


kindle:embed:0001?mime=image/jpg


Table	of	Contents
Cover

Introduction

Who	This	Book	Is	For

What	This	Book	Covers

How	This	Book	Is	Structured

What	You	Need	to	Use	This	Book

Conventions

Errata

p2p.wrox.com

Part	I:	Functions

Chapter	1:	Decorators

Understanding	Decorators

Decorator	Syntax

Where	Decorators	Are	Used

Why	You	Should	Write	Decorators

When	You	Should	Write	Decorators

Writing	Decorators

Decorating	Classes

Type	Switching

Summary

Chapter	2:	Context	Managers

What	Is	a	Context	Manager?

Context	Manager	Syntax

When	You	Should	Write	Context	Managers

A	Simpler	Syntax

Summary

Chapter	3:	Generators

Understanding	What	a	Generator	Is

Understanding	Generator	Syntax

Communication	with	Generators

Iterables	Versus	Iterators

Generators	in	the	Standard	Library

When	to	Write	Generators

When	Are	Generators	Singletons?

kindle:embed:0001?mime=image/jpg


Generators	within	Generators

Summary

Part	II:	Classes

Chapter	4:	Magic	Methods

Magic	Method	Syntax

Available	Methods

Other	Magic	Methods

Summary

Chapter	5:	Metaclasses

Classes	and	Objects

Writing	Metaclasses

Using	Metaclasses

When	to	Use	Metaclasses

The	Question	of	Explicit	Opt-In

Meta-Coding

Summary

Chapter	6:	Class	Factories

A	Review	of	type

Understanding	a	Class	Factory	Function

Determining	When	You	Should	Write	Class	Factories

Summary

Chapter	7:	Abstract	Base	Classes

Using	Abstract	Base	Classes

Declaring	a	Virtual	Subclass

Declaring	a	Protocol

Built-in	Abstract	Base	Classes

Summary

Part	III:	Data

Chapter	8:	Strings	and	Unicode

Text	String	Versus	Byte	String

Strings	with	Non-ASCII	Characters

Other	Encodings

Reading	Files

Reading	Other	Sources

Specifying	Python	File	Encodings



Strict	Codecs

Summary

Chapter	9:	Regular	Expressions

Why	Use	Regular	Expressions?

Regular	Expressions	in	Python

Basic	Regular	Expressions

Grouping

Lookahead

Flags

Substitution

Compiled	Regular	Expressions

Summary

Part	IV:	Everything	Else

Chapter	10:	Python	2	Versus	Python	3

Cross-Compatibility	Strategies

Changes	in	Python	3

Standard	Library	Relocations

Version	Detection

Summary

Chapter	11:	Unit	Testing

The	Testing	Continuum

Testing	Code

Unit	Testing	Frameworks

Mocking

Other	Testing	Tools

Summary

Chapter	12:	CLI	Tools

OPTPARSE

ARGPARSE

Summary

Chapter	13:	asyncio

The	Event	Loop

Coroutines

Futures	and	Tasks

Callbacks



Task	Aggregation

Queues

Servers

Summary

Chapter	14:	Style

Principles

Standards

Summary

End	User	License	Agreement



List	of	Illustrations
Chapter	5:	Metaclasses

Figure	5.1	Metaclass	inheritance

Figure	5.2	Metaclass	inheritance	with	subclasses



List	of	Tables
Chapter	4:	Magic	Methods

Table	4.1	Operator	Overloading	Magic	Methods

Chapter	10:	Python	2	Versus	Python	3

Table	10.1	Common	Renamed	or	Moved	Functions





Introduction
This	book	introduces	the	reader	to	more	advanced	Python	programming	by
providing	an	intermediate	course	in	the	Python	language.

Recently,	Python	has	become	more	and	more	frequently	the	developer's	language
of	choice.	It	is	used	all	over	the	world,	for	myriad	purposes.	As	adoption	continues
to	increase,	more	and	more	developers	are	spending	their	days	writing	Python.

Python	has	grown	so	steadily	precisely	because	it	is	a	very	powerful	language,	and
even	many	seasoned	Python	developers	have	only	scratched	the	surface	of	what
the	language	is	capable	of	doing.



Who	This	Book	Is	For
This	book	is	for	developers	who	have	already	worked	in	Python,	are	already
familiar	with	the	language,	and	desire	to	learn	more	about	it.	This	book	assumes
that	readers	have	already	done	most	basic	tasks	involved	with	developing	in
Python	(such	as	having	used	the	Python	interactive	terminal).

If	you	are	a	reader	who	seeks	a	general	survey	of	intermediate	to	advanced	Python
language	features,	you	should	read	this	book	from	start	to	finish.

Alternatively,	you	may	be	a	reader	who	has	used	some	more-advanced	language
features	in	passing,	or	potentially	needs	to	maintain	code	that	uses	such	features.
Consider	using	this	book	as	a	reference	guide	or	index	to	flesh	out	your
understanding	when	you	are	grappling	with	a	particular	implementation.



What	This	Book	Covers
This	book	covers	all	recent	versions	of	Python	(including	both	Python	2	and
Python	3).	At	the	time	of	this	writing,	the	most	recent	version	available	is	Python
3.4,	and	Python	3.5	is	in	beta.	This	book	primarily	covers	Python	2.6,	2.7,	3.3,	and
3.4.	Most	code	is	provided	in	a	manner	that	will	run	on	both	Python	2	and	Python
3,	with	Python	2	code	specifically	noted	as	such.

Additionally,	this	book	includes	a	chapter	with	a	deep	dive	into	distinctions
between	Python	2	and	Python	3,	which	provides	advice	on	writing	code	to	run	on
multiple	versions	of	Python,	as	well	as	porting	over	to	Python	3.

This	book	primarily	focuses	on	two	areas.	The	first	is	features	of	the	language
itself.	For	example,	this	book	includes	several	chapters	about	various	aspects	of
how	Python's	class	and	object	model	works.	The	second	area	is	modules	provided
as	part	of	the	standard	library.	For	example,	this	book	includes	a	chapter	each	on
modules	such	as	asyncio,	unittest,	and	argparse.



How	This	Book	Is	Structured
This	book	is	essentially	divided	into	four	parts.

The	first	three	chapters	in	the	book	are	fundamentally	about	functions	in	Python.
This	part	includes	a	chapter	each	on	decorators	and	context	managers,	which	are
reusable	ways	to	modify	or	wrap	functions	to	add	functionality.	It	also	includes	a
chapter	on	generators,	which	are	a	way	to	design	functions	that	yield	values	one	at
a	time,	rather	than	creating	an	entire	list	of	values	in	advance	and	returning	them
in	one	block.

The	second	part	comprises	the	next	four	chapters,	and	they	are	all	related
somehow	to	Python	classes	and	the	language's	object	model.	There	is	a	chapter	on
magic	methods.	Then,	there	is	a	chapter	each	on	metaclasses	and	class	factories,
which	are	two	approaches	to	constructing	classes	in	powerful	ways.	Finally,	a
chapter	on	abstract	base	classes	explains	the	abc	module	and	how	to	make	classes
declare	patterns	that	they	implement.

The	third	part	comprises	two	chapters	about	strings	and	data.	There	is	a	chapter
on	how	to	navigate	using	Unicode	strings	(as	opposed	to	byte	strings)	in	Python,
which	also	covers	in	detail	how	strings	differ	between	Python	2	and	Python	3.
There	is	also	a	chapter	on	regular	expressions,	which	covers	the	Python	re	module
as	well	as	how	to	write	regular	expressions.

Finally,	the	fourth	part	covers	everything	that	does	not	neatly	fit	into	one	of	the
first	three	parts.	This	part	begins	with	an	in-depth	look	at	the	distinctions	between
Python	2	and	Python	3,	and	how	to	write	code	that	is	interoperable	with	both.
There	is	a	chapter	on	unit	testing,	focusing	on	the	unittest	module.	A	chapter	on
command-line	interface	(CLI)	tools	teaches	you	about	both	optparse	and	argparse,
which	are	Python's	modules	for	writing	command-line	tools.	There	is	a	chapter	on
asyncio,	which	is	a	new	asynchronous	programming	library	that	was	added	to	the
standard	library	in	Python	3.4.	Finally,	the	book	closes	with	a	chapter	on	style.



What	You	Need	to	Use	This	Book
You	will,	first	and	foremost,	need	a	machine	running	Python.

Although	it	does	not	make	a	difference	in	most	chapters,	this	book	is	slightly
Linux-focused	in	its	approach	(this	will	be	most	relevant	in	the	chapter	on	CLI
tools).	Examples	were	run	in	a	Linux	environment,	and	output	may	vary	slightly
on	Windows.



Conventions
To	help	you	get	the	most	from	the	text	and	keep	track	of	what's	happening,	we've
used	a	number	of	conventions	throughout	the	book.



Warning

Boxes	like	this	one	hold	important,	not-to-be	forgotten	information	that	is
directly	relevant	to	the	surrounding	text.





Note

Notes,	tips,	hints,	tricks,	and	asides	to	the	current	discussion	are	offset	and
placed	in	italics	like	this.

As	for	styles	in	the	text:

We	highlight	new	terms	and	important	words	when	we	introduce	them.

We	show	keyboard	strokes	like	this:	Ctrl+A.

We	show	filenames,	URLs,	and	code	within	the	text	like	so:
persistence.properties.

We	present	code	as	follows:

We	use	a	monofont	type	for	most	code	examples.



Errata
We	make	every	effort	to	ensure	that	there	are	no	errors	in	the	text	or	in	the	code.
However,	no	one	is	perfect,	and	mistakes	do	occur.	If	you	find	an	error	in	one	of
our	books	(like	a	spelling	mistake	or	faulty	piece	of	code),	we	would	be	very
grateful	for	your	feedback.	By	sending	in	errata,	you	may	save	another	reader
hours	of	frustration	and,	at	the	same	time,	you	will	be	helping	us	to	provide	even
higher	quality	information.

To	find	the	errata	page	for	this	book,	go	to	http://www.wrox.com	and	locate	the	title
using	the	Search	box	or	one	of	the	title	lists.	Then,	on	the	book	details	page,	click
the	Book	Errata	link.	On	this	page,	you	can	view	all	errata	that	has	been	submitted
for	this	book	and	posted	by	Wrox	editors.	A	complete	book	list	(including	links	to
each	book's	errata)	is	also	available	at	www.wrox.com/misc-pages/booklist.shtml.

If	you	don't	spot	“your”	error	on	the	Book	Errata	page,	go	to
www.wrox.com/contact/techsupport.shtml	and	complete	the	form	there	to	send	us
the	error	you	have	found.	We'll	check	the	information	and,	if	appropriate,	post	a
message	to	the	book's	errata	page	and	fix	the	problem	in	subsequent	editions	of
the	book.

http://www.wrox.com
http://www.wrox.com/misc-pages/booklist.shtml
http://www.wrox.com/contact/techsupport.shtml


p2p.wrox.com
For	author	and	peer	discussion,	join	the	P2P	forums	at	p2p.wrox.com.	The	forums
are	a	web-based	system	for	you	to	post	messages	relating	to	Wrox	books	and
related	technologies,	and	to	interact	with	other	readers	and	technology	users.	The
forums	offer	a	subscription	feature	to	e-mail	you	topics	of	interest	of	your
choosing	when	new	posts	are	made	to	the	forums.	Some	Wrox	authors,	editors,
other	industry	experts,	and	your	fellow	readers	are	present	on	these	forums.

At	http://p2p.wrox.com,	you	will	find	a	number	of	different	forums	that	will	help
you	not	only	as	you	read	most	Wrox	books,	but	also	as	you	develop	your	own
applications.	To	join	the	forums,	just	follow	these	steps:

1.	 Go	to	p2p.wrox.com	and	click	the	Register	link.

2.	 Read	the	terms	of	use	and	click	Agree.

3.	 Complete	the	required	information	to	join,	as	well	as	any	optional	information
you	wish	to	provide,	and	click	Submit.

4.	 You	will	receive	an	e-mail	with	information	describing	how	to	verify	your
account	and	complete	the	joining	process.

http://p2p.wrox.com
http://p2p.wrox.com
http://p2p.wrox.com




Note

You	can	read	messages	in	the	forums	without	joining	P2P.	However,	in	order
to	post	your	own	messages,	you	must	join.

Once	you	join,	you	can	post	new	messages	and	respond	to	messages	other	users
post.	You	can	read	messages	at	any	time	on	the	web.	If	you	would	like	to	have	new
messages	from	a	particular	forum	e-mailed	to	you,	click	the	Subscribe	to	this
Forum	icon	by	the	forum	name	in	the	forum	listing.

For	more	information	about	how	to	use	the	Wrox	P2P,	be	sure	to	read	the	P2P
FAQs	for	answers	to	questions	about	how	the	forum	software	works,	as	well	as
many	common	questions	specific	to	P2P	and	Wrox	books.	To	read	the	FAQs,	click
the	FAQ	link	on	any	P2P	page.





Part	I
Functions





Chapter	1
Decorators
A	decorator	is	a	tool	for	wrapping	code	around	functions	or	classes.	Decorators
then	explicitly	apply	that	wrapper	to	functions	or	classes	to	cause	them	to	“opt	in”
to	the	decorator's	functionality.	Decorators	are	extremely	useful	for	addressing
common	prerequisite	cases	before	a	function	runs	(for	example,	ensuring
authentication),	or	ensuring	cleanup	after	a	function	runs	(for	example,	output
sanitization	or	exception	handling).	They	are	also	useful	for	taking	action	on	the
decorated	function	or	class	itself.	For	example,	a	decorator	might	register	a
function	with	a	signaling	system	or	a	URI	registry	in	web	applications.

This	chapter	provides	an	overview	of	what	decorators	are	and	how	they	interact
with	Python	functions	and	classes.	It	enumerates	certain	decorators	that	appear	in
the	Python	standard	library.	Finally,	it	offers	instruction	in	writing	decorators	and
attaching	them	to	functions	and	classes.



Understanding	Decorators
At	its	core,	a	decorator	is	a	callable	that	accepts	a	callable	and	returns	a	callable.
A	decorator	is	simply	a	function	(or	other	callable,	such	as	an	object	with	a
__call__	method)	that	accepts	the	decorated	function	as	its	positional	argument.
The	decorator	takes	some	action	using	that	argument,	and	then	either	returns	the
original	argument	or	some	other	callable	(presumably	that	interacts	with	it	in
some	way).

Because	functions	are	first-class	objects	in	Python,	they	can	be	passed	to	another
function	just	as	any	other	object	can	be.	A	decorator	is	just	a	function	that	expects
another	function,	and	does	something	with	it.

This	sounds	more	confusing	than	it	actually	is.	Consider	the	following	very	simple
decorator.	It	does	nothing	except	append	a	line	to	the	decorated	callable's
docstring.

def	decorated_by(func):

				func.__doc__	+=	'\nDecorated	by	decorated_by.'

				return	func

Now,	consider	the	following	trivial	function:

def	add(x,	y):

				"""Return	the	sum	of	x	and	y."""

				return	x	+	y

The	function's	docstring	is	the	string	specified	in	the	first	line.	It	is	what	you	will
see	if	you	run	help	on	that	function	in	the	Python	shell.	Here	is	the	decorator
applied	to	the	add	function:

def	add(x,	y):

				"""Return	the	sum	of	x	and	y."""

				return	x	+	y

add	=	decorated_by(add)

Here	is	what	you	get	if	you	run	help:

Help	on	function	add	in	module	__main__:

add(x,	y)

				Return	the	sum	of	x	and	y.

				Decorated	by	decorated_by.

(END)

What	has	happened	here	is	that	the	decorator	made	the	modification	to	the
function's	__doc__	attribute,	and	then	returned	the	original	function	object.



Decorator	Syntax
Most	times	that	developers	use	decorators	to	decorate	a	function,	they	are	only
interested	in	the	final,	decorated	function.	Keeping	a	reference	to	the	undecorated
function	is	ultimately	superfluous.

Because	of	this	(and	also	for	purposes	of	clarity),	it	is	undesirable	to	define	a
function,	assign	it	to	a	particular	name,	and	then	immediately	reassign	the
decorated	function	to	the	same	name.

Therefore,	Python	2.5	introduced	a	special	syntax	for	decorators.	Decorators	are
applied	by	prepending	an	@	character	to	the	name	of	the	decorator	and	adding	the
line	(without	the	implied	decorator's	method	signature)	immediately	above	the
decorated	function's	declaration.

Following	is	the	preferred	way	to	apply	a	decorated_by	decorator	to	the	add
method:

@decorated_by

def	add(x,	y):

				"""Return	the	sum	of	x	and	y."""

				return	x	+	y

Note	again	that	no	method	signature	is	being	provided	to	@decorated_by.	The
decorator	is	assumed	to	take	a	single,	positional	argument,	which	is	the	method
being	decorated.	(You	will	see	a	method	signature	in	some	cases,	but	with	other
provided	arguments.	This	is	discussed	later	in	this	chapter.)

This	syntax	allows	the	decorator	to	be	applied	where	the	function	is	declared,
which	makes	it	easier	to	read	the	code	and	immediately	realize	that	the	decorator
is	in	play.	Readability	counts.

Order	of	Decorator	Application
When	is	a	decorator	applied?	When	the	@	syntax	is	being	used,	decorators	are
applied	immediately	after	the	decorated	callable	is	created.	Therefore,	the	two
examples	shown	of	how	to	apply	decorated_by	to	add	are	exactly	equivalent.	First,
the	add	function	is	created,	and	then,	immediately	after	that,	it	is	wrapped	with
decorated_by.

One	important	thing	to	note	about	this	is	that	it	is	possible	to	use	multiple
decorators	on	a	single	callable	(just	as	it	is	possible	to	wrap	function	calls	multiple
times).

However,	note	that	if	you	use	multiple	decorators	using	the	@	syntax,	they	are
applied	in	order,	from	bottom	to	top.	This	may	be	counterintuitive	at	first,	but	it
makes	sense	given	what	the	Python	interpreter	is	actually	doing.

Consider	the	following	function	with	two	decorators	applied:

@also_decorated_by



@decorated_by

def	add(x,	y):

				"""Return	the	sum	of	x	and	y."""

				return	x	+	y

The	first	thing	that	occurs	is	that	the	add	function	is	created	by	the	interpreter.
Then,	the	decorated_by	decorator	is	applied.	This	decorator	returns	a	callable	(as
all	decorators	do),	which	is	then	sent	to	also_decorated_by,	which	does	the	same;
the	latter	result	is	assigned	to	add.

Remember	that	the	application	of	decorated_by	is	syntactically	equivalent	to	the
following:

add	=	decorated_by(add)

The	previous	two-decorator	example	is	syntactically	equivalent	to	the	following:

add	=	also_decorated_by(decorated_by(add))

In	both	cases,	the	also_decorated_by	decorator	comes	first	as	a	human	reads	the
code.	However,	the	decorators	are	applied	bottom	to	top	for	the	same	reason	that
the	functions	are	resolved	from	innermost	to	outermost.	The	same	principles	are
at	work.

In	the	case	of	a	traditional	function	call,	the	interpreter	must	first	resolve	the
inner	function	call	in	order	to	have	the	appropriate	object	or	value	to	send	to	the
outer	call.

add	=	also_decorated_by(decorated_by(add))		#	First,	get	a	return	value	for

																																												#	‘decorated_by(add)`.

add	=	also_decorated_by(decorated_by(add))		#	Send	that	return	value	to

																																												#	‘also_decorated_by`.

With	a	decorator,	first	the	add	function	is	created	normally.

@also_decorated_by

@decorated_by

def	add(x,	y):

				"""Return	the	sum	of	x	and	y."""

				return	x	+	y

Then,	the	@decorated_by	decorator	is	called,	being	sent	the	add	function	as	its
decorated	method.

@also_decorated_by

@decorated_by

def	add(x,	y):

				"""Return	the	sum	of	x	and	y."""

				return	x	+	y

The	@decorated_by	function	returns	its	own	callable	(in	this	case,	a	modified
version	of	add).	That	value	is	what	is	then	sent	to	@also_decorated_by	in	the	final
step.



@also_decorated_by

@decorated_by

def	add(x,	y):

				"""Return	the	sum	of	x	and	y."""

				return	x	+	y

When	applying	decorators,	it	is	important	for	you	to	remember	that	they	are
applied	bottom	to	top.	Many	times,	order	does	matter.



Where	Decorators	Are	Used
The	standard	library	includes	many	modules	that	incorporate	decorators,	and
many	common	tools	and	frameworks	make	use	of	them	for	common	functionality.

For	example,	if	you	want	to	make	a	method	on	a	class	not	require	an	instance	of
the	class,	you	use	the	@classmethod	or	@staticmethod	decorator,	which	is	part	of
the	standard	library.	The	mock	module	(which	is	used	for	unit	testing,	and	which
was	added	to	the	standard	library	in	Python	3.3)	allows	the	use	of	@mock.patch	or
@mock.patch.object	as	a	decorator.

Common	tools	also	use	decorators.	Django	(which	is	a	common	web	framework
for	Python)	uses	@login_required	as	a	decorator	to	allow	developers	to	specify	that
a	user	must	be	logged	in	to	view	a	particular	page,	and	uses	@permission_required
for	applying	more	specific	permissions.	Flask	(another	common	web	framework)
uses	@app.route	to	serve	as	a	registry	between	specific	URIs	and	the	functions	that
run	when	the	browser	hits	those	URIs.

Celery	(a	common	Python	task	runner)	uses	a	complex	@task	decorator	to	identify
a	function	as	an	asynchronous	task.	This	decorator	actually	returns	an	instance	of
a	Task	class,	which	illustrates	how	decorators	can	be	used	to	make	a	very
convenient	API.



Why	You	Should	Write	Decorators
Decorators	provide	an	excellent	way	to	say,	“I	want	this	specific,	reusable	piece	of
functionality	in	these	specific	places.”	When	written	well,	they	are	modular	and
explicit.

The	modularity	of	decorators	(you	can	apply	or	remove	them	from	functions	or
classes	easily)	makes	them	ideal	for	avoiding	the	repetition	of	boilerplate	setup
and	teardown	code.	Similarly,	because	decorators	interact	with	the	decorated
function	itself,	they	excel	at	registering	functions	elsewhere.

Also,	decorators	are	explicit.	They	are	applied,	in-place,	to	all	callables	where	they
are	needed.	This	is	valuable	for	readability,	and	therefore	for	debugging.	It	is
obvious	exactly	what	is	being	applied	and	where.



When	You	Should	Write	Decorators
Several	very	good	use	cases	exist	for	writing	decorators	in	Python	applications	and
modules.

Additional	Functionality
Probably	the	most	common	reason	to	write	a	decorator	is	if	you	want	to	add
additional	functionality	before	or	after	the	decorated	method	is	executed.	This
could	include	use	cases	such	as	checking	authentication	or	logging	the	result	of	a
function	to	a	consistent	location.

Data	Sanitization	or	Addition
A	decorator	could	also	sanitize	the	values	of	arguments	being	passed	to	the
decorated	function,	to	ensure	consistency	of	argument	type,	or	that	a	value
conforms	to	a	specific	pattern.	For	example,	a	decorator	could	ensure	that	the
values	sent	to	a	function	conform	to	a	specific	type,	or	meet	some	other	validation
standard.	(You	will	see	an	example	of	this	shortly,	a	decorator	called
@requires_ints.)

A	decorator	can	also	transform	or	sanitize	data	that	is	returned	from	a	function.	A
valuable	use	case	for	this	is	if	you	want	to	have	functions	that	return	native	Python
objects	(such	as	lists	or	dictionaries),	but	ultimately	receive	a	serialized	format
(such	as	JSON	or	YAML)	on	the	other	end.

Some	decorators	actually	provide	additional	data	to	a	function,	usually	in	the	form
of	additional	arguments.	The	@mock.patch	decorator	is	an	example	of	this,	because
it	(among	other	things)	provides	the	mock	object	that	it	creates	as	an	additional
positional	argument	to	the	function.

Function	Registration
Many	times,	it	is	useful	to	register	a	function	elsewhere—for	example,	registering	a
task	in	a	task	runner,	or	a	function	with	a	signal	handler.	Any	system	in	which
some	external	input	or	routing	mechanism	decides	what	function	runs	is	a
candidate	for	function	registration.



Writing	Decorators
Decorators	are	simply	functions	that	(usually)	accept	the	decorated	callable	as
their	only	argument,	and	that	return	a	callable	(such	as	in	the	previous	trivial
example).

It	is	important	to	note	that	the	decorator	code	itself	runs	when	the	decorator	is
applied	to	the	decorated	function,	rather	than	when	the	decorated	function	is
called.	Understanding	this	is	critical,	and	will	become	very	clear	over	the	course	of
the	next	several	examples.

An	Initial	Example:	A	Function	Registry
Consider	the	following	simple	registry	of	functions:

registry	=	[]

def	register(decorated):

				registry.append(decorated)

				return	decorated

The	register	method	is	a	simple	decorator.	It	appends	the	positional	argument,
decorated	to	the	registry	variable,	and	then	returns	the	decorated	method
unchanged.	Any	method	that	receives	the	register	decorator	will	have	itself
appended	to	registry.

@register

def	foo():

				return	3

@register

def	bar():

				return	5

If	you	have	access	to	the	registry,	you	can	easily	iterate	over	it	and	execute	the
functions	inside.

answers	=	[]

for	func	in	registry:

				answers.append(func())

The	answers	list	at	this	point	would	now	contain	[3,	5].	This	is	because	the
functions	are	executed	in	order,	and	their	return	values	are	appended	to	answers.

Several	less-trivial	uses	for	function	registries	exist,	such	as	adding	“hooks”	into
code	so	that	custom	functionality	can	be	run	before	or	after	critical	events.	Here	is
a	Registry	class	that	can	handle	just	such	a	case:

class	Registry(object):

				def	__init__(self):

								self._functions	=	[]

				def	register(self,	decorated):



								self._functions.append(decorated)

								return	decorated

				def	run_all(self,	*args,	**kwargs):

								return_values	=	[]

								for	func	in	self._functions:

												return_values.append(func(*args,	**kwargs))

								return	return_values

One	thing	worth	noting	about	this	class	is	that	the	register	method—the
decorator—still	works	the	same	way	as	before.	It	is	perfectly	fine	to	have	a	bound
method	as	a	decorator.	It	receives	self	as	the	first	argument	(just	as	any	other
bound	method),	and	expects	one	additional	positional	argument,	which	is	the
decorated	method.

By	making	several	different	registry	instances,	you	can	have	entirely	separate
registries.	It	is	even	possible	to	take	the	same	function	and	register	it	with	more
than	one	registry,	as	shown	here:

a	=	Registry()

b	=	Registry()

@a.register

def	foo(x=3):

				return	x

@b.register

def	bar(x=5):

				return	x

@a.register

@b.register

def	baz(x=7):

				return	x

Running	the	code	from	either	registry's	run_all	method	gives	the	following
results:

a.run_all()				#	[3,	7]

b.run_all()				#	[5,	7]

Notice	that	the	run_all	method	is	able	to	take	arguments,	which	it	then	passes	to
the	underlying	functions	when	they	are	run.

a.run_all(x=4)				#	[4,	4]

Execution-Time	Wrapping	Code
These	decorators	are	very	simple	because	the	decorated	function	is	passed
through	unmodified.	However,	sometimes	you	want	additional	functionality	to
run	when	the	decorated	method	is	executed.	You	do	this	by	returning	a	different
callable	that	adds	the	appropriate	functionality	and	(usually)	calls	the	decorated
method	in	the	course	of	its	execution.



A	Simple	Type	Check
Here	is	a	simple	decorator	that	ensures	that	every	argument	the	function	receives
is	an	integer,	and	complains	otherwise:

def	requires_ints(decorated):

				def	inner(*args,	**kwargs):

								#	Get	any	values	that	may	have	been	sent	as	keyword	arguments.

								kwarg_values	=	[i	for	i	in	kwargs.values()]

								#	Iterate	over	every	value	sent	to	the	decorated	method,	and

								#	ensure	that	each	one	is	an	integer;	raise	TypeError	if	not.

								for	arg	in	list(args)	+	kwarg_values:

												if	not	isinstance(arg,	int):

																raise	TypeError('%s	only	accepts	integers	as	arguments.’	%

																																decorated.__name__)

								#	Run	the	decorated	method,	and	return	the	result.

								return	decorated(*args,	**kwargs)

				return	inner

What	is	happening	here?

The	decorator	itself	is	requires_ints.	It	accepts	one	argument,	decorated,	which	is
the	decorated	callable.	The	only	thing	that	this	decorator	does	is	return	a	new
callable,	the	local	function	inner.	This	function	replaces	the	decorated	method.

You	can	see	this	in	action	by	declaring	a	function	and	decorating	it	with
requires_ints:

@requires_ints

def	foo(x,	y):

				"""Return	the	sum	of	x	and	y."""

				return	x	+	y

Notice	what	you	get	if	you	run	help(foo):

Help	on	function	inner	in	module	__main__:

inner(*args,	**kwargs)

(END)

The	inner	function	has	been	assigned	to	the	name	foo	instead	of	the	original,
defined	function.	If	you	run	foo(3,	5),	the	inner	function	runs	with	those
arguments.	The	inner	function	performs	the	type	check,	and	then	it	runs	the
decorated	method	simply	because	the	inner	function	calls	it	using	return
decorated(*args,	**kwargs),	returning	8.	Absent	this	call,	the	decorated	method
would	have	been	ignored.

Preserving	the	help
It	often	is	not	particularly	desirable	to	have	a	decorator	steamroll	your	function's
docstring	or	hijack	the	output	of	help.	Because	decorators	are	tools	for	adding



generic	and	reusable	functionality,	they	are	necessarily	going	to	be	more	vague.
And,	generally,	if	someone	using	a	function	is	trying	to	run	help	on	it,	he	or	she
wants	information	about	the	guts	of	the	function,	not	the	shell.

The	solution	to	this	problem	is	actually	…	a	decorator.	Python	implements	a
decorator	called	@functools.wraps	that	copies	the	important	introspection
elements	of	one	function	onto	another	function.

Here	is	the	same	@requires_ints	decorator,	but	it	adds	in	the	use	of
@functools.wraps:

import	functools

def	requires_ints(decorated):

				@functools.wraps(decorated)

				def	inner(*args,	**kwargs):

								#	Get	any	values	that	may	have	been	sent	as	keyword	arguments.

								kwarg_values	=	[i	for	i	in	kwargs.values()]

								#	Iterate	over	every	value	sent	to	the	decorated	method,	and

								#	ensure	that	each	one	is	an	integer;	raise	TypeError	if	not.

								for	arg	in	args	+	kwarg_values:

												if	not	isinstance(i,	int):

																raise	TypeError('%s	only	accepts	integers	as	arguments.'	%

																																decorated.__name__)

								#	Run	the	decorated	method,	and	return	the	result.

								return	decorated(*args,	**kwargs)

				return	inner

The	decorator	itself	is	almost	entirely	unchanged,	except	for	the	addition	of	the
second	line,	which	applies	the	@functools.wraps	decorator	to	the	inner	function.
You	must	also	import	functools	now	(which	is	in	the	standard	library).	You	will
also	notice	some	additional	syntax.	This	decorator	actually	takes	an	argument
(more	on	that	later).

Now	you	apply	the	decorator	to	the	same	function,	as	shown	here:

@requires_ints

def	foo(x,	y):

				"""Return	the	sum	of	x	and	y."""

				return	x	+	y

Here	is	what	happens	when	you	run	help(foo)	now:

Help	on	function	foo	in	module	__main__:

foo(x,	y)

				Return	the	sum	of	x	and	y.

(END)

You	see	that	the	docstring	for	foo,	as	well	as	its	method	signature,	is	what	is	read
out	when	you	look	at	help.	Underneath	the	hood,	however,	the	@requires_ints



decorator	is	still	applied,	and	the	inner	function	is	still	what	runs.

Depending	on	which	version	of	Python	you	are	running,	you	will	get	a	slightly
different	result	from	running	help	on	foo,	specifically	regarding	the	function
signature.	The	previous	paste	represents	the	output	from	Python	3.4.	However,	in
Python	2,	the	function	signature	provided	will	still	be	that	of	inner	(so,	*args	and
**kwargs	rather	than	x	and	y).

User	Verification
A	common	use	case	for	this	pattern	(that	is,	performing	some	kind	of	sanity	check
before	running	the	decorated	method)	is	user	verification.	Consider	a	method	that
is	expected	to	take	a	user	as	its	first	argument.

The	user	should	be	an	instance	of	this	User	and	AnonymousUser	class,	as	shown
here:

class	User(object):

				"""A	representation	of	a	user	in	our	application."""

				def	__init__(self,	username,	email):

								self.username	=	username

								self.email	=	email

class	AnonymousUser(User):

				"""An	anonymous	user;	a	stand-in	for	an	actual	user	that	nonetheless

				is	not	an	actual	user.

				"""

				def	__init__(self):

								self.username	=	None

								self.email	=	None

				def	__nonzero__(self):

								return	False

A	decorator	is	a	powerful	tool	here	for	isolating	the	boilerplate	code	of	user
verification.	A	@requires_user	decorator	can	easily	verify	that	you	got	a	User	object
and	that	it	is	not	an	anonymous	user.

import	functools

def	requires_user(func):

				@functools.wraps(func)

				def	inner(user,	*args,	**kwargs):

								"""Verify	that	the	user	is	truthy;	if	so,	run	the	decorated	method,

								and	if	not,	raise	ValueError.

								"""

								#	Ensure	that	user	is	truthy,	and	of	the	correct	type.

								#	The	"truthy"check	will	fail	on	anonymous	users,	since	the

								#	AnonymousUser	subclass	has	a	‘__nonzero__‘	method	that

								#	returns	False.

								if	user	and	isinstance(user,	User):



												return	func(user,	*args,	**kwargs)

								else:

												raise	ValueError('A	valid	user	is	required	to	run	this.')

				return	inner

This	decorator	applies	a	common,	boilerplate	need—the	verification	that	a	user	is
logged	in	to	the	application.	When	you	implement	this	as	a	decorator,	it	is
reusable	and	more	easily	maintainable,	and	its	application	to	functions	is	clear
and	explicit.

Note	that	this	decorator	will	only	correctly	wrap	a	function	or	static	method,	and
will	fail	if	wrapping	a	bound	method	to	a	class.	This	is	because	the	decorator
ignores	the	expectation	to	send	self	as	the	first	argument	to	a	bound	method.

Output	Formatting
In	addition	to	sanitizing	input	to	a	function,	another	use	for	decorators	can	be
sanitizing	output	from	a	function.

When	you're	working	in	Python,	it	is	normally	desirable	to	use	native	Python
objects	when	possible.	Often,	however,	you	want	a	serialized	output	format	(for
example,	JSON).	It	is	cumbersome	to	manually	convert	to	JSON	at	the	end	of
every	relevant	function,	and	(and	it's	not	a	good	idea,	either).	Ideally,	you	should
be	using	the	Python	structures	right	up	until	serialization	is	necessary,	and	there
may	be	other	boilerplate	that	happens	just	before	serialization	(such	as	or	the
like).

Decorators	provide	an	excellent,	portable	solution	to	this	problem.	Consider	the
following	decorator	that	takes	Python	output	and	serializes	the	result	to	JSON:

import	functools

import	json

def	json_output(decorated):

				"""Run	the	decorated	function,	serialize	the	result	of	that	function

				to	JSON,	and	return	the	JSON	string.

				"""

				@functools.wraps(decorated)

				def	inner(*args,	**kwargs):

								result	=	decorated(*args,	**kwargs)

								return	json.dumps(result)

				return	inner

Apply	the	@json_output	decorator	to	a	trivial	function,	as	shown	here:

@json_output

def	do_nothing():

				return	{'status':	'done'}

Run	the	function	in	the	Python	shell,	and	you	get	the	following:

>>>	do_nothing()



'{"status":	"done"}'

Notice	that	you	got	back	a	string	that	contains	valid	JSON.	You	did	not	get	back	a
dictionary.

The	beauty	of	this	decorator	is	in	its	simplicity.	Apply	it	to	a	function,	and
suddenly	a	function	that	did	return	a	Python	dictionary,	list,	or	other	object	now
returns	its	JSON-serialized	version.

You	might	ask,	“Why	is	this	valuable?”	After	all,	you	are	adding	a	one-line
decorator	that	essentially	removes	a	single	line	of	code—a	call	to	json.dumps.
However,	consider	the	value	of	having	this	decorator	as	the	application's	needs
expand.

For	example,	what	if	certain	exceptions	should	be	trapped	and	output	specifically
formatted	JSON,	rather	than	having	the	exception	bubble	up	and	traceback?
Because	you	have	a	decorator,	that	functionality	is	very	easy	to	add.

import	functools

import	json

class	JSONOutputError(Exception):

				def	__init__(self,	message):

								self._message	=	message

				def	__str__(self):

								return	self._message

def	json_output(decorated):

				"""Run	the	decorated	function,	serialize	the	result	of	that	function

				to	JSON,	and	return	the	JSON	string.

				"""

				@functools.wraps(decorated)

				def	inner(*args,	**kwargs):

								try:

												result	=	decorated(*args,	**kwargs)

								except	JSONOutputError	as	ex:

												result	=	{

																'status':	'error',

																'message':	str(ex),

												}

								return	json.dumps(result)

				return	inner

By	augmenting	the	@json_output	decorator	with	this	error	handling,	you	have
added	it	to	any	function	where	the	decorator	was	already	applied.	This	is	part	of
what	makes	decorators	so	valuable.	They	are	very	useful	tools	for	code	portability
and	reusability.

Now,	if	a	function	decorated	with	@json_output	raises	a	JSONOutputError,	you	will
get	this	special	error	handling.	Here	is	a	function	that	does:



@json_output

def	error():

				raise	JSONOutputError('This	function	is	erratic.')

Running	the	error	function	in	the	Python	interpreter	gives	you	the	following:

>>>	error()

'{"status":	"error",	"message":	"This	function	is	erratic."}'

Note	that	only	the	JSONOutputError	exception	class	(and	any	subclasses)	receives
this	special	handling.	Any	other	exception	is	passed	through	normally,	and
generates	a	traceback.	Consider	this	function:

@json_output

def	other_error():

				raise	ValueError('The	grass	is	always	greener…')

When	you	run	it,	you	will	get	the	traceback	you	expect,	as	shown	here:

>>>	other_error()

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

		File	"<stdin>",	line	8,	in	inner

		File	"<stdin>",	line	3,	in	other_error

ValueError:	The	grass	is	always	greener…

This	reusability	and	maintainability	is	part	of	what	makes	decorators	valuable.
Because	a	decorator	is	being	used	for	a	reusable,	generally	applicable	concept
throughout	the	application	(in	this	case,	JSON	serialization),	the	decorator
becomes	the	place	for	housing	that	functionality	as	needs	arise	that	are	applicable
whenever	that	concept	is	used.

Essentially,	decorators	are	tools	to	avoid	repeating	yourself,	and	part	of	their	value
is	in	providing	hooks	for	future	maintenance.

This	can	be	accomplished	without	the	use	of	decorators.	Consider	the	example	of
requiring	a	logged-in	user.	It	is	not	difficult	to	write	a	function	that	does	this	and
simply	place	it	near	the	top	of	functions	that	require	that	functionality.	The
decorator	is	primarily	syntactic	sugar.	The	syntactic	sugar	has	value,	though.	Code
is	read	more	often	than	it	is	written,	after	all,	and	it	is	easy	to	locate	decorators	at
a	glance.

Logging
One	final	example	of	execution-time	wrapping	of	code	is	a	general-use	logging
function.	Consider	the	following	decorator	that	causes	the	function	call,	timings,
and	result	to	be	logged:

import	functools

import	logging

import	time



def	logged(method):

				"""Cause	the	decorated	method	to	be	run	and	its	results	logged,	along

				with	some	other	diagnostic	information.

				"""

				@functools.wraps(method)

				def	inner(*args,	**kwargs):

								#	Record	our	start	time.

								start	=	time.time()

								#	Run	the	decorated	method.

								return_value	=	method(*args,	**kwargs)

								#	Record	our	completion	time,	and	calculate	the	delta.

								end	=	time.time()

								delta	=	end	-	start

								#	Log	the	method	call	and	the	result.

								logger	=	logging.getLogger('decorator.logged')

								logger.warn('Called	method	%s	at	%.02f;	execution	time	%.02f	‘

																				'seconds;	result	%r.'	%

																				(method.__name__,	start,	delta,	return_value))

								#	Return	the	method's	original	return	value.

								return	return_value

				return	inner

When	applied	to	a	function,	this	decorator	runs	that	function	normally,	but	uses
the	Python	logging	module	to	log	out	information	about	the	function	call	after	it
completes.	Now,	suddenly,	you	have	(extremely	rudimentary)	logging	of	any
function	where	this	decorator	is	applied.

>>>	import	time

>>>	@logged…	def	sleep_and_return(return_value):

...						time.sleep(2)

...						return	return_value…

>>>

>>>	sleep_and_return(42)

Called	method	sleep_and_return	at	1424462194.70;

					execution	time	2.00	seconds;	result	42.

42

Unlike	the	previous	examples,	this	decorator	does	not	alter	the	function	call	in	an
obvious	way.	No	cases	exist	where	you	apply	this	decorator	and	get	a	different
result	from	the	decorated	function	than	you	did	from	the	undecorated	function.
The	previous	examples	raised	exceptions	or	modified	the	result	if	this	or	that
check	did	not	pass.	This	decorator	is	more	invisible.	It	does	some	under-the-hood
work,	but	in	no	situation	should	it	change	the	actual	result.

Variable	Arguments
It	is	worth	noting	that	the	@json_output	and	@logged	decorators	both	provide	inner
functions	that	simply	take,	and	pass	on	with	minimal	investigation,	variable
arguments	and	keyword	arguments.



This	is	an	important	pattern.	One	way	that	it	is	particularly	important	is	that
many	decorators	may	be	used	to	decorate	plain	functions	as	well	as	methods	of
classes.	Remember	that	in	Python,	methods	declared	in	classes	receive	an
additional	positional	argument,	conventionally	known	as	self.	This	does	not
change	when	decorators	are	in	use.	(This	is	why	the	requires_user	decorator
shown	earlier	does	not	work	on	bound	methods	within	classes.)

For	example,	if	@json_result	is	used	to	decorate	a	method	of	a	class,	the	inner
function	is	called	and	it	receives	the	instance	of	the	class	as	the	first	argument.	In
fact,	this	is	fine.	In	this	case,	that	argument	is	simply	args[0],	and	it	is	passed	to
the	decorated	method	unmolested.

Decorator	Arguments
One	thing	that	has	been	consistent	about	all	the	decorators	enumerated	thus	far	is
that	the	decorators	themselves	appear	not	to	take	any	arguments.	As	discussed,
there	is	an	implied	argument—the	method	that	is	being	decorated.

However,	sometimes	it	is	useful	to	have	the	decorator	itself	take	some	information
that	it	needs	to	decorate	the	method	appropriately.	The	difference	between	an
argument	passed	to	the	decorator	and	an	argument	passed	to	the	function	at	call
time	is	precisely	that.	An	argument	to	the	decorator	is	processed	once,	when	the
function	is	declared	and	decorated.	By	contrast,	arguments	to	the	function	are
processed	when	that	function	is	called.

You	have	already	seen	an	example	of	an	argument	sent	to	a	decorator	with	the
repeated	use	of	@functools.wraps.	It	takes	an	argument—the	method	being
wrapped,	whose	help	and	docstring	and	the	like	should	be	preserved.

However,	decorators	have	implied	call	signatures.	They	take	one	positional
argument—the	method	being	decorated.	So,	how	does	this	work?

The	answer	is	that	it	is	complicated.	Recall	the	basic	decorators	that	have
execution-time	wrapping	of	code.	They	declare	an	inner	method	in	local	scope	that
they	then	return.	This	is	the	callable	returned	by	the	decorator.	It	is	what	is
assigned	to	the	function	name.	Decorators	that	take	arguments	add	one	more
wrapping	layer	to	this	dance.	This	is	because	the	decorator	that	takes	the
argument	is	not	actually	the	decorator.	Rather,	it	is	a	function	that	returns	the
decorator,	which	is	a	function	that	takes	one	argument	(the	decorated	method),
which	then	decorates	the	function	and	returns	a	callable.

That	sounds	confusing.	Consider	the	following	example	where	a	@json_output
decorator	is	augmented	to	ask	about	indentation	and	key	sorting:

import	functools

import	json

class	JSONOutputError(Exception):

				def	__init__(self,	message):



								self._message	=	message

				def	__str__(self):

								return	self._message

def	json_output(indent=None,	sort_keys=False):

				"""Run	the	decorated	function,	serialize	the	result	of	that	function

				to	JSON,	and	return	the	JSON	string.

				"""

				def	actual_decorator(decorated):

								@functools.wraps(decorated)

								def	inner(*args,	**kwargs):

												try:

																result	=	decorated(*args,	**kwargs)

												except	JSONOutputError	as	ex:

																result	=	{

																				'status':	'error',

																				'message':	str(ex),

																}

												return	json.dumps(result,	indent=indent,	sort_keys=sort_keys)

								return	inner

				return	actual_decorator

So,	what	has	happened	here,	and	why	does	this	work?

This	is	a	function,	json_output,	which	accepts	two	arguments	(indent	and
sort_keys).	It	returns	another	function,	called	actual_decorator,	which	is	(as	its
name	suggests)	intended	to	be	used	as	a	decorator.	That	is	a	classic	decorator—a
callable	that	accepts	a	single	callable	(decorated)	as	an	argument	and	returns	a
callable	(inner).

Note	that	the	inner	function	has	changed	slightly	to	accommodate	the	indent	and
sort_keys	arguments.	These	arguments	mirror	similar	arguments	accepted	by
json.dumps,	so	the	call	to	json.dumps	accepts	the	values	provided	to	indent	and
sort_keys	in	the	decorator's	signature	and	provides	them	to	json.dumps	in	the
antepenultimate	line.

The	inner	function	is	what	ultimately	makes	use	of	the	indent	and	sort_keys
arguments.	This	is	fine,	because	Python's	block	scoping	rules	allow	for	this.	It	also
is	not	a	problem	that	this	might	be	called	with	different	values	for	inner	and
sort_keys,	because	inner	is	a	local	function	(a	different	copy	is	returned	each	time
the	decorator	is	used).

Applying	the	json_output	function	looks	like	this:

@json_output(indent=4)

def	do_nothing():

				return	{'status':	'done'}

And	if	you	run	the	do_nothing	function	now,	you	get	a	JSON	block	back	with
indentation	and	newlines	added,	as	shown	here:



>>>	do_nothing()

'{\n				"status":	"done"\n}'

How	Does	This	Work?
But	wait.	If	json_output	is	not	a	decorator,	but	a	function	that	returns	a	decorator,
why	does	it	look	like	it	is	being	applied	as	a	decorator?	What	is	the	Python
interpreter	doing	here	that	makes	this	work?

More	explanation	is	in	order.	The	key	here	is	in	the	order	of	operations.
Specifically,	the	function	call	(json_output(indent=4))	precedes	the	decorator
application	syntax	(@).	Thus,	the	result	of	the	function	call	is	used	to	apply	the
decorator.

The	first	thing	that	is	happening	is	that	the	interpreter	is	seeing	the	function	call
for	json_output	and	resolving	that	call	(note	that	the	boldface	does	not	include	the
@):

@json_output(indent=4)

def	do_nothing():

				return	{'status':	'done'}

All	the	json_output	function	does	is	define	another	function,	actual_decorator,
and	return	it.	As	the	result	of	that	function,	it	is	then	provided	to	@,	as	shown	here:

@actual_decorator

def	do_nothing():

				return	{'status':	'done'}

Now,	actual_decorator	is	being	run.	It	declares	another	local	function,	inner,	and
returns	it.	As	previously	discussed,	that	function	is	then	assigned	to	the	name
do_nothing,	the	name	of	the	decorated	method.	When	do_nothing	is	called,	the
inner	function	is	called,	runs	the	decorated	method,	and	JSON	dumps	the	result
with	the	appropriate	indentation.

The	Call	Signature	Matters
It	is	critical	to	realize	that	when	you	introduced	your	new,	altered	json_output
function,	you	actually	introduced	a	backward-incompatible	change.

Why?	Because	now	there	is	this	extra	function	call	that	is	expected.	If	you	want	the
old	json_output	behavior,	and	do	not	need	values	for	any	of	the	arguments
available,	you	still	must	call	the	method.

In	other	words,	you	must	do	the	following:

@json_output()

def	do_nothing():

				return	{'status':	'done'}

Note	the	parentheses.	They	matter,	because	they	indicate	that	the	function	is
being	called	(even	with	no	arguments),	and	then	the	result	is	applied	to	the	@.



The	previous	code	is	not—repeat,	not—equivalent	to	the	following:

@json_output

def	do_nothing():

				return	{'status':	'done'}

This	presents	two	problems.	It	is	inherently	confusing,	because	if	you	are
accustomed	to	seeing	decorators	applied	without	a	signature,	a	requirement	to
supply	an	empty	signature	is	counterintuitive.	Secondly,	if	the	old	decorator
already	exists	in	your	application,	you	must	go	back	and	edit	all	of	its	existing
calls.	You	should	avoid	backward-incompatible	changes	if	possible.

In	a	perfect	world,	this	decorator	would	work	for	three	different	types	of
applications:

@json_output

@json_output()

@json_output(indent=4)

As	it	turns	out,	this	is	possible,	by	having	a	decorator	that	modifies	its	behavior
based	on	the	arguments	that	it	receives.	Remember,	a	decorator	is	just	a	function
and	has	all	the	flexibility	of	any	other	function	to	do	what	it	needs	to	do	to	respond
to	the	inputs	it	gets.

Consider	this	more	flexible	iteration	of	json_output:

import	functools

import	json

class	JSONOutputError(Exception):

				def	__init__(self,	message):

								self._message	=	message

				def	__str__(self):

								return	self._message

def	json_output(decorated_=None,	indent=None,	sort_keys=False):

				"""Run	the	decorated	function,	serialize	the	result	of	that	function

				to	JSON,	and	return	the	JSON	string.

				"""

				#	Did	we	get	both	a	decorated	method	and	keyword	arguments?

				#	That	should	not	happen.

				if	decorated_	and	(indent	or	sort_keys):

								raise	RuntimeError('Unexpected	arguments.')

				#	Define	the	actual	decorator	function.

				def	actual_decorator(func):

								@functools.wraps(func)

								def	inner(*args,	**kwargs):

												try:

																result	=	func(*args,	**kwargs)



												except	JSONOutputError	as	ex:

																result	=	{

																				'status':	'error',

																				'message':	str(ex),

																}

												return	json.dumps(result,	indent=indent,	sort_keys=sort_keys)

								return	inner

				#	Return	either	the	actual	decorator,	or	the	result	of	applying

				#	the	actual	decorator,	depending	on	what	arguments	we	got.

				if	decorated_:

								return	actual_decorator(decorated_)

				else:

								return	actual_decorator

This	function	is	endeavoring	to	be	intelligent	about	whether	or	not	it	is	currently
being	used	as	a	decorator.

First,	it	makes	sure	it	is	not	being	called	in	an	unexpected	way.	You	never	expect
to	receive	both	a	method	to	be	decorated	and	the	keyword	arguments,	because	a
decorator	is	always	called	with	the	decorated	method	as	the	only	argument.

Second,	it	defines	the	actual_decorator	function,	which	(as	its	name	suggests)	is
the	actual	decorator	to	be	either	returned	or	applied.	It	defines	the	inner	function
that	is	the	ultimate	function	to	be	returned	from	the	decorator.

Finally,	it	returns	the	appropriate	result	based	on	how	it	was	called:

If	decorated_	is	set,	it	was	called	as	a	plain	decorator,	without	a	method
signature,	and	its	responsibility	is	to	apply	the	ultimate	decorator	and	return
the	inner	function.	Here	again,	observe	how	decorators	that	take	arguments
are	actually	working.	First,	actual_decorator(decorated_)	is	called	and
resolved,	then	its	result	(which	must	be	a	callable,	because	this	is	a	decorator)
is	called	with	inner	provided	as	its	only	argument.

If	decorated_	is	not	set,	then	this	was	called	with	keyword	arguments	instead,
and	the	function	must	return	an	actual	decorator,	which	receives	the
decorated	method	and	returns	inner.	Therefore,	the	function	returns
actual_decorator	outright.	This	is	then	applied	by	the	Python	interpreter	as
the	actual	decorator	(which	ultimately	returns	inner).

Why	is	this	technique	valuable?	It	enables	you	to	maintain	your	decorator's
functionality	as	previously	used.	This	means	that	you	do	not	have	to	update	each
case	where	the	decorator	has	been	applied.	But	you	still	get	the	additional
flexibility	of	being	able	to	add	arguments	in	the	cases	where	you	need	them.



Decorating	Classes
Remember	that	a	decorator	is,	fundamentally,	a	callable	that	accepts	a	callable
and	returns	a	callable.	This	means	that	decorators	can	be	used	to	decorate	classes
as	well	as	functions	(classes	are	callable,	after	all).

Decorating	classes	can	have	a	variety	of	uses.	They	can	be	particularly	valuable
because,	like	function	decorators,	class	decorators	can	interact	with	the	attributes
of	the	decorated	class.	A	class	decorator	can	add	or	augment	attributes,	or	it	can
alter	the	API	of	a	class	to	provide	a	distinction	between	how	a	class	is	declared
versus	how	its	instances	are	used.

You	might	ask,	“Isn't	the	appropriate	way	to	add	or	augment	attributes	of	a	class
through	subclassing?”	Usually,	the	answer	is	“yes.”	However,	in	some	situations
an	alternative	approach	may	be	appropriate.	Consider,	for	example,	a	generally
applicable	feature	that	may	apply	to	many	classes	in	your	application	that	live	in
distinct	places	in	your	class	hierarchies.

By	way	of	example,	consider	a	feature	of	a	class	such	that	each	instance	knows
when	it	was	instantiated,	and	instances	are	sorted	by	their	creation	times.	This	has
general	applicability	across	many	different	classes,	and	requires	the	addition	of
three	attributes—the	instantiation	timestamp,	and	the	__gt__	and	__lt__	methods.

You	have	multiple	ways	to	go	about	adding	this.	Here	is	how	you	can	do	it	with	a
class	decorator:

import	functools

import	time

def	sortable_by_creation_time(cls):

				"""Given	a	class,	augment	the	class	to	have	its	instances	be	sortable

				by	the	timestamp	at	which	they	were	instantiated.

				"""

				#	Augment	the	class'	original	‘__init__‘	method	to	also	store	a

				#	‘_created‘	attribute	on	the	instance,	which	corresponds	to	when	it

				#	was	instantiated.

				original_init	=	cls.__init__

				@functools.wraps(original_init)

				def	new_init(self,	*args,	**kwargs):

								original_init(self,	*args,	**kwargs)

								self._created	=	time.time()

				cls.__init__	=	new_init

				#	Add	‘__lt__‘	and	‘__gt__‘	methods	that	return	True	or	False	based	on

				#	the	created	values	in	question.

				cls.__lt__	=	lambda	self,	other:	self._created	<	other._created

				cls.__gt__	=	lambda	self,	other:	self._created	>	other._created

				#	Done;	return	the	class	object.

				return	cls



The	first	thing	that	is	happening	in	this	decorator	is	that	you	are	saving	a	copy	of
the	class's	original	__init__	method.	You	do	not	need	to	worry	about	whether	the
class	has	one.	Because	object	has	an	__init__	method,	that	attribute's	presence	is
guaranteed.	Next,	you	create	a	new	method	that	will	be	assigned	to	__init__,	and
this	method	first	calls	the	original	and	then	does	one	piece	of	extra	work,	saving
the	instantiation	timestamp	to	self._created.

It	is	worth	noting	that	this	is	a	very	similar	pattern	to	the	execution-time	wrapping
code	from	previous	examples—making	a	function	that	wraps	another	function,
whose	primary	responsibility	is	to	run	the	wrapped	function,	but	also	adds	a	small
piece	of	other	functionality.

It	is	worth	noting	that	if	a	class	decorated	with	@sortable_by_creation_time
defined	its	own	__lt__	and	__gt__	methods,	then	this	decorator	would	override
them.

The	_created	value	by	itself	does	little	good	if	the	class	does	not	recognize	that	it	is
to	be	used	for	sorting.	Therefore,	the	decorator	also	adds	__lt__	and	__gt__	magic
methods.	These	cause	the	<	and	>	operators	to	return	True	or	False	based	on	the
result	of	those	methods.	This	also	affects	the	behavior	of	sorted	and	other	similar
functions.

This	is	all	that	is	necessary	to	make	an	arbitrary	class's	instances	sortable	by	their
instantiation	time.	This	decorator	can	be	applied	to	any	class,	including	many
classes	with	unrelated	ancestry.

Here	is	an	example	of	a	simple	class	with	instances	sortable	by	when	they	are
created:

>>>	@sortable_by_creation_time…	class	Sortable(object):

...					def	__init__(self,	identifier):

...									self.identifier	=	identifier…					def	_repr_(self):

...									return	self.identifier…

>>>	first	=	Sortable('first')

>>>	second	=	Sortable('second')

>>>	third	=	Sortable('third')

>>>

>>>	sortables	=	[second,	first,	third]

>>>	sorted(sortables)

[first,	second,	third]

Bear	in	mind	that	simply	because	a	decorator	can	be	used	to	solve	a	problem,	that
does	not	mean	that	it	is	necessarily	the	appropriate	solution.

For	instance,	when	it	comes	to	this	example,	the	same	thing	could	be
accomplished	by	using	a	“mixin,”	or	a	small	class	that	simply	defines	the
appropriate	__init__,	__lt__,	and	__gt__	methods.	A	simple	approach	using	a
mixin	would	look	like	this:

import	time



class	SortableByCreationTime(object):

				def	__init__(self):

								self._created	=	time.time()

				def	__lt__(self,	other):

								return	self._created	<	other._created

				def	__gt__(self,	other):

								return	self._created	>	other._created

Applying	the	mixin	to	a	class	can	be	done	using	Python's	multiple	inheritance:

class	MyClass(MySuperclass,	SortableByCreationTime):

				pass

This	approach	has	different	advantages	and	drawbacks.	On	the	one	hand,	it	will
not	mercilessly	plow	over	__lt__	and	__gt__	methods	defined	by	the	class	or	its
superclasses	(and	it	may	not	be	obvious	when	the	code	is	read	later	that	the
decorator	was	clobbering	two	methods).

On	the	other	hand,	it	would	be	very	easy	to	get	into	a	situation	where	the	__init__
method	provided	by	SortableByCreationTime	does	not	run.	If	MyClass	or
MySuperclass	or	any	class	in	MySuperclass's	ancestry	defines	an	__init__	method,
it	will	win	out.	Reversing	the	class	order	does	not	solve	this	problem;	it	simply
reverses	it.

By	contrast,	the	decorator	handles	the	__init__	case	very	well,	simply	by
augmenting	the	effect	of	the	decorated	class's	__init__	method	and	otherwise
leaving	it	intact.

So,	which	approach	is	the	correct	approach?	It	depends.



Type	Switching
Thus	far,	the	discussion	in	this	chapter	has	only	considered	cases	in	which	a
decorator	is	expected	to	decorate	a	function	and	provide	a	function,	or	when	a
decorator	is	expected	to	decorate	a	class	and	provide	a	class.

There	is	no	reason	why	this	relationship	must	hold,	however.	The	only
requirement	for	a	decorator	is	that	it	is	a	callable	that	accepts	a	callable	and
returns	the	callable.	There	is	no	requirement	that	it	return	the	same	kind	of
callable.

One	more	advanced	use	case	for	decorators	is	actually	when	they	do	not	do	this.	In
particular,	it	can	be	valuable	for	a	decorator	to	decorate	a	function,	but	return	a
class.	This	can	be	a	very	useful	tool	for	situations	where	the	amount	of	boilerplate
code	grows,	or	for	allowing	developers	to	use	a	simple	function	for	simple	cases,
but	subclass	a	class	in	an	application's	API	for	more	advanced	cases.

An	example	of	this	in	the	wild	is	a	decorator	used	in	a	popular	task	runner	in	the
Python	ecosystem:	celery.	The	celery	package	provides	a	@celery.task	decorator
that	is	expected	to	decorate	a	function.	What	the	decorator	actually	does	is	return
a	subclass	of	celery's	internal	Task	class,	with	the	decorated	function	being	used
within	the	subclass's	run	method.

Consider	the	following	trivial	example	of	a	similar	approach:

class	Task(object):

				"""A	trivial	task	class.	Task	classes	have	a	‘run‘;	method,	which	runs

				the	task.

				"""

				def	run(self,	*args,	**kwargs):

								raise	NotImplementedError('Subclasses	must	implement	`run`.')

				def	identify(self):

								return	'I	am	a	task.'

def	task(decorated):

				"""Return	a	class	that	runs	the	given	function	if	its	run	method	is

				called.

				"""

				class	TaskSubclass(Task):

								def	run(self,	*args,	**kwargs):

												return	decorated(*args,	**kwargs)

				return	TaskSubclass

What	is	happening	here?	The	decorator	creates	a	subclass	of	Task	and	returns	the
class.	The	class	is	callable	calling	a	class	creates	an	instance	of	that	class	and	runs
its	_init_	method

The	value	of	doing	this	is	that	it	provides	a	hook	for	lots	of	augmentation.	The
base	Task	class	can	define	much,	much	more	than	just	the	run	method.	For
example,	a	start	method	might	run	the	task	asynchronously.	The	base	class	might
also	provide	methods	to	save	information	about	the	task's	status.	Using	a



decorator	that	swaps	out	a	function	for	a	class	here	enables	the	developer	to	only
consider	the	actual	body	of	his	or	her	task,	and	the	decorator	does	the	rest	of	the
work.

You	can	see	this	in	action	by	taking	an	instance	of	the	class	and	running	its
identify	method,	as	shown	here:

>>>	@task

>>>	def	foo():

>>>					return	2	+	2

>>>

>>>	f	=	foo()

>>>	f.run()

4

>>>	f.identify()

'I	am	a	task.'

A	Pitfall
This	exact	approach	carries	with	it	some	problems.	In	particular,	once	a	task
function	is	decorated	with	the	@task_class	decorator,	it	becomes	a	class.

Consider	the	following	simple	task	function	decorated	in	this	way:

@task

def	foo():

				return	2	+	2

Now,	attempt	to	run	it	directly	in	the	interpreter:

>>>	foo()

<__main__.TaskSubclass	object	at	0x10c3612d0>

That	is	a	bad	thing.	This	decorator	alters	the	function	in	such	a	way	that	if	the
developer	runs	it,	it	does	not	do	what	anyone	expects.	It	is	usually	not	acceptable
to	expect	the	function	to	be	declared	as	foo	and	then	run	using	the	convoluted
foo().run()	(which	is	what	would	be	necessary	in	this	case).

Fixing	this	requires	putting	a	little	more	thought	into	how	both	the	decorator	and
the	Task	class	are	constructed.	Consider	the	following	amended	version:

class	Task(object):

				"""A	trivial	task	class.	Task	classes	have	a	‘run‘	method,	which	runs

				the	task.

				"""

				def	__call__(self,	*args,	**kwargs):

								return	self.run(*args,	**kwargs)

				def	run(self,	*args,	**kwargs):

								raise	NotImplementedError('Subclasses	must	implement	'run`.')

				def	identify(self):

								return	'I	am	a	task.'



def	task(decorated):

				"""Return	a	class	that	runs	the	given	function	if	its	run	method	is

				called.

				"""

				class	TaskSubclass(Task):

								def	run(self,	*args,	**kwargs):

												return	decorated(*args,	**kwargs)

				return	TaskSubclass()

A	couple	of	key	differences	exist	here.	The	first	is	the	addition	of	the	__call__
method	to	the	base	Task	class.	The	second	difference	(which	complements	the
first)	is	that	the	@task_class	decorator	now	returns	an	instance	of	the
TaskSubclass,	rather	than	the	class	itself.

This	is	acceptable	because	the	only	requirement	for	the	decorator	is	that	it	return
a	callable,	and	the	addition	of	the	__call__	method	to	Task	means	that	its
instances	are	now	callable.

Why	is	this	pattern	valuable?	Again,	the	Task	class	is	trivial,	but	it	is	easy	to	see
how	more	functionality	could	be	added	here	that	is	useful	for	managing	and
running	tasks.

However,	this	approach	maintains	the	spirit	of	the	original	function	if	it	is	invoked
directly.	Consider	the	decorated	function	again:

@task

def	foo():

				return	2	+	2

And	now,	what	do	you	get	if	you	run	it	in	the	interpreter?

>>>	foo()

4

This	is	what	you	expect,	which	makes	this	a	far	superior	class	and	decorator
design.	Under	the	hood,	the	decorator	has	returned	a	TaskSubclass	instance.
When	that	instance	is	called	in	the	interpreter,	its	__call__	method	is	invoked,
which	calls	run,	which	calls	the	original	function.

You	can	see	that	you	still	got	your	instance	back,	though,	by	using	the	identify
method.

>>>	foo.identify()

'I	am	a	task.'

Now	you	have	an	instance	that,	when	called	directly,	calls	exactly	like	the	original
function.	However,	it	can	include	other	methods	and	attributes	to	provide	for
other	functionality.

This	is	powerful.	It	allows	a	developer	to	write	a	function	that	is	easily	and
explicitly	grafted	into	a	class	that	provides	for	alternate	ways	for	that	function	to
be	invoked	or	other	related	functionality.	This	is	a	helpful	paradigm.



Summary
Decorators	are	very	valuable	tools	that	you	can	use	to	write	maintainable,	readable
Python	code.	A	decorator's	value	is	in	the	fact	that	it	is	explicit,	as	well	as	the	fact
that	decorators	are	reusable.	They	provide	an	excellent	way	to	use	boilerplate
code,	write	it	once,	and	apply	it	in	many	different	situations.

This	useful	paradigm	is	possible	because	Python's	data	model	provides	functions
and	classes	as	first-class	objects,	capable	of	being	passed	around	and	augmented
like	any	other	object	in	the	language.

On	the	other	hand,	there	are	also	drawbacks	to	this	model.	In	particular,	the
decorator	syntax,	while	clean	and	easy	to	read,	can	obscure	the	fact	that	a	function
is	being	wrapped	within	another	function,	which	can	lead	to	challenges	in
debugging.	Poorly	written	decorators	may	create	errors	by	being	careless	about
the	nature	of	the	callables	they	wrap	(for	example,	by	ignoring	the	distinction
between	bound	methods	and	unbound	functions).

Additionally,	bear	in	mind	that,	like	any	function,	the	interpreter	must	actually
run	the	code	inside	the	decorator,	which	has	a	performance	impact.	Decorators
are	not	immune	to	this;	be	mindful	of	what	you	are	asking	your	decorators	to	do,
in	the	same	way	that	you	would	be	for	any	other	code	you	write.

Consider	using	decorators	as	a	way	to	take	leading	or	trailing	functionality	and
wrap	it	around	unrelated	functions.	Similarly,	decorators	are	useful	tools	for
function	registries,	signaling,	certain	cases	of	class	augmentation,	as	well	as	many
other	things.

Chapter	2	“Context	Managers,”	discusses	context	managers,	which	are	another
way	to	take	bits	of	functionality	that	require	reuse	across	an	application,	and
compartmentalize	them	in	an	effective	and	portable	way.





Chapter	2
Context	Managers
Context	managers	are	the	first	cousins	of	decorators.	Like	their	kindred,	they	are
tools	for	wrapping	code	around	other	code.	However,	whereas	decorators	wrap
defined	blocks	of	code	(such	as	functions	or	classes),	context	managers	wrap
arbitrary,	free-form	blocks	of	code.

In	almost	every	other	respect,	the	purposes	of	context	managers	and	decorators
are	equivalent	(and,	it	is	often	the	case	that	APIs	are	written	to	allow	you	to	use
either,	as	discussed	later	in	this	chapter).

This	chapter	introduces	and	explains	the	concept	of	context	managers,	showing
how	and	when	to	use	them,	and	enumerating	the	different	ways	of	handling
exceptions	that	may	occur	within	context	blocks.



What	Is	a	Context	Manager?
A	context	manager	is	an	object	that	wraps	an	arbitrary	block	of	code.	Context
managers	ensure	that	setup	is	consistently	performed	when	the	context	manager
is	entered,	and	that	teardown	is	consistently	performed	when	the	context	manager
is	exited.

It	is	important	to	note	early	that	the	exit	is	guaranteed.	If	a	context	manager	is
entered,	it	will,	by	definition,	be	exited.	This	holds	true	even	if	the	internal	code
raises	an	exception.	In	fact,	the	context	manager's	exit	code	is	given	an
opportunity	to	handle	such	exceptions	if	it	sees	fit	to	do	so	(although	it	is	not
obligated	to	do	so).

Therefore,	context	managers	perform	a	very	similar	function	to	the	try,	except,
and	finally	keywords.	They	are	often	a	useful	mechanism	to	encapsulate
boilerplate	try-except-finally	constructs	that	you	may	otherwise	repeat.

This	is	probably	the	most	common	use	of	context	managers—they	are	a	way	to
ensure	cleanup.



Context	Manager	Syntax
Consider	a	common	use	case	where	a	context	manager	would	be	useful—opening	a
file.	You	open	a	file	in	Python	with	the	built-in	open	function.	When	you	open	a
file,	it	is	your	responsibility	to	close	it	again,	as	shown	here:

try:

				my_file	=	open('/path/to/filename',	'r')

				contents	=	my_file.read()

finally:

				my_file.close()

You	use	a	finally	clause	to	ensure	that,	no	matter	what	happens,	my_file	will,	in
fact,	be	closed.	If	an	error	occurs	when	reading	the	file,	or	something	else	goes
wrong,	the	finally	clause	will	still	run,	and	my_file	will	be	closed.

The	with	Statement
So,	how	you	do	the	same	thing—open	a	file	and	ensure	that	it	is	properly	closed—
with	a	context	manager?	Context	managers	were	introduced	in	Python	2.5,	which
adds	a	new	keyword	to	the	language:	with.	You	use	the	with	statement	to	enter	a
context	manager.

As	it	happens,	Python's	built-in	open	function	can	also	be	used	as	a	context
manager.	This	code	is	identical	to	what	you	saw	previously:

with	open('/path/to/filename',	'r')	as	my_file:

				contents	=	my_file.read()

Essentially,	what	is	happening	here	is	that	the	with	statement	evaluates	the
expression	that	comes	after	it	(in	this	case,	the	open	call).	That	expression	is
expected	to	return	an	object	with	two	special	methods:	__enter__	and	__exit__
(more	on	those	shortly).	The	__enter__	method	returns	a	result	that	is	assigned	to
the	variable	after	the	as	keyword.

It	is	important	to	note	that	the	result	of	the	expression	after	with	is	not	being
assigned	to	said	variable.	In	fact,	it	is	not	assigned	to	anything	at	all.	It	is	what	is
returned	from	__enter__	that	is	assigned.

Simplicity	is	a	huge	reason	for	doing	it	this	way.	More	importantly,	however,
remember	that	the	exception-handling	and	cleanup	code	can	sometimes	be	very
complex,	and	applying	it	in	many	different	places	is	cumbersome.	As	with
decorators,	a	key	reason	to	use	context	managers	is	to	avoid	repetitive	code.

The	enter	and	exit	Methods
Remember	that	the	with	statement's	expression	is	responsible	for	returning	an
object	that	follows	a	particular	protocol.	Specifically,	the	object	must	define	an
__enter__	and	an	__exit__	method,	and	the	latter	method	must	take	particular
arguments.



The	__enter__	method	takes	no	arguments	except	for	the	traditional	self
argument.	It	is	run	immediately	when	the	object	is	returned,	and	its	return	value
is	assigned	to	the	variable	used	after	as,	if	any	(the	as	clause	is	technically
optional).	Generally,	the	__enter__	method	is	responsible	for	performing	some
kind	of	setup.

The	__exit__	method,	on	the	other	hand,	takes	three	positional	arguments	(not
including	the	traditional	self):	an	exception	type,	an	exception	instance,	and	a
traceback.	These	three	arguments	are	all	set	to	None	if	there	is	no	exception,	but
are	populated	if	an	exception	occurs	within	the	block.

Consider	the	following	simple	class	whose	instances	act	as	context	managers:

class	ContextManager(object):

				def	__init__(self):

								self.entered	=	False

				def	__enter__(self):

								self.entered	=	True

								return	self

				def	__exit__(self,	exc_type,	exc_instance,	traceback):

								self.entered	=	False

This	context	manager	does	very	little.	It	simply	returns	itself	and	sets	its	entered
variable	to	True	upon	entrance,	and	then	False	upon	exit.

You	can	observe	this	by	looking	at	this	context	manager	in	the	Python	shell.	If	you
create	a	new	ContextManager	instance,	you	find	that	its	entered	value	is	False	as
expected:

>>>	cm	=	ContextManager()

>>>	cm.entered

False

If	you	use	this	same	ContextManager	instance	as	a	context	manager,	observe	that
its	entered	attribute	becomes	True,	then	False	again	on	exit.

>>>	with	cm:

...			cm.entered…

True

>>>	cm.entered

False

If	you	do	not	need	the	ContextManager	instance	for	anything	else,	you	can
instantiate	it	in	the	with	statement.	This	works	because	its	__enter__	method	just
returns	itself.

>>>	with	ContextManager()	as	cm:

...			cm.entered…

True

Exception	Handling



A	context	manager	must	define	an	__exit__	method,	which	may	optionally	handle
exceptions	that	are	raised	in	the	wrapped	code,	or	handle	anything	else	needed	to
tear	down	the	context	manager	state.

As	mentioned	previously,	the	__exit__	method	must	define	three	positional
arguments:	the	type	of	the	exception	(called	exc_type	in	this	chapter),	the	instance
of	the	exception	(called	exc_instance	here),	and	the	traceback	option	(called
traceback	here).	If	no	exception	occurred	within	the	context	manager	code,	all
three	of	these	values	will	be	None.

If	the	__exit__	method	receives	an	exception,	it	has	the	responsibility	to	handle
that	exception.	Fundamentally,	it	has	three	options:

It	can	propagate	the	exception	(causing	it	to	be	re-raised	after	__exit__
finishes).

It	can	suppress	the	exception.

It	can	raise	a	different	exception.

You	can	propagate	exceptions	by	having	an	__exit__	method	that	returns	False,	or
suppress	exceptions	by	having	an	__exit__	method	that	returns	True.
Alternatively,	if	__exit__	raises	a	different	exception,	it	is	used	in	place	of	the
exceptions	it	was	sent.

Each	of	these	options	is	covered	in	more	detail	in	examples	throughout	this
chapter.



When	You	Should	Write	Context	Managers
Several	common	reasons	exist	to	write	context	managers.	Generally,	these	involve
ensuring	that	a	certain	resource	is	both	initialized	and	de-initialized	in	an
expected	manner,	or	trying	to	avoid	repetition.

Resource	Cleanliness
One	of	the	key	reasons	to	write	context	managers	is	for	situations	in	which	you	are
opening	and	closing	a	resource	(such	as	a	file	or	a	database	connection).	It	is	often
important	to	ensure	that	the	handle	in	question	is	closed	properly,	to	avoid	ending
up	with	a	situation	where	many	zombie	processes	can	build	up	over	time.

Context	managers	excel	here.	By	opening	a	resource	in	the	__enter__	method	and
returning	it,	the	__exit__	method	is	guaranteed	to	be	run,	and	can	close	the
resource	before	allowing	the	exception	to	bubble.

Consider	the	following	context	manager	that	opens	a	PostgreSQL	database
connection:

import	psycopg2

class	DBConnection(object):

				def	__init__(self,	dbname=None,	user=None,

																							password=None,	host='localhost'):

								self.host	=	host

								self.dbname	=	dbname

								self.user	=	user

								self.password	=	password

				def	__enter__(self):

								self.connection	=	psycopg2.connect(

												dbname=self.dbname,

												host=self.host,

												user=self.user,

												password=self.password,

								)

								return	self.connection.cursor()

				def	__exit__(self,	exc_type,	exc_instance,	traceback):

								self.connection.close()

Within	the	context	manager,	it	is	possible	to	run	queries	against	the	database	and
retrieve	results.

>>>	with	DBConnection(user='luke',	dbname='foo')	as	db:

...					db.execute('SELECT	1	+	1')

...					db.fetchall()

...

[(2,)]

However,	as	soon	as	the	context	manager	exists,	the	database	cursor	that	you



assigned	to	db	becomes	closed,	and	further	queries	cannot	be	made	against	it.

>>>	with	DBConnection(user='luke',	dbname='foo')	as	db:

...					db.execute('SELECT	1	+	1')

...					db.fetchall()

...

[(2,)]

>>>	db.execute('SELECT	1	+	1')

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

psycopg2.InterfaceError:	cursor	already	closed

What	has	happened	here?	This	context	manager	creates	a	psycopg2	connection
object	and	returns	a	cursor,	which	the	developer	can	use	to	interact	with	the
database.	What	is	important	here,	though,	is	that	the	connection	is	guaranteed	to
be	closed	when	the	context	manager	exits.

This	is	important	because,	as	mentioned,	lingering	database	connections	not	only
consume	memory,	but	they	also	open	files	or	ports	on	both	the	application
machine	and	the	database	machine.	Additionally,	some	databases	also	have
maximum	connection	allowances.

Note	also	that,	unlike	the	previous	example,	this	context	manager	does	not	simply
return	itself	at	the	end	of	the	__enter__	method.	Instead,	it	returns	a	database
cursor.	This	is	fine,	and	a	useful	paradigm.	However,	it	is	still	the	context
manager's	__exit__	method	that	runs.

Most	frameworks	that	work	with	databases	handle	opening	and	closing	your
database	connections	for	you,	but	this	principle	remains:	if	you	are	opening	a
resource	and	must	ensure	that	it	is	being	properly	closed,	a	context	manager	is	an
excellent	tool.

Avoiding	Repetition
When	it	comes	to	avoiding	repetition,	the	most	common	place	where	this	is	useful
is	in	exception	handling.	Context	managers	can	both	propagate	and	suppress
exceptions,	which	makes	them	ideal	for	taking	repetitive	except	clauses	and
defining	them	in	one	place.

Propagating	Exceptions
An	__exit__	method	that	just	propagates	the	exception	up	the	chain	can	do	so	by
returning	False.	It	need	not	interact	with	the	exception	instance	at	all.	Consider
the	following	context	manager:

class	BubbleExceptions(object):

				def	__enter__(self):

								return	self

				def	__exit__(self,	exc_type,	exc_instance,	traceback):

								if	exc_instance:

												print('Bubbling	up	exception:	%s.'	%	exc_instance)



								return	False

Running	a	normal	block	of	code	(that	does	not	raise	an	exception)	with	this
context	manager	will	do	nothing	particularly	interesting.

>>>	with	BubbleExceptions():

...					5	+	5…

10

On	the	other	hand,	this	block	of	code	does	actually	raise	an	exception:

>>>	with	BubbleExceptions():

...					5	/	0…

Bubbling	up	exception:	integer	division	or	modulo	by	zero.

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	2,	in	<module>

ZeroDivisionError:	integer	division	or	modulo	by	zero

A	couple	important	things	are	worth	noting	here.	The	first	printed	line	(which
begins	with	Bubbling	up	exception:	integer…)	was	generated	by	the	__exit__
method	itself.	It	corresponds	to	the	print	statement	on	the	second	line	of
__exit__.	This	means	that	__exit__	did	run,	and	complete.	Because	it	returned
False,	the	exception	that	was	sent	to	__exit__	in	the	first	place	is	simply	re-raised.

Suppressing	Exceptions
As	mentioned	previously,	another	option	that	the	__exit__	method	has	is	to
suppress	the	exception	that	it	receives.	The	following	context	manager	suppresses
any	and	every	exception	that	might	be	sent	to	its	__exit__	method	(you	should
never	actually	do	this,	however):

class	SuppressExceptions(object):

				def	__enter__(self):

								return	self

				def	__exit__(self,	exc_type,	exc_instance,	traceback):

								if	exc_instance:

												print('Suppressing	exception:	%s.'	%	exc_instance)

								return	True

The	bulk	of	this	code	is	similar	to	the	BubbleExceptions	class	from	earlier,	with	the
primary	difference	being	that	now	the	__exit__	method	returns	True	instead	of
False.

The	example	of	showing	normal,	uninteresting	code	that	does	not	raise	any
exception	at	all	remains	unchanged:

>>>	with	SuppressExceptions():

...					5	+	5…

10

However,	if	you	do	something	that	raises	an	exception,	you	see	a	different	result:



>>>	with	SuppressExceptions():

...					5	/	0…

Suppressing	exception:	integer	division	or	modulo	by	zero.

The	first	and	most	obvious	thing	to	note	is	that	the	traceback	is	gone.	The
exception	was	handled	(suppressed)	by	the	__exit__	method,	so	program
execution	continues	with	no	exception	raised.

The	second	thing	to	note	is	that	no	value	was	ever	returned.	Whereas	the
expression	5	+	5,	when	entered	into	the	interpreter,	gave	a	value	of	10,	the
exception-raising	5	/	0	simply	never	shows	a	value.	The	exception	was	raised	in
the	process	of	computing	a	value,	which	triggered	the	running	of	__exit__.	A	value
is	never	actually	returned.	It	is	also	worth	noting	that	if	any	code	was	present	after
5	/	0,	it	would	never	run.

As	you	would	expect,	however,	exception	handlers	that	are	defined	within	the
context	block	are	handled	before	the	context	block	completes.	Exceptions	handled
within	a	context	block	are	considered	to	be	dealt	with	and	are	not	sent	to	__exit__.

Consider	the	following	example:

with	SuppressExceptions():

				try:

								5	/	0

				except	ZeroDivisionError:

								print('Exception	caught	within	context	block.')

If	you	run	this,	the	“Exception	caught	within	context	block.”	message	will	print,
and	no	exception	will	be	sent	to	__exit__.

Although	propagating	exceptions	is	fairly	straightforward,	suppressing	exceptions
is	always	something	that	you	should	do	carefully.	Suppressing	too	many
exceptions	leads	to	code	that	is	extremely	difficult	to	debug.	Simply	suppressing
all	exceptions	is	fundamentally	equivalent	to	a	try	block	that	looks	like	this:

try:

				[do	something]

except:

				pass

Suffice	it	to	say	that	this	is	very	rarely	wise.

__exit__	methods	can,	however,	conditionally	suppress	or	handle	exceptions,
because	they	are	provided	the	type	and	instance	of	the	exception,	as	well	as	a	full
traceback.	In	fact,	the	exception	handling	is	extremely	customizable.

Handling	Certain	Exception	Classes
A	simple	exception-handling	__exit__	function	may	simply	check	to	see	if	the
exception	is	an	instance	of	a	particular	exception	class,	perform	whatever
exception	handling	is	necessary,	and	return	True	(or	return	False)	if	it	gets	any
other	exception	class.



class	HandleValueError(object):

				def	__enter__(self):

								return	self

				def	__exit__(self,	exc_type,	exc_instance,	traceback):

								#	Return	True	if	there	is	no	exception.

								if	not	exc_type:

												return	True

								#	If	this	is	a	ValueError,	note	that	it	is	being	handled	and

								#	return	True.

								if	issubclass(exc_type,	ValueError):

												print('Handling	ValueError:	%s'	%	exc_instance)

												return	True

								#	Propagate	anything	else.

								return	False

If	you	use	this	context	manager	and	raise	ValueError	inside	the	block,	you	see	that
it	prints	and	then	suppresses	the	exception.

>>>	with	HandleValueError():

...					raise	ValueError('Wrong	value.')

...

Handling	ValueError:	Wrong	value.

Similarly,	if	you	use	this	context	manager	but	raise	a	different	class	of	exception
(such	as	TypeError,	instead),	it	will	bubble	and	you	will	still	get	your	traceback.

>>>	with	HandleValueError():

...					raise	TypeError('Wrong	type.')

...

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	2,	in	<module>

TypeError:	Wrong	type.

By	itself,	this	does	not	have	a	whole	lot	of	value.	After	all,	this	is	really	just	a
substitute	for	a	much	more	straightforward	try	clause.

try:

				[do	something]

except	ValueError	as	exc_instance:

				print('Handling	ValueError:	%s'	%	exc_instance)

One	way	that	the	context	manager	can	be	valuable	is	when	the	work	that	must	be
done	in	the	except	clause	is	both	non-trivial	and	must	be	repeated	in	multiple
places	throughout	the	application.	The	context	manager	encapsulates	not	only	the
except	clause,	but	also	its	body.

Excluding	Subclasses
There	is	also	a	little	more	flexibility	in	how	the	class	or	instance	check	is	done.	For
example,	suppose	that	you	want	to	catch	a	given	class	of	exception,	but	explicitly
not	its	subclasses.	You	cannot	do	that	in	a	traditional	except	block	(nor	should	you



be	able	to),	but	a	context	manager	is	able	to	address	such	an	edge	case,	as	shown
here:

class	ValueErrorSubclass(ValueError):

				pass

class	HandleValueError(object):

				def	__enter__(self):

								return	self

				def	__exit__(self,	exc_type,	exc_instance,	traceback):

								#	Return	True	if	there	is	no	exception.

								if	not	exc_type:

												return	True

								#	If	this	is	a	ValueError	(but	not	a	ValueError	subclass),

								#	note	that	it	is	being	handled	and	return	True.

								if	exc_type	==	ValueError:

												print('Handling	ValueError:	%s'	%	exc_instance)

												return	True

								#	Propagate	anything	else.

								return	False

Note	that	the	HandleValueError	context	manager	has	changed	slightly	now.	It
checks	its	type	using	==	rather	than	the	more	traditional	issubclass	check	that	the
previous	example	used.	This	means	that	although	it	will	handle	ValueError	as
before,	it	will	not	handle	a	ValueError	subclass	such	as	the	ValueErrorSubclass
defined	previously:

>>>	with	HandleValueError():

...					raise	ValueErrorSubclass('foo	bar	baz')

...

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	2,	in	<module>

__main__.ValueErrorSubclass:	foo	bar	baz

Attribute-Based	Exception	Handling
Similarly,	a	context	manager	might	decide	whether	to	handle	an	exception	based
on	not	the	type	of	the	exception	(which	is	what	an	except	clause	must	do),	but
rather	based	on	an	attribute	of	the	exception.

Consider	the	following	function	designed	to	run	shell	commands	conveniently,
and	use	an	exception	class	that	is	designed	to	be	raised	in	response	to	shell	errors:

import	subprocess

class	ShellException(Exception):

				def	__init__(self,	code,	stdout='',	stderr=''):

								self.code	=	code

								self.stdout	=	stdout



								self.stderr	=	stderr

				def	__str__(self):

								return	'exit	code	%d	-	%s'	%	(self.code,	self.stderr)

def	run_command(command):

				#	Run	the	command	and	wait	for	it	to	complete.

				proc	=	subprocess.Popen(command.split('	'),	stdout=subprocess.PIPE,

																																																stderr=subprocess.PIPE)

				proc.wait()

				#	Get	the	stdout	and	stderr	from	the	shell.

				stdout,	stderr	=	proc.communicate()

				#	Sanity	check:	If	the	shell	returned	a	non-zero	exit	status,	raise	an

				#	exception.

				if	proc.returncode	>	0:

								raise	ShellException(proc.returncode,	stdout,	stderr)

				#	Return	stdout.

				return	stdout

Such	a	function	(and	exception	class)	is	very	easy	to	use.	The	following	is	an
attempt	to	rm	a	bogus	file:

run_command('rm	bogusfile')

Running	this	will	generate	the	ShellException	traceback	as	expected.

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

		File	"<stdin>",	line	11,	in	run_command

__main__.ShellException:	exit	code	1	-	rm:	bogusfile:	No	such	file	or	

directory

What	happens	when	it	comes	time	to	handle	these	exceptions?	Handling	any
generic	ShellException	is	easy,	but	imagine	a	situation	where	you	receive	a
ShellException	but	only	want	to	handle	a	particular	exit	code.	A	context	manager
is	one	possible	way	to	approach	this.

For	example,	say	that	you	want	to	remove	a	file,	but	you	are	okay	with	a	situation
where	the	file	was	already	removed.	(For	the	purpose	of	this	example,	ignore	that
os.remove	exists.)	In	this	case,	you	would	be	fine	with	a	return	code	of	0,	which
indicates	successful	removal	of	the	file,	as	well	as	a	return	code	of	1,	which
indicates	that	the	file	was	already	absent.	On	the	other	hand,	an	exit	code	of	64	is
still	problematic,	because	this	would	indicate	a	usage	error	of	some	kind.	This
should	still	be	raised.

Here	is	a	context	manager	that	would	allow	some	ShellException	instances	based
on	their	code:

class	AcceptableErrorCodes(object):

				def	__init__(self,	*error_codes):



								self.error_codes	=	error_codes

				def	__enter__(self):

								return	self

				def	__exit__(self,	exc_type,	exc_instance,	traceback):

								#	Sanity	check:	If	this	is	not	an	exceptional	situation,	then	just

								#	be	done.

								if	not	exc_type:

												return	True

								#	Sanity	check:	If	this	is	anything	other	than	a	ShellException,

								#	then	we	do	not	actually	know	what	to	do	with	it.

								if	not	issubclass(exc_type,	ShellException):

												return	False

								#	Return	True	if	and	only	if	the	ShellException	has	a	code	that

								#	matches	one	of	the	codes	on	our	error_codes	list.

								return	exc_instance.code	in	self.error_codes

This	example	code	actually	introduces	a	new	pattern.	The	context	manager	is
given	the	error	codes	that	it	should	allow	when	the	context	manager	is	initiated.	In
this	case,	AcceptableErrorCodes	takes	any	number	of	integers	as	arguments,	and
those	are	used	to	determine	which	error	codes	are	actually	acceptable.

If	you	want	to	attempt	to	remove	a	non-existent	file	when	using	the
AcceptableErrorCodes	context	manager,	it	will	work	without	incident.

>>>	with	AcceptableErrorCodes(1):

...					run_command('rm	bogusfile')

...

What	this	context	manager	will	not	do,	however,	is	just	blindly	swallow	up	every
ShellException	it	gets.	Consider	the	following	case	where	you	actually	use	rm
incorrectly:

>>>	with	AcceptableErrorCodes(1):

...					#	-m	is	not	a	switch	available	to	rm	(at	least	in	Mac	OS	X).

...					run_command('rm	-m	bogusfile')

...

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	3,	in	<module>

		File	"<stdin>",	line	11,	in	run_command

__main__.ShellException:	exit	code	64	-	rm:	illegal	option—m

usage:	rm	[-f	|	-i]	[-dPRrvW]	file…

							unlink	file

So,	why	did	this	cause	a	traceback?	Because	the	exit	code	was	64	(on	Mac	OS	X;
this	may	vary	based	on	the	exact	operating	system	you	are	using),	and	you	told	the
context	manager	that	the	only	acceptable	erratic	exit	code	was	1.	Therefore,
__exit__	returned	False,	and	the	exception	was	bubbled	as	usual.



A	Simpler	Syntax
Many	of	the	context	managers	explored	thus	far	are	actually	very	simple.	Although
they	are	fully	constructed	classes,	their	only	real	purpose	is	to	provide
straightforward,	linear	__enter__	and	__exit__	functionality.

This	structure	is	extremely	powerful.	It	allows	for	the	creation	of	very	complex	and
context	managers	that	can	do	a	great	deal	of	customizable	logic.	However,	many
context	managers	are	very	simple,	and	creating	a	class	and	manually	defining
__enter__	and	__exit__	may	seem	like	overkill.

A	simpler	approach	is	designed	around	handling	the	simple	cases.	The	Python
standard	library	provides	a	decorator	that	will	decorate	a	simple	function	and
make	it	into	a	context	manager	class.

This	decorator	is	@contextlib.contextmanager,	and	functions	it	decorates	are
expected	to	yield	a	single	value	somewhere	during	the	function.	(The	yield
statement	is	discussed	in	more	detail	in	Chapter	3,	“Generators.”)

Consider	what	the	AcceptableErrorCodes	class	might	look	like	as	a	single,	more
straightforward	function:

import	contextlib

@contextlib.contextmanager

def	acceptable_error_codes(*codes):

				try:

								yield

				except	ShellException	as	exc_instance:

								#	If	this	error	code	is	not	in	the	list	of	acceptable	error

								#	codes,	re-raise	the	exception.

								if	exc_instance.code	not	in	codes:

												raise

								#	This	was	an	acceptable	error;	no	need	to	do	anything.

								pass

This	function	ultimately	does	the	exact	same	thing	that	your	class	did.	(It	is	worth
noting	that	the	pass	line	is	for	instructional	purposes—it	is	obviously	not
necessary.)

>>>	with	acceptable_error_codes(1):

...					run_command('rm	bogusfile')

Similarly,	error	codes	are	still	checked,	and	only	the	appropriate	ones	are
intercepted.

>>>	with	acceptable_error_codes(1):

...					run_command('rm	-m	bogusfile')

...

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	2,	in	<module>



		File	"<stdin>",	line	11,	in	run_command

__main__.ShellException:	exit	code	64	-	rm:	illegal	option—M

usage:	rm	[-f	|	-i]	[-dPRrvW]	file…

							unlink	file

This	simpler	syntax	(just	declaring	a	function	with	a	single	yield	and	using	the
@contextlib.contextmanager	decorator)	is	more	than	sufficient	to	create	most
simple	context	managers,	and	is	easier	to	read	later.	Create	a	context	manager
class	yourself	when	you	need	the	power	that	this	provides,	and	use	the	decorator
with	a	function	otherwise.



Summary
Context	managers	provide	an	excellent	way	to	ensure	that	resources	are	handled
appropriately,	as	well	as	to	take	exception-handling	code	that	would	be	repeated
in	multiple	different	places	throughout	an	application	and	giving	that	code	a
single	home.

Along	with	decorators,	context	managers	are	tools	for	employing	the	simple
principle	of	not	repeating	yourself	unless	you	absolutely	must.	Where	decorators
encase	named	functions	and	classes,	context	managers	are	ideal	for	encasing
arbitrary	blocks	of	code.

Chapter	3	discusses	generators,	which	produce	values	one	by	one	when	iterated,
as	each	value	is	needed,	rather	than	having	to	compute	an	entire	set	of	values	in
advance.





Chapter	3
Generators
Generators	allow	sequences	of	values	to	be	handled	while	computing	each	value	of
the	sequence	only	as	it	is	needed,	rather	than	as	a	traditional	list	(which	must
compute	all	of	its	values	ahead	of	time).

Using	generators	where	appropriate	can	result	in	substantial	memory	savings,
because	large	collections	of	data	do	not	need	to	be	stored	in	memory	in	their
entirety.	Similarly,	generators	are	uniquely	able	to	handle	representation	of	some
sequences	that	cannot	be	accurately	represented	by	lists.

This	chapter	explains	what	a	generator	is,	and	the	syntax	for	using	generators	in
Python.	It	also	covers	some	of	the	common	generators	that	are	provided	in	the
Python	standard	library.



Understanding	What	a	Generator	Is
A	generator	is	a	function	that,	instead	of	executing	and	returning	a	single	value,
sends	back	one	or	more	values	in	a	sequence.	A	generator	function	executes	until
it	is	told	to	yield	a	value,	and	then	it	continues	execution	until	told	to	do	so	again.
This	continues	until	the	function	is	complete,	or	until	iteration	over	that	generator
terminates.

There	is	no	explicit	requirement	that	a	generator	terminate	at	all;	generators	may
represent	infinite	sequences.	There	is	nothing	inherently	wrong	with	this.	In	cases
where	this	occurs,	it	is	simply	the	responsibility	of	the	code	iterating	over	the
generator	to	break	out	of	the	sequence	when	appropriate	(such	as	with	a	break
statement).



Understanding	Generator	Syntax
A	generator	function	is	recognizable	by	the	presence	of	one	or	more	yield
statements	inside	the	function,	usually	instead	of	a	return	statement.	In	Python	2,
a	yield	statement	and	a	return	statement	cannot	coexist	in	the	same	function.
However,	in	Python	3,	it	is	possible	to	have	both	yield	and	return	(discussed	in
more	detail	later).

Like	the	return	statement,	the	yield	statement	commands	the	function	to	send
back	a	value	to	the	caller.	Unlike	the	return	statement,	however,	the	yield
statement	does	not	actually	terminate	the	function's	execution.	Rather,	execution
is	temporarily	halted	until	the	generator	is	resumed	by	the	calling	code,	at	which
point	it	picks	up	where	it	left	off.

Consider	the	following	very	simple	generator:

def	fibonacci():

				yield	1

				yield	1

				yield	2

				yield	3

				yield	5

				yield	8

This	generator	represents	the	beginning	of	the	Fibonacci	sequence	(that	is,	the
sequence	in	which	each	integer	is	the	sum	of	the	previous	two).	You	can	iterate
generators,	as	you	can	see	by	using	a	simple	for…in	loop	in	the	Python	interactive
terminal.

>>>	for	i	in	fibonacci():

...					print(i)

...

1

1

2

3

5

8

Obviously,	this	particular	generator	is	probably	better	represented	as	a	plain
Python	list.	However,	consider	a	generator	which,	instead	of	returning	six
Fibonacci	numbers,	returns	an	infinite	series	of	them,	as	shown	here:

def	fibonacci():

				numbers	=	[]

				while	True:

								if	len(numbers)	<	2:

												numbers.append(1)

								else:

												numbers.append(sum(numbers))

												numbers.pop(0)

								yield	numbers[-1]



This	generator	will	yield	an	infinite	sequence	of	Fibonacci	numbers.	Using	the
simple	for…in	from	the	interactive	terminal	shown	previously	would	simply	print
numbers,	which	very	quickly	become	humorously	long	(that	is,	to	the	screen	into
perpetuity).



Note

For	the	curious,	I	tried	running	this	for	a	few	minutes	in	a	Python	3.4
terminal	to	see	how	long	it	would	take	to	overflow	the	maximum	integer	size.
However,	after	about	five	minutes,	I	got	bored	and	said,	“KeyboardInterrupt
to	the	rescue!”	The	computations	themselves	would	probably	get	to
sys.maxsize	reasonably	quickly,	but	the	terminal	I/O	is	much	slower.

Unlike	the	previous	fibonacci	function,	this	one	is	not	better	represented	as	a
simple	Python	list.	In	fact,	not	only	would	it	be	unwise	to	try	to	represent	this	as	a
simple	Python	list,	it	would	be	impossible.	Python	lists	cannot	store	infinite
sequences	of	values.

The	next	Function
You	can	ask	a	generator	for	a	value	without	using	a	for…in	loop.	Sometimes	you
may	want	to	just	get	a	single	value,	or	a	fixed	number	of	values.	Python	provides
the	built-in	next	function,	which	can	ask	a	generator	(actually,	any	object	with	a
_next_	method,	called	next	in	Python	2)	for	its	next	value.

The	earlier	fibonacci	function	yields	an	infinite	sequence	of	Fibonacci	numbers.
Instead	of	iterating	over	the	entire	thing,	you	can	ask	for	values	one	at	a	time.

First,	you	simply	create	your	generator	by	calling	the	fibonacci	function	and
saving	its	returned	value.	Because	the	function	has	yield	statements	rather	than	a
return	statement,	the	Python	interpreter	knows	to	just	return	the	generator
object.

>>>	gen	=	fibonacci()

>>>	gen

<generator	object	fibonacci	at	0x101555dc8>

At	this	point,	it	is	worth	noting	that	none	of	the	code	within	fibonacci	has	actually
run.	The	only	thing	that	the	interpreter	has	done	is	recognize	that	a	generator	is
present	and	return	a	generator	object,	which	is	ready	to	run	the	code	once	a	value
is	requested.

You	can	use	the	built-in	next	function	to	request	your	first	value,	as	shown	here:

>>>	next(gen)

1

Now	(and	only	now)	some	of	the	actual	code	in	the	fibonacci	function	has	been
run.	(To	make	the	explanation	as	clear	as	possible,	an	explicit	continue	statement
has	been	added	at	the	end	of	the	loop.)

def	fibonacci():

				numbers	=	[]

				while	True:



								if	len(numbers)	<	2:		#	True;	numbers	==	[]

												numbers.append(1)

								else:

												numbers.append(sum(numbers))

												numbers.pop(0)

								yield	numbers[-1]

								continue

The	function	is	entered,	and	it	begins	the	first	iteration	of	the	while	loop.	Because
the	numbers	list	is	empty	at	this	point,	the	value	1	is	appended	to	the	list.	Finally,
you	get	to	the	yield	numbers[-1]	statement.	At	this	point,	the	generator	has	been
given	a	value	to	yield,	so	execution	halts,	and	the	value	1	is	yielded.	This	is	where
the	execution	ends;	the	continue	statement	does	not	yet	run.

Now,	issue	next(gen)	again,	as	shown	here:

>>>	next(gen)

1

Execution	picks	up	where	it	left	off,	which	means	the	first	thing	to	run	is	the
continue	statement.

def	fibonacci():

				numbers	=	[]

				while	True:

								if	len(numbers)	<	2:

												numbers.append(1)

								else:

												numbers.append(sum(numbers))

												numbers.pop(0)

								yield	numbers[-1]

								continue

This	sends	you	back	to	the	top	of	the	while	loop.	Your	numbers	list	only	has	one
member	(it	is	[1]),	so	len(numbers)	is	still	less	than	2,	and	that	path	is	chosen	at
the	if	statement	again.	Your	numbers	list	is	now	[1,	1],	and	the	final	element	of
the	list	is	yielded,	stopping	execution.

def	fibonacci():

				numbers	=	[]

				while	True:

								if	len(numbers)	<	2:		#	True;	numbers	==	[1]

												numbers.append(1)

								else:

												numbers.append(sum(numbers))

												numbers.pop(0)

								yield	numbers[-1]

								continue

Now,	issue	next(gen)	yet	again,	as	shown	here:

>>>	next(gen)

2



Again,	execution	picks	up	where	it	left	off,	meaning	the	next	thing	to	run	is	the
continue	statement.

def	fibonacci():

				numbers	=	[]

				while	True:

								if	len(numbers)	<	2:

												numbers.append(1)

								else:

												numbers.append(sum(numbers))

												numbers.pop(0)

								yield	numbers[-1]

								continue

The	continue	statement	sends	the	interpreter	back	to	the	stop	of	the	while	loop.
However,	now	it	takes	the	else	pathway	when	it	gets	to	the	if	statement,	because
numbers	is	now	a	list	with	two	elements	([1,	1]).	The	sum	of	the	two	elements	is
then	appended	to	the	end	of	the	list,	and	the	first	element	is	removed.	Again,	you
get	to	the	yield	statement,	and	it	yields	the	final	element	of	the	list,	which	is	2.

def	fibonacci():

				numbers	=	[]

				while	True:

								if	len(numbers)	<	2:		#	False;	numbers	==	[1,	1]

												numbers.append(1)

								else:

												numbers.append(sum(numbers))

												numbers.pop(0)

								yield	numbers[-1]

								continue

If	you	issue	next(gen)	again,	the	interpreter	will	follow	the	same	path	(because	the
length	of	the	numbers	list	is	still	2).	Of	course,	now	the	numbers	list	itself	has
changed	from	[1,	1]	to	[1,	2],	so	the	result	is	different.	The	value	3	is	appended
to	the	list,	the	1	is	lopped	off	of	the	beginning,	and	3	is	yielded.

>>>	next(gen)

3

If	you	continue	to	ask	for	more	values,	you	see	this	pattern	repeat.	The	same	code
runs,	but	against	an	updated	numbers	list,	so	the	yielded	values	continue	along	the
Fibonacci	series.

>>>	next(gen)

5

>>>	next(gen)

8

>>>	next(gen)

13

>>>	next(gen)

21

Notice	that	a	few	things	are	not	happening.	You	are	not	storing	a	huge	list	of



Fibonacci	numbers	in	memory.	The	only	numbers	that	you	must	store	are	the
most	recent	two,	because	they	are	required	to	find	the	next	number	in	the	series.
The	generator	scraps	anything	that	is	out	of	date.	This	would	matter	if	the
generator	were	to	continue	on	indefinitely,	because	if	you	needlessly	held	on	to
every	previous	value,	eventually	the	list	would	fill	up	free	memory.

Similarly,	the	generator	only	computes	each	value	in	the	series	when	it	is
specifically	requested.	At	this	point	in	code	execution,	the	generator	has	not
bothered	to	determine	that	the	next	value	that	it	will	need	to	yield	back	(if	asked)
is	34,	precisely	because	it	may	not	be	asked.

The	StopIteration	Exception
As	with	other	functions,	with	generators,	you	may	want	to	have	more	than	one
potential	exit	path.	For	example,	the	following	“plain”	function	has	multiple	exit
paths	using	multiple	return	statements:

def	my_function(foo,	add_extra_things=True):

				foo	+=	'\nadded	things'

				if	not	add_extra_things:

								return	foo

				foo	+=	'\n	added	extra	things'

				return	foo

This	function	normally	returns	at	the	end	of	the	block.	However,	if	the	keyword
argument	add_extra_things	is	provided	and	set	to	False,	the	earlier	return
statement	on	the	third	line	of	the	function	will	be	hit	instead,	and	function
execution	will	be	cut	off	there.

Plenty	of	reasons	exist	to	do	this,	and	generators	must	have	a	mechanism	to	serve
a	similar	purpose.

Python	2
The	correct	approach	for	this	depends	somewhat	on	which	version	of	Python	you
are	using.	In	Python	2,	generators	are	not	allowed	to	have	return	statements.	If
you	attempt	to	write	a	function	with	both	a	yield	statement	and	a	return
statement,	you	get	a	syntax	error,	as	shown	here:

>>>	def	my_generator():

...					yield	1…					return…

		File	"<stdin>",	line	3

SyntaxError:	'return'	with	argument	inside	generator

Instead,	Python	provides	a	built-in	exception	called	StopIteration,	which	serves	a
similar	purpose.	When	a	generator	is	being	iterated	over	and	StopIteration	is
raised,	this	signals	that	the	generator's	iteration	is	complete,	and	it	exits.	The
exception	is	caught	in	this	case,	and	there	is	no	traceback.	On	the	other	hand,	if
next	is	being	used,	the	StopIteration	exception	bubbles.

Consider	the	following	simple	generator:



>>>	def	my_generator():

...					yield	1…					yield	2…					raise	StopIteration…					yield	3

If	you	iterate	over	this,	you	will	get	the	values	1	and	2,	and	then	the	generator	will
exit	cleanly.	The	yield	3	statement	never	runs	(similar	to	code	that	exists	after	a
return	statement).

>>>	[i	for	i	in	my_generator()]

[1,	2]

If	you	manually	run	next	on	the	generator,	the	first	two	next	calls	will	yield	values,
and	the	third	(and	any	subsequent)	call	will	raise	a	StopIteration	exception,	as
shown	here:

>>>	gen	=	my_generator()

>>>	next(gen)

1

>>>	next(gen)

2

>>>	next(gen)

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

		File	"<stdin>",	line	4,	in	my_generator

StopIteration

Python	3
In	Python	3,	the	situation	is	similar,	but	you	have	one	additional	syntactic	option.
Python	3	removes	the	restriction	that	yield	and	return	cannot	appear	together	in
a	function.	In	this	case,	using	return	effectively	becomes	an	alias	for	raise
StopIteration.

It	is	worth	noting	that	if	you	return	a	value	in	your	return	statement,	it	does	not
become	a	final	yielded	value.	Rather,	the	value	is	sent	as	the	exception	message.
Consider	the	following	statement:

return	42

This	is	equivalent	to	the	following:

raise	StopIteration(42)

And,	very	importantly,	it	is	not	equivalent	to	the	following:

yield	42

return

In	code	that	is	intended	to	be	cross-compatible	with	Python	2	and	Python	3,	it	is
probably	preferable	to	use	the	raise	StopIteration	form	explicitly.	In	code	that
only	runs	on	Python	3,	it	likely	does	not	matter	much.



Communication	with	Generators
The	generators	explored	thus	far	are	unidirectional	in	their	communication.	They
yield	values	to	the	calling	code;	nothing	is	ever	sent	to	the	generator.

However,	the	generator	protocol	also	supports	an	additional	send	method	that
allows	communication	back	to	a	generator.	This	works	because	the	yield
statement	is	actually	an	expression.	In	addition	to	yielding	back	its	value,	if	a
generator	is	resumed	with	send	rather	than	next,	the	value	provided	to	send	can
actually	be	assigned	to	the	result	of	the	yield	expression.

Consider	the	following	generator	to	return	the	perfect	squares	in	order.	This	is
trivial.

def	squares():

				cursor	=	1

				while	True:

								yield	cursor	**	2

								cursor	+=	1

However,	you	may	want	to	tell	the	generator	to	move	to	a	certain	point,	forward	or
backward.	You	could	implement	that	capability	with	a	small	change	to	your
generator	code,	as	shown	here:

def	squares(cursor=1):

				while	True:

								response	=	yield	cursor	**	2

								if	response:

												cursor	=	int(response)

								else:

												cursor	+=	1

Now	you	are	assigning	the	result	of	the	yield	expression	to	the	response	variable
(if	and	only	if	there	is	a	result—you	do	not	want	to	plow	over	your	value	with
None).

This	enables	you	to	jump	around	within	the	squares	generator,	as	shown	here:

>>>	sq	=	squares()

>>>	next(sq)

1

>>>	next(sq)

4

>>>	sq.send(7)

49

>>>	next(sq)

64

What	has	happened	here?	First,	the	interpreter	entered	the	generator	and	was
asked	to	yield	two	values	(1	and	4).	But,	the	next	time,	the	generator	was	sent	the
value	7.	The	squares	generator	is	coded	such	that	if	a	value	is	sent	back,	the	cursor
variable	is	set	to	that	value.	So,	instead	of	cursor	being	incremented	to	3,	it	is	set



to	7.

The	generator	then	continues	as	before.	The	interpreter	goes	back	to	the	top	of	the
while	loop.	Because	cursor	is	now	7,	the	value	yielded	is	49	(72).	This	generator	is
written	such	that	it	simply	continues	from	there,	so	when	next	is	called	against	it
again,	cursor	increments	as	before,	to	8,	and	the	next	value	to	be	yielded	is	64	(82).

It	is	entirely	up	to	the	generator	to	determine	how	(and	whether)	sent	values	are
handled.	The	generators	previously	explored	in	this	chapter	simply	ignore	them.	A
generator	could,	by	contrast,	use	the	sent	cursor	value	as	a	one-off,	and	then
return	to	its	previous	spot,	as	shown	here:

def	squares(cursor=1):

				response	=	None

				while	True:

								if	response:

												response	=	yield	response	**	2

												continue

								response	=	yield	cursor	**	2

								cursor	+=	1

This	version	of	the	squares	generator	does	exactly	that:

>>>	sq	=	squares()

>>>	next(sq)

1

>>>	next(sq)

4

>>>	sq.send(7)

49

>>>	next(sq)

9

The	difference	here	is	entirely	in	the	behavior	of	the	generator.	There	is	no	magic
for	how	send	behaves.	The	purpose	of	send	is	to	provide	a	mechanism	for	two-way
communication	with	a	generator.	It	is	the	responsibility	of	the	generator	to
determine	whether	(and	how)	it	handles	values	sent	to	it.



Iterables	Versus	Iterators
Generators	in	Python	are	a	kind	of	iterator.	An	iterator	in	Python	is	any	object
that	has	a	__next__	method	(and,	therefore,	is	able	to	respond	to	the	next
function).

This	is	distinct	from	an	iterable,	which	is	any	object	that	defines	an	__iter__
method.	An	iterable	object's	__iter__	method	is	responsible	for	returning	an
iterator.

For	an	example	of	the	subtle	distinction	here,	consider	the	Python	3	range
function	(known	as	xrange	in	Python	2).	It	is	commonly	believed	that	range	objects
are,	in	fact,	generators.	However,	they	are	not,	as	shown	here:

>>>	r	=	range(0,	5)

>>>	r

range(0,	5)

>>>	next(r)

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

TypeError:	'range'	object	is	not	an	iterator

This	is	confusing	to	many,	because	an	idiom	such	as	for	i	in	range(0,	5)	is	often
one	of	the	first	things	that	you	learn	in	Python.	This	works	because	the	range
function	returns	an	iterable.

The	actual	iterator	that	the	range	object's	__iter__	method	returns,	however,	is	a
generator,	and	responds	as	expected	to	the	next	method.

>>>	r	=	range(0,	5)

>>>	iterator	=	iter(r)

>>>	iterator

<range_iterator	object	at	0x10055ecc0>

>>>	next(iterator)

0

>>>	next(iterator)

1

Also,	as	you	would	expect,	calling	next	after	the	generator	has	finished	yielding
values	will	raise	StopIteration.

>>>	next(iterator)

2

>>>	next(iterator)

3

>>>	next(iterator)

4

>>>	next(iterator)

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

StopIteration

When	thinking	about	generators,	remember	that	generators	are	iterators,	but	they



are	not	necessarily	iterables.	Similarly,	not	all	iterables	are	iterators.



Note

Similarly,	not	all	iterators	are	actually	instances	of	the	generator	class.	The
iterator	in	this	example	is	an	instance	of	range_iterator,	which	implements	a
similar	pattern.	However,	as	an	implementation	detail,	it	lacks	a	send
method.



Generators	in	the	Standard	Library
The	Python	standard	library	includes	several	generators,	which	you	may	already
use,	possibly	without	even	realizing	that	they	are	generators.

range
During	the	earlier	discussion	about	the	distinction	between	iterables	and	iterators,
you	learned	about	the	range	function,	which	returns	an	iterable	range	object.





Note

As	previously	mentioned,	this	function	is	called	xrange	in	Python	2.

The	range	object's	iterator	is	a	generator.	It	returns	sequential	values,	beginning
with	the	range	object's	floor,	and	continuing	through	its	ceiling.	By	default,	its
sequence	is	simply	adding	one	to	each	value	to	get	the	next	value	to	yield.	But	an
optional	third	argument	to	the	range	function,	step,	enables	you	to	specify	a
different	increment,	including	a	negative	one.

dict.items	and	Family
The	built-in	dictionary	class	in	Python	includes	three	methods	that	allow	for
iterating	over	the	dictionary,	and	all	three	are	iterables	whose	iterators	are
generators:	keys,	values,	and	items.





Note

These	three	methods	are	called	iterkeys,	itervalues,	and	iteritems	in	Python
2.

The	purpose	of	these	methods	is	to	allow	for	iteration	over	the	keys,	values,	or
two-tuples	of	keys	and	values	(items)	of	a	dictionary,	as	shown	here:

>>>	dictionary	=	{'foo':	'bar',	'baz':	'bacon'}

>>>	iterator	=	iter(dictionary.items())

>>>	next(iterator)

('foo',	'bar')

>>>	next(iterator)

('baz',	'bacon')

One	value	of	using	a	generator	here	is	that	it	prevents	the	need	to	make	an
additional	copy	of	the	dictionary	(or	pieces	of	the	dictionary)	in	another	format.
dict.items	does	not	need	to	reformat	the	entire	dictionary	into	a	list	of	two-tuples.
It	simply	returns	back	one	two-tuple	at	a	time,	when	it	is	requested.

You	can	see	a	side	effect	of	this	if	you	attempt	to	alter	the	dictionary	during
iteration,	as	shown	here:

>>>	dictionary	=	{'foo':	'bar',	'baz':	'bacon'}

>>>	iterator	=	iter(dictionary.items())

>>>	next(iterator)

('foo',	'bar')

>>>	dictionary['spam']	=	'eggs'

>>>	next(iterator)

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

RuntimeError:	dictionary	changed	size	during	iteration

Because	the	items	iterator	is	a	generator	that	simply	reads	from	the	referenced
dictionary,	it	does	not	know	what	it	should	do	if	the	dictionary	changes	while	it	is
working.	In	the	face	of	ambiguity,	it	refuses	the	temptation	to	guess,	and	raises
RuntimeError	instead.

zip
Python	includes	a	built-in	function	called	zip	that	takes	multiple	iterable	objects
and	iterates	over	them	together,	yielding	the	first	element	from	each	iterable	(in	a
tuple),	then	the	second,	then	the	third,	and	so	on,	until	the	end	of	the	shortest
iterable	is	reached.	Following	is	an	example:

>>>	z	=	zip(['a',	'b',	'c',	'd'],	['x',	'y',	'z'])

>>>	next(z)

('a',	'x')

>>>	next(z)

('b',	'y')



>>>	next(z)

('c',	'z')

>>>	next(z)

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

StopIteration

The	reasons	to	use	zip	are	similar	to	the	reasons	to	use	dict.items	and	family.	Its
purpose	is	to	yield	back	members	of	its	iterables	in	a	different	structure,	one	set	at
a	time.	This	alleviates	the	need	to	copy	over	the	entire	thing	in	memory	if	such	an
operation	is	not	necessary.

map
A	cousin	to	the	zip	function	is	the	built-in	map	function.	The	map	function	takes	a
function	that	accepts	N	arguments	as	well	as	N	iterables,	and	computes	the	result
of	the	function	against	the	sequential	members	of	each	iterable,	stopping	when	it
reaches	the	end	of	the	shortest	one.

Similarly	to	zip,	a	generator	is	used	for	the	iterator	here,	precisely	because	it	is
undesirable	to	compute	every	value	in	advance.	After	all,	these	values	may	or	may
not	be	needed.	Instead,	each	value	is	computed	when	and	only	when	it	is
requested.

>>>	m	=	map(lambda	x,	y:	max([x,	y]),	[4,	1,	7],	[3,	4,	5])

>>>	next(m)

4

>>>	next(m)

4

>>>	next(m)

7

>>>	next(m)

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

StopIteration

As	before,	this	is	a	trivial	operation	when	dealing	with	small	iterables.	However,
given	a	larger	data	structure,	the	use	of	a	generator	may	entail	serious	savings	in
computation	time	or	memory	use,	because	the	entire	structure	does	not	need	to	be
computed	and	transformed	at	once.

File	Objects
One	of	the	most	commonly	used	generators	in	Python	is	the	open	file	object.
Although	you	can	interact	in	many	ways	with	open	files	in	Python,	and	it	is
common	with	smaller	files	to	just	call	read	to	read	the	entire	file	into	memory,	the
file	object	does	support	the	generator	pattern,	which	reads	the	file	from	disk	one
line	at	a	time.	This	is	very	important	when	operating	on	larger	files.	It	is	not
always	reasonable	to	read	the	entirety	of	a	file	into	memory.

For	historical	reasons,	file	objects	have	a	special	method	called	readline	used	for



reading	a	line	at	a	time.	However,	the	generator	protocol	is	also	implemented,	and
calling	next	on	a	file	does	the	same	thing.

Consider	the	following	simple	file:

$	cat	lines.txt

line	1

line	2

line	3

line	4

line	5

You	read	it	in	the	Python	shell	by	using	the	built-in	open	function.	The	resulting
object	is,	among	other	things,	a	generator.

>>>	f	=	open('lines.txt')

>>>	next(f)

'line	1\n'

>>>	next(f)

'line	2\n'

Note	that	the	generator	reads	one	line	at	a	time	and	yields	the	entire	line,
including	the	trailing	newline	(\n)	character.

If	you	attempt	to	call	next	after	the	end	of	the	file	is	reached,	StopIteration	is
raised	as	expected.

>>>	next(f)

'line	5\n'

>>>	next(f)

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

StopIteration

It	is	worth	noting	that	__next__	and	readline	are	not	exact	aliases	for	one	another
here.	Once	end	of	file	is	reached,	__next__	raises	StopIteration	as	it	would	for	any
other	generator,	whereas	readline	actually	catches	this	exception	and	returns	an
empty	string:

>>>	next(f)

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

StopIteration

>>>	f.readline()

''



When	to	Write	Generators
Essentially,	you	have	two	primary	reasons	to	write	generators.	Both	of	them
spring	from	the	same	fundamental	concept,	which	is	determining	the	value	only
when	it	is	needed,	rather	than	well	ahead	of	time.

The	basic	principle	at	play	here	is	this:	You	do	yourself	no	favors	by	having	your
code	do	a	bunch	of	work	or	store	a	bunch	of	data	in	advance.	Often,	you	may	not
need	large	chunks	of	data.	Even	if	you	need	all	of	it,	you	are	still	doing
unnecessary	storage	if	you	do	not	need	all	of	it	at	once.

The	two	use	cases	that	branch	out	from	this	fundamental	principle	are	the	need	to
access	data	in	pieces,	and	the	need	to	compute	data	in	pieces.

Accessing	Data	in	Pieces
The	first	(and	probably	most	common)	reason	to	write	generators	is	to	cover	cases
where	you	must	access	data	in	chunks,	but	where	it	is	undesirable	to	store	copies
of	the	entire	thing.

This	is	essentially	what	happens	in	the	file	object	generator	explored	previously,	as
well	as	the	dict.items	(and	family)	methods.	When	dealing	with	small	files,	it	is
entirely	reasonable	to	read	the	entire	file	into	memory	and	do	whatever	work
needs	to	be	done	against	that	in-memory	string.

On	the	other	hand,	what	if	a	file	is	large?	What	if	you	need	to	restructure	a
dictionary	that	is	large?	Sometimes,	making	a	copy	to	manipulate	data	is	not	a
feasible	operation.	This	is	where	accessing	data	in	pieces	is	a	valuable	capability.

When	iterating	over	a	large	file	with	the	generator	method,	it	does	not	matter	how
large	the	file	is.	Each	line	will	be	read	and	yielded,	one	at	a	time.	When	iterating
over	a	dictionary	with	dict.items,	it	does	not	matter	whatsoever	how	large	the
source	dictionary	is.	The	iterator	will	iterate	over	it	one	piece	at	a	time,	and	yield
only	that	two-tuple.

The	same	principle	applies	to	generators	that	you	write.	A	generator	is	a	useful
tool	in	any	situation	where	you	want	to	iterate	over	a	substantial	amount	of	data,
and	it	is	unnecessary	to	store	or	copy	the	entirety	of	that	data	in	memory	at	once.

Computing	Data	in	Pieces
The	second	common	reason	to	write	generators	is	to	compute	data	only	as	it	is
needed.	Consider	the	range	function	or	the	fibonacci	function	discussed	earlier	in
this	chapter.	A	program	that	must	loop	over	each	number	between	zero	and	a
googleplex	need	not	store	a	list	of	every	number	between	those	figures.	It	is
sufficient	to	simply	keep	adding	one	until	the	maximum	is	reached.

Similarly,	the	fibonacci	function	does	not	need	to	compute	every	Fibonacci
number	(an	impossible	task,	because	there	exists	an	infinite	number	of	them—
more	on	this	shortly).	It	simply	must	determine	the	single	next	Fibonacci	number



and	yield	it	back.

This	can	be	important	because	sometimes	the	computation	of	each	item	in	a
sequence	can	be	expensive.	It	is	not	useful	to	compute	the	entire	series
unnecessarily.

Sequences	Can	Be	Infinite
One	aspect	that	the	earlier	discussion	about	the	fibonacci	function	explored
briefly	is	the	fact	that	some	sequences	are	actually	infinite.	In	such	cases,	it	is	not
possible	to	represent	the	entire	sequence	in	a	list,	but	a	generator	is	capable	of
representing	this.

This	is	because	a	generator	is	not	concerned	with	being	aware	of	every	value	it
must	generate.	It	only	needs	to	generate	the	next	one.	It	does	not	matter	that	the
Fibonacci	sequence	goes	on	forever.	As	long	as	your	generator	stores	the	most
recent	two	numbers	in	the	sequence,	it	is	perfectly	reasonable	to	compute	the	next
one.

There	is	nothing	wrong	with	this.	It	is	the	responsibility	of	the	code	calling	the
generator	in	such	cases	to	deal	with	the	fact	that	the	sequence	that	the	generator
represents	is	an	infinite	one,	and	to	break	out	of	the	sequence	when	appropriate.



When	Are	Generators	Singletons?
One	important	(and	often	overlooked)	fact	about	generators	is	that	many
generators	are	singletons.	This	is	most	often	the	case	when	an	object	is	both
iterable	and	an	iterator.	Because	the	iterable	simply	returns	self,	calling	iter	on
such	an	object	repeatedly	will	return	the	same	object.	This	essentially	means	that
the	object	supports	only	one	active	iterator.

A	simple	generator	function	is	not	a	singleton.	Calling	the	function	multiple	times
returns	distinct	generators,	as	shown	here:

>>>	gen1	=	fibonacci()

>>>	next(gen1),	next(gen1),	next(gen1),	next(gen1),	next(gen1)

(1,	1,	2,	3,	5)

>>>	gen2	=	fibonacci()

>>>	next(gen2)

1

>>>	next(gen1)

8

The	following	iterable	class	serves	a	similar	purpose,	and	returns	itself	in	its
__iter__	method:

class	Fibonacci(object):

				def	__init__(self):

								self.numbers	=	[]

				def	__iter__(self):

								return	self

				def	__next__(self):

								if	len(self.numbers)	<	2:

												self.numbers.append(1)

								else:

												self.numbers.append(sum(self.numbers))

												self.numbers.pop(0)

								return	self.numbers[-1]

				def	send(self,	value):

								pass

				#	For	Python	2	compatibility

				next	=	__next__

This	is	a	Fibonacci	class,	which	implements	the	generator	protocol.	However,	note
that	it	is	also	iterable,	and	responds	to	iter…	with	itself.	This	means	that	each
Fibonacci	object	has	only	one	iterator:	itself.

>>>	f	=	Fibonacci()

>>>	i1	=	iter(f)

>>>	next(i1),	next(i1),	next(i1),	next(i1),	next(i1)

(1,	1,	2,	3,	5)

>>>	i2	=	iter(f)

>>>	next(i2)



8

There	is	nothing	inherently	wrong	with	this.	It	is	worth	noting,	however,	because
some	generators	may	be	implemented	as	singletons,	whereas	others	are	not.	Be
aware	of	what	the	relationship	is	between	the	iterable	and	the	iterators,	and
whether	or	not	an	iterable	allows	multiple	iterators.	Some	do;	others	do	not.



Generators	within	Generators
It	is	often	desirable	for	functions	to	call	other	functions.	This	is	a	key	way	that
developers	structure	code	for	reusability.	Similarly,	it	is	often	desirable	for
generators	to	call	other	generators.	Python	3.3	introduces	the	new	yield	from
statement	to	provide	a	straightforward	way	for	a	generator	to	call	out	to	other
generators.

Consider	the	following	two	trivial,	finite	generators:

def	gen1():

				yield	'foo'

				yield	'bar'

def	gen2():

				yield	'spam'

				yield	'eggs'

Prior	to	Python	3.3,	the	common	way	to	combine	these	subgenerators	into	one
would	be	to	iterate	over	them	explicitly	in	the	wrapping	generator,	as	shown	here:

def	full_gen():

				for	word	in	gen1():

								yield	word

				for	word	in	gen2():

								yield	word

It	is	also	possible	to	do	this	with	the	itertools.chain	method:

def	full_gen():

				for	word	in	itertools.chain(gen1(),	gen2()):

								yield	word

The	Python	3.3	yield	from	syntax	provides	a	cleaner	way	to	do	the	same	thing,
and	looks	much	more	in	line	with	a	function	call	within	another	function.

def	full_gen():

				yield	from	gen1()

				yield	from	gen2()

Use	of	this	syntax	is	referred	to	as	generator	delegation.	And,	in	fact,	the	previous
two	implementations	of	full_gen	are	not	actually	equivalent.	This	is	because	the
former	implementation	discards	any	value	sent	to	the	generator	using	send.

The	yield	from	syntax,	on	the	other	hand,	preserves	this,	because	the	generator	is
simply	delegating	to	another	generator.	This	means	that	any	values	sent	to	the
wrapping	generator	will	also	be	sent	to	the	current	delegate	generator,	avoiding
the	need	for	the	developer	to	handle	this.



Summary
Generators	are	valuable	tools	in	Python	that	are	used	to	perform	computations	or
iterate	over	large	amounts	of	data	while	only	storing	and	computing	what	you
actually	need	at	the	time.	This	can	mean	substantial	cost	savings	in	terms	of	both
memory	and	performance.

Consider	using	generators	when	dealing	with	substantial	amounts	of	data	or
computational	work,	when	not	all	the	work	needs	to	be	done	in	advance.	Also
consider	generators	as	a	way	to	represent	infinite	or	branching	sequences.

In	Chapter	4,	“Magic	Methods,”	you	begin	your	study	of	classes	in	Python,	starting
with	an	introduction	to	magic	methods.





Part	II
Classes





Chapter	4
Magic	Methods
Python	classes	may	optionally	define	a	long	list	of	methods	that,	when	defined,	are
called	when	the	instances	of	the	class	are	used	in	certain	situations.	For	example,	a
class	may	define	under	what	situations	its	instances	should	be	considered
equivalent	by	defining	a	method	called	__eq__.	If	the	__eq__	method	is	defined,	it
is	invoked	if	the	class	meets	an	equality	test	using	the	==	operator.

The	purpose	of	these	so-called	“magic	methods”	is	to	overload	Python	operators	or
built-in	methods.	They	are	defined	using	the	_	syntax	to	avoid	a	case	where	a
programmer	accidentally	defines	a	method	with	the	same	name	without	explicitly
opting	in	to	the	functionality.	Magic	methods	provide	consistency	between	the
contracts	that	built-in	classes	(including	primitives	such	as	integers	and	strings)
provide,	as	well	as	the	contracts	that	custom	classes	provide.	If	you	want	to	test	for
equivalence	in	Python,	you	should	always	be	able	to	use	==	to	do	so,	regardless	of
whether	you	are	testing	two	integers,	two	instances	of	a	class	that	you	wrote	for
your	specific	application,	or	even	two	instances	of	unrelated	classes.

This	chapter	explores	magic	methods,	how	they	work,	and	what	magic	methods
are	available.



Magic	Method	Syntax
In	Python,	magic	methods	follow	a	consistent	pattern—the	name	of	the	method	is
wrapped	on	both	sides	by	two	underscores.	For	example,	when	an	instance	of	a
class	is	instantiated,	the	method	that	runs	is	__init__	(not	init).

This	convention	exists	to	provide	a	certain	level	of	future-proofing.	You	can	name
methods	as	you	please,	and	not	have	to	worry	that	your	method	name	will	later	be
used	by	Python	to	assign	some	special	(and	unintended)	significance,	provided
that	you	do	not	name	your	methods	such	that	they	both	begin	and	end	with	two
underscores.

When	verbally	referring	to	such	methods	(for	example,	in	talks	at	conferences),
many	people	choose	to	use	the	coined	term	“dunder”	to	describe	them.	So,
__init__	ends	up	being	pronounced	as	dunder-init.

Each	magic	method	serves	a	specific	purpose;	it	is	a	hook	that	is	run	when
particular	syntax	appears.	For	example,	the	__init__	method	is	run	when	a	new
instance	of	a	class	is	created.	Consider	the	following	simple	class:

class	MyClass(object):

				def	__init__(self):

								print('The	__init__	method	is	running.')

Of	course,	this	class	does	nothing,	except	for	print	to	standard	out	upon
instantiation.	That	is	enough	to	establish	that	the	__init__	method	runs	in	this
situation,	though.

>>>	mc	=	MyClass()

The	__init__	method	is	running.

>>>

What	is	important	to	realize	here	is	that	you	are	not	actually	calling	the	__init__
method	directly.	Rather,	the	Python	interpreter	simply	knows	to	call	__init__
upon	object	instantiation.

Each	of	the	magic	methods	works	this	way.	There	is	a	particular	spelling	and
method	signature	that	is	taken	(sometimes	the	method	signature	is	variable),	and
the	method	is	actually	invoked	in	a	particular	situation.

The	__eq__	method	(mentioned	earlier)	takes	both	the	obligatory	self	argument
and	a	second	positional	argument,	which	is	the	object	being	compared	against.

class	MyClass(object):

				def	__eq__(self,	other):

								#	All	instances	of	MyClass	are	equivalent	to	one	another,	and	they

								#	are	not	equivalent	to	instances	of	other	classes.

								return	type(self)	==	type(other)

Notice	that	this	__eq__	method	takes	a	second	argument,	other.	Because	the
__eq__	method	runs	when	Python	is	asked	to	make	an	equivalence	check	with	the



==	operator,	other	will	be	set	to	the	object	on	the	other	side	of	==.

This	example	__eq__	method	simply	decides	equality	based	solely	on	whether	it	is
another	instance	of	MyClass.	Therefore,	you	get	the	following	results:

>>>	MyClass()	==	MyClass()

True

>>>	MyClass()	==	42

False

Two	different	instances	of	MyClass	are	equivalent	because	isinstance(other,
type(self))	evaluates	to	True.	On	the	other	hand,	42	is	an	int,	and,	therefore,	not
an	instance	of	MyClass.	Thus,	__eq__	(and,	therefore,	the	==	operator)	returns
False.



Available	Methods
The	Python	interpreter	understands	a	rich	set	of	magic	methods	that	serve	many
different	purposes,	from	comparison	checks	and	sorting,	to	hooks	for	various
language	features.	This	book	has	already	explored	some	of	these	in	Chapter	2,
“Context	Managers,”	and	Chapter	3,	“Generators.”

Creation	and	Destruction
These	methods	are	run	when	instances	of	the	class	are	created	or	destroyed.

__init__
The	__init__	method	of	an	object	runs	immediately	after	the	instance	is	created.	It
must	take	one	positional	argument	(self)	and	then	can	take	any	number	of
required	or	optional	positional	arguments,	and	any	number	of	keyword
arguments.

This	method	signature	is	flexible	because	the	arguments	passed	to	the	class
instantiation	call	are	what	are	sent	to	__init__.

Consider	the	following	class	with	an	__init__	method	that	takes	an	optional
keyword	argument:

import	random

class	Dice(object):

				"""A	class	representing	a	dice	with	an	arbitrary	number

				of	sides.

				"""

				def	__init__(self,	sides=6):

								self._sides	=	sides

				def	roll(self):

								return	random.randint(1,	self._sides)

To	instantiate	a	standard,	six-sided	die,	you	need	only	call	the	class	with	no
arguments:	die	=	Dice().	This	creates	the	Dice	instance	(more	on	that	later),	and
then	calls	the	new	instance's	__init__	method,	passing	no	arguments	except	self.
Because	the	sides	argument	is	not	provided,	the	default	of	6	is	used.

To	instead	create	a	d20,	however,	you	simply	pass	the	sides	argument	to	the	call	to
Dice,	which	forwards	it	to	the	__init__	function.

>>>	die	=	Dice(sides=20)

>>>	die._sides

20

>>>	die.roll()

20

>>>	die.roll()

18



It	is	worth	noting	that	the	purpose	of	the	__init__	method	is	not	to	actually	create
the	new	object	(that	is	performed	by	__new__).	Rather,	the	purpose	is	to	provide
initial	data	to	the	object	after	it	has	been	created.

What	this	means	in	practice	is	that	the	__init__	method	does	not	(and	should	not)
actually	return	anything.	All	__init__	methods	in	Python	return	None,	and
returning	anything	else	will	raise	TypeError.

The	__init__	method	is	probably	the	single	most	common	magic	method	that
custom	classes	define.	Most	classes	are	instantiated	with	extra	variables	that
customize	their	implementation	in	some	way,	and	the	__init__	method	is	the
appropriate	place	for	this	behavior.

__new__
The	__new__	method	actually	precedes	the	__init__	method	in	the	dance	of
creating	an	instance	of	a	class.	Whereas	the	__init__	method	is	responsible	for
customizing	an	instance	once	it	has	been	created,	the	__new__	method	is
responsible	for	actually	creating	and	returning	that	instance.

The	__new__	method	is	always	static.	It	does	not	need	to	be	explicitly	decorated	as
such.	The	first	and	most	important	argument	is	the	class	of	which	an	instance	is
being	created	(by	convention,	called	cls).

In	most	cases,	the	remaining	arguments	to	__new__	should	mirror	the	arguments
to	__init__.	The	arguments	sent	to	the	call	to	the	class	will	be	sent	first	to	__new__
(because	it	is	called	first),	and	then	to	__init__.

Realistically,	most	classes	do	not	actually	need	to	define	__new__	at	all.	The	built-in
implementation	is	adequate.	When	classes	do	need	to	define	__new__,	they	will
almost	always	want	to	reference	the	superclass	implementation	first,	as	shown
here,	before	doing	whatever	work	is	necessary	on	the	instance:

class	MyClass(object):

				def	__new__(cls,	[...]):

								instance	=	super(MyClass,	cls).__new__(cls,	[...])

								[do	work	on	instance]

								return	instance

Normally,	you	will	want	the	__new__	method	to	return	an	instance	of	the	class
being	instantiated.	However,	occasionally	this	may	not	be	true.	Note,	however,
that	the	__init__	half	of	the	dance	will	only	be	performed	if	you	return	an	instance
of	the	class	whose	__new__	method	is	being	run.	If	you	return	something	else,	the
instance's	__init__	method	will	not	be	invoked.

You	do	this	primarily	because,	in	situations	where	an	instance	of	a	different	class
is	returned,	the	__init__	method	was	likely	run	by	whatever	means	created	that
instance	within	the	__new__	method,	and	running	it	twice	would	be	problematic.

__del__



Whereas	the	__new__	and	__init__	methods	are	invoked	when	an	object	is	being
created,	the	__del__	method	is	invoked	when	an	object	is	being	destroyed.

It	is	relatively	rare	for	developers	to	destroy	their	objects	in	Python	directly.	(You
should	do	so	with	the	del	keyword	if	you	need	to.)	Python's	memory	management
is	good	enough	that	it	is	generally	acceptable	simply	to	allow	the	garbage	collector
to	do	so.

That	said,	the	__del__	method	is	run	regardless	of	how	an	object	comes	to	be
destroyed,	whether	it	is	through	a	direct	deletion,	or	through	memory	reclamation
by	the	garbage	collector.	You	can	see	this	behavior	at	work	by	making	the
following	class	that	deletes	noisily:

class	Xon(object):

				def	__del__(self):

								print('AUUUUUUGGGGGGHH!')

If	you	make	Xon	objects	but	do	not	assign	them	to	variables,	they	will	be	marked	as
collectable	by	the	garbage	collector,	which	will	collect	them	in	short	order	as	other
program	statements	run.

>>>	Xon()

<__main__.Xon	object	at	0x1022b8890>

>>>	'foo'

AUUUUUUGGGGGGHH!

'foo'

>>>

What	happened	here?	First,	an	Xon	object	was	created	(but	not	assigned	to	a
variable,	so	there	is	no	real	reason	for	the	Python	interpreter	to	keep	it	around).
Next,	the	interpreter	was	sent	an	immutable	string,	which	it	must	assign	to
memory	(and	then	immediately	release,	because	it	was	not	assigned	to	a	variable
either,	but	that	is	not	important).

In	the	particular	interpreters	I	was	using	(CPython	3.4.0	and	CPython	2.7.6),	that
memory	operation	causes	the	garbage	collector	to	take	a	pass	through	its	table.	It
finds	the	Xon	object	and	deletes	it.	This	triggers	the	Xon	object's	__del__	method,
which	then	loudly	screams	as	it	is	unceremoniously	sent	to	the	great	bit	bucket
beyond.

You	see	similar	(but	more	immediate)	behavior	if	you	delete	an	Xon	object	directly,
as	shown	here:

>>>	x	=	Xon()

>>>	del	x

AUUUUUUGGGGGGHH!

In	both	cases,	the	principle	is	the	same.	No	matter	whether	the	deletion	is	directly
invoked	in	code	or	automatically	triggered	by	the	garbage	collector,	the	__del__
method	is	invoked	identically.

It	is	worth	noting	that	__del__	methods	are	generally	unable	to	raise	exceptions	in



any	meaningful	way.	Because	deletions	are	usually	triggered	in	the	background	by
the	garbage	collector,	there	is	no	good	way	for	exceptions	to	bubble.	Therefore,
raising	any	kind	of	exception	in	a	__del__	method	just	prints	some	nastiness	to
standard	error,	and	it	is	generally	considered	inappropriate	to	raise	exceptions
there.

Type	Conversion
Several	magic	methods	are	available	in	Python	to	take	a	complex	object	and	make
it	into	a	more	primitive,	or	more	widely	used	type.	For	example,	types	such	as	int,
str,	and	bool	are	used	everywhere	in	Python,	and	it	is	useful	for	complex	objects
to	know	what	their	representations	are	in	these	formats.

__str__,	__unicode__,	and	__bytes__
By	far,	the	most	commonly	used	type	conversion	magic	method	is	__str__.	This
method	takes	one	positional	argument	(self),	is	invoked	when	an	object	is	passed
to	the	str	constructor,	and	is	expected	to	return	a	string.

>>>	class	MyObject(object):

...					def	__str__(self):

...									return	'My	Awesome	Object!'

...

>>>	str(MyObject())

'My	Awesome	Object!'

Because	strings	are	so	ubiquitous,	it	is	very	often	useful	for	classes	to	define	a
__str__	method.

There	is	a	bit	more	to	this	situation,	however.	In	Python	2,	strings	are	ASCII
strings,	whereas	in	Python	3,	strings	are	Unicode	strings.	This	actually	causes	a
great	deal	of	pain,	and	this	book	devotes	an	entire	chapter	to	the	subject	(Chapter
8,	“Strings	and	Bytestrings”).

Suffice	it	to	say	here,	however,	that	Python	2	does	have	Unicode	strings,	and
Python	3	introduces	a	type	called	bytes	(or	bytestrings,	as	they	are	sometimes
called),	which	are	roughly	analogous	to	the	old	Python	2	ASCII	strings.

These	string	brethren	have	their	own	magic	methods.	Python	2	honors	a
__unicode__	method	that	is	invoked	when	an	object	is	passed	to	the	unicode
constructor.	Similarly,	Python	3	honors	a	__bytes__	method	that	is	invoked	when
an	object	is	passed	to	the	bytes	constructor.	In	both	cases,	the	method	is	expected
to	return	the	proper	type.

The	__str__	method	is	invoked	in	certain	other	situations,	too	(essentially,
situations	where	str	is	called	under	the	hood).	For	example,	encountering	%s	in	a
format	string	will	run	the	corresponding	argument	through	str,	as	shown	here:

>>>	'This	is	%s'	%	MyObject()

'This	is	My	Awesome	Object!'



In	this	case,	however,	the	formatting	method	is	a	bit	smarter.	For	example,	if	%s	is
encountered	when	formatting	a	unicode	object	in	Python	2,	it	will	attempt	to	use
__unicode__	first.	Consider	the	following	code,	running	in	Python	2.7:

>>>	class	Which(object):

...					def	__str__(self):

...									return	'string'

...					def	__unicode__(self):

...									return	u'unicode'

...

>>>	u'The	%s	was	used.’	%	Which()

u'The	unicode	conversion	was	performed.'

>>>	'The	%s	was	used.'	%	Which()

'The	string	conversion	was	performed.'

__bool__
Another	common	need	is	for	an	object	to	define	whether	it	should	be	considered
True	or	False,	either	if	expressly	converted	to	a	Boolean,	or	in	a	situation	where	a
Boolean	representation	is	required	(such	as	if	the	object	is	the	subject	of	an	if
statement).

This	is	handled	in	Python	3	with	the	__bool__	magic	method,	which	in	Python	2	is
instead	called	__nonzero__.	In	both	cases,	the	method	takes	one	positional
argument	(self)	and	returns	either	True	or	False.

It	is	often	unnecessary	to	define	an	explicit	__bool__	method.	If	no	__bool__
method	is	defined	but	a	__len__	method	(explained	further	shortly)	is	defined,	the
latter	will	be	used,	and	these	often	overlap.

__int__,	__float__,	and	__complex__
Occasionally,	it	is	valuable	for	complex	objects	to	be	able	to	convert	to	primitive
numbers.	If	an	object	defines	an	__int__	method,	which	should	return	an	int,	it
will	be	invoked	if	the	object	is	passed	to	the	int	constructor.

Similarly,	objects	that	define	__float__	and	__complex__	will	have	those	methods
invoked	if	they	are	passed	to	float	and	complex,	respectively.





Note

Python	2	has	a	separate	long	type,	and,	therefore,	a	__long__	method.	This
works	exactly	as	you	expect.

Comparisons
Objects	are	being	compared	when	they	are	checked	for	equivalence	(with	==	or	!=),
or	for	relative	value	to	one	another	(such	as	with	<,	<=,	>,	and	>=).

Each	of	these	operators	maps	to	a	magic	method	in	Python.

Binary	Equality
The	following	methods	support	testing	equality	using	==	and	!=.

__eq__
As	already	explored,	the	__eq__	method	is	called	when	two	objects	are	compared
with	the	==	operator.	The	method	must	take	two	positional	arguments	(by
convention,	self	and	other),	which	are	the	two	objects	being	compared.

Under	most	circumstances,	the	object	on	the	left	side	has	its	__eq__	method
checked	first.	It	is	used	if	it	is	defined	(and	returns	something	other	than
NotImplemented).	Otherwise,	the	__eq__	method	of	the	object	on	the	right	side	is
used	instead	(with	the	argument	order	reversed).

Consider	the	following	class	that	is	noisy	when	given	equivalence	tests	(and	then
returns	False	unless	it	is	the	exact	same	object):

class	MyClass(object):

				def	__eq__(self,	other):

								print('The	following	are	being	tested	for	equivalence:\n'

														'%r\n%r'	%	(self,	other))

								return	self	is	other

You	can	see	the	order	in	action	based	on	which	side	of	the	operator	your	objects
are	on.

>>>	c1	=	MyClass()

>>>	c2	=	MyClass()

>>>	c1	==	c2

The	following	are	being	tested	for	equivalence:

<__main__.MyClass	object	at	0x1066de590>

<__main__.MyClass	object	at	0x1066de390>

False

>>>	c2	==	c1

The	following	are	being	tested	for	equivalence:

<__main__.MyClass	object	at	0x1066de390>

<__main__.MyClass	object	at	0x1066de590>

False



>>>	c1	==	c1

The	following	are	being	tested	for	equivalence:

<__main__.MyClass	object	at	0x1066de590>

<__main__.MyClass	object	at	0x1066de590>

True

Notice	how	the	order	in	which	the	objects	are	dumped	to	standard	out	is	reversed.
This	is	because	the	order	in	which	they	were	sent	to	__eq__	was	reversed.	This	also
means	that	there	is	no	inherent	requirement	that	your	equivalence	check	be
commutative.	However,	unless	you	have	a	really	good	reason,	you	should	ensure
that	equivalence	is	consistently	commutative.

You	can	observe	another	facet	of	this	behavior	by	comparing	a	MyClass	object
against	something	of	a	different	type.	Consider	the	following	type	with	a	plain
__eq__	method	that	does	nothing	but	return	False:

class	Unequal(object):

				def	__eq__(self,	other):

								return	False

And,	when	you	run	equivalence	tests	against	instances	of	these	classes,	you	see
different	behavior	based	on	the	order	in	which	they	are	called.	When	an	instance
of	MyClass	is	on	the	left,	its	__eq__	method	is	called.	When	an	instance	of	Unequal	is
on	the	left,	its	quieter	brethren	is	called	instead.

>>>	MyClass()	==	Unequal()

The	following	are	being	tested	for	equivalence:

<__main__.MyClass	object	at	0x1066de5d0>

<__main__.Unequal	object	at	0x1066de450>

False

>>>	Unequal()	==	MyClass()

False

There	is	one	exception	to	this	rule	on	order	of	objects	sent	to	__eq__:	direct
subclasses.	If	one	of	the	two	objects	being	compared	is	an	instance	of	a	direct
subclass	of	the	other,	this	will	override	the	ordering	rules,	and	the	__eq__	method
of	the	subclass	will	be	used.

class	MySubclass(MyClass):

				def	__eq__(self,	other):

								print('MySubclass\'	__eq__	method	is	testing:\n'

														'%r\n%r'	%	(self,	other))

								return	False

Now,	the	same	method	with	the	same	argument	order	will	be	invoked,	regardless
of	the	order	in	which	arguments	are	provided	to	the	operator.

>>>	MyClass()	==	MySubclass()

MySubclass'	__eq__	method	is	testing:

<__main__.MySubclass	object	at	0x1066de690>

<__main__.MyClass	object	at	0x1066de450>

False

>>>	MySubclass()	==	MyClass()



MySubclass'	__eq__	method	is	testing:

<__main__.MySubclass	object	at	0x1066de5d0>

<__main__.MyClass	object	at	0x1066de450>

False

__ne__
The	__ne__	method	is	the	converse	of	the	__eq__	method.	It	works	the	same	way,
except	that	it	is	invoked	when	the	!=	operator	is	used.

Normally,	it	is	not	necessary	to	define	an	__ne__	method,	provided	that	you	always
want	the	result	to	be	the	opposite	of	the	returned	value	of	__eq__.	If	no	__ne__
method	is	defined,	the	Python	interpreter	will	run	the	__eq__	method	and	flip	the
result.

It	is	possible	to	explicitly	provide	an	__ne__	method	for	situations	where	you	do
not	want	this	behavior.

Relative	Comparisons
These	methods	also	handle	comparison,	but	using	comparison	operators	that	test
relative	value	(such	as	>).

__lt__,	__le__,	__gt__,	__ge__
The	__lt__,	__le__,	__gt__,	and	__ge__	methods	map	to	the	<,	<=,	>,	and	>=
operators,	respectively.	Like	the	equivalence	methods,	each	of	these	methods
should	take	two	arguments	(by	convention,	self	and	other),	and	return	True	if	the
relative	comparison	should	be	considered	to	hold,	and	False	otherwise.

Usually,	it	is	unnecessary	to	define	all	four	of	these	methods.	The	Python
interpreter	will	rightly	consider	__lt__	to	be	the	inverse	of	__ge__,	and	__gt__	to
be	the	inverse	of	__le__.	Similarly,	the	Python	interpreter	will	consider	the	__le__
method	to	be	the	disjunction	of	__lt__	and	__eq__,	and	the	__ge__	method	to	be
the	disjunction	of	__gt__	and	__eq__.

This	means	that,	in	practice,	it	is	usually	only	necessary	to	define	__eq__	and
__lt__	(or	__gt__),	and	all	six	of	the	comparison	operators	will	work	in	the	way
that	you	expect.

Another	important	(but	easily	overlooked)	aspect	of	defining	these	methods	is	that
they	are	what	the	built-in	sorted	function	uses	for	sorting	objects.	Therefore,	if
you	have	a	list	of	objects	with	these	methods	defined,	passing	that	list	to	sorted
automatically	returns	a	sorted	list,	from	least	to	greatest,	based	on	the	result	of	the
comparison	methods.

__cmp__
The	__cmp__	method	is	an	older	(and	less	preferred)	way	of	defining	relative
comparisons	for	objects.	It	is	checked	if	(and	only	if)	the	comparison	methods
described	previously	are	not	defined.



This	method	takes	two	positional	arguments	(by	convention,	self	and	other),	and
should	return	a	negative	integer	if	self	is	less	than	other,	or	a	positive	integer	if
self	is	greater	than	other.	If	self	and	other	are	equivalent,	the	method	should
return	0.

The	__cmp__	method	is	deprecated	in	Python	2,	and	not	available	in	Python	3.

Operator	Overloading
These	methods	provide	a	mechanism	to	override	the	standard	Python	operators.

Binary	Operators
A	set	of	magic	methods	is	also	available	for	overloading	the	various	binary
operators	available	in	Python,	such	as	+,	-,	and	so	on.	Python	actually	supplies
three	magic	methods	for	each	operator,	each	of	which	takes	two	positional
arguments	(by	convention,	self	and	other).

The	first	of	these	is	a	vanilla	method,	in	which	an	expression	x	+	y	maps	to
x.__add__(y),	and	the	method	simply	returns	the	result.

The	second	is	a	reverse	method.	The	reverse	methods	are	called	(with	the
operands	swapped)	if	(and	only	if)	the	first	operand	does	not	supply	the
traditional	method	(or	returns	NotImplemented)	and	the	operands	are	of	different
types.	These	methods	are	spelled	the	same	way,	but	the	method	name	is	preceded
by	an	r.	Therefore,	the	expression	x	+	y,	where	x	does	not	define	an	__add__
method,	would	call	y.__radd__(x).

The	third	and	final	magic	method	is	the	in-place	method.	In-place	methods	are
called	when	the	operators	that	modify	the	former	variable	in	place	(such	as	+=,	-=,
and	so	on)	are	used.	These	are	spelled	the	same	way,	but	the	method	name	is
preceded	by	an	i.	Therefore,	the	expression	x	+=	y	would	call	x.__iadd__(y).

Normally,	the	in-place	methods	simply	modify	self	in	place	and	return	it.
However,	this	is	not	a	strict	requirement.	It	is	also	worth	noting	that	it	is	only
necessary	to	define	an	in-place	method	if	the	behavior	of	the	straightforward
method	does	not	cleanly	map.	The	straightforward	method	is	called	and	its	return
value	assigned	to	the	left	operand	in	the	event	that	the	in-place	method	is	not
defined.

Table	4.1	shows	the	full	set	of	operator	overloading	magic	methods.



Table	4.1	Operator	Overloading	Magic	Methods

Operator Method Reverse In-place
+ __add__ __radd__ __iadd__

- __sub__ __rsub__ __isub__

* __mul__ __rmul__ __imul__

/ __truediv__ __rtruediv__ __itruediv__

// __floordiv__ __rfloordiv__ __ifloordiv__

% __mod__ __rmod__ __imod__

** __pow__ __rpow__ __ipow__

& __and__ __rand__ __iand__

| __or__ __ror__ __ior__

ˆ __xor__ __rxor__ __ixor__

<< __lshift__ __rlshift__ __ilshift__

>> __rshift__ __rrshift__ __irshift__

These	methods	allow	for	overloading	of	all	of	the	binary	operators	that	are
available	in	Python.	Custom	classes	can	(and	should)	define	them	when	it	is
sensible	to	do	so.

Division
One	binary	operator,	division	(/),	requires	slightly	more	discussion.	First,	you
need	a	bit	of	background.	Originally,	in	Python,	the	division	operator	between	two
integers	would	always	return	an	int,	not	a	float.	Essentially,	what	happens	is	that
the	division	is	performed	and	the	floor	of	the	result	is	taken.	Therefore,	5	/	2
would	return	2,	and	-5	/	2	would	return	-3.	If	you	wanted	a	float	result,	at	least
one	of	the	operands	had	to	be	a	float.	Therefore,	5.0	/	2	would	return	2.5.

Python	3	changes	this	behavior,	because	many	developers	found	it	to	be
counterintuitive.	In	Python	3,	division	between	two	integers	returns	a	float,	and
does	so	even	if	the	result	is	a	whole	number.	Thus,	5	/	2	is	2.5,	and	4	/	2	is	2.0
(not	2).	This	is	one	of	the	backward-incompatible	changes	that	Python	3
introduced	to	the	language.

Because	Python	3	introduced	backward-incompatible	changes,	subsequent
releases	of	the	Python	2	series	used	a	mechanism	already	in	place	to	“opt	in”	to	the
new	behavior:	a	special	module	called	__future__,	from	which	future	behavior	can
be	imported.	In	Python	2.6	and	2.7,	developers	can	opt-in	to	the	Python	3
behavior	by	issuing	from	__future__	import	division.

This	is	important	to	discuss	here	because	it	alters	which	magic	method	is	used.
The	__truediv__	(and	siblings)	method	in	Table	5-1	is	the	Python	3	method.
Python	2	originally	provided	__div__,	and	calls	__div__	for	the	/	operator	unless
division	is	imported	from	__future__,	in	which	case	it	conforms	to	the	Python	3
behavior	and	calls	__truediv__.



In	most	cases,	code	that	runs	on	Python	2	probably	needs	to	be	agnostic	as	to
which	division	scheme	is	in	effect.	This	means	defining	both	the	__div__	and
__truediv__	methods.	In	most	cases,	it	is	probably	completely	acceptable	to	just
map	them	to	each	other,	as	shown	here:

class	MyClass(object):

				def	__truediv__(self,	other):

								[...]

				__div__	=	__truediv__

It	is	probably	wise	to	make	__truediv__	be	the	“proper”	method,	and	__div__	the
alias.	The	broader	principle	here	is	that	any	code	that	may	even	eventually	run	on
Python	3	should	be	written	to	target	Python	3	and	accommodate	Python	2,	as
opposed	to	the	other	way	around.

Unary	Operators
Python	also	provides	three	unary	operators:	+,	-,	and	 .	Notice	that	two	of	the
symbols	here	are	reused	between	unary	and	binary	operators.	This	is	fine.	The
interpreter	is	able	to	determine	which	is	in	use	based	on	whether	the	expression	is
unary	or	binary.

The	unary	operator	methods	simply	take	a	single	positional	argument	(self),
perform	the	operation,	and	return	the	result.	The	methods	are	called	__pos__
(which	maps	to	+),	__neg__	(which	maps	to	-),	and	__invert__	(which	maps	to	 ).

Unary	operators	are	straightforward.	The	expression	 x,	for	example,	calls
x.__invert__().	Consider	the	following	string-like	class	that	is	able	to	return	the
string	backward:

class	ReversibleString(object):

				def	__init__(self,	s):

								self.s	=	s

				def	__invert__(self):

								return	self.s[::-1]

				def	__str__(self):

								return	self.s

And,	in	the	Python	interpreter,	you	would	see	the	following:

>>>	rs	=	ReversibleString('The	quick	brown	fox	jumped	over	the	lazy	dogs.')

>>>	 rs

'.sgod	yzal	eht	revo	depmuj	xof	nworb	kciuq	ehT'

So,	what	is	happening	here?	The	ReversibleString	object	is	created	and	assigned
to	rs.	The	second	statement,	 rs,	is	a	simple	unary	expression.	The	result	is	not
being	assigned	to	a	variable,	which	means	that	it	is	simply	being	discarded.	The	rs
variable	is	not	being	modified	in	place.	The	interpreter,	however,	shows	you	the
result,	which	is	a	str	object	that	represents	your	string,	backward.



Note	that	the	return	value	is	a	str,	not	a	ReversibleString.	There	is	no	obligation
that	these	methods	return	a	value	of	the	same	type	as	the	operand,	and	your
__invert__	method	does	not	do	so.

There	is	no	reason	why	it	cannot	return	a	ReversibleString,	however,	and	often
returning	an	object	of	the	same	type	is	desirable.

class	ReversibleString(object):

				def	__init__(self,	s):

								self.s	=	s

				def	__invert__(self):

								return	type(self)(self.s[::-1])

				def	__repr__(self):

								return	'ReversibleString:	%s'	%	self.s

				def	__str__(self):

								return	self.s

This	iteration	of	ReversibleString	returns	a	new	ReversibleString	instance	from
its	__invert__	method.	A	custom	repr	has	been	added	for	demonstration
purposes,	because	having	the	interpreter	provide	a	memory	address	in	the	output
is	not	useful.





Note

You	may	note	the	use	of	type(self)(),	rather	than	simply	calling
ReversibleString()	directly.	This	ensures	that	if	ReversibleString	is
subclassed,	the	subclass	would	be	correctly	used	there.

The	Python	interpreter	now	shows	slightly	different	output:

>>>	rs	=	ReversibleString('The	quick	brown	fox	jumped	over	the	lazy	dogs.')

>>>	 rs

ReversibleString:	.sgod	yzal	eht	revo	depmuj	xof	nworb	kciuq	ehT

Instead	of	getting	a	str	object	back,	you	now	have	a	ReversibleString.	This	means
that	your	inverted	output	is	now	invertible.

>>>	 rs

ReversibleString:	The	quick	brown	fox	jumped	over	the	lazy	dogs.

This	is	straightforward.	The	rs	object	is	having	its	__invert__	method	called.
Then,	the	result	of	that	expression	is	having	its	__invert__	method	called.	This	is,
therefore,	equivalent	to	rs.__invert__().__invert__().

Overloading	Common	Methods
Python	includes	many	built-in	methods	(the	most	common	example	being	len)
that	are	widely	used	and	almost	as	much	of	the	contract	that	an	object	observes	as
are	the	operators.	Therefore,	Python	supplies	magic	methods	that	are	invoked
when	an	object	is	passed	to	those	methods.

__len__
The	most	common	method	to	be	overloaded	in	this	way	is	almost	certainly	len,
which	is	the	Pythonic	way	to	determine	the	“length”	of	an	item.	The	length	of	a
string	is	the	number	of	characters	in	the	string,	the	length	of	a	list	is	the	number	of
elements	within	the	list,	and	so	on.

Objects	can	describe	their	length	by	defining	a	__len__	method.	This	method	takes
one	positional	argument	(self)	and	should	return	an	integer.

Consider	the	following	class	to	represent	a	span	of	time:

class	Timespan(object):

				def	__init__(self,	hours=0,	minutes=0,	seconds=0):

								self.hours	=	hours

								self.minutes	=	minutes

								self.seconds	=	seconds

				def	__len__(self):

								return	(self.hours	*	3600)	+	(self.minutes	*	60)	+	self.seconds



This	class	essentially	takes	a	number	of	hours,	minutes,	and	seconds;	it	then
calculates	the	seconds	that	this	represents	and	uses	that	as	the	length.

>>>	ts	=	Timespan(hours=2,	minutes=30,	seconds=1)

>>>	len(ts)

9001

It	is	worth	noting	that	the	__len__	method,	if	defined,	also	is	used	to	determine
whether	an	object	is	considered	True	or	False	if	typecast	to	a	bool	or	is	used	in	an
if	statement,	unless	the	object	also	defines	a	__bool__	method	(or,	in	Python	2,
__nonzero__).

This	will	actually	do	exactly	what	you	expect	the	bulk	of	the	time,	so	it	often	is	not
necessary	to	define	a	separate	__bool__.

>>>	bool(Timespan(hours=1,	minutes=0,	seconds=0))

True

>>>	bool(Timespan(hours=0,	minutes=0,	seconds=0))

False

In	Python	3.4,	an	additional	method,	__length__hint_,	has	been	added.	Its
purpose	is	to	provide	an	estimate	of	an	object's	length,	which	is	allowed	to	be
somewhat	greater	than	or	less	than	an	object's	actual	length,	and	can	be	used	as	a
performance	optimization.	It	takes	one	positional	argument	(self),	and	must
return	an	integer	greater	than	0.

__repr__
One	of	the	most	important	built-in	methods	in	Python	is	also	potentially	one	of
the	most	overlooked:	repr.	Any	object	can	define	a	__repr__	method,	which	takes
one	positional	argument	(self).

Why	is	repr	so	important?	An	object's	repr	is	how	it	will	represent	itself	when
output	on	the	Python	interactive	terminal.

It	is	not	generally	useful	to	return	an	object	in	the	terminal	and	have	it	render	as
<__main__.O	object	at	0x102cdf950>.	In	the	vast	majority	of	cases,	an	object's
class	and	address	in	memory	are	not	what	you	want	to	know.

Defining	__repr__	allows	you	to	give	objects	a	more	useful	representation.
Consider	the	following	Timespan	class	with	a	useful	__repr__	method:

class	Timespan(object):

				def	__init__(self,	hours=0,	minutes=0,	seconds=0):

								self.hours	=	hours

								self.minutes	=	minutes

								self.seconds	=	seconds

				def	__repr__(self):

								return	'Timespan(hours=%d,	minutes=%d,	seconds=%d)'	%	\

															(self.hours,	self.minutes,	self.seconds)

What	happens	when	you	work	with	Timespan	objects	on	the	terminal	now?



>>>	Timespan()

Timespan(hours=0,	minutes=0,	seconds=0)

>>>	Timespan(hours=2,	minutes=30)

Timespan(hours=2,	minutes=30,	seconds=0)

This	is	much	more	useful	than	a	memory	address!

Notice	that	in	addition	to	communicating	all	the	key	attributes	of	a	Timespan,	the
repr	prints	as	a	valid	expression	that	instantiates	a	Timespan.	This	is	incredibly
valuable	when	it	is	possible.	It	intuitively	communicates	that	you	are	working	with
an	object	generally,	and	a	Timespan	object	specifically.	Just	printing	out	the	timing
information	might	leave	open	the	interpretation	that	you	are	looking	at	a	str	or	a
timedelta,	for	example.	Also,	the	Python	interpreter	could	parse	it	if	it's	copied
and	pasted.	That	is	a	good	thing.

What	this	really	points	to	is	a	more	general	distinction	that	is	important:	repr	and
str	have	different	purposes.	Exactly	how	you	delineate	them	is	a	matter	of	subtle
differences	of	opinion,	depending	on	what	you	read.	But	an	all-encompassing
understanding	should	be	that	an	object's	repr	is	intended	for	programmers	(and
machines,	possibly),	whereas	an	object's	str	is	geared	toward	more	public
consumption.	You	would	not	want	the	Timespan's	str	to	look	like	a	class
instantiation	call.	Most	likely,	it	would	be	something	intended	for	humans	instead.

It	is	often	very	useful	for	an	object's	repr	to	return	a	valid	Python	expression	to
reconstruct	the	object.	Many	Python	built-ins	do	this.	The	repr	of	an	empty	list	is
[],	which	is	the	expression	to	make	an	empty	list.

When	this	is	impossible	or	impractical,	a	good	rule	of	thumb	is	to	return
something	that	looks	like	it	is	obviously	an	object,	and	is	noisy	about	what	its	key
properties	are.	As	an	example,	an	alternative	repr	for	a	Timestamp	object	might	be
<Timestamp:	X	hours,	Y	minutes,	Z	seconds>.	The	Python	interpreter	will	not	be
able	to	parse	that	(unlike	the	repr	used	previously),	but	it	is	clear	exactly	what	it	is,
and	nobody	will	errantly	expect	it	to	be	able	to	be	parsed,	either.

__hash__
Another	often	overlooked	built-in	function	is	the	hash	function.	The	purpose	of	the
hash	function	is	to	uniquely	identify	objects,	and	to	do	so	using	a	numeric
representation.

When	an	object	is	passed	to	hash,	its	__hash__	method	is	invoked	(if	defined).	The
__hash__	method	takes	one	positional	argument	(self),	and	should	return	an
integer.	It	is	acceptable	for	this	integer	to	be	negative.

The	object	class	provides	a	__hash__	function,	which	normally	simply	returns	the
id	of	the	object.	An	object's	id	is	implementation-specific,	but	in	CPython,	it	is	its
memory	address.

However,	if	an	object	defines	an	__eq__	method,	the	__hash__	method	is	implicitly
set	to	None.	This	is	done	because	of	an	ambiguity	in	the	purpose	of	hashing



generally.	Depending	on	how	they	are	being	used,	it	may	be	desirable	for	every
object	to	have	a	unique	hash,	or	for	equivalent	objects	to	have	matching	hashes.
And,	“in	the	face	of	ambiguity,	avoid	the	temptation	to	guess.”

Therefore,	if	a	class	should	understand	equivalence	and	be	hashable,	it	must
explicitly	define	its	own	__hash__	method.

Hashes	are	used	in	several	places	in	the	Python	ecosystem.	The	two	most	common
uses	for	them	are	for	dictionary	keys	and	in	set	objects.	Only	hashable	objects	can
be	used	as	dictionary	keys.	Similarly,	only	hashable	objects	can	exist	in	Python	set
objects.	In	both	cases,	the	hash	is	used	to	determine	equivalence	for	testing	set
membership	and	dictionary	key	lookup.

__format__
Another	common	Python	built-in	function	is	the	format	function,	which	is	capable
of	formatting	various	kinds	of	objects	according	to	Python's	format	specification.

Any	object	can	provide	a	__format__	method,	which	is	invoked	if	an	object	is
passed	to	format.	This	method	takes	two	positional	arguments,	the	first	being
self,	and	the	second	being	the	format	specification	string.

In	Python	3,	the	str.format	method	has	replaced	the	%	operator	as	the	preferred
way	to	handle	templating	within	strings.	If	you	pass	an	object	with	a	__format__
method	as	an	argument	to	str.format,	this	method	will	be	called.

>>>	from	datetime	import	datetime

>>>

>>>

>>>	class	MyDate(datetime):

...					def	__format__(self,	spec_str):

...									if	not	spec_str:

...													spec_str	=	'%Y-%m-%d	%H:%M:%S'

...									return	self.strftime(spec_str)

...

>>>

>>>	md	=	MyDate(2012,	4,	21,	11)

>>>

>>>	'{0}'.format(md)

'2012-04-21	11:00:00'

Because	the	string	used	{0}	with	no	additional	formatting	information,	there	was
no	format	specification,	and	the	default	is	used.	However,	note	what	happens
when	you	provide	one:

>>>	'{0:%Y-%m-%d}'.format(md)

'2012-04-21'

The	__format__	method	is	only	called	in	this	way	when	using	the	format	method.	It
is	not	called	if	%-substitution	is	used	within	a	string.

__instancecheck__	and	__subclasscheck__



Although	most	type	checking	in	Python	is	done	using	so-called	duck	typing	(if
obj.look()-s	like	a	Duck	and	obj.quack()-s	like	a	Duck,	it's	probably	a	Duck),	it	is
also	possible	to	test	whether	an	object	is	an	instance	of	a	particular	class	using	the
built-in	isinstance	method.	Similarly,	a	class	can	test	whether	it	inherits	from
another	class	using	issubclass.

It	is	rarely	necessary	to	customize	this	behavior.	The	isinstance	method	returns
True	if	the	object	is	an	instance	of	the	provided	class	or	any	subclass	thereof
(which	is	almost	always	what	you	want).	Similarly,	issubclass	(despite	its	name)
returns	True	if	the	same	class	is	provided	for	both	arguments	(which	is	also	almost
always	what	you	want).

Occasionally,	though,	it	is	desirable	to	allow	classes	to	fake	their	identities.	Python
2.6	introduces	this	possibility	by	providing	the	__instancecheck__	and
__subclasscheck__	methods.	Each	of	these	methods	takes	two	arguments,	the	first
being	self,	and	the	second	being	the	object	being	tested	against	this	class	(so,	the
first	argument	to	isinstance).	This	allows	classes	to	determine	what	objects	may
masquerade	as	their	instances	or	subclasses.

__abs__	and	__round__
Python	provides	built-in	abs	and	round	functions,	which	return	the	absolute	value
of	a	number	and	a	rounded	value,	respectively.

Although	it	is	not	usually	necessary	for	custom	classes	to	define	this	behavior,	they
can	do	so	by	defining	__abs__	and	__round__,	respectively.	Both	take	one	positional
argument	(self),	and	should	return	a	numeric	value.

Collections
Many	objects	are	collections	of	various	kinds	of	other	objects.	Most	complex
classes	functionally	come	down	to	a	collection	of	attributes	(sorted	in	a
meaningful	way),	as	well	as	actions	that	the	object	can	take.

Python	has	several	ways	of	understanding	“membership”	of	one	object	within
another.	For	lists	and	dictionaries,	for	example,	it	is	possible	to	test	whether	an
object	is	a	member	of	the	collection	by	the	expression	needle	in	haystack	(where
needle	is	the	variable	being	searched	for,	and	haystack	is	the	collection).

Dictionaries	are	made	up	of	keys,	and	can	perform	lookup	based	on	the	key	by
evaluating	haystack[key].	Similarly,	most	objects	have	attributes	that	are	set
during	initialization	or	by	other	methods,	which	are	accessed	using	dot	notation
(haystack.attr_name).

Python	has	magic	methods	that	interact	with	all	of	these.

__contains__
The	__contains__	method	is	invoked	when	an	expression	such	as	needle	in
haystack	is	evaluated.	This	method	takes	two	positional	arguments	(self,	and	then



the	needle),	and	should	return	True	if	the	needle	is	considered	to	be	present,	and
False	if	it	is	absent.

There	is	no	strict	requirement	that	this	conform	to	object	presence	within	another
object,	although	that	is	the	most	common	use	case.	Consider	the	following	class
that	represents	a	range	of	dates:

class	DateRange(object):

				def	__init__(self,	start,	end):

								self.start	=	start

								self.end	=	end

				def	__contains__(self,	needle):

								return	self.start	<=	needle	<=	self.end

In	this	case,	the	__contains__	method	determines	whether	the	date	is	between	the
boundaries	of	the	range.

>>>	dr	=	DateRange(date(2015,	1,	1),	date(2015,	12,	31))

>>>	date(2015,	4,	21)	in	dr

True

>>>	date(2012,	4,	21)	in	dr

False

__getitem__,	__setitem__,	and	__delitem__
The	__getitem__	method	and	its	siblings	are	used	for	key	lookups	on	collections
(such	as	dictionaries),	or	index	or	slice	lookups	on	sequences	(such	as	lists).	In
both	cases,	the	fundamental	expression	being	evaluated	is	haystack[key].

The	__getitem__	method	takes	two	arguments:	self	and	key.	It	should	return	the
appropriate	value	if	present,	or	raise	an	appropriate	exception	if	absent.	What
exception	is	appropriate	varies	somewhat	based	on	the	situation,	but	is	usually
one	of	IndexError,	KeyError,	or	TypeError.

The	__setitem__	method	is	used	in	the	same	situation,	except	that	it	is	invoked
when	a	value	is	being	set	to	the	collection,	rather	than	being	looked	up.	It	takes
three	positional	arguments	rather	than	two:	self,	key,	and	value.

It	is	not	a	requirement	that	every	object	that	supports	item	lookup	necessarily
support	item	changes.	In	other	words,	it	is	entirely	acceptable	to	define
__getitem__	and	not	define	__setitem__	if	this	is	the	behavior	that	you	want.

Finally,	the	__delitem__	method	is	invoked	in	the	unusual	situation	where	key	is
deleted	with	the	del	keyword	(for	example,	del	haystack[key]).

__getattr__	and	__setattr__
The	other	major	way	that	Python	classes	serve	as	collections	is	by	being	collections
of	attributes	and	objects.	When	a	date	object	contains	year,	month,	and	day,	those
are	attributes	(which	are	set	to	integers	in	that	case).

The	__getattr__	method	is	invoked	when	attempting	to	get	an	attribute	from	an



object,	either	with	dot	notation	(such	as	obj.attr_name),	or	using	the	getattr
method	(such	as	getattr(obj,	'attr_name')).

However,	unlike	other	magic	methods,	it	is	important	to	realize	that	__getattr__
is	only	invoked	if	the	attribute	is	not	found	on	the	object	in	the	usual	places.	In
other	words,	the	Python	interpreter	will	first	do	a	standard	attribute	lookup,
return	that	if	there	is	a	match,	and	if	there	is	not	a	match	(in	other	words,
AttributeError	would	be	raised),	then	and	only	then	is	the	__getattr__	method
called.

In	other	respects,	it	works	similarly	to	__getitem__	(discussed	previously).	It
accepts	two	positional	arguments	(self	and	key),	and	is	expected	to	return	an
appropriate	value,	or	raise	AttributeError.

Similarly,	the	__setattr__	method	is	the	writing	equivalent	of	__getattr__.	It	is
invoked	when	attempting	to	write	to	an	object,	whether	by	dot	notation	or	using
the	setattr	method.	Unlike	__getattr__,	it	is	always	invoked	(the	method	would
be	meaningless	otherwise),	and,	therefore,	should	call	the	superclass	method	in
situations	where	the	traditional	implementation	is	desired.

__getattribute__
The	reason	why	__getattr__	is	only	invoked	if	the	attribute	is	not	found	is	because
this	is	ordinarily	the	desired	behavior	(otherwise,	it	would	be	very	easy	to	fall	into
infinite	recursion	traps).	However,	the	__getattribute__	method,	unlike	its	more
common	counterpart,	is	called	unconditionally.

The	logical	order	here	is	that	__getattribute__	is	called	first,	and	is	ordinarily
responsible	for	doing	the	traditional	attribute	lookup.	If	a	class	defines	its	own
__getattribute__,	it	becomes	responsible	for	calling	the	superclass
implementation	if	it	needs	to	do	so.	If	(and	only	if)	__getattribute__	raises
AttributeError,	__getattr__	is	called.



Other	Magic	Methods
A	few	other	magic	methods	exist	in	addition	to	the	ones	described	so	far.	In
particular,	Python	implements	an	iterator	protocol,	which	uses	the	__iter__	and
__next__	methods.	These	are	not	discussed	in	detail	here	because	they	are
discussed	at	length	in	Chapter	3,	“Generators.”

Similarly,	Python	implements	a	rich	language	feature	known	as	context	managers,
which	make	use	of	the	__enter__	and	__exit__	magic	methods.	These	are	also	not
discussed	in	detail	here	because	they	are	discussed	at	length	in	Chapter	2,
“Context	Managers.”



Summary
The	magic	methods	available	to	classes	provide	the	Python	language	with	a
consistent	data	model	that	can	be	used	across	custom	classes.	This	greatly
enhances	the	readability	of	the	language,	in	addition	to	providing	hooks	for	classes
of	disparate	types	to	interact	with	each	other	in	predictable	ways.

There	is	no	reason	to	require	that	every	custom	class	implement	all	of	these
methods,	or	even	any	of	them.	When	writing	a	class,	consider	what	functionality
you	need.	However,	if	the	functionality	needed	maps	cleanly	to	an	already	defined
method	here,	it	is	preferable	to	implement	these	rather	than	provide	your	own
custom	spelling.

In	Chapter	5,	you	will	learn	about	metaclasses.





Chapter	5
Metaclasses
Classes	in	Python	are	also	objects.

This	is	a	key	concept.	In	Python,	almost	everything	is	an	object,	including	both
functions	and	classes.	This	means	that	functions	and	classes	can	be	provided	as
arguments,	exist	as	members	of	class	instances,	and	do	anything	that	any	other
object	is	capable	of	doing.

What	else	does	it	mean	to	say	that	classes	are	objects?	Chapter	4,	“Magic
Methods,”	discussed	how	object	instantiation	works.	The	__new__	and	__init__
methods	of	the	class	are	called,	in	that	order,	to	create	the	new	object.	Classes	are
not	an	exception	to	this	process.	Classes	themselves,	being	objects,	are	instances
of	another	class,	which	is	responsible	for	creating	them.

The	classes	responsible	for	generating	other	classes	are	called	metaclasses.
“Meta-”	is	a	Greek	prefix	that	simply	means	“post-”	or	“after.”	For	example,	a
portion	of	Aristotle's	work	is	called	“The	Physics,”	and	the	subsequent	portion	is
called	“The	Metaphysics,”	which	simply	means	“the	stuff	that	comes	after	the
physics.”	However,	the	meaning	assigned	to	this	prefix	has	since	evolved	to	refer
to	a	level	of	self-reference—an	instantiation	of	a	concept	in	order	to	work	on	that
concept.	If	you	have	ever	been	unfortunate	enough	to	be	forced	to	sit	through	a
meeting	to	plan	other	meetings,	that	particular	atrocity	could	rightly	be	called	a
meta-meeting.

This	chapter	covers	metaclasses.	First,	it	delves	into	the	philosophy	behind
Python's	object	model,	and	how	metaclasses,	classes,	and	objects	connect	to	one
another.	Then,	it	explores	examples	of	specific	ways	metaclasses	can	be	used.



Classes	and	Objects
The	relationship	between	a	class	and	an	instance	of	that	class	is	straightforward
and	two-fold.	First,	a	class	defines	the	properties	and	available	actions	of	its
instances.	Second,	a	class	serves	as	a	factory	that	creates	said	instances.

With	this	in	mind,	the	only	additional	understanding	necessary	to	grasp
metaclasses	is	the	realization	that	this	relationship	can	be	hierarchical.	When	you
instantiate	a	class	that	you	write,	your	class	serves	as	the	definition	of	the
instance's	properties	and	actions,	and	performs	the	generation	of	the	instance.
When	you	defined	the	class,	you	were	simply	using	a	special,	substitute	syntax
that	stands	in	for	the	instantiation	of	a	different	class,	called	type.

Using	type	Directly
This	can	best	be	illustrated	by	simply	creating	a	class	using	type	directly,	rather
than	using	the	Python	class	keyword.	This	is	syntactically	quite	ugly,	but	it	offers
a	clear	view	into	what	is	going	on	under	the	hood.

Therefore,	consider	the	following	simple	set	of	classes:

class	Animal(object):

				"""A	class	representing	an	arbitrary	animal."""

				def	__init__(self,	name):

								self.name	=	name

				def	eat(self):

								pass

				def	go_to_vet(self):

								pass

class	Cat(Animal):

				def	meow(self):

								pass

				def	purr(self):

								pass

The	Animal	class	obviously	represents	an	animal,	and	defines	certain	things	that
the	animal	is	capable	of	doing,	such	as	eating	and	being	taken	to	the	vet.	The	Cat
subclass	additionally	knows	how	to	meow	and	purr,	functions	not	available	to
other	animals.	(The	method	bodies	are	stubbed,	and	left	to	the	reader's	intuition.)

What	happens	here	is	that	when	the	Python	interpreter	gets	to	the	top	statement
in	the	code,	class	Animal(object),	it	invokes	the	type	constructor	under	the	hood.
As	alluded	to	earlier,	type	is	a	built-in	class	in	Python,	which	is	the	default	class
for	other	class	objects.	It	is	the	default	class	that	creates	other	classes—or,	the
default	metaclass.



However,	nothing	stops	you	from	simply	doing	this	directly.	The	type	constructor
takes	three	positional	arguments:	name,	bases,	and	attrs.	The	name	argument	(a
string)	is	simply	the	name	of	the	class.	The	bases	argument	is	a	tuple	of	the
superclasses	for	that	class.	Python	supports	multiple	inheritance,	which	is	why
this	is	a	tuple.	If	you	are	only	inheriting	from	a	single	class,	just	send	a	tuple	with	a
single	element.	Finally,	the	attrs	argument	is	a	dictionary	of	all	the	attributes	on
the	class.

Creating	a	Class
The	following	code	is	(roughly)	equivalent	to	the	previous	class	Animal	block:

def	init(self,	name):

				self.name	=	name

def	eat(self):

				pass

def	go_to_vet(self):

				pass

Animal	=	type('Animal',	(object,),	{

				'__doc__':	'A	class	representing	an	arbitrary	animal.',

				'__init__':	init,

				'eat':	eat,

				'go_to_vet':	go_to_vet,

})

This	is,	obviously,	not	the	preferred	way	to	instantiate	a	new	class.	Also,	note	that
it	is	only	roughly	equivalent.	It	has	a	couple	of	differences,	most	notably	that	this
code	leaves	functions	called	init,	eat,	and	go_to_vet,	unattached	to	the	class,	in
that	namespace.	This	is	worth	noting,	but	not	particularly	important	for	the
purposes	of	this	discussion.

Focus	on	the	call	to	type.	The	first	argument	is	just	the	string	'Animal'.	There	is
some	repetition	here.	You	are	sending	this	string	to	assign	the	name	of	the	class,
but	you	are	also	assigning	the	result	of	the	type	call	to	the	variable	Animal.	The
class	keyword	handled	this	for	you.	Because	this	is	a	direct	call	to	type,	you	must
manually	assign	the	result	to	a	variable,	as	you	would	for	a	new	instance	of	any
other	class.

The	second	argument	is	a	tuple	with	a	single	item:	(object,).	This	means	that	the
Animal	class	inherits	from	object,	as	it	did	in	the	initial	class.	You	need	the	trailing
comma	to	disambiguate	to	the	Python	interpreter	that	you	want	a	tuple	here.
Parentheses	have	other	uses	in	Python,	and	so	a	trailing	comma	is	required	for
tuples	with	only	a	single	element.

The	third	argument	is	a	dictionary	that	defines	the	attributes	of	the	class,
equivalent	to	the	indented	portion	of	the	class	block.	You	previously	defined
functions	that	map	to	the	functions	in	your	original	class,	and	pass	them	into	the



attrs	dictionary.	The	dictionary	keys	are	used	to	determine	the	name	of	the
attribute	within	the	class.	One	thing	to	note	here	is	the	docstring.	The	Python
interpreter	automatically	takes	the	docstring	in	a	class	call	and	assigns	it	to	the
attribute	__doc__.	Because	you	are	instantiating	type	directly,	you	must	do	that
manually.

Creating	a	Subclass
You	can	create	the	Cat	class	similarly,	as	shown	here:

def	meow(self):

				return	None

def	purr(self):

				return	None

Cat	=	type('Cat',	(Animal,),	{

				'meow':	meow,

				'purr':	purr,

})

This	is	mostly	more	of	the	same.	The	big	change	here	is	that	you	are	now
subclassing	Animal	rather	than	object.	What	you	are	passing	here	is	the	Animal
class	itself.	Also,	note	that	it	is	still	a	tuple	with	a	single	element.	You	are	not
passing	(Animal,	object).	The	fact	that	object	is	Animal's	superclass	is	baked	into
the	Animal	class	already.	Sending	in	a	tuple	with	more	than	one	element	is	only
necessary	for	multiple	inheritance	situations.

The	type	Chain
Consider	the	following	instance	of	the	Cat	class:

louisoix	=	Cat(name='Louisoix')

Notice	the	three	things	that	are	on	deck.	louisoix	is	an	object,	and	an	instance	of
Cat.	The	Cat	class	is	also	an	object	(because	classes	are	objects),	and	is	an	instance
of	type.	Finally,	type	is	the	top	of	the	chain.

You	can	also	observe	this	in	another	way.	Passing	a	single	object	to	type	returns	its
class,	as	shown	here:

>>>	type(5)

<type	'int'>

So,	observe	the	following	chain:

>>>	type(louisoix)

<class	'__main__.Cat'>

>>>	type(Cat)

<class	'type'>

>>>	type(type)



<class	'type'>

The	type	class	is	the	base	case	here.	It	is	the	top	of	the	chain,	and,	therefore,
type(type)	returns	itself.



Note

In	a	Python	2	terminal,	note	that	the	output	will	show	<type	'type'>	instead
of	<class	'type'>.	This	is	fine.	It	is	still	the	same	type;	it	simply	represents
itself	differently	on	the	terminal.

The	Role	of	type
type	is	the	primary	metaclass	in	Python.	Ordinary	classes	that	are	created	with	the
class	keyword,	by	default,	have	type	as	their	metaclass.

Colloquially,	you	can	refer	to	type	as	the	metaclass	for	both	the	class	(Cat)	and	its
instances	(louisoix).

Additionally,	type	is	also	the	superclass	from	which	other	metaclasses	inherit.	This
is	analogous	to	object	being	the	class	from	which	other	classes	inherit.	Just	as
object	is	the	top	of	the	class	hierarchy,	type	is	the	top	of	the	metaclass	hierarchy.



Writing	Metaclasses
Writing	a	metaclass	is	syntactically	very	straightforward.	You	simply	declare	a
class	(using	the	class	keyword)	that	inherits	from	type.	The	beauty	of	this	object
model	shines	through	here.	Classes	are	just	objects,	and	metaclasses	are	just
classes.	The	behaviors	that	metaclasses	take	on	are	inherited	from	type.	Any	class
that	subclasses	type	is,	therefore,	capable	of	functioning	as	a	metaclass.

Before	going	into	examples,	note	as	an	aside	that	you	should	never	attempt	to
declare	or	use	a	metaclass	that	does	not	directly	subclass	type.	This	will	cause
havoc	with	Python's	multiple	inheritance.	Python's	inheritance	model	requires	any
class	to	have	exactly	one	metaclass.	Inheriting	from	two	classes	with	different
metaclasses	is	acceptable	if	(and	only	if)	one	of	the	metaclasses	is	a	direct	subclass
of	the	other	(in	which	case,	the	subclass	is	used).	Attempting	to	implement	a
metaclass	that	does	not	subclass	type	will	break	multiple	inheritance	with	any
classes	that	use	that	metaclass,	along	with	any	classes	that	use	type	(that	is,
virtually	all	of	them).	You	do	not	want	to	do	this.

The	__new__	Method
The	most	important	method	that	custom	metaclasses	must	define	is	the	__new__
method.	This	method	actually	handles	the	creation	of	the	class,	and	must	return
the	new	class.

The	__new__	method	is	a	class	method	(that	does	not	need	to	be	explicitly
decorated	as	such).	The	arguments	sent	to	__new__	in	custom	metaclasses	must
mirror	the	arguments	sent	to	type's	__new__	method,	which	takes	four	positional
arguments.

The	first	argument	is	the	metaclass	itself,	prepended	to	arguments	in	a	manner
similar	to	that	of	bound	methods.	By	convention,	this	argument	is	called	cls.

Beyond	this,	__new__	expects	three	positional	arguments:

First,	the	desired	name	of	the	class	as	a	string	(name)

Second,	a	tuple	of	the	class's	superclasses	(bases)

Third,	a	dictionary	of	attributes	that	the	class	should	contain	(attrs)

Most	custom	implementations	of	__new__	in	metaclasses	should	ensure	that	they
call	the	superclass	implementation,	and	perform	whatever	work	is	needed	in	the
code	around	that.

__new__	Versus	__init____
Recall	at	this	point	the	distinction	between	the	__new__	method	and	the	__init__
method.	In	a	class	or	a	metaclass,	the	__new__	method	is	responsible	for	creating
and	returning	the	object.	Conversely,	the	__init__	method	is	responsible	for
customizing	the	object	after	it	has	been	created,	and	returns	nothing.



In	ordinary	classes,	you	generally	do	not	define	a	custom	__new__	method	at	all.	By
contract,	defining	a	custom	__init__	method	is	extremely	common.	This	is
because	the	implementation	of	__new__	provided	by	object	is	essentially	always
sufficient,	but	it	is	also	necessary.	Overriding	it	(even	in	direct	subclasses	of
object)	would	require	calling	the	superclass	method	and	being	careful	to	return
the	result	(the	new	instance).	By	contrast,	overriding	__init__	is	easy	and
relatively	risk-free.	An	object's	implementation	of	__init__	is	a	no-op,	and	the
method	does	not	return	anything	at	all.

When	you're	writing	custom	metaclasses,	this	behavior	changes.	Custom
metaclasses	generally	should	override	the	__new__	method,	and	generally	do	not
implement	an	__init__	method	at	all.	When	doing	this,	keep	in	mind	that	you
almost	always	must	call	the	superclass	implementation.	type's	implementation	of
__new__	will	actually	provide	you	with	the	object	you	need	to	do	work	on	and
return.

A	Trivial	Metaclass
Before	diving	into	a	metaclass	that	customizes	behavior,	consider	a	custom
metaclass	that	does	nothing	but	check	all	the	boxes	that	have	been	covered	thus
far.

class	Meta(type):

				"""A	custom	metaclass	that	adds	no	actual	functionality."""

				def	__new__(cls,	name,	bases,	attrs):

								return	super(Meta,	cls).__new__(cls,	name,	bases,	attrs)

This	discussion	has	not	yet	explored	how	to	assign	a	metaclass	within	class
creation	using	the	class	keyword	(more	on	that	shortly).	But	you	can	create	a	class
that	uses	the	Meta	metaclass	by	calling	Meta	directly,	similar	to	the	direct
invocation	of	type	earlier.

>>>	C	=	Meta('C',	(object,),	{})

This	creates	a	class,	C,	which	is	an	instance	of	Meta	rather	than	an	instance	of	type.
Observe	the	following:

>>>	type(C)

<class	'__main__.Meta'>

This	is	distinct	from	what	you	observe	from	a	“normal”	class,	as	shown	here:

>>>	class	N(object):

...					pass…

>>>	type(N)

<class	'type'>

Metaclass	Inheritance
It	is	worth	noting	that	metaclasses	are	inherited.	Therefore,	subclasses	of	C	will	be



instances	of	Meta,	rather	than	being	direct	instances	of	type	as	shown	in	the
following	code	and	illustrated	in	Figure	5.1.

>>>	class	D(C):

...					pass…

>>>	type(D)

<class	'__main__.Meta'>

Figure	5.1	Metaclass	inheritance

In	this	case,	D	is	an	instance	of	Meta	not	because	it	has	an	explicit	metaclass
declared,	or	because	you	called	Meta	to	create	it,	but	rather	because	its	superclass
is	an	instance	of	Meta,	and,	therefore,	it	is	also.

It	is	important	to	note	here	that	classes	may	only	have	one	metaclass.	Under	most
circumstances,	this	is	fine,	even	in	scenarios	where	multiple	inheritance	is	in	play.
If	a	class	subclasses	two	or	more	distinct	classes	with	distinct	metaclasses,	the
Python	interpreter	will	try	to	resolve	this	by	checking	the	ancestry	of	the
metaclasses.	If	they	are	direct	ancestors,	the	subclass	will	be	used.

Consider	the	following	class	that	subclasses	both	C	(an	instance	of	Meta)	and	N	(an
instance	of	type)

>>>	class	Z(C,	N):

...					pass…

>>>	type(Z)

<class	'__main__.Meta'>



Figure	5.2	shows	what	is	happening	in	this	code.

Figure	5.2	Metaclass	inheritance	with	subclasses

What	is	going	on	here?	The	Python	interpreter	is	told	to	create	class	Z,	and	that	it
should	subclass	both	C	and	N.	This	would	be	the	equivalent	of	type('Z',	(C,	N),
{}).

First,	the	Python	interpreter	examines	C,	and	realizes	that	it	is	an	instance	of	Meta.
Then	it	examines	N,	and	realizes	that	it	is	an	instance	of	type.	This	is	a	potential
conflict.	The	two	superclasses	have	different	metaclasses.	However,	the	Python
interpreter	also	realizes	that	Meta	is	a	direct	subclass	of	type.	Therefore,	it	knows	it
can	safely	use	Meta,	and	does	so.

What	happens	if	you	have	two	metaclasses	where	one	is	not	a	direct	descendent	of
the	other?	Now	there	is	a	conflict,	and	the	Python	interpreter	does	not	know	how
to	solve	it.	And	it	will	cowardly	refuse	to	try,	as	shown	here:

>>>	class	OtherMeta(type):

...					def	__new__(cls,	name,	bases,	attrs):

...									return	super(OtherMeta,	cls).__new__(cls,	name,	bases,	attrs)

...

>>>	OtherC	=	OtherMeta('OtherC',	(object,),	{})

>>>

>>>	class	Invalid(C,	OtherC):

...					pass…

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

		File	"<stdin>",	line	4,	in	__new__



TypeError:	Error	when	calling	the	metaclass	bases

				metaclass	conflict:	the	metaclass	of	a	derived	class	must	be	a	(non-

				strict)	subclass	of	the	metaclasses	of	all	its	bases

This	happens	because	Python	can	only	have	one	metaclass	for	each	class,	and	will
not	try	to	guess	which	metaclass	to	use	in	an	ambiguous	case.



Using	Metaclasses
Before	delving	into	more	complex	metaclasses,	let's	explore	how	to	use	them.
Although	it	is,	of	course,	possible	to	instantiate	metaclasses	directly	(as	shown
with	type	and	Meta	earlier),	it	is	not	the	desirable	method.

The	class	construct	in	Python	provides	a	mechanism	to	declare	the	metaclass	if
type	is	not	the	metaclass	being	used.	However,	the	syntax	to	define	which
metaclass	is	different,	depending	on	which	version	of	Python	you	are	using.

Python	3
In	Python	3,	metaclasses	are	declared	alongside	the	superclasses	(if	any).	The
syntax	resembles	that	of	a	keyword	argument	in	a	function	declaration	or	a
function	call,	and	the	“keyword	argument”	is	metaclass.

Earlier,	you	created	the	C	class	by	calling	Meta	directly.	Here	is	the	preferred	way
to	do	this	in	Python	3:

class	C(metaclass=Meta):

				pass

This	class	keyword	call	does	the	exact	same	thing	as	creating	the	class	by	directly
calling	Meta.	This,	however,	is	the	preferred	style.

One	thing	to	note	here	is	that	you	did	not	explicitly	specify	object	as	the
superclass.	In	most	of	the	examples	used	in	this	book,	you	have	explicitly	specified
object	as	the	superclass.	This	is	because	this	book	intends	examples	to	be	run	on
either	Python	2	or	Python	3.	In	Python	2,	specifying	this	matters,	because
subclassing	object	is	what	makes	the	class	be	a	“new-style	class,”	which	is	a
construct	introduced	a	long	time	ago	(Python	2.2)	that	altered	Python's	method-
resolution	order,	as	well	as	some	of	the	other	guts	of	how	Python	classes	work.	The
direct	subclassing	of	object	was	used	as	a	way	to	ensure	backward-compatibility,
forcing	developers	to	“opt-in”	to	new-style	classes,	rather	than	to	opt	out	of	them.

In	Python	3,	which	was	a	backward-incompatible	release,	all	classes	are	new-style,
and	directly	subclassing	object	is	no	longer	necessary,	and	thus	is	not	done	here.
That	said,	the	previous	code	is	exactly	equivalent	to	the	following:

class	C(object,	metaclass=Meta):

				pass

This	style	allows	you	to	observe	more	explicitly	the	distinction	between
superclasses,	which	are	declared	here	using	a	syntax	akin	to	positional	arguments
in	a	function	declaration,	as	opposed	to	the	metaclass	that	is	declared	with	the
keyword	argument	syntax.	They	must	be	specified	in	this	order,	with	metaclass
last,	just	like	function	arguments.

When	directly	subclassing	object	in	Python	3,	either	style	(explicitly	including	it
or	omitting	it)	is	acceptable.



Python	2
Python	2	has	an	entirely	different	syntax	for	metaclass	declaration.	The	Python	2
syntax	is	not	supported	under	Python	3,	and	the	Python	3	syntax	is	not	supported
under	Python	2.	(Skip	down	a	section	to	see	how	to	declare	a	metaclass	in	a	way
that	does	the	right	thing	on	both.)

The	Python	2	syntax	for	declaring	a	metaclass	is	to	assign	a	__metaclass__
attribute	to	the	class.	Consider	the	earlier	creation	of	class	C	using	a	call	to	Meta.
Following	is	the	equivalent	code	in	Python	2:

class	C(object):

				__metaclass__	=	Meta

In	this	case,	the	metaclass	is	being	assigned	in	the	class	body.	This	is	fine.	The
Python	interpreter	looks	for	this	when	the	class	keyword	is	invoked,	and	uses	Meta
rather	than	type	to	create	the	new	class.

What	About	Code	That	Might	Run	on	Either	Version?
Because	Python	3	introduced	backward-incompatible	changes	to	the	Python
language,	Python	developers	have	come	up	with	strategies	for	running	the	same
set	of	code	under	either	the	Python	3	interpreter	or	the	Python	2	interpreter	with
similar	results.

One	of	the	most	popular	ways	to	do	this	involves	using	a	tool	called	six,	which	was
written	by	Benjamin	Peterson	and	is	available	from	PyPI.

six	provides	two	ways	to	declare	a	metaclass:	by	creating	a	stand-in	class	and
using	it	as	a	direct	superclass,	or	by	using	a	decorator	to	add	the	metaclass.

The	first	method	(which	is	the	stand-in	class	method)	looks	like	this:

import	six

class	C(six.with_metaclass(Meta)):

				pass

What	is	happening	here?	six.with_metaclass	creates	a	dummy	class	of	sorts	that
subclasses	object,	and	has	Meta	as	its	metaclass,	but	which	does	nothing	else.	By
applying	this	class	as	the	superclass	to	C,	and	based	on	how	metaclasses	interact
with	class	inheritance	(discussed	previously),	C	is	now	an	instance	of	Meta,
regardless	of	which	Python	version	is	in	use.

Depending	on	exactly	what	the	metaclass	in	question	does,	sometimes	this
solution	will	not	actually	work.	Because	six.with_metaclass	actually	instantiates	a
class,	some	metaclasses	may	want	to	do	work,	and	it	is	possible	that	said	work
would	not	be	compatible	with	having	an	abstract	superclass.

six	provides	one	other	way	to	assign	a	metaclass	to	a	class,	which	is	using	a
decorator:	@six.add_metaclass.	The	syntax	for	that	looks	like	this:



import	six

@six.add_metaclass(Meta)

class	C(object):

				pass

The	result	here	becomes	the	same	to	the	Python	2-	or	Python	3-specific
implementations.	Class	C	is	created,	using	the	class	keyword,	and	the	Meta
metaclass,	rather	than	using	type.	The	decorator	does	this	without	instantiating	an
abstract	class.

When	Is	Cross-Compatibility	Important?
Because	there	are	two	incompatible	syntaxes	for	Python	2	as	opposed	to	Python	3,
it's	important	to	explore	at	this	point	when	it	is	better	to	use	the	“pure”	language
approach,	and	when	it	is	the	right	time	to	introduce	six.

Without	delving	too	deeply	into	the	theory,	a	good	rule	of	thumb	here	is	that	if	you
are	running	Python	2,	assume	that	you	may	at	some	point	want	to	migrate	to
Python	3,	and	try	to	write	cross-compatible	code.	This	will	entail	using	six	for	any
number	of	things	(this	among	them),	and	so	probably	introducing	six	into	your
codebase	is	wise.	By	contrast,	if	you	are	already	exclusively	in	a	Python	3
environment,	it	is	unlikely	that	you	will	ever	want	to	shift	backward,	and	just
writing	Python	3	code	should	be	fine.



When	to	Use	Metaclasses
One	of	the	trickiest	things	when	you're	learning	about	metaclasses	is
understanding	when	it	is	really	appropriate	to	actually	use	them.	Realistically,
most	code	fits	pretty	well	into	the	traditional	class	and	object	structure,	and	does
not	really	require	the	use	of	metaclasses.

Similarly,	using	metaclasses	needlessly	adds	a	layer	of	complexity	and	challenge	to
that	code.	Code	is	read	more	often	than	it	is	written,	and,	therefore,	it	is	usually
desirable	to	solve	problems	in	the	simplest	possible	way	that	meets	the	objectives.

That	said,	when	in	situations	where	metaclasses	are	appropriate,	they	are	often	a
very	clear	solution	that	can	make	code	much	simpler	to	understand.	Realizing
when	metaclasses	can	make	code	simpler	rather	than	more	complex	is	a	valuable
skill.

Declarative	Class	Declaration
The	most	common	reason	to	use	a	custom	metaclass	is	to	create	a	delineation
between	class	declaration	and	class	structure,	particularly	when	you're	creating
APIs	for	other	developers	to	use.

An	Existing	Example
First,	consider	an	example	from	the	wild.	Many	Python	developers	are	familiar
with	Django	models,	which	is	a	popular	web	framework.	Django	models	usually
correspond	to	discrete	database	tables	in	a	relational	database.

A	Django	model	declaration	is	quite	straightforward.	The	following	sample	model
might	represent	a	book:

from	django.db	import	models

class	Book(models.Model):

				author	=	models.CharField(max_length=100)

				title	=	models.CharField(max_length=250)

				isbn	=	models.CharField(max_length=20)

				publication_date	=	models.DateField()

				pages	=	models.PositiveIntegerField()

Given	what	you	know	about	normal	classes	in	Python,	what	do	you	expect	to
happen	here?	Clearly,	models.CharField,	models.DateField,	and	the	like	are
instantiations	of	objects.	So,	you	expect	that	when	you	create	a	Book	instance,	you
should	get	back	those	instances	if	you	access	those	attributes.

Those	familiar	with	Django	know	well	that	this	is	not	what	happens.	If	you	try	to
get	the	author	attribute	of	a	Book	instance,	it	will	be	a	string.	The	same	goes	for
title	and	isbn.	The	publication_date	attribute	will	be	a	datetime.date	object,	and
pages	will	be	an	int.	If	any	of	these	are	not	yet	provided	to	the	model,	they	will	be
None.



How	does	this	happen?	What	magic	is	going	on	under	the	hood	to	differentiate
between	how	this	class	was	declared	(the	code	provided	to	generate	it)	and	how	it
is	structured	when	inspected?	When	the	class	is	declared,	its	attributes	are
complex	field	objects.	However,	when	you	look	at	an	instance	of	the	class,	those
same	attributes	are	set	to	values	for	a	particular	book.

The	answer	is,	of	course,	that	Django	models	use	a	special	metaclass	that	ships
with	Django,	which	happens	to	be	called	ModelBase.	This	is	largely	invisible	when
you're	using	Django,	because	django.db.models.Model	uses	the	ModelBase
metaclass.	Therefore,	subclasses	get	it	for	free.

ModelBase	does	quite	a	lot	of	things.	(Django	is	a	mature	framework,	and	its	ORM
has	undergone	a	lot	of	iteration.)	But	a	major	thing	it	does	is	translate	between
how	the	model	classes	in	Django	are	declared	versus	how	their	objects	are
structured.	It	is	advantageous	to	Django	to	have	a	model	declaration	syntax	that	is
extremely	simple	and	straightforward.	A	model	represents	a	table;	the	attributes
on	the	model	correspond	to	columns	on	the	table.

Instances	in	the	Django	ecosystem	represent	rows	within	a	table.	When	you	are
accessing	a	field	on	the	instance,	what	you	really	want	is	the	value	for	that	row.	So,
a	specific	Book	instance	might	be	The	Hobbit,	and	you	would	want	book.title	to	be
'The	Hobbit'	in	this	case.

Essentially,	using	a	metaclass	here	is	desirable	because	it	allows	both	the
declaration	of	your	Book	class	and	accessing	data	on	your	Book	instances	to	be	very
clean,	and	to	use	a	very	intuitive	API,	even	though	those	attributes	do	not	match.

How	This	Works
Going	into	every	detail	of	the	implementation	of	ModelBase	is	beyond	the	scope	of
this	book,	but	the	implementation	of	this	particular	concept	is	actually	extremely
straightforward.

First,	when	the	model	class	is	being	created,	recall	that	the	attributes	of	that	class
are	passed	to	the	metaclass's	__new__	method	in	a	dictionary,	usually	called	attrs.
In	this	example	model,	this	dictionary	would	include	author,	title,	and	so	on,	as
keys	in	that	dictionary.	The	values	for	those	keys	would	be	the	Field	objects	(all	of
these	classes	are	subclasses	of	django.db.models.Field).

The	ModelBase	metaclass	has	a	__new__	method	that	(among	other	things)	iterates
over	the	attrs	dictionary	looking	for	Field	subclasses.	Any	fields	that	it	finds	are
popped	off	of	the	attrs	dictionary	and	placed	in	another	location—a	separate
dictionary	called	fields	(which	actually	lives	in	an	object	called	_meta	that	is
written	to	the	class).	This	implementation	detail	is	not	particularly	important
except	to	know	that	the	actual	field	classes	live	somewhere	else,	hidden	away
where	internal	Django	code	can	get	at	them	when	needed.	But	the	average	person
who	just	wants	to	write	a	Django	model	does	not	need	to	see	it.

Then,	when	an	instance	is	created,	the	attributes	corresponding	to	the	field	are



instantiated	and	set	to	None	unless	a	default	or	a	specific	value	for	that	row	is
provided,	in	which	case	that	value	takes	precedence.	Now,	suddenly,	when	the
attribute	is	accessed	on	that	instance,	the	value	for	that	row	is	returned	instead	of
the	Field	subclass.	Similarly,	the	value	can	be	written	in	a	straightforward
manner,	without	plowing	over	the	Field.

Essentially,	what	the	metaclass	does	is	take	the	class	declaration,	reorganize	the
structure	of	the	attributes	of	the	class,	and	then	create	the	class	with	the	new
structure.

Why	This	Is	a	Good	Use	for	Metaclasses
This	paradigm	is	exceptionally	useful	when	you're	designing	APIs.	A	primary	goal
of	a	good	API	is	to	be	as	simple	as	possible,	and	contain	as	little	boilerplate	code	as
possible.	This	means	both	that	declaring	a	class	should	be	simple	and
straightforward,	and	that	using	the	class	should	be	similarly	simple	and
straightforward.

In	the	case	of	a	Django	model,	those	two	goals	are	somewhat	in	conflict.	The
ModelBase	metaclass	resolves	that	conflict.

Using	metaclasses	is	an	excellent	way	to	bridge	this	gap.	They	do	this	by
essentially	making	the	class	declaration	into	a	front,	and	then	transforming	the
declaration	of	the	class	into	the	actual	class	structure	in	the	__new__	method.

Class	Verification
Another	key	use	for	metaclasses	is	for	class	verification.	If	a	class	must	conform	to
a	particular	interface,	a	metaclass	can	be	a	very	effective	way	to	enforce	this.
Usually,	it	is	preferable	that	this	sort	of	problem	be	handled	by	a	sensible	default.
Occasionally,	however,	this	is	not	possible.

For	example,	consider	a	class	that	requires	either	one	or	another	attribute	to	be
set,	but	not	both.	This	is	difficult	to	handle	with	a	sensible	default	if	it	is	important
that	one	attribute	be	unset	(as	opposed	to	set	to	None).

This	concept	can	be	handled	using	a	metaclass.	The	following	simple	metaclass
requires	classes	to	contain	either	a	foo	attribute	or	a	bar	attribute:

class	FooOrBar(type):

				def	__new__(cls,	name,	bases,	attrs):

								if	'foo'	in	attrs	and	'bar'	in	attrs:

												raise	TypeError('Class	%s	cannot	contain	both	`foo`	and	'

																												'`bar`	attributes.'	%	name)

								if	'foo'	not	in	attrs	and	'bar'	not	in	attrs:

												raise	TypeError('Class	%s	must	provide	either	a	`foo`	'

																												'attribute	or	a	`bar`	attribute.'	%	name)

								return	super(FooOrBar,	cls).__new__(cls,	name,	bases,	attrs)

The	following	Python	3	class	uses	this	metaclass	and	conforms	to	this	interface:



>>>	class	Valid(metaclass=FooOrBar):

...					foo	=	42…

>>>

Everything	here	works	fine.	What	happens	if	you	try	to	set	both	attributes,	or
neither?

>>>	class	Invalid(metaclass=FooOrBar):

...					pass…

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

		File	"<stdin>",	line	9,	in	__new__

TypeError:	Class	Invalid	must	provide	either	a	‘foo‘	attribute	or	a	‘bar‘

				attribute.

>>>

>>>	class	Invalid(metaclass=FooOrBar):

...					foo	=	42…					bar	=	42…

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

		File	"<stdin>",	line	6,	in	__new__

TypeError:	Class	Invalid	cannot	contain	both	‘foo‘	and	‘bar‘	attributes.

This	particular	implementation	has	a	problem.	It	will	not	work	well	continuing
down	the	subclass	chain.	The	reason	for	this	is	because	the	metaclass	examines
the	attrs	dictionary	directly,	but	this	only	contains	attributes	set	for	the	class
being	declared.	It	does	not	know	anything	about	attributes	that	are	inherited	from
superclasses.

>>>	class	Valid(metaclass=FooOrBar):

...					foo	=	42…

>>>	class	AlsoValid(Valid):

...					pass…

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

		File	"<stdin>",	line	8,	in	__new__

TypeError:	Class	AlsoValid	must	provide	either	a	‘foo‘	attribute	or	a	‘bar‘

				attribute.

This	is	a	problem.	After	all,	your	AlsoValid	class	is	also	valid.	It	contains	a	foo
attribute.	An	alternate	approach	to	the	FooOrBar	metaclass	is	necessary.

class	FooOrBar(type):

				def	__new__(cls,	name,	bases,	attrs):

								answer	=	super(FooOrBar,	cls).__new__(cls,	name,	bases,	attrs)

								if	hasattr(answer,	'foo')	and	hasattr(answer,	'bar'):

												raise	TypeError('Class	%s	cannot	contain	both	`foo`	and	'

																												'`bar`	attributes.'	%	name)

								if	not	hasattr(answer,	'foo')	and	not	hasattr(answer,	'bar'):

												raise	TypeError('Class	%s	must	provide	either	a	`foo`	'

																												'attribute	or	a	`bar`	attribute.'	%	name)

								return	answer

What	is	the	difference	here?	This	time,	you	are	checking	for	the	attributes	on	the
instantiated	class	before	it	is	returned,	rather	than	looking	at	the	attrs	dictionary.



The	new	class	will	get	all	the	attributes	from	the	superclass	as	part	of	the	call	to
type's	constructor	on	the	first	line	of	the	__new__	method.	Therefore,	the	hasattr
calls	work,	regardless	of	whether	the	attribute	is	declared	on	this	class	or	inherited
from	a	superclass.

Could	this	be	handled	without	a	metaclass?	Absolutely.	Nothing	prevents	writing	a
simple	method	that	receives	the	class	as	an	argument	and	does	this	same	check.	In
fact,	this	is	an	excellent	use	for	a	decorator.	However,	the	class	must	be	manually
sent	to	the	verification	method.	With	a	metaclass,	this	is	just	handled	when	the
class	is	created.	Sometimes,	an	explicit	opt-in	is	preferable;	other	times,	it	is	not.
It	simply	depends	on	the	use	case.

Non-Inheriting	Attributes
Metaclasses	can	also	be	used	as	a	tool	to	cause	certain	attributes	of	a	class	to	not
automatically	inherit.	The	most	common	scenario	in	which	you	might	want	to	do
this	is	in	conjunction	with	other	metaclass	behavior.	For	example,	suppose	that	a
metaclass	provides	functionality	for	its	classes,	but	some	classes	will	be	created	as
abstract	classes,	and	you	do	not	want	said	functionality	to	run	in	this	case.

An	obvious	way	to	go	about	this	would	be	to	allow	the	class	to	set	an	abstract
attribute,	and	only	perform	the	special	functionality	of	the	metaclass	if	its
abstract	is	either	not	set	or	set	to	False.

class	Meta(type):

				def	__new__(cls,	name,	bases,	attrs):

								#	Sanity	check:	If	this	is	an	abstract	class,	then	we	do	not

								#	want	the	metaclass	functionality	here.

								if	attrs.get('abstract',	False):

												return	super(Meta,	cls).__new__(cls,	name,	bases,	attrs)

								#	Perform	actual	metaclass	functionality.

								[...]

There	is	one	problem	with	this	approach,	however.	The	abstract	attribute,	like
any	other	attribute,	will	be	inherited	by	subclasses.	That	means	that	any	subclass
would	have	to	explicitly	declare	itself	not	to	be	abstract,	which	seems	strange.

class	AbstractClass(metaclass=Meta):

				abstract	=	True

class	RegularClass(AbstractClass):

				abstract	=	False

Intuitively,	you	want	abstract	to	have	to	be	declared	on	all	abstract	classes,	but	for
that	attribute	not	to	be	inherited.	It	turns	out	that	this	is	very	easy,	because
instead	of	just	reading	the	attrs	dictionary	like	your	metaclass	is	doing,	it	can
modify	it,	disposing	of	the	abstract	attribute	once	it	is	no	longer	necessary.

In	this	case,	you	can	do	this	by	just	popping	the	abstract	value	off	of	the	attrs



dictionary,	as	shown	here:

class	Meta(type):

				def	__new__(cls,	name,	bases,	attrs):

								#	Sanity	check:	If	this	is	an	abstract	class,	then	we	do	not

								#	want	the	metaclass	functionality	here.

								if	attrs.pop('abstract',	False):

												return	super(Meta,	cls).__new__(cls,	name,	bases,	attrs)

								#	Perform	actual	metaclass	functionality.

								[...]

The	difference	here	is	subtle,	but	important.	The	abstract	attribute	is	being
removed	entirely	from	the	actual	class	being	created.	In	this	example,
AbstractClass	would	not	get	the	metaclass	functionality,	but	the	actual	abstract
attribute	would	be	gone.	Most	importantly,	this	means	that	subclasses	do	not
inherit	the	attribute,	which	is	exactly	the	behavior	you	want.



The	Question	of	Explicit	Opt-In
Both	of	the	examples	provided	earlier	as	potential	use	cases	for	metaclasses	can	be
solved	without	using	metaclasses.	In	fact,	essentially	any	major	use	case	for
metaclasses	does	not	explicitly	require	their	use.

A	class	decorator	can	easily	handle	requiring	a	class	to	conform	to	a	particular
interface,	for	example.	It	is	a	trivial	matter	to	decorate	each	class,	and	the
decorator	is	easily	capable	of	ensuring	that	either	foo	or	bar	is	set,	but	not	both.

This	raises	an	important	question.	What	is	the	value	of	doing	this	with	a
metaclass?	What	value	does	a	metaclass	provide	that	a	class	decorator	does	not?

The	answer	to	this	sort	of	question	is	largely	dependent	on	how	the	final	classes
are	being	used.	The	key	difference	between	an	approach	that	uses	a	metaclass	as
opposed	to	an	approach	that	uses	a	class	decorator	is	that	the	class	decorator	must
be	applied	explicitly	to	each	subclass.	If	the	programmer	implementing	the
subclasses	forgets	to	apply	it,	the	check	does	not	happen.

By	contrast,	metaclasses	are	automatic	and	invisible	to	the	programmer	declaring
the	classes	that	use	them.	Few	(if	any)	APIs	ask	a	programmer	to	directly	use	a
metaclass,	but	many	of	them	ask	a	programmer	to	subclass	a	base	class	that	the
API	package	provides.	By	assigning	a	metaclass	to	that	base	class,	all	subclasses
receive	it,	too.	This	causes	that	functionality	of	the	metaclass	to	be	applied	without
the	end	programmer	having	to	think	about	it.

Put	more	simply,	one	of	the	first	lines	in	the	Zen	of	Python	states,	“Explicit	is
better	than	implicit.”	But,	like	most	things	in	that	document,	this	adage	is	true	…
until	it	is	not.	For	example,	being	implicit	is	better	if	you	are	talking	about
extraneous	information	or	boilerplate.	Similarly,	sometimes	being	more	explicit
just	means	more	maintenance,	which	is	not	usually	a	win.



Meta-Coding
Metaclasses	really	start	to	stand	out	as	the	operation	on	the	metaclass	becomes
greater.	It	would	not	be	reasonable	or	as	maintainable	to	mark	every	Django
model	with	an	explicit	decorator.

Similarly,	consider	meta-coding	situations.	In	this	context,	the	term	meta-coding
refers	to	code	that	inspects	other	code	in	the	application.	For	example,	consider
code	that	should	log	itself.

A	metaclass	that	causes	all	method	calls	from	instances	of	a	class	to	be	logged
somehow	is	quite	easy	to	implement.	The	following	metaclass	causes	its	classes	to
“log”	their	function	calls	(except	substituting	actual	logging	for	just	printing	to
sys.stdout):

class	Logged(type):

				"""A	metaclass	that	causes	classes	that	it	creates	to	log

				their	function	calls.

				"""

				def	__new__(cls,	name,	bases,	attrs):

								for	key,	value	in	attrs.items():

												if	callable(value):

																attrs[key]	=	cls.log_call(value)

								return	super(Logged,	cls).__new__(cls,	name,	bases,	attrs)

				@staticmethod

				def	log_call(fxn):

								"""Given	a	function,	wrap	it	with	some	logging	code	and

								return	the	wrapped	function.

								"""

								def	inner(*args,	**kwargs):

												print('The	function	%s	was	called	with	arguments	%r	and	'

																		'keyword	arguments	%r.'	%	(fxn.__name__,	args,	kwargs))

												try:

																response	=	fxn(*args,	**kwargs)

																print('The	function	call	to	%s	was	successful.'	%

																						fxn.__name__)

																return	response

												except	Exception	as	exc:

																print('The	function	call	to	%s	raised	an	exception:	%r'	%

																						(fxn.__name__,	exc))

																raise

								return	inner

Let's	first	review	what	is	happening	here.	Logged	is	being	declared	as	a	subclass	of
type,	which	means	it	is	a	metaclass.	The	Logged	class	has	a	__new__	method,	and
what	that	method	does	is	iterate	over	all	the	attributes	in	the	attrs	dictionary,
check	to	see	if	they	are	callables	(using	the	Python	built-in	function	callable),	and
wrap	them	if	they	are.

The	wrapping	function	itself	is	very	straightforward,	especially	if	you	are	already
familiar	with	the	concept	of	decorators.	It	declares	a	local	function	that	performs



some	logic	(in	this	case,	calling	print),	and	then	calls	the	function	that	was	passed
as	an	argument	to	the	log_call	method.	To	learn	more	about	this	pattern,	see
Chapter	1,	“Decorators,”	which	makes	extensive	use	of	this	paradigm.

What	happens	when	a	class	uses	this	metaclass?	Consider	the	following	Python	3
class	that	has	Logged	as	its	metaclass:

class	MyClass(metaclass=Logged):

				def	foo(self):

								pass

				def	bar(self):

								raise	TypeError('oh	noes!')

When	you	create	an	instance	of	MyClass,	you	discover	that	calling	methods	on	it
becomes	…	er,	loud.

>>>	obj	=	MyClass()

>>>	obj.foo()

The	function	foo	was	called	with	arguments	(<__main__.MyClass	object	at

				0x1022a37f0>,)	and	keyword	arguments	{}.

The	function	call	to	foo	was	successful.

If	you	try	to	call	obj.bar(),	you	get	an	exception.

>>>	obj.bar()

The	function	bar	was	called	with	arguments	(<__main__.MyClass	object	at

				0x1022a37f0>,)	and	keyword	arguments	{}.

The	function	call	to	bar	raised	an	exception:	TypeError('oh	noes!',)

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

		File	"<stdin>",	line	19,	in	inner

		File	"<stdin>",	line	5,	in	bar

TypeError:	oh	noes!

Astute	readers	probably	noticed	something.	When	MyClass	was	instantiated,	why
was	there	no	logging	of	the	call	to	__init__?	After	all,	__init__	is	certainly	callable.
It	seems	like	it	should	have	been	noisy	along	with	foo	and	bar.

Recall,	however,	that	your	metaclass	loops	over	attributes	in	the	attrs	dictionary,
and	you	did	not	explicitly	define	__init__	in	your	MyClass	class.	Rather,	it	is
inherited	from	object.	This	is	the	behavior	you	really	want	as	well.	Otherwise,
subclassing	would	cause	the	log_call	“decorator”	to	be	applied	repeatedly	on	the
same	callables,	which	would	result	in	repeated	print	statements.

By	explicitly	defining	__init__,	however,	you	can	observe	the	noisy	behavior	there.

>>>	class	MyClass(metaclass=Logged):

...					def	__init__(self):

...									pass…

>>>

>>>	obj	=	MyClass()

The	function	__init__	was	called	with	arguments	(<__main__.MyClass	object

				at	0x1022a3550>,)	and	keyword	arguments	{}.



The	function	call	to	__init__	was	successful.

Also,	note	that,	even	though	__init__	was	not	explicitly	called	in	the	Python	shell,
it	is	still	the	function	that	is	logged,	because	the	Python	interpreter	calls	__init__
under	the	hood	when	a	new	instance	is	created.

It	is	worth	noting,	however,	that	this	behavior	only	occurs	at	class	creation	time.	If
a	method	is	added	to	the	class	after	it	is	created	(which	usually	should	not	be
happening	anyway),	it	will	not	be	wrapped.

>>>	MyClass.foo	=	lambda	self:	42

>>>	obj.foo()

42

In	this	case,	your	call	to	foo	was	not	noisy,	because	MyClass	had	already	been
created,	and	so	the	metaclass	had	already	done	its	job.	Therefore,	you	just	get	a
plain	function	call	rather	than	a	wrapped	one.



Summary
Metaclasses	are	extremely	powerful	tools	in	Python.	The	fact	that	classes	are	first-
class	objects	allows	for	those	classes	to	be	manipulated	outside	of	when	they	are
declared.	Metaclasses	are	a	way	to	accomplish	this.

The	presence	of	metaclasses	in	the	Python	language	overcomes	many	of	the
limitations	of	other	object-oriented	languages,	in	which	classes	are	statically
declared	at	coding	time.

The	ultimate	result	is	that	Python's	object	model	ends	up	being	the	best	of	all
worlds.	It	combines	the	simplicity	of	languages	with	a	traditional	class	structure
and	the	power	of	languages	that	follow	other	models,	such	as	prototypal
inheritance	in	JavaScript	and	LUA.

It	is	a	common	misconception	that	metaclasses	are	difficult	to	understand.
However,	some	of	the	power	in	Python's	object	model	is	in	its	simplicity	and
consistency.	Metaclasses	are,	in	fact,	a	very	straightforward	implementation	that
adds	a	huge	amount	of	power	to	the	language.

Chapter	6,	“Class	Factories,”	covers	another	way	to	make	classes,	which	is	by
constructing	them	on-the-fly.





Chapter	6
Class	Factories
As	described	in	Chapter	5,	“Metaclasses,”	Python	classes	are	also	objects.	The	fact
that	classes	are	first-class	objects	in	Python	also	allows	for	the	possibility	to
employ	other	powerful	patterns.	A	class	factory	is	one	of	these	patterns.
Essentially,	this	is	a	function	that	creates	a	class,	and	does	so	at	runtime.	This
concept	allows	for	the	creation	of	a	class	whose	attributes	are	determined,	for
example,	as	a	result	of	user	input.

This	chapter	covers	class	factories,	first	by	reviewing	generating	classes	on	the	fly,
and	showing	how	to	do	so	within	functions.	Then,	it	covers	a	couple	of	common
cases	where	class	factories	are	valuable.



A	Review	of	type
Recall	from	the	discussion	in	Chapter	5	that,	like	other	objects	in	Python,	classes
are	instantiated	by	a	class.	For	example,	say	that	you	create	a	class,	Animal,	as
shown	here:

class	Animal(object):

				"""A	class	representing	an	arbitrary	animal."""

				def	__init__(self,	name):

								self.name	=	name

				def	eat(self):

								pass

				def	go__to__vet(self):

								pass

The	Animal	class	is	responsible	for	creating	Animal	objects	when	its	constructor	is
called.	But,	in	the	same	way	that	Animal	creates	its	objects,	so,	too,	is	Animal	an
object	itself.	Its	class	is	type,	a	built-in	class	in	Python	that	creates	all	other
classes.

type	is	primary	metaclass,	and	custom	metaclasses	(as	you	learned	in	Chapter	5)
subclass	type.

It	is	also	possible	to	invoke	type	directly	to	create	a	class,	in	lieu	of	using	the	class
keyword.	type	takes	three	positional	arguments:	name,	bases,	and	attrs,	which
correspond	to	the	name	of	the	class,	the	superclass	or	superclasses	for	the	class
(specified	as	a	tuple),	and,	finally,	any	attributes	for	the	class,	as	a	dictionary.



Understanding	a	Class	Factory	Function
A	class	factory	function	is	exactly	what	the	name	implies—a	function	that	creates
and	returns	a	class.

Consider	the	previous	Animal	class.	You	can	use	code	to	create	an	equivalent	class
using	type	rather	than	using	the	class	keyword,	as	shown	here:

def	init(self,	name):

				self.name	=	name

def	eat(self):

				pass

def	go_to_vet(self):

				pass

Animal	=	type('Animal',	(object,),	{

				'__doc__':	'A	class	representing	an	arbitrary	animal.',

				'__init__':	init,

				'eat':	eat,

				'go_to_vet':	go_to_vet,

})

This	is	not	ideal,	for	several	reasons.	One	of	these	reasons	is	that	it	leaves
functions	in	the	namespace	alongside	Animal.	It	is	usually	not	desirable	to	use	type
directly	instead	of	the	class	keyword	unless	you	really	need	to	do	so.

However,	sometimes	you	do,	in	fact,	need	to	do	so.	In	this	kind	of	case,	you	can
minimize	the	clutter	by	wrapping	this	code	in	a	function,	which	can	then	be
passed	around	and	used.	This	is	a	class	factory.	Consider	the	following	function
for	the	example	Animal	class:

def	create_animal_class():

				"""Return	an	Animal	class,	built	by	invoking	the	type

				constructor.

				"""

				def	init(self,	name):

								self.name	=	name

				def	eat(self):

								pass

				def	go_to_vet(self):

								pass

				return	type('Animal',	(object,),	{

								'__doc__':	'A	class	representing	an	arbitrary	animal.',

								'__init__':	init,

								'eat':	eat,

								'go_to_vet':	go_to_vet,

				})



What	has	changed	here?	The	init,	eat,	and	go_to_vet	functions	that	were
previously	cluttering	the	namespace	(as	well	as	the	creation	of	the	Animal	class
itself)	have	been	moved	inside	a	create_animal_class	function.

Now,	you	can	get	a	custom-built	Animal	class	by	calling	said	function,	as	shown
here:

Animal	=	create_animal_class()

It	is	important	to	note	here	that	multiple	calls	to	create_animal_class	will	return
distinct	classes.	That	is,	while	the	classes	returned	would	all	have	the	same	name
and	the	same	attributes,	they	will	not	actually	be	the	same	class.	The	similarity
between	those	classes	is	based	on	the	fact	that	each	run	of	the	function	assigns	the
same	dictionary	keys	and	similar	functions.

In	other	words,	the	similarity	between	the	classes	that	would	be	returned	is
contingent.	There	is	no	reason	why	the	function	could	not	take	one	or	more
parameters	and	return	wildly	different	classes	based	on	those	parameters.	In	fact,
this	is	the	entire	purpose	of	class	factory	functions.

Consider	the	following	distinct	classes	returned	from	distinct	calls	to
create_animal_class:

>>>	Animal1	=	create_animal_class()

>>>	Animal2	=	create_animal_class()

>>>	Animal1

<class	'_main_.Animal'>

>>>	Animal2

<class	'_main_.Animal'>

>>>	Animal1	==	Animal2

False

Similarly,	consider	the	following	instances:

>>>	animal1	=	Animal1('louisoix')

>>>	animal2	=	Animal2('louisoix')

>>>	isinstance(animal1,	Animal1)

True

>>>	isinstance(animal1,	Animal2)

False

While	these	classes	are	both	called	Animal	internally,	they	are	not	the	same	class.
They	are	distinct	results	from	two	distinct	function	runs.

This	example	creates	the	Animal	class	by	invoking	type,	but	this	is	actually	not
necessary.	It	is	far	more	straightforward	to	create	the	class	using	the	class
keyword.	This	works,	even	within	the	function,	and	then	you	can	return	the	class
at	the	end	of	the	function:

def	create_animal_class():

				"""Return	an	Animal	class,	built	using	the	class	keyword

				and	returned	afterwards.

				"""



				class	Animal(object):

								"""A	class	representing	an	arbitrary	animal."""

								def	__init__(self,	name):

												self.name	=	name

								def	eat(self):

												pass

								def	go_to_vet(self):

												pass

				return	Animal

It	is	almost	always	preferable	to	create	a	class	using	the	class	keyword	rather	than
by	invoking	type	directly.	However,	it	is	not	always	feasible	to	do	so.



Determining	When	You	Should	Write	Class	Factories
The	primary	reason	to	write	a	class	factory	function	is	when	it	is	necessary	to
create	a	class	based	on	execution-time	knowledge,	such	as	user	input.	The	class
keyword	assumes	that	you	know	the	attributes	you	wish	to	assign	to	the	class
(albeit	not	necessarily	the	instances)	at	coding	time.

If	you	do	not	know	the	attributes	to	be	assigned	to	the	class	at	coding	time,	a	class
factory	function	can	be	a	convenient	alternative.

Runtime	Attributes
Consider	the	following	function	that	creates	a	class,	but	this	time,	the	attributes	of
that	class	can	vary	based	on	parameters	sent	to	the	function:

def	get_credential_class(use_proxy=False,	tfa=False):

				"""Return	a	class	representing	a	credential	for	the	given	service,

				with	an	attribute	repsenting	the	expected	keys.

				"""

				#	If	a	proxy,	such	as	Facebook	Connect,	is	being	used,	we	just

				#	need	the	service	name	and	the	e-mail	address.

				if	use_proxy:

								keys	=	['service_name',	'email_address']

				else:

								#	For	the	purposes	of	this	example,	all	other	services	use

								#	username	and	password.

								keys	=	['username',	'password']

								#	If	two-factor	auth	is	in	play,	then	we	need	an	authenticator

								#	token	also.

								if	tfa:

												keys.append('tfa_token')

				#	Return	a	class	with	a	proper	__init__	method	which	expects

				#	all	expected	keys.

				class	Credential(object):

								expected_keys	=	set(keys)

								def	__init__(self,	**kwargs):

												#	Sanity	check:	Do	our	keys	match?

												if	self.expected_keys	!=	set(kwargs.keys()):

																raise	ValueError('Keys	do	not	match.')

												#	Write	the	keys	to	the	credential	object.

												for	k,	v	in	kwargs.items():

																setattr(self,	k,	v)

				return	Credential

This	get_credential_class	function	is	asking	for	information	about	the	type	of
login	that	is	occurring—either	a	traditional	login	(with	username	and	password),
or	using	an	OpenID	service.	If	it	is	a	traditional	login,	it	also	may	use	two-factor



authentication,	which	adds	the	need	for	an	authentication	token.

The	function	returns	a	class	(not	an	instance)	that	represents	the	appropriate	type
of	credential.	For	example,	if	the	use_proxy	variable	is	set	to	True,	then	the	class
will	be	returned	with	the	expected_keys	attribute	set	to	['service_name',
'email_address'],	representing	the	keys	necessary	to	authenticate	through	the
proxy.	Alternate	inputs	to	the	function	will	return	a	class	with	a	different
expected_keys	attribute.

Then,	the	__init__	method	on	the	class	itself	checks	the	keyword	arguments	that
it	gets	against	the	keys	identified	in	the	expected_keys	attribute.	If	they	do	not
match,	the	constructor	raises	an	error.	If	they	do,	it	writes	the	values	to	the
instance.

You	were	able	to	create	this	class	within	the	function	using	the	class	keyword,
rather	than	invoking	type.	Because	the	class	block	was	within	the	def	block,	the
class	was	created	locally	to	the	function.

Understanding	Why	You	Should	Do	This
You	may	be	asking	why	a	class	factory	is	even	valuable	in	this	case.	After	all,	there
are	only	three	possibilities.	These	classes	could	just	be	hard-coded,	rather	than
dynamically	created	on	the	fly.	That	said,	it	is	easy	to	extrapolate	a	case	from	this
example	where	a	hard-coded	class	is	no	longer	tenable.

After	all,	there	are	lots	of	websites	with	a	non-trivial	number	of	authentication
paradigms.	For	example,	some	use	custom	usernames,	while	others	use	an	e-mail
address.	For	development	services,	you	are	likely	to	have	an	API	key	and
potentially	one	or	more	secret	tokens.

There	is	really	no	way	to	programmatically	determine	what	credentials	a	website
requires	(at	least	not	reliably),	but	consider	a	service	that	did	try	to	represent
credentials	from	lots	of	different,	supported	third-party	sites.	That	service	would
likely	store	the	required	keys	and	types	of	values	in	a	database.

Now,	suddenly,	you	have	a	class	with	attributes	generated	based	on	a	database
lookup.	This	is	important	because	database	lookups	happen	at	runtime,	not	at
coding	time.	Now,	suddenly,	you	have	a	functionally	infinite	number	of
possibilities	for	how	the	expected_keys	attribute	of	the	classes	might	need	to	be
written,	and	it	is	no	longer	feasible	to	code	them	all	up	front.

Storing	that	kind	of	data	in	the	database	also	means	that,	as	the	data	changes,	the
code	need	not	do	so.	A	website	may	alter	or	augment	what	kind	of	credentials	it
supports,	and	this	would	require	adding	or	removing	rows	from	the	database,	but
the	Credential	class	would	still	be	up	to	the	task.

Attribute	Dictionaries
Just	because	some	attributes	are	only	known	at	execution	time	does	not	always
mean	that	a	class	factory	is	the	correct	approach.	Often,	attributes	can	be	written



to	the	class	on	the	fly,	or	a	class	can	simply	store	a	dictionary	with	an	arbitrary	set
of	attributes.

If	this	is	a	sufficient	solution,	it	is	likely	an	easier	and	more	straightforward	one.

class	MyClass(object):

				attrs	=	{}

The	most	common	case	where	attribute	dictionaries	are	most	likely	to	fall	short	is
in	a	situation	where	you	are	subclassing	an	existing	class	over	which	you	do	not
have	direct	control,	and	you	require	the	class's	existing	functionality	to	work
against	the	modified	attributes.	You	will	see	a	subclassing	example	shortly.

Fleshing	Out	the	Credential	Class
Consider	a	credentials	database	with	a	single	table,	and	that	table	has	two
columns:	a	service	name	(such	as	Apple	or	Amazon),	and	a	credential	key	(such	as
username).

This	mock	database	is	obviously	still	far	too	simple	to	cover	all	use	cases.	In	this
example,	support	for	alternative	modes	of	login	(such	as	OpenID)	has	been
dropped.	Also,	the	example	does	not	have	any	concept	for	presenting	credentials
in	a	specific	order	(username	before	password,	for	example).	All	of	this	is	fine;	it	is
sufficient	for	a	proof	of	concept.

Now,	consider	a	class	factory	that	reads	from	this	database	(which	will	simply	be
stored	as	a	CSV	flat	file)	and	returns	an	appropriate	class.

import	csv

def	get_credential_class(service):

				"""Return	a	class	representing	a	credential	for	the	given	service,

				with	an	attribute	representing	the	expected	keys.

				"""

				#	Open	our	"database".

				keys	=	[]

				with	open('creds.csv',	'r')	as	csvfile:

								for	row	in	csv.reader(csvfile):

												#	If	this	row	does	not	correspond	to	the	service	we

												#	are	actually	asking	for	(e.g.,	if	it	is	a	row	for

												#	Apple	and	we	are	asking	for	an	Amazon	credential	class),

												#	skip	it.

												if	row[0].lower()	!=	service.lower():

																continue

												#	Add	the	key	to	the	list	of	expected	keys.

												keys.append(row[1])

				#	Return	a	class	with	a	proper	__init__	method	which	expects

				#	all	expected	keys.

				class	Credential(object):

								expected_keys	=	keys



								def	__init__(self,	**kwargs):

												#	Sanity	check:	Do	our	keys	match?

												if	set(self.expected_keys)	!=	set([i	for	i	in	kwargs.keys()]):

																raise	ValueError('Keys	do	not	match.')

												#	Write	the	keys	to	the	credential	object.

												for	k,	v	in	kwargs.items():

																setattr(self,	k,	v)

				return	Credential

The	inputs	for	the	get_credential_class	function	have	now	been	entirely	replaced.
Instead	of	describing	the	type	of	credential,	you	simply	specify	whom	the
credential	is	for.

For	example,	a	sample	CSV	“database”	might	look	like	this:

Amazon,username

Amazon,password

Apple,email_address

Apple,password

GitHub,username

GitHub,password

GitHub,auth_token

The	value	that	get_credential_class	takes	is	a	string,	and	it	corresponds	to	the
first	column	in	the	CSV	file.	Therefore,	calling	get_credential_class('GitHub')
will	return	a	class	with	expected	keys	of	username,	password,	and	auth_token.	The
lines	in	the	CSV	file	corresponding	to	Apple	and	Amazon	will	be	skipped.

The	Form	Example
One	place	where	you	can	see	this	concept	at	work	is	in	the	forms	API	of	a	popular
web	framework,	Django.	This	framework	includes	an	abstract	class,
django.forms.Form,	which	is	used	to	create	HTML	forms.

Django	forms	have	a	custom	metaclass	that	takes	the	attributes	declared	on	the
form	and	erects	a	distinction	between	form	fields	and	form	data.	Creating	a
credential	form	in	this	API	is	very	easy	if	you	know	what	your	fields	are.

from	django	import	forms

class	CredentialForm(forms.Form):

				username	=	forms.CharField()

				password	=	forms.CharField(widget=forms.PasswordInput)

On	the	other	hand,	if	you	do	not	know	what	your	fields	are	(as	in	the	case	of	the
previous	example),	this	is	a	more	complicated	task.	A	class	factory	becomes	the
perfect	approach.

import	csv



from	django	import	forms

def	get_credential_form_class(service):

				"""Return	a	class	representing	a	credential	for	the	given	service,

				with	attributes	representing	the	expected	keys.

				"""

				#	Open	our	"database".

				keys	=	[]

				with	open('creds.csv',	'r')	as	csvfile:

								for	row	in	csv.reader(csvfile):

												#	If	this	row	does	not	correspond	to	the	service	we

												#	are	actually	asking	for	(e.g.	if	it	is	a	row	for

												#	Apple	and	we	are	asking	for	an	Amazon	credential	class),

												#	skip	it.

												if	row[0].lower()	!=	service.lower():

																continue

												#	Add	the	key	to	the	list	of	expected	keys.

												keys.append(row[1])

				#	Put	together	the	appropriate	credential	fields.

				attrs	=	{}

				for	key	in	keys:

								field_kw	=	{}

								if	'password'	in	key:

												field_kw['widget']	=	forms.PasswordInput

								attrs[key]	=	forms.CharField(**field_kw)

				#	Return	a	form	class	with	the	appropriate	credential	fields.

				metaclass	=	type(forms.Form)

				return	metaclass('CredentialForm',	(forms.Form,),	attrs)

In	this	case,	you	have	substituted	your	custom	Credential	class	for	a	Django	form
subclass.	It	is	no	longer	the	case	that	you	are	just	setting	an	expected_keys
attribute.	Rather,	you	are	setting	one	attribute	for	each	expected	key.	The	previous
code	puts	these	together	in	a	dictionary	(doing	a	blatant	hand-wave	for	passwords
and	PasswordInput),	and	then	creates	a	new	form	subclass	and	returns	it.

It	is	worth	calling	out	explicitly	that	Django's	Form	class	uses	a	custom	metaclass,
which	subclasses	type.	Therefore,	it	is	important	that	you	call	its	constructor,
rather	than	type	directly.	You	do	this	on	the	last	two	lines	by	asking	forms.Form	for
its	metaclass,	and	then	using	that	constructor	directly.

It	is	also	worth	noting	that	this	is	a	case	where	it	really	is	necessary	to	use	the
metaclass	constructor,	rather	than	creating	the	class	using	the	class	keyword.	You
are	not	able	to	create	the	class	using	the	class	keyword	here	because,	even	within
a	function,	you	would	have	to	create	the	class	and	then	write	the	attributes	to	the
class,	and	the	metaclass	behavior	will	not	be	applied	to	the	attributes	assigned	to
the	class	after	it	is	built.	(Chapter	5	covers	this	in	more	detail.)

Dodging	Class	Attribute	Consistency



Another	reason	to	write	class	factory	functions	deals	with	how	attributes	differ
between	classes	and	instances.

Class	Attributes	Versus	Instance	Attributes
The	following	two	code	blocks	do	not	produce	equivalent	classes	or	instances:

##########################

###		CLASS	ATTRIBUTE			###

##########################

class	C(object):

				foo	=	'bar'

##########################

###	INSTANCE	ATTRIBUTE	###

##########################

class	I(object):

				def	__init__(self):

								self.foo	=	'bar'

The	first	and	most	obvious	thing	that	is	different	about	these	classes	is	where	the
foo	attribute	can	be	accessed.	It	is	not	particularly	surprising	that	C.foo	is	a	string,
and	I.foo	raises	AttributeError.

>>>	C.foo

'bar'

>>>	I.foo

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

AttributeError:	type	object	'I'	has	no	attribute	'foo'

After	all,	foo	was	instantiated	as	an	attribute	on	C,	but	not	on	I.	Since	I	is	being
accessed	directly,	rather	than	by	way	of	an	instance,	the	__init__	function	has	not
even	run	yet.	Even	if	an	instance	of	I	had	been	created,	the	instance	would	have
the	foo	attribute	while	the	class	would	not.

>>>	i	=	I()

>>>	i.foo

'bar'

>>>	I.foo

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

AttributeError:	type	object	'I'	has	no	attribute	'foo'

There	is,	however,	a	lesser-noticed	difference	between	C	and	I,	which	involves
what	happens	if	the	foo	attribute	is	modified	against	one	of	their	instances.

Consider	the	following	two	instantiated	C	instances:

>>>	c1	=	C()

>>>	c2	=	C()



Now,	say	you	modify	the	foo	attribute	on	one	of	them,	as	shown	here:

>>>	c1.foo	=	'baz'

You	see	that	the	c2	instance	still	uses	the	attribute	of	the	class,	while	c1	has	its
own.

>>>	c1.foo

'baz'

>>>	c2.foo

'bar'

The	lookup	happening	here	is	not	quite	the	same.	c1	has	written	an	instance
attribute,	called	foo,	with	the	value	of	'baz'.	However,	c2	has	no	such	instance
attribute.	However,	because	the	class,	C,	does,	the	lookup	uses	the	class	attribute.

Consider	what	happens	if	you	modify	the	class	attribute,	as	shown	here:

>>>	C.foo	=	'bacon'

>>>	c1.foo

'baz'

>>>	c2.foo

'bacon'

Here,	c1.foo	was	unaffected,	because	c1	has	an	instance	attribute	called	foo.
However,	the	value	of	c2.foo	has	changed,	because	it	has	no	such	attribute	on	the
instance.	Therefore,	when	the	attribute	of	the	class	changes,	you	observe	the
change	on	the	instance.

You	can	view	this	within	Python's	internal	data	model	by	examining	the	__dict__
attribute	of	both	instances.

>>>	c1.__dict__

{'foo':	'baz'}

>>>	c2.__dict__

{}

Under	normal	circumstances,	the	special	__dict__	attribute	is	what	stores	all	the
attributes	(and	their	values)	for	an	object.	There	are	exceptions	to	this	rule.	A	class
may	define	a	custom	__getattr__	or	__getattribute__	method	(as	discussed	in
Chapter	4,	“Magic	Methods”),	or	may	define	a	special	attribute	__slots__,	which
also	introduces	alternative	attribute	behavior.	(This	is	rarely	needed	except	in
particular	situations	where	memory	use	is	paramount,	and	is	not	discussed	in	this
book.)	Notice	that	c1	has	a	foo	key	in	its	__dict__,	and	c2	does	not.

The	Class	Method	Limitation
This	situation	gets	really	interesting	when	classes	define	class	methods.
Remember	that	class	methods	are	methods	that	do	not	expect	or	require	an
instance	of	the	class	to	execute,	but	do	require	the	class	itself.	They	are	usually
declared	by	decorating	a	method	with	the	@classmethod	decorator,	and	their	first
argument	is	traditionally	called	cls	rather	than	self.



Consider	the	following	C	class	with	a	class	method	that	accesses	and	returns	foo
from	the	class:

class	C(object):

				foo	=	'bar'

				@classmethod

				def	classfoo(cls):

								return	cls.foo

In	the	context	of	the	classfoo	method,	the	foo	attribute	is	being	accessed	explicitly
on	the	class,	rather	than	on	the	instance.	Re-run	the	example	using	the	new	class
definition,	and	then	consider	the	following:

>>>	c1.foo

'baz'

>>>	c1.classfoo()

'bacon'

>>>	c2.classfoo()

'bacon'

There	is,	in	fact,	no	actual	way	to	access	the	instance	attribute	from	the	class
method.	That	is	the	entire	point	of	class	methods,	after	all.	They	do	not	require	an
instance.

Tying	This	in	with	Class	Factories
One	of	the	biggest	reasons	to	need	class	factories	is	when	you	are	subclassing
existing	classes	that	rely	on	class	attributes	that	must	be	adjusted.

Essentially,	in	code	that	you	do	not	control,	if	an	existing	class	sets	a	class
attribute	that	must	be	customized,	class	factories	are	an	attractive	approach	to
generating	appropriate	subclasses	with	the	overridden	attributes.

Consider	a	situation	where	a	class	has	an	attribute	that	must	be	overridden	at
runtime	(or	where	there	are	too	many	options	for	subclassing	in	static	code	to	be
reasonable).	In	this	case,	a	class	factory	can	be	a	very	useful	approach.	Following
is	a	continuation	of	the	use	of	C	as	an	instructive	example:

def	create_C_subclass(new_foo):

				class	SubC(C):

								foo	=	new_foo

				return	SubC

What	matters	here	is	that	it	is	not	necessary	to	know	what	the	value	of	foo	should
be	until	the	class	is	created,	which	is	when	the	function	runs.	Like	most	other	use
of	class	factories,	then,	this	is	about	knowing	the	attribute	value	at	runtime.

Running	your	classfoo	class	method	on	C	subclasses	created	this	way	gives	you
what	you	expect.

>>>	S	=	create_C_subclass('spam')

>>>	S.classfoo()



'spam'

>>>	E	=	create_C_subclass('eggs')

>>>	E.classfoo()

'eggs'

It	is	worth	noting	that,	in	many	cases,	it	is	much	easier	to	simply	create	a	subclass
that	accepts	this	value	as	part	of	its	__init__	method.	However,	there	are	some
cases	where	this	is	an	insufficient	solution.	If	the	parent	class	relies	on	class
methods,	for	example,	then	writing	a	new	value	to	an	instance	will	not	cause	the
class	methods	to	receive	the	new	value,	and	this	model	of	subclass	creation
becomes	a	valuable	solution.

Answering	the	Singleton	Question
One	thing	that	can	make	class	factory	functions	somewhat	awkward	to	use	is	that,
as	their	name	suggests,	their	responsibility	is	to	return	classes,	rather	than
instances	of	those	classes.

This	means	that	if	you	want	an	instance,	you	must	call	the	result	of	the	class
factory	function	to	get	one.	The	correct	code	to	instantiate	a	subclass	generated
with	create_C_subclass,	for	example,	would	be	create_C_subclass('eggs')().

There	is	nothing	inherently	wrong	with	this,	but	it	is	not	always	what	you	really
want.	Sometimes	classes	created	through	class	factories	are	functionally
singletons.	A	singleton	is	a	class	pattern	where	only	one	instance	is	permitted.

In	the	case	of	classes	generated	in	functions,	it	is	possible	that	the	purpose	of	the
function	is	simply	to	act	like	a	class	constructor.	This	is	problematic	if	the	end
developer	must	constantly	think	about	instantiating	the	class	that	comes	back.

This	is	not	a	requirement,	though.	If	there	is	not	a	need	to	deal	with	reusing	the
class	elsewhere,	or	if	the	class	factory	is	able	to	handle	the	reuse	itself,	it	is
completely	reasonable	and	useful	to	simply	have	the	class	factory	return	an
instance	of	the	class	it	creates,	rather	than	the	class	itself.

To	continue	the	simple	example	of	C,	consider	this	factory:

def	CPrime(new_foo='bar'):

				#	If	‘foo‘	is	set	to	'bar',	then	we	do	not	need	a

				#	custom	subclass	at	all.

				if	new_foo	=	'bar':

								return	C()

				#	Create	a	custom	subclass	and	return	an	instance.

				class	SubC(C):

								foo	=	new_foo

				return	SubC()

Now,	calling	CPrime	will	return	an	instance	of	the	appropriate	C	subclass	with	the
foo	attribute	modified	as	needed.

One	issue	with	this	is	that	many	(probably	most)	classes	do	expect	arguments	to



be	sent	to	their	__init__	methods,	which	this	function	is	not	able	to	handle.	The
pattern	for	this	is	simple	enough,	though.	Consider	an	example	of	a	credential
form,	with	the	method	retooled	to	return	an	instance.

import	csv

from	django	import	forms

def	get_credential_form(service,	*args,	**kwargs):

				"""Return	a	form	instance	representing	a	credential	for	the

				given	service.

				"""

				#	Open	our	"database".

				keys	=	[]

				with	open('creds.csv',	'r')	as	csvfile:

								for	row	in	csv.reader(csvfile):

												#	If	this	row	does	not	correspond	to	the	service	we

												#	are	actually	asking	for	(e.g.	if	it	is	a	row	for

												#	Apple	and	we	are	asking	for	an	Amazon	credential	class),

												#	skip	it.

												if	row[0].lower()	!=	service.lower():

																continue

												#	Add	the	key	to	the	list	of	expected	keys.

												keys.append(row[1])

				#	Put	together	the	appropriate	credential	fields.

				attrs	=	{}

				for	key	in	keys:

								field_kw	=	{}

								if	'password'	in	key:

												field_kw['widget']	=	forms.PasswordInput

								attrs[key]	=	forms.CharField(**field_kw)

				#	Return	a	form	class	with	the	appropriate	credential	fields.

				metaclass	=	type(forms.Form)

				cls	=	metaclass('CredentialForm',	(forms.Form,),	attrs)

				return	cls(*args,	**kwargs)

This	does	not	actually	entail	very	many	changes	from	the	previous	class	factory.
There	are	really	only	two	changes:

First,	*args	and	**kwargs	have	been	added	to	the	function	signature.

Second,	the	final	line	now	returns	an	instance	of	the	class	that	was	created,
with	the	*args	and	**kwargs	passed	to	the	instance.

Now	you	have	an	entirely	functional	class	factory,	which	returns	an	instance	of	the
form	class	that	it	creates.	This	raises	a	final	point.	Now	the	function	is	likely
indistinguishable	from	a	class	to	the	end	developer,	unless	said	end	developer
inspects	the	inner	workings.	Therefore,	perhaps	it	should	be	presented	as	one	in
the	naming	convention.



def	CredentialForm(service,	*args,	**kwargs):

				[...]

In	Python,	functions	are	normally	named	with	all	lowercased	letters,	and	with
underscores	for	word	separation.	However,	this	is	a	function	that	is	being	used
like	a	class	constructor	by	developers	who	actually	use	it,	so	by	changing	the
naming	convention,	you	present	it	as	a	class	name.

Conveniently,	the	name	also	matches	the	name	of	the	class	used	for	the	instances,
because	the	first	argument	to	the	metaclass'	constructor,	'CredentialForm',	is	the
internal	name	of	the	class.

And,	this	is	Python.	If	it	looks	like	a	duck	and	quacks	like	a	duck…



Summary
The	power	of	class	factories	shows	itself	when	it	is	necessary	to	have	class
attributes	be	determined	at	runtime,	rather	than	at	coding	time.	The	Python
language	is	able	to	handle	this	situation	precisely	because	classes	are	first-class
objects,	and	can	be	created	similarly	to	how	any	other	object	is	created.

On	the	other	hand,	classes	containing	unknown	attributes	add	some	uncertainty.
Their	methods	must	be	written	to	allow	for	an	attribute	to	be	present	or	absent,
where,	in	other	cases,	the	presence	of	the	attribute	may	be	able	to	be	assumed.

The	ability	to	declare	classes	at	runtime	is	extremely	powerful,	but	brings	with	it	a
tradeoff	in	simplicity.	This	is	fine.	When	you	encounter	a	situation	where	class
factories	are	the	right	answer,	it	is	often	salient,	and	there	is	often	no	other	direct
way	to	solve	the	issue.	Put	directly,	you	can	be	reasonably	sure	that	a	class	factory
is	a	good	approach	if	it	is	the	simplest	approach.

That	rule	holds	true	for	programming	generally,	but	it	is	a	particularly	useful	one
here.

Chapter	7,	“Abstract	Base	Classes,”	discusses	Python	strings	and	bytestrings,	and
how	to	manage	string	data	with	minimal	pain.





Chapter	7
Abstract	Base	Classes
How	do	you	know	whether	an	object	you	are	using	conforms	to	a	given
specification?	The	common	answer	to	this	in	Python	is	referred	to	as	the	“duck
typing”	model.	If	it	looks	like	a	duck	and	quacks	like	a	duck,	it	is	probably	a	duck.

When	dealing	with	programming	and	objects,	this	usually	translates	to	verifying
that	an	object	implements	a	given	method,	or	has	a	given	property.	If	the	object
has	a	quack	method,	then	you	have	decent	evidence	that	it	is	a	Duck.	And,
furthermore,	if	all	you	need	is	a	quack	method,	it	probably	does	not	matter	much
whether	or	not	it	is	actually	a	Duck.

This	is	often	a	very	useful	construct,	and	it	flows	naturally	from	Python's	loose
typing	system.	It	emphasizes	questions	of	composition	over	questions	of	identity,
hasattr	over	isinstance.

Sometimes,	however,	identity	is	important.	For	example,	perhaps	you	are	using	a
library	that	requires	input	conforming	to	a	particular	identity.	Alternatively,
sometimes	it	is	too	cumbersome	to	check	for	a	myriad	of	different	properties	and
methods.

Python	2.6	and	Python	3	introduce	the	concept	of	abstract	base	classes.	Abstract
base	classes	are	a	mechanism	for	assigning	identity.	They	are	a	way	of	answering,
“Is	this	class	fundamentally	a	Duck?”	Abstract	base	classes	also	provide	a
mechanism	for	designating	abstract	methods,	requiring	other	implementers	to
provide	key	functionality	that	is	purposefully	not	provided	in	a	base
implementation.

This	chapter	explores	abstract	base	classes,	why	they	exist,	and	how	to	use	them.



Using	Abstract	Base	Classes
The	fundamental	purpose	for	abstract	base	classes	is	to	provide	a	somewhat
formalized	way	to	test	whether	an	object	conforms	to	a	given	specification.

How	do	you	determine	whether	you	are	working	with	a	list?	That	is	quite	easy—
call	isinstance	on	the	variable	against	the	list	class,	and	it	returns	either	True	or
False.

>>>	isinstance([],	list)

True

>>>	isinstance(object(),	list)

False

On	the	other	hand,	does	the	code	you	are	writing	really	require	a	list?	Consider
the	case	where	you	are	simply	reading	a	list-like	object,	but	never	modifying	it.	In
such	cases,	you	could	accept	a	tuple	instead.

The	isinstance	method	does	provide	a	mechanism	to	test	against	multiple	base
classes,	as	shown	here:

>>>	isinstance([],	(list,	tuple))

True

>>>	isinstance((),	(list,	tuple))

True

>>>	isinstance(object(),	(list,	tuple))

False

However,	this	is	not	really	what	you	want,	either.	After	all,	a	custom	sequence
class	would	also	be	entirely	acceptable,	assuming	that	it	uses	a	__getitem__
method	that	accepts	ascending	integers	and	slice	objects	(such	as	QuerySet
methods	in	Django).	So,	simply	using	isinstance	against	the	classes	that	you	have
explicitly	identified	may	generate	false	negatives,	not	allowing	objects	that	should
be	allowed.

Of	course,	it	is	possible	to	test	for	the	presence	of	a	__getitem__	method.

>>>	hasattr([],	'__getitem__')

True

>>>	hasattr(object(),	'__getitem__')

False

Again,	this	is	not	a	sufficient	solution.	Unlike	the	isinstance	checks,	it	does	not
generate	false	negatives.	Instead,	it	generates	false	positives,	because	list-like
objects	are	not	the	only	objects	that	implement	__getitem__.

>>>	hasattr({},	'__getitem__')

True

Fundamentally,	simply	testing	for	the	presence	of	certain	attributes	or	methods	is
sometimes	not	a	sufficient	way	to	determine	that	the	object	conforms	to	the
parameters	you	seek.



Abstract	base	classes	provide	a	mechanism	to	declare	that	one	class	derives
identity	from	another	(whether	or	not	it	actually	does).	This	is	done	without	any
actual	object	inheritance	or	any	changes	to	method	resolution	order.	Its	purpose	is
declarative;	it	provides	a	way	for	an	object	to	assert	that	it	conforms	to	a	protocol.

Additionally,	abstract	base	classes	provide	a	way	to	require	that	a	subclass
implements	a	given	protocol.	If	an	abstract	base	class	requires	a	given	method	to
be	implemented,	and	a	subclass	does	not	implement	that	method,	then	the
interpreter	will	raise	an	exception	when	attempting	to	create	the	subclass.



Declaring	a	Virtual	Subclass
Python	2.6,	2.7,	and	all	versions	of	Python	3	provide	a	module,	abc	(which	stands
for	“abstract	base	classes”)	that	provides	the	tools	for	using	abstract	base	classes.

The	first	thing	that	the	abc	module	provides	is	a	metaclass,	called	ABCMeta.	Any
abstract	base	classes,	regardless	of	their	purpose,	must	use	the	ABCMeta	metaclass.

Any	abstract	base	class	can	arbitrarily	declare	that	it	is	an	ancestor	(not	a
descendent)	of	any	arbitrary	concrete	class,	including	concrete	classes	in	the
standard	library	(even	those	implemented	in	C).	It	does	this	using	the	register
method,	which	ABCMeta	provides	on	its	instances.	(Remember,	these	are	the
classes	themselves,	which	use	ABCMeta	as	their	metaclass.)

Consider	an	abstract	base	class	that	registers	itself	as	an	ancestor	of	dict.	(Note
that	the	following	code	uses	the	Python	3	metaclass	syntax.)

>>>	import	abc

>>>	class	AbstractDict(metaclass=abc.ABCMeta):

...					def	foo(self):

...									return	None…

>>>	AbstractDict.register(dict)

<class	'dict'>

This	does	not	cause	any	changes	to	the	dict	class	itself.	What	explicitly	does	not
happen	here	(and	this	is	critical	to	note)	is	that	dict's	method	resolution	does	not
change.	You	do	not	suddenly	find	that	dict	got	a	foo	method.

>>>	{}.foo()

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

AttributeError:	'dict'	object	has	no	attribute	'foo'

What	this	does	do	is	make	dict	objects	also	identify	as	AbstractDict	instances,
and	dict	itself	now	identifies	as	an	AbstractDict	subclass.

>>>	isinstance({},	AbstractDict)

True

>>>	issubclass(dict,	AbstractDict)

True

Note	that	the	converse	is	not	the	case.	AbstractDict	is	not	a	subclass	of	dict.

>>>	issubclass(AbstractDict,	dict)

False

Why	Declare	Virtual	Subclasses?
To	understand	why	you	would	want	to	do	this,	recall	the	example	at	the	beginning
of	the	chapter	where	you	wanted	to	read	from	a	list-like	object.	It	needs	to	be
iterable	like	list	or	tuple,	and	it	needs	to	have	a	__getitem__	method	that	takes
integers.	On	the	other	hand,	you	do	not	necessarily	want	to	have	a	restriction	of



only	accepting	list	or	tuple.

Abstract	base	classes	provide	a	very	good,	extensible	mechanism	for	that.	A
previous	example	showed	that	you	can	use	isinstance	to	check	against	a	tuple	of
classes.

>>>	isinstance([],	(list,	tuple))

True

This	is	not	really	extensible,	however.	If	you	are	checking	against	list	or	tuple	in
your	implementation,	and	someone	using	your	library	wants	to	send	something
else	that	acts	list-like	but	does	not	subclass	list	or	tuple,	that	person	is	up	a
creek.

Abstract	base	classes	provide	the	solution	to	this	problem.	First,	define	an	abstract
base	class	and	register	list	and	tuple	to	it,	as	shown	here:

>>>	import	abc

>>>	class	MySequence(metaclass=abc.ABCMeta):

...					pass…

>>>	MySequence.register(list)

<class	'list'>

>>>	MySequence.register(tuple)

<class	'tuple'>

Now,	alter	the	isinstance	check	to	check	against	MySequence	instead	of	against
(list,	tuple).	It	will	still	return	True	when	a	list	or	tuple	is	checked,	and	False
for	other	objects.

>>>	isinstance([],	MySequence)

True

>>>	isinstance((),	MySequence)

True

>>>	isinstance(object(),	MySequence)

False

Thus	far,	you	have	the	same	situation	as	before.	But,	there	is	one	crucial
difference.	Consider	the	case	where	another	developer	is	using	a	library	that
expects	a	MySequence	object,	and,	therefore,	expects	a	list	or	tuple.

When	(list,	tuple)	is	hard-coded	in	the	library,	there	is	nothing	that	the
developer	can	do.	However,	MySequence	is	an	abstract	base	class	that	the	library	is
defining.	That	means	that	the	developer	can	import	it.

Once	the	developer	is	able	to	import	it,	the	custom	class	that	is	sufficiently	list-like
can	simply	be	registered	with	MySequence:

>>>	class	CustomListLikeClass(object):

...					pass…

>>>	MySequence.register(CustomListLikeClass)

<class	'__main__.CustomListLikeClass'>

>>>	issubclass(CustomListLikeClass,	MySequence)

True



The	developer	is	able	to	pass	the	CustomListLikeClass	instance	into	the	library
that	expects	a	MySequence.	Now,	when	the	library	does	its	isinstance	checks,	the
check	passes,	and	the	object	is	allowed.

Using	register	as	a	Decorator
As	of	Python	3.3,	the	register	method	provided	by	classes	using	the	ABCMeta
metaclass	can	also	be	used	as	a	decorator.

If	you	are	creating	a	new	class	that	should	be	registered	as	a	subclass	of	an
ABCMeta,	you	normally	register	it	like	this	(using	the	MySequence	abstract	base	class
defined	in	the	previous	example):

>>>	class	CustomListLikeClass(object):

...					pass…

>>>	MySequence.register(CustomListLikeClass)

<class	'__main__.CustomListLikeClass'>

Note,	however,	that	the	register	method	returns	the	class	that	is	passed	to	it.	It
works	this	way	so	that	register	can	also	be	used	as	a	decorator.	It	is	accepting	a
callable	and	returning	a	callable	(in	this	case,	the	exact	same	callable).

The	following	code	will	have	an	identical	effect:

>>>	@MySequence.register…	class	CustomListLikeClass(object):

...					pass…

>>>	

You	can	confirm	this	by	doing	the	same	issubclass	check	as	you	did	before.

>>>	issubclass(CustomListLikeClass,	MySequence)

True

It	is	worth	noting	that	this	decorator	behavior	was	added	in	Python	3.3.	In	Python
2,	as	well	as	in	Python	3.2	and	below,	the	register	method	on	abstract	base
classes	returned	None,	rather	than	returning	the	class	that	was	passed	to	it.

This	means	that	it	is	unable	to	be	used	as	a	decorator	in	these	versions.	If	you	are
writing	code	that	is	intended	to	be	cross-compatible	with	Python	2	and	Python	3,
or	if	you	are	writing	code	that	may	run	on	an	older	version	of	Python	3,	you	should
avoid	using	register	as	a	decorator.

__subclasshook__
For	most	purposes,	using	a	class	with	the	ABCMeta	metaclass	and	then	using	the
register	method	that	ABCMeta	provides	is	an	entirely	sufficient	way	to	get	what	you
need.	However,	you	may	have	a	case	where	manual	registration	of	every	intended
subclass	is	not	tenable.

Classes	created	with	the	ABCMeta	metaclass	may	optionally	define	a	special	magic
method	called	__subclasshook__.



The	__subclasshook__	method	must	be	defined	as	a	class	method	(using	the
@classmethod	decorator)	and	takes	a	single	additional	positional	argument,	which
is	the	class	being	tested.	It	can	return	three	values:	True,	False,	or	NotImplemented.

The	case	for	True	and	False	is	salient	enough.	The	__subclasshook__	method
returns	True	if	the	tested	class	should	be	considered	a	subclass,	and	False	if	it
should	not	be	considered	a	subclass.

Consider	the	traditional	duck	typing	paradigm.	The	fundamental	concern	in	the
duck-typing	paradigm	is	whether	an	object	has	certain	methods	or	attributes
(whether	it	“quacks	like	a	duck”),	rather	than	whether	it	subclasses	this	or	that
class.	An	abstract	base	class	could	implement	this	concept	with	__subclasshook__,
as	shown	here:

import	abc

class	AbstractDuck(metaclass=abc.ABCMeta):

				@classmethod

				def	__subclasshook__(cls,	other):

								quack	=	getattr(other,	'quack',	None)

								return	callable(quack)

This	abstract	base	class	is	declaring	that	any	class	with	a	quack	method	(but	not	a
non-callable	quack	attribute)	should	be	considered	its	subclass,	and	nothing	else
should	be.

>>>	class	Duck(object):

...					def	quack(self):

...									pass…

>>>

>>>	class	NotDuck(object):

...					quack	=	'foo'

...

>>>	issubclass(Duck,	AbstractDuck)

True

>>>	issubclass(NotDuck,	AbstractDuck)

False

An	important	thing	to	note	here	is	that	when	the	__subclasshook__	method	is
defined,	it	takes	precedence	over	the	register	method.

>>>	AbstractDuck.register(NotDuck)

<class	'__main__.NotDuck'>

>>>	issubclass(NotDuck,	AbstractDuck)

False

This	is	where	NotImplemented	comes	in.	If	the	__subclasshook__	method	returns
NotImplemented,	then	(and	only	then)	the	traditional	route	of	checking	to	see	if	a
class	has	been	registered	is	checked.

Consider	the	following	modified	AbstractDuck	class:



import	abc

class	AbstractDuck(metaclass=abc.ABCMeta):

				@classmethod

				def	__subclasshook__(cls,	other):

								quack	=	getattr(other,	'quack',	None)

								if	callable(quack):

												return	True

								return	NotImplemented

The	only	change	made	here	is	that	if	there	is	not	a	quack	method,	the
__subclasshook__	method	returns	NotImplemented	instead	of	False.	Now,	the
registry	is	checked,	and	a	class	that	has	been	previously	registered	will	come	back
as	a	subclass.

>>>	issubclass(NotDuck,	AbstractDuck)

False

>>>	AbstractDuck.register(NotDuck)

<class	'__main__.NotDuck'>

>>>	issubclass(NotDuck,	AbstractDuck)

True

Essentially,	the	first	example	says,	“It	is	an	AbstractDuck	if	it	quacks	like	a	duck,”
and	the	second	example	says,	“It	is	an	AbstractDuck	if	it	quacks	like	a	duck	…	or	if
it	just	says	flat	out	that	it	is	an	AbstractDuck.”

Of	course,	note	that	if	you	do	this,	you	must	be	able	to	handle	anything	that	you
receive.	It	does	you	no	good	to	make	the	quack	method	optional	if	you	rely	on
being	able	to	call	it!

So,	what	is	the	value	of	doing	this?	It	would	be	easy	enough	simply	to	do	a	hasattr
or	callable	check	on	the	methods	you	need.

In	a	relatively	straightforward	case,	it	is	probably	actually	a	hindrance	to	use	an
abstract	base	class.	For	example,	it	would	simply	add	unnecessary	complexity	to
use	one	as	a	stand-in	to	check	for	the	presence	of	a	single	method.

For	non-trivial	cases,	there	is	some	value.	First,	there	is	value	in
compartmentalization.	The	abstract	base	class	defines	a	single	place	for	the	overall
test	to	live.	Any	code	using	a	subclass	of	the	abstract	base	class	simply	uses	the
issubclass	or	isinstance	function.	This	ensures	that	as	needs	evolve,	there	is	a
single	place	for	the	conformity-checking	code	to	live.

Also,	the	availability	of	NotImplemented	as	a	return	value	for	__subclasshook__	adds
some	power.	It	provides	a	mechanism	to	say	that	while	there	are	ways	to
definitively	pass	or	definitively	fail	to	match	the	given	protocol,	there	is	also	the
way	for	a	custom	class	author	to	explicitly	opt	in.



Declaring	a	Protocol
Another	major	value	in	abstract	base	classes	is	in	their	capability	to	declare	a
protocol.	In	the	previous	examples,	you	learned	how	an	abstract	base	class	can	be
used	to	cause	a	class	to	be	able	to	declare	that	it	should	be	able	to	pass	a	type
check	test.

However,	abstract	base	classes	can	also	be	used	to	define	what	a	subclass	must
offer.	This	is	similar	to	the	concept	of	interfaces	in	some	other	object-oriented
languages,	such	as	Java.

Other	Existing	Approaches
You	can	approach	this	fundamental	problem	without	using	abstract	base	classes.
Because	abstract	base	classes	are	a	relatively	new	language	feature,	several	of
these	approaches	are	quite	common.

Using	NotImplementedError
Consider	a	class	that	is	built	with	certain	functionality,	but	which	intentionally
leaves	out	a	critical	method	so	that	this	method	may	be	implemented	by
subclasses.

from	datetime	import	datetime

class	Task(object):

				"""An	abstract	class	representing	a	task	that	must	run,	and

				which	should	track	individual	runs	and	results.

				"""

				def	__init__(self):

								self.runs	=	[]

				def	run(self):

								start	=	datetime.now()

								result	=	self._run()

								end	=	datetime.now()

								self.runs.append({

												'start':	start,

												'end':	end,

												'result':	result,

								})

								return	result

				def	_run(self):

								raise	NotImplementedError('Task	subclasses	must	define	'

																																		'a	_run	method.')

The	purpose	of	this	class	would	be	to	run	some	kind	of	task	and	track	when	those
runs	happened.	It	is	easy	to	intuitively	understand	how	it	could	also	provide
logging	or	similar	functionality.



What	the	base	Task	class	does	not	provide,	however,	is	a	task	body.	It	is	up	to
subclasses	to	do	this.	Instead,	the	Task	class	provides	a	shell	method,	_run,	which
does	nothing	except	raise	NotImplementedError	with	a	useful	error	message.	Any
subclass	that	fails	to	override	_run	will	most	likely	hit	this	error,	which	is	also	what
you	get	if	you	attempt	to	call	run	on	Task	itself.

>>>	t	=	Task()

>>>	t.run()

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

		File	"<stdin>",	line	10,	in	run

		File	"<stdin>",	line	20,	in	_run

NotImplementedError:	Task	subclasses	must	define	a	_run	method.

Using	Metaclasses
This	is	not	the	only	way	to	declare	a	protocol.	Another	common	way	to	do	this	is
by	using	a	metaclass.

from	datetime	import	datetime,	timezone

class	TaskMeta(type):

				"""A	metaclass	that	ensures	the	presence	of	a	_run	method

				on	any	non-abstract	classes	it	creates.

				"""

				def	__new__(cls,	name,	bases,	attrs):

								#	If	this	is	an	abstract	class,	do	not	check	for	a	_run	method.

								if	attrs.pop('abstract',	False):

												return	super(TaskMeta,	cls).__new__(cls,	name,	bases,	attrs)

								#	Create	the	resulting	class.

								new_class	=	super(TaskMeta,	cls).__new__(cls,	name,	bases,	attrs)

								#	Verify	that	a	_run	method	is	present	and	raise

								#	TypeError	otherwise.

								if	not	hasattr(new__class,	'__run')	or	not	

callable(new__class.__run):

												raise	TypeError('Task	subclasses	must	define	a	_run	method.')

								#	Return	the	new	class	object.

								return	new_class

class	Task(metaclass=TaskMeta):

				"""An	abstract	class	representing	a	task	that	must	run,	and

				which	should	track	individual	runs	and	results.

				"""

				abstract	=	True

				def	__init__(self):

								self.runs	=	[]

				def	run(self):

								start	=	datetime.now(tz=timezone.utc)



								result	=	self._run()

								end	=	datetime.now(tz=timezone.utc)

								self.runs.append({

												'start':	start,

												'end':	end,

												'result':	result,

								})

								return	result

This	is	similar	to	the	previous	example,	but	with	a	couple	of	subtle	differences.
The	first	difference	is	that	the	Task	class	itself,	while	it	can	still	be	instantiated,	no
longer	declares	a	_run	method	at	all,	so	the	public-facing	run	method	would	raise
AttributeError.

>>>	t	=	Task()

>>>	t.run()

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

		File	"<stdin>",	line	12,	in	run

AttributeError:	'Task'	object	has	no	attribute	'_run'

The	more	important	distinction,	however,	lies	with	subclasses.	Because	the
metaclass	has	a	__new__	method	that	runs	when	the	subclass	is	created,	the
interpreter	will	no	longer	allow	you	to	create	a	subclass	without	a	_run	method.

>>>	class	TaskSubclass(Task):

...					pass…

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

		File	"<stdin>",	line	16,	in	__new__

NotImplementedError:	Task	subclasses	must	define	a	_run	method.

The	Value	of	Abstract	Base	Classes
Both	of	these	approaches	are	valuable,	but	it	is	also	fair	to	criticize	them	for	being
somewhat	ad	hoc.

Abstract	base	classes	provide	a	more	formal	way	to	present	the	same	pattern.	They
provide	a	mechanism	to	declare	a	protocol	using	an	abstract	class,	and	subclasses
must	provide	an	implementation	that	conforms	to	that	protocol.

The	abc	module	provides	a	decorator	called	@abstractmethod,	which	designates
that	a	given	method	must	be	overridden	by	all	subclasses.	The	method	body	may
be	empty	(pass),	or	may	contain	an	implementation	that	the	subclass	methods
may	choose	to	call	using	super.

Consider	a	Task	class	that	uses	the	@abstractmethod	decorator	in	lieu	of	a	custom
metaclass.

import	abc

from	datetime	import	datetime,	timezone



class	Task(metaclass=abc.ABCMeta):

				"""An	abstract	class	representing	a	task	that	must	run,	and

				which	should	track	individual	runs	and	results.

				"""

				def	__init__(self):

								self.runs	=	[]

				def	run(self):

								start	=	datetime.now(tz=timezone.utc)

								result	=	self._run()

								end	=	datetime.now(tz=timezone.utc)

								self.runs.append({

												'start':	start,

												'end':	end,

												'result':	result,

								})

								return	result

				@abc.abstractmethod

				def	_run(self):

								pass

Again,	this	is	mostly	identical	to	the	previous	two	examples,	but	ever	so	slightly
different	from	both.	First,	note	that	the	Task	class	itself	is	unable	to	be
instantiated.

>>>	t	=	Task()

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

TypeError:	Can't	instantiate	abstract	class	Task	with	abstract	methods	_run

This	is	distinct	from	the	NotImplementedError	approach,	which	would	have	allowed
the	base	Task	class	to	be	instantiated.

Similarly,	it	is	distinct	from	both	of	the	previous	approaches	in	that	the	error	case
for	a	subclass	that	does	not	properly	override	the	_run	method	is	slightly	different.
In	the	first	example,	using	NotImplementedError,	you	end	up	having
NotImplementedError	raised	at	the	point	where	the	_run	method	is	called.	In	the
second	example,	using	a	custom	TaskMeta	metaclass,	TypeError	is	raised	when	the
offending	subclass	is	created.

When	using	an	abstract	base	class,	the	interpreter	is	perfectly	happy	to	create	a
subclass	that	does	not	implement	all	(or	even	any)	of	the	abstract	methods	in	the
base	class.

>>>	class	Subtask(Task):

...			pass…

>>>

What	the	interpreter	is	not	willing	to	do,	however,	is	instantiate	it.	In	fact,	it	gives
the	exact	same	error	as	the	Task	class	gives,	which	is	logically	exactly	what	you
expect.



>>>	st	=	Subtask()

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

TypeError:	Can't	instantiate	abstract	class	Subtask	with	abstract	methods	

_run

However,	once	you	define	a	subclass	that	overrides	the	abstract	methods,	it	works
just	fine,	and	you	are	able	to	instantiate	your	subclass.

>>>	class	OtherSubtask(Task):

...			def	_run(self):

...					return	2	+	2…

>>>

>>>	ost	=	OtherSubtask()

>>>	ost.run()

4

And,	if	you	inspect	the	runs	attribute,	you	will	see	that	information	about	the	run
has	been	saved,	as	shown	here:

>>>	ost.runs

[{'result':	4,	'end':	datetime.datetime(…),	'start':	datetime.datetime(…)}]

This	is	actually	a	very	useful	approach	to	this	problem,	for	several	reasons.	First
(and	probably	most	important),	this	approach	is	formalized	rather	than	ad	hoc.
Abstract	base	classes	were	specifically	proposed	as	a	solution	to	fill	this	particular
need,	pursuant	to	the	notion	that,	ideally,	there	should	be	one	and	only	one
“correct”	way	to	do	it.

Second,	the	@abstractmethod	decorator	is	very	simple,	and	avoids	a	lot	of	potential
errors	that	can	crop	up	if	you're	attempting	to	write	boilerplate	code.	As	an
example,	what	if,	in	your	TaskMeta	metaclass,	you	accidentally	only	check	for	the
presence	of	_run	in	the	attrs	dictionary,	but	do	not	allow	for	the	presence	of	_run
in	the	superclass?	This	is	an	easy	mistake	to	make,	and	it	would	result	in	Task
subclasses	that	are	not	themselves	subclassable	unless	you	manually	override	_run
every	time.	With	the	@abstractmethod	decorator,	you	get	the	right	behavior
without	having	to	put	too	much	thought	into	it.

Finally,	this	approach	makes	it	very	easy	to	have	intermediate	implementations.
Consider	an	abstract	base	class	that	has	10	abstract	methods	instead	of	one.	It	is
entirely	reasonable	to	have	an	entire	subclass	tree,	where	higher	subclasses	on	the
chain	implement	some	common	methods,	but	leave	other	methods	in	their
abstract	state	for	their	subclasses	to	implement.	In	fairness,	you	can	do	this	with
the	custom	metaclass	approach	also	(by	declaring	every	intermediate	class
abstract	=	True	in	the	TaskMeta	example).	However,	when	using	@abstractmethod,
you	basically	get	exactly	the	behavior	you	want	intuitively.

Of	course,	there	is	one	big	reason	not	to	use	an	abstract	base	class	if	you	need	this
type	of	functionality,	which	is	if	you	need	to	support	versions	of	Python	that	do
not	yet	have	abc.	This	is	becoming	more	rare,	though,	because	abc	was	added	in



Python	2.6,	and	many	Python	packages	do	not	support	versions	of	Python	older
than	2.6.

Abstract	Properties
It	is	also	possible	for	properties	(that	is,	methods	that	use	the	@property
decorator)	to	be	declared	as	abstract.	However,	the	correct	approach	to	this
depends	slightly	on	what	versions	of	Python	you	are	supporting.

In	Python	2.6	through	3.2	(including	any	code	that	must	be	cross-compatible	with
these	versions),	the	correct	approach	is	to	use	the	@abstractproperty	decorator,
which	is	provided	by	the	abc	module.

import	abc

class	AbstractClass(metaclass=abc.ABCMeta):

				@abc.abstractproperty

				def	foo(self):

								pass

In	Python	3.3,	this	approach	is	deprecated,	because	@abstractmethod	has	been
updated	to	be	able	to	work	alongside	@property.	Therefore,	having	a	special
decorator	to	provide	both	is	now	redundant.	Thus,	the	following	example	is
identical	to	the	previous	one,	but	only	in	Python	3.3	and	up:

import	abc

class	AbstractClass(metaclass=abc.ABCMeta):

				@property

				@abc.abstractmethod

				def	foo(self):

								pass

Attempting	to	instantiate	a	subclass	of	AbstractClass	that	does	not	override	the
foo	method	will	raise	an	error.

>>>	class	InvalidChild(AbstractClass):

...					pass…

>>>	ic	=	InvalidChild()

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

TypeError:	Can't	instantiate	abstract	class	InvalidChild	with	abstract	

methods	foo

However,	a	subclass	that	overrides	the	abstract	method	is	able	to	be	instantiated.

>>>	class	ValidChild(AbstractClass):

...					@property…					def	foo(self):

...									return	'bar'

...

>>>



>>>	vc	=	ValidChild()

>>>	vc.foo

'bar'

Abstract	Class	or	Static	Methods
As	with	properties,	you	may	want	to	combine	the	@abstractmethod	decorator	with
either	a	class	method	or	static	method	(that	is,	a	method	decorated	with
@classmethod	or	@staticmethod).

This	is	a	little	bit	trickier.	Python	2.6	through	3.1	simply	do	not	provide	a	way	to
do	this	at	all.	Python	3.2	does	provide	a	way,	using	the	@abstractclassmethod	or
@abstractstaticmethod	decorators.	These	work	similarly	to	the	previous	abstract
properties	example.

Python	3.3	then	alters	this	by	changing	@abstractmethod	to	be	compatible	with	the
@classmethod	and	@staticmethod	decorators,	and	deprecates	the	Python	3.2
approach.

In	this	case,	because	most	code	written	for	Python	3	usually	is	only	written	to	be
compatible	with	Python	3.3	and	up	(you	learn	more	about	this	in	Chapter	10,
“Python	2	Versus	Python	3”),	most	likely	what	you	want	to	do	is	simply	use	the
two	decorators	separately.	However,	if	you	need	compatibility	with	Python	3.2,
and	do	not	need	compatibility	with	any	previous	versions	of	Python	(including	any
versions	of	Python	2),	then	those	decorators	are	available	to	you.

Consider	the	following	abstract	class	using	the	Python	3.3	syntax:

class	AbstractClass(metaclass=abc.ABCMeta):

				@classmethod

				@abc.abstractmethod

				def	foo(cls):

								return	42

Subclassing	this	class	without	overriding	the	method	will	work	as	usual,	but	the
subclass	is	unable	to	be	instantiated.

>>>	class	InvalidChild(AbstractClass):

...					pass…

>>>	ic	=	InvalidChild()

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

TypeError:	Can't	instantiate	abstract	class	InvalidChild	with	abstract	

methods	foo

The	abstract	method	itself	can	actually	be	called	directly	without	error,	though.

>>>	InvalidChild.foo()

42

Once	the	abstract	method	is	overridden	in	a	subclass,	that	subclass	is	able	to	be
instantiated.



>>>	class	ValidChild(AbstractClass):

...					@classmethod…					def	foo(cls):

...									return	'bar'

...

>>>	ValidChild.foo()

'bar'

>>>	vc	=	ValidChild()

>>>	vc.foo()

'bar'



Built-in	Abstract	Base	Classes
In	addition	to	providing	the	abc	module	that	enables	you	to	build	your	own
abstract	base	classes,	the	Python	3	standard	library	also	provides	a	small	number
of	abstract	base	classes	built	into	the	language,	particularly	for	opting	in	a	special
class	to	a	common	pattern	(such	as	a	sequence,	mutable	sequence,	iterable,	and	so
on).	The	most	commonly	used,	which	are	for	collections,	live	in	the
collections.abc	module.

Most	of	these	built-in	abstract	base	classes	provide	both	abstract	and	non-abstract
methods,	and	are	often	an	alternative	to	subclassing	a	built-in	Python	class.	For
example,	subclassing	MutableSequence	may	be	a	superior	alternative	to	subclassing
list	or	str.

The	provided	abstract	base	classes	can	be	divided	into	two	basic	categories:	those
that	require	and	check	for	a	single	method	(such	as	Iterable	and	Callable),	and
those	that	provide	a	stand-in	to	a	common	built-in	Python	type.

Single-Method	ABCs
Python	provides	five	abstract	base	classes	that	contain	one	abstract	method	each,
and	whose	_subclasscheck_	methods	simply	check	for	the	presence	of	that
method.	They	are	as	follows:

Callable	(__call__)

Container	(__contains__)

Hashable	(__hash__)

Iterable	(__iter__)

Sized	(__len__)

Any	class	that	contains	the	appropriate	method	is	automatically	considered	to	be	a
subclass	of	the	relevant	abstract	base	class.

>>>	from	collections.abc	import	Sized

>>>

>>>	class	Foo(object):

...					def	__len__(self):

...									return	42…

>>>	issubclass(Foo,	Sized)

True

Similarly,	classes	may	subclass	the	abstract	base	classes	directly,	and	are	expected
to	override	the	relevant	method.

>>>	class	Bar(Sized):

...					pass…

>>>	b	=	Bar()

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>



TypeError:	Can't	instantiate	abstract	class	Bar	with	abstract	methods	

__len__

In	addition	to	these	five	classes,	there	is	one	more.	Iterator	is	slightly	special.	It
inherits	from	Iterable,	provides	an	implementation	for	__iter__	(which	just
returns	itself	and	can	be	overridden),	and	adds	an	abstract	method	called
__next__.

Alternative-Collection	ABCs
Another	major	type	of	built-in	abstract	base	classes	in	Python	3	are	those	that
serve	to	identify	subclasses	that	serve	a	similar	role	as	the	major	Python	collection
classes:	list,	dict,	and	set.

There	are	six	of	these	classes,	divided	into	three	categories	with	two	in	each
category	(one	immutable	class	and	one	mutable	one).

The	first	category	is	Sequence	and	MutableSequence.	These	abstract	base	classes	are
intended	for	collections	that	generally	act	like	Python	tuples	or	lists,	respectively.
The	Sequence	abstract	base	class	requires	__getitem__	and	__len__.	However,	it
also	provides	implementations	for	a	lot	of	other	common	methods	you	use	with
list	and	tuples,	such	as	__contains__	and	__iter__	(among	others).	The	idea	here
is	that	you	can	subclass	Sequence	and	define	just	the	things	you	need,	and	Python
provides	you	with	the	other	common	functionality	of	sequences.	Of	course,	list,
tuple,	and	set	are	considered	to	be	subclasses	of	Sequence.

MutableSequence	is	similar,	but	adds	the	notion	of	modifying	the	sequence	in-
place.	Therefore,	it	adds	__setitem__,	__delitem__,	and	insert	as	abstract
methods,	and	provides	functionality	for	append,	pop,	and	the	like.	The	principle	is
still	the	same—you	must	define	just	the	things	you	fundamentally	need	to	have	a
mutable	sequence,	and	Python	provides	list-like	methods	for	the	rest.	As	you
probably	expect,	list	and	set	are	already	considered	to	be	subclasses	of
MutableSequence	out	of	the	box.

The	other	two	categories	are	Mapping	and	Set,	which	come	with	MutableMapping
and	MutableSet,	as	you	would	expect.	Mappings	are	intended	for	dictionary-like
objects	(similar	to	dict,	and	dict	is	considered	a	subclass),	whereas	Sets	are
intended	for	unordered	collections	(similar	to	set,	and	set	is	considered	a
subclass).	In	both	cases,	they	specify	some	key	methods	(with	names
corresponding	to	those	of	dict	and	set)	as	abstract,	and	provide	implementations
for	the	remainder.

Using	Built-In	Abstract	Base	Classes
The	key	purpose	for	these	abstract	base	classes	is	to	provide	a	means	to	test	for
common	types	of	collections.	Rather	than	testing	to	see	if	you	have	a	list,	test	for
a	MutableSequence	(or	just	a	Sequence	if	you	do	not	need	to	modify	it).	Rather	than
testing	for	dict,	test	for	a	MutableMapping.



This	makes	your	code	more	flexible.	If	someone	who	is	using	your	library	does
have	a	need	to	make	a	list-like	object	or	a	dictionary-like	object	for	individual
purposes,	that	person	can	still	pass	this	to	your	code,	which	can	use	it	without	any
extra	work.	This	allows	your	code	to	test	to	make	sure	you	are	getting	the	kind	of
object	you	expect	to	get,	and	allows	others	the	flexibility	to	pass	in	compatible
objects,	which	may	not	be	the	exact	ones	you	anticipated.

Additional	ABCs
There	are	other	abstract	base	classes	in	the	standard	library	not	covered	in	detail
here.	In	particular,	the	numbers	module	contains	abstract	base	classes	for
implementing	many	different	kinds	of	numbers.



Summary
The	primary	importance	of	abstract	base	classes	is	that	they	provide	a	formal	and
dynamic	way	to	answer	the	question,	“Are	you	getting	the	kind	of	object	you	think
you	are	getting?”	It	addresses	some	of	the	shortcomings	of	both	simply	testing	for
the	presence	of	certain	attributes	and	simply	testing	for	particular	classes.	This	is
valuable.

It	is	worth	remembering,	however,	that	much	like	the	more	ad	hoc	approaches
that	preceded	them,	abstract	base	classes	are	still	very	much	a	gentlemen's
agreement.	The	Python	interpreter	will	catch	some	obvious	violations	(such	as
failing	to	implement	an	abstract	method	in	a	subclass).	However,	it	is	the
responsibility	of	implementers	to	ensure	that	their	subclasses	do	the	right	thing.
There	are	many	things	that	abstract	base	classes	do	not	check.	For	example,	they
do	not	check	method	signatures	or	return	types.

The	lesson	here	is	that	just	because	a	class	implements	an	abstract	base	class	does
not	guarantee	that	it	does	so	correctly,	or	in	the	way	that	you	expect.	This	is
nothing	new.	Just	because	a	class	has	a	particular	method	does	not	mean	that	said
method	does	the	right	thing.	It	is	easy	to	inspect	whether	an	object	has	a	quack
method.	It	is	far	more	difficult	to	determine	whether	the	quack	method	actually
makes	the	object	quack	like	a	duck.

This	is	fine,	however.	Part	of	writing	software	in	a	dynamic	language	like	Python	is
that	you	accept	that	these	kinds	of	gentlemen's	agreements	exist.	There	is	still
tremendous	value	in	having	a	formalized	and	streamlined	way	to	declare	and	to
determine	whether	an	object	conforms	to	a	type	or	protocol.	Abstract	base	classes
provide	this.

Chapter	8,	“Strings	and	Bytestrings,”	explores	the	world	of	Unicode	and	ASCII
strings,	and	how	to	handle	them	effectively	in	Python	programs.





Part	III
Data





Chapter	8
Strings	and	Unicode
One	of	the	more	common	sources	of	pain	when	writing	Python	applications	is	the
handling	of	string	data,	specifically	when	strings	contain	characters	outside	of
common	Latin	characters.

One	of	the	first	standards	developed	for	representing	string	data	is	known	as
ASCII,	which	stands	for	American	Standard	Code	for	Information	Interchange.
ASCII	defines	a	dictionary	for	representing	common	characters	such	as	“A”
through	“Z”	(in	both	upper-	and	lowercase),	the	digits	“0”	through	“9,”	and	a	few
common	symbols	(such	as	period,	question	mark,	and	so	on).

However,	ASCII	relies	upon	an	assumption	that	each	character	maps	to	a	single
byte,	and,	therefore,	runs	into	trouble	because	there	are	far	too	many	characters.
As	a	result,	a	standard	known	as	Unicode	is	now	used	to	render	text.

In	Python,	there	are	two	different	kinds	of	string	data:	text	strings	and	byte
strings.	It	is	also	possible	to	convert	one	type	to	the	other.	It	is	important	to
understand	which	kind	of	data	you	are	dealing	with,	and	to	consistently	keep	the
kinds	of	data	straight.

In	this	chapter,	you	learn	about	the	difference	between	text	strings	and	byte
strings,	and	how	the	types	are	implemented	in	both	Python	2	and	Python	3.	You
also	learn	how	to	deal	with	common	problems	that	can	pop	up	when	you're
working	with	string	data	within	Python	programs.



Text	String	Versus	Byte	String
Data	is	consistently	stored	in	bytes.	Character	sets	such	as	ASCII	and	Unicode	are
responsible	for	using	byte	data	to	render	the	appropriate	text.

ASCII's	approach	to	this	is	straightforward.	It	defines	a	mapping	table,	and	each
character	corresponds	to	7	bits.	A	common	superset	of	ASCII,	latin-1	(discussed
in	more	detail	later),	maintains	this	system,	but	uses	8	bits.	Ordinarily,	you
represent	bytes	as	either	a	decimal	or	hexadecimal	number.	Therefore,	whenever
the	ASCII	codec	encounters	the	byte	represented	by	the	decimal	number	65	(or
hex	0x41),	it	knows	that	this	corresponds	to	the	character	A.

In	fact,	Python	itself	defines	two	functions	for	converting	between	a	single	integer
byte	and	the	corresponding	character:	ord	and	chr.	The	abbreviation	“ord”	stands
for	“ordinal.”	The	ord	function	takes	a	character	and	returns	the	integer
corresponding	to	that	character	in	the	ASCII	table,	as	shown	here:

>>>	ord('A')

65

The	chr	method	does	the	opposite.	It	accepts	an	integer	and	returns	the
corresponding	character	on	the	ASCII	table,	as	shown	here:

>>>	chr(65)

'A'

>>>	chr(0x41)

'A'

The	fundamental	problem	with	ASCII	is	its	assumption	of	a	1:1	mapping	between
characters	and	bytes.	This	is	a	serious	limitation,	because	256	characters	is	not
nearly	enough	to	include	the	various	glyphs	in	different	languages.	Unicode	solves
this	problem	by	using	up	to	4	bytes	to	represent	each	character.

String	Data	in	Python
The	Python	language	actually	has	two	different	kinds	of	strings:	one	for	storing
text,	and	one	for	storing	raw	bytes.	A	text	string	stores	data	internally	as	Unicode,
whereas	a	byte	string	stores	raw	bytes	and	displays	ASCII	(for	example,	when	sent
to	print).

Adding	to	the	confusion,	Python	2	and	Python	3	use	different	(but	overlapping)
names	for	their	text	strings	and	byte	strings.	The	Python	3	terminology	makes
more	sense,	so	you	should	learn	it	and	then	translate	to	Python	2	when	working
there.

Python	3	Strings
In	Python	3,	the	text	string	type	(which	stores	Unicode	data)	is	called	str,	and	the
byte	string	type	is	called	bytes.	Instantiating	a	string	normally	gives	you	a	str
instance,	as	shown	here:



>>>	text_str	=	'The	quick	brown	fox	jumped	over	the	lazy	dogs.'

>>>	type(text_str)

<class	'str'>

If	you	want	to	get	a	bytes	instance,	you	prefix	the	literal	with	the	b	character.

>>>	byte_str	=	b'The	quick	brown	fox	jumped	over	the	lazy	dogs.'

>>>	type(byte_str)

<class	'bytes'>

It	is	possible	to	convert	between	a	str	and	a	bytes.	The	str	class	includes	an
encode	method,	which	converts	into	a	bytes	using	the	specified	codec.	In	most
cases,	you	want	to	use	UTF-8	as	a	codec	when	encoding	data.	The	encode	method
takes	a	required	argument,	which	is	the	string	representing	the	appropriate	codec.

>>>	text_str.encode('utf-8')

b'The	quick	brown	fox	jumped	over	the	lazy	dogs.'

Similarly,	the	bytes	class	includes	a	decode	method,	which	also	takes	the	codec	as
a	single,	required	argument,	and	returns	a	str.	Decoding	is	a	more	interesting
issue,	though.	It	is	insufficient	to	dogmatically	say	that	you	should	always	decode
data	as	UTF-8,	because	data	from	another	source	may	not	have	been	encoded	as
UTF-8.	You	must	decode	data	according	to	how	it	was	encoded.	You	learn	more
about	this	later	in	this	chapter.

Python	3	will	never	attempt	to	implicitly	convert	between	a	str	and	a	bytes.	Its
approach	is	to	require	you	to	explicitly	convert	between	text	strings	and	byte
strings	with	the	str.encode	and	bytes.decode	methods	(a	practice	that	requires
you	to	specify	a	codec).	For	most	applications,	this	is	a	preferable	behavior,
because	it	helps	you	avoid	getting	into	situations	where	programs	work	when
given	common	English	text,	but	fail	when	running	into	unexpected	characters.

This	also	means	that	text	strings	containing	only	ASCII	characters	are	not
considered	to	be	equal	to	byte	strings	containing	only	ASCII	characters.

>>>	'foo'	==	b'foo'

False

>>>

>>>	d	=	{'foo':	'bar'}

>>>	d[b'foo']

Traceback	(most	recent	call	last):

		File	"stdin",	line	1,	in	<module>

KeyError:	b'foo'

Attempting	to	do	nearly	any	operation	on	a	text	string	and	byte	string	together	will
raise	TypeError,	as	shown	here:

>>>	'foo'	+	b'bar'

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

TypeError:	Can't	convert	'bytes'	object	to	str	implicitly



One	exception	to	this	behavior	is	the	%	operator,	which	is	used	for	string
formatting	in	Python.	Attempting	to	interpolate	a	text	string	into	a	byte	string	will
raise	TypeError	as	expected.

>>>	b'foo	%s'	%	'bar'

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

TypeError:	unsupported	operand	type(s)	for	%:	'bytes'	and	'str'

On	the	other	hand,	interpolating	a	byte	string	into	a	text	string	does	work,	but
does	not	return	the	intuitively	desired	response.

>>>	'foo	%s'	%	b'bar'

"foo	b'bar'"

What	is	occurring	here	is	that	the	operator	takes	the	b'bar'	value,	which	is	a
bytes.	It	first	looks	for	a	__str__	method,	which	the	bytes	object	actually	does
have.	It	returns	the	text	string	"b'bar'",	with	the	b'	prefix	and	‘	suffix.	This	is	the
same	value	returned	by	__repr__.

Python	2	Strings
Python	2	strings	mostly	work	similarly,	but	with	some	subtle	but	very	important
distinctions.

The	first	distinction	is	the	name	of	the	classes.	The	Python	3	str	class	is	called
unicode	in	Python	2.	In	and	of	itself,	this	is	fine.	However,	the	Python	3	bytes	class
is	called	str	in	Python	2.	This	means	that	a	Python	3	str	is	a	text	string,	whereas	a
Python	2	str	is	a	byte	string.	If	you	are	using	Python	2,	it	is	critically	important	to
understand	this	distinction.

Instantiating	a	string	with	no	prefix	gives	you	a	str	(remember,	this	is	a	byte
string!)	instance.

>>>	byte_str	=	'The	quick	brown	fox	jumped	over	the	lazy	dogs.'

>>>	type(byte_str)

<type	'str'>

If	you	want	a	text	string	in	Python	2,	you	prefix	the	string	literal	with	the	u
character,	as	shown	here:

>>>	text_str	=	u'The	quick	brown	fox	jumped	over	the	lazy	dogs.'

>>>	type(text_str)

<type	'unicode'>

Unlike	Python	3,	Python	2	does	attempt	to	implicitly	convert	between	text	strings
and	byte	strings.	The	way	that	this	works	is	that	if	the	interpreter	encounters	a
mixed	operation,	it	will	first	convert	the	byte	string	to	a	text	string,	and	then
perform	the	operation	against	the	text	strings.

It	works	this	way	so	that	an	operation	against	a	byte	string	and	a	text	string	will
return	a	text	string:



>>>	'foo'	+	u'bar'

u'foobar'

The	interpreter	performs	this	implicit	decoding	using	whatever	the	default
encoding	is.	On	Python	2,	this	is	almost	always	ASCII.	Python	defines	a	method,
sys.getdefaultencoding,	which	provides	the	default	codec	for	implicitly
converting	between	text	strings	and	byte	strings.

>>>	import	sys

>>>	sys.getdefaultencoding()

'ascii'

This	means	that	many	of	the	previous	Python	3	examples	show	distinctly	different
behavior	in	Python	2.

>>>	'foo'	==	u'foo'

True

>>>

>>>	d	=	{u'foo':	u'bar'}

>>>	d['foo']

u'bar'

str.encode	and	unicode.decode
One	somewhat	bizarre	aspect	of	Python	2's	string-handling	behavior	is	that	text
strings	actually	have	a	decode	method,	and	byte	strings	actually	have	an	encode
method.

You	never	want	to	use	these.

The	theoretical	purpose	of	these	methods	is	to	ensure	that	you	don't	worry	too
much	about	what	the	input	variable	is.	Simply	call	encode	to	change	either	kind	of
string	into	a	byte	string,	or	decode	to	change	either	kind	of	string	into	a	text	string.

In	practice,	however,	this	can	be	both	disastrous	and	very	confusing,	because	if	the
method	receives	the	“wrong”	kind	of	input	string	(that	is,	a	string	already	of	the
desired	output	type),	it	will	attempt	two	conversions,	and	attempt	the	implicit	one
using	ASCII.

Consider	this	Python	2	example:

>>>	text_str	=	u'\u03b1	is	for	alpha.'

>>>

>>>	text_str.encode('utf-8')

'\xce\xb1	is	for	alpha.'

>>>

>>>	text_str.encode('utf-8').encode('utf-8')

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

UnicodeDecodeError:	'ascii'	codec	can't	decode	byte	0xce	in	position	0:

					ordinal	not	in	range(128)

It	seems	quite	bizarre	to	be	asking	to	encode	something	as	UTF-8	and	to	get	an
error	back	complaining	that	the	text	is	unable	to	be	decoded	as	ASCII.	But	this	is



the	implicit	conversion	that	Python	2	is	attempting	to	do	in	order	to	run	encode	(a
method	intended	for	text	strings)	on	a	byte	string.

To	the	interpreter,	the	final	line	is	equivalent	to	the	following:

text_str.encode('utf-8').decode('ascii').encode('utf-8')

That	is	never	what	you	want.

It	seems	simple	enough	not	to	do	this,	but	the	way	you	encounter	an	error	like	this
is	not	to	bluntly	run	encode	twice	(as	this	example	does),	but	rather	to	run	encode
or	decode	without	first	checking	to	see	what	kind	of	data	you	have.	In	Python	2,
text	strings	and	byte	strings	intermingle	frequently,	and	it	is	very	easy	to	get	one
when	you	expected	the	other.

unicode_literals
If	you	are	using	Python	2.6	or	greater,	you	can	make	part	of	this	behavior	track	the
Python	3	behavior	if	you	choose	to	do	so.	Python	defines	a	special	module	called
__future__,	from	which	you	can	preemptively	opt-in	to	future	behavior.

In	this	case,	importing	unicode_literals	causes	string	literals	to	follow	the	Python
3	convention,	although	the	Python	2	class	names	are	still	used.

>>>	from	__future__	import	unicode_literals

>>>	text_str	=	'The	quick	brown	fox	jumped	over	the	lazy	dogs.'

>>>	type(text_str)

<type	'unicode'>

>>>	bytes_str	=	b'The	quick	brown	fox	jumped	over	the	lazy	dogs.'

>>>	type(bytes_str)

<type	'str'>

Once	from	__future__	import	unicode_literals	is	invoked,	a	string	literal	with	no
prefix	in	Python	2.6	or	greater	becomes	a	text	string	(unicode),	and	a	b	prefix
creates	a	byte	string	(Python	2	str).

Doing	this	does	not	forward-port	other	aspects	of	Python	2's	string	handling	to	the
Python	3	behavior.	The	interpreter	will	still	attempt	to	implicitly	convert	between
text	strings	and	byte	strings,	and	ASCII	is	still	the	default	encoding.

Nonetheless,	most	strings	specified	in	code	are	intended	to	be	text	strings	rather
than	byte	strings.	Therefore,	if	you	are	writing	code	that	does	not	need	to	support
versions	of	Python	below	Python	2.6,	it	is	very	wise	to	use	this.

six
The	fact	that	Python	2	and	Python	3	provide	different	class	names	for	text	strings
and	byte	strings	can	be	a	source	of	confusion,	although	the	transition	to	the	much
clearer	Python	3	nomenclature	is	an	important	one.

To	help	cope	with	this,	the	popular	Python	library	six,	which	is	centered	around
writing	modules	that	run	correctly	in	both	Python	2	and	Python	3	(and	which	is



covered	in	much	more	detail	in	Chapter	10,	“Python	2	Versus	Python	3”),	provides
aliases	for	these	types	so	that	they	can	be	consistently	referenced	in	code	that
must	run	on	both	platforms.	The	class	for	text	strings	(str	in	Python	3	and	unicode
in	Python	2)	is	aliased	as	six.text_type,	whereas	the	class	for	byte	strings	(bytes
in	Python	3	and	str	in	Python	2)	is	aliased	as	six.binary_type.



Strings	with	Non-ASCII	Characters
Most	Python	programs,	and	nearly	any	program	that	handles	user	input	(whether
it	be	direct	input,	from	a	file,	from	a	database,	and	so	on)	must	be	able	to	handle
arbitrary	characters,	including	those	not	found	on	the	ASCII	table.	Converting
ASCII	characters	between	text	strings	and	byte	strings	is	trivial	(in	the	utf-8
codec,	it	is	actually	a	no-op).	The	complexity	arrives	when	non-ASCII	characters
are	in	play,	especially	if	text	strings	and	byte	strings	are	being	used	without
sufficient	regard	to	which	is	which.

Observing	the	Difference
Consider	a	text	string	that	contains	non-ASCII	characters,	such	as	the	text	string
in	the	following	code,	which	says	“Hello,	world”	Google-translated	into	Greek
(note	that	this	is	Python	3	code):

>>>	text_str	=	'Γεια	σας,	τον	κόσμο'

>>>	type(text_str)

<class	'str'>

The	first	thing	to	note	about	this	text	string	is	that	it	cannot	be	encoded	to	a	bytes
instance	using	the	ascii	codec	at	all.

>>>	text_str.encode('ascii')

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

UnicodeEncodeError:	'ascii'	codec	can't	encode	characters	in	position	0-3:

					ordinal	not	in	range(128)

This	is	because	ASCII	does	not	have	Greek	characters,	so	the	ASCII	codec	does	not
have	any	way	to	translate	them	into	raw	byte	data.	This	is	fine,	though,	because
that	is	what	the	utf-8	codec	is	for,	as	shown	here:

>>>	text_str.encode('utf-8')

b'\xce\x93\xce\xb5\xce\xb9\xce\xb1	\xcf\x83\xce\xb1\xcf\x82,

\xcf\x84\xce\xbf\xce\xbd	\xce\xba\xcf\x8c\xcf\x83\xce\xbc\xce\xbf.'

Several	things	are	worth	noting	at	this	point.	First	and	foremost,	this	is	the	first
string	you	have	encountered	where	the	text	string	and	the	byte	string	look
substantially	different.	The	repr	of	the	text	string	looks	like	human-readable
Greek,	whereas	the	repr	of	the	byte	string	looks	like	it	is	intended	to	be	machine-
readable.

Also,	notice	that	the	lengths	of	the	strings	are	actually	not	the	same.

>>>	byte_str	=	text_str.encode('utf-8')

>>>	len(text_str)

20

>>>	len(byte_str)

35



Why	is	this?	Remember	the	problem	that	Unicode	exists	to	solve:	ASCII	assumes	a
1:1	correlation	between	bytes	and	characters,	which	puts	a	substantial	limitation
on	the	number	of	characters	available.

Unicode	allows	for	many	more	characters	to	exist	by	breaking	out	of	this
limitation.	UTF-8	characters	are	variable	length.	A	single	Unicode	character	may
be	as	small	as	a	single	byte	(for	the	characters	on	the	ASCII	table),	or	as	large	as	4
bytes.

In	the	case	of	the	example	Greek	text,	most	characters	are	2	bytes,	which	is	why
the	len	of	the	byte	string	is	almost	double	the	len	of	the	text	string.	However,	the
spaces,	period,	and	comma	(visible	in	the	byte	string	as	such)	are	all	ASCII
characters,	and	only	take	1	byte	each.

Unicode	Is	a	Superset	of	ASCII
Why	do	the	text	strings	and	byte	strings	that	only	contain	ASCII	characters	look	so
similar	when	printed,	but	the	Unicode	strings	look	so	different?

By	convention,	you	print	the	bytes	in	the	ASCII	range	as	their	ASCII	characters.
Additionally,	Unicode	is	structured	in	such	a	way	as	to	make	it	an	exact	superset	of
ASCII.	This	means	that	the	characters	in	the	Latin	alphabet,	as	well	as	the
common	punctuation	symbols,	are	represented	the	same	way	in	Unicode	strings
as	well	as	byte	strings.

This	has	another	important	meaning.	Any	valid	ASCII	text	is	also	valid	Unicode
text.



Other	Encodings
Unicode	is	not	the	only	encoding	available	to	convert	between	raw	byte	data	and	a
readable	textual	representation.	Many	others	have	been	put	forward,	and	some
are	in	common	use.

One	common	encoding	is	formally	known	as	the	ISO-8859	standard,	and
colloquially	called	latin-1.	(For	clarity,	the	remainder	of	this	chapter	will	use
“Latin-1”	to	refer	to	this	rather	than	ISO-8859.)

Like	Unicode,	this	encoding	is	a	superset	of	ASCII,	and	adds	support	for	glyphs
found	in	many	different	languages	other	than	English.	However,	as	its	name
suggests,	it	is	designed	only	to	support	languages	that	rely	on	Latin	glyphs	for
their	letters,	and	is	not	suitable	for	rendering	languages	that	use	other	alphabets
(such	as	Greek,	Chinese,	Japanese,	Russian,	or	Korean,	among	others).

It	would	not	actually	be	possible	to	render	the	previous	Greek	string	using	the
latin-1	codec,	as	the	following	Python	3	example	demonstrates:

>>>	text_str	=	'Γεια	σας,	τον	κόσμο'

>>>	text_str.encode('latin-1')

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

UnicodeEncodeError:	'latin-1'	codec	can't	encode	characters	in	position	0-

					3:	ordinal	not	in	range(256)

Encodings	Are	Not	Cross-Compatible
It	is	important	to	recognize	that	while	many	encodings	are	structured	as	supersets
of	ASCII,	they	are	often	not	compatible	with	one	another.	Outside	of	ASCII,	there
is	little	or	no	overlap	between	the	latin-1	and	utf-8	codecs.

Consider	the	difference	in	byte	strings	encoded	using	each	codec.

>>>	text_str	=	'El	zorro	marrón	rápido	saltó	por	encima	'	+	\

...												'de	los	perros	vagos.'

>>>	text_str.encode('utf-8')

b'El	zorro	marr\xc3\xb3n	r\xc3\xa1pido	salt\xc3\xb3	por	encima	de	los

					perros	vagos.'

>>>	text_str.encode('latin-1')

b'El	zorro	marr\xf3n	r\xe1pido	salt\xf3	por	encima	de	los	perros	vagos.'

Because	of	this,	a	string	encoded	using	one	codec	is	unable	to	be	decoded	using
the	other	codec.	If	you	try	to	take	a	byte	string	representing	text	encoded	using
latin-1	and	decode	it	as	utf-8,	the	Unicode	codec	will	realize	that	it	is
encountering	an	invalid	character	sequence	and	fail.

>>>	text_str.encode('latin-1').decode('utf-8')

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

UnicodeDecodeError:	'utf-8'	codec	can't	decode	byte	0xf3	in	position	13:

					invalid	continuation	byte



Worse,	if	you	try	to	take	a	byte	string	representing	text	encoded	with	utf-8	and
decode	it	as	latin-1,	the	(more	permissive)	codec	will	successfully	return	a	text
string,	but	with	garbled	text.

>>>	text_str.encode('utf-8').decode('latin-1')

'El	zorro	marrÃ³n	rÃ¡pido	saltÃ³	por	encima	de	los	perros	vagos.'

It	is	impossible	to	infer	based	on	the	content	of	a	byte	string	what	encoding	is	in
use.	However,	many	common	document	formats	and	data-transfer	protocols
provide	a	mechanism	to	declare	what	encoding	is	in	use.	On	the	other	hand,	it	is
also	possible	that	a	document	will	incorrectly	specify	its	character	encoding.



Reading	Files
Files	always	store	bytes.	Therefore,	to	use	textual	data	read	in	from	files,	you	must
decode	it	into	a	text	string.

Python	3
In	Python	3,	files	are	ordinarily	decoded	automatically	for	you.	Consider	the
following	file	with	Unicode	text,	encoded	using	UTF-8:

Hello,	world.

Γεια	σας,	τον	κόσμο.

Opening	and	reading	this	file	in	Python	3	gives	you	a	text	string	(not	a	byte	string).

>>>	with	open('unicode.txt',	'r')	as	f:

...			text_str	=	f.read()

...

>>>	type(text_str)

<class	'str'>

This	code	example	is	making	a	few	critical	assumptions	that	are	important	to
understand.

The	biggest	assumption	being	made	is	how	to	decode	the	file.	Text	files	do	not
declare	how	they	are	encoded.	There	is	no	way	for	the	interpreter	to	know	whether
it	is	getting	UTF-8	text,	Latin-1	text,	or	something	else	entirely.

Python	3	decides	which	encoding	should	be	used	based	on	what	kind	of	system	it
is	running	on.	A	function	is	available	to	expose	this:
locale.getpreferredencoding().	On	Mac	OS	X	and	on	most	Linux	systems,	the
preferred	encoding	is	UTF-8.

>>>	import	locale

>>>	locale.getpreferredencoding()

'UTF-8'

However,	most	Windows	systems	use	a	different	encoding	called	Windows-1252
or	CP-1252	to	encode	text	files,	and	running	the	same	code	in	Python	3	on
Windows	reflects	this.

>>>	import	locale

>>>	locale.getpreferredencoding()

'cp1252'

It	is	important	to	note	explicitly	that	the	preferred	encoding	that
locale.getpreferredencoding()	provides	is	based	on	how	the	underlying	system
operates.	It	is	reflective,	not	prescriptive.	A	text	file	with	special	characters	saved
on	almost	any	system	(using	that	system's	default	tools)	and	then	opened	using
open	in	Python	3	will	probably	be	decoded	correctly.

However,	files	are	not	opened	solely	on	the	same	type	of	system	on	which	they	are



created.	This	is	where	the	assumption	becomes	problematic.

Specifying	Encoding
Python	3	enables	you	to	explicitly	declare	the	encoding	of	a	file	by	providing	an
optional	encoding	keyword	argument	to	open.	This	argument	accepts	a	codec,
specified	as	a	string,	similar	to	encode	and	decode.

Because	the	example	Unicode	file	is	stipulated	as	being	encoded	using	UTF-8,	you
can	explicitly	tell	the	interpreter	to	decode	it	as	such.

>>>	with	open('unicode.txt',	'r',	encoding='utf-8')	as	f:

...			text_str	=	f.read()

...

>>>	type(text_str)

<class	'str'>

Because	the	file	was	encoded	as	UTF-8,	and	the	UTF-8	codec	was	used	to	decode
it,	the	text	string	contains	the	expected	data.

>>>	text_str

'Hello,	world.	\nΓεια	σας,	τον	κόσμο.\n'

Reading	Bytes
Another	implicit	assumption	being	made	(which	logically	precedes	which	codec	to
use	to	decode	the	file)	is	that	the	file	should	be	decoded	at	all.

You	may	want	to	read	in	the	file	as	a	byte	string	instead	of	as	a	text	string.	There
are	two	common	reasons	to	do	this.	The	most	common	reason	is	if	you	are
accepting	non-textual	data	(for	example,	if	you	are	reading	in	an	image).	However,
another	potential	reason	is	for	reading	text	files	with	an	uncertain	encoding.

To	read	in	a	byte	string	instead	of	a	text	string,	add	the	character	b	to	the	second
string	argument	sent	to	open.	For	example,	consider	reading	in	the	same	file
containing	Unicode	as	a	byte	string,	as	shown	here:

>>>	with	open('unicode.txt',	'rb')	as	f:

...			byte_str	=	f.read()

...

>>>	type(byte_str)

<class	'bytes'>

Examining	the	byte_str	variable	shows	the	raw	bytes	in	the	string	for	the	second
line	of	text.

>>>	byte_str

b'Hello,	world.\n\xce\x93\xce\xb5\xce\xb9\xce\xb1	\xcf\x83\xce\xb1\xcf\x82,

					\xcf\x84\xce\xbf\xce\xbd	\xce\xba\xcf\x8c\xcf\x83\xce\xbc\xce\xbf.\n'

This	variable	can	be	decoded	just	as	if	it	were	a	byte	string	provided	from	any
other	source.



>>>	byte_str.decode('utf-8')

'Hello,	world.	\nΓεια	σας,	τον	κόσμο.\n'

This	can	be	a	useful	strategy	for	dealing	with	a	file	whose	encoding	is	uncertain.
The	data	can	be	safely	read	from	the	file	as	bytes,	and	then	the	program	can
attempt	to	determine	programmatically	how	to	decode	it.

Python	2
In	Python	2,	the	read	method	will	always	return	a	byte	string,	regardless	of	how
the	file	was	opened.

>>>	with	open('unicode.txt',	'r')	as	f:

...					byte_str	=	f.read()

...

>>>	type(byte_str)

<type	'str'>

Note	that	the	b	modifier	was	not	used	in	the	second	argument	to	open,	but	a	str
instance	(which	is	a	byte	string	in	Python	2)	was	returned	anyway.

You	can	get	a	text	string	by	using	decode,	just	like	on	a	byte	string	that	comes	from
any	other	source.

>>>	byte_str

'Hello,	world.\n\xce\x93\xce\xb5\xce\xb9\xce\xb1	\xcf\x83\xce\xb1\xcf\x82,

					\xcf\x84\xce\xbf\xce\xbd	\xce\xba\xcf\x8c\xcf\x83\xce\xbc\xce\xbf.\n'

>>>

>>>	byte_str.decode('utf-8')

u'Hello,	world.\n\u0393\u03b5\u03b9\u03b1	\u03c3\u03b1\u03c2,

					\u03c4\u03bf\u03bd	\u03ba\u03cc\u03c3\u03bc\u03bf.\n'

Because	Python	2	always	provides	byte	strings,	the	open	function	does	not	have	an
encoding	keyword	argument,	and	attempting	to	provide	one	will	raise	TypeError.

If	you	are	writing	code	that	is	intended	to	be	run	on	Python	2,	the	best	and	safest
way	to	do	so	is	to	always	open	files	in	binary	mode	(using	b)	and,	if	you	are
expecting	textual	data,	decode	it	yourself.



Reading	Other	Sources
Textual	data	is	read	from	many	different	places,	not	only	from	files.	Modern
programs	receive	direct	user	input,	accept	input	over	protocols	(such	as	HTTP),
read	out	of	databases,	and	transfer	data	using	serialization	formats	such	as
Extensible	Markup	Language	(XML)	or	JavaScript	Object	Notation	(JSON).

Python	provides	many	libraries	and	tools	for	reading	data	of	many	types,	and	from
many	sources.	For	example,	the	json	module	available	in	Python	2.6	and	later	is
able	to	serialize	and	deserialize	JSON	data.	Furthermore,	numerous	third-party
packages	are	available	that	read	data	from	other	types	or	sources.	For	example,
the	pyyaml	library	reads	YAML	files,	and	the	psycopg2	library	reads	and	writes	data
from	PostgreSQL	databases.

Most	(but	not	all)	of	these	libraries	return	text	strings.	However,	it	is	your
responsibility	to	familiarize	yourself	with	the	libraries	you	use	and	to	know
whether	you	are	getting	text	strings	or	byte	strings.	Also,	some	libraries	may
behave	differently	on	different	versions	of	Python,	returning	byte	strings	on
Python	2	and	text	strings	on	Python	3.	It	is	very	important	to	make	sure	you	keep
them	straight!



Specifying	Python	File	Encodings
Many	document	formats	do	provide	a	means	to	declare	what	codec	is	being	used
to	encode	text.	For	example,	an	XML	file	may	begin	like	this:

<?xml	version="1.0"	encoding="UTF-8"?>

This	is	a	common	way	to	begin	an	XML	file.	Pay	attention	to	the	encoding
attribute.	This	declares	that	textual	data	is	encoded	using	UTF-8.	Because	the
XML	file	declares	that	this	is	the	encoding	it	uses,	programs	that	read	XML	will
use	UTF-8	to	decode	any	text	it	finds	from	bytes	to	text.

Sometimes	it	is	necessary	for	Python	source	files	to	declare	an	encoding.	For
example,	suppose	a	Python	source	file	includes	a	string	literal	containing	Unicode
characters.	On	Python	2,	the	interpreter	assumes	that	Python	source	files	are
encoded	using	ASCII,	and	this	will	actually	fail.

Consider	the	following	Python	module	saved	as	unicode.py:

text_str	=	u'Γεια	σας,	τον	κόσμο.'

print(text_str)

Running	this	module	in	Python	3.3	or	greater	(because	Python	3.0-3.2	lack	the	u
prefix)	works	without	any	issues.

$	python3.4	unicode.py

Γεια	σας,	τον	κόσμο.

However,	running	the	same	module	in	Python	2	will	fail	with	a	syntax	error	on	the
first	line,	because	the	Python	2	interpreter	wants	ASCII.

$	python2.7	unicode.py

		File	"unicode.py",	line	1

SyntaxError:	Non-ASCII	character	'\xce'	in	file	unicode.py	on	line	1,	but

					no	encoding	declared;	see	http://www.python.org/peps/pep-0263.html

					for	details

As	the	error	message	suggests,	Python	modules	actually	can	declare	an	encoding,
similar	to	how	an	XML	file	might	do	so.	By	default,	Python	2	expects	files	to	be
encoded	as	ASCII,	and	Python	3	expects	files	to	be	encoded	as	UTF-8.

To	override	this,	Python	enables	you	to	include	a	comment	at	the	top	of	a	module,
formatted	in	a	particular	way.	The	interpreter	will	read	this	comment	and	use	it	as
an	encoding	declaration.

The	format	for	specifying	the	encoding	for	a	Python	file	is	as	follows:

#	-*-	coding:	utf-8	-*-

You	can	use	any	codec	that	can	be	passed	to	encode	and	decode	here.	So,	values
such	as	ascii,	latin-1,	and	cf-1252	are	all	acceptable	(assuming,	of	course,	that
the	file	is	encoded	that	way).



Consider	the	same	module	with	a	coding	declaration:

#	-*-	coding:	utf-8	-*-

text_str	=	u'Γεια	σας,	τον	κόσμο.'

print(text_str)

If	you	run	this	modified	file	under	Python	2,	it	will	now	succeed	instead	of	raising
a	syntax	error.

$	python2.7	unicode.py

Γεια	σας,	τον	κόσμο.

Note	that,	if	you	choose	to	manually	specify	an	encoding	for	a	Python	module,	it	is
your	responsibility	to	ensure	that	the	encoding	you	specify	is	actually	correct.	Like
any	other	document	format,	Python	modules	are	not	exempt	from	the	possibility
of	declaring	one	encoding	while	actually	using	another.

If	you	accidentally	specify	the	wrong	encoding,	your	strings	will	come	out	as
garbage.	Consider	what	happens	if	the	same	file	is	declared	to	be	encoded	using
latin-1	(when	it	is	actually	using	utf-8	characters).

#	-*-	coding:	latin-1	-*-

text_str	=	u'Γεια	σας,	τον	κόσμο.'

print(text_str)

Running	this	in	either	Python	2	or	Python	3.3+	will	produce	the	same	result,
which	is	complete	garbage.

$	python3.4	unicode.py

Î"ÎµÎ¹Î±	ÏƒÎ±Ï‚,	Ï„Î¿Î½	ÎºÏŒÏƒÎ¼Î¿.

Because	the	latin-1	codec	can	accept	almost	any	byte	stream,	it	does	not	actually
recognize	that	this	is	not	latin-1	encoded	text,	and	cheerfully	returns	bad	data.
Some	codecs	(such	as	utf-8)	are	more	strict,	in	which	case	you	would	get	an
exception	instead.	The	latter	situation	is	preferable,	but	neither	is	what	you	want.
It	is	critical	to	declare	encodings	correctly.

Note	also	that	this	is	dependent	on	your	terminal's	capability	to	display	these
characters.	If	you	have	a	terminal	that	does	not	support	Unicode,	this	will	likely
raise	an	exception.



Strict	Codecs
One	key	advantage	of	utf-8	as	a	codec	is	that,	in	addition	to	supporting	the	entire
range	of	Unicode	characters,	it	also	is	a	“strict”	codec.	This	means	that	it	does	not
just	take	any	byte	stream	and	decode	it.	It	can	usually	detect	that	non-Unicode
byte	streams	are	invalid	and	fail.

This	can	lead	to	helpful	patterns	when	you're	dealing	with	a	byte	stream	where	the
encoding	is	not	known	(because	there	is	no	way	to	infer	the	encoding	with
certainty).	For	example,	if	you	think	that	a	byte	stream	might	be	utf-8	and	might
be	latin-1,	you	can	try	both,	as	shown	here:

try:

				text_str	=	byte_str.decode('utf-8')

except	UnicodeDecodeError:

				text_str	=	byte_str.decode('latin-1')

Of	course,	this	is	not	a	panacea.	What	happens,	for	example,	if	you	get	a	byte
string	encoded	as	something	entirely	different?	Because	latin-1	is	a	permissive
codec,	it	will	decode	it	incorrectly.

Suppressing	Errors
Sometimes	when	you	are	decoding	or	encoding	text	using	strict	codecs	(such	as
utf-8	or	ascii),	you	do	not	want	a	strict	exception	when	the	codec	encounters	text
that	it	does	not	know	how	to	handle.

The	encode	and	decode	methods	provide	a	mechanism	to	ask	a	codec	to	behave
differently	when	it	encounters	a	set	of	characters	that	it	cannot	handle.	Both
methods	take	an	optional	second	argument,	errors,	specified	as	a	string.	The
default	value	is	strict,	which	is	what	raises	exception	classes	such	as
UnicodeDecodeError.	The	two	other	common	error	handlers	are	ignore	and
replace.

The	ignore	error	handler	simply	skips	over	any	bytes	that	the	codec	does	not	know
how	to	decode.	Consider	what	happens	if	you	attempt	to	decode	your	Greek	text	as
ASCII,	as	shown	here:

>>>	text_str	=	'Γεια	σας,	τον	κόσμο.'

>>>	byte_str	=	text_str.encode('utf-8')

>>>	byte_str.decode('ascii',	'ignore')

'	,		.'

The	ASCII	code	does	not	know	how	to	handle	any	of	the	Greek	characters,	but	it
does	know	how	to	handle	the	spaces	and	punctuation.	Therefore,	it	preserves
those,	but	strips	all	of	the	foreign	characters.

The	replace	error	handler	is	similar,	but	instead	of	skipping	over	unrecognized
characters,	it	replaces	them	with	a	placeholder	character.	The	exact	placeholder
character	varies	slightly	based	on	the	situation	(whether	encoding	or	decoding,



and	what	codec	is	in	use),	but	is	usually	either	a	question	mark	(?)	or	a	special
Unicode	question	mark	diamond	character	( ).

Here	is	the	result	if	you	try	to	decode	your	Greek	text	using	the	ascii	codec	and
the	replace	error	handler:

>>>	text_str	=	'Γεια	σας,	τον	κόσμο.'

>>>	byte_str	=	text_str.encode('utf-8')

>>>	byte_str.decode('ascii',	'replace')

' 	 ,	 	 .'

And	here	is	the	result	if	you	try	to	encode	your	Greek	text	to	a	byte	string	using	the
ascii	codec	and	the	replace	error	handler:

>>>	text_str	=	'Γεια	σας,	τον	κόσμο.'

>>>	text_str.encode('ascii',	'replace')

b'????	???,	???	?????.'

You	may	notice	that	when	using	the	replace	error	handler,	the	number	of
replacement	characters	may	not	be	1:1	with	the	number	of	characters	in	the	actual
text	string.	When	decoding	a	byte	string	using	the	ascii	codec,	the	codec	has	no
way	of	knowing	how	many	bytes	correspond	to	each	character,	so	it	ends	up
showing	more	question	marks	than	there	are	actual	characters	in	the	text	string.

Registering	Error	Handlers
It	is	possible	to	register	additional	error	handlers	if	the	built-in	ones	are
insufficient.	The	codecs	module	(where	the	default	error	handlers	are	defined)
exposes	a	function	for	registering	additional	error	handlers,	named
register_error.	It	takes	two	arguments:	the	name	for	the	error	handler	and	the
actual	function	that	does	the	error	handling.

That	function	receives	the	exception	that	would	otherwise	be	raised,	and	is
responsible	for	re-raising	it,	raising	another	exception,	or	returning	an
appropriate	string	value	to	be	substituted	into	the	resulting	string.

The	exception	instance	contains	start	and	end	attributes	that	correspond	to	the
substring	that	the	codec	is	unable	to	encode	or	decode.	It	also	has	a	reason
attribute	with	a	human-readable	explanation	of	the	reason	why	it	is	unable	to
encode	or	decode	the	characters	in	question,	and	an	object	attribute	with	the
original	string.

xIf	returning	a	replacement	value,	the	error	function	must	return	a	tuple	with	two
elements.	The	first	element	is	the	replacement	character	or	characters,	and	the
second	is	the	position	in	the	original	string	where	encoding	or	decoding	should
continue.	Usually,	this	corresponds	to	the	end	attribute	on	the	exception	instance.
If	you	do	this,	be	careful	with	the	start	position	you	return.	It	is	very	easy	to	get
into	an	infinite	loop	scenario.

The	following	example	simply	replaces	characters	with	a	different	substitution



character:

import	codecs

def	replace_with_underscore(err):

				length	=	err.end	-	err.start

				return	('_'	*	length,	err.end)

codecs.register_error('replace_with_underscore',	replace_with_underscore)

This	error	handler	replaces	unknown	characters,	but	using	underscores	rather
than	question	marks.	The	following	is	what	happens	if	you	decode	a	byte	string
with	Unicode	Greek	text	using	the	ascii	codec	and	this	error	handler:

>>>	text_str	=	'Γεια	σας,	τον	κόσμο.'

>>>	byte_str	=	text_str.encode('utf-8')

>>>	byte_str.decode('ascii',	'replace_with_underscore')

'________	______,	_____	__________.'



Summary
Handling	string	data	can	be	surprisingly	frustrating.	It	is	easier	than	you	might
expect	to	create	a	program	that	works	right	up	until	it	encounters	textual	data	that
is	dissimilar	to	what	it	expected.

When	possible,	try	to	have	as	much	of	your	program	as	possible	handle	text
strings.	It	is	a	good	idea	to	decode	byte	strings	as	soon	as	possible	after	you	receive
them.	Similarly,	when	writing	data	out,	endeavor	to	encode	your	text	strings	to
byte	strings	as	late	as	possible.

Sometimes	decoding	is	difficult.	You	may	not	know	how	a	byte	string	is	encoded,
or	you	may	be	told	an	encoding,	but	be	told	wrong.	This	is	challenging,	and	there
is	no	easy	solution.

Remember,	the	Python	interpreter	is	your	friend	here.	If	you	are	dealing	with
problematic	data,	and	you	do	not	know	the	encoding,	you	may	be	able	to
interactively	decode	a	sample	of	it	using	different	codecs	until	you	find	something
that	looks	reasonable.	Of	course,	this	manual	approach	assumes	that	the	data	you
are	coding	for	will	always	be	similar	to	the	sample	data	you	are	using.

The	key	thing	to	remember	when	handling	string	data	is	to	ensure	that	you	always
know	what	kind	of	string	you	are	dealing	with.	The	worst	and	most	frustrating
problems	crop	up	when	you	expect	a	text	string	and	receive	a	byte	string,	or	vice
versa.	Be	sure	to	keep	them	straight.

Chapter	9	explores	regular	expressions,	which	are	a	mechanism	for	searching
strings	for	data	that	matches	a	given	pattern.





Chapter	9
Regular	Expressions
Regular	expressions	are	a	tool	for	matching	text	by	looking	for	a	pattern	(rather
than	looking	for	a	text	string)	in	an	easy	and	straightforward	manner.	For
example,	you	could	check	for	the	presence	of	an	exact	text	string	within	another
text	string	simply	by	using	the	Python	in	keyword,	as	shown	here:

>>>	haystack	=	'My	phone	number	is	213-867-5309.'

>>>	'213-867-5309'	in	haystack

True

Sometimes,	however,	you	do	not	have	the	exact	text	you	want	to	match.	For
example,	what	if	you	want	to	know	whether	any	valid	phone	number	is	present	in
a	string?	To	take	that	one	step	further,	what	if	you	want	to	know	whether	any	valid
phone	number	is	present	in	the	string,	and	also	want	to	know	what	that	phone
number	is?

This	is	where	regular	expressions	are	useful.	Their	purpose	is	to	specify	a	pattern
of	text	to	identify	within	a	bigger	text	string.	Regular	expressions	can	identify	the
presence	or	absence	of	text	matching	the	pattern,	and	also	split	a	pattern	into	one
or	more	subpatterns,	delivering	the	specific	text	within	each.

This	chapter	explores	regular	expressions	(or	regexes,	for	short).	First,	you	learn
how	to	perform	regular	expression	searches	in	Python	using	the	re	module.	You
then	explore	various	regular	expressions,	beginning	with	the	simple	and	working
toward	the	more	complex.	Finally,	you	learn	about	regular	expression
substitution.



Why	Use	Regular	Expressions?
You	use	regular	expressions	for	two	common	reasons.

The	first	reason	is	data	mining—that	is,	when	you	want	to	find	a	pile	of	text
(matching	a	given	pattern)	in	a	bigger	pile	of	text.	It	is	very	common	to	need	to
identify	text	that	looks	like	a	given	type	of	information	(for	example,	an	e-mail
address,	a	URL,	a	phone	number,	or	the	like).

As	humans,	we	identify	the	type	of	information	being	presented	based	on	patterns
all	the	time.	A	television	commercial	that	shows	alphanumeric	characters	ending
in	.com	or	.org	is	intuitively	understood	to	be	presenting	a	web	address.	Add	an	@
character,	and	it	is	intuitively	understood	to	be	an	e-mail	address	instead.

The	second	reason	is	validation.	You	can	use	regular	expressions	to	establish	that
you	got	the	data	that	you	expected.	It	is	generally	wise	to	consider	“outside”	data
to	be	untrustworthy,	especially	data	from	users.	Regular	expressions	can	help
determine	whether	or	not	untested	data	is	valid.

The	corollary	to	this	is	that	regular	expressions	are	valuable	tools	for	coercing	data
into	a	consistent	format.	For	example,	a	phone	number	can	be	written	in	multiple
valid	ways,	and	if	you	are	asking	for	user	input,	you	likely	want	to	accept	all	of
them.	However,	you	really	only	want	to	store	the	actual	digits	of	the	phone
number,	which	can	then	be	consistently	formatted	on	display.	In	addition	to	being
useful	for	validation,	regular	expressions	are	useful	for	this	kind	of	data	coercion.



Regular	Expressions	in	Python
The	Python	standard	library	provides	the	re	module	for	using	regular	expressions.

The	primary	function	that	the	re	module	provides	is	search.	Its	purpose	is	to	take
a	regular	expression	(the	needle)	and	a	string	(the	haystack),	and	return	the	first
match	found.	If	no	match	is	found	at	all,	re.search	returns	None.

Consider	re.search	in	action	with	the	simplest	regular	expression	possible,	which
is	a	simple	alphanumeric	string.

>>>	import	re

>>>	re.search(r'fox',	'The	quick	brown	fox	jumped…')

<_sre.SRE_Match	object;	span=(16,	19),	match='fox'>

The	regular	expression	parser's	job	here	is	quite	simple.	It	finds	the	word	fox
within	the	string,	and	returns	a	match	object.





Note

The	re	module	also	provides	a	function	called	match	that	appears	to	be	very
similar	to	search.	It	has	one	important	difference:	it	only	searches	for	a
match	that	starts	at	the	beginning	of	the	string.	It	is	easy	(and	common)	to
use	re.match	by	mistake	when	you	actually	want	to	find	something
anywhere	in	a	string.	You	are	usually	best	off	always	using	re.search	and
using	the	ˆ	anchor	(discussed	later	in	this	chapter)	if	you	need	it.

Raw	Strings
Observant	readers	may	note	that	the	regular	expression	was	specified	slightly
differently:	r'fox'.	The	r	character	that	precedes	the	string	stands	for	“raw”	(no,	it
does	not	stand	for	“regex”).

The	difference	between	a	raw	string	and	a	regular	string	is	simply	that	raw	strings
do	not	interpret	the	\	character	as	an	escape	character.	This	means	that,	for
example,	it	is	not	possible	to	escape	a	quote	character	to	avoid	concluding	your
string.

However,	raw	strings	are	particularly	useful	for	regular	expressions	because	the
regular	expression	engine	itself	needs	the	\	character	for	its	own	escaping	at	times.
Therefore,	using	raw	strings	for	regular	expressions	is	very	common	and	very
useful.	In	fact,	it	is	so	common	that	some	syntax-highlighting	engines	will	actually
provide	regular-expression	syntax	highlighting	within	raw	strings.

Match	Objects
Match	objects	have	several	methods	to	tell	you	things	about	the	match.	The	group
method	is	arguably	the	most	important.	It	returns	a	string	with	the	text	of	the
match,	as	shown	here:

>>>	match	=	re.search(r'fox',	'The	quick	brown	fox	jumped…')

>>>	match.group()

'fox'

You	may	be	curious	why	this	method	is	named	group.	This	is	because	regular
expressions	can	be	split	into	multiple	subgroups	that	call	out	just	a	subsection	of
the	match.	You	learn	more	about	this	shortly.

Match	objects	have	several	other	methods.	The	start	method	provides	the	index
in	the	original	string	where	the	match	began,	and	the	end	method	provides	the
index	in	the	original	string	where	the	match	ended.

The	groups	and	groupdict	methods	are	used	to	call	out	subsections	of	the	regular
expression.	You	learn	more	about	these	methods	later,	during	a	discussion	about
regular	expressions	with	backreferences.



Finally,	the	re	attribute	contains	the	regular	expression	used	in	the	match,	the
string	attribute	contains	the	string	used	as	the	haystack,	and	the	pos	attribute	is
set	to	the	position	in	the	string	where	the	search	began.

Finding	More	Than	One	Match
A	limitation	of	re.search	is	that	it	only	returns	at	most	one	match,	in	the	form	of	a
match	object	(discussed	in	more	detail	shortly).	If	multiple	matches	exist	within
the	string,	re.search	will	only	return	the	first	one.	Often,	this	is	exactly	what	you
want.	However,	sometimes	you	want	multiple	matches	if	multiple	matches	exist.

The	re	module	provides	two	functions	for	this	purpose:	findall	and	finditer.
Both	of	these	methods	return	all	non-overlapping	matches,	including	empty
matches.	The	re.findall	method	returns	a	list,	and	re.finditer	returns	a
generator.

However,	there	is	a	key	difference	here.	These	methods	do	not	actually	return	a
match	object.	Instead,	they	return	simply	the	match	itself,	either	as	a	string	or	a
tuple,	depending	on	the	content	of	the	regular	expression.

Consider	an	example	of	findall:

>>>	import	re

>>>	re.findall(r'o',	'The	quick	brown	fox	jumped…')

['o',	'o']

In	this	case,	it	returns	a	list	with	two	o	characters,	because	the	o	character	appears
twice	in	the	string.



Basic	Regular	Expressions
The	simplest	regular	expression	is	one	that	contains	plain	alphanumeric
characters—and	nothing	else.	This	is	actually	easy	to	overlook.	Many	regular
expressions	use	direct	text	matching.

The	string	Python	is	a	valid	regular	expression.	It	matches	that	word,	and	nothing
else.	Regular	expressions,	by	default,	are	also	case-sensitive,	so	it	will	not	match
python	or	PYTHON.

>>>	re.search(r'Python',	'python')

>>>	re.search(r'Python',	'PYTHON')

It	will,	however,	match	the	word	in	a	larger	block	of	text.	It	will	match	the	word	in
Python	3,	or	This	is	Python	code,	or	the	like,	as	shown	here:

>>>	re.search(r'Python',	'Python	3')

<_sre.SRE_Match	object;	span=(0,	6),	match='Python'>

>>>	re.search(r'Python',	'This	is	Python	code.')

<_sre.SRE_Match	object;	span=(8,	14),	match='Python'>

Of	course,	there	is	essentially	no	value	in	using	regular	expressions	just	to	match
plaintext	regular	expressions.	After	all,	it	would	be	trivially	easy	to	use	the	in
operator	to	test	for	the	presence	of	a	string	within	another	string,	and	str.index	is
more	than	up	to	the	task	of	telling	you	where	in	a	larger	string	a	substring	occurs.

The	power	of	regular	expressions	lies	in	their	capability	to	specify	patterns	of	text
to	be	matched.

Character	Classes
Character	classes	enable	you	to	specify	that	a	single	character	should	match	one	of
a	set	of	possible	characters,	rather	than	just	a	single	character.	You	can	denote	a
character	class	by	using	square	brackets	and	listing	the	possible	characters	within
the	brackets.

For	example,	consider	a	regular	expression	that	should	match	either	Python	or
python:	[Pp]ython.

What	is	happening	here?	The	first	token	in	the	regular	expression	is	actually	a
character	class	with	two	options:	P	and	p.	Either	character	will	match,	but	nothing
else.	The	remaining	five	characters	are	just	literal	characters.

What	does	the	following	regular	expression	match?

>>>	re.search(r'[Pp]ython',	'Python	3')

<_sre.SRE_Match	object;	span=(0,	6),	match='Python'>

>>>	re.search(r'[Pp]ython',	'python	3')

<_sre.SRE_Match	object;	span=(0,	6),	match='python'>

This	regular	expression	matches	the	word	Python	in	the	string	Python	3	and	the
word	python	in	the	string	python	3.	It	does	not	make	the	entire	word	case-



insensitive,	though.	It	does	not	match	the	word	in	all	caps,	for	example.

>>>	re.search(r'[Pp]ython',	'PYTHON	3')

>>>

Another	use	for	this	kind	of	character	class	is	for	words	with	multiple	spellings.
The	regular	expression	gr[ae]y	will	match	either	gray	or	grey,	allowing	you	to
quickly	identify	and	extract	either	spelling.

>>>	re.search(r'gr[ae]y',	'gray')

<_sre.SRE_Match	object;	span=(0,	4),	match='gray'>

It	is	also	worth	noting	that	character	classes	like	this	match	one	and	exactly	one
character.

>>>	re.search(r'gr[ae]y',	'graey')

>>>

Here,	the	regular	expression	engine	successfully	matches	the	literal	g,	then	the
literal	r.	Next,	the	engine	is	given	the	character	class	[ae],	and	matches	it	against
the	a.	Now,	the	character	class	has	been	matched,	and	the	engine	moves	on.	The
next	character	in	the	regular	expression	is	a	y,	but	the	next	character	in	the	string
is	an	e.	This	is	not	a	match,	so	the	regular	expression	parser	moves	on,	starting
over	and	looking	for	a	starting	g.	When	it	gets	to	the	end	of	the	string	and	fails	to
find	one,	it	returns	None.

Ranges
Some	quite	common	character	classes	are	very	large.	For	example,	consider	trying
to	match	any	digit.	It	would	be	quite	unwieldy	to	provide	[0123456789]	each	time.
It	would	be	even	more	unwieldy	to	provide	every	letter,	both	capitalized	and
lowercase,	each	time.

To	accommodate	for	this,	the	regular	expression	engine	uses	the	hyphen	character
(-)	within	character	classes	to	denote	ranges.	A	character	class	to	match	any	digit
could	be	written	[0-9]	instead.	It	is	also	possible	to	use	more	than	one	range
within	a	character	class,	simply	by	providing	the	ranges	next	to	one	another.	The
[a-z]	character	class	matches	only	lowercase	letters,	and	the	[A-Z]	character	class
matches	only	capital	letters.	These	can	be	combined—[A-Za-z]	would	match	both
lowercase	and	capital	letters.

>>>	re.search(r'[a-zA-Z]',	'x')

<_sre.SRE_Match	object;	span=(0,	1),	match='x'>

>>>	re.search(r'[a-zA-Z]',	'B')

<_sre.SRE_Match	object;	span=(0,	1),	match='B'>

Of	course,	you	may	also	want	to	match	the	literal	hyphen	character.	This	is
surprisingly	common.	Many	reasons	exist	to	match	(for	example)	alphanumeric
characters,	hyphen,	and	underscore.	What	happens	when	you	want	to	do	this?

You	can	escape	the	hyphen:	[A-Za-z0-9\-_].	This	will	tell	the	regular	expression



engine	that	you	want	a	literal	hyphen.	However,	escaping	generally	makes	things
more	difficult	to	read.	You	can	also	provide	the	hyphen	as	either	the	first	or	last
character	in	the	character	class,	as	in	[A-Za-z0-9_-].	In	this	case,	the	engine	will
interpret	the	character	as	a	literal	hyphen.

Negation
The	character	classes	shown	thus	far	are	all	defined	by	what	characters	may	occur.
However,	you	may	want	to	define	a	character	class	by	what	characters	may	not
occur.

You	can	invert	a	character	class	(meaning	that	it	will	match	any	character	other
than	those	specified)	by	beginning	the	character	class	with	a	ˆ	character.

>>>	re.search(r'[ˆa-z]',	'4')

<_sre.SRE_Match	object;	span=(0,	1),	match='4'>

>>>	re.search(r'[ˆa-z]',	'#')

<_sre.SRE_Match	object;	span=(0,	1),	match='#'>

>>>	re.search(r'[ˆa-z]',	'X')

<_sre.SRE_Match	object;	span=(0,	1),	match='X'>

>>>	re.search(r'[ˆa-z]',	'd')

>>>

In	this	scenario,	the	regular	expression	parser	looks	for	literally	any	character
other	than	a	through	z.	Therefore,	it	matches	against	numbers,	capital	letters,	and
symbols,	but	not	lowercase	letters.

It	is	important	to	note	specifically	what	the	regular	expression	is	looking	for	here.
It	is	looking	for	the	presence	of	a	character	that	does	not	match	any	of	the
characters	in	the	character	class.	It	is	not	looking	for	(and	will	not	match)	the
absence	of	a	character.

Consider	the	regular	expression	n[ˆe].	This	means	the	character	n	followed	by	any
character	that	is	not	an	e.

>>>	re.search(r'n[ˆe]',	'final')

<_sre.SRE_Match	object;	span=(2,	4),	match='na'>

In	this	case,	it	matches	against	the	word	final,	and	the	match	is	na.	The	a
character	is	part	of	the	match,	because	it	is	a	single	character	that	is	not	an	e.

The	regular	expression	will	fail	to	match	if	it	follows	an	n	followed	by	an	e,	as	you
expect.

>>>	re.search(r'n[ˆe]',	'jasmine')

>>>

Here,	the	regular	expression	engine	gets	to	the	only	n	in	the	string	but	cannot
match	the	next	character,	because	it	is	an	e,	and	thus	there	is	no	match.

However,	the	regular	expression	also	will	not	match	against	an	n	at	the	end	of	the
string.



>>>	re.search(r'n[ˆe]',	'Python')

>>>

The	regular	expression	finds	the	n	in	the	word	Python.	However,	that	is	as	far	as	it
gets.	There	is	no	character	remaining	in	the	string	to	match	against	[ˆe],	and,
therefore,	the	match	fails.

Shortcuts
Several	common	character	classes	also	have	predefined	shortcuts	within	the
regular	expression	engine.	If	you	want	to	define	“words,”	your	instinct	may	be	to
use	[A-Za-z].	However,	many	words	use	characters	that	fall	outside	of	this	range.

The	regular	expression	engine	provides	a	shortcut,	\w,	which	matches	“any	word
character.”	How	“any	word	character”	is	defined	varies	somewhat	based	on	your
environment.	In	Python	3,	it	will	essentially	match	nearly	any	word	character	in
any	language.	In	Python	2,	it	will	only	match	the	English	word	characters.	In	both
cases,	it	also	matches	digits,	_,	and	-.

The	\d	shortcut	matches	digit	characters.	In	Python	3,	it	matches	digit	characters
in	other	languages.	In	Python	2,	it	matches	only	[0-9].

The	\s	shortcut	matches	whitespace	characters,	such	as	space,	tab,	newline,	and
so	on.	The	exact	list	of	whitespace	characters	is	greater	in	Python	3	than	in	Python
2.

Finally,	the	\b	shortcut	matches	a	zero-length	substring.	However,	it	only	matches
it	at	the	beginning	or	end	of	a	word.	This	is	called	the	word	boundary	character
shortcut.

>>>	re.search(r'\bcorn\b',	'corn')

<_sre.SRE_Match	object;	span=(0,	4),	match='corn'>

>>>	re.search(r'\bcorn\b',	'corner')

>>>

The	regular	expression	engine	matches	the	word	corn	here	when	it	is	by	itself,	but
fails	to	match	the	word	corner,	because	the	trailing	\b	does	not	match	(because	the
next	character	is	e,	which	is	a	word	character).

It	is	worth	noting	that	these	shortcuts	work	both	within	character	classes	and
outside	of	them.	For	example,	the	regular	expression	\w	will	match	any	word
character.

>>>	re.search(r'\w',	'Python	3')

<_sre.SRE_Match	object;	span=(0,	1),	match='P'>

Because	re.search	only	returns	the	first	match,	it	matches	the	P	character	and
then	completes.	Consider	the	result	of	re.findall	using	the	same	regular
expression	and	string.

>>>	re.findall(r'\w',	'Python	3')

['P',	'y',	't',	'h',	'o',	'n',	'3']



Note	that	the	regular	expression	matches	every	character	in	the	string	except	the
space.	The	\w	shortcut	does	include	digits	in	the	Python	regular	expression	engine.

The	\w,	\d,	and	\s	shortcuts	also	include	negation	shortcuts:	\W,	\D,	and	\S.	These
shortcuts	match	any	character	other	than	the	characters	in	the	shortcut.	Note
again	that	these	still	require	a	character	to	be	present.	They	do	not	match	an
empty	string.

There	is	also	a	negation	shortcut	for	\b,	but	it	works	slightly	differently.	Whereas
\b	matches	a	zero-length	substring	at	the	beginning	or	end	of	a	word,	\B	matches	a
zero-length	substring	that	is	not	at	the	beginning	or	end	of	a	word.	This	essentially
reverses	the	corn	and	corner	example	from	earlier.

>>>	re.search(r'corn\B',	'corner')

<_sre.SRE_Match	object;	span=(0,	4),	match='corn'>

>>>	re.search(r'corn\B',	'corn')

>>>

Beginning	and	End	of	String
Two	special	characters	designate	the	beginning	of	a	string	and	end	of	a	string.

The	ˆ	character	designates	the	beginning	of	a	string,	as	shown	here:

>>>	re.search(r'ˆPython',	'This	code	is	in	Python.')

>>>	re.search(r'ˆPython',	'Python	3')

<_sre.SRE_Match	object;	span=(0,	6),	match='Python'>

Notice	that	the	first	command	fails	to	produce	a	match.	This	is	because	the	string
does	not	start	with	the	word	Python,	and	the	ˆ	character	requires	that	the	regular
expression	match	against	the	beginning	of	the	string.

Similarly,	the	$	character	designates	the	end	of	a	string,	as	shown	here:

>>>	re.search(r'fox$',	'The	quick	brown	fox	jumped	over	the	lazy	dogs.')

>>>	re.search(r'fox$',	'The	quick	brown	fox')

<_sre.SRE_Match	object;	span=(16,	19),	match='fox'>

Again,	notice	that	the	first	command	fails	to	produce	a	match,	because	although
the	word	fox	appears,	it	is	not	at	the	end	of	the	string,	which	the	$	character
requires.

Any	Character
The	.	character	is	the	final	shortcut	character.	It	stands	in	for	any	single	character.
However,	it	only	serves	this	role	outside	a	bracketed	character	class.

Consider	the	following	simple	regex	using	the	.	character:

>>>	re.search(r'p.th.n',	'python	3')

<_sre.SRE_Match	object;	span=(0,	6),	match='python'>

>>>	re.search(r'p..hon',	'python	3')

<_sre.SRE_Match	object;	span=(0,	6),	match='python'>



In	each	of	these	cases,	the	period	steps	in	for	one	single	character.	In	the	first
example,	the	regular	expression	engine	finds	the	character	.	in	the	regular
expression.	In	the	string,	it	sees	a	y,	and	matches	and	continues	to	the	next
character	(a	t	against	a	t).

In	the	second	case,	the	same	fundamental	thing	is	happening.	Each	period
character	matches	one	and	exactly	one	character.	It	matches	the	y	and	the	t,	and
then	this	consumes	both	of	the	periods,	and	the	regular	expression	engine
continues	to	the	next	character	(this	time,	an	h	against	an	h).

Note	that	there	is	one	character	that	the	.	does	not	match,	which	is	newline	(\n).	It
is	possible	to	make	the	.	character	match	newline,	however,	which	is	discussed
later	in	this	chapter.

Optional	Characters
Thus	far,	all	of	the	regular	expressions	you	have	seen	have	involved	a	1:1
correlation	between	characters	in	the	regular	expression	itself	and	characters	in
the	string	being	searched.

Sometimes,	however,	a	character	may	be	optional.	Consider	again	the	example	of
a	word	with	more	than	one	correct	spelling,	but	this	time,	the	inclusion	of	a	letter
is	what	separates	the	two	spellings,	such	as	“color”	and	“colour,”	or	“honor”	and
“honour.”

You	can	specify	a	character,	character	class,	or	other	atomic	unit	within	a	regular
expression	as	optional	by	using	the	?	character,	which	means	that	the	regular
expression	engine	will	expect	the	token	to	occur	either	zero	times	or	once.

For	example,	you	can	match	the	word	“honor”	with	its	British	spelling	“honour”	by
using	the	regular	expression	honou?r.

>>>	import	re

>>>	re.search(r'honou?r',	'He	served	with	honor	and	distinction.')

<_sre.SRE_Match	object;	span=(15,	20),	match='honor'>

>>>	re.search(r'honou?r',	'He	served	with	honour	and	distinction.')

<_sre.SRE_Match	object;	span=(15,	21),	match='honour'>

In	both	cases,	the	regular	expression	contains	four	literal	characters,	hono.	These
match	the	hono	in	both	honor	and	honour.	The	next	thing	that	the	regular
expression	hits	is	an	optional	u.	In	the	first	case,	the	u	is	absent,	but	this	is	okay
because	the	regular	expression	marks	it	as	optional.	In	the	second	case,	the	u	is
present,	which	is	also	okay.	In	both	cases,	the	regular	expression	then	seeks	a
literal	r	character,	which	it	finds,	therefore	completing	the	match.

Repetition
Thus	far,	you	have	learned	only	about	characters	(or	character	classes)	that	occur
once	and	exactly	once,	or	that	are	entirely	optional	(occurring	zero	times	or	once).
However,	sometimes	you	need	the	same	character	or	character	class	to	repeat.



You	may	expect	a	character	class	to	recur	a	set	number	of	consecutive	times,	such
as	in	a	phone	number.	American	phone	numbers	comprise	the	country	code	1
(often	omitted),	an	area	code,	which	is	three	digits,	then	the	seven-digit	phone
number,	with	the	third	and	fourth	digit	of	the	latter	separated	by	a	hyphen,
period,	or	similar.

You	can	designate	that	a	token	must	repeat	a	given	number	of	times	with	{N},
where	the	N	character	corresponds	to	the	number	of	times	the	token	should	repeat.

The	following	uses	a	regular	expression	to	identify	a	seven-digit,	local	phone
number	(ignore	the	country	code	and	area	code	for	the	moment):	[\d]{3}-[\d]
{4}.

>>>	re.search(r'[\d]{3}-[\d]{4}',	'867-5309	/	Jenny')

<_sre.SRE_Match	object;	span=(0,	8),	match='867-5309'>

In	this	case,	the	regular	expression	engine	starts	by	looking	for	three	consecutive
digits.	It	finds	them	(867),	and	then	moves	on	to	the	literal	hyphen	character.
Because	this	hyphen	character	is	not	within	a	character	class,	it	carries	no	special
meaning	and	simply	matches	the	literal	hyphen.	The	regular	expression	then	finds
the	final	four	consecutive	digits	(5309)	and	returns	the	match.

Repetition	Ranges
Sometimes,	you	may	not	know	exactly	how	many	times	the	token	ought	to	repeat.
Phone	numbers	may	contain	a	static	number	of	digits,	but	lots	of	numeric	data	is
not	standardized	this	way.

For	example,	consider	credit	card	security	codes.	Credit	cards	issued	in	the	United
States	contain	a	special	security	code	on	the	back,	often	called	a	“CVV	code.”	Most
credit	card	brands	use	three-digit	security	codes,	which	you	can	match	with	[\d]
{3}.	However,	American	Express	uses	four-digit	security	codes	([\d]{4}).

What	if	you	want	to	be	able	to	match	both	of	these	cases?	Repetition	ranges	come
in	handy	here.	The	syntax	here	is	{M,N},	where	M	is	the	lower	bound	and	N	is	the
upper	bound.

It	is	worth	noting	here	that	the	bounds	are	inclusive.	If	you	want	to	match	three
digits	or	four	digits,	the	correct	syntax	is	[\d]{3,4}.	You	might	be	tempted	(based
on	using	Python	slices)	to	believe	that	the	upper	bound	is	exclusive	(and	that	you
should	use	{3,5}	instead).	However,	regular	expressions	do	not	work	this	way.

>>>	re.search(r'[\d]{3,4}',	'0421')

<_sre.SRE_Match	object;	span=(0,	4),	match='0421'>

>>>	re.search(r'[\d]{3,4}',	'615')

<_sre.SRE_Match	object;	span=(0,	3),	match='615'>

In	both	cases,	the	regular	expression	engine	finds	a	series	of	digits	that	matches
what	it	expects,	and	returns	a	match.

When	given	the	choice	to	match	three	characters	or	four	characters,	where	either



is	a	valid	match,	how	does	the	regular	expression	engine	decide?	The	answer	is
that,	under	most	circumstances,	the	regular	expression	engine	is	“greedy,”
meaning	that	it	will	match	as	many	characters	as	possible	for	as	long	as	it	can.	In
this	simple	case,	that	means	that	if	there	are	four	digits,	four	digits	will	be
matched.

Occasionally,	this	behavior	is	undesirable.	By	placing	a	?	character	immediately
after	the	repetition	operator,	it	causes	that	repetition	to	be	considered	“lazy,”
meaning	that	the	engine	will	match	as	few	characters	as	possible	to	return	a	valid
match.

>>>	re.search(r'[\d]{3,4}?',	'0421')

<_sre.SRE_Match	object;	span=(0,	3),	match='042'>

The	re-use	of	the	?	character	for	another	purpose	does	not	cause	any	ambiguity	for
the	parser,	because	the	character	comes	after	repetition	syntax,	rather	than	a
token	to	be	matched	against.

Note	that	the	?	in	this	situation	does	not	serve	to	make	the	repeated	segment
optional.	It	simply	means	that,	given	the	opportunity	to	match	three	or	four	digits,
it	will	elect	only	to	match	three.





Note

Note	that	the	?	character	used	to	make	a	token	optional	is	essentially	an
exact	alias	for	{0,1}.

Open-Ended	Ranges
You	also	may	encounter	cases	where	there	is	no	upper	bound	for	the	number	of
times	that	a	token	may	repeat.	For	example,	consider	a	traditional	street	address.
This	usually	starts	with	a	number	(for	the	moment,	hand-wave	the	exceptions	and
assert	that	they	always	do),	but	the	number	could	be	any	arbitrary	length.	There	is
nothing	technically	invalid	about	an	eight-digit	street	number.

In	these	cases,	you	can	leave	off	the	upper	bound,	but	retain	the	,	character	to
designate	that	the	upper	bound	is	∞.	For	example,	{1,}	designates	one	or	more
occurrences	with	no	upper	bound.

>>>	re.search(r'[\d]{1,}',	'1600	Pennsylvania	Ave.')

<_sre.SRE_Match	object;	span=(0,	4),	match='1600'>

This	syntax	also	works	if	you	do	not	want	to	specify	a	lower	bound,	in	which	case,
the	lower	bound	is	assumed	to	be	0.

Shorthand
You	can	use	two	shorthand	characters	in	designating	common	repetition
situations.	You	can	use	the	+	character	in	lieu	of	specifying	{1,}	(one	or	more).
Similarly,	you	can	use	the	*	character	in	lieu	of	specifying	{0,}	(zero	or	more).

Therefore,	the	previous	example	could	be	rewritten	using	+,	as	shown	here:

>>>	re.search(r'[\d]+',	'1600	Pennsylvania	Ave.')

<_sre.SRE_Match	object;	span=(0,	4),	match='1600'>

Using	+	and	*	generally	makes	for	a	regular	expression	that	is	easier	to	read,	and	is
the	preferred	syntax	in	cases	where	they	are	applicable.



Grouping
Regular	expressions	provide	a	mechanism	to	split	the	expression	into	groups.
When	using	groups,	you	are	able	to	select	each	individual	group	within	the	match
in	addition	to	getting	the	entire	match.	You	can	specify	groups	within	a	regular
expression	by	using	parentheses.

The	following	is	an	example	of	a	simple,	local	phone	number.	However,	this	time,
each	set	of	digits	is	a	group.

>>>	match	=	re.search(r'([\d]{3})-([\d]{4})',	'867-5309	/	Jenny')

>>>	match

<_sre.SRE_Match	object;	span=(0,	8),	match='867-5309'>

As	before,	you	can	use	the	group	method	on	the	match	object	to	return	the	entire
match.

>>>	match.group()

'867-5309'

The	re	module's	match	objects	provide	a	method,	groups,	which	returns	a	tuple
corresponding	to	each	individual	group.

>>>	match.groups()

('867',	'5309')

By	breaking	your	regular	expression	into	subgroups	like	this,	you	can	quickly	get
not	just	the	entire	match,	but	specific	bits	of	data	within	the	match.

It	is	also	possible	to	get	just	a	single	group,	by	passing	an	argument	to	the	group
method	corresponding	to	the	group	you	want	back	(note	that	group	numbers	are
1-indexed).

>>>	match.group(2)

'5309'

By	using	groups,	you	can	take	a	phone	number	formatted	in	a	variety	of	different
ways	and	extract	only	the	data	that	matters,	which	is	the	actual	digits	of	a	phone
number.

>>>	re.search(

...					r'(\+?1)?[	.-]?\(?([\d]{3})\)?[	.-]?([\d]{3})[	.-]?([\d]{4})',

...					'(213)	867-5309')

<_sre.SRE_Match	object;	span=(0,	14),	match='(213)	867-5309'>

>>>	re.search(

...					r'(\+?1)?[	.-]?\(?([\d]{3})\)?[	.-]?([\d]{3})[	.-]?([\d]{4})',

...					'213-867-5309')

<_sre.SRE_Match	object;	span=(0,	12),	match='213-867-5309'>

>>>	re.search(

...					r'(\+?1)?[	.-]?\(?([\d]{3})\)?[	.-]?([\d]{3})[	.-]?([\d]{4})',

...					'213.867.5309')



<_sre.SRE_Match	object;	span=(0,	12),	match='213.867.5309'>

>>>	re.search(

...					r'(\+?1)?[	.-]?\(?([\d]{3})\)?[	.-]?([\d]{3})[	.-]?([\d]{4})',

...					'2138675309')

<_sre.SRE_Match	object;	span=(0,	10),	match='2138675309'>

>>>	re.search(

...					r'(\+?1)?[	.-]?\(?([\d]{3})\)?[	.-]?([\d]{3})[	.-]?([\d]{4})',	'+1…					

(213)	867-5309')

<_sre.SRE_Match	object;	span=(0,	17),	match='+1	(213)	867-5309'>

>>>	re.search(

...					r'(\+?1)?[	.-]?\(?([\d]{3})\)?[	.-]?([\d]{3})[	.-]?([\d]{4})',	'1…					

(213)	867-5309')

<_sre.SRE_Match	object;	span=(0,	16),	match='1	(213)	867-5309'>

>>>	re.search(

...					r'(\+?1)?[	.-]?\(?([\d]{3})\)?[	.-]?([\d]{3})[	.-]?([\d]{4})',

...					'1-213-867-5309')

<_sre.SRE_Match	object;	span=(0,	14),	match='1-213-867-5309'>

This	regular	expression	is	a	bit	more	complicated	than	what	you	have	encountered
already.	Consider	each	distinct	part	by	itself,	however,	and	it	is	easier	to	parse.

The	first	segment	is	(\+?1)?[	.-]?.	This	is	first	looking	for	the	United	States
country	code	in	almost	any	format	you	may	encounter	it	(+1	or	1,	and	then
possibly	a	hyphen).

The	second	segment	is	\(?([\d]{3})\)?[	.-]?,	and	it	grabs	the	area	code,	and	the
optional	hyphen	or	whitespace	that	may	follow	it.	The	area	code	may	optionally	be
provided	in	parentheses	(as	is	common	with	U.S.	phone	numbers).

The	remainder	of	the	regular	expression	is	the	final	seven	digits	of	the	phone
number,	and	is	the	same	as	what	you	have	already	seen.

Regardless	of	how	the	phone	number	is	formatted,	the	regular	expression	is
capable	of	matching	it.	And	although	the	full	match	is	still	formatted	based	on	the
original	data	provided,	the	groups	are	consistently	the	same.

>>>	match	=	re.search(

...					r'(\+?1)?[	.-]?\(?([\d]{3})\)?[	.-]?([\d]{3})[	.-]?([\d]{4})',

...					'213-867-5309')

>>>	match.groups()

(None,	'213',	'867',	'5309')

>>>	match	=	re.search(

...					r'(\+?1)?[	.-]?\(?([\d]{3})\)?[	.-]?([\d]{3})[	.-]?([\d]{4})',

...					'+1	213-867-5309')

>>>	match.groups()

('+1',	'213',	'867',	'5309')

The	only	difference	between	the	groups	is	based	on	what	was	provided	for	the
country	code.	If	it	is	omitted,	then	it	is	not	captured	either,	and	None	is	provided	in



its	place.	The	second	through	fourth	groups	consistently	contain	the	three	(intra-
national)	segments	of	the	phone	number.

The	Zero	Group
Up	until	this	point,	the	examples	have	consistently	used	the	group	method	to
return	the	entire	match,	rather	than	just	a	single	group.	In	fact,	it	may	seem	like
very	odd	nomenclature	indeed	to	have	to	call	the	group	method	to	get	back	the
entire	match	in	the	first	place.

Why	does	it	work	this	way?	The	purpose	of	the	group	is	actually	to	return	a	single
group	from	the	match.	It	takes	an	optional	argument,	which	is	the	number	of	the
group	to	return.	If	the	argument	is	omitted	(as	the	examples	had	consistently	been
doing),	it	defaults	to	0.

In	regular	expressions,	the	groups	are	counted	based	on	their	position	in	the
regular	expression,	starting	with	1.

The	0	group	is	special,	and	corresponds	to	the	entire	match.	This	is	why	groups	are
1-indexed.	By	calling	group	with	no	argument,	you	are	asking	for	group	0	and,
therefore,	getting	the	entire	match	back.

Named	Groups
In	addition	to	having	positionally	numbered	groups,	the	Python	regular
expression	engine	also	provides	a	mechanism	for	naming	groups.	This
functionality	was	actually	originally	introduced	by	the	Python	regular	expression
implementation,	although	many	other	languages	have	picked	it	up	at	this	point.

The	syntax	for	a	named	group	is	to	add	?P<group_name>	immediately	after	the
opening	(	character.	You	could	specify	the	local	phone	number	regular	expression
to	use	named	groups	by	rewriting	it	as	(?P<first_three>[\d]{3})-(?P<last_four>
[\d]{4}.

>>>	match	=	re.search(r'(?P<first_three>[\d]{3})-(?P<last_four>[\d]{4})',

...																			'867-5309')

>>>	match

<_sre.SRE_Match	object;	span=(0,	8),	match='867-5309'>

First	of	all,	note	that	named	groups	are	also	still	positional	groups.	You	can	(if	you
choose)	still	look	up	the	groups	this	way:

>>>	match.groups()

('867',	'5309')

>>>	match.group(1)

'867'

Using	named	groups	opens	up	two	more	ways	to	look	up	a	group.	First,	the	name
of	the	group	can	be	passed	as	a	string	to	the	group	method.

>>>	match.group('first_three')



'867'

Additionally,	match	objects	provide	a	groupdict	method.	This	method	is	similar	in
most	ways	to	the	groups	method,	except	that	it	returns	a	dictionary	instead	of	a
tuple,	and	the	dictionary	keys	correspond	to	the	names	of	the	groups.

>>>	match.groupdict()

{'first_three':	'867',	'last_four':	'5309'}

It	is	worth	noting	that	groupdict,	like	groups,	does	not	return	the	entire	match;	it
only	returns	the	subgroups.	Also,	if	you	have	a	mix	of	named	groups	and	unnamed
groups,	the	unnamed	groups	are	not	part	of	the	dictionary	returned	by	groupdict.

>>>	match	=	re.search(r'(?P<first_three>[\d]{3})-([\d]{4})',	'867-5309')

>>>	match.groups()

('867',	'5309')

>>>	match.groupdict()

{'first_three':	'867'}

In	this	case,	only	the	first	group	(named	first_three)	is	a	named	group,	and	the
second	group	is	a	numbered	group	only.	Therefore,	when	groups	is	called,	both
groups	are	returned	in	the	tuple.	However,	when	groupdict	is	called,	only	the
first_three	group	is	included	in	the	result.

Named	groups	are	quite	valuable	for	maintenance	reasons.	You	may	reference	a
group	in	code	later.	If	you	use	primarily	named	groups,	adding	a	new	group	to	the
regular	expression	to	account	for	a	change	does	not	then	require	updating	group
numbers	later	in	code,	because	the	existing	names	stay	the	same.

Referencing	Existing	Groups
The	regular	expression	engine	also	provides	a	mechanism	to	reference	a
previously	matched	group.	Sometimes,	you	may	be	looking	for	a	subsequent
occurrence	of	the	same	submatch.

For	example,	if	you	are	trying	to	parse	a	block	of	XML,	you	may	want	to	very
permissively	look	for	any	valid	opening	tag,	such	as	<([\w_-]+)>.	However,	you
want	to	ensure	that	the	same	closing	tag	exists.

It	is	insufficient	to	simply	repeat	this	pattern	a	second	time.	On	the	one	hand,	it
will	correctly	match	patterns	that	you	want.

>>>	re.search(r'<([\w_-]+)>stuff</([\w_-]+)>',	'<foo>stuff</foo>')

<_sre.SRE_Match	object;	span=(0,	16),	match='<foo>stuff</foo>'>

On	the	other	hand,	it	would	also	match	patterns	that	should	not	actually	match.

>>>	match	=	re.search(r'<([\w_-]+)>stuff</([\w_-]+)>',	'<foo>stuff</bar>')

>>>	match

<_sre.SRE_Match	object;	span=(0,	16),	match='<foo>stuff</bar>'>

>>>	match.group(1)

'foo'



>>>	match.group(2)

'bar'

Here,	the	regular	expression	engine	correctly	sees	<foo>	as	an	opening	XML	tag,
matches	it,	and	assigns	the	text	foo	to	the	subgroup.	It	then	matches	the	literal
characters	stuff,	and	then	goes	to	match	the	closing	XML	tag.

At	this	point,	what	you	intuitively	want	is	for	the	match	to	fail,	because	the	closing
XML	tag	is	</bar>,	which	is	not	the	same	as	the	opening	tag	of	<foo>.

The	regular	expression	engine	does	not	do	that,	however.	It	has	simply	been	told
to	match	the	</	and	>	wrapping	characters,	and	then	word	characters	in	between.
Because	bar	fulfills	this	requirement,	the	engine	matches	it,	assigns	it	to	the
second	subgroup,	and	returns	a	match.

What	you	really	want	at	this	point	is	for	the	regular	expression	engine	to	require
the	same	submatch	as	was	used	in	the	first	group.	This	should	make	a	string	of
<foo>stuff</foo>	match,	but	a	string	of	<foo>stuff</bar>	fail	to	match.

The	regular	expression	engine	provides	a	way	to	do	this	using	backreferences.
Backreferences	refer	to	a	previously	matched	group	within	a	regular	expression,
and	cause	the	regular	expression	parser	to	expect	the	same	match	text	to	occur
again.

You	backreference	numbered	groups	using	\N,	where	N	is	the	group	number.
Therefore,	\1	will	match	the	first	group,	\2	the	second	group,	and	so	on.	This
syntax	is	capable	of	matching	up	to	the	first	99	groups.

Consider	the	following	XML	regular	expression	that	uses	a	backreference:

>>>	match	=	re.search(r'<([\w_-]+)>stuff</\1>',	'<foo>stuff</foo>')

>>>	match

<_sre.SRE_Match	object;	span=(0,	16),	match='<foo>stuff</foo>'>

>>>	match.groups()

('foo',)

Notice	that	there	is	only	one	subgroup	now.	In	the	previous	example,	there	were
two,	both	containing	the	text	foo.	In	this	case,	however,	a	backreference	has
replaced	the	second	group.

A	much	more	important	distinction,	however,	is	what	this	regular	expression	does
not	match.

>>>	re.search(r'<([\w_-]+)>stuff</\1>',	'<foo>stuff</bar>')

>>>

In	this	case,	the	regular	expression	engine	successfully	matches	up	to	the	closing
XML	tag.	However,	because	bar	is	not	the	same	text	as	foo,	the	match	fails.



Warning

You	should	not	actually	use	custom	regular	expressions	to	parse	XML.	Use
lxml	or	a	similar	tool	instead.	For	parsing	HTML,	use	a	package	like
BeautifulSoup.	The	purpose	of	this	example	is	solely	to	explain	how	this	type
of	backreference	works.



Lookahead
Earlier,	you	learned	about	negated	character	classes,	which	enable	you	to	match
any	character	other	than	those	in	the	class.	As	mentioned	before,	this	method
makes	the	character	or	characters	matched	by	the	negated	character	class	be	part
of	the	match,	and	it	will	not	match	the	absence	of	any	character	at	all.

There	is,	however,	a	mechanism	to	accept	or	reject	a	match	based	on	the	presence
or	absence	of	content	after	it,	without	making	the	subsequent	content	part	of	the
match.	This	is	called	lookahead.

The	previous	example	of	a	negated	character	class	was	n[ˆe]—an	n	followed	by	a
character	that	is	not	an	e.	This	matched	na	in	final,	failed	to	match	anything	in
jasmine,	and	failed	to	match	anything	in	Python.

A	similar	regular	expression	that	instead	uses	negative	lookahead	would	employ
the	syntax	n(?!e).

>>>	re.search(r'n(?!e)',	'final')

<_sre.SRE_Match	object;	span=(2,	3),	match='n'>

>>>	re.search(r'n(?!e)',	'jasmine')

>>>	re.search(r'n(?!e)',	'Python')

<_sre.SRE_Match	object;	span=(5,	6),	match='n'>

These	results	are	slightly	different	than	when	a	negated	character	class	was	used.
In	the	first	example,	using	the	word	final,	the	regular	expression	again	matches,
but	the	match	is	different.	While	the	negated	character	class	made	the	a	character
part	of	the	match,	negative	lookahead	does	not,	and	the	match	comes	back	as	just
the	n	character.

The	second	result	is	the	most	similar.	The	n	in	jasmine	matches	the	n	character	in
the	regular	expression.	However,	because	the	n	is	followed	by	an	e,	it	is
disqualified,	and	the	match	fails.

The	final	result	is	the	most	different,	because	this	match	actually	succeeds,	where
it	did	not	with	a	negated	character	class.	The	regular	expression	engine	matches
the	n	in	Python.	It	then	reaches	the	end	of	the	string.	Because	that	n	is	not	followed
by	an	e,	the	match	succeeds	and	is	returned.

It	is	worth	noting	that	while	this	may	look	like	group	syntax,	in	this	case,	a	group
is	not	saved.

>>>	match	=	re.search(r'n(?!e)',	'final')

>>>	match

<_sre.SRE_Match	object;	span=(2,	3),	match='n'>

>>>	match.groups()

()

The	regular	expression	engine	also	supports	a	different	kind	of	lookahead,	called	a
positive	lookahead.	This	requires	that	the	match	be	followed	by	the	character	or
characters	in	question,	but	nonetheless	does	not	make	those	characters	part	of	the



match.

The	syntax	for	positive	lookahead	simply	replaces	the	!	character	with	=.	Consider
this	regular	expression:

>>>	re.search(r'n(?=e)',	'jasmine')

<_sre.SRE_Match	object;	span=(5,	6),	match='n'>

In	this	case,	the	regular	expression	engine	matches	the	n	in	the	word	jasmine.
After	doing	so,	it	verifies	that	the	subsequent	character	is	an	e,	as	the	regular
expression	requires.	Because	it	is,	the	match	is	complete	and	returned.	As	before,
no	group	is	created	by	the	lookahead.

Without	the	e,	the	match	fails,	as	shown	here:

>>>	re.search(r'n(?=e)',	'jasmin')

>>>

In	this	case,	the	regular	expression	engine	again	matches	the	n,	but	disqualifies	the
match	because	it	is	not	followed	by	an	e.



Flags
Sometimes,	you	need	to	slightly	tweak	the	behavior	of	the	regular	expression
engine.	The	regular	expression	engines	in	most	languages,	including	Python,	offer
a	small	number	of	flags	that	modify	the	behavior	of	the	entire	expression.

The	Python	engine	offers	several	flags	that	can	be	sent	to	a	regular	expression
when	using	re.search	or	similar	functions.	In	the	case	of	re.search,	it	takes	a	third
argument	for	flags.

Case	Insensitivity
The	simplest	and	most	straightforward	flag	is	re.IGNORECASE,	which	causes	the
regular	expression	to	become	case-insensitive.

>>>	re.search(r'python',	'PYTHON	IS	AWESOME',	re.IGNORECASE)

<_sre.SRE_Match	object;	span=(0,	6),	match='PYTHON'>

When	using	re.IGNORECASE,	the	match	will	still	be	returned	using	the	case	of	the
string	in	which	it	was	found,	and	not	the	case	of	the	regular	expression.

re.IGNORECASE	is	also	aliased	to	re.I.

ASCII	and	Unicode
You	may	recall	that	there	is	a	difference	between	how	some	character	shortcuts
work	between	Python	2	and	Python	3.	For	example,	\w	in	Python	3	matches	word
characters	in	nearly	any	language,	rather	than	just	the	Latin	alphabet.

The	re	module	provides	flags	to	make	Python	2	follow	the	Python	3	behavior,	and
also	flags	to	make	Python	3	follow	the	Python	2	behavior.

The	re.UNICODE	(aliased	to	re.U)	flag	forces	the	regular	expression	engine	to	follow
the	Python	3	behavior.	This	flag	is	defined	in	both	Python	2	and	Python	3,	so	it	is
safe	to	use	it	in	code	designed	to	run	on	either	platform.	Note	that	if	you	try	to	use
a	byte	string	with	re.U	in	Python	3,	the	parser	will	raise	an	exception.

The	re.ASCII	(aliased	to	re.A)	flag	forces	the	regular	expression	to	follow	the
Python	2	behavior.	Unlike	re.UNICODE,	the	re.ASCII	flag	is	not	available	in	Python
2.	If	you	need	re.ASCII	in	code	that	runs	under	both	Python	2	and	Python	3,	use
the	appropriate	character	classes	instead,	or	do	a	version	check	before	applying
the	flag.

Dot	Matching	Newline
The	re.DOTALL	flag	(aliased	to	re.S	to	match	the	terminology	used	in	Perl	and
elsewhere)	causes	the	.	character	to	match	newline	characters	in	addition	to	all
other	characters.

>>>	re.search(r'.+',	'foo\nbar')

<_sre.SRE_Match	object;	span=(0,	3),	match='foo'>



>>>	re.search(r'.+',	'foo\nbar',	re.DOTALL)

<_sre.SRE_Match	object;	span=(0,	7),	match='foo\nbar'>

In	the	first	command,	the	regular	expression	engine	must	match	one	or	more	of
any	character.	It	matches	foo,	and	then	it	reaches	a	line	break	and	stops,	because	.
does	not	normally	match	line	breaks.

However,	in	the	second	command,	re.DOTALL	is	passed,	and	the	line	break
character	is	included	in	what	.	matches	against.	Therefore,	the	regular	expression
engine	(being	greedy)	keeps	going	until	it	reaches	end	of	string,	and	the	entire
string	is	returned	as	the	match.

Multiline	Mode
The	re.MULTILINE	flag	(aliased	to	re.M)	causes	the	ˆ	and	$	characters,	which
normally	would	only	match	against	the	beginning	or	end	of	the	string
(respectively),	to	instead	match	against	the	beginning	or	end	of	any	line	within	the
string.

>>>	re.search(r'ˆbar',	'foo\nbar')

>>>	re.search(r'ˆbar',	'foo\nbar',	re.MULTILINE)

<_sre.SRE_Match	object;	span=(4,	7),	match='bar'>

In	the	first	command,	the	ˆ	character	is	only	able	to	match	against	the	beginning
of	the	string.	Therefore,	the	word	bar	does	not	match,	because	it	is	not	the	first
thing	in	the	string.

In	the	second	command,	however,	the	re.MULTILINE	flag	is	used.	Therefore,	the	ˆ
character	merely	requires	the	beginning	of	a	line.	Because	a	newline	character
immediately	precedes	bar,	it	matches	and	the	match	is	returned.

Verbose	Mode
The	re.VERBOSE	flag	(aliased	to	re.X)	allows	for	complicated	regular	expressions	to
be	expressed	in	a	more	readable	way.

This	flag	does	two	things.	First,	it	causes	all	whitespace	(other	than	in	character
classes)	to	be	ignored,	including	line	breaks.	Second,	it	treats	the	#	character
(again,	unless	it's	inside	a	character	class)	as	a	comment	character.

This	allows	for	easy	annotation	of	regular	expressions,	which	can	be	valuable	as
they	become	complicated.	The	following	two	commands	are	equivalent:

>>>	re.search(r'(?P<first_three>[\d]{3})-(?P<last_four>[\d]{4})',	'867-

5309')

<_sre.SRE_Match	object;	span=(0,	8),	match='867-5309'>

>>>	re.search(r"""(?P<first_three>[\d]{3})			#	The	first	three	digits…															

-																										#	A	literal	hyphen…															(?P<last_four>

[\d]{4})					#	The	last	four	digits…												""",	'867-5309',	

re.VERBOSE)

<_sre.SRE_Match	object;	span=(0,	8),	match='867-5309'>



Debug	Mode
The	re.DEBUG	flag	(not	aliased)	dumps	some	debugging	information	out	to
sys.stderr	while	compiling	a	regular	expression.

>>>	re.search(r'(?P<first_three>[\d]{3})-(?P<last_four>[\d]{4})',

					'867-5309',	re.DEBUG)

subpattern	1

		max_repeat	3	3

				in

						category	category_digit

literal	45

subpattern	2

		max_repeat	4	4

				in

						category	category_digit

<_sre.SRE_Match	object;	span=(0,	8),	match='867-5309'>

Using	Multiple	Flags
Occasionally,	you	may	need	to	use	more	than	one	of	these	flags	at	once.	To	do	this,
join	them	with	the	|	(bitwise	OR)	operator.	For	example,	if	you	need	both	the
re.DOTALL	and	re.MULTILINE	flags,	the	correct	syntax	is	re.DOTALL	|	re.MULTILINE
or	re.S	|	re.M.

Inline	Flags
It	is	also	possible	to	use	flags	within	a	regular	expression	itself	by	beginning	the
regular	expression	with	special	syntax.	This	uses	the	short-form	flag,	and	looks
like	this:

>>>	re.search('(?i)FOO',	'foo').group()

'foo'

Note	the	(?i)	at	the	beginning.	This	is	the	equivalent	of	using	the	re.IGNORECASE
flag.	However,	this	syntax	is	usually	less	preferable	to	sending	flags	explicitly.
Also,	the	long	form	of	the	flags	will	not	work.	(?ignorecase)	is	not	valid	and	will
raise	an	exception.



Substitution
The	regular	expression	engine	is	not	limited	to	simply	identifying	whether	a
pattern	exists	within	a	string.	It	is	also	capable	of	performing	string	replacement,
returning	a	new	string	based	on	the	groups	in	the	original	one.

The	substitution	method	in	Python	is	re.sub.	It	takes	three	arguments:	the	regular
expression,	the	replacement	string,	and	the	source	string	being	searched.	Only	the
actual	match	is	replaced,	so	if	there	is	no	match,	re.sub	ends	up	being	a	no-op.

re.sub	enables	you	to	use	the	same	backreferences	from	regular	expression
patterns	within	the	replacement	string.	Consider	the	task	of	stripping	irrelevant
formatting	data	from	a	phone	number:

>>>	re.sub(r'(\+?1)?[	.-]?\(?([\d]{3})\)?[	.-]?([\d]{3})[	.-]?([\d]{4})',

...								r'\2\3\4',

...								'213-867-5309')

'2138675309'

Because	this	regular	expression	matches	nearly	any	phone	number	and	groups
only	the	actual	digits	of	the	phone	number,	you	will	get	back	the	same	data
regardless	of	how	the	original	number	was	formatted.

>>>	re.sub(r'(\+?1)?[	.-]?\(?([\d]{3})\)?[	.-]?([\d]{3})[	.-]?([\d]{4})',

...								r'\2\3\4',

...								'213.867.5309')

'2138675309'

>>>	re.sub(r'(\+?1)?[	.-]?\(?([\d]{3})\)?[	.-]?([\d]{3})[	.-]?([\d]{4})',

...								r'\2\3\4',

...								'2138675309')

'2138675309'

>>>	re.sub(r'(\+?1)?[	.-]?\(?([\d]{3})\)?[	.-]?([\d]{3})[	.-]?([\d]{4})',

...								r'\2\3\4',

...								'(213)	867-5309')

'2138675309'

>>>	re.sub(r'(\+?1)?[	.-]?\(?([\d]{3})\)?[	.-]?([\d]{3})[	.-]?([\d]{4})',

...								r'\2\3\4',

...								'1	(213)	867-5309')

'2138675309'

>>>	re.sub(r'(\+?1)?[	.-]?\(?([\d]{3})\)?[	.-]?([\d]{3})[	.-]?([\d]{4})',

...								r'\2\3\4',

...								'+1	213-867-5309')

'2138675309'

The	replacement	string	is	not	limited	to	just	using	the	backreferences	from	the
string;	other	characters	are	interpreted	literally.	Therefore,	re.sub	can	also	be
used	for	formatting.	For	example,	what	if	you	want	to	display	a	phone	number
rather	than	store	it,	but	you	want	to	display	it	in	a	consistent	format?	re.sub	can
handle	that,	as	shown	here:



>>>	re.sub(r'(\+?1)?[	.-]?\(?([\d]{3})\)?[	.-]?([\d]{3})[	.-]?([\d]{4})',

...								r'(\2)	\3-\4',

...								'+1	213-867-5309')

'(213)	867-5309'

Everything	here	is	the	same	as	in	the	previous	examples,	except	for	the
replacement	string,	which	has	gained	the	parentheses,	space,	and	hyphen.
Therefore,	so	has	the	result.



Compiled	Regular	Expressions
One	final	feature	of	Python's	regular	expression	implementation	is	compiled
regular	expressions.	The	re	module	contains	a	function,	compile,	which	returns	a
compiled	regular	expression	object,	which	can	then	be	reused.

The	re	module	caches	regular	expressions	that	it	compiles	on	the	fly,	so	in	most
situations,	there	is	no	substantial	performance	advantage	to	using	compile.	It	can
be	extremely	useful	for	passing	regular	expression	objects	around,	however.

The	re.compile	function	returns	a	regular	expression	object,	with	the	compiled
regular	expression	as	data.	These	objects	have	their	own	search	and	sub	methods,
which	omit	the	first	argument	(the	regular	expression	itself).

>>>	regex	=	re.compile(

...					r'(\+?1)?[	.-]?\(?([\d]{3})\)?[	.-]?([\d]{3})[	.-]?([\d]{4})'

...	)

>>>	regex.search('213-867-5309')

<_sre.SRE_Match	object;	span=(0,	12),	match='213-867-5309'>

>>>	regex.sub(r'(\2)	\3-\4',	'+1	213.867.5309')

'(213)	867-5309'

Also,	there	is	one	other	advantage	to	using	re.compile.	The	search	method	of
regular	expression	objects	actually	allows	for	two	additional	arguments	not
available	on	re.search.	These	are	the	starting	and	ending	positions	of	the	string	to
be	searched	against,	enabling	you	to	exempt	some	of	the	string	from
consideration.

>>>	regex	=	re.compile('[\d]+')

>>>	regex.search('1	mile	is	equal	to	5280	feet.')

<_sre.SRE_Match	object;	span=(0,	1),	match='1'>

>>>	regex.search('1	mile	is	equal	to	5280	feet.',	pos=2)

<_sre.SRE_Match	object;	span=(19,	23),	match='5280'>

The	values	sent	are	available	as	the	pos	and	endpos	attributes	on	the	match	objects
returned.



Summary
Regular	expressions	are	extremely	useful	tools	for	finding,	parsing,	and	validating
data.	They	often	look	intimidating	to	those	who	have	not	used	them	before,	but
they	are	manageable	if	taken	piece	by	piece.

In	addition,	mastering	regular	expressions	will	enable	you	to	perform	parsing	and
formatting	tasks	that	are	much	more	difficult	without	a	pattern-matching
algorithm.

However,	be	wary	of	using	regular	expressions	when	they	are	unnecessary.
Sometimes,	using	a	few	lines	of	code	with	direct	string	comparison	is	much	more
straightforward.	Like	any	tool,	regular	expressions	should	be	used	when	they	are
the	appropriate	solution,	but	not	when	simpler	approaches	are	available	to	you.

Similarly,	bear	in	mind	that	regular	expressions	are	often	unsuitable	for	parsing
extremely	complex	structures.	If	you	are	parsing	a	non-trivial	document	format,
you	should	probably	be	looking	for	another	library	that	handles	that	for	you.

Chapter	10	examines	testing	applications	in	Python.





Part	IV
Everything	Else





Chapter	10
Python	2	Versus	Python	3
In	several	chapters	of	this	book	(particularly	Chapter	5,	“Metaclasses,”	and
Chapter	8,	“Strings	and	Unicode”),	you	have	learned	about	the	differences	that
exist	in	the	way	that	Python	2	and	Python	3	handle	some	things.

In	fact,	Python	3	is	a	very	substantial	update	to	the	Python	programming
language.	Throughout	its	history,	Python	has	stressed	strong	backward
compatibility,	eschewing	changes	that	are	likely	to	break	large	amounts	of	existing
code.	That	does	not	mean	that	the	language	never	deprecates	anything,	of	course,
but	backward	compatibility	is	a	strong	focus.

Python	3.0	is	an	exception	to	this.	Like	developers	of	any	complex	language	or
system,	the	developers	of	Python	made	certain	decisions	that	they	later	viewed	as
mistakes.	Therefore,	Python	3.0	can	properly	be	seen	as	an	endeavor	to	fix
mistakes	at	the	expense	of	backward	compatibility.

Because	existing	Python	programs	are	so	pervasive,	both	Python	2	and	Python	3
have	been	supported	for	some	time—to	allow	the	ecosystem	time	to	migrate	from
the	old	to	the	new.	Python	2.6	was	released	roughly	concurrently	with	Python	3.0,
and	Python	2.7	roughly	a	year	and	a	half	later	(a	full	year	after	the	release	of
Python	3.1).

Currently,	Python	2.7	and	even	Python	2.6	are	still	in	common	use.	Therefore,	it	is
important	to	understand	the	differences	between	Python	2	and	Python	3,	and	how
to	navigate	both.

This	chapter	explores	what	distinguishes	Python	2	and	Python	3,	and	discusses
strategies	for	navigating	the	dual	ecosystem.



Cross-Compatibility	Strategies
Python	3	introduces	a	series	of	backward-incompatible	changes	(as	well	as	many
backward-compatible	ones,	but	this	chapter	will	not	focus	much	on	those).	Most
of	these	backward-incompatible	changes	either	focus	on	removing	ambiguity,
ensuring	that	there	is	a	single	and	coherent	approach	to	solving	problems,	simply
updating	the	language	to	address	quirks,	or	making	Python's	behavior	more
modern.

Because	Python	3	was	not	intended	to	be	a	backward-compatible	release,	there	is
no	expectation	that	Python	2	code	should	be	able	to	run	unmodified	on	Python	3.
In	fact,	many	valid	Python	2	modules	will	not	run	in	Python	3,	or	may	produce
different	results,	and	some	may	even	contain	syntax	errors.

That	said,	you	can	use	several	strategies	to	write	code	for	both	ecosystems.

The	__future__	Module
In	some	cases,	useful	Python	3	behavior	is	able	to	be	“back-ported”	into	Python
2.6	and	Python	2.7.	You	do	this	using	the	__future__	module,	which	has	been	in
the	Python	language	for	some	time.

The	__future__	module	provides	a	mechanism	to	introduce	a	feature	into	the
Python	language	slowly,	allowing	the	feature	to	be	opted	into	at	first,	and	then
eventually	becoming	the	language's	default	behavior.

For	example,	this	module	was	used	when	yield	and	later	with	were	being	added	as
keywords	to	Python.	Because	adding	a	new	keyword	to	the	language	will	break
existing	code	that	may	use	either	term	as	a	variable	name,	these	keywords	were
introduced	slowly.	For	one	Python	release,	it	was	possible	to	opt-in	to	the	new
keyword	by	using	a	statement	such	as	the	following:

from	__future__	import	with_statement

In	the	case	of	with,	this	statement	became	available	in	Python	2.5.	Using	it	made
both	with	and	as	become	keywords.	If	you	ran	code	that	used	either	word	as	an
identifier,	you	would	get	a	warning.	Then,	in	Python	2.6,	with	and	as	were	always
keywords.	However,	even	then,	importing	with_statement	from	__future__	is	still
valid	(it	is	simply	a	no-op).	This	allows	code	that	uses	with	to	run	in	both	Python
2.5	and	in	later	versions.

This	same	principle	applies	to	many	features	introduced	in	Python	3.	It	is	possible
to	opt-in	to	some	or	all	of	their	functionality	in	Python	2.6	and	Python	2.7,	which
makes	writing	code	for	both	ecosystems	more	manageable.

As	this	chapter	iterates	over	specific	behaviors	that	are	distinct	in	Python	2	and
Python	3,	you	will	learn	about	those	that	can	be	opted	into	in	Python	2	using	this
method.



2to3
When	Python	3	was	first	released,	the	recommended	mechanism	to	handle
sharing	source	code	between	Python	2	and	Python	3	was	by	using	a	tool	called
2to3.

2to3	is	a	command-line	application	that	ships	with	current	versions	of	Python.	Its
purpose	is	to	attempt	to	take	a	module	written	for	Python	2	and	provide	a	patch	to
convert	it	into	a	Python	3	module,	or	even	convert	the	module	automatically.	A
similar	tool,	3to2,	is	also	available	(on	PyPI)	to	do	the	converse.

Consider	the	following	conversion	of	foo.py,	which	is	a	very	simple,	one-line
Python	2	module:

$	cat	foo.py

print	'foo'

This	particular	module	is	valid	in	Python	2	and	breaks	in	Python	3,	because	print
in	Python	3	is	a	function	rather	than	a	statement	(more	on	that	later).	Therefore,
what	works	in	Python	2	is	a	syntax	error	in	Python	3.

$	python2.7	foo.py

foo

$	python3.4	foo.py

		File	"foo.py",	line	1

				print	'foo'

														ˆ

SyntaxError:	invalid	syntax

This	is	a	very	straightforward	(albeit	backward-incompatible)	change,	and	while	it
may	be	arduous	to	try	to	change	this	manually	throughout	an	entire	codebase,	it	is
something	that	2to3	can	handle.	By	running	2to3	on	this	file,	you	get	some
information	about	what	2to3	thinks	must	be	done.

$	2to3	foo.py

RefactoringTool:	Skipping	implicit	fixer:	buffer

RefactoringTool:	Skipping	implicit	fixer:	idioms

RefactoringTool:	Skipping	implicit	fixer:	set_literal

RefactoringTool:	Skipping	implicit	fixer:	ws_comma

RefactoringTool:	Refactored	foo.py

---	foo.py					(original)

+++	foo.py					(refactored)

@@	-1	+1	@@

-print	'foo'

+print('foo')

RefactoringTool:	Files	that	need	to	be	modified:

RefactoringTool:	foo.py

By	default,	2to3	does	not	actually	do	anything.	It	just	tells	you	what	must	be	done
and	offers	patches.	Here,	it	has	found	the	print	statement	on	line	1	and	changed	it
to	a	function,	told	you	about	it,	but	it	didn't	actually	modify	the	file	and	change
code	(as	discussed	in	the	next	section).



$	cat	foo.py

print	'foo'

Writing	Changes
However,	2to3	is	able	to	write	changes	that	it	is	certain	of.	The	simplest	way	to	do
this	is	to	add	a	-w	flag,	which	will	overwrite	the	files	in-place.	(Note	again	that	it
will	overwrite	the	files	in-place,	so	you	should	understand	what	you	are	doing.)

$	2to3	-w	foo.py

RefactoringTool:	Skipping	implicit	fixer:	buffer

RefactoringTool:	Skipping	implicit	fixer:	idioms

RefactoringTool:	Skipping	implicit	fixer:	set_literal

RefactoringTool:	Skipping	implicit	fixer:	ws_comma

RefactoringTool:	Refactored	foo.py

---	foo.py					(original)

+++	foo.py					(refactored)

@@	-1	+1	@@

-print	'foo'

+print('foo')

RefactoringTool:	Files	that	were	modified:

RefactoringTool:	foo.py

Sure	enough,	the	actual	foo.py	file	has	been	modified	on-disk,	and	now	it	runs
without	error	in	Python	3.

$	cat	foo.py

print('foo')

$	python3.4	foo.py

foo

Limitations
Unfortunately,	the	2to3	tool	cannot	handle	every	conceivable	situation,	so	simply
running	2to3	on	a	module	is	not	a	guarantee	that	any	valid	Python	2	module	will
magically	become	a	valid	Python	3	module.

The	way	that	2to3	works	under	the	hood	is	that	it	contains	a	number	of	fixers,
which	is	its	term	for	a	translation	layer	between	certain	Python	2	code	and	its
equivalent	Python	3	code.	For	example,	there	is	a	fixer	called	print	that	handles
the	conversion	from	print	statements	to	print	functions.	It	is	even	possible	to
enable	or	disable	specific	fixers	(with	--fix	and	--nofix,	respectively).

Another	more	fundamental	limitation	to	2to3	is	that	using	it	fundamentally
requires	the	maintenance	of	two	separate	codebases,	one	for	Python	2	and	one	for
Python	3.	The	official	recommendation	when	using	2to3	is	that	you	simply	write
Python	2	code	and	constantly	convert	it	to	Python	3	for	deployment.	In	practice
though,	this	gets	frustrating	and	is	not	really	viable	for	most	large	projects.

There	is	a	better	way.

six



six	is	a	Python	module	written	by	Benjamin	Peterson	that	is	intended	to	provide
single-source	compatibility	between	Python	2	and	Python	3.	In	2to3,	code	is
written	for	Python	2,	and	then	a	program	runs	and	generates	similar	Python	3
code.	However,	six	follows	a	different	philosophy.	Using	six,	you	write	a	single
module	in	Python	3	syntax	that	also	happens	to	run	correctly	on	Python	2.6	and
Python	2.7.

This	approach	offers	several	advantages	over	2to3,	but	the	most	important
distinction	is	that	only	one	copy	of	the	code	must	be	maintained.	The	same	code
runs	in	both	environments.	Additionally,	six	is	distributed	as	a	single	module,
making	it	very	easy	to	include	without	relying	on	a	dependency	manager	if
needed.

What	six	fundamentally	does	is	provide	a	unified	interface	to	elements	that	have
changed	between	Python	2	and	Python	3.	For	example,	you	learned	in	Chapter	8
that	Python	2's	unicode	class	is	the	same	as	Python	3's	str	class.	The	six	module
provides	six.text_type,	which	maps	to	the	correct	class	in	either	environment.

For	example,	the	following	two	lines	of	code	are	identical	in	Python	3:

>>>	str('foo')

>>>	six.text_type('foo')

Additionally,	the	following	two	lines	of	code	are	identical	in	Python	2:

>>>	unicode('foo')

>>>	six.text_type('foo')

They	key	limitation	to	six	is	that	it	is	often	only	a	viable	approach	if	you	do	not
have	to	support	any	version	of	Python	before	Python	2.6.	Although	six	itself	will
run	previous	versions	of	Python,	the	inability	to	backport	some	Python	3	features
from	__future__	in	Python	2.5	and	older	means	that	it	is	very	difficult	to	ensure
consistency	of	behavior.	That	said,	if	you	are	certain	that	the	features	you	are
using	work	on	older	versions	of	Python,	six	will	usually	work	also.

The	good	news	is	that,	if	you	are	reading	this,	it	is	fairly	unlikely	that	you	really
need	to	support	versions	of	Python	before	Python	2.6,	which	was	released	in	2008
and	now	has	near	universal	adoption.	Every	modern	Linux	distribution	is	on	at
least	Python	2.6,	and	has	been	for	many	years.	If	you	are	on	Windows,	you	are
probably	installing	Python	yourself,	and	are	unlikely	to	have	any	need	to	be	on	an
older	version.

six	is	now	the	mechanism	that	most	people	recommend	to	handle	writing	code
designed	to	operate	within	a	Python	2	or	Python	3	environment.	As	this	chapter
explores	differences	between	Python	2	and	Python	3,	you	will	learn	what	six's
syntax	is	to	get	the	same	approach	on	both	environments	with	a	unified	interface.
If	you	are	writing	code	that	must	run	in	Python	2	and	Python	3,	this	is	probably
what	you	will	want	to	use.



Changes	in	Python	3
Many	changes	exist	between	Python	2	and	Python	3.	Some	of	them	are	extremely
substantial,	whereas	others	just	involve	something	as	simple	as	renaming	a
module.

Strings	and	Unicode
Possibly	the	most	sweeping	change	to	Python	3	is	that	string	literals	are	Unicode
instead	of	ASCII,	and	that	most	of	the	strings	you	will	receive	throughout	your
programs	are	generally	Unicode.

This	change	is	such	a	big	deal	that	this	book	actually	devoted	considerable	space
to	this	topic	in	Chapter	8,	in	which	you	learned	about	Python's	handling	of	text
data	in	detail.	Here	is	quick	review.

In	Python	2,	string	literals	are	byte	strings	by	default.	They	are	Unicode	strings	in
Python	3.	The	Python	3	behavior	can	be	backported	to	Python	2	with	from
__future__	import	unicode_literals,	and	you	absolutely	should	do	this	if	you	are
writing	single-source	code	for	both	environments.

Also,	the	byte	string	and	text	string	classes	have	different	names.	In	Python	2,	the
str	class	is	for	byte	strings,	and	the	unicode	class	is	for	text	strings.	In	Python	3,
these	are	bytes	and	str.	This	means	that	a	class	named	str	exists	in	both,	but	it	is
not	the	same	thing.	The	six	module	aliases	these	as	six.binary_type	and
six.text_type.





Note

For	more	information,	see	Chapter	8.

The	print	Function
As	shown	in	the	earlier	example,	Python	3	alters	the	way	that	print	works.	In
Python	2,	print	is	a	special	statement,	as	shown	here:

print	'The	quick	brown	fox	jumped	over	the	lazy	dogs.'

By	default,	print	would	write	to	sys.stdout	and	append	\n	to	the	end	of	the	string.
However,	print	could	be	used	to	print	elsewhere	with	a	special	syntax,	>>.

import	sys

print	>>	sys.stderr,	'The	quick	brown	fox	jumped	over	the	lazy	dogs.'

In	Python	3,	print	has	been	made	a	bit	more	normal.	First	and	foremost,	it	is	now
a	function,	which	means	it	is	called	like	a	function,	with	parentheses.

print('The	quick	brown	fox	jumped	over	the	lazy	dogs.')

It	is	still	possible	to	print	to	somewhere	that	is	not	sys.stdout.	The	Python	3	print
function	takes	a	keyword	argument	called	file	(defaulting	to	sys.stdout),	which
handles	this	case.

import	sys

print('The	quick	brown	fox	jumped	over	the	lazy	dogs.',	file=sys.stderr)

In	addition,	the	new	print	function	is	more	flexible,	because	you	can	change	the
default	behavior	of	appending	\n	to	the	string	using	the	end	keyword	argument.

print('The	quick	brown	fox	jumped	over	the	lazy	dogs.',	end='')

This	would	still	print	to	sys.stdout,	but	not	append	\n	to	the	end	of	the	string
before	doing	so.

The	Python	3	print	function	is	available	in	Python	2.6	and	Python	2.7	in	the
__future__	module.

from	__future__	import	print_function



Note

If	you	are	using	an	even	older	version	of	Python,	six	provides	the	same
functionality	as	six.print_.	(Note	the	trailing	underscore	so	as	not	to
interfere	with	the	Python	keyword.)	The	arguments	exactly	match	the
arguments	of	the	print	function.	As	a	reminder,	you	generally	do	not	want
to	attempt	to	do	single-source	codebases	that	support	Python	2.5	and	below.

Division
In	Python	2,	a	division	(/)	operation	between	two	integers	will	return	an	int.	This
is	a	constant	source	of	confusion	in	Python	2,	where	most	people	intuitively	expect
division	of	two	integers	to	return	a	float	if	appropriate.	Consider	the	following
Python	2	code:

>>>	4	/	2

2

>>>	5	/	2

2

It	is	counterintuitive	that	5	divided	by	2	would	return	2.	The	reason	why	it	does	is
because	it	is	integer	division.	The	interpreter	is	doing	the	division,	getting	the
correct	result	of	2.5,	and	then	flooring	it	to	get	an	integer	to	maintain	type
consistency.	However,	that	is	usually	not	what	you	actually	want	in	a	dynamic
language.

You	get	around	this	by	ensuring	that	either	the	dividend	or	the	divisor	is	a	float.

>>>	5.0	/	2

2.5

Python	3	fixes	this	behavior	by	having	integer	division	always	return	a	float,
which	is	generally	what	you	want	in	a	dynamic	language.

>>>	4	/	2

2.0

>>>	5	/	2

2.5

If	you	want	to	get	an	integer	back	from	a	division	operation,	use	the	“floor
division”	operator,	//,	which	always	returns	an	integer	regardless	of	the	type	of
the	arguments	provided.

>>>	4	//	2

2

>>>	5	//	2

2

The	Python	3	behavior	is	preferable,	but	backward	incompatible.	If	you	are



writing	code	that	must	run	in	both	environments,	the	__future__	module	is	once
again	your	friend.	You	can	opt	into	the	Python	3	behavior	in	Python	2.6	and
Python	2.7	by	using	the	following:

from	__future__	import	division

This	is	the	recommended	mechanism	for	a	single-source	approach.

Absolute	and	Relative	Imports
The	primary	way	that	packages	are	referenced	for	use	in	your	Python	modules	is
through	importing.	However,	what	actually	happens	when	you	issue	import	foo?
It	depends.

In	Python	2,	the	first	thing	that	the	interpreter	will	try	(after	the	standard	library)
is	a	relative	import.	This	means	that	it	will	look	for	a	module	called	foo.py	(or
foo/__init__.py)	in	the	same	directory	as	the	module	that	is	attempting	the
import.	If	it	finds	one,	it	is	done;	it	runs	this	module	and	makes	its	attributes
available,	namespaced	under	foo.

If	the	interpreter	does	not	find	such	a	file	(by	far	the	most	common	case),	then	it
begins	looking	in	every	directory	on	sys.path	to	find	a	matching	module.	Under
normal	circumstances,	this	will	include	any	installed	Python	packages.	This	kind
of	import	is	called	an	absolute	import.

This	behavior	can	be	problematic.	For	example,	simply	adding	a	duplicatively
named	module	in	a	directory	can	cause	other	modules	in	that	directory	to	break,
because	suddenly	they	are	performing	relative	imports	rather	than	absolute	ones.

Python	3	alters	this	behavior	by	simply	removing	relative	imports	as	a	possibility.
All	imports	are	absolute	imports.	If	you	want	a	relative	import	(which	is
occasionally	desirable),	you	must	explicitly	ask	for	one	using	a	special	syntax,
which	is	a	leading	period.

import	.foo

This	tells	the	interpreter	to	import	a	module	named	foo	that	is	a	sibling	of	the
current	module.	In	this	case,	only	a	relative	import	is	attempted	at	all.	(An	import
from	the	standard	library	is	not,	nor	is	an	import	from	modules	on	sys.path.)	The
interpreter	also	provides	a	..	syntax	for	reaching	up	in	the	directory	tree.

The	Python	3	behavior	here	is	a	safer	and	more	explicit	approach,	but	breaks
backward	compatibility.	If	you	are	maintaining	an	application	or	distribution	that
runs	under	either	Python	2	or	Python	3,	you	can	opt	into	the	Python	3	behavior
using	the	__future__	module,	as	shown	here:

from	__future__	import	absolute_import

This	will	cause	your	module	to	use	the	Python	3	import	behavior.	Only	the
standard	library	or	installed	modules	are	considered	as	places	from	which	to



import	a	module,	unless	the	explicit	relative	import	syntax	is	used	(in	which	case,
only	it	is	considered).

Removal	of	“Old-Style”	Classes
Python	2.2	introduced	what	were	at	the	time	referred	to	as	new-style	classes.
Essentially,	these	were	an	attempt	to	fix	certain	issues	with	class	hierarchies	in
Python	(in	particular,	method-resolution	order	in	multiple	inheritance	cases	was
broken),	unify	the	data	model,	and	introduce	some	new	features	(such	as	super).

In	order	to	preserve	backward	compatibility	with	older	versions	of	Python,	the
interpreter	required	opting	in.	Classes	in	Python	2	were	old-style	by	default.

>>>	class	Foo:

...					pass…

>>>	type(Foo)

<type	'classobj'>

You	could	create	a	new-style	class	by	explicitly	inheriting	a	class	from	any	new-
style	class,	most	notably	object,	which	was	the	top	of	the	new-style	class	tree.

>>>	class	Foo(object):

...					pass…

>>>	type(Foo)

<type	'type'>

In	Python	3,	old-style	classes	have	been	entirely	removed.	The	few	old-style
classes	that	remain	in	the	Python	2	standard	library	have	all	been	converted	to
new-style	classes.	Explicitly	inheriting	classes	from	object	is	still	allowed,	but	no
longer	necessary.

You	may	notice	that	the	examples	in	this	book	(including	those	that	are	explicitly
Python	3	code)	all	explicitly	inherit	from	object.	If	you	are	writing	code
specifically	for	Python	3,	you	do	not	need	to	do	this.	However,	if	you	are	writing
code	that	should	run	in	either	a	Python	2	or	Python	3	environment,	you	should
simply	continue	to	explicitly	subclass	object	as	you	did	in	Python	2	code.	This	still
continues	to	work	in	Python	3,	and	means	that	these	classes	are	always	new-style,
regardless	of	which	environment	they	run	under.

If	you	are	performing	tests	to	determine	whether	a	variable	is	a	class,	six	makes
available	six.class_types.	On	Python	2,	six.class_types	is	a	tuple	with	type	and
classobj,	whereas	on	Python	3	it	is	a	tuple	containing	only	type.

Metaclass	Syntax
Python	3	also	alters	the	syntax	for	assigning	a	custom	metaclass	to	a	class.	In
Python	2,	a	custom	metaclass	was	assigned	to	a	class	using	the	__metaclass__
attribute.

class	Foo(object):

				__metaclass__	=	FooMeta



In	Python	3,	the	metaclass	has	become	part	of	the	class	declaration	itself.

class	Foo(object,	metaclass=FooMeta):

				pass

These	two	syntaxes	are	incompatible.	You	are	unable	to	use	metaclass	as	a
keyword	in	a	class	declaration	in	Python	2,	and	using	a	__metaclass__	attribute
will	do	nothing	in	Python	3.

The	six	library	provides	a	solution	to	this	problem.	It	makes	available	two
separate	mechanisms	(six.with_metaclass	and	six.add_metaclass)	for	assigning	a
metaclass	to	a	class	as	you	create	it.

six.with_metaclass
The	six.with_metaclass	function	simply	takes	the	desired	metaclass	and	all	of	the
base	classes,	and	returns	a	stub	class	from	which	the	new	class	inherits.
Syntactically,	it	is	used	like	this:

class	Foo(six.with_metaclass(FooMeta,	object)):

				pass

What	six	is	doing	under	the	hood	here	is	creating	an	empty	class	that	subclasses
object	and	has	the	FooMeta	metaclass.	It	is	returning	that	class,	which	is	then	the
sole	class	from	which	Foo	inherits.	This	causes	Foo	to	have	the	FooMeta	metaclass
(on	both	Python	2	and	Python	3)	and	the	appropriate	parent	classes,	but	adds	a
trivial	additional	base	class	(the	stub	class)	under	the	hood.

You	can	observe	this	in	action	by	looking	at	the	method	resolution	order	for	the
new	class.

>>>	import	six

>>>

>>>	class	FooMeta(type):

...					pass…

>>>	class	Foo(six.with_metaclass(FooMeta,	object)):

...					pass…

>>>	Foo.__mro__

(<class	'__main__.Foo'>,	<class	'six.NewBase'>,	<type	'object'>)

Pay	particular	attention	to	that	center	class	in	the	method	resolution	order:
six.NewBase.	That	is	the	stub	class	that	six	created.	It	subclasses	object	(as	you
told	it	to	in	your	call	to	six.with_metaclass).	If	you	inspect	it,	you	will	see	it	is
where	the	FooMeta	metaclass	is	being	picked	up.

>>>	NewBase	=	Foo.__mro__[1]

>>>	NewBase

<class	'six.NewBase'>

>>>	type(NewBase)

<class	'__main__.FooMeta'>

Indeed,	inspecting	the	Foo	class	reveals	that	it,	too,	is	a	FooMeta,	because	it	inherits



from	NewBase,	which	is	also	a	FooMeta.

>>>	type(Foo)

<class	'__main__.FooMeta'>

six.add_metaclass
The	six	module	also	provides	add_metaclass,	which	achieves	the	same	goal
somewhat	differently.	The	first	difference	is	in	the	API.	add_metaclass	is	used	as	a
class	decorator.

@six.add_metaclass(FooMeta)

class	Foo(object):

				pass

The	result	here	is	essentially	the	same.	You	can	observe	this	by	checking	the	type
of	Foo	and	see	that	it	is	a	FooMeta.

>>>	type(Foo)

<class	'__main__.FooMeta'>

However,	the	way	in	which	this	gets	done	under	the	hood	is	different.	While
with_metaclass	performs	its	magic	by	creating	a	stub	class	and	placing	it	in	the
class	hierarchy,	add_metaclass	avoids	this.	There	is	no	stub	class	in	the	method
resolution	order	when	you	use	this	method.

>>>	Foo.__mro__

(<class	'__main__.Foo'>,	<type	'object'>)

The	way	that	add_metaclass	works	under	the	hood	is	that	the	class	is	ultimately
constructed	twice.	First,	a	“normal”	class	is	created,	and	then	the	decorator
receives	that	class	and	replaces	it	with	a	class	constructed	with	the	appropriate
metaclass,	which	it	then	returns.	This	is	slightly	less	efficient,	but	ends	with	a
slightly	cleaner	result.

Exception	Syntax
Much	like	it	did	with	print,	Python	3	changes	the	syntax	for	exceptions	in	order	to
remove	an	unusual	(and	somewhat	arbitrary)	syntax.

Under	Python	2,	the	syntax	to	raise	an	exception	originally	looked	like	this:

raise	ValueError,	'Invalid	value.'

What	happens	when	you	issue	this	statement	in	Python	2?	The	interpreter	creates
a	new	ValueError	object	and	sends	the	string	as	its	only	argument.	Once	the	object
is	created,	the	interpreter	raises	the	exception.

In	other	words,	what	is	really	happening	is	that	it	is	simply	a	call	to	create	a	new
instance	of	a	class	(in	this	case,	ValueError).	Therefore,	it	should	look	like	the
following,	and	in	Python	3,	it	does.	The	unusual	syntax	with	the	comma	has	been
removed	in	favor	of	a	direct	object	instantiation.



raise	ValueError('Invalid	value.')

Because	exceptions	are	just	objects	(that	happen	to	subclass	Exception),	and
because	it	was	already	valid	in	Python	2	to	raise	exception	objects,	the	Python	3
syntax	shown	here	works	without	any	modification	in	Python	2.

You	should	simply	use	this	syntax	all	the	time,	even	for	code	exclusive	to	Python	2.
This	means	you	no	longer	need	to	worry	about	this	distinction.

Handling	Exceptions
In	addition	to	changing	the	syntax	for	how	exceptions	are	raised,	Python	3	also
introduces	a	new	syntax	for	how	exceptions	are	handled.	In	Python	2,	the	except
statement	looked	something	like	this	(again,	note	the	comma):

try:

				raise	ValueError('Invalid	value.')

except	ValueError,	ex:

				print('%s'	%	ex)

Python	3	alters	this	syntax	to	make	it	slightly	clearer.	The	comma	in	Python	2	is
replaced	with	the	as	keyword	(which	was	introduced	for	other,	unrelated	purposes
in	Python	2.5).

try:

				raise	ValueError('Invalid	value.')

except	ValueError	as	ex:

				print('%s'	%	ex)

The	Python	3	syntax	shown	here	is	also	valid	in	Python	2.6	and	Python	2.7.	If	you
are	writing	code	that	only	needs	to	run	on	Python	2.6	or	later,	you	should	use	the
as	keyword	in	lieu	of	the	old	syntax.

Exception	Chaining
Python	3	also	adds	an	important	new	feature	to	its	exception	handling,	which	is
exception	chaining.	Essentially,	it	is	sometimes	the	case	that,	while	the	interpreter
is	handling	one	exception	(in	an	except	clause),	another	exception	is	raised.	In
Python	2,	all	information	about	the	original	exception	is	lost.

In	Python	3,	this	is	no	longer	the	case.	When	the	second	exception	is	raised,	it	is
given	a	__context__	attribute	with	the	original	exception.

Additionally,	Python	3	provides	a	mechanism	to	explicitly	specify	another
exception	as	a	“cause”	for	an	exception,	using	a	new	syntax:	raise…from.

raise	DatabaseError('Could	not	write')	from	IOError('Could	not	open	file.')

This	code	would	create	the	DatabaseError	exception	and	the	IOError	exception.
The	latter	would	be	assigned	as	the	cause	of	the	former.	How	this	works	is	that
exceptions	in	Python	3	now	have	a	__cause__	attribute,	normally	set	to	None,	and
that	is	set	to	the	appropriate	exception	when	this	syntax	is	invoked.	The	__cause__



attribute	is	considered	to	take	precedence	over	the	__context__	attribute.

When	is	an	appropriate	time	to	use	this?	The	most	common	case	for	a	situation
like	this	is	in	frameworks	that	implement	multiple	backends	for	data	storage,	task
execution,	or	the	like,	but	want	to	expose	a	common	error	class	so	that	the
programmer	using	the	framework	only	has	to	deal	with	one	type	of	exception.	In
Python	2,	such	a	model	required	that	you	simply	lose	the	exception	data
underneath,	but	in	Python	3,	it	is	retained.

Unfortunately,	Python	2	does	not	support	such	exception	chaining	at	all,	and
raise…from	is	not	valid	syntax	in	Python	2.	The	six	library,	however,	provides
six.raise_from.	It	takes	two	arguments	(the	two	exceptions),	and	will	attach	the
exception	context	in	Python	3	while	simply	ignoring	the	second	argument	in
Python	2.	If	you	are	writing	code	that	should	run	in	both	environments	and	want
to	take	advantage	of	exception	chaining	in	Python	3,	you	should	use
six.raise_from.

Dictionary	Methods
The	dict	class	in	Python	2	includes	three	methods	that	change	in	Python	3:	keys,
values,	and	items.	In	Python	2,	each	of	these	methods	returns	a	list	object
containing	the	appropriate	contents.

>>>	d	=	{'foo':	'bar'}

>>>	d.keys()

['foo']

This	is	completely	fine	on	small	dictionaries,	but	can	present	a	problem	on	larger
ones	(especially	with	values	and	items),	because	you	are	making	an	in-memory
copy	of	what	can	potentially	be	a	large	amount	of	data.

In	most	cases,	a	copy	is	not	what	you	need.	You	simply	want	to	iterate	over	the
requested	data.	A	generator	(see	Chapter	3,	“Generators”)	is	a	much	better
solution	for	this	task.	In	fact,	Python	2	provides	such	generators,	which	are	called
iterkeys,	itervalues,	and	iteritems.

>>>	d	=	{'foo':	'bar'}

>>>	gen	=	d.iterkeys()

>>>	gen

<dictionary-keyiterator	object	at	0x10732d7e0>

>>>	next(gen)

'foo'

>>>	next(gen)

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

StopIteration

Additionally,	Python	2	also	provides	views	for	each	of	these,	called	viewkeys,
viewvalues,	and	viewitems.	These	view	objects	simply	refer	to	the	original
dictionary.	The	result	is	that	if	the	original	dictionary	changes,	the	views	also
change.



In	Python	3,	only	the	views	remain,	and	the	methods	that	return	a	list	as	well	as
the	methods	that	return	only	a	generator	have	been	removed	(the	views	serve	as
generators	also).	In	Python	3,	however,	the	view	methods	now	use	the	original
method	names	of	keys,	values,	and	items.

If	you	are	writing	code	that	is	intended	to	run	under	both	Python	2	and	Python	3,
the	six	module	provides	six.viewkeys,	six.viewvalues,	and	six.viewitems,	which
map	to	the	appropriate	methods	on	both	Python	2	and	Python	3.

Function	Methods
Python	2	and	Python	3	both	provide	ways	to	inspect	the	properties	of	functions,
such	as	their	names,	the	code	within	them,	and	the	arguments	that	they	take.	The
recommended	way	to	do	this	is	by	using	the	inspect	module,	but	code	that
interacts	with	function	objects	directly	is	quite	common,	and,	therefore,	the	six
module	provides	an	interface	to	it.

Functions	in	Python	have	several	attributes	that	were	renamed	in	Python	2.6	(not
Python	3.0).	Before	this	point,	these	attributes	were	considered	to	be	a	private
API,	so	the	Python	developers	decided	that	allowing	the	attributes	to	be	renamed
in	Python	2.6	was	acceptable.

The	Python	2.5	attribute	names	were	func_closure,	func_code,	func_defaults,	and
func_globals.	In	Python	2.6,	these	are	renamed	to	remove	the	func_	prefix,	and
instead	use	double	underscores	(for	example,	__closure__).

Consider	the	following	__defaults__	tuple	for	a	simple	function:

>>>	def	foo(x=5):

...					return	x	+	3…

>>>	foo.__defaults__

(5,)

This	tells	you	that	the	first	optional	argument	has	a	default	of	5.	Because	there	is
only	one	optional	argument,	there	is	only	one	element	in	the	tuple.

The	six	module	provides	aliases	that	will	return	the	correct	attribute	regardless	of
what	version	of	Python	you	are	running.	These	are	six.get__function__closure,
six.get_function_code,	six.get_function_defaults,	and
six.get_function_globals.	Each	takes	the	function	as	its	argument,	as	shown
here:

>>>	import	six

>>>	six.get_function_defaults(foo)

(5,)

Iterators
Python	3	changes	the	structure	of	iterators	slightly.	Under	Python	2,	iterators
were	expected	to	have	a	next	method	that	takes	no	arguments.	In	Python	3,	this
becomes	__next__.



If	you	need	an	iterator	that	runs	correctly	under	Python	2	and	Python	3,	the
correct	solution	is	to	have	a	next	method	that	does	nothing	but	call	__next__,	such
as	this	one:

class	CompatibleIterator(object):

				def	next(self):

								return	self.__next__()

Any	class	that	subclasses	CompatibleIterator	will	now	receive	a	next	method	that
does	nothing	but	call	__next__,	which	will	work	properly	in	both	Python	2	and
Python	3.

However,	the	six	module	actually	provides	such	a	class,	six.Iterator.	In	fact,	it
works	even	better	than	the	previous	example	by	providing	this	implementation	on
Python	2,	but	simply	aliasing	to	object	on	Python	3.

Therefore,	if	you	are	building	iterators	that	must	run	under	both	Python	2	and
Python	3,	have	them	subclass	six.Iterator,	and	simply	define	a	__next__	method
and	not	a	next	method.



Standard	Library	Relocations
In	addition	to	providing	several	new	features	and	changes	in	syntax,	Python	3	also
moves	several	modules	around	within	the	standard	library.

Generally,	six	provides	a	unified	interface	to	get	at	the	correct	module	if	you	are
maintaining	code	that	should	run	under	both	Python	2	and	Python	3.	These	live	in
six.moves.

Merging	“Fast”	Modules
Two	modules,	pickle	and	StringIO	in	Python	2,	have	two	functionally	identical
copies	within	the	Python	2	standard	library.	The	first	is	a	Python	implementation,
and	the	second	is	a	faster	implementation	written	in	C.

Python	3	merges	both	of	these	together	so	that	there	is	only	a	single	module,	and
so	developers	do	not	have	to	think	about	whether	they	are	using	the	C
implementation	or	the	Python	implementation	of	a	particular	library.	(Such
details	usually	should	not	be	important	when	using	a	library.)

io
The	StringIO	and	cStringIO	modules	in	Python	2	are	merged	into	a	single	module,
io.

To	facilitate	running	a	single	module	in	both	Python2	and	Python	3,	six	provides
six.moves.cStringIO,	which	aliases	the	class	(not	the	module).	Therefore,
six.moves.cStringIO	is	equivalent	to	cStringIO.StringIO	on	Python	2,	and
io.StringIO	on	Python	3.

For	example,	the	following	two	imports	are	equivalent	in	Python	3:

>>>	from	io	import	StringIO

>>>	from	six.moves.cStringIO	import	StringIO

pickle
The	pickle	module	is	handled	similarly.	Python	2	provides	both	the	pickle	and
the	cPickle	modules,	with	the	latter	generally	being	substantially	faster.	Python	3
merges	the	two	together	under	the	name	pickle.	Importing	from	cPickle	is	no
longer	valid.

Again,	six	provides	an	alias	to	the	correct	thing,	regardless	of	which	version	of
Python	you	are	running.	However,	in	this	case,	six.moves.cPickle	aliases	the
module	rather	than	the	class.	This	allows	you	to	import	particular	methods	from
the	pickle	module.

The	following	two	lines	of	code	are	equivalent	in	Python	3:

>>>	import	pickle

>>>	from	six.moves	import	cPickle	as	pickle



The	URL	Modules
Python	2	has	three	modules	for	working	with	URLs:	urllib,	urllib2,	and
urlparse.	What	belonged	in	each	is	one	of	the	great	mysteries	of	life.

In	actual	practice,	these	are	commonly	needed	together,	so	Python	3	has
completely	re-organized	these	modules	under	a	single	module:	urllib.	The	bulk	of
the	methods	from	the	urlparse	module	(which	primarily	concerned	itself	with
reading	URLs	and	breaking	them	up	into	their	individual	component	pieces)	now
live	in	urllib.parse.

Additionally,	several	methods	that	were	really	about	parsing	(such	as	quote	and
unquote)	have	been	moved	from	urllib	into	urllib.parse.

The	reorganized	urllib	module	in	Python	3	contains	four	submodules:	error,
parse,	request,	and	response.	The	six	module	provides	six.moves.urllib	with	the
same	four	submodules,	which	collect	the	appropriate	methods	as	they	are
organized	in	Python	3.

If	you	are	writing	code	that	should	run	under	either	Python	2	or	Python	3,	and	you
are	using	anything	under	urllib	or	its	Python	2	cousins,	you	should	use
six.moves.urllib.

Renames
Python	3	also	renames	certain	modules,	as	well	as	certain	built-in	functions.	Table
10.1	shows	a	list	of	common	renamed	or	moved	functions,	as	well	as	the	six.moves
function	that	is	an	alias	to	both.

Table	10.1	Common	Renamed	or	Moved	Functions

Python	3 Python	2 SIX.MOVES

configparser ConfigParser Configparser

filter itertools.ifilter filter

input raw_input input

map itertools.imap map

range xrange range

functools.reduce reduce reduce

socketserver SocketServer socketserver

zip itertools.izip zip

Other	Package	Reorganizations
Additionally,	many	other	packages	have	been	reorganized	between	Python	2	and
Python	3,	but	the	less	common	ones	do	not	have	aliases	within	six.	These	include
packages	such	as	xml	and	tkinter.

If	you	are	writing	a	single-source	implementation	using	these,	consult	the	package
documentation	for	information	on	what	items	have	been	moved	around.



If	you	encounter	a	module	or	attribute	that	has	been	moved,	you	can	tell	six.moves
about	it	by	using	the	six.add_move	function.	If	a	module	has	been	moved,	send	a
six.MovedModule	object	to	add_move.

The	six.MovedModule	constructor	takes	three	arguments:	the	name	of	the	move
(and	how	it	will	be	referenced	when	importing	from	six.moves),	and	then	the	old
module	name	and	new	module	name,	both	as	strings.

For	example,	this	will	cause	six.moves.ttk	to	be	an	alias	of	ttk	in	Python	2	and
tkinter.ttk	in	Python	3:

>>>	import	six

>>>	six.add_move(MovedModule('ttk',	'ttk',	'tkinter.ttk'))

If	an	attribute	within	a	module	is	moved,	send	a	six.MovedAttribute	object	to
six.add_move	instead.	The	MovedAttribute	constructor	takes	two	additional
arguments,	which	are	the	old	and	new	attribute	names,	as	strings.



Version	Detection
Occasionally,	you	will	end	up	in	situations	where	you	encounter	something	that
works	differently	on	Python	2	and	Python	3,	and	there	is	no	easy	interface	to	make
your	code	be	the	same	on	both	versions.

In	such	cases,	the	six	module	provides	two	constants,	six.PY2	and	six.PY3.	These
are	set	to	True	or	False,	depending	on	which	version	of	Python	is	currently
running.



Summary
Python	3	is	a	substantial	step	forward	over	Python	2.	It	makes	the	language
cleaner	and	faster.	On	the	other	hand,	because	of	the	backward-incompatibility
issues,	the	Python	community	has	been	slow	to	adopt	Python	3.

If	you	are	writing	Python	2	code,	consider	writing	it	in	such	a	way	that	it	will	run
unaltered	in	both	Python	2	and	Python	3.	This	will	be	of	huge	benefit	to	you	in	the
future	when,	eventually,	it	comes	time	to	port	to	Python	3.

Additionally,	this	is	a	good	place	to	emphasize	the	importance	of	automated
testing.	You	are	writing	code	that	runs	under	very	different	conditions,	and	you
must	be	as	sure	as	possible	that	it	works	the	same	way	under	each	environment.
The	way	to	do	this	is	by	having	a	robust	unit	test	suite,	which	can	automatically
run	in	all	supported	environments.	A	functional	test	suite	is	probably	a
prerequisite	for	attempting	to	port	from	Python	2	to	Python	3,	and	it	is	also	a
requirement	to	have	a	manageable	single-source	repository	of	code	that	runs	in
both	environments.

Chapter	11	examines	testing	in	more	detail,	including	how	to	test	in	multiple
environments.





Chapter	11
Unit	Testing
When	you	think	about	testing	the	code	that	you	write,	the	first	thing	that	probably
comes	to	mind	is	simply	running	your	program	directly.	If	your	program	executes,
you	at	least	know	that	you	do	not	have	any	syntax	errors	(provided	every	module
was	imported).

Similarly,	if	you	provide	appropriate	inputs,	and	do	not	get	a	traceback,	you	know
that	your	program	completes	successfully	with	those	inputs.	And,	if	the	result
matches	the	result	you	expect,	that	is	additional	inductive	evidence	that	your
program	works.

This	has	a	couple	of	key	limitations,	though.	The	first	is	that	for	a	non-trivial
program,	it	is	not	possible	to	test	every	scenario.	It	is	impossible	to	avoid	this
limitation,	although	it	is	important	to	be	as	complete	as	possible	when	thinking
through	potential	scenarios	to	test.

The	second	limitation	(and	the	one	that	the	bulk	of	this	chapter	covers)	is	time.
For	most	applications,	it	is	not	practical	to	manually	test	every	scenario	you
imagine	for	every	change	that	you	ever	make	to	your	program,	because	iterating
over	these	scenarios	is	time-consuming.

It	is	possible,	however,	to	ameliorate	this	limitation	somewhat	by	automating	your
tests.	An	automated	test	suite	can	run	while	you	are	absent	or	working	on
something	else,	providing	a	significant	time	savings	and	making	it	much	easier	to
test	your	work	early	and	often.

This	chapter	explores	some	of	the	world	of	testing.	Specifically,	it	focuses	on	unit
testing	using	the	built-in	tools	provided	by	the	Python	standard	library	(such	as
unittest	and	mock),	and	some	common	packages	available	for	testing.



The	Testing	Continuum
So,	what	is	a	unit	test	exactly?	Furthermore,	how	does	it	differ	between	a
functional	test	or	an	integration	test	or	some	other	kind	of	test?	To	answer	this,
this	chapter	discusses	two	different	testing	scenarios.

The	Copied	Ecosystem
First,	consider	a	very	complete	testing	environment.	If	you	are	writing	an
application	that	primarily	runs	on	servers,	this	might	entail	a	“staging”	server	that
has	a	copy	of	relevant	data,	and	where	potentially	breaking	actions	can	be
performed	safely.	For	a	script	or	desktop	application,	the	principle	is	the	same.	It
runs	in	an	area	with	a	copy	of	anything	it	must	touch	or	alter.

In	this	scenario,	everything	your	program	must	do	mimics	what	it	does	in	its
actual	live	environment.	If	you	connect	to	a	particular	type	of	database,	that
database	is	still	present	in	your	test	environment	(just	at	a	different	location).	If
you	get	data	from	a	web	service,	you	still	make	that	same	request.

Essentially,	in	the	copied	ecosystem,	any	external	dependencies	your	program
relies	on	must	still	be	present	and	set	up	in	an	identical	way.

This	type	of	testing	scenario	is	designed	not	only	to	test	specific	code	being	worked
on,	but	also	to	test	that	the	entire	ecosystem	structure	that	is	put	in	place	is	viable.
Any	data	that	is	passed	back	and	forth	between	different	components	of	your
application	is	actually	passed	in	exactly	the	same	way.

Automated	tests	that	are	run	against	a	copied	ecosystem	such	as	this	are	generally
called	system	tests.	This	term	signifies	the	complete	duplicated	ecosystem	under
which	these	tests	run.	This	kind	of	test	is	designed	not	only	to	test	your	specific
code,	but	also	to	detect	breaking	changes	in	the	external	environment.

The	Isolated	Environment
Another	very	distinct	type	of	test	is	one	that	is	intended	to	test	a	very	specific
block	of	code,	and	to	do	so	in	an	isolated	environment.

In	a	copied	ecosystem,	any	external	requirements	and	dependencies	(such	as	a
database,	external	service,	or	the	like)	are	all	duplicated.	On	the	other	hand,	tests
intended	to	be	run	in	an	isolated	environment	do	so	generally	by	hand-waving	the
interactions	between	the	tested	code	and	the	external	dependencies,	focusing	only
on	what	the	actual	code	does.

This	sort	of	hand	wave	is	done	by	stipulating	that	an	external	service	or
dependency	received	a	given	input	and	returned	a	given	output.	The	purpose	of
this	kind	of	test	is	explicitly	not	to	test	the	interaction	between	your	application
and	the	other	service.	Rather,	it	is	to	test	what	your	application	does	with	the	data
it	receives	from	that	service.

For	example,	consider	a	function	that	determines	a	person's	age	at	the	time	of	his



or	her	wedding.	It	first	gets	information	about	the	person	(birthday	and
anniversary)	from	an	external	database,	and	then	computes	the	delta	between	the
two	dates	to	determine	the	person's	age	at	the	time.

Such	a	function	might	look	like	this:

def	calculate_age_at_wedding(person_id):

				"""Calculate	the	age	of	a	person	at	his	or	her	wedding,	given	the

				ID	of	the	person	in	the	database.

				"""

				#	Get	the	person	from	the	database,	and	pull	out	the	birthday

				#	and	anniversary	datetime.date	objects.

				person	=	get_person_from_db(person_id)

				anniversary	=	person['anniversary']

				birthday	=	person['birthday']

				#	Calculate	the	age	of	the	person	on	his	or	her	wedding	day.

				age	=	anniversary.year	–	birthday.year

				#	If	the	birthday	occurs	later	in	the	year	than	the	anniversary,	then

				#	subtract	one	from	the	age.

				if	birthday.replace(year=anniversary.year)	>	anniversary:

								age	-=	1

				#	Done;	return	the	age.

				return	age

Of	course,	if	you	try	to	actually	run	this	function,	it	will	fail.	This	function	depends
on	another	function,	get_person_from_db,	which	is	not	defined	in	this	example.
You	intuitively	understand	from	reading	the	comments	and	code	around	it	that	it
gets	a	specific	type	of	record	from	a	database	and	returns	a	dictionary-like	object.

When	testing	a	function	like	this,	a	copied	ecosystem	would	simply	reproduce	the
database,	pull	a	person	record	with	a	particular	ID,	and	test	that	the	function
returns	the	expected	age.	In	contrast,	a	test	in	an	isolated	environment	wants	to
avoid	dealing	with	the	database	at	all.	An	isolated	environment	test	would	declare
that	you	got	a	particular	record,	and	test	the	remainder	of	the	function	against
that	record.

This	kind	of	test,	which	seeks	to	isolate	the	code	being	tested	from	the	rest	of	the
world	(and	even	sometimes	the	rest	of	the	application	itself)	is	called	a	unit	test.

Advantages	and	Disadvantages
Both	of	these	fundamental	types	of	tests	have	advantages	and	disadvantages,	and
most	applications	must	have	some	of	both	types	of	tests	as	part	of	a	robust	testing
framework.

Speed
One	of	the	most	important	advantages	to	unit	tests	that	run	in	an	isolated
environment	is	speed.	Tests	that	run	against	a	copied	ecosystem	often	have	long



setup	and	teardown	processes.	Furthermore,	the	I/O	required	to	pass	data
between	the	various	components	is	often	one	of	the	slowest	aspects	of	your
application.

By	contrast,	tests	that	run	in	an	isolated	environment	are	usually	extremely	fast.
In	the	previous	example,	the	time	it	takes	to	do	the	arithmetic	to	determine	this
person's	age	is	far	less	(by	several	orders	of	magnitude)	than	the	time	it	takes	to
ask	the	database	for	the	row	corresponding	to	the	person's	ID	and	to	pass	the	data
over	the	pipe.

Having	a	set	of	isolated	tests	that	run	very	fast	is	valuable,	because	you	are	able	to
run	them	extremely	often	and	get	feedback	from	running	those	tests	very	quickly.

Interactivity
The	primary	reason	why	isolated	tests	are	so	fast	is	precisely	because	they	are
isolated.	Isolated	tests	stipulate	the	interactions	between	various	services	involved
in	powering	your	application.

However,	these	interactions	require	testing,	too.	This	is	why	you	also	need	tests	in
a	copied	ecosystem.	This	enables	you	to	ensure	that	these	services	continue	to
interact	the	way	that	you	expect.



Testing	Code
The	focus	of	this	chapter	is	specifically	on	unit	testing.	Therefore,	how	can	you
write	a	test	that	runs	the	calculate_age_at_wedding	function	in	the	previous
example	?	Your	goal	is	to	not	actually	talk	to	a	database	to	get	a	record	of	a	person,
so	you	must	test	the	function	and	provide	that	information.

Code	Layout
In	many	cases,	the	best	and	by	far	the	most	straightforward	way	to	handle	testing
such	a	function	is	simply	to	organize	your	code	in	a	way	that	makes	it	easily
testable.

In	the	example	of	the	calculate_age_at_wedding	function,	you	may	not	need	to
retrieve	a	record	from	the	database	at	all.	Depending	on	your	application,	it	might
be	fine	(and	even	preferable)	to	have	the	function	simply	accept	the	full	record,
rather	than	the	person_id	variable.	In	other	words,	the	baton	handoff	to	this
function	would	not	happen	until	the	database	call	already	occurred,	and	the	only
thing	this	function	would	do	would	be	to	perform	the	arithmetic.

Reorganizing	in	this	way	would	also	make	the	function	less	opinionated	about
what	kind	of	data	it	gets.	Any	dictionary-like	object	with	the	appropriate	keys
would	do.

The	following	trimmed-down	function	only	does	the	calculation	of	the	age,	and	is
expected	to	receive	a	full	person	record	(where	it	gets	it	from	is	not	relevant).

def	calculate_age_at_wedding(person):

				"""Calculate	the	age	of	a	person	at	his	or	her	wedding,	given	the

				record	of	the	person	as	a	dictionary-like	object.

				"""

				#	Pull	out	the	birthday	and	anniversary	datetime.date	objects.

				anniversary	=	person['anniversary']

				birthday	=	person['birthday']

				#	Calculate	the	age	of	the	person	on	his	or	her	wedding	day.

				age	=	anniversary.year	-	birthday.year

				#	If	the	birthday	occurs	later	in	the	year	than	the	anniversary,	then

				#	subtract	one	from	the	age.

				if	birthday.replace(year=anniversary.year)	>	anniversary:

								age	-=	1

				#	Done;	return	the	age.

				return	age

In	most	ways,	this	function	is	almost	exactly	the	same	as	the	previous	version.	The
only	thing	that	has	changed	is	that	the	call	to	get_person_from_db	has	been
removed	(and	the	comments	and	docstring	updated	to	match).

Testing	the	Function



When	it	comes	to	testing	this	function,	the	problem	is	now	very	simple.	Just	pass	a
dictionary	and	make	sure	you	get	the	correct	result.

>>>	from	datetime	import	date

>>>

>>>	person	=	{'anniversary':	date(2012,	4,	21),

...											'birthday':	date(1986,	6,	15)}

>>>	age	=	calculate_age_at_wedding(person)

>>>	age

25

Of	course,	a	couple	limitations	exist	here.	First,	this	is	still	something	that	was	run
manually	in	the	interactive	terminal.	The	value	of	a	unit	testing	suite	is	that	you
run	it	in	an	automated	fashion.

A	second	(and	even	more	important)	limitation	to	recognize	is	that	this	tests	only
one	input	against	only	one	output.	Suppose	you	gutted	the	function	the	next	day
and	replaced	it	with	the	following:

def	calculate_age_at_wedding(*args,	**kwargs):

				return	25

The	test	would	still	pass,	even	though	the	function	would	be	extremely	broken.

Indeed,	the	test	does	not	even	cover	some	sections	of	this	function.	After	all,	there
is	an	if	block	in	the	function	based	on	whether	or	not	the	birthday	falls	before	or
after	the	anniversary	in	a	calendar	year.	At	a	minimum,	you	would	want	to	ensure
that	your	test	takes	both	pathways.

The	following	test	function	handles	this:

from	datetime	import	date

def	test_calculate_age_at_wedding():

				"""Establish	that	the	'calculate_age_at_wedding'	function	seems	to

				calculate	a	person's	age	at	his	wedding	correctly,	given	a

				dictionary-like	object	representing	a	person.

				"""

				#	Assert	that	if	the	anniversary	falls	before	the	birthday	in	a

				#	calendar	year,	that	the	calculation	is	done	properly.

				person	=	{'anniversary':	date(2012,	4,	21),

														'birthday':	date(1986,	6,	15)}

				age	=	calculate_age_at_wedding(person)

				assert	age	==	25,	'Expected	age	25,	got	%d.'	%	age

				#	Assert	that	if	the	anniversary	falls	after	the	birthday	in	a	calendar

				#	year,	that	the	calculation	is	done	properly.

				person	=	{'anniversary':	date(1969,	8,	11),

														'birthday':	date(1945,	2,	15)}

				age	=	calculate_age_at_wedding(person)

				assert	age	==	24,	'Expected	age	24,	got	%d.'	%	age

Now	you	have	a	function	that	can	be	run	by	an	automated	process.	Python



includes	a	test	runner,	which	is	explored	shortly.	Also,	this	test	covers	a	couple	of
different	permutations	of	the	function.	It	certainly	does	not	cover	every	possible
input	(it	would	be	impossible	to	do	that),	but	it	provides	a	slightly	more	complete
sanity	check.

However,	always	remember	that	the	tests	are	not	an	exhaustive	check.	They	only
test	the	inputs	and	outputs	that	you	provide.	For	example,	this	test	function	says
nothing	about	what	would	happen	if	the	calculate_age_at_wedding	function	were
sent	something	other	than	a	dictionary,	or	if	it	were	sent	a	dictionary	with	the
wrong	keys,	or	if	datetime	objects	were	used	instead	of	date	objects,	or	if	you	were
to	send	an	anniversary	date	that	is	earlier	than	the	birth	date,	or	any	number	of
other	permutations.	This	is	fine.	It	is	simply	important	to	understand	what	the
limits	of	your	tests	are.

The	assert	Statement
What	about	the	assert	statement	that	the	test	function	is	using?	Consider	what	a
unit	test	fundamentally	is.	A	unit	test	is	an	assertion	or	a	set	of	assertions.	In	this
case,	you	assert	that	if	you	send	a	properly	formatted	dictionary	with	specific
dates,	you	get	a	specific	integer	result.

In	Python,	assert	is	a	keyword,	and	assert	statements	are	used	almost	exclusively
for	testing	(although	they	need	not	appear	exclusively	in	test	code).	The	assert
statement	expects	the	expression	sent	to	it	to	evaluate	to	True.	If	it	does,	the
assert	statement	does	nothing;	if	it	does	not,	AssertionError	is	raised.	You	can
optionally	provide	a	custom	error	message	to	be	raised	with	the	AssertionError,	as
the	previous	example	does.

When	writing	tests,	you	want	to	use	AssertionError	as	the	exception	to	be	raised
when	a	test	fails,	either	by	raising	it	directly,	or	(usually)	by	using	the	assert
statement	to	assert	the	test's	pass	conditions,	because	all	of	the	unit	testing
frameworks	will	catch	the	error	and	handle	it	appropriately	when	compiling	test
failures.



Unit	Testing	Frameworks
Now	that	you	have	your	test	as	a	function,	the	next	step	is	to	set	up	a	process	to
run	that	test	(as	well	as	any	others	you	may	write	to	test	the	remainder	of	the
application).

Several	unit	testing	frameworks,	such	as	py.test	and	nose,	are	available	as	third-
party	packages.	However,	the	Python	standard	library	also	ships	with	a	quite
robust	unit	testing	framework,	available	under	the	unittest	module	in	the
standard	library.

Consider	the	testing	function	from	the	previous	example,	but	structured	to	be	run
by	the	unittest	module.

import	unittest

from	datetime	import	date

class	Tests(unittest.TestCase):

				def	test_calculate_age_at_wedding(self):

								"""Establish	that	the	'calculate_age_at_wedding'	function	seems

								to	calculate	a	person's	age	at	his	wedding	correctly,	given

								a	dictionary-like	object	representing	a	person.

								"""

								#	Assert	that	if	the	anniversary	falls	before	the	birthday

								#	in	a	calendar	year,	that	the	calculation	is	done	properly.

								person	=	{'anniversary':	date(2012,	4,	21),

																		'birthday':	date(1986,	6,	15)}

								age	=	calculate_age_at_wedding(person)

								self.assertEqual(age,	25)

								#	Assert	that	if	the	anniversary	falls	after	the	birthday

								#	in	a	calendar	year,	that	the	calculation	is	done	properly.

								person	=	{'anniversary':	date(1969,	8,	11),

																		'birthday':	date(1945,	2,	15)}

								age	=	calculate_age_at_wedding(person)

								self.assertEqual(age,	24)

In	most	ways,	this	looks	the	same	as	what	you	saw	before.	However,	it	has	a
couple	of	key	differences.	The	first	difference	is	that	you	now	have	a	class,	which
subclasses	unittest.TestCase.	The	unittest	module	expects	to	find	tests	grouped
using	unittest.TestCase	subclasses.	Each	test	must	be	a	function	whose	name
begins	with	test.	As	a	corollary,	because	the	test	itself	is	now	a	method	of	the	class
rather	than	an	unbound	function,	it	now	has	self	as	an	argument.

The	other	change	is	that	the	raw	assert	statements	have	been	replaced	with	calls
to	self.assertEqual.	The	unittest.TestCase	class	provides	a	number	of	wrappers
around	assert	that	standardize	error	messages	and	provide	some	other
boilerplate.

Running	Unit	Tests



Now	it	is	time	to	actually	run	this	test	within	the	unittest	framework.	To	do	this,
save	both	the	function	and	the	test	class	in	a	single	module,	such	as	wedding.py.

The	Python	interpreter	provides	a	flag,	-m,	which	takes	a	module	in	the	standard
library	or	on	sys.path,	and	runs	it	as	a	script.	The	unittest	module	supports	being
run	in	this	way,	and	accepts	the	Python	module	to	be	tested.	(If	you	named	your
module	wedding.py,	this	would	be	wedding.)

$	python	-m	unittest	wedding

.

----------------------------------------------------------------------

Ran	1	test	in	0.000s

OK

What	is	happening	here?	The	wedding	module	was	loaded,	and	the	unittest
module	found	a	unittest.TestCase	subclass.	It	instantiated	the	class	and	then	ran
every	method	beginning	with	the	word	test,	which	the
test_calculate_age_at_wedding	method	does.

The	unittest	output	prints	a	period	character	(.)	for	a	successful	test,	or	a	letter
for	failures	(F),	errors	(E),	and	a	few	other	cases,	such	as	tests	that	are	intentionally
skipped	(s).	Because	there	was	only	one	test,	and	it	was	successful,	you	see	a	single
.	character	followed	by	the	concluding	output.

Failures
You	can	observe	what	happens	when	a	test	fails	by	simply	changing	the	test's
condition	so	that	it	will	intentionally	fail.

To	illustrate	this,	add	the	following	method	to	your	Tests	class:

def	test_failure_case(self):

				"""Assert	a	wrong	age,	and	fail."""

				person	=	{'anniversary':	date(2012,	4,	21),

														'birthday':	date(1986,	6,	15)}

				age	=	calculate_age_at_wedding(person)

				self.assertEqual(age,	99)

This	is	a	similar	test,	except	that	it	asserts	that	the	age	is	99,	which	is	wrong.
Observe	what	happens	if	you	run	tests	on	the	module	now:

$	python	-m	unittest	wedding

.F

======================================================================

FAIL:	test_failure_case	(wedding.Tests)

Assert	a	wrong	age,	and	fail.

----------------------------------------------------------------------

Traceback	(most	recent	call	last):

		File	"wedding.py",	line	50,	in	test_failure_case

				self.assertEqual(age,	99)

AssertionError:	25	!=	99



----------------------------------------------------------------------

Ran	2	tests	in	0.000s

FAILED	(failures=1)

Now	you	have	two	tests.	You	have	the	main	test	from	before,	which	still	passes,
and	a	second	test	with	a	bogus	age,	which	fails.

If	you	ran	the	function	directly,	you	would	just	get	a	standard	traceback	when
AssertionError	is	raised.	However,	the	unittest	module	actually	catches	this	error
and	tracks	the	failure,	and	prints	the	output	nicely	at	the	end	of	the	test	run.

This	may	seem	like	an	unimportant	distinction	at	this	point,	but	if	you	have
hundreds	of	tests,	this	difference	matters.	A	Python	module	will	terminate	when	it
comes	across	the	first	uncaught	exception,	so	your	test	run	would	stop	on	the	first
failure.	When	you're	using	unittest,	the	tests	continue	to	run,	and	you	get	all	the
failures	at	once	at	the	end.

The	unittest	output	also	includes	the	test	function	and	the	beginning	of	the
docstring,	so	it	is	easy	to	go	find	the	failing	test	and	investigate,	as	well	as	the	full
traceback,	so	you	still	have	the	same	insight	into	the	offending	code.

Errors
Only	a	small	difference	distinguishes	an	error	from	a	failure.	A	test	that	raises
AssertionError	is	considered	to	have	failed,	whereas	a	test	that	raises	any
exception	other	than	AssertionError	is	considered	to	be	in	error.

Consider	what	would	happen	if	the	person	variable	being	tested	is	an	empty
dictionary.	Add	the	following	function	to	your	Tests	class	in	the	wedding	module:

def	test_error_case(self):

				"""Attempt	to	send	an	empty	dict	to	the	function."""

				person	=	{}

				age	=	calculate_age_at_wedding(person)

				self.assertEqual(age,	25)

Now	what	happens	when	you	run	tests?

$	python	-m	unittest	wedding

.EF

======================================================================

ERROR:	test_error_case	(wedding.Tests)

Attempt	to	send	an	empty	dict	to	the	function.

----------------------------------------------------------------------

Traceback	(most	recent	call	last):

		File	"wedding.py",	line	55,	in	test_error_case

				age	=	calculate_age_at_wedding(person)

		File	"wedding.py",	line	10,	in	calculate_age_at_wedding

				anniversary	=	person['anniversary']

KeyError:	'anniversary'

======================================================================

FAIL:	test_failure_case	(wedding.Tests)



Assert	a	wrong	age,	and	fail.

----------------------------------------------------------------------

Traceback	(most	recent	call	last):

		File	"wedding.py",	line	50,	in	test_failure_case

				self.assertEqual(age,	99)

AssertionError:	25	!=	99

----------------------------------------------------------------------

Ran	3	tests	in	0.000s

FAILED	(failures=1,	errors=1)

Now	you	have	three	tests.	You	have	the	passing	and	failing	test	from	earlier,	and	a
test	that	is	in	error.	Instead	of	raising	AssertionError,	the	error	case	raised
KeyError,	because	the	calculate_age_at_wedding	function	expected	an	anniversary
key	in	the	dictionary	(and	the	key	was	not	there).

For	most	practical	purposes,	you	probably	will	not	actually	put	much	stock	in	the
difference	between	a	failure	and	an	error.	They	are	simply	failing	tests	that	fail	in
slightly	different	ways.

Skipped	Tests
It	is	also	possible	to	mark	that	a	test	should	be	skipped	under	certain	situations.
For	example,	say	that	an	application	is	designed	to	run	under	Python	2	or	Python
3,	but	a	particular	test	only	makes	sense	in	one	of	the	two	environments.	Rather
than	have	the	test	fail	when	it	should	not,	it	is	possible	to	declare	that	a	test	should
run	only	under	certain	conditions.

The	unittest	module	provides	skipIf	and	skipUnless	decorators	that	take	an
expression.	The	skipIf	decorator	causes	the	test	to	be	skipped	if	the	expression	it
receives	evaluates	to	True,	and	the	skipUnless	decorator	causes	the	test	to	be
skipped	if	the	expression	it	receives	evaluates	to	False.	In	addition,	both
decorators	take	a	second,	required	argument,	which	is	a	string	that	describes	why
the	test	was	skipped.

To	see	skipped	tests	in	action,	add	the	following	function	to	your	Tests	class.	(To
keep	the	output	shown	here	down	to	a	reasonable	size,	the	failure	and	error	tests
have	been	removed.)

@unittest.skipIf(True,	'This	test	was	skipped.')

def	test_skipped_case(self):

				"""Skip	this	test."""

				pass

This	function	is	decorated	with	unittest.skipIf.	True	is	a	valid	expression	in
Python,	and	obviously	evaluates	to	True.	Now	see	what	happens	when	you	run	the
tests:

$	python	-m	unittest	wedding

.s

----------------------------------------------------------------------



Ran	2	tests	in	0.000s

OK	(skipped=1)

The	output	for	a	skipped	test	is	an	s,	rather	than	the	traditional	period	character
that	denotes	a	test	that	passed.	The	use	of	a	lowercase	letter	rather	than	an
uppercase	one	(as	in	F	and	E)	signifies	that	this	is	not	an	error	condition,	and
indeed,	the	complete	test	run	is	considered	to	be	a	success.

Loading	Tests
So	far,	you	have	run	tests	out	of	a	single	module,	and	the	tests	have	lived	in	the
same	module	where	the	code	that	it	is	testing	also	lives.	This	is	fine	for	a	trivial
example	but	entirely	unfeasible	for	a	large	application.

The	unittest	module	understands	this,	and	provides	an	extensible	mechanism	for
programmatically	loading	tests	from	a	complete	project	tree.	The	default	class,
which	is	suitable	for	most	needs,	is	unittest.TestLoader.

If	you	are	just	using	the	default	test	loading	class,	which	is	what	you	want	most	of
the	time,	you	can	trigger	it	by	using	the	word	discover	instead	of	the	module	name
to	be	tested.

$	python	-m	unittest	discover

----------------------------------------------------------------------

Ran	0	tests	in	0.000s

OK

Where	did	your	tests	go?	The	test	discovery	follows	certain	rules	for	determining
where	it	goes	to	actually	look	for	tests.	By	default,	it	expects	all	files	containing
tests	to	be	named	according	to	the	pattern	test*.py.

This	is	what	you	really	want	to	do	anyway.	The	value	of	test	discovery	is	that	you
can	separate	your	tests	from	the	rest	of	your	code.	So,	if	you	move	the	passing	test
itself	from	the	wedding.py	file	to	a	new	file	matching	that	pattern	(for	example,
test_wedding.py),	the	test	discovery	system	will	find	it.	(Note	that	you	must
import	the	calculate_age_at_wedding	function	explicitly,	because	it	is	not	in	the
same	module	anymore!)

Sure	enough,	now	the	test	discovery	finds	the	tests:

$	python	-m	unittest	discover

.

----------------------------------------------------------------------

Ran	1	test	in	0.000s

OK



Mocking
To	make	the	calculate_age_at_wedding	function	something	that	was	capable	of
being	easily	unit	tested,	recall	how	you	had	to	remove	part	of	the	function.	The
idea	was	that	you	organize	your	code	to	make	that	function	easily	testable	by
doing	a	database	call	elsewhere.

Often,	organizing	your	code	in	a	way	that	makes	it	easily	testable	is	the	ideal
approach	to	this	problem,	but	sometimes	it	is	not	possible	or	wise.	Instead	of
implicitly	hand-waving	certain	functionality	by	organizing	your	code	around
atomic	testing,	how	do	you	explicitly	hand-wave	a	segment	of	tested	code?

The	answer	is	mocking.	Mocking	is	the	process	of	declaring	within	a	test	that	a
certain	function	call	should	be	stipulated	to	give	a	particular	output,	and	the
function	call	itself	should	be	suppressed.	Additionally,	you	can	assert	that	the
mocked	call	that	you	expect	was	made	in	a	particular	way.

Beginning	in	Python	3.3,	the	unittest	module	ships	with	unittest.mock,	which
contains	tools	for	mocking.	If	you	are	using	Python	3.2	or	earlier,	you	can	use	the
mock	package,	which	you	can	download	from	www.pypi.python.org.

The	API	between	these	is	identical,	but	how	you	import	it	obviously	changes.	If
you	are	using	Python	3.3,	you	want	from	unittest	import	mock;	if	you	are	using
the	installed	package,	you	want	import	mock.

Mocking	a	Function	Call
Consider	again	the	original	function	for	calculate_age_at_wedding,	which
included	a	call	to	retrieve	a	record	from	an	unspecified	database.	(If	you	are
following	along,	you	should	create	a	new	file.)

def	calculate_age_at_wedding(person_id):

				"""Calculate	the	age	of	a	person	at	his	or	her	wedding,	given	the

				ID	of	the	person	in	the	database.

				"""

				#	Get	the	person	from	the	database,	and	pull	out	the	birthday

				#	and	anniversary	datetime.date	objects.

				person	=	get_person_from_db(person_id)

				anniversary	=	person['anniversary']

				birthday	=	person['birthday']

				#	Calculate	the	age	of	the	person	on	his	or	her	wedding	day.

				age	=	anniversary.year	–	birthday.year

				#	If	the	birthday	occurs	later	in	the	year	than	the	anniversary,	then

				#	subtract	one	from	the	age.

				if	birthday.replace(year=anniversary.year)	>	anniversary:

								age	-=	1

				#	Done;	return	the	age.

				return	age

http://www.pypi.python.org


Before,	you	tested	most	of	this	function	by	actually	changing	the	function	itself.
You	reorganized	the	code	around	ease	of	testability.	However,	you	also	want	to	be
able	to	test	code	where	this	is	either	impossible	or	undesirable.

First	things	first.	You	still	do	not	actually	have	a	get_person_from_db	function,	so
you	want	to	suppress	that	function	call.	Therefore,	add	a	function	that	raises	an
exception.

def	get_person_from_db(person_id):

				raise	RuntimeError('The	real	'get_person_from_db'	function	'

																							'was	called.')

At	this	point,	if	you	actually	try	to	run	the	calculate_age_at_wedding	function,	you
will	get	a	RuntimeError.	This	is	convenient	for	this	example	because	it	will	make	it
very	obvious	if	your	mocking	does	not	work.	Your	test	will	loudly	fail.

Next	comes	the	test.	If	you	just	try	to	run	the	same	test	from	before,	it	will	fail
(with	RuntimeError).	You	need	a	way	of	getting	around	the	get_person_from_db
call.	This	is	where	mock	comes	in.

The	mock	module	is	essentially	a	monkey-patching	library.	It	temporarily	replaces
a	variable	in	a	given	namespace	with	a	special	object	called	a	MagicMock,	and	then
returns	the	variable	to	its	previous	value	after	the	scope	of	the	mock	is	concluded.
The	MagicMock	object	itself	is	extremely	permissive.	It	accepts	(and	tracks)
basically	any	call	made	to	it,	and	returns	whatever	you	tell	it.

In	this	case,	you	want	the	get_person_from_db	function	to	be	replaced	with	a
MagicMock	object	for	the	duration	of	your	test.

import	unittest

import	sys

from	datetime	import	date

#	Import	mock	regardless	of	whether	it	is	from	the	standard	library

#	or	from	the	PyPI	package.

try:

				from	unittest	import	mock

except	ImportError:

				import	mock

class	Tests(unittest.TestCase):

				def	test_calculate_age_at_wedding(self):

								"""Establish	that	the	'calculate_age_at_wedding'	function	seems

								to	calculate	a	person's	age	at	his	wedding	correctly,	given

								a	person	ID.

								"""

								#	Since	we	are	mocking	a	name	in	the	current	module,	rather	than

								#	an	imported	module	(the	common	case),	we	need	a	reference	to

								#	this	module	to	send	to	'mock.patch.object`.

								module	=	sys.modules[__name__]



								with	mock.patch.object(module,	'get_person_from_db')	as	m:

												#	Ensure	that	the	get_person_from_db	function	returns

												#	a	valid	dictionary.

												m.return_value	=	{'anniversary':	date(2012,	4,	21),

																														'birthday':	date(1986,	6,	15)}

												#	Assert	that	that	the	calculation	is	done	properly.

												age	=	calculate_age_at_wedding(person_id=42)

												self.assertEqual(age,	25)

The	big	new	thing	going	on	here	is	the	call	to	mock.patch.object.	This	is	a	function
that	can	be	used	either	as	a	context	manager	or	a	decorator,	and	it	takes	two
required	arguments:	a	module	that	contains	the	callable	being	mocked,	and	then
the	name	of	the	callable	as	a	string.	In	this	case,	because	the	function	and	the	test
are	all	contained	in	a	single	file	(which	is	not	what	you	would	normally	do),	you
must	get	a	reference	to	the	current	module,	which	is	always
sys.modules[__name__].

The	context	manager	returns	a	MagicMock	object,	which	is	m	in	the	previous
example.	Before	you	can	call	the	function	being	tested,	however,	you	must	specify
what	you	expect	the	MagicMock	to	do.	In	this	case,	you	want	it	to	return	a	dictionary
that	approximates	a	valid	record	of	a	person.	The	return_value	property	of	the
MagicMock	object	is	what	handles	this.	Setting	it	means	that	every	time	the
MagicMock	is	called,	it	will	return	that	value.	If	you	do	not	set	return_value,
another	MagicMock	object	is	returned.

If	you	run	tests	on	this	module,	you	will	see	that	the	test	passes.	(Here,	the	new
module	is	named	mock_wedding.py.)

$	python	-m	unittest	mock_wedding

.

----------------------------------------------------------------------

Ran	1	test	in	0.000s

OK

Asserting	Mocked	Calls
This	test	passes,	but	it	is	still	fundamentally	incomplete	in	one	important	way.	It
mocks	the	function	call	to	get_person_from_db,	and	tests	that	the	function	does	the
right	thing	with	the	output.

What	the	test	does	not	do	is	actually	verify	that	the	baton	handoff	to	the
get_person_from_db	function	actually	occurred.	In	some	ways,	this	is	redundant.
You	know	the	call	happened,	because	otherwise	you	would	not	have	received	the
return	value	from	the	mock	object.	However,	sometimes	you	will	mock	function
calls	that	do	not	have	a	return	value.

Fortunately,	MagicMock	objects	track	calls	made	to	them.	Rather	than	just	spitting
out	the	return	value	and	being	done,	the	object	stores	information	about	how
many	times	it	was	called,	and	the	signature	of	each	call.	Finally,	MagicMock



provides	methods	to	assert	that	calls	occurred	in	a	particular	fashion.

Probably	the	most	common	method	you	will	use	for	this	purpose	is
MagicMock.assert_called_once_with.	This	asserts	two	things:	that	the	MagicMock
was	called	once	and	exactly	once,	and	that	the	specified	argument	signature	was
used.	Consider	an	augmented	test	function	that	ensures	that	the
get_person_from_db	method	was	called	with	the	expected	person	ID:

class	Tests(unittest.TestCase):

				def	test_calculate_age_at_wedding(self):

								"""Establish	that	the	'calculate_age_at_wedding'	function	seems

								to	calculate	a	person's	age	at	his	wedding	correctly,	given

								a	person	ID.

								"""

								#	Since	we	are	mocking	a	name	in	the	current	module,	rather	than

								#	an	imported	module	(the	common	case),	we	need	a	reference	to

								#	this	module	to	send	to	'mock.patch.object`.

								module	=	sys.modules[__name__]

								with	mock.patch.object(module,	'get_person_from_db')	as	m:

												#	Ensure	that	the	get_person_from_db	function	returns

												#	a	valid	dictionary.

												m.return_value	=	{'anniversary':	date(2012,	4,	21),

																														'birthday':	date(1986,	6,	15)}

												#	Assert	that	that	the	calculation	is	done	properly.

												age	=	calculate_age_at_wedding(person_id=42)

												self.assertEqual(age,	25)

												#	Assert	that	the	'get_person_from_db'	method	was	called

												#	the	way	we	expect.

												m.assert_called_once_with(42)

The	thing	that	has	changed	here	is	that	the	MagicMock	object	is	now	being	checked
at	the	end	to	ensure	that	you	got	the	call	to	it	that	you	expected.	The	call	signature
is	simply	a	single	positional	argument:	42.	This	is	the	person	ID	used	in	the	test
(just	a	few	lines	earlier).	It	is	sent	as	a	positional	argument	because	that	is	the	way
the	argument	is	provided	in	the	original	function.

				person	=	get_person_from_db(person_id)

Notice	that	person_id	is	provided	as	a	single	positional	argument,	so	that	is	what
the	MagicMock	will	record.

If	you	run	the	test,	you	will	see	that	it	still	passes:

$	python	-m	unittest	mock_wedding

.

----------------------------------------------------------------------

Ran	1	test	in	0.000s

OK

What	happens	if	the	MagicMock's	assertions	are	incorrect?	The	tests	fail	with	a



useful	failure	message,	as	you	can	see	by	changing	the	assert_called_once_with
argument	signature:

$	python	-m	unittest	mock_wedding

F

======================================================================

FAIL:	test_calculate_age_at_wedding	(wedding.Tests)

Establish	that	the	'calculate_age_at_wedding'	function	seems

----------------------------------------------------------------------

Traceback	(most	recent	call	last):

		File	"/Users/luke/Desktop/wiley/wedding.py",	line	58,	in

							test_calculate_age_at_wedding

				m.assert_called_once_with(84)

		File	

"/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/unittest

							/mock.py",	line	771,	in	assert_called_once_with

				return	self.assert_called_with(*args,	**kwargs)

		File	

"/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/unittest

							/mock.py",	line	760,	in	assert_called_with

				raise	AssertionError(_error_message())	from	cause

AssertionError:	Expected	call:	get_person_from_db(84)

Actual	call:	get_person_from_db(42)

----------------------------------------------------------------------

Ran	1	test	in	0.001s

Here	you	are	told	which	call	the	MagicMock	expected	to	get,	as	well	as	the	call	it
actually	received.	You	would	get	similar	errors	if	there	were	no	call,	or	more	than
one	call.

The	assert_called_once_with	method	has	a	close	cousin,	which	is
assert_called_with.	This	is	identical	except	for	the	fact	that	it	does	not	fail	if	the
MagicMock	has	been	called	more	than	once,	and	it	checks	the	call	signature	against
only	the	most	recent	call.

Inspecting	Mocks
You	can	inspect	MagicMock	objects	in	several	other	ways	to	determine	what
occurred.	You	may	just	want	to	know	that	it	was	called,	or	how	many	times	it	was
called.	You	also	may	want	to	assert	a	sequence	of	calls,	or	only	look	at	part	of	the
call's	signature.

Call	Count	and	Status
A	couple	of	the	easiest	and	most	straightforward	questions	are	whether	a
MagicMock	has	been	called,	and	how	many	times	it	has	been	called.

If	you	just	want	to	know	whether	a	MagicMock	has	been	called	at	all,	you	can	check
the	called	property,	which	is	set	to	True	the	first	time	that	the	MagicMock	is	called.

>>>	from	unittest	import	mock

>>>	m	=	mock.MagicMock()



>>>	m.called

False

>>>	m(foo='bar')

<MagicMock	name='mock()'	id='4315583152'>

>>>	m.called

True

On	the	other	hand,	you	may	also	want	to	know	exactly	how	many	times	the
MagicMock	has	been	called.	This	is	available,	too,	as	call_count.

>>>	from	unittest	import	mock

>>>	m	=	mock.MagicMock()

>>>	m.call_count

0

>>>	m(foo='bar')

<MagicMock	name='mock()'	id='4315615752'>

>>>	m.call_count

1

>>>	m(spam='eggs')

<MagicMock	name='mock()'	id='4315615752'>

>>>	m.call_count

2

The	MagicMock	class	does	not	have	built-in	methods	for	asserting	the	presence	of	a
call	or	a	given	call	count,	but	the	assertEqual	and	assertTrue	methods	that	are
part	of	unittest.TestCase	are	more	than	sufficient	for	that	task.

Multiple	Calls
You	may	also	want	to	assert	the	composition	of	multiple	calls	to	a	MagicMock	in	one
fell	swoop.	MagicMock	objects	provide	the	assert_has_calls	method	for	this
purpose.

To	use	assert_has_calls,	you	must	understand	call	objects,	which	are	provided
as	part	of	the	mock	library.	Whenever	you	make	a	call	to	a	MagicMock	object,	it
internally	creates	a	call	object	that	stores	the	call	signature	(and	appends	it	to	the
mock_calls	list	on	the	object).	These	call	objects	are	considered	to	be	equivalent	if
the	signatures	match.

>>>	from	unittest.mock	import	call

>>>	a	=	call(42)

>>>	b	=	call(42)

>>>	c	=	call('foo')

>>>	a	is	b

False

>>>	a	==	b

True

>>>	a	==	c

False

This	is	actually	how	assert_called_once_with	and	similar	methods	work	under	the
hood.	They	make	a	new	call	object,	and	then	ensure	that	it	is	equivalent	to	the
one	in	the	mock_calls	list.



The	assert_has_calls	method	takes	a	list	(or	other	similar	object,	such	as	a	tuple)
of	call	objects.	It	also	accepts	an	optional	keyword	argument,	any_order,	which
defaults	to	False.	If	this	remains	False,	this	means	that	it	expects	the	calls	to	have
occurred	in	the	same	sequence	that	they	do	in	the	list.	If	it	is	set	to	True,	only	the
presence	of	each	call	to	the	MagicMock	is	relevant,	not	the	order	of	the	calls.

Here	is	what	assert_has_calls	looks	like	in	action:

>>>	from	unittest.mock	import	MagicMock,	call

>>>

>>>	m	=	MagicMock()

>>>	m.call('a')

<MagicMock	name='mock.call()'	id='4370551920'>

>>>	m.call('b')

<MagicMock	name='mock.call()'	id='4370551920'>

>>>	m.call('c')

<MagicMock	name='mock.call()'	id='4370551920'>

>>>	m.call('d')

<MagicMock	name='mock.call()'	id='4370551920'>

>>>	m.assert_has_calls([call.call('b'),	call.call('c')])

It	is	worth	noting	that	although	assert_has_calls	does	expect	the	calls	to	occur	in
order,	it	does	not	require	that	you	send	it	the	entire	list	of	calls.	Having	other	calls
on	either	end	of	the	list	is	fine.

Inspecting	Calls
Sometimes,	you	may	not	want	to	test	the	entirety	of	a	call	signature.	Perhaps	it	is
only	important	that	a	certain	argument	be	included.	This	is	a	little	bit	more
difficult	to	do.	There	is	no	ready-made	method	for	a	call	to	declare	that	it	matches
anything	other	than	a	complete	call	signature.

However,	it	is	possible	to	inspect	the	call	object	itself	and	look	at	the	arguments
sent	to	it.	The	way	this	works	is	that	the	call	class	is	actually	a	subclass	of	tuple,
and	call	objects	are	tuples	with	three	elements,	the	second	and	third	of	which	are
the	call	signature.

>>>	from	unittest.mock	import	call

>>>	c	=	call('foo',	'bar',	spam='eggs')

>>>	c[1]

('foo',	'bar')

>>>	c[2]

{'spam':	'eggs'}

By	inspecting	the	call	object	directly,	you	can	get	a	tuple	of	the	positional
arguments	and	a	dictionary	of	the	keyword	arguments.

This	gives	you	the	capability	to	test	only	part	of	a	call	signature.	For	example,	what
if	you	want	to	ensure	that	the	string	bar	was	one	of	the	arguments	given	to	the	call,
but	you	do	not	care	about	the	rest	of	the	arguments?

>>>	assert	'bar'	in	c[1]



>>>	assert	'baz'	in	c[1]

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

AssertionError

>>>	assert	c[2]['spam']	==	'eggs'

Once	you	have	access	to	the	positional	arguments	as	a	tuple	and	the	keyword
arguments	as	a	dictionary,	testing	for	the	presence	or	absence	of	a	single
argument	is	no	different	than	testing	for	the	presence	of	an	element	in	a	list	or
dictionary.



Other	Testing	Tools
Several	other	testing	tools	are	available	that	you	may	want	to	consider	using	as
you	build	out	a	unit	test	suite	in	your	applications.

coverage
How	do	you	actually	know	what	code	is	being	tested?	Ideally,	you	want	to	test	as
much	of	your	code	as	possible	in	each	test	run,	while	still	maintaining	a	test	suite
that	runs	quickly.

If	you	want	to	know	just	how	much	of	your	code	your	test	suite	is	exercising,	you
will	want	to	use	the	coverage	application,	which	is	available	from
www.pypi.python.org.	Originally	written	by	Ned	Batchelder,	coverage	is	a	tool	that
keeps	track	of	all	of	the	lines	of	code	in	each	module	that	run	as	your	tests	are
running,	and	provides	a	report	detailing	what	code	did	not	run.	Of	course,
coverage	runs	on	both	Python	2	and	Python	3.

The	application	works	by	installing	a	coverage	script,	and	you	use	coverage	run	as
a	substitute	for	python	when	invoking	a	Python	script	of	any	kind,	including	your
unit	test	script.	The	output	will	look	fundamentally	similar.

$	coverage	run	-m	unittest	mock_wedding

.

----------------------------------------------------------------------

Ran	1	test	in	0.000s

OK

However,	if	you	look	at	the	directory,	you	will	see	that	a	.coverage	file	was	created
in	the	process.	This	file	contains	information	about	what	code	in	the	file	actually
ran.

You	can	view	this	information	with	coverage	report.

$	coverage	report

Name											Stmts			Miss		Cover

----------------------------------

mock_wedding						22						1				95%

This	report	shows	how	many	statements	ran	and	how	many	statements	are	in	the
file	that	did	not	run.	So,	you	know	that	one	statement	was	omitted,	but	not	which
one.	Adding	-m	to	the	command	adds	output	showing	which	lines	were	skipped:

$	coverage	report	-m

Name											Stmts			Miss		Cover			Missing

--------------------------------------------

mock_wedding						22						1				95%			24

Now	you	know	that	line	24	was	the	test	that	did	not	run.	(In	the	example
mock_wedding.py	file,	line	24	corresponds	to	the	RuntimeError	that	is	raised	if	the

http://www.pypi.python.org


“real”	get_person_from_db	function	was	called.)

The	coverage	application	can	also	write	attractive	HTML	output	using	the
coverage	html	command.	This	highlights	in	red	the	lines	that	did	not	run.
Additionally,	if	you	have	a	statement	with	multiple	branches	(such	as	an	if
statement),	it	highlights	those	in	yellow	if	only	one	path	was	taken.

tox
Many	Python	applications	need	to	run	on	multiple	versions	of	Python,	including
both	Python	2	and	Python	3.	If	you	are	writing	an	application	that	runs	in	multiple
environments	(even	just	multiple	minor	revisions),	you	want	to	run	your	tests
against	all	of	those	environments.

Attempting	to	run	tests	manually	across	every	environment	you	support	is	likely
to	be	cumbersome.	If	you	need	to	do	this,	consider	tox.	Written	by	Holger	Krekel,
tox	is	a	tool	that	automatically	creates	virtual	environments	(using	virtualenv)
with	the	appropriate	versions	of	Python	(provided	you	have	them	installed)	and
runs	the	tests	within	those	environments.

Other	Test	Runners
This	chapter	has	focused	primarily	on	the	test	runner	provided	by	Python	itself,
but	other	alternatives	are	available.	Some,	such	as	nose	and	py.test,	are	quite
popular,	and	add	numerous	features	and	hooks	for	extensibility.

These	libraries	are	easy	to	adopt	even	if	you	already	have	a	robust	unit	test	suite,
because	both	support	using	unittest	tests	out	of	the	box.	However,	both	libraries
support	other	ways	of	adding	tests	to	the	pool.

Both	of	these	libraries	are	available	on	www.pypi.python.org,	and	run	on	Python
2.6	and	up.

http://www.pypi.python.org


Summary
Unit	testing	is	a	powerful	way	to	ensure	that	your	code	remains	consistent	over
time.	It	is	a	useful	way	to	discover	when	your	code	changes,	and	how	to	make
adjustments	accordingly.

This	is	an	important	facet	of	any	application.	Having	a	robust	testing	suite	makes
it	easier	to	detect	some	bugs	and	makes	you	aware	when	a	function's	behavior
changes,	thus	simplifying	application	maintenance.

Chapter	12	examines	the	optparse	and	argparse	tools	for	using	Python	on	the
command-line	interface	(CLI).





Chapter	12
CLI	Tools
Python	applications	come	in	all	sorts	of	flavors,	including	desktop	applications,
server-side	applications,	scripts,	scientific	computing	applications,	and	much
more.

Some	Python	applications	must	function	with	the	command-line	interface	(CLI).
They	may	need	to	ask	for	input,	and	receive	arguments	that	are	provided	when	the
script	is	invoked.

This	chapter	examines	optparse	and	argparse,	the	two	tools	that	the	Python
standard	library	provides	for	writing	applications	that	are	run	from	the	CLI.



OPTPARSE
optparse	is	the	older	of	the	two	modules	provided	by	Python,	and	is	nominally
considered	to	be	deprecated	as	of	Python	2.7	(when	argparse	was	introduced).
However,	optparse	is	still	very	widely	used,	and	is	necessary	for	any	code	intended
to	support	Python	2.6,	which	is	still	quite	common	in	the	Python	ecosystem.

Essentially,	optparse	exists	to	provide	a	clear	and	consistent	way	to	read
arguments	off	of	the	command	line,	including	positional	arguments,	as	well	as
options	and	switches.

A	Simple	Argument
optparse	is	actually	quite	easy	to	understand	once	you	look	at	an	example.
Consider	the	following	simple	Python	script	that	takes	an	option	from	the	CLI:

import	optparse

if	__name__	==	'__main__':

				parser	=	optparse.OptionParser()

				options,	args	=	parser.parse_args()

				print('	'.join(args).upper())

This	script	takes	any	number	of	arguments	it	receives,	converts	them	to	all	capital
letters,	and	prints	them	back	out	to	the	CLI.

$	python	echo_upper.py

$	python	echo_upper.py	foo	bar	baz

FOO	BAR	BAZ

$	python	echo_upper.py	spam

SPAM

The	next	two	sections	break	down	this	example.

__name__	==	'__main_'
The	line	if	__name__	==	'__main__'	may	be	an	unfamiliar	idiom	if	you	have	not
done	much	command-line	scripting	(or	come	across	it	in	other	use	cases).	In
Python,	each	module	has	a	__name__	attribute,	which	is	always	automatically	set	to
the	name	of	the	module	that	is	currently	being	executed.

The	value	__main__	is	special.	When	a	module	is	invoked	directly	(such	as	by
running	it	on	the	command	line),	the	__name__	attribute	is	set	to	this	value.

Why	test	for	this?	Nearly	every	.py	file	in	Python	is	importable	as	a	module,	and,
therefore,	could	be	imported.	In	CLI	scripts,	you	probably	do	not	want	the	code	to
directly	run	in	this	case.	CLI	scripts	sometimes	contain	code	such	as	calls	to
sys.exit()	that	would	terminate	the	entire	program.	This	module's	option	and
argument-parsing	behavior	really	only	makes	sense	if	it	is	invoked	directly.



Therefore,	this	type	of	code	should	be	placed	beneath	the	if	__name__	==
'__main__'	test.

Note	that	there	is	nothing	magic	about	the	if	block;	it	is	simply	a	top-level	if
statement.	Other	top-level	code	will	still	be	executed	even	if	the	if	test	fails.
Additionally,	note	that	it	is	traditional	that	such	tests	be	placed	at	the	bottom	of
the	file.

OptionParser
Next,	consider	the	creation	of	an	OptionParser	instance,	followed	by	the	call	to	its
parse_args	method.	The	OptionParser	class	is	the	primary	class	in	the	optparse
module	used	for	taking	the	arguments	and	options	sent	to	a	CLI	command,	and
making	sense	of	them.

The	fundamental	way	that	this	works	is	that	you	tell	the	OptionParser	instance
what	options	you	expect	and	know	how	to	address.	Options	are	strings	that	start
with	-	or	--,	such	as	-v	or	--verbose.	(You	learn	more	about	these	shortly.)	The
call	to	parse_args	iterates	over	all	of	the	options	that	the	parser	recognizes,	and
places	them	in	the	first	variable	that	parse_args	returns	(which	is	named	options
in	the	previous	example).	Any	arguments	left	over	are	considered	to	be	positional
arguments,	and	are	placed	in	the	second	variable	(args	in	the	previous	example),
which	is	a	list.

The	previous	example	uses	no	options,	so	everything	that	the	parser	receives	is
considered	to	be	a	positional	argument.	The	script	then	takes	that	list,	joins	it	into
a	string,	converts	it	to	uppercase,	and	prints	it.

One	thing	to	note	is	that	any	argument	that	begins	with	hyphens	is	expected	to	be
an	option,	and	optparse	raises	an	exception	if	you	try	to	send	an	option	that	the
parser	does	not	recognize.	Furthermore,	the	exception	is	internally	handled	within
optparse	and	calls	sys.exit,	so	there	is	no	real	way	to	catch	these	errors	yourself.

$	python	echo_upper.py	--foo

Usage:	echo_upper.py	[options]

echo_upper.py:	error:	no	such	option:	--foo

Options
Positional	arguments	are	usually	not	the	most	intuitive	way	to	get	information	to	a
script.	They	are	reasonable	when	you	have	one	or	two,	and	the	script's	purpose	is
straightforward.	However,	as	your	script	becomes	more	customizable,	you	will
generally	want	to	use	options.

Options	provide	the	following	advantages	over	positional	arguments	for	many	use
cases:

They	can	be	made	(and	usually	should	be	made)	to	be	optional.	Options	can
have	sensible	default	values	that	are	used	when	the	option	is	not	provided.



Options	that	also	accept	values	associate	a	key	(the	name	of	the	option)	with
the	option	value,	which	enhances	readability.

Multiple	options	can	be	provided	in	any	order.

Types	of	Options
A	CLI	script	can	accept	two	common	types	of	options.

One	type	is	sometimes	called	a	flag	or	a	switch,	and	is	an	option	that	does	not
require	or	accept	a	value	along	with	the	option.	Essentially,	in	these	cases,	it	is	the
presence	or	absence	of	the	option	that	determines	the	script	behavior.

Two	common	examples	of	such	switches	are	--verbose	and	--quiet	(often	also
provided	as	-v	and	-q,	respectively).	The	script	executes	normally	if	these	options
are	absent,	but	does	something	different	(provides	more	or	less	output)	if	they	are
present.	Note	that	you	generally	specify	this	as	--quiet,	as	opposed	to	--
quiet=true	or	something	similar.	The	value	is	implied	by	the	presence	of	the
switch.

Another	type	of	option	is	one	that	does	expect	a	value.	Most	database	clients
accept	options	such	as	--host,	--port,	and	the	like.	These	do	not	make	sense	as
switches.	You	do	not	simply	provide	--host	and	expect	the	database	client	to	infer
what	the	actual	host	is.	You	must	provide	the	hostname	or	IP	address	that	you	are
connecting	to.

Adding	Options	to	OptionParser
Once	you	have	an	OptionParser	instance,	you	can	add	an	option	to	it	using	the
add_option	method.	This	comes	after	the	OptionParser	instance	is	instantiated,	but
before	parse_args,	which	is	the	final	step	in	the	chain.

Consider	first	the	addition	of	a	simple	switch,	which	does	not	actually	expect	an
argument.

import	optparse

if	__name__	==	'__main__':

				parser	=	optparse.OptionParser()

				parser.add_option('-q',	'--quiet',

								action='store_true',

								dest='quiet',

								help='Suppress	output.',

				)

This	would	add	support	for	a	-q	and	--quiet	switch.	Note	that,	in	CLI	scripts,	it	is
extremely	common	to	have	a	long-form	and	short-form	version	of	options,	and	so
optparse	supports	this	easily.	By	providing	two	different	strings	as	positional
arguments	to	add_option,	the	add_option	method	understands	that	they	are
supposed	to	be	accepted,	and	that	they	are	aliases	of	one	another.



The	action	keyword	argument	is	what	specifies	that	the	--quiet	flag	is	a	flag,	and
does	not	expect	a	variable.	If	you	leave	off	the	action	keyword	argument,	the
option	is	assumed	to	expect	a	value	(more	on	that	in	a	moment).	Setting	action	to
store_true	or	store_false	means	that	no	value	is	expected,	and,	if	the	flag	is
provided	at	all,	the	value	is	True	or	False,	respectively.

The	dest	keyword	argument	is	what	decides	the	name	of	the	option	in	Python.	The
name	of	this	particular	option	within	the	options	variable	is	quiet.	In	many	cases,
you	do	not	have	to	set	this.	OptionParser	infers	an	appropriate	name	based	on	the
name	of	the	option	itself.	However,	it	is	a	good	idea	to	always	set	it	explicitly	for
readability	and	maintainability.

Finally,	the	help	keyword	argument	sets	the	help	text	for	this	option.	It	is	what	a
user	will	see	if	he	or	she	invokes	your	script	with	--help.	It	is	wise	to	always
provide	this.

It	is	worth	noting	that	optparse	automatically	adds	a	--help	option,	and	handles	it
automatically.	If	you	call	a	script	with	only	the	example	option	and	provide	--help,
you	get	useful	output.

$	python	cli_script.py	--help

Usage:	cli_script.py	[options]

Options:

		-h,	--help			show	this	help	message	and	exit

		-q,	--quiet		Suppress	output.

Options	with	Values
In	addition	to	switches,	sometimes	you	need	options	that	actually	expect	values	to
be	provided	along	with	the	option.	This	does	add	some	complexity.	The	biggest
reason	for	this	is	that	values	have	types	in	Python,	and	the	CLI	does	not	have	a
robust	concept	of	types.	Essentially,	everything	is	a	string.

First,	consider	an	option	that	accepts	a	string,	such	as	a	--host	flag	that	might	be
sent	to	a	database	client.	This	option	should	probably	be	optional.	The	biggest	use
case	for	database	clients	is	connecting	to	databases	on	the	same	machine,	so
localhost	makes	for	an	entirely	sensible	default.

Here	is	a	complete	script	that	does	nothing	but	reprint	the	host	to	standard	out:

import	optparse

if	__name__	==	'__main__':

				parser	=	optparse.OptionParser()

				parser.add_option('-H',	'--host',

								default='localhost',

								dest='host',

								help='The	host	to	connect	to.	Defaults	to	localhost.',

								type=str,

				)



				options,	args	=	parser.parse_args()

If	you	call	this	script	with	no	arguments,	you	will	see	that	the	default	of	localhost
is	applicable.

$	python	optparse_host.py

The	host	is	localhost.

By	adding	a	--host	option,	you	override	this	default.

$	python	optparse_host.py	--host	0.0.0.0

The	host	is	0.0.0.0.

If	you	fail	to	provide	an	option,	optparse	will	complain.

$	python	optparse_host.py	--host

Usage:	optparse_host.py	[options]

optparse_host.py:	error:	--host	option	requires	an	argument

Focus	on	the	call	to	add_option.	Several	things	are	different	from	your	--quiet
flag.	First,	you	omitted	the	action	keyword	argument.	The	default	for	this	(store)
simply	stores	the	value	provided.	You	can	specify	this	manually	if	you	choose	to	do
so.

Second,	you	provided	a	type.	The	OptionParser	instance	actually	infers	this	from
the	type	of	the	default	value	in	most	cases	(although	this	does	not	work	if	your
default	value	is	None),	so	providing	it	is	often	optional.	Explicitly	providing	it	often
makes	the	code	easier	to	read	later.	The	default	for	type	is	also	str.

Finally,	you	provided	a	default.	Most	options	should	be	optional,	which	means
they	must	have	a	sensible	default.	In	many	cases,	this	default	may	be	None.	In	the
case	of	the	host	value,	you	chose	localhost	as	a	sensible	default	because	having
your	client	and	server	on	the	same	machine	is	a	common	use	case.

One	other	thing	is	worth	pointing	out	explicitly.	The	way	you	read	the	value	off	of
the	options	variable	is	not	what	you	might	expect—the	host	value	is	read	as
options.host.	You	may	have	expected	the	options	value	to	be	provided	as	a
dictionary,	in	which	case	options['host']	would	have	been	correct.	However,	the
options	variable	is	provided	using	its	own	special	class	(called	Values),	and	the
individual	options	exist	on	this	object	as	attributes.	Note	that,	if	you	want	a
dictionary,	options.__dict__	will	provide	you	with	the	corresponding	dictionary.

Non-String	Values
What	about	values	that	are	not	strings?	For	example,	continuing	the	example	of	a
database	client	of	some	sort,	what	if	the	script	should	accept	a	port	number?	Most
databases	run	on	a	default	port	(PostgreSQL	uses	5432,	MySQL	uses	3306,	and	so
on),	but	sometimes	such	services	run	on	alternate	ports.

An	option	for	a	port	looks	similar	to	an	option	for	a	host.



				parser.add_option('-p',	'--port',

								default=5432,

								dest='port',

								help='The	port	to	connect	to.	Defaults	to	5432.',

								type=int,

				)

The	crucial	difference	here	is	that	the	type	is	now	specified	as	int.	Again,
OptionParser	would	infer	this	from	the	fact	that	the	default	value	is	the	integer
5432.

In	this	case,	OptionParser	performs	the	type	conversion	for	you,	and	raises	an
appropriate	error	if	it	is	not	able	to.	Consider	a	script	that	takes	a	host	and	port,	as
shown	here:

import	optparse

if	__name__	==	'__main__':

				parser	=	optparse.OptionParser()

				parser.add_option('-H',	'--host',

								default='localhost',

								dest='host',

								help='The	host	to	connect	to.	Defaults	to	localhost.',

								type=str,

				)

				parser.add_option('-p',	'--port',

								default=5432,

								dest='port',

								help='The	port	to	connect	to.	Defaults	to	5432.',

								type=int,

				)

				options,	args	=	parser.parse_args()

				print('The	host	is	%s,	and	the	port	is	%d.'	%

										(options.host,	options.port))

Again,	invoking	the	script	without	arguments	provides	both	default	values.
Because	the	format	string	uses	%d	rather	than	%s,	you	know	that	options.port	is	an
integer	under	the	hood.

$	python	optparse_host_and_port.py

The	host	is	localhost,	and	the	port	is	5432.

If	you	try	to	specify	a	port	value	that	is	not	an	integer,	you	get	an	error.

$	python	optparse_host_and_port.py	--port=foo

Usage:	optparse_host_and_port.py	[options]

optparse_host_and_port.py:	error:	option	--port:	invalid	integer	value:	

'foo'

$	echo	$?

2

And,	of	course,	if	you	specify	a	valid	integer,	it	overrides	the	default.



$	python3	optparse_host_and_port.py	--port=8000

The	host	is	localhost,	and	the	port	is	8000.

Specifying	Option	Values
Several	different	idioms	exist	for	how	to	specify	option	values	on	the	command
line.	The	optparse	module	attempts	to	support	all	of	them.

Short-Form	Syntax
Short-form	options	are	options	that	have	one	hyphen	and	a	single	letter,	such	as	-
q,	-H,	or	-p.	If	the	option	accepts	a	value	(such	as	-H	and	-p	in	the	previous
example),	it	must	be	written	immediately	after	the	option.	There	can	optionally	be
a	space	between	the	option	and	the	value	(-Hlocalhost	and	-H	localhost	are
equivalent),	and	the	value	can	optionally	be	enclosed	by	quotes	(-H	localhost	and
-H	"localhost"	are	equivalent).	However,	you	cannot	use	an	equal	sign	between
the	short-form	option	and	the	value.

Here	are	four	valid	ways	to	specify	an	option	value	using	the	short-form	syntax:

$	python	optparse_host_and_port.py	-H	localhost

The	host	is	localhost,	and	the	port	is	5432.

$	python	optparse_host_and_port.py	-H	"localhost"

The	host	is	localhost,	and	the	port	is	5432.

$	python	optparse_host_and_port.py	-Hlocalhost

The	host	is	localhost,	and	the	port	is	5432.

$	python	optparse_host_and_port.py	-H"localhost"

The	host	is	localhost,	and	the	port	is	5432.

The	use	of	the	equal	sign	in	the	short-form	syntax	causes	it	to	be	prepended	to	the
value	itself,	which	is	not	what	you	want.	(Note	the	=	in	the	output.)	For	non-string
options,	you	will	usually	get	an	error	when	the	parser	tries	and	fails	to	convert	the
string	to	the	desired	type.

$	python	optparse_host_and_port.py	-H=localhost

The	host	is	=localhost,	and	the	port	is	5432.

And,	in	the	world	of	the	flat-out	bizarre,	you	could	have	the	following:

$	python	optparse_host_and_port.py	-H="localhost"

The	host	is	=localhost,	and	the	port	is	5432.

Long-Form	Syntax
For	the	long-form	format	(that	is,	--host	instead	of	-H),	the	supported
permutations	are	slightly	different.

There	now	must	be	some	separator	between	the	option	and	the	option	value
(unlike	-Hlocalhost).	This	makes	intuitive	sense.	If	you	provided	--hostlocalhost,
the	parser	would	never	be	able	to	figure	out	conclusively	where	the	option	ended
and	the	value	began.	The	separator	can	either	be	a	space	or	an	equal	sign	(so,	--
host=localhost	and	--host	localhost	are	equivalent).



Quotes	are	allowed,	but	optional	(but	you	will	certainly	want	to	use	them	if	the
value	has	spaces).

Here	are	four	valid	ways	to	specify	an	option	value	using	the	long-form	syntax:

$	python	cli_script.py	--host	localhost

The	host	is	localhost,	and	the	port	is	5432.

$	python	cli_script.py	--host	"localhost"

The	host	is	localhost,	and	the	port	is	5432.

$	python	cli_script.py	--host=localhost

The	host	is	localhost,	and	the	port	is	5432.

$	python	cli_script.py	--host="localhost"

The	host	is	localhost,	and	the	port	is	5432.

Which	Syntax	Should	You	Use?
The	basic	tradeoff	between	short-form	and	long-form	syntax	is	that	the	former	is
quicker	to	type	on	the	CLI,	whereas	the	latter	is	more	explicit.

When	you	are	writing	CLI	scripts,	consider	supporting	both	a	short-form	and	a
long-form	syntax,	especially	for	options	that	are	going	to	be	used	frequently.	(For
infrequently	used	options,	providing	only	a	long-form	alias	is	probably	sufficient.)

When	you	are	invoking	CLI	scripts,	if	you	are	doing	so	in	code	that	is	being
committed	to	version	control	and	must	be	read	and	maintained	over	time,
consider	using	only	long-form	syntax	wherever	it	is	available.	This	makes	the	CLI
command	easier	to	intuit	for	the	person	reading	the	code	later.

On	the	other	hand,	for	one-time	commands	that	you	are	typing	out	on	a	prompt,	it
likely	does	not	matter.

Positional	Arguments
It	is	also	possible	to	send	positional	arguments	to	optparse.	Actually,	any
argument	that	is	not	attached	to	an	option	will	be	considered	by	the	parser	to	be	a
positional	argument,	and	is	sent	to	the	args	variable	that	is	returned	from
parser.parse_args().

import	optparse

if	__name__	==	'__main__':

				parser	=	optparse.OptionParser()

				options,	args	=	parser.parse_args()

				print('The	sum	of	the	numbers	sent	is:	%d'	%

										sum([int(i)	for	i	in	args]))

Any	arguments	sent	to	this	script	are	part	of	the	args	variable,	and	the	script	tries
to	convert	them	to	integers	and	add	them	together.

$	python	optparse_sum.py	1	2	5

The	sum	of	the	numbers	sent	is:	8



Of	course,	if	you	sent	an	argument	that	cannot	be	converted	to	an	integer,	you	will
get	an	exception.

$	python	optparse_sum.py	1	2	foo

Traceback	(most	recent	call	last):

		File	"optparse_sum.py",	line	8,	in	<module>

				print('The	sum	of	the	numbers	sent	is:	%d'	%	sum([int(i)	for	i	in	

args]))

ValueError:	invalid	literal	for	int()	with	base	10:	'foo'

Counters
You	can	use	a	small	number	of	other	types	of	options	besides	simple	flags	and
direct	value	storage.	One	type	that	is	infrequently	used	but	is	sometimes	useful	is	a
counter	flag.

Most	flags	simply	set	a	Boolean	value	to	True	or	False,	based	on	the	presence	or
absence	of	the	flag.	A	related	idiom,	however,	is	to	allow	specifying	a	flag	multiple
times	to	intensify	the	effect.

Consider	a	-v	flag	that	causes	a	script	to	be	more	verbose.	Some	programs	allow	-v
to	be	specified	repeatedly	in	order	to	make	the	script	become	even	more	verbose.
For	example,	a	popular	configuration	tool	called	Ansible	allows	you	to	specify-v
up	to	four	times	to	provide	increasingly	verbose	output.

You	do	this	through	a	different	action	value	that	you	can	provide	to	add_option.
Consider	this	script:

import	optparse

if	__name__	==	'__main__':

				parser	=	optparse.OptionParser()

				parser.add_option('-v',

								action='count',

								default=0,

								dest='verbosity',

								help='Be	more	verbose.	This	flag	may	be	repeated.',

				)

				options,	args	=	parser.parse_args()

				print('The	verbosity	level	is	%d,	ah	ah	ah.'	%	options.verbosity)

Notice	that	the	call	to	add_option	now	specifies	action='count'.	This	means	that
the	value	will	be	incremented	by	one	every	time	the	flag	is	sent.

You	can	invoke	the	script	to	easily	see	this	in	action.

$	python	count_script.py

The	verbosity	level	is	0,	ah	ah	ah.

$	python	count_script.py	-v

The	verbosity	level	is	1,	ah	ah	ah.

$	python	count_script.py	-v	-v

The	verbosity	level	is	2,	ah	ah	ah.



$	python	count_script.py	-vvvvvvvvvvv

The	verbosity	level	is	11,	ah	ah	ah.

Notice	that	you	have	two	valid	ways	to	specify	the	short-form	option	in	this	case:	-
v	-v	and	-vv	are	equivalent.	This	is	actually	true	for	distinct	short-form	options	as
well,	provided	they	do	not	expect	a	value.

It	is	also	worth	noting	that	explicitly	specifying	the	default	value	of	0	is	important.
If	you	do	not	specify	it	explicitly,	OptionParser	uses	a	default	value	of	None,	which
is	usually	not	what	you	want.	(In	this	case,	the	script	would	raise	TypeError	when
it	tries	to	do	the	string	interpolation	on	the	last	line.)

Finally,	note	that	if	you	choose	a	default	value	other	than	0,	the	flag	functions	as
an	increment,	not	a	flat	count.	So,	if	your	default	value	is	1,	and	you	provide	two	-v
flags,	the	value	would	be	3	(not	2).

List	Values
Sometimes,	you	may	want	to	accept	multiple	values	for	the	same	option,	and
provide	them	to	your	script	as	a	list.	This	is	fundamentally	similar	to	a	count
option,	except	that	it	takes	a	value	each	time,	rather	than	simply	incrementing	an
integer	variable.

The	following	script	prints	usernames,	one	at	a	time:

import	optparse

if	__name__	==	'__main__':

				parser	=	optparse.OptionParser()

				parser.add_option('-u',	'--user',

								action='append',

								default=[],

								dest='users',

								help='The	username	to	be	printed.	Provide	this	multiple	times	to	'

													'print	the	username	for	multiple	users.',

				)

				options,	args	=	parser.parse_args()

				for	user	in	options.users:

								print('Username:	%s.'	%	user)

Running	this	with	no	-u	or	--user	options	provided	generates	no	output.

$	python	echo_usernames.py

$

However,	you	can	provide	one	or	more	-u	or	--user	options	to	the	script,	and
regardless	of	how	many,	the	OptionParser	makes	them	available	as	a	list:

$	python	echo_usernames.py	-u	me

Username:	me.

$	python	echo_usernames.py	-u	me	-u	myself

Username:	me.



Username:	myself.

Why	Use	optparse?
Even	though	it	has	been	deprecated	for	years,	the	optparse	module	is	still	the	most
commonly	used	module	for	parsing	options.	Any	code	that	must	run	on	Python
2.6	or	earlier,	or	Python	3.0	through	Python	3.2,	must	use	optparse,	because	its
successor,	argparse,	is	only	available	in	Python	2.7	and	Python	3.3.

If	you	are	writing	code	with	CLI	tools	that	must	work	across	multiple	versions	of
Python,	most	likely	optparse	is	still	going	to	be	the	module	you	should	use	for
several	years	to	come.	Similarly,	because	many	tools	you	will	be	using	still	rely	on
optparse,	it	is	important	that	you	be	able	to	read	code	that	was	designed	using	it.

On	the	other	hand,	be	aware	that	optparse	is	not	receiving	future	development
work,	because	it	is	still	deprecated.	Over	time,	as	the	window	of	Python	versions
you	want	to	support	moves,	you	may	decide	to	move	work	done	in	optparse	over
to	argparse.



ARGPARSE
The	second	library	that	Python	provides	for	parsing	CLI	arguments	and	options	is
called	argparse.	The	argparse	module	is	considered	to	be	the	successor	to	optparse
(and	optparse	is	officially	deprecated).	However,	the	argparse	module	is	still	quite
new.	It	was	introduced	in	Python	3.3	and	backported	to	Python	2.7.	Therefore,	any
code	that	needs	to	run	on	earlier	versions	still	must	use	optparse.

In	many	ways,	argparse	is	conceptually	similar	to	optparse.	The	fundamental
principles	are	the	same.	You	create	a	parser	specify	and	options	you	expect	along
with	types	and	sensible	defaults;	then	a	parser	parses	the	things	it	received	from
the	CLI	and	groups	them	accordingly.

The	class	you	instantiate	to	do	parsing	in	the	argparse	module	is	ArgumentParser.
Although	it	uses	some	different	syntax	than	optparse.OptionParser,	the	principles
are	quite	similar.

The	Bare	Bones
A	basic	CLI	script	that	does	not	support	any	actual	arguments	or	options	now
looks	like	this:

import	argparse

if	__name__	==	'__main__':

				parser	=	argparse.ArgumentParser()

				args	=	parser.parse_args()

				print('The	script	ran	successfully	and	did	nothing.')

One	key	difference	to	note,	other	than	the	renamed	module	and	class,	is	that	this
parse_args	method	does	not	return	a	two-tuple	like	the	optparse	equivalent	did.
Instead,	it	returns	a	single	object	that	contains	both	the	positional	arguments	and
options	read	by	the	parser.

Another	difference	lies	in	the	way	positional	arguments	are	handled.	In	optparse,
you	did	not	declare	positional	arguments.	The	second	variable	simply	contained
whatever	was	“left	over”	after	optparse	had	parsed	the	options	you	told	it	about.
By	contrast,	argparse	is	stricter.	It	expects	to	be	told	about	positional	arguments
individually,	which	makes	for	a	more	useful	help	screen,	and	also	causes	it	to	raise
an	error	if	it	receives	data	it	does	not	expect.

Therefore,	unlike	the	initial	optparse	example,	this	code	actually	raises	an	error	if
it	receives	any	arguments,	rather	than	throwing	them	into	the	“left	over”	bucket.

$	python	argparse_basic.py

The	script	ran	successfully	and	did	nothing.

$	python	argparse_basic.py	foo

usage:	argparse_basic.py	[-h]

cli_script.py:	error:	unrecognized	arguments:	foo



Arguments	and	Options
In	argparse,	you	add	both	positional	arguments	and	options	through	the
add_argument	method	of	ArgumentParser	objects.	The	interface	for	this	is	now
unified,	which	means	that	positional	arguments	in	argparse	have	support	for
being	a	type	other	than	str,	and	for	having	specified	defaults.

Option	Flags
The	first	kind	of	option	is	a	flag,	such	as	-v	or	--verbose	for	a	verbose	mode,	or	-q
or	--quiet	for	a	mode	that	suppresses	most	or	all	output.	These	options	do	not
expect	a	value.	The	presence	or	absence	of	the	option	determines	the	appropriate
Boolean	in	the	parser.

The	syntax	for	specifying	a	flag	looks	like	this:

parser.add_argument('-q',	'--quiet',

				action='store_true',

				dest='quiet',

				help='Suppress	output.',

)

If	you	are	familiar	with	optparse	(or	read	the	section	on	optparse	earlier	in	this
chapter),	this	will	look	very	familiar	to	you.	Other	than	the	method	name,	not
much	has	changed	so	far.

First,	note	the	action	variable.	This	is	set	to	store_true,	which	is	the	reason	why
the	parser	will	not	expect	a	value.	Most	options	do	not	need	an	action	to	be
specified	(the	default	is	store,	which	stores	the	value	it	receives).	The	specification
of	store_true	or	store_false	is	the	most	common	way	to	indicate	that	an	option	is
a	flag	and	should	not	accept	a	value.

The	dest	keyword	argument	determines	how	to	look	up	the	parsed	value	(in	this
case,	True	or	False)	on	the	object	you	get	back	when	you	call	parse_args.	The
string	used	here	will	be	the	attribute	name	on	the	object.	(So,	you	would	look	up
this	one	using	args.quiet.)	In	many	cases,	the	dest	keyword	argument	is	optional.
ArgumentParser	determines	an	intuitive	name	based	on	the	name	of	the	option
itself.	However,	it	is	useful	to	explicitly	provide	this	for	readability	and
maintainability.

The	help	keyword	argument	determines	what	users	get	if	they	call	your	script	with
-h	or	--help.	The	ArgumentParser	implicitly	provides	a	help	screen	attached	to
these	switches,	so	you	should	always	specify	a	help	on	your	arguments.

Alternate	Prefixes
Most	CLI	scripts	use	the	hyphen	(-)	character	as	the	prefix	for	options,	and	this	is
what	ArgumentParser	expects	by	default.	However,	some	scripts	may	use	different
characters.	For	example,	a	script	that	is	only	intended	to	be	run	in	Windows
environments	may	prefer	to	use	the	/	character,	which	is	consistent	with	many



Windows	command-line	programs.

You	can	change	which	characters	are	used	for	prefixes	by	providing	the
prefix_chars	keyword	argument	to	the	ArgumentParser	constructor,	as	shown
here:

import	argparse

if	__name__	==	'__main__':

				parser	=	argparse.ArgumentParser(prefix_chars='/')

				parser.add_argument('/q',	'//quiet',

								action='store_true',

								dest='quiet',

								help='Suppress	output.',

				)

				args	=	parser.parse_args()

				print('Quiet	mode	is	%r.'	%	args.quiet)

In	this	example,	you	changed	the	prefix	character	to	/.	Note	that	this	also	means
that	the	argument	itself	(the	one	passed	to	add_argument)	must	change
accordingly.

Calling	this	script	is	still	straightforward.	You	simply	must	use	/q	or	//quiet
(rather	than	-q	or	--quiet).

$	python	argparse_quiet.py

Quiet	mode	is	False.

$	python	argparse_quiet.py	/q

Quiet	mode	is	True.

Viewing	the	help	reflects	this:

$	python	argparse_quiet.py	/h

usage:	argparse_quiet.py	[/h]	[/q]

optional	arguments:

		/h,	//help		show	this	help	message	and	exit

		/q										Suppress	output.

Note	that,	because	you	changed	the	prefix	character	to	/,	the	automatically
registered	help	command	is	changed	along	with	it.

Options	with	Values
Options	that	accept	values	are	fundamentally	similar.	Consider	the	following
example	of	a	script	that	accepts	a	host	value	(such	as	a	database	client),	translated
into	argparse:

import	argparse

if	__name__	==	'__main__':



				parser	=	argparse.ArgumentParser()

				parser.add_argument('-H',	'--host',

								default='localhost',

								dest='host',

								help='The	host	to	connect	to.	Defaults	to	localhost.',

								type=str,

				)

				args	=	parser.parse_args()

				print('The	host	is	%s.'	%	args.host)

Again,	if	you	are	already	familiar	with	optparse,	you	will	likely	notice	just	how
similar	this	is.	The	keyword	arguments	are	the	same,	and	they	do	the	same	thing.

The	important	argument	to	focus	on	here	is	type,	which	controls	what	Python	type
the	value	is	ultimately	expected	to	be.	It	is	common	for	this	to	be	int	or	float,	and
a	small	number	of	other	types	may	also	make	sense.

Parsing	arguments	when	you	use	argparse	is	slightly	different	from	when	you	use
optparse.	Regardless	of	whether	you	use	the	short-form	or	the	long-form	syntax,
you	can	separate	the	option	from	the	value	using	a	space	or	an	equal	sign.	The
short-form	syntax	(and	only	the	short-form	syntax)	also	supports	not	separating
the	value	from	the	option	at	all.	Both	the	short-form	and	the	long-form	syntax
allow	quotes	around	the	value.

Therefore,	all	of	these	are	equivalent:

$	python	argparse_args.py	-Hlocalhost

The	host	is	localhost.

$	python	argparse_args.py	-H"localhost"

The	host	is	localhost.

$	python	argparse_args.py	-H=localhost

The	host	is	localhost.

$	python	argparse_args.py	-H="localhost"

The	host	is	localhost.

$	python	argparse_args.py	-H	localhost

The	host	is	localhost.

$	python	argparse_args.py	-H	"localhost"

The	host	is	localhost.

$	python	argparse_args.py	--host=localhost

The	host	is	localhost.

$	python	argparse_args.py	--host="localhost"

The	host	is	localhost.

$	python	argparse_args.py	--host	localhost

The	host	is	localhost.

$	python	argparse_args.py	--host	"localhost"

The	host	is	localhost.

Choices
ArgumentParser	adds	the	capability	to	specify	that	an	option	may	only	be	one	of	an
enumerated	set	of	choices.

import	argparse



if	__name__	==	'__main__':

				parser	=	argparse.ArgumentParser()

				parser.add_argument('--cheese',

								choices=('american',	'cheddar',	'provolone',	'swiss'),

								default='swiss',

								dest='cheese',

								help='The	kind	of	cheese	to	use',

				)

				args	=	parser.parse_args()

				print('You	have	chosen	%s	cheese.'	%	args.cheese)

If	you	run	this	script	with	no	arguments,	you	get	the	default	value	as	you	expect.

$	python	argparse_choices.py

You	have	chosen	swiss	cheese.

You	can	also	override	the	default	to	any	of	the	available	choices	in	the	choices
tuple.

$	python	argparse_choices.py	--cheese	provolone

You	have	chosen	provolone	cheese.

However,	if	you	attempt	to	provide	a	value	that	is	not	in	the	list	of	available
choices,	you	get	an	error.

$	python	argparse_choices.py	--cheese	pepperjack

usage:	argparse_choices.py	[-h]	[--cheese	

{american,cheddar,provolone,swiss}]

argparse_choices.py:	error:	argument	--cheese:	invalid	choice:	'pepperjack'

					(choose	from	'american',	'cheddar',	'provolone',	'swiss')

Accepting	Multiple	Values
One	additional	feature	in	argparse	is	the	capability	to	specify	that	an	option
accepts	more	than	one	argument.	You	can	set	an	option	to	accept	an	unbound
number	of	arguments,	or	an	exact	number.	You	handle	this	using	the	nargs
keyword	argument	to	add_argument.

The	most	straightforward	use	of	nargs	is	to	specify	that	an	option	takes	an	exact
number	of	arguments.	Consider	the	following	simple	script	that	takes	an	option
that	expects	exactly	two	arguments	rather	than	one:

import	argparse

if	__name__	==	'__main__':

				parser	=	argparse.ArgumentParser()

				parser.add_argument('--madlib',

								default=['fox',	'dogs'],

								dest='madlib',

								help='Two	words	to	place	in	the	madlib.',



								nargs=2,

				)

				args	=	parser.parse_args()

				print('The	quick	brown	{0}	jumped	over	the	'

										'lazy	{1}.'.format(*args.madlib))

Sending	an	integer	to	nargs	means	that	the	option	expects	exactly	that	number	of
arguments,	and	will	return	them	as	a	list.	(Note	that	if	you	specify	a	nargs	value	of
1,	you	still	get	a	list.)

If	you	omit	the	--madlib	argument,	you	get	the	default	list	specified	in	the
add_argument	call.

$	python	argparse_multiargs.py

The	quick	brown	fox	jumped	over	the	lazy	dogs.

Similarly,	providing	two	arguments	causes	them	to	be	substituted	in	place	of	the
defaults.

$	python	argparse_multiargs.py	--madlib	pirate	ninjas

The	quick	brown	pirate	jumped	over	the	lazy	ninjas.

However,	if	you	try	to	provide	any	number	of	arguments	other	than	two,	the
command	fails.

$	python	argparse_multiargs.py	--madlib	pirate

usage:	argparse_multiargs.py	[-h]	[--madlib	MADLIB	MADLIB]

argparse_multiargs.py:	error:	argument	--madlib:	expected	2	arguments

$	python	argparse_multiargs.py	--madlib	pirate	ninjas	cowboy

usage:	argparse_multiargs.py	[-h]	[--madlib	MADLIB	MADLIB]

argparse_multiargs.py:	error:	unrecognized	arguments:	cowboy

In	the	first	case,	the	--madlib	option	was	only	able	to	consume	one	argument,	and
because	it	expected	two,	it	fails.	In	the	second	case,	the	--madlib	argument
successfully	consumes	both	of	the	arguments	it	expects,	but	there	is	a	positional
argument	left	over.	The	parser	does	not	know	what	to	do	with	that,	so	it	fails	out
instead.

You	also	may	want	to	allow	any	number	of	arguments,	which	you	can	indicate	by
providing	+	or	*	to	nargs.	The	+	value	indicates	that	the	option	expects	one	or	more
values	to	be	provided,	and	*	indicates	that	the	option	expects	zero	or	more	values
to	be	provided.

Consider	the	following	simple	addition	script:

import	argparse

if	__name__	==	'__main__':

				parser	=	argparse.ArgumentParser()

				parser.add_argument('--addends',

								dest='addends',

								help='Integers	to	provide	a	sum	of',



								nargs='+',

								required=True,

								type=int,

				)

				args	=	parser.parse_args()

				print('%s	=	%d'	%	(

								'	+	'.join([str(i)	for	i	in	args.addends]),

								sum(args.addends),

				))

If	you	run	this,	you	can	see	it	provides	the	following	equation:

$	python	argparse_sum.py	--addends	1	2	5

1	+	2	+	5	=	8

$	python	argparse_sum.py	--addends	1	2

1	+	2	=	3

Note	that	the	+	value	provided	to	nargs	actually	means	one	or	more	values,	not	two
or	more.	This	script	would	gladly	accept	only	a	single	argument.

$	python	argparse_sum.py	--addends	1

1	=	1

Positional	Arguments
With	argparse	(unlike	with	optparse),	you	must	declare	your	positional	arguments
explicitly.	If	you	do	not,	the	parser	expects	to	have	no	arguments	left	over	after	it
completes	parsing,	and	it	raises	an	error	if	arguments	still	remain.

The	declaration	for	positional	arguments	is	equivalent	to	the	declaration	for
options,	except	that	the	leading	hyphen	is	omitted.	As	an	example,	it	seems	bad
form	for	the	--addends	option	in	the	previous	example	to	be	an	option	at	all.
Options	should	be	optional.

It	is	easy	to	provide	the	same	thing	as	a	positional	argument.

import	argparse

if	__name__	==	'__main__':

				parser	=	argparse.ArgumentParser()

				parser.add_argument('addends',

								help='Integers	to	provide	a	sum	of',

								nargs='+',

								type=int,

				)

				args	=	parser.parse_args()

				print('%s	=	%d'	%	(

								'	+	'.join([str(i)	for	i	in	args.addends]),

								sum(args.addends),

				))

This	is	mostly	the	same,	except	that	the	--addends	argument	has	been	replaced



with	addends,	without	the	double-hyphen	prefix.	This	causes	the	parser	to	expect	a
positional	argument	instead.

Why	provide	a	name	for	positional	arguments?	(After	all,	optparse	does	not	need
positional	argument	names,)	The	answer	is	that	the	name	you	provide	is	used	in
the	program's	--help	output.

$	python	cli_script.py	--help

usage:	cli_script.py	[-h]	addends	[addends…]

positional	arguments:

		addends					Integers	to	provide	a	sum	of

optional	arguments:

		-h,	--help		show	this	help	message	and	exit

Notice	that	the	word	addends	is	used	in	the	usage	line	near	the	top	of	the	help.	This
provides	slightly	more	insight	into	what	is	being	expected.	Additionally,	unlike	in
help	provided	by	optparse,	the	positional	arguments	are	documented	as	part	of
the	help	screen.

You	can	invoke	this	script	the	same	way,	except	without	the	--addends	option.

$	python	cli_script.py	1	2	5

1	+	2	+	5	=	8

Reading	Files
A	common	need	when	writing	CLI	applications	is	to	read	files.	The	argparse
module	provides	a	special	class	that	can	be	sent	to	the	type	keyword	argument	of
add_argument,	which	is	argparse.FileType.

The	argparse.FileType	class	expects	the	arguments	that	would	be	sent	to	Python's
open	function,	excluding	the	filename	(which	is	what	is	being	provided	by	the	user
invoking	the	program).	If	you	are	opening	the	file	for	reading,	this	may	be
nothing.	open	defaults	to	opening	files	only	for	reading.	However,	any	arguments
after	the	initial	positional	argument	to	open	can	be	provided	to	FileType,	and	they
will	be	passed	on	to	open.

Consider	the	following	program	that	may	read	a	configuration	file	from	a	non-
default	location:

import	argparse

if	__name__	==	'__main__':

				parser	=	argparse.ArgumentParser()

				parser.add_argument('-c',	'--config-file',

								default='/etc/cli_script',

								dest='config',

								help='The	configuration	file	to	use.',

								type=argparse.FileType('r')

				)



				args	=	parser.parse_args()

				print(args.config.read())

This	would	read	from	/etc/cli_script	by	default,	but	allow	you	to	specify	a
different	file	to	read	from	using	the	-c	or	--config-file	options.	Rather	than
providing	these	options	as	text	and	forcing	you	to	open	the	file	yourself,	you	will
simply	be	provided	with	an	open	file	object:

$	echo	"This	is	my	config	file."	>	foo.txt

$	python	cli_script.py	--config-file	foo.txt

This	is	my	config	file.

Note	that	the	file	is	expected	to	exist.	If	it	does	not,	you	get	an	error.

$	python	cli_script.py	--config-file	bar.txt

usage:	cli_script.py	[-h]	[-c	CONFIG]

cli_script.py:	error:	argument	-c/--config-file:	can't	open	'bar.txt':

					[Errno	2]	No	such	file	or	directory:	'bar.txt'

Why	Use	argparse?
If	you	are	exclusively	using	Python	2.7	or	Python	3.3	and	up,	several	good	reasons
exist	to	use	argparse	rather	than	optparse.	The	argparse	module	supports
essentially	all	of	optparse's	features,	and	adds	several	additional	ones,	such	as
multiple	arguments,	better	support	for	files,	and	more.

Additionally,	argparse's	handling	of	positional	arguments	is	more	consistent	with
its	handling	of	options,	and	results	in	more	robust	handling	as	well	as	a	more
useful	help	output.

The	only	major	drawback	of	argparse	is	its	absence	from	older	versions	of	Python.
If	you	still	need	to	support	Python	2.6	or	Python	3.2,	you	need	to	stick	with
optparse	for	now.



Summary
The	optparse	and	argparse	modules	provide	very	good	support	for	reading	data
from	the	command	line	for	Python	programs	that	need	to	do	this.

The	current	transition	from	optparse	to	argparse	poses	a	challenge	because	you
may	find	yourself	needing	to	write	code	around	a	deprecated	module	to	support
versions	of	Python	that	are	still	in	wide	use	today.	If	you	do	work	in	this	area,	you
will	probably	need	to	remain	familiar	with	both	modules	for	some	time.

In	Chapter	13,	you	learn	about	asyncio,	a	new	module	in	Python	3.4	to	support
asynchronous	work.





Chapter	13
asyncio
In	general,	most	Python	applications	are	sequential	applications.	That	is,	they
usually	run	from	a	defined	entry	point	to	a	defined	exit	point,	with	each	execution
being	a	single	process	from	beginning	to	end.

This	stands	in	contrast	to	many	more	asynchronous	languages,	such	as	JavaScript
and	Go.	For	example,	JavaScript	relies	heavily	on	asynchronous	work,	with	any
web	requests	happening	in	the	background	being	called	in	a	separate	thread,	and
relying	on	callbacks	to	run	correct	functions	once	data	has	loaded.

There	is	no	right	or	wrong	answer	to	whether	a	language	should	approach	most
problems	sequentially	or	asynchronously,	but	cases	certainly	exist	where	one
model	is	more	useful	than	the	other	for	particular	problems.	This	is	where	the
asyncio	module	comes	in.	It	makes	it	easy	to	do	asynchronous	work	in	Python
when	the	problem	warrants	it.

Right	now,	asyncio	is	a	provisional	module.	While	sweeping,	backward-
incompatible	changes	are	unlikely	(because	Python	shies	away	from	such	things
once	items	have	been	placed	in	the	standard	library),	it	is	likely	that	asyncio	may
undergo	significant	revision	in	the	next	couple	of	Python	versions.

The	asyncio	module	was	introduced	in	Python	3.4,	and	is	not	available	in	Python
2.	If	you	are	on	Python	3.3,	you	can	get	it	from	PyPI;	it	is	not	yet	in	the	standard
library.	Therefore,	if	you	want	to	use	the	features	provided	by	asyncio,	you	will	be
limiting	yourself	to	newer	versions	of	Python.	Similarly,	the	asyncio	module	has
been	under	active	development	over	the	lifetime	of	Python	3.4,	so	you	will	want	to
be	on	the	newest	incremental	revision	if	possible.

Because	most	Python	applications	are	sequential	applications,	several	concepts
may	be	foreign	to	you	if	you	have	not	done	a	reasonable	amount	of	work	outside	of
sequential	languages.	This	chapter	covers	these	concepts	in	detail.



The	Event	Loop
The	fundamental	way	that	most	asynchronous	applications	work	is	via	an	event
loop	that	runs	in	the	background.	When	something	needs	to	run,	it	is	registered
to	the	event	loop.

Registering	a	function	to	an	event	loop	causes	it	to	be	made	into	a	task.	The	event
loop	is	then	responsible	for	running	the	task	as	soon	as	it	can	get	to	it.
Alternatively,	sometimes	the	event	loop	is	told	to	wait	a	certain	amount	of	time,
and	then	run	the	task.

Although	you	may	not	be	familiar	with	writing	code	that	uses	event	loops,	you	use
programs	that	depend	on	them	frequently.	Almost	any	server	is	an	event	loop.	A
database	server,	for	example,	sits	around	and	waits	for	connections	and	queries,
and	then	executes	queries	as	fast	as	possible.	If	two	different	connections	provide
two	different	queries,	it	prioritizes	and	runs	both	of	them.	Desktop	applications
are	also	event-driven,	displaying	a	screen	that	allows	input	in	various	places	and
responding	to	said	inputs.	Most	video	games	are	also	event	loops.	The	game	waits
for	control	input	and	takes	action	based	on	it.

A	Simple	Event	Loop
In	most	cases,	you	do	not	need	to	create	an	event	loop	object	yourself.	You	can	get
a	BaseEventLoop	object	by	using	the	asyncio.get_event_loop()	function.	What	you
will	actually	get	will	be	a	subclass;	which	subclass	you	get	is	platform-dependent.
You	do	not	need	to	worry	about	this	implementation	detail	too	much.	The	API
between	all	of	them	is	the	same.	However,	a	few	platform-dependent	limitations
exist.

When	you	first	get	the	loop	object,	it	will	not	be	running.

>>>	loop	=	asyncio.get_event_loop()

>>>	loop.is_running()

False

Running	the	Loop
The	following	event	loop	does	not	have	anything	registered	to	it	yet,	but	you	can
run	it	anyway:

>>>	loop.run_forever()

There	is	one	minor	hitch,	however.	If	you	ran	this,	you	just	lost	control	of	your
Python	interpreter,	because	the	loop	is	running	in	it	forever.	Press	Ctrl+C	to	get
your	interpreter	back.	(Of	course,	this	will	stop	the	loop.)

Unfortunately,	asyncio	does	not	have	a	“fire	and	forget”	method	to	run	a	loop	in	a
separate	thread.	For	most	application	code,	this	is	actually	not	a	huge	hindrance,
because	you	are	probably	writing	a	server	or	daemon	where	the	purpose	of	the
program	is	to	run	the	loop	in	the	foreground	and	have	other	processes	issue



commands.

For	testing	or	experimenting,	however,	this	presents	a	serious	challenge,	because
the	majority	of	asyncio	methods	are	not	actually	thread-safe.	For	most	examples
in	this	chapter,	you	will	get	around	this	by	simply	not	running	the	loop	forever.

Registering	Tasks	and	Running	the	Loop
Tasks	are	primarily	registered	to	the	loop	using	call_soon,	which	operates	as	a
FIFO	(“first	in,	first	out”)	queue.	Therefore,	most	examples	in	this	chapter	will
simply	include	a	final	task	that	stops	the	loop,	as	shown	here:

>>>	import	functools

>>>	def	hello_world():

...					print('Hello	world!')

...

>>>	def	stop_loop(loop):

...					print('Stopping	loop.')

...					loop.stop()

...

>>>	loop.call_soon(hello_world)

Handle(<function	hello_world	at	0x1003c0b70>,	())

>>>	loop.call_soon(functools.partial(stop_loop,	loop))

Handle(functools.partial(<function	stop_loop	at	0x101ccf268>,

					<asyncio.unix_events._UnixSelectorEventLoop

					object	at	0x1007399e8>),	())

>>>	loop.run_forever()

Hello	world!

Stopping	loop.

>>>	

In	this	example,	the	hello_world	function	was	registered	to	the	loop.	Then,	the
stop_loop	function	was	also	registered.	When	the	loop	was	started	(with
loop.run_forever()),	it	ran	both	tasks,	in	order.	Because	the	second	task	stopped
the	loop,	it	exited	the	loop	once	the	task	completed.

Delaying	Calls
It	is	also	possible	to	register	a	task,	but	indicate	that	it	should	not	be	called	until
later.	You	can	do	this	using	the	call_later	method,	which	takes	a	delay	(in
number	of	seconds)	as	well	as	the	function	to	be	called.

>>>	loop.call_later(10,	hello_world)

TimerHandle(60172.411042585,	<function	hello_world	at	0x1003c0b70>,	())

>>>	loop.call_later(20,	functools.partial(stop_loop,	loop))

TimerHandle(60194.829461844,	functools.partial(

					<function	stop_loop	at	0x101ccf268>,

					<asyncio.unix_events._UnixSelectorEventLoop	object	at	0x1007399e8>),

					())

>>>	loop.run_forever()

Note	that	it	is	possible	to	have	two	or	more	delayed	calls	come	up	at	the	same
time.	If	this	happens,	they	may	occur	in	either	order.



Partials
You	may	have	also	noticed	the	use	of	functools.partial	in	the	previous	example.
Most	asyncio	methods	that	take	functions	only	take	function	objects	(or	other
callables),	but	not	arguments	to	be	sent	to	those	functions	once	they	are	called.
The	functools.partial	method	is	a	solution	to	that	problem.	The	partial	method
itself	takes	the	arguments	and	keyword	arguments	that	must	be	passed	to	the
underlying	function	when	it	is	called.

For	instance,	the	hello_world	function	in	the	previous	example	is	actually	entirely
unnecessary.	It	is	an	analogue	to	functools.partial(print,	'Hello	world!').
Therefore,	the	previous	example	could	be	written	as	follows:

>>>	import	functools

>>>	def	stop_loop(loop):

...					print('Stopping	loop.')

...					loop.stop()

...

>>>	loop.call_soon(functools.partial(print,	'Hello	world!	')

Handle(functools.partial(<built-in	function	print>,	'Hello	world'),	())

>>>	loop.call_soon(functools.partial(stop_loop,	loop))

Handle(functools.partial(<function	stop_loop	at	0x101ccf268>,

					<asyncio.unix_events._UnixSelectorEventLoop	object

					at	0x1007399e8>),	())

>>>	loop.run_forever()

Hello	world!

Stopping	loop.

>>>	

Why	have	partials	at	all?	After	all,	it	is	usually	easy	enough	to	wrap	such	calls	in
functions	that	do	not	require	arguments.	The	answer	is	in	debugging.	The	partial
object	knows	what	it	is	calling	and	with	what	arguments.	This	is	represented	as
data	to	the	partial,	and	the	partial	uses	that	data	when	called	to	perform	the
proper	function	call.	By	contrast,	the	hello_world	function	is	just	that:	a	function.
The	function	call	within	it	is	code.	There	is	no	way	to	easily	inspect	the
hello_world	function	and	pull	out	the	underlying	call.

You	can	see	this	difference	by	creating	a	partial	and	then	inspecting	its	underlying
function	and	arguments.

>>>	partial	=	functools.partial(stop_loop,	loop)

>>>	partial.func

<function	stop_loop	at	0x10223e488>

>>>	partial.args

(<asyncio.unix_events._UnixSelectorEventLoop	object	at	0x102238b70>,)

Running	the	Loop	until	a	Task	Completes
It	is	also	possible	to	run	the	loop	until	a	task	completes,	as	shown	here:

>>>	@asyncio.coroutine…	def	trivial():

...					return	'Hello	world!'

...



>>>	loop.run_until_complete(trivial())

'Hello	world!'

In	this	example,	the	@asyncio.coroutine	decorator	transforms	this	normal	Python
function	into	a	coroutine,	which	is	covered	in	more	detail	later.	When	you	call
run_until_complete,	it	registers	the	task	and	then	runs	the	loop	only	until	the	task
completes.	Because	it	is	the	only	task	in	the	queue,	it	completes	and	exits	the	loop,
returning	the	result	of	that	task.

Running	a	Background	Loop
It	is	possible	to	run	an	event	loop	in	the	background,	using	the	threading	module
that	is	available	in	the	Python	standard	library.

>>>	import	asyncio

>>>	import	threading

>>>

>>>	def	run_loop_forever_in_background(loop):

...					def	thread_func(l):

...									asyncio.set_event_loop(l)

...									l.run_forever()

...					thread	=	threading.Thread(target=thread_func,	args=(loop,))

...					thread.start()

...					return	thread…

>>>

>>>	loop	=	asyncio.get_event_loop()

>>>	run_loop_forever_in_background(loop)

<Thread(Thread-1,	started	4344254464)>

>>>

>>>	loop.is_running()

True

Note	that	this	is	a	useful	idiom	for	getting	started,	but	is	almost	certainly	not	what
you	will	want	in	your	final	application.	(For	example,	you	will	have	a	hard	time
stopping	the	loop;	loop.stop	does	not	work	anymore.)	It	is	fine	for	learning,
though.

This	loop	is	still	relatively	uninteresting.	After	all,	while	it	is	running,	it	has
nothing	to	do.	You	have	not	registered	any	tasks	to	it	yet.	Consider	what	happens
when	you	register	a	trivial	task	to	run	as	soon	as	possible.

>>>	loop.call_soon_threadsafe(functools.partial(print,	'Hello	world'))

Handle(functools.partial(<built-in	function	print>,	'Hello	world'),	())

>>>	Hello	world

This	output	might	be	a	bit	confusing.	First,	you	called	call_soon_threadsafe.	This
tells	the	loop	to	run	the	given	function	asynchronously	as	soon	as	possible.	Note
that,	in	most	cases,	you	will	simply	use	the	call_soon	function,	because	you	will
not	be	running	the	event	loop	in	a	thread.

The	call_soon_threadsafe	function	returns	a	Handle	object.	This	is	an	object	with
one	method:	cancel.	It	is	able	to	cancel	the	task	entirely	if	appropriate.



Next,	you	have	the	>>>	prompt	(suggesting	that	the	interpreter	expects	input),
followed	by	Hello	world.	That	was	printed	from	the	previous	function	call,	after
the	prompt	was	written	to	the	screen.

Because	event	loops	are	not	thread	safe,	the	remainder	of	the	examples	in	this
chapter	use	other	models	to	explain	the	concepts.



Coroutines
Most	functions	that	are	used	within	asyncio	should	be	coroutines.	A	coroutine	is
a	special	kind	of	function	designed	to	run	within	an	event	loop.	Additionally,	if	a
coroutine	is	created	but	is	never	run,	an	error	will	be	issued	to	the	logs.



Note

This	discussion	documents	Python	3.4	specifically.	Changes	are	possible	in
Python	3.5.

You	can	make	a	function	into	a	coroutine	by	decorating	it	with
@asyncio.coroutine.	Consider	this	example	of	running	a	simple	coroutine	with	the
event	handler's	run_until_complete:

>>>	import	asyncio

>>>	@asyncio.coroutine…	def	coro_sum(*args):

...					answer	=	0…					for	i	in	args:

...									answer	+=	i…					return	answer…

>>>	loop	=	asyncio.get_event_loop()

>>>	loop.run_until_complete(coro_sum(1,	2,	3,	4,	5))

15

The	coro_sum	function	created	here	is	no	longer	a	regular	function;	it	is	a
coroutine,	and	it	is	called	by	the	event	loop.	It	is	worth	noting	that	you	can	no
longer	call	it	the	regular	way	and	get	what	you	may	expect.

>>>	coro_sum(1,	2,	3,	4,	5)

<generator	object	coro	at	0x104056e10>

Coroutines	are,	in	fact,	special	generators	that	are	consumed	by	the	event	loop.
That	is	why	the	run_until_complete	method	is	able	to	take	what	appears	to	be	a
standard	function	call.	The	function	is	not	actually	run	at	that	point.	The	event
loop	is	what	consumes	the	generator	and	ultimately	extracts	the	result.

What	actually	happens	under	the	hood	essentially	looks	like	this:

>>>	try:

...					next(coro_sum(1,	2,	3,	4,	5))

...	except	StopIteration	as	ex:

...					ex.value…

15

The	generator	does	not	yield	any	values.	It	immediately	raises	StopIteration.	The
StopIteration	exception	is	given	a	value,	which	is	the	return	value	of	the	function.
The	event	loop	is	then	able	to	extract	this	and	handle	it	appropriately.

Nested	Coroutines
Coroutines	provide	a	special	mechanism	to	call	other	coroutines	(or	Future
instances,	as	discussed	shortly)	in	a	fashion	that	mimics	that	of	sequential
programming.	By	using	the	yield	from	statement,	a	coroutine	can	run	another
coroutine,	and	the	statement	returns	the	result.	This	is	one	mechanism	available
to	write	asynchronous	code	in	a	sequential	manner.

The	following	simple	coroutine	calls	another	coroutine	using	yield	from:



>>>	import	asyncio

>>>	@asyncio.coroutine…	def	nested(*args):

...					print('The	'nested'	function	ran	with	args:	%r'	%	(args,))

...					return	[i	+	1	for	i	in	args]

...

>>>	@asyncio.coroutine…	def	outer(*args):

...					print('The	'outer'	function	ran	with	args:	%r'	%	(args,))

...					answer	=	yield	from	nested(*[i	*	2	for	i	in	args])

...					return	answer…

>>>	loop	=	asyncio.get_event_loop()

>>>	loop.run_until_complete(outer(2,	3,	5,	8))

The	'outer'	function	ran	with	args:	(2,	3,	5,	8)

The	'nested'	function	ran	with	args:	(4,	6,	10,	16)

[5,	7,	11,	17]

Here	you	have	two	coroutines,	with	the	outer	coroutine	calling	the	nested
coroutine	using	the	yield	from	syntax.	You	can	see	from	the	output	to	standard
out	that	both	coroutines	run,	and	the	final	result	is	returned	at	the	end	of	outer.

Incidentally,	what	is	happening	here	under	the	hood	is	that	the	outer	coroutine	is
actually	suspended	when	it	encounters	the	yield	from	statement.	The	nested
coroutine	is	then	placed	on	the	event	loop	and	the	event	loop	runs	it.	The	outer
coroutine	does	not	continue	until	nested	completes	and	a	result	is	available.

A	couple	things	are	worth	noting.	First,	the	yield	from	statement	returns	the
result	of	the	coroutine	it	runs.	That	is	why	you	see	an	assignment	to	a	variable	in
the	example.

Second,	why	would	you	not	simply	call	the	function	directly?	This	would	be	fine	if
it	were	a	procedural	function,	but	this	is	a	coroutine.	Calling	it	directly	would
return	a	generator	rather	than	the	value.	You	could	write	nested	as	a	standard
function,	but	consider	the	following	situation	where	you	would	also	want	to	be
able	to	assign	it	to	the	event	loop	directly.

>>>	loop.run_until_complete(nested(5,	10,	15))

The	'nested'	function	ran	with	args:	(5,	10,	15)

[6,	11,	16]

The	capability	to	have	a	coroutine	call	another	coroutine	using	yield	from
addresses	this.	It	increases	the	capability	to	reuse	coroutines.



Futures	and	Tasks
Because	most	work	using	asyncio	is	done	asynchronously,	you	must	contend	with
how	to	deal	with	the	results	of	functions	that	are	run	in	this	manner.	The	yield
from	statement	provides	one	way	to	do	this,	but	sometimes,	for	example,	you	want
to	run	asynchronous	functions	in	parallel.

In	sequential	programming,	return	values	are	straightforward.	You	run	a	function,
and	it	returns	its	result.	However,	in	asynchronous	programming,	while	the
function	returns	its	result	as	before,	what	happens	to	the	result	then?	There	is	no
clear	caller	to	return	the	result	to.

Futures
A	mechanism	for	dealing	with	this	particular	challenge	is	the	Future	object.
Essentially,	a	Future	is	an	object	that	is	told	about	the	status	of	an	asynchronous
function.	This	includes	the	status	of	the	function—whether	that	function	is
running,	has	completed,	or	was	canceled.	This	also	includes	the	result	of	the
function,	or,	if	the	function	ended	by	raising	an	exception,	the	exception	and
traceback.

The	Future	is	a	standalone	object.	It	is	independent	of	the	actual	function	that	is
running.	It	does	nothing	but	store	the	state	and	result	information.

Tasks
A	Task	is	a	subclass	of	Future,	as	well	as	what	you	will	generally	be	using	when
programming	with	asyncio.	Whenever	a	coroutine	is	scheduled	on	the	event	loop,
that	coroutine	is	wrapped	in	a	Task.	So,	in	the	previous	example,	when	you	called
run_until_complete	and	passed	a	coroutine,	that	coroutine	was	wrapped	in	a	Task
class	and	then	executed.	It	was	the	Task	that	stored	the	result	and	handled
providing	it	in	the	yield	from	statement.

The	run_until_complete	method	is	not	the	only	way	(or	even	the	primary	way)	for
a	coroutine	to	be	wrapped	in	a	class,	however.	After	all,	in	many	applications,	your
event	loop	runs	forever.	How	do	tasks	get	placed	on	the	event	loop	in	such	a
system?

The	primary	way	you	do	this	is	by	using	the	asyncio.async	method.	This	method
will	place	a	coroutine	on	the	event	loop,	and	return	the	associated	Task.





Note

If	you	are	running	Python	3.4.4+,	use	ensure_future	rather	than	
asyncio.async.	However,	if	you	are	running	Python	3.4.3,	continue	to	use
asyncio.

To	demonstrate	this,	first	get	the	event	loop	and	write	a	garden-variety	coroutine,
as	shown	here:

>>>	import	asyncio

>>>

>>>	@asyncio.coroutine…	def	make_tea(variety):

...					print('Now	making	%s	tea.'	%	variety)

...					asyncio.get_event_loop().stop()

...					return	'%s	tea'	%	variety…

>>>

This	is	still	a	trivial	task,	but	one	new	thing	here	that	you	have	not	seen	yet	is	that
the	task	actually	stops	the	event	loop.	This	is	simply	a	nice	workaround	to	dodge
the	fact	that	when	you	start	the	loop	(with	run_forever),	it	will	run	forever.

Next,	register	the	task	with	the	event	loop.

>>>	task	=	asyncio.async(make_tea('chamomile'))

This	is	all	you	actually	need	to	do	to	register	the	task	with	the	loop,	but	because
the	loop	is	not	running,	the	task	is	not	going	to	execute	for	now.	Indeed,	you	can
inspect	the	task	object	using	the	done	and	result	methods	and	see	this.

>>>	task.done()

False

>>>	task.result()

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

		File	

"/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/asyncio/

							futures.py",	line	237,	in	result

				raise	InvalidStateError('Result	is	not	ready.')

asyncio.futures.InvalidStateError:	Result	is	not	ready.

Next,	you	must	start	the	loop.	It	is	okay	to	start	the	loop	with	run_forever	now;	the
actual	task	will	stop	it	as	soon	as	the	task	completes	because	of	the	call	to
loop.stop().

>>>	loop	=	asyncio.get_event_loop()

>>>	loop.run_forever()

Now	making	chamomile	tea.

>>>

Sure	enough,	the	loop	starts,	runs	the	task,	and	then	immediately	stops.	Now	if
you	inspect	the	task	variable,	you	will	get	different	results.



>>>	task.done()

True

>>>	task.result()

'chamomile	tea'

Whenever	you	create	a	Task	object	with	asyncio.async,	you	will	get	a	Task	object
back.	You	can	inspect	that	object	at	any	time	to	get	the	status	or	result	of	the	task.



Callbacks
Another	feature	of	Future	objects	(and	therefore	Task	objects,	because	Task
subclasses	Future)	is	the	capability	to	register	callbacks	to	the	Future.	A	callback
is	simply	a	function	(or	coroutine)	that	should	execute	once	the	Future	is	done,
and	which	receives	the	Future	as	an	argument.

In	some	ways,	callbacks	represent	a	reversal	of	the	yield	from	model.	When	a
coroutine	uses	yield	from,	that	coroutine	ensures	that	the	nested	coroutine	runs
before	or	during	its	execution.	When	you	register	a	callback,	you	are	working	in
the	opposite	direction.	The	callback	is	being	attached	to	the	original	task,	to	run
after	the	execution	of	the	task.

You	can	add	a	callback	to	any	Future	object	by	using	that	object's
add_done_callback	method.	Callbacks	are	expected	to	take	a	single	argument,
which	is	the	Future	object	itself	(which	will	contain	the	status	and	result,	if
applicable,	of	the	underlying	task).

Consider	the	following	example	of	a	callback	in	action:

>>>	import	asyncio

>>>	loop	=	asyncio.get_event_loop()

>>>

>>>	@asyncio.coroutine…	def	make_tea(variety):

...					print('Now	making	%s	tea.'	%	variety)

...					return	'%s	tea'	%	variety…

>>>	def	confirm_tea(future):

...					print('The	%s	is	made.'	%	future.result())

...

>>>	task	=	asyncio.async(make_tea('green'))

>>>	task.add_done_callback(confirm_tea)

>>>

>>>	loop.run_until_complete(task)

Now	making	green	tea.

The	green	tea	is	made.

'green	tea'

The	first	thing	that	is	happening	is	that	you	again	made	a	make_tea	coroutine,
identical	to	the	one	in	the	previous	example,	except	that	this	one	does	not	stop	the
loop.

Next,	notice	the	confirm_tea	function.	This	is	a	plain	function;	it	is	not	a
coroutine.	In	fact,	you	cannot	send	a	coroutine	as	a	callback	here.	It	will	raise	an
exception	when	you	run	the	loop	if	you	try.	This	function	receives	the	Future
object	(which	is	the	task	variable	in	this	case)	that	it	is	registered	to	once	the
callback	runs.	The	Future	object	contains	the	result	of	the	coroutine—which	is	that
is	the	'green	tea'	string	in	this	case.

Finally,	notice	the	call	to	add_done_callback.	This	is	where	the	confirm_tea	method
is	assigned	as	a	callback	to	the	task.	Also,	notice	that	it	is	assigned	to	the	task	(a
particular	invocation	of	a	coroutine),	not	the	coroutine	itself.	If	another	task	was



registered	to	the	loop	with	asyncio.async	that	called	the	same	coroutine,	it	would
not	have	this	callback.

The	output	shows	that	both	functions	ran,	in	the	order	you	expected.	The	return
value	is	the	return	value	from	make_tea,	provided	to	you	because	that	is	how
run_until_complete	works.

No	Guarantee	of	Success
There	is	one	important	thing	to	note.	Simply	because	a	Future	is	done	does	not
guarantee	that	it	ran	successfully.	This	example	simply	assumes	that
future.result()	will	be	populated,	but	that	may	not	be	the	case.	The	Task	could
have	ended	in	an	exception,	in	which	case,	attempting	to	access	future.result()
will	raise	that	exception.

Similarly,	it	is	possible	to	cancel	a	task	(using	the	Future.cancel()	method	or	by
other	means).	If	this	occurs,	the	task	will	be	marked	Cancelled,	and	the	callbacks
will	be	scheduled.	In	this	case,	attempting	to	access	future.result()	will	raise
CancelledError.

Under	the	Hood
Internally,	asyncio	informs	the	Future	object	that	it	is	done.	The	Future	object
then	takes	each	of	the	callbacks	registered	against	it	and	calls
call_soon_threadsafe	on	each	of	them.

Be	aware	that	there	is	no	guarantee	of	order	when	it	comes	to	callbacks.	It	is
entirely	possible	(and	fine)	to	register	multiple	callbacks	to	the	same	task.
However,	you	do	not	have	any	way	of	controlling	which	callbacks	will	be	run	in
which	order.

Callbacks	with	Arguments
One	limitation	of	the	callback	system	is	that,	as	noted,	the	callback	receives	the
Future	as	a	positional	argument,	and	accepts	no	other	arguments.

It	is	possible	to	send	other	arguments	to	a	callback	through	the	use	of
functools.partial.	If	you	do	this,	however,	the	callback	must	still	accept	the
Future	as	a	positional	argument.	In	practice,	the	Future	is	appended	to	the	end	of
the	positional	arguments	list	before	the	callback	is	called.

Consider	the	following	case	of	a	callback	that	expects	another	argument:

>>>	import	asyncio

>>>	import	functools

>>>

>>>	loop	=	asyncio.get_event_loop()

>>>

>>>	@asyncio.coroutine…	def	make_tea(variety):

...					print('Now	making	%s	tea.'	%	variety)

...					return	'%s	tea'	%	variety…



>>>	def	add_ingredient(ingredient,	future):

...					print('Now	adding	%s	to	the	%s.'	%	(ingredient,	future.result()))

...

>>>

>>>	task	=	asyncio.async(make_tea('herbal'))

>>>	task.add_done_callback(functools.partial(add_ingredient,	'honey'))

>>>

>>>	loop.run_until_complete(task)

Now	making	herbal	tea.

Now	adding	honey	to	the	herbal	tea.

'herbal	tea'

This	is	mostly	similar	to	the	previous	example.	The	only	significant	difference	is	in
how	the	callback	is	registered.	Instead	of	passing	the	function	object	directly	(as
you	did	in	the	previous	example),	you	instantiate	a	functools.partial	object	with
the	positional	argument	you	are	sending	('honey').

Again,	notice	that	the	add_ingredient	function	is	written	to	accept	two	positional
arguments,	but	the	partial	only	specifies	one	argument.	The	Future	object	is	sent
as	the	last	positional	argument	in	cases	where	a	partial	is	used.	The	function
signature	for	add_ingredient	reflects	this.



Task	Aggregation
The	asyncio	module	provides	a	convenient	way	to	aggregate	tasks.	You	have	two
major	reasons	to	do	something	like	this.	The	first	reason	is	to	take	some	sort	of
action	once	any	task	in	a	set	of	tasks	has	completed.	The	second	reason	is	to	take
some	sort	of	action	once	all	tasks	in	the	set	have	completed.

Gathering	Tasks
The	first	mechanism	that	asyncio	provides	for	this	purpose	is	the	gather	function.
The	gather	function	takes	a	sequence	of	coroutines	or	tasks	and	returns	a	single
task	that	aggregates	all	of	them	(wrapping	any	coroutines	it	receives	in	tasks	as
appropriate).

>>>	import	asyncio

>>>	loop	=	asyncio.get_event_loop()

>>>

>>>	@asyncio.coroutine…	def	make_tea(variety):

...					print('Now	making	%s	tea.'	%	variety)

...					return	'%s	tea'	%	variety…

>>>	meta_task	=	asyncio.gather(

...					make_tea('chamomile'),

...					make_tea('green'),

...					make_tea('herbal')

...	)

...

>>>	meta_task.done()

False

>>>

>>>	loop.run_until_complete(meta_task)

Now	making	chamomile	tea.

Now	making	herbal	tea.

Now	making	green	tea.

['chamomile	tea',	'green	tea',	'herbal	tea']

>>>	meta_task.done()

True

In	this	case,	the	asyncio.gather	function	received	three	coroutine	objects.	It
wrapped	them	all	in	tasks	under	the	hood,	and	returned	a	single	task	that	serves
as	an	aggregation	of	all	three.

Notice	that	scheduling	the	meta_task	object	effectively	schedules	the	three	tasks
gathered	underneath	it.	Once	you	run	the	loop,	the	three	subtasks	all	run.

In	the	case	of	a	task	created	with	asyncio.gather,	the	result	is	always	a	list,	and
that	list	contains	the	results	of	the	individual	tasks	that	were	gathered.	The	order
of	the	list	of	results	is	guaranteed	to	be	the	same	order	in	which	the	tasks	were
gathered	(but	the	tasks	are	not	guaranteed	to	be	run	in	that	order).	Therefore,	the
list	of	strings	you	got	back	are	in	the	same	order	as	the	registered	coroutines	in	the
asyncio.gather	call.

The	asyncio.gather	paradigm	also	provides	the	opportunity	to	add	a	callback	to



the	set	of	tasks	as	a	whole,	rather	than	the	individual	tasks.	What	if	you	only	want
a	callback	to	run	once	all	of	the	tasks	are	completed,	but	it	does	not	matter	to	you
in	which	order	they	complete?

>>>	import	asyncio

>>>	loop	=	asyncio.get_event_loop()

>>>

>>>	@asyncio.coroutine…	def	make_tea(variety):

...					print('Now	making	%s	tea.'	%	variety)

...					return	'%s	tea'	%	variety…

>>>	def	mix(future):

...					print('Mixing	the	%s	together.'	%	'	and	'.join(future.result()))

...

>>>	meta_task	=	asyncio.gather(make_tea('herbal'),	make_tea('green'))

>>>	meta_task.add_done_callback(mix)

>>>

>>>	loop.run_until_complete(meta_task)

Now	making	green	tea.

Now	making	herbal	tea.

Mixing	the	green	tea	and	herbal	tea	together.

['green	tea',	'herbal	tea']

The	first	thing	that	happened	when	you	called	run_until_complete	was	that	both
of	the	individual	tasks	gathered	into	meta_task	ran,	individually.	Finally,	the	mix
function	ran,	only	after	both	of	the	individual	tasks	had	run.	This	is	because	the
meta_task	is	not	considered	to	be	done	until	after	all	of	its	individual	tasks	are
done,	so	only	once	both	individual	tasks	complete	does	it	trigger	the	callback.

You	can	also	see	that	the	Future	object	that	the	mix	function	received	was
meta_task,	not	the	individual	tasks,	and,	therefore,	its	result	method	returned	a
list	of	both	of	the	individual	results.

Waiting	on	Tasks
Another	tool	that	the	asyncio	module	provides	is	the	built-in	wait	coroutine.	The
asyncio.wait	coroutine	takes	a	sequence	of	coroutines	or	tasks	(wrapping	any
coroutines	in	tasks)	and	returns	once	they	are	done.	Note	that	the	signature	here
is	distinct	from	asyncio.gather.	gather	takes	each	coroutine	or	task	as	a	single
positional	argument,	whereas	wait	expects	a	list.

Additionally,	wait	accepts	a	parameter	to	return	when	any	of	its	tasks	complete,
rather	than	only	returning	when	all	of	them	do.	Regardless	of	whether	this	flag	is
set,	the	wait	method	always	returns	a	two-tuple,	with	the	first	element	being	the
Future	objects	that	have	completed,	and	the	second	element	being	those	that	are
still	pending.

Consider	the	following	example	that	is	similar	to	how	you	previously	used
asyncio.gather:

>>>	import	asyncio

>>>	loop	=	asyncio.get_event_loop()

>>>



>>>	@asyncio.coroutine…	def	make_tea(variety):

...					print('Now	making	%s	tea.'	%	variety)

...					return	'%s	tea'	%	variety…

>>>	coro	=	asyncio.wait([make_tea('chamomile'),	make_tea('herbal')])

>>>

>>>	loop.run_until_complete(coro)

Now	making	chamomile	tea.

Now	making	herbal	tea.

({Task(<coro>)<result='herbal	tea'>,	Task(<coro>)<result='chamomile	tea'>},	

set())

Note	a	couple	of	subtle	differences	here.	First,	unlike	the	gather	method,	the	wait
method	returns	a	coroutine.	This	has	its	value;	you	can	use	it	in	a	yield	from
statement,	for	example.

On	the	other	hand,	you	are	unable	to	attach	callbacks	directly	to	a	coroutine
returned	from	wait.	If	you	want	to	do	this,	you	must	wrap	it	in	a	task	using
asyncio.async.

Also,	the	result	is	different.	The	asyncio.gather	function	aggregated	the	results	in
a	list,	and	returned	that.	The	result	for	asyncio.wait	is	a	two-tuple	containing	the
actual	Future	objects	(which	themselves	contain	their	results).	Additionally,	the
Future	objects	are	reorganized.	The	asyncio.wait	routine	places	them	into	two
sets—one	set	for	those	that	are	done,	and	another	set	for	those	that	are	not.
Because	sets	are	themselves	an	unordered	structure,	that	means	you	must	rely	on
the	Future	objects	to	piece	together	which	result	corresponds	to	which	task.

Timeouts
It	is	possible	to	have	the	asyncio.wait	coroutine	return	when	a	specific	amount	of
time	has	passed,	regardless	of	whether	all	of	the	tasks	have	completed.	To	do	this,
you	pass	the	timeout	keyword	argument	to	asyncio.wait.

>>>	import	asyncio

>>>	loop	=	asyncio.get_event_loop()

>>>

>>>	coro	=	asyncio.wait([asyncio.sleep(5),	asyncio.sleep(1)],	timeout=3)

>>>	loop.run_until_complete(coro)

({Task(<sleep>)<result=None>},	{Task(<sleep>)<PENDING>})

In	this	case,	you	are	just	using	a	coroutine	provided	by	the	asyncio	module:
asyncio.sleep.	This	simply	waits	for	a	given	number	of	seconds,	and	then	returns
None.	The	timing	in	this	example	is	set	up	so	that	one	of	the	tasks	(the	second	one)
will	complete	before	the	wait	function	times	out,	but	the	other	will	not.

The	first	difference	to	note	is	that	the	second	element	of	the	two-tuple	now	has	a
task	in	it;	the	sleep	coroutine	that	failed	to	complete	in	time	is	still	pending.	The
other,	however,	did	complete,	and	has	a	result	(None).

The	use	of	timeout	does	not	necessitate	that	the	entire	time	period	designated	by
timeout	must	elapse.	If	all	of	the	tasks	complete	before	time	expires,	the	coroutine
will	complete	immediately.



Waiting	on	Any	Task
One	of	the	biggest	features	of	asyncio.wait	is	the	capability	to	have	the	coroutine
return	when	any	of	the	Future	objects	under	its	care	completes.	The	asyncio.wait
function	also	accepts	a	return_when	keyword	argument.	By	sending	it	a	special
constant	(asyncio.FIRST_COMPLETED),	the	coroutine	will	complete	once	any	task	has
finished,	rather	than	waiting	for	every	task.

>>>	import	asyncio

>>>	loop	=	asyncio.get_event_loop()

>>>

>>>	coro	=	asyncio.wait([

...					asyncio.sleep(3),

...					asyncio.sleep(2),

...					asyncio.sleep(1),

...	],	return_when=asyncio.FIRST_COMPLETED)

>>>

>>>	loop.run_until_complete(coro)

({Task(<sleep>)<result=None>},

	{Task(<sleep>)<PENDING>,	Task(<sleep>)<PENDING>})

In	this	case,	the	asyncio.wait	call	is	given	a	list	of	three	asyncio.sleep	coroutines,
which	will	sleep	for	3,	2,	and	1	seconds.	Once	the	coroutine	is	called,	it	runs	all	the
tasks	underneath	it.	The	asyncio.sleep	coroutine	that	is	only	asked	to	wait	for	1
second	completes	first,	which	completes	the	wait.	Therefore,	you	get	a	two-tuple
back	with	one	item	in	the	first	set	(tasks	that	are	complete),	and	two	items	in	the
second	set	(tasks	that	are	still	pending).

Waiting	on	an	Exception
It	is	also	possible	to	have	a	call	to	asyncio.wait	complete	whenever	it	encounters	a
task	that	completed	with	an	exception,	rather	than	exiting	normally.	This	is	a
valuable	tool	in	situations	where	you	want	to	trap	the	exceptional	cases	as	early	as
possible	and	deal	with	them.

You	can	trigger	this	behavior	using	the	return_from	keyword	argument	as	before,
but	by	sending	the	asyncio.FIRST_EXCEPTION	constant	instead.

>>>	import	asyncio

>>>	loop	=	asyncio.get_event_loop()

>>>

>>>	@asyncio.coroutine…	def	raise_ex_after(seconds):

...					yield	from	asyncio.sleep(seconds)

...					raise	RuntimeError('Raising	an	exception.')

...

>>>	coro	=	asyncio.wait([

...					asyncio.sleep(1),

...					raise_ex_after(2),

...					asyncio.sleep(3),

...	],	return_when=asyncio.FIRST_EXCEPTION)

>>>

>>>	loop.run_until_complete(coro)

({Task(<raise_ex_after>)<exception=RuntimeError('Raising	an	exception.',)>,



		Task(<sleep>)<result=None>},

	{Task(<sleep>)<PENDING>})

In	this	case,	the	asyncio.wait	coroutine	stopped	as	soon	as	a	task	completed	with
an	exception.	This	means	that	the	1-second	asyncio.sleep	completed	successfully,
and	it	is	in	the	first	set	in	the	return	value.	The	raise_ex_after	coroutine	also
completed,	so	it	is	in	the	first	set	also.	However,	the	fact	that	it	raised	an	exception
caused	wait	to	trigger	its	completion	before	the	3-second	sleep	could	complete,	so
it	is	returned	in	the	second	(pending)	set.

Sometimes,	there	may	not	be	any	task	that	actually	raises	an	exception	(which	is
usually	a	convenient	case).	In	this	case,	the	wait	completes	once	all	of	the	tasks
have	completed	as	normal.

>>>	import	asyncio

>>>	loop	=	asyncio.get_event_loop()

>>>

>>>	coro	=	asyncio.wait([

...					asyncio.sleep(1),

...					asyncio.sleep(2),

...	],	return_when=asyncio.FIRST_EXCEPTION)

>>>

>>>	loop.run_until_complete(coro)

({Task(<sleep>)<result=None>,	Task(<sleep>)<result=None>},	set())	



Queues
The	asyncio	module	provides	several	common	patterns	that	are	built	upon	the
fundamental	building	blocks	of	the	event	loop	and	Future	objects.	One	of	these	is	a
basic	queuing	system.

A	queue	is	a	collection	of	tasks	to	be	processed	by	a	task	runner.	The	Python
ecosystem	includes	several	third-party	task	queue	utilities,	with	the	most	popular
of	these	probably	being	celery.	This	is	not	a	fully	featured	queuing	application.
Rather,	the	asyncio	module	provides	simply	the	fundamental	queue	itself,	which
application	developers	can	build	on	top	of.

Why	is	Queue	part	of	asyncio?	This	Queue	class	provides	methods	to	be	used	in	a
sequential	or	an	asynchronous	context.

Consider	first	a	very	simple	example	of	a	Queue	in	action:

>>>	import	asyncio

>>>	queue	=	asyncio.Queue()

>>>	queue.put_nowait('foo')

>>>	queue.qsize()

1

>>>	queue.get_nowait()

'foo'

>>>	queue.qsize()

0

In	addition	to	being	trivially	simple,	there	is	nothing	particularly	asynchronous
going	on	here.	You	did	not	even	bother	to	get	or	run	the	event	loop.	This	is	a	very
direct	FIFO	queue.

Note	the	use	of	the	put_nowait	and	get_nowait	methods.	These	methods	are
designed	to	perform	the	addition	or	removal	of	the	item	to	or	from	the	queue
immediately.	If,	for	example,	you	try	to	call	get_nowait	on	an	empty	queue,	you	get
a	QueueEmpty	exception.

>>>	queue.get_nowait()

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

		File	

"/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/asyncio/

							queues.py",	line	206,	in	get_nowait

				raise	QueueEmpty

asyncio.queues.QueueEmpty

The	Queue	class	also	provides	a	method	called	get.	Instead	of	returning	an
exception	on	an	empty	queue,	the	get	method	will	patiently	wait	for	an	item	to	be
added	to	the	queue,	and	then	retrieve	it	from	the	queue	and	return	it	immediately.
Unlike	get_nowait,	this	method	is	a	coroutine,	and	runs	in	an	asynchronous
context.

>>>	import	asyncio



>>>	loop	=	asyncio.get_event_loop()

>>>	queue	=	asyncio.Queue()

>>>

>>>	queue.put_nowait('foo')

>>>	loop.run_until_complete(queue.get())

'foo'

In	this	case,	an	item	was	already	on	the	queue,	so	the	get	method	still	returns
immediately.	If	there	was	not	an	item	on	the	queue	yet,	a	simple	call	to
loop.run_until_complete	would	never	complete,	and	block	your	interpreter.

You	can	use	the	timeout	parameter	in	asyncio.wait	to	see	this	concept	in	action,
though.

>>>	import	asyncio

>>>	loop	=	asyncio.get_event_loop()

>>>	queue	=	asyncio.Queue()

>>>

>>>	task	=	asyncio.async(queue.get())

>>>	coro	=	asyncio.wait([task],	timeout=1)

>>>

>>>	loop.run_until_complete(coro)

(set(),	{Task(<get>)<PENDING>})

At	this	point,	there	is	still	nothing	on	the	queue,	so	the	task	to	get	the	item	off	the
queue	is	just	continuing	indefinitely.	You	also	have	the	task	variable,	and	can
inspect	its	status.

>>>	task.done()

False

Next,	place	an	item	on	the	queue,	as	shown	here:

>>>	queue.put_nowait('bar')

You	will	notice	that	the	task	still	is	not	done	yet,	because	the	event	loop	is	no
longer	running.	The	task	is	still	registered,	though,	so	register	a	callback	to	stop
the	loop	once	it	completes,	and	it	is	possible	to	start	it	again.

>>>	import	functools

>>>	def	stop(l,	future):

...					l.stop()

...

>>>	task.add_done_callback(functools.partial(stop,	loop))

>>>

>>>	loop.run_forever()

Now,	because	there	was	an	item	on	the	queue,	the	task	is	done,	and	the	task's
result	is	the	item	on	the	queue	('bar').

>>>	task.done()

True

>>>	task.result()

'bar'



Maximum	Size
It	is	also	possible	to	give	a	Queue	object	a	maximum	size,	by	setting	the	maxsize
keyword	argument	when	creating	the	queue.

>>>	import	asyncio

>>>	queue	=	asyncio.Queue(maxsize=5)

If	you	do	this,	the	Queue	will	not	allow	any	more	than	the	maximum	number	of
items	onto	the	queue.	A	call	to	the	put	method	will	simply	wait	until	a	previous
item	is	removed,	and	then	(and	only	then)	will	it	place	the	item	on	the	queue.	If
you	call	put_nowait	and	the	queue	is	full,	it	will	raise	QueueFull.



Servers
One	of	the	most	common	uses	of	the	asyncio	module	is	to	create	services	that	can
run	as	a	daemon	and	accept	commands.	The	asyncio	module	defines	a	Protocol
class	that	is	able	to	fire	appropriate	events	on	receiving	or	losing	a	connection,	and
when	it	receives	data.

Additionally,	the	event	loop	defines	a	create_server	method	that	opens	a	socket,
allowing	data	to	be	sent	to	the	event	loop	and	on	to	the	protocol.

Consider	a	simple	server	that	can	do	nothing	but	add	numbers	and	shut	itself
down.

import	asyncio

class	Shutdown(Exception):

				pass

class	ServerProtocol(asyncio.Protocol):

				def	connection_made(self,	transport):

								self.transport	=	transport

								self.write('Welcome.')

				def	data_received(self,	data):

								#	Sanity	check:	Do	nothing	on	empty	commands.

								if	not	data:

												return

								#	Commands	to	this	server	shall	be	a	single	word,	with

								#	space	separated	arguments.

								message	=	data.decode('ascii')

								command	=	message.strip().split('	')[0].lower()

								args	=	message.strip().split('	')[1:]

								#	Sanity	check:	Verify	the	presence	of	the	appropriate	command.

								if	not	hasattr(self,	'command_%s'	%	command):

												self.write('Invalid	command:	%s'	%	command)

												return

								#	Run	the	appropriate	command.

								try:

												return	getattr(self,	'command_%s'	%	command)(*args)

								except	Exception	as	ex:

												self.write('Error:	%s\n'	%	str(ex))

				def	write(self,	msg_string):

								string	+=	'\n'

								self.transport.write(msg_string.encode('ascii',	'ignore'))

				def	command_add(self,	*args):

								args	=	[int(i)	for	i	in	args]

								self.write('%d'	%	sum(args))



				def	command_shutdown(self):

								self.write('Okay.	Shutting	down.')

								raise	KeyboardInterrupt

if	__name__	==	'__main__':

				loop	=	asyncio.get_event_loop()

				coro	=	loop.create_server(ServerProtocol,	'127.0.0.1',	8000)

				asyncio.async(coro)

				try:

								loop.run_forever()

				except	KeyboardInterrupt:

								pass

This	is	a	somewhat	long	module,	but	a	few	details	are	worth	noting.	First,	the
ServerProtocol	class	subclasses	asyncio.Protocol.	The	connection_made	and
data_received	methods	are	defined	in	the	superclass,	but	do	nothing.	The	other
three	methods	are	custom.

Remember	that	when	you	make	a	socket	connection	between	machines,	you	are
essentially	always	sending	bytes,	not	text	strings.	The	write	method	here	does	that
conversion	in	one	place,	rather	than	forcing	you	to	convert	to	a	byte	string	every
time	you	want	to	write	to	the	transport.

The	guts	of	this	are	in	the	data_received	method.	It	takes	a	line	of	data	and	tries	to
figure	out	what	to	do	with	it.	It	only	understands	two	basic	commands,	and
anything	else	is	an	error.

Finally,	the	block	at	the	end	of	the	file	actually	starts	up	the	server,	and	runs	it
against	the	local	machine	on	a	particular	port.	This	is	all	the	code	you	need	to	start
up	a	server	and	have	it	listen	for	commands.

You	can	verify	that	the	server	receives	commands	by	starting	it	up	and	then,	in
another	shell	window,	using	telnet	to	connect	to	it.

$	telnet	127.0.0.1	8000

Trying	127.0.0.1…

Connected	to	localhost.

Escape	character	is	'ˆ]'.

Welcome.

add	3	5

8

make_tea

Invalid	command:	make_tea

shutdown

Okay.	Shutting	down.

Connection	closed	by	foreign	host.

You	have	a	very	simple	server.	It	can	accept	two	commands:	add	and	shutdown.	It
can	provide	errors	if	you	try	to	issue	a	command	it	does	not	understand.	And,	the
server	is,	in	fact,	able	to	shut	itself	down.



Summary
Python	is,	at	its	core,	a	sequential	language.	It	is	a	sequential	language	that,	with
asyncio,	is	getting	budding	asynchronous	features	built	in	to	the	standard	library.

One	thing	that	makes	asyncio	valuable	is	that	it	enables	you	to	write	code	that
follows	sequential	patterns,	but	is	actually	asynchronous	under	the	hood,	by	using
the	yield	from	statement.	However,	if	you	intend	to	write	an	asynchronous
application,	you	still	must	understand	the	advantages	and	disadvantages	of	this
paradigm.

As	you	have	seen,	many	things	are	different.	You	may	not	always	know	in	what
order	tasks	will	run.	It	is	possible	for	tasks	to	be	intentionally	canceled.	Finally,
code	may	be	registered	to	run	using	a	callback	system,	rather	than	through	direct
sequential	function	calls.	All	of	these	things	represent	a	break	from	“normal”
Python	programming.

Still,	if	you	have	a	robust	Python	3	application	and	need	certain	asynchronous
elements,	asyncio	may	be	the	right	tool	for	you.

In	Chapter	14,	you	learn	about	style	norms	and	recommendations	in	Python.





Chapter	14
Style
Code	is	read	more	often	than	it	is	written.

Despite	this	fact,	programmers	often	write	code	as	if	they	do	not	expect	to	have	to
maintain	it	or	even	read	it	in	the	future.	This	leads	to	code	that	is
incomprehensible	when	it	is	read	months	or	years	later.

Therefore,	one	of	the	most	important	things	you	can	do	as	a	programmer	(in	any
language)	is	to	write	readable	code.

This	chapter	explores	principles	for	writing	readable	code,	as	well	as	some	of	the
standards	adopted	by	the	Python	community	at	large	for	writing	code	in	a
consistent	manner.



Principles
Before	discussing	specific	standards	that	the	Python	community	has	adopted,	or
additional	recommendations	that	have	been	proposed	by	others,	it	is	important	to
consider	a	few	overarching	principles.

Remember	that	the	purpose	of	readability	standards	is	to	improve	readability.	The
rules	exist	to	serve	the	people	reading	and	writing	code,	not	the	other	way	around.

This	section	discusses	a	few	principles	to	keep	in	mind.

Assume	Your	Code	Will	Require	Maintenance
It	is	very	easy	to	believe	that	the	work	you	are	doing	at	the	moment	will	not
require	additions	or	maintenance	in	the	future.	This	is	because	it	is	difficult	to
anticipate	future	needs,	and	it	is	easy	to	underestimate	your	own	propensity	to
introduce	bugs.	However,	very	little	of	the	code	that	you	write	will	simply	exist
untouched	into	perpetuity.

If	you	assume	that	code	that	you	are	writing	is	going	to	be	“a	one-off”	and
something	that	you	will	not	have	to	read,	debug,	or	amend	later,	it	is	frighteningly
easy	to	ignore	other	principles	of	readable	code	simply	because	you	believe	that	“it
does	not	matter	this	time.”

Therefore,	preserve	a	healthy	distrust	of	any	instinct	you	may	have	that	code	you
write	will	not	need	to	be	maintained.	The	safe	bet	is	always	that	you	will	see	that
code	again.	Furthermore,	if	you	do	not,	someone	else	will.

Be	Consistent
The	two	aspects	of	consistency	are	internal	consistency	and	external
consistency.

Your	code	should	be	as	internally	consistent	as	possible.	This	is	true	both	of	style
and	structure.	The	style	should	be	consistent	in	that	any	formatting	rules	should
be	followed	throughout	the	project.	The	structure	should	be	consistent	in	that	the
same	types	of	code	should	be	organized	into	the	same	places,	so	that	projects	are
navigable.

You	code	should	also	be	externally	consistent.	Structure	your	projects	and	your
code	similarly	to	how	other	people	do.	If	a	new	developer	opens	up	your	project,
he	or	she	should	not	react	by	saying,	“I	have	never	seen	anything	like	this	before.”
Community	guidelines	matter,	because	they	are	what	developers	will	expect	to	see
when	they	come	to	your	project.	Similarly,	and	for	the	same	reasons,	take
seriously	the	standards	surrounding	how	to	accomplish	common	tasks	and	how	to
organize	code	when	using	certain	frameworks.

Think	About	Ontology,	Especially	with	Data
Ontology	basically	means	“the	study	of	being.”	In	philosophy	(where	the	word	is



most	commonly	used),	ontology	is	the	study	of	the	nature	of	reality	and	existence,
and	is	a	subset	of	metaphysics.

When	it	comes	to	writing	software	applications,	ontology	refers	to	a	focus	on	what
the	various	“things”	in	your	application	are.	How	do	you	represent	your	concepts
in	your	database?	What	about	your	class	structure?

What	this	sort	of	question	ultimately	affects	is	the	way	you	write	and	structure
your	code.	Do	you	use	inheritance	or	composition	to	structure	the	relationship
between	two	classes?	In	what	database	table	does	this	or	that	column	belong?

This	advice	effectively	boils	down	to,	“Think	before	you	write.”	Specifically,	think
about	what	the	objects	in	your	application	are,	and	how	they	interact	with	one
another.	Your	application	is	a	world	where	objects	and	data	interact.	So,	what	are
the	rules	by	which	they	work	together?

Do	Not	Repeat	Yourself
When	writing	code,	consider	situations	in	which	you	are	reusing	a	value	that	could
change	over	time.	Is	that	value	being	used	in	multiple	modules	and	functions?
How	much	work	would	it	be	to	change	it	if	it	became	necessary	to	do	so?

The	same	principle	applies	to	functions.	Do	you	have	a	common	boilerplate	that
you	find	yourself	constantly	repeating	throughout	your	application?	If	the
boilerplate	is	longer	than	a	couple	of	lines,	you	may	want	to	consider	abstracting	it
out	into	a	function,	so	that	if	the	need	to	change	it	arises,	it	is	manageable	to	do	so.

On	the	other	hand,	it	is	possible	to	take	this	principle	too	far.	Not	every	value
needs	to	be	defined	as	a	constant	in	a	module	(and	doing	so	can	impair	readability
and	maintainability).	Use	wise	judgment.	Consistently	be	asking	the	question,	“If
this	changes,	how	much	work	would	it	be	to	update	it	everywhere?”

Have	Your	Comments	Explain	the	Story
Your	code	is	a	story.	It	is	an	explanation	of	what	occurs,	from	beginning	to	end,	as
users	interact	with	your	program.	The	program	starts	in	one	location	(potentially
with	some	input),	moves	through	a	series	of	“choose	your	own	adventure”	steps	to
reach	an	end	point,	and	then	concludes	(probably	with	some	output).

Consider	adopting	a	commenting	style	where	every	few	lines	of	code	is	preceded
by	a	comment	block	explaining	what	that	code	is	doing.	If	your	code	is	a	story,
your	comments	are	an	illumination	and	explanation	of	that	story.

When	narrative	commenting	is	done	well,	a	reader	can	parse	the	code	(for
example,	when	trying	to	troubleshoot	a	problem	or	maintain	the	code)	by	reading
the	comments	to	get	the	story,	then	quickly	zero	in	on	the	code	that	requires
maintenance,	and	only	then	focus	on	the	vocabulary	of	the	code	itself.

Narrative	commenting	also	helps	explain	intent.	It	helps	answer	the	question,
“What	did	the	person	who	wrote	this	code	aim	to	accomplish?”	Occasionally,	it



will	help	answer	the	question,	“Why	was	this	done	this	way?”	These	are	questions
you	naturally	ask	when	you	read	code,	and	providing	the	answers	to	those
questions	aids	in	understanding.

Therefore,	comments	should	explain	the	rationale	for	anything	in	the	code	that	is
not	simple	and	salient.	If	a	somewhat	complex	algorithm	is	being	used,	consider
including	a	link	to	an	article	explaining	the	pattern	and	providing	other	examples
of	its	use.

Occam's	Razor
The	most	important	principle	for	writing	maintainable	code	is	colloquially	known
as	Occam's	Razor:	the	simplest	solution	is	usually	the	best	one.	In	his	“The	Zen
of	Python”	web	posting	(https://www.python.org/dev/peps/pep-0020/),	which	is	a
collection	of	proverbs	for	programming	(for	example,	type	import	this	in	a
Python	console	to	read	it),	Tim	Peters	includes	a	similar	line:	“If	the
implementation	is	hard	to	explain,	it's	a	bad	idea.”

This	principle	is	true	in	both	how	your	code	works	and	how	it	looks.	When	it
comes	to	how	your	code	works,	simple	systems	are	more	maintainable.
Simplicity	of	implementation	means	that	you	are	less	likely	to	write	esoteric
bugs,	and	that	those	who	come	after	you	to	maintain	your	work	(including
yourself)	are	more	likely	to	intuitively	understand	what	is	happening	and	be	able
to	add	to	the	application	without	hitting	unexpected	snags.

As	far	as	how	your	code	looks,	remember	that,	as	much	as	is	possible,	reading
code	should	be	about	learning	the	story	of	what	the	code	is	doing,	not	about
parsing	the	vocabulary.	The	vocabulary	is	the	means,	while	the	story	is	the	end.	It
is	easy	to	write	rules	such	as,	“Do	not	use	ternary	operators.”	However,	following
rules	you	can	run	through	a	linter	(while	valuable)	is	not	a	sufficient	condition	for
clarity.	Focus	on	writing	and	organizing	code	so	that	it	is	as	simple	as	possible.

http://www.python.org/dev/peps/pep-0020/


Standards
The	Python	community	largely	follows	a	style	guide	known	as	PEP	8
(https://www.python.org/dev/peps/pep-0008/),	which	is	written	by	Guido	van
Rossum	(the	creator	of	Python)	and	is	adopted	by	most	major	Python	projects,
including	the	Python	standard	library.

The	universality	of	the	PEP	8	standard	is	one	of	its	greatest	strengths.	It	has	been
adopted	by	so	much	of	the	community	that	you	can	reasonably	expect	that	most
Python	code	you	encounter	will	conform	to	it.	As	you	write	code	this	way,	it	will
become	easier	to	read	code	written	similarly.

Trivial	Rules
Many	of	the	guidelines	in	PEP	8	are	quite	straightforward.	Highlights	include	the
following:

Use	four	spaces	for	indentation.	Do	not	use	literal	tabs	(\t).

Variables	should	be	spelled	with	underscores,	not	camel	case	(my_var,	not
myVar).	Class	names	start	with	a	capital	letter	and	are	in	camel	case	(for
example,	MyClass).

If	a	variable	is	intended	to	be	“internal	use	only,”	prefix	it	with	an	underscore.

Use	a	single	space	around	operators	(for	example,	x	+	y,	not	x+y),	including
assignment	(z	=	3,	not	z=3),	except	in	keyword	arguments,	in	which	case,	the
spaces	are	omitted.

Omit	unnecessary	whitespace	in	lists	and	dictionaries	(for	example,	[1,	1,
2,	3,	5],	not	[	1,	1,	2,	3,	5	]).

Read	the	Python	style	guide	for	additional	examples	and	further	discussion	on
these	rules.

Documentation	Strings
Remember	that,	in	Python,	if	the	first	statement	in	a	function	or	class	is	a	string,
that	string	is	automatically	assigned	to	the	special	__doc__	variable,	and	is	then
used	if	you	call	help	(and	in	a	few	other	cases).

PEP	8	designates	that	docstrings	(as	they	are	colloquially	called)	should	be
written	as	an	imperative	sentence.

"""Do	X,	Y,	and	Z,	then	return	the	result."""

This	is	contrasted	with	writing	the	docstring	as	a	description,	which	is	frowned
upon.

"""Does	X,	Y,	and	Z,	then	returns	the	result."""

If	the	docstring	is	a	single	line,	follow	it	with	an	empty	line	before	the	body	of	the

http://www.python.org/dev/peps/pep-0008/


class	or	function	begins.	If	the	docstring	spans	multiple	lines,	place	the	closing
quotes	on	their	own	line	in	lieu	of	the	empty	line.

"""Do	X,	Y,	and	Z,	then	call	the	a()	method	to	transform	all	the	things,

then	return	the	result.

"""

Blank	Lines
Blank	lines	are	used	for	logical	segmentation.

PEP	8	designates	that	two	blank	lines	should	separate	“top	level”	classes	and
function	definitions	in	a	module.

class	A(object):

				pass

class	B(object):

				pass

PEP	8	also	designates	that	after	the	top	level,	class	and	function	definitions	should
be	separated	by	one	blank	line	each.

class	C(object):

				def	foo(self):

								pass

				def	bar(self):

								pass

It	is	acceptable	to	use	single	blank	lines	within	functions	or	other	blocks	of	code	to
delineate	logical	segments.	Consider	preceding	all	such	segments	with	comments
explaining	the	block.

Imports
Python	allows	both	absolute	and	relative	imports.	In	Python	2,	the	interpreter	will
attempt	a	relative	import,	and	then	attempt	an	absolute	import	if	no	relative
import	matches.

In	Python	3,	relative	imports	are	given	a	special	syntax—a	leading	period	(.)
character—and	“normal”	imports	only	attempt	absolute	imports.	The	Python	3
syntax	is	available	starting	in	Python	2.6.	Additionally,	you	can	turn	off	implicit
relative	imports	using	from	__future__	import	absolute_import.

You	should	always	stick	to	absolute	imports	whenever	possible.	If	you	must	use	a
relative	import,	you	should	use	the	explicit	style.	If	you	are	writing	code	for
Python	2.6	and	2.7,	consider	explicitly	opting	in	to	the	Python	3	behavior.

When	you	are	importing	modules,	each	module	should	be	given	its	own	line.

import	os



import	sys

However,	if	you	are	importing	multiple	names	from	the	same	module,	it	is
perfectly	acceptable	to	group	them	on	the	same	line.

from	datetime	import	date,	datetime,	timedelta

Additionally,	although	PEP	8	does	not	mandate	this,	consider	keeping	imports
grouped	by	the	packages	that	they	come	from.	Within	each	group,	sort	imports	by
alphabetical	order.

Also,	when	doing	imports,	do	not	forget	about	the	ability	to	alias	names	that	are
imported	using	the	as	keyword.

from	foo.bar	import	really_long_name	as	name

This	often	allows	you	to	shorten	long	or	unwieldy	names	that	are	going	to	be
repeated	often.	Aliasing	is	a	valuable	tool	when	an	import	is	used	frequently,	and
when	the	original	name	is	difficult	for	whatever	reason.

On	the	other	hand,	remember	that	when	you	do	this,	you	are	effectively	masking
the	original	name	within	your	module,	which	can	reduce	clarity	if	you	do	it	when	it
is	not	really	necessary.	Like	any	tool,	use	this	with	discretion.

Variables
As	mentioned	earlier,	variable	names	are	spelled	with	underscores,	not	camel	case
(for	example,	my_var,	not	myVar).	Additionally,	it	is	important	that	variable	names
be	descriptive.

It	is	generally	not	appropriate	to	use	extremely	short	variable	names,	although
there	are	situations	where	this	is	acceptable,	such	as	the	iterator	variables	in	loops
(for	example,	for	k,	v	in	mydict.items()).

Avoid	naming	variables	after	common	names	already	in	the	Python	language,
even	when	the	interpreter	would	allow	it.	You	should	never	name	a	variable	or	a
function	something	like	sum	or	print.	Similarly,	avoid	type	names	such	as	list	or
dict.

If	you	must	name	a	variable	after	a	Python	type	or	keyword,	the	convention	is	to
include	a	trailing	underscore;	this	is	explicitly	preferable	over	altering	the	spelling.
For	example,	if	you	are	passing	a	class	to	a	function,	the	function	argument	should
be	named	class_,	not	klass.	(The	exception	to	this	is	class	methods,	which	by
convention	take	cls	as	their	initial	argument.)

Comments
Comments	should	be	written	in	English,	using	complete	sentences,	and	written	in
a	block	above	the	relevant	code.	You	should	use	correct	capitalization,	spelling,
and	grammar.



Also,	ensure	that	comments	are	kept	up	to	date.	If	the	code	changes,	the
comments	may	need	to	change	along	with	it.	You	do	not	want	to	end	up	with	a
series	of	comments	that	actually	contradict	the	code,	which	can	easily	cause
confusion.

Modules	may	include	a	comment	header,	usually	generated	by	your	version-
control	system,	detailing	the	version	of	that	file.	This	can	make	it	easier	to	see	if
the	file	has	been	changed,	and	is	particularly	useful	if	you	are	distributing	a
module	for	use	by	others.

Line	Length
The	single	most	controversial	(and	most	often	rejected)	aspect	of	the	Python	style
guide	is	its	limitations	on	line	length.	PEP	8	requires	that	lines	be	no	longer	than
79	characters,	and	that	docstring	lines	be	no	longer	than	72	characters.

This	rule	frustrates	many	developers,	who	point	out	that	we	live	in	an	age	of	27-
inch	monitors	and	widescreen	displays.	GitHub,	a	popular	website	for	sharing
code,	uses	a	window	with	a	width	of	120	characters.

Proponents	point	out	that	many	people	still	use	narrower	displays	or	80-character
terminals,	or	simply	do	not	set	their	code	window	up	to	maximize	the	screen.

There	will	likely	never	be	harmony	on	this	issue.	You	should	code	to	the	standards
of	the	projects	you	are	working	on.	Regardless	of	whether	you	conform	to	a	79-
character	standard	or	some	greater	width,	you	should	know	how	to	wrap	code
when	the	situation	arises.

The	best	way	to	wrap	a	long	single	line	is	by	using	parentheses,	as	shown	here:

if	(really_long_identifier_that_maybe_should_be_shorter	and

												other_really_long_identifier_that_maybe_should_be_shorter):

				do_something()

Whenever	it	is	feasible,	use	this	method	instead	of	using	a	\	character	before	the
line	break.	Note	that	in	cases	where	an	operator	such	as	and	is	being	used,	it
should	appear	before	the	line	break	if	possible.

It	is	also	possible	to	wrap	function	calls.	PEP	8	lists	many	acceptable	ways	to	do
this.	The	general	rule	to	follow	is	that	indentation	of	the	trailing	lines	should	be
consistent.

really_long_function_name(

				categories=[

								x.y.COMMON_PHRASES,

								x.y.FONT_PREVIEW_PHRASES,

				],

				phrase='The	quick	brown	fox	jumped	over	the	lazy	dogs.',

)

When	using	line	continuation	within	a	function	call,	list,	or	dictionary,	include	a
trailing	comma	on	the	final	line.



Summary
Many	times,	the	person	coming	along	a	year	later	and	reading	your	code	will	be
you.	Memories	are	never	as	good	as	they	intuitively	seem	to	be,	and	code	written
without	a	constant	eye	to	readability	and	maintainability	will	be	naturally	difficult
to	read	and	maintain.

Throughout	this	book,	you	have	learned	how	to	use	various	modules,	classes,	and
structures	in	the	Python	language.	When	deciding	how	to	solve	a	problem,
remember	that	it	often	takes	more	skill	to	debug	code	than	it	does	to	write	it.

Therefore,	aim	to	have	your	code	be	as	simple	as	possible,	and	as	readable	as
possible.	You	will	thank	yourself	a	year	from	now.	Your	coworkers	and	fellow
contributors	will,	too.





PROFESSIONAL
Python®

Luke	Sneeringer



Professional	Python®

Published	by

John	Wiley	&	Sons,	Inc.

10475	Crosspoint	Boulevard

Indianapolis,	IN	46256
www.wiley.com

Copyright	©	2016	by	John	Wiley	&	Sons,	Inc.,	Indianapolis,	Indiana

Published	simultaneously	in	Canada

ISBN:	978-1-119-07085-6

ISBN:	978-1-119-07083-2	(ebk)

ISBN:	978-1-119-07078-8	(ebk)

No	part	of	this	publication	may	be	reproduced,	stored	in	a	retrieval	system	or	transmitted	in	any	form	or	by
any	means,	electronic,	mechanical,	photocopying,	recording,	scanning	or	otherwise,	except	as	permitted
under	Sections	107	or	108	of	the	1976	United	States	Copyright	Act,	without	either	the	prior	written
permission	of	the	Publisher,	or	authorization	through	payment	of	the	appropriate	per-copy	fee	to	the
Copyright	Clearance	Center,	222	Rosewood	Drive,	Danvers,	MA	01923,	(978)	750-8400,	fax	(978)	646-8600.
Requests	to	the	Publisher	for	permission	should	be	addressed	to	the

Permissions	Department,	John	Wiley	&	Sons,	Inc.,	111	River	Street,	Hoboken,	NJ	07030,	(201)	748-6011,	fax
(201)	|748-6008,	or	online	at	http://www.wiley.com/go/permissions.

Limit	of	Liability/Disclaimer	of	Warranty:	The	publisher	and	the	author	make	no	representations	or
warranties	with	respect	to	the	accuracy	or	completeness	of	the	contents	of	this	work	and	specifi	cally	disclaim
all	warranties,	including	without	limitation	warranties	of	fi	tness	for	a	particular	purpose.	No	warranty	may
be	created	or	extended	by	sales	or	promotional	materials.	The	advice	and	strategies	contained	herein	may	not
be	suitable	for	every	situation.	This	work	is	sold	with	the	understanding	that	the	publisher	is	not	engaged	in
rendering	legal,	accounting,	or	other	professional	services.

If	professional	assistance	is	required,	the	services	of	a	competent	professional	person	should	be	sought.
Neither	the	publisher	nor	the	author	shall	be	liable	for	damages	arising	herefrom.	The	fact	that	an
organization	or	Web	site	is	referred	to	in	this	work	as	a	citation	and/or	a	potential	source	of	further
information	does	not	mean	that	the	author	or	the	publisher	endorses	the	information	the	organization	or	Web
site	may	provide	or	recommendations	it	may	make.	Further,	readers	should	be	aware	that	Internet	Web	sites
listed	in	this	work	may	have	changed	or	disappeared	between	when	this	work	was	written	and	when	it	is	read.

For	general	information	on	our	other	products	and	services	please	contact	our	Customer	Care	Department
within	the	United	States	at	(877)	762-2974,	outside	the	United	States	at	(317)	572-3993	or	fax	(317)	572-4002.

Wiley	publishes	in	a	variety	of	print	and	electronic	formats	and	by	print-on-demand.	Some	material	included
with	standard	print	versions	of	this	book	may	not	be	included	in	e-books	or	in	print-on-demand.	If	this	book
refers	to	media	such	as	a	CD	or	DVD	that	is	not	included	in	the	version	you	purchased,	you	may	download	this
material	at	http://booksupport.wiley.com.	For	more	information	about	Wiley	products,	visit	www.wiley.com.

Library	of	Congress	Control	Number:	2015952564

Trademarks:	Wiley,	the	Wiley	logo,	Wrox,	the	Wrox	logo,	Programmer	to	Programmer,	and	related	trade
dress	are	trademarks	or	registered	trademarks	of	John	Wiley	&	Sons,	Inc.	and/or	its	affi	liates,	in	the	United
States	and	other	countries,	and	may	not	be	used	without	written	permission.	Python	is	a	registered	trademark
of	Python	Software	Foundation.	All	other	trademarks	are	the	property	of	their	respective	owners.	John	Wiley
&	Sons,	Inc.,	is	not	associated	with	any	product	or	vendor	mentioned	in	this	book.

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com


To	Meagan.	My	loving	wife,	and	forever	my	best	friend.	You	make	“happily	ever
after”	a	reality.





About	the	Author
Luke	Sneeringer	has	designed,	architected,	built,	and	contributed	to	numerous
Python	applications	for	companies	including	FeedMagnet,	May	Designs,	and
Ansible,	and	is	a	frequent	speaker	at	Python	conferences.	He	lives	in	Austin,
Texas,	with	his	wife,	Meagan,	and	a	non-trivial	contingent	of	cats	and	fish.





About	the	Technical	Editors
Alan	Gauld	is	a	certified	Enterprise	Architect	for	The	Open	Group	Architecture
Framework	(TOGAF),	working	in	the	telecommunications	and	customer	service
industries.	He	has	been	programming	since	1974	and	using	Python	since	1998.	He
is	the	author	of	two	books	on	Python.	When	not	working,	he	enjoys	hiking,
photography,	travel,	and	music.

Elias	Bachaalany	is	a	computer	programmer,	software	reverse	engineer,	and	a
technical	writer.	Elias	has	also	co-authored	the	books	Practical	Reverse
Engineering	(Wiley,	2014)	and	The	Antivirus	Hacker's	Handbook	(Wiley,	2015).
During	his	employment	period	at	Hex-Rays	S.A,	he	amped	up	IDA	Pro's	scripting
facilities	and	contributed	to	the	IDAPython	project.





Credits
Project	Editor

Kevin	Shafer

Technical	Editor

Alan	Gauld;	Elias	Bachaalany

Production	Editor

Joel	Jones

Copy	Editor

Kimberly	A.	Cofer

Manager	of	Content	Development	&	Assembly

Mary	Beth	Wakefield

Production	Manager

Kathleen	Wisor

Marketing	Director

David	Mayhew

Marketing	Manager

Carrie	Sherrill

Professional	Technology	&	Strategy	Director

Barry	Pruett

Business	Manager

Amy	Knies

Associate	Publisher

Jim	Minatel

Project	Coordinator,	Cover

Brent	Savage

Proofreader

Kathryn	Duggan

Indexer

Jack	Lewis

Cover	Designer

Wiley



Cover	Image

©Getty	Images/Yagi	Studio





Acknowledgments
This	book	would	not	be	a	reality	without	the	indispensible	help	of	its	editor,
Kevin	Shafer,	and	technical	reviewers,	Alan	Gould	and	Elias	Bachaalany.	Their
efforts	made	this	book	immeasurably	better	(and	substantially	reduced	errata
contained	therein).	The	entire	team	at	Wiley	did	an	outstanding	job	of	taking	my
rather	unattractive	starting	manuscripts	and	making	something	beautiful.

A	special	thanks	goes	to	Jason	Ford,	my	dear	friend	and	the	brilliant	entrepreneur
who	gives	me	an	endless	supply	of	entertaining	work.	He	gave	me	my	first
opportunity	to	write	Python	professionally,	and	continues	to	be	a	daily	source	of
interesting	problems,	fascinating	debate,	and	endless	excitement	(oh,	and	a
paycheck).

I	am	grateful	also	to	many	friends	both	inside	and	outside	the	Python	community,
who	have	worked	or	played	with	me	over	the	past	many	years.	While	these	are
sadly	too	many	to	list,	conscience	would	not	forgive	a	failure	to	note	a	subset	by
name:	Mickie	Betz,	Frank	Burns,	David	Cassidy,	Jon	Chappell,	Diana	Clarke,
George	Dupere,	John	Ferguson,	Alex	Gaynor,	Jasmin	Goedtel,	Chris	Harbison,
Boyd	Hemphill,	Rob	Johnson,	Daniel	Lindsley,	Jeff	McHale,	Doug	Napleone,	Elli
Pope,	Tom	Smith,	and	Caleb	Sneeringer.

Thanks	to	my	parents,	Jim	and	Cheryl	Sneeringer,	who	taught	me	more	things
than	I	could	ever	enumerate.	Among	these	was	how	to	code,	but	greatest	in
importance	was	how	to	live.

Finally,	the	acknowledgements	could	hardly	be	considered	complete	without	a
paragraph	citing	the	support,	dedication,	and	love	of	my	wife,	Meagan.	She
convinced	me	that	this	book	was	worth	writing,	and	graciously	supported	me
during	every	step	of	the	process.	I	could	not	be	more	blessed	or	more	thankful	to
have	her	in	my	life	every	day.

—Soli	Deo	Gloria





WILEY	END	USER	LICENSE	AGREEMENT
Go	to	www.wiley.com/go/eula	to	access	Wiley's	ebook	EULA.

http://www.wiley.com/go/eula

	Introduction
	Who This Book Is For
	What This Book Covers
	How This Book Is Structured
	What You Need to Use This Book
	Conventions
	Errata
	p2p.wrox.com

	Part I: Functions
	Chapter 1: Decorators
	Understanding Decorators
	Decorator Syntax
	Where Decorators Are Used
	Why You Should Write Decorators
	When You Should Write Decorators
	Writing Decorators
	Decorating Classes
	Type Switching
	Summary

	Chapter 2: Context Managers
	What Is a Context Manager?
	Context Manager Syntax
	When You Should Write Context Managers
	A Simpler Syntax
	Summary

	Chapter 3: Generators
	Understanding What a Generator Is
	Understanding Generator Syntax
	Communication with Generators
	Iterables Versus Iterators
	Generators in the Standard Library
	When to Write Generators
	When Are Generators Singletons?
	Generators within Generators
	Summary


	Part II: Classes
	Chapter 4: Magic Methods
	Magic Method Syntax
	Available Methods
	Other Magic Methods
	Summary

	Chapter 5: Metaclasses
	Classes and Objects
	Writing Metaclasses
	Using Metaclasses
	When to Use Metaclasses
	The Question of Explicit Opt-In
	Meta-Coding
	Summary

	Chapter 6: Class Factories
	A Review of type
	Understanding a Class Factory Function
	Determining When You Should Write Class Factories
	Summary

	Chapter 7: Abstract Base Classes
	Using Abstract Base Classes
	Declaring a Virtual Subclass
	Declaring a Protocol
	Built-in Abstract Base Classes
	Summary


	Part III: Data
	Chapter 8: Strings and Unicode
	Text String Versus Byte String
	Strings with Non-ASCII Characters
	Other Encodings
	Reading Files
	Reading Other Sources
	Specifying Python File Encodings
	Strict Codecs
	Summary

	Chapter 9: Regular Expressions
	Why Use Regular Expressions?
	Regular Expressions in Python
	Basic Regular Expressions
	Grouping
	Lookahead
	Flags
	Substitution
	Compiled Regular Expressions
	Summary


	Part IV: Everything Else
	Chapter 10: Python 2 Versus Python 3
	Cross-Compatibility Strategies
	Changes in Python 3
	Standard Library Relocations
	Version Detection
	Summary

	Chapter 11: Unit Testing
	The Testing Continuum
	Testing Code
	Unit Testing Frameworks
	Mocking
	Other Testing Tools
	Summary

	Chapter 12: CLI Tools
	OPTPARSE
	ARGPARSE
	Summary

	Chapter 13: asyncio
	The Event Loop
	Coroutines
	Futures and Tasks
	Callbacks
	Task Aggregation
	Queues
	Servers
	Summary

	Chapter 14: Style
	Principles
	Standards
	Summary


	End User License Agreement

