identify a document in the index.
Title The content's title. HTML tags are stripped from this

property, but certain HTML attribute values will be
retained, such as alt and title attribute values.

Description The content's description. The description should generally
be no more than two sentences. This property is used by
RSS syndication. It is also used in search results when
highlighted text is not found during searching. HTML tags

are stripped from this property, but certain HTML attribute
values are retained, such as alt and title attribute values.

RoleId RoleId (GroupId) is for additional filtering. This field is
optional. This property can be used while under social
groups.

Body The content's body. HTML tags are stripped from this
property, but certain HTML attribute values will be
retained, such as alt and title attribute values.

Url The URL for the indexed item. Usually TabId or ModuleId is
enough to generate a document URL in the search result.
However, the Url field is used if present in SearchResult.

PortalId The ID of the Portal.
TabId The Tab ID of the content. This field is optional.
ModuleDefId The Module Definition ID of the content. This is needed

when SearchTypeId is for a module.
ModuleId The Module ID of the content. This is needed when

SearchTypeId is for a module.
AuthorUserId The User ID of the author. The author's display name is

automatically found and stored. AuthorName can be found
in SearchResult. However, this may be out of date if
DisplayName is changed after indexing.

SearchTypeId The Search Type ID; for example, module, file, or URL.
ModifiedTimeUtc The time when content was last modified (in UTC).
IsActive The flag to indicate whether content is active. Content will

be deleted from the index when IsActive is false. The
default is True.

QueryString The query string that may be associated with a search
document. This information will be used to create a URL
for the document.

Permissions A string representation of roles and users who have view
(or are denied view) permissions.

Keywords Additional keywords can be specified for indexing. This is
key-value pair, for example, “AliasName,” “something.”

NumericKeys Additional numeric fields can be specified for indexing.

This is key-value pair; for example, “ItemId,” “888.”
Tags Tags can be specified as additional information.
CultureCode The culture code associated with the content.

The DNN Search APIs bump up the boost level of a few of the SearchDocument
properties based on Table 11.5. The remainder of the properties are assigned a
boost of 1, meaning there is no bump in boost or ranking. The default boost
levels can be changed by manually tweaking the host settings noted in the
Table 11.5. The value of the host setting should be multiplied by 10 compared
to the boost level you want to change. For example, if you want to set the
boost value of Title to be 7, then you must set the host setting
Search_Title_Boost to be 70.

Table 11.5 Property Boost Levels

Property Boost Host Setting Name
Title 5 Search_Title_Boost

Tag 4 Search_Tag_Boost

Keyword 3.5 Search_Content_Boost

Description 2 Search_Description_Boost

Author 1.5 Search_Author_Boost

Default 1 n/a

SearchQuery
As the name suggests, the SearchQuery entity is used to construct a search
query to retrieve content from Lucene. The properties of the object can be
filled to narrow down results. Table 11.6 explains the SearchQuery properties.

Table 11.6 SearchQuery Properties

Property Description
UniqueKey A key to uniquely identify a document in the index.

This should be passed only when a very specific
document is to be retrieved.

KeyWords Keywords to search for. Boolean options such as AND
or OR can also be specified.

PortalIds A collection of Portal IDs of the site upon which to

perform the search. This field must be specified or
portal 0 will be searched by default.

SearchTypeIds A collection of Search Type IDs that should be
searched upon. This is optional.

ModuleDefIds A collection of Module Definition IDs that should be
searched upon. This is optional.

ModuleId The Module ID to restrict the search to. Only a value
greater than 0 is used.

RoleId The Role ID to restrict the search to. Only a value
greater than 0 is used. This property does not have
any relationship with security.

TabId The Tab ID to restrict the search to. Only a value
greater than 0 is used.

Locale The locale to which to restrict the search. This field
can be left empty for a single language site. For
example, a value of en-US or nl-NL can be specified to
restrict search to a single locale.

BeginModifiedTimeUtc The begin date of the time when content was last
modified (in UTC). This field is optional.

EndModifiedTimeUtc The end date of the time when content was last
modified (in UTC). This field is optional.

Tags This restricts search to specific tags. This field is
optional.

PageIndex The page index for the result: for example,
pageIndex=1 and pageSize=10 indicates first 10 hits.
The default value is 1.

PageSize The page size of the search result. The default value is
10.

TitleSnippetLength The maximum length of highlighted title field in the
results.

BodySnippetLength The maximum length of highlighted body snippet
field in the results.

CultureCode The culture code associated with the content.
Culture-neutral content is always returned even
though this value is specified.

SortField The sort option of the search result (descending or
ascending). This field is optional.

CustomSortField The name of the custom sort field. This works with
the SortFields.CustomNumericField or
SortFields.CustomStringField option. Enum
SortFields can be used to sort on Relevance,
LastModified, and Title. Additional fields such as the
ones provided under SearchDocument.Keywords,
SearchDocument.NumericKeys, or Tags can be
specified. It is important that the field name is a valid
one.

WildCardSearch Set this to true to perform a wildcard search. This
property is not respected when keywords contain the
special boolean phrases “˜”, “*”, “\””, “\'”, “and”, “or”,
“+”, or “-”. When WildCardSearch is enabled, an
additional OR is performed; for example (keyword OR
keyword*). It adds an asterisk at the end to find any
words starting with the keyword. There can be
performance implications with this setting turned on.

SearchResult
As the name suggests, the SearchResult entity is the object that is returned
after performing a query. SearchResult inherits from SearchDocument and
therefore contains all the properties defined under SearchDocument.
SearchResult has the additional properties described in Table 11.7.

Table 11.7 SearchResult Properties

Property Description
DisplayModifiedTime The time when content was last modified (in friendly

format).
Snippet The highlighted snippet from the document.
AuthorName The display name of the author. This may be different

from the current DisplayName when the index was run
prior to the change in the DisplayName. This field is
optional.

Score Lucene's original score. This is the score of this
document for the query. This field may not be reliable
as most of the time it contains Nan. Use DisplayScore
instead.DisplayScore Lucene's original score in string format; for example,
1.45678 or 0.87642. This is the score of this document
for the query. This field is more reliable than the float
version of Score.

APIs
The majority of the module developers can simply implement
ModuleSearchBase and integrate with the search functionality. However, there
are additional APIs available for performing more advanced operations.
Search has two public APIs. There are also a few internal APIs, but they can
be called from modules.

The Evoq products make use of the two public APIs to provide module-
specific querying capabilities. The APIs that work with SearchDocument such
as AddSearchDocument, AddSearchDocuments, and DeleteSearchDocument are
mostly used by the crawlers. The administrative APIs are used by the host
settings section of the platform.

Public APIs
Due to limitations in the web farm support with regard to writing to the
index, only the querying APIs have been made truly public. Others are
technically public; however, they are placed under the Internals namespace
for now. The public APIs include the following:

SiteSearch: Executes a SearchQuery within the scope of a site

ModuleSearch: Executes a SearchQuery within the scope of a module

Unsupported (yet Useful) APIs
Any write operation performed on the Lucene index is executed by the search
crawlers, which run as scheduled tasks. The Site Crawler calls into APIs
located under the DotNetNuke.Services.Search.Internals namespace to
perform a write or delete operation on the index. Table 11.8 describes the
indexing APIs, Table 11.9 describes the administration APIs, and Table 11.10
describes the internal APIs.

Table 11.8 Indexing APIs

API Description
AddSearchDocument Adds one SearchDocument into the index.

The caller must call Commit to save the
changes. DeleteSearchDocument is
automatically called as well.

AddSearchDocuments Adds a collection of SearchDocuments into
the index. Commit is automatically called at
the end. Lucene may occasionally commit
internally as well if there are too many
uncommitted documents in its internal
buffer.

DeleteSearchDocument Deletes SearchDocument from the index.
Deletion is based on UniqueKey.
ModuleDefintionId and ModuleId are also
used when the SearchTypeId supplied is
that for Module. Lucene does not remove
the documents immediately; instead, it
flags them for removal. The
OptimizeSearchIndex API eventually clears
them from the physical file.

DeleteSearchDocumentsByModule Deletes all SearchDocuments related to a
module.

DeleteAllDocuments Deletes all SearchDocuments belonging to a
specific SearchTypeId.

Commit Commits changes to physical files in the
index.

Table 11.9 Administration APIs

API Description
GetSearchStatistics Obtains index statistics such as index size, number of

documents, and so on
OptimizeSearchIndex Compacts the index by removing deleted documents

Table 11.10 Lucene Internal APIs

API Description
Add Adds a Lucene document into the index
Search Performs search queries in Lucene

Writing a New Crawler
Any SearchDocument stored in Lucene must have SearchType associated with
it. When a user performs a search query and a hit is subsequently found in
the Lucene store, Lucene returns the entire SearchDocument back to the
platform. The platform first looks at the SearchType present in the
SearchDocument to find the corresponding BaseResultController from
SearchTypes table. It then calls the BaseResultController to ensure that the
user running the query has view permissions on the SearchDocument and that
a custom URL is defined for the result.

Search can easily be extended to support different SearchTypes. As previously
noted, the platform defines module, tab, and user SearchTypes. The Evoq
products have URL and Document. Figure 11.35 shows the standard
SearchTypes defined in the SearchTypes table.

Figure 11.35

The following are required to create a new crawler:

Create a new SearchType and add it to SearchTypes table.

Be sure to provide a meaningful SearchTypeName.

You can provide a friendly name and further localize it by adding an entry
in the
Website\DesktopModules\Admin\SearchResults\App_LocalResources\SearchableModules.resx
resource file.

The class name defined in the SearchResultClass column must inherit
from the abstract class BaseResultController.

Create a new scheduled task to call your crawler.

From within the crawler, store data in the Lucene store by calling the
InternalSearchController.Instance.AddSearchDocuments API.

Once a search hit is found in the content associated with this new

SearchType, the platform will automatically call the SearchResultClass
defined above for the purposes of custom permission or URL processing.

The SearchResultClass column in the SearchTypes table should point to the
class inheriting from BaseResultController.

The BaseResultController has two abstract methods—HasViewPermission

and GetDocUrl—that must be implemented. The HasViewPermission method
helps in security trimming and GetDocUrl helps in generating custom (if
needed) URLs for the result. Figure 11.36 shows the outline of
BaseResultController.

Figure 11.36

The behavior of any of the existing built-in BaseResultControllers can also
be changed by following these steps:

1. Create a new class that inherits from BaseResultController.

2. This class can be defined in any of your DLLs.

3. Update the SearchResultClass column in the SearchTypes table for the
specific SearchType that you want to change behavior for.

4. Restart the site.

The next time a search hit is found for that SearchType, the platform will use
your custom class as opposed to the built-in one for the purposes of custom

permission or URL processing.

Troubleshooting
Search is comprised of many areas such as indexing, storing in Lucene,
querying, and so on. Problems can arise in any of these areas. To start with,
modules must be found by the platform so that it can probe them for content.
Once content is found, it must also be stored in the correct format in the
Lucene store. Finally, the content should be searchable. In order to
troubleshoot and see some diagnostic data, tracing can be enabled using the
standard Log4Net config file.

Luke is a great tool for analyzing the content stored in the Lucene store.
Developers should investigate Luke regardless of the need to troubleshoot
search. Spending time with Luke will help understand how Lucene works and
how data is stored in its database. It is interesting to know how your SQL-
based data gets transformed into the platform's SearchDocument objects and is
finally stored as NoSQL objects in Lucene.

Indexing
A common problem is when you have implemented ModuleSearchBase but
your content is not getting indexed. There is a way to troubleshoot this
situation. Run the following SQL to check whether your module is listed:

exec dnn_GetSearchModules 0

The number 0 is the Portal ID. Figure 11.37 shows the standard output
produced by running the previous command.

Figure 11.37

If the module is not listed, you should look under Host Extensions [Your
Module] Edit and make sure that Is Searchable is set to True. If it's False,
then the manifest file of the module should be inspected. The module must
have a line item for Searchable as a Supported Feature setting.

Figure 11.38 shows the manifest from HTML clearly indicating that there is a
line-item for Searchable. Likewise, Figure 11.39 shows the extension settings
of the HTML module and indicates that the value of Is Searchable is True.

Figure 11.38

Figure 11.39

Enable Log4Net tracing by changing the level from Error to ALL (see Figure
11.40) in the DotNetNuke.log4net.config file at the root of the website folder.
A change in this file may require an application pool recycle to see the effect.

Figure 11.40

In some cases Admin Search Admin Re-Index Content may need to be
executed, after which the Host Schedule Search: Site Crawler Run may
also need to be run. Once the Site Crawler is run, the most current log file
under Portals_default\Logs folder will have trace information, as shown in
the following code:

2014-01-17 14:13:46,488 [Alpha][Thread:35][TRACE]
DotNetNuke.Services.Search.
ModuleIndexer - ModuleIndexer: 1 search documents found for module
[DNN_HTML mid:379]
2014-01-17 14:13:46,526 [Alpha][Thread:35][TRACE]
DotNetNuke.Services.Search.
ModuleIndexer - ModuleIndexer: 1 search documents found for module
[DNN_HTML mid:398]

The previous code indicates that the DNN_HTML module was called to
obtain SearchDocuments and the module returned one document. The HTML
module is going to return 1 all the time as this module stores one instance of
content for each instance of the module in the site. However, other modules
such as Articles, Blogs, and so on, may return multiple documents.

Querying
There is a diagnostic tool available to find out how a query is analyzed by
Lucene. By enabling tracing in Log4Net, you can easily see a lot of details. It is
beyond the scope of this book to discuss the details of the following trace, but
the key points to verify are that the Portal ID, Module Definition ID, and
search type being passed and appear in the logs:

2014-01-17 14:39:58,521 [Alpha][Thread:36][TRACE]
DotNetNuke.Services.Search.Internals.LuceneControllerImpl -
Query: +((title:awesom title:awesome*) (tag:awesome tag:awesome*)
(description:awesom description:awesome*) (body:awesom body:awesome*)
(content:awesom content:awesome*)) +(portal:[0 TO 0] portal:[-1 TO -
1])
 +(moduledef:[116 TO 116] moduledef:[117 TO 117] moduledef:[116 TO
116]
 moduledef:[117 TO 117] searchtype:[2 TO 2] searchtype:[3 TO 3])
 +(locale:[1 TO 1] locale:[-1 TO -1])

Awesome Cycles News
1.547232 = (MATCH) sum of:
 1.410534 = (MATCH) product of:
 2.350889 = (MATCH) sum of:
 1.81948 = (MATCH) product of:
 3.638961 = (MATCH) sum of:

 3.638961 = (MATCH) weight(title:awesom in 26), product of:
 0.3455227 = queryWeight(title:awesom), product of:
 4.212703 = idf(docFreq=12, maxDocs=323)
 0.08201924 = queryNorm
 10.53176 = (MATCH)

Luke
The Lucene file can be analyzed outside of DNN. Luke is an open source, free
Java tool that can be used to analyze the index. Luke can be downloaded from
http://code.google.com/p/luke/downloads/list (see Figure 11.41).

Figure 11.41

Given that Lucene is a file-based database, it is recommended that the jar file
is downloaded and run locally on the server running DNN. Luke is started by
simply double-clicking the downloaded jar file (see Figure 11.42).

Figure 11.42

Upon starting, Luke presents a Path to Index Directory dialog (see Figure
11.43). You should point to your website's App_Data\Search folder. It is
highly recommended that the Open in Read-Only Mode checkbox be selected
to prevent interference with the actual web site's search.

http://code.google.com/p/luke/downloads/list

Figure 11.43

Luke provides many options (see Figure 11.44) for analyzing the index and
performing custom querying. It is beyond the scope of this book to discuss
those options. A quick search on the Internet should provide many how-to
blogs and videos.

Figure 11.44

Summary
Search was written from scratch in DNN 7.1, which leverages Lucene.Net as
its core indexing and querying engine. SQL Server is no longer used for search
functionality. Search has a lot of new and enhanced functionality such as near
real-time querying, speed, being locale-aware, improved security, ignore
words functionality, synonyms, auto-preview, and more. Evoq products also
have URL and File crawlers. Modules can integrate with the search feature by
implementing the new abstract class ModuleSearchBase. A new crawler can
easily be created by implementing BaseResultController.

Chapter 12
URL Management

What You Will Learn In This Chapter

Creating URLs for DNN pages

Configuring URLs for sites and installations

Customizing URLs in Evoq

Debugging URLs

Uniform resource locators (URLs) are vitally important to any website.
Websites are essentially a series of URLs usually all sharing the same domain
name. The more URLs there are in a site, the more complicated and
important keeping track of those URLs becomes. This is particularly the case
with a powerful and dynamic application like DNN, which can create
thousands of URLs quickly and easily. URLs can be created for forum posts,
blog posts, calendar entries, product catalogs—the list is endless.

This chapter walks you through the URL management tools and features
within DNN and provides a guide for best-practice URL management for the
developer and administrator of DNN sites.

The History of DNN URL Schemes
DNN has been through many versions from its inception, and throughout
those versions the styles of standard URLs for DNN resources have changed.
There are three main categories of DNN URLs: URLs for DNN pages, URLs
for files and links, and URLs for other resources. This history of DNN URLs
refers specifically to URLs for DNN pages.

TabId-Based URLs
If you look at the source code of a DNN installation, you will see that the
standard application has only one ASP.NET page—default.aspx. This is the
heart of the DNN application—all content is dynamically loaded by the
default.aspx page, and every single different DNN page you can see is
delivered by the default.aspx page.

The design has always been this way, and the early versions of DNN used a
simple URL format that always referred to /default.aspx. The content that
was displayed on the requested page was controlled by querystring key/value
pairs. The simplest and most obvious of these was the Tab ID, which specified
the DNN page (or tab, as they are known internally) that should be displayed.
Thus, early DNN versions showed all their pages with a combination of
/default.aspx?TabId=XX, where XX matched the TabId for a page within the
Tabs table.

Friendly URLs Version 1
The /default.aspx-style URLs worked well and were relatively simple to
parse and understand, but there was a problem. At the time, Google was going
from strength to strength as the most popular search engine and was not
reading and indexing querystring-based URLs. This meant that many sites
built with DNN were not being ranked well in Google. To overcome this
problem, friendly URLs were introduced into DNN. This change meant that
the old /default.aspx?TabId=XX format was replaced by a new format that
placed all of the page URL as part of the URL path. URLs in the new format
were /pagename/TabId/XX/default.aspx. This worked around the problem of
using querystring items to load the different DNN pages.

Any further items that are required to be in the querystring are also included
in the URL path, so the loading of a specific module control creates a URL of
/pagename/TabId/XX/ctl/Settings/default.aspx. This format can repeat

endlessly—any third-party extensions generating URLs would have their
key/value pairs also included in the URL path.

This format could confuse people unfamiliar with the structure and reasons
for it. Those used to a URL mapping directly to a physical path could not find
the corresponding path on the actual server because all of the URLs were now
virtual in that they didn't point to anything in particular. This was all achieved
through the introduction of the Friendly URL Provider and URL Rewriter.
The Friendly URL Provider is a plug-in provider that transforms a URL from
the /default.aspx?TabId=XX format into the
/pagename/TabId/XX/default.aspx format. The URL Rewriter is an HTTP
module that reads all the requested URLs for a DNN application and
rewrites them to a format that DNN expects—which is still the
/default.aspx?TabId=XX format. These two additions to DNN add an extra
layer of abstraction between the URLs that visitors see and the URLs that
DNN code works with. The transformation of the URL between what the site
visitor requests and the original DNN format was achieved by using regular
expression matches and ASP.NET URL rewriting in the URL Rewriter.

Friendly URLs Version 2
While the new friendly URL format worked well in removing querystring
items and also introducing the name of the DNN page into the URL so that
the contents of the URL could be inferred, it still contained superfluous data
that made the URLs confusing for people to read. Site visitors have developed
an expectation that the URL of a page matches the contents, and search
engines follow this and rank pages higher when the content matches the
URL. In the pursuit of better reading for people and search engines, a second
change was introduced to the Friendly URL Provider/URL Rewriter, which
eliminated all mention of the TabId and default.aspx from the URL. With
this change, a URL for a page became /PageName.aspx, where PageName was
the name given by the site administrator for a page.

This simplified the URLs for a DNN page further, but only when the DNN
page itself was in the URL. If extra information needed to be included in the
URL, then the version 1 format discussed in the previous section was used as
a fallback format.

This format is still largely in use for sites built with DNN and works relatively
well. The first releases of DNN 7 continued to ship with the format, which
became known as humanFriendly due to the configuration attribute used to

activate it.

Advanced URLs in DNN 7
With the release of DNN 7.1, a new URL Rewriter and Friendly URL Provider
were introduced. Instead of replacing the existing URL Rewriter/Friendly
URL Provider combination, the new functionality takes advantage of the
flexible nature of DNN and is installed in parallel, allowing a choice of modes.
The new functionality is called advanced URLs and is activated by default in
all new DNN 7.1 and later installs.

There are many differences between the humanFriendly and advanced modes
of URL rewriting/friendly URL generation. These are described in Table 12.1.

Table 12.1 URL Mode Comparison

Behavior/Feature human-Friendly mode
Home page URL example.com/home.aspx

Ordinary DNN page
URL

example.com/PageName.aspx

DNN page with
third-party URL

example.com/pagename/TabId/89/ID/4440/default.aspx

404 handling 404 support only through ASP.NET native handling,
which uses a 302 redirect to a generic error page

Enforcement of
canonical URL for
DNN page

None—the same page with duplicate URLs will resolve
for all URLs

Support of page
extensions

Only supports URLs ending in .aspx

http://example.com/home.aspx
http://example.com/PageName.aspx
http://example.com/pagename/TabId/89/ID/4440/default.aspx

Customization of
DNN page URLs

Not supported—all URLs derived from the DNN page
name

Enforcement of
canonical domain
for site

Choice of canonical link mode, redirect to canonical
domain, or no action

Support for URL
customization for
third-party
extensions

Not supported

Tuning of URL
behavior through
regular expression
filters

Supports only URL rewrites and redirects

There are a lot of other smaller features of the advanced mode that aren't
listed in Table 12.1. These will be mentioned in the chapter where necessary.

DNN 7.1 and 7.2 will not swap the mode from humanFriendly to advanced
during a DNN upgrade. Owners of existing DNN sites will have to manually
change the URL mode of their site by altering the configuration file after an
upgrade to 7.1 or later version.

Switching an Upgraded Site to Advanced Mode

If you have upgraded a site to DNN 7 and have not activated the advanced
mode, the following steps will guide you through the simple process:

1. Open the web.config file for your DNN site with a text editor.

2. Do a search for the term “FriendlyUrlProvider.” You should find the
following line in the web.config file:

<add name="DNNFriendlyUrl"
type="DotNetNuke.Services.Url.FriendlyUrl.DNNFriendlyUrlProvider,
DotNetNuke.HttpModules" includePageName="true" regexMatch="[^a-zA-
Z0-9 _-]"
urlFormat="humanFriendly"/>

http://example.com/
http://example.com/Page-Name
http://example.com/page-name/id/4440

3. Modify the urlFormat attribute to match the following:

<add name="DNNFriendlyUrl"
type="DotNetNuke.Services.Url.FriendlyUrl.DNNFriendlyUrlProvider,
DotNetNuke.HttpModules" includePageName="true" regexMatch="[^a-zA-
Z0-9 _-]"
urlFormat="advanced"/>

4. Save and replace the web.config file back into the root folder of your DNN
Application.

This process changes the mode of the URL rewriting and friendly URL
generation within your DNN application and will change the way the URLs
look and work on your site. Generally this is a low-risk process, as the two
modes work in similar ways, but it is advisable to test this thoroughly to
ensure that all site functions work as expected. It is good practice to set up a
test version of the site to make this change before applying it to a live website.
Testing should pay particular attention to the operation of any third-party
extensions and key functions like file uploads, image generation, site editing,
and so on.

SEO Focus on URLs

A lot of the functionality in advanced mode is focused on search engine
optimization (SEO). SEO is a broad term and encompasses all of the actions
taken to work toward higher ranking of sites in search engines. Although an
in-depth discussion of SEO is beyond the scope of this book, you may be
interested in how URLs can affect this important topic. Dealing with URLs in
particular, the SEO focus is around three main points.

Elimination of duplicate URLs, where two different URLs will load the
same page of content. This causes a page to be ranked lower than it would
otherwise be, as search engines don't know which is the correct URL to
list.

Simplification of URLs to remove superfluous ID and other technical
information from the URL and to reduce it down to describing the purpose
of the page as succinctly as possible.

Redirecting requests to existing or legacy URLs to new locations when a
site changes. This preserves the value of any external links pointing at the
site so that visitors and search engines can use existing links and not end
up on a 404 page.

The remainder of this chapter focuses on the advanced mode features that are
new for DNN 7. The scope of the discussion will stay within the features
available within the DNN Platform. Any discussion of features available only
in the commercial Evoq solutions will be clearly delineated.

Understanding URL Structure in DNN
DNN URLs can be virtual URLs, which load content into a page; static
resources such as files, images, and scripts; as well as API services and
custom code created in extensions. Understanding each of these URL types is
important in understanding how DNN works, how to extend it, and how to
troubleshoot problems when requests are not working as expected. Table 12.2
provides example URLs that DNN sites will use.

Table 12.2 DNN URL Types

Type Example Use
User
profile
URL

example.com/bill-smith Points to the
specific user
profile page
for the user
identified by
his or her
profile URL.

Page
URL

example.com/page-name For loading a
DNN page
and all
default view
modules on
that page.

Page
URL
with
module

example.com/page-name/ctl/Edit/mid/876 Loads the
Edit control
for the
module with
a Module ID
of 876 and no
other
controls.

Page
URL
with
third-
party

example.com/page-name/cid/345/content-name For loading a
DNN page
and all
default view
modules on

http://example.com/bill-smith
http://example.com/page-name
http://example.com/page-name/ctl/Edit/mid/876
http://example.com/page-name/cid/345/content-name

content that page,
and specific
content on a
module
relating to
the cid
parameter.

Service
call

example.com/DesktopModules/API/ModuleName/MethodName Calls the
MethodName

procedure in
the Service
API for the
ModuleName

Site-
specific
resource

example.com/portals/0/image.jpg Static image
file located in
the site-
specific
folder for the
site
identified by
a Portal ID of
0.

Sitemap
handler

example.com/sitemap.aspx Returns the
search
engine
sitemap for
the specific
portal. This
maps to an
entry in the
<handlers>

section of the
web.config
file.

Keep
alive

example.com/keepalive.aspx Points to the
specific keep
alive file on
the server,

http://example.com/DesktopModules/API/ModuleName/MethodName
http://example.com/portals/0/image.jpg
http://example.com/sitemap.aspx
http://example.com/keepalive.aspx

which can be
pinged by an
external
service to
stop the DNN
installation
from being
idled by the
IIS server.

Module-
specific
resource

example.com/DesktopModules/ModuleName/module.css Module-
specific CSS
file, located
in the
ModuleName
folder.

There are many more URL types that can be seen during the loading of a DNN
page. Developers who are extending DNN will generally be creating new URLs
for loading specific module controls, displaying different content on a page,
building new Service API calls, and loading site-specific resources.

The important concept to learn from this table is that many DNN URLs are
virtual and do not point to physical resources on the server. They are
transformed by the DNN framework either through the URL rewriter or
through the services layer into a form that the underlying web server
understands. Developers must learn these patterns so that they can create
and leverage the correct URLs for the intended use. The following section
details how to correctly generate and manipulate URLs in DNN extensions.

http://example.com/DesktopModules/ModuleName/module.css

URL Configuration and Customization
In this section, you learn the correct ways to create URLs for different
purposes when creating extensions for DNN. As shown in Table 12.2, DNN
URLs have a specific pattern for specific purposes, and it is important to
adhere to these patterns to ensure compatibility with other extensions and a
consistent upgrade path for future DNN versions.

Creating Custom URLs for DNN Pages
DNN pages are identified using the name of the page or a specific URL
created for that page. The URL for a DNN page can be updated through the
Page Settings pop-up for any DNN page. In a default DNN installation, all
URLs for DNN pages are created by deriving a URL from the page name.

It is possible to change the URL of a page by changing the name of the page,
but in many cases it is desirable for the name of the page and the URL of a
page to have different values.

To modify the URL for a DNN page, follow these steps:

1. Ensure you are logged into the DNN site as either a host or admin-level
user.

2. Navigate to the page you want to modify the URL for, hover your mouse
over the Edit Page drop-down, and click Page Settings.

3. Find the Page URL field, and type the URL that you want to use for the
specific page. Ensure that you use only URL-legal characters. Any
characters that are not URL-legal will be removed from the URL.

4. Click Update Page to save the changes.

The page will redirect to the new URL, which now displays in the browser
address bar.

Figure 12.1 shows the Page Settings dialog where a custom URL value can be
entered.

Figure 12.1

Once a URL is changed, a system redirect is also created so that any
references to the old URL are redirected to the new URL. This is done
automatically. The same process applies to renaming the page (and indirectly
changing the URL)—when a URL is changed by renaming the page, a redirect
is created to route requests for the URL derived from the old page name to
the URL derived by the new page name.

Advanced URL Creation for Evoq
The Evoq editions of DNN contain the ability to create further customization
for URLs. The screens shown in this section are not available in the base DNN
Platform.

The URL Management section in Evoq can be found on the Page Settings pop-
up, in the Advanced Settings tab. This allows for the creation of custom URLs
and URL redirects for the specific page. The URL Management section
contains two lists: Custom URLs and System Generated URLs. Custom URLs
are those that are specifically created by an administrator. System-generated
URLs are those automatically created by DNN to redirect old DNN URL
versions and to redirect any prior DNN URLs that have been used with the
page in the past. Renaming the page or creating a new custom URL will cause
the prior URL to appear in the list of system-generated URLs. This list is not
exhaustive—there will always be some combinations of prior URLs that do
redirect to the page but do not appear in the list of system-generated URLs.

This is not a problem or bug but reflects a need to preserve UI space and
avoid confusing first-time users with long lists of esoteric URLs.

NOTE

Advanced URL settings and management options for Evoq are discussed
in the “Site- and Installation-Level URL Configuration” section later in
the chapter.

Creating a Custom URL in Evoq

The custom URL functionality shown in the previous section is available in
Evoq versions. This is limited in the options that can be used, while the
Custom URLs section allows for more complex URL requirements. Custom
URLs created here can have the following properties:

The URL can be created with a site alias other than the primary site alias.
This can also be used for child pages to inherit.

For multi-language sites, different URLs can be created for different
languages.

Follow these steps to create a custom URL in Evoq:

1. Ensure you are logged into Evoq using a host or admin user.

2. Navigate to the page you want to create a custom URL for.

3. Open the Page Settings by hovering the mouse over the Edit Page menu
and clicking Page Settings.

4. In the Page Settings pop-up, select the Advanced Settings tab.

5. Scroll down the pop-up and expand the URL Management section.

6. Click the Create button to show the URL input fields.

7. Enter the field values as required. See Table 12.3 for a detailed explanation
of the fields.

8. Click Save when you finish.

9. Scroll to the bottom of the pop-up, click Update Page to close the settings,
and save the changes.

Table 12.3 Create URL Fields

Field Description

Site Alias The list of site aliases in the current site. By default, the primary
alias will always be selected. Change this to a different alias if you
want the custom URL or URL redirect to be associated with a
different alias.

URL Path The URL to redirect. This URL path (along with the site alias) will
be matched and associated with the page. The path automatically
does partial matches—example.com/new-path will match, as will
example.com/new-path/something-else.
The leading/character is automatically added to the URL path. It
is possible to create an empty path (leaving only the site alias),
which can associate a top-level domain name with a specific DNN
page that is not the home page. However, care must be taken not
to create a duplicate URL of the site home page.

Selected
Site Alias
Usage
This Page
Only or
Page and
Child
Pages

When a site alias other than the primary site alias is chosen, the
option on how to use that alias appears. This Page Only associates
the selected site alias only with the current DNN page. Page and
Child Pages associates the current page and any and all child
pages with the selected site alias. This option means that any
pages created and using the current page as a parent page will also
use the selected site alias without having to create custom URLs
for each child page.

URL Type
Active
(200) or
Redirect
(301)

The URL Type option changes behavior between becoming the
active URL for the page (returning a 200 HTTP status code) or
issuing a permanent redirect to the DNN page (returning a 301
HTTP status code). When the Active (200) option is chosen, the
URL becomes the standard generated URL for the DNN page, and
each menu link will use the custom URL.

Query
String
(Only
active
when
URL Type
=
Redirect)

The Query String field allows the association of a particular URL
querystring with a custom URL redirect. This allows the redirect
of previously existing URLs that contain a querystring. An
example is the redirection of a legacy URL of
example.com/index.aspx?page=about to a new About page—in this
case ?page=about would be entered as the Query String value.

Language The Language drop-down allows the association of a specific

http://example.com/new-path
http://example.com/new-path/something-else
http://example.com/index.aspx?page=about

(Only
active
when
multiple
languages
are
installed)

language with a custom URL. This allows the creation of
language-specific URLs for a page. When this option is used and
the URL is requested, the specific language code is added to the
rewritten URL. This option is often used to create ASCII character
versions of different language values for simpler URLs in a
website.

The Custom URLs section showing the creation of a custom URL looks like
Figure 12.2.

Figure 12.2

Creating a Custom URL Redirect in Evoq

Creating URL redirects is important when reorganizing sites or replacing old
sites with new sites. The same URL creation fields can be used to create a
URL that will permanently redirect to the page for which it is created. When a
redirect is created in this way, any URL path after the segment that identifies
the DNN page is carried over as the path for the new page. This allows items
such as blog posts, forum threads, and other path-based content to work as
before when the DNN page changes.

Follow these steps to create a URL redirect with Evoq:

1. Ensure you are logged into Evoq using a host or admin user.

2. Navigate to the page for which you want to create a custom URL.

3. Open the Page Settings by hovering the mouse over the Edit Page menu
and clicking Page Settings.

4. In the Page Settings pop-up, select the Advanced Settings tab.

5. Scroll down the pop-up and expand the URL Management section.

6. Click the Create button to show the URL input fields.

7. Enter the field values as required. See Table 12.3 for a detailed explanation
of the fields. The URL to redirect will go in the URL Path field.

8. Ensure that the URL Type field is set to Redirect (301) and click Save.

9. Scroll to the bottom of the pop-up and click Update Page.

It is possible to enter many redirects for a single page, allowing many
different URLs to all be redirected to the DNN page. It is not necessary to
create redirects for prior versions of DNN URLs for a page, unless that page
(and the underlying tab record) no longer exists.

Table 12.3 describes the fields in the Create URL section.

Testing Custom URLs and Redirects in Evoq

Evoq solutions include a testing facility where testing of new custom URLs
and URL redirects can be performed. Testing of URL changes is vital to verify
that the URL works as expected but also to assist in understanding how the
URL is being generated and rewritten when DNN pages are being requested.

The test URL functionality tests the generation of URLs from within DNN, as
well as testing rewriting and redirecting of the URLs. Understanding this
behavior is essential to developing a full understanding of the way in which
DNN ultimately works, and the test URL functionality helps to reveal what
goes on when pages are being generated and requested.

To test a DNN URL, go to the Admin Advanced URL Management page, and
click the Test URL tab. The Test URL section is separated into two halves, the
first for testing generation of the URLs and the second for testing rewriting
behavior. The two are related but independent and can be used separately.

Follow these steps to test the generation of a URL:

1. Select the page you want to test, either by locating in the list or by using
the Search functionality to find the page required. The pages are in
alphabetical order rather than the display order of the site.

2. If the URL you want to test contains extra parameters apart from just the
page name, enter these as a querystring in the Query String box. This is
optional—there is no requirement to use this box. Entering values as the
Query String value acts in the same way as providing parameters in the
NavigateURL API call when developing custom DNN code. The format of
the Query String value should be &key=value&key2=value2. You can mimic
the creation of DNN control parameters such as &ctl=edit&mid=345.

3. If the URL you are testing would normally utilize a different pageName
input when the URL is generated, enter this value in the Custom Page
Name/URL End String box. This generally applies to URLs generated for
some third-party extensions, which sometimes supply a “friendly” end to
the URL. This is quite common in blog and article modules. In this case,
you would enter the value directly as it is passed into the NavigateURL API
call. An example for a blog post might be my-test-blog-post.aspx.

4. When all of the inputs are correct, click the Test URL button.

5. The generated URLs will now appear in the Resulting URLs section. A
URL will be generated for each site alias/site language combination for
the current DNN site.

While it may be confusing to see multiple URLs generated for a single page,
what this means is that the generation of URLs from within the DNN
Platform is dependent on multiple inputs—different inputs naturally give
different outputs. Rather than provide a bewildering array of inputs to
provide a single output, the list of inputs is restricted and multiple results are
generated. When viewing the results, it is important to understand which is
the primary alias for the specific site/page combination and as such which of
the generated URLs would be used for display in different cases, such as the
DNN menu or sitemap, and in internal content use such as a list of forum
threads, blog posts, or a product catalog.

Each of the generated test URLs is a clickable hyperlink; these do not go to
the actual page, but instead load that URL into the input box for the test URL
rewriting function.

Figure 12.3 shows the test URL generation function, with a Query String
input of &key=value and a URL ending value of other-url-ending.aspx.

Figure 12.3

Follow these steps to test a URL for rewriting:

1. Enter a value in the test URL rewriting input box or click a test URL
generation result hyperlink to copy the URL. The URL must be fully
qualified including the http:// (or https://, if applicable).

2. Click the Test URL Rewriting button to submit the URL to the rewriting
engine.

3. Find the results of the test under the test URL rewriting input box and
button, and interpret the test results using Table 12.4.

Table 12.4 Rewriting Test Result Fields

Output
Field

Expected
Results

Description

Rewriting
Result

A rewritten URL
showing the
/Default.aspx

path with a Query
String value.
A simple result will
be Default.aspx?

This is the raw, rewritten URL that DNN
code will use for controlling page output.
The rewritten URL will usually (but not
always) contain a TabId but also may
specify a PortalId to specify the site and any
third-party site contents.

http:///Default.aspx
http://Default.aspx?TabID=87

TabID=87. If a querystring was input into the Test URL
Generation section and the result copied
into the test URL rewriting input box, the
querystring should be replicated in the
rewriting output. This shows how a
querystring is converted into a friendly URL
and then back into a querystring by the
rewriting process.

Identified
Language /
Culture

A language/culture
code in the form of
xx-YY where xx is
the language
identifier and YY is
the culture
identifier.
Examples are en-
US, fr-FR, and so
on.

Every DNN site has a language associated
with it, and many DNN sites have more than
one language associated. The
language/culture code is either explicit in
the URL or implied through a combination
of settings, including the default language
for the site. This output field shows
explicitly which language would be loaded
and used for the requested URL.

Identified
Page

The name of the
DNN page
identified by the
request. The
output will show
either the name of
the page or None if
no specific page
was identified
from the URL.

The majority of DNN URLs identify a
specific page in the request, and those
without a specific page may load the home
page by default. The Identified Page field
shows which page has been identified by the
URL and which would be loaded as the
ActiveTab within DNN. This controls which
page is shown by the URL.

Redirection
Result

An internal action
code used by the
URL rewriting
process. Exposing
this action in
testing helps
understand how/if
the URL will be
redirected.

The full list of actions is contained within
the RedirectReason type found in DNN
code. The value depicts why a URL will or
will not be redirected. This code is
important to developers who are using
custom code to control the action of URLs.

Operation
Messages

A list of coded
messages that
reveal the logic
path taken for the
URL rewriting
process.

The list of messages changes with each
request and is dependent on the URL, the
configured options, and any extension URL
providers installed.
URL messages will often include a
description of which Tab ID was found,
whether it was a secure page (SSL is on for
the page), and whether the page loads the
site-default skin or has a page-specific skin.
Extension URL provider developers can add
their own custom messages to this list to
help with debugging.

Understanding the rewriting results requires a good knowledge of how DNN
works but is also a useful tool for learning the internals of DNN. Table 12.4
shows the output fields, expected results, and meaning of what the results
say.

Figure 12.4 shows the result of testing the URL rewriting for the results of the
URL generation test.

Figure 12.4

The testing section should be used both by administrators and DNN
developers as a quick and easy way to test that custom URLs and URL
redirects are working as expected. It is very difficult to verify redirect results
using a browser, as the operation is opaque to the viewer. The test utility
allows for detailed testing without using any other specialized tools.

Site- and Installation-Level URL Configuration
Multiple configuration options control the appearance and behavior of DNN
URLs. Many of these options are duplicated at the site and installation levels.
This allows different sites within overall DNN installation to appear and
behave in a different way.

Installation-Level Configuration Options

Table 12.5 shows the configuration options and their location within the DNN
administration menus.

Table 12.5 Installation-Level Configuration Options

Page Tab Section Description

Admin Site
Settings

Advanced
Settings
(all
versions)

Site Aliases Controls settings over the site
aliases used

Advanced
Settings
(all
versions)

SSL Settings Controls what the SSL and
standard domains for the site
are

Advanced
URL
Settings
(Evoq only)

URL Settings Controls URL redirect and DNN
page URL generation settings

Advanced
URL
Settings
(all
versions)

Extension
URL
Providers

Configuration of installed
extension URL providers

Admin General Configuration of options that control the

Advanced Url
Management
(Evoq only)

behavior of URL generation and redirection

Regular
Expressions

Configuration of regular expressions that
control behaviors of URL rewriting,
redirection, and generation

Test URL Tools to test URL generation and URL
rewriting in the site

Site aliases are an important area to understand when configuring a DNN site.
An alias is the name given to the unique combination of the top-level domain
name and URL path that prefixes all DNN page URLs for a specific site. In
many cases this is just a domain name, but the alias is often a domain name
plus path either to create a child site or to specify a language path for a site.
Table 12.6 shows some example site aliases.

Table 12.6 Example Site Aliases

Example Site Alias Type Description

www.example.com Normal
top-level
domain
for a site

The most common type of alias in DNN
websites

www.example.com/child Alias for
a child
site

Used to create a new site within a DNN
installation, where another site exists
using the top-level domain. A child path
allows a completely separate DNN site to
be created while sharing the same domain

www.example.com/en
www.example.com/nl

Aliases
for a site
that
specify a
language

Used to associate a different language with
a request, depending on which alias is
used within a URL

Site Alias Configuration

The Site Aliases section contains options for controlling the behavior for site-
level actions that can be associated with specific aliases. Figure 12.5 shows

http://www.example.com
http://www.example.com/child
http://www.example.com/en
http://www.example.com/nl

the Site Aliases section.

Figure 12.5

The individual options in this section are shown in Table 12.7.

Table 12.7 Site Alias Configuration

Configuration
Option

Description

Site Alias Mapping
Mode
Options:
Canonical
Redirect
None

The mapping mode controls the behavior of the aliases
when there is more than one alias in the list.
Canonical allows any of the aliases to be used, but will
emit a canonical link element in the page headers using
the primary site alias as the root of the canonical URL.
Redirect means that any request to a site alias that is
not the primary site alias will be redirected (using a 301
Permanent Redirect) back to a URL using the primary
alias as the root of the URL.
None allows the site to be requested with any alias in
the list. All other URLs then seen on the site will use
the requested alias.

Auto Add Site Alias
Options:
Checked/Unchecked

The Auto Add function switches on a behavior where
any new, valid site alias requested will be added to the
list of site aliases. In practice, this means that any
domain name bound to the underlying IIS website can
be used to request the website.

Manage Aliases The Manage Aliases table lists the current site aliases
configured for the site. Within this list are multiple
columns that can change depending on other options

for the site.
The Add New Alias button is used to add a new site
alias to the site. For a site alias to work correctly, it
must also be bound to the underlying IIS website.

Table 12.8 contains a breakdown of the individual site alias values, as shown
in the site alias grid.

Table 12.8 Site Alias Values

Field Purpose
Primary Used to mark an alias as the primary alias for the site. The primary

alias controls behavior for the Rediresct and Canonical Mapping
modes. Note that there can be greater than one primary portal
alias when different languages or browser types are used.

Site Alias The actual domain name and (optionally) URL path used to reach
a DNN site. The site alias never includes a leading
scheme/qualifier, such as http or https, and never includes a
trailing /.

Language When a site has multiple languages installed, the Language field
allows one of the installed languages to be associated with a
specific alias. This allows use of example.com/xx-YY to specify a
language, or some other combination, such as xx-YY.example.com.
The Language field is visible only if the site has more than one
language installed. In single-language DNN sites, it will not be
visible.

Browser Associates a site alias with either normal or mobile sites. This is
used when a particular alias is to be associated with a specific
browser type, such as using m.example.com to serve mobile
content.

Skin Links a specific skin installed in the site with a specific alias.
When the Skin value is set, that skin is loaded by default when the
site is requested with the site alias.

SSL URL Configuration

The SSL Settings section controls when HTTPS URLs are used for DNN sites
and which URLs are to be used. The SSL settings work in conjunction with

http://example.com/xx-YY
http://xx-YY.example.com
http://m.example.com

the Is Secure property on each DNN page and control the appearance of the
URL used for SSL/non-SSL pages.

Table 12.9 shows the options and purpose of the SSL settings.

Table 12.9 SSL Settings

Field
Name

Values Description

SSL
Enabled

Checked/unchecked This check box provides a site-level switch for
enabling/disabling SSL URLs.

SSL
Enforced

Checked/unchecked When checked, SSL or non-SSL
(HTTP/HTTPS) URLs are enforced by issuing
a redirect to the SSL URL.

SSL URL Valid site alias An optional field. If primary site alias does
not have a valid SSL certificate, an alternate
site alias with an SSL certificate can be
supplied. This site alias will then be used for
the DNN pages marked as requiring SSL.

Standard
URL

Valid site alias An optional field—if an SSL URL is supplied,
the standard site alias to use for non-SSL
pages must be listed here. This is generally
the same as the primary site alias.

Evoq Advanced URL Settings

In Evoq editions, the Advanced URL Settings tab in the Site Settings page
contains the basic options used for controlling URL behavior. In the base
DNN Platform it contains the listing and configuration options for extension
URL providers.

Table 12.10 shows the Evoq edition configuration options.

Table 12.10 Evoq Advanced URL Settings

Field Values Description
Redirect “old”
URLs to new
Friendly URLs

Checked/unchecked This field enables functionality to
automatically redirect any URLs that are
not the canonical URL. This is generally
used to ensure that no URLs of the tab

ID or earlier friendly formats are used
for the site. Disabling this option does
not affect the functionality of custom
URL redirects created. The default and
recommended value is for this field to
be checked.

Convert URL
to lowercase

Checked/unchecked The lowercase conversion option
converts all URLs generated by the site
to all lowercase. Administrators often
use this site both for aesthetic reasons
and to ensure that no search engines
regard lowercase and mixed-case
versions of the same URL to be
considered duplicates of each other.

Page URL
Concatenation

Checked/unchecked
with options for -
and _.

DNN page URLs are generated based on
the DNN page name. If the page name is
two or more words, the spaces are
removed to create a valid URL. This
option allows the replacement of those
spaces with either a hyphen (-) or an
underscore (_). If disabled, the spaces
will be removed and the words are
concatenated to create the URL. The
replacement character also works on
URL illegal or URL reserved characters
that appear in DNN page names.

Page
Extension
Handling

Checked/unchecked The extension refers to the file
extension on the end of URLs.
Traditionally this was a way for IIS to
associate different applications with
different page extensions, and
traditional ASP.NET requests always
ended with .aspx. With .NET version 4,
this is no longer a requirement, and
thus DNN 7 has an option to remove the
.aspx extension.

Handle 301 redirect to DNN allows pages to be deleted, to have

deleted,
expired, and
disabled pages
by

home page or
404 error page
shown

expiration dates applied. When a URL is
requested that points to a deleted,
expired, or disabled page, this option
controls what the behavior should be.
Regardless of this setting, it is possible
to create a redirect for a deleted,
disabled, or expired page by creating a
custom redirect. Additionally, this
behavior does not apply to pages that
are hard deleted and no longer exist in
the site Recycle Bin.

Extension URL providers are explained in the “Custom Extension URL
Providers” section in this chapter.

Evoq Advanced URL Management Options

The Evoq editions of DNN include an extra page that contains more
configuration options for URL management. It is important to note that these
options are still present in the underlying DNN Platform (where they are
implemented at a code level), but the DNN Platform contains no UI to control
the behavior. For the DNN Platform, the configurations are set to default
upon install and can be changed only using third-party tools or by directly
modifying the database values.

Some of the configuration options shown are duplicated in the Settings page
and the Advanced URL Management page. This is to show the simple options
to administrators and allow them to ignore the more complicated values.

The Advanced URL Management page is visible in both the Admin and Host
menu groups. This refers to two separate pages; however, the values on the
pages are largely the same. Table 12.11 refers to host-only specifications
where necessary; otherwise, the values are in both pages. The difference in
the two pages is that the host-level configurations apply to the entire
installation, while the Admin page applies only to the current site the page is
loaded for. This creates some conflicts—a regular expression pattern that
blocks functionality at the Host level cannot be unblocked from the Site level.

Table 12.11 Advanced URL Management Options

Tab Field Values Description
General Use Checked/ The lowercase conversion option

Lowercase
URLs

unchecked converts all URLs generated by the
site to be in all lowercase.
Administrators often use this site
both for aesthetic reasons and to
ensure that no search engines regard
lowercase and mixed-case versions of
the same URL to be considered
duplicates of each other.

Redirect
Mixed Case
URLs

Checked/
unchecked

When the Use Lowercase URLs
option is checked, the Redirect Mixed
Case URLs option can also be
checked. This enforces the use of
lowercase URLs by redirecting any
URL that is not lowercase to the
lowercase version.

URL Space
Encoding
Value

Hex (%20)
or +

This option applies to spaces in URLs
for the segments of URLs that do not
apply to DNN pages. In practice, this
applies to third-party generated URLs
where the developer does not remove
spaces from the URL segments before
passing them into the DNN API. By
default, the spaces will be removed
and replaced with the space encoding
value of %20, which is the
hexadecimal code used. This option
allows the replacement of spaces with
the more aesthetic + character, which
also represents a space in URLs.
However, IIS by default will return a
404 unless configured to allow a + in
a URL path.

Convert
Accented
Characters

Checked/
unchecked

Accented characters are those
characters in the Latin character set
that use an accent such as å, î, or ë.
These are not represented in the
ASCII character set that is legal for

URLs and will result in encoded page
URLs within DNN if used in page
names. This option, when enabled,
will find any accented character (also
called diacritic characters) and
replace them with the ASCII
equivalent. Thus, å becomes a, î
becomes I, and ë becomes e for the
generated page URL. Note this has no
effect on other Unicode character sets
such as Asian or Cyrillic.

Replace
These
Characters

List of
characters
- default
&$+,/?˜#
<>
()¿¡«»!"

The characters in the list represent
those characters that will be removed
from the list and replaced with the
page concatenation character (either -
or _, depending on configuration).
This list can be expanded with other
characters if required. It is important
to note that this list starts with an
empty space character, which is also
replaced. This list applies only to
generation of page URLs from DNN
page names.

Find/Replace
these
Characters

List of
character
pairs

The Find/Replace list is empty by
default but can be used to make URL
character replacements. This is done
by forming a list of character pairs,
where the pair is separated by a ,
(comma) and pairs are separated by a
; character (semicolon). An example
use is the replacement of æ with “ae”
for URLs or replacing ß with “ss”. This
would be achieved with a string of
æ,ae;ß,ss.

Warn in Log
About
Duplicate
URLs

Checked/
unchecked

The flexibility of creating custom
URLs within a DNN site creates the
possibility of creating two URLs that
point to the same DNN page. This

option activates a check that will
detect this scenario and report it
within the DNN event Log as a
warning.

Enable
Custom URL
Providers

Checked/
unchecked

A site-level switch to enable/disable
extension URL providers from being
used. Can be safely unchecked if
there are no extension URL providers
installed.

Host page
only

Allow Debug
Code

Checked/
unchecked

An installation-level switch that
allows a debug code of ?
_aumdebug=true to be added to a
request querystring, or
_aumdebug:true to the request
headers. If this value is then found,
the response headers will contain
debug information similar to that
found in the output of the test URLs
URL rewriting test.

Show Page
Index
Rebuild
Messages

Checked/
unchecked

If checked, every time the URL index
is rebuilt and stored in the cache, a
message is logged to the DNN event
log. This is used for fine-tuning cache
settings and troubleshooting if the
page index rebuild process is being
run excessively.

Regular
Expressions

Ignore URL Regular
expression
pattern

This pattern controls which URLs are
to be ignored by the URL rewriting
process. Any URL matching the
pattern will not be processed by the
URL Rewriter component.

Do Not
Rewrite URL

Regular
expression
pattern

The Do Not Rewrite pattern allows
URLs to be processed by the URL
Rewriter component, but does not
allow the URL to be rewritten. This
allows important tasks like

identifying and storing the current
site and alias used, without trying to
transform the URL to a
/Default.aspx?TabId=xx rewritten
URL.

Site URLs
only

Regular
expression
pattern

Each URL processed through the URL
rewriting process is first matched
against the pages in the site. If no
match is found, it is then matched
against the list of patterns found in
the siteurls.config file. If a URL
matches the Site URLs only pattern, it
skips the process of matching against
known DNN pages and is evaluated
against the SiteUrls patterns first.

Do Not
Redirect

Regular
expression
pattern

If a URL matches this pattern, it will
not be redirected by the URL
rewriting component. This does not
stop redirects generated outside the
URL rewriting component or in
components external to DNN.

Do Not
Redirect
https

Regular
Expression
pattern

This pattern stops a matching URL
from being redirected from HTTP to
HTTPS or from HTTPS to HTTP. This
is used to stop unwanted HTTPs-
related redirect behavior.

Prevent
Lowercase
URL

Regular
Expression
pattern

The Convert to Lower Case
configuration option converts all
generated URLs to lowercase, and the
Redirect Mixed Case option redirects
any URLs that are not lowercase. This
pattern excludes any URLs from the
conversion or enforcement of
lowercase URLs. This is important
whenever a URL may include case-
sensitive values, such as base-64
encoded strings.

http:///Default.aspx?TabId=xx

Do Not Use
Friendly
URLs

Regular
Expression
pattern

Any generated URL that matches this
pattern will use the earlier friendly
URL pattern that includes the TabId
and page name. It ensures that the
canonical URL for a matching page is
not the format generated by the
advanced URL component.

Keep In
Query String

Regular
Expression
pattern

When a generated or requested URL
matches this pattern, the segment of
the URL that matches will be
removed from the URL path
segments and converted into
querystring values. Thus, a match on
/key/value will be converted to ?
key=value on the end of the URL.
This is used wherever a segment of
the URL must stay in the querystring
for proper operation.

URLs with
No
Extension

Regular
Expression
pattern

To provide comprehensive 404
handling, the URL rewriting process
identifies any URL it cannot match
with a DNN page as a 404. There are
many other URL formats that appear
to be DNN page URLs but are not. In
these cases, a match with this pattern
allows the URL to complete
processing without being returned as
a 404. In practice, these are most
often web service calls, as shown in
the default pattern.

Valid
Friendly
URL

Regular
Expression
pattern

The inclusion of characters to form
DNN page URLs from DNN page
names works by not matching this
pattern. Any character that does
match the pattern will not be
included in a generated DNN page
URL. This pattern can be changed to
include various non-ASCII character

sets such as the many different
Unicode character sets from non-
Latin-based languages.

Table 12.11 shows the options available in the Advanced URL Management
page.

URL Creation for Developers
Custom URLs for DNN pages are created through the Page Settings interface,
as shown in the “Creating Custom URLs for DNN Pages” section. This section
expands on the concepts of modifying DNN URLs and shows how DNN
developers can use the built-in DNN API to manipulate and modify the way in
which DNN URLs are used and displayed.

The URL rewriting process converts the page name into a rewritten URL in
the format of example.com/default.aspx?TabID=89 where 89 is the TabId
corresponding to the DNN page. Updating this field creates a new database
record in the TabUrls table. If there is no TabUrls record for a DNN page, then
the page uses a URL generated from the Pagename field.

As shown in Table 12.12, page URLs can load the page and all the default view
controls for the modules on that page or can load specific modules and
module controls. Further, third-party modules can use the URL contents to
specify content to load onto the page.

Table 12.12 Creating DNN Page URLs

Type Example API Call
Page URL example.com/page-name NavigateURL(87);

Page URL with specific
module control

example.com/page-
name/ctl/edit/mid/876

EditURL(87,"edit",876);

Page URL with third-
party content

example.com/page-
name/cid/345

NavigateURL(87, "",
"cid", "345);

User profile URL example.com/bill-smith NavigateURL(65, "",
"userId","34");

The correct way to generate a URL within code is via two different API calls
within DNN. Table 12.12 shows the correct calls to use and the results that
will be displayed. All the API calls are in the DotNetNuke.Common.Globals
class.

http://example.com/default.aspx?TabID=89
http://example.com/page-name
http://NavigateURL(87);
http://example.com/page-name/ctl/edit/mid/876
http://EditURL(87,"edit",876);
http://example.com/page-name/cid/345
http://NavigateURL(87, "", "cid", "345);
http://example.com/bill-smith
http://NavigateURL(65, "", "userId","34");

In Table 12.12, the example values shown in the API Call column point to a
hypothetical DNN install and are as follows:

TabId for Page Name: 87

Module ID for specific module on page: 876

Content ID for specific third-party module: 345

User ID for Bill Smith: 34

When creating URLs for third-party content, the NavigateURL call takes a
parameter array—these values can be continually expanded to handle
multiple combinations, which are then repeated through the generated URL.
For example, a call ofNavigateURL(87, "", "key1", "val1", "key2",
"val2", "key3", "val3") will return a URL of example.com/page-
name/key1/val1/key2/val2/key3/val3.

Some developers who are new to the DNN patterns make the mistake of
constructing the URL for a specific page or resource outside of the
NavigateURL call. This should be avoided for the following reasons:

The NavigateURL call will take into account any language-specific URL
rules that pertain to the URL.

The NavigateURL call will assign the correct domain name (via the site
alias) for the URL.

The NavigateURL call encapsulates the URL logic and may change with
future DNN versions.

The URL provider functionality is called within the NavigateURL logic and
requires all the parameters for a URL to be present within the method call.

The NavigateURL call provides scope for developers to control the appearance
and subsequent rewriting behavior, but developers seeking to fully customize
the appearance and behavior of URLs will eventually reach a limit on what
can be achieved. At this point, developers should start work on functionality-
specific extension URL providers, which is the subject of the next section.

Custom Extension URL Providers
Extension URL providers are DNN extensions that are used as a plug-in to
provide specific URL appearance and behavior. They are ASP.NET providers
that are specifically configured to work with both the URL generation and

http://example.com/page-name/key1/val1/key2/val2/key3/val3

URL rewriting aspects of DNN URLs, and they connect to the process through
a DNN-specific API.

Extension URL providers can be installed as stand-alone components or can
be included with other DNN extensions (such as a DNN module) to provide
functionality where activated. The applications are numerous—from
redefining the look of module-specific URLs to custom redirection and
compatibility tasks to modifying the behavior of URLs relating to content that
a developer or administrator has no control over.

A full discussion of URL extensions could fill a chapter by itself. This section
introduces the use, development, and testing of URL extensions. Interested
developers should view the CodePlex project at
http://dnnurlproviders.codeplex.com/. This project contains working
examples, source code, and documentation on developing your own provider.

Installation and Configuration of Extension URL Providers

To install an extension URL provider, use the Extensions page and install the
provider using an installation package provided by the developer or vendor.
The installation process is the same as any other DNN extension. Once the
installation process is complete, navigate to the Admin Site Settings page
and click the Advanced URL Settings tab to open the Extension URL
Providers section.

Any installed providers are listed in the Extension URL Providers section.
Installed providers are enabled by default, which makes them active
immediately. This also requires that the installation-level switch for
extension URL providers is active. The impact on the site URLs depends on
the individual provider functionality.

To configure an individual provider, click the Edit icon in the list next to the
provider. This loads a provider-specific page that provides the ability to
modify any specific settings that relate to that provider. Clicking the Update
button updates the settings for the provider and closes the settings window.

Testing of Extension URL Provider Functionality

Basic testing of the provider will be to proceed to the DNN page (or pages)
where the functionality of the provider is applied. The provider configuration
optionally associates the provider with a specific module extension. If this is
the case, the provider functionality is applied to all pages that have an

http://dnnurlproviders.codeplex.com/

instance of that module on them. A blog module provider would then update
the URLs on a blog page to have a new appearance. A representative sample
of all the URLs related to that module should then be done to be sure that the
provider functionality is working correctly.

Testing Extension URL Providers in Evoq

The Evoq Test URL functionality, located in the Admin Advanced URL
Management page, can be used to test provider functionality. To test the
functionality, some knowledge of the “raw” URL used by an associated
module is required. This is then entered as the Query String value for the
page using the module related to the provider and the URL generated as
previously shown.

To test URL rewriting in Evoq, follow the same process as previously
explained in this chapter, including the URL as generated by the provider.
Figure 12.6 shows test URL rewriting for the Social URL provider that is
available on the previously linked CodePlex project page. This provider
converts URLs with GroupId/xx to use a URL-sanitized version of the social
group name.

Figure 12.6

Figure 12.6 shows how the requested URL includes the name of the group
(Test-Group-1) in the URL, but the rewritten URL includes the Query String
value of &groupId=10, which is what the underlying Social Groups module is
expecting.

Additionally, the Operation Messages section shows that a message unique to
the Social URL provider has been added to the output. This shows that the
group identified in the URL (test-group-1) was matched. This particular
message is generated from within the provider itself. Developers can add
these messages to help debug behavior during the development process and
also for when providers are installed on live sites.

Figure 12.7 shows a similar request, but this time for the “original” URL
generated by the Social Groups module before the URL extension provider
was installed. This time, however, the result shows that a Custom_Redirect
value is returned, which means that the resulting URL will be redirected to a
new URL containing /test-group-1 as the URL segment.

Figure 12.7

This shows how URL providers not only can change the appearance of URLs,
they can also be used to redirect legacy and other URLs.

DNN URL Best Practices

Many DNN site owners care about how well their pages rank within search
engines for specific terms. Search engine optimization includes ensuring that
the site URLs are structured well and work as intended. This section details
best practices as followed by DNN professionals to ensure site visitors reach
where they mean to go and that search engines can navigate, index, and
understand the content on the site.

Configuring URL Options for DNN Sites

New DNN installations come with a range of options pre-configured for URL
settings. In most cases, these should be left as is by default. For DNN
installations upgraded from earlier versions to DNN 7.1 or later, then all that
is required is to activate the Advanced option on the URLs. The default
configuration is the same for new installs once the advanced mode is
activated.

The following list has some do's and don'ts related to DNN URLs:

Do's:

Use the automatic redirect feature to enforce canonical URLs. This
ensures you minimize any content in your site accessible by two
different URLs. This problem is called duplicate URLs and should be
avoided if ranking well with search engines is important for the site.

Try to preserve the URL of a page that is highly ranked within search
engines. A well-ranked page should have the URL kept the same rather
than redirecting to a newer URL.

Research and use keywords and phrases for URLs for DNN pages.
Customize the URL of the page to match the key word or phrase that
you would most like the page to rank for.

Test all URL changes after you have made them. It is very important
that visitors don't find broken links or URLs that do not work.

Ensure that every site has a primary site alias selected and that either
Redirect or Canonical mode is used to ensure the primary alias is used
by search engines.

Carefully evaluate content modules before installing them to ensure
that the content created uses a consistent URL scheme that leverages
key words in the URLs and doesn't create duplicate content.

Sign up for webmaster services such as Google Webmaster Console
and Bing Webmaster Tools to gain an insight as to how search engines
index and view your site.

Don'ts:

Make unnecessary changes to URLs. The URL of a page is key to the
visitor being able to interact with the site. All changes should be
carefully planned and tested. This is especially important if search
engine traffic makes an important contribution to site visitors.

Delete content without providing a redirect to where the visitors
should go. This is doubly important when replacing an old site with a
new site.

Ignore URL problems—whether it is 404 errors, redirect loops, or a
pages not loading problem. It is critical that URL problems are solved
quickly before traffic is affected.

Experiment with regular expression settings without a deep
understanding of the impacts. Random regular expression changes are
almost guaranteed to not achieve the intended goal, but instead impact
a site in unexpected ways. Have a plan, test cases, and timing ready,
and proceed carefully.

Mix and match redirect technologies. Using a suite of applications to
implement site redirects makes troubleshooting difficult. Use DNN for
redirects wherever possible.

Ignore the importance of URLs. Many people may question the
importance or utility of clean, well-crafted URLs and the absence of
unwanted redirects and other problems. The URL is the gateway to
visitors, and as a book is judged by its cover, the webpage is judged by
its URL. This is important to both search engine bots and indexes, as
well as CPM and CPC marketing, posts in social media, and even the
humble URL in an email.

Troubleshooting and Debugging DNN URLs

Using the Evoq Test URLs section was covered earlier in the chapter. This is a
very useful tool for developers and administrators working with URLs but
cannot replace real-world testing with the actual site in action. URL problems
are notoriously difficult to troubleshoot because a nonfunctioning URL often

doesn't show error messages or even logs. To properly troubleshoot a URL
problem, you need to see the HTTP traffic for each connection and response.

The best tools for this purpose are those that show each individual HTTP
request/response and what the status codes, request/response headers, and
returned stream are. Here are some helpful tools for URL troubleshooting:

Fiddler: An HTTP debugging tools that captures HTTP requests and
responses. See http://www.telerik.com/download/fiddler.

Wireshark: An HTTP debugging tool similar to Fiddler for debugging
HTTP requests and responses. See
http://www.wireshark.org/download.html.

Chrome Browser Tools: Built into the Google Chrome browser. Press
F12 to open the Browser Tools and click the Network tab to see HTTP
requests/responses.

Internet Explorer Developer Tools: Browser-based HTTP debugging
tools, also under the Network tab.

The essential task in debugging URLs is to follow the relevant HTTP request
for the DNN page (or other site resource, such as a web service call or
JavaScript file). This will respond with a specific HTTP Status code, which in
most cases will be 200 for OK, indicating the resource was found on the web
server and sent back as normal. The advantage of using a tool like Fiddler
over the browser-based tools is that Fiddler maintains a back history of all
requests going through the Internet connection. Browser tools generally
display the requests only for the current page. This makes it harder to
diagnose problems with redirects, where the redirect means a new page is
loaded in the browser. When this happens, the history of the previous
requests is lost.

Table 12.13 shows common HTTP response codes and their meanings.

Table 12.13 Common HTTP Response Codes

Response
Code

Name Meaning

200 OK Resource was found and is being returned. The
nature of the response depends on the request.

301 Moved
Permanently

The request found a resource that has been
permanently moved to a new URL. The new URL is

http://www.telerik.com/download/fiddler
http://www.wireshark.org/download.html

provided in a response header called Location.
Search engines use the 301 status to update their
indexes when a page or resource returns a 301
request.

302 Found The URL is found at another location. Commonly
thought of as a “temporary redirect.” Search
engines typically do not update their indexes when
a 302 redirect is encountered, as the implication is
that the originally requested URL may start
working normally again. Also returns the new URL
for the content in the Location response header.

304 Not
Modified

A status returned by a web server to indicate that
the resource requested hasn't been modified since
the last request. Used by web servers to locally
cache static resources, typically for images, script
files, and other similar objects.

400 Bad Request This response code means that the web server
could not understand the request. It may mean a
malformed request (request headers incorrect) and
can sometimes mean a malformed or illegal URL.

404 Not Found Returned when the web server cannot locate any
resource that matches the requested URL. Often
paired with a specific “The content could not be
found” HTML page that a browser will render.

500 Server Error Returned when the request was accepted but the
server encountered an error while generating a
response. This may be related to the URL (the URL
may contain segments that are legal but the
software cannot process) or may be related to
something else entirely, such as a failed database
connection.

To troubleshoot URLs, it is important to understand what HTTP status code
is being returned by the URL.

Follow these steps to debug a DNN URL using Fiddler:

1. First, re-create the test case for the URL using a normal browser on your

computer. This may be as simple as opening the browser and entering the
URL, or it may require logging onto the DNN site and performing a
specific action like opening a pop-up window.

2. Open Fiddler on your computer and check to see that the lower-left corner
of the Fiddler window shows the message “Capturing.” If it does not,
double-click the status rectangle, or press F12 to start capturing.

3. Redo the action that causes the problem you are investigating. As you use
the browser, Fiddler is filling up the left-hand list with each HTTP
request/response pair.

4. Once you re-create the problem, stop capturing traffic again by pressing
F12 in Fiddler, or double-click the Capturing message. This prevents the
list filling up with noise as other services on your computer send HTTP
traffic.

5. Search the HTTP sessions in the list, and select the one that matches the
URL you are trying to debug. This may be obvious if you are just
requesting a page. It may require careful sorting if you are looking for the
URL that belongs to a certain image, pop-up, or web service executed
while using the page.

6. Once the problematic HTTP session is highlighted, click the headers on
both the upper and lower-right panes in Fiddler. This shows the request
headers on the top and the response headers on the bottom. The top of the
response headers will show the HTTP status (such as HTTP/1.1 200 OK or
HTTP/1.1 400 Not Found).

7. Look into the response headers section to find if there are any specific
messages from DNN. DNN may add response headers providing further
information, such as why a 404 or 301 status code was returned.

Using the Debug Mode for Advanced URLs

DNN includes a debug mode in the Host Settings page. Once this mode is
activated by checking the check box and updating the Host Settings, the DNN
URL rewriter actively looks for either a querystring parameter or a request
header. The querystring parameter is used by adding ?_aumdebug=true to the
end of a requested URL, and the request header by adding _aumdebug:true to
the HTTP request. In both cases, this triggers an internal trace on the URL
rewriting request, and extra response headers will be added to the output. The

number of responses will vary, depending on the request, but generally the
same information is available through the test URL functionality in Evoq.
Table 12.14 shows what this information means—it is output in a single line
with commas separating each value. An example debug response header
appears as follows:

http://dnn7.local/?_aumdebug=true, , Default.aspx?TabId=56&_aumdebug=
true&language=en-US, CheckFor301, 7.2.0.563, 0:dnn7.local, Normal

Table 12.14 URL Debug Response Header Data

Name Example Value Meaning
Requested
URL

http://dnn7.local/?
_aumdebug=true

The URL as originally requested by the
visitor's browser or device.

Redirect
Location

http://dnn7.local/new-
location
(not shown in above
example)

If the URL results in a 301 HTTP status,
the location of the new URL where the
request will be redirected.

Rewritten
URL

Default.aspx?TabId=56 The rewritten URL as specified by the
URL Rewriter. This is the format of the
URL as the rest of DNN will see it.

Action CheckFor301 An internal action code that determines
how the request should be handled.
CheckFor301 means to check to see if
the request should be redirected. In this
example, it was not redirected.

Version 7.2.0.563 The current version/build of DNN
against which the request was issued.

Portal ID
/ Site
Alias

0:dnn7.local The portal ID of the site that was
identified by the request and the site
alias that was identified for the request.

Browser
Type

Normal Either Normal or Mobile, depending on
the response from the configured
browser detection component.

Further response headers may appear, which may include messages from the
URL rewriting process (such as a redirect reason) or responses from
configured and active extension URL providers. Again, these are the same
messages as seen in the Evoq Test URL section. The difference is that these

http://dnn7.local/?_aumdebug=true
http://dnn7.local/new-location

are shown from the actual request running, rather than through the test
mode, which doesn't actually make a real HTTP request to the server.

A production server should not be left in Debug mode, because it will have a
slight impact on performance and because it reveals internal data about the
installation to give malicious actors vital internal information. Debug mode
should be used only for production sites for enough time to collect the data
and diagnose a problem and then switched off.

Summary
In this chapter, you learned the history of DNN URLs as a way of
understanding how and why the friendly URL functionality has been designed
for DNN 7. The chapter covered the activation of the Advanced mode of
friendly URLs and how they apply to SEO for DNN sites. The chapter covered
the different URL configuration options and how they affect the behavior of
DNN.

You learned how to create custom URLs for DNN, how to generate URLs
within DNN modules, and how to configure and use extension URL providers.
Finally, the chapter covered best practices for URLs within DNN and how to
troubleshoot and debug problems with URLs in your DNN installation.

Chapter 13
Beginning Module Development

WHAT'S IN THIS CHAPTER?

Choosing your tool set

Setting up your development environment

Understanding design and embedding of modules

Creating a module online in DNN

Creating a simple Razor-based module

Creating a more complex module

Distributing a module

WROX.COM CODE DOWNLOADS FOR THIS
CHAPTER
The wrox.com code downloads for this chapter are found at
www.wiley.com/go/prodnn7 on the Download Code tab. The code comes as two
downloads of the finished sample module you'll be building in this chapter:

Guestbook_01.00.00_Install.zip

Guestbook_01.00.00_Source.zip

As previously mentioned, the number 1 feature of the DNN Platform is its
extensibility, notably the ability to easily install and manage modules. A
module comes as a Zip file. You upload this file into the platform, and DNN
takes care of the rest whether it's the first time you've uploaded it or whether
it's an upgrade. The part of the platform that takes care of this is aptly named
the Installer and is discussed in more detail later. The takeaway here is that
you can leverage this technology to create your own modules that are highly
transportable. And just like Apple's App Store, DNN also has its DNN Store
(http://store.dnnsoftware.com, see Figure 13.1), and maybe one day you will
sell your module there. But first you need to master module development.
And although it's not trivial, there are different ways to do this requiring
different skill levels. To get something working in a relatively short
timeframe, in this chapter we give you the background you need to know
where to start and how to create your first module.

http://WROX.COM
http://wrox.com
http://www.wiley.com/go/prodnn7
http://store.dnnsoftware.com

Figure 13.1

There are many ways to do this. The permutation of tools and technologies
available makes it impossible to tell you how you should develop a module. It
is a matter of personal taste. This chapter gives you the background to make
those decisions. You'll see what a module is in technical terms, how a module
is embedded in DNN, and what is involved in packaging. We use several

examples to show you how this can be done to give you a start in this exciting
technology.

A Guided Tour of Your Work Environment
First, allow us to guide you as you look at ASP.NET applications, the DNN
Platform, and DNN modules. It's important to understand how these various
bits are built and relate to each other.

ASP.NET Web Forms
If you already know how to program an ASP.NET Web Forms application, you
can skip this section. ASP.NET Web Forms was introduced in 2001 with the
first release of ASP.NET. Microsoft aimed to provide programmers with a
programming model that resembled Windows programming on the web. For
that it needed to resolve the web's stateless nature. This means the server is
not connected to the client outside of simply delivering some files, and every
time a browser makes a request it is seen in total isolation. The server does
not “know” you made a request just 2 seconds before. This was not an issue in
the old days of the static web. After all, all the server did was serve files on its
hard drive to the client browser. But now Microsoft wanted to make it appear
to programmers as if there was some kind of continuous connection between
the browser and the server. It solved this by passing a whole lot of hidden
data back and forth between the browser and the server. Basically, every time
the browser made a request it would send enough information to the server
so it would know what happened previously. Although this mechanism has
come under increased attack due to the volume of data being sent back and
forth (for example, slower response times), it remains a powerful paradigm
for web programming and easy for developers to understand.

So Web Forms behaves a lot like Win Forms in that you have a surface onto
which you drop components (text boxes, buttons, drop-downs, and so on),
and in the so-called code behind files of these forms you catch events that are
triggered when a user interacts with those components (for example, clicking
a button, filling of a text box, and so on). The aforementioned form is
essentially a template where HTML is intermingled with tags that the Web
Forms processor recognizes and turns into what you need it to be. These
templates are easily found on your server's hard drive as they have either the
.aspx or the .ascx extension. An .aspx is a standalone web form, intended to be
served as a complete page to the browser. An .ascx is a partial file called a user
control; that is, it is embedded in either an .aspx or another .ascx (you can
nest them) and is similar to the other components like text boxes and buttons

that you add. The code behind files are either .vb (Visual Basic) or .cs (C#).

If you now go to your installed DNN application, you'll understand what the
majority of files are about. Other files you find are mostly static files (that is,
they are meant to be served “as is” by the server to the browser) such as
images, CSS, and JavaScript files. But there remain some others that are not
served and are meaningful only to the ASP.NET engine. The first we want to
call out is the web.config. It contains application-level configuration and sits
in the root directory. It is an XML file that tells IIS various details about the
application. Most importantly it tells IIS to which components to hand
requests (routing). It is also the place where some application-level settings
are stored, such as the connection string to the database. This is extensible,
and various bits of the application can also use the web.config to store
settings (DNN stores information about its configuration in this file as well).
You should not use this file trivially. Although it's perfectly legal for you to
use the web.config to store settings for your module, keep in mind that the
web.config in many installations may have been changed by the owner, and
your settings may be inadvertently tampered with. As a general rule, try to
avoid tampering with this file as you can easily break the entire application if
something goes wrong.

Finally, pay attention to the bin folder. That is where the .dll files reside.
DLLs are compiled libraries of code. There are two ways to run code on the
server in ASP.NET. You can have code files on the server that are compiled on
the fly—that is, when a request comes in. Or you can precompile code into
libraries and drop those in the bin folder.

There are several advantages with the latter approach. For a start, it means
that the server doesn't need to compile because it has already been compiled.
This is offset by the fact that the server only compiles if it finds that any of
the code files have been altered. But the compiled library offers a
performance advantage.

Second, the compiled library hides the code from prying eyes. This may be
important if you deliver a commercial solution and you don't want to hand
over your source code. It also shields the code from tampering. This might be
useful in cases where others have access to the server and you want to make
sure no one tampers with the code.

Finally, it makes it simpler to manage versions of your work. A DLL can be
labeled with a version number. Code files can be labeled this way, too. But

needing to check if any code files may have been updated can be a
cumbersome task, and having all code in a single DLL is just that much
simpler.

Many of the DLLs in the bin folder are interdependent. So you can't remove
or replace them without risk of breaking the application. In .NET the
dependencies between DLLs are recorded when they are created. For
example, DotNetNuke.Web.dll version 7.3.4 is dependent among (many)
others on DotNetNuke.HttpModules.dll version 7.3.4,
DotNetNuke.Instrumentation.dll version 7.3.4, DotNetNuke.dll version 7.3.4,
DotNetNuke.Web.Client.dll version 7.3.4, and DotNetNuke.WebUtility.dll
version 4.2.1. If any of those DLLs is replaced by one with a lower version or
removed altogether, DotNetNuke.Web.dll throws an exception and halts all
its work, breaking the entire application. So tampering with DLLs is not for
the faint of heart. You really need to know what you're doing.

This concludes the brief overview of some of the critical parts of an ASP.NET
Web Forms application. Be aware of this in case you want to change things or
if you need to debug some erroneous behavior.

The DNN Platform
As a Web Forms application, DNN also has a bin folder, a web.config file, and
many of those .aspx and .ascx files. DNN (or DotNetNuke as it was called at
the time) came right on the heels of the emergence of ASP.NET and was a
continuation of one of the bigger sample projects in the first wave of
ASP.NET. In many ways, DNN has been a trailblazer for Web Forms, and at
times Microsoft has adjusted what it was doing based on what was happening
in the DNN ecosystem. Those who have been around since that time can see
that history reflected in the various files and folders of the application. For
newcomers, it can be puzzling why you'd have /admin and
/DesktopModules/Admin. Or /js versus /Resources/Shared/scripts. Over
time, many developers have worked on the solution, and like binary stars,
DNN and ASP.NET Web Forms have evolved in each other's gravity,
sometimes changing the other's course. So at times the anatomy of DNN may
feel somewhat quirky. With that out of the way, let's look at what you have on
your hard drive after installing DNN. Table 13.1 shows a rundown of the most
important folders in the application.

Table 13.1 Major Directories in a New DNN Installation

Path Description
/admin Various bits of functionality

used throughout the framework,
like the login button, the control
panel, or the module's settings
panel.

/App_Browsers Configuration files that allow
DNN to know what a browser's
capabilities are.

/App_Data This is the standard ASP.NET
folder to which an application's
database will be written if you
don't specify otherwise.

/App_Data/Search DNN uses Lucene to index its
contents. Lucene stores its files
here.

/App_GlobalResources You find DNN's common
resource files here. These files
store the most common text
used in the application (like
“Cancel” or “Submit”).

/bin See the “ASP.NET Web Forms”
section of this chapter.

/Components This is mostly empty. It used to
be the place where the source
version stored its source code.

/Config The default configuration files
for various aspects of the
application (the currently
applied files are in the root
folder). These files remove the
need to put everything in the
web.config file.

/controls Reusable controls. You can use
these in your own modules as
well. Controls like the

UrlControl (choose a URL or a
page in DNN) will save you a lot
of work.

/DesktopModules This is where modules are
stored.

/DesktopModules/Admin Administrative modules like the
SQL module or the Extensions
module. You'll see these
modules in action on the various
admin pages.

/Documentation Licenses and a quick guide to
installing DNN.

/Icons Icon image files that are used in
the application.

/images Various images consisting
mostly of the icons that were
used in older versions of DNN.

/Install When DNN first installs, it uses
these folders to create the
system. The default modules are
found here as well as default
skins and languages, for
example. If you create a
distribution based on DNN, you
put all your own stuff in this
place so it installs by default.

/js Various JavaScript files.
/Licenses More licenses of components

used in DNN.
/Portals Data directories that hold the

files for the various portals/sites.
/Portals/_default Data directory for the host. This

is where you find the site
templates (the files that
determine what pages to create

for a new site), for example.
/Providers Directories dedicated to

extensible bits of DNN. You can
override the default providers
with your own if you want.

/Providers/DataProviders/SqlDataProvider The default data provider is the
SQL Data Provider. This means
we use SQL server by default.
This directory contains all of the
scripts DNN uses to get the data
schema installed correctly and
fill it with the first necessary
data.

/Resources Various shared files that can be
served depending on the context.
Modules may request jQuery to
be sent to the client. The jQuery
scripts are found under this
folder. The folder has grown
significantly since version 5 of
DNN, as more logic has been
transferred to the client side.
And the folder structure reflects
the strong growth in that not
everything is organized 100
percent logically.

There is a certain analogy between the DNN folder structure and a typical
Windows machine's folder structure. The DesktopModules folder is like the
Program Files folder on your Windows machine. It stores the various
installed programs. The Portals folder is like the Users folder. It stores the
user's files and makes sure some level of isolation is used to prevent one
looking into the files of another (site folders). Finally, the /bin folder is like
the System32 folder in that the DLLs that are shared across the whole
application go there.

Anatomy of a DNN Module

Now that you know what an ASP.NET Web Forms application and specifically
DNN consist of, let's examine the constituent parts of a DNN module. As
previously mentioned, a module is delivered as a Zip file. But what's in the
Zip file and how does this fit into DNN? To better understand this, you begin
by dividing your application into the age-old split of data and code. The code
comes as .NET Web Forms files such as .ascx, .js, .dll, or code files (.cs, .vb).
And these files are almost without exception stored in a subfolder of
DesktopModules in your DNN installation and the bin folder in case of a DLL.
The user's data comes in two forms: files and relational data (that is, tables of
data). File-based data is stored in the site home directory (default
Portals/[PortalID]/) and SQL data in the SQL Server database. For the
former, you won't need to do anything (the site home directory already
exists), but for the latter you will need to create the necessary tables,
procedures, and so on, yourself through a set of scripts. These scripts create
or update the schema your application needs in SQL. That's it. What you
create is a bunch of files that either are copied to the DesktopModules folder
or the bin folder or are used to generate the schema in SQL that the
application will use.

Let's look at the HTML module to see what this looks like in practice. In your
installation you should find the following directory: /DesktopModules/HTML
(Figure 13.2). There are four .ascx files and one .css file in that directory.

Figure 13.2

These files are actually used to render to the client what the developer wanted
(there are also a bunch of .txt files and a .manifest file in this folder that you
can ignore for now). Then there is an App_LocalResources folder. Like
App_GlobalResources, this holds resource files that contain the text snippets
that are used in the application (more information about this in the
“Localization” section). Under Providers/DataProviders/SqlDataProvider are
all the SQL script files that the module uses. These script files are used only
during installation, so if you tamper with them now, nothing changes. They
remain on hard drive as a record of what has been done.

The only file you're missing from the module is the one that was written to
the bin folder: DotNetNuke.Modules.html.dll. That file is the compiled
version of all the source code that came with the module. In the source code
version of DNN you'll find this source code under DNN
Platform\Modules\HTML. This directory holds the entire HTML module
project and is used to generate the Zip file that is used to install it.

Your Toolbox
There is probably nothing more personal in programming than your toolbox.
Every time we exchange ideas with another developer, there is some moment
in the conversation that will slip into a “you should use X for that” type of
discussion. We don't think we've ever encountered someone with exactly the
same toolbox. So whatever we mention in this chapter, there are always
alternatives and some will never even use a similar tool, and we're sorry if we
didn't mention product X. So we will just mention a few tools that we believe
just about everyone is using and then you can figure out what else you want
to use. Note that there are excellent resources you can use to find out more
about tooling. Scott Hanselman is a very well-known .NET technology
evangelist and is hugely influential in the .NET ecosystem. Next to blog posts,
podcasts, and the like, he maintains the very useful “Ultimate Developer and
Power Users Tool List.” If you want to find new ideas for your toolbox, visit
the list at http://www.hanselman.com/tools and check out the developer
section.

Your primary tool for development will be your IDE (Integrated Development
Environment). And the default .NET IDE is Microsoft's Visual Studio. Visual
Studio comes in various flavors, some commercial and some free. As this
book was being written, Microsoft has launched a new free version of Visual
Studio called “Community” that replaces the previous “Express” labeled
versions. From what we've been able to see, there is now a completely free
and unbeatable IDE for all of us, whether beginner or advanced programmer.
You can also go open source with SharpDevelop, or you can go totally bare-
knuckled with your text editor of choice, but in this book we use Visual
Studio.

Then you need some way to access and manipulate the database. You can run
scripts in DNN using the Host SQL module, but it doesn't replace the ability
to craft queries in an editor and run them instantly. For that you need SQL
Management Studio. There are probably alternatives out there, but it comes
free with SQL Server (Express), so we never looked further.

Finally, there are many tools available that you can add to make your life
easier, but it really depends on your level of module development. To start
with those listed previously is fine, but as you advance you may want to look
at source control (Git and SourceTree are favorites) and HTTP debugging
(Fiddler). The latter allows you to examine the HTML traffic between the

http://www.hanselman.com/tools

server and the browser. This is extremely useful when debugging Ajax calls,
for example. In fact, it's the only way we know to effectively debug this
scenario.

The Environment
It's time to set up the environment in which you'll create your module. This
means having a DNN instance up and running that you can access directly
using Visual Studio.

DNN
For our environment we use the regular DNN Platform distribution that you
can find through the download link at http://www.dnnsoftware.com or
directly on CodePlex or GitHub. You'll typically find several distributions: the
New Install version, the Version Upgrade version, the Source Code version,
and the Web Platform Installer version. The only difference between the first
two is that the upgrade version comes without a few files that are typically
tuned to your specific setting (like the web.config). So you can safely unzip
and drop all files from an upgrade version over an existing version of DNN,
and the first time you go to the site, it will upgrade the application internally.
The web platform version is meant to work in conjunction with Microsoft's
Web Platform Installer.

We use the regular version for our development environment because we
don't need to run the source version of DNN in order to develop a module.
When developing our module, we treat DNN as a black box and only use its
API. Unless you want to find out how DNN works internally, you don't need
to develop inside the source version of DNN. Another good reason to use the
nonsource version is that it is faster. The source version requires a bit more
work from the .NET compiler, and it quickly will become tedious if every time
you want to test a code change you need to wait a minute before the site fires
up. Finally, another reason for steering clear of the source version is that
you'll want your module to work in a production environment somewhere.
And that is where the nonsource version will be running. So you'll mimic as
closely as possible the end result while developing your application.

Which DNN version should you choose? This depends largely on whether you
intend to distribute your work for a wider audience or whether this is a one-
off module where you already know the environment where it's supposed to
run. Obviously for the latter you would choose the version on which it's
intended to run. But if you want to distribute your module for sale or for free,
keep in mind that not everyone is running the latest version of DNN. So you
might want to backtrack a little. The downside, of course, is that older

http://www.dnnsoftware.com

versions have fewer features. It requires some level of experience in module
development and good familiarity with the DNN API to make this call.

The numbering of DNN versions follows the pattern of other .NET
applications in a familiar x.y.z pattern, where x, y, and z are integers. By
convention we write this with double digits, so 7.3.4 becomes 07.03.04. The
first digit is the major version number, the second the minor version, and the
final digit is called the revision. The idea is that the risk of breakage (that is,
methods in the API no longer working the same as before or changes in the
SQL schema) is higher for changes in the major version number and smallest
for the revisions. The latter are sometimes referred to as bugfix releases
because they don't add or change any features but make repairs to new
features that were added in the .0 version. So 7.3.4 is the fourth bugfix release
of the 7.3 release. You'll find that commonly the .0 releases are rarely used in
production environments because administrators wait to see if any bugs were
introduced with the new features. .0 releases are more frequently used by
developers to begin using the new features. Keep this in mind when choosing
the version on which you'll develop.

Table 13.2 shows a list of highlights of releases since version 6.0. This may
help you determine which version is the best for you to target if you aim to
redistribute your work.

Table 13.2 Major DNN Releases between 2011 and 2014

DNN
Version

Release
Date

Highlights

6.0 July 2011 Conversion from VB to C#
New UI with pop-ups
Azure compatibility
Integration with DNN Store

6.1 November
2011

Client resource management
(Mobile) Device Capability API
Site redirection (target mobile)
Site groups (Pro Edition)

6.2 May 2012 Social API (groups, journal, social authentication,
and so on)
MVC Web Services support (later pulled in favor
of Web API)

7.0 November
2012

New (simplified) installer
New UI and control bar
Content sharing (Pro)
Version comparison (Pro)
Support for Web API

7.1 July 2013 New Search API
New URL management
Changed to hashed passwords

7.2 December
2013

Inclusion of Bootstrap into default skin
JavaScript library management
Subscriptions and digest notifications

7.3 June 2014 Performance enhancements
Remote site home directories

SQL Server
Just as with Visual Studio, SQL comes in commercial and free (labeled
“Express”) flavors. And just like with Visual Studio, the free version suffices
for your task at hand. In a nutshell, the SQL Express versions are fully
compatible with the full versions of SQL but just have some size and
performance limitations that don't really concern you. As you develop, you
want to see your code run and know it runs well in production.

As to the version (2005, 2008, and so on), it is wise to stick to the version
that DNN requires. This ensures you won't be doing anything that won't run
on someone else's installation. The dependency was moved up to 2008 in
version 7 of DNN. If you're just using tables, views, simple procedures, and
functions, then it doesn't really matter whether you use 2008 or 2012. But
you should be aware that some of your future users might be on 2008.

IIS
You'll need to run your site, so you need Microsoft's web server IIS. There are
two flavors of this: a developer version called IIS Express and the full-blown
regular IIS. If you have a professional version of Windows, you have access to
a full version of IIS. Choosing the right one is not trivial and it has
implications for your project, notably regarding debugging. In order to debug,
Visual Studio has to somehow be able to piggyback onto the process that is
running your application so that it can monitor what is going on. So let's look

at the differences.

The regular IIS is integrated into your Windows environment and runs as a
service. The obvious advantage is that it is exactly the same product as you
find on a Windows Server edition, so you have peace of mind that what you
observe you'd also observe in production. The downside is that Visual Studio
doesn't really penetrate this. It can't go through the front door so to speak and
ask to piggyback on the so-called worker process (the process that runs your
DNN and module is called the worker process and has the executable name
w3wp.exe). Actually, if it could do this, it would constitute a grave breach of
security. So to be able to debug your module, Visual Studio has to jump
through some hoops. Instead, it needs to ask Windows to be able to latch
onto the worker process. But this is possible only if you are running Visual
Studio with administrator privileges. Either you turn off UAC on your
machine or tweak your Visual Studio shortcut to run as administrator by
default.

IIS Express was introduced with Visual Studio 2010 and replaced the older IIS
developer edition called Cassini, which really didn't compare with IIS. The
new IIS Express was made to behave much more like its big brother. The
biggest difference is that IIS Express is a standalone application, so it does
not run as a service on your machine. Instead, it's Visual Studio that boots it
into action when you press F5 in your web project. Your project's settings will
configure IIS Express to serve up the site you're working on, and the process
remains active until you stop debugging. Obviously, Visual Studio has no
issue latching onto the process here as it starts it up itself. There is also no
issue with UAC as you run the process in your own account on the machine.
So there are no hoops to jump through. The downside, however, is that all
this works only when firing up a website. So to do this for a module project,
you need to at least also include the website project DNN (still you don't need
the source version!) in your solution and set it as a start-up project. There is
another complication in that when you start your project this way, it fires up
your default browser using localhost:[some port number]. Under normal
circumstances this then adds itself to the aliases of the running site. But it
becomes impossible/very complex to create new sites in the running instance
as you need to register new URLs, and IIS Express can't do that. Finally, the
moment you stop debugging you kill the process. This means you cannot
make any code changes while the site is running. You don't have that
limitation if you run the regular IIS.

In conclusion, IIS Express is a great tool and a big step forward since the old
Cassini days, but it was really designed for monolithic website projects
(where you're creating a whole website). For the purpose of developing a
module inside a website that you don't want to touch, it is too limiting, and it
is preferable to use the full-blown IIS if you have access to it.

To VM or Not to VM
You can go one step further to emulate the situation where the module will
end up by creating a virtual machine with a complete Windows Server edition
on it. This comes at no cost if you are an MSDN member. The upside is that
there are no more differences possible between your development
environment and the production environment. Another benefit is that your
development environment becomes trivially easy to move to another machine
and to back up. Naturally it also comes at a cost. There's some performance
loss, as your PC is running two operating systems side by side. Plus you need
to install your development tools inside the VM.

Organizing Your Project
The number of options available to develop a module for DNN can be
overwhelming. There are so many ways to do this that it's easy to get lost. As
ASP.NET and DNN progressed, new methods evolved over the course of the
last decade to make things easier for you and to give you more options. And
similar to the choice you make for your toolbox, many decisions come down
to personal preference.

Inline versus External Module Creation
You'd be surprised what you can do without any tools. DNN includes a
number of ways in which you can create a module inline in the application. As
modules are “active components,” you need to be logged in as superuser. If
you switch to Edit mode and you hover over any module's menu, the Develop
menu item appears. This allows you to edit any of the module's controls
directly inside your browser. DNN includes a powerful code highlighter called
CodeMirror to help you. Combined with the ability to create modules from
scratch on the Extensions page (through the Create New Module button), this
means you can create an entire module without ever going to the files
directly.

Hello World

Here we'll create a module using the inline module creation abilities of DNN:

1. Open your DNN site, log in as host, and go to Host Extensions.

2. From the buttons at the top, click Create New Module.

3. Select New in the Create Module From drop-down list.

4. Click the Add Folder buttons to create an owner folder called “WROX” and
a module folder called “HelloWorld.”

5. Select C# and type HelloWorld.ascx as File Name and HelloWorld as
Module Name. You should have something like what is shown in Figure
13.3.

6. Select Add Test Page and click Create Module. You should now have a
screen like what is shown in Figure 13.4.

7. Change to edit mode using the control bar's menu at the top right. You'll
see the module gets its menu shown. Select Develop from the gear menu

(Figure 13.5).

8. A pop-up screen appears with two tabs. On the first tab a drop-down with
HelloWorld.ascx is selected. Delete all but the first line, type the following
on the second line, and update and close the dialog:

<h1>Hello <%: UserInfo.DisplayName %></h1>

Hello SuperUser Account is displayed in the module. SuperUser Account
is the DisplayName of the currently logged-in user. If you log off, you just
see Hello, as there is no more user logged in.

Figure 13.3

Figure 13.4

Figure 13.5

Congratulations. You've successfully created your first bit of active content!
Now take it up a notch. Go back into development mode and copy the code in
Listing 13.1.

Listing 13.1: Hello World Web Forms example

<table>
<%
foreach (var tab in GetTabs()) {
%>

 <tr>
 <td><%: tab.TabID %></td>
 <td>
 <a href="<%: DotNetNuke.Common.Globals.NavigateURL(tab.TabID)
%>">
 <%: tab.TabPath %>

 </td>
 </tr>
<%
}
%>
</table>

<script runat="server">
public List<DotNetNuke.Entities.Tabs.TabInfo> GetTabs()
{
 return
DotNetNuke.Entities.Tabs.TabController.GetPortalTabs(PortalId,
 -1, false, true);
}
</script>

What you should see is a list of pages with their path as a hyperlink to those
pages in DNN. In the preceding listing there is a code block inside script
runat="server" that runs solely on the server (you won't discover it in the
HTML output of the page). This method is then used in the previous ASP.NET
code to fill an HTML table. Finally, you'll note that you've used several
methods from the DNN API (NavigateURL, GetPortalTabs). Finding your way
around the DNN API takes some time, but the more modules you make, the
more you'll find yourself using the same familiar bits of the framework.

The Razor Host Module

Over the years a lot of criticism has been leveled at Microsoft for its Web
Forms implementation, in part because it was bulky and in part because Web
Forms does not allow the programmer much control over the HTML that is
emitted by the server. To address these issues we've seen the emergence of
MVC and its associated view engine Razor. A Razor file is not unlike a Web
Forms.ascx/.aspx in that it is basically a template telling the engine what
HTML to render. Most significantly, you'll find that the <% %> way of
separating code from markup has been replaced with a single @ symbol. So
<%=Math.Sqrt(81)%> is simply @Math.Sqrt(81). But that is just a slight
advantage in brevity. Razor files no longer support the Web Forms drag-and-

drop interface in Visual Studio. You need to craft the HTML yourself. Many,
including us, see this as a step forward.

A lot of Razor's features are related to using MVC as a development approach.
Although DNN will probably support that in the future, for now DNN still
assumes you are rendering controls to a Web Forms page. To benefit from the
Razor hype, DNN includes (since version 5.6.1) the so-called Razor Host
module. It allows you to create a razor script, and the module renders this
script on a DNN page. To access certain DNN features it includes three Helper
Objects: DnnHelper, HtmlHelper, and UrlHelper. DnnHelper allows access to
details about the current module, page, site, and user. The HtmlHelper makes
accessing localized text easy. And finally the UrlHelper allows for easy
construction of DNN URLs.

Use this feature to redo the Hello World example in the Razor Host module.

Hello World in Razor

Here we'll create a simple module using the Razor Host module that is
included in DNN:

1. Create a new page and add the Razor Host module to this page.

2. From the module's pencil menu select Edit Script (make sure you're in
Edit Mode if you don't see the menu).

3. Click to add a new script file and give it a meaningful name like
HelloWorld. Click to add the file.

4. Select the file from the drop-down and replace the contents with this:

<h1>Hello @Dnn.User.DisplayName</h1>

5. Select the check box to make the script active and click to save and return
to the page.

You now see what you had before—a welcome message for the logged-in user.
Again, you add a list of pages in your current site with links to each of them
(see Listing 13.2).

Listing 13.2: Hello World Razor example

@functions {
 public List<DotNetNuke.Entities.Tabs.TabInfo> GetTabs()

 {
 return
DotNetNuke.Entities.Tabs.TabController.GetPortalTabs(Dnn.Portal.PortalId,

 -1, false, true);
 }
}

<table>
@foreach (var tab in GetTabs())
{
 <tr>
 <td>@tab.TabID</td>
 <td>
 @tab.TabPath

 </td>
 </tr>
}
</table>

You can see the result in Figure 13.6. As you can see from Listing 13.2, Razor
bears a lot of resemblance to Web Forms in the way it does the templating of
your data. But there are some neat features that Web Forms doesn't have and
vice versa. A fuller discussion of Razor falls outside the scope of this chapter,
however.

Figure 13.6

Final Remarks

Although it's perfectly valid to develop your module inline in DNN, you'll
obviously miss out on the smoother experience of using a full IDE. Plus, you

won't be able to compile your code. It's fine for a half-day quickie, but for
anything more elaborate you'll want to use Visual Studio. For the remainder
of the chapter, we assume you are using Visual Studio to develop your
module.

WAP versus WSP
Now you face one of the oldest dichotomies in module development. When
DNN was first created, Visual Studio (2003) included a so-called Web
Application Project (WAP) template. This template assumed that you were
developing a number of user controls inside a larger Web Forms application
and that you would compile the code behind to a DLL in the bin folder. That
is exactly the route DNN took with modules. So to many it came as a nasty
surprise that in Visual Studio 2005 this option was deprecated in favor of
Web Site Projects (WSP), which took a very different approach. Microsoft
later corrected this with a service pack, but it was an illustration of how you
can be left behind by developments in Redmond.

In a WAP project you load your controls and refer to the rest of the project
only by including the DLLs as references in your project. The result of your
work will be the .ascx files plus a DLL that is the compiled code of your
project. With WSP you load the entire website (DNN) and add code files to
the App_Code folder that is then compiled dynamically when your application
first loads. WSP was obviously meant to speed up development as you could
change code and just click Refresh in your browser. But having template
(.ascx) files under DesktopModules and the code files “far away” under
App_Code was a change that was not conducive to larger, more complicated
modules. Plus, it made creating a distributable module significantly more
complex. And it also meant installing the source code on the client's server,
which ruled out all commercial module developers.

To this day you can create a module using either WAP or WSP approach. But
most developers use the WAP approach because it totally isolates your work
from DNN, and that is seen as a bonus. The WSP approach actually makes
sense only when faced with a quick-and-dirty task for a single site.

Inside versus Outside the Root
If you have downloaded and unpacked the source version of DNN, you may
have noticed something odd: the modules are not under
\Website\DesktopModules\etc where you might have expected to find them.

Instead, they are under \Dnn Platform\Modules. So how does this work? The
way that the project has been set up is with the module projects outside the
root of the website (that is, outside the DesktopModules folder). The site is
running under \Website, so how do developers work on the module and see
their changes? Inevitably this means that if you make a change in one of the
.ascx files, it won't be visible when you refresh your browser.

The clue is in MSBuild tasks. What you need to do is to click Rebuild in Visual
Studio. What happens is that some extra MSBuild tasks run at the end of the
regular compilation of the module, which copies over all the files to the
Website\DesktopModules folder. This is a very clever way of leveraging build
automation. The upside of this way of organizing your project is that it is even
more isolated from the website. And you can presume that for such a large
project as the DNN Platform, this makes good sense. But it remains rare for
module developers to use this approach. Plus, you don't work on the DNN site
itself simultaneously. So you are not expected to interfere at all with the DNN
files. That already provides enough isolation.

In short, it is possible to develop your module in total isolation in some
directory far away from your test DNN site, but it requires quite a bit more
jumping through hoops, and the benefits are limited. So in the remainder of
the chapter, we assume you are developing inside the test DNN installation.

Module Design Considerations
Now that you have your bearings and you know what you want to accomplish
with the module, let's look at some aspects that will have an influence on how
you will code this. What follows are a number of decision points you will
come across while you move from your module's concept to code.

Three-Tiered Design and MVC
By far the most common architecture in ASP.NET Web Forms is the three-
tiered approach, where you have a presentation layer, a business layer, and a
data access layer (DAL). This approach also pervades the DNN Platform. The
idea is to separate your code between these three layers so that it becomes
easier to make changes in one layer without affecting any others. This makes
the solution easier to maintain. Concretely, the .ascx files and their code
behind would constitute the presentation-layer code, the SQL methods of the
data layer, and the various controllers and objects of the business layer. In
DNN, you'll find the entire data layer under the namespace DotNetNuke.Data.

But as simple as it sounds, it's difficult to keep consistent, and Web Forms
has been faulted by many for not encouraging developers enough to keep
their code well separated. MVC is seen as a logical progression in web
development, and it claims to provide a better “separation of concerns.” DNN
7.5 is slated to provide support for modules that wish to follow this
programming paradigm. A full discussion of the merits of MVC falls outside
the scope of this book, however, and given that support for MVC has not yet
been implemented in DNN as of this writing, we focus on a three-tiered
approach in the remainder of this chapter. Keep in mind that this is a totally
valid way of creating your modules.

DAL
The data access layer is probably the easiest layer to recognize in any DNN
module (and DNN itself). Again, there have been significant changes in the
technical landscape since DNN was first created. The DAL is responsible for
persisting the objects of your application to some data store. Or to put it more
simply: It stores the various records in the various database tables of your
application and can retrieve those again.

Because DNN was designed to be very flexible and extensible, many parts
were designed following the provider model pattern. Basically, you have an

abstract class defining a number of abstract methods, and then you have a
concrete implementation of the class, which is constructed by some factory
method at runtime. This allows DNN to support databases other than SQL
Server like MySQL or Oracle. If you want to run DNN on Oracle, all you need
to do is create the concrete class that implements all the defined methods,
and you need to create the various scripts to create the correct database
schema in Oracle. This has been done in the past, and it was a commercial
project. But it's an enormous undertaking with limited benefits. What turned
out to be the biggest stumbling block is that it needed to be repeated for each
and every module you had if you wanted to run your DNN site on Oracle. So
more and more it is assumed that you are using DNN on SQL Server,
especially because SQL Server has been accepted as an enterprise-grade
database and because there are free entry-level versions of this. But you'll see
the legacy of this in the naming of some parts, like the .SqlDataProvider
filename extension for the scripts for SQL Server. As you can imagine, the
Oracle provider had .OracleDataProvider files.

This development is why DNN has been moving away from the provider
pattern for a while now. The first move was to add generic methods in the
data provider that allowed module developers to avoid having to code the data
provider abstract class and SQL data provider implementation in their own
code for each and every function. Instead, you could code your method
directly calling a specific stored procedure. This mechanism is referred to as
DAL+.

There have been two developments in the data access domain since the
original DNN that have had significant impact on ASP.NET in general and the
way DNN interacts with data specifically: ORM and LINQ. To start with the
latter, LINQ is a set of extensions to the .NET languages that allow developers
to make SQL-like queries of various collection types (arrays, dictionaries, and
so on). It has become hugely popular since its introduction in .NET 3.5. There
are many good resources on LINQ, and we assume you are familiar with it.
ORMs (Object Relational Mappers) remove the repetitive task for developers
of creating CRUD (Create, Read, Update, Delete) statements for their objects
between their code and the database. Instead, the developer can hand over an
object and tell the ORM “just store this” and the ORM crafts the SQL
dynamically to make this happen. ORMs, like Microsoft's Entity Framework,
can be an incredibly powerful tool and time winner for developers. The most
important downside to their use, however, is that (for all ORMs that have

been reviewed for inclusion in DNN) there is a performance penalty. So
instead, DNN has chosen to adopt a so-called micro-ORM. A micro-ORM is
not quite as powerful as a full ORM, but what you lose in flexibility you get
back in performance.

DNN 7 ships with PetaPoco and introduces a new way of doing data access:
DAL 2. This new layer promises to cut down the number of lines of code that
module developers need to create significantly.

Client-Side versus Server-Side
When ASP.NET was first released in 2001, the thinking in the IT community
was still very much thin client. Browsers were pretty dumb, buggy (IE), and
nonstandardized (again IE), so the best approach a developer could take was
to do as much as possible on the server and limit what the browser did to just
displaying HTML and sending back form data. This worked for a number of
years until it was discovered that with JavaScript you could alter the contents
of a page and do similar interactions to the server as what the browser does
when posting back, eliminating the need for page postbacks. Ajax was born,
and soon every developer was asked to provide solutions that didn't require
page refreshes anymore. Microsoft released its own version of Ajax in
ASP.NET using so-called update panels. Skip a few years and you see the
emergence of jQuery and JSON. These two technologies make it trivially easy
for developers to send data back and forth to the server and alter what is
onscreen. And it beats Microsoft's solution on two very important aspects:
load and performance. Update panels send back the whole page to the server,
and the server responds with bulky HTML. This means that there are a lot of
bytes going back and forth. With the more modern approach, the developer
decides selectively what is being sent back and forth, making this a much
more efficient affair. Fast-forward a few more years, and Microsoft launches
its Web API, which is intended to make developing services for data exchange
between a web page and the server a lot easier. This unlocked the full
potential of jQuery/JSON for ASP.NET developers.

DNN 7 includes enhanced support for jQuery (you'll find the libraries under
Resources/Libraries), JSON (DNN ships with the most popular
Newtonsoft.Json.dll library), and Web API. What you should think about at
this stage of your project is how you divide the work your module does. What
is best done on the server, and what will you do using services or even plainly
in JavaScript? Browsers are much better behaved these days, and you are

expected to provide a smooth experience on both high-bandwidth as well as
low-bandwidth (mobile) connections. Naturally you need to keep security in
mind, too. Services can be exploited, and every door you open on the server
for your application is one more target for a hacker.

Localization
For those who live outside the United States, it is all too familiar to see some
new technological development only to find out that it is U.S. English only or
that it can't be used in a multilingual setting. This is not ill will but more of a
blind spot of many developers. “It works for me.” For years one of us has been
involved in a team (mostly from Europe) that tries to identify
internationalization issues in DNN and offer solutions. This team meets
regularly, and if there is one takeaway from these meetings, it's that this is
hard to do right especially if it was not taken into account at the very
conception. Besides the obvious translation of onscreen text, there are
differences in how we write numbers and dates and even the direction we
write. Making an application that behaves in the same way in all cultures is a
daunting task. We urge you not to underestimate this aspect of your module.

Technically, we discern between two types of localization: static and content
localization. The former deals with the texts and graphics that we ship with
our work such as buttons (Submit, Cancel, and so on), field texts (First
Name), help text, and so on. Static localization is done through resource files.
These are XML files with the .resx extension you find in App_LocalResources
folders everywhere. These files consist of key-value pairs where the value is
the text in one specific language for that file. The U.S. English text is in the
file that is simply named MyControl.ascx.resx that you create and supply with
your work. Then, if it needs to be translated to French, all a translator needs
to do is create a resource file called MyControl.ascx.fr-FR.resx (fr-FR stands
for French as it's spoken in France as opposed to fr-CA, which is French as it's
spoken in Canada) with the French translations in it. DNN checks the user's
browser settings and personal preferences to determine which languages the
user prefers and then attempts to find the best match for each text on display.
This process includes so-called fallbacks where one could specify that if the
user is German speaking from Austria but no text can be found in de-AT, then
maybe the system should look for the German file for Germany (de-DE)
before falling back on U.S. English. As you can probably understand, this can
get incredibly complex very quickly. Not to mention, we also support

overrides per site and at the host level. To keep this from totally bringing
DNN to its knees, a lot of caching is taking place.

DNN Software provides the .resx files for the entire DNN Platform for five
languages besides English: Spanish, German, Italian, French, and Dutch. But
with some simple tools you can create your own translation for DNN if you
need to. You can use the built-in editor in DNN through the languages page,
or you can use an external tool like the DNN Translator that you can find on
CodePlex. Resource files are normally zipped up into language packs. An
example is the aforementioned core language pack. But you can also have
module-specific language packs. As a module developer you may need to ask a
translator to translate your resource files as a service for your customers so
you can deliver these packs yourself.

For the most part, your concern with static localization means you use the
ResourceKey attribute on your controls and add the key to the corresponding
.resx file. There should be a big red warning light on your monitor that flashes
every time you are hard-coding any bit of text to display to an end user. It just
isn't done.

Content localization is the domain of multilingual sites. It concerns all the
features built in to DNN to allow users to create content in different
languages and have the site adapt to the user's preferences. The way it is
implemented in DNN is that when a page has been designated to be
multilingual, it in fact creates shadow copies of itself for the other languages
that the site wants to support. It then copies all modules from the original
page to those shadow pages. At this point, translators can work on those
modules translating their content, and when done, they mark a page as done,
and it becomes available in the site. Sometimes you might not want to have a
copy of a module, but rather the same one. That is also possible in DNN. You
can manage that on the languages interface for a page. What you should be
aware of as a module developer is the mechanism just described. Depending
on your application, you may (a) totally ignore the whole content localization
aspect, (b) decide that for other languages the module should be copied as
discrete instances, or (c) decide that your module should not be exploded into
n versions but that the same module should appear on each page. In the latter
case, we'd speak of a module that implements content localization within
itself. In the second case, we let DNN handle content localization.

About Modules, TabModules, Module Definitions
Your module needs to be properly embedded in DNN for it to work. A
surprising number of concepts come into play to make this happen. The best
way to understand how this works is to look at what is stored in SQL. After
all, that is where the registration of a module is stored. To get an idea of how
the module is embedded in DNN, we open the following tables in turn and try
to walk you through the wiring. We start at the very top where your module
has been announced to the system and drill down to find out how DNN
knows which .ascx to put where on the page.

Packages
Packages are what you upload into DNN: the Zip files. They contain the
manifest, and this table stores this manifest, the license (if it was included),
owner details, and so on. Note the column PackageType (Figure 13.7). You'll
see the various package types that are known in DNN. For the purpose of this
chapter, we are interested only in Module package types. Packages is the entry
point of all extensions, and for our purpose it's the least interesting table.

Figure 13.7

DesktopModules

This is the data root for any module. Every module has a unique record in this
table (Figure 13.8). You'll notice it refers back to Packages through PackageId
and that the version is duplicated in this row (it was also present in the
Packages table). This is because the Packages table is a recent addition. Most
importantly this table tells DNN where the module is found (FolderName) and
what it's called (ModuleName). Note that you should keep the latter unique to
avoid clashes. This is because DNN uses this name to determine during
installation whether it has already been installed. So choosing a name that is
the same as an existing one will lead to a huge mess when people install your
module and the other one is present as well. So stick to some convention like
MyCompany_MyModule for the name. You won't see it in the UI as
FriendlyName is used for that. Other aspects of note: IsPremium tells DNN
whether it is only reserved for some sites or whether all sites can use this.
IsAdmin tells DNN whether it should be available only for administrators to
instantiate and use.

Figure 13.8

ModuleDefinitions
Next up is the module definition (Figure 13.9). It links to the DesktopModules
table. So any module can contain one or more definitions. Each definition
shows up as a component on the page when you instantiate the module (that
is, drop it on the page). Most modules have just one definition. Multiple

definitions falls outside the scope of this chapter (and we're not big fans of it
to be honest). The Module Definition has a DefinitionName. Like the
ModuleName this is best kept unique and stable. If you change the name of this,
DNN creates a new definition next time you upgrade, and then you have a
module with multiple definitions and hence multiple components onscreen
(probably showing the same thing). It can get very messy if you start fidgeting
with this value, so choose it well right at the start along the same conventions
mentioned previously.

Figure 13.9

ModuleControls
The module definition is basically a container for one or more module
controls. The module control (Figure 13.10) tells DNN which .ascx to show
(yes, we're finally getting to your work) when the module is shown on a page.
The ControlSrc is the relative path to the .ascx to show. This .ascx has to
either inherit from DotNetNuke.Entities.Modules.PortalModuleBase or
implement DotNetNuke.UI.Modules.IModuleControl. You can actually use a
type reference in this field if you want to. So how does DNN know which

module control to load for a definition? That depends on the ControlKey. This
key is used in the query string of the request to switch controls. So adding
ctl=Edit would tell DNN to load the control where ControlKey equals Edit.

Figure 13.10

That has brought us to your control. We now know how DNN knows which
.ascx to load based on your module's registration in the framework. You now
see what parts are involved when a module is instantiated on a page. Again,
we walk through the data to get an idea of how this is done.

Modules
This is the root of every module in your site. Every module instantiation has a
single record in this table (Figure 13.11). Note it does not tell DNN yet where
it is placed on your site, just that it exists (or is deleted, and so on). Most
importantly this is where the ModuleID is generated. That is the unique key
that you use throughout your code to keep stuff from one module separate
from another.

Figure 13.11

TabModules
The TabModule is where the module meets the page (Tab). It tells DNN
where the module should go. As you can understand, you can have multiple
TabModule per module. That is, you can stick a module on multiple pages.
The idea behind this is that you can share content across pages. To see this in
action, you can try the following: Open your DNN, log in as admin, and go to
the Modules menu at the top. Instead of selecting Add New Module, select
Add Existing Module. You now need to select a page from where to copy the
module from and select the module. If you do not select Make a Copy, only a
new TabModule record is created for that module, so it shows exactly the
same content as on the other page.

You'll notice in the TabModules table (Figure 13.12) the columns PaneName and
ModuleOrder. This tells DNN where to stick it on the current page given the
skin you used when you added the module. This explains why when you
switch skins, your modules are sometimes all stacked in the default pane.
This is because DNN tries to find the pane on the selected skin, but if it isn't
found (because the other skin had different pane names), the module is
added to the (mandatory) ContentPane.

Figure 13.12

There are many more columns in this table that we will not elaborate on here.
You'll probably notice they are closely linked to settings you see when you go
to a module's settings pop-up. But now you should understand how DNN
knows which control to stick where when it loads a page.

A Guestbook Module
Let's take a nontrivial example to build a module. We're going to build a
guestbook module. The module allows users to leave a message, and these
messages are displayed in a list that is sorted by the date they were added in
reverse order. There is a setting in the module specifying whether we wish to
use moderation. If not, then all messages are displayed as they come in. If we
use moderation, then anyone with edit permissions on the module needs to
click a button to OK any incoming message before it's shown. Finally, users
can edit their own messages until they've been moderated, and any user with
edit permissions can edit any message. If a message has been edited, it
displays with a small note about who edited the message and when.

The tools we're using are

Visual Studio 2013

Community Build Tasks

Christopher Hammond's DNN Module Templates

DNN 7.3.4

Module Templates and Build Tasks
As you'll quickly discover, making DNN modules involves a number of
repetitive tasks. We wouldn't be software engineers if we didn't come up with
a way to automate this. Two things we recommend right from the start are to
use a Visual Studio project template and to install the community build tasks.
Both are products of individual members of the DNN community. There is no
official release of these by DNN Corp, and there are several competing
versions of both. For this demo we use Christopher Hammond's module
template, as he has a long track record in this. It is certainly a great template
to begin with. Another one is Bitboxx's DNN 7 module template that focuses
on using the new DAL and includes T4 templates to generate code from the
database. Once you're familiar with module programming, we urge you to
explore and adapt a template to suit your own needs. Editing templates for
Visual Studio is fairly trivial, and quite quickly you'll find yourself wanting to
tweak them. In our example we've already edited Chris's template to use
WROX as company name, for example.

Most templates rely on community build tasks being installed. Build tasks are

MSBuild instructions that a project can leverage during the build process.
Specifically for DNN it is useful to automate the creation of a module
package. This is why these tasks have become quite popular by DNN module
developers. Again, there are competing products out there. The oldest is
maintained by Vicenç Masanas and is called MSBuild DotNetNuke Tasks. We
have those installed. But there is a newer project called MS Build for DNN
module development that is maintained by Ernst-Peter Tamminga. They are
both respected long-serving members of the DNN community, so we're not
going to push one or the other on you.

Creating the Project
We assume you've already installed a DNN install version and you've installed
the tasks and module template.

1. Start Visual Studio and select New Project.

2. Select the DotNetNuke 7 C# DAL2 Compiled Module template from the
Visual C#/DotNetNuke folder. Set the name to Guestbook and the folder
path to wherever your DNN installation is and then
DesktopModules\WROX\. Make sure to deselect the Create directory for
solution check box before you click OK (Figure 13.13).

Figure 13.13

You should now see the new project loaded in your Visual Studio (Figure
13.14).

1. Right-click References and browse to add references to DotNetNuke.dll
and DotNetNuke.WebUtility.dll from the bin folder of the site in which
you're developing. The list of references should no longer show any errors.

2. Open Guestbook.dnn. This is the module manifest. The manifest needs to
be packed with a module when you distribute it, and it tells DNN how to
load the module. You look more in depth into the manifest in the next
section. For now, you're going to edit the manifest so you can initialize
your module in DNN. You'll be focusing your attention to the segment
that starts with

<component type="Module">

3. Edit or verify the manifest so the following lines are as they are here:

<foldername>WROX\Guestbook</foldername>
…

<controlSrc>DesktopModules/WROX/Guestbook/View.ascx</controlSrc>
…
<controlSrc>DesktopModules/WROX/Guestbook/Edit.ascx</controlSrc>
…
<controlSrc>DesktopModules/WROX/Guestbook/Settings.ascx</controlSrc>

4. Fire up your dev site, log in as host, and go to the Extensions page.

5. Click Create New Module and select to create the module from a manifest.
Select the right folder name (WROX) and module folder (Guestbook). In
the resource drop-down you should see your .dnn file that you just edited.
Select Add Test Page and click to create the module (Figure 13.15).

Figure 13.14

Figure 13.15

You are now redirected to the test page, and you'll see a big error. That is
because you haven't actually coded anything yet. All you've done is create a
new module definition in DNN using the controls listed in the manifest. Your
files are still filled with boilerplate stuff, and there is no DLL in the bin folder
with your code. For now you can close the browser as we will flesh out the
module.

The Data Layer—SQL
It's time to think about what it is you're going to be storing. Foremost, you'll
be storing a text message left by visitors. Call the object a guestbook entry.
The entry will have message as field as well as a date time stamp when it was
created and a link to the users table in DNN to store who it was that left the
message. You also need to bring in scope, meaning you need to record the
module ID in which the entry was created. This avoids the message cropping
up in another module if the user adds multiple guestbook modules to his site.
Finally, you need a flag to tell whether the message has been approved. The
SQL to create this is shown in Listing 13.3.

Listing 13.3: SQL script to create entries table

CREATE TABLE {databaseOwner}
{objectQualifier}WROX_Guestbook_Entries(
 [EntryId] [int] IDENTITY(1,1) NOT NULL,
 [ModuleId] [int] NOT NULL,
 [Message] [nvarchar](max) NOT NULL,
 [Approved] [bit] NULL,
 [CreatedByUserID] [int] NULL,
 [CreatedOnDate] [datetime] NULL,
 [LastModifiedByUserID] [int] NULL,
 [LastModifiedOnDate] [datetime] NULL,
 CONSTRAINT PK_{objectQualifier}WROX_Guestbook_Entries PRIMARY KEY
(EntryId)
)
GO

ALTER TABLE {databaseOwner}{objectQualifier}WROX_Guestbook_Entries
 ADD CONSTRAINT FK_{objectQualifier}WROX_Guestbook_Entries_Modules
 FOREIGN KEY([ModuleId])
 REFERENCES {databaseOwner}{objectQualifier}Modules (ModuleID)
 ON DELETE CASCADE
GO

You'll notice we've used two tokens that are specific to DNN and will throw
errors if you try to run this as is in SQL Management Studio. If you run this
in the SQL module (Host menu), then it works just fine. If you want to run it
directly in SQL Management Studio, then the {databaseOwner} should be
replaced with “dbo” most likely (the default db owner) and {objectQualifier}
with nothing as by default DNN does not add this. The object qualifier is a
remnant of DNN's long history and is discussed later in this book.

Another thing you'll notice is that we've prefixed our table with
WROX_Guestbook_. It is good practice to prefix your SQL objects with a unique
string so there is little chance of it colliding with another third-party module.
Every module adds its data to SQL, and it all has to live peacefully side by
side, so a little precaution in naming items comes in handy.

Finally, we've added the standard audit columns to the table
(Created/LastModified). You'll find these in many places in DNN's data layer,
and we find it good practice to stick to conventions when they correspond to
your situation. Here we'll keep a record of who created the message and the
last one to have modified it (remember, there is an option to edit the

message).

We also create a view to correspond to our table that brings in the display
names of the creator and modifier of an entry. This view is created as shown
in Listing 13.4.

Listing 13.4: SQL script to create entries view

CREATE VIEW {databaseOwner}
{objectQualifier}vw_WROX_Guestbook_Entries
AS
SELECT
 e.*,
 ISNULL(uc.DisplayName, 'Unknown') AS CreatedByUserDisplayName,
 ISNULL(um.DisplayName, 'Unknown') AS
LastModifiedByUserDisplayName
FROM {databaseOwner}{objectQualifier}WROX_Guestbook_Entries e
 LEFT JOIN {databaseOwner}{objectQualifier}Users uc
 ON e.CreatedByUserID = uc.UserID
 LEFT JOIN {databaseOwner}{objectQualifier}Users um
 ON e.LastModifiedByUserID = um.UserID
GO

As you can see, we're doing a left joins for these users as we can imagine a
scenario where this is an anonymous post, in which case we'll just use the
name Unknown for that user.

This is all we'll be doing in SQL Server. We now have a table and a view for
our data. We can now turn to Visual Studio and code up our module.

The Data Layer—DAL 2
Let's glue the SQL to code using a DAL 2 approach. We begin by deleting stuff
we don't need from our newly created module. So delete all files in the
Components folder, and you can delete the entire Documentation folder as
well. Now add a new file to the Components folder called EntryInfo.cs. The
EntryInfo object will be what is mapped to our table. We annotate the class to
give it meaning in DAL 2 as shown in Listing 13.5.

Listing 13.5: EntryInfo.cs

using System;

using DotNetNuke.ComponentModel.DataAnnotations;

namespace WROX.Modules.Guestbook.Components
{
 [Scope("ModuleId")]
 [TableName("WROX_Guestbook_Entries")]
 [PrimaryKey("EntryId")]
 public class EntryInfo
 {
 public int EntryId { get; set; }
 public int ModuleId { get; set; }
 public string Message { get; set; }
 public bool Approved { get; set; }
 public int CreatedByUserID { get; set; }
 public DateTime CreatedOnDate { get; set; }
 public int LastModifiedByUserID { get; set; }
 public DateTime LastModifiedOnDate { get; set; }

 }
}

Most of this listing is self-explanatory. The scope attribute tells DAL 2 that
we'll be passing in ModuleId to limit what we access.

Next we'll add the controller class that will do our CRUD operations. Create a
file called EntryController.cs in the same folder as shown in Listing 13.6.

Listing 13.6: EntryController.cs

using System;
using System.Collections.Generic;
using System.Linq;
using DotNetNuke.Data;

namespace WROX.Modules.Guestbook.Components
{
 public class EntryController
 {
 public static void AddEntry(EntryInfo entry, int userId)
 {
 entry.CreatedByUserID = userId;
 entry.CreatedOnDate = DateTime.Now;
 entry.LastModifiedByUserID = userId;
 entry.LastModifiedOnDate = DateTime.Now;
 using (IDataContext ctx = DataContext.Instance())
 {
 var rep = ctx.GetRepository<EntryInfo>();
 rep.Insert(entry);

 }
 }

 public static EntryInfo GetEntry(int entryId, int moduleId)
 {
 EntryInfo entry;
 using (IDataContext ctx = DataContext.Instance())
 {
 var rep = ctx.GetRepository<EntryInfo>();
 entry = rep.GetById(entryId, moduleId);
 }
 return entry;
 }

 public static void UpdateEntry(EntryInfo entry, int userId)
 {
 entry.LastModifiedByUserID = userId;
 entry.LastModifiedOnDate = DateTime.Now;
 using (IDataContext ctx = DataContext.Instance())
 {
 var rep = ctx.GetRepository<EntryInfo>();
 rep.Update(entry);
 }
 }

 public static void DeleteEntry(EntryInfo entry)
 {
 using (IDataContext ctx = DataContext.Instance())
 {
 var rep = ctx.GetRepository<EntryInfo>();
 rep.Delete(entry);
 }
 }
 }
}

As you can see, there is not much to it to code the CRUD operations. We've
added a bit of logic to do the handling of the audit fields in these methods.
Otherwise, it'd be even terser.

We now add an object to hold the view. It is the same as the EntryInfo in the
previous listing but with the display names of the creating and modifying
users. We'll call it EntryViewInfo.cs, as shown in Listing 13.7.

Listing 13.7: EntryViewInfo.cs

using DotNetNuke.ComponentModel.DataAnnotations;

namespace WROX.Modules.Guestbook.Components
{
 [Scope("ModuleId")]
 [TableName("vw_WROX_Guestbook_Entries")]
 public class EntryViewInfo : EntryInfo
 {
 public string CreatedByUserDisplayName { get; set; }
 public string LastModifiedByUserDisplayName { get; set; }
 }
}

We can now add the method to retrieve these from the database in the
EntryController:

 public static IEnumerable<EntryViewInfo> GetEntries(
 int moduleId,
 bool includeNonApproved)
 {
 IEnumerable<EntryViewInfo> entries;

 using (IDataContext ctx = DataContext.Instance())
 {
 var rep = ctx.GetRepository<EntryViewInfo>();
 entries = rep.Get(moduleId);
 }
 if (!includeNonApproved)
 {
 entries = entries.Where(e => e.Approved);
 }

 return entries.OrderByDescending(e => e.CreatedOnDate);
 }

Finally, we need a method to flag an entry as approved without setting the
LastModified user to whoever approves the message. We also add this to the
controller:

 public static void Approve(EntryInfo entry)
 {
 entry.Approved = true;
 using (IDataContext ctx = DataContext.Instance())
 {
 var rep = ctx.GetRepository<EntryInfo>();
 rep.Update(entry);
 }
 }

This concludes the code we need to store and retrieve our data. We're now

going to code the settings for the module.

Settings
Most applications need to allow administrators to manage some parameters.
In our example, we included settings because this is so common and so
important to do right. We have just one setting regardless of whether we
should have an approval mechanism. We call the setting AutoApprove
internally. It's a Boolean that, when true, causes any added message (you
guessed it) to be automatically approved. We need to solve the following
parts:

Persist this setting somewhere.

Show the administrator a screen with a checkbox and some explanation.

Make sure the setting is available throughout the UI code.

To start there is a table in DNN that is meant just for this purpose:
ModuleSettings. It is a table with name/value pairs bound to a module's ID.
So our module needs to serialize any setting to the (string) value field and
deserialize it when reading back the value. To avoid this bleeding into various
classes of your module, we prefer to abstract this into a single settings class.
For our module this class will look like Listing 13.8.

Listing 13.8: GuestbookSettings.cs

using System.Collections;
using DotNetNuke.Collections;
using DotNetNuke.Entities.Modules;
using DotNetNuke.Common.Utilities;

namespace WROX.Modules.Guestbook.Components
{
 public class GuestbookSettings
 {
 private int ModuleId { get; set; }
 private Hashtable AllSettings { get; set; }

 public bool AutoApprove { get; set; }

 public GuestbookSettings(int moduleId)
 {
 ModuleId = moduleId;
 AllSettings = (new

ModuleController()).GetModuleSettings(moduleId);
 AutoApprove = AllSettings.GetValueOrDefault("AutoApprove",
false);
 }

 public static GuestbookSettings GetGuestbookSettings(int
moduleId)
 {
 var cacheKey = "WROX.Modules.Guestbook.Settings" + moduleId;
 var settings = DataCache.GetCachedData<GuestbookSettings>(
 new CacheItemArgs(cacheKey),
 args => new GuestbookSettings(moduleId));
 return settings;
 }

 public void SaveSettings()
 {
 var objModules = new ModuleController();
 objModules.UpdateModuleSetting(ModuleId, "AutoApprove",
AutoApprove.ToString());
 var cacheKey = "WROX.Modules.Guestbook.Settings" + ModuleId;
 DataCache.SetCache(cacheKey, this);
 }
 }

}

The constructor reads all the module's settings into a Hashtable. It then
parses out our AutoApprove setting from this using an extension method
included in DNN. If the value is not present or it can't be converted to a
Boolean, it is set to false. This takes care of the new module scenarios where
a user has just added a module and there are no settings yet. If you try to
compile the project at this point, an error about needing to reference
System.Xml.Linq appears, because of the extension method that was used. Go
ahead and add it (from the Assemblies tab in the Add Reference dialog), and
that issue should go away.

The static method to create the settings object does an important thing
besides calling the constructor: it handles caching. This means that every
time the settings are called, they are not being retrieved and reparsed over
and over again. Finally, the SaveSettings method writes the settings to DNN's
ModuleSettings table and resets the cache.

It may seem a bit of an overkill for just a single Boolean, but obviously in
more complex modules you're going to have many values that need to be

stored, and using this approach keeps all your logic for this in one place.

Now you need to make this available to your UI. You may have noticed two
classes in the root folder of your module called GuestbookModuleBase.cs and
GuestbookModuleSettingsBase.cs. These were created by your template. If
you use another method to create the module, you may need to add these
yourself. We consider it good practice to use a class that underlies all your UI
controls where you can handle settings and other shared properties.
Commonly, two inheritance chains are found in a module: PortalModuleBase
and ModuleSettingsBase. The former is used for any control that loads to
represent your module on the DNN page. The latter is used for a control you
use for settings management. You can use this to hook into the module
settings screen where it is shown as a tab. This makes for a very consistent
user experience. What the GuestbookModuleBase and
GuestbookModuleSettingsBase do is to inherit from these so our module's
controls can inherit from them. You can clear out any code that was
previously there (change the namespace from Christoc to WROX) and add to
each of them:

 public new GuestbookSettings Settings
 {
 get
 {
 return GuestbookSettings.GetGuestbookSettings(ModuleId);
 }
 }

The new keyword is needed here because you're shadowing Settings from the
base class, which is the Hashtable straight from ModuleSettings that you've
now encapsulated into your own settings class. You can now access your
setting by using Settings.AutoApprove at any place in your control code.

So begin by making the settings control that will be loaded in your module. In
the manifest of your module that you loaded into DNN, you specified that one
control (Settings.ascx) had a control key of Settings. This is a special case
that tells DNN it should attempt to load this control into the module settings
screen under its own tab.

You can open Settings.ascx and replace whatever is there with the code in
Listing 13.9.

Listing 13.9: Settings.ascx

<%@ Control Language="C#" AutoEventWireup="true"
CodeBehind="Settings.ascx.cs"
 Inherits="WROX.Modules.Guestbook.Settings" %>
<%@ Register TagName="label" TagPrefix="dnn"
Src="˜/controls/labelcontrol.ascx" %>

<fieldset>
 <div class="dnnFormItem">
 <dnn:Label ID="lblAutoApprove" runat="server"
ResourceKey="lblAutoApprove"
 ControlName="chkAutoApprove"/>
 <asp:CheckBox runat="server" ID="chkAutoApprove"/>
 </div>
</fieldset>

As you can see, a dnn:Label control is used here, which is placed before the
check box and displays not just a (meaningful) caption but also a help icon
that pops up a help text when clicked. This has all been taken care of for you.
All you need to do is add the value in the ResourceKey attribute to the
Settings.ascx.resx file (Figure 13.16) in the correct way. In the example, you
need to add lblAutoApprove.Text and lblAutoApprove.Help as shown in
Figure 13.16.

Figure 13.16

You'll also notice the ControlTitle_settings.Text. This is used for our title of
the tab in the module settings screen. Now open up the code behind for
settings.ascx. There are two methods to override in this control: LoadSettings
and SaveSettings. These are called by DNN when it uses this control. Given
that you're inheriting from the GuestbookModuleSettingsBase, your code is
fairly simple (see Listing 13.10).

Listing 13.10: Settings.ascx.cs

using System;
using DotNetNuke.Services.Exceptions;

namespace WROX.Modules.Guestbook
{
 public partial class Settings : GuestbookModuleSettingsBase
 {
 #region Base Method Implementations

 public override void LoadSettings()
 {
 try
 {
 if (Page.IsPostBack == false)
 {
 chkAutoApprove.Checked = Settings.AutoApprove;
 }
 }
 catch (Exception exc) //Module failed to load
 {
 Exceptions.ProcessModuleLoadException(this, exc);
 }
 }

 public override void UpdateSettings()
 {
 try
 {
 Settings.AutoApprove = chkAutoApprove.Checked;
 Settings.SaveSettings();
 }
 catch (Exception exc) //Module failed to load
 {
 Exceptions.ProcessModuleLoadException(this, exc);
 }
 }

 #endregion
 }
}

This completes the work to implement your settings. Administrators can now
manage settings in the module's settings panel, and this is persisted to all
controls throughout the module. We now move to the UI for your module.

The UI
Regular users will see only two controls you create: View.ascx and Edit.ascx.
View.ascx is the default control that is loaded whenever the user comes to the
page (it has no control key in the definition). Edit is where you allow the user
to either create or edit a message. It has the control key “Edit”.

There are two properties to which you need to regularly refer: the currently
selected EntryId and whether the user is allowed to edit other people's
messages. Abstracting these two properties into your base class allows you to
isolate that logic and save on the amount of code that is added in both the
view and edit controls.

Examine the query string to determine the EntryId. You can do this as follows
in GuestbookModuleBase (you will also need to add using
DotNetNuke.Collections for the GetValueOrDefault extension method):

 protected override void OnInit(EventArgs e)
 {
 _entryId = Request.Params.GetValueOrDefault("EntryId", -1);
 }

 private int _entryId;
 public int EntryId
 {
 get
 {
 return _entryId;
 }

 }

Whether the user has edit permissions is determined by the
ModulePermissionController (from the DotNetNuke.Security.Permissions
namespace) depending on the module's permissions collection:

 public bool CanEdit
 {
 get
 {
 return ModulePermissionController.HasModulePermission(
 ModuleConfiguration.ModulePermissions, "EDIT");
 }
 }

These two properties are now at your fingertips when writing out the View
and Edit controls. The View control has a repeater to show the messages and
an Add button that users can click to create a new message. It will look like
Listing 13.11.

Listing 13.11: View.ascx

<%@ Control Language="C#" AutoEventWireup="true"
CodeBehind="View.ascx.cs"
 Inherits="WROX.Modules.Guestbook.View" %>
<%@ Import Namespace="WROX.Modules.Guestbook.Components" %>

<div>
 <asp:Repeater runat="server" ID="rpGuestbook"
 OnItemDataBound="rpGuestbook_ItemDataBound"
 OnItemCommand="rpGuestbook_ItemCommand">
 <ItemTemplate>
 <div class="row-fluid messageRow">
 <div class="span3">
 <h3>
 <%# Eval("CreatedByUserDisplayName") %>
 </h3>
 <p><%# ((DateTime)Eval("CreatedOnDate")).ToString("D") %></p>
 </div>
 <div class="span9 message">
 <div>
 <%# Eval("Message") %>
 </div>
 <div class="messageButtons">
 <asp:HyperLink ID="cmdEdit" runat="server"
ResourceKey="cmdEdit"
 Visible="false" Enabled="false" CssClass="btnMessage"/>
 <asp:LinkButton ID="cmdApprove" runat="server"
ResourceKey="cmdApprove"
 Visible="false" Enabled="false" CommandName="Approve"
 CssClass="btnMessage"/>
 <asp:LinkButton ID="cmdDelete" runat="server"
ResourceKey="cmdDelete"
 Visible="false" Enabled="false" CommandName="Delete"
 CssClass="btnMessage"/>
 </div>
 </div>
 <div class="editNote" style="display:<%#
((DateTime)Eval("CreatedOnDate")
 == (DateTime)Eval("LastModifiedOnDate") ? "none" :
"block") %>">
 <%# EditString((EntryViewInfo)Container.DataItem) %>
 </div>
 </div>
 </ItemTemplate>
 </asp:Repeater>
</div>

<asp:HyperLink runat="server" ID="cmdAdd"
CssClass="dnnPrimaryAction">
 <%=LocalizeString("cmdAdd") %>
</asp:HyperLink>

As the default DNN 7 skin is used for this example, you can use the Bootstrap
2 classes that are loaded. In a real-world scenario you might need to either
design it for a specific skin or create all of your CSS to include in the module.
This is not trivial, and practice will tell you how best to approach this.

You'll notice that three buttons have been defined for each message row. The
visibility and events for these buttons are handled by the code behind of this
control (see Listing 13.12).

Listing 13.12: View.ascx.cs

using System;
using System.Web.UI.WebControls;
using WROX.Modules.Guestbook.Components;
using DotNetNuke.Services.Exceptions;
using DotNetNuke.Services.Localization;
using DotNetNuke.UI.Utilities;

namespace WROX.Modules.Guestbook
{
 public partial class View : GuestbookModuleBase
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 try
 {
 cmdAdd.NavigateUrl = EditUrl("Edit");
 var showAll = Settings.AutoApprove;
 if (!showAll)
 {
 showAll = CanEdit;
 }
 rpGuestbook.DataSource = EntryController.GetEntries(ModuleId,
showAll);
 rpGuestbook.DataBind();
 }
 catch (Exception exc) //Module failed to load
 {
 Exceptions.ProcessModuleLoadException(this, exc);
 }
 }

 protected void rpGuestbook_ItemDataBound(object sender,
RepeaterItemEventArgs e)
 {
 if (e.Item.ItemType == ListItemType.AlternatingItem
 || e.Item.ItemType == ListItemType.Item)
 {

 var cmdEdit = e.Item.FindControl("cmdEdit") as HyperLink;
 var cmdDelete = e.Item.FindControl("cmdDelete") as LinkButton;
 var cmdApprove = e.Item.FindControl("cmdApprove") as
LinkButton;

 var entry = (EntryViewInfo)e.Item.DataItem;

 if (cmdDelete != null && cmdApprove != null && cmdEdit !=
null)
 {
 cmdDelete.CommandArgument = entry.EntryId.ToString();
 cmdApprove.CommandArgument = entry.EntryId.ToString();
 cmdEdit.NavigateUrl = EditUrl("EntryId",
 entry.EntryId.ToString(), "Edit");
 ClientAPI.AddButtonConfirm(cmdDelete,
 LocalizeString("ConfirmDelete"));
 cmdApprove.Enabled = cmdApprove.Visible =
!Settings.AutoApprove
 && !entry.Approved && CanEdit;
 if (Settings.AutoApprove)
 {
 cmdDelete.Enabled = cmdDelete.Visible = cmdEdit.Enabled =
cmdEdit.Visible
 = (CanEdit || (entry.CreatedByUserID == UserId && UserId
!= -1));
 }
 else
 {
 cmdDelete.Enabled = cmdDelete.Visible = cmdEdit.Enabled =
cmdEdit.Visible
 = CanEdit;
 }
 }
 }
 }

 protected void rpGuestbook_ItemCommand(object source,
RepeaterCommandEventArgs e)
 {
 if (e.CommandName == "Delete")
 {
 var entry =
EntryController.GetEntry(Convert.ToInt32(e.CommandArgument),
 ModuleId);
 if (entry != null)
 {
 EntryController.DeleteEntry(entry);
 }
 }
 if (e.CommandName == "Approve")
 {

 var entry =
EntryController.GetEntry(Convert.ToInt32(e.CommandArgument),
 ModuleId);
 if (entry != null)
 {
 EntryController.Approve(entry);
 }
 }
 Response.Redirect(DotNetNuke.Common.Globals.NavigateURL());
 }

 public string EditString(EntryViewInfo entry)
 {
 return string.Format(LocalizeString("Edited"),
 entry.LastModifiedByUserDisplayName,
entry.LastModifiedOnDate);
 }

 }
}

Note the use of EditUrl in the logic to create the edit link and in the handler
of the add command. EditUrl is a DNN function that constructs a URL that
loads the edit screen. Optionally, it can receive parameters that allow the edit
screen to determine if it is editing an existing entry or creating a new one. In
this example, EntryId=X is used for this, where X is the entry ID of the entry.
If it's omitted, assume it is a new entry you should be creating.

Now let's create the edit screen. The edit screen should have a text box (an
HTML editor can be used, but for this example we restrict it to text only), a
submit button, and a cancel button (see Listing 13.13).

Listing 13.13: Edit.ascx

<%@ Control Language="C#" AutoEventWireup="true"
CodeBehind="Edit.ascx.cs"
 Inherits="WROX.Modules.Guestbook.Edit" %>
<h3>
 <asp:Label runat="server" ID="lblMessage"
ResourceKey="lblMessage"/>
</h3>
<div>
 <asp:TextBox ID="txtMessage" runat="server" TextMode="MultiLine"
 Rows="5" Width="50%"/>
</div>
<div runat="server" id="divApproveWarning" class="dnnFormMessage

dnnFormWarning">
 <asp:label runat="server" ID="lblApproveWarning"
 ResourceKey="lblApproveWarning"/>
</div>
<p>
 <asp:LinkButton ID="btnSubmit" runat="server"
OnClick="btnSubmit_Click"
 ResourceKey="btnSubmit" CssClass="dnnPrimaryAction"/>
 <asp:LinkButton ID="btnCancel" runat="server"
OnClick="btnCancel_Click"
 ResourceKey="btnCancel" CssClass="dnnSecondaryAction"/>
</p>

Note that a message that can be switched on or off is added to tell the user
that a new message needs to be approved to be visible (see Listing 13.14).

Listing 13.14: Edit.ascx.cs

using System;
using DotNetNuke.Entities.Users;
using DotNetNuke.Security;
using WROX.Modules.Guestbook.Components;
using DotNetNuke.Services.Exceptions;

namespace WROX.Modules.Guestbook
{
 public partial class Edit : GuestbookModuleBase
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 try
 {
 if (!Page.IsPostBack)
 {
 if (EntryId > 0)
 {
 if (UserId == -1)
 {
 throw new Exception("Anonymous users cannot edit
messages");
 }
 var entry = EntryController.GetEntry(EntryId, ModuleId);
 if (!CanEdit)
 {
 if (entry.CreatedByUserID != UserId)
 {
 throw new Exception("You cannot edit someone else's
message");

 }
 }
 txtMessage.Text = entry.Message;
 }
 divApproveWarning.Visible = !Settings.AutoApprove;
 }
 }
 catch (Exception exc) //Module failed to load
 {
 Exceptions.ProcessModuleLoadException(this, exc);
 }
 }

 protected void btnSubmit_Click(object sender, EventArgs e)
 {
 var entry = new EntryInfo();
 if (EntryId > 0)
 {
 if (UserId == -1)
 {
 throw new Exception("Anonymous users cannot edit messages");
 }
 entry = EntryController.GetEntry(EntryId, ModuleId);
 if (!CanEdit)
 {
 if (entry.CreatedByUserID != UserId)
 {
 throw new Exception("You cannot edit someone else's
message");
 }
 }
 }
 else
 {
 entry.Approved = Settings.AutoApprove;
 entry.ModuleId = ModuleId;
 }

 entry.Message = (new
PortalSecurity()).InputFilter(txtMessage.Text,
 PortalSecurity.FilterFlag.NoMarkup |
PortalSecurity.FilterFlag.NoSQL);

 if (EntryId > 0)
 {
 EntryController.UpdateEntry(entry, UserId);
 }
 else
 {
 EntryController.AddEntry(entry, UserId);

 }
 Response.Redirect(DotNetNuke.Common.Globals.NavigateURL());
 }

 protected void btnCancel_Click(object sender, EventArgs e)
 {
 Response.Redirect(DotNetNuke.Common.Globals.NavigateURL());
 }
 }
}

Note that quite a bit of code is devoted to security. First, in both the page load
and in the handler for the submit button, a number of checks are done to see
if the user is allowed to edit an existing message. Even though in regular use
the user could never get here (the edit button wouldn't be shown in the view
control), the application is steered through the query string, and it would be
trivial for someone with knowledge of DNN to construct an edit link that
would load the message. Always assume that hackers will know how to create
a URL that you depend on and that they are using tools like Fiddler to create
requests that resemble what you'd expect from a regular user. The one thing
you can rely on is that DNN did its work authenticating the user. This
includes matching the user's permissions in the module settings to the
control's type. In this case (in the module's manifest you'll see that both the
view and edit control are of controlType View), the user must have view
permissions if he is allowed to see this control.

Second, you'll notice we are passing whatever is added through the message
box through PortalSecurity.InputFilter. This method allows us to strip
various bits from the input that may be leveraged by hackers or spammers to
wreak havoc. So we're not allowing any SQL (SQL injection attacks) or
JavaScript or even markup. The latter is also to prevent users accidentally
messing up the look of the page. But markup could be used by spammers to
show links to other sites.

The views have used a number of localized strings, so you'll need to make
sure to add those to ensure that the labels show correctly. Tables 13.3 and
13.4 show the contents of the resource files that belong to the views.

Table 13.3 View.ascx.resx Entries

Name Value
cmdEdit.Text Edit

cmdApprove.Text Approve
cmdDelete.Text Delete

cmdAdd.Text Add

Edited.Text Edited by {0} on {1:d}

ConfirmDelete.Text Are you sure you want to delete this message?

Table 13.4 Edit.ascx.resx entries

Name Value
btnCancel.Text Cancel

btnSubmit.Text Submit

lblApproveWarning.Text Your message will not display until it is
approved by a moderator

lblMessage.Text Message

Finally, we add some CSS to module.css to make the result look acceptable.
The module.css file is loaded automatically by DNN, after the framework's
default CSS but before the CSS that comes with the skin. That way, a designer
can override specific modules' CSS classes for a particular skin. You learn
more about DNN's cascading model in Chapter 17, “Skinning.” Listing 13.15
shows the CSS that is used for the sample module.

Listing 13.15: Module.css

.messageRow {
 border: 1px solid #ddd;
 border-width: 0 0 1px 0;
 margin-bottom: 20px;
}
.editNote {
 font-size: 75%;
 color: #999;
 width: 100%;
 text-align: right;
 line-height: 1.5em;
}
.message {
 padding-bottom: 10px;
}
.btnMessage {
 padding: 2px 6px 2px 6px;
 margin-right: 6px;
 border-radius: 4px;
 border: 1px solid #ddd;
 background-color: #fff;

}
.btnMessage:hover {
 background-color: #ddd;
}
.messageButtons {
 padding-top: 10px;
}

Results
The module is now ready to run. Your solution should look something like
Figure 13.17. You can compile what you have and make sure that the DLL is
written to the bin folder of your dev site (you will probably need to go into the
project properties and adjust the Output path in the Build tab to ..\..\..\bin\,
to account for the WROX folder). You may notice a delay in the loading of the
site as ASP.NET reloads all the DLLs of the site and recycles the app pool.
Every time you build to the bin folder, the site completely refreshes, empties
all caches, and starts loading from scratch.

Figure 13.17

You should see your module page with an add button. Add some messages to
verify its operation (Figure 13.18).

Figure 13.18

Now switch to edit mode and use the module's menu to pop up the settings. A
fourth tab called Guestbook Settings with a check box appears (Figure 13.19).

Figure 13.19

Wrapping It Up
Once you're happy with how the module is working, it's time to consider
packaging. We've mentioned a few times that modules come as Zip files. But
there is a bit more to this.

The Manifest
By far the most crucial part of the module's package is the manifest. The
manifest is an XML file with a .dnn extension that tells the DNN installer
how to install this module. It tells DNN the following:

What it's about to install. Is this a module, a skin, or some other type of
extension?

Who is the maker? Name, URL, and so on. You can also include a license
blurb here.

In case it's a module, the definition of the module.

SQL scripts to run.

Where to put the files that are in the Zip file.

There are many options for the manifest but you don't need to go through
them exhaustively at this stage. Let's look at the manifest for the Guestbook
module to get an idea (see Listing 13.16).

Listing 13.16: Guestbook module manifest

<dotnetnuke type="Package" version="5.0">
 <packages>
 <package name="WROX_Guestbook" type="Module" version="01.00.00">
 <friendlyName>Guestbook</friendlyName>
 <description>WROX.com Guestbook module</description>
 <owner>
 <name>WROX.com</name>
 <organization>WROX.com</organization>
 <url>http://www.wrox.com</url>
 <email>modules@wrox.com</email>
 </owner>
 <license src="License.txt"/>
 <releaseNotes src="ReleaseNotes.txt"/>
 <dependencies>
 <dependency type="CoreVersion">07.01.02</dependency>
 </dependencies>

 <components>
 <component type="Script">
 <scripts>
 <basePath>DesktopModules\WROX\Guestbook</basePath>
 <script type="Install">
 <path>Providers\DataProviders\SqlDataProvider</path>
 <name>01.00.00.SqlDataProvider</name>
 <version>01.00.00</version>
 </script>
 <script type="UnInstall">
 <path>Providers\DataProviders\SqlDataProvider</path>
 <name>Uninstall.SqlDataProvider</name>
 <version>01.00.00</version>
 </script>
 </scripts>
 </component>
 <component type="ResourceFile">
 <resourceFiles>
 <basePath>DesktopModules\WROX\Guestbook</basePath>
 <resourceFile>
 <name>Resources.zip</name>
 </resourceFile>
 </resourceFiles>
 </component>
 <component type="Module">
 <desktopModule>
 <moduleName>WROX_Guestbook</moduleName>
 <foldername>WROX/Guestbook</foldername>
 <moduleDefinitions>
 <moduleDefinition>
 <friendlyName>Guestbook</friendlyName>
 <defaultCacheTime>0</defaultCacheTime>
 <moduleControls>
 <moduleControl>
 <controlKey/>

<controlSrc>DesktopModules/WROX/Guestbook/View.ascx</controlSrc>

<supportsPartialRendering>False</supportsPartialRendering>
 <controlTitle/>
 <controlType>View</controlType>
 <viewOrder>0</viewOrder>
 </moduleControl>
 <moduleControl>
 <controlKey>Edit</controlKey>

<controlSrc>DesktopModules/WROX/Guestbook/Edit.ascx</controlSrc>

<supportsPartialRendering>False</supportsPartialRendering>
 <controlTitle>Edit Content</controlTitle>
 <controlType>View</controlType>

 <viewOrder>0</viewOrder>
 <supportsPopUps>False</supportsPopUps>
 </moduleControl>
 <moduleControl>
 <controlKey>Settings</controlKey>

<controlSrc>DesktopModules/WROX/Guestbook/Settings.ascx</controlSrc>

<supportsPartialRendering>False</supportsPartialRendering>
 <controlTitle>Guestbook Settings</controlTitle>
 <controlType>Edit</controlType>
 <viewOrder>0</viewOrder>
 </moduleControl>
 </moduleControls>
 </moduleDefinition>
 </moduleDefinitions>
 </desktopModule>
 </component>
 <component type="Assembly">
 <assemblies>
 <assembly>
 <name>WROX.Modules.Guestbook.dll</name>
 <path>bin</path>
 </assembly>
 </assemblies>
 </component>
 </components>
 </package>
 </packages>
</dotnetnuke>

The Preamble

The package node begins by telling DNN it's a module and which version this
is. DNN uses this and the name attribute (WROX_Guestbook) to determine if
the package has already been installed. So you should never ever change this
name attribute or you will break your upgrade sequence!

The opening tag is followed by a number of tags that have a vanity role. The
friendly name is what is shown in the UI as a name for the module, and the
description is shown on the Extensions page. The owner information and
license/release notes are shown during installation.

The dependency node you see makes sure that users who try to install this on
a version older than DNN 7.1.2 will not be able to do so. DNN informs them
and stops the installation procedure. As pointed out at the start of the

chapter, if the installation proceeded, the result would be a big mess within
.NET as a dependency of our module's DLL on a higher version of the
DotNetNuke.dll than the one installed will break our module entirely.

So how about other dependencies? In our module we've also used a
dependency on DotNetNuke.WebUtility. But because this ships with DNN, it
can be safely assumed that it will work out fine. In other words, you only
need to worry about dependencies on components that do not ship with DNN.

SQL Scripts

The node <component type="Script"> enumerates all SQL scripts. These are
incremental, and DNN uses the module name and the version number to
figure out which scripts it should run. It should be clear that you should have
a solid version numbering strategy if you are going to distribute the module.
Errors in scripts are not recoverable! If DNN somehow trips on one of those
scripts, the whole installation fails and you are stuck with a situation where
some (parts of) scripts may have run and others have not. This is potentially
catastrophic, so the only safe way to install modules is to back up your DNN
installation first. Make sure to mention this to your audience when releasing
an upgrade. It is up to you to make these upgrade scripts as solid as you can.

The scripts are named xx.yy.zz.SqlDataProvider by convention. You can opt to
make new installs start somewhere down the script history by adding an
Install.xx.yy.zz.SqlDataProvider script. This is not uncommon for long-lived
modules. If you examine the manifest of the Blog module 6.0.x, you'll notice
this is done at version 6. So there is an Install.06.00.00.SqlDataProvider
script that makes new installs start there and continue up. If it's an upgrade,
all Install.* scripts are ignored.

You should also include the UnInstall script. There is no version number for
this (DNN does not support incremental uninstall scripts), so we don't
include this in the name. Curiously, it's expected in the manifest “version”
element, but the value is not used by any of DNN's logic. The convention is to
use the current module's version for this value. During each upgrade the
latest version is written over what was previously there. DNN then uses this
script during the removal of the module if the user decides to uninstall.
Again, if you're distributing to a wider audience, spend some time perfecting
these scripts. Make sure you make these scripts robust so there is little
chance they fail. For example, test if a procedure is there before you drop it. It
may seem redundant, but a failure in the script can leave the uninstall

hanging in midair, and users will bombard you with (angry) emails.

The Resource File

A very common technique to deliver a bunch of files to the target DNN
installation is to use a resources file. This is a Zip file containing the whole
tree of folders and files you want to distribute. DNN unpacks it to the module
folder. It saves you a lot of work announcing each individual file to install.
Instead, your approach changes to which files can go into the resource file
and which ones must be kept outside. The answer is that all DLLs, SQL
scripts, and cleanup files must stay outside, as they are not simply unzipped
to the destination. Everything else can be zipped up.

The Module Definition

Earlier in this chapter we looked at how modules are embedded in DNN. It
will come as no surprise that there is a reflection of that in the manifest. It is
in the <component type="Module"> node of the manifest. Walking through
that you will recognize most of the fields of the relevant tables. This is where
you tell DNN what your module is called, where it should go, which features
it supports, the definition(s) and their controls, and so on.

There is an element in the definition that hasn't been touched on because it's
not included here, but you can find it in the manifest of the standard HTML
module: eventMessage. This tells DNN to have the module notified of some
events. Typically you'll see an entry here to listen to “upgrade,” as is the case
here. It is quite possible you can't do all your upgrade processing with SQL
scripts (like manipulation of files, for ecample). What this does is that DNN
will run the upgrade method on the type supplied under
businessControllerClass based on the list of versions in
upgradeVersionsList. You can use this method to embed logic in your
module to do upgrades internally that require code to run.

Assemblies

The node <component type="Assembly"> lists all DLLs to be installed. You
actually need to specify the bin folder as there are scenarios where DLLs can
go elsewhere. Using the version attribute you can make sure DNN keeps
track of versions of your DLLs. This can be leveraged with shared DLLs. Let's
say you use Acme.dll and have compiled your module using version 1.1.0 from
this company, then using the version code will prevent another module

developer using the same Acme.dll but with version 1.0.0 to get that DLL
installed over yours as that might break your code. Note we assume that
shared DLLs always support backward compatibility, which is kind of an
industry standard.

Packing Up the Guestbook Module
To wrap it all up, all we need to do is zip up our work:

1. Create a Zip file called resources.zip. In it we put

The three ascx files (View, Edit, Settings)

module.css

App_LocalResources*.resx (preserve the folder in the zip file!)

2. Create a second zip file that incorporates

The resources.zip file you just created

License.txt and ReleaseNotes.txt

The manifest (Guestbook.dnn)

Bin\Guestbook.dll

Providers\DataProviders\SqlDataProvider*.SqlDataProvider

This second zip file is your module. The convention is to give it a name along
these lines: [ModuleName]_[Version]_[Install/Source].zip, so in the
previous case Guestbook_01.00.00_Install.zip. That immediately makes it
clear to anyone familiar with DNN what the Zip file is.

Creating a Source Version

It is fairly easy to create a source code distribution of the module using the
same method as what was just shown. The only difference is that you'd
include all necessary source code files in the resources.zip. The manifest
would not need to be changed because the resources file is simply unpacked.
But it would already prime the receiving DNN installation with SQL scripts
and the module definition so that anyone wanting to work on the source
would just need to fire up Visual Studio, load up your project, and recompile
to the site's bin folder when needed. This makes it incredibly easy for
someone else to work with your source code.

Build Automation
At this point you may think that all the packing and manifest creation just
described is quite a bit of work. The good news is that this is very repetitive
and that all other module developers go through the same process. As a
result, various mechanisms have surfaced to automate this process. The most
common way is to use MSBuild tasks to do this. MSBuild is responsible for
what happens when you click Build in Visual Studio. But it's not just about
invoking the compiler. It can be extended to do all kinds of things, both
before and after compilation. This is modeled after Ant and NAnt (the .NET
version of Ant). So like NAnt, it, too, uses XML files to tell it what to do.
Because MSBuild comes with .NET, it is very tightly integrated with your
whole environment, which many see as a bonus. Personally, we use NAnt
because it can be kept totally isolated from the project. But it's a matter of
taste which build automation technology you use. Just know that once you
have this tuned correctly, making a distributable module becomes trivially
easy.

NOTE

Hammond's templates that we used in this chapter include the necessary
MSBuild tasks. Building the project in release mode will actually create
the module package.

Summary
In this chapter, you've seen a variety of ways to create modules in DNN, both
inline and externally developed. You've also taken a close look at how the
mechanism works that renders your work inside the DNN platform looking at
the relationship between packages, modules, tab modules, and other DNN
core objects. Finally, we created a guestbook module and took a closer look at
some of the basics of making a DNN module. This knowledge should be
largely sufficient to get you started on module development.

Chapter 14
Developing Modules: User Interfaces

What You Will Learn in This Chapter

Understanding module/page interactions

Supporting AJAX in modules

Using jQuery and jQueryUI

Referencing and managing custom JavaScript

Using DNN jQuery plugins

Implementing consistent design

Wrox.com Code Downloads for this Chapter
The wrox.com code downloads for this chapter are found at
www.wiley.com/go/prodnn7 on the Download Code tab. The code is in the
Chapter 14 download and individually named according to the names
throughout the chapter.

Chapter 13 introduced a plethora of information and is designed to be a high-
level introduction to the ins and outs of developing modules using the DNN
Platform. This chapter starts a deep dive into the specifics and nuances of
working with the DNN environment as it relates to the user interface portion
of your module. We will revisit a few topics from prior chapters to add a
deeper level of information and context to each of these elements.

http://Wrox.com
http://wrox.com
http://www.wiley.com/go/prodnn7

Understanding DNN and Module Interactions
Before diving into any of the specific development patterns or even the
specific UI controls and other elements, it is important to understand how a
DNN module is used. This is important as, unlike development when you
have full control over the page, the site administrator has that level of control
in DNN.

In the prior chapter, we introduced the concept of Tabs, Modules, and
TabModules as they relate to module development. The Tab and its related ID
value reference the page of content, the Module represents the module
instance, and the TabModule represents the placement of the module on the
page. These are important for developers to understand because it is possible
that users of your modules will add more than one instance of your module to
a page at the same time.

Using Figure 14.1 as an example, you see a DNN site with three different text
HTML modules. For illustration's sake, imagine that “Welcome” is ModuleId
450, “I Like Words” is ModuleId 451, and “More Words Too” is ModuleId 452.

Figure 14.1

As a developer working on the user interface for a module, this is important,
as you need to ensure that no conflicts exist in the methods that you create or
the JavaScript that you write. When working with module controls and
creating functions that interact, be sure to test your module in situations
similar to the one explained here to ensure that having the user interact with
one instance of your module on a page impacts only that particular module.

A simple solution is to ensure that any JavaScript actions utilize an element

ID that is truly unique to the module. An example might be
abd_[ModuleId]_[ItemId]. This approach allows you to easily isolate your
information based on the particular elements in question.

Dialogs and AJAX Support
Modern-day web users are demanding more and more from website user
interfaces. Users want to interact with a website in the most efficient manner
possible and want to see the information in a meaningful manner. There are
two quick options available for module developers to improve the
responsiveness and utility of their applications—simple AJAX support and
modal dialogs.

DNN AJAX Support
ASP.NET AJAX has been around for a long time, and DNN has built-in
support for it. A quick and easy way to make a module more responsive to
users is to have it wrapped in an UpdatePanel, so that when it needs to trigger
a postback action, only the module is updated. This improves user
experiences by improving the speed of page load. The users also retain their
focus on the section of the page that they are on without a full-screen flicker.
Listing 14.1 shows an excerpt of the module manifest from Chapter 13.

Listing 14.1: Guestbook Module Manifest Updates

<moduleControl>
 <controlKey/>
 <controlSrc>DesktopModules/WROX/Guestbook/View.ascx</controlSrc>
 <supportsPartialRendering>True</supportsPartialRendering>
 <controlTitle/>
 <controlType>View</controlType>
 <viewOrder>0</viewOrder>
</moduleControl>
<moduleControl>
 <controlKey>Edit</controlKey>
 <controlSrc>DesktopModules/WROX/Guestbook/Edit.ascx</controlSrc>
 <supportsPartialRendering>False</supportsPartialRendering>
 <controlTitle>Edit Content</controlTitle>
 <controlType>View</controlType>
 <viewOrder>0</viewOrder>
 <supportsPopUps>False</supportsPopUps>
</moduleControl>

To wrap the View.ascx control in an UpdatePanel, you need to change the
supportsPartialRendering XML node from False to True. This instructs DNN
to include this control inside an UpdatePanel at runtime. No further

interaction is necessary.

If you find yourself needing to trigger a full postback when using this method
of AJAX support, for example using an Export button, you can use the code
shown in Listing 14.2.

Listing 14.2: Register Postback Control

DotNetNuke.Framework.AJAX.RegisterPostBackControl(myExportButton);

This code snippet assumes the control named myExportButton will trigger a
full postback to the server. For those looking for more granular control of
what is included in an UpdatePanel, there are methods on the AJAX class
referenced in Listing 14.2 that allow you to wrap objects in UpdatePanels.

DNN Modal Dialogs
Since DNN 6.0.0, modal dialogs have been an integral part of the interface
and have become second nature for those navigating DNN-based sites. Modal
dialogs are great for displaying user interfaces that appear after a user has
selected something in a module and you want other content to stay visible
behind the scenes.

Figure 14.2 shows the most recognizable use—the default DNN login page.

Figure 14.2

Modal dialogs can be used for any control other than the default module
control. The process of instructing DNN that you want your module to open
in a pop-up is as simple as supporting AJAX. Listing 14.3 shows an updated
snippet of the Guestbook module manifest that supports editing in a modal
dialog.

Listing 14.3: Guestbook Module Manifest Update with
Modal Dialog

<moduleControl>
 <controlKey/>
 <controlSrc>DesktopModules/WROX/Guestbook/View.ascx</controlSrc>
 <supportsPartialRendering>True</supportsPartialRendering>
 <controlTitle/>
 <controlType>View</controlType>
 <viewOrder>0</viewOrder>

</moduleControl>
<moduleControl>
 <controlKey>Edit</controlKey>
 <controlSrc>DesktopModules/WROX/Guestbook/Edit.ascx</controlSrc>
 <supportsPartialRendering>False</supportsPartialRendering>
 <supportsPopUps>True</supportsPopUps>
 <controlTitle>Edit Content</controlTitle>
 <controlType>View</controlType>
 <viewOrder>0</viewOrder>
 <supportsPopUps>False</supportsPopUps>
</moduleControl>

By simply adding the <supportsPopUps> XML element with a value of True,
you instruct DNN that you want to have your module display in this manner.
When generating URLs to your additional controls using ModuleContext, DNN
automatically adds the needed elements to open in a dialog.

It is important to note that although a module manifest might indicate that it
supports pop-ups, it is not a guarantee that your control will be in a modal
dialog. This is because site administrators can disable modal dialogs in the
Site Settings area of their DNN install.

JavaScript, jQuery, and Custom Scripts
DNN as a platform has out-of-the-box support for jQuery and jQuery UI and
has a centralized registration process for any third-party or custom JavaScript
that you need to include in a module. It is important as a module developer
that you leverage these extension points and APIs, as they help prevent
multiple script references. They also tie into an optional process that can help
site administrators minimize and combine script files to reduce overall page
payload.

Using jQuery and jQuery UI
Many sections of DNN already have references to jQuery and jQuery UI, so it
only makes sense that it's easy to ensure that jQuery or jQuery UI is included
for your modules. Listing 14.4 shows the options necessary to request
registration of both jQuery and jQuery UI within a module's custom code.

Listing 14.4: Request jQuery and jQueryUI Registration

//using DotNetNuke.Framework.JavascriptLibraries
JavaScript.RequestRegistration(CommonJs.jQuery);
JavaScript.RequestRegistration(CommonJs.jQueryUI);
JavaScript.RequestRegistration(CommonJs.jQueryFileUpload);

Using this method, a module can request DNN to register all of the available
jQuery and jQuery UI features. If a module only needs jQuery, that is all you
need to do. All registrations of this type will utilize preconfigured DNN
references with regard to the jQuery and jQuery UI versions. Additionally, any
configured jQuery CDN will be respected automatically. Manual addition, or
referencing a different version of jQuery than the current DNN version, is
strongly discouraged as conflicts often occur in these circumstances.

It is important to note when using these methods that they must be executed
on all executions of a page and should not be executed inside of a check for
postback. Additionally, not all of the jQuery UI CSS is included by default, so
while the RequestRegistration method will ensure that the JavaScript is on
the page, you will need to make sure to include any other CSS that your
specific widgets require.

Including Knockout
DNN ships with Knockout and the Knockout Mapping script libraries. These
are additional elements that can be leveraged by custom modules to support
Single Page Applications (SPA) and other types of UI data binding. Listing
14.5 shows the code necessary to include these libraries as part of a module.

Listing 14.5: Request Knockout Registration

//using DotNetNuke.Framework.JavascriptLibraries;
JavaScript.RequestRegistration(CommonJs.Knockout);
JavaScript.RequestRegistration(CommonJs.KnockoutMapping);

You can see a common trend in the inclusion of JavaScript libraries. In DNN,
a class called CommonJs is used to store references in the various included
packages. Any and all libraries that exist in CommonJs should be referenced
using this process to ensure that a custom module does not hinder the proper
execution of a core DNN feature.

The CommonJs process provides only a code reference to a package name
within the framework. As a developer, you may create your own packages for
common libraries that you might wish to include. By including common
script libraries as packages rather than embedded as part of your module, you
might be able to help limit collisions and improve reusability across the
modules.

Registering Custom Scripts and CSS
Developers who are new to DNN often use older methods to include a
JavaScript file in a user control for user display. Listing 14.6 shows a common
practice that first-time developers use.

Listing 14.6: Traditional JavaScript Registration

<script src="/DesktopModules/Guestbook/MyScript.js"/>

On the surface, this will probably work when only one instance of a module is
added to a page. However, if a situation arises similar to the one illustrated at
the beginning of the chapter, you'll need a method to limit the script

registrations to only once per page load, even when multiple modules request
the same file.

This is where Client Resource Management comes in. It's a collection of
objects inside the DotNetNuke.Web.Client assembly. Client Resource
Management provides many features to the DNN Platform, including the
management of script references for custom modules. This functionality is
further enhanced by supporting actions such as minification and
combination, if enabled by the host.

For module developers, it is recommended that Client Resource Management
APIs be utilized for all script and CSS references to ensure the best
compatibility with different environments. Listing 14.7 shows an example of
the code necessary to register one custom script as well as a custom
stylesheet.

Listing 14.7: Register Custom JavaScript

//using DotNetNuke.Web.Client.ClientResourceManagement;
ClientResourceManager.RegisterScript(
 this.Page,
 "/DesktopModules/Guestbook/myScript.js");
ClientResourceManager.RegisterStyleSheet(
 this.Page,
 "/DesktopModules/Guestbook/myStyle.css");

Using this process, the DNN APIs are now responsible for the proper handling
of registration and will register the file only if it has not been registered in
order to avoid duplication.

The example provided in Listing 14.7 shows the most basic calls to that
RegisterScript method. This works well; however, it should be noted that a
few additional overloads give developers much greater control over the
placement and priority of the individual referenced scripts. These additional
overloads allow developers to specify a priority and provider, allowing for the
most granular control of the script insertion.

Priority values are set using an integer value, and within the class
DotNetNuke.Web.Client.FileOrder there is an enumeration showing the
default values for all of the standard DNN configuration. The following table
shows these default values. Items are processed in numerical order from

smallest to largest, and the default if not specified by anyone is a value of 100
to load after all other resources. This can be great if you need to do things in a
particular place.

Name Value
DefaultPriority 100
jQuery 5
jQueryMigrate 6
jQueryUI 10
DnnXml 15
DnnXmlJsParser 20
DnnXmlHttp 25
DnnXmlHttpJsXmlHttpRequest 30
DnnDomPositioning 35
DnnControls 40
DnnControlsLabelEdit 45
DnnModalPopup 50
HoverIntent 55

The second additional option allows you to specify a particular provider. The
provider in this context allows you to control where the script will be injected
inside of DNN. It is strongly recommended that you utilize this function to
force items to use the DnnFormBottomProvider whenever possible to improve
above-the-fold load times. The following table outlines the default providers
included as part of DNN. For use within calls to Register you use the string
representation of the name.

Provider Name Functionality
DnnBodyProvider Inserts the script to the body of the

HTML document, at the top of the
body.

DnnCompositeFileProcessingProvider Ensures that the script goes through
the composite file processing process.

DnnFormBottomProvider Ensures that the script is added at the
very bottom of the HTML form. This

is the recommended option to use.
DnnPageHeaderProvider Ensures that the script is registered in

the page header.

DNN jQuery Plugins
In addition to the basic support for jQuery and jQuery UI, DNN offers a
number of helpful jQuery plugins. These plugins have multiple benefits. They
not only speed up the development process but assist in providing a
consistent user experience. Registration of these plugins is completed similar
to how you register the jQuery and jQuery UI libraries, using
CommonJs.DnnPlugins.

There are many controls exposed as part of this library; the following sections
explore a few of the most common.

dnnAlert
The dnnAlert plugin is a jQuery-based replacement for the often-used basic
JavaScript alert. A simple message displays to users with a single option. This
is helpful when you want to display an error. Given the nature of this plugin,
it should be called when you want an alert to be displayed; it's not attached to
any particular element(s) in your module code. Listing 14.8 shows a complete
example of the dnnAlert plugin.

Listing 14.8: dnnAlert Usage Example

$.dnnAlert({
 okText: '<%= Localization.GetString("OkButton.Text",
this.LocalResourceFile)%>',
 text: '<%= Localization.GetString("Message.Text",
this.LocalResourceFile) %>',
 dialogClass: 'dnnFormPopup myCustomDialog'
})

In this example, it is important to note that the text property is the only item
necessary; the other two properties can be set if an override is needed. If
you're overriding the dialogClass and not including dnnFormPopup, you will
want to confirm that all the needed styles are applied.

dnnConfirm
It is common practice to require users to confirm actions that should not be
triggered inadvertently. For example, users must confirm prior to deleting a
record from the database or confirm before sending a bulk email. This is

where the dnnConfirm plugin comes in handy. By using this plugin with a
simple jQuery selector, you can attach a confirmation process to any button
or LinkButton without needing to manually add OnClick or OnClientClick
handlers to the controls. Listing 14.9 shows a sample implementation of a
dnnConfirm dialog.

Listing 14.9: dnnConfirm Usage Example

$('.addConfirmButton').dnnConfirm({
 text: 'Message to User Here',
 yesText: 'Yes',
 noText: 'No',
 title: 'Confirm Dialog Title',
 isButton: true
});

This listing uses the CSS selector .addConfirmButton to add a simple
confirmation dialog to any controls with the specified class. With this single
statement, users must select Yes from the dialog in order for the postback to
occur.

dnnPanels
Another common user interface element found in DNN is the use of
expanding panels of content. These are used in areas such as Site Settings,
Module Settings, and other areas of DNN. These panels allow developers to
group content into logical panels and then allow users to expand/collapse
these items as they desire when working with the page. A key benefit to using
dnnPanels over other options is that this control respects client-side
validation routines and ensures that users will see errors, even on collapsed
sections as they try to submit them. Listing 14.10 shows example markup and
JavaScript necessary to render a basic panel setup.

Listing 14.10: dnnPanels Usage Example

<div id="dnnMyPanels">
 <h2 class="dnnFormSectionHead">

 Panel 1

 </h2>

 <fieldset>
 <div>Panel 1 Content goes here</div>
 </fieldset>
 <h2 class="dnnFormSectionHead">

 Panel 2

 </h2>
 <fieldset>
 <div>Panel 2 Content</div>
 </fieldset>
 <asp:hyperlink id="hlSubmit" runat="server"
 text="submit" cssclass="dnnPrimaryAction"/>
</div>
<script>
$('#dnnMyPanels').dnnPanels();
</script>

By dissecting the example in Listing 14.10, you can learn a few key attributes
about the dnnPanels plugin. The first item to note is that the content
containing the panels is wrapped in a div with a unique ID. This provides an
instruction point for the dnnPanels method. When initializing the panels,
DNN will look at the HTML structure inside the div. From there, each panel
follows a consistent structure. An h2 with a CSS class for dnnFormSectionhead
and a hyperlink comprise the panel heading. A fieldset directly after the h2 is
used to group the contents of the particular panel. The final item of
importance is that the Submit button for the particular panels must be
contained inside the main div. This ensures proper client-side validation.

For those looking to further customize the layout of the dnnPanels plugin, it
is possible to override properties when calling .dnnPanels(). The following
table lists the options, default values, and descriptions of these options.

Option Default Description
clickToToggleSelector h2.dnnFormSectionHead a The full selector.

It's inside the
initialization
container that
should be used to
expand the panel.

sectionHeadSelector .dnnFormSectionHead Defines the heading
for the particular

panel.
regionToToggleSelector fieldset The selector for the

region that should
be
expanded/collapsed
upon selection.

toggleClass .dnnSectionExpanded The CSS class to be
added to the
expanded items.

clickToToggleIsolatedSelector a The isolated
element from the
toggle selector that
should trigger the
expand/collapse.

validationTriggerSelector .dnnPrimaryAction Selector for
controls that trigger
the client-side
validation.

invalidItemSelector .dnnFormError[style*="inline"] The selector to
identify an invalid
item after
validation.

validationGroup '' Ensures that the
supplied
validationGroup

used when
triggering
validation.

panelSeparatorSelector .ui-tabs-panel Identifies the
separator between
individual panels.

cookieDays 0 Determines for how
many days a cookie
storing the user's
panel selections
should be valid.

Only applies if
cookieMilliseconds

is not specified
cookieMilliseconds 1200000 Determines for how

many milliseconds
a cookie storing the
users' panel
selections should
be valid. (Defaults
to twenty minutes.)
Helpful for
postback.

saveState true Whether to save the
expanded/collapsed
state of the panels
in a cookie

defaultState first The default states
of the panels when
the page loads. Only
the first panel is
expanded by
default. Specify
'open' to have all
sections expanded
or 'closed'
all sections
collapsed.

If you use an advanced layout by overriding these properties, you will also
most likely need to customize the CSS necessary to lay out the display.

dnnTabs
The final DNN jQuery plugin discussed in this chapter is the dnnTabs
component. It's commonly used in complex setup screens such as Site
Settings and Host Settings to provide tabbed organization for large amounts
of content. Listing 14.11 contains a detailed example of the minimum markup
necessary to create a tab layout.

Listing 14.11: dnnTabs Usage Example

<div id="dnnMyTabs">
 <ul class="dnnAdminTabNav">
 Tab 1
 Tab 2

 <div id="tabs-1">
 Tab 1 Content
 </div>

 <div id="tabs-2">
 Tab 2 Content
 </div>
</div>

<script>
$('#dnnMyTabs').dnnTabs();
</script>

This control is even easier to work with than the dnnPanels control. All that is
necessary is a wrapping element—in this example, the div with an ID of
dnnMyTabs, an unordered list with anchor links, and a div element with an ID
that matches the anchor link identifier. It is important when building your
HTML and related elements to consider uniqueness, including situations
where users might include more than one instance of your own module on
the page.

If you want a more complex layout, there are a number of properties that you
can use to customize the layout and validation routines, as shown in the
following table.

Option Default Description
validationTriggerSelector .dnnPrimaryAction Selector for

controls that should
trigger client-side
validation.

validationGroup '' Ensures that the
supplied
validationGroup

used when

triggering
validation.

invalidItemSelector .dnnFormError[style*="inline"] The selector to
identify an invalid
item after
validation.

selected -1 The index of the tab
to select. With -1,
no tab is selected. 0
would select the
first tab.

disabled false true to disable all
tabs, or an array of
zero-based indexes
of tabs that should
be disabled; e.g.,
0, 2] would
disable the first and
third tab.

cookieDays 0 Determines for how
many days a cookie
storing the user's
panel selections
should be valid.
Only applies if
cookieMilliseconds

is not specified.
cookieMilliseconds 1200000 Determines for how

many milliseconds
a cookie storing the
users' panel
selections should
be valid. (Defaults
to twenty minutes.)
Helpful for
postback.

With the options available as part of the dnnTabs component, it is easy to
combine them with other elements to persist user selections as well as
integrate them with ASP.NET validation routines. That way, you can ensure
that users see everything they should!

Handling Postbacks
In the previous examples, the initialization routines expect that the pages are
always loaded fully. If you find yourself working in an environment where
you have enabled support for AJAX updates, it's important to use an
initialization strategy that not only initializes DNN jQuery plugins on initial
load but also on future executions. Listing 14.12 provides an example.

Listing 14.12: Initialization with AJAX Support

(function ($, Sys) {
 function setupMyPlugins() {
 /* Your initialization here */
 }

 $(document).ready(function () {

 setupMyPlugins(); //Run on document ready

Sys.WebForms.PageRequestManager.getInstance().add_endRequest(
 function (sender, args) {
 //Run on ajax endRequest
 setupMyPlugins();
 }
);
 });

} (jQuery, window.Sys));

In Listing 14.12, any initialization routines such as .dnnPanels or .dnnTabs
would be added to the line indicated by Your initialization here. The other
portions of the script ensure that the setup routine is called when the first
page loads as well as when any AJAX request is completed. This is
accomplished by adding a function call when endRequest is raised by the
PageRequestManager. endRequest will be called whenever any UpdatePanel
postback completes, so you may want to inspect the arguments passed to the
event handler to determine whether the postback applied to your module.

Implementing Consistent Design
Using a product such as DNN as a foundation for custom development has
many advantages. One of these advantages is that a number of common
elements exist as part of the application, and they allow developers to
leverage UI styles that already exist in the application. By using these styles,
which are included by default in any page of the application, you can create a
consistent experience for users and visitors alike.

Messages and Alerts
After only a short period of interacting with DNN, you most likely have
already encountered a few of the standard module message routines that
produce messages such as “This is a warning,” “This is a success message,”
“This is an error,” and so on.

Within your code-behind you can have DNN systematically insert a message
with custom text using DotNetNuke.UI.Skins.Skin.AddModuleMessage() and
the desired message text will be added to the top of your module. However,
there are often times where you might want to include a message with this
styling in other places in your modules, or possibly even in an HTML module
somewhere. This is easy to do. Listing 14.13 shows the code necessary for a
green message window.

Listing 14.13: Success Message HTML

<div class="dnnFormMessage dnnFormSuccess">
Your message here
</div>

Although Listing 14.13 shows a success message, it is easy to adapt this
example to the other message types. All messages rely on the common
dnnFormMessage CSS class; the secondary class is used to set the color of the
message. The following table lists the class names, color, and intended
purpose for all available options.

Class Color Purpose
dnnFormSuccess Green Indicates a successful task completion.

Examples include profile updated

successfully, SQL query executed, or
information saved.

dnnFormInfo Blue Used to provide additional information to
the users. Great for providing guidance
on how to complete a particular form.

dnnFormWarning Yellow Used to communicate a warning to the
users. Great for information such as
cautionary warnings or important
information that should have attention
drawn to it.

dnnFormValidationSummary Red Used to communicate an error condition
to the users.

By utilizing these CSS classes and design patterns, your custom
implementations can follow a similar workflow and communication pattern
as the rest of the platform. This way, you provide users with a consistent
interface that is easy to understand.

Forms and Buttons
Forms exist all over the DNN Platform, and skins must contain a set of styles
used to control the layout of these elements. Following these standards will
allow your modules to easily adapt to any changes a skin designer makes to
these default styles. Listing 14.14 shows a sample form implementation
showcasing the various CSS classes in use.

Listing 14.14: Sample Form

<div class="dnnForm">

 <div class="dnnFormItem">
 <dnn:label runat="server" id="lblTest2" Text="Test 2"
Suffix=":"
 CssClass="dnnFormRequired"/>
 <asp:RadioButtonList runat="server" id="rblDemo"
 CssClass="dnnFormRadioButtons">
 <asp:ListItem Text="Item 1" Value="1"/>
 </asp:RadioButtonList>
 </div>
 <div class="dnnFormItem">
 <dnn:label runat="server" id="lblTest" Text="Test"

Suffix=":"
 CssClass="dnnFormRequired"/>
 <asp:TextBox runat="server" id="txtTest"/>
 <asp:RequiredFieldValidator runat="server" id="TestRequired"
 ControlToValidate="txtTest"
 CssClass="dnnFormMessage dnnFormError" text="Required"/>
 </div>

 <ul class="dnnActions dnnClear">
 <asp:LinkButton runat="Server" id="btnSave" text="Save"
 CssClass="dnnPrimaryAction"/>
 Cancel

</div>

This is a very simple form layout with only a minimal number of CSS classes
necessary to lay out the form. Depending on the skin used and the specifics of
your layout, Listing 14.14 will result in two fields being displayed with Save
and Cancel buttons included at the bottom. Consider each of the CSS classes
and their intended uses:

dnnForm—This is the CSS class used to wrap the containing form. It
ensures that all the needed styles can be applied.

dnnFormItem—This is the CSS class that wraps an individual form item.
You should have a label and control inside of this element.

dnnFormRequired—This is a CSS class that can be applied to the DNN
LabelControl and will result in a red * being displayed next to the label
for required fields. (Note: In DNN 6.x, this CSS class was previously
applied to the actual input element rather than the label. This design is
not supported in DNN 7.x.)

dnnFormMessage dnnFormError—This combination of CSS classes should be
used with all ASP.NET validation controls to ensure proper display of
validation errors to users.

dnnActions—This is a CSS class applied to an unordered list to provide
users with buttons for individual actions, such as Save and Cancel.
Typically dnnClear is also used on this list to ensure correct alignment
with the previous form items.

dnnPrimaryAction—This is a CSS class applied to a button, LinkButton, or a
regular HTML link that designates the control as the primary action a user
should select. In the default skin, this will render the control as a blue

button with white text.

dnnSecondaryAction—This is a CSS class applied to a button, LinkButton,
or a regular HTML link that designates the control as a secondary action
for a user. In the default skin, this will render the control as a light gray
button with dark gray text.

Using Module CSS
When working with an interface design for a DNN module, it might be
necessary to include a number of stylistic pieces that don't exist prior to
starting. When you're looking for an easy way to include CSS as part of your
module package and still want users to be able to customize the layout for
their specific application, the Module.css file is a great asset.

This is an automatic feature of the DNN module system. You simply create a
file in your module structure named module.css and include it as part of your
package. It will be included as a reference anytime your module is listed on a
page. DNN automatically handles the addition of the reference for you. No
special action is needed by you as the developer.

When you're using a module development template, this file is often
included. To avoid adding unnecessary HTTP overhead to installed DNN sites
if no CSS is included in this file, remove it from any distribution.

Summary
This chapter investigated the various tools and techniques that you can use to
help create custom extension interfaces that are robust, consistent, and easy
to build. When you leverage all of the tools, libraries, and components that
DNN makes available, rapid development can become a reality.

Chapter 15
Developing Modules: Business Logic

What You Will Learn in This Chapter

Navigating the DNN API

Using common DNN controls

Leveraging Web API

Creating scheduled jobs

Understanding DNN navigation options

Building multiple UI controls

Wrox.com Code Downloads for this Chapter
The wrox.com code downloads for this chapter are found at
www.wiley.com/go/prodnn7 on the Download Code tab. The code is in the
Chapter 15 download and individually named according to the names
throughout the chapter.

Chapter 13 introduced a high-level overview of development in DNN and
Chapter 14 brought along discussions around the user interface. Now, it's
time to dig in to the nuts and bolts of development and discuss the inner
workings of the .NET side of development. This chapter investigates the API
structure, shared controls, and more. The goal of this chapter is to expose you
to the elements available to developers, leaving the specific implementation
to the problem at hand.

http://Wrox.com
http://wrox.com
http://www.wiley.com/go/prodnn7

Navigating with the DNN API
One of the most common complaints that arise from those new to working
with DNN is that the API is cumbersome and hard to understand. Given the
complex size of the API, this is understandable; however, armed with a few
key points of understanding, it is much easier to navigate. To help dispel
some of the confusion, let's dive into some often used namespaces in the
DNN API to review their purpose and benefit to module developers.

DotNetNuke.Common Namespace
This namespace is often billed as one of the most complex to understand.
That's because there is a lot of history as well as many amazing tools
available. There is a complex structure of components nested under this
namespace, and this chapter reviews the highlights of some of the most
common elements used by developers.

DotNetNuke.Common.Globals Class

This is one of the most heavily used classes in the DNN Framework, so it's
important that you understand its purpose. The Globals class provides access
to information that is commonly needed across all bits of code. This class,
although not marked as static in the code, contains only static members, so
to use any function in this API, you simply use
DotNetNuke.Common.Globals.METHOD. Table 15.1 highlights a number of the
most common methods and their benefits to developers.

Table 15.1 Common Methods

Method Purpose
AccessDeniedURL() Returns an access denied URL that can be used to

display a common access denied message to the user.
An optional message can be passed, allowing
customized display.

ApplicationMapPath Provides access to the path on disk for the DNN
installation. For example, C:\inetpub\DNN if this was
the default installation location on a server.

CleanFileName() Takes a filename and removes invalid characters
from the string. Great for quick-and-easy
management of user-supplied file uploads.

ElapsedSinceAppStart Returns a timespan indicating how long the
application has been active. This is great for
diagnostic situations to identify warm vs. cold worker
processes.

NETFrameworkVersion Returns the current version number of the .NET
Framework that the application is using. Great for
understanding what is going on in the application.

IsEditMode A great way to check if the current user is viewing the
site in “edit mode.” This enables you to add/remove
features/functions depending on the user's current
mode.

LoginURL() Returns the URL for the login page. You may pass an
optional ReturnUrl path to this method to ensure that
users return after login. Great for providing users a
detailed option to log in and return to your
application regardless of the host configuration.

NavigateURL() The key for generating links from page to page. Later
in this chapter, the section entitled “Managing
Navigation” discusses this function and a few related
functions in detail.

QueryStringEncode() A very handy method for encoding a value to be
placed into the querystring. Often used in
conjunction with various link-building processes.

QueryStringDecode() The paired method to decode any URL-encoded
values that might have been created with
QuerystringEncode().

At a high level, most projects will use the Globals class for one or more
functions. Be sure to check out the other properties that are exposed.

DotNetNuke.Common.Lists.ListController

DNN contains a list-management feature, found under Host Lists and
Admin Lists, that allows users to manage lists of information. Out of the
box, DNN comes with lists for Countries, Regions, and Currencies, among
others. Listing 15.1 shows how the list controller can be used to extract a list
of states and populate a drop-down list with the values.

Listing 15.1: Using ListController to Bind a List of States

var controller = new DotNetNuke.Common.Lists.ListController();
var states = controller.GetListEntryInfoItems("Region",
"Country.US");
ddlStates.DataSource = states;
ddlStates.DataValueField = "EntryID";
ddlStates.DataTextField = "Text";
ddlStates.DataBind();

In the previous code, GetListEntryInfoItems gets two values. The first value
is the list you are requesting, which in this case is Region, and the second is
the parent list that you want to use to locate the region (in this case, it's
Country.US). This nested architecture and default functionality can aid
developers in ensuring that information is centrally managed and easy for
users to find and use.

DotNetNuke.Common.Utilities.CBO Object

The CBO, or Common Business Object, is a key portion of the DAL and DAL+
data access strategies that were introduced as part of Chapter 13. Static helper
methods, such as FillObject<T> and FillCollection<T>, take an IDataReader
and fill single objects or collections of objects.

DotNetNuke.Common.Utilities.DataCache Object

An integral portion of any application development framework is a robust
caching process. DNN is no different in this regard, and the DataCache object
is the gateway for properly storing information into cache for later use. This
cache store is an application-level caching implementation, which means that
the information that is stored in the cache system is application specific, not
user specific. Listing 15.2 includes three examples of adding an item to the
cache.

Listing 15.2: Storing Items to the Cache

//Using DotNetNuke.Common.Utilities at top
//Default duration
DataCache.SetCache("WroxDemoKey", "Test");
//Sliding Expiration
DataCache.SetCache("WroxDemoKey", "Test",

TimeSpan.FromMinutes(30));
//Absolute Expiration
DataCache.SetCache("WroxDemoKey", "Test",
DateTime.Now.AddMinutes(45));

The first example is the most basic. It provides a string-based cache key and
the item to be cached. Defaults are used for expiration time and policy.
However, you can have more granular control over the cache expiration
policy. The second example instructs the cache system to utilize a sliding
cache expiration process with a 30-minute window for removal from the
cache. The third example shows a cached item where a specific expiration
DateTime is used. These options provide developers with robust options for
determining how long information should persist.

Retrieving information from the data cache is also a simple process. Listing
15.3 provides a basic example of retrieving information from the cache.

Listing 15.3: Getting an Item from the Cache

//using DotNetNuke.Common.Utilities; at top
var args = new CacheItemArgs("WroxDemoKey");
var lowPriorityArgs = new CacheItemArgs("WroxDemoKey",
CacheItemPriority.Low);
var timeoutArgs = new CacheItemArgs("WroxDemoKey", 20);
var foundDate = DataCache.GetCachedData<string>(args, e =>
RetrieveAndStoreContent());

It is important when using these GetCache methods that a null check is
completed, as items can be removed from the cache system for a number of
reasons. Items might be removed from the cache due to the duration of time
they have been in the cache or if the cache system is resource constrained.

DotNetNuke.Entities Namespace
This namespace is an important one to remember. This is the storage location
of all of the key entities used by the application. Information such as users,
sites, pages and similar functions are found in this namespace.

In a perfect world, we could cover every single namespace and entity in this
important namespace. However, with this namespace it is not entirely
possible, as the Entities namespace holds a majority of the objects used by

DNN and additions are often made release to release. It's more important to
discuss the similarities and to help you gain an understanding of the
namespace in general.

_Info Objects

When you begin reviewing the various sub-namespaces under the Entities
namespace, items such as UserInfo, RoleInfo, and TabInfo start to surface.
These elements are the classes that hold data for the particular entity, and
some might call them models or data transfer objects, although they are a bit
more complex than any general description can provide.

These objects have no static members associated with them and typically
represent a single element of the particular type. These objects usually
contain only properties and not actions or methods. Because of this, we'll
move on to the next most common object structure, the controller object.

_Controller Objects

Typically found in pairs with _Info objects, _Controller objects provide the
actions and processes to interact with objects. For example, the UserInfo class
represents a single user, and the UserController can interact with these
objects. Many of these controllers have a long-running API history that adds
to their confusing landscape.

At a high level, any time you want to interact with a controller object, look for
your desired function as a static implementation, such as
UserController.GetUserByEmail("test@wrox.com") rather than create an
instance of the user controller. Older versions of DNN supported some
instance methods as well as some static implementations. Figure 15.1 shows
the IntelliSense of the UserController when working with a concrete
implementation.

mailto:test@wrox.com

Figure 15.1

Figure 15.1 shows that almost every method on the concrete implementation
side is marked as “obsolete.” For those getting started with DNN, it is very
important to avoid these methods. Also note that older documentation
around DNN development might reference a method that shouldn't be used.

NOTE

Most DNN controllers use UserController.Instance nowadays. It gives
you the most up-to-date API, over the static methods on UserController,
in addition to supporting inversion of control. It provides a static
Instance property, which gets the current singleton instance behind an
interface (it also provides a way to fake the instance in tests). Examples
include UserController.Instance, CBO.Instance,
EventLogController.Instance, ModuleController.Instance, and
TabController.Instance.

Host and PortalSettings Objects

The only entities that require special attention in the Entities namespace are
the Host and PortalSettings objects. These classes are extremely helpful as
they provide access to the site and host settings collections as standard
objects, rather than a HashTable. Properly cached and accessible from the
DNN, many pieces of information are available here that can be helpful for
developers on a daily basis. The Host object can be found under
DotNetNuke.Entities.Host.Host, and the PortalSettings object is found
under DotNetNuke.Entities.Portals.PortalSettings. The Current static
property of PortalSettings provides the site information for the current
request.

Table 15.2 shows some helpful properties of the Host object and Table 15.3
outlines helpful properties associated with the PortalSettings object.

Table 15.2 Helpful Host Object Properties

Property Usage
AllowedExtensionWhitelist This property exposes an instance of the

FileExtensionWhitelist, allowing an extension
to be quickly validated against the host
extension file types. This property helps you
adhere to configured settings for user uploads.

DebugMode This Boolean flag can be changed by the site
owner under the Host Settings page, and
modules can use this to enable debug

functionality in their extensions to assist with
diagnostics.

HostEmail The email address configured for the host. This
value is beneficial when you're sending system
notifications.

GUID This is a Globally Unique Identifier for the
installation of DNN. Many module developers
will utilize this GUID to identify the installation
for licensing purposes.

HostTitle The title of the host as defined by the user.
HostURL The configured URL for the host.

Table 15.3 Helpful PortalSettings Properties

Property Usage
ActiveTab Provides the TabInfo for the current page being

requested.
AdministratorId Provides the ID of the site administrator's user

account.
AdministratorRoleId Provides the ID of the role used to define users as

administrators of the portal. A secondary
AdministratorRoleName property exists to provide
access to the name.

Description The title of the site as supplied under Site Settings.
Email The administrator email for the portal. When sending

site-specific emails, it's best to use this address.
ErrorPage404 If the user has configured a custom 404 error (not

found) page, the ID of this page will be provided by
this property. If not, Null.NullInteger (i.e., -1) will
be provided.

GUID This is a Globally Unique Identifier for this site
within the installation. Many module developers use
this GUID to identify a site or sites for per-site
licensing schemes.

HomeDirectory This provides the relative path to the home directory

for the site. By default, it's /Portals/{PortalId},
where {PortalId} is the site's ID, but users can
change it. Using this value is highly recommended to
provide the most robust support.

HomeDirectoryMapPath This provides the full path, on disk, to the home
directory.

HomeTabId This provides the ID of the page that has been
defined as the home page of the site.

PortalAlias This provides a PortalAliasInfo for the site alias
used by the current request. Great for linking
situations where other options might not be as
feasible.

RegistrationTabId If configured by the user, returns the ID of the
custom user registration page as defined in Admin
Site Settings.

DotNetNuke.Framework Namespace
This namespace contains a number of key functions that have been discussed
in earlier chapters. However, this is the key to the “framework” elements that
comprise of the DNN solution. As such, there are a few key items to be aware
of here.

AJAX Class

This class provides a number of static methods and options. You can use this
class to request an AJAX Script Manager and use it to add scripts to the
management process. One of the most common methods is
AJAX.RegisterPostBackControl(), which allows you to define controls within
your view that should trigger a full postback to the server rather than an
AJAX partial update.

CDefault Class

One of the most often-overlooked classes in the DNN Framework is CDefault.
This is the backing code file that represents the default.aspx file that's
contained as part of the DNN installation. This is the base page for all
rendered content as part of DNN. Using a simple casting process to covert
this.Page to CDefault opens up a world of options. Listing 15.4 shows a few

examples of what you can do using the CDefault class.

Listing 15.4: Updating Page Details

//Cast page to DNN page
var thePage = (CDefault) Page;

//Update values
thePage.Description = "Force change";
thePage.Title = "Set new title";
thePage.KeyWords = "Set new Descrption";

//Add controls
var toAdd = new HtmlLink();
toAdd.Href = "MyFile.css";
toAdd.Attributes["rel"] = "StyleSheet";
thePage.Header.Controls.Add(toAdd);

Given that CDefault is the base class that represents any page, it has a
number of properties that are helpful to developers. The most popular of
these are the Description, Title, and Keywords properties. If a custom
module sets a value for one of these properties, you can update the defaults
for the currently rendered page. If you have modules with dynamic content
concerns, this is a must-use feature.

Listing 15.4 also shows that CDefault gives module developers access to
manipulate the document header by adding new controls. Although this
example shows the addition of a stylesheet, it illustrates the process that you
could follow for other types of content that would be more appropriate.

PageBase Class

As a DNN developer, most of the time you'll want to be working fully inside
the context of the DNN page lifecycle. This means building your user
interfaces as User Controls and running them alongside all other items.
However, in certain circumstances, it might be more appropriate to build a
standalone .aspx page. In these situations, it is helpful to use the PageBase
class as your base class. This will provide better access to DNN integration
information such as the PortalAlias and related data.

DotNetNuke.Security Namespace

Earlier in this chapter, when you looked at the DotNetNuke.Entities
namespace, you most likely thought something was missing. Well, there was!
All objects related to security in the DNN Framework, although associated
with the object in the Entities namespace, live off on their own namespace.
This is one of the biggest areas of confusion for individuals new to the DNN
platform.

Given the unique nature of the objects and classes contained in this large
namespace, this chapter focuses on a few specific sub-namespaces. The goal
is to help guide you down the correct path of security-related functionality.

Membership Namespace

In DNN, users are entity objects defined in the DNN Entities namespace.
Users refer to the name, display name, and other profile style attributes
associated with an account. The DNN system uses a concept of membership
to define the actual authentication/login information.

At a high level, the DNN Membership subsystem that is defined in this
namespace relates to the functionality that comes from the traditional
ASP.NET membership system (aspnet_users and aspnet_membership database
tables) that experienced .NET developers have encountered elsewhere. By
utilizing this proven foundation, DNN has a solid base to rely on.

It is important to note that a user entity is tied to its membership entity
through an association based on the username. This is the joining process
between the aspnet_ tables and the Users table that is part of DNN. All DNN
functionality is then later tied together using the integer-based ID that is
assigned to the Users table.

As a developer, you will use methods in the Membership namespace for
setting, storing, and resetting user accounts. Additionally, it is a foundational
element of a user's entire profile.

Permissions Namespace

The Permissions namespace is not used frequently by module developers, but
it is important to be aware of its existence. The classes in this namespace
define the default permissions sets and behaviors in the system. For example,
this includes page, module, folder, and file permissions. This is an extensible
area of DNN. You can see examples of the extensibility of this area by looking
at the feature definition between the DNN Platform product discussed in this

book and the Evoq product lines.

Roles Namespace

As a DNN developer, you'll likely use the Roles namespace on a regular basis.
Roles work just like the other entities do in the Entities namespace. Using a
controller with static methods is the primary way to work with Role entities.
You have the ability to query the system for roles, users in roles, and roles of
users.

One best practice worth recommending here is that the roles system in DNN
is dynamic. Users should have the ability to add/remove/delete roles. You'll
need to use UserInfo.IsInRole("RoleName") to see if a user is a member of a
role first. When storing a role in your module, it is most important to store
the role ID value rather than the role name. If you take this small step of
preparation, you will ensure that your module can stand the test of time, and
the crazy site administrator! Future-proofing your modules for the actions
that a user might take is what sets the good module developers apart from the
mediocre ones.

DotNetNuke.Services Namespace
Looking for a broad generalization of the Services namespace, it consists of
the stuff that has nowhere else to go. You could argue that many of these
items could be in the Common namespace, and some developers have even
logged suggestions that these should be in the Framework namespace.

Regardless of their placement, the elements in this namespace are elements
that DNN makes available as “services” to those developing on top of the
framework. These are not key UI elements or foundational building blocks to
base your solutions on. These are the things that make your life easier as a
module developer. They save you time.

As the chapter did with the other namespaces that are chock full of classes,
this section investigates only the key common services found here.

Exceptions Class

In a perfect world, you would have code that worked flawlessly all of the time
and nothing would ever go wrong. Realistically, that just isn't a reality that
can be easily achieved. As such, DNN provides a bunch of helpful bits to help
manage those exceptions. The key is to log the exceptions so that they can be

properly diagnosed later but to not show those exceptions to public users who
might maliciously use information in detailed errors.

Listing 15.5 shows a few options available to developers once an exception
occurs. This example is manually creating an AccessViolationException;
however, any exception would work.

Listing 15.5: Getting an Item from the Cache

var myException = new AccessViolationException("Invalid Access");
//Log as a normal error
Exceptions.LogException(myException);
//Process as a module error
Exceptions.ProcessModuleLoadException(this, myException);
Exceptions.ProcessModuleLoadException("Oops! Try again", this,
myException);

The most basic example LogException does exactly what its name says: it logs
an exception. That means it simply records the exception in the EventViewer.
The LogException method is silent on the user's end and is your best bet if
there is no need to communicate to the user that something has gone wrong.

The second example, ProcessModuleLoadException, is a more robust DNN
method. It internally logs the exception and takes in the current control for
contextual reference. With this information, it can add a standard DNN error
message with a note to the user that an error has occurred. It handles the
proper security display for messaging as well. If the user is a host user, all the
details about the exception are shown on the page. If it's any other type of
user, the generic "An error has occurred" message is displayed.

The third example is ProcessModuleLoadException, where in addition to
providing the context and exception information, a “human-friendly” error
message appears. In these cases, the human-friendly message is displayed to
the user.

Whether you need to silently handle an error or display that you are
experiencing issues, you have methods available to you in the Exceptions
class. It should be noted that there is also the ProcessPageLoadException
exception, which has a similar purpose; however, it shows the error at the
page level not at the module level. It's best for overly critical failures.

Mail

Email is a part of our daily life, and it should be no different in the context of
DNN. As with the Exception class, email is very easy to distribute as a module
developer in DNN. Listing 15.6 shows a simple example of email distribution
using the Mail class method, SendEmail.

Listing 15.6: Sending Email

var to = "test@test.com";
var from = "test@from.com";
var subject = "Test Email";
var body = "<p>This is a test!</p>";
DotNetNuke.Services.Mail.Mail.SendEmail(from, to, subject, body);

As you are looking at the API, it seems very simple. It's important to notice
that there is a legacy SendMail method that requires you to supply SMTP
server information. This newer method should be used instead. When you
use the simple overload that takes the distribution information, all other
information is obtained for you. This allows site administrators that are using
“per-portal” SMTP configurations to use the same email distribution channels
than those with the older host-only configurations are using.

NOTE

Be sure that your “from” addresses match your users' expectations.
SMTP servers often have limited allowable senders. Users will often
configure this to be the Host.Email or PortalSettings.Email value for the
installation and/or site.

Using Common DotNetNuke Controls
There are a number of controls that allow DNN developers to reuse
components so as to provide a consistent look and feel to their applications.
This section explores the usage patterns of a few of these components.

LabelControl—Field Inputs
This control is one of the most commonly recognized. The field label has
localizable text and help content. Figure 15.2 shows this control as seen from
the Settings view of a default HTML module in the DNN interface.

Figure 15.2

Using this control is a simple two-part process. The first step is to ensure that
the top of your User Control has a Register tag that defines the association
and references the control source. Once this is completed, you can use the
newly registered control as many times as you need in your User Control.
Listing 15.7 shows the needed markup for the .ascx file of a module control
in order to add the reference and provide one instance of the control on a
page.

Listing 15.7: Using the Label Control

<%@ Register tagPrefix="DNN" tagName="Label"
 src="˜/Controls/LabelControl.ascx" %>

<dnn:label id="lblHeading" runat="server" suffix=":"
 ControlName="txtHeading"/>
<asp:TextBox runat="server" ID="txtHeading"/>

Visual Studio may provide a warning regarding the src. This is a message that
can be ignored; when the code is running within the context of DNN, it will be
a non-issue. Otherwise, a few other items are worth mentioning. The suffix is
a value added to the end of the prompt text and the ControlName property is
used to associate the label with an input. If you're concerned about Section
508 compliancy (for those with low/limited vision), it is imperative that every
label be associated with its appropriate input using this ControlName option.

Note that there are no values supplied for the Text or HelpText properties of
the control. This is because the default localization will pull the values from
the current control's .resx file. If you provided two values in the .resx, one
for lblHeading.Text and one for lblHeading.HelpText, the values will
automatically fill in the label.

TextEditor—Rich Text Editing
When you're working in a CMS, you will frequently encounter an input for
some sort of information that needs to be displayed to the users. In many
cases, you'll need to collect more complex information from the user than
just static, unstyled text. That's where the TextEditor control, which is part of
the DNN core, comes in. Figure 15.3 shows a default view of the editor
interface that is created when you use this common control.

Figure 15.3

This is the common full HTML editor that users have come to expect. By
utilizing this control, you can offer your users an experience that they are
accustomed to. By using the TextEditor control as well, you can ensure that
site administrators can use the default DNN functionality to change toolbars,
layouts, and even file upload options. This is all done without you needing to
make any changes to your module. Listing 15.8 shows the code necessary to
utilize the TextEditor control.

Listing 15.8: Using the TextEditor Control

<%@ Register tagPrefix="DNN" tagName="TextEditor"
 src="˜/Controls/TextEditor.ascx" %>

<dnn:TextEditor id="txtInput" runat="server" HtmlEncode="false"/>

Just as with the sample of code used as part of the LabelControl demo, this
example has a single register declaration and an individual usage of the
control. In Listing 15.8, the optional parameter for HtmlEncode is set to false.
This ensures that when the data from the user is retrieved via the .Text
property of the control, it's formatted as input text and not as HTML encoded.
Use this setting at your discretion for proper retention and display of user
inputs.

When working with Visual Studio, it is often the case that it will not properly
declare the backend property with the TextEditor class. As such, in your

.ascx for each of these controls you will want to declare a property explicitly
such as protected TextEditor txtInput; for the control defined in Listing
15.8. This is necessary as Visual Studio by default will create the control as a
simple UserControl and not the robust TextEditor input. If you do this after
you declare the control in your .ascx, you might need to manually remove the
declaration from the .designer file.

Leveraging Web API
One of the most popular aspects of modern web development is the ability to
build rich user interfaces and the increasing popularity of the single page
application. A key component to this is the ASP.NET Web API framework,
which allows developers to quickly and easily create web services.

Although it's a great product, Web API on its own conflicts with the generic
and ever-expanding model that is DNN development. As such, DNN has its
own implementation of Web API extensions that allow users to integrate
their own solutions and to tightly tie into the DNN security model.
Implementation of a DNN Web API solution is completed using a simple
three-step process, described in the following sections.

Adding the Proper References
The first step to using DNN's implementation of Web API is to add references
to all needed assemblies. The fastest method to complete this task is to add
the DotNetNuke.WebApi NuGet package to your solution. A simple one-line call
in the NuGet Package Manager console you will set you up for success.

If you want to add the references manually, you need to add the following to
your solution:

DotNetNuke.Web.dll

System.Net.Http.dll

System.Net.Http.Formatting.dll

System.Web.Http.dll

With all of these references added to your solution, you're ready to move on
to the next step of the process, which is building the RouteMapper. The
RouteMapper defines the route that your API calls respond to.

Defining the Web API RouteMapper
Just as with a standard implementation of Web API, it is necessary to define
the route, or method, by which users will communicate with your services.
You do this by creating a class that implements the IServiceRouteMapper
interface, which is part of the DotNetNuke.Web.Api namespace.

Listing 15.9 shows a solution that creates a WroxDemoRouteMapper that defines

a single HTTP route.

Listing 15.9: Creation of RouteMapper

public class WroxDemoRouteMapper : IServiceRouteMapper
{
 public void RegisterRoutes(IMapRoute mapRouteManager)
 {
 //Map default route, will result in responding to
 // /DesktopModules/WroxDemo/Api/{controller}/{action}
 mapRouteManager.MapHttpRoute
 ("WroxDemo", "default", "{controller}/{action}",
 new[] { "Wrox.ApiControllers" });
 }
}

There are a few key points you need to understand here. The name of the
class itself does not matter; the key is the implementation of the
IServiceRouteMapper interface. When implementing this interface, you use
the single method called RegisterRoutes. At this point in time, you create
your desired route for your API. It is important to look at this process with
great detail; Table 15.4 describes each parameter in more detail for mapping
the HttpRoute.

Table 15.4 RegisterRoutes Method Parameters

Parameter Purpose
"WroxDemo" Provides the unique path for the route. It is added

after /DesktopModules/ to start the route
identification. The best recommendation is to use
your module folder path because it avoids
collisions.

"Default" A name for the route. If needed, you can create
more than one route, for example, when you need
to support complex route paths. This value must be
unique in combination with the path value.

"
{controller}/{action}"

Defines the key metrics of the route, for the
information that comes after the start of the route
endpoint. It defines two replacements, Controller
and Action, which will map to the soon-to-be-

created Controller.

new[] {
"Wrox.ApiControllers"
}

Defines the individual namespaces that will be
probed to identify controllers that are served as
part of this route definition. Multiple namespaces
can be included here. Do not provide fully qualified
class names, only namespaces.

So, what does this do for you? With this snippet of code, if you install the
module to your DNN installation, it will be set up to start processing API calls
with an API base URL of /DesktopModules/WroxDemo/Api/. You have not yet
defined any controllers, so you cannot test it quite yet.

One common misconception for those working with RouteMapper for the first
time is that it seems too simple. It is this simple; there is no need for
extensive configuration or tedious information management!

Creating the Controllers
The final step, and the most critical, is defining your controller. The
RouteMapper tells the requests where to go. The controller is the brains of the
operation and is responsible for the final execution of all requests. When you
create a controller, the rules for creation are quite simple. First, the controller
must inherit from the DnnApiController base class. Second, its name should
end with Controller, and lastly, it needs to be located in one of the
namespaces identified by the RouteMapper. From there, DNN will interpret the
controller and automatically map it and the actions (methods) to the defined
route(s).

Listing 15.10 shows a complete example of a controller with two distinct
methods.

Listing 15.10: GuestbookController Example

namespace Wrox.ApiControllers
{
 public class UserQueryResult
 {
 public bool WasSuccessful { get; set; }
 public string ErrorMessage { get; set; }
 public string EmailAddress { get; set; }
 public int UserId { get; set; }
 public string Username { get; set; }

 }

 [SupportedModules("Wrox.Guestbook")]
 public class GuestbookController : DnnApiController
 {

 public HttpResponseMessage GetAllEntries(int moduleId)
 {
 return this.Request.CreateResponse(HttpStatusCode.OK,
 MyDatabase.GetAllEntries(moduleId));
 }

 [DnnModuleAuthorize(AccessLevel =
SecurityAccessLevel.Edit)]
 public HttpResponseMessage GetUserDetails(int portalId,
int userId)
 {
 var user = UserController.GetUserById(portalId,
userId);
 if (user != null)
 {
 var result = new UserQueryResult
 {
 EmailAddress = user.Email,
 UserId = user.UserID,
 Username = user.Username,
 WasSuccessful = true
 };
 return
this.Request.CreateResponse(HttpStatusCode.OK, result);
 }
 else
 {
 var result = new UserQueryResult
 {
 WasSuccessful = false,
 ErrorMessage = "Unable to locate
user"
 };
 return
this.Request.CreateResponse(HttpStatusCode.OK, result);
 }
 }
 }
}

Using the known base route path from before—with a controller name of
Guestbook and a GetAllEntries action—you can identify the proper URL
needed to call the first method:

/DesktopModules/WroxDemo/Api/Guestbook/GetAllEntries?moduleId=1.

Just as with standard ASP.NET routing, it does not have any additional route
parameters because anything that needs to be mapped as a parameter to the
method call will be included on the end as a querystring. The result will be an
XML or JSON response based on the accept header provided by the caller.
Nothing else needs to be done on your part for this all to come together
nicely.

The second method is worth calling attention to, as it provides for two
additional steps. It requires that the user calling the API be authenticated and
have edit rights to the module associated with the call. It's easy to secure
access to an action by using the DnnModuleAuthorize attribute with an access
level or permission key. The actions of this secondary API call are similar to
that of the other call.

In order to associate a request with a module and use its permissions, the
request needs to include TabId and ModuleId parameters. The easiest way to
include these is to use the $.ServicesFramework JavaScript API (call
DotNetNuke.Framework.ServicesFramework.Instance.RequestAjaxScriptSupport

to ensure the API is available). Listing 15.11 shows an example of making a
service call from a module.

Listing 15.11: GuestbookController AJAX Call

<script>
 $(function () {
 var sf = $.ServicesFramework(<%: ModuleContext.ModuleId %>);
 $.ajax({
 url: sf.getServiceRoot("WroxDemo") +
'Guestbook/GetAllEntries',
 data: { moduleId: <%: ModuleContext.ModuleId %> },
 beforeSend: sf.setModuleHeaders,
 success: function (response) {
 console.log(response);
 }
 });
 });
</script>

Using DNN's Web API implementation, you can easily add services to your
deployment while still remaining highly integrated with DNN.

Creating DNN Scheduled Jobs
Another commonly misunderstood process is creating a scheduled job in the
DNN environment. Scheduled jobs are a great way to offload processing that
doesn't need to be interactive. They allow tasks to be done away from the UI
threads, which helps the users. Listing 15.12 shows a simple example.

Listing 15.12: Sample Scheduled Job

public class DemoJob : SchedulerClient
{
 public DemoJob(ScheduleHistoryItem oItem)
 {
 ScheduleHistoryItem = oItem;
 }
 public override void DoWork()
 {
 try
 {
 //Perform required items for logging
 Progressing();

 //Call our process method
 CustomBusinessLogic();

 //Show success
 ScheduleHistoryItem.Succeeded = true;
 }
 catch (Exception ex)
 {
 ScheduleHistoryItem.Succeeded = false;
 InsertLogNote("Exception= " + ex);
 Errored(ref ex);
 Exceptions.LogException(ex);
 }
 }

 private void CustomBusinessLogic()
 {
 //Do Actual Work Here
 }

 private void InsertLogNote(string message)
 {
 //Helper method to make adding to the log easier
 ScheduleHistoryItem.AddLogNote(message + "
");
 }
}

The overall structure of a scheduled job is simple. However, there are a few
common gotcha elements to address. First of all, scheduled tasks inherit from
the base SchedulerClient class. To be able to execute successfully, as well as
to report status, scheduled jobs must have a single constructor that accepts
and stores a ScheduleHistoryItem and updates the internal
ScheduleHistoryItem property. Failing to do this will result in a job that not
only will not execute but also won't provide any feedback.

The secondary requirement of all scheduled jobs is the existence of a public
override DoWork() method. This method is called for each execution. You can
see that you have a specific flow, with a global try/catch. This global
exception handling is required. Without it, any exception could manage to go
fully unnoticed, and the scheduled job would not record itself as complete. At
the bottom of this class is a helper method called InsertLogNote that allows
consistent entry to the DNN Schedule Item History log. Using this as a
storage mechanism works well, as over time DNN will automatically clear old
results based on the cache duration settings.

Once this has been created and installed, the job will need to be configured as
a new scheduled task inside of the Host Scheduler menu item.

Controlling Navigation and Module Views
Although they've been covered in other chapters at a high level, it is
important to discuss a few specifics related to navigation and multiple views
in DNN.

Isolation Mode and Module Controls
In Chapter 13's example, a link was created using
ModuleContext.EditUrl("MyOtherView"). It opened a link to another view
control as defined in the .dnn manifest. This works well and will result in a
secondary control being displayed to the users. However, there is an
unintended consequence when doing this. Other modules on the page
disappear. In many cases, this is acceptable behavior. For an example of when
it's acceptable, navigate to the Community Forum at dnnsoftware.com/forums
and scroll to the very bottom of the page. You will see the content as outlined
in Figure 15.4.

Figure 15.4

At the bottom of the forum content, you will see a HTML module that defines
the rules, as well as the footer content with DNN Corporation marketing
information and quick links. Scroll back to the top of the page and select My
Settings to change the configuration of your forum user. The bottom of the

http://dnnsoftware.com/forums

page will now resemble Figure 15.5.

Figure 15.5

All the footer content is gone in this view, even the copyright! However, it is
easy to add another .ascx file and call EditUrl to generate a link to it and be
done. The important thing to understand is that there are trade-offs.

Bypassing Isolation
Now that you understand what isolation is, you might wonder how you can
you get around it. This is an aspect of DNN development that does not
necessarily have a “best practice” around it. Nor does the framework have any
real built-in solution recommendations. This section quickly discusses two
commonly used implementations for bypassing isolation.

Dynamically Loading Controls

One of the more commonly favored ways to bypass isolation is to utilize an
ASP.NET placeholder control declared in the .ascx file. Then within the code-
behind in the pageinit method, investigate the request and load the
appropriate control for the current user's action. This solution works well and
does not come with any additional overhead.

The trade-off is that if the events are out of order, viewstate and some other
ASP.NET features might not behave as desired.

Toggling Visibility of Sub-Controls

Another commonly favored solution is to have a main view control with
multiple sub-controls. Based on the user's selection/state in the environment,
you can simply toggle the visibility of the view in question. You can bring
something into focus or remove something from view if needed. This route
works well; it is fast, simple, and doesn't require much planning or
forethought.

However, the trade-off of this solution is that the other controls, if left alone,
will still consume viewstate and could greatly increase page size/load time in
overly complex view situations.

CAUTION

Module isolation is triggered by the existence of a mid and ctl parameter
in the querystring for the current page. When you're developing a scheme
for managing interface views, avoid using any URL values involving mid
or ctl. Failure to do so might result in unexpected DNN behavior.

Managing Linking
When you're linking from page-to-page or control-to-control, there are three
options available—Globals.NavigateURL(), PortalModuleBase.EditUrl(), and
ModuleContext.EditUrl(). It is important to consider that NavigateURL is
unaware of the settings for supportsPopUps to allow controls to render in a
dialog window. Therefore, if you're working with multiple manifest controls,
EditUrl is the option that you should use.

Additionally, as a quick tip, Listing 15.13 shows how to pass additional
querystring information to the current page without triggering isolation
mode.

Listing 15.13: NavigateUrl with Extra Content

Globals.NavigateURL(TabId, string.Empty, "mode=fragment",
"name=custom")

When you call NavigateURL in this manner, the querystring values are
rewritten into the final URL. Assuming that TabId has the value for /Home, the
generated URL would be /Home/mode/fragment/name/custom, which gives you
a very nice URL with minimal effort.

Summary
This chapter dove head first into the DNN APIs and explained where the
classes are located and the common methods to interact with them. The
chapter reviewed advanced module functionality, such as Web API services
and scheduled jobs, and finished with a review of navigation and page
management.

Chapter 16
Developing Modules: Best Practices and Moving
Forward

What You Will Learn in This Chapter

Managing project compilation and versioning

Managing project dependencies

Identifying Azure Support

Interacting with the database appropriately

Using the Extension Verification Service

Preparing for DNN neXt

Wrox.com Code Downloads for this Chapter
The wrox.com code downloads for this chapter are found at
www.wiley.com/go/prodnn7 on the Download Code tab. The code is in the
Chapter 16 download and individually named according to the names
throughout the chapter.

After spending the last few chapters reviewing different techniques and
methods for interacting with DNN, it's time to shift focus to high-level best
practices and formats. It is great to be able to deliver an extension that works
with DNN; however, it is a whole different story to be able to build something
that is reusable and comprehensive and that allows your solution to stand the
test of time and work across multiple types of DNN installations. This chapter
steps through a number of scenarios and discusses special considerations that
you should account for when developing any DNN solution.

http://Wrox.com
http://wrox.com
http://www.wiley.com/go/prodnn7

Managing DNN References and Versions
Some of the most complex decisions DNN developers must make relate to the
process of managing and selecting the various DNN assemblies when building
extensions. You have to ensure that the most “proper” assembly version is
selected and that the references are easy to manage.

Which Version to Reference
The first question to address is which version of DNN should be referenced as
part of your extension(s). At the time of the writing of this book, DNN 7.4.0 is
the most current version of the platform. By the time you read this chapter,
7.4.1 or maybe even 7.4.2 will be available. The process of selecting the
version to use as part of a project is a multi-faceted one. Note that there is an
ever-complex balancing of trade-offs and impacts of one version over another.

Looking into this, it is important to remember what exactly a version number
selection does. Once you select a version, you have set the “minimum”
version for that particular project. For example, if you compile against DNN
7.4.0, it is safe to assume that your project will work if installed to 7.4.0 as
well as any version greater than 7.4.0. This is possible thanks to the long-
standing tradition of the DNN Platform to ensure backward compatibility for
prior version features and functions. (See the DNN neXt discussion later in
this chapter for an important note.)

In the case of a custom-built solution for internal usage only, there is no
harm using the then-current version of DNN for any custom modules.
However, if you're developing solutions for a broad audience—for example,
for a commercial component—you might need a different strategy. At this
time, developers often compile a module using DNN 7.0.0 or 7.2.0 for
commercial elements, depending on the particular features and functions that
are desired as part of the solution.

The key in making the proper decision is to ensure that the needed APIs and
functionality exist to allow your solution to accomplish its published goals
while supporting the broadest range of installations. It is recommended at
minimum to support the initial release of a particular version and beyond.
For example, support 7.2.0 and later, not 7.2.1 and later. This helps to avoid
confusion with your users.

Enforcing the Dependency

Selecting the version of DNN to compile against is only the first half of the
battle; the other portion is ensuring that users can't install your extension on
an environment that doesn't support it. Listing 16.1 shows a snippet of XML
that should be loaded inside of the <package> node of your .dnn manifest.

Listing 16.1: Core Version Dependency Enforcement

<dependencies>
 <dependency type="CoreVersion">07.00.00</dependency>
</dependencies>

By making this small addition to your manifest, you prevent the unfortunate
issue of installing a module that requires a version of the core that does not
exist. This is critical, as installation to a prior version will typically result in
the site not loading for the user, until your .dll file is manually removed.

Making Things Easier with NuGet
Depending on the particular module development template you use, it is
important to note that there are numerous DNN NuGet packages that are
maintained on a regular basis. Using these packages makes it is easy to
manage the references to DNN in the same manner that ASP.NET and related
projects manage their references. If you're looking to build “outside” of the
structure or want true portability of your developed solutions, these packages
are invaluable. Distributed through NuGet.org, there are three supported
packages that are distributed by DNN:

DotNetNuke.Core: All DNN extension projects should reference this
package. It contains DotNetNuke.dll as well as the reference to
Microsoft.ApplicationBlocks.Data.dll that's needed for DAL and DAL+
implementations of data access.

DotNetNuke.Web: This package references additional utilities for
working with web components. Items such as Telerik and
DotNetNuke.WebControls.dll are included in this optional package.

DotNetNuke.WebApi: This package adds all needed references to
properly construct and work with the DNN implementation of the Web
API in a custom extension product.

There are a few important elements to take into consideration as they relate

http://NuGet.org

to these NuGet packages. First, the package names reflect the older
DotNetNuke name and not the newer DNN moniker. Given the upgradability
of NuGet packages, this behavior will most likely not change in the near
future. This will ensure that existing individuals can upgrade seamlessly to
new versions of the packages.

Second, prior versions of applicable packages are available, which allows
developers to benefit from using NuGet packages while still targeting older
versions of DNN. Reviewing the package history on NuGet.org shows that
most packages have support for 6.0.0, 7.0.0, and major versions forward.

Once you identify your desired package, simply use the NuGet Package
Manager console in Visual Studio (choose Tools NuGet Package Manager
Package Manager Console) to install. For example, to add DotNetNuke.Core
version 6.0.0 to your project, you would enter the following command:

Install-Package DotNetNuke.Core -Version 6.0.0

http://NuGet.org

Managing External Dependencies
With DNN references properly managed and core versions properly limited, it
is important to look at managing other dependencies. In a dynamic
environment such as DNN, individuals will often want to install a module
without necessarily reading all of the documentation. Therefore, it is
important to ensure that developed extensions declare all dependencies, or
prerequisites, properly to prevent accidental installation. The dependency
validation process, which is part of DNN's module packager, provides great
freedom over the specification and validation of any needed dependencies.
Listing 16.2 shows a few additional dependency options that you can use as
part of an extension's DNN manifest. These can be used in conjunction with
other dependencies, as needed.

Listing 16.2: Additional Dependency Examples

<dependencies>
 <dependency type="package">Wrox.Guestbook</dependency>
 <dependency type="managedPackage"
 version="1.2.0">Wrox.Suggestions</dependency>
 <dependency
type="type">System.Reflection.ReflectionContext</dependency>
</dependencies>

You can see from this example that three new dependency types have been
introduced. A package dependency verifies that a DNN package with the
specified name is installed. The version number of the installed package has
no bearing on the successful validation of this dependency. A managedPackage
dependency type ensures that a specific minimum version of a package is
installed. From Listing 16.2, you can see that the defined managedPackage
dependency requires version 01.02.00 or later of the Wrox.Suggestions
module to be installed. Leading zeroes in module version numbers are not
needed as part of the dependency definition.

The final type of dependency is a bit more complex. This is a type dependency.
This dependency has multiple purposes, and the primary consideration here
is that DNN must be able to locate the defined type as part of the running
application content. The example in Listing 16.2 uses the ReflectionContext
class as the example. It validates that the DNN installation is running on a
server that is using .NET 4.5 or later, as the ReflectionContext class was

added as part of .NET 4.5. System.Tuple could be used to validate that the
installation is running on .NET 4.0, and any other type could be used to
validate items such as deployed third-party DLLs or related functionality.

Specifying proper dependencies for extensions at installation time is a critical
need to ensure reliability of the destination installation. When there is a
failure during installation, the user is presented with a detailed message
outlining the nature of the error.

Future-Proofing Data Interactions
Now that you have learned how to prevent site administrators from installing
your extensions when they might not work, it is important to consider other
development practices that you can use to ensure a smooth development
process. The DNN API is expansive, and for those new to the platform it is
often hard to fully comprehend the best places to start looking for
information. This book has multiple chapters that are dedicated to
development within DNN and that discuss various API interactions.

Bypassing the API
One of the most common questions that appear in online forums as it relates
to development with DNN is, “Can't I just go to the database for what I want?”
This question has various answers. Given that this chapter is focused on best
practices and future-proofing, the answer is quite simple. Theoretically, yes, it
may be easier to create a database query that quickly pulls a list of roles to
use in a custom module. However, that “speed of development” comes at a
pretty steep cost.

By directly querying and interacting with DNN database objects, your
developed solution is no longer dependent on an API, but it is hard-coded and
entrenched into the data model. Any modification to the data model, an
action not guaranteed to be future proof, not only places your application at
risk but additionally could place the users' installation at risk for upgrades. As
such, it is recommended that APIs be used in lieu of any direct database
interactions. This has been important for a number of years as the platform
has grown and is even more important with DNN neXt on the horizon!

Managing Foreign Keys
When it comes to proper data management, there is nothing worse than a
module that adds data to the database and doesn't account for any proper
cleanup. Chapters 13 and 14 explained how data can be tied to a ModuleId,
TabId, or UserId depending on the desired segmentation of data. An often-
overlooked portion of this data association is how that data interaction is
completed. Consider the two CREATE TABLE statements in Listing 16.3.

Listing 16.3: CREATE TABLE Examples

CREATE TABLE {databaseOwner}[{objectQualifier}GoodTable](
 ItemId INT IDENTITY(1,1) PRIMARY KEY,
 ModuleId INT CONSTRAINT [FK_GoodTable] FOREIGN KEY REFERENCES
 {databaseOwner}[{objectQualifier}Modules](ModuleId) ON
DELETE CASCADE,
 MyData VARCHAR(500)
)

CREATE TABLE {databaseOwner}[{objectQualifier}BadTable](
 ItemId INT IDENTITY(1,1) PRIMARY KEY,
 ModuleId INT CONSTRAINT [FK_BadTable] FOREIGN KEY REFERENCES
 {databaseOwner}[{objectQualifier}Modules](ModuleId),
 MyData VARCHAR(500)
)

With these two tables, you can see one slight difference. They both create a
foreign key relationship between the newly created table and the DNN
modules table. However, only one of these adds the ON DELETE CASCADE.

When interacting with DNN and working with foreign keys, it is important to
ensure that if your interaction works with DNN data and adds references to it
and if DNN needs to remove that element from the database, your code must
not only not stop this from happening but should additionally clean up your
data. Specifically reviewing the behavior of a user deleting a module from a
page, the initial action only changes the IsDeleted flag to 1 and the module
now appears in the recycle bin. If the users change their minds, they can
easily restore the module and all of the data will still be there.

If a user decided to empty the recycle bin, the BadTable in Listing 16.3 would
introduce problems. DNN would attempt to remove the module record for the
deleted item and would encounter a foreign key issue. DNN would be unable
to clear the item from the recycle bin. Manual intervention at the database
level would be required at this point by the user. The user would have to
intervene before operations would be allowed to continue. This situation
could be further exacerbated if the user needed to delete an entire site, which
required removing hundreds of pages and hundreds of associated modules.

Supporting objectQualifier and databaseOwner
In addition to properly using APIs, there is another aspect of DNN
interactions that is still a primary concern. This is supporting the
{objectQualifier} and {databaseOwner} replacement tokens in all generated
SQL scripts. If you look on the Internet, you'll see that there are many schools

of thought related to this functionality. The true “must-use” scenarios are
most likely very small; however, where installations are using these
configuration elements, it is imperative that all generated scripts support
them.

As such, this will limit the data access strategies that can be used as part of an
installation. DNN's DAL, DAL+, and DAL2 methodologies all support these
tokens. However, popular ORMs such as EntityFramework or NHibernate do
not.

Let's quickly revisit the purpose of these elements, which were first discussed
in Chapter 13. The {databseOwner} replacement token defaults to a value of
dbo and is used as the schema of any created object. The {objectQualifier} is
a prefix to the actual object name. The current default for this replacement
token is a null value, resulting in no change. However, older installations may
use dnn_, as this was a common recommendation. To properly support these
replacement tokens, you must structure any references to database objects in
the SqlDataProvider files in the following fashion:

 {databaseOwner}[{objectQualifier}OBJECTNAME]

where OBJECTNAME is the name of the target object. It should be noted that the
brackets, [], included here are imperative for proper operations.

If you elect not to support this development paradigm, it's very important that
you properly communicate this limitation to any potential users.

Supporting Azure
Using Azure, SQL Azure, and Azure Websites is something that is becoming
more and more common. DNN has fully supported running on Azure and
specifically using SQL Azure for the database backend for a while. If your
extension can work in this environment, it is important to add the code
snippet in Listing 16.4 to your module's manifest.

Listing 16.4: Noting Azure Support

<azureCompatible>true</azureCompatible>

If this tag is omitted and users attempt to install the extension in a Windows
Azure environment, they will be notified that the module may not be

compatible with SQL Azure and will be forced to confirm the installation. If
you are unsure of your module's support for SQL Azure, use the Extension
Verification Service (EVS) to aid in the identification.

Extension Verification Service (EVS)
To help developers evaluate their solutions against a set of “best practices,”
DNN Software created and maintains the Extension Verification Service.
Hosted at http://evs.dnnsoftware.com, this online service allows developers
to validate their extension against a number of rules. At a high level, this
validation service takes an uploaded module, installs it, and then uninstalls it.
It scans for any errors during installation and any missing manifest
information and ensures a clean un-installation process. Figure 16.1 shows
the welcome page of the EVS site.

Figure 16.1

The process is quite simple. You click the Choose File button to locate your
installation ZIP file and select Upload. After opting to upload your extension,
you wait. It will take a while for the results to come back, depending on the
number of other requests, the size of the module, and other environmental
factors. Do not navigate away from the EVS website during this process. If
you do this, you will not be allowed to see any of the results from the
verification and would need to start the process over again.

What It Validates
The EVS system checks for a number of elements and validates the successful
installation and integration of a module at a high level on multiple versions of
DNN, including 6.0.0, 7.0.0, 7.1.0, 7.2.0, and 7.3.0, if they're supported as part

http://evs.dnnsoftware.com

of the extension being tested. In addition to validating the successful
installation or un-installation of the extension, EVS validates that all needed
metadata is properly accounted for, resulting in a complete and valid package.

EVS additionally validates support of SQL Azure first by scanning any
included SqlDataProvider file for proper SQL Azure syntax and additionally
by executing a systematic Azure Backup and Restore. This step is critical as it
is possible for an extension to be installed; however, after installation, it
could impact the user's ability to properly back up/restore the site.

Interpreting the Results
When interpreting the results from EVS, it is important that you remember
that it is an automated system and involves simply checking boxes and
indicating “yes” or “no” to a set of conditions. When you're validating custom
extensions against the service, there are often issues that an automated
system can't consider, such as usage and deployment. Figure 16.2 shows the
high-level results screen of a random third-party extension that ran through
the EVS system.

Figure 16.2

This display shows a few key elements worth noting. First, notice that the

high-level information regarding the installation page is restated at the top of
the page. This ensures that the high-level information is evident. Download
options are great for sharing results with others, as is the Azure Checker
Output option. Let's step through the various sections of the results screen
and discuss the types of issues that might arise.

Errors

When you're validating extensions, it is imperative to validate any reported
error messages. Items tagged in this section are critical elements that EVS
believes could prevent the extension from properly installing. Each error
contains a message and a rule. For example, if your manifest references a file
that could not be located in the installation, the rule
PackageVerification.Rules.TwoWayFileChecker is triggered, as EVS was not
able to validate files.

Warnings

Warnings are constructed to ensure that developers are aware of situations
that could become problematic if they aren't properly managed. Figure 16.3
shows one example of a warning message.

Figure 16.3

In this case, the notification outlines that a database script as part of the
module adds a dependency to the core Modules table. Upon further review,
you can see that ON DELETE CASCADE is properly used, which mitigates this
issue. The warning in this situation is there so that the developer will verify
that this situation is intentional.

However, other elements that can occur because warnings include situations
where a SQL script omitted an {objectQualifier} or other related token
value. If a module is compatible with Azure and the manifest does not declare
this support, it will also appear as an error.

Information Messages

With successful verification of execution, a number of messages will be
displayed in this section. These messages include informational data, such as
the time needed to execute the Azure backup, the time needed to execute the
Azure restore, and confirmation of key manifest information, such as author
and manifest structure.

System Errors

All tests should execute without any recorded system errors. Treat a system
error as a complete failure of the validation test. Additional validation should
be completed against the manifest package.

Getting Prepared for DNN neXt
With the recent release of DNN 7.4.0, there is a lot of community buzz around
the future of DNN. There is talk of major changes in 7.5.0, with first-class
support of MVC being billed as one of the key deliverables for that release.
With DNN neXt staring down at us after the 7.5.0 release, what does this
mean for developers?

Nothing is known for sure at this time; however, a few general rules of thumb
can be applied to current development. These are basic rules that, regardless
of the future pathway, ensure that developed solutions have the best chance
of migration.

Avoiding Deprecated Methods
The DNN API has been constantly evolving for more than 12 years now and,
as you can imagine, there has been a plethora of change over these years. Up
to the current 7.4.0 release, there has been strong support for backward
compatibility. As part of this support, methods were marked as deprecated
years ago, even though their internal implementations were updated to use
the new methodology. The current plan is that deprecated methods will not
be included in DNN neXt. Additionally, DNN 7.5 will mark many more
methods as deprecated that are not expected to make the transition.

It is best practice to assume that a method, class, or other deprecated object
could be removed in future releases. As such, it is strongly recommended that
you verify your solution against the latest releases of DNN and work to
remove any calls to deprecated methods. Your developed solution will more
likely be future proof. The new methods are often more efficient than the
older, deprecated options.

Validation of any deprecated method usage is simple. Simply build your
project and review the error list. Any deprecated method calls will be included
as warnings.

Following Best Practices
All the practices included in this chapter as well as the items validated as part
of the EVS provide guidance to ensure that your developed solutions are as
close to “on target” as possible for the future direction of DNN. The DNN
Wiki is another source of help, as it explains best practices and procedures. By

using methods that are common to the larger DNN community, you ensure
that a simpler pathway to migration is developed that you can leverage when
you move to DNN neXt.

Staying Active
DNN has undergone revitalization in the open source community, and more
steam is being gained on this front. As such, the discussions about what is
next are being held in open communication channels. Getting involved in
discussions and keeping up on the happenings on DNNSoftware.com under the
Community Voice, Community Forums, and Community Blogs sections will
allow you to take a front-row seat on the adventure that will be the next
releases of DNN.

In addition to your commentary and direction decisions, you can also jump
on GitHub and submit enhancement requests to the platform. By staying
active with the product, you will be able to adjust development methodology
and processes so that they more closely align with any future releases.

http://DNNSoftware.com

Summary
This chapter explored a number of recommendations to help ensure that your
developed solutions on the DNN platform are created so that they work well,
not only now but in the future as well. You explored tools that you can use to
validate the structure and suitability of deployment of extensions.
Additionally, you learned about dependencies and how they can be used to
prevent issues from arising should an expected component be missing.

Chapter 17
Skinning

What You Will Learn in This Chapter

Creating a DNN skin based on modern web practices

Creating a responsive, mobile-friendly skin

Setting up a skinning environment with Visual Studio

Packaging a skin for installation on other DNN sites

Wrox.com Code Downloads for this Chapter
The wrox.com code downloads for this chapter are found at
www.wiley.com/go/prodnn7 on the Download Code tab. The code is in the
Chapter 17 download and individually named according to the names
throughout the chapter.

What is skinning in DNN? Skinning is creating a consistent and reusable
template for the layout and design of your DNN site. Skinning allows
designers and front-end developers with no knowledge of server-side
development to create dynamic HTML and CSS templates. This allows for a
separation of concerns for development and design. Experts in HTML, CSS,
and JS can create interesting and amazing designs that content editors can
use to add new pages and content while keeping the look and feel consistent
throughout the website. This chapter will take you through the entire process
of developing a skin by leveraging what you already know about creating web
pages and explain the concepts needed to plan and convert your own designs
into DNN skins.

http://Wrox.com
http://wrox.com
http://www.wiley.com/go/prodnn7

Skinning by Today's Standards
One thing we all know is that the web is constantly changing. HTML5 has
now become an official WC3 Recommendation, and as of DNN 7, you are now
free to use those HTML5 elements to define content sections and repeatable
content blocks following today's best practices. While you are free (and
encouraged) to use HTML5 to create your DNN skin, it is important to realize
that DNN 7 supports all major browsers, including Internet Explorer version
8 and up. This means that DNN still supports a browser that does not
recognize HTML5 elements. We will discuss how to resolve this issue once
you begin creating your skin.

Parts of a DNN Skin
What is often referred to as a DNN skin is really a collection of the parts that
make up the design of your site. There are several items related to skins that
you need to understand before you can begin creating one.

Skins
A skin is a file with HTML and some additional components that allow for
adding dynamic content that defines the layout and styling of one or more
pages. A skin should be able to stand on its own when moved from one site or
DNN installation to another. It should not have any dependencies on a
specific site. However, it can depend on third-party skin objects that can be
installed along with an installable skin package (both of which are discussed
in the sections that follow).

Containers
A container is a file with HTML and some additional components that allow
for displaying dynamic content that defines the styling of a module. A
container is typically meant to support a specific skin package, allowing for
flexible, varying content styles within a page. A container is similar to a skin,
but only styles the content within the module to which it is applied.

Skin Objects
A skin object is a user control that can be used to provide dynamic content on
the skin. A skin object will be replaced by the content that it is created to
provide at runtime. A good example of this is the logo skin object. A logo skin
object can be placed on a skin and will be replaced by the logo that is applied
to the site by the site's administrator in the Site Settings. Skin objects are
similar to modules, differing in the fact that they do not have any settings
through DNN's user interface, simplifying their use over a module and
allowing them to be defined within a skin. However, each skin object does
have its own parameters that can be defined within the skin. Some examples
of skin objects include breadcrumb, copyright, language, login, logo, search,
and styles.

Skin Packages

A skin package is a collection of all the individual skin and container files, as
well as the supporting stylesheets, fonts, images, JavaScript, and any other
resource required for the skin to be used. Skin packages typically include
three or more skins (home page, internal page, and admin pages) that have
similar styles (colors, fonts, and so on) but provide different layout options.
These skin packages cannot be installed through the DNN interface but must
be added manually to the site either through FTP or direct access to the DNN
installation's folder structure.

Installable Skin Packages
An installable skin package is an extension that's a ZIP file containing a skin
package as defined previously. These are installed through the DNN user
interface and must be installed by a host user.

Content Panes
Content panes are designated locations within a DNN skin where modules
can be placed onto a page in a DNN site as shown in Figure 17.1. A content
pane is used to place content on a page that needs to be edited by a content
editor, through the DNN interface. Multiple modules and module types can
be placed on a page within a content pane. DNN requires that there be at least
one content pane on a skin, and it must be named ContentPane (not case-
sensitive). Aside from the default content pane, as many as necessary can be
added to a skin.

Figure 17.1

Navigation
The navigation model in DNN provides the ability to create a dynamic
navigation that will be updated automatically as pages are added to the site.
This navigation can also hide and disable links to pages through the DNN
user interface. The DNN navigation model has a dynamic navigation that can
support several navigation providers. The primary default navigation provider
that is packaged with DNN is the DDR Menu. This menu allows for a site's
navigation to be rendered to the page based on a customizable template,
thereby giving great control to the layout and functionality of the menu.

Folder Structures
Organization of files within DNN is very important. DNN requires that files
be placed in certain locations to perform their intended functions. DNN
monitors those folders and folder structures to provide simple integration

with skin and container packages. See Figure 17.2 for an example of the root
folder structure in DNN.

Figure 17.2

Skin Locations and Permissions

DNN requires that skin packages be placed in a specific location to be used by
the skinning engine. The skinning engine then applies the assigned skin to
each page at runtime. Skins packages can be made to be available to either
one specific site or to all sites in a DNN installation. This is done by placing
the files for the skins in specific locations within the folder structure of the
installation.

To understand how a skin's access is determined, you must first understand
some basic folder structure for your DNN installation. All site-related files are
located in the Portals folder in the root of the installation (see Figure 17.3).
DNN uses the name Portals in the API to relate to a site. Each site you create
will have a corresponding folder inside the Portals folder. These are typically
named for the portalId assigned to each site when they are created. This will
be the name of the folder associated with the site. By default, the first site is
assigned an ID of 0 and a corresponding folder name of 0 in the Portals
folder. The next site will have the portalId of 1, a corresponding folder name
of 1, and so on. All related skins, containers, images, and so on, will be located
in this folder. DNN monitors the site folder's contents for the Skins and
Containers folders. Skins and containers placed in these folders will be made
available only to the corresponding site for the site's folder in which it is
located. For example, if a skin package is placed in ˜/Portals/1/Skins folder,
all skins in that skin package will only be made available to the site with a
portalId of 1. Any other site, such as the first site with the portalId of 0, will
not be able to apply that skin to any of its pages.

Figure 17.3

If you want to make a skin package available to all sites within the DNN
installation, that skin folder can be placed in the ˜/Portals/_default/Skins
folder. This would be considered installed at the “host level,” meaning that it
reaches across all sites, as does a host's security access, as shown in Figure
17.4.

Figure 17.4

Container Locations

Containers are subject to the same permission rules as skins (see Figure
17.5). They are available only to the sites associated to the folders in which
they are located. So, a container package specifically for a site with a portalId
of 1 would be located in the ˜/Portals/1/Containers folder.

Figure 17.5

Skinning Approaches
When creating skins, there are two techniques available to the skin developer.
The first is the HTML skinning method, which can be easier to a beginner but
requires more upkeep and steps to make accessible for use on DNN pages.
The second approach is the ASCX skinning method. This technique is slightly
more advanced but is readily available to view within a DNN website. We will
take a brief look at how each method is developed and the pros and cons of
each. This book takes the ASCX approach for examples moving forward, as it's
much more efficient.

HTML
The HTML approach uses an HTML file that is parsed by DNN to convert it to
a skin that can be used by DNN on your site. The HTML file uses objects with
parameter elements to define the skin objects for a skin. The parsing engine
then creates an ASCX file with user controls (skin objects). Using the HTML
approach may be easier at the beginning, but you will more than likely find
yourself getting bogged down by needing to continually parse it to convert it
to the ASCX format used by the skinning engine. Figure 17.6 shows how the
skinning engine parses the HTML files. An example of how to define a skin
object with the HTML approach follows.

<object id="dnnCOPYRIGHT" codetype="dotnetnuke/server"
codebase="COPYRIGHT">
 <param name="CssClass" value="footer-text" />
</object>

Figure 17.6

ASCX
The ASCX approach uses an ASCX file that does not need to be parsed by
DNN as this is exactly what is produced by the parsing engine when taking
the HTML approach. This approach bypasses the parsing process and makes
viewing updates to a skin much faster. The benefit of using this method is
that once the file is saved in the site's skin folder, it is immediately available
on the pages where the skin has been applied. The parameters that are
specified in the HTML method are done so with attributes for the ASCX
skinning method. Figure 17.7 shows the ASCX packaging. An example of how
to define a skin object with the ASCX approach follows:

 <dnn:COPYRIGHT ID="dnnCopyright" runat="server" CssClass="footer-
text" />

Figure 17.7

Preparing to Create a Skin
The best way to learn how to skin is to create one. We will be creating the
skin called SubtleTrend (see Figure 17.8). This is a pure CSS skin. No images
are needed to create this skin, other than a logo. There will be quite a bit of
CSS3 work involved to get the results we are looking for. As mentioned
previously, DNN 7 supports modern browsers, including IE8 and up. Because
we are providing support for IE8, which does not support CSS3 and HTML5,
we will provide some workarounds for the HTML5 and graceful degradation
where the CSS3 styling fails in IE8. This will also be a responsive skin, so
there will be some size-specific CSS; however, please note that the specifics of
the approach to responsive design are outside the scope of this book.

Figure 17.8

Preparing your Skinning Environment
The best way to develop a skin is to create a development environment on the
computer you will be working on. Installation is not difficult, and once it's set
up, it can be reused to make new skins. Create a local installation of DNN
following the instructions in Chapter 2.

Choosing an IDE
DNN skins can be created within the IDE (Integrated Development

Environment) of your choice, such as Microsoft Visual Studio, Adobe
Dreamweaver, Sublime Text, Notepad++, or even simply Notepad. For this
example, we are going to be using Microsoft's free version of Visual Studio,
called Visual Studio Express for the Web (2013 at the time of this writing), as
it will provide you with some helpful IntelliSense when creating your skins.
To download it, go to http://www.visualstudio.com/en-us/products/visual-
studio-community-vs. Download and install the latest version for the web.

Setting Up Your Website in Visual Studio
Once you have set up a local installation of DNN and installed Visual Studio,
open Visual Studio and select File Open Website. In the Open Web Site
dialog, choose File System on the left navigation. Then, in the file tree to the
right, navigate to the file location of your local DNN installation, as shown in
Figure 17.9. Using Visual Studio in this manner will provide you with some
very helpful IntelliSense when using the ASCX skinning method.

http://www.visualstudio.com/en-us/products/visual-studio-community-vs

Figure 17.9

Creating the Folder Structure
The first step to creating the skin is deciding which sites will have access to it.
You will be creating yours to be available for the entire DNN installation. You
will need to create it here to be able to create an installable skin package later
in the chapter. Once your website has been opened in Visual Studio, in the
Solution Explorer window, expand the Portals folder. (You may have to first
turn on the Solution Explorer by navigating to View Other Windows
Solution Explorer from the main toolbar in Visual Studio.) There should be
two folders in the Portals folder, 0 and _default. The 0 folder is the root
folder of the first site created with DNN, and the _default folder holds
resources that are available to all sites created in that specific DNN
installation. Expand the _default folder, and you will see several folders with

Containers and Skins among them. These folders contain the skins and
containers that come preinstalled with DNN. DNN looks for the Skins and
Containers folders and will automatically make available any ASCX skins (or
parsed HTML skins) in them to the Admin interface, where they can be
applied to any DNN page. Next, right-click the new Skins folder and select Add

 New Folder. Name it the same name as your new skin package. This
example uses SubtleTrend, as shown in Figure 17.10.

NOTE

DNN comes preinstalled with several skins, with Gravity being the
default skin for a new DNN installation. This is a good skin to reference
when creating your own skins.

Figure 17.10

Creating Your First Skin
Now that you have everything set up, you can start creating your first skin.
You will start with the two approaches for skinning—HTML and ASCX. You
will begin with getting the basics of the HTML approach, and then you'll
move to the ASCX approach for the buildout.

HTML Approach
Right-click the SubtleTrend folder and select Add Add New Item. Select
HTML Page. Give it a name of mySkin.html and click the Add button. In the
body of the document, add the following code and save the file:

…
<body>
 <div id="ContentPane" runat="server"></div>
</body>
…

To make your skin available to DNN, you must first parse it, which will
convert it to a DNN skin. To parse an HTML skin, once the skin has been
created, you must log in as a host user and navigate to the Admin Skins
page. Find your skin, SubtleTrend, in the drop-down. Once selected, scroll
down and click the Parse Skin Package button. This will convert the HTML
document to an ASCX file. This ASCX file is the same file that you will be
creating and editing with the ASCX approach. Anytime you make a change to
the HTML document, you must parse your skin by once again navigating to
the Admin Skins page, selecting your skin package, and clicking the Parse
Skin Package button to see the effects of your changes. This can become a
tedious process, which is why the ASCX approach is much more efficient. You
will switch to using the ASCX approach for the rest of this example.

ASCX Approach
You will now take the approach of creating the skin using an ASCX file. Right-
click the SubtleTrend folder and select Add Add New Item. Select Web User
Control from the C# section and uncheck the Place Code in Separate File
option. Give the file the name Home.ascx and click the Add button (see Figure
17.11). Replace all of the code in the file with the following code:

<%@ Control language="C#" AutoEventWireup="false
 Inherits="DotNetNuke.UI.Skins.Skin" %>

<div id="contentpane" runat="server" />

Figure 17.11

Save the file. That's it! You've just created your first DNN skin!

Let's review what you just did. A DNN skin is really just a user control that
DNN uses to create your web page layout, which is to say that it is the
template for your pages. The first line uses the Control directive to specify
that this page is a .NET user control, that it uses C# as the language (vb is a
valid value as well if you plan to add any custom VB.NET code to your skin),
and that the skin will inherit from the DotNetNuke.UI.Skins.Skin class. Also,
AutoEventWireup is set to false. The third line defines the required content
pane for the skin, which we will discuss in the next section.

Basic Layout
Now that you have your skin started, let's add some headers, footers, and
panes, and give it some CSS to create a basic layout.

Setting Up a Test Page
Let's first apply the skin to a page so that you can see it start to take shape as
you update it. Log in as an administrator or host to the development site
where you have been creating your skin files. On the home page of your
website, hover over the Edit Page tab in the Control Panel and click the Edit
This Page button. Delete all of the modules on the page. Next, hover over the
Edit Page tab in the Control Panel and select Page Appearance from the
menu. Once the window has opened, scroll down to the Page Skin selection
drop-down and expand the options. You will notice quite a few skins listed as
Host:[skin name]. These are the skins that come preinstalled with DNN. If
you created your skin in the Portals/_default folder, you should see your
skin at the bottom of the list prepended by Host:. In this case, the skin is
named Host: SubtleTrend - Home. Notice that you didn't have to tell DNN
anything about this. Once you created a skin folder (SubtleTrend) and a skin
named Home.ascx, DNN recognized this file as a skin. Select this skin and click
the Update Page button at the bottom of the window. If you do not see your
skin in this drop-down, confirm that you are working within the correct
installation, that these requirements have been met, and that your file
contains the code from the previous section.

Right now your page doesn't look like much, but you will start working
toward changing that.

Content Panes
To provide a place on the page for content to be added through a module, you
use content panes. One content pane, called ContentPane, has already been
added to your page. A content pane is a skin object in a DNN skin that is a
placeholder for module content. Specifying content panes in DNN is very
simple. To define a content pane, declare a unique ID for a div or other
HTML element, including p, section, header, footer, main, article, and
aside, and give it the attribute runat="server" to tell the processing server to
process it on the server, as it's not traditional HTML. The ID can be whatever
you want, as long as it is unique, falls under the guidelines for IDs in HTML,

and contains at least one content pane named ContentPane. You don't have to
include “pane” in the name, but it is recommended to provide a descriptive ID
based on the location/use on the page, such as “sidebar,” “footerpane,”
“lowerpane,” and so on.

When you're converting a design to a skin, deciding where to put the content
panes is important. Content panes are used to create columns and large
sections of content. Many modules can be added vertically in a content pane.

Based on the content pane map for your skin, let's update the code to match
the design as shown in Figure 17.12. You're changing out the div on the
existing content pane for a main HTML5 element and adding more layout
elements and content panes.

<%@ Control language="C#" AutoEventWireup="false"
 Inherits="DotNetNuke.UI.Skins.Skin" %>
<header>
 Logo will go here
 Navigation will go here
</header>
<div id="TopPane" class="top-pane" runat="server" />
<div id="contentWrap">
 <main id="ContentPane" class="content-pane" runat="server" />
 <aside id="AsidePane" class="aside-pane" runat="server" />
</div>
<div id="LowerPane" class="lower-pane" runat="server" />
<footer>
 <div class="footer-wrap">
 <div id="leftFooter">
 Copyright will go here
 </div>
 <div id="rightFooter">
 Register link will go here | login link will go here
 </div>
 </div>
</footer>

Figure 17.12

You have added header and footer elements with some text as placeholders.
You also created a few new content panes by setting the runat attribute to
server and giving them the unique IDs as follows: TopPane, AsidePane, and
LowerPane. (Note that versions prior to DNN 7.3.0 do not support using
HTML5 elements as content panes. You will need to use a div as a content
pane inside of the desired HTML5 element.) You have also made the content
panes be self-closing elements. This is an optional, but helpful, technique
when creating your skin to be able to visually separate a content pane from a
standard element. Because this will be converted to a content pane at the
server runtime, you will never be left with a self-closing element once
rendered to the page. You also wrapped the ContentPane and the AsidePane in
a div, which will allow you to keep your content centered on the page as
defined by the design.

NOTE

It is good practice to apply a class such as aside-pane to your content
panes. This is because DNN prepends dnn_ to the ID you specify on the
content pane upon rendering to the page. So, specifying AsidePane in
your HTML will render the ID on the content pane as dnn_AsidePane.
However, the class name you assign will not change.

Adding Test Content
After getting some content panes on your skin, now is a good time to add
some filler content to the test page so that you can see the effects of the
changes to the layout as you make them. Once you have added some content,
you will continue styling your skin.

Adding HTML Modules to the Page

While logged in as an administrator or host, navigate to the home page that
you have been editing. Then hover over the Modules tab in the middle of the
Control Panel at the top of the page and click on the Add New Module link.
From the drop-down, select Common and the list of modules will filter to
show only the HTML module. Click and drag the module to the ContentPane.
Once that module has been added, add a second module to the page in the
Aside Pane by hovering over HTML module in the list of modules and then
hovering over the crosshairs and selecting Add to AsidePane. You just added
new text modules to the page in two different ways: dragging and dropping
and selecting the pane through the add-to-pane drop-down option. Add an
HTML module to the TopPane and one to the LowerPane. Once you're
finished, you can hide the Add New Module panel by clicking the Cancel link
directly below the Edit Page tab. Notice that these modules are stacked
vertically and not as the design specifies. This is because you have not applied
any CSS to the skin. We will walk through laying these out in the CSS section.

Updating Module Titles

Hover over the title of the first module where it says Text/HTML and click
the pencil icon. This puts the module into a quick edit mode. Now, change the
title to be “Really Trendy Banner” and click the save icon. On the second

module that is still labeled “Text/HTML,” hover over the gear icon and select
Settings from the drop-down menu. Once the settings pop-up appears, change
the text for Module Title (on the Module Settings tab in the Basic Settings
section) to Lorem
& Ipsum. Notice that you are able
to place HTML into the module's title. This will allow you to be creative in
making reusable, flexible styles for your module titles. Scroll down to the
bottom of the pop-up and click the Update button. Update the next module
through the module settings window to Serif on the <aside>, which
will render to the page as Serif on the <aside>. Lastly, update the bottom
module's title to “Lower Content.”

Adding Text to Your Modules

DNN automatically adds some content to the HTML module that is added to
the page. However, the content is there to provide guidance for editing the
module. If you were to log out, you would not even be able to see the modules
on the page. They remain hidden to site visitors until the content has been
updated. Similar to the previous step of editing the title of a module, there are
two ways to edit content for a module: a quick edit and a more detailed
approach. However, when editing content to the HTML module, it is best to
avoid the quick edit as it can introduce some styles and elements that will not
be desirable on your page. On the module in the TopPane, labeled Really
Trendy Banner, hover over the Edit Content icon next to the Settings icon in
the top right of the module and select the Edit Content option. Once the Edit
Content pop-up has appeared, select the HTML tab at the bottom of the body
on the Rich Text Editor. This switches the editor to allow for adding HTML
content. (Note that any JavaScript added into this editor will be removed
upon saving.) Paste the following content as specified by the design: <p>Some
subtle text</p>. In the remaining HTML modules, paste
some sample content into the body of the editor for each module. You can get
some sample text from your favorite Lorem Ipsum generator. This example
uses the following:

<p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Donec
maximus pulvinar
mollis. Maecenas consectetur, risus pretium suscipit finibus, leo leo
maximus
diam, nec mattis velit turpis sit amet mi. Aenean dictum ex ut augue
hendrerit
tempor. Maecenas ut lobortis ex. Aliquam luctus sem mi. Proin non
ante et augue
venenatis egestas consequat ut tortor.</p>

<p>Nulla placerat varius odio, ut lobortis justo dictum at. Praesent
nisi neque,
placerat in dolor sed, condimentum malesuada sem. Pellentesque
vulputate eros ut
imperdiet maximus. Curabitur varius quam in dolor semper auctor. Nunc
ligula
risus, molestie sit amet magna dapibus, pharetra consectetur ligula.
Maecenas sed
ex id nibh lobortis lacinia.</p>
<p>Etiam porttitor orci id ultricies rhoncus. Ut id neque ac enim
pellentesque
vestibulum ut eu ante.</p>

Scroll down and click the Save button. Repeat with the Aside Pane and Lower
Pane. You now have some content on your page that will allow you to see the
impact of your work as you progress.

CSS
Now that you have the basic HTML set up, you can start adding some style to
the skin. In Visual Studio, right-click the skin folder called SubtleTrend and
select Add Add New Item. Select Style Sheet from the options listed. Name
it skin.css and click the Add button. Let's give the pages some color, center
the content, and place the content panes as designed by replacing the
contents of the file with the following CSS:

/* Gives selected content color and background color */
#Body *::selection{
 background-color:#D84D41;
 color:#15313F;
}
#Body{
 background-color:#1F4B59;
 color:#FFEDCB;
}
 /* Centers header on page and centers content vertically with line-
height */
 header{
 margin:0 auto;
 width:1170px;
 line-height:120px;
 }
 /* clearfix trick to clear nested floats */
 header:after {
 content: "";
 display: table;
 clear: both;
 }

/* Set page width and center main content section */
 #contentWrap{
 margin:45px auto 0;
 width:1170px;
 }
 /* clearfix trick to clear nested floats */
 #contentWrap:after {
 clear: both;
 content: "";
 display: table;
 }

 /* Set width of main content to about 65% and float left */
 #contentWrap .content-pane {
 float:left;
 width:760px;
 }

 /* Set width of aside pane to about 33%
 to allow padding between panes and float right */
 #contentWrap .aside-pane{
 float:right;
 width:380px;
 }
 /* Clears float, centers content, and gives
 spacing above the lower content pane */
 .lower-pane{
 clear:both;
 margin:45px auto 0;
 width:1170px;
 }
 /* Sets color and size for full width footer */
 footer{
 background-color:#D94D41;
 clear:both;
 color:#FFEDCB;
 height:90px;
 line-height:90px;
 margin-top:45px;
 }
 /* Centers content for footer */
 .footer-wrap{
 margin:0 auto;
 width:1170px;
 }
 /* clearfix trick to clear nested floats */
 footer:after {
 clear: both;
 content: "";
 display: table;

 }

 /* Style links within footer */
 footer .footer-links {
 color:#FFEDCB;
 }
 footer #leftFooter{
 float:left;
 width:45%;
 }
 footer #rightFooter{
 float:right;
 text-align:right;
 width:45%;
 }

Save this file and refresh your test page on your site. Notice that your skin
picked up your CSS file automatically! Sure, it's not all that pretty yet, but you
can fix that later. If you view the source of the rendered page and scan down
the code for a link to skin.css, you will notice that, in fact, your CSS file has
been added to your skin for you. How did this happen? The skinning engine
that comes with DNN has some very handy features built into it. Any CSS file
named skin.css will be automatically added to all of the skins within that
particular skin package. Next, let's create a new CSS file in the skin folder
following the same steps as the skin.css, but this time, name it home.css.
Add the following CSS to this file, save it, and then refresh your page:

#Body {
 background-color:#000;
}

There again, DNN updated the page to include your new CSS file. This is
another feature of the powerful skinning engine. Any CSS file named the
same as a skin file will be automatically linked in the skin (such as two-
column-with-footer.ascx and two-column-with-footer.css). This CSS file
loads after the skin.css file and will take priority over the skin.css file. This
is helpful when you need to override to a specific skin such as a background
image on the body element. You can delete this file as you do not need any
skin-specific styles.

Although it is helpful that DNN linked to the CSS automatically, you need to
understand a little more about where in the document that link shows up. As
CSS by name is cascading, the order that CSS gets loaded is very important.
Also, you may notice that some styles are being specified without being

defined in the stylesheet, such as those from default.css. DNN has several
stylesheets that get loaded onto the page. They are as follows:

Default.css

Module.css

Skin.css

[SkinName].css

Container.css

[ContainerName].css

Portal.css

While creating the styles for your skin, realize that any of these files could
have an impact on your styles and you may need to override them in your
skin to make sure your design is displayed correctly. For example, the
default.css stylesheet specifies font colors, sizes, and line heights for various
content within modules. Default.css is part of the core of DNN and has some
fallback styles to make sure that content is presentable even when there are
no predefined styles for a skin. It is recommended that you not edit this file,
as it can be overridden when upgrading to a different version of DNN.

The next CSS files to load are the files that are associated with any modules
that have been loaded onto the current page. These files are set up by the
module's developer and could have an impact on your specified styles as well.
It is also not a good idea to edit these files as upgrading the module could
overwrite any changes you have made.

Following the module.css files are the skin stylesheets that you create for
your skin, including the skin's default stylesheet (skin.css). Also, any specific
stylesheets for containers used on the current page are added. Lastly, the
portal.css stylesheet is loaded. This is a stylesheet that is edited through the
Site Settings when logged in as a site administrator. It is recommended to not
use this file for any skin-related styling, as site administrators would be able
to edit and possibly remove styles, which could break the skin's design.

What if you want to include some other CSS such as for a CSS responsive
framework or a JavaScript plugin? For this, you can leverage some skin
objects that you'll read about in a later section. See the “Skin Objects” section
later in this chapter for more information.

Overriding Basic Styles
Because DNN loads the default.css file with some predefined styles, you
must add a few more styles in the skin.css file to make sure that the style
persists. You may have noticed that you defined the color on the body tag at
the beginning of the CSS. You do that by using the #Body ID instead of the
body element. DNN adds this ID to the body element, as there can be
conflicting styles in the rich text editor, depending on the text editor being
used in DNN. This allows you to target the body of the page and not the body
tag in the WYSYIG editor. You may wonder why the text color didn't apply to
the content of the page. Many DNN modules add a class of Normal to the
content pane within the container for the module. DNN specifies a color of
#444 in the .Normal definition in default.css. This needs to be overridden in
the skin.css file. Add the following CSS to the end of your skin.css file to
address a few of the styles defined in default.css:

/* Page styles */
.Normal{
 color:#FFEDCB;
 font-family:Arial, Helvetica, sans-serif;
 font-size:18px;
 line-height:1.67;
}
h1,h2,h3,h4,h5,h6{
 color:#FFEDCB;
 font-weight:normal;
}
h2, h2 .title{
 font-family:Georgia, 'Times New Roman', Times, serif;
 font-style:italic;
 font-size:48px;
}

Linking to Files in Your Skin
You may have noticed that you are using HTML5 and since DNN 7 supports
IE8 and up, you have an issue. IE8 does not support HTML5 elements!
Thankfully, the web development community has provided a shim, or “shiv”
as it is known, in the form of html5shiv. Html5shiv is a very popular fix for
forcing IE8 to recognize HTML5 elements. You need to download this file and
reference it in your skin. Download the HTML5Shiv here:
https://github.com/aFarkas/html5shiv.

After downloading the shiv, right-click the SubtleTrend skin folder and select

https://github.com/aFarkas/html5shiv

Add Folder. Name the folder js. Place the html5shiv.min.js file that was
downloaded into this folder and add the following code above the header
element in Home.ascx:

<!--[if IE 8]>
 <script src="<%:SkinPath %>js/html5shiv.min.js"></script>
<![endif]-->

When DNN renders your skin onto your page, all links to resources included
are made relative to the page that you are viewing. For example, if you had
added the link as relative to the skin such as <script
src="js/html5shiv.min.js"></script> and navigate to an About page in the
root of your site with the URL http://yoursite.com/about, the link rendered
for your JavaScript file would be http://yoursite.com/
About/js/html5shiv.min.js and the link to the file would be broken. The
actual location of the file is http://yoursite.com
/Portals/_default/Skins/SubtleTrend/js/html5shiv.min.js.

You could create a link directly to the file including the
/Portals/_default/Skins/SubtleTrend path, but, what would happen if this
skin was installed into a specific site, and not in the _default folder? The link
would need to be updated. Thankfully, DNN provides SkinPath, a property of
the skin class that allows you to always be relative to the skin, independent of
the site's folder or DNN installation. Placing this at the beginning of your path
will then render the link to the file correctly.

This technique is typically used more when you need to include an image in
the skin. Note that any references to images in CSS are relative to the CSS file
within the skin, so this is not an issue for CSS. For an image located in an
images folder within your skin package folder, you would write your code in
the following manner:

<img src="<%:SkinPath %>images/my-photo.jpg" alt="My Photo" />

http://yoursite.com/about
http://yoursite.com/ About/js/html5shiv.min.js
http://yoursite.com /Portals/_default/Skins/SubtleTrend/js/html5shiv.min.js

Document Setup
Your page is starting to take shape, but you might have noticed that with the
ASCX approach, you did not write some of the basic elements that make up a
valid web page within the skin file. You have not declared the document
doctype, nor created the head or the body of the document. You may have also
noticed that when you looked at the HTML approach, DNN stripped these out
of the skin when it was parsed. This is because DNN automatically adds all of
the elements that you need to have on your page when the page is rendered.
DNN skins only include the contents of the body of the page.

However, there are some instances when you'll want to change some
elements that are defined by DNN, such as DOCTYPE, or add some elements,
such as meta tags and additional CSS and JS files. meta tags and CSS and JS
files are configured via configuration files and skin objects, which will be
discussed in the coming sections.

DOCTYPE
Since you are using HTML5, you need to specify that you are using an
HTML5 DOCTYPE. Even though you don't have direct access to the document
DOCTYPE, DNN provides a way for you to accomplish this. DNN uses a specific
XML file with the DOCTYPE specified in the contents of the file. First, you will
create a new XML file by right-clicking the root folder of the new skin
SubtleTrend and selecting Add Add New Item. Choose XML File as the file
type and name it skin.doctype.xml. DNN will recognize this file and use its
contents to add a DOCTYPE to all skins located within this skin folder. Replace
the contents of the file with the following code:

<SkinDocType><![CDATA[<!DOCTYPE html>]]></SkinDocType>

This file can also be found in the preinstalled skin, called Gravity. Just copy
and paste this file into your skin folder. To specify a different DOCTYPE, replace
the contents of the CDATA[…] in the file with your desired DOCTYPE declaration.

A fallback DOCTYPE can also be set through the DNN host settings. If no
DOCTYPE is specified in the skin package, DNN will fall back to the specified
DOCTYPE, which is set in the Host settings. Log into your site as a host,
navigate to Host Host Settings, and expand the Appearance section. There
you will see an option to set a fallback skin DOCTYPE. Although this option can
be used to set a doctype, it is good to create the skin.doctype.xml file, as

setting the fallback skin DOCTYPE will impact all sites on this DNN installation.
Setting this file will also help you when moving or installing the skin package
to another installation where you do not have control of this setting.

Skin Objects
Skin objects are user controls that provide a prepackaged functionality that
can be reused as needed. Skin objects will often allow for display of dynamic
data to the web page or some other functionality that could not be
accomplished in the skin alone. Several are included with DNN, with several
other third-party modules available. Uses range from displaying a logo to a
login link to linking to a JavaScript file or displaying a menu.

Registering Skin Objects
To use one of the preinstalled skin objects, two things are required in the
skin. The first is to register the control in the skin, and the second is to define
the skin objects and their parameters. For example, to use the Logo skin
object, you register the control in the skin by adding the following code to the
home.ascx file. Place it below the <%@ Control … %> directive:

<%@ Register TagPrefix="dnn" TagName="LOGO"
Src="˜/Admin/Skins/Logo.ascx" %>

The TagPrefix attribute will assign a prefix that will be used in the skin to
associate the user control. The TagName attribute will associate the name with
the user control. So, in this case, you would start the skin object as <dnn:LOGO
/>. The source attribute points to the user control that you are using, which in
this case is located in the Admin (at the root of the install) Skins folder.
Navigating to this folder in your DNN installation will show you all of the
skin objects that come prepackaged with DNN.

Defining Skin Objects
To use the skin object in your skin, place the skin object control in your skin
where it is intended to be rendered, specifying an ID and setting the runat
attribute equal to server.

<dnn:LOGO id="siteLogo" runat="server" />

This is all that is required to place the site logo image and add a link to the
home page in your skin. Let's see where this goes in your skin.

<%@ Control Language="C#" AutoEventWireup="true"
 Inherits="DotNetNuke.UI.Skins.Skin" %>
<%@ Register TagPrefix="dnn" TagName="LOGO"
Src="˜/admin/Skins/logo.ascx" %>

<header>
 <dnn:LOGO ID="siteLogo" runat="server" />
 Navigation will go here
</header>
…

If the logo doesn't show up on your page, this might be because you have not
defined a logo for your website. Log in to your site as the administrator or
host and navigate to Admin Site settings. On the Basic Settings tab, expand
the Appearance section and see if a file is specified for the logo. If not, upload
a new image file for a logo. Scroll to the bottom of the page and click the
Update button. Navigate back to your test page; you should now have a logo at
the top of the page.

Let's explore what this skin object rendered in the HTML:

<a title="My DNN Site" id="dnn_siteLogo_hypLogo"
href="http://dnndev.me/">
 <img id="dnn_siteLogo_imgLogo" alt="My DNN Site"
src="/Portals/0/Logo.png">

As you can see, the skin object produced the image that you specified as the
site logo in the Site Settings with a link back to the root of the site (my local
URL that is set up in IIS is dnndev.me). Notice that it also used the name of
the site (also specified in Site Settings) as the alt attribute for the image and
the title attribute of the link. DNN also created IDs for each element using
the ID that you specified in the skin object while prepending dnn_ and
appending _hypLogo and _imgLogo to the link and image, respectively. This
will provide you with the ability to apply CSS to the elements without having
to wrap the skin object in an extra element.

Next, you will add login and register links and a copyright to the footer of the
site. First, to register the skin objects, add the following code below the
existing skin object registration code:

<%@ Control Language="C#" AutoEventWireup="true"
 Inherits="DotNetNuke.UI.Skins.Skin" %>
<%@ Register TagPrefix="dnn" TagName="LOGO"
Src="˜/admin/Skins/logo.ascx" %>
<%@ Register TagPrefix="dnn" TagName="LOGIN"
Src="˜/admin/Skins/login.ascx" %>
<%@ Register TagPrefix="dnn" TagName="USER"
Src="˜/admin/Skins/user.ascx" %>
<%@ Register TagPrefix="dnn" TagName="COPYRIGHT"

 Src="˜/admin/Skins/copyright.ascx" %>

Next, define the skin objects in the footer:

 …
<footer>
 <div class="footer-wrap">
 <div id="leftFooter">
 <dnn:COPYRIGHT ID="siteCopyright"
 CssClass="copyright-text"
 runat="server" />
 </div>
 <div id="rightFooter">
 <dnn:USER ID="siteRegistration"
 LegacyMode="false"
 ShowAvatar="true"
 ShowUnreadMessages="true"
 CssClass="footer-links"
 Text="Register for Site"
 runat="server" /> |
 <dnn:LOGIN ID="siteLogin"
 CssClass="footer-links"
 LegacyMode="false"
 Text="Sign In"
 LogoffText="Sign Out"
 runat="server" />
 </div>
 </div>
</footer>

In this example, you can see that there are several different attributes
available for the skin objects. Each skin object can have its own set of
attributes. If you are using Visual Studio, you may have noticed that these
were shown as available attributes in the skin objects by IntelliSense. This is
one of the big reasons why using Visual Studio as the code editor can be very
helpful. The COPYRIGHT skin object displays the text from the Copyright
text field located on the Admin Site Settings page in the Basic Settings tab in
the Site Details section. For this skin object, you can set a class for the text
that is produced by the skin object through the use of the CssClass attribute.
The HTML that is produced for the Copyright skin object is as follows:

 Copyright 2014 by DNN Corp

DNN added a span element with the class that you specified in the skin object

as well as prepending the ID you specified with dnn_ and appending
lblCopyright. A handy feature that DNN uses for the copyright is keeping the
current year in the copyright by replacing the year in the Copyright text field
in the Site Settings page with [year].

Next, you will look at the Login skin object. This skin object has even more
attributes. The Text attribute shows the text of the link that is rendered while
logged out, and the LogoffText attribute shows the text of the link while
logged in. The Login and User skin objects both define a LegacyMode attribute.
Setting this attribute to false will allow you to leverage some of the social
aspects of DNN, such as message and site notifications and user avatars. If
you save your skin and refresh your page, you will see that all of these are
rendered out, yet they are unstyled. Now that you have explored the advanced
functionality of these skin objects, you can use much more simplified
versions since the design does not require this level of complexity.

If you would like to leverage the updated versions of these, you can find the
CSS for these controls in skin.css for the Gravity skin, which is located in the
Portals _default Skins Gravity folder. You can simplify the Login and
User skin objects by using the legacy mode. Update the skin objects as
follows:

<footer>
 <div class="footer-wrap">
 <div id="leftFooter">
 …
 </div>
 <div id="rightFooter">
 <dnn:USER ID="siteRegistration"
 CssClass="footer-links"
 Text="Register for site"
 LegacyMode="true"
 runat="server" /> |
 <dnn:LOGIN ID="siteLogin"
 CssClass="footer-links"
 Text="Log In"
 LogoffText="Log Out"
 LegacyMode="true"
 runat="server" />
 </div>
 </div>
</footer>

Set LegacyMode to true for the User and Login skin objects. You also removed
the attributes for ShowAvatar and ShowUnreadMessages from the User skin

object, which will default to false. Now this will render links with the classes
specified in the CssClass attributes and links to the pop-ups for site
registration and login forms when logged out. However, when you're logged
in, DNN switches these with a link to the user's profile page for the User skin
object and a link to log out of the site for the Login skin object. As you can
see, advanced coding would be required to perform all of these functions were
these skin objects not available.

Setting Up a Responsive Web Design Skin
Now that you have a basic layout, let's make this site ready for the different
sized devices that will access it. Enabling your site to be displayed properly on
all devices takes some planning to ensure that your users will be able to easily
navigate your site from whatever device they are using. It is a good idea to
work through the layout with wireframes for the different screen sizes before
you begin designing the site.

Once you have decided how you are going to handle the layout for different
media sizes, you are ready to make your skin responsive. There are two things
required for this: setting up the viewport and providing CSS for the other
sized media devices.

Setting the Viewport Using the Meta Skin Object

Setting up the viewport to device width will cause the site to scale correctly to
the size of the device; it won't try to zoom out to include the width of the
whole page. The initial scale setting will establish the correct ratio between
the device and CSS pixels. To set up the viewport, you must add the following
META tag to the head of the document:

<meta name="viewport" content="width=device-width, initial-
scale=1.0">

Yet, you do not have access to the document's head element. However, DNN
provides the Meta skin object to handle this. First, register the skin object to
the page by adding it to the list of the skin object's registration declarations.

<%@ Register TagPrefix="dnn" TagName="META"
Src="˜/admin/Skins/Meta.ascx" %>

Directly below the registration declarations, define the skin object as follows:

<dnn:META ID="viewport"

 Name="viewport"
 Content="width=device-width, initial-scale=1.0"
 runat="server" />

Note that you are setting the attributes for name and content the same as you
would in normal HTML. The main difference is that you are writing this as a
skin object, which will insert the appropriate META tag to the head of the
document (however, if you want to set the http-equiv attribute, you'll need to
use HttpEquiv, without a dash).

Creating the CSS Using the Styles Skin Object

Next, you need to create some CSS to define how the browser should handle
the page layout at a smaller size. You can do this two different ways. You can
specify @media queries within the skin.css files or you can create a specific
CSS file for each size and link directly to those files. For this example, you will
create specific CSS files for each skin size.

Start by creating a stylesheet for smaller desktops or large tablets that are
1200 pixels wide or smaller. Even though this includes small tablets and
phone sizes, you'll create two more new stylesheets a bit later to address
those sizes specifically. Add a new file to your skin package by right-clicking
your skin folder, called SubtleTrend, and selecting Add Add New Item from
the options. Select Style Sheet from the options and name it media-medium-
screens.css. Add the following CSS to the file and save it:

/* Reduce height of header */
header {
 line-height:90px;
}

/* Reduce width of full width elements to fit smaller size */
header,
#contentWrap,
.lower-pane,
.footer-wrap{
 width:960px;
}

/* set width of aside pane to about 65% */
#contentWrap .content-pane {
 width:625px;
}

/* set width of aside pane to about 33% to allow padding between
panes */

#contentWrap .aside-pane {
 width:320px;
}

To link directly to the CSS file while keeping it relative to the skin package,
you can leverage the Styles skin object. Register the Styles skin object with
your other skin object registration declarations and define it in your skin.
(Note: order does not matter when registering skin objects.)

<%@ Register TagPrefix="dnn" TagName="STYLES"
Src="˜/admin/Skins/Styles.ascx" %>

Add the following code below the Meta skin object:

<dnn:STYLES id="mediaMediumScreens"
 Name="mediumScreens"
 Media="only screen and (max-width: 1200px)"
 StyleSheet="media-medium-screens.css"
 UseSkinPath="true"
 runat="server" />

Now refresh your page and resize your browser to a size less than 1200px
wide. The content width on the page will reduce in size to 960 pixels, as
defined in the CSS for displays smaller than 1200px.

This created the following link to the CSS file in the head of the document:

<link id="mediumScreens"
 href="/Portals/_default/Skins/SubtleTrend/media-medium-
screens.css"
 rel="stylesheet" type="text/css"
 media="only screen and (max-width: 1200px)">

So, let's take a look at what you just did. The Name attribute is used as the ID
for the link. The StyleSheet attribute specifies the stylesheet to link to.
Setting the value of the UseSkinPath attribute to true causes the stylesheet
you specified to be relative to the skin package of the current skin. Declaring
this as false would set the URL of the StyleSheet attribute relative to the
root of the site. The Media attribute specifies the type of device and the
maximum browser width that the CSS file should take effect.

Next, let's create a layout for smaller size screens such as large tablets in
portrait mode and small tablets less than 992px. Create a new CSS file by
right-clicking the SubtleTrend skin package folder and selecting Add Add
New Item from the options. In the Add New Item window, select Style Sheet
and name it media-small-screens.css.

Place the following CSS in the file and save it:

/* Reduces size of logo and pushes it away from left edge of screen
*/
#dnn_siteLogo_hypLogo {
 max-width: 300px;
 margin-left:30px;
}

/* set width of all panes and page elements to fluid width */
header,
#contentWrap,
#contentWrap .content-pane,
#contentWrap .aside-pane,
.lower-pane,
.footer-wrap{
 width:100%;
}
/* Add padding to footer */
footer {
 padding:0 30px;
}

Since you have already registered the Styles skin object, you only need to
define the new instance of the skin object for smaller screens. Add the
following code to the home.ascx file, below the definition for the Styles skin
object for the medium screens:

<dnn:STYLES id="mediaSmallScreens"
 Name="smallScreens"
 Media="only screen and (max-width: 992px)"
 StyleSheet="media-small-screens.css"
 UseSkinPath="true"
 runat="server" />

The order that your styles are defined in your skin is important. The
stylesheets are loaded in the order they are defined in your skin. The
stylesheet that is defined last will take precedence as long as the conditions
set by the Media attribute are true. Also, there is another attribute, IsFirst,
that can be set to true to make sure that file is loaded before any of the other
stylesheets. However, if multiple files with the attribute IsFirst are set to
true, they will be loaded in the order they are defined within the skin. The
default value for IsFirst is false.

Refresh your page and reduce your browser width to less than 992px. The
content in the content pane should now be full width and the content in Aside
Pane should now fall below the content pane content. Note that you have

made only a few changes to override the medium screen styles. Because you
set up the medium stylesheet to be a maximum width of 1200px, that
stylesheet is also inherited at the smaller sizes and only the styles defined in
the smaller stylesheet will override.

Lastly, you will create a new stylesheet called media-xtra-small-screens.css.
Place the following styles in the stylesheet and save it:

/* Reduce size of logo to fit smaller screens */
#dnn_siteLogo_hypLogo img{
 max-width: 170px;
}

/* Change footer height to be auto to fit the content */
footer {
 height: auto;
 line-height:25px;
 margin-top: 0;
}
/* Left align text and set Register and Login links to fall below
copyright */
 footer #leftFooter,
 footer #rightFooter {
 text-align: left;
 width: 100%;
 }

Then link to your new file containing the Styles skin object using the
following code:

<dnn:STYLES id="mediaXtraSmallScreens"
 Name="xtraSmallScreens"
 Media="only screen and (max-width: 768px)"
 StyleSheet="media-xtra-small-screens.css"
 UseSkinPath="true"
 runat="server" />

This didn't do much other than reduce the size of the logo and cause the
content of the footer to stack, but as you begin creating containers, you will
be adding more CSS to these files.

Conditionals for Internet Explorer

As mentioned previously, DNN officially supports Internet Explorer versions
8 and up. Although your skin doesn't need it, as the CSS already falls back
gracefully in IE8, the Styles skin object is also helpful for adding conditionals
for Internet Explorer stylesheets. For example, to load a stylesheet for IE

versions less than or equal to 8, set the Condition attribute equal to IE lte 8.
For example, the following code:

<dnn:STYLES id="IE8styles"
 Name="IE8styles"
 Condition="IE 8"
 StyleSheet="IE8.css"
 UseSkinPath="true"
 runat="server" />

would render the following:

<!--[if IE 8]>
 <link id="IE8styles" rel="stylesheet"
 type="text/css"
href="/Portals/_default/Skins/SubtleTrend/IE8.css" />
<![endif]-->

Available Skin Objects
There are many skin objects included with DNN that we are not able to fully
describe in this chapter. To see the available skin objects for DNN 7, refer to
the DNN Wiki on the DNN Software website.

Client Resource Management (CRM)
The speed of your website is important, and every millisecond counts,
especially when dealing with mobile devices. Multiple calls to the server for
CSS and JavaScript files take time and add up. Search engines have placed a
lot of importance on this in regard to their page rankings. DNN provides the
Client Resource Manager, which you can leverage to merge all of your
multiple CSS files and JavaScript files into one call each from the server.

The Client Resource Manager will take only the files that need to be loaded
for each specific page and determine if it is already being called to avoid
duplication, which can also lead to conflicts in JavaScript. It will then
combine all of the files and cache them on the server. The Client Resource
Manager, by default, is not enabled to compress and combine all files;
however, you can still use it to link to CSS and JavaScript files for your skin.
To learn more about the Client Resource Manager, see Chapter 4.

To make use of the CRM in the skin, you must first register the control as
follows:

<%@ Register TagPrefix="dnn"

 Namespace="DotNetNuke.Web.Client.ClientResourceManagement"
 Assembly="DotNetNuke.Web.Client" %>

The CRM can now be used by the DnnCssInclude and DnnJsInclude skin
objects.

CSS

Let's say, for example, that you want to leverage a CSS framework to assist
with layout and flexibility for mobile device resolutions. To load a CSS file
through the Client Resource Manager, add the following code below the
Register definitions:

<dnn:DnnCssInclude FilePath="myOtherCSS.css" runat="server"
 PathNameAlias="SkinPath" Priority="40" />

This will place a link to the CSS file in the head of the document. The
FilePath attribute defines the link to be relative to the skin package. The
Priority will specify where it will be loaded relative to other resources (see
Table 17.1 for the default DNN CSS priorities). For example, if you wanted to
load the file just before skin.css is loaded, you would specify the value for
the priority attribute between 11 and 14. If you wanted to load the file last,
you would specify a priority of greater than 35. In the previous example, the
linked to file would be placed after all of the other CSS files.

Table 17.1 CSS File Priorities

CSS File Priority
DefaultPriority 100
DefaultCss 5
AdminCss 6
FeatureCss 7
IeCss 8
ModuleCss 10
SkinCss 15
SpecificSkinCss 20
ContainerCss 25
SpecificContainerCss 30
PortalCss 35

JS

Adding a JavaScript file to the CRM is very similar to adding a CSS file. Create
a new folder in the skin's folder and name it js. Then, add a new JavaScript
file to the js folder and name it scripts.js. Once the Resource Manager has
been registered in the skin, you can load the file using the following code:

<dnn:DnnJsInclude FilePath="js/scripts.js" runat="server"
 PathNameAlias="SkinPath" Priority="50" />

This will link to the scripts.js file located in the js folder within the current
skin package. Table 17.2 shows a list of the priorities of the JavaScript files
loaded in by DNN.

Table 17.2 JavaScript File Priorities

JavaScript File Priority
DefaultPriority 100
jQuery 5
jQuery Migrate 6
jQuery UI 10
DnnXml 15
DnnXmlJsParser 20
DnnXmlHttp 25
DnnXmlHttpJsXmlHttpRequest 30
DnnDomPositioning 35
DnnControls 40
DnnControlsLabelEdit 45
DnnModalPopup 50
HoverIntent 55

Another useful attribute for JavaScript is the ForceProvider attribute. By
specifying a provider, you can dictate where in the document the file will load:
in the head or in the top or bottom of the body element. DnnBodyProvider is
the default provider specification for JavaScript files.

The following providers are available and will be useful with JavaScript:

DnnPageHeaderProvider: Places the link to the file in the head of the web
page document

DnnBodyProvider: Places the link to the file at the top of the body of the
document

DnnFormBottomProvider: Places the link to the file at the bottom of the
body of the document

Using the DNN's CRM, let's change the html5shiv that you added earlier to
use the CRM. Remove the following code:

<!--[if IE 8]>
 <script src="<%:SkinPath %>js/html5shiv.min.js"></script>
<![endif]-->

And replace it with the following:

<dnn:DnnJsInclude FilePath="js/html5shiv.min.js" runat="server"
 PathNameAlias="SkinPath" Priority="50"
 ForceProvider="DnnPageHeaderProvider" />

Notice that you are no longer using the <%:SkinPath%> property, as SkinPath
is already available in the skin object.

Navigation
DNN has a very powerful page management system. It allows pages to be
added, removed, renamed, hidden, and disabled, with all of this action being
dynamically displayed in the navigation. This page structure is rendered to
the skin through the use of a navigation provider. DNN is flexible enough to
allow for several different navigation providers; however, the default
navigation provider included with DNN, called DDR Menu, provides a great
deal of flexibility through custom templates.

Sample Menu Structure
Let's add the following sample HTML, which represents the intended
rendered navigation for the site to the skin. Then, you will add CSS to style
the menu as desired. Once you have the HTML styled appropriately, you will
then create the template that the DDR Menu provider will use to dynamically
create the navigation based on the page structure from the site. The DDR
Menu provider template engine is flexible enough to take the approach of
creating the desired HTML and reverse engineering it into a menu template.
Replace the content in the header after the logo skin object with the following
HTML:

…
<header>
 <dnn:LOGO ID="siteLogo" runat="server" />
 Menu
 <nav>

 <li class="first">Home
 <li class="dropdown active">About>

 Our History
 <li class="active">Our Leadership
 Our Community

 <li class="dropdown">Contact>

 Our Locations
 Support

 <li class="last">Blog

 </nav>
</header>
…

This is a static menu with a toggle button that will be used to toggle the menu
visibility at smaller device sizes. This menu does not currently represent the
structure of the site. We have also included classes for active and first and last
menu items, as well as classes for items that have child pages.

Next, add the following CSS to your skin.css file. The CSS is commented to
walk you through the style for the menu. It includes media queries for
smaller sized screens as well. You will not be putting these into the individual
size specific stylesheets. However, you will move these to a menu-specific
stylesheet a bit later.

/* Hides Toggle button on large screens */
#menuToggle{
 display:none;
}
/* Positions nav and displays as a table to vertically aligned
contents */
nav{
 display:table-cell;
 float:right;
 font-size:18px;
 font-weight:700;
}
/* Resets line-height from header and removes margins */
nav > ul {
 display:inline-block;
 line-height:1;
 margin:0;
}
/* Hides bullets */
nav ul li{
 list-style:none;
}
/* Sets position and sizes */
nav > ul > li{
 display:table-cell;
 padding:0 0 0 15px;
 position:relative;
 vertical-align:middle;
}
/* Adds vertical pipe and spacing around menu items */
 nav > ul > li:after{
 content:'|';
 padding:0 0 0 15px;
}

 /* Don't add pipe on last menu item */
 nav > ul > li.last:after{
 content:none;
 padding:0;
 }
 nav ul > li > a:visited{
 color:#FFEDCB;
 }
 /* sets font styles */
 nav ul li a{
 color:#FFEDCB;
 display:inline-block;
 text-decoration:none;
 text-transform:uppercase;
 }
 /* Hides caret on desktop */
 nav ul > li > b {
 display:none;
 }
 /* Sets color for active menu items */
 nav ul li.active > a{
 color:#D84D41;
 }
 /* Sets hover color */
 nav ul li:hover > a,
 nav ul li.active:hover > a{
 color:#3a83a7;
 }

 /* Menu dropdown */
 /* Sets background color, positions dropdown,
 hides dropdown, and sets CSS transition */
 nav > ul > li ul{
 background-color:#1F4B59;
 margin-left:-20px;
 padding-top:15px;
 max-height:0;
 min-width:120px;
 overflow:hidden;
 position:absolute;
 transition: all .5s;
 z-index:500;
 }
 /* Shows sub nav when hover over parent menu item */
 nav ul li:hover ul{
 max-height:600px;
 }
 /* Removes padding and margins from child items */
 nav > ul > li > ul li{
 margin:0;
 padding:0;

 }
 /* Sets padding and keeps text from wrapping */
 nav > ul > li > ul li a {
 padding:10px 20px;
 white-space:nowrap;
 }

/* Small Screens */
@media only screen and (max-width: 992px){
 /* Shows menu toggle button; sets width and styles button to be
round */
 #menuToggle {
 background-color:#15313F;
 border:1px solid #FFEDCB;
 border-radius: 35px;
 color:#FFEDCB;
 display: block;
 float:right;
 line-height:20px;
 margin:15px 15px 0 0;
 padding:15px 7px;
 text-decoration:none;
 text-transform:uppercase;
 transition: all .5s;
 }
 /* Shows hover style */
 #menuToggle.active{
 background-color:#FFEDCB;
 border:1px solid #15313F;
 color:#15313F;
 }
 /* sets background color */
 nav {
 background-color: #15313F;
 }
 /* Hides nav by default */
 nav,
 nav ul li ul {
 max-height: 0;
 overflow: hidden;
 transition: all 1s ease;
 }
 /* resets from desktop styles */
 nav,
 nav ul ul,
 nav > ul,
 nav ul li {
 clear: both;
 display: block;
 margin:0;
 padding:0;

 width: 100%;
 }
 /* shows nav after JavaScript adds open class to nav */
 nav.open {
 max-height: 600px;
 }
 /* clearfix */
 nav > ul > li:after {
 content: '';
 padding: 0;
 font-size: 0;
 }
 /* Adjusts item height to be better for touch */
 nav > ul > li > a {
 line-height: 50px;
 padding:0 15px;
 }
 /* Sets links to display as block to be better for touch */
 nav ul li a {
 display:block;
 }
 /* Styles b element to be a toggle for sub nav */
 nav > ul > li.dropdown > b {
 background-color: #1F4B59;
 border: 1px solid #FFEDCB;
 color: #FFEDCB;
 cursor:pointer;
 display: block;
 line-height: 25px;
 position:absolute;
 right:10px;
 text-align: center;
 top:10px;
 width: 25px;
 transition: all .5s;
 -webkit-transform: rotate(90deg);
 -moz-transform: rotate(90deg);
 -ms-transform: rotate(90deg);
 -o-transform: rotate(90deg);
 transform: rotate(90deg);
 }
 /* Rotates b element after JavaScript opens subnav */
 nav > ul > li.dropdown.open > b {
 -webkit-transform: rotate(-90deg);
 -moz-transform: rotate(-90deg);
 -ms-transform: rotate(-90deg);
 -o-transform: rotate(-90deg);
 transform: rotate(-90deg);
 }
 /* Turns off Hover expanding for subnav */
 nav ul li:hover ul {

 max-height:0;
 }
 /* Resets subnav from desktop view and hides */
 nav ul li ul {
 margin:0;
 max-height:0;
 position: relative;
 transition: max-height 1s;
 padding-top:0;
 }
 /* Shows subnav after Javascript adds open class to subnav */
 nav > ul li.open ul {
 max-height: 200px;
 }
}

Lastly, add the following JavaScript to the scripts.js file that you created in
the Client Resource Manager section. This JavaScript will toggle the menu as
well as the child menu items while on smaller devices.

$(document).ready(function () {
 $('#menuToggle').click(function () {
 $(this).toggleClass('active');
 $('nav').toggleClass('open');
 $('.dropdown').removeClass('open');
 return false;
 });
 $('.dropdown > b').click(function () {
 $(this).parent('li').toggleClass('open');
 return false;
 });
});

You now have a fully functional, yet static, responsive menu. Next, you will
work at making it dynamic. To see the results of your work as you go, you
first need to add some pages to test the navigation. While logged in as a site
administrator or host, navigate to Admin Page Management. Right-click the
root of your site and select Add Page(s) from the drop-down. In the Pages text
area to the right, add the following:

About
>Our History
>Our Leadership
>Our Community
Contact
>Our Locations
>Support
Blog

This will create the pages that you have in the sample HTML. Once completed
with the DDR template, the menu should render the same as the static HTML
example. When adding the new pages, they may not appear in the menu
depending on the security settings of the pages. Make sure to go to each
page's settings and set the permission rights to be viewable by all. Right-click
the Contact page and select Disable Link in Navigation. We will explore the
impacts of this a bit more later. Next, you will look at the pieces required to
get the DDR Menu working.

DDR
The DDR Menu provider is more complicated than other skin objects, as it
requires a template that represents the intended rendered HTML. We will
cover some of the basic options in this example; however, there are many
more configuration options available on the DNN Wiki that are not covered in
this book (see http://www.dnnsoftware.com/wiki/page/ddrmenu). There are
several files and attributes for the DDR provider that must be understood
before creating the menu template.

Menu Style

The DDR Menu provider uses a menu style folder to define the design and
layout of the menu. The menu style folder contains the template file, which
can be token-, XSLT-, or Razor-based; a manifest file that determines the
appropriate files to be used by the menu provider; and optional stylesheets
and JavaScript files.

Menu File Structure

To create the menu style folder, right-click the SubtleTrend skin folder and
select Add New Folder. Name the folder ResponsiveMenu. This menu can be
named whatever you choose; you will reference this folder in the MenuStyle
attribute in the skin object for the skin.

DDR provides a lot of flexibility for building the template by providing
options to create MVC Razor, XSLT, or token-based templates. While the
Razor and XSLT approaches provide some great flexibility, the token-based
approach will provide much of the functionality you will need on a normal
basis. This approach will work perfectly for the menu in this example.

Menu Stylesheets

http://www.dnnsoftware.com/wiki/page/ddrmenu

Right-click the ResponsiveMenu folder and select Add Add New Item. Select
Style Sheet from the file types and name it menuStyles.css. This can be
named whatever you choose, as it will be referenced later in the menu's
manifest file. Move the CSS that you added for the menu in the skin.css file
to this file and save it. You could leave the styles in the skin.css file and
things would work perfectly fine; however, doing it this way will allow you to
keep the styles for the menu together with the menu resources.

Menu JavaScript

Next, right-click the ResponsiveMenu folder and select Add Add New Item.
Select JavaScript file from the file types and name it menuScript.js. Move the
JavaScript from the scripts.js file that you created earlier to this file and
save it. Again, moving it ensures that the JavaScript is loaded when the menu
is.

Menu Template

The next step is to create the tokens template file. Right-click the
ResponsiveMenu folder and select Add Add New Item. Select text file from
the file types and name it menuTokens.txt. Move the HTML for the anchor for
the Menu Toggle link as well as the <nav> element with all of its contents
from the skin to this new file and save all files. We will come back to make
the menu dynamic a bit later.

Menu Manifest

Lastly, right-click the ResponsiveMenu folder and select Add Add New Item.
Select XML File from the file types and name it menudef.xml. This is the one
file that must be named exactly as directed, as the menu provider references
this file to assign the other files to their roles. Add the following content to
this file and save it:

<?xml version="1.0" encoding="utf-8" ?>
<manifest>
 <template>menuTokens.txt</template>
 <scripts>
 <script>menuScript.js</script>
 </scripts>
 <stylesheets>
 <stylesheet>menuStyles.css</stylesheet>
 </stylesheets>
</manifest>

This is the menu's manifest file, which declares which files to use for the
templates, scripts, and stylesheets. This is where you reference the files that
you just created. Next, you need to register and declare the menu provider in
the skin.

Adding the Menu Provider to the Skin

Register the menu provider by placing the following code at the top of the file
with the other control's register directives:

<%@ Register TagPrefix="ddr" TagName="MENU"
 Src="˜/DesktopModules/DDRMenu/Menu.ascx" %>

Next, declare the skin object by replacing the contents of the header below the
logo, as follows:

…
<header>
 <dnn:LOGO ID="siteLogo" runat="server" />
 <ddr:MENU ID="mainNav" MenuStyle="ResponsiveMenu" runat="server" />
</header>
…

You will see that the value for the MenuStyle is the name of the folder that
contains the menu files. This is very important. The navigation provider will
look for the manifest file in this folder in the root of the skin package. Save
this file and refresh your site. You should see the menu as it was when it was
in the skin file. If you do not, make sure you moved all of the code over to the
appropriate files and are referencing the correct MenuStyle folder in your
menu skin object in your skin.

There are several other options for the DDR Menu, such creating a certain
HTML structure for the main menu and using a second instance of the menu
provider with a different template for the footer where you may want to
define an alternate HTML structure. The menu can also be configured to only
show root menu items or only show the current or a specific page's children.
Another great use of the DDR Menu is for use as a custom breadcrumb.

Menu Template

DDR Menu refers to pages as nodes. Use the [*>NODE] directive to define the
location for the menu's template. Move all of the list items out of the root
unordered list to another file to keep as a reference. Then, add the [*>NODE]
directive inside the ul element, as shown:

Menu
<nav>

 [*>NODE]

</nav>

This will cause the provider to repeat the HMTL defined in the [>NODE]…[/>]
template for each node (page) in this location. Below the closing of the nav
element, add the following code:

…
</nav>
[>NODE]

 [=TEXT]

[/?]

Refresh your page to see your menu. Well, some of it anyway. This displays
the root menu only and the items still just link to #. You will define what
happens with child nodes (pages) later. This template will repeat everything
within the [>NODE]…[/?] directive for each item at the root level. The [=TEXT]
token adds the text from the page name that is set in the page settings for
each page. You will also notice that the last item still has the vertical pipe at
the end, as defined by the CSS for each menu item, and the menu works on
smaller screens but there are no toggles for submenus.

First, let's get rid of the vertical pipe from the last menu item. The CSS
references the class of last to get rid of the vertical pipe, so you want to make
sure that the last list item has this class. The DDR Menu includes some very
handy conditional directives that allow you to test for certain situations and
render different HTML based on those conditions. If the condition is true,
anything within the directive will be displayed. So, you will use the [?LAST]…
[/?] conditional to test whether it is the last node. For good measure, you will
also use the same technique to add the first class to the first list item.
Update your [>NODE] template as follows:

[>NODE]
 <li class="[?FIRST]first [/?][?LAST]last[/?]">
 [=TEXT]

[/?]

Save the file and refresh your page. Using your browser's developer tools to

inspect the menu items, you will see that the first list item has the class of
first and the last list item has the class of last. You will also see that the
vertical pipe on the last list item is now gone.

While you are adding some helpful classes, you still need a couple more to be
added to the list items. Using the [?NODE]…[/?] conditional, you can test to
see if the page has children and apply the dropdown class if the condition is
true. Using the [?SELECTED]…[/?] conditional, you can test to see which node
is the current page and apply the active class to that list item:

[>NODE]
 <li class="[?NODE]dropdown [/?][?SELECTED]active [/?]
 [?FIRST]first [/?][?LAST]last[/?]">
 [=TEXT]

[/?]

Refresh your browser and inspect the element with your browser's developer
tools. You will see that the pages that have children pages now have the class
of dropdown on the list items. Also, the current page is highlighted in orange
because it now has the class of active applied to the list item for that node.
Now, let's add a few more tokens to build the rest of the navigation. Add the
[=URL] token to the href attribute of the anchor as well as the target
attribute with a value of [=TARGET]. This will allow the page to open to a new
browser if it has been set to open into a new page in the page's settings. Using
the [?NODE]…[/?] conditional again, you can add the chevron to the nodes
with children for viewing at a smaller resolution by adding the b element.
Your [>NODE] template should now look like this:

[>NODE]
 <li class="[?NODE]dropdown [/?][?SELECTED]active [/?]
 [?FIRST]first [/?][?LAST]last [/?]">
 [=TEXT]
 [?NODE]
 >
 [/?]

[/?]

Save your file and refresh your page. You can now navigate through the root
page level of your site. You will also notice that, when viewing at smaller
resolutions, the chevrons now appear for your parent pages. Things are
looking great right now, but you have just a couple of more things to take care
of. DNN includes the ability to disable a page as you did for the Contact page

after you created the test pages. Clicking the menu item for that page will
produce a 404 message, letting you know that the page could not be found.
This is obviously not an experience you want for your users. DDR Menu has
another conditional that will work perfectly for this. You can create two
versions of the link, one with a URL to navigate with and another with an # as
a placeholder. You can also use a span instead of an anchor, but for this
example, we will stick with the link. Update your [>NODE] template as follows:

[>NODE]
 <li class="[?NODE]dropdown [/?][?SELECTED]active [/?]
 [?FIRST]first [/?][?LAST]last[/?]">
 [?ENABLED]
 [=TEXT]
 [?ELSE]
 [=TEXT]
 [/?]
 [?NODE]
 >
 [/?]

[/?]

Notice the [?ELSE] conditional directive. It allows you to check to see if a
condition is true or false and then provide a different pattern depending on
the results returned. For the disabled page, we have removed the [=URL]
token, no longer have a target attribute available, and have added a class of
disabled.

Lastly, you need to add your child pages. Using the [?NODE]…[/?] conditional
directive that you created to add the chevron, you can add the directive to
build out the child pages with the same template. You do this the same way
that you specified the root menu in the nav element. This will direct the menu
provider to use the same [>NODE]…[/?] template for all child pages as well.
Now, your entire template should be as follows:

Menu
<nav>

 [*>NODE]

</nav>
[>NODE]
 <li class="[?NODE]dropdown [/?][?SELECTED]active [/?]
 [?FIRST]first [/?][?LAST]last [/?]">
 [?ENABLED]
 [=TEXT]

 [?ELSE]
 [=TEXT]
 [/?]
 [?NODE]
 >

 [*>NODE]

 [/?]

[/>]

Refresh your page and the sub-navigation will now show when the parent
page is hovered. Resize your browser to a smaller resolution; notice that the
chevron button has been added to the menu items that contain child pages.
Clicking this button will toggle the sub-navigation.

Creating Alternate Skins
The skin is pretty flexible for allowing different layout options, but what if
you want to have a banner and a three-column layout? What if you only want
to have a full-width layout, which is great for admin pages? You can create
other skins in the same skin package and reuse the styles.

You will create a second, full-width skin that will be great for applying to
admin pages and any other pages that might require the page's full width. You
can repurpose the home.ascx skin by creating a copy and making a few
adjustments. Copy and paste your home.ascx skin in your
˜/Portals/_default/Skins/SubtleTrend folder and rename it full-
width.ascx. Navigate to the About page and change the page settings to use
the new Host: SubtleTrend - full-width skin. Your page should look the
same as your other pages with your home.ascx skin, as it is just a copy right
now. Add a new HTML module to the Content Pane and add some test
content to the module.

Edit the full-width.ascx skin and remove the TopPane div and the entire
contentWrap div, including its contents. Change the LowerPane ID to
ContentPane and change the class to content-pane.

If you refresh your page now, you will see that your skin stretches the full
width of the browser and is not centered to be consistent with the rest of your
design. You can very easily fix this with a skin-specific stylesheet. Right-click
the SubtleTrend skin folder and select Add Add New Item. Select Style Sheet
from the file types, name the file the same name as the skin (full-
width.css), and click the Add button. Replace the contents with the following
CSS and save the file:

.content-pane{
 float:none;
 margin:45px auto;
 width:1170px;
}
@media screen and (min-width:992px) and (max-width:1199px){
 .content-pane {
 width: 960px;
 }
}
@media screen and (max-width:991px){
 .content-pane {
 width: 100%;
 }

}

You now have a full width version of your skin. Refresh your page and you
will see that it is now full width.

Creating Containers
Containers resemble skins by providing a specific look and feel; however, they
are specified at a module level instead of the page level. They can be used to
apply different styles to different modules. If you note in the design, the title
in the main section is orange, and the background is the same color as the
page. The content in the Aside Pane, however, has a beige title and a darker
blue background. By contrast, the lower content section has a beige
background with blue text. Not to mention the top banner section has the title
in a large circle with other content to the right of the page. One approach to
achieve this design would be to set these styles based on the content panes,
and in some cases that is preferable, as it can keep the design a bit more
consistent. However, creating flexible styles that can be applied at the module
level will allow you to move these styles around on the page.

Creating the Folder Structure
The process of creating a container is similar to the process of creating a skin.
They follow the same rules for site permissions. If you want your containers
to be available to the entire DNN installation, you add your container package
to the ˜/Portals/_default/containers folder. To make the containers be
available for your specific site, you need to create a containers folder within
your specific site folder, such as ˜/Portals/0, where 0 is the ID of your site.
As with the skin, you will create the containers in the _default folder to allow
them to be available at the installation level. Right-click the
˜/Portals/_default/containers folder, select Add New Folder, and name it
the same as the skin package, SubtleTrend.

Creating Your First Container
You'll start by creating the container that is used in the Aside Pane in the
design. It has a beige h2 title and a dark blue background. Right-click the
SubtleTrend folder and select Add Add New Item. Select Web User Control
from the C# section. Uncheck the Place Code in Separate File option and give
it a name of H2 Title - Blue.ascx. Click the Add button. Make sure to name
your container something that makes it easy to identify when adding to the
page later. Replace all of the code in the file with the following code and save
the file:

<%@ Control Language="C#" AutoEventWireup="false" Explicit="True"

 Inherits="DotNetNuke.UI.Containers.Container" %>
<%@ Register TagPrefix="dnn" TagName="TITLE"
Src="˜/Admin/Containers/Title.ascx" %>

<section class="dnn_container h2-title container-blue">
 <h2><dnn:TITLE runat="server" id="dnnTITLE" CssClass="title" />
</h2>
 <div id="ContentPane" runat="server" />
</section>

Let's review what you just did. As with the skin, you first declare that this is a
user control. The difference with this definition is that instead of inheriting
from the DotNetNuke.UI.Skins.Skin class, you inherit from the
DotNetNuke.UI.Containers.Container class. Next, you see that you registered
a skin object for the module's title. These are similar to the skin objects for
skins; however, these are available only within containers. Below that, you
create a section element. This is the perfect place to use HTML5's section
element as each module that is placed on the page will be its own new section
of content and will comply with the HTML5 recommendations. You have also
added a few classes to the section to allow for some flexible styling with the
CSS.

Next, you add the container TITLE skin object inside an h2 element and gave
it a class of title. This will render the following HTML:

<h2>

 Serif on the <aside>

</h2>

Note that DNN added a span inside the h2 element. This is something that can
create issues when styling your headers, so be sure to include style
definitions for both h2 and h2 span. Also note that you created a new content
pane within the container with the id assigned the value ContentPane. Similar
to skins, containers must have a content pane and it must be named
ContentPane; however, each container can have only one content pane.

Once you have created your new container, log in as an administrator or host
and hover over the module settings icon for the module in the Aside Pane
(Serif on the <aside>). Select the Settings option from the drop-down as you
did when setting the module's title. On the Page Settings tab, in the Basic
Settings section, select Host: SubtleTrend - H2 Title - Blue from the
Module Container options. Scroll to the bottom of the window and click the

Update button. You may not notice much of a difference, if any, but once you
add some CSS, you will see the beauty of your new container.

Additional Skin Objects for Containers
There are a few other skin objects for containers, but (other than the ICON
skin object) they are rarely used. The ICON skin object can be useful for
applying icons or module header images. To use the ICON skin object, first
register it in the container as follows:

<%@ Register TagPrefix="dnn" TagName="ICON"
Src="˜/admin/Containers/icon.ascx" %>

Then, add the skin object to the desired location in your container's HTML
with the following code:

<dnn:ICON ID="containerICON" CssClass="container-icon" runat="server"
/>

The image can be selected under the Page Settings tab in the Module Settings
dialog in the Basic Settings section labeled “Icon.” For example, if you set the
icon to use an image file in the root of the site folder, with the name
myImage.png, the following HTML would be rendered to display the image:

<img id="dnn_ctr415_containerICON_imgIcon" class="container-icon"
 src="/Portals/0/myImage.png" alt="Module Title Text"
 style="border-width:0px;" />

The skin object gives the icon an id that is specific to the module that it is in.
It also uses the title of the module as the alt tag for the image. If no image is
specified in the module's settings, the skin object will not be rendered to the
page, leaving your icon optional.

Styling Containers
Another similarity of the containers to the skins is the automatic detection of
stylesheets. A stylesheet named container.css in the container's folder will
apply when any container from the container package has been added to the
page, and a stylesheet with the name of a specific container will be added
when that specific container is added to the page. This brings up a point to be
aware of—containers from other container packages can contain styles that
will conflict with the styles you have created for your containers. Because of
this, it is a good idea to create all of the containers that you will need and

make sure not to include any containers from other container packages.

Although styling containers is similar to styling skins, you are going to take a
slightly different approach for this skin. Instead of creating a container.css
file in the container's folder, you will be adding styles to the skin.css file.
This will keep the CSS in one place, thereby making it easier to find and edit
at a later time. This will also be one less resource that is needed to load on the
page through the form of another CSS file if you are not consolidating your
files with the Client Resource Manager. You also need to include some styles
for your responsive designs to the size-specific stylesheets.

At the bottom of the skin.css file, add the following style definitions:

/*** Container Styles ***/

/* Blue Container */
/* Set container background and add padding */
.container-blue{
 background-color:#15313F;
 padding:45px;
}

Refresh your page to see the new style added to the container in the Aside
Pane.

Creating Additional Containers
Next, you will create several new containers. Some may not be used in this
design, but you will see how they will provide nice flexibility in the page
layout. Let's create a similar container but without a title. Copy the new
container that you created earlier (H2 Title - Blue.ascx) and paste a
duplicate in the containers folder. Rename the duplicate No Title -
Blue.ascx. Open the file and remove the <%= Register … %> declaration for
the title and the h2 element with the Title skin object. Change the class h2-
title on the section element to no-title. The code for your container should
look like this:

<%@ Control Language="C#" AutoEventWireup="false" Explicit="True"
 Inherits="DotNetNuke.UI.Containers.Container" %>
<section class="dnn_container no-title container-blue">
 <div id="ContentPane" runat="server"></div>
</section>

Duplicate the H2 Title - Blue.ascx and No Title - Blue.ascx files and
rename them H2 Title - Beige.ascx and No Title - Beige.ascx,

respectively. Edit the class for the section element in both containers from
container-blue to container-beige. Then, update the module in the lower
pane to use the Host: SubtleTrend - No Title - Beige container in the
module settings dialog.

Add the following styles to the bottom of the skin.css file:

/* Beige Container */
/* Set container background and padding */
.container-beige{
 background-color:#FFEDCB;
 padding:30px;
}
/* Specify color of header and text in body of container */
.container-beige h2,
.container-beige .Normal{
 color:#15323F;
}

Once more, duplicate both containers and name them H2 Title.ascx and No
Title.ascx, respectively. Edit both containers and remove the container-
blue class from the section element. This will provide a default, basic
container with no extra color variations.

Next, you'll create a container with an h1 for the title. Duplicate the H2
Title.ascx container and rename it H1 Title.ascx. Edit the container and
change the class of h2-title to h1-title and change the h2 element to an h1
element.

Add the following CSS to your skin.css file:

/* H1 Container */
/* Specify styles for H1 with colors, font sizes and spacing */
h1 .title{
 color:#D84D41;
 font-size:150px;
 font-weight:900;
 line-height:.8;
 text-transform:uppercase;
}
/* Change color of nested spans to orange */
h1 .title span{
 color:#FFEDCB;
}

Recall that you named the module in the content pane Lorem

& Ipsum. Update this module to use the new H1 Title

container. DNN allows you to use HTML on your module titles. This is very
handy when you want to create some visual styling that can be reused.
Anytime you want to use the beige as a secondary color on the h1, you just
need to wrap the text you want to accent in a span element and it will pick up
this style.

Lastly, you are going to create the banner container. This can typically be set
up with the simple “No Title” container and an HTML module, but you are
going to learn how to use containers to create some advanced styling that can
be reused. Duplicate the H1 container and rename it Banner - Circle.ascx.
Edit the file and rename the class h1-title on the section element to banner-
circle. Surround the h1 and content pane with a simple div element that you
will use for centering the content on the page. Update the module in the Top
Pane to use the newly created Host: SubtleTrend - Banner - Circle
container.

Then, add the following CSS to the skin.css:

/* banner */
.banner-circle{
 background-color:#15313F;
 padding:10px 0;
}
 .banner-circle > div {
 margin:0 auto;
 width:1170px;
 }

.banner-circle h1{
 display:table-cell;
}
.banner-circle h1 span{
 background-color:rgb(255,238,204);
 border-radius: 360px;
 color:rgb(21,50,63);
 display:table-cell;
 font-family:"Arial Black", Gadget, sans-serif;
 font-size:80px;
 font-weight:900;
 height:360px;
 letter-spacing:-7pt;
 line-height:75%;
 padding-left:12px;
 text-align:left;
 vertical-align:middle;
 width:360px;
}

.banner-circle > div div {
 display:table-cell;
 vertical-align:bottom;
 width:810px;
}

.banner-circle .Normal p{
 color:#1f4b59;
 float:right;
 font-family:Georgia, "Times New Roman", Times, serif;
 font-size:72px;
 line-height:83%;
 text-align:right;
 text-transform:uppercase;
 vertical-align:middle;
 width:400px;
}
.banner-circle .Normal p strong {
 font-size:90px;
 font-weight:bold;
 line-height:80%;
}

This has a lot of custom CSS3 and layout, but you can see that you took a
simple Text module and created a complex design that can be reused on any
page using basic content.

To make these container styles responsive, add the following styles to their
respective stylesheets:Media-medium-screens.css

/* Reduce size of H1 */
h1 .title{
 font-size:90px;
 line-height:.8;
}

/* Banner */
/* Reduce width of banner container */
.banner-circle > div {
 width:960px;
}
/* Reduce size of Circle */
.banner-circle h1 span{
 font-size:53px;
 height:240px;
 letter-spacing:-5pt;
 padding-left:12px;
 width:240px;
}
/* Reduce size of right side of banner */

.banner-circle > div div {
 width:722px;
}
/* Reduce Subtle text in banner (HTML content) */
.banner-circle .Normal p{
 font-size:52px;
 line-height:83%;
 width:400px;
}
/* Reduce strong text in banner (HTML content) */
.banner-circle .Normal p strong {
 font-size:60px;
 line-height:80%;
}

Media-small-screens.css

/* Reduce size of H1 */
h1 .title{
 font-size:70px;
 line-height:.6;
}

/* Banner */
/* Reduce width of banner container */
.banner-circle > div {
 position:relative;
 width:100%;
}

/* Reduce size of right side of banner */
 .banner-circle > div div {
 display: block;
 position: absolute;
 right: 15px;
 top: 15px;
 width: 322px;
 }
.banner-circle h1 {
 padding-left:30px;
}
/* Reduce size of Circle */
 .banner-circle h1 span{
 font-size:41px;
 height:180px;
 letter-spacing:-4pt;
 padding-left:7px;
 width:175px;
 }

Media-xtra-small-screens.css

/* Reduce size of H1 */
h1 .title {
 font-size: 45px;
}
/* Reduce size of H2 */
h2 .title {
 font-size: 35px;
}

/* Banner */
/* Make banner container fluid width */
.banner-circle > div {
 width: 100%;
}
/* Center circle and reduce size */
.banner-circle h1 {
 display: block;
 padding-left: 0;
 margin: 0 auto;
 position: relative;
 width: 175px;
}

/* reduce size of banner text */
 .banner-circle h1 span {
 font-size: 41px;
 letter-spacing: -4pt;
 padding-left: 7px;
 }
/* Move module content below title and make fluid */
.banner-circle > div div {
 display: block;
 position: relative;
 right: auto;
 top: auto;
 width: 100%;
}
/* Center module content */
.banner-circle .Normal p {
 float: none;
 margin: 0 auto;
 padding: 30px 0;
 text-align: center;
 width: 290px;
}

You have now completed your first skin! Refresh and then resize your
browser to see how nice your skin looks on all resolutions and sizes!

Custom 404 and Pop-up Skins
DNN includes special skins for pop-ups and 404 pages. There are some
considerations for these skins that should be noted. The 404 page requires
that there aren't any links that create postbacks on your page. This means
that you must create a skin that does not include any postbacks, such as the
register and login skin objects.

A customized pop-up skin can be added by creating a new skin with the name
popUpSkin.ascx. To allow DNN to recognize your pop-up skin, you must first
set the Site Skin on the Admin Site Settings page in the Basic Settings
Appearance section to a skin within your skin package. Add the basic code
required for a skin (see the “ASCX Approach” section in the “Creating Your
First Skin” section of this chapter) to your skin file. This will cause the pop-up
to inherit the skin.css file. You can also create a specific CSS file for your pop-
up skin by creating a new stylesheet called popUpSkin.css. Styles in this file
will override any styles specified in the skin.css file. This skin will only apply
to the contents of the Iframe of the pop-up window and could still require
some edits to DNN's pop-up classes.

Skin Thumbnails
It is best to create skin preview images for each of your skins and containers
to assist content editors when they're selecting a skin to display their content.
Navigate to Admin Skins and select Gravity as the option for the Skins
selection in the Skin Editor section. Notice that most of the skins have a
thumbnail view of each of the skins and containers. Click the thumbnail of
one of the skins and you will see that it opens a new view with a sample
screenshot of the skin. Switch the Skins option in the Skin Editor to the
SubtleTrend skin and you will notice that it displays an “Image Not Available”
placeholder.

If you were provided a design for each of your skins, you can use a JPG
version for each one. Otherwise, you should create a page for each skin and
add some content to the pages. Then, take a screenshot of your page. Once
you have a screenshot or an exported design file, it is a good idea to add some
borders on your images to designate each content pane. This will be very
useful to the content editors. Once you have designated the content panes,
save each file as the name of the skin it represents and place it in the skin file.
For example, you could create a Home.jpg for the Home.ascx file and a full-
width.jpg for the full-width.ascx file.

Next, create sample screenshots of the containers. It is helpful to use the
same content and switch out the containers to show what the differences are
for each container. These images will be displayed when clicking the
thumbnails of each skin; however, you need to create the thumbnails for each
image. This is the easy part. Refresh the Admin Skins file with the
SubtleTrend skin selected. Done. DNN just created the thumbnails for your
skins.

Creating an Installable Skin Package
So far you have created a skin package with two skins. This skin package can
be used on other DNN installations; however, the files must be copied directly
to the Skins and Container folders for the other installations. This is not
always feasible depending on your access to those environments. It could be
that you are creating skins that you want to sell and the people buying them
have only administrative knowledge of DNN. It would be a good idea to have a
skin package that can be installed just as easily as modules are. DNN provides
a process for doing this in an installable skin package.

Packaging the Skin
Creating a skin package requires a few steps. First you have to create a new
extension for the skin and then create the skin package for that extension.
Next, you repeat that process for the container, creating an extension and
package. Lastly, you merge the two packages together to create one installable
package for both the skins and containers.

Creating the Skin Package

Creating a skin package can be handled through the DNN interface. It is best
to perform this step after you have completed all development and testing of
your skin, as updating the installation package isn't a small feat. Before you
begin the process to create the skin package, it's best to create the License and
Release notes files. Right-click the SubtleTrend skin folder and select Add
Add New Item. Select the Text File file type and name it license.txt. Add
your license information for your skin in this file. Repeat the process for the
release notes by creating a release.txt file and adding your release notes.

Next, you can begin by creating the skin extension. While logged in as a host,
navigate to the Host Extensions page. Click the Create New Extension
button on the top-right of the page, above the list of modules. Select Skin as
the extension type. Add a name (can't have spaces and must be the same
name as the skin folder for DNN to recognize there is a matching skin
package), a friendly name, a description, and a version number (v 01.00.00)
for your skin. Click the Next button.

Enter the owner details and click the Next button. Your extension has been
created, but your skin package has not. Right now, it is basically a shell for
your skin package that needs to be exported. Scroll down to the Skins section

and click the Edit icon for your new skin extension.

Leave the License and Release Notes fields empty, as you already created
those files. We will look at how to include these external files in a later step.
Click the Create Package button. Review the information for your skin
package and click the Next button.

In the Choose Files to Include section, review the files to be included and
remove any that you don't want to include in the package. Click the Next
button. Next, on the Create Manifest section, update the license and
releaseNotes tags to reference the following, and click the Next button:

<license src="license.txt" />
<releaseNotes src="release.txt" />

Confirm the information in the Create Package screen and click the Next
button. Your skin package has been created and can be found in the
˜/Install/Skin folder of your site. Find that folder and you should see your
skin package in there.

Repeat the process for the containers by navigating to the Host Extensions
page. Click the Create New Extension button. Select Container as the
extension type. Because you have already created an extension with the name
SubtleTrend, you will not be able to create it with the same name. Instead,
name it SubtleTrendContainer. Complete the rest of the information and click
the Next button. Feel free to skip the information for the owner details
section if you plan to merge with the skin package, as it will already contain
all of this information. Click the Next button.

Since you were not able to create the extension with the name and the
extension name must match the container package folder, you must rename
it. Expand the Containers section on the Extensions page and edit the
SubtleTrendContainer package by clicking the Edit icon. Edit the Skin
Package Name by removing “Container” from the name, which changes it to
SubtleTrend. Click the Update Extension button. Close the pop-up by clicking
the Cancel button or clicking the X in the top-right corner. Edit the container
extension once again by clicking the Edit icon. This time you will see a Create
Package button. Click that button. Review the information on the Create
Package section and click the Next button. Review the files in the Choose
Files to Include section and click the Next button. Review the manifest
created in the Create Manifest section and click Next. Review the information
in the Create Package section and click the Next button. Once the package is

successfully created, click the Return button at the bottom of the pop-up
window.

You now have two installable packages, a skin package and a containers
package. While you can install each individually, it is best practice to deliver
the skin and container as one package.

Unzip the install package for the skins and edit the manifest file (the file with
the name of your skin package and a .dnn file extension). Open the manifest
file for the containers and copy the contents (<component type="Container">…
</component>) in the section <components> tag and paste it in the
<components> section after the <component type="Skin">…</component>
section. Save the file. Copy the contents of the ZIP file for the containers
install file, except the manifest file, and paste them into the unzipped skins
folder. From within the skins folder, select all files and zip them. You now
have a fully installable skin and containers package.

Understanding the DNN Manifest
DNN uses an XML file with the .dnn extension when installing a skin package.
Let's dissect this file a bit. The first section is the <package> section, which
gives the name, type, and version of your skin. When updating your skin to a
new version, the version attribute can be incremented to reflect the skin
package's version number. The next few sections provide the friendly name,
the description, and a link to an optional icon file. The following <owner>
section provides information about the owner, which is helpful for guiding
the user to know who to contact for support of the skin. The next two sections
are the <license> and <releaseNotes> sections. The license and release notes
can be either inline or, as in this example, links to external files. These files
can contain HTML so that the information is presented in a friendly way
during installation.

The next section is <components>. This contains all extensions that will be
installed. This example has two extensions together as one package. This is
where you add a reference to another extension if you want it to be installed
along with your skin. This is very helpful if your skin is dependent on a third-
party skin object.

Each component includes the name for each extension as well as the target
location where the extension will be installed. In this example, using the
container, it will be made available to the entire DNN installation. That's

because it's added to the ˜/Portals/_default/Containers folder as directed
by the following code:

<basePath>Portals_default\Containers\SubtleTrend</basePath>

Following the base path are the files that are included as a part of the
package. These include a name of the file and a <path> if not located in the
root folder. Upon examining the manifest file for the skin, you can see that all
of the files for the menu have a path of ResponsiveMenu, which is the folder in
which they are located.

Advanced Skinning Techniques
This section covers some additional techniques that can be helpful for
creating some more customization to your skins.

Site Title for Logo
For the example you have been using for this site, the only image that you
have is the logo. However, it might be a requirement that the logo be text and
apply some font styling with CSS. You can use the title of the site to keep this
dynamic. For the SubtleTrend skin example, use the following code:

<a href="/" class="logo"
 title="<%: PortalSettings.PortalName %>">
 <%: PortalSettings.PortalName %>

This will add a link with the site title being applied as the value for the title
attribute of the link as well as the text in the link. You will also need to make
some modifications to the CSS to make this work in the SubtleTrend design.

Page ID for Page-Specific CSS
Another useful technique is when you need to apply some CSS to a specific
page, but it would be overkill to create a new skin. You can wrap the entire
skin in a div and apply an id using the page ID with the following code:

<div id="pageId_<%: PortalSettings.ActiveTab.TabID %>">
 <header>…</header>
 …
 <footer>…</footer>
</div>

If the page with this skin applied to it has a tabId of 84, it would define the id
on the div of pageId_84. The pageId_ is prepended to ensure that it will be a
unique ID on this page. This allows you to reference the header of this
specific page in your CSS by using the following:

#pageId_84 header {…}

Or you can use the page name instead of the tabID:

<div id="page_<%: PortalSettings.ActiveTab.TabName.Replace(" ","")
%>">
 <header>…</header>

 …
 <footer>…</footer>
</div>

If you were to apply this to the skin on the Our History page, it would produce
the page_OurHistory ID, thereby allowing you to reference elements on this
specific page. The .Replace(" ","") removes any spaces from the page title.
To reference the header on this page, you would using the following CSS:

#page_OurHistory header {…}

Page Icon as Header Image
Another handy technique is to use the built-in Page Icon setting to apply an
image to a page header. Open the page settings and apply an image to the
large page icon. Then add the following code to your skin where you would
like the image to appear:

<img src="<%: PortalSettings.ActiveTab.IconFileLarge %>" />

Summary
This chapter provided a look into understanding all of the integral parts of
creating a DNN skin package. You learned what skin, container, skin object,
and skin package are. You learned how to create dynamic navigation with a lot
of flexibility to match your design. You learned how to leverage the built-in
tools in DNN to make your site responsive to various display sizes so that
your site is usable on mobile devices. Skinning is a constantly changing area
of DNN development, so be sure to visit DNN Software's website and the
community blogs. Also check out the author's site at
http://www.ralphwilliams.com for some helpful skinning tips and tricks.

http://www.ralphwilliams.com

Chapter 18
Packaging and Distribution

What You Will Learn In This Chapter

Creating a new extension

Creating extension packages

Editing the manifest file

Controlling how an extension is installed

Tailoring your package to exact specifications

DNN's commercial and free module market has been instrumental in the
success of the platform. The ability to do a quick search on the Internet and
find free or relatively inexpensive modules that fulfill a need significantly
reduces the cost to operate a website when compared to a custom website and
other commercially available platforms. With the wide potential customer
base, it's no wonder that developers have filled the void with low- to medium-
cost solutions to countless business needs. This market is no accident. The
modular nature of DNN and the extensibility and distribution model have
created an environment from which developers can easily share the modules
they create and designers can easily share the skins they design. This chapter
explains the extensions model for packaging and distributing modules, skins,
language packs, and all other application extensions available to DNN
developers and designers.

The New Extensions Model
In previous versions of DNN, installing modules, skins, languages, and other
extensions was achieved using a different process for each type of extension.
Skins were packaged using convention over configuration, meaning that if
you put the correct files with the correct filename in the correct structure, it
would install correctly. Modules were installed through the Module
Definitions interface using a DNN manifest file that instructed the installer
where and how to install modules. In version 4.6, a new installer was
introduced to handle authentication system installations. All of these
different models created more code to maintain and was an inconsistent
experience for developers who had to learn a different way to package each
type of extension they wanted to distribute.

In version 5, DNN consolidated all of these installation models into a unified
model called extensions. This new model provides developers and
administrators a single place through which all add-ons to the core are
managed. By using a common interface, module developers can reuse the
same skills for distributing modules, providers, authentication systems, skins,
and even custom extension types. The new model also adds license
agreements, release notes, and an uninstall process—features that were
previously unavailable for skins and language packs.

Extensions can be managed by host- and administrator-level users to varying
degrees. The Extensions page under the Admin menu for a site allows site
administrators to control which modules are available to users with edit
permissions based upon role. With this feature added in DNN 5,
administrators have more granular control over the types of content that page
editors can add to pages they have access to edit. For more information on
managing the modules available to users with edit permissions, see Chapter
4, “Site Administration.” Authentication systems and skins can also be
managed from the Admin extensions page. The extensions page under the
Host menu gives complete control to host users to manage authentication
systems, containers, language packs, libraries, modules, providers, skins, and
skin objects. The Host extensions page is also where the interface for
installing and uninstalling extensions is located.

Creating New Extensions
To add custom extensions to your installation, you need to begin by making
DNN aware of the extension. For developers, this is generally one of the first
steps taken to start developing and testing modules and providers once the
file and folder structure is ready. Although it is possible to create a package
configuration file from scratch and build the extension package to install into
your site, the simpler way in most cases to build your extension package is
through the extensions management interface from the Host menu. After you
create your package, you can manage the controls and files for the package
and even export an installable extension package using the wizard. This
section explains how to use the extensions management interface to create
and distribute extension packages.

To begin the process of creating your extension, log in with your Host account
and navigate to the Extensions page in the Host menu. As an example, you
will create an extension for the SkinningDemo skin from Chapter 17. Begin by
clicking the Create New Extension button at the top of the page. The first
screen in the New Extension Wizard gathers basic information about your
extension. For the example skin package, change the extension type to Skin,
set the name to SkinningDemo, the Friendly Name to Skinning Demo Skin,
enter a short description, and set the version to 1.0.0. When your inputs
match Figure 18.1, click Next to go to the next step in the wizard.

Figure 18.1

The Owner Details screen is the last step in the New Extension Wizard for
skins. Figure 18.2 shows a typical Owner Details screen content. Once your
input matches Figure 18.2, click Next to add your extension to the DNN
installation.

Figure 18.2

Now that DNN knows about your extension, you can edit the details of your
extension from the Host extensions page. Find the Skins section in the
Installed Extensions list (you may want to collapse any open sections). Click
the pencil next to the Skinning Demo skin to enter edit mode for the
extension. This common page allows you to manage the details of your
extension. Regardless of the type of extension you are creating, there are
common attributes associated with all package types that are managed in the
Package Settings section on the details page for an extension. Table 18.1
explains each of the attributes in the Package Settings section.

Table 18.1 Package Settings Attributes

Setting Purpose
Name This name must be unique because it is used in site and page

templates to refer to modules and extensions.
Type Setting that instructs DNN whether to treat the extension as a

module, skin, provider, or any other custom extension type.
Friendly
Name

The setting for display to end users. It is used in drop-downs,
lists, and the control panel for modules.

Description Setting to display a short description of the extension in the list
of extensions on the Host and Admin extensions pages.

Version The version of the extension.
License A description of the terms of use for the extension.
Release
Notes

Notes about the current version of the extension.

Owner The owner of the package.
Organization The name of the company that owns the package.
URL The website address for the owner of the extension.
Email
Address

The package owner's support or contact email address.

Extension Configuration
Each extension type has different configuration options that are managed in
the Extensions Settings section at the top of each extension detail page.
Extension types can have very detailed configurations that are necessary to
use the extension, like the module extension type. Other extension types, like
the library extension, have no configuration outside of the common package
settings. This section explains the configuration options available to each
extension type.

Skin and Container Extension Configuration

The skin and container extensions are managed using the same interface and
available options. Once you create your base skin or container extension, the
only other configuration options are to change the package name and make
the extension aware of the skin and container files. Figure 18.3 shows the
Skinning Demo example skin. With skin and container extensions, making
DNN aware of the skins or containers in the extension is unnecessary because
skins are made available through the convention of having them in the
correct folder under the host- or site-specific Skins or Containers folder. For
more information on the folder structure of skins and containers, see Chapter
17.

Figure 18.3

Module Extension Configuration

A DNN module has to be configured correctly before it can be added to a page
and used in a site. The extension settings for a module are broken up into two
sections. The first section is where host administrators can manage the folder
name, business controller class, and whether the module should be available
only to specified sites. Table 18.2 explains the configuration options in the
first section for module extensions.

Table 18.2 Configuration Options for Module Extensions

Attribute Purpose
Module
Name

Used within page and site templates to specify the module type.
Must be unique.

Folder
Name

The name of the folder within the DesktopModules folder where
the module's controls are stored.

Module
Category

A category that can be assigned to the module. The module's
category is used by the control panel to group modules and
make them easier to find. The Taxonomy page under the Host
menu can be used to create new categories.

Business
Controller
Class

The fully qualified name of the class that implements any
module features interfaces (IPortable, ModuleSearchBase or
ISearchable, and IUpgradeable).

Is Portable? Read-only setting that indicates whether the module exposes
import/export functionality through implementing the
IPortable interface.

Is
Searchable?

Read-only setting that indicates whether the module
implements the ModuleSearchBase base class (or older
ISearchable interface) necessary to expose information to the
DNN search index engine.

Is
Upgradable?

Read-only setting that indicates whether the module supports
the IUpgradeable interface allowing it to run custom code when
installed and upgraded.

Module
Sharing

Indicates whether the module can share instances of itself
across multiple sites.

Is Premium
Module?

Sets whether, on site creation, a module should automatically
be available to be used by administrators of that site (premium
modules are not automatically available).

Assigned
Premium
Modules

Sets which site have access to premium modules.

The second section for configuration is for managing Module Definitions.
Most modules will have a single Module Definition for each module
extension. A Module Definition is the parent entity for controls to be used to
add functionality with a DNN module. If your module needs to have more
than one control added to the page for the module to function correctly, you
can achieve this through adding multiple Module Definitions. When a
module with multiple Module Definitions is added to a page, a module
instance is added for each definition.

By adding multiple Module Definitions, you can split functionality that is
necessary into different control parts that can be laid out with container and
security settings that are independent of each other. For the blog module
example, this hides the complexity of having to add five modules to the page
to have the module behave correctly and allows site administrators to place
the archive, search, and blog list in whichever order meets the needs and
design requirements of the organization.

After you create a Module Definition for your module, you need to add
controls to it. Using controls, module developers add the default view,
settings, and edit controls and then any other custom controls the module
needs. Follow these steps to set up the Wrox.Suggestions module from the
module development chapters earlier in the book:

1. Click the Create New Extension link on the Host extensions page.

2. Select Module from the drop-down list.

3. Enter Wrox.Suggestion for Name.

4. Enter Suggestions Module for Friendly Name.

5. Enter The Suggestions demo module for Description.

6. Set Version to 2.0.0.

7. Once your screen matches Figure 18.4, click Next.

8. On the next screen, enter Wrox.Suggestion for Folder Name to let the
extensions management know where to find the module controls.

9. Choose Common for Module Category. This sets the category the module
appears in in the Add Module control bar when using the module after it is

completed.

10. Enter WROX.Modules.Suggestion.SuggestionController,
WROX.Modules.Suggestion for the Business Controller Class.

11. Once your screen matches Figure 18.5, click Next.

12. Leave the owner details blank and click Next again to complete the New
Extension Wizard.

Figure 18.4

Figure 18.5

Now that your module extension is created, click the pencil icon to edit the
details for that module. Follow these steps to create the Module Definitions
for the Suggestions module:

1. Locate and expand the Module Definitions section.

2. Click Add Definition; then type Wrox.Suggestion in the Definition
Name and Friendly Name textboxes.

3. For read-only modules, Default Cache Time can be changed from 0 to
some number of seconds to have the output of the module cached by
default. Default Cache Time can also be changed to -1 to indicate that the
module does not support output caching at all.

4. Click Create Definition to create the Module Definition. Once you have
created the Module Definition, a new interface is available below the
definition area for managing module controls, as shown in Figure 18.6.

Figure 18.6

Click the Add Module Control button to add a new control to the Module
Definition. The Edit Module Control screen allows developers to define the
controls to operate the module. Table 18.3 explains what each field does.

Table 18.3 Module Control Definition Attributes

Name Purpose
Key Sets the URL parameter to load the control. Leave this blank for

the default view control.
Title For controls other than the default view control, this displays as

the module title when the control loads.
Source
Folder

The folder in the DNN installation containing the ASCX user
control.

Source The ASCX user control to use for displaying the interface to the
user.

Type Sets the security level type of the control.
View
Order

Sets the order in which the control is displayed in the list of
controls on the Module Definition page.

Icon Sets the icon to be displayed with the module title when the
control is loaded. Like the module title, this is used only when
loaded as a control other than the default view control.

Help URL The URL that should be used for the help link in the module
actions menu. If this is left blank, it will use the context-sensitive
Online Help at the DNN website.

Supports
Popups

Indicates whether DNN can load the control in a pop-up, if the
site is configured to use pop-ups.

Supports
Partial
Rendering

This tells DNN to wrap the user control in an UpdatePanel
control.

To continue building the suggestions Module Definition, add the three
controls according to Table 18.4. For the Source Folder field in each module
control, select the folder already created for the Suggestions module.

Table 18.4 Wrox.Suggestion Module Definitions Module Controls

Key Control Source Title Type
[Blank] DesktopModules/WROX.Suggestion/Suggestion.ascx [Blank] View
Edit DesktopModules/WROX.Suggestion/EditSuggestion.ascx Edit

Content
Edit

Settings
DesktopModules/WROX.Suggestion/Settings.ascx

Suggestion
Settings

Edit

To finish setting up the Suggestions module, add a second Module Definition
named Wrox.Suggestion.Display with a single view control pointing to
DesktopModules/WROX.Suggestion/DisplaySuggestions.ascx. Click Update
Extensions to save your changes to the extension.

Skin Object Configuration

The Skin Object extension type is used to extend the DNN skinning engine by

adding ASCX user controls that can be referenced by skins using tokens and
the new Skin Object format. The Skin Object configuration attributes are
explained in Table 18.5.

Table 18.5 Configuration Options for Skin Object Extensions

Setting Purpose
Control Key The unique key used to refer to the Skin Object from HTML-

based skins. This is the value used in the codebase parameter
for Skin Objects.

Control Src The location of the ASCX user control for the Skin Object.
Supports
Partial
Rendering

This tells DNN to wrap the user control in an UpdatePanel
control to intercept postbacks.

Provider Extension Configuration

Providers are pluggable pieces of functionality used to perform base
behaviors and framework building blocks for DNN. Providers have no custom
configuration interface. All management for providers is handled through the
package configuration file.

Authentication System Configuration

The Authentication System extension type is a special type of provider that
controls authentication and authorization for resources belonging to a site.
The options available for configuration to the Authentication System
extension type are listed in Table 18.6.

Table 18.6 Configuration Options for Authentication System Extensions

Setting Purpose
Authentication
Type

This is the unique key to set the name of the authentication
system.

Login Control
Source

This is the ASCX user control that should process a login.

Logoff Control
Source

This is the ASCX user control that should process a logoff.

Settings This is the ASCX user control that manages the configuration

Control Source options for an authentication provider.
Enabled Sets whether this authentication provider should be

available.

Core Language Pack Extensions Configuration

The Core Language Pack extension allows host administrators to install and
manage sets of local resource files containing strings to translate interface
text for different languages that are supported. The New Extension Wizard
requires you to choose the language with which the language pack should be
associated (in order to be selected, the language needs to already have been
enabled via the Languages page in the Admin menu). The extension
configuration can then be updated to change the language.

Extensions Language Pack Extensions Configuration

The Extensions Language Pack extension type creates a way to distribute
language packs for modules, providers, and other extension types. The New
Extension Wizard asks for the language and package with which to associate
the language pack. The extension configuration allows changing the language
and the package.

Using the Wizard to Create Packages
DNN 5's enhancements to the Package Creation Wizard dramatically
simplified the process of packaging extensions for distribution, and this is
still in use for DNN 7. The Package Creation Wizard takes an existing
extension and creates the properly formatted package definition file and zips
the selected files to create the distributable package. To create a package, click
the Create Package link at the bottom of the extension details page. Clicking
the Create Package link starts the Create Package Wizard. The following lists
the steps in the Package Creation Wizard:

1. Review Package Information. The first step in the Create Package Wizard
is a simple review of the extension from which you have chosen to create a
package. The two options on this screen are Use Existing Manifest and
Review Manifest. The Use Existing option bypasses the step to create a
package manifest. The Review Manifest option tells the wizard to display
an editable version of the package manifest before the package is created.

2. Choose Files to Include. Most packages include the second step to allow
you to select files to include in the extension package. Select the folder to
scan and click Refresh File List to populate a list of all files and subfolders'
files. To exclude a file that was selected, simply delete the line from the
textbox.

3. Choose Assemblies to Include. Packages that include server-side
functionality, like modules, providers, and authentication systems, will
show the third possible step in the wizard for including assemblies. To
include an assembly, simply add a line for each DLL to include. The wizard
assumes that the root folder for assemblies is the bin folder in the root of
the website, so there is no need to add the folder name to the beginning of
the filename. Figure 18.7 shows the assemblies entry for the
Wrox.Suggestion module example from this and earlier chapters.

4. Create Manifest. All extension types require a manifest file. The Create
Manifest step in the wizard allows you to review the manifest file created
by the wizard before it is included in the package in the last step of the
wizard. The manifest is displayed in an editable textbox so that you can
edit any elements in the manifest before creating your package.

5. Create Package. The final step tells the wizard what to name the manifest
file and where to save the package. Manifest files should have the

extension .dnn and the archive filename should use the .zip extension
because it is a compressed zip folder. Regardless of whether you choose to
create the manifest or create the archive, the package will be added to the
database and the manifest will be saved to the package archive. All
packages that are created will be placed in a subfolder of the \Install
folder in the DNN instance, based on the type of extension (i.e., module
packages will be placed in the \Install\Module folder).

Figure 18.7

Building Packages with Manifest Files
In the previous section, you learned that the Package Creation Wizard is a
simple way to package skins, modules, and other extensions for distribution.
Though the wizard simplifies the process of packaging and creating the
manifest for packages to be distributed, there will always be times that you'll
need to modify the package and the manifest manually to get the exact
behavior you require for your installation process. This section explains
version 5 of the DNN manifest file format and provides examples for common
tasks using the manifest file.

Manifest Packages
Packaging an extension without using the Package Creation Wizard is done by
adding the files from your extension into a compressed zip folder and telling
the installer how to use the files with an XML-based manifest file. An
installable extension is referred to in the manifest as a package. The
architecture of the DNN installer provides for installing multiple packages
into a single installation by adding multiple packages under the packages
node. This could allow a developer to distribute an install package with
libraries, skins, modules, and a provider in a single install. The package
information begins at the dotnetnuke/packages/package element within the
XML structure. Table 18.7 explains the general package elements and
attributes.

Table 18.7 Package Elements and Attributes

Name Path Purpose
Package
Name

dotnetnuke/packages/package/@name This name
must be
unique
because it is
used in site
and page
templates to
refer to
modules and
extensions.

Type dotnetnuke/packages/package/@type Setting that

instructs
DNN
whether to
treat the
extension as
a module,
skin,
provider, or
any other
custom
extension
type.

Version dotnetnuke/packages/package/@version Version
number for
the package.
Versions
should
include three
numeric
parts,
separated by
dots (e.g.,
1.23.0).

Friendly
Name

dotnetnuke/packages/package/friendlyName This setting
is for the
name to
display to
end users. It
is used in
drop-downs,
lists, and the
control panel
for modules.

Description dotnetnuke/packages/package/description Setting to
display a
short
description

of the
extension in
the list of
extensions
on the Host
and Admin
extensions
pages.

Icon File dotnetnuke/packages/package/iconFile Path to the
icon (i.e., a
32x32 image
file) for the
extension. It
is used in
lists and the
control panel
for modules.

Owner
Name

dotnetnuke/packages/package/owner/name The owner of
the package.

Organization dotnetnuke/packages/package/owner/organization The name of
the company
that owns
the package.

URL dotnetnuke/packages/package/owner/url The website
address for
the owner of
the
extension.
This field can
contain
HTML, if you
would like
the URL to
be a link.

Email
Address

dotnetnuke/packages/package/owner/email The package
owner's
support or

contact email
address. This
field can
contain
HTML, if you
would like
the email
address to be
a link.

License dotnetnuke/packages/package/license HTML
representing
the license
(EULA) of
the
extension.
Alternatively,
the license
can be
provided via
an external
file through
the src
attribute
described
next.

License
Source

dotnetnuke/packages/package/license/@src When
specified,
overrides the
license
HTML with
the contents
of a file in
the package.

Release
Notes

dotnetnuke/packages/package/releaseNotes HTML
representing
notes about
the current

version of
the
extension.
Alternatively,
the notes can
be provided
via an
external file
through the
src attribute
described
next

Release
Notes
Source

dotnetnuke/packages/package/releaseNotes/@src When
specified,
overrides the
release notes
HTML with
the contents
of a file in
the package.

Continuing with the example from earlier in this chapter, the following code
shows the package description part of the manifest file for the
Wrox.Suggestion module:

<dotnetnuke type="Package" version="5.0">
 <packages>
 <package name="Wrox.Suggestion" type="Module" version="2.0.0">
 <friendlyName>Suggestions Demo Module</friendlyName>
 <description>The suggestions demo module.</description>
 <owner>
 <name>Wrox</name>
 <organization>Wiley and Sons Publishing</organization>
 <url>http://p2p.wrox.com</url>
 <email>support@wrox.com</email>
 </owner>
 <license>Suggestions is provided as a demonstration module for
 DNN as part of the Professional DNN 7 book from Wrox.
 It may not be redistributed or sold. </license>
 <releaseNotes>Version 2.0 is dependant upon DNN 7. Any
questions
 can be submitted through p2p.wrox.com.
</releaseNotes>

 <components>
 …
 </components>
 </package>
 </packages>
</dotnetnuke>

Package Components
The building blocks of an extension manifest file are the components that are
included in the package. A component is a logical grouping of a part of the
package to be installed. For most package types, there is a component type
that matches the package type. For example, a skin package type will have a
skin component type, and a module package type will include a module
component type. The real advancement in the package manifest file is that
common installation types like SQL scripts, assemblies, and generic files have
been broken out so that they can be used across all package types.

File Components

The File component is a common component type that adds files to the DNN
installation. This component type can be used in all package types. The
addition of the File component type is an advancement over previous versions
of DNN because it allows developers to install files into other parts of the
website other than the DesktopModules folder. Using the File component type,
set the basePath attribute to set where the group of files should be installed
and include a list of files to install with the package. The following example
shows a File component:

<component type="File">
 <files>
 <basePath>DesktopModules\Wrox.Suggestion</basePath>
 <file>
 <path>app_localresources</path>
 <name>suggestion.ascx.resx</name>
 </file>
 <file>
 <name>displaysuggestions.ascx</name>
 </file>
 </files>
</component>

In the example, you can see that the basePath node sets the folder into which
all listed files are relative. Within the files node, each file has a name and
optional path that is relative to the basePath root folder. Additionally, a

sourceFileName element can also be specified alongside the name element,
which specifies the name of the file in the package, if it's different than the
name the file should have when installed.

Many of the other components are based on the file component, including
Assembly, Cleanup, JavaScriptFile, Language, ResourceFile, Script, Skin,
Container, and Widget. As a result, they share these same basic elements.

Assembly Components

The Assembly component is used for installing DLLs into the bin folder in
your DNN installation. The Assembly component is very similar in structure
to the File component. Set the basePath to bin and list the assemblies using
the assembly node type. One additional element used by the Assembly
component is the version, which is used to avoid clashes between different
extensions using the same assembly. When installing an Assembly
component, if a higher version of the assembly has already been installed, it
is skipped. The version element is optional and defaults to the version of the
package is it isn't specified.

<component type= "Assembly">
 <assemblies>
 <basePath>bin</basePath>
 <assembly>
 <name>WROX.Modules.Suggestion.dll</name>
 </assembly>
 <assembly>
 <name>WROX.Modules.Suggestion.SqlDataProvider.dll</name>
 </assembly>
 </assemblies>
</component>

Script Components

The Script component is used for executing install and uninstall SQL scripts
to configure the database storage and methods needed to support the
extension in the package. SQL script filenames should use the name of the
data provider as their file extension, which will be .SQLDataProvider unless a
custom data provider is being used. Simply using .sql as the file extension is
also supported but does not indicate the data provider for which the script is
written.

In previous versions of the installer, versioning was managed using the
convention of the filename. In this version of the installer, the version node

in the script element should correspond to the version number of the package
being installed. The version node tells DNN when to run the script. By
versioning your SQLDataProvider files consistently with the version number
of the package, the DNN installer will run the SQL scripts as database upgrade
scripts depending upon the currently installed version. When installing a
newer version of an existing package, the installer will only run scripts with
version numbers after the current version. For example, if you have version
01.00.00 of a module installed and you install an upgrade for version
01.00.01, if the package includes scripts with the version set to 01.00.00 and
01.00.01, the DNN installer would run only the second SQL script. If the
package has never been installed, then all scripts will be executed in order of
version number. This functionality protects existing tables from accidentally
being deleted or cleared with the initial creation scripts and ensures that table
update scripts run only once. The following example shows the Script
component type from the Wrox.Suggestion module:

<component type="Script">
 <scripts>
 <basePath>DesktopModules\Wrox.Suggestion</basePath>
 <script type="Install">
 <name>02.00.00.sqldataprovider</name>
 <version>02.00.00</version>
 </script>
 <script type="UnInstall">
 <name>uninstall.sqldataprovider</name>
 <version>2.0.0</version>
 </script>
 </scripts>
</component>

Two special types of script files are supported, for the cases where a unique
script is required to be run on first install or a script is required when
upgrading to a later version. These are used by naming convention and
included into the scripts node as normal.

For a script that is to be run on first install, before any other scripts, use the
name install.SqlDataProvider.

For a script that is to be run on upgrade of an existing extension, use the
name upgrade.SqlDataProvider. This script will be run as the final script
when the upgrade is run, regardless of order in the scripts node.

Cleanup Components

The Cleanup component provides a mechanism for deleting files and
assemblies that are no longer needed for a version of a package. In previous
versions of the installer, developers could instruct DNN to remove a list of
files by providing a file with the naming convention [version number].txt
that included a list of files to delete when installing that version. Like the
Scripts component discussed earlier, the installer runs the cleanup for all
versions between the current version of the module and the version being
installed.

Because the installer introduced in DNN 5 is based upon configuration over
convention, developers are required to declare explicitly the files to be
removed in the manifest file. Files can be listed within the Cleanup
component or referred to through a src attribute. The version must be set
within the version attribute of the Cleanup component for the installer to
know which cleanup tasks should be performed to upgrade an installed
version to a current version of the package. The following examples show how
to mark files for deletion:

<component type="Cleanup" version="02.00.00">
 <files>
 <file>
 <path>DesktopModules\WROX.Suggestion\images</path>
 <name>oldImage.jpg</name>
 </file>
 </files>
</component>

Alternatively, you can point your Cleanup element to a file included in your
package like in the following example:

<component type="Cleanup" version="02.00.00" src="02.00.00.txt"/>

The contents of the referenced 02.00.00.txt file would simply be a list of file
paths, such as the following example:

DesktopModules\WROX.Suggestion\images\oldImage.jpg

Config Components

The Config component gives developers the ability to manage changes to the
web.config files from the install process. This feature can save users without
experience from having to edit the web.config file when it is necessary for a
package to be installed. It also protects commercial developers from the
support calls and emails that will inevitably come from those inexperienced

users breaking their web.config when they incorrectly make the changes
necessary for the package.

The Config component has an install section and an uninstall section to
provide instructions on how to make the changes to web.config when the
package is installed and how to remove or revert the configuration to its state
before the configuration was changed (both the install and uninstall
sections are required, even if they only have an empty nodes element). The
following code shows how the Config component could be used to add an
appSetting key to the configuration section of web.config and remove the
same key when the package is uninstalled:

<component type="Config">
 <config>
 <configFile>web.config</configFile>
 <install>
 <configuration>
 <nodes>
 <node path="/configuration/appSettings" action="add"
key="key"
collision="overwrite">
 <add key="WROX.Suggest.Type" value="Module"/>
 </node>
 </nodes>
 </configuration>
 </install>
 <uninstall>
 <configuration>
 <nodes>
 <node
path="/configuration/appSettings/add[@key='WROX.Suggest.Type']"
action="remove"/>
 </nodes>
 </configuration>
 </uninstall>
 </config>
</component>

Each node in the nodes element defines an action to be performed on the
config file. Using the path, the section of the .config file to be modified is
selected using an Xpath expression. Table 18.8 lists the actions for the node
element and how it is used to manage web.config.

Table 18.8 Node Action Types

Action Type Purpose

add Adds the content within the node element to the location
selected in the path

insertbefore Inserts the supplied content before the selected node in the
path

insertafter Inserts the supplied content after the selected node
remove Removes the node selected in the path
removeattribute Removes the attribute selected in the path
update Updates the node selected in the path with the supplied

content
updateattribute Updates the selected attribute

Besides path and action, there are a few other node attributes that control
how the node action is performed on the selected node. The key attribute
instructs DNN which attribute in the XML node to use to compare nodes to
look for duplicates. In the earlier example, the key was set to key to let the
installer know that appSettings that have the same key attribute are
duplicates. In the provider config type, you would change the key to name. If
there is no attribute indicating a duplicate, but the element itself would be a
duplicate, the targetpath attribute can be used to supply an Xpath expression
pointing to the element.

The last attribute for the node element is collision. collision tells the
installer how to handle duplicates that it finds using the key attribute. You
can supply save to have the installer save a commented-out version of the old
node, overwrite to replace the old node with the one you supply, or ignore to
leave an existing node as is.

Since the Config component does not specify a version, it runs every time the
extension package is installed. Therefore, it's important to make sure that
your configuration actions are safe to occur multiple times. Most of the time,
the update or updateattribute action is the correct choice to use, making sure
that a key or targetpath is specified to avoid duplicates.

Module Components

The Module component is used to install modules as part of a package. The
Module component is built with a serialized XML DesktopModule object type.
The layout of the Module component type should look very familiar if you
have worked through the Create Package Wizard for building a module

package. Using the desktopModule node, the storage location, Module
Definitions, and controls are defined in XML.

<component type="Module">
 <desktopModule>
 <moduleName>Wrox.Suggestion</moduleName>
 <foldername>Wrox.Suggestion</foldername>

<businessControllerClass>WROX.Modules.Suggestion.SuggestionController,

 WROX.Modules.Suggestion</businessControllerClass>
 <supportedFeatures>
 <supportedFeature type="Portable"/>
 <supportedFeature type="Searchable"/>
 </supportedFeatures>
 <moduleDefinitions>
 <moduleDefinition>
 <definitionName>Wrox.Suggestion</definitionName>
 <friendlyName>Wrox.Suggestion</friendlyName>
 <defaultCacheTime>0</defaultCacheTime>
 <moduleControls>
 <moduleControl>
 <controlKey/>

<controlSrc>DesktopModules/WROX.Suggestion/Suggestion.ascx</controlSrc>

<supportsPartialRendering>False</supportsPartialRendering>
 <controlTitle/>
 <controlType>View</controlType>
 <iconFile/>
 <helpUrl/>
 </moduleControl>
 </moduleControls>
 </moduleDefinition>
 </moduleDefinitions>
 </desktopModule>
</component>

Developers who use the website project model for developing modules and
have business logic included in the App_Code folder can include the .cs or .vb
files in their installation packages with the Files component explained earlier
in the chapter.

IUpgradeable Interface and the eventMessage Section

The version control and management within the Scripts and Cleanup
components of the extension manifest provide a rich API for developers to

provide upgrade paths to consumers of their modules, but there are times
when these tools are no substitute for access to the full .NET Framework. The
DNN extensions manifest accounts for the need to execute ASP.NET code to
execute upgrade operations that are not covered with file copy, file delete, or
T-SQL scripts with the eventMessage section within the Module component.
When the module install process runs, the last action that the installer
performs is installing DLL assemblies into the bin folder of the website.
Because adding assemblies to the bin of an ASP.NET website always causes
the application to restart, access to the current thread is lost with that
application restart and no more server-side code can be run until ASP.NET
recompiles and starts the worker process. The problem that this presents for
server-side upgrade code is that the upgrade code is included in the new
assembly, which cannot be run until the application restarts, at which point
the upgrade process is no longer running. To address this problem, DNN uses
the eventMessage process of storing an upgrade action to be run on
Application_Start event. The following example shows a sample
eventMessage section:

<component type="Module">
 <desktopModule>
 <moduleName>WROX.Modules.UpgradeApp</moduleName>
 <foldername>WROX.Modules.UpgradeApp</foldername>

<businessControllerClass>WROX.Modules.UpgradeApp.WroxBusinessController,

WROX.Modules.UpgradeApp</businessControllerClass>
 <supportedFeatures/>
 <moduleDefinitions/>
 </desktopModule>
 <eventMessage>
 <processorType>DotNetNuke.Entities.Modules.EventMessageProcessor,
otNetNuke</processorType>
 <processorCommand>UpgradeModule</processorCommand>
 <attributes>

<businessControllerClass>WROX.Modules.UpgradeApp.WroxBusinessController,

 WROX.Modules.UpgradeApp</businessControllerClass>
 <desktopModuleID>[DESKTOPMODULEID]</desktopModuleID>

<upgradeVersionsList>01.00.00,01.00.01,02.00.01</upgradeVersionsList>
 </attributes>
 </eventMessage>
</component>

When the module is upgraded, DNN uses the eventMessage section of the
Module component to store an event in the EventMessage table to run the
next time the application starts. When the EventMessage is run, the business
controller's UpgradeModule event runs once for every version listed in the
upgradeVersionsList node. The method is executed in the order in which it is
listed, regardless of the version that is currently installed or the version to
which it is being upgraded. That means that the upgrade process runs
differently than the Scripts upgrade process in that it does not keep track of
the version it is upgrading to or from. Within the UpgradeModule event, the
logic will have to account for the version number being passed to it and
execute the appropriate upgrade operations based upon that. Following is an
example UpgradeModule using a switch statement to execute code specific to
the version that is being upgraded:

namespace WROX.Modules.UpgradeApp {
 public class WroxBusinessController:
DotNetNuke.Entities.Modules.IUpgradeable {
 #region IUpgradeable Members
 public string UpgradeModule(string Version) {
 switch (Version) {
 case "01.00.00":
 //Upgrade from 01.00.00
 return (string.Format("Successfully upgraded from version
{0}"
, Version));
 case "01.00.01":
 //Upgrade from 01.00.01
 return (string.Format("Successfully upgraded from version
{0}"
, Version));
 case "02.00.01":
 //Upgrade from 02.00.01
 return (string.Format("Successfully upgraded from version
{0}"
, Version));
 default:
 return (string.Format("Version {0} upgrade not supported.",
Version));
 }
 }
 #endregion
 }
}

The message returned from the UpgradeModule method is logged for each
upgrade event and is viewable on the Event Viewer page in the Admin menu.

Skin and Container Components

Skins and containers are created easily and efficiently with the Create
Package Wizard. Designers and developers should not generally need to
create a manifest file from scratch for skins and containers. All files in the
skin or container package are listed under the respective skinFiles or
containerFiles node. The following code shows example skin and container
component types:

<component type="Skin">
 <skinFiles>
 <skinName>SkinningDemo</skinName>
 <basePath>Portals_default\Skins\SkinningDemo</basePath>
 <skinFile>
 <name>htmlmethod.ascx</name>
 </skinFile>
 <skinFile>
 <name>htmlmethod.jpg</name>
 </skinFile>
 <skinFile>
 <name>htmlmethod.css</name>
 </skinFile>
 <skinFile>
 <name>htmlmethod.doctype.xml</name>
 </skinFile>
 </skinFiles>
</component>
<component type="Container">
 <containerFiles>
 <containerName>MinimalExtropy</containerName>
 <basePath>Portals_default\Containers\MinimalExtropy</basePath>
 <containerFile>
 <path>images</path>
 <name>dnn-plus.png</name>
 </containerFile>
 <containerFile>
 <name>container.css</name>
 </containerFile>
 <containerFile>
 <name>title_blue.ascx</name>
 </containerFile>
 <containerFile>
 <name>title_blue.css</name>
 </containerFile>
 <containerFile>
 <name>title_blue.jpg</name>
 </containerFile>
 </containerFiles>
</component>

SkinObject Components

The SkinObject component tells DNN how to use the files included in the
package to create the token for use in DNN skins. The SkinObject component
does not include the actual ASCX files that are used for the SkinObject; it only
maps the token to the user control used to render the SkinObject. You should
also include a File component type to include the ASCX files and any other
supporting images or files needed to render the SkinObject.

<component type="SkinObject">
 <moduleControl>
 <controlKey>ACTIONBUTTON</controlKey>
 <controlSrc>Admin/Containers/ActionButton.ascx</controlSrc>
 <supportsPartialRendering>False</supportsPartialRendering>
 </moduleControl>
</component>

Language Pack Components

In order to instruct the DNN installer how to use your language pack, you will
provide a group of languageFiles elements for each language that is in the
install package. Unlike the Create Wizard shown earlier in the chapter, the
language does not need to already be enabled before installing the
component. The information in the manifest will be used to set up the
language, if it is not already set up. To do that, the manifest will specify the
language code, display name, and fallback language. The remainder of the
component type is filled with languageFile elements. languageFile elements
should all have a path element and a name element for each RESX file, as
shown in the following code example. The Extension Language package
should be created with the same structure as the CoreLanguage element
except with ExtensionLanguage as the component type key and a package
element to declare which extension it is translating.

<component type="CoreLanguage">
 <languageFiles>
 <code>en-US</code>
 <displayName>English (United States)</displayName>
 <fallback/>
 <languageFile>
 <path>admin\controlpanel\app_localresources</path>
 <name>classic.ascx.resx</name>
 </languageFile>
 </languageFiles>
</component>

Authentication System Components

The Authentication System component type is a serialization of the inputs
from the Create New Extension Wizard to control the login, logoff, and
settings control sources. The Authentication System settings and Assembly
component types can be mostly generated using the wizard, but web.config
changes will have to be created manually using the Config component type
explained earlier in this chapter. The following code shows an example
Authentication System component:

<component type="AuthenticationSystem">
 <authenticationService>
 <type>LiveID</type>

<settingsControlSrc>DesktopModules/AuthenticationServices/LiveID/Settings.ascx

 </settingsControlSrc>

<loginControlSrc>DesktopModules/AuthenticationServices/LiveID/Login.ascx

 </loginControlSrc>

<logoffControlSrc>DesktopModules/AuthenticationServices/LiveID/Logoff.ascx

 </logoffControlSrc>
 </authenticationService>
</component>

Resource File Components

While it is possible to copy all of the individual files for an extension to the
correct location by using File component entries, this approach can become
verbose and error prone when complexity increases. It can be difficult to track
new files added to an extension between packaging, and it is time-consuming
to debug missing files.

The solution to this problem is the Resource File component. This
component acts as a File component for a compressed folder of files destined
for an extension folder. Typically for module extensions, all of the files to be
copied into the /DesktopModules/ExtensionName path are compressed into a
single .zip file. The Resource File component then locates this zip file within
the overall Installation package and extracts all the extension files into the
target folder. Only a single component entry is required in the manifest file,
and any new files required for the extension are added to the zip file as
required. No further changes are required for the manifest when new files are

added.

The following code shows a Resource File component in the manifest file.
The contents of the Wrox.Suggestion.zip file are all of the .ascx, .css, .js, and
other files destined for the Wrox.Suggestion folder. The zip file can contain
subfolders, but all of the root level files should be in the root of the zip file.

<component type="ResourceFile">
 <resourceFiles>
 <basePath>DesktopModules\Wrox.Suggestion</basePath>
 <resourceFile>
 <name>Wrox.Suggestion.zip</name>
 </resourceFile>
 </resourceFiles>
</component>

Provider Packages

Provider packages do not have their own component types. Instead,
components are made up of the Assembly, Config, and optionally the Script
and File component types.

Library Packages

The Library Package extension is created to manage generic package types.
Like the Provider package type, the Library Package does not have a
component type. Using the Assembly, File, Script, and Config components,
developers can install any kind of files or groups of files into a DNN
installation. The Library Package type can be used to install and manage
custom widgets, site templates, common DLLs, icon libraries, and anything
else developers can think of to install.

Summary
In this chapter, you learned how to create and package extensions to the DNN
Platform. You learned how to use the wizard to create install packages for the
extensions that have an automated Package Creation Wizard. Lastly, you
learned how to use the DNN manifest file format to install and manage
extensions and providers for your installation.

Chapter 19
Commercial Philosophy

What You Will Learn in This Chapter

Understanding the open core business model

Recognizing DNN's technology advantage

Identifying unique market conditions

Leveraging an open source distribution model

Building a strong brand identity

Achieving commercial success

Similar to many open source projects, DNN was not created with commercial
goals in mind. Rather, the commercial opportunity occurred as a result of the
viral distribution and adoption of the open source project by individuals and
organizations worldwide. Akin to planting a seed in fertile soil and giving it
sufficient water and sunlight, the open source model allowed the DNN
community to grow quickly and attract the right combination of users and
vendors to create a powerful commercial ecosystem.

The Fundamentals
In order for a company to become commercially successful, it needs to have a
unique advantage against its competition. Essentially this unique advantage
has to be something that cannot be easily replicated. When it comes to
companies utilizing an open source model, the unique advantage is nearly
always something that appears to go somewhat against the spirit of the open
source philosophy. This generally creates some tension in the community. A
bit of tension can be healthy, but too much tension can have damaging effects
on an ecosystem.

DNN Corp.'s commercial business is based on a concept known as the “open
core” model. Essentially it involves the distribution of a fully functional open
source product at the core and a separate commercial edition with proprietary
features and professional support. The model attempts to create a unique
advantage in the market for the vendor. However, open source equilibrium
tends to govern the extent that the vendor can leverage this advantage, as the
market tends to be self-governing and self-adjusting, thus avoiding the
dilemma commonly referred to in economic theory as the “tragedy of the
commons.”

If a vendor goes too far into the closed mode, it loses traction in the
community and exposes itself to the threat of a fork. A fork is essentially
another version of the open source core product that is developed and
distributed by another organization. Nothing prevents others from developing
the same proprietary features that the vendor has reserved for paying
customers only and providing them as free, open source extensions or as an
integrated part of a forked version. On the other hand, if the vendor goes too
far into the open mode, it may weaken its business model and fail to generate
enough revenue to sustain or grow its operations or provide sufficient
stewardship or infrastructure to the open source community.

Ultimately, customers are the arbiters of success. If they are willing to pay for
access to a product or service, a company has a decent opportunity to become
successful and self-sustaining. However, an open core business model is
viable only if the open source community is large, well established, and
actively growing. This is because the conversion rates from the open source
product to the commercial edition tend to be very modest. A conversion rate
of 1% is not abnormal for many open core business models. A company can
try to increase this conversion rate by employing a variety of business levers;

however, these levers generally tend to create tension in the open source
ecosystem and increase the risk of a community revolt or fork.

It is important to note that the “open core” model is not the only approach for
commercializing an open source project. In fact, there is a lot of controversy
within the broader open source community related to the open core approach.
The basic debate is whether differentiation at the product level can still
maintain the symbiosis that is required to support the needs of all
stakeholders in the ecosystem in the long term or if it ultimately leads to
fragmentation. As a result, some open source vendors have chosen to avoid
this dilemma and have adopted a model where there is only a single version
of the open source product that is freely available to everyone, and they
instead leverage ancillary options such as support, training, consulting, or
hosting for commercialization. This is no panacea either, however, as it
means that the vendor must compete with members of its own ecosystem for
business opportunities.

So if the commercial viability of DNN Corp.'s open core business model was
dependent on the existence of a large and healthy open source community,
what were the factors that contributed to the creation of this ecosystem in the
first place? Some might say that it was simply luck, that is, “being in the right
place at the right time.” However, the reality is that it was a perfect storm of
technology, market conditions, and a superior distribution model that
enabled DNN to get traction and mature into a viable commercial business
opportunity.

Technology
When you look at DNN from a technology perspective, you can see that there
are a number of key attributes that allowed it to achieve rapid adoption. In
general, it delivered a high amount of value at a very low cost, a combination
that made the technology accessible to the masses and highly appreciated by
its target audience.

The primary audience initially consisted of software developers familiar with
Microsoft technology who were looking for an advanced web application
framework. The frameworks that Microsoft provided tended to be stateless,
consisting of a variety of disparate tools and APIs that software developers
needed to figure out how to assemble themselves in order to create a
functional web application. DNN was a stateful framework built on top of the
Microsoft platform; with all of the parts already assembled in a modern, best
practices architecture, providing a fully functioning web application. The
strategy of delivering a pre-assembled, more functional and usable product to
attract a large group of users has been played out numerous times over the
history of the technology industry, dating all the way back to the dawn of the
personal computer age and the success of the Apple I over the MITS Altair.
Popular wisdom is that a product must deliver a 10X improvement over the
competition in order for it to gain viral adoption. DNN benefitted from
numerous case studies by organizations that claimed that they had achieved
more that 10X productivity gains in their website development efforts by
using the product.

Equally as important as identifying what DNN offered as a web application
framework is identifying what it did not offer—this is what also differentiated
it from other competitors. DNN was not a simple site builder. A variety of site
builders already existed that focused on providing a simple user experience to
non-technical users for developing web pages and publishing them to the
web. The problem with the majority of these site builders is that they offered
very limited opportunity for customization or personalization. DNN was also
not an enterprise content management system (ECM). There were already
many powerful ECM systems available that provided workflow, versioning,
extensibility, and so on, in a closed system model and at a cost that made
them affordable only to very large organizations. Both of these markets were
red oceans with many companies focused on delivering similar solutions,
which limited the opportunity for new competitors to enter. DNN filled a void

between these two types of competitors, a blue ocean that challenged the
conventional wisdom at the time, by delivering a minimal set of core website
management features and empowering software developers to easily extend
the product with additional functionality. This was a totally new model for
website development, not an incremental improvement to an existing model.
Competitors specializing in non-Microsoft technology also recognized this
opportunity, and soon an entirely new web content management market
category began to emerge.

Market Conditions
At the time that DNN was first released, there was also a disruption in the
Microsoft ecosystem, as the .NET Framework had just been introduced and
many organizations were still grappling with their migration strategy.
Because DNN was developed on the .NET Framework, it was viewed as
modern and cutting edge, which attracted many early adopters who were
looking to make the transition to the new framework. It was also a
challenging time for developers who were experienced with Visual Basic, as
all indications from Microsoft seemed to point to C# being the preferred
development language of the future. With DNN based on Visual Basic.NET
and fully open source, it provided Visual Basic developers with a familiar
environment and Microsoft platform software developers in general with
functional code examples to accomplish almost any development task they
encountered in their business software projects. These factors allowed DNN
to quickly dominate a large share of a small market, which later grew into a
large opportunity as more organizations migrated to the latest versions of the
Microsoft platform.

Distribution Model
The benefit of DNN's open source license cannot be overstated. Without it,
there is no way that the product could have achieved such widespread
distribution and adoption. It is extremely challenging for any software
product to rely on traditional marketing and distribution methods and gain
traction in the market. This is because the largest software companies tend to
dominate the mainstream marketing and distribution channels, leaving
limited opportunity for smaller companies to get noticed. In utilizing the
open source model, a company concedes some value in their intellectual
property but makes up for it by allowing any organization to use their
software without restriction. If the open source product solves a large enough
business problem, it has the ability to break free from the industry shackles
and achieve widespread adoption and recognition. In addition, the open
source distribution model is beneficial from a Customer Acquisition Cost
(CAC) perspective, as it keeps the cost and resources associated to acquiring
new customers to a minimum. This is precisely how DNN was able to
experience viral growth and commercial success.

A network effect refers to the concept that a product or service becomes more
valuable as more people use it. In the case of DNN, the freedom of the open
source license allowed anyone to use the software without restriction. As the
number of users increased, so did the activity in the online community
support channels. DNN experts and evangelists shared their knowledge and
opinions with other members of the community, creating a collaborative and
empowering environment. As the size of the community grew, it also
attracted companies that offered complementary services such as web
hosting, custom development, and web design. These companies were
essential in enabling new users to be successful with the open source product.
Some of these companies took advantage of the opportunity to create
extensions and offered them to customers as fully supported commercial
products. So as the ecosystem grew and matured, the open source product
became increasingly more valuable.

Branding
The widespread adoption of the open source project also cultivated a strong
brand identity. Not only did the project name and logo receive universal
recognition, but more importantly the open source project values and culture
also became widely understood and respected in the industry. The concept of
social entrepreneurship and “doing well by doing good” resonated with many
people around the world and elicited an emotional response, resulting in a
following that was almost cult-like in its loyalty and devotion.

This was not achieved purely from the distribution of the open source project
but also from extensive marketing and communication efforts. The brand was
emphasized on the website, in project documentation and collateral, and even
within the software source code. The project values were regularly
evangelized in newsletters, presentations, interviews, magazine articles,
books, and conferences worldwide. Transparent communication channels
allowed the community to feel like it had a personal relationship with the
project and a direct channel for voicing feedback and influencing its direction.
Over time the brand became one of the most valuable assets of the DNN open
source project.

Results
The open core business model of DNN Corp. allowed it to create a viable
commercial business. In the years from 2009 to 2014, it achieved significant
revenue growth, expanded its operations and headcount, benefitted from
investments and partnerships with a variety of highly respected technology
companies, and received many industry accolades. These included recognition
in the 2011 Inc. 500 Top 20 placement in the Fastest Growing Company list
for British Columbia for five straight years and representation on a variety of
analyst reports, including the Gartner Magic Quadrant. The commercial
traction allowed it to invest in the community, enhancing the open source
platform, providing valuable community services, and creating opportunities
for members of the ecosystem to meet and interact with one another. As long
as the company continues to operate as a wise and generous steward of the
open source project and community, operating with intellectual honesty and
integrity, there is no reason why the goose will not continue to bestow it with
golden eggs for many years to come.

SUMMARY
DNN's commercial success is a result of advanced technology, disruptive
market conditions, and a superior distribution model. The viral growth of the
open source project attracted the right combination of users and vendors and
created a powerful commercial ecosystem. This created a viable commercial
business opportunity for DNN Corp.

Chapter 20
Evoq Content

What You Will Learn In This Chapter

Discovering content creation tools

Understanding permissions, workflow, and versioning

Uncovering Evoq Content's optimization features

Discovering integrations support

Evoq Content is a powerful, easy-to-use, and extensible Content Management
System (CMS). For most organizations, the website is the center of their
marketing universe. Evoq Content empowers marketers to easily and quickly
bring a website to life with captivating content that attracts and engages
prospects and customers.

Evoq Content is tailor-made for today's modern marketer. Its drag-and-drop
user interface makes it easy to create content, while its integration with cloud
storage and marketing automation systems saves marketers valuable time.

At the same time, IT managers and developers can take advantage of the
extensibility of the solution through its APIs and third-party extensions.

Evoq Content is a commercial product built on top of the DNN Platform, and
it includes essential features for today's digital marketer. These features
include real-time personalization, on-page analytics, third party integrations,
and more.

This chapter covers some of the main features found in Evoq Content.

Content Creation
Today's digital marketers need to manage much more than their
organization's websites. They work with colleagues, PR agencies, design
agencies, and freelancers, sharing documents and files across the Web. They
connect their websites to other systems, such as CRM and marketing
automation. All while ensuring that visitors find the information they need.

Evoq Content makes life easier for today's digital marketer by providing
content-creation capabilities that go far beyond content management.

Asset Manager
Evoq Content provides centralized access to cloud-hosted content repositories
(see Figure 20.1). It includes built-in connectors to Box, Dropbox, Amazon S3,
Azure Storage, and SharePoint, making it easy to access any piece of content
or digital asset from a single window. Marketers can conveniently share
documents with third parties without the need to contact IT to upload large
files.

Figure 20.1

The Asset Manager allows marketers and content producers to use preferred
content storage services or use multiple services without moving files,
duplicating effort, or wasting valuable time.

Flexible Content Layouts
Evoq Content provides a convenient collection of built-in layouts that you can
apply to pages (see Figure 20.2). In addition, you can assemble your own via a
simple-to-use drag-and-drop interface. If you create a custom layout, you can
save the new layout as a template, making it available for reuse on other
pages. This feature enables marketers to build pages and edit content more
quickly and efficiently, reducing duplicate effort and rework.

Figure 20.2

Permissions, Workflow, and Versioning
Permissions and workflow can be used together to manage a growing team of
content managers. As more people contribute content to the site, you'll be
able to instrument reviews and approvals, as well as monitor and enforce
consistency with brand standards. Evoq Content's granular permissions
feature allows you to dictate the actions enabled by particular groups of users.

Permissions
In small organizations, website management is typically assigned to one or
two staff members who produce, review, approve, post, amplify, and monitor
the content. But in larger organizations, the structures are more complex:

Regular users generate text, visuals, or finished pages for specific sections
of a site.

Admins approve content or send it back for revisions before allowing it to
go live.

Managers work to repurpose or repackage content on social media and
monitor its impact.

Evoq Content allows you to define granular, role-based permissions that give
users access to some site sections and functions, but not others. You might
have different teams in your organization, from marketing to engineering to
sales, so it may be essential to set up granular permissions that reflect the
duties assigned to different role-based personas.

Compared to DNN Platform, Evoq Content adds a wider range of highly
granular permission options. As your organization grows, you'll have to
distribute the responsibility for updating content across your team for
different sections of your site, using fine-grained permissions to prevent
unauthorized access to individual pages or modules.

This process puts managers in charge of the sections that correspond with
their actual duties, while preventing teams from accidentally publishing
changes or pages that fall outside their jurisdictions. That process puts you in
control of your online content, while saving a lot of time for marketing and
IT, the departments that would otherwise have to manage an entire site.

Workflow

Professional websites with multiple content editors are complex to manage.
You need to make sure that the message, tone, quality, brand, and so on, of
your overall website are consistent. To solve this challenge, Evoq Content
offers a Content Approval Workflow that allows you to review and approve
content at different stages of the process so that your visitors only get to see
the content that reflects your brand and message.

Evoq Content offers three workflows out of the box: direct publish, save draft,
and content approval. The three workflows differ on the number of stages
that your content has to go through before it goes live in your website. In
addition, you can create custom workflows and give approval permissions for
each step of the workflow.

AutoSave
How many times have you accidentally closed a page or a document without
saving your work, or the power goes out before you're able to click Save? Evoq
Content includes an AutoSave feature that ensures the content you've created
or modified in the editor is stored in a temporary location. This means that
the content survives, regardless of external events such as a lost Internet
connection or user error.

After an error occurs, you can still retrieve your changes. Just return to your
editor and you'll be prompted to retrieve unsaved changes.

Content Versioning
Evoq Content's versioning is a feature that allows you to track the history of
content for later re-collection, retrieval, or confirmation of events. Every time
a new version of the content is approved and published, a version number is
inserted at the top of the list. Even when a rollback is done, a new version is
inserted so that the history between the latest version and the version rolled
back to is not lost.

This feature enables you to “roll back” to prior versions of a page, if needed.
For example, if an erroneous pricing update was applied to a page, you can
roll back to the prior version to preserve the original pricing information.

Version Compare
Having the ability to keep the history of a piece of content is a very valuable
feature, but you often find yourself wondering what exactly changed from one

version to the next or from an old version to the latest one.

With Evoq Content, you can select any two versions of your content and see
them side by side. The system highlights the changes that occurred between
one version and the other.

Optimization
It's no longer good enough to create web content for all site visitors. When
customers visit a website, they expect to find the information they need
immediately. Customers who don't find what they need leave quickly, and
you'll have diminishing chances of having them return.

Evoq Content provides a number of optimization features that help marketers
create productive and delightful experiences for their visitors.

Real-Time Personalization
Today's web visitors expect personalized experiences. In other words, they
need to see what they want, when they want it. Evoq Content enables you to
build personalization rules that tailor site content based on the visitor's
profile (see Figure 20.3).

Figure 20.3

Rules are based on user role, geographic location, language, device type, page
visited, link clicked, and last activity date. Personalizing content to the
visitor's individual profile has been proven to increase conversions and
customer engagement.

Analytics
Evoq Content's Analytics feature enables marketers to quickly see how their
content is performing without needing a high level of proficiency with
analytics or access to a separate web analytics system. Evoq Content provides
statistics on page views, referrers, unique visitors, and conversions (see

Figure 20.4).

Figure 20.4

Analytics are presented as an overlay on each page, via data collected, and
managed by Evoq Content. Marketers can also view a navigation summary to
see how visitors are coming to a page and how they are leaving. Analytics
helps you quickly understand the performance of each page of your site
without having to log in to a separate web analytics tool.

Integrations
In a 2014 research report, DNN discovered that 53% of marketers at midsized
companies use five or more marketing technology solutions, while 15% use 10
or more marketing solutions. In short, marketers rely on solutions from
numerous vendors, and many of these systems need to integrate with one
another.

Evoq Content simplifies the life of today's digital marketer by providing built-
in integrations to widely deployed marketing applications. Evoq Content
connects easily to these applications, so you can use familiar and preferred
solutions to extend your website's functionality:

Salesforce. Publish content to your Salesforce instance based on stage of
the buying cycle and measure its impact.

Marketo. Integrate Marketo easily without programming knowledge. Add
the Marketo Munchkin code and deploy Forms 2.0 in just a few
keystrokes.

Summary
Evoq Content is a very powerful, scalable, and high-performance web content
management system for small, medium, and large organizations. Some of the
features you'll find include the following:

Content Creation. Capabilities tailor-made for today's time-constrained
modern marketer. Leverage numerous out-of-the-box content layouts, or
use a drag-and-drop user interface to create your own.

Permissions, workflow, and versioning. Set granular permissions on
your content pages and then use workflow approvals for important checks
and balances on content updates.

Optimization. Real-time personalization, used in conjunction with on-
page analytics, enables marketers to deliver personalized web experiences
to visitors while assessing (in real time) how pages are performing.

Integrations. Take advantage of built-in integrations to Marketo and
Salesforce, saving your IT team valuable time in connecting your website
to these systems.

This chapter covered some of the most important features of one of the most
popular web content management systems for small, medium, and large
organizations. If you want to try it for free, you can visit
www.dnnsoftware.com/evoq-free-trial.

http://www.dnnsoftware.com/evoq-free-trial

Chapter 21
Evoq Engage

What You Will Learn In This Chapter

Understanding the community management tools

Discovering the community-oriented modules

Evoq Engage is an easy-to-use online community solution that includes a
powerful content management system and platform. It is built on top of Evoq
Content and includes all of its features for creating, editing, and managing
content. Like Evoq Content, it is a commercial product and includes
functionality for enabling user engagement and the tools that are necessary
for managing and measuring that engagement.

Management Tools
The features of Evoq Engage can be divided into basically two types of areas
based on the perspective of the website user. The management tools, the first
of these two types, are used to configure and maintain an online community.
The management tools are all exposed from the persona bar and are only
available to users who are logged in and have appropriate permissions.

Persona Bar's Dashboard
The persona bar is a toolbar exposed to three different user types, or
personas, within Evoq Engage. It serves as a sort of control panel but is
visually very different from the one seen by administrators and super users.
The three types of personas are community managers, content managers, and
content editors. Based on the persona of the viewing user, what is displayed
in the persona bar varies. In this chapter, the focus will be on the community
manager persona.

For content managers and editors, the toolbar offers access to items centered
on the CMS aspects of the product, such as editing content and creating new
pages. It also provides a means for viewing details about page traffic (see
Figure 21.1).

Figure 21.1

For community managers, the tools exposed in the persona bar are those that
make managing an online community less of a daunting task. It is at the
center of a community manager's daily activity, and clicking one of the many
items located on the toolbar can access everything necessary to manage the
online community.

Overview

The analytics in Evoq Engage are exposed via the dashboard icon and the
submenu items within the persona bar. When clicking the Dashboard icon,
community managers are presented with an overview of their community's
health. Key areas about community engagement are highlighted in a series of
reports displayed within the dashboard. In this initial overview, all areas of
the site are reported on within a single all-encompassing view.

Below the community health section of the dashboard is the Adoption,
Participation & Spectators chart (see Figure 21.2). Adopters are users who

have registered on the site within the selected period. Participants are the
community members who have done something that contributes to the
community such as authoring, editing, subscribing, or interacting with
content. Spectators are community members who have viewed content only
and not interacted with it.

Figure 21.2

Under the Adoption, Participation & Spectators chart is the Activity chart.
This chart breaks down how much activity each community module has had
within the selected time period. Beneath this section is a breakdown of the
trending tags used throughout the community as well as which content is
popular. Both trending tags and popular content are determined based on
how much engagement the content has had over the selected period. The
amount of time on a page as well as the top community users are also shown
within the dashboard.

Modules

Hovering over the dashboard icon in the persona bar exposes a submenu that
lists all the community modules in Evoq Engage. Everything discussed
previously, besides the Adoption, Participation & Spectators chart can also be
filtered down to the individual community module. This allows a further
breakdown of who is participating and where within the Evoq Engage
community.

Persona Bar's Manage Section
The Manage section of the persona bar is centered around things that require
attention more often then settings but are not necessarily something a
community manager will use on a day-to-day basis.

Assets

The Assets section of the persona bar is available from the Manage icon (see
Figure 21.3). This area is a way for the community manager to manage all
files on the website. It not only displays the files on the site but also displays
those from cloud providers like Box and Dropbox.

Figure 21.3

Clicking any folder opens the folder and shows you the other folders and files
that it contains. You can edit the title of the files and folders and also get
direct links to them.

Users

The Users section is also a submenu item of the Manage icon of the persona
bar. By default, it lists the latest community members at the top, with the
oldest member being the very last one in the list. This is an alternative for the
User Accounts module under the Admin menu.

Users can be searched by typing the username, display name, or email
address for which you are searching. The results are filtered immediately in
the list below. Clicking any user expands the user to show additional details
about them such as their reputation and influence as well as the areas in
which they were last active (see Figure 21.4). You can also navigate to a user's
assets from here to delete any items they may have uploaded that are not
meant for community consumption.

Figure 21.4

Persona Bar's Settings
Unlike the items under Manage, items under the Settings area are generally
set up once and are rarely revisited by the community manager.

Connectors

Connectors are a way to connect your online community with outside
services. To manage connectors, the community manager must select the
Connectors submenu item under the Settings icon of the persona bar. Each
connector has its own set of fields but usually requires some type of unique
identifier. For configuring the Marketo connector, for example, you simply set
a unique ID and save the settings. To obtain this ID, you must have an
account already set up with the provider of the connector you are setting up.

Evoq Engage includes multiple connectors and continues to add to the list. At
the time of the publishing of this book, the following connectors are

available: Box, Dropbox, Google Analytics, Marketo, Facebook, LinkedIn, and
Twitter with Amazon S3 and Azure on the way (see Figure 21.5).

Figure 21.5

Gaming Mechanics

The gaming mechanics within Evoq Engage contain both gaming and
reputation aspects. Both aspects rely on a points system, which can be broken
down into two distinct types: experience and reputation. Experience Points
(XP) only increase over time and provide insight into how a community
member has contributed to the online community over a lifetime of activity.
XP is only displayed to community managers in Evoq Engage, and community
members never see this score.

Reputation points, on the other hand, can go up and down over time based on
how the community member contributes and interacts within the
community. This reputation score is what is displayed everywhere within the
Evoq Engage community to represent the community members score. The

reputation points are also utilized for privileges, which enable modules to
expose functionality based on an end user's reputation score. The required
reputation score to gain a privilege is controlled by the community manager.

Community modules generally make use of both scoring actions and
privileges, and all aspects associated with content authoring and editing
within the CMS product can also be associated with XP and reputation points.
It is worth noting that any third-party modules integrated with the mechanics
engine can also have their reputation and experience points managed from
the persona bar's gaming settings area as well.

Scoring actions also allow community managers to create badges. Badges
provide community managers with a way to give community members an
award for doing a series of actions on their website. Each badge can have its
own image and can be associated with one or more scoring actions. You can
require end users to complete the action one or multiple times, and you can
require them to perform these actions within a specified time frame. Badges
can be managed from the same area as points and privileges, as shown in
Figure 21.6.

Figure 21.6

General Settings

The Settings area within the persona bar consists of configuration items that
are set up by the community manager once and are generally not visited and
changed too often once the community is up and running. Influence, which
allows the community manager to determine how community members
influence scores, is calculated and based on a number of factors that can be
set from this section.

Below the influence settings section is the miscellaneous community settings
area that provides a means to control which content and comments, if any,
are moderated prior to public display. Other community-oriented settings
such as profanity filtering and the enabling and disabling of the WYSIWYG
are also configured from here.

Tasks

Unlike other areas within the persona bar discussed so far, the Tasks area is
always available regardless of the selected menu or submenu item. Tasks are
displayed on the right side of the expanded Persona Bar and can be collapsed
when the end user needs them out of the way. The total number of open tasks
is displayed, and the oldest tasks are always listed at the top. This is done to
help ensure the community manager takes action on those tasks that have
been in the queue the longest, thus preventing any task from going
unattended.

Simply put, the Tasks area displays a list of action items for the community
manager. These tasks vary from content and users pending moderation
approval to notifications of important events related to community activity.
Community managers can take action on all tasks from directly within the
persona bar; thus, they don't have to go from page to page across the site.

Community Modules
Users who are typical site visitors or community members will see features
and functionality covered in this section of the chapter. All of the
functionality discussed shares several key similarities.

For starters, the functionality is designed to take in content from community
members. This content can be moderated and requires approval from
assigned moderators prior to public display, or it can be set up for instant
approval and public display. It is also designed to have a consistent look and
feel. This consistency and the intuitive user interface lower the barrier for
community members to contribute, which results in a more pleasing
experience and leads to more participation by community members.

It is important to note that not all communities require all of the tools and
functionality discussed in this chapter. All of these tools are included to cover
various community types from company intranets to public-facing branded
communities for organizations of all sizes. The primary objective when
deciding what to implement in an online community is determining what
features give community members the most value and keep them engaged.

A second key similarity is that each member-generated content module has
moderation capabilities assignable per module instance. This allows
community managers to identify moderators for each specific member-
generated content module, thus dividing responsibility for community
management. Dividing responsibility among the various areas within an
online community, which is more important in larger communities, helps
ensure all areas of the community are monitored and maintained.

Another key similarity in each module is they are tightly integrated with the
powerful search engine included in the DNN platform. All member-generated
content is indexed and available in site search results. The search engine
indexing also takes the permissions associated with this content into
consideration when returning search results. This ensures search results only
display content available to the user who performed the search—a very
important aspect for communities that have a need for content that isn't
available to all visitors.

A final key similarity in the member-generated content modules is that they
are all integrated with the core social elements in Evoq Engage. These core
social elements, like the Activity Stream and the gaming mechanics, are

tightly integrated across all community modules and the management tools
discussed earlier in this chapter.

Answers
The Answers module provides a way for community members to ask
questions and get answers to those questions (see Figure 21.7). Providing a
way to ask questions on a community site enables other community members
or company employees to answer those questions without the need for a
phone call or an email. For a business, this can reduce support costs and
improve customer satisfaction.

Figure 21.7

To help website visitors find answers to their questions, the Answers module
allows authors of questions to accept one of the available answers as the
correct one for their question. When an answer is accepted, it is always
displayed at the top of the list directly below the question. This provides a
means for others to easily identify correct answers to questions without
having to read through all of the available answers.

The Answers module allows community members to vote on answers
provided by other users. This is another way that the community members
can help one another, thus keeping them engaged, as well as providing more
value to all members. Answers with higher scores rise to the top, sitting just
below the accepted answer, if available.

Blogs
The Blog module allows users to generate article-like content that can be
viewed and commented on by other community members. The Blog module
can be configured, via the module's permissions, to control which users can
author content within the module. Users who are granted the Blogger
permission can contribute blog content.

Challenges
The Challenges module was designed with community managers in mind and
provides them with a way to empower the advocates of their community.
Community managers create challenges to accomplish various objectives that
benefit their community, and as they do so, they choose who is permitted to
participate in the challenge.

Challenges can be divided into one of two general types: internal and social
network. Internal challenges are used to accomplish tasks within the online
community. For example, get a specific question from the Answers area
answered or get some members commenting on a specific blog article.

Social network challenges are used to increase a community's reach beyond
the website and current members. It does this by integrating with several of
the social networks: Facebook, LinkedIn, and Twitter. Social network
challenges allow community members to share content on these networks
and rewards them for it via reputation points and badges, which were
discussed in the “Gaming Mechanics” section of this chapter.

Discussions
The Discussions module is an area that permits community members to have
online discussions with each other in a fashion similar to forums. Unlike a
traditional forum, where subforums are used to group topics into predefined
categories, the Discussions module in Evoq Engage uses a flat structure
where discussions are categorized using free-form tags entered by the content

authors. The flat structure minimizes the number of clicks used to find
content in specific areas.

Discussions are more appropriate than the Answers module for member-
generated content that usually has no definitive answers. For example, a
question asking users their favorite color is much more appropriate for the
Discussions area than the Answers area.

Ideas
The Ideas module provides a way for community members to contribute their
own ideas and also provides the means for the community to vote and
comment on them. Community managers can set the maximum number of
votes permitted for users on all ideas, as well as the maximum number of
votes that can be contributed to any single idea. Limiting the number of votes
forces the community members to make difficult choices and thus helps
community managers prioritize what ideas are valuable to their community.

Events
The Events module was designed to enable location-based or virtual events
for community members. Location-based events can enter an address where
the event will take place, and a map of the location is displayed in the event
details to members.

Event organizers can limit the number of attendees for cases where live
events have a limited number of spots available. It is also set up for users to
be able to reply to invitations with an attend, maybe, or decline status.

Wiki
The Wiki module allows community members or a company's employees a
way to create online living documentation that constantly evolves. It enables
WYSIWYG HTML content authoring and utilizes that markup to produce a
table of contents automatically so users viewing content can quickly jump to
specific sections.

Others
There are several community modules that aren't geared for user-generated
content. Instead, these modules focus on very specific pieces of functionality,
and there isn't much depth to them. They have a similar look and feel the

modules previously discussed, but most of them are not taking in content
from the end user.

Activities

This module is used to show all users what actions they can take to earn
reputation points on the site. Items that have no value or are negative are not
displayed here. The positive scoring items are the only ones displayed because
many communities may not use a lot of the features. In those situations, it is
best to set the reputation score to zero for all those items so they are not
displayed within this module.

Activity Stream

The Activity Stream module is an aggregated view of activity in a community.
It surfaces all member-generated content in a centralized interface that can
be filtered by area. As community members engage with items in the activity
stream, they are auto-subscribed to notifications on updates related to the
content with which they have engaged. For example, a user who comments on
anything in the activity stream will be notified via email any time someone
else comments on the item (see Figure 21.8).

Figure 21.8

Member Profile

The Member Profile feature contains a series of modules that display various
aspects of a user's profile to community members (see Figure 21.9). A few
things shown include a community member's profile details, community
activity, reputation score, and badges. It takes into account all of the privacy
settings, so it only shows things the community member permits to be
displayed to the rest of the community.

Figure 21.9

Leaderboard

The Leaderboard is a module that displays a list of community members
sorted based on the member's reputation score. It can be configured to show
this list based on one of several predefined intervals: last day, last week, last
month, last year, or lifetime. This option is important because as your
community grows you may want to implement multiple leaderboards in the
community that are configured differently to help keep your community
engaged.

The points displayed are reputation points. The number of reputation points
within the selected time frame is what determines the rank of the users with
the highest score in the result set being at the top of the list.

Group Spaces

The Group Spaces feature consists of a group directory module and a group
spaces set of modules. The Group Directory module displays a searchable list
of social groups within the community. Depending on the configuration,
community members can create their own social groups.

User Badges

The User Badges module displays a list of all the available badges within the
community. If the end user hovers over a specific badge more information
about the badge, such as how to earn it, is displayed. It also shows the last
three users who earned the badge providing more recognition for them that is
visible to others.

Summary
This chapter covered the features included in Evoq Engage that are classified
as either management tools or community modules. Management tools allow
the community manager to configure, monitor, and run the community from
day to day. The community modules are what are used for the community
members to engage within the community.

Chapter 22
The DNN Store

What You Will Learn In This Chapter

Utilizing the store

Making money with the referral program

Selling products on the store

The DNN Store is an online marketplace where vendors who develop
extensions for the DNN platform can sell those extensions to end users and
system integrators. The store started out initially as Snowcovered.com, which
was a marketplace for IBuySpy extensions and SharePoint web parts. As
IBuySpy morphed into DotNetNuke, and as the DNN platform grew in
popularity, so did Snowcovered.com. On August 27, 2009, DNN Corp. officially
announced the acquisition of Snowcovered.com. DNN Corp. continued to
operate the site until February 6, 2012, when the DotNetNuke Store was
launched as a redesigned and upgraded version of Snowcovered.com. Since
then, development of the store has continued to progress. DNN Corp. has
remained committed to ensuring that the store is a viable marketplace for
vendors and platform users.

http://Snowcovered.com
http://Snowcovered.com
http://Snowcovered.com
http://Snowcovered.com

Buying from the Store
The majority of the store users are there for one common purpose: to find
extensions that meet the needs of their projects. This is typically done by
searching for and then researching and comparing those products. If more
info is needed, customers can obtain presales support by asking the vendors
questions about the products. Many of the products also offer trial versions or
demo sites. Once products are selected, they can be purchased and installed.

Locating Products
There are a few ways to locate the product that you're looking for on the store.
The next five sections cover the most popular ways to locate products, which
include using the search and browsing the category lists, the top themes and
modules lists, the top vendor list, and the vendor profile. Details regarding
the use of the product list and the result filter are also covered.

Product Search

A lot of work has gone into improving the site's search functionality from the
initial Snowcovered days. Every page on the site has a search bar at the top
that you can use to initiate a text-based search query. The search uses a
custom algorithm that includes weighted full-text results from the product
description, vendor name, and product title. The results are then ranked by
this value and displayed on the search results page.

The Search Filter

Upon the initial launch of the new store the search results page also included
a filter bar that gave users the ability to filter by version, product type, a single
category, and a single tag. About six months after the relaunch of the store,
the search filter was upgraded to support filtering by multiple categories and
multiple tags. Each of the categories and tags listed in the search filter is an
attribute possessed by the items in your search subset. To the right of each
category or tag there is a number. That number represents how many results
remain if that item is added to the search criteria. Filters can be removed by
clicking the red “x” to the left of the item you want to remove.

Product List Sorting

The search results page also provides the ability to sort the results in a variety

of ways. When performing a text-based search, the default (and
recommended) way to sort the results is by relevance. This allows the
weighted full-text algorithm to display the most relevant results first, similar
to the way that a search engine like Google ranks and displays results. The
results of any search can also be filtered by any of the following:

Published Date: The date on which the listing was first activated on the
site.

Last Updated Date: The date when the listing was last modified by the
vendor.

Average Review: This orders the results by the review average (Σ
(product reviews) / total number of reviews).

Best Selling (Units – All Time): This ranks the products based on the
total number of sales that product has on the store.

Best Selling (Revenue – All Time): Similar to the previous item;
however, the total is based on the revenue.

Best Selling (Units – Last 2 Weeks): This is the same as Best Selling
(Units – All Time); however, results are limited to sales that occurred in
the last two weeks.

Best Selling (Revenue – Last 2 Weeks): Similar to the previous item;
however, the total is based on revenue.

Alphabetical: A to Z or Z to A: The results are sorted by product title.
If you know the name of the product you're looking for sorting the list
alphabetically is a quick way to find it in the list.

Price: Low to High or High to Low: These are used to sort the results
by the list price. Do you have a budget in mind? Sort by price to quickly
find results that fall within that budget.

Product List Details

The product list that is used to display search results is relatively
straightforward. Each product listed includes a product image or thumbnail,
title, and Read More button, all of which link back to that product's detail
page. It also includes the vendor's name, which links to that vendor's profile.
Other information displayed for each product includes the date the product
was last updated, a short description of the product, and the base price of the

product. If the product has reviews posted, there is an icon that displays on a
scale of 1 to 5 the average review rating of the product and next to the total
number of reviews posted for that product.

Other Ways to Shop

While the product search is by far the most popular way to locate products on
the store, there are a few additional ways of locating product on the store. The
next most popular area of the site is the Top Sellers lists. Currently, there are
three top seller lists on the store. The first one is top modules; it is a list of
the top 100 best-selling modules based on sales revenue from the last two
weeks. The second list is top themes; this is a list of the top 100 best-selling
themes based on sales revenue from the last two weeks. The third list is the
newest, and it is the top vendors list. This list shows the top 25 highest
grossing sellers on the store and ranks them in descending order by product
sales for the previous week. It also shows that vendor's rank from last week
and whether the vendor's rank is trending up or down.

The third most popular way to shop for products is to browse for them. There
are two initial paths for this—Modules and Themes. Both are located in the
primary navigation on the store. Clicking either of these items takes you to
the product list page. From this point these pages work exactly like the
product search discussed earlier, only there is no search text applied.
However, it's still possible to narrow your results by version, multiple
categories, and tags, and the results can be sorted.

Another popular way to shop for product on the store is via the vendor profile.
Most of the vendors on the store sell multiple products. Often these products
complement each other both in design and functionality. Some vendors even
provide discounts for purchasing multiple products or offer product bundles
that include many of their top extensions. The top vendor list discussed
earlier is a good initial way to find some reputable vendors on the store.
Clicking any of the vendors in that list takes you to that vendor's profile.
Another way to see the vendor profile is to click the vendor's name from any
of the product details, search results, or product list pages. The vendor profile
page includes a product list that displays all of the vendor's active products.
The vendor profile also displays all the reviews that vendor has received. The
reviews are a good way to hear what other shoppers have to say about that
vendor and their products.

The Product Details Page
While attempting to evaluate the likelihood that a product will meet the
needs of your project, the product details page is one of the most important
pages in this process. This page is configured by vendors to describe their
products. Currently, there are a few different sections included on this page
that include the Product Details, Product Options, Discounts, Description,
FAQ, License, Azure Compatibility, Tags, Categories, and Spotlight Reviews.

One of the more important areas on the page is the Product Details section. It
includes the following information:

Title

Product icon

Review average on a scale of 1 to 5

Total number of product reviews

Vendor name (which links to the vendor profile)

Date the listing was published

Date the vendor became a seller on the store

Country of origin for the vendor.

Average vendor review (This is computed from reviews placed in the last
six months on all of the vendor's products.)

Ask a question link (This is a good way to ask any presales questions that
you might have regarding the product.)

If you are logged in, there is also a link to add the product to your watch
list.

Many products on the store have multiple options; for example, Standard
Edition, Enterprise Edition, Source Edition, and so on. If the product has
multiple options, these are shown below the product details area. It's
important when deciding to purchase a product that you evaluate the
difference between each option and ensure that you are purchasing the
correct option that meets your needs. This area of the page also includes the
Add to Cart button.

Some vendors provide discounts for their products. If a product has any
current discounts, they are listed below the product options. It's important to

note that other than private coupon codes there isn't anything special you
need to do to apply discounts to an order on the store. If you are eligible for a
discount, it is automatically applied when you add the product to your cart.
Many of the discounts rely on your previous order volume or ordered items.
What that means is for these discounts to apply correctly, you will need to be
logged in when you go to the cart page.

The next primary section on the Product Details page is the product
description. This is a large area of text/HTML that is provided by the vendor.
The content of this area is entirely up to the vendor to provide, but quite a bit
of product information is often included here. This usually includes a product
overview, a list of features, demo links, screen shots, compatibility
information, project history, comparisons between product options, and
licensing.

The vendors have the ability to turn presales help desk tickets into FAQs,
which is a good way to find answers to common questions that other
customers have had regarding a product. Not all products have FAQs, but if
they do, they will be located under the product description.

Some products specify a license (EULA) statement. If provided, it is shown at
the bottom of the page below the product FAQs section. If a license is
provided, it's important to read and understand the license so that you can be
sure that your intended use and expectation of the product are in line with
the license provided by the vendor.

On the right side of the Product Details page are a few informative sections.
The first is the Azure compatibility badge, which is used to report whether the
product is compatible with cloud-hosted instances of DNN. The next section
down is the product tags. These are tags created by the vendor to describe the
product; clicking any of these tags takes you to a search results page that lists
other products on the store that share that same tag. Below the tags are the
categories. These behave like the tags, but the primary difference is the
categories are created by the store admins, and vendors can pick the
categories from this predefined list. Like the tags, clicking a category takes
you to a search results page that displays other products that share that same
category. The next section down is the spotlight reviews. These are reviews
that the vendor has elected to feature on the Product Details page. If you want
to see all the reviews for a product, click the review average at the top of this
section or the review average in the Product Details section at the top of the
page.

Making a Purchase
Once you find the product(s) you want to purchase, the next thing is to add
the item(s) to your cart and then proceed through the checkout process. With
the redesign of the store the checkout has been simplified to a four-step
process.

Once you have a product in mind, the first step in the purchase process is to
add the product to your cart. This is done from the Product Details page that
was covered in the previous section. The Add to Cart button is located below
the product details area and is often associated with product options. If you
need an option other than the default, be sure to select it prior to clicking the
Add to Cart button. Once added, you are redirected to the cart page. If you
need additional items, you can also add them to your cart following the same
process. If you need to purchase multiple quantities of an item, enter a
number in that item's corresponding Quantity box, or you can use the up and
down arrows to the right of the box to increase or decrease the quantity. If an
item in your cart has a discount applied, the discount amount and percentage
are shown in the Discount column. It's important to note that discounts are
noncompounding, and the cart will automatically apply the discount of
maximum value. Most of the discounts in the system are automatically
applied based on previous order activity. To see if any of these discounts
applies to this order, you need to be logged in. If you have a private or
promotional coupon code, you can enter it at this time in the box above the
cart total and then click the Apply Coupon button. If you have an item in your
cart that you want to remove, simply click the Remove link to the right of the
item. If you want to clear your entire cart, simply click the Clear Cart link at
the bottom-left corner of the cart page.

Once all the items you want to purchase are added to your cart, you can begin
the checkout process. At the bottom of the cart page, click the Proceed to
Checkout button. If you are not currently logged in, you are directed to a login
screen where you can log in with an existing account or create a new account.
After that, you are taken back to the cart page. If you had items in your cart
(while logged in) from a previous visit, the store automatically merges the
items currently in your cart with the items that were previously in your cart.
In the event that the store merges your cart, after logging in an alert will pop
up to remind you to check the items in your cart prior to completing the
checkout process. When logged in, clicking the Proceed to Checkout button
takes you to the checkout page. If this is the first order you have placed on the

store, a form appears asking for your billing address. If you have previously
placed an order, the previously used billing address appears. If you need to
edit an address, click the Edit link to the right of the address. If you need to
add a new address, click the Add Billing Address button. If you plan on paying
via credit card, it's important to use a billing address that matches an address
on file with the credit card company. To avoid a delay in processing the order,
it's also important to use a billing location that is local to the geo-location of
the IP address from which you are placing the order. Some products charge
tax based on your billing address. If any taxes are applicable for your selected
address, you can see them on the right side of the page. Once you are satisfied
with the Billing Address, click Continue to go to the next step in the checkout
process.

The next step is to enter your payment and billing details. At this point you
have two options to make a payment: directly through the store with a credit
card or through PayPal. If using PayPal you have the option of paying by
account balance, bank transfer, credit card, or eCheck. The most popular way
to pay is direct through the store by credit card. The store currently accepts
Visa, MasterCard, American Express, and Discover credit cards and debit
cards. To use any of these cards simply enter the name on the card, the card
number (digits only), the security code CVC or CVV (four digits on the front
for American Express, three digits on the back for all other cards), and the
expiration month and year. Once you verify the information is correct, you
need to agree to the sales terms and conditions by checking the box. If you
haven't read the terms of use yet, do so at this time. There is important
information regarding the refund policy and other aspects of the store. The
last step is to click the Purchase button. This takes you to the order status
screen; if everything has processed correctly, there is a link to the “My
Downloads” area where you can download your purchase. If there is a
problem with your order, a message appears explaining the issue and possible
ways to resolve the issue.

Managing Your Account
Once you have established a user account on the site and made a purchase,
additional items become available in the My Account section to help you
access your downloads, manage your orders, obtain support, and other
various functions of the store.

Accessing Your Downloads

One you place an order, the next thing you typically want to do is to download
the item you just purchased. This can be done on the My Account My
Downloads page. The downloads section was recently rebuilt from the ground
up to give a faster and more efficient experience, especially for users who
have purchased a large amount of items. The first thing you see at the top of
the page is a few options for searching and filtering the items in your list. If
you have more than 10 items in your downloads area, your results will have
pagination and you have the option to specify how many results you want to
show per page. The default is 10. The next option is the ability to filter the
results by seller or vendor. This list is only populated with vendors from
whom you have purchased an item in the past. The next item you can search
by is package name. It's important to note that this returns partial matches,
so if, for example, you are looking for a forms module that you purchased in
the past but don't remember the exact name, you can try searching for simply
the word “forms.” The final option is the time frame in which you purchased
the item. Options include all, last week, last 30 days, last 90 days, last 6
months, and last year. To apply the search or filter, just click the
Filter/Refresh button. If you want to remove your filter and return to the
default view, click the Reset link.

Each result displays the same basic information. On the left side there is
product and order-specific information that includes the product icon and
title, both of which link back to the Product Details page. The vendor name is
listed for each item; that links you back to the vendor profile. Below that are
the Invoice ID and the date the item was purchased. It's important to note
that if you purchased multiple copies of a product via different orders, the
product is listed multiple times on this page. That is because each time that a
product occurs in your orders it is shown on this page so that you can view
information for and interact with options in relation to each of the orders. In
the right-hand column, you see a few links that can be quite helpful. The first
link is the View Downloads link. When clicked, this opens a new page that
lists each download available for that particular product. Each file displays the
filename, file date (the date it was added to the system), and a download link.
Each file can be downloaded by clicking the Download link in the far-right
column. Back on the My Downloads page, the next link is the Get Help link.
When clicked, this takes you to the store help desk system and automatically
begins to create a help desk ticket for you for that particular product. This is
the fastest way to get post-sales support from a vendor for that product. The
help desk system is covered in more detail in a future section. The next link

on the My Downloads page is View Receipt. When clicked, a receipt for the
order appears. The receipt is covered more in the next section. The last item
in the right-hand column of the My Downloads area is dynamic and related to
your review of that item. If you haven't posted a review for the item, you see
an Add Review link. Click it to open the Add Reviews page, which is covered
in greater detail in a future section. If you have already posted a review for
that product, there is an Edit Review link, and below that the number of stars
you gave that product in your review on a scale of one to five. Click the Edit
Review link if you want to edit any of your previous reviews.

Viewing Past Orders

Once you place a few orders, it's sometimes necessary to look back through
previous orders. This is done on the My Account My Orders page, where you
can search your past orders by using the order search at the top of the page.
By default, all orders from the past year are shown. You can change the
results by changing the date range in the search area. The results support
sorting by clicking the column header by which you want to sort. By default,
it's sorted by date descending (most recent order first). If you have more than
ten orders, there are page numbers at the bottom that you can use to page
through the results. Completed orders have a Receipt link to the right that
when clicked displays a receipt for that order. This can be useful for
accounting and record keeping. The receipt contains much of the same
information found in the details area; however, the receipt displays it all on
one page and makes it easier to print it. Click the Details link in the far-right
column to open the order details section for the selected order. This area has
three tabs—Order Information, Billing Information, and Order Items. The
Order Information tab includes invoice number, payment status, order date,
and order total. There are also links on this tab to view the receipt or to email
the receipt. The Billing Information tab includes the name, postal address,
and email address for this order. The Order Items tab shows a list of all the
items included in the order. Information shown here includes the name of
the item, the name of the option if applicable, the quantity, price, status, and
date downloaded.

Getting Support

There are a few avenues for support on the store. The primary page to help
guide you to the correct method of support is the Help Center. There is a link
to this page in the primary navigation on the store. Often, the preferred

method to obtain support is the help desk. Based on your question or issue,
there are a few different ways to submit a ticket. If you need to obtain
presales support for a specific product, the best way is to click the Ask a
Question link on that product's detail page. If you want to ask a specific
vendor a question, the best way is to click the Ask A Question link on that
vendor's profile page. If you need post-sales support for a product that you
purchased, there are a few ways to submit a ticket. If you have the receipt
email, to the right of each product is a Tech Help? link. You can click that to
create a new help desk ticket for that product. Alternatively, you can click the
Get Help link in the My Downloads area to accomplish the same thing. The
final way to add a ticket is via the Help Center Add Ticket page. This page has
a drop-down menu where you can select from the following options: Product
Name, Order Assistance, Login Assistance, Info Request, Downloads,
Payment Inquiry, General Request, and Feedback. Selecting any of the items
other than Product Name and clicking Go takes you to a page where you can
submit a help desk ticket that is sent to the store support team for review.
Selecting Product Name and clicking Go takes you to a page where you can
either search for a product by name, or you can pick a product from a list of
items that you have previously purchased. Once you have the product for
which you want to obtain support, simply click the Get Help button. It's
important to note that in order for the store to show a list of previously
purchased items, you first need to log in.

Ultimately, all of these methods take you to the Add Ticket page. Depending
on how you arrived at the page and whether you are logged in, a few of the
fields may be prepopulated. If you are not logged in, you need to provide an
email address and validate by filling out the captcha code. Another field that
everyone will see is Short Description, which is a brief one-line description of
the issue. This is similar to the subject of an email. Description is the main
body of your question. This is a long-form text box, where you can ask your
question in detail. Below that are two sets of radio buttons. If you want to
attach a file (screen shots, code files, and so on) to the help desk ticket, select
Yes next to Add Files. You will be prompted to upload your files once the
ticket has been submitted. The last field is Allow FAQ. This is an opt-out field.
If you do not want the vendor to show your question in the FAQ section of
the Product Details page, you can opt out by selecting No. When you have
filled out the form and are ready to submit it, click the Add Ticket button at
the bottom of the page.

If you select the option to upload files, the Manage Files page opens. From
here you can click the Browse button to select a file from your local computer
and then click the Upload button to add it to the ticket. You can add multiple
files by repeating that process. When you finish adding files to return to the
ticket, simply click the Return To Ticket button.

Once you create the initial ticket and optionally upload files, you are
redirected to the Edit Ticket screen. After a ticket is created, this is the main
screen by which to interact with that ticket. Once the vendor or store support
staff replies to the ticket, that reply is posted on this page. There are a few
items on this page that are worth pointing out. At the top is a bit of a menu
that allows you to perform the following actions:

Back to Main: Click this link to return to your help desk ticket list.

Escalate Ticket: Click this link if you feel that the vendor is not
providing adequate support and want to bring it to the attention of the
store staff.

Close Ticket: Click this button if your question has been answered in a
satisfactory manner.

View Files: Click this link if you have upload files or want to upload a
file. You can access the file management area. In the event that there are
files associated with the ticket, the link also displays a number that
represents how many files are attached.

Below those links is the Add Response area. From here you can type a text
response and click the Add Response button to submit what you entered and
add it to the ticket details. The Ticket Details area shows the correspondence
related to this ticket. Each entry has a name and date/time stamp along with
the response. The items are displayed in sequence with the most recent
correspondence at the top.

The last section on this page is the Feedback area. If you want to rate the level
of support given, you can select Positive, Neutral, or Negative, and then
provide additional comments regarding the quality of the support in the
Comment field. Click the Submit Rating button to send the feedback.

To see a list of and manage all the tickets you have submitted go to the Help
Center Help Desk My Ticket List page. By default, any ticket updated or
created in the last week is displayed. If you want to go back and search older
tickets, you can select a different date range and then click Search. Basic

information about each ticket appears below the search, which includes the
ticket number, short description, name of who created the ticket, the date it
was created, the name of the person who last updated the ticket, and the date
it was last updated. In the far-right column is an Edit link that takes you to
the Edit Ticket screen, which was covered in the previous section.

Posting Reviews

Reviews are an important part of any shopping experience; it's helpful for
other customers to be able to research the pros and cons of a product as
evaluated by other users. It's also an important mechanism to voice your likes
and dislikes about a product back to vendors so that they can improve their
products to meet the market demands. The store tries to keep the review
process as simple as possible. Recently, the process was updated to include an
automated review reminder email that is sent to every customer three weeks
after purchase. In addition to accessing the review system via that email, a
quick way to post a review is from the My Downloads page, as discussed in a
previous section. Finally, any customer can access the reviews system by
logging in and then going to the My Account page. Under the Account
Features column is an Add Reviews link. Clicking that link opens the main
page where you can post reviews. Currently, the ability to post reviews is
limited to customers who have purchased the product they are going to
review, and a customer can review a product only once. Although it is possible
to edit an existing review, we cover that in more depth later. The Add Reviews
page shows a list of all the products for which you are able to post reviews.
The product information includes the icon and product title in the first
column. To the right, the next column contains the star rating scale. One to
five stars can be assigned to the product (one being very poor and five being
very good). The third column to the right is a freeform text box where you can
leave a comment about the product. If you have multiple items in the list, you
don't have to submit a review for every product. If you don't select a star
rating, when you click the Submit Reviews button, no review is posted for
that item. Before clicking the Submit Reviews button, read and agree to the
statement at the bottom of the Reviews page.

To edit or remove a review, first log in and then go to the My Account page.
Under the Account Features column is the Edit Reviews link. Clicking that
link opens the Edit Reviews page where you can post reviews. This page
displays a list of reviews that you have posted to the store. The left column
contains the product name that links back to the Product Details page. Below

that is the vendor name, which links back to the vendor's profile. In the right
column there are two links. Clicking the Edit Review link opens a modal pop-
up where you can edit your review. Clicking the Delete Review link removes
the review from the system.

Using the Watch List

For frequent customers of the store and for anyone looking to keep lists of
commonly used products or even anyone who wants to keep an eye on a
product for potential updates or price changes, the store now has an enhanced
watch list function. If any of the items in the list have their price reduced or
have a new version added, the system sends you a notification email. To
access and use the watch list, you need to be logged into the store. As
discussed earlier, products can be added to the watch list from the Product
Details page. Each product page has a link in the bottom-right side of the
product details area. Clicking the Add To Watch List link opens a modal pop-
up where you can select the Watch Category (more on this to come) to which
you want to add this product and also add an optional note. When ready, click
Save to add the item and close the dialog, or click Cancel to just close the
dialog.

To manage the items in your watch list, while logged in simply go to My
Account My Watch List. The Manage Watch List page first displays a drop-
down list of watch categories (by default, everyone will have Uncategorized).
If you want to add a watch category, simply click the Add Category button.
The modal that opens asks for the name of the category. Although the
categories can be used however you see fit, the intended use is to allow you to
group watched products in the collections that could represent products to be
used for a particular project or client. The watch list grid displays a list of
products in a three-column format. The first column contains basic
information about the product, including the title and icon, which both link
back to the Product Details page. It also includes the name of the vendor,
which links back to that vendor's profile page. Other information includes the
date the product was added to the store, the base list price, and the product's
short description. The second column contains any notes that you provided
when adding the item to your watch list, and the last column includes two
links (Edit Item and Remove Item) for managing the items. Remove Item will
do just that. Clicking it removes the item from your watch list. Edit Item
opens a modal pop-up that allows you to change the Watch Category to which

the item is assigned. You can also update the notes for the item.

The Referral Program
There is an opportunity with the store for people in the DNN ecosystem (even
if you're not a module or skin developer) to earn a little extra income thanks
to the store referral program. If you have a DNN-related site or personal blog
site or you are a vendor who sells on the store but also maintains your own
site to promote your products, you can earn a 10 percent commission on any
sales that you refer to the store through the referral program. The best page
to learn about the referral program is at Make Money Referral Program. This
page includes a link to the Referral Program FAQ and the Referral Program
Agreement. If you are interested in participating in the referral program, it's
important to read both pages, as they will help familiarize you will the details
of the program.

Managing Your Referral Profile
If you want to participate in the referral program, the first step is to fill out a
referral program profile. This is done by clicking the Referral Program Sign-
Up link from the Referral Program page. If you're not currently logged in, this
page prompts you to log in. The form asks for contact information. There are
a few questions regarding the site that you intend on using to refer visitors to
the store and finally a few questions regarding your preferred method of
payment. Users who are just getting started with the referral program should
consider using PayPal to receive payment, as it's typically the simplest to
configure initially. After you complete your Referral Profile, click the Register
button to submit the form. You should receive a confirmation email upon
submission. Referral program registrations are typically processed within 24
hours unless it's a weekend or U.S. holiday. The more information you
provide in the profile (specifically as it relates to the website where you
intend to use the referral program) the quicker your application will be
processed, and the more likely it is that your application will be approved.
Once reviewed, you will receive an email notifying you regarding if your
application has been approved or rejected. If approved, the acceptance email
contains additional information on how to access your referral codes and how
to begin using them. Once accepted into the referral program there are two
more links at the bottom of the Referral Program page, which is covered next
two sections.

Referring Sales

The referral program works by adding a special referral ID to each link on
your site that directs users to the store. An example of this code would be
F9EFED73E34A41838E93. Each code is unique and is a 20-digit hexadecimal
number. Everyone approved into the referral program is given five different
codes. You can use a different code on different sites or areas of your site, and
via the reporting system you can see which codes are resulting in more
referrals. There are a few ways to add a referral code to a URL. A few
examples of how to add a referral code to a known product page are shown
here. The following URL is for the DNN Corp. Annual Training Subscription:
http://store.dnnsoftware.com/home/product-details/dnn-corp-annual-
training-subscription

Here are three different ways to link to that same page while also attaching
the referral code:
http://store.dnnsoftware.com/home/product-details/dnn-corp-annual-
training-subscription?
r=F9EFED73E34A41838E93http://store.dnnsoftware.com/home/product-
details/dnn-corp-annual-training-
subscription/r/F9EFED73E34A41838E93http://store.dnnsoftware.com/home/product-
details.aspx?PackageID=22863&r=F9EFED73E34A41838E93

As you can see, the referral code is just an additional query string parameter,
so any store URL can have that parameter added when referring people to the
site regardless of the destination page.

DNN Referral Module
Recently, a new free and open source module has been released that should
simplify the process of integrating store product data with your referral code
on your site. The DNN Referral Module is available in the forge and on
CodePlex at https://dnnreferralmodule.codeplex.com. This module allows
you to select which products to display. For example, it can be configured to
display the top module or themes list. It can be configured to display all
products from a vendor based on vendor ID. It also supports dynamic and
static search methods. Dynamic allows it to listen to a specific search
parameter and displays relevant results; static allows you to specify in the
settings the word or phrase on which you want to base the search. The
module also supports template-based output rendering so that you can
configure the look and feel of the output to match the look and needs of your
site. Once configured with your referral code, all the links are automatically
generated with your referral code, and you'll never have to worry about an

http://store.dnnsoftware.com/home/product-details/dnn-corp-annual-training-subscription
http://store.dnnsoftware.com/home/product-details/dnn-corp-annual-training-subscription?r=F9EFED73E34A41838E93
http://store.dnnsoftware.com/home/product-details/dnn-corp-annual-training-subscription/r/F9EFED73E34A41838E93
http://store.dnnsoftware.com/home/product-details.aspx?PackageID=22863&r=F9EFED73E34A41838E93
https://dnnreferralmodule.codeplex.com

invalid URL or outdated product data again.

Referral Reports
When your referral code in place it should only be a matter of time based on
your site traffic before you get your first referral. When an order is placed on
the store from a user your site referred, an email is sent informing you of the
sale. Once orders start to be placed using your referral codes, you can use the
Referral Reports page to view info about those referrals. On this page you can
view an order summery that provides basic information on completed sales
made using your referral code. By default, only sales from the last two weeks
are shown; however, the search date range can be expanded to include more
results.

Below that form is a Sales Summary by Year report. Using that report, you can
select a calendar year and view based on referral code how much sales
revenue and commission were accumulated by month.

Selling on the Store
If you are a developer or designer who works with DNN professionally or
perhaps only as a hobby, it's possible for you to become a vendor on the store.
The store has vendors from around the globe. While creating and managing
products for DNN is a full-time job for many vendors, there are even more
who build extensions as a hobby and use the store to raise extra beer money.
If you have an extension that you are interested in listing on the store, your
first stop on the journey to becoming a vendor should be the Make Money
Become A Seller page. This page is your best one-stop shop for all the
information you need to get started.

Why become a vendor on the DNN Store? Listing your product in the store is
the quickest way to tap into the more than 700,000 websites that have been
deployed worldwide using the DNN Platform. By using the DNN Store as your
sales channel, you can focus on your products while the store focuses on
managing the e-commerce system, credit card and PayPal transaction
processing, and fraud protection. The DNN Store also includes a help desk
system for use when supporting customers of your product. The DNN Store
actively markets products via weekly newsletters and Google AdWords.
Listings on the DNN Store receive high organic search rankings due to the
site's authority and SEO optimization.

With all of these features it's possible to become a vendor without even
needing to maintain your own site for your business and products. If you
choose to maintain a site independent of the store and even seek additional
avenues to promote and market your products, then the DNN Store has a few
features that can help. For starters, as covered previously, if you participate in
the referral program, you receive an additional 10 percent commission from
every sale you refer to the store. As a vendor, you can also configure advanced
Google Analytics features to help track your sales funnel and the
effectiveness of marketing campaigns. The store also supports Instant Order
Notifications that can be issued from the store to your site upon the sale of a
product for use in licensing or CRM workflows.

Becoming a Vendor
Once you make the decision to list a product on the store, the first step in
becoming vendor is to fill out the vendor application. This can be done by
clicking the Become a Seller link on the Make Money Become A Seller page.

If you are not currently logged in, the page will prompt you to first log in.
When logged in, the page displays the seller application. It asks for basic
contact information, and if you are in the United States, you need to complete
the W-9 tax form-related fields. If you are not located in the U.S., you need to
complete the W-8BEN fields. Most of the fields are going to be self-
explanatory; however, it's important to point out that the Display Name is
what will be used as your vendor name on your vendor profile page and on
your products detail pages. When you complete the form, click the Update
button at the bottom of the page. Upon submission of the vendor application,
your account is automatically added to the vendor role, which gives you
access to many new features on the My Account page. While your account is
pending approval, you can make updates to your profile and begin to create
product listings. In fact, doing so increases the speed and likelihood that your
seller account will be approved.

Listing a Product
The next step in becoming an active vendor on the store is to create a product
listing. This can be done via the My Account My Products page. This page
displays a list of every product you currently have listed on the store. If you
haven't yet created any listings, then this page simply prompts you to create
one. Click the Add A New Listing button to start this process.

On the Initial Create Product form you are asked for three basic bits of
information about your product. First, what is the product name? This is the
name used when your product is shown in the search results and product lists
throughout the site. Also, the site ensures that this name is not already in use
in the system by another product. The next field is the price. Technically this
is the product “base price,” and it can be modified by product options that are
covered in more depth soon. The amount entered must be a positive amount
and expressed in USD. The third field is the short description. This field has a
maximum length of 300 characters and is also shown in the search results
and product lists throughout the site. This field is text only. No HTML or
markup is permitted.

After you fill out the three fields, you need to read and check the box stating
that you agree to the terms and conditions of the site. It's important to take
the time to thoroughly read this agreement, as it outlines specific policies
regarding product listing, seller responsibility, and refund policies.

Once submitted, you are redirected to the Edit Product Details page. This page
is where you can manage everything related to your product. At the top of the
page is a list of tabs: Product Details, Product Options, Product Downloads,
Product Tags, Product Categories, and Product Specs.

The first tab, Product Details, contains the core information related to your
product. It's important to fill this page out as completely and as accurately as
possible. The first field on this form is a file upload for your product image.
You should take the time to ensure that this is a good-quality image that
accurately represents your product and your brand. This image is what is
shown every time this product appears in the search results and other product
lists throughout the site. It's recommended to use a 120x120-pixel JPEG file
and no smaller than 85x85 pixels.

The next field, Product Name, should already be completed from the previous
step; however, you can modify it if you desire. The next field is Product Type.
This is used to classify your extension and is based on the supported
extension types in the DNN platform. Currently you can select from Library,
Module, Other, Provider, Skin, Skin Object, and Widget.

The next field is Min DNN Version. This is the minimum version of the DNN
platform that your extension requires to function correctly. The next field is
Max DNN Version, which is similar to the previous field, but the intention is
that in the event there is a breaking change in the DNN Platform that will
cause your extensions to no longer function correctly, the maximum
compatible version can be set here. If there are no known breaking changes,
then you can set this field to Current.

The next field is Unique Name. This needs to be whatever the unique name is
that is specified in your extensions manifest file. It is important that this field
matches up exactly as this data is used in conjunction with the update server
and the product version number to notify DNN users in the extension
management screen when an update is available for your extensions.

The next field is Product Version. As in the previous field, this one also needs
to match what is specified in your extension manifest file. It also needs to be
in the format of ##.##.##. So, for example, 07.00.01 would be the correct way
to enter a version. The next field, Exclude From Extensions Feed, is a check
box that allows you to opt your product out of the extensions feed. Starting
with DNN 6.x the platform shipped with a new extensions gallery built in to
the host functionality. This extension gallery pulls a product feed from both

the store and the forge. All listings are included in this by default, but if you
want to exclude your product, you can do so by checking this box.

The next field, SKU or UPC, is an optional field where you can include your
product's SKU or UPC code if you have one. The next field, Price, should also
be predefined from the previous step; however, if you want to change it, you
can do so at this time. The next field, Parent/Previous Version, is a field that
is used to link multiple versions of a product that use a different product
listing for each version. If this is your first product or this product is not a
new version of an existing product, then leave this field set to none. However,
if this product is a new version of a product that you currently have listed on
the store, select that product from the list.

Linking a product to a previous version will do a few things. First, it causes a
message to appear on the previous version's detail page that a new version is
available and directs users to that new version. Second, it ensures that only
the latest version is shown in the vendor profile and in the search results
pages. Third, it links the sales from the previous version for purposes of
ranking products based on sales.

The next field, Short Description, is another field that should already be
prepopulated from the previous step; however, if you want to update it, you
can do so at this time. The next field, Description, is one of the most
important fields on this form and will likely be the one that takes the most
time to complete. This field allows text and HTML markup and is the main
description that is listed on the product details page. The content of this area
is entirely up to you to provide. While composing the content for this field,
you should look at the product pages of other vendors and figure out what
information you feel is important to convey to the shopper.

Some suggestions for things to include are a product overview, list of
features, demo links, screen shots, compatibility information, project history,
comparisons between product options, and licensing. Ensure that the
description represents your product in a good light, and try to customize the
look and feel to match your company's brand. Please do not include
references to external resources such as CSS or JavaScript files. If you are
going to include images, it's recommended that you upload the images to the
vendor file manager and then use those image URLs in your product
description. Avoid JavaScript and CSS that will break the overall layout of the
page or any of the functionality on the rest of the Product Details page.

The next field, License Overview, is an optional field that if specified displays
your abbreviated license information at the bottom of the Product Details
page. The last field, License, is for the full copy of your product license, terms,
and conditions, if specified. This is shown at the bottom of your Product
Details page. After you make changes to this form, it's important to click the
Save button at the bottom before moving on to another section.

The next tab, Product Options, allows you to set up and manage different
options for your product. An example of when you would use this would be if
you had a module and you wanted to offer different license levels such as
standard, professional, enterprise, and source. Another example is when you
have a skin and want to offer the option to pick a color theme such as Blue,
Green, Red, and so on. These are cases where you want to create one product
with multiple options rather than create multiple products. Doing this
reduces the number of listings that you need to manage while also driving
more traffic and sales to one page, which will help boost your product's rank
in search results and the top module or themes lists. Each option can have its
own downloads and/or it can share downloads from the base package.

Options can also modify the base product price specified in the Product
Details tab. This allows you to specify a different price based on the selected
option. When you are ready to create an option, click the Add Product Option
button. This opens a form inside a modal pop-up. The first field is for the
Option Name. An example of this would be Standard Edition or Enterprise
Edition. The next field is Price, which is a modifier to your product base price.
It's important to note that a positive number increases the price of the
product when this option is selected, while a negative number reduces the
total price of the product (to a minimum of 0.00). This is useful if you want
to list a trial or limited version of your product. The price is always expressed
in USD.

The next field, Display (HTML), is what is shown in the Product Details page.
This allows you to include images or the ability to style text with CSS. If you
look at the bottom of the form, you see some examples of traditional options
that display HTML values that are used on the store. The next field, View
Order, is an integer that is used to rank the order in which the options are
shown. It's recommended when assigning values that you leave gaps so that
you can later insert items in the order if needed. For example, you could start
by using values to the power of 10 (10, 20, 30, and so on). The form then asks
if this is the Default option. When specifying options, it's important to set one

of them to be the Default option. This is the option that is automatically
selected when a person arrives on the product details page. Also, if the
Default option modifies the price of the product, then the modified price
(base + Default option) is what will be used in the product lists, search
results, newsletter, extensions gallery, and so on.

The next setting you can configure on this form is whether you want this
option to be active. Typically, you will want the option to be active, but if you
need to temporally disable an option, setting this to No would accomplish
that. The last thing that this form asks for is to specify how you want the
store to handle downloads as they relate to the product and this option. You
can choose to show users this option's download(s) only, show the user
download(s) from the main product only, or show the user both the
download(s) associated to the main product and this option. When you finish
filling out the form, click Save. The page reloads and you should be able to
then see the option listed in the table on the Product Options tab. You can
edit or add additional options as needed using the same process as just
described.

The next tab, Product Downloads, is where you can upload the files that you
want customers to receive when they purchase an extension. If you have
product options specified they appear in the options download. If you want to
upload a file to associate with a specific option, first select that option from
the drop-down list. If you want to upload a file to associate with the base
product, then leave All Options selected and click the Choose File button. This
opens a file picker dialog that you can use to browse your local computer for
the file you want to upload. While you should always upload the installable
package for the product you are listing, you can also upload other optional
files such as a PDF or Word doc product manual. Or, if you are listing a skin,
perhaps you want to upload the PSD file. Those can all be added from this
page. It's important to note that once you select a file, you need to click the
Upload button. This will begin the transfer from your computer to the server.

Once on the server the file is in a pending state until the server has had time
to process it. This could take a few minutes depending on the size of the file,
as a copy needs to be made and transmitted to Amazon S3 storage from where
all files are pulled when a customer downloads them. While the server
processes the file, you will see that the Processing check box is checked.
When the file finishes processing, if you reload the page, you should see that
box is no longer checked and the Has S3 box should now be checked. If the

file you uploaded is an installable package, you should check the Deployable
check box. This allows people who have purchased this extension to auto-
deploy it from within the DNN App Gallery. To download a file from there,
click the filename. If you want to remove a download, click the red trash can
icon to the right of the file.

The next tab, Product Tags, is how you can associate tags with your product.
On the left side are two lists with popular and trending tags; you can associate
any of these tags to your product by simply clicking them. Clicking them adds
them to the box on the right. If you don't see any tags that you feel properly
describe your product, you can add custom tags by typing them in to the box
on the right. Press Enter to turn what you typed into a tag. Typing also opens
an auto-complete where you can pick from existing tags in the system. If you
want to remove a tag, click the red “x” to the right of the tag. When done, be
sure to click the Save button to save your changes.

The next tab, Categories, is similar to tags, but these are predefined categories
in the system where the tags are user-generated content. To add your product
to a category, click the Add Product Category button. Clicking it opens a
modal dialog that allows you to find categories that pertain to your listing.
You can add them by clicking the Add link to the right of the category. It's
important to note that you should always add categories to your products, but
you should never put your product in categories that are unrelated to what
your product does. You can only add ten categories to your listing, so if you
find more than ten that apply, you need to prioritize the ones that are most
important for your product. The limit is in place to prevent spamming
products into categories that are unrelated.

The last tab is Product Specs. These are not a heavily utilized aspect of the
product listing details, but they allow you to specify name/value pairs that
describe your product. For example, you could do SQL Server Compatibility:
2005, 2008, 2012. These items will appear in the bottom-right side of the
Product Details page below the spotlight reviews. To add a spec, click the Add
Product Spec button. In the modal pop-up, the form asks for the Specification
Name and the Description. In the previous example, the Specification Name
would be SQL Server Compatibility, and the Description would be 2005,
2008, 2012. Once done, click Save to save and close the product spec.

When you finish editing your product details, you can see what your product
details page looks like by going to the My Account My Products page. Click
the product title to see the details page. It's important to note that if the

product hasn't been published yet; only you and the store administrators can
see the product page. Also, until the product is published you cannot add it to
your cart. Back on the My Products page, there are a few features that are
worth pointing out. Initially it won't be too useful, but as you add more
products, the ability to sort and filter your product list will help you quickly
find the product that you are looking for while making edits. By default, the
results are sorted by Published Date, and ten items are shown per page. If you
have more than ten items, you can page through them using the pagination at
the bottom of the list. Or you can also change the number of items listed per
page. Each item in the list displays the product icon, product title, your
vendor name, short description, base price, and the date of the last update.
This is similar to how your product will be shown in the search results and
product list pages throughout the site. This page, however, includes a few
extra management links for each product. Edit Listing takes you back to the
Edit Product Details page previously discussed. The Copy Listing creates a
new listing and is initially populated with data from this listing. A wizard asks
you which information you want to copy over during this process. You need to
give the product a unique name, and then you can specify if you would like to
copy the options, tags, categories, and specs. By default, they are all selected.

You also have the option to move the FAQs and Reviews to the new product.
It's important to note that this occurs immediately, and if you choose to not
move them at this time, it can be done at a later time. These options are not
selected by default. Both FAQs and Reviews are covered in more depth in a
later section. To finish the copy, read and agree to the terms, and then click
the Save and Continue button. This will redirects you to the Edit Product
Details page for the new listing. Again, back on the My Products page, there
are two more links. Publish Listing validates your listing then activates it on
the store. When you click this link, the store checks that your listing is
complete and has a download associated to it. The system also checks to
ensure that your vendor account is active. If your account hasn't been
approved yet, you won't be able to activate your products. Once activated,
your product will begin to show up in the store and will be available for
customers to purchase.

The final management link, Delete Listing, de-activates the listing and
removes it from your default view. Listings can be undeleted by switching the
filter to Show deleted items. Additional products can be created by clicking
the Add New Listing button in the upper-left area of the product list.

Managing Your Account
Now that you have the hang of creating and managing your products, you
need to learn about the other auxiliary system included in the store to help
vendors manage sales, discount customers, and support issues.

Managing Your Seller Profile

It's likely that you will want to visit your vendor profile and fill out some
additional information soon after applying to be a vendor on the site. Only a
portion of the vendor profile is configured on the initial sign-up form. You
can access your seller profile by first logging into the site and then going to
the My Account page. Under the Vendors – Sales column is the My Seller
Profile link. Click it to open your seller profile. Near the top of the page is a
list of tabs: Profile, Payments, Customer Message, Order Notification, Help
Desk Settings, and Tax Information.

The Profile tab contains your basic fields for your seller profile. The first field,
Supplier Name, should already be filled out with the information provided in
the application. There are a few things that are important to note about this
field. First, it must be unique; you cannot use the same seller name as
another existing seller in the system. Second, this is the name that appears in
the search results, product list, vendor profile, and product details page, so
ensure that name represents your company or brand. Third, once your
account is approved, you cannot change this name. If you want to change this
after the account has been approved, you need to contact the store staff via
the help desk system and request a name change.

The next field, Email Address, will be the email that is used as the primary
point of contact for messaging from the store. Product sale, review, help desk
emails, and so on, all go to this address. The next field, Alternate Email,
allows you to specify an additional email address that receives only order
notifications and help desk ticket notification. Some vendors find this useful
because they can enter an email address for someone who might assist with
sales and support issues. The next field, Slogan or Phrase, is an optional field
that allows you to specify a company slogan that you want to appear on your
vendor profile page. The next three fields are Google Analytics Account ID,
GA SetDomainName, and Enable GA Ecommerce. They are covered later in
the Analytics section.

The next field is the Salesforce.com OID. This optional field is for vendors

http://Salesforce.com

who use Salesforce.com. By supplying your OID, the store transmits
customer data upon order completion. The next section gives an explanation
of how the Gravatar system is used on the store to display the vendor's avatar
throughout the site. It's recommended that you set up a gravatar and
associate it with the email address supplied previously. The final field,
Product Header, is a text field that also supports HTML markup. Whatever
you place in this field appears above your product description on every
product details page.

The next tab is the Payments tab. It's important to take the time to complete
this section and ensure that everything is correct, as the store is not able to
pay you for product sales until this has been filled out. In the upper area on
this page is a drop-down list where you can choose your preferred payment
type. If you are in the United States, you can choose from Direct Deposit,
Check, PayPal, and Wire Transfer. If you are not located in the United States,
only PayPal and Wire Transfer payments are accepted. Another item worth
noting is that a minimum account balance of $1,000 USD is required before a
payment will be made by wire transfer. Given that, the recommended
payment method for new vendors would be PayPal as it is one of the quickest
ways to get your account up and running. After selecting a payment type, click
Update and then go to the corresponding tab in the lower section, complete
the fields on that tab, and click the Update button. If you have a question
about any of the fields on the Direct Deposit, Check, or Wire tabs, be sure to
ask your bank how to obtain the correct information.

The Customer Message tab is an email message that is sent to everyone who
purchases one of your products. The text box is the body copy of the message
and supports the use of HTML markup. Below the text box is a check box. If
checked, the system will BCC (blind carbon copy) the email message to you.
Farther down the page is a list of tokens that can be used in the body of the
email, and upon sending, the system replaces with information from the
order. It's important to enhance this message to match your company's
message and branding. It will leave a better impression with your customers
than a simple text-only email. Once updates are made, click the Update
button at the bottom of the page.

The Order Notification tab is used to configure the Instant Order Notification
(ION) system. This system is used by many vendors to integrate with custom
licensing solutions and CRM platforms. When an order is completed on the
store, an ION POST is sent to the URL(s) specified in these settings. When

http://Salesforce.com

setting up the ION URL(s), be sure that the URLs are valid and begin with
http:// or https://. Test sends can be issued for each URL by clicking the Send
Test button to the right of the URL. There is a third field for POST Security
Value, which is an additional value that the store passes with the other fields
in the POST so that you can verify that the POST originated from the store.
ION POSTs are sent with data in the following form fields: InvoiceID,
BillToFirstName, BillToLastName, BillToEmail, BillToState, BillToZip,
BillToCountry, PackageID, OrderDetailID, PackageName, Quantity, Price,
SKU_UPC, Discount, Amount, OptionID, OptionName, OptionText, and, if
specified, SecurityValue. If you want to see a sample ION POST handler, there
is a link at the bottom of this tab where you can download the demo. If any
changes are made to the values on this page, be sure to click the Update
button at the bottom of the tab.

The Help Desk Settings tab allows you to configure a few options regarding
the help desk system on the store. First, there is an Out of the Office E-mail
setting. This is the body copy of an optional out-of-office email that can be
sent when a help desk ticket is created or updated. If you are going to be
unavailable for an extended period of time, it's useful to configure this
message so that customers understand why there ticket hasn't received a
response and also to let them know when you will be available again to
provide support. This field also supports HTML markup. The next field, Initial
Ticket Reply Message, is an automated reply that can be posted to a newly
created or assigned help desk ticket. This is a text-only message, and many
vendors find this useful to specify your support hours and to set expectations
of how long it will take to respond to the help desk ticket. Because the store
has many vendors and customers from around the world, the times and days
that you're available to provide support might not match up with the
customers' expectations. These messages can help alleviate that issue.

The final tab, Tax Information, contains all the information the store needs to
process any tax forms. Typically, unless you make over $600 USD in referral
commission and are based in the United States, your store income is not
reported. However, you are still responsible to file and document any income
from the store as required by any local laws that might apply to you. If you
have questions about tax liabilities resulting from sales via the store, it is a
good idea to consult a local tax accountant who would be knowledgeable in
your area. The values in the Edit Tax Information form should already be
filled out from the vendor application process. If you ever need to update your

tax profile information, it can be done from this tab. If changes are made, be
sure to save them by clicking the Update button at the bottom of the page.

Viewing Your Sales

Once you start to make sales, you will find that occasionally you need to look
up previous orders. This could be due to a licensing or support-related issue,
the need to issue a refund, or simply curiosity. You can access your sales
history by first logging on then going to the My Account page. Under the
Vendors – Sales column, click the My Sales link to see the sales report. From
here there are a few ways that you can look up sales. Click the My Current
Sales button to show the sales and referrals for your account that haven't
been paid out yet. If you need to look up an order from a specific person, you
can look it up by using the Customer Name or E-mail search box. If you know
the invoice ID, you can look up an order using the Invoice ID search box. You
can also filter the results by transaction type if, for example, you know that
you are looking for a product sale rather than a referral.

The results can also be filtered by date range using the Start Date and End
Date boxes. After you enter or select you search criteria, click the Search
button to get the results. If you want the system to generate an XML
document from the results, you can check the Create Downloads check box.
Once the search results are returned, a link appears at the top that can be
used to download the XML file.

In looking at the search results, at the top you can see the system
automatically adds up the sales total. The grid below that lists the
transactions. Each row is a separate transaction in the system; information
shown on this screen includes Invoice ID, Date, Product, Option, Type, Price,
Net Amount, Customer Name, and, finally, a Details button. If you click the
Details button for one of the transactions, it opens three new sections:
Overview, Order Details, and Customer.

In the Overview section, you first find a Back to Search Results button, which
when clicked takes you to the previous screen. Below that is the Sale Price for
the item, the amount the customer paid. Below that is the Fees line, which is
the portion of the transaction fee that goes to the store. Below that is the Net
Amount, which is the amount that will be paid to you. Below that is the order
status. Typically this will be completed, but it could also be pending or
refunded. Below that is the Transaction Date, which is the date and time that
the order was placed by the customer. The final item in this section is the

Invoice ID; this is the unique ID that is used throughout the system to
reference this transaction. In the Order Details section is information about
the product and option level of the item purchased by the customer. These
fields include Package Name, Option, Option Text, Package ID, and Option ID.
In the last section is basic contact information for the customer including
Name, Email, City, State, Zip, and Country.

At the very bottom, if the order is completed and has been downloaded by the
customer and the order date is within the 30-day refund window, you find the
Authorize Refund button. If you want to issue a refund for this item to the
customer, simply click this button.

Vendor Charts and Reports

There are a other charts and reports available to vendors. From the My
Account page, under the Vendor – Sales column is a link for Statements. Click
it to open the Statement Manager. Once you receive a payment from the
store, you can run reports here by selecting a statement from the drop-down
list. Optionally, you can filter the results by Customer, Memo, and
Transaction Type. Clicking Search will show you any transactions that match
your criteria. If you have a question about why a payment was for a particular
amount, this is a good report to answer that question.

Back on the My Account page, there is a Reports link under the Vendor –
Sales column. Click it to open the Vendor Reports screen. From here, you can
select from seven different reports:

Product Sale Count: Shows based on the date range how many of each
of your products has been sold on the store.

Customer Details: Shows based on the date range and product filters a
list of customers. Data includes the order invoice ID, first name, last
name, email address, country, product, amount, and date.

Customer List: Shows based on the date range and product filters a list
of customers. Data includes the customer's first name, last name, email
address, and country.

Promo Summary: Shows based on the date range and product filters a
list of the promo codes used on orders during that period. The data
includes the promo code, usage count, promo percentage, and product
name.

Promo Detail: Shows based on the date range and the product filters a
list of orders that used a promo code. The data includes the invoice ID,
promo code, promo percentage, first name, last name, email address of the
customer, product name, amount, and date.

Statement Summary: Shows based on date range the statements that
include transactions.

Tax Collection: If you have configured sales tax collection, this report
shows how much was collected given the date range.

Back on the My Account page is a Vendor Chart link under the Vendor – Sales
column. Click it to see the Vendor Charts screen, which displays charts that
cover various metrics for the last 12 months.

Monthly Sales & Referrals: Shows month-by-month your product
sales, referral payout, and net revenue.

Monthly Sales Quantity: Shows month-by-month totals for the number
of items sold, the number of free items sold, and the number of paid items
sold.

Average Transaction Amount: Shows month-by-month what your
average order amount is.

Discount System Utilization: Shows a month-by-month breakdown of
the total discount system utilization. There will be a total for coupons,
discount package user, order package discounts, and sales discount created
in the system.

Products: Breaks down by month how many new products you have
listed each.

FAQ System: Shows the number of new FAQs you have created in the
system each month.

Review System: Shows the number of reviews added to the system for
your products each month.

Help Desk System: Shows the number of help desk tickets created each
month.

Watch List System: Shows each month how many times a product is
added to someone's watch list.

Analytics

Most webmasters, online marketing professionals, and developers realize
how important it is to be able to measure various metrics regarding website
utilization. Page views, unique visits, visitor demographics, and tracking the
sales funnel are things that can lead to a better understanding of your
customer base and how they interact with your site and content. Ultimately,
this understanding hopefully leads to making improvements to better address
their needs and increase sales. Google Analytics has become an industry
leader in this arena. The store utilizes GA tracking throughout the site. As a
vendor, it is possible for you to also specify a GA tracking code in your vendor
profile. If you specify a tracking code, the store renders that code on all your
product details pages, your vendor profile page, and when customers add
products to their carts and proceed through checkout, each step of that
process utilizes the tracker code.

To enable basic tracking, you first need a Google Analytics account. If you
don't already have one, you can sign up for one at
http://www.google.com/analytics. Creating an account is quick, and best of
all, it's free. Once you have a tracking code (example UA-98765432-1) log into
the store and go to the My Account page. Under the Vendor – Sales column
click the My Seller Profile link. About halfway down on the first tab is a field
for Google Analytics Account ID. Copy and paste the tracking code that was
assigned when you created your account. Click the Update button at the
bottom of the page to save the change. Within 24 hours you should start to
see usage data from the store in your Google Analytics account.

This functionality was upgraded about a year after the initial site relaunch to
add support for GA Ecommerce Tracking. Basically, this feature transmits
order information back to GA, so the system can then report on the value of a
page or a search term. If you choose to advertise, this feature is useful to
track the return on that advertising. To enable Ecommerce Tracking, log in to
your GA account and then go to the dashboard for the code that you want to
enable. Click Admin in the upper-right side of the screen. At the top of the
third column select View Settings.

On this page is a setting to enable Ecommerce Tracking. Be sure that it's set
to ON. Next, log in to the store and go to the My Account page. Under the
Vendor – Sales column click the My Seller Profile link. About halfway down
on the first tab is the Enable GA Ecommerce field. Check that box, and then
click Update at the bottom of the page to save the changes. The next time that

http://www.google.com/analytics

anyone purchases one of your products on the store the ecommerce data will
appear in your GA account.

Discounts

Discounts can be an effective way to drive product sales; they can also be a
useful tool for rewarding customer loyalty. The store supports four discount
systems: Product (Package) Discounts, Customer Quantity Discounts,
Customer Discounts, and Coupons. This section covers how each of the four
systems works, why you would use them, and how to configure them. To
access the four discount systems and to see a high-level overview, log in to
the store and then go to the My Account page. Under the Products column
click the Discount Overviews link to open the discount overview page. You
can access the four discount systems from this page.

The Product (Package) Discount system allows you to configure a discount to
be given based on a customer's previous or concurrent purchase. There are a
few different uses for this discount type. First, it can be used to provide an
upgrade discount. For example, if a customer purchased the 1.0 version of
your product last year and now you released the 2.0 version, you can
configure a discount in this system to give anyone who is upgrading a
percentage discount. Another use of this system is to provide discounts when
moving from one option to another within a product. If, for example, you
have a module that sells for $100 and the source option sells for $200, then
you can set up a 50 percent discount for customers upgrading to the source
version from the standard version. This way they would basically only be
paying the difference. The third use of this system is to provide a bundle
discount. An example of this would be if you purchase Product A, the user
gets a percentage off of Product B. When you have products that complement
one another, this is a good way to cross-sell products. To create one of these
discounts, you need to go to the product discounts page by clicking the
Product Discounts link on the Discount Overview page to display the
management tool for these discounts. From there, click the Add New
Discount button at the bottom of the screen to open a modal dialog with a
form inside of it with a list of the fields and how to configure them:

Package: From this drop-down list, you select the product for which you
to create the discount.

Package Option: If you want to restrict this discount to a specific option,
select it from the drop-down list. If you want this discount to apply to all

options leave it as Select one.

Ordered Package: This drop-down list contains a list of packages that
can be used as the prerequisite for this discount. That means for
customers to be able to use this discount this item needs to be in their
order history or in their cart.

Ordered Options: This drop-down list gives you the ability to restrict
this discount to a particular prerequisite option. If you want this discount
to apply to all options, leave the selected option as Select one.

Discount %: This is the percentage that you want to discount from the
retail price. This can be any whole number between 0 and 100.

Qualifying Start Date and Qualifying End Date: These two fields
work together to specify a date range for when the prerequisite item had
to have been ordered for it to count for this discount. This is used to
possibly restrict a discount to customers who have purchased the previous
version with in the last six months. Any purchases outside of that time
frame would not count.

Is Active: Discounts cannot be deleted; however, this check box allows
you to deactivate a discount if you no longer want anyone to be able to
utilize this discount.

Description: This is a text-based memo field that can be used to describe
the purpose of the discount. This field is optional and is for internal
reference only.

The second system is the Customer Quantity Discounts. This system is an
easy way to reward customers who buy your products frequently or purchase
multiple quantities of your products. Based on a user's cumulative item
purchase quantity, you can specify percentage-based discounts. For example,
customers who buy ten or more of your products receive a 10 percent
discount. These can also be multilayer, so you could set up another level for a
customer who purchases 20 or more of your products gets a 20 percent
discount. The item count is based on anything the customer has previously
purchased from you as well as any items in the cart. These discounts are a
good way to reward frequent customers. To create one of these discounts, go
to the customer quantity discounts page by clicking the Customer Quantity
Discounts link on the Discount Overview page. This takes you to the
management tool for these discounts. From there, click the Add New

Discount button at the bottom of the screen to open a modal dialog with a
form inside of it. Following is a list of the fields and how to configure them:

Order Count: This field accepts a positive integer, which is the number
of items a customer must order (or have ordered) to receive this discount.

Discount %: This is the percentage that you want to discount from the
retail price. This can be any whole number between 0 and 100.

The third system is Customer Discounts. This is a good way to give an
existing customer a discount. With this system you can specify a percentage
discount on a particular product for a specific user. It also includes the ability
to restrict the discount to a particular product option. This system is best
suited for providing an upgrade discount. Oftentimes vendors receive a help
desk ticket from a customer requesting a discount on an item or an upgrade.
Sometimes the customer may have purchased the incorrect option level and
would like to get a discount to move to the correct one. If you choose to offer
a discount as part of the post-sales support process, this system is the best
way to accomplish that. To create one of these discounts, go to the customer
discounts page by clicking the Customer Discounts link on the Discount
Overview page. This takes you to the management tool for these discounts.
From there, click the Add New Discount button at the bottom of the screen to
open a modal dialog with a form inside of it. Here is a list of the fields and
how to configure them:

Package: From this drop-down list select the product for which you want
to create the discount.

Package Option: If you want to restrict this discount to a specific option,
select it from the drop-down list. If you want this discount to apply to all
options, leave it as Select one.

Select user by: This allows you to pick if you want to select the buyer by
Buyer Email or Sold Package. If Buyer Email is selected, a Buyer Email
text box appears. Once you enter a valid email address, the E-mail field
updates with a list of users that you can choose to associate this discount.
If you select Sold Package, a drop-down list with your products appears.
When you select a product, the option drop-down updates, and you can
select a particular option to narrow your results or leave it as Select one.
When a selection is made, the E-mail field below updates with a list of
users who have purchased that product and option.

E-mail: This is automatically populated based on the previous fields.
Select the user from this list for whom you want to configure the discount.

Discount %: This is the percentage that you want to discount from the
retail price. This can be any whole number between 0 and 100.

Issued Count: This is a way to limit how many times this discount can
be used. If you set the issue count to 1, then this discount can be used only
once.

Memo: This is a text-based field that can be used to describe the purpose
of the discount. This field is optional and is for internal reference only.

Send Email: If selected, this tells the system to send an email to
customers to inform them that this discount has been created.

Email message: This is the body of the email that is sent to the user
upon creation of the discount if the above Email check box has been
selected.

The fourth system is the Coupons. This system allows you to create coupons
that give users a percentage-based discount. These discounts can be applied at
the vendor level (all of your products) or at the product level (one product,
but would work for any of the options). These discount codes can be public or
private. A public one is auto-applied at checkout by the store. A private
discount requires the customer to enter the code at checkout. The coupons
can also have a limited quantity and expiration date. These are useful to tie in
with promotions and marketing campaigns. For example, you could have a
holiday sale and offer a 10 percent discount on all your products. These sorts
of discounts and marketing campaigns are a good way to push customers who
might be on the fence about buying your product to finally making a purchase
or buying an upgrade. To create one of these discounts, go to the coupon
system page by clicking the Coupon system link on the Discount Overview
page. This takes you to the management tool for these discounts. From there,
click the Add New Coupon button at the bottom of the screen to open a modal
dialog with a form inside of it. Here is a list of the fields and how to configure
them:

Product: From this drop-down list select the product for which you want
to create the coupon. With coupons, you can also leave this set to <All>
and the coupon will work with all of your active products.

Coupon Code: This is the unique code that is used to represent your

discount. If the coupon is private, this is the code that you will need to
provide to the customers in order for them to use this coupon.

Issued Quantity: This is a way to limit how many times this discount
can be used. If you set the issue count to 1, then this discount can be used
only once.

End Date: This is the date the coupon code expires. After this date, the
code stops working.

Discount %: This is the percentage that you want to discount from the
retail price. This can be any whole number between 0 and 100.

Memo: This is a text-based field that can be used to describe the purpose
of the discount. This field is optional and is for internal reference only.

Public Promo?: This check box allows you to set the coupon to public or
private. A public coupon is automatically applied at the time of checkout
to anyone ordering the product for which it is configured. A private
coupon requires a customer to enter the code in the cart before checkout.

Promo Display Text: This is the text that is shown to the user to
describe the coupon.

Using the Help Desk

Using the help desk by the customers to obtain support was covered in a
previous section. This section covers additional features available for vendors.
For the most part, the help desk works the same for both customers and
vendors; however, the help desk has a few extra features for vendors. These
enhancements help simplify the process of providing support for your
products. Previously, in the vendor profile management section, the settings
that allow for out-of-office replies and automatic ticket responses were
covered.

To see some of the other enhancements, go to Help Center My Ticket List.
There is a check box on this page to the right of the date filter boxes. When
checked, Support Tickets means that the ticket list will show a ticket from
customers who need your support. If you submit support tickets to the store
or other vendors, deselect this box to see the tickets you've added to the
system. Other than that change, the rest of this screen works the same as it
does for the customers. If you have a ticket in your support queue, you can
click the edit link in the right-hand column to open that ticket. On the edit

ticket page, one of the biggest differences you see is below the Response area,
where there is now a Quick Text function. Clicking the bar expands the
section and reveals the new functions. Even if you haven't used this feature
before, there will already be a few default items that all vendors get. You
cannot edit or remove these items, but you can add more.

To respond to a help desk ticket using a quick text, select the one you want to
use from the list and click the Insert button. This injects the quick text into
the response box. You can make any changes you need to the text, and when
you are ready to post the reply, click the Add Response button. If you want to
add a new quick text option, click the Add New button. This displays a mini
form where you can enter the Quick Text Name, which is what is shown in
the list box, and the Quick Text, which is the text that will be injected into the
response box. After you fill out the form, click Save Changes to save your new
quick text and close the form. You can then edit any item you create by first
selecting it and then clicking the Edit button. An edit form opens and from
there it works just like the Add New form. From this screen you can also
delete any of the items you've created by selecting it from the list and clicking
the Delete button.

Once you post a reply, if the customer has not opted out and the ticket is in
context of a product, a Create FAQ from Ticket link appears at the top that
allows you to turn this ticket into a FAQ. Clicking the link opens a new Create
FAQ from Helpdesk Ticket form where you see two boxes. The first is the
customer's original question, and the second is your initial reply. At this point
you can make any needed edits to both fields. If you want the FAQ to appear
on the product page right away, leave the FAQ Is Approved box checked.
Deselecting this adds the FAQ to the system, but it will not be active. To
activate it, you need to go to the Mange FAQ module, which is covered in the
next section.

Managing FAQs

FAQs are a good way to list common presales questions on your product
details page in an attempt to offer self-support for potential customers. To
manage your FAQs, log in and then go to the My Account page. Click the
Manage FAQs link under the Support column to display the Manage FAQs
screen. From this page you can look up FAQs by date range, assigned product,
and approval status. Clicking the Search button displays the results. From
here you can do two things. First, if you want to move one (or multiple) FAQ

item(s) to a different package, check the Select box for each item you want to
move; then, in the Move Selected Faqs drop-down list, select the product you
want to move them to, and then click the Move link. To edit an FAQ, click the
Edit button in the right column of the result grid. In the new screen that
appears you can edit the Package, Question, Answer, and the Is Approved flag.

If you want to add a new FAQ, click the Add New button. A new screen
appears where you can create a new FAQ. The first field is Package. Select
from this list the package to which you want this FAQ associated. In the next
field, Question, enter the text question portion of this FAQ. In the next field,
Answer, enter the text answer portion of this FAQ. Finally, there is a check
box for Is Approved. If you want this FAQ to be shown on the product page be
sure to check the Is Approved box. Once the form filled out, click the Save
button to save and close the form.

Managing Product Reviews

As you start to make sales, you will also begin to eventually receive product
reviews. It's important to know how the review system works so that you can
manage any reviews that your products might get. To access the review
system log in and go to the My Account page. Click the Manage Product
Reviews link under the Products heading to display the manage product
reviews page. There is a list of all your product reviews in the system on this
page. Use the Search bar to narrow the results by any of the fields below. Just
begin typing and it starts to filter out results. If you want to move one or
more reviews from one product to another, select the review(s) you want to
move by checking the box in the left column. To move it, select the product
from the drop-down list at the bottom of the grid and then click the Move
Reviews link. To view the details of a review, click the Details button to the
right of it. While you can't edit the review itself, you can add a reply, which is
shown in the review area with the customer's review. The reply will also be
emailed to the customer.

The other field that you can update is the Display. This determines whether
the review is shown in the Spotlight Reviews area. It's important to note
about reviews that customers can come back and update reviews. If a
customer leaves a negative review, typically it's due to poor support or an
unanswered question. If you contact the customer via the review reply and/or
the help desk and help work out the issue, you can then ask the customer to
come back and update the review. It's also important to note that only

customers who have ordered a product from you can leave a review on that
product. There is also a delay of about two days from the time a review is
posted to the time it first shows up on the site. This is by design to give you
an opportunity to respond to the review.

The Vendor File Manager

While working on your product listing you might want to provide screen
shots, product images, trial downloads, and so on. It's preferred that you use
the built-in vendor file manager system to host those files rather than your
own hosting or a third-party image hosting service. To access the vendor file
manager, log in and from the My Account page click the File Manager link
under the Products column. To upload files, click the Add files button to open
a file picker dialog. Select the file(s) you want to upload and then click Open.
Once the file picker dialog closes, you will see the items added to the file grid.
You can then click the Start upload button to begin transferring the files to
the server. As files are being uploaded, you will notice that some files are
green while others are orange. Green files have been synced to Amazon S3,
while orange files are still pending upload. If you have orange files, refresh
the page until they turn green. Depending on the size of the file, it could take
a little while. Once your files have turned green, you can obtain the URL by
right-clicking the filename and selecting copy link location. Clicking the link
opens (or downloads) the file. You can then use the links to the files in your
product description or anywhere else on the store where you need to have
hosted files.

Sales Tax Configuration

Depending on your location and your sales volume, you can configure the
store to collect sales tax when a customer orders a product from an applicable
location. To access the sales tax system, log in then go to the My Accounts
page. Click the Sales Tax Config link under the Vendors – Sales column. The
Sales Tax Management screen shows a table with all the taxes you have
configured for your account. You can filter the results by using the Search box
in the upper-right corner. The filter works automatically on all fields as you
type. To add a new sales tax item to the system, click the Add Sales Tax button
at the bottom of the results grid. The add tax form opens in a modal pop-up.
In the modal, there are a few fields you need to complete. First, select the
Country to which you want this tax to apply. Once the Country is selected, the
Region list loads with possible regions within that country. If the tax is not

region specific, you can select the All option. If the tax is a local, postal (ZIP)
code-specific tax, you can enter that in the Local Code box. Next, enter the Tax
Rate percentage. This needs to be a decimal greater than 0.00. Next, you can
specify a Use Order that will rank the order that taxes are applied if more than
one is applicable. The next field is Tax Description, which is what will be
shown to the customer to explain the tax. The final field, Notes, is an optional
field that you can use to make notes about this tax item. This field is for
internal use only. Once you fill out the form, click the Save button to save and
close the modal. If you need to edit or delete a sales tax item, click the Edit
link to the far right of the item in the grid.

Summary
The store is the official market place for the DNN platform. Due to the
extensive nature of DNN, the store plays a crucial role in helping developers
and users of DNN to quickly and affordably extend DNN to meet their specific
business requirements. For hobbyist and DNN professionals, the store also
offers a unique opportunity to earn extra income by participating in the
referral program. For developers, the store can serve as a means to quickly
and easily bring your DNN extensions to market by becoming a vendor on the
store.

Chapter 23
DNN on Microsoft Azure

What You Will Learn in This Chapter

Opening a Microsoft Azure subscription

Deploying and configuring installations

Creating backups

Upgrading DNN versions

Maintaining and managing your site

Wrox.com Code Downloads for this Chapter
The wrox.com code downloads for this chapter are found at
www.wrox.com/go/prodnn7 on the Download Code tab. The code is in the
Chapter 23 download and individually named according to the names
throughout the chapter.

When Microsoft Azure first appeared, many in the DNN community moved to
work out how to deploy a DNN installation on the new platform. There were
many issues to overcome around compatibility and suitability for the new
cloud environment offering from Microsoft. Over time these challenges were
all met, and Azure has evolved alongside DNN. Today it's simple to deploy
DNN in an Azure environment and take advantage of the scalability,
reliability, and flexibility of cloud computing. DNN is tested on the Azure
platform every day and is compatible out of the box. The remainder of this
chapter provides key information on getting the most out of DNN when
installed on Azure.

http://Wrox.com
http://wrox.com
http://www.wrox.com/go/prodnn7

Azure Deployment Scenarios
Three choices exist for deploying DNN on Azure. The choices are

Virtual machines (VMs)

Cloud Services

Azure Websites

Hosting on virtual machines is very similar to hosting on a virtual private
server or dedicated server. This model is called Infrastructure as a Service
(IaaS). The virtual machine is persisted, and it's possible to install a SQL
Server edition either on the machine or on a separate machine. Because it is a
persistent virtual machine, the owner is responsible for applying software and
system updates.

Cloud Services is the original Platform as a Service (PaaS) solution for Azure.
In this configuration, a package is defined that allows the Cloud Services
environment to create virtual machine instances with specified software
configured on creation. A cloud service is always defined with a minimum of
two instances to provide redundancy and increase uptime. Because it's a
managed environment, the instances will be dropped and re-created
periodically by the Azure environment, to apply operating system patches and
updates. No persistent data can be stored on the local disks of the cloud
service unless it is configured in the package. The owner is responsible only
for defining the package configuration.

Azure Websites is the latest addition and is also a PaaS solution. Azure
Websites is best described as “IIS as a service.” You don't get access to a
virtual machine with Azure Websites, but you can host multiple sites in a
single website instance. As a PaaS solution, Azure takes care of the operation
system updates, load balancing, and redundancy for uptime. Unlike Cloud
Services, Azure Websites come with a set amount of persistent storage, and
only the IIS process is dynamic.

The nature of DNN lends itself to Azure Websites deployments. DNN works
well on the Cloud Services environment but takes more effort to configure to
persistently store the application files. Persistent storage is required due to
the ability for a DNN site administrator to modify the site and add new
extensions after the site is first installed. This is possible with virtual
machines, but the nature of the deployment is much the same as a regular

installation and does not warrant an entire chapter.

The remainder of this chapter describes how to deploy DNN on Azure
Websites as the preferred option of the available deployment scenarios.

Installing DNN on Azure Websites
DNN is available on Azure Websites as a pre-installed application. This makes
it simple to get started with DNN. It's always on the latest version, because
the release process for new DNN versions includes providing Microsoft with
the DNN installation files for inclusion in the Azure site.

The following sections explain how to set up a new subscription and log into
the new DNN installation for the first time.

Install Preparation
Before diving into the installation, you need to follow a few preparation steps
to ensure you have access to Azure and to get everything ready.

Preliminary Step 1: Opening a New Azure Subscription

Microsoft Azure accounts consist of a Microsoft account (such as a Hotmail,
Outlook, or Live account), which is associated with one or more Azure
subscriptions. An Azure subscription is a container in which different
resources can be added. The subscription determines the price and billing
details for the resources. It's usually possible to open a new subscription with
a free trial period, as shown in Figure 23.1. You can download the free trial
from http://azure.microsoft.com/en-us/pricing/free-trial/.

Figure 23.1

http://azure.microsoft.com/en-us/pricing/free-trial/

Within the signup process, choose your country/region carefully. The selected
value will determine the billing currency and other subscription conditions,
such as which Azure regions are available. This cannot be changed once the
subscription is created, so choose carefully.

You will need to verify with an SMS message or automated phone call, using a
device linked to your Microsoft account. Have this ready before starting the
signup process.

Once you have a subscription to work with, you're ready to start creating
Azure resources.

Preliminary Step 2: Starting a Credentials File

While you're creating the resources to support your new DNN site, you'll be
creating a lot of credentials and resources. It's good practice to write these
down in a text file as you go, so it's easy to refer back to a specific credential
when you need it.

These are the values you'll collect, so create the headings in a file:

Website name:

Azure region:

Azure SQL server name:

Azure SQL database name:

Azure SQL login username:

Azure SQL login password:

Azure website URL:

DNN host username:

DNN host password:

FTP endpoint:

FTP user:

FTP password:

You can save the file in a secure location when you're finished, which will
ensure that you have a copy of the key credentials for future use.

Performing the DNN Installation
Once access to Azure has been organized and your credentials file is ready, it's
time to start running the installation process. DNN is available from the
Azure Marketplace as a free installation.

Step 1: Opening the Azure Site and Creating a New DNN Install

Navigate to the Azure site at http://portal.azure.com/. At the time of
writing, the Azure site was still in preview, but Microsoft has indicated that all
new features will be released on this site. The remainder of the chapter shows
the new site. The Azure site has a design language using blades, which are
context-specific windows of data that relate to the previously selected items.
You open them by horizontally scrolling across the page, and tiles in one
blade tend to open another.

Wait for the page to complete loading, and then start by clicking on the
marketplace. This loads the Marketplace blade. From there, select Web to
show the Azure Websites options. Each product available in the marketplace
shows a tile—it's easy to pick out the DNN platform tile and create from there.
Figure 23.2 shows the Marketplace tile.

Figure 23.2

This opens another blade showing the description of DNN—at the bottom

http://portal.azure.com/

you'll see a Create button. Click this button to start the process.

Figure 23.3 shows the DNN platform choice in the Marketplace blade and the
location of the Create button.

Figure 23.3

Step 2: Choosing the Resource Plan for Your Azure Website

Before you can complete the creation of your Azure website, you must choose
the various levels of resources and set configuration options.

First choose a name for your Azure website. This name will appear
everywhere—including in the default URL—so choose something descriptive.
This example uses dnn7demo.

Websites live in a resource group, so this is the first thing to be named. If
you're going to install a single Azure website, we recommend giving the
resource group the same name as the website (in this case, dnn7). If you're
going to create multiple sites, you might consider a different name (such as
Sales Dept Sites).

Within the resource group, you will see that Azure has selected Website (the
Azure website), Database (the SQL Azure database your site will use), and
Subscription (the subscription it will be created in, which determines the
billing).

Step 3: Creating the Azure Website

After you've named the resource group, click the Website selection. You can
enter the URL value, which will translate into a finished site default URL of
http://{url}.azurewebsites.net/. Enter the value here—this example uses
dnn7demo. As soon as you get confirmation that the name is available, you can
copy the name to the Website Name: header in your credentials text file.

This provides yet another blade to be configured. This is the Web Hosting
Plan blade, which is a container for your Azure Websites resources. Again,
you need to enter a name. You can depart from the standard naming approach
and use a –plan suffix to make it distinct. Figure 23.4 shows the creation
process with the resource group, name (URL), and selected pricing tier of the
Azure website. In this example, the name dnn7demo is being used.

Figure 23.4

At this point you need to choose the actual plan you're going to use for your
site. If this is a test site that you're creating for investigation, you can choose
a Free site. Free sites are extremely limited, so for anything except a casual
look, they don't work. Scroll to the bottom of the Web Hosting Plan blade and
click Browse All Pricing Tiers to see the full list. The offers change over time,

but there are essentially four basic layers:

Free: Shared infrastructure, limited processor allocation, and 1GB storage.
Cannot assign a custom domain (works only on the *.azurewebsites.net
domain)

Shared: Shared infrastructure, limited processor allocation, and 1GB
storage, but you can assign your own domain. You can use this for very
small sites with low amounts of traffic and storage requirements.

Basic: Dedicated infrastructure, increased storage and custom domains,
and the ability to manually scale out the site up to three instances.
Suitable for many production sites, and you can choose between different
processing power levels.

Standard: Like Basic, but includes higher scaling limits, plus the ability to
use Autoscale, SSL certificates, backups, and the ability to create staging
sites. Suitable for all production sites of all power levels (scaling to 10x4
core instances gives you a very powerful platform to run DNN on, if you
have to deliver serious amounts of page views).

This example uses a D1 Shared infrastructure, as it is a suitable starting point
for many people. The plan can be changed with a live site, so your choice isn't
crucial at this point.

Once you have selected the plan, you need to specify where in the world you
want your website to be located. Choosing this can be as simple as choosing
the region that is closest to your intended customers. Choose carefully as
moving resources can be difficult.

When you have made your choice on plan and geographic region, click the OK
buttons from right to left. Each blade will close as the selection is made. You
have locked in the Website resource.

Step 4: Creating the Database Resource

After you've chosen the website plan and named the website, the next step is
choosing a database. Click the Database resource and then click Create a New
Database.

The New Database blade will open and substitute in a database name based
on the name of your website. This example sticks with the current naming
convention and uses dnn7demo as the DB name.

Again, you will need to choose the database resources tier. Azure databases
are priced by DTU, which is an Azure-specific measurement, which essentially
abstracts the memory, processor, and throughput into a single value. The
higher the DTU, the more database power you get. Working out specifically
how many DTUs you require can be a case of trial and error.

This example uses S0 for the purposes of a demo site. From experience, it is
very marginal running a DNN site on S0 for production use, and we
recommend going to a S1 for most production sites, and to an S2 if the site
sees a decent amount of traffic. Running on Basic is almost impossible with
DNN—the install process itself can consume the entire DTU allocation.

Figure 23.5 shows the process of creating a new database, choosing a name,
and selecting a pricing tier.

Figure 23.5

The prices can be a bit of a surprise compared to earlier Azure SQL pricing
when Azure first released the product. Microsoft has changed direction
slightly—the old plans were priced by storage, while the newer plans include a
lot of storage but are priced instead on DTUs. The good news is that you can
get much more consistent performance with the new plans. The result is that
more power costs significantly more money.

Once the database name and plan is selected, the process is still not complete.
You must select or create a database server where your database will reside.

Step 5: Creating a Database Server

Once the database is selected, it's time to select or create a server. If you have
created a database previously, you may already have an Azure SQL Server
created. If you haven't, you'll need to create one.

Despite the name, you're not actually creating a server of any kind. The Azure
SQL service is an abstracted cloud service, and it runs on its own cloud of
servers underneath. When you create a server, you're really just creating a
container to put databases in, principally because that's a model people are
familiar with and it helps with writing connection strings.

At this point we generally break again with naming convention and give the
server a name. As it is a container, you should consider that you will probably
create another database in it at some point—it's likely you'll get hooked on
creating Azure Websites, and it's rare to stop at just one.

After choosing your server name, also choose the name of your server
administrator account (which you can use to access all databases on the
server) and set a password.

Figure 23.6 shows the creation of the server during the database-creation
process.

Figure 23.6

The final task when creating a server is to choose the location. It is very
important that you choose the same location as the website (refer to the
credentials file or the settings for the website). A DNN site that has the
database in a different region than the website will run very badly.

After setting the database server name, admin login, and password, copy all
these values into your credentials text file for safekeeping. You will need
these credentials later.

Step 6: Creating the Azure Website

Once you've configured and selected the website and database resources, click
the Create button to create the DNN site.

Figure 23.7 shows a completed site-creation process, where the site database
and subscription are chosen and the site is ready to be created.

Figure 23.7

When you select DNN at the start of the process, Azure will create the
necessary resources, load the latest DNN build, and start the install process.
The open blades will close, and you'll see a status update as Microsoft Azure
creates the various resources. Figure 23.8 shows the status update for a
website that's being created.

Figure 23.8

This process will take a short time and should be finished in about 10
minutes. The lower the tier of database you selected, the longer it will take.
You can click the Notifications section to get a more in-depth description of
the process.

When the site is complete, you'll get a notification. You can now click the site
icon, which opens the blade for the Resource Group containing the site. The
Resource Group is the complete container for the site and its database
resources and will serve as the container for any future resources you create
for this site. Figure 23.9 shows the Resource Group blade and the website
settings.

Figure 23.9

Click the Website icon to open the Website blade. This is the central point for
configuration and settings of the site. Your DNN installation is not completed
yet; you still need to visit the actual site. You can do this by clicking the
Browse icon at the top of the blade; doing so will open the new site in a new
browser window.

The first time the site runs it will take a while to start up. DNN contains
dynamically compiled code, and the site will be sluggish until all these
compiles are completed. The speed of this depends on the resources you
selected when you configured the new site.

Once the site is started correctly, you'll see the DNN Installation Wizard
screen.

Step 7: Running the DNN Install Wizard

To complete a DNN installation, you have to run the wizard. This is
essentially no different than running the install wizard in any other
environment, but be careful to enter all of the credentials correctly.

First, create the username and password for your host user. It's good practice

to use something other than the default value. Choose a strong password and
a meaningful name for your website (this is the name of the first site created
in the DNN install). Remember to update your credentials text file with the
host user and password. Figure 23.10 shows the DNN Install wizard with the
host user and website installation values completed.

Figure 23.10

The database settings require careful input. Copy the values from your
credentials text file to fill in the details. Choose the following options:

Database Setup: Custom

Database Type: SQL Server/SQL Server Express database

Server Name: {your Azure SQL Server name}.database.windows.net

Database Name: {your database name}

Security: User defined

Database Username: {database admin name}

Database Password: {database admin password}

Figure 23.11 shows the Database Information portion of the DNN Install
Wizard, with the example site credentials entered.

Figure 23.11

Once you've entered the correct values, click Continue. The wizard checks the
database connection and the install begins. Figure 23.12 shows the
Installation Wizard in progress.

Figure 23.12

If you have installed DNN locally, you may find that the install process runs
slower, again depending on your database and website tiers chosen during the
creation of the Azure resources. The install scripts are DTU intensive, and
lower specification database tiers take longer to process.

At the end of the process, you should have a completed website. Figure 23.13
shows the completed install on Azure Websites.

Figure 23.13

Now that you've created a site, you'll want to go through and set some
configuration options to ensure it is working. The first step is configuring
your domain name to point at the site.

Step 8: Adding Domain Names

Your visitors will find your site(s) using the domain names you have.
Pointing those domain name(s) at the Azure website requires some
configuration at your DNS provider or Domain Name Registrar. The
instructions for DNS configuration are provided by the Azure site and are
simple to follow. Essentially, the domains work by using a CNAME record to
point your www.example.com domain name to the Azure website URL.
Alternatively, you can use an A record to point directly to the IP address. To

http://www.example.com

verify that you have authorization for this, you also need to create another
CNAME record of awverify.www.example.com that points to awverify.
{name}.azurewebsites.net.

Before embarking on this process, it's important to read and understand the
documentation—on the Azure site and also on this Azure Documentation
page: http://azure.microsoft.com/en-us/documentation/articles/web-
sites-custom-domain-name/.

Once your DNS name is pointing at the Azure website, go to the Azure site,
select the website, and click the Settings tile. In the Settings blade, click
Custom Domains and SSL. Figure 23.14 shows the Domains and SSL blade for
the Azure website.

Figure 23.14

Figure 23.14 shows the example dnn7demo.dnncloudservices.com, which is
shared with a few other subdomains. Normally you would use a domain like
www.example.com and don't have to use unusual subdomains.

Simply type the domain name you want to use in the list, and it will verify
that the DNS entries are correct and then enable the Save icon. Click Save to
commit the changes. This associates the domain name with the Azure website
install.

If the DNS is not configured correctly, when you try to enter the domain
name, you'll see the warning message shown in Figure 23.15.

http://www.example.com
http://azure.microsoft.com/en-us/documentation/articles/web-sites-custom-domain-name/
http://dnn7demo.dnncloudservices.com
http://www.example.com

Figure 23.15

You may have made a mistake in entering the domain name, you might not
have set it up correctly with your Registrar/DNS provider, or perhaps the
change hasn't propagated across the Internet yet. The error message is long
but informative. Go back over the steps and double-check. It's common to
have to wait for propagation before the domain names work as expected.

Note that you can also associate the “naked” domain to the fixed IP address,
but you still need to create the awverify.example.com CNAME entry to point to
awverify.example.com so that the domain name is verified.

Once this is complete, click Save at the top of the blade, and then access your
DNN site using the new domain name. The site should load using the new
domain name. That is because DNN 7 is configured to use the Auto Add Site
Aliases option by default. When a valid domain name requests the site, DNN
automatically recognizes it and adds it to the list of valid site aliases.

Best practice dictates that as soon as you are finished adding domain names
to the site, you should uncheck the Auto Add Site Alias option. Because Azure
is a dynamic cloud environment, it's possible to have odd-looking URLs
appear in the list of site aliases. It's not clear exactly where these come from—
whether they are faults or intentional malicious actions. Extra entries in your
Site Aliases table are unwanted, so disable the auto-add function as soon as
your domains are configured correctly. Figure 23.16 shows the Auto Add Site
Alias checkbox in the Admin Site Settings page of the newly installed site.

http://awverify.example.com
http://awverify.example.com

Figure 23.16

If the Auto-Add function is disabled or you want to install another site, follow
normal practice and configure the DNS entry to point to the Azure website
install. Then go into the DNN administrative interface and add the site alias
manually.

Step 9: Configuring SMTP

All DNN installations require an SMTP server to work properly, whether to
email customers or to send out password reset links. Azure is not a traditional
hosting provider, so you don't get an email server to use with your Azure
website. The first step in getting a working DNN site after the installation and
domain configuration is to configure a working SMTP server.

SMTP configuration is done on the Host Host Settings Advanced Settings
 SMTP section. Figure 23.17 shows the SMTP settings with an example

server.

Figure 23.17

There is nothing specific about setting up SMTP on a DNN install on Azure
Websites—the process is identical to any other DNN installation. You can use
your existing SMTP server, which serves your company or personal email, or
you can investigate one of the cloud-based SMTP providers. The only choice
you don't have is leveraging Azure Websites itself to send mail; that simply
isn't an option.

Step 10: Site Inspection

At the end of this process, you will have a new DNN 7 installation running on
Microsoft Azure. Best practice is to systematically move through the site,
checking on basic administration and editing functions, to verify everything
works as expected. When everything checks out, you can immediately start
creating content, installing third-party modules and working on the design of
the site.

Remote Connections to Azure Websites
Once your new site is built and ready, you may want to start adding new
content in bulk. There are multiple ways to connect remotely to an Azure
website. Unlike most other hosting methods, obtaining an RDP connection is
not one of the possibilities.

The three main possibilities for connecting remotely to an Azure website are

FTP

Web Deploy (WebMatrix)

Git

The Git connections are designed to allow the owner of a site to push changes
to their site after committing in Git. This type of continuous deployment
model suits custom-built websites but isn't a great fit for DNN, which is
designed to be extended by installing extensions rather than directly
modifying source code.

Web Deploy is a Microsoft technology for allowing simple connection and
synchronization with a local copy of the site using Visual Studio or
WebMatrix. This works well but is a little complicated to set up. If you're
comfortable with this method, it may work for you.

In this example, the connection is going to be demonstrated using FTP. This
is a technology most people are familiar with and is a robust and dependable
way of transferring data to and from websites.

Remotely Accessing Azure Websites with FTP
Accessing an Azure website with FTP is very similar to using FTP with any
other website. You'll need access to the Azure site and good-quality FTP
software. It's not recommended to use a basic FTP program such as browsing
with Windows Explorer.

Step 1: Creating FTP Credentials

The first step in gaining FTP access is to create the credentials used to
connect. Go from your Website blade, click Settings, and, in the Settings
blade, click Deployment Credentials.

You can either accept the default username created by Azure or create your

own. Enter a strong password and click the Save icon. Figure 23.18 shows the
creation of FTP credentials in the Deployment Credentials blade.

Figure 23.18

Take a moment to copy the FTP username and password to your credentials
text file so you have a record.

Step 2: Obtaining the FTP Endpoint

Once the credentials are set, click Properties to open the Properties blade.
This provides you with a number of FTP endpoints you can connect to.

FTP Deployment User is the qualified name of the user you just created.

FTP Host Name gives you the endpoint for the root of your site.

FTP Diagnostic Logs gives you the endpoint for the diagnostic logs of your
site.

Figure 23.19 shows the FTP endpoints in the Website Properties blade.

Figure 23.19

These are repeated for the FTPS versions. Copy the FTP host name into your
credentials file as your FTP endpoint.

Step 3: Opening the FTP Connection

To connect, open your favorite FTP program and enter the credentials. Figure
23.20 shows a connection to the example site using FileZilla, a popular open
source FTP client.

Figure 23.20

You can use the Copy icon on the endpoints to copy the contents into your
clipboard and paste them into your FTP program. Alternatively, copy them
from your credentials file. Then connect and you'll see the structure of the
Azure website.

Once you're connected, you can upload/download code/content for the site or
access any diagnostics and weblogs. The site is stored in the /site/wwwroot/
path.

Once you have completed this process, you can move content and upload it to
your Azure website as needed.

Backing Up Your Azure Website
Now that the site is installed and configured, it's time to take a full backup of
the site. A DNN installation is a combination of the application files (content,
code, and configuration files) and the database. A correct backup of any DNN
installation is a combination of a backup copy of the database and a backup
copy of the application files. Because there are dependencies between the
database and the application files, any valid backup should be a snapshot of
both at the same date/time.

Creating a Combined Application/Database Backup
The following process describes how to create a combined
database/application files backup using the tools available in Azure Websites.

Step 1: Choosing the Correct Website Pricing Plan

Azure Websites provides built-in backup capability for performing site and
database backups, but this is available only in the Standard plans. To
demonstrate, the dnn7demo site will be switched from the Shared plan it was
initially configured with to a Standard plan.

Figure 23.21 shows how to select a new Pricing Tier blade from within the
Website blade.

Figure 23.21

Once you select a new plan, the website is switched to a new plan, which
takes a few moments. Once it is finished, you'll see items like the File System
Storage quota change.

Step 2: Linking the Database and File System

Before you can get Azure Websites to take a backup, you have to tell the
website what the linked database is so that it can combine the application
files and database.

Open the Website Settings Application Settings blade. Find the Connection
Strings setting. Even though the DNN installation includes a connection
string in the web.config file, this is not automatically added to the website

settings. Add the SiteSqlServer connection string for your installation by
opening the web.config file and searching for SiteSqlServer.

If you don't yet have a copy of the web.config file, you can open it in the site
using Host Configuration Files, or you can use FTP to download a copy as
described in the previous section.

In the Connection Strings section, add SiteSqlServer in the Name box and
copy/paste the connection string as contained in quotes in your web.config
file, into the Value box. Ensure that SQL Database is selected as the type and
use the Save button at the top of the blade to save the changes. Figure 23.22
shows the location of the connection string in the web.config file.

Figure 23.22

When you're finished, you should have a connection string entered for the
site within the Site Settings blade. Figure 23.23 shows the connection string
correctly entered.

Figure 23.23

At the completion of this process, the database and file storage are linked
together for the purpose of backups.

Step 3: Creating a Storage Account for Backups

The next requirement is to indicate where to store your backups. The backups
are automatically sent to an Azure storage account. If you don't have a
suitable Azure storage account, it's time to create one.

Click the + New control in the bottom-left of the Azure site and select
Storage, cache + backup as the category (you may need to click the Everything
link to see all of the categories). Then select Storage. Figure 23.24 shows the
selection of options to create the new storage account.

Figure 23.24

Enter the same name for the storage account, check to make sure it's going

into the same resource group as the website, and then select the Storage
Account type. We recommend using the Geographically Redundant Storage
(G1 GRS), which means a copy of your files are stored in two separate data
centers in the same region, making loss of the files highly unlikely.

Again, ensure that you're creating the storage account in the same Azure
region as where you created your website and database. This is very important
for speed and to avoid outbound data charges. Figure 23.25 shows the
selection of the pricing tier, subscription, and region.

Figure 23.25

Click Create when you have everything ready. The storage account will take a
few moments to create. When it's ready, click the storage account and open
the Storage blade.

Step 4: Creating a Container in the Storage Account

A storage account is an empty bucket—it's not like a folder on an operating
system, ready to accept files. Storage can be in the form of queues, containers,
or table storage. Containers are the appropriate use for storing files like
backups, so create a new container by clicking the Containers tile. When the
Containers blade opens, use the + Add icon to add a new container. It's best
practice to leave these containers set to private access so that anonymous
requests can't download your backup files. Figure 23.26 shows the options for
creating a new container.

Figure 23.26

The container is then created and ready to accept backups.

Step 5: Creating the Backup

After you've created a storage account and container, return to the Website
blade and open the Settings Backups blade. The storage account and
container must be selected before the backup can be created. Figure 23.27
shows the selected options for creating a backup on the created storage
account and container.

Figure 23.27

To create the backup after the storage account and container have been
selected, click Backup Now on the Backups blade. Make sure you have
included the SiteSqlServer database.

The backup should take a moment. Figure 23.28 shows the list of completed
backups with the new backup included.

Figure 23.28

Step 6: Creating Scheduled Backups

When a successful backup is operating, it's a simple task to enable a schedule
and have a regular backup taken of your site. Click the Scheduled Backup
option and set the frequency, start dates, and retention days for the backups.
Figure 23.29 shows an automated backup schedule.

Figure 23.29

The Azure Geo-Redundant storage is relatively inexpensive, so it's worthwhile
to keep a reasonable retention period for backups. Being able to go back a
week or two can be invaluable when a problem occurs.

Once this process is complete, not only should you have a backup of your
newly installed site, but you should also have a schedule in place to perform
regular backups.

Upgrading to a New DNN Version
It's important to keep up with new DNN releases as they appear. This is not
only to gain access to the latest new features but also to ensure that any
discovered security vulnerabilities are patched before malicious users start
developing exploits. The process for upgrading DNN has changed little from
the early versions and wasn't necessarily designed with a product like Azure
Websites in mind. Happily, the upgrading process is relatively simple and
robust and works well in Azure Websites. Azure Websites does require some
changes to the procedure many experienced DNN administrators are familiar
with.

Preliminary Upgrade Steps
There are several preliminary steps you need to take prior to upgrading.

Preliminary Step 1: Taking a Backup of Your Installation

The first thing to do in any upgrade situation is to ensure you have a backup
of your site in the pre-upgrade state. The previous section shows the detailed
steps to create a backup. To be thorough, you might want to test your ability
to restore a site from that backup to ensure that your backups are restorable.

Preliminary Step 2: Checking Your Host User Credentials

When you run an upgrade, you'll be asked for your host user and password.
It's easy to forget these, and by the time you've started the upgrade process,
there's no easy way of determining them. If you kept your credentials text file
from installation, you may have them stored.

The best strategy is to take a minute to log onto your DNN installation with
the host user and check that you have the right credentials to run the upgrade
before you start making any changes.

Preliminary Step 3: Obtaining the Latest Upgrade Package

There are multiple ways to obtain the latest DNN upgrade package. You could
follow a link in a community newsletter or follow the link from the Update
icon that appears in your site when a new version is released. Figure 23.30
shows when a new version of DNN is released and the update icon appears.

Figure 23.30

Alternatively, you can visit the DNN downloads page at
http://www.dnnsoftware.com/community/download.

The way to obtain the upgrade isn't as important as making sure you get the
correct file. You must obtain the Upgrade package, which has a name like
DNN_Platform_07.03.04_Upgrade.zip.

The 07.03.04 numbers refer to the new DNN version. Each new version will
have a different version number, but the format will stay the same. Download
this file to your local computer and unzip it to ensure that no corruption or
partial download has occurred.

Preliminary Step 4: Checking Your Dependencies

If you have important third-party extensions in your DNN installation, there
may be important updates for the new version you're installing. Take the time
to check out the product/project pages for the list of installed extensions and
see if there are any notes about required minimum versions or upgrade-
specific releases. In some cases, you may need to upgrade an extension, either
prior to an upgrade or immediately after.

Preliminary Step 5: Considering Using a Test Copy

Best practice for critical production systems is to take a copy of the
production site and restore it to a local copy or even to another Azure website
or deployment slot (see “Other Useful Azure Websites Features”). Once a test
copy is running normally, run the upgrade process on it and make sure that
the upgrade process works correctly and that the site works as normal after
the upgrade is complete. By running the upgrade on a test copy first, you can
identify any possible problems or compatibility issues. This allows you to
complete the production upgrade with high confidence that everything will
proceed normally or otherwise make changes to the production environment

http://www.dnnsoftware.com/community/download

in preparation for running the upgrade process.

Upgrading DNN
Once the upgrade preparation is complete, it's time to perform the upgrade.
The following steps detail the upgrade process from the point where the
target DNN install is ready and the latest upgrade package is downloaded.

Step 1: Uploading the Upgrade Package

The DNN upgrade process consists of copying the contents of the upgrade
package over the top of the existing installation files and then requesting the
home page of a site in the installation. The Upgrade Wizard is automatically
launched when the site detects a mismatch between the file version and the
database version. Typically, a site owner or administrator will log onto the
server and use an unzip utility to extract the upgrade files. This is not possible
with Azure Websites because there is no concept of “logging onto the server.”

To upload the upgrade, it's best to use FTP, as previously explained. I have
seen some people unzip the package locally and send the files one at a time
over FTP. However, this is a very slow process as there are a very large
number of files in a DNN upgrade package. Thankfully there is a built-in
utility within the Azure Websites toolset to perform the unpacking of the
upgrade zip file. There is a catch, though—many of the files will be locked by
the operating system and cannot be overwritten with the unzip utility. You
can't stop the website to unlock them because stopping the site also stops the
unzip utility.

You can work around this problem by creating a new folder in your site root
called Upgrade. Typically I'll name the folder using the version number I'm
upgrading to. Figure 23.31 shows the created folder with the upgrade package
already uploaded.

Figure 23.31

At this point the site is still running normally—all that has happened is that a
new ZIP file is in a new directory.

Step 2: Extracting and Copying the Upgrade Files

Now, switch back to the Azure site and load your Website blade. Find the
Console item and click it. This will open the online console blade, in the root
path of your website. The console is a cut-down version of a normal command
prompt. Figure 23.32 shows the Azure Console blade open in the Azure site.

Figure 23.32

Type in cd {your update directory} to switch to the directory where you
uploaded the upgrade package. Use a dir command to confirm the upgrade
file is in the folder. Then, use the unzip command to unzip the upgrade
package. Figure 23.33 shows the use of the unzip command.

Figure 23.33

This will take a few moments as the console runs the unzip command and
extracts all the files from the upgrade package into the directory. When it is
finished, confirm all the upgrade files are now in the folder by using the dir
command to list them.

At this point, your site is still running as normal, and the upgrade package is
not yet applied. The next action will copy the files from the upgrade folder
into the site root, putting your site into an upgrade-pending state.

To do this, use xcopy, which is available in the console. The command to copy
all files and subfolders to the parent directory, without confirming each copy,
is shown in Figure 23.34 and listed here:

> xcopy *.* .\..\ /Y /E

Figure 23.34

Once this finishes, your upgrade files are in place on the root path, and you're
ready to run the upgrade.

Step 3: Running the Upgrade Wizard

Request the home page of your website, and you'll see the upgrade wizard, as
shown in Figure 23.35.

Figure 23.35

Enter your host username and password and then click the Upgrade Now
button, which authenticates you and begins the upgrade process. Figure 23.36
shows the upgrade process in progress.

Figure 23.36

When the upgrade process completes, click View Website to visit your newly
upgraded website. Note that the entire site will have to be restarted and
recompiled, so the first request to the site can be sluggish until the new
version completely loads. After upgrading, you should no longer see the
Update icon on the control bar.

Step 4: Cleaning Up the Upgrade Folder

Now that the site has been upgraded, there is no reason to keep the upgrade
folder with the original copies of the upgrade files. Return to the console and
navigate to the site root (should show d:\home\site\wwwroot). Figure 23.37
shows the process for deleting the temporary upgrade folder.

Figure 23.37

The console has a strange quirk in that it doesn't allow you to provide
additional parameters, so if you try to delete the folder using a normal del
command, it will do nothing. The reason is that the delete command wants a
confirmation when you're deleting an entire folder and subfolders. The trick
with this is to add the switch to skip confirmation, as shown in Figure 23.37.
The command used is

del dnn_734-upgrade /Q

The /Q switch confirms the deletion and removes the folder and the contents.
You should also find the Upgrade Zip package that you uploaded and delete it
as well. Good practice dictates keeping only the files you need in your website
installation.

Step 5: Performing Testing and Backup

At this point, your site is upgraded and ready for use again. It's important to
go check the major features of the site and to test any third-party modules to
ensure that the upgrade has not affected them.

At that point, if everything is working as expected, complete your upgrade
process by taking another backup of the site.

Moving an Existing DNN Site to Azure Websites
Perhaps you have an existing DNN installation that you want to move to
Azure Websites. Although it's difficult to write a detailed step-by-step guide to
this process that would match every site, the following steps provide
guidelines to work through. Individual problems and issues may crop up
along the way, depending on many factors. There are extensive resources
available online to help you find solutions to any individual issues you have.

Preparing Your Installation for Migration
These steps are to prepare your existing DNN site for migration to Azure
Websites. The steps are for the purpose of ensuring that the compatibility is
correct and to ensure the migration process proceeds painlessly.

Preliminary Step 1: Performing a DNN Install on Azure Websites

The first thing you need to do is create a DNN site in Azure Websites. The
easiest way to do this is to follow the steps already laid out in this chapter. It's
not too important that the site will be replaced by a different version later; the
important outcome is that an Azure website, database server, and database
and storage account are created.

If you're comfortable with this process, you can skip choosing DNN from the
Marketplace and just use a blank website and SQL database. Ultimately, a
new Azure website, SQL Database, and the remote connections are required.
If you're new to Azure Websites, following the procedure for installing DNN
is the easiest way to meet these requirements.

Preliminary Step 2: Upgrading to the Latest DNN Version

The most important task is to ensure that the DNN installation is on the
latest version. This is best practice in general but specifically is required to
make sure all the DNN components are Azure compatible. The upgrade
process should be run in-place on the current environment.

Do not proceed further with the project until the version is on the latest
available DNN package.

Preliminary Step 3: Enabling Auto Add Site Alias

In your existing site, go to the Admin Site Settings Advanced Settings and

ensure that the Auto Add Site Alias option is checked, as shown in Figure
23.38.

Figure 23.38

This will be required when the site becomes available on the new URL in
Azure Websites.

Preliminary Step 4: Testing the Database Export Process for
Compatibility

Migrating your site to Azure usually means using the Azure SQL database
service. It's possible to work around this by using SQL Server on a VM, but
this is not a cost-effective solution unless it is a large, high-performance
website that demands a stand-alone SQL Server.

While the latest versions of DNN are all compatible with Azure SQL database,
it's possible to still have incompatible code, particularly if you have started
with an early DNN site and have continually upgraded to the latest versions.
This process can leave behind incompatible objects in the system, as the
upgrade scripts always have some slight differences with the install scripts.

The easiest way to check for Azure SQL database compatibility is to perform
an export/import and see if it works. This is done by accessing your existing
database in SQL Server management studio and selecting Tasks Export
Data-tier Application. Figure 23.39 shows the options used to select the
export.

Figure 23.39

This process creates a .bacpac file, which is an export of all the SQL Scripts
required to re-create the database, plus all of the data required to fill the
tables. It isn't a traditional .bak backup as you may be used to. These types of
SQL Server backup cannot be used to restore to Azure SQL databases.

The easiest way to accomplish this task is to export the .bacpac file directly to
an Azure Storage account. This option is available in the SQL Server
Management Tools database export process. Figure 23.40 shows the entry of
the storage account name and key to enable the export of the .bacpac file.

Figure 23.40

This process requires the storage account name and access key. Once this is
entered, choose a suitable container in the storage account and complete the
process by clicking Next.

It is possible that this process will highlight incompatibilities in the source
database and the export will not be able to proceed.

Preliminary Step 5: Testing the Database Import Process for
Compatibility

When the database has been exported into a .bacpac file, it's time to import it
into an Azure SQL database. This can be done in SQL Server Management
Studio.

First, connect to your Azure SQL Server with SQL Server Management Studio.
You'll need to ensure that you have the server name and administrator
credentials. You may also need to allow your IP address through the Azure

SQL Database firewall, which can be done in the Azure SQL Server blade.
Figure 23.41 shows how to click the Databases part of the server tree and
choose Import Data Tier Application to start the process of importing an
existing .bacpac file.

Figure 23.41

Select the option called Import from Windows Azure and select the same
storage account, container, and .bacpac file that were created in the previous
step. Figure 23.42 shows the example storage account and key being entered
to specify the .bacpac import location.

Figure 23.42

Provide a new database name for your import and start the process. If there
are compatibility problems, it is at this point that you are most likely to
experience them. If the import fails, you will have to repeat steps 4 and 5,
fixing the issues as they arise, until the database is imported. Most Azure SQL
incompatibilities have simple fixes that can be found with an Internet search.

Performing a Site Migration
If you've followed the preliminary steps, the actual migration is quite
straightforward from this point onward. As you have installed a new DNN
installation and have upgraded your existing installation to the latest version,
you should have two installations with the same version. You should have
worked out the process of importing a database and ensuring that there are
no compatibility issues.

Step 1: Taking Your Existing Site Offline

While running this process, you need to take your existing site offline so no
changes to the files/database occur while you're completing the migration
process. You can do this easily by copying an app_offline.htm file into the
site root of the existing site. This is just a plain HTML file with whatever
message you'd like to display. IIS recognizes this file and returns the page for
any request to the existing site.

Step 2: Copying and Compressing the Application Files

This first step is to take a copy of your existing site and compress the entire
site from the site's root folder into a ZIP folder. It is best to use ordinary ZIP
compression over other options so that the Azure Websites unzip utility can
unpack the files. Your existing environment will dictate how to achieve this
step.

Step 3: Uploading and Unpacking Your Application Files

Connect to your target Azure Websites installation and upload the site files. I
recommend using the same strategy as outlined in the earlier section on
upgrading DNN (“Step 1: Upload Upgrade Package”), which is to upload the
compressed files into a folder, unzip them using the Azure console, and then
use xcopy to extract them into the site root.

After this step is complete, don't attempt to run the site—it isn't ready yet.

Step 4: Importing Your Database Backup

This step is a repeat of preliminary steps 4 and 5, with the outcome of having
the site database imported. You should have already gone through this
process—what is important is that the latest copy of the site database is
imported. If you've made multiple import attempts, be sure to have identified
clearly the database copy that was successful. You can rename databases to
suit and then delete any failed attempts.

Step 5: Pointing Your Application at the Imported Database

This step involves changing the connection string in your imported site to use
the just-imported Azure SQL database.

The simplest way to do this is to open the web.config file in Visual Studio
Online (covered in a moment) and make the changes. The connection string
for the database can be found in the Properties blade of the specific Azure
SQL Database blade. Directly edit web.config and make this change.
Remember that the connection string may be entered twice in a DNN
web.config file (in the <connectionStrings> section as well as the
<appSettings> section). Figure 23.43 shows the Database Properties blade
with the location of the database connection strings.

Figure 23.43

Step 6: Trying Your Site

At this point, the site should be ready for browsing on Azure Websites. Check
this by entering the URL for the Azure website into a browser. Don't use your
site domain, which should still be returning an offline message. If everything
is set up correctly, the site will load on the Azure Websites URL. This is
because the Auto Add Alias option was checked, and the site should
determine the new alias and work as expected.

Step 7: Completing the Switchover

The final steps are the same as the final steps in the DNN installation process.
You add the DNS entries using the Azure site so that the domain name for the
site is configured to point to the Azure website. You need to coordinate this
between the DNS provider and the Azure site so that the site can verify that
the domains work at the same time traffic starts arriving. Check the SMTP

settings to ensure that it works as expected. Leave your old site with the
app_offline file in place so that any DNS stragglers receive the “offline site”
message and you don't end up with some visitors arriving at the new site and
some visitors arriving at the old.

Managing and Troubleshooting Your Azure Website
This chapter has concentrated on the tasks of installing, backing up, and
upgrading your DNN installation on Azure Websites. Once installed, a DNN
installation requires maintenance and management. This final section of the
chapter explains the tools and strategies for troubleshooting and day-to-day
operation.

Using Kudu
Kudu is the name of the online tool that runs alongside Azure Websites. It
provides both diagnostic information, plus the ability to extend the
management environment. It is a vital member of the Azure Websites toolset.

Accessing Kudu is simple; you simply request a variant of your website
address by adding scm as a subdomain.

Recall that the demo site in this chapter is called dnn7demo.

The Azure website is found at http://dnn7demo.azurewebsites.net/.

Kudu is found at the address http://dnn7demo.scm.azurewebsites.net/.

Figure 23.44 shows the Kudu home page for the example site.

http://dnn7demo.azurewebsites.net/
http://dnn7demo.scm.azurewebsites.net/

Figure 23.44

As you can see in Figure 23.44, there are a number of sections within the
Kudu services site. The home page provides some basic information about the
version and some REST API endpoints you can use if you want to start
building automated or remote tools to work with your installation.

Environment

The Environment section lists all the types of information you may need to
know when running an application in an IIS environment, particularly if
you're writing code to extend the application. Here you'll find items like
working directories, current App Settings, CLR versions, and Environment
settings.

Debug Console

You are familiar with the Debug Console if you stepped through the section
on updating Azure Websites. This provides you with a subset of normal
command-line actions that you can perform directly on the file system that
contains your DNN installation.

You can also load up a PowerShell command prompt, if you have developed
specific PowerShell scripts for your site. Those familiar with PowerShell will
start to see the automation possibilities for performing actions within their
Azure website.

Process Explorer

The Process Explorer is a very simplified window into the currently running
processes within your Azure Websites resources. Generally, when viewing
this, you'll see two w3wp.exe processes running. That is because one is your
actual DNN installation and the other is the Kudu process that you're
currently using. These provide good insight into the currently running
process and are actually more useful than the standard Windows Server Task
Manager, which many people instinctively use to see if their code is running
as expected.

Figure 23.45 shows the example w3wp.exe process for the example site. This is
the actual application process hosting the site in the Azure Websites instance.

Figure 23.45

The Process Explorer allows you to drill down to the individual thread level.
It's not real-time and requires refreshes to view constant updates on how the
process is running. It does provide the ability to kill a long-running or
unresponsive process. These insights can help understand why an Azure
website is behaving in a certain way, by showing the current variables,
resource consumption, and loaded assemblies.

Tools

The Tools section is a treasure-trove of useful and interesting tools. The first
of these is the diagnostic dump. This incredibly useful utility creates a ZIP
archive of current log files and the event log and downloads them instantly to
your computer. The Event Log is perhaps one of the most valuable pieces of a
Windows Server diagnostic capability, and the diagnostic dump contains the
event log information in XML form.

The WebHooks and Deployment script download are of little use to a regular
DNN installation. Skipping past them brings you to the Support menu item.

This is another incredibly useful window into your Azure website, which is
split between the Observe and Analyze sections.

Support Menu: Observe

The Observe section provides you with near-real time information on
requests/second and errors/second. This is useful to observe what the site
load currently is and whether there are errors occurring because of that.

Support Menu: Analyze

The Analyze section includes two sub-sections—Diagnostics and Event
Viewer.

Diagnostics will read your server web logs and provide insights. This is done
by running a diagnosis or by scheduling an analysis to run. When complete,
you can directly access the Event Viewer logs, memory dump, and HTTP logs.

Event Viewer is an online way of viewing the process events as you might do
if you logged onto Windows Server. If you're tracing errors in the Azure
website, this is a good alternative to getting a diagnostic dump because you
can simply use the web interface to look through the events being logged.

Figure 23.46 shows the Event Viewer for the Azure website showing
application events that have occurred during the execution of the example
site.

Figure 23.46

The last section in Kudu is the Site Extensions. These are tools that you can
install into your Kudu environment and enable different functionality. The
list is extensive and growing all the time, but notable inclusions include
Visual Studio Online, the Azure Websites Logs Browser, and New Relic, which
is a very powerful performance analysis tool. Figure 23.47 shows a selection
of the Site Extensions available.

Figure 23.47

Site Extensions can be installed directly by clicking the + icon. Once installed,
they can be accessed from the Installed section of the page and run from
there. It's important to be careful about installing endless amounts of tools—
each one is a set of code that runs and consumes resources in your basic
Azure Websites resource plan. In other words, they're sharing resources with
the DNN installation, so keep that in mind.

Visual Studio Online
One of the most interesting and powerful extensions in the Azure Websites
site extensions gallery is called Visual Studio Online. Not to be confused with
connecting your desktop Visual Studio installation to the cloud, this is a full
online code editor hosted in the browser.

After installing it from the Gallery, you can view it. The URL is the same as
for Kudu with /dev on the end. Figure 23.48 shows Visual Studio online with
the web.config file loaded.

Figure 23.48

As you can see in Figure 23.48, you have a listing of all the files in the site
down the left side of the screen. When you click a file, it loads on the right
side of the screen. The other options include a command window (similar to
the command window accessed from the Azure Site), search, and GitHub
integration.

From here, you can edit any of the files in your Azure website installation. Be
warned that any changes made are saved automatically and are applied
immediately.

This is an excellent resource for making on-the-fly changes to a site. It's
immensely useful when you're trying to fix an error. It is best characterized as
a “sharp” tool—invaluable for performing certain work but dangerous in
unskilled hands.

Other Useful Azure Websites Features
A single chapter is insufficient to explore in-depth all of the available features
of Azure Websites. There are many more capabilities to explore. The
following is a list of topics that the owner of a DNN install on Azure Websites
may want to investigate further.

Autoscaling

In the Standard pricing tiers, websites can be configured to autoscale.
Autoscaling is the process of expanding the number of instances available to
handle load within a site. This can work either by detecting the CPU load of
the existing instance(s) or by using a repeating calendar schedule. All traffic
arrives to the Azure website via the Azure Load balancer, and no extra
configuration is required to distribute the traffic between instances.

The use of Autoscaling in DNN means that, periodically, the website will run
in an effective web farm mode when there are two or more instances serving
the site. This may have implications for caching and scheduled task server
affinity. It is important to investigate these areas to understand the possible
impact. DNN on Azure Websites has been tested with up to 10 instances
working together, which is enough power for a standard site to process five
million requests per day.

Deployment Slots

The first part of the chapter compared Azure Websites to “IIS as a service.” As
any administrator knows, any installation of IIS can support multiple
websites. The same is true of Azure Websites, and the concept of deployment
slots is how this is surfaced. It's possible through the use of deployment slots
to create a copy of their existing site, for either staging or testing purposes.
It's possible to stage changes to a deployment slot and then swap the active
slot over from one installation of a site to another, giving an instant way of
releasing new features.

This works for DNN, as it does for any other site, but as changes in DNN tend
to be a single unit comprising database and code changes, it's generally not
easy or desirable to modify the database being shared by two instances. For
this reason, using deployment slots to update is not suitable, unless a copy of
the database is also taken. For sites with relatively read-only content, this is
less of a problem. Deployment slots are also an excellent way to create test-
only environments by leveraging the resources already purchased for the
“main” site.

WebJobs

One core strength of DNN is its ability to create a scheduled task, which is a
set of work that runs independently of a user action. Many DNN installations

have separate scheduled tasks to run. There is another alternative in Azure—
the concept of WebJobs. A WebJob is a unit of code that can be tasked to run
in the background—on demand, continuously, or on a set schedule. They are
more flexible and easier to create and configure than DNN scheduled tasks. In
addition, WebJobs can be run using popular scripts such as DOS batch/cmd
files, PowerShell scripts, executables, or even other languages such as Python,
PHP, or JavaScript. WebJobs are included free with Azure Websites.

Application Monitoring

It's important to understand how your DNN installation is running.
Understanding performance cuts across several levels—from understanding
how many requests the application is handling to understanding how the
code itself is performing. This type of end-to-end view of application
performance is possible with New Relic, which can be switched on for an
Azure website with built-in integration to the Azure site.

The basic New Relic account gives 24 hours of history and provides the ability
to upgrade to higher levels of account access, with more in-depth analytics
and a longer performance history.

In addition to New Relic, Microsoft is entering the monitoring space by
expanding the product known as Application Insights. This gives performance
data of the Azure website and the ability to set up a ping URL (called a
webtest) that keeps the DNN site alive and sends an alert when the
application stops responding. When setting these up in DNN, it's recommend
to use the built-in pinging URL /keepalive.aspx.

Other Azure Resources
Creating an Azure website means you can start leveraging the other Azure
services. DNN uses the concept of folder providers, which allows the location
of external files on cloud storage providers. Several vendors market Azure
folder providers, which allow data to be stored on the Azure storage account
created in this demonstration.

Once data is stored in an Azure storage account, it's a relatively simple
transition to start using the Azure CDN to lower bandwidth costs and improve
visitor download speed, particularly if you're distributing large amounts of
files such as images or documents.

For the purposes of video, there is Azure Media Services to handle storage

and encoding and streaming of video and audio files. These can easily be
integrated into a DNN installation if this type of functionality is required.

The list of Azure services grows regularly, and many of the technologies can
be applied to solve specific problems that the owner of a DNN site may have.
It's definitely a good idea to become familiar with the depth of services when
faced with a new requirement.

Summary
In this chapter you learned how to create a new Azure subscription, create an
Azure website, and install DNN 7. The chapter covered the recommended
deployment model for DNN on Azure. It also explained how to back up,
upgrade, and manage your DNN installation in Azure Websites. You learned
the basics on migrating an existing DNN website to Azure Websites and
where other Azure services might be leveraged when building professional
websites with DNN.

Appendix A

Resources
Although DNN is rich in “out-of-the-box” functionality, its real power comes
in the ability to extend and enhance it via one of its many extension points.
This appendix explores developer resources, popular extensions, and useful
resources at www.dnnsoftware.com.

Table A.1 describes tools that are useful for developing extensions.

Table A.1 Developer Tools

Tool Description
Fiddler—http://fiddler2.com A free web

debugging
proxy (Burp
is another
excellent free
alternative).
Fiddler allows
developers to
log all
HTTP(S)
traffic
between the
client (DNN)
and server.
Particularly
useful for
debugging
Service
Framework
(WebAPI)
requests.

dotPeek—www.jetbrains.com/decompiler/ A free .NET
compiler.
Useful for
navigating,
searching,
and

http://www.dnnsoftware.com
http://fiddler2.com
http://www.jetbrains.com/decompiler/

decompiling
assemblies
when source
code is not
handy.

Christoc's DNN module development template
—http://christoctemplate.codeplex.com/

Very useful,
free, and
popular DNN
module
development
templates.

MVP DAL2 template
—http://www.dnnsoftware.com/forge/enterprise-dnn-c-mvp-
module-template-for-visual-
studio/view/extensiondetail/project/dnnmvptemplate

A C# Visual
Studio
template for
DotNetNuke
7 Module
Development
using the new
DAL2 Data
Access Layer
and
implementing
the MVP and
Repository
design
patterns.

Beyond Compare—www.scootersoftware.com Compares
files (and file
contents) and
folders to
help identify
any changes.

Filezilla—http://sourceforge.net/projects/filezilla/ Powerful, free
open source
FTP client.

Sourcetree—www.sourcetreeapp.com/ Free Git (and
mercurial)

http://christoctemplate.codeplex.com/
http://www.dnnsoftware.com/forge/enterprise-dnn-c-mvp-module-template-for-visual-studio/view/extensiondetail/project/dnnmvptemplate
http://www.scootersoftware.com
http://sourceforge.net/projects/filezilla/
http://www.sourcetreeapp.com/

client for
Windows.
Now that the
DNN
Platform
team's work
is all on
GitHub, this
is a very
useful tool if
you want to
work with the
latest DNN
code or
contribute
your own
changes. It's
also very
useful for
your own
development
needs.

Visual Studio tools for GIT
—http://visualstudiogallery.msdn.microsoft.com/abafc7d6-
dcaa-40f4-8a5e-d6724bdb980c

A team
explorer
extension
that provides
source code
integration
with GIT.
Note: these
extensions
are for VS
.NET 2012
only as VS
.NET 2013
comes with
them
preinstalled.

http://visualstudiogallery.msdn.microsoft.com/abafc7d6-dcaa-40f4-8a5e-d6724bdb980c

Firebug—https://getfirebug.com/ Today, all the
major
browsers
have built-in
web
development
tools
(typically
started by
pressing F12).
However, the
oldest and
still the best
(primarily
due to its
extensibility)
is Firebug,
which is vital
for debugging
JavaScript,
tweaking
markup, and
analyzing
everything
from CSS
inheritance to
network
performance.

Visual Studio Community 2013
—http://www.visualstudio.com/products/visual-studio-
community-vs

A community
version of
Microsoft's
flagship
development
tool. With
virtually
everything
that the
commercial

https://getfirebug.com/
http://www.visualstudio.com/products/visual-studio-community-vs

VS .NET
product
contains, and
much more
than previous
efforts such
as
WebMatrix,
this is an
essential
download.

MakeDNNSite—http://mikevdm.com/DNN Free DNN
installation
helper. Very
useful free
tool for
setting up
DNN on your
local
machine. It
automates all
the necessary
steps,
including
configuring
IIS and SQL,
downloading
the file, and
automating
the
installation.

Table A.2 describes a number of popular extensions. This table covers only
free (and usually open source extensions), and I've chosen to highlight
popular, active projects.

http://mikevdm.com/DNN

NOTE

The DNN store (http://store.dnnsoftware.com) has more than 10,000
extensions available for those whose projects have budget to spend.

Table A.2 Popular Extensions

Extension
DNN Blog—www.dnnsoftware.com/forge/view/ExtensionDetail/project/dnnblog

DNN Events
—www.dnnsoftware.com/forge/view/ExtensionDetail/project/dnnevents

NBStore—www.dnnsoftware.com/forge/view/ExtensionDetail/project/NBStore

Forms & List—www.dnnsoftware.com/forge/view/ExtensionDetail/project/dnnfnl

http://store.dnnsoftware.com
http://www.dnnsoftware.com/forge/view/ExtensionDetail/project/dnnblog
http://www.dnnsoftware.com/forge/view/ExtensionDetail/project/dnnevents
http://www.dnnsoftware.com/forge/view/ExtensionDetail/project/NBStore
http://www.dnnsoftware.com/forge/view/ExtensionDetail/project/dnnfnl

2Sexy Content
—www.dnnsoftware.com/forge/view/ExtensionDetail/project/SexyContent

DNN Glimpse
—www.dnnsoftware.com/forge/view/ExtensionDetail/project/dnnGlimpse

http://www.dnnsoftware.com/forge/view/ExtensionDetail/project/SexyContent
http://www.dnnsoftware.com/forge/view/ExtensionDetail/project/dnnGlimpse

DNN Content localization tools
—www.dnnsoftware.com/forge/view/ExtensionDetail/project/DNNCLTools

DNN CookieConsent
—www.dnnsoftware.com/forge/view/ExtensionDetail/project/DnnCookieConsent

40Fingers StyleHelper
—www.dnnsoftware.com/forge/view/ExtensionDetail/project/StyleHelper

http://www.dnnsoftware.com/forge/view/ExtensionDetail/project/DNNCLTools
http://www.dnnsoftware.com/forge/view/ExtensionDetail/project/DnnCookieConsent
http://www.dnnsoftware.com/forge/view/ExtensionDetail/project/StyleHelper

CKEditor
—www.dnnsoftware.com/forge/view/ExtensionDetail/project/dnnckeditor

Advanced Control Panel
—http://oliverhine.com/DotNetNuke/Administration/AdvancedControlPanel.aspx

DNN Azure accelerator
—www.dnnsoftware.com/forge/view/ExtensionDetail/project/dnnazureaccelerator

Table A.3 lists a number of useful resources provided on

http://www.dnnsoftware.com/forge/view/ExtensionDetail/project/dnnckeditor
http://oliverhine.com/DotNetNuke/Administration/AdvancedControlPanel.aspx
http://www.dnnsoftware.com/forge/view/ExtensionDetail/project/dnnazureaccelerator

www.dnnsoftware.com. Although many of these will be known to experienced
DNN users, some aren't as well known but are extremely useful.

Table A.3 dnnsoftware.com resources

Resource Description
Forge—www.dnnsoftware.com/forge More than 400 free,

open source DNN
projects.

Forums—www.dnnsoftware.com/forums Forums on all aspects
of DNN.

Wiki—www.dnnsoftware.com/wiki More than a half-
million words of
useful community-
sourced
documentation.

Online Help—www.dnnsoftware.com/Help An online (searchable)
version of the latest
DNN documentation.

Community Voice—www.dnnsoftware.com/voice Share and vote on
ideas for DNN. The
DNN Platform team
uses this to help
decide on
enhancements for
future releases.

Community Exchange
—www.dnnsoftware.com/answers

Ask and answer
questions on DNN.
This module supports
voting, so the best
responses float to the
top and awards points
to the answerer.

Video library—www.dnnsoftware.com/videos Contains hundreds of
videos covering a wide
array of DNN topics.

http://www.dnnsoftware.com
http://dnnsoftware.com
http://www.dnnsoftware.com/forge
http://www.dnnsoftware.com/forums
http://www.dnnsoftware.com/wiki
http://www.dnnsoftware.com/Help
http://www.dnnsoftware.com/voice
http://www.dnnsoftware.com/answers
http://www.dnnsoftware.com/videos

Nightly builds
—www.dnnsoftware.com/Platform/Build/Nightly-
Builds

This page hosts a copy
of a nightly build of
the latest in-
development version
of DNN (particularly
useful for those who
want to play/test but
don't want to have to
use VS .NET).

EVS—http://evs.dotnetnuke.com/ The Extension
Verification Service
(EVS) allows
developers to easily
upload extensions for
testing. Once
extensions are
uploaded, the service
unzips the packages,
performs the
verification checks,
and returns a
summary. The
summary information
—including any errors,
warnings, and info
messages—can then
be downloaded,
emailed, or shared.
SQL Azure testing is
also supported.

Manuals
—www.dnnsoftware.com/Community/Download/Manuals

Download manuals
from various
releases/versions for
offline
reading/printing.

UX guide—http://uxguide.dotnetnuke.com/ Documentation and
examples of DNN 6

http://www.dnnsoftware.com/Platform/Build/Nightly-Builds
http://evs.dotnetnuke.com/
http://www.dnnsoftware.com/Community/Download/Manuals
http://uxguide.dotnetnuke.com/

user experience
“patterns.”

Appendix B

System Message Tokens
System tokens can be used when customizing portal email templates and
HTML module content (although they are also used for other purposes). The
tables in this appendix identify and briefly describe the properties of each
token. Recall that token properties may be referenced in email templates
using the pattern [Token:Property]. Only properties that are publically
accessible are listed.

Table B.1 describes the Host properties that are available for the token Host
(such as [Host:HostTitle]).

Table B.1 Standard HostSettings Properties

Property
Name

Description

HostTitle Name of the hosting account. This name is used throughout the
site for identifying the host.

PortalSettings site properties are available for the token Portal (such as
[Portal:PortalId]). Table B.2 describes them.

Table B.2 Standard PortalSettings Properties

Property
Name

Description

BackgroundFile Graphic file used for the site background.
DefaultLanguage Default locale of the website. This determines the language

used when anonymous users visit the site.
Description Website description. This information is included in the

meta tags used by search engines.
Email Email address for the site administrator (this is generally

set to a support email address).
FooterText Information displayed in the copyright skin object.
HomeDirectory Folder name associated with the current site. The name is a

relative path to the site root directory.
KeyWords Specific meta tag keywords.
LogoFile Graphic file used for displaying the portal logo.

PortalId ID of the current portal.
PortalName Name of the current site. This name is used for branding

the site.
SiteLogHistory How many days to keep the SiteLog history for the site.
URL Returns the default site alias for the site.

Table B.3 describes the UserInfo properties available for the token User (such
as [User:UserID]).

Table B.3 Standard UserInfo Properties

Property Name Description
DisplayName User's display name
FirstName User's first name
FullName Obsolete, returns DisplayName
LastName User's last name
PortalID PortalID to which this user belongs
UserID Unique identifier for a specific site user
Username Logon name of the specific user

Table B.4 describes the UserMembership properties available for the token
Membership (such as [Membership:Password]).

Table B.4 Standard UserMembership Properties

Property Name Description
Approved If the user's account has been approved for access

to the website
Email Email address of the user
CreatedOnDate Date/time when the user account was created
IsOnline Provides information whether the user is online
LastActivityDate Date/time the user was last active
LastLockoutDate Date/time the user was last locked out
LastLoginDate Last date/time the user logged in to the site

LastPasswordChangeDate Date/time the user last changed his or her

password
LockedOut If the user's account has been locked due to

potential security issues
UpdatePassword Should the user change his or her password
Username Login name of the user

Table B.5 describes the UserProfile properties available for the Profile token
(such as [Profile:FirstName]).

Table B.5 Standard UserProfile Properties

Property
Name

Description

Biography User's biography.
Cell Mobile phone number.
City City.
Country Country where the user lives.
Fax Fax number.
Facebook Facebook profile URL for the user.
FirstName User's first name.
IM Instant messenger contact ID.
LastName User's last name.
LinkedIn LinkedIn profile URL for the user.
MiddleName User's middle name.
Photo User's profile picture. This returns a relative URL to the

image file.
PostalCode Postal code for the user's mailing address.
Prefix User's prefix.
Region State, province, or region for the user.
Skype Skype handle for the user.
Street Street address.
Telephone Telephone number for the user.
Twitter Twitter handle for the user.

Unit Apartment, post office box, or suite for the user's address.

Website Personal or corporate website for the user.

Apart from the properties in Table B.5, all custom profile properties are also
accessible through the token system. Display of the token is managed by a
staggered permission system. First the site administrator can define whether
end users can set profile property visibility themselves. If so, end users can
set the visibility of each profile property in the user profile editor.

PROFESSIONAL
DNN7
OPEN SOURCE .NET CMS
PLATFORM
Shaun Walker
Bruce Chapman
Cathal Connolly
Peter Donker
Israel Martinez
Charles Nurse
Chris Paterra
Clinton Bland
Nathan Rover
Will Strohl
Erik van Ballegoij
Scott Willhite
Ralph Williams
Mitchel Sellers
Dennis Shiao

Professional DNN7: Open Source .NET CMS Platform

Published by

John Wiley & Sons, Inc.

10475 Crosspoint Boulevard

Indianapolis, IN 46256
www.wiley.com

Copyright © 2015 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-85084-8

ISBN: 978-1-118-85079-4 (ebk)

ISBN: 978-1-118-85086-2 (ebk)

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978)
646-8600. Requests to the Publisher for permission should be addressed to the Permissions Department,
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or
online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations
or warranties with respect to the accuracy or completeness of the contents of this work and specifi cally
disclaim all warranties, including without limitation warranties of fi tness for a particular purpose. No
warranty may be created or extended by sales or promotional materials. The advice and strategies
contained herein may not be suitable for every situation. This work is sold with the understanding that
the publisher is not engaged in rendering legal, accounting, or other professional services. If professional
assistance is required, the services of a competent professional person should be sought. Neither the
publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or
Web site is referred to in this work as a citation and/or a potential source of further information does not
mean that the author or the publisher endorses the information the organization or Web site may
provide or recommendations it may make. Further, readers should be aware that Internet Web sites
listed in this work may have changed or disappeared between when this work was written and when it is
read.

For general information on our other products and services please contact our Customer Care
Department within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or
fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material
included with standard print versions of this book may not be included in e-books or in print-on-demand.
If this book refers to media such as a CD or DVD that is not included in the version you purchased, you
may download this material at http://booksupport.wiley.com. For more information about Wiley
products, visit www.wiley.com.

Library of Congress Control Number: 2015930543

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affi liates, in
the United States and other countries, and may not be used without written permission. All other
trademarks are the property of their respective owners. John Wiley & Sons, Inc., is not associated with

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com

any product or vendor mentioned in this book.

For the Microsoft open source community.

About the Authors
Shaun Walker has 20+ years professional experience in architecting and
implementing large-scale software solutions for private and public
organizations. Shaun is the original creator of DNN, a web content
management system for ASP.NET that has cultivated the largest and most
successful open source community project native to the Microsoft platform.
Based on his significant community contributions, Shaun has been
recognized as a Microsoft Most Valuable Professional (MVP) since 2004 and
an ASPInsider since 2005. He was recognized by Business in Vancouver in
2011 as a leading entrepreneur in their Forty Under 40 business awards.

Bruce Chapman has been an IT professional for 20 years across multiple
industries, working with a range of technologies. He has been involved in the
DNN community for the past eight years as a contributor, commercial vendor,
blogger, and frequent presenter at DNN conferences and community events.
Bruce joined DNN Corporation in 2012 after the acquisition of the well-
known URL Master software for inclusion within the DNN Platform and
works as a product manager with a current focus on distributing DNN on
cloud platforms.

Cathal Connolly has worked with DNN since its earliest days. He works as a
senior engineer at DNN Corporation, focusing primarily on the Platform
project, as well as heading up the Security team. He's been a Microsoft MVP
for 10 years, starting out in VB.NET before migrating to C# and finally to
ASP.NET.

Peter Donker is the founder and owner of Bring2mind, makers of
Document Exchange: a document management module for the DNN platform
since 2004. He has been a DNN core team member (now DNN MVP) since
2007 and spends a significant amount of his time writing open source
extensions or improving the platform itself. In 2008 he founded the DNN
community internationalization team that acts as a group of consultants to
the DNN development team concerning the use of DNN outside the English-
speaking world. He currently still works on this team and the architecture
team that evaluates contributions made to the platform through GitHub. He
also is a member of the DNN Steering committee that provides oversight for
the DNN platform roadmap and community relations. In addition to his work
on these teams, he is a cofounder and the current president of DNN Connect,
an association of DNN community members that aims to defend the interests

of the DNN community and acts as a platform for community activities such
as organizing DNN events and coordinating the development of specific DNN
extensions.

Israel Martinez was part of the Product Management Team at DNN
Corporation for almost five years. He was part of the evolution of the product
from being a platform to providing business solutions such as Evoq Content
8. He holds a bachelor's of mechanical engineering, a master's of e-business,
and a master's of software systems. He has spoken at various DNN
conferences, including DNNWorld 2013 and the Southern Fried DNN. Israel
has a strong passion for business solutions, efficiency, and research, and he
uses these skills on a daily basis.

Charles Nurse is the chief architect at DNN Corporation, responsible for the
overall architecture of the DNN Platform and Evoq products. He has been a
Microsoft MVP in ASP.NET for eight years and an ASPInsider for seven. He
has spoken at many major conferences including DevConnections
(www.devconnections.com), DevTeach (www.devteach.com), VSLive
(www.vslive.com), Microsoft Tech Days, and DevReach
(www.DevReach.com). In addition, he is a frequent speaker at user groups
and code camps, including VBUG, .NET BC, VanTUG, SeaDUG, and
Vancouver Tech Fest. He has created two video courses on DNN for
Pluralsight — DotNetNuke Fundamentals and DotNetNuke Module
Development.

Chris Paterra is the senior product manager of the Evoq line of products at
DNN Corporation. Originally a part of the initial DotNetNuke project, Chris
has over a decade of experience using and developing DNN products.

Clinton Bland is the sales engineer and training manager at DNN
Corporation where he provides technical support and product demonstrations
for the sales team as well as both internal and external product training. He is
a very active member of the DNN community as he is the vice president and
evangelist for the Charlotte, NC, based DNN user group and he frequently
blogs on DNNSoftware.com. He has helped organize two DNN Community
Conferences (Charlotte Day of DNN and Southern Fried DNN) and regularly
speaks at DNN conferences, user groups, and universities. In the fall of 2012
he won both DNN Superfan and DNN MVP awards. He was also an assistant
baker for the first-ever DNN cake!

Ashish Prasad is the senior manager of development at DNN Corporation,

http://www.devconnections.com
http://www.devteach.com
http://www.vslive.com
http://www.DevReach.com
http://DNNSoftware.com

primarily responsible for the development process in DNN's Evoq products.
He has been developing and architecting software for more than 18 years,
with over 6 years creating commercial solutions using DNN as a platform.
Ashish frequently blogs at dnnsoftware.com. Some of his direct contribution
in DNN includes the areas of social, messaging and notification, gamification,
mobile, and most notably search. Ashish has had senior engineering positions
in both Fortune 500 companies and startups, with verticals ranging from
banking, insurance, manufacturing, digital marketing, healthcare, and retail.
Ashish holds a bachelor of technology in chemical engineering from the
esteemed IIT, Varanasi, India, and an MBA in technology management from
the University of Phoenix. He also holds a CISSP (Certified Information
Systems Security Professional) designation. He is on Twitter at
@ashishprasad.

Nathan Rover is an experienced developer with more than 17 years in the
Internet industry. He has been working with the DNN Platform for more than
9 years and has been working for DNN Corporation as the principal
ecommerce engineer since January 2011. During that time he has been the
lead developer for the main corporate site (www.dnnsoftware.com), The Store
(store.dnnsoftware.com), and Extension Verification Service
(eve.dnnsoftware.com).

Will Strohl is an author and technologist in the San Francisco area,
specializing in DNN and the Microsoft.Net stack. Will has held positions
ranging from help desk technician to being the director of technology and is a
former employee of DNN Corporation, having run the evangelical, sales
engineering, and education programs. Today, Will is the director of product
management and co-owner at a very exciting e-commerce software company,
Hotcakes Commerce (www.HotcakesCommerce.com). He is also the co-host
of the monthly DNN Hangout video podcast. In his spare time, Will maintains
nearly 30 open source projects, speaks at various user groups and code
camps, mentors others in leadership and personal branding, plays Call of
Duty, and enjoys outdoor activities and running.

Erik van Ballegoij is a senior .NET consultant and DNN expert. He is
currently working for Arrow Consulting and Design, a gold-level DNN
partner. He is also a DNN MVP and is very active in the DNN community.
Until September 2014 he was senior developer at DNN Corporation, based in
the European office in Amsterdam, The Netherlands. As a member of the
engineering team, his activities focused on localization, ranging from feature

http://dnnsoftware.com
http://@ashishprasad
http://www.dnnsoftware.com
http://store.dnnsoftware.com
http://eve.dnnsoftware.com
http://Microsoft.Net
http://www.HotcakesCommerce.com

design and implementation to coordination of translations. Apart from that,
he was also the main resource for the DNN Developer Support program, a
service available to customers and partners. Erik is a longtime member of the
DNN community, drawn to it in the late days of DNN 2. Localization has
always been an area of interest, resulting in the translation of DNN 3 and 4 in
Dutch and the development of various popular localization products. He
joined the core team in 2007 and was also awarded Microsoft MVP in that
same year, the first of a total of five. In 2011 Erik joined DNN Corporation as
a sales engineer/support representative. The customer interaction experience
has been invaluable in his role as senior developer. Erik is board member of
the Dutch DNN user group and founding member of the European DNN
professionals network.

Scott Willhite is cofounder of the DotNetNuke open source project and
DNN Corporation. A technologist by trade, he studied computer science and
information systems management at Baylor University and honed those skills
with Accenture into enterprise architecture expertise for the likes of USAA,
Bank of America, and American Express and in fields ranging from healthcare
to consumer products. He has co-authored three previous books including
DotNetNuke for Dummies, has been recognized with Microsoft's MVP award
on multiple occasions, and has spoken at several major and minor
conferences including DevConnections, DNNWorld, and various DNN user
group events. Scott is an avid supporter of DNN's “abundance mentality” with
more than a decade of experience in community development, volunteer
coordination, and relationship counseling. He is most gratified when his love
of people and technology collide to improve the quality of life.

Ralph Williams, Jr., is the web developer manager at Arrow Consulting
and Design as well as a user experience and graphic designer. He leads a team
of front-end developers who specialize in building large DNN websites. He
has been involved in the DNN community for nearly 10 years, speaking at
several DNN conferences including DNN World, code camps, and DNNCon
(formerly Day of DotNetNuke). He combines his front-end development and
ux design knowledge to create usable experiences for enterprise-level web
applications.

Mitchel Sellers is CEO/director of development at IowaComputerGurus,
Inc., responsible for day-to-day business operations, software architecture,
and training needs. He has been a Microsoft MVP in C# for six years and
DNN MVP since the inception of the program. He has given more than 150

talks at user groups, code camps, and conferences large and small across the
world. He previously authored Professional DotNetNuke Module
Programming, co-authored Visual Studio 2010 Six-In-One, and has served as
a technical editor on numerous other titles. For more information on Mitchel
and his hobbies, visit his website http://www.mitchelsellers.com.

Dennis Shiao is the director of content marketing at DNN Corporation.
Responsible for a program that generates leads and drives revenue, Dennis
himself is a content machine, personally creating or overseeing all corporate
blog posts, white papers, data sheets, and presentations available on the DNN
website and SlideShare. A prolific writer, he is also the author of the book
Generate Sales Leads with Virtual Events and is a contributing author to the
book 42 Rules of Product Marketing.

http://www.mitchelsellers.com

About the Technical Editors
Sebastian Leupold earned a degree in business engineering from Karlsruhe
University and in 1997 founded the corporation gamma concept - Gesellschaft
für Aktuelle Management-Anwendungen mbH. The company focuses on
software solutions for PCs and the Internet, especially on web applications
based on the DNN open source platform. gamma concept took part in several
national and international research projects regarding IT applications in SME
including multilingual solutions. Since 2007 Sebastian has been a member of
the DNN Core Team and co-founder of the German DNN User Group as well
as the European Network of DNN Professionals. Besides supporting the
community with nearly 50,000 forum posts, he presented at various
conferences in Europe and North America. A couple of features and
improvements for the DNN Platform were contributed by him. His free Turbo
SQL scripts improve the performance of DNN significantly. Sebastian was
awarded as a Microsoft Most Valuable Professional since 2007.

Brian Dukes has been working with Engage professionally since 2006, but
he has been writing code since around 1998. Brian is very passionate about
writing code that is easily maintainable and helping others to do the same. He
has been a leader in the DNN community and can often be found speaking at
conferences and helping others on Twitter, GitHub, and StackOverflow. DNN
recognized his community efforts by naming him as a DNN MVP starting in
2012. Outside of work, Brian spends time with his family, serves Jesus at City
Lights Church, and supports social justice, fair trade, local, seasonable food,
and international adoption.

Credits
PROJECT EDITOR

Kelly Talbot

TECHNICAL EDITORS

Sebastian Leupold

Brian Dukes

PRODUCTION EDITOR

Rebecca Anderson

COPY EDITORS

Kim Heusel

Kezia Endsley

MANAGER OF CONTENT DEVELOPMENT & ASSEMBLY

Mary Beth Wakefield

PRODUCTION MANAGER

Kathleen Wisor

MARKETING DIRECTOR

David Mayhew

MARKETING MANAGER

Carrie Sherrill

PROFESSIONAL TECHNOLOGY & STRATEGY DIRECTOR

Barry Pruett

BUSINESS MANAGER

Amy Knies

ASSOCIATE PUBLISHER

Jim Minatel

PROJECT COORDINATOR, COVER

Brent Savage

PROOFREADER

Kim Wimpsett

INDEXER

Johnna VanHoose

COVER DESIGNER

Wiley

COVER IMAGE

©Getty Images/Martin Barraud

Acknowledgments
We would like to thank Wrox Press for its continued commitment to the DNN
open source community, DNN Corp for its sponsorship of this book, the Wrox
editors who worked with us throughout the process to get this book over the
finish line, and our friends and families for their support and patience.

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley's ebook EULA.

http://www.wiley.com/go/eula

	Introduction
	Who This Book Is For
	What This Book Covers
	How This Book Is Structured
	What You Need to Use This Book
	Conventions
	Source Code
	Errata
	p2p.wrox.com

	Chapter 1: An Inside Look at the Evolution of DNN
	From Humble Beginnings…
	The Dot-Com Era
	IBuySpy Portal
	ASP.NET
	IBuySpy Portal Forum
	IBuySpy Workshop
	Subscription Fiasco
	Microsoft
	DotNetNuke
	Licensing
	Core Team
	XXL Fork
	Trademarks
	Sponsorship
	Enhancements
	Security Flaw
	DotNetNuke 2.0
	DotNetNuke.com Website
	Provider Model
	Open Source Philosophy
	Stabilization
	Third-Party Components
	Core Team Reorganization
	Microsoft Membership API
	“Breaking” Changes
	Web Hosters
	DotNetNuke 3.0
	Release Schedule
	DotNetNuke Projects
	Intellectual Property
	Marketing
	Microsoft Hosting Program
	Infrastructure
	Branding
	Tech Ed
	Credibility
	Trademark Policy
	ASP.NET 2.0
	Reorganization
	Microsoft Conferences
	DotNetNuke 4.0
	Slashdotted
	Benefactor Program
	Opportunists
	Yin and Yang
	A New Company
	Larry Augustin
	Performance
	DotNetNuke Marketplace
	Free Module Promotion
	Conferences
	Microsoft Valuable Professionals
	Fundraising
	Awards and Accolades
	DotNetNuke OpenForce 07
	SLA Program
	More Fundraising
	CodePlex
	Security Issues
	IP Disputes
	Term Sheets
	DotNetNuke OpenForce 08
	DotNetNuke Professional
	Series A Announcement
	Physical Offices
	DotNetNuke 5.0
	Day of DotNetNuke
	DNN-Europe
	Snowcovered Acquisition
	Telerik Partnership
	Series B
	Open-DocumentLibrary Acquisition
	DotNetNuke Enterprise Edition
	POET Vulnerability
	DotNetNuke.com Overhaul
	Active Modules Acquisition
	Nik Kalyani Leaves DNN Corp
	Cloud. Mobile. Social.
	DotNetNuke 6.0
	DotNetNuke World 2011
	DotNetNuke Gets Social
	Microsoft Azure Partnership
	DNN World 2012
	DotNetNuke 7.0
	iFinity Acquisition
	10-Year Anniversary
	DNN Social
	DotNetNuke.com Hacked
	Rebranding
	DNNCon
	Scott Willhite Moves On
	DNN 7.x Releases
	My Departure from DNN Corp
	Summary

	Chapter 2: Installing DNN Version 7
	What You Need To Install DNN Platform Version 7
	Upgrading the DNN Platform to Version 7
	Getting a Trial Version of Evoq Content
	Common Installation Issues
	Summary

	Chapter 3: DNN Platform Overview
	Core Platform Objects
	Security
	Summary

	Chapter 4: Site Administration
	Wrox.com Code Downloads for this Chapter
	What Is Site Administration?
	Common Administrative Tasks
	Admin Menu Features
	Best Practices for Site Administrators
	Summary

	Chapter 5: Host Administration
	Why Do You Need the Host?
	What Is Host Administration?
	Host Menu Pages
	Additional Host Features on Admin Site Settings
	Additional Host Features on the Control Panel
	Host Options on the Module Actions Menu
	Integrating with a Third-Party Provider
	Summary

	Chapter 6: Modules
	What Is a Module?
	Where Do Modules Live on a Page?
	Adding a Module to a Page
	One Module Across Multiple Pages
	One Module Across Multiple Sites
	Working with Modules
	Where to Get Modules
	Viewing Modules and Extensions
	Installing Modules into DNN
	The Extension Verification System
	In Depth with the HTML Module
	Summary

	Chapter 7: System Architecture
	Patterns and Concepts
	Architectural Overview
	Namespace Overview
	Summary

	Chapter 8: Core DNN APIs
	The CBO Class
	Caching
	Event Logging
	Exception Management
	Scheduler
	Module Interfaces
	Summary

	Chapter 9: Membership Security
	Wrox.com Code Downloads for this Chapter
	DNN Membership Overview
	Membership Provider
	Authentication Providers
	Membership Management Enhancements
	Summary

	Chapter 10: Localization
	Locales in DNN
	Resource Files
	The API
	Localizing Modules
	Summary

	Chapter 11: Search
	History
	Objectives of the New Search Functionality
	Apache Lucene
	Search Architecture
	Platform Features
	Evoq Features
	Administration
	Search Phases
	Module Integration
	Entities
	APIs
	Writing a New Crawler
	Troubleshooting
	Summary

	Chapter 12: URL Management
	The History of DNN URL Schemes
	Understanding URL Structure in DNN
	URL Configuration and Customization
	Summary

	Chapter 13: Beginning Module Development
	Wrox.com Code Downloads for this Chapter
	A Guided Tour of Your Work Environment
	Your Toolbox
	The Environment
	Organizing Your Project
	Module Design Considerations
	About Modules, TabModules, Module Definitions
	A Guestbook Module
	Wrapping It Up
	Summary

	Chapter 14: Developing Modules: User Interfaces
	Wrox.com Code Downloads for this Chapter
	Understanding DNN and Module Interactions
	Dialogs and AJAX Support
	JavaScript, jQuery, and Custom Scripts
	DNN jQuery Plugins
	Implementing Consistent Design
	Summary

	Chapter 15: Developing Modules: Business Logic
	Wrox.com Code Downloads for this Chapter
	Navigating with the DNN API
	Using Common DotNetNuke Controls
	Leveraging Web API
	Controlling Navigation and Module Views
	Summary

	Chapter 16: Developing Modules: Best Practices and Moving Forward
	Wrox.com Code Downloads for this Chapter
	Managing DNN References and Versions
	Managing External Dependencies
	Future-Proofing Data Interactions
	Extension Verification Service �⠀䔀嘀匀)
	Getting Prepared for DNN neXt
	Summary

	Chapter 17: Skinning
	Wrox.com Code Downloads for this Chapter
	Skinning by Today's Standards
	Parts of a DNN Skin
	Skinning Approaches
	Preparing to Create a Skin
	Creating Your First Skin
	Basic Layout
	Document Setup
	Skin Objects
	Navigation
	Creating Alternate Skins
	Creating Containers
	Custom 404 and Pop-up Skins
	Skin Thumbnails
	Creating an Installable Skin Package
	Advanced Skinning Techniques
	Summary

	Chapter 18: Packaging and Distribution
	The New Extensions Model
	Creating New Extensions
	Using the Wizard to Create Packages
	Building Packages with Manifest Files
	Summary

	Chapter 19: Commercial Philosophy
	The Fundamentals
	Technology
	Market Conditions
	Distribution Model
	Branding
	Results
	SUMMARY

	Chapter 20: Evoq Content
	Content Creation
	Permissions, Workflow, and Versioning
	Optimization
	Integrations
	Summary

	Chapter 21: Evoq Engage
	Management Tools
	Community Modules
	Summary

	Chapter 22: The DNN Store
	Buying from the Store
	The Referral Program
	Selling on the Store
	Summary

	Chapter 23: DNN on Microsoft Azure
	Wrox.com Code Downloads for this Chapter
	Azure Deployment Scenarios
	Installing DNN on Azure Websites
	Remote Connections to Azure Websites
	Backing Up Your Azure Website
	Upgrading to a New DNN Version
	Moving an Existing DNN Site to Azure Websites
	Managing and Troubleshooting Your Azure Website
	Summary

	Appendix A: Resources
	Appendix B: System Message Tokens
	Advertisement
	End User License Agreement

